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Graphical Models are famihes of distributions satisfying a set of conditional indepen-

dence relationships, which may be represented by a graph where vertices represent 

the variables under study and pairwise conditional independences are represented by 

missing edges. Much the of the work concerning Bayesian inference for these mod-

els has dealt with those where aU the variables are either all discrete or all continuous. 

While the case of purely discrete models has been treated thoroughly, most work on the 

purely continuous case of graphical Gaussian models has been restricted to decompos-

able models, which allow analyses to be broken down into sub-analyses of smaller, sim-

ple sub-models and graphical models with variables of each type have been given very 

little attention in a Bayesian context. This thesis addresses these two issues through 

the use of Markov chain Monte Carlo methods, a powerful tool for Bayesian inference. 

Methodology for inference both for hxed models and under model uncertainty is devel-

oped for the entire class of graphical Gaussian models, avoiding the use of conjugate 

prior distributions. This approach is then applied to simple mixed graphical models as 

well as to the larger class of hierarchical interaction models. 
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Chap te r 1 

In t roduc t ion and Background 

In this chapter, the three main elements used in this thesis are introduced, namely 

conditional independence and graphical models, Bayesian inference and Markov 

chain Monte Carlo, a powerful computational tool which is frequently used for 

Bayesian inference. A brief review of some graph-theoretical terminology, which 

is used extensively throughout is also given. An outline of the thesis and its 

objectives is given at the end. 

1.1 Conditional Independence 

Two random variables X and Y are said to be (marginally) independent if their 

joint density function factorizes into the product of their marginal densities, 

in which case we write % _LL Y after Dawid (1979). 

An alternative characterization is that the conditional density of Y given X = a; 

is not a function of z, written /y|x(2/|a;) = /y(2/). 

If X, Y, Z are three random variables and for each value z, X and Y are 

independent in the conditional distribution given Z = z, we say X and Y are 

given Z and write X _I1 y | Z . An alternative charac-

terization is that -z) does not depend on ?/. This extends to the case 

of Z being a random vector. 

1.2 Graph Theory 

A G consists of a set of vertices, y and a set of pairs of vertices, E, called 

edges and can be represented pictorially as lines connecting dots or circles. If the 

vertex pairs in E are unordered, the graph is otherwise it is 

and the edges are drawn as arrows. A graph is if all possible edges are 
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present. A .77 of a graph G consists of a subset 1̂ 7 C y of the vertex 

set and an edge set F such that (2,^) 6 f <=> % G TV, j E I'F and (z, E E. A 

cZzgug is a maximally complete subgraph, that is a complete subgraph which is 

not a subgraph of another complete subgraph. 

A marA;e(f has its set of vertices partitioned into two disjoint subsets, 

y = A U r . For graphical modelling, these represent discrete and continuous 

vertices, respectively. If either set is empty, the graph is pure. By convention, 

dscrete variables are represented by cbts and continuous by circles. 

Two vertices with an edge between them are Two or more edges 

joining the same pair of vertices are called multiple edges. An edge joining a 

vertex to itself is called a loop. A has no loops or multiple edges. 

A graph is coMMeĉ ed if it is in one piece and disconnected otherwise. In other 

words, a disconnected graph may be partitioned into two or more subgraphs with 

no edges between them. This thesis is concerned only with simple undirected 

graphs. 

The of a vertex is the number of edges meeting at it. The decree 

aeg%en,ce of a graph is the list of the degrees of each vertex, usually written in 

ascending or descending order. 

For any graph, the sum of all the vertex degrees is equal to twice the number 

of edges. This is known as the Handshaking Lemma. 

Two graphs are %aomo?-pA2c if one can be obtained from the other by relabelling 

the vertices - that is if there is a one-to-one correspondence between the vertices, 

such that the number of edges joining any pair of vertices in one graph is equal to 

the number of edges joining the corresponding vertices in the other. Isomorphic 

graphs share the same 

The adjacenc!/ of a graph is a | y | x | y | matrix (where | y | is the 

number of vertices), with I's in positions corresponding to adjacent vertices and 

O's otherwise. 

The of '̂accMc;/ of a vertex a, adj(a!), is the set of all vertices adjacent to 

it. The boitndari/ of a subset A C y is bd(A)= Ua6 4Eidj(o!) D ( y \ A), that is all 

vertices adjacent to some vertex in A. 

A is a sequence, of distinct vertices with G E 

for all m = 1 , . . . , M. A c^c^e is a path with rg = A graph hag no 

cycles of length M > 4 without a cAortf, that is, two nonconsecutive vertices with 

an edge between them. 

Two disjoint subsets, A and ^ are by a third disjoint subset C if 
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every path from any vertex in A to any vertex in ^ passes through C. In this 

case, C is called a for ^ and B. 

A vertex is if its adjacency set is complete. In a marked graph, a 

simplicial vertex is azmp/zcrnHf either it is continuous or its adjacency set 

consists only of discrete vertices so strongly simplicial vertices have only discrete 

vertices as neighbours. A subset is simplicial if its boundary is complete and 

strongly simplicial if it either consists only of continuous vertices or its boundary 

consists only of discrete vertices. 

A cAom is an ordered sequence of subsets. The chain induces a partial order 

< on the vertices. The induced cAam has edge set consisting of all 

edges (a, in E' with a < /). A chain graph has undirected edges within blocks 

and directed edges between as in Figure 1.1. 

Figure 1.1: Example of a chain graph 

An ordering induced by a chain is (strongly) if all subsets in the 

chain are (strongly) simplicial in the induced chain graph. An undirected graph 

is triangulated if and only if there is a reducible ordering of the vertices. 

An undirected graph is if there is a strongly reducible ordering 

of the vertices. A pure graph is decomposable if and only if it is triangulated. 

Nondecomposable pure graphs can thus be recognized as having a chord-

less cycle of length greater than 3 and nondecompbsable marked graphs can be 

recognized as being either not triangulated or having a continuous vertex with 

nonadjacent discrete neighbours. The simplest nondecomposable graph is shown 

below. 

A chain graph is to the undirected graph given by removing 

the blocks and replacing the directed edges by undirected ones if and only if it 
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is strongly reducible. Thus, the above chain graph is Markov equivalent to the 

undirected graph in Figure 1.2. 

Figure 1.2: Undirected graph equivalent to the chain graph in Figure 1.1 

1.3 Graphical Models 

A mcfepeMdence for a set of variables is a graph with a vertex 

for each variable and an edge between each pair of vertices corresponding to 

pairs of variables which are conditionally independent given the remaining 

variables. Thus, missing edges correspond to pairwise conditional independence 

constraints, called prap/iicaZ cofiatmWs, on the joint distribution of the variables. 

Given a set of variables and an independence graph, a mode/ is a 

family of distributions for the variables, satisfying the conditional independence 

constraints embodied in the graph but otherwise unconstrained. We say that 

these distributions are Mor/cof over the graph. If all edges are present, the graph 

is complete and the model is 

Broadly, there are three types of graphical model: GmpAzca/ 

are used when all the variables are discrete; grop/izcaZ moiiek are used 

when all the variables are continuous; and mzzed mocfek, 

usually based on the conditional-Gaussian distribution, are for mixtures of dis-

crete and continuous variables. This thesis is concerned with the latter two cases 

as the hrst has been dealt with thoroughly elsewhere. 

This thesis is concerned only with graphs but there are also mod-

els baaed on directed (or oriented) graphs, sometimes called recursive graphical 

models, in which there is an ordering of the variables and which can be ex-

pressed as a sequence of regressions, and also graphical chain models, in which 

there is a partial ordering and graphs with both directed and undirected edges 

are used. These types of models generally require a diEerent approach to the 
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undirected cases so are not dealt with here. The three main sources for further 

details of graphical models, especially those not covered in this thesis are Edwards 

(1995,2000), Whittaker (1990) and Lauritzen (1996), the latter being the most 

rigorous. 

1.3.1 Decomposable Models 

Decomposable models are models with decomposable graphs. Such models have 

received special attention due to their structure allowing analyses to be broken 

down into sub-analyses of smaller, complete graphs. This thesis is concerned with 

developing methodology for both decomposable and nondecomposable models. 

1.3.2 Model Indexing 

Any graphical model is completely specified by the adjacency matrix of its graph. 

A natural way, therefore, to index models is to use the decimal form of the upper 

(or lower) triangle of the adjacency matrix, regarded as a binary number. So, for 

example, when there are four vertices, 43 represents the graph in Figure 1.3. Since 

43 is represented as 101011 in binary, the adjacency matrix is 

telling us that the (1, 3) and (2, 3) edges are absent. 

/ * 1 0 1 \ 

1 * 0 1 

0 0 * 1 

V 1 1 1 * / 

Figure 1.3: Graph 43 for 4 vertices 

As an alternative to a numerical labeling like this, a more easily interpretable 

(for a human reader) labeling is to list the cliques so the above graph is labelled 

as 124/34. 
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1.3.3 Graphical Log-linear Models 

A graphical log-linear model (GLLM) is a family of discrete probability distri-

butions satisfying certain conditional independence constraints given by a graph, 

that is Marmot; over the graph. They were first defined by Darroch, Lauritzen 

and Speed (1980) and, aa the name suggests, they are part of the larger and 

better-known class of log-linear models. These are so-called because the log-

arithm of the joint probability may be decomposed into a sum of 

logp(i) = where A is the set of variables, indexed by i, 

which takes values in %. For example, if A = indexed by and A; 

respectively. 

C/ AC/ 

Note that (where is the subvector of % corresponding to 

so that, for example, j , A:) 

and since = 1, 

If (%). M is the normaZzzmp 

« = exp 

In practice, additional constraints are required in order to uniquely identify 

these interaction terms. There are various choices for these coM-

including the constraints, which require = 0 for 

each C A. If A has levels, the sum-to-zero constraints are satis6ed by 

setting 'u'̂ (Zŷ ) = — Any set of identihability constraints can be 

expressed concisely using a Z): 

l o g f = Z)[/, 

where f is a vector of p(z)'s and (7 is a vector of 'u-terms. For sum-to-zero 

constraints, Z) = where D(^) is an x Zg matrix (where has /g 

levels) of form, 

-
1 

\ 
I 

1 / 
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where 7 is an identity matrix. 

The advantage of using this interaction expansion is that certain independence 

relationships may be expressed simply by setting certain sets of interaction terms 

to zero. In particular, two variables are conditionally independent given the 

others if and only if all interaction terms involving them are zero. So in the 

above example, 

^ _U_ B |C 4=^ j, A;) = 0 for all 2, j and A;. Consequently, 

different graphical models correspond to certain sets of interaction terms being 

set to zero. It is easy to see that the total number of possible graphical models 

for p variables is 2(2) — 

The larger class of /lierarc/iico/ models require only that whenever 

a particular interaction term is removed (set to zero), so must any others that 

involve all of the variables that it does. More precisely, if %''(%) — 0, where <% C A, 

then I/'' — 0(%)V % 6 %, whenever a C 6. In the above example, this means that 

if any 2-way interaction is to be removed, so must the 3-way interaction. In this 

case, there is only one non-graphical hierarchical model - the one with only the 

three-way interaction removed. In general, there is no expression that gives the 

number of possible hierarchical models in any case but it is always less than 2̂ "̂ 

since there are 2^ interaction terms. 

Bayesian inference for discrete graphical models has been largely dealt with. 

Dawid and Lauritzen (1993), develop conjugate prior distributions for both these 

and GGMs, but only for decomposable models. Madigan and York (1995) deal 

with various approaches including inference under model uncertainty, for directed 

acyclic graphs as well as decomposable directed graphs. Madigan and Raftery 

(1994) describe methods for Bayesian inference under model uncertainty. Again, 

only DAGs and decomposable log-linear models are treated but the methods can 

also be applied to other types of graphical models. Madigan et al. (1994) also 

deal with model selection for discrete graphical models. Dellaportas and Forster 

(1999) apply reversible jump MCMC to log-linear models, both graphical and 

hierarchical and both decomposable and nondecomposable. Model selection in a 

non-Bayesian context is dealt with in, for example, Edwards and Kreiner (1983). 

1.3.4 Graphical Gaussian Models 

Given an independence graph G and a g-dimensional random vector y , a graphical 

Gaussian Model (GGM) is a family of multivariate Normal (or Gaussian) distri-
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butions, f c = for ^ which are MGrA;ou over (7, that is constrained 

to satisfy the pairwise conditional independence constraints embodied in the 

graph. GGMs are more conveniently parameterized by the concentration matrix, 

Og = as the entries in this are multiples of partial correlation coeSicients. 

Hence, _LL 

= 0 and different models correspond to diSerent patterns of zeroes 

in n . In addition, /.t is often taken to be zero but this is not done here. The 

only other constraint is that Zg (or Og) be symmetric and positive-deAnite. The 

distribution is otherwise arbitrary. There are 2(2) models corresponding to the 

off-diagonal entries in i l . 

Bayesian inference for graphical Gaussian models has largely been conSned 

to decomposable models and/or conjugate priors. Dawid and Lauritzen (1993) 

introduce a class of conjugate prior distributions for these and show how they 

may be used. Giudici (1996) introduces two classes of conjugate prior, one of 

which is the same of that of Dawid and Lauritzen (1993). The other is suitable 

for both decomposable and nondecomposable GGMs, although the exact density 

is available only for decomposable models and Giudici restricts his use of it to 

decomposable models in order to compare the two priors. Dellaportas, Giudici 

and Roberts (2003) extend the use of Giudici's second prior to nondecomposable 

GGMs and use MCMC to obtain normalizing constants. Roverato (2002) has 

introduced a generalization of the conjugate prior of Dawid and Lauritzen, which 

can be applied to both decomposable and nondecomposable models. Giudici and 

Green (1999) have used a hierarchical prior, similar to the conjugate priors, in 

order to implement reversible jump MCMC for GGMs. Further details of each of 

these are given in the next chapter. 

1.3.5 Mixed Graphical Models 

Graphical models for both discrete and continuous variables require something 

not found in pure models, namely association between discrete and continuous 

variables. One way of achieving this is by allowing the distribution of the continu-

ous variables to depend on the value of the discrete variables so there is a different 

normal distribution for each cell of the discrete table. The joint distribution is 

then called conditional Gaussian (CG). Much like with log-linear models, the joint 

density in this case permits a log-linear expansion involving interaction terms and 

graphical constraints again correspond to certain interaction terms being set to 

18 



zero. Also, as with GLLMs, graphical CG (or interaction) models are part of the 

larger class of hierarchical CG (interaction) models. Further details are given in 

Chapter 4. 

1.3.6 MIM 

MIM, standing for Mixed Interaction Modelling, is an interactive Pascal pro-

gramme designed for working with hierarchical interaction models, although not 

in a Bayesian context. It is available free of charge from 

http://www.hypergraph.dk/ or from the author, David Edwards, who has also 

written a guide (Edwards 1987) and describes its use in his book (Edwards 

1995,2000). It includes procedures for model selection which are useful for the 

purposes of comparison with the results presented in this thesis. It can also com-

pute maximum likelihood estimates for decomposable models (this is not possible 

for nondecomposable models). These are useful as initial values in an MCMC 

sampler, for generating data and for comparing with Bayesian point estimates 

based on MCMC output. 

1.4 Bayesian Inference 

The underlying philosophy of Bayesian inference is tha t all uncertainty is mea-

sured by probability. Data, are assumed to come from one of 

a parameterized family of distributions, / ( y j ^ ) , and, whereas classical statistics 

considers the parameters, 0, to be hxed but unknown, the Bayesian approach 

treats them as random variables in their own right. Prior beliefs about the pa-

rameters 0 are represented by the prior density function, / (0) . The posterior 

density function, / (^j ; / ) , obtained via Bayes' theorem, represents our modified 

belief about 0 in the light of the data and is given by. 

f ( e ) f ( y \ e ) d e 

/ ( i / |6) is the joint distribution of the data given 0. Any function 1/(^12/) 

/ ( i / |0) is called a but since they are the same algebraically, the term 

likelihood is often used to refer to / ( i / |0) . The integral in the denominator can 

also be written aa /( i /) and is sometimes called the margmoZ Zz/ceZzAoocf. It often 

cannot be obtained analytically but is merely a constant with respect to 0 and is 

not always required for inference under a fixed model. So /(^|7/) oc / (0 ) / ( i / | 0 ) , 

the izMnormoZzzecf pos^en'or. 
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1.5 Bayesian Model Selection and Inference un-

der Model Uncertainty 

The family of distributions to which belongs is called a mocfeZ. If we are 

uncertain about which is the true model, we also express this uncertainty using 

probability. If Af is the class of all models under consideration, then for each 

m E Ai, we assign a prior model probability p(m). Note the use of p(.) as m 

is discrete-valued. Typically, a uniform prior is used, that is, = l / |Ai | . 

Each model m has an associated set of parameters, 0 ^ , with prior distribution 

Each model also implies a distribution for We can use 

Bayes' Theorem again to give 

where 

We can perform parametric inference under any particular model mo from 

where 

Posterior model probabilities are given by 

If a uniform prior is used for the models, this becomes 

EmeAi /(2/IW 

and hence the task reduces to Ending the marginal likelihoods, These 

are integrals which are often difhcult or impossible to obtain analytically and so 

numerical methods are necessary. Even if the marginal likelihoods are obtainable 

the number of potential models may be very large, making the task of finding 
pCp—1) 

posterior probabilities for all of them impractical. There are 2^^; = 2 2 po-

tential graphical models for p variables and, while this number is moderate for 

p = 3 (8 models) and possibly p = 4 (64 models), for greater values of p it 
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becomes quite large (1024 for p = 5; 32 768 for p = 6; 2 09T 152 for p = 7). Re-

versible jump Markov chain Monte Carlo, described below, avoid both problems 

and can be a very efficient way of performing inference under model uncertainty. 

An alternative, not described in this thesis, is Markov chain Monte Carlo model 

composition or MC^ (Madigan and York 1995), which involves the construction 

of a Markov chain with the posterior distribution of the model m, as 

stationary distribution. 

Bayesian model selection is the selection of the model with highest posterior 

probability. This can be an objective in itself or a preliminary step before adopt-

ing the selected model for future analysis. The main reasons (but not the only 

ones) for model selection are: The selected model may be easier to deal with 

then a saturated model; dtting a reduced model typically leads to better predic-

tion (see below) than htting a saturated model, which may be too complex; The 

selected model may have interesting substantive interpretations in terms of the 

relationships between variables (conditional independences, for example). 

Frequentist (non-Bayesian) model selection methods are generally based on 

the likelihood or, especially for graphical models on the (fewaMce, dehned as twice 

the difference between the maxima of the log-likelihood, Z, under the saturated 

model and under a particular reduced model, m. 

(fe'u(m) = 2(m^Z(^) — m^Z(^|??^)) 

This statistic has a number of advantages including the fact that the dif-

ference in deviance between two nested models has a chi-squared distribution. 

Hypothesis tests for edge inclusion or exclusion in graphical models may thus 

be conducted using the deviance difference. Two commonly-used deviance-based 

methods of model selection are: (l)Backward elimination, which involves start-

ing with the saturated model and successively removing the edge with the small-

est non-signi6cant exclusion deviance, stopping when all exclusion deviances are 

significant. (2)Forward inclusion, which involves starting with the mutual inde-

pendence model (with no edges) and successively adding the (currently missing) 

edge with the highest signihcant inclusion deviance, stopping when all inclusion 

differences are not significant. 

Such methods often tend to select more complex models (ones with more 

parameters) than Bayesian model selection. In the context of graphical models, 

this means deviance-based selection often results in models with more edges than 

Bayesian approaches. This is one reason to favour Bayesian model selection since 

simpler models are usually more desirable. 
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Posterior quantities, such as are often obtained using modeZ 

that is by an average over models, weighted by the posterior model 

probabihties: 

771 
If we wish to compare two models, mo and mi, it is usual to obtain the ratio, 

p(/Mo|3/) 

which, under a uniform prior, reduces to a ratio of marginal likelihoods 

also known as the Bayes factor for mo against mi. 

1.6 Markov Chain Monte Carlo 

Markov chain Monte Carlo (MCMC) methods are used to sample from analyt-

ically intractable distributions by simulating a Markov chain with the desired 

distribution (usually the posterior when used for Bayesian inference) as its sta-

tionary distribution. Unlike a random sample from this distribution, the MCMC 

output will not be an independent sample since the use of a Markov chain means 

that each observation depends on the previous one, but should allow valid infer-

ences to be made. Tierney (1994), for example, discusses the use of MCMC to 

sample from posterior distributions. 

A posterior sample obtained in this way can then be used to perform any 

sort of inferences we wish. For example, parameter estimates may be obtained as 

the sample means, posterior model probabilities as sample model frequencies and 

even entire posterior distributions (joint, marginal or conditional) may be esti-

mated from the MCMC output. In particular, posterior predictive distributions 

of a subset of the variables given further observations on the others. 

%/), where 2/ = are the data used to generate the posterior 

sample, can easily be obtained as follows: 

771 

which may be estimated from the MCMC output as the average of 

/ ( Y i l m , 0m, 2/) = over m and 0. 

9 9 



1.6.1 Gibbs Sampling 

Named by its authors Geman and Geman (1984) after the physicist J. W. Gibbs, 

this is a popular and easy-to-implement method for hxed models. It is useful when 

direct generation from the posterior is impractical or costly but generation from 

the conditional distributions is not. Starting with an initial set of values, each 

parameter is updated in turn, generating from its full conditional distribution and 

using the most recent values of the other parameters each time. The algorithm 

to generate from a distribution / (0 ) , where 0 = ( ^ i , . . . , is as follows: 

1. Initialize iteration counter at j = 1 and set initial values 

2. Obtain = ( ^ , . . . from 

3. Change j to j -I- 1 and repeat 2 until convergence (or a preset number of 

iterations is reached). 

As the number of iterations increases, the chain reaches the target distribution. 

Sampling in 2 may be possible directly, otherwise another method such as Metropolis-

Hastings is required. A variant is block Gibbs sampling where the parameters 

are updated in groups. 

1.6.2 The Metropolis-Hastings Algorithm 

This algorithm (Metropolis et al. 1953) is used when direct generation from (uni-

variate) distribution / (^ ) is not possible. Instead a propogaZ value is generated 

from a distribution which is similar in some sense to / ( ^ ) and depends on the 

current value of This proposal is then tested for acceptance as the next value 

of g. 

1. Start with the current value 

2. Generate a proposal value from some p(^''!^^) 

3. Calculate 
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4. With probability a accept the proposal i.e. 

Generate ^ (7(0,1) 

It < a —> set = 0* 

w > a —> set 

Notice that the normalizing constant of / is not required as it cancels in the 

ratio. In a Bayesian context, this means that neither the posterior nor the prior 

densities need be normalized. 

The quantity a is called the acceptance probability and the ratio that appears 

in the expression of a is the test ratio or acceptance ratio. There are various 

ways of choosing The one used throughout this thesis is a random 

walk i.e. + e, where e is normally distributed with mean zero. In this 

case, and a = min The variance of 6 can 

be used to control the rate of mixing; Large variance moves the chain around 

more but with lower acceptance probability whereas small variance gives higher 

acceptance probability but moves the chain less. Roberts, Gelman and Gilks 

(1997) show that the asymptotically optimal acceptance rate for random walk 

chains is approximately a quarter and hence recommend "tuning" (adjusting) 

the proposal variance so that the acceptance rate is approximately 0.25. This is 

very simple to do and is done for all examples presented here. 

1.6.3 Reversible-Jump M C M C 

Reversible jump Markov chain Monte Carlo methods were introduced by Green 

(1995) to perform inference under model uncertainty using the joint model and 

parameter space as the target distribution of the chain. The following is a brief 

summary in the context of Bayesian inference: 

Suppose we have two models: with Mi parameters and M2 with M2 param-

eters, and let z — (A:, ^t) ^ = 1,2, where <9̂  is the parameter vector for model A;. 

Denote the probability of choosing a move between from a; to as j(a;*|a;). This 

is known as the To move from Mi to M2, generate a vector of 

772,1 continuous random variables iti, from distribution gi, (usually independent 

of ^1) then set 2̂ to be a function of ^1 and i(i. The reverse move is achieved 

by generating t̂ 2 of length m2 from 92 and ^1 is obtained from 2̂ and 1/2 ii:! such 

a way as to satisfy both and (fz77ie7%5zoM That is, so that 

M l + 7Mi = 7^2 4 - 772,2; 

(^2,'U2) = g'(^i,'Ui) and (^i,i/i) = some invertible deterministic 

function p. 
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Green shows that for a move from Mi to M2, the acceptance probabihty is 

given by 

min I 1, 
92(̂ /2) ^(^2,1(2) 

That is. 

. , ^ /Posterior^ / J u m p \ /Proposal^ ^ . A 

" " " ' i Ratio ) ^ i R a t m j " ( Ratio j " 

Often, either m,i or mg is zero so one of the i/'s is not needed and one move 

is made entirely deterministically. The acceptance probability when mg = 0 then 

simplifies to: 

min 1 
/(2,g2);(2,g2) 1 

The posterior ratio may also be written as 

y(2, ^2!;/) / (Ms) /(g2|M2) /(2/IM2, 2̂ 

/ ( I , gi|3/) / (Ml ) /(gilMi) /(%/IMi, gi) ' 

that is, the product of a prior Ratio and a likelihood Ratio. 

Often, the model probabilities as well as the jump probabilities are equal so 

that the general acceptance ratio reduces to 

/ ( ^ iMg) /(i/|Af2,l92) 92(1̂ 2) 8(6*2, ̂ 2̂) 
8(l9i,'Ui) y(gi |Mi) / (2 / |Mi ,gi )gi (^ i : 

The principal difficulty in constructing a reversible jump MCMC scheme is 

often the generation of suitable proposals for the between-model moves and until 

recently, there has not been much investigation into this issue. Brooks, Giudici 

and Roberts (2003) have developed methods of constructing efhcient proposals 

and discuss their application to the scheme of Giudici and Green (1999) for GGMs. 

1.6.4 Convergence Diagnostics 

When implementing any MCMC method, it is necessary to check for what is 

known as convergence. There are two aspects to this: The early part of the chain 

before the target distribution is reached, called the "burn-in", is usually discarded 

before inference. This is not absolutely necessary as the inSuence of the burn-

in diminishes as the chain gets longer but discarding it does improve accuracy. 

It is also necessary to check that the chain is covering the target distribution 

adequately. The rate at which it does this is known as "mixing". 



There are various methods, convergence diagnostics, to check for convergence. 

There are methods which involve calculating some measure of convergence but 

usually graphical methods are used. These usually include time series plots, 

known as of the output. See pages 56, 60, 111, 112, 113 and 114 for 

examples of these. Sometimes several chains are run with differing initial states 

and if the outputs are indistinguishable after suitable burn-in time, convergence is 

likely. Convergence diagnostics, both formal and graphical, are discussed in detail 

in, for example, Gelman and Rubin (1992) and Brooks and Gelman (1998). 

Testing for convergence within the model space when implementing reversible 

jump MCMC is more di@cult. Methods are described in, for example. Brooks 

and Giudici (2000) and Castelloe and Zimmerman (2002). One method is to split 

the output into batches (Geyer 1992) and obtain posterior model probabilities, 

or at least some of them, based on these batches. For any particular model, 

suppose the model frequency based on the entire chain is f and the batch model 

frequencies, based on each of 6 batches, are : 2 = 1 , . . . , 6}. f is the overall 

estimate of the posterior model probability and the are estimates based on 

each batch. Time series plots of the batch probabilities may then be produced as 

a convergence diagnostic. The Markov chain Monte Carlo standard error of the 

posterior probability estimate f may also be calculated as 

( 6 - 1 ) ^ 6 ' 

If desired, MCMC standard error of the parameter estimates (obtained as sample 

averages) may also be obtained in the same way. 

Another possibility when dealing with graphical models is time series plots 

of the number of edges, used as a measure of graphical complexity. All these 

diagnostics have been used for the examples presented here although not always 

presented. 
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1.7 Outline of the Thesis 

While conjugate inference for GGM's has been dealt with thoroughly, nonconju-

gate inference has not, especially for nondecomposable models. The hrst aim of 

this thesis is to develop a more general approach avoiding the use of conjugate 

priors and not restricted to decomposable models. In Chapter 2, a new class 

of prior distribution is introduced to achieve this but the approach is apphcable 

to other priors, including conjugate priors. In Chapter 3. inference for a single 

hxed model using a Gibbs sampling scheme is described, followed by a reversible 

jump MCMC scheme for performing model selection and inference under model 

uncertainty. A number of examples of application of the reversible jump sampler 

are then presented in Chapter 3.5. 

In contrast, there has been very little work done on Bayesian inference for 

mixed graphical models. The second major aim of this thesis is to address this is-

sue by attempting a similar approach to that for GGMs, that is to develop MCMC 

methods both for hxed model inference and inference under model uncertainty 

for CG models. Due to the complex nature of these types of model, a detailed 

treatment is given only to those with either one or two discrete variables although 

a discussion of possible extension to more is given. While the primary interest is 

in graphical CG models, hierarchical CG models are also dealt with as reversible 

jump MCMC for these is simpler. Chapter 4 describes CG models in detail and 

introduces a class of prior distribution for use in Bayesian inference. Chapter 5 

deals with the cases of CG models with one discrete variable and Chapter 6 deals 

with those with two aa well as discussing possible treatment of models with more 

discrete variables. 



Chap te r 2 

Graphical Gaussian Mode l s 

2.1 Introduction 

Let . . . , be a vector of g > 2 continuous random variables with as-

sociation structure described by a conditional independence graph, G = (F, Eg), 

where F = ( 1 , . . . , g}. 

are based on the multivariate Normal (or Gaussiein) 

distribution. Its density function is 

or, equivalently, 

= (27r)-^/^|n|^/^exp[-;^(i/ - - /2)] 

and we write S) . 

The vector of means, , is often set to zero for convenience and the data ex-

pressed as deviations from the sample mean as // is not usually of interest but this 

is not done here as it is not really necessary. 2 is the variance-covariance matrix 

and n = 2"^ is the inverse-variance, also known as the precision or concentration 

matrix. 

Dempster (19T2) first developed the badly-named Covariance selection mod-

els, which later became known as graphical Gaussian models, with the aim of 

parameter reduction. The important step is the use of the precision or concentra-

tion matrix to parameterize the normal distribution and the parameter reduction 

is achieved by setting certain concentrations to zero. He illustrates this by apply-

ing a forward selection procedure to select a reduced model for six dimensional 
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data. He also shows how to obtain estimates of the variance and concentration 

matrices in such models using an iterative method. 

Wermuth (1976) makes a comparison between log-linear models and these co-

variance selection models. The most important result here is that concentrations 

are multiples of partial correlation coefhcients and therefore zero concentrations 

correspond to conditional independence relationships between pairs of variables 

given the rest. 

Speed and Kiiveri (1986) discuss the role of the likelihood in GGMs and their 

specihcation via marginal distributions. 

2 , and hence O, is symmetric and positive-definite and due to the Markov 

property, missing edges in the graph correspond to zero entries in (Wermuth 

1976), that is 

^ _LL = 0 

where is the (%, j!')th entry of 1̂. 

The diagonal entries in O are partial precisions and will be denoted as 

that is 

= if = [Var(};|}y\i)]"^ for 2 = 1 , . . . , g 

Denote by C the matrix obtained by scaling f l so that it has unit diagonal. 

The oS-diagonal entries of C are the negatives of partial correlations and will be 

denoted by p's, that is 

w 33 

Clearly, = 0 <=> q j = 0 and C is positive-definite precisely when O is. 

Thus we can make the decomposition 

f ] = diag('r)Cdiag(T), (2.1) 

where T is the vector of square roots of partial precisions, ii, and diag(T) 

is the diagonal matrix with T as diagonal elements. Using this, we can work 

directly with the individual parameters, rather than the entire D, allowing more 

flexible prior specification and a simple Gibbs sampler scheme for sampling from 

the posterior distribution. We can work with either r ' s or T-'s but T is probably 

easier as it avoids the use of square roots. Likewise, it may be more convenient 
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to work with c's than p's but it makes no real difference, at least until it comes 

to interpretation. 

Barnard, McCulloch, and Meng (2000) use a similar decomposition, which 

they call a "separation strategy", of the covariance matrix, 2 into standard de-

viations and correlations: 

2 = diag(cr)Rdiag(cr) (2 .2 ) 

2.2 The Likelihood 

Let = (i/^,...,%/") be a set of n independent observations on V and let ^ = 

n " ^)'(%/^ — ^) be the observed vector of means and 

sums-of-products matrix. The likelihood of a graphical Gaussian model is then 

/ ( y 1/̂ , O) = (27r) 2" |f2| 2 exp ^ ( ^ ' = - ^ ) ' n ( ^ ^ - /.) 
k=i 

— (2'7r) 2 | n | 2 exp - - (tr(5'n) + n ( ^ - i/)'r%(^ - %/)) 

(2.3) 

(2.4) 

= (27r) 2̂  | n | 2 exp — - (tr(5 'n) 4- n ( / i 'n / i — 2// 'n2/ + '2.5) 

— (27r) ^ exp y i y i y i (2 6) 
A:=l 1=1 j=l 

The mean, /.t, is typically set to zero in which case the likelihood can be 

rewritten as 

^ (2.7) / ( y | n ) = (27r) '^ |n | !exp 

and the data are expressed as deviations from the sample mean. 

tr(5^n) 

2.3 Prior Distributions 

Conjugate Priors 

The standard conjugate prior for S in the zero mean saturated model is the In-

verse Wishart distribution, being the sampling distribution of the sample covari-

ance matrix. The corresponding distribution for f l is the Wishart, with Jacobian 

The densitv is 
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^ {n{-K' ' + ? + l ) e x p [ - l t r ( A n ) | 

•fi > H L i r d C ' + 1 - ' ) ) ' 

where A is a positive deSnite symmetric gxg matrix and (f > p is the degrees of 

freedom. Note that Giudici(1996) and Roverato(2002) use another, less common, 

convention which defines the degrees of freedom as(^ = d — g + l. 

When the graph is not complete, the kernel remains the same but the nor-

malizing constant will be different for each graph. 

Dawid and Lauritzen (1993) introduced the hyper-inverse Wishart distribution 

which can be used as a conjugate prior for decomposable models. It is the unique 

hyper-Markov distribution for S c with marginal Wishart distributions for the 

cliques. This has the advantage that the density can be found analytically how-

ever it is unsuitable for nondecomposable models. 

Dawid and Lauritzen (1993) dehne a distribution f to be MarAot; over a given 

graph if for any decomposition (A, B) of the graph, v4 _LL n ], where the 

notation denotes that the conditional independence is with respect to f . They 

show this is equivalent to the usual deAnition of a Markov distribution and also 

show that if f is Markov over the graph, A J1 ] whenever 5" separates A 

and B. 

They first prove the following result for two subsets A and B of the vertex set 

y : 

If distributions Q over A and A over B give the same distribution over 

there is a unique distribution f over A U B with = Q, = B and B is 

Markov over the graph. B is constructed as = Q aiid = BBjanA- f 

is called the Markov combination of Q and B, denoted QB, and if the density 

functions of B, Q and B are p, g and r, then 

g(a;A)r(3:g) 9(a;yi)r(a;g) 
- -

Hence B is Markov over the graph if and only if 

This is then extended to a general decomposable graph as follows: 

If C is the set of cliques of the graph, perfectly numbered as (C i , . . . ,Ct) and 

with distributions (Q i , . . . which are consistent over pairwise intersections 
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as above, then the unique Markov distribution over the graph with the Q's as 

marginal distributions over the cliques is constructed by Markov combinations, 

fQ+i = fciQci+i, and has density 

.„,r) = n c a P c ( x c ) 

This is then extended to distributions for quantities, in effect parameters, 

with values in the set of Markov distributions over a given graph. These distri-

butions over distributions are termed Zawg and prior and posterior distributions 

are examples. In the context of GGMs, the quantities in question are covariance 

matrices, Z (recall that here the mean is taken to be zero) so this is used for the 

remainder of this section where ^ is used for the more general case in the original 

paper. 

The Markov property of distributions is extended to the MarAof prop-

erty of laws by defining a law to be (weak) hyper Markov over the given 

graph if for any decomposition (v4,B) of the graph, _U_ EalE/ing-

The concept of Markov combination is extended to Ayper MorA;oi' 

as follows: If laws M over 4̂ and TV over are that is they give 

the same law over A n then the hyper Markov combination is the unique law 

iL over A U B with = M, ivg = A/" and J l is constructed as 

a joint law giving probability one to the event that and Sg have the same 

distribution over v4 n B. Then iL(Z^) = M(S;i) and Z,(Zg|E^) = A^(Eg|Zyirig)-

This is then extended to a law over an entire graph, specihed only by the 

marginal laws for the cliques: 

If C is the set of cliques, perfectly numbered as ( C i , . . . , C t ) with pairwise 

hyper consistent (as above) laws ( M i , . . . , M^), the unique hyper Markov law with 

the M's aa marginals on the cliques is satisfying, Z/Ci = 

the hyper Markov combination of Z/Q and . 

The following result is then proven: If Z, is hyper Markov over a graph G, 

then _U_ Sg|S5'[Zy] whenever 5" separates .4 and jB in in the graph. 

The above is all given in terms of the weak hyper Markov property but they 

also dehne a strong hyper Markov property: A law, Z,(E) is strong hyper Markov 

over a given graph if for any decomposition (v4, B), J l 

Dawid and Lauritzen then show that Z, is strong hyper Markov if and only 

if and Z/ma are mutually independent under Z, whenever A n B is 

complete and separates A and B. Also, Z, is strong hyper Markov if and only if 

for all cliques C and subsets A of C, _LL E_4[ZL]. 
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An important result is that if a prior law is hyper Markov, so is the posterior 

and the same goes for strong hyper Markov laws. Hence each family of laws forms 

a conjugate family. The advantage of strong hyper Markov laws is that they also 

allow local updating from the following result: 

If the prior is strong hyper Markov, the posterior is the unique strong 

hyper Markov law Z,* specihed by the marginal laws for the cliques, 6 C}, 

with each based on Z/c a']:id the data for the clique. In terms of densities. 

In the context of GGMs, the sampling distribution of the maximum likelihood 

estimator E given 2, the Wishart distribution is weak hyper Markov but the 

inverse-Wishart distribution forms a strong hyper Markov law for S and in this 

context, the distribution is called the mi/erae distribution (or law). 

Although not given in the paper, the density is 

/ ( S c ) = | E G r ^ e x p [ - | t r ( $ 2 c ' ) i / ' n c 6 c l $ c | 
n 

X 

X 

Ucec 

Hs'eg ^ — 9 + 15̂ 1,1'S'I) 

n c e c l ^ d ^ — 9 + 1(̂ 1,1(̂ 1) 
( 2 . 8 ) 

where C is the set of cliques of G, .5 is the set of their separa-

tors, $ is a positive definite symmetric g x g matrix, d is the degrees of freedom, 

|.| denotes the size of a set, denotes the submatrix of matrix A corresponding 

to C y and for a > A; with A; a positive integer. 

2=1 

A hnal result which is important for model comparison is aji expression for 

the marginal likelihood, 
X _ H c e c / W 

U s , s f ( « s ) -

where / ( i / c ) is the marginal likelihood for the clique C,which is a matrix-^ 

distribution, $c) , with density. 

T-r|C| P / d-g+n+!C|+l-i^ 
2 j | $ c | 
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Giudici (1996) considers two classes of conjugate prior distribution for zero 

mean decomposable GGM's. The Erst, which he calls "local", is just the HIW 

distribution of Dawid and Lauritzen (1993). The second, which he calls "global" 

is derived by conditioning the inverse Wishart distribution on a given set of 

graphical constraints, that is conditioning certain entries of H to be zero. This 

can be derived for an?/ GGM but the normalizing constants can only be obtained 

analytically for decomposable models. He derives the global density for a decom-

posable model with graph G as 

/ ( S g ) = | 2 G | - ^ ^ e x p [ - | t r ( $ 2 G ^ ) ] ^ n c e c l $ c | 

X 
n c E c l $ c | ' ^ ^ ( ( f + 9 - | C | , | C | ) 

1^1, i^"!) 

Note that d is not the same degrees of freedom used by Giudici, which is 

- d — 5 ~t~ 1 • 

To obtain the posterior density for either prior, substitute $ + for $ and 

- M for d. 

He also derives the mareinai likelihood as 

/ W ) 

just aa for the local prior, where, / ( z ^ ) is a matrix-t distribution as in 2.9. 

Using these, he is able to perform model selection and does so for Fret's heads 

data (see section 3.5) but restricts the model space to include only those models 

with two particular edges present and exclude the three nondecomposable models. 

A comparison of his results with those of the reversible jump sampler described 

in this thesis is made in section 3.3. 

Dellaportas, Giudici and Roberts (2003) extend the use of Giudici's global 

prior to the entire class of GGMs by providing an importance sampling method 

to calculate marginal likelihoods for nondecomposable models. 

Roverato (2002) derives a generalization of the hyper-inverse Wishart, appli-

cable to both decomposable and nondecomposable models. It is an example of a 

so-called "DY conjugate prior", after Diaconis and Ylvisaker (1979). These are 

conjugate priors induced by standard conjugate families of canonical parameters, 

the prior induced on E g by the conjugate prior on fZc in the case of GGMs. The 
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DY-conjugate prior in the saturated model is the inverse Wishart distribution and 

in the case of a decomposable model, it is the hyper inverse Wishart distribution. 

Roverato shows that in the cage of an arbitrary GGM with graph G, the density 

for 2(3 can be written as (with notation changed to agree with that used already), 

11/2 

j—(j—g-l)/2 
X ' exp [ - | t r ( £ - ' # - ) ] . (2J0) 

is a normalizing constant (note that 2^/^|Iss(#g)|^/^ is not absorbed 

into this), 2* and are called the of 2 ^ aiid a]:id Iss(.) 

denotes an Isserlis matrix. 

The Isserlis matrix I s s ( v 4 ) of a positive dehnite g x g matrix A is a matrix, 

indexed by pairs of edges, with [Iss(A)](ij)_(r,3) = The determinant 

is |I85(A)| = 

2(3 and $(3 are as only certain entries, corresponding to 

edges in the graph, are speciEed. For example, if G is the the graph in 1.3, 2(3 is 

/ CTli 0-12 * (714 \ 

Cgl (722 * Cr24 

* * (733 (734 

\ Cr̂ i (742 (?'43 <̂44 / 

where * denotes an unspecified entry. 

The PD-completion of a matrix .4(3, where G is a given graph, is the unique 

positive definite matrix A* which has for specihed entries of A (that 

is whenever (2,_;') G E') and [(A*)"^]ij = 0 otherwise. 

The normalizing constant when G is not decomposable is obtained using im-

portance sampling. 

The marginal likelihood is also given as 

/(%/) = (2: /9 /(G(d, $G) |ISS(#)G| I $ I 
Ao(d + Tl, S)IISS($ + ;S)G|V2|<^ + ^|(j-g-l+^)/2 ' 

As in this thesis, Giudici and Green (1999) deal with reversible jump MCMC 

for GGM's but they conhne themselves to decomposable zero-mean models and 

use Hyper-Inverse Wishart priors. They propose two types of model. The hrst 

haa a Axed value of the parameters of the HIW prior. To simplify the task of 
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specifying all the entries of the matrix, they propose an "intraclass correlation 

structure", which gives the matrix parameter as T[pJ + (1 — where / is an 

identity matrix and J is a matrix of I's. The second is a so-called hierarchical 

model with prior distributions assigned to both the degrees of freedom and ma-

trix parameters of the HIW prior. These would sometimes be called Ayperpnora 

although not by these authors. The degrees of freedom is given a gamma prior, as 

it is a positive quantity, with parameters chosen to make the prior uninformative. 

They then consider two possibilities for the matrix (hyper)parameter: The 6rst is 

a conjugate (hyper)prior, which is a Wishart distribution and suggest a single de-

gree of freedom and a diagonal matrix parameter. The second uses the intraclass 

structure and assigns priors to r and p, based on a Wishart distribution. 

Nonconjugate Priors and a New Class of Prior for GGMs 

One advantage of using the decomposition 2.1 is t ha t separate, and possibly 

independent, priors may be specified for each individual parameter, rather than 

for the precision matrix as a whole . 

The following alternative set of priors avoids the difhculties of using a con-

ditioned Wishart prior as, while normalizing constants must still be obtained 

numerically, they are relatively easy to obtain. 

Since the partial precisions are only required to be positive, a simple choice 

is independent gamma priors for each, as independent inverse-gamma priors are 

commonly used as conjugate priors for variances. This is because the inverse-

gamma distribution is often the sampling distribution of a sample variance. 

/ ( 7 j | G J = p^(T^) ' ' "^exp(- /? '7^) , a , ^ > 0 j = l , . . . , g (2.11) 

Equivalently, the corresponding prior for T, may be used: 

on 
= 2-^(7 , )^°^-^ exp(-^T^), a , / 9 > 0 ; = l , . . . , g (2.12) 

i (CKj 

An alternative is the prior used by Barnard, McCulloch, and Meng (2000) for 

standard deviations, 

lOg(T) rx. YV(^,A), 

which allows for a priori dependence, although it would be more usual to have A 

diagonal, giving independent lognormal distributions for each. 
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g Proportion PD 

3 0.617 

4 0.183 

5 0.022 

6 0.001 

7 < 10^ 

8 < lOG 

Table 2.1: Acceptance rates for estimating prior normalizing constants for satu-

rated models using a rejection sampler 

The partial correlations are required to lie in (—1,1) so a natural choice of 

prior is uniform over this interval for each. However, these marginal priors must 

be conditioned on the positive dehniteness constraint on C. This has the effect of 

changing the normalizing constant for the joint prior, and the marginals 

will no longer be uniform. In other words, 

f ( C \ G . ) = k , ( l Y " , (2.13) 

where |E; | is the number of edges present in Q . 

A;, is the relative size of positive dehnite space within ( — a n d so can 

easily be estimated by a rejection method as follows: Generate a large number of 

matrices with unit diagonal, off-diagonal entries drawn from [/(—1,1) and zeroes 

in the positions corresponding to missing edges in The proportion of these 

that are positive definite, the acceptance rate, is approximately l/Zci. 

For any given g, this proportion is smallest for the saturated model as it has 

the maximum number of nonzero o^-diagonal entries. These proportions, based 

on 1 000 000 matrices, for saturated models are tabulated in Table 2.1 for values 

of g up to 8. Standard errors are not quoted although they are all approximately 

0.001. It can be seen from this table that g = 6 is the practical upper limit 

for computing these normalizing constants. This is not unique to this particular 

choice of prior; the same limitation will apply to any non-conjugate priors due to 

the positive definite constraints. However, it is worth noting that this does not 

prevent their use for inference for hxed models where normalizing constants are 

not generally required. 

The number of simulations required can be reduced by exploiting the fact that 

isomorphic models (those with isomorphic graphs) will yield the same constant. 



As shown in Table 2.2, this gives a considerable reduction but it is necessary to 

identify all unlabelled graphs with g vertices. 

q Graphs Unlabelled Graphs 

3 8 4 

4 64 11 

5 1024 32 

6 32768 156 

Table 2.2: Numbers of labeled and unlabelled graphs with up to 6 vertices 

One systematic way of doing this is as follows: Begin with the (unlabelled) 

graph with no edges. There is only one (unlabelled) graph with a single edge and 

correspondingly, one with (g) — 1 edges. There are two (unlabelled) graphs with 

two edges and hence two with (^) —2 edges. Now obtain all the distinct unlabelled 

graphs with three edges, and hence those with (^) — 3 edges, by considering all 

possible ways to add an edge to the two-edge graphs. Continue in this fashion until 

all possible unlabelled graphs have been obtained. T h a t all have been obtained 

can be verified by using combinatoric methods to End the number of graphs with 

each structure and checking that they sum to 2(2). Unlabelled graphs and their 

corresponding normalizing constants (that is, / ( C | G J ) are tabulated in appendix 

A for g < 6. 

Another way of thinking about this prior, / (C |G^) , is that it is uniform over 

(—1, and hence the density is the reciprocal of the (hyper)volume of positive 

dehnite space in |Ei| dimensions, which is just (2.13). 

Rousseeuw and Molenberghs (1994) explore the shape of the space of corre-

lation matrices, which of course is the same as the space of partial correlation 

matrices, for three and four variables and provide some intriguing graphical repre-

sentations. For three variables (and hence three correlations) the space resembles 

an inflated tetrahedron. They note that the volume of this space can be cal-

culated using calculus as 7r^/2. Hence the relative volume of the space within 

[—1,1]^ is 7r^/16 % 0.617, which agrees with the empirical value in Table 2.1. 

Similarly, for four variables (and hence six correlations), the relative volume of 

the space within [—1,1]^ is 0.183, again agreeing with the empirical value in the 

table. 

Barnard, McCulloch, and Meng (2000) describe the same prior for the corre-
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lation matrix, A, in the decomposition 2.2 of E, introduced as a jointly uniform 

prior. Investigating the form of the marginal distributions, which are not uni-

variate uniform, they note that as the number of variables, g, increases, these 

marginal distributions become more concentrated about zero. Since this seems 

to imply that this jointly uniform prior is informative by keeping the posterior 

away from the corners of the space, they simulated two sets of data to investigate, 

one with common correlation of 0.5 and one with common correlation of 0.91, 

for the cases of both g = 3 and g = 10. They found tha t although the marginal 

posterior distribution for an individual correlation was centred closer to zero for 

g = 10, the true value was well within the posterior mass in each case. They also 

found that although the priors are concentrated for large correlations, particu-

larly for g = 10, due to the shape of the space, the posterior is still pushed by 

the likelihood towards the large values. Their conclusion is that any informative 

nature of the prior is tolerable if g is not too large. Since g will be taken to be 

no larger than 6 here, as discussed above, there will be no problem as long as the 

amount of data is sufhciently large. 

This jointly uniform prior is contrasted by Barnard et al with a prior with 

uniform marginal densities for each correlation, derived from the inverse Wishart 

distribution. The density function of the joint distribution is derived as 

The marginal distribution of any A; x A: submatrix is obtained by replacing g 

by A; and by — (g — A;) in this density. Taking A; = 2 gives the marginal density 

for an individual correlation, r, as 

which is uniform when d = g -I- 1. Furthermore, di&rent values of d allow the 

tails of the distribution to be lighter or heavier than uniform. 

This only covers the case of a saturated model but readily extends to the case 

of an arbitrary GGM and either of the Inverse-Wishart-based priors. 

A suitable prior for the mean, /i, if it has not been set to zero, is 7V(0, f7). 

Taking = erf, gives independent univariate normal priors for each and taking 

large cr, say 10^, makes them suitably noninformative. 

Unless there is reason to assume otherwise, a uniform prior is a sensible choice 
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for (7: 

= 1/2(2) 0 < 2 < 2 ( 2 ) . 

There are two recent approaches to prior specification for correlations or par-

tial correlations, published since the work in this thesis was done: 

Wong, Carter and Kohn (2003) decompose the precision matrix in a GGM 

as in this thesis and also use a gamma prior for the partial precisions. They 

dehne a quantity J to be a set of edge presence indicators (as in an adjacency 

matrix) and assign a prior to it. The prior for the partial correlation matrix, 

C, is then defined conditionally on J and involves the volume of the space of 

correlation matrices given a set of graphical constraints. The MCMC scheme 

they then describe to generate from the posterior allows partial correlations to 

be zero and involves determining the intervals in which partial correlations must 

lie as in Barnard et al. (2000) and this thesis. 

Liechty, Liechty and Muller (2004) also follow the separation strategy of 

Barnard et al. (2000), that is they decompose a variance matrix as 

2 = A normal prior, subject to a constraint of positive definiteness, is 

used for the correlations in A and hyperpriors are assigned to the parameters of 

these normal distributions. Three types of model are then considered: The first 

uses a common normal prior for all correlations, the second allows the correlations 

to be grouped with diEerent prior means and variances for each group and the 

third allows the formMeg to be grouped, in which case the priors depend on the 

grouping. 

They then describe a Metropolis-Hastings scheme to sample from the posterior 

in each case, which also involves determination of the intervals in which the 

correlations must lie. 
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Chapte r 3 

Markov Chain Mon te Carlo 

Methods for G G M s 

3.1 MCMC for fixed models 

Consider 6rst the case of parametric Bayesian inference for a hxed model and 

the use of MCMC to generate from the posterior distribution specified by the 

priors described above. Initial values must 6rst be chosen for the parameters, 

0 = (^, T i , . . . , Tg. C) . Suitable values may be the observed values or, as a default, 

zero mean, unit partial precisions and partial correlations equal and nonzero but 

small. Note that prior normalizing constants are not required for inference based 

on a single fixed model. 

A Gibbs Sampling scheme can be used to update the parameters in turn, so 

each step of the chain consists of 

1. Update 

2. Update each r in turn 

3. Update each nonzero in turn 

In each case sampling is from the conditional distribution. 

Updating In this case direct sampling is possible as the conditional distribution 

can be obtained exactly as 

where + nf l ) and ^ = T i y O y . 
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Updat ing T The conditional for T is only available up to a normalizing con-

stant, so it is necessary to use a "Metropolis-within-Gibbs" step, that is use the 

Metropolis-Hastings algorithm to generate new values. A suitable way to gener-

ate proposal values is to use a random walk, that is add a random increment, e, 

to the current value where e ^ ^ ( 0 , cr) with suitably sized cr. Of course, differ-

ent proposal variances may be used for each Tj, if desired. As each 7̂  must be 

positive, all negative proposals must be rejected. Alternatively, any continuous 

distribution over the positive real numbers may be used as a proposal distribution. 

Another method is to use a griddy Gibbs sampler (Ritter and Tanner 1992) like 

Barnard et al. but the random walk is much simpler to implement. A further 

possibility is implement the random walk on the log scale, that is with proposal 

values given by exp(log(7-) -I- e). 

The conditional for r , is given by 

/(i-jl . . . ) OC (r , ) ' ' ' ' " '+"exp(- ,3Tj)exp ) 3 = I,' 
2 . 

and a proposed r* = r, 4- e is accepted with probability 

/ (7^)2^ iiTigxp(-/3-7^)exp - At)] 
TTlin I I — b 

\ exp(-^7^) exp " Z )̂] 

provided 7^ > 0 and where (1* is obtained by replacing T, with 7^ in O. 

Updat ing G Again, the conditional is only available up to a normalizing con-

stant so it is necessary to use a "Metropolis-within-Gibbs" step. A random walk 

is also a suitable way to generate proposals here but it is generally not necessary 

to have diEerent proposal variances for each correlation. In fact, from experience, 

a variance of around 0.1 is generally suitable for each implementation. This is 

likely due to the narrow range in which the correlations take values. Care must be 

taken to ensure that C , and hence (1. always has zeroes in the correct positions 

and is positive dehnite. For the hrst, simply do not update zeroes. For the latter, 

simply reject any proposal that is not positive definite. 

An alternative method of generating proposals tha t ensures C remains posi-

tive definite is described by Barnard et al. (2000): Since the current C is already 

positive definite and only one entry at a time is being changed, a necessary and 

sufhcient condition for the proposal C* to be positive definite is that |C*| > 0. 

If p is the correlation being updated, then |C*| is a quadratic in p, 

with coeEcients a = g[ / ( l ) + / ( - I ) - 2/(0)], 6 = ^ [ / ( l ) - /(—I)] c = /(O), 
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where /(p*) = |C*| when p has been changed to p*. The roots of this quadratic 

are the endpoints of the interval from which to draw a p* that gives a positive 

definite C*. The natural proposal distribution is uniform over this interval. 

However, like most independence proposals, this tends to result in low accep-

tance rates, whereas the variance of the random walk proposals may be tuned for 

optimal acceptance rates. 

The conditional for is 

I . . . ) oc | C r / ^ exp j (z,;) E E 

and a proposed p^ = p^j 4- e is accepted with probability 

f j C T / ' e x p [ - 1 E L i l y ' - - z ' ) ] A 

= min 1, 
|C|^/2 exp - //;)] 

provided — 1 < p^ < 1 and (7* is positive definite, where C* and O* are obtained 

by replacing p^j with p^ in C and O respectively. 

Statistical Performance 

Despite the use of one-at-a-time updating, the Markov chain is generally quite fast 

to converge and produces draws with relatively low autocorrelations. Of course, 

if convergence is slow due to dependence, it is quite simple to implement block 

updating but it is more difficult to ensure positive deSnite proposals. To assess 

convergence, trace plots are produced for each parameter as well as time series 

plots of batch means. Burn-in is usually quite short, even when the initial values 

are some distance from the centre of the posterior (or the true values, when these 

are known). Very often as few as 10 000 iterations are su&cient for convergence 

and run times are very short, generally less than 1 minute for moderate g. 

The variance of the random walk proposals must be chosen so as to ensure sat-

isfactory mixing of the chain. In general, the chain reaches convergence relatively 

quickly for most moderate proposal variances but after some experimentation, 

0.01 to 0.2 was found to be a good range with a default value of 0.1. Of course 

it is a simple matter to tune the random walk variances to improve mixing, if 

necessarv. 
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3.2 Reversible Jump MCMC for GGM s 

The reversible jump MCMC scheme described here consists of iterations of the 

following steps: 

1. Update the model by adding or removing one edge from the graph. Doing 

this will require either setting a partial correlation to zero or generating a 

new one. 

2. Update the parameters in the new model. This is the same as an update 

step for a hxed model so the same methods as described in the previous 

section can be applied. 

The second step is performed at every iteration bu t it could be performed less 

frequently, if required for eSciency. 

3.2.1 Between-model Moves 

Only moves between 'neighbouring' graphs i.e. ones which differ in exactly one 

edge are considered. Suppose the current graph is G, the current set of parameters 

is = (/i, T i , . . . Tg, C ) g and the current state is a: = (G, A random pair of 

distinct vertices, (z, j ) , is drawn. If edge (z, is in G, it is proposed to remove it; 

otherwise it is proposed to add it. In the latter case, a new for the proposed 

model is required and this is drawn directly from either [/(—1,1), rejecting any 

proposed move resulting in a C that is not positive definite, or from a uniform 

distribution over the interval with endpoints (a, 6) chosen to preserve positive 

dehniteness, as previously described. The latter is clearly better as it avoids 

rejections due to non positive dehniteness and hence makes for better mixing 

within the model space. Thus g(i^) = 1/(6 — o). 

Note that this method of generating proposals may be used regardless of which 

prior is used. 

Since the current graph, G, and the proposed graph, G*, differ in exactly one 

edge, 

= ; K | a ; ) = 1 / ^ ^ 

and the jump ratio is equal to 1. 

The posterior ratio expands as a product of likelihood and prior ratios: 

f ( x ' ) f ( Y \ G \ e c . ) f { e a . \ G ' ) p ( G - ) 

f i x ) f ( Y l G ^ 0 c ] n e a \ G ] p { G } ' 
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The graphs are assumed to be equally likely a p n o / i so that p(G*) = p(G). 

Since the partial precision parameters are not affected by a change of model, 

/(OclG) / ( C c l G ) ' 

which is a ratio of prior normalizing constants. 

The likelihood ratio reduces to 

y ( y | G , V l G l y e x p [ - ^ ( t r ( 5 ' n ) + 7 i ( / ^ - i / ) ' f ] ( / ^ - i / ) ) 

\c* 
1^1 ^ exp j . (3.3) 

Finally, the Jacobian is equal to 1 and the acceptance ratio is 

If edge (%, j ) is proposed for deletion, set = 0 in the proposed model and 

the acceptance ratio is 

( m ) t^y- " ^ ' n c % y 

Note that, unlike within-model moves, the prior normalizing constants are 

required. For the proposed priors, these constants are the priors for G and can 

be estimated as described in Section 2.3. For a conditioned Wishart prior, they 

are only available directly when the model is decomposable. 

These estimates of prior normalising constants are subject to simulation error, 

which may propogate into the posterior as estimated via the MCMC sample. 

However, provided that these errors are within satisfactory tolerance, they will not 

cause further significant error in the posterior model probabilities. In particular, 

Bayes factors will not be aifected since the marginal likelihoods are proportional 

to the prior and hence are subject to the same relative error. 

As the number of potential models can be very large, an efficient method of 

inputting the prior normalizing constants in the acceptance ratios is desirable. 

Recall that models with the same unlabelled graph have the same constant. One 

method found to be useful is to identify the unlabelled graph (and hence the 

corresponding constant) by means of 
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1. The number of edges. 

2. The determinant of the adjacency matrix with 2's as diagonal entries. This 

measure is clearly the same for isomorphic models. 

3. The degree vector of the graph, obtained from the row (or column) sums of 

the adjacency matrix. 

When 9 = 3, only the hrst is required; when g = 4, the 6rst two suSce; when 

g = 5 or g = 6; all three are required in relatively few cases. Tables of unlabelled 

graphs along with these three measures and their prior normalizing constants are 

given in appendix A. 

3.2.2 Wit hill-mo del Moves 

To complete each iteration, the parameters are updated using a Gibbs sampler 

as described in the previous section. 

3.2.3 Variations 

Notice that the number of observations, n, the observed means, and the ob-

served sums of products matrix, 5', are sufhcient to summajrize the data. It was 

noted already that the means are not generally of interest and may be set to 

zero. In this case the alternative form of the likelihood given in Section 2.2 can 

be used. This is the form which must also be used if the means are unavailable. 

In this case there is no update step for the mean and the acceptance ratios for 

between-model moves are 

exp ^ - l t r ( 6 ' n 3 ] / ( C c ' I G ' 
(0 - 0) ' ' | C | y e x p [ - ^ t r ( 5 ' 0 ) ] / ( C d G ) 

for edge addition and a similar expression for edge deletion. 

The acceptance probabilities for within-model moves are 

min I 1, 

for updating T, and 

^"'"" 'exp(—^7j)exp[-^tr(Sn* 

(T})^'^"^+'^exp(-/)'r,) exp tr(5'f]) 

| C T ' ' e x p [ - l t r ( S n - ) ] 

' • | C ! - « e x p [ - h r ( S ' n ) 

for updating 
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Note also that it is relatively straightforward to restrict the model space by 

either prohibiting proposals to a speciSed set of graphs or by rejecting all such 

proposals. Care must be taken, however, with the former method as and 

7-^(3;*) may no longer be equal. This type of restriction is useful if it is desired to 

consider only graphs with (or without) certain edges. Restriction to decomposable 

models is also possible but is not so easy and has no practical justiScation, other 

than to compare with existing results. The numerical model indexing described 

in 1.3.2 can facilitate such restrictions by allowing specification of a set of graphs 

through a set of indices. This is not the only way or even always the most eScient 

method, however, although it may be the most convenient. 

3.2.4 Performance 

Mixing over the models space may be monitored, for example by the number of 

edges present, which describe the graph complexity. In general, this is not a prob-

lem when mixing over the parameter space is satisfactor}\ The model indexing, as 

described in Section 1.3.2, may also be used for monitoring and is invaluable for 

determining posterior probabilities. The numerical indices (eS'ectively m in Sec-

tion 1.5) are a more efhcient model indicator than the set of partial correlations 

(and hence edges) present, which gives the same information. 

3.3 Prior Sensitivity and a Larger Class of Prior 

When comparing models it is often important to assess how sensitive the posterior 

model probabilities, and hence the Bayes Factors, are to changes in (1) the prior 

distribution and (2) the prior variance. It is the latter that is considered here. 

The means and partial precision parameters are present in and have the same 

priors over all models. Therefore the posterior model probabilities should not be 

sensitive to their prior variance. The same is not true for the partial correlations 

but because they have a uniform prior, their prior variance is hxed. 

However, the class of prior can be expanded so that, for each (%,j) E E, 

^(pi; 4-l) has a Beta(G, 6) distribution, subject to the constraint that C is positive 

dehnite. The density function of this prior distribution, conditional on graph G 

with edge set is 

/ ( C | G ) = k n ( 0 ° * * ' + 



where A; is a normalising that must be estimated. The uniform prior already 

described is then a special case of this with a = 6 = 1. This is a much more 

Eexible class of prior since not only are the prior variances not hxed but different 

values of a and 5 could also be chosen for each , although typically they would 

all be the same. The marginal prior variances are proportional to 

(the exact variance cannot be specified due to the positive definite constraint). 

In the absence of any prior information or belief about the signs of the partial 

correlations, it is desirable to have <% = 6 so that the distribution is symmetric 

about 0. In this case, the prior density is 

H C \ G ) = k Y [ - p I T - - ' a > 0 , ( 3 , 7 ) 

and the marginal prior variances are proportional to Figure 3.1 

shows the shape of the marginal prior distribution for pi2 & saturated model 

for G = 0.1,0.5,1.0,1.5.2.0 and 4.0. Except for the Srst two, each panel shows 

this marginal distribution for both g = 3 and g = 6. The Srst two only show 

marginals for g = 3 due to the difhculty of sampling f rom the distribution when 

g = 6. described below. The jointly uniform prior corresponds to a = 1 with 

= 1/3 and Figure 3.1 shows clearly that the marginals are not uniform. 

Marginal uniformity in fact is achieved at around o = 0.6. Smaller values of a 

place more prior mass at the edges of the space while larger values make the prior 

more concentrated around the centre of the space, and a closer match to positive-

dehnite space. Of course, a has a lower limit of 0 and %;(&) has a corresponding 

upper limit of 1 so we avoid the possibility of an arbitrarily large variance which 

often leads to Lindley's Paradox (Lindley 1937). However, even though the vari-

ance is bounded, we can still expect larger variances to result in greater posterior 

model probabilities for simpler models compared with more complex ones. As a 

increases, the variance shrinks but levels off rapidly so it makes sense to place an 

upper limit, especially since small prior variances are usually undesirable. 

The prior normalising constants may be obtained from a rejection sampler 

as before but it is worth noting that as a increases, the priors become more 

more concentrated around 0, and the prior normalising constants tend to 1. This 

effectively places an upper limit on a with the value of this limit depending on g. 

Table 3.1 shows the acceptance rates, based on a sample of size 1 000 000, for the 

saturated model for g up to 8 and various values of a. Standard errors, although 

not quoted, are again typically around 0.001. 

Note that there is a practical upper limit on g for each value of a: g = 3 
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for o = 0.1; g = 5 for G — 0.5; g = 6 for a = 1.0 (as discussed in Section 2.3); 

g = 7 for a = 1.5 and g = 8 for a = 2.0. On one hand, increasing o allows larger 

dimensions but this decreases the prior variance, making for a more informative 

prior distribution. On the other hand, decreasing a in order to increase prior 

variance restricts the size of g. A value of a = 1.0 seems a good compromise, 

borne out in the simulated data examples in the next section, and is therefore 

the value used in all other examples in Section 3.5 as well as in Chapters 5 and 

6. 

a=0.1 a=0.5 a=1.0 

-1 .0 - 0 . 5 0 . 0 0 . 5 1 .0 - 1 . 0 - 0 . 5 0 . 0 O j 1.0 - 1 . 0 - 0 . 5 0 . 0 0 . 5 1.C 

a=1.5 a=2.0 a=4.0 

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 - 1 . 0 - 0 . 5 0 . 0 0 ^ 1.0 0 . 0 0 . 5 1 .0 

Figure 3.1: Marginal prior densities for when g = 3 (solid lines) and g = 6 

(dotted lines) under the Beta-based prior with various values of hyperparameter 

a. 

The reversible jump sampler described in Section 3.2 is modified to use this 

prior by simply multiplying the acceptance ratio for a proposal in (3.1) by a 

ratio of (unnormalised) prior densities (3.6 or 3.7). The prior ratios 

/(Cc-IG*) 

/ ( C c l G ) 

in (3.4) and (3.5) are now ratios of normalising constants multiplied by, respec-

tively, (: 

cancel). 

tively, (1 — (p^)^)" ^ and its reciprocal (since the other terms in the prior ratio 
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9 / G 0.1 0.5 1.0 1.5 2.0 4.0 6.0 8.0 

3 0.030 0.334 0.616 0.777 0.867 0.982 0.997 0.999 

4 * 0.033 0.182 0.369 0.535 0.884 0.973 0.994 

5 * 0.001 0.022 0.091 0.199 0.663 0.890 0.968 

6 * * 0.001 0.010 0.040 0.374 0.715 0.892 

7 % * 0.001 0.004 0.147 0.472 0.743 

8 * * * 0.002 0.037 0.240 0.533 

Table 3.1: Acceptance rates for estimating prior normalizing constants for satu-

rated GGMs using a rejection sampler, based on a sample size of 1 000 000. * 

indicates a value of less than 0.001. 

Sensitivity of the posterior model probabilities obtained by this sampler to a 

is investigated in the next section. 

3.4 Simulated Data Examples 

In order to assess the performance of the sampler, da ta simulated from various 

three-dimensional GGM's were used and the sampler output compared with the 

known true models and parameter values. Three different models were used: The 

Erst, Ml, was a saturated model with all three edges, the second, M2, had two 

edges and the third, M3, had only one. These are shown in Figure 3.2. 

The means of the distributions used to generate the data were the same in 

each case and drawn from their prior, A/^(0,10^). 

The covariance matrix for the saturated model was drawn from an Inverse 

Wishart distribution with 4 degrees of freedom and identity matrix as param-

eter. The covariance matrix for the other two models was obtained by setting 

appropriate entries to zero in the precision matrix for the saturated model. The 

number of observations in each case was 30. 

In each case, the prior for was A^(0, lO^f): The partial precisions, 7^, were 

assigned independent gamma priors, with density given by 2.11 and o; = — 

0.001 so that the prior means were 1 and prior variances 1000; The symmetric 

beta-based prior, described in 3.3, with various values of the hyperparameter a, 

was used for G in order to assess prior sensitivity. Six values of a were compared: 

0.1,0.5,1.0,1.5,2.0 and 4.0. Recall that a = 1.0 is equivalent to the jointly 

uniform prior. 

The sampler was run each time for 100 000 iterations after allowing 10 000 
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for burn-in. 

The posterior model probabilities, based on the reversible jump sampler out-

put, are tabulated in tables 3.2, 3.3 and 3.4, along with their approximate stan-

dard errors. As expected, in nearly all cases smaller values of a results in higher 

probabilities for models with 1 or 2 edges relative to ones with 2 or 3. The no-

table exception is the third dataset when a = 0.1 but this is likely due to the fact 

that the true model has only a single edge. However, the true model is the most 

probable in all but one case. The exception is the second dataset when a = 4.0 

when two models account for about half the posterior probability each. 

These suggest that a value of 0.1 for a is too and a value of 4.0 is too high. 

As remarked already, o = 1.0 is a reasonable and convenient value to use and 

therefore is the value used for all the examples in the next Section. 

Figure 3.3 shows trace plots of batch model probabilities for the two models 

with highest posterior probability for each dataset, based on batches of size 1000, 

when a = 1.0. Figure 3.4 shows trace plots of batch model probabilities, based on 

batches of size 1000, for the most probable model for the second dataset for each 

value of G. Those for the next most probable model and for the other datasets 

are similar. These both indicate satisfactory mixing over the model space but 

notice that the standard errors tend to increase with a, although they are still 

tolerable. This can also be seen directly in the approximate standard errors in 

Tables 3.2, 3.3, 3.4 and 3.5. 

Trace plots for the parameters in the case of the Erst dataset and a = 1.0 are 

given in hgure 3.5. These are typical of the trace plots for the sampler output and 

indicate satisfactory mixing across the parameter space. When different values 

of a are used, they are almost identical, indicating a lack of sensitivity of the 

parametric posterior to a, as would be expected. 

It can be seen from the trace plots that the posterior distributions are centred 

close to the observed values rather than the true values, although the latter are 

always within the bounds of the distribution. This is a common occurrence in 

Bayesian inference and shows the inAuence of the data on the posterior. 

Ml % ^3 

Figure 3.2: Graphs of the models from which simulated data were generated 
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1 

/ \ 
1 

/ 
1 

/ \ 
1 

/ 
/ 3 / y , 
/ 3 / 

0 = 0.1 0.950 (42) 0.002 (3) 0.024 (25) 0.024 (25) 

0 — 0.5 0.965 (32) 0.013 (15) 0.011 (12) 0.010 (11) 

a = 1.0 0.956 (40) 0.016 (19) 0.014 (13) 0.013 (12) 

a = 1.5 0.934 (53) 0.025 (24) 0.019 (17) 0.020 (17) 

a = 2.0 0.909 (51) 0.033 (25) 0.032 (19) 0.026 (17) 

a = 4.0 0.820 (62) 0.054 (26) 0.064 (25) 0.060 (26) 

Table 3.2: Posterior model probabilities for the first simulated dataset with ap-

proximate standard errors xlO^ in brackets. The true model is with graph 

1 1 

/ \, / \ . 
1 

a = 0.1 0.930 (92) 0.067 (85) 0.003 (24) 0.000 (1) 

a = 0.5 0.778 (155) 0.211 (137) 0.009 (58) 0.001 (9) 

a = 1.0 0.692 (182) 0.304 (176) 0.001 (8) 0.003 (26) 

0 — 1.5 0.685 (194) 0.314 (193) 0.001 (8) 0.000 (1) 

0 = 2.0 0.662 (181) 0.337 (179) 0.001 (10) 0.000 (0) 

a = 4.0 0.454 (190) 0.540 (186) 0.006 (24) 0.000 (0) 

Table 3.3: Posterior model probabilities for the second simulated dataset with 

approximate standard errors xlO^ in brackets. The t rue model is Mg with graph 

3. 

1 1 1 
\ 

1 

/ \ 

9 , ,/ 
a = 0.1 0.543 (30) 0.229 (31) 0.208 (27) 0.020 (8) 

0 = 0.5 0.693 (30) 0.142 (22) 0.133 (22) 0.032 (11) 

a = 1.0 0.681 (30) 0.148 (21) 0.130 (23) 0.041 (12) 

a = 1.5 0.655 (33) 0.153 (20) 0,142 (21) 0.050 (15) 

a = 2.0 0.625 (33) 0.163 (21) 0.151 (23) 0.061 (14) 

0 = 4.0 0.522 (34) 0.199 (22) 0.191 (27) 0.088 (18) 

Table 3.4: Posterior model probabilities for the third simulated dataset with 

approximate standard errors xlO^ in brackets. The t rue model is M3 with graph 

1. 
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The values of the partial correlations in these three models were each fairly 

large (-0.85, 0.58, 0.68) so in order to aasess the effect of a small (close to zero) 

partial correlation, a fourth dataset was generated from a saturated model with 

one partial correlation equal to 0.06. The posterior model probabilities and their 

approximate standard errors are shown in table 3.5. As might be expected, 

the graph with the corresponding edge missing received the highest posterior 

probability. This is another example of the data driving the posterior. 

1 
/ \ 

1 

/ \ 

1 
\ 

y / , 
a = 0.1 0.931 (84) 0.068 (83) 0.001 (9) 

a = 0.5 0.811 (124) 0.188 (123) 0.001 (8) 

a = 1.0 0.777 (124) 0.218 (115) 0.005 (42) 

a = 1.5 0.741 (115) 0.258 (114) 0.001 (5) 

0 = 2.0 0.726 (137) 0.271 (135) 0.003 (19) 

a = 4.0 0.635 (143) 0.365 (145) 0.000 (5) 

Table 3.5: Posterior model probabilities for the fourth simulated dataset with 

approximate standard errors xlO'* in brackets. The true model is Mi with graph 
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Second dataset 

Fourth dataset 

i 

w 

A If 

Figure 3.3: Trace plots of the two highest posterior model probabilities for four 

simulated datasets, based on batches of size 1000. The lines show the averages, 

that is probabilities based on the entire sample. 
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a = 0.1 

a = 1.0 

a = 2.0 

a = 0.5 

a = 1.5 

AA/ 

a = 4.0 

Figure 3.4: Trace plots of the highest posterior model probabilities for the second 

simulated dataset, based on batches of size 1000, for various values of hyperpa-

rameter a. The lines show the averages, that is probabilities based on the entire 

sample. 

In addition to the three-dimensional datasets, data were also generated from a 

randomly-chosen six-dimensional model. As previously noted, this is the highest 

dimension of model that may be practically be considered, due to the di&culty 

in estimating the prior normalising constants. It is also the highest dimension of 

model considered in the examples in the next section. 

The model chosen was 31345, which has 9 edges and is shown in Figure 3.6. 

The parameters of the model were generated as for the previous datasets and the 

same prior distributions used, with a joint uniform prior for C. 

This time the sampler was run for 1 000 000 iterations to allow for the much 

larger model space and 10 000 were allowed for burn-in. 

The posterior model probabilities for the four most probable models are given 

in Table 3.6, along with their standard errors (in brackets). The true model 

received less than 1% of the posterior probability. 

Trace plots of batch model probabilities, based on batches of size 10 000 are 

given in Figure 3.7 and again indicate satisfactory mixing over the model space. 
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Figure 3.5: Trace plots for the first simulated dataset. The solid lines show the 

true values and the dashed lines the observed. The output has been thinned to 

1000 observations. 
31345 

Figure 3.6; Graph 31345, the graph of the model from which six-dimensional 

simulated data were generated 

Trace plots for the parameters are given in Figure 3.8. Again, the posterior 

distribution can be seen to be centred near the observed values rather than the 

true values. 

The posterior in this case is very diffuse and the individual probabilities are 

quite small. This is due partly to the larger model space and partly to the fact 

that some of the observed partial correlations are fairly small (close to zero). For 

this reason, the edge inclusion frequencies, given in table 3.7, are more informa-

tive. It can be seen from this and the trace plots that the probability of an edge 
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being included at any iteration depends largely on the magnitude of the corre-

sponding observed partial correlation, which should reflect the true values. Edges 

(1,2), (1,4), (1,5), (2, 3) and (3, 4) have relatively large corresponding values for 

both true and observed partial correlations and hence have very high inclusion 

rates; (2, 6) has a small true and observed values and hence a low inclusion rate 

(25%); Edges (2,4), (2,5), (4,5) and (4,6) are absent from the true model, have 

observed partial correlations closer to zero and hence also have relatively low in-

clusion rates; Edges (1,3), (5, 6), (3,6) and especially (3,5) and (1,6) have true 

values close to or equal to zero yet large observed values and hence moderate to 

high inclusion rates. 

To further demonstrate this last point, a further dataset was simulated from a 

model with with graph 14888, which has six edges. In this model, all the partial 

correlations were reasonably large (|p| > 0.3). The values of the other parameters 

and the prior distributions were the same as for the previously example. 

The observed matrix of partial correlations is: 

/ 1 - 0 . 0 8 3 0.372 - 0 . 5 5 4 0.360 - 0 . 2 1 1 \ 

1 - 0 . 4 1 5 0.011 - 0 . 0 4 3 0 .027 

1 0.444 0.131 - 0 . 5 4 0 

1 - 0 . 1 1 6 - 0 . 1 3 3 

1 0 .108 

V 1 y 

This time the true model has the highest posterior probability and although this 

probability is not very large (8%), it is over twice as large as that of any other. 

The graphs of the four most probable models are displayed in table 3.8 along with 

their (estimated) probabilities and their standard errors (in brackets). The edge 

inclusion percentages are also tabulated in table 3.9. It can be seen from this that 

those edges corresponding to partial correlations with large magnitude have high 

inclusion frequencies whereas those corresponding to small partial correlations 

have lower inclusion frequencies. Moreover, the closer to zero the observed partial 

correlation, the lower the inclusion frequency. 

This feature seems intuitively reasonable and again shows the inAuence of the 

data on the posterior distribution. In addition, if we are performing model selec-

tion based on such results, we will select a model with missing edges corresponding 

to small partial correlations, which is exactly what would be desired. If instead 

we are performing inference under model uncertainty, such as model-averaging, 

models with edges corresponding to larger partial correlations will have greater 

weight, again exactly what would be desired. 
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32304 32306 32312 31313 

0.034 (0.003) 0.033 (0.003) 0.028 (0.002) 0.014 (0.002) 

Table 3.6: Posterior probabilities for the four most probable models for the hfth 

simulated dataset. Approximate standard errors are in brackets. 

edge (1,2) (1,3) (1,4) (1,5) (1,6) (2,3) (2,4) (2,5) (2,6) 

97.11 64.80 99.17 91.52 85.26 99.54 24.02 28.84 24.13 

(3,4) (3,5) (3,6) (4,5) (4,6) (5,6) 

97.86 89.22 42.06 24.01 32.62 38.33 

Table 3.7: Edge inclusion percentages for the fifth simulated dataset 

14888 31272 15912 15016 

0.122 (0.008) 0.037 (0.004) 0.037 (0.004) 0.036 (0.004) 

Table 3.8: Posterior probabilities for the four most probable models for the sixth 

simulated dataset. Approximate standard error are in brackets. 

(1,2) 

24.54 

(1,3) 

99.97 

(1,4) 

99.92 

(1,5) 

99.62 

(1,6) 

31.08 

(2,3) 

99.65 

(2,4) 

20.59 

(2,5) 

25.95 

(2,6) 

19.83 

(3,4) 

99.74 

(3,5) 

19.70 

(3,6) 

100.00 

(4,5) 

22.40 

(4,6) 

24.45 

(5,6) 

16.34 

Table 3.9: Edge inclusion percentages for the sixth simulated dataset 
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Graph 32304 
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Batch 

Graph 32312 

40 60 

Batch 

Graph 32313 

40 60 

Batch 

Graph 32306 

40 60 

Batch 

Figure 3.7: Trace plots of the four highest posterior model probabilities for a 

six-dimensional simulated dataset. based on batches of size 1000. 
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Figure 3.8: Trace plots for the fifth simulated dataset. The solid lines show the 

true values and the dashed lines the observed. The output has been thinned to 

1000 observations. 
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3.5 Further Examples 

In this section a number of examples of application to real data of the reversible 

jump sampler for graphical Gaussian models are presented. They are in order of 

increasing dimension and comparison with any previous results are given. Unless 

otherwise stated, the estimated posterior model probabilities are based on 100 000 

iterations after allowing 10 000 for burn-in. Their Monte Carlo standard errors 

are calculated by splitting the (model index) output of the chain into batches 

(Geyer 1992). In most cases batches of size 1000 sufSced. Convergence diagnos-

tics, including model probabilities for some of the most probable graphs based 

on the batches and trace plots for the parameters were examined in each cage. 

Neither these nor parameter estimates are presented but were always similar to 

those of the simulated data examples in the previous section. 

The prior distributions used were as in the previous section, with 

a = ^ = 0.001 in the prior for the partial precisions and a jointly uniform prior 

for C. The chains were initialised at the mutual independence model with sample 

means as initial values for and default values of 1.0 for the partial precisions. 

3.5.1 Digoxin Clearance 

This 3-dimensional example is examined by Edwards (1995,2000). The data are 

from Halkin et al. (1975) and are on 35 consecutive patients under treatment for 

heart failure with the drug digoxin. The variables are digoxin clearance (DC) ( 

i.e. the amount of blood that in a given interval is cleared of digoxin), creatinine 

clearance (CC) (used as a measure of kidney function) and urine How (U). Since 

creatinine and digoxin are mainly eliminated by the kidneys, CC and DC can be 

expected to be correlated. There is no obvious reason for correlation with urine 

How, which depends on factors such as fluid intake and temperature. Halkin et al 

suspected that the elimination of digoxin might be subject to reabsorbtion, which 

might give rise to correlation with urine Aow. Edwards used a deviance-based 

approach to conclude that there is good evidence tha t DC and urine How are 

correlated. The posterior model probabilities from the reversible jump sampler, 

given in Table 3.10, agree with this ; the two graphs with both (DC,CC) and 

(DC,U) edges account for over 95% of the posterior probability. 
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cc cc cc cc 

DCC DCC DC/ ' u DC/ 

Graph 5 
f s = 0.686 

(59) 

Graph 7 
f ? = 0.279 

(61) 

Graph 6 
f a = 0.018 

(17) 

Graph 4 
f4 = 0.016 
(16) 

Table 3.10: Posterior model Probabilities for Digoxin Clearance data. Standard 

Errors xlO^ in brackets. 

3.5.2 Anxiety and Anger 

Cox and Wermuth(1993) describe a set of psychological data obtained from Spiel-

berger et al(1970,1983). There are four variables measured on 684 female stu-

dents. They are anxiety state(W) anger state(X) anxiety trait (Y) and anger 

trait (Z). The trait variables ajre viewed as stable personality characteristics and 

the state variables as pertaining to behaviour in certain situations. The example 

is also treated in Wermuth(1991) and Edwards (1995,2000). Psychological the-

ory suggests conditional independences between T'F and Z and between % and 

y . The reversible jump results support this theory, giving a posterior probability 

of over 70% to the corresponding graph, 51 or Edwards uses 

deviance-based analysis to select the same graph. 

o l 
w Y 

0.767 
(100) 

59 
W Y 

X Z 
0.133 
(88) 

bo 
W Y 

63 
W Y 

X -

0 . 0 8 8 

(69) 

0 . 0 1 2 

(12) 

Table 3.11: Posterior model probabilities for Anxiety and Anger data. 

Standard Errors xlO'^ are in brackets. 

3.5.3 Fret^s Heads 

These data, given in Whittaker (1990,p265) are head measurements on pairs of 

adult sons in a sample of 25 families. The variables are 

= {Length of hrst son's head}; = {Breadth of Erst son's head}; 

^3 = {Length of second son's head}; = {Breadth of second son's head}. Since 

g = 4, the number of possible graphs is 64, including three, 30, 45 and 51, which 

are not decomposable. First, all possible graphs are considered. The posterior 
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probabilities are given in Table 3.12. Notice that the two most probable graphs are 

nondecomposable. Notice also that the edges (1,2) and (3,4) are present in all of 

the 15 most probable models, which make up over 90% of the posterior probabihty. 

These results are consistent with obvious subject-matter considerations and, as 

shown below, if only graphs with these edges are considered, the results are 

largely unaffected. These results are also consistent with those in Dellaportas, 

Giudici and Roberts (2003), where the same two nondecomposable graphs have 

the highest posterior probabilities. 

51 

0.192 
(123) 

45 

2 4 
0.112 
(93) 

59 

0.083 
(52) 

0.077 
(53) 

43 

4 

0.064 
(65) 

61 

2 4 
0.058 
(50) 

1 3 

0.057 
(44) 

53 
1 3 

2 4 

0.053 
(58) 

63 
1 3 

0.043 
(25) 

49 
1 3 

2 4 
0.032 
(33) 

57 
1 3 

2 4 
0.031 
(31) 

35 

4 

0.030 
(39) 

41 
1 3 

2 4 
0.025 

39 
1 3 

(36) 
0.025 
(28) 

37 
1 3 

2 4 
0.018 
(31) 

33 
1 3 

2 4 
0.014 
(22) 

Table 3.12: Posterior model probabilities for Fret's heads data (1). Approximate 

standard errors xlO^ are in brackets. 

Giudici and Green (1999) have also applied reversible jump MCMC to these 

data but considered only decomposable models and used a hierarchical prior. In 

order to make a comparison with their results, the sampler was run as before 

but this time rejecting any proposed move to one of the three nondecomposable 

graphs. Table 3.13 gives both sets of results, both based on 100 000 iterations 

with 10 000 of burn-in. Note that the results are as would be expected considering 

the hrst set and have the same 12 graphs receiving about 80% of the posterior 

probability. 

Giudici(1996) performed a Bayesian analysis on these data using both local 

and global priors. Considering only decomposable models, he was able to compute 
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53 59 61 47 43 

4 

Pi = 0.121 
P2 = 0.109(74) 

2 4 
Pi = 0.111 

= 0.078(63) 

Pi = 0.109 
P2 = 0.122(80) 

2 4 

pi = 0.095 

P2 = 0.084(62) 

2 4 
Pi = 0.080 
P2 = 0.080(63) 

pi = 0.078 

P2 = 0.090(69) 

63 49 57 35 39 

Pi = 0.059 
P2 = 0.060(32) 

2 4 
Pi = 0.059 
P2 = 0.044(58) 

Pi = 0.041 
P2 = 0.046(43) 

2 4 
Pi = 0.034 
P2 = 0.040(60) 

Pi = 0.032 
P2 = 0.032(43) 

41 

2 4 
Pi = 0.032 
P2 = 0.039(44) 

Table 3.13: Posterior model probabilities for Fret's heads data (2), decomposable 

models only. Giudici and Green's are given as pi's. Approximate standard errors 

xlO^ are given in brackets. 

posterior model probabilities directly and compare the results for each prior. He 

further restricts the model space by considering only those decomposable graphs 

with edges (1,2) and (3,4), linking the son-specihc pairs, as well as the mutual 

independence graph (graph 0), making 15 possibilities. For comparative purposes, 

the reversible jump sampler was likewise restricted but without inclusion of graph 

0 as this is computationally infeasible with the reversible jump scheme as it only 

changes one edge at a time. However, this graph was found to have negligible 

posterior probability. Table 3.14 compares the results with Giudici's for the 

local prior, which are quite similar. The global prior differs considerably from 

both, with posterior probability concentrated around the most complex graphs 

and the complete graph alone accounting for 91%. However, as already noted, 

the generalized version of this prior (Dellaportas et al. 2003) produces more 

concordant results, which casts some doubt on the validity of the global prior 

results. 

3.5.4 Fisher^s Iris data 

This famous dataset consists of 50 sets of observations on each of three species of 

iris, 56̂ 05(2, ferszco^orand The continuous variables are = {sepal length}; 

}2 = {sepal width}; = {petal length}; = {petal width}. Roverato(2002) 

takes the data and obtains posterior model probabilities using a con-

jugate prior, a generalization of the hyper inverse Wishart, but allowing both 

decomposable and nondecomposable graphs. These are compared with estimated 
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59 
1 3 

4 

Pi = 0.173 
P2 = 0.119(89) 

55 
1 3 

2 4 
Pi = 0,161 

= 0.114(97) 

63 
1 3 

2 - 4 

Pi = 0.117 
P2 = 0.061(41) 

2 4 
Pi = 0.115 
P2 = 0.080(73) 

61 
1 3 

2 4 

Pi = 0.113 
P2 = 0.083(61) 

43 
1 3 

4 

pi = 0.092 

P2 = 0.092(71) 

53 
1 3 

2 4 
Pi = 0.077 
P2 = 0.077(59) 

39 49 

2 4 

Pi = 0.038 

P2 = 0.046(50) 

2 -

Pi 
P2 

: 0.030 

0.034(34) 

2 4 
Pi = 0.026 
P2 = 0.046(66) 

35 
1 3 

4 

41 

2 4 
Pi = 0.020 pi = 0.024 

P2 = 0.042(63) P2 = 0.037(51) 

37 
1 3 

2 4 
Pi =: 0.014 

p 

33 

2 4 
Pi = 10-^ 
P2 = 0.000 

Pi 
P2 

4 
: 10-lS 

0.000 0.026(48) 

Table 3.14: Posterior model probabilities for Fret's heads data (3). Giudici's are 

given as pi's. Approximate standard errors xlO'^ are given in brackets. 

probabilities from the reversible jump sampler in Table 3.15. The same 16 graphs 

are the most probable and account for over 95% of the posterior probability under 

both methods. The most noticeable difference is that the reversible jump gives 

the saturated model a much lower probability. Notice that these 16 graphs are 

all those that include the between-length and between-width edges, (1,3) and 

(2,4). Notice also that the results show that the posterior corresponding to the 

conjugate prior is more diffuse, whereas the other has graph 50 at over three times 

the probability of the next most probable. This is likely due to the fact that the 

marginal prior for C under the conjugate prior is effectively a marginally uni-

form prior as in Section 2.3, which usually results in a more diffuse posterior and 

greater posterior probability for simpler models relative to more complex ones. 

For completeness, the results for the other two species are tabulated in Tables 

3.16 and 3.IT. Notice that they are quite different for each species. In each case, 

the most probable model is also that selected by deviance-based model selection in 

MIM. If the entire continuous portion of the data is taken together, the saturated 

model receives over 80% of the posterior probability, corroborating the evidence 

of the separate analyses that a single nonsaturated graph cannot do justice to 

the data. In Chapter 5, the entire dataset is analyzed using conditional Gaussian 

models. 
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51 
1 3 

0.147 

0.111(43) 

50 
1 3 

0.133 

0.418(108) 

54 

0.106 

0.097(32) 

59 
1 3 

0.106 

0.031(27) 

00 

1 3 

4 

0.102 

0.025(14) 

63 
1 3 

4 

0.078 

0.007(12) 

58 

2 4 

0.077 

0.073(29) 

62 

0.061 

0.017(10) 

0.043 

0.110(87) 

23 
1 3 

0.041 

0.026(22) 

30 

4 

0.035 

0.023(19) 

31 
1 3 

0.030 

0.007(9) 

19 
1 3 

27 
1 3 

4 

0.011 0.008 

0.022(19) 0.005(7) 

26 
1 3 

2 4 

0.006 

0.012(12) 

18 
1 3 

2 4 

0.002 

0.012(11) 

Table 3.15: Posterior model probabilities for Zna ordered by Roverato's 

results. Reversible Jump results below with standard errors xlO^ in brackets. 

49 
1 3 

2 4 

0.165(50) 

56 57 
1 3 1 3 

2 4 

0.131(45) 

4 

0.116(35) 

51 
1 3 

41 

0.061(27) 

1 

2 4 

0.058(35) 

48 
1 3 

4 

0.057(26) 

53 
1 3 

2 4 

0.048(25) 

61 
1 3 

2 4 

0.035(17 

60 
1 3 

2 4 

0.035(23) 

50 
1 3 

0.033(19) 

58 
1 3 

2 4 

0.029(16) 

59 
1 3 

0.029(14) 

Table 3.16: Posterior model probabilities for in'a 5'e^oao with standard errors 

xlO^ in brackets. 
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19 
1 3 

0.332(106) 

51 
1 3 

0.254(83) 

59 
1 3 

0.111(74) 0.097(55 

23 
1 3 

0.084(44) 

30 
1 3 

.062(39) 

63 
1 3 

0.032(41) 

31 
1 3 

0.022(18) 

21 
1 3 

2 4 

0.002(15) 

53 
1 3 

2 4 

0.002(10) 

Table 3.17: Posterior model probabilities for / n s VerazcoZorwith standard errors 

xlO^ in brackets. 

3.5.5 Mathematics Marks 

These data can be found in Mardia, Kent and Bibby (1979) and in Whittaker 

(1990), where they are used to illustrate graphical Gaussian models. They are the 

results of 88 students in each of Ave mathematics examinations: (1)Mechanics, 

(2)Vectors, (3)Algebra, (4)Anaiysis and (4)Statistics. Whittaker uses backward 

elimination to select graph 807 or 123/345, a so-called "butterEy graph". This is 

also chosen by Mardia et al.. It is no surprise then that the reversible jump gives 

this graph a posterior probability of over 25%, much greater than any other. 

3.5.6 Synchronized Swimming 

This example is taken from Fligner and Verducci (1988). The data are the total 

scores assigned by each of 5 judges to each of 40 competitors in a synchronized 

swimming event at the 1986 National Olympic Festival in Houston, Texaa. A 

nonparametric test is used to detect bias in the judges' ratings. 

The observed matrix of partial correlations is as follows: 

/ 1.0 0.0995 0.1624 0.2938 0.3022 \ 

1.0 0.2417 0.0634 0.2313 

1.0 0.3800 0.1238 

1.0 0.1011 

1.0 \ / 
By inspection, it is to be expected that the most probable models will include 
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Graph 807 
0.267(105) 

Graph 823 
0.086(57) 

Graph 815 
0.072(45) 

Graph 806 
0.070(74) 

Graph 871 
0.060(38) 

Graph 935 
0.055(34) 

Graph 943 
0.021(20) 

Graph 822 
0.020(31) 

Table 3.18: Posterior model probabilities for mathematics marks data with stan-

dard errors xlO'* in brackets 

edges (1,4),(1,5),(2,3),(2,5) and (3,4) but not (1,2), (2,4) or (4,5). The edge 

inclusion percentages after a run of 100000 iterations with 10000 of burn-in, are in 

Table 3.19 and the posterior probabilities for the eight most probable graphs are 

in Table 3.20. Notice that these are mostly as expected with very small diEerences 

between them, indicating a fairly diffuse posterior. Eighteen graphs are needed 

to account for 50% of the posterior probability and over hfty to account for 80%. 

Notice also that in most of these graphs the cycle (1, 5. 2, 3,4) is present. 

Deviance-based model selection procedures in MIM support these results: 

Backward selection yields graph 494; Forward selection yields graph 1004, which 

is the same as 492 with an added (1,2) edge. 

Edge (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) 

%in 42.89 56.17 92.13 95.63 83.12 36.97 84.99 97.11 49.80 38.74 

Table 3.19: Edge inclusion %ages for synchronised swimming data 

For the hnal three examples, all of which involve six variables, only the observed 

correlations are available so in order to proceed, the means are taken to be zero 

and the correlation matrix is regarded as a covariance matrix. While this may 

not allow reliable inference about the r 's, it will not aEect the p's which are 

the parameters of primary interest. Diagnostic Plots are presented for the hrst 
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Graph 492 
0.061 (66) 

Graph 236 
0.047 (38) 

Graph 493 
0.042 (54) 

Graph 238 
0.040 (56) 

Graph 750 
0.030 (40) 

Graph 494 
0.030 (30) 

Graph 508 
0.028 (34) 

Graph 742 
0.024 (37) 

Table 3.20: Posterior model probabilities for synchronised swimming data with 

standard errors xlO^ in brackets 

to show the good performance of this modi6ed sampler, especially as six is the 

highest number of variables in any example examined. 

3.5.7 Exam Marks 

This example is taken from Whittaker (1990).p.266, where the correlation ma-

trix for 220 boys tested in each of six subjects. These are (l)Gaelic, (2)English, 

(3)History, (4)Arithmetic, (o)Algebra and (6)Geometry. The sixteen most prob-

able graphs and their posterior probabilities are tabulated in Table 3.22 and the 

edge inclusion percentages in Table 3.21. All other graphs have probabilities of 

less than 1%. There is a distinct mode at graph 27463 or 123/15/26/56/246/456, 

the graph suggested by Whittaker and which has hve times the probability of 

the next little. Notice that this graph is also nondecomposable and is intuitively 

reasonable. 

edge 

P 

(1,2) 

100 

(1,3) 

99.98 

(1,4) 

17.66 

(1,5) 

93.11 

(1,6) 

17.07 

(2,3) 

92.79 

(2,4) 

87.25 

(2,5) 

19.42 

(2,6) 

80.62 

(3,4) 

13.17 

(3,5) 

13.45 

(3,6) 

17.69 

(4,5) 

100 

(4,6) 

99.43 

(5,6) 

99.55 

Table 3.21: Edge inclusion %ages for Exam Marks example 
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27463 
(1242 (114) 

27399 
0.032 (57' 

6 

31559 
0.042 (35) 

27471 
0.042 (33) 

a 2 2 

27591 
0.040 (28) 

28487 
0.039 (36) 

27479 
0.033 (33) 

27495 
0.033 (28) 

27207 
0.024 (35) 

27407 
0.017 (23) 

28423 
0.017 (31) 

26951 
0.015 (28) 

4 6 

27335 
0.013 (27) 

1 3 

27527 
0.010 (20) 

31687 
0.008 (24) 

6 

31495 
0.010 (12) 

Table 3.22: Posterior model probabilities for Exam Marks example with standard 

errors xlO^ in brackets 



3.5.8 Fowl Bones 

This example is also taken from Whittaker (1990) p.266, originally from Wright(1954) 

and concerns bone meaanrements of 276 white leghorn fowl. They are, (l)Skull 

Length, (2)Skull Breadth, (3)Humerus, (4)Ulna, (5) Femur and (6) Tibia. The 

sixteen most probable graphs and their probabilities are tabulated in Table 3.24 

and the edge inclusion percentages in Table 3.23. All other graphs have proba-

bilities of less than 1%. Notice that the (1,2) edge and the (3,4,6,5) cycle are 

almost always present, as would be expected from anatomical considerations (3 

and 4 are wing bones, 5 and 6 are leg bones). The posterior is more diEuse in 

this case but the most probable graph. 26163 or 123/16/34/35/46/56 has a prob-

ability of 7.6%, almost twice the probability of the next, which is the same but 

lacks the (1,3) edge. This graph is also that selected by Whittaker. The most 

probable graph of Giudici and Green (1999) is 26175 or 123/136/3456, the ninth 

most probable here but the most probable decomposable graph. 

edge 

P 

(1,2) 

99.98 

(1,3) 

64.38 

(1,4) 

30.07 

(1,5) 

15.31 

(1,6) 

72.89 

(2,3) 

91.30 

(2,4) 

26.74 

(2,5) 

11.32 

(2,6) 

33.72 

(3,4) 

99.94 

(3,5) 

99.47 

(3,6) 

6.67 

(4,5) 

3.12 

(4,6) 

99.40 

(5,6) 

99.99 

Table 3.23: Edge inclusion %ages for Fowl Bones example 

3.5.9 Voting Behaviour 

This example is from Wermuth (1980) who examined a set of sociological data 

taken from Goldberg (1966) in order to illustrate a search method. Goldberg's 

analysis is "concerned with making inferences about patterns of causal relation-

ships among six variables: father's sociological characteristics (FSC); father's 

party identihcation (FPI); respondent's sociological characteristics (RSC); re-

spondent's party identihcation (RPI): respondent's partisan attitudes (RPA); and 

respondent's vote for president in 1956 (RV)." As Wermuth notes, the assumption 

of normality is only crudely approximated by the data. 

The eight most probable graphs, according to the reversible jump results, are 

tabulated in Table 3.26 along with their posterior probabilities and their stan-

dard errors (in parentheses). All other graphs have probabilities of less than 0.02. 

The edge inclusion percentages are tabulated in Table 3.25. The graph with the 

highest probability, 25139, is intuitively reasonable with RV associated only with 



26163 
0.095 (219) 

2 

1 ,3 

/ 

17971 
0.047 (90) 

2 3 

6 

24691 
0.046 (150) 

22067 
0.035 (180) 

1 2 

5 ^4 

26227 
0.026 (97) 

25203 
0.025 (87) 

6 

25139 
0.021(85 

26419 
0.019 (81) 

6 5 

26167 
0.018 (115) 

4 

26175 
0.017 (87) 

4 

26171 
0.015(58) 

30259 
0.014(5 

25459 
0.013 (59) 

6 

26483 
0.013 (80) 

2 

1 ,3 

/ 
6 -

17975 
0.012 (86) 

22323 
0.010 (78) 

Table 3.24: Posterior model probabilities for Fowl Bones example with standard 

errors xlO^ in brackets 



edge 

P 

(1.2) 

99.99 

(1.3) 

99.38 

(1)4) 

9.05 

(1,5) 

18.12 

(1,6) 

6.26 

(2,3) 

99.90 

(2,4) 

6.50 

(2,5) 

13.12 

(2,6) 

12.13 

(3.4) 

99.99 

(3.5) 

99.96 

(3,6) 

6.14 

(4,5) 

6.89 

(4,6) 

100 

(5,6) 

99.94 

Table 3.25: Edge inclusion %ages for Voting example 

RPA and RPI, and a cycle of (RPI, FPI, FSC,RSC). The model selected by Wer-

muth is 25143, which has the additional edge (RSC,FPI). However, Wermuth's 

approach is conhned to decomposable models and, indeed, 25143 is the decompos-

able graph with the highest probability, with the extra edge breaking the 4-cycle 

in 25139. 

and 

3.6 Mo del-averaged predictive distributions 

Section 1.6 described how model-averaged predictive distributions for a subset 

of the variables given future values 2/2 of the remaining variables may be estimated 

from the reversible jump output as the average over (m, 0) of 2/2^^)-

This is particularly simple for GGMs as these conditional distributions are them-

selves Normal. The standard result is that if ( y 1,1^2) are distributed jointly as 

multivariate Normal with mean and variance 

^11 ^12 

S21 ^22 

then the distribution of given 1^2 = 1/2 is Normal with mean 

Ati|2 = + Si2Z^X%/2 - variance 22|i = 

The procedure is then as follows: for each iterate 2 of TV iterations of reversible 

jump MCMC output (which, recall, consists of obtain ;Lti|2 and Si|2 

as above. This gives the density yX2/ilA*i|2,^i|2)- is then 

estimated by ^ 3/2 taken to be values from the data, 

the method can be checked by comparing the predictive distribution with the 

observed The data used to obtain the RJ sample should however exclude the 

observations used for prediction in order to avoid any ''double counting". 

To illustrate, this procedure was applied to the heads data (Section 3.5.3) 
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BV RPA RV 

FPI - RPI 

FSC RSC 

23139 

0.456 (156) 

RPA 

RPI 

FSC RSC 

27187 

0.098 (109) 

RPA 

FPI 

RSC FSC 

25267 

0.069 (82) 

RV 

RSC 

R P I . 

F P I 

RV 

25203 

0.054 (58) 

FSC 

RPA 

RSC 

RPA 

R P I 

FSC FPI 

29235 

0.038 (40) 

RV 

FPI 

RPA 

RPI 

FSC RSC 

25143 

0.033 (35) 

RV 

FPI 

FS 

RPA 

RPI 

RSC 

25147 

0.030(34) 

R P I 

FSC RSC 

25395 

0.023 (40) 

Table 3.26: Posterior model probabilities for voting habits example with standard 

errors xlO'* in brackets 
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to estimate the predictive density /(]:^|2/2,2/3,&f4,2/)- This density is univariate 

so plots may be obtained and visually compared with the observed values. In 

addition, we can compare estimated predictive densities based on using only de-

composable graphs and those based on using all graphs. This is potentially quite 

useful in this example as the two most probable graphs, based on the reversible 

jump output, are nondecomposable. Plots of both densities for each of two ran-

domly selected sets of observations from the data are presented in Figures 3.9 

and 3.10. The actual observed values lie well within the mass of the distributions 

in both cases although the distributions for the 6rst are centred closer to the 

observed value. These plots suggest that, as would be expected, that prediction 

based on all graphs is better than that based on only decomposable graphs. There 

is not a great difference between the two here but it must be noted that there are 

only three nondecomposable graphs for g = 4 and the proportion of nondecom-

posable graphs is much greater for greater values of g and hence the differences 

in prediction will be much greater, especially when, as in many of the examples 

in the previous section, the most probable graphs are nondecomposable. 

All Gmphs 
Decomposable Graphs 
Observed value 

160 170 180 
yi 

190 200 

Figure 3.9: Model-averaged predictive densities for (1) 

f 0 



All Graphs 
Decomposable Graphs 
Observed value 

160 170 180 190 
yi 

200 210 

Figure 3.10: Model-averaged predictive densities for (2) 
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3.7 Summary 

The various examples presented above show that the approach and particularly 

the reversible jump sampler described in the previous chapter are of practical 

use. The results in each case are sensible and agree with those of other authors, 

or at least with MIM where these are not available. The sampler itself is easy to 

implement and very quick to run - run time for 100 000 iterations in each case is 

no more than a few minutes on an ordinary desktop computer. It is also easily 

adapted for other priors (even conjugate priors), for block updating, for zero-

mean models and, as the last three examples show, for cases where only observed 

correlations are available. Indeed, this last point suggests that this may be all 

that is required if interest lies only in inference regarding the partial correlations 

and model choice. It is also relatively easy to restrict the sampler to decomposable 

models, if desired, as in the Fret's example but there is clearly no reason to do 

this in general. Indeed, the lack of need of restriction to decomposable models, 

and hence the use of a richer class of models, is probably the most important 

aspect of this approach as this restriction is usually made only on theoretical or 

computational grounds but makes little practical sense. In addition, use of the 

entire class of models potentially gives better predictions. The previous section 

demonstrated this in a very limited way but the differences in prediction are likely 

to be similar or greater in general. 
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Chap te r 4 

Mixed Graphical Models 

4.1 Introduction 

Graphical association models were introduced by Lauritzen and Wermuth (1989) 

aa models for mixed qualitative and quantitative (discrete and continuous) vari-

ables. This class of models includes graphical log-linear models and graphical 

Gaussian models as special cases. They were then extended by Edwards (1990) 

to the class of hierarchical association models. This section and the next sum-

marise the relevant material from these two papers with some minor changes in 

notation. Some of this material can seem quite obscure at hrst sight but the ex-

amples presented in Sections 5.5 and 6.4 as well as the running examples should 

help clarify matters. 

The sets of discrete and continuous variables are denoted by A and F and 

their sizes by p and g respectively. When g = 0, the class of graphical association 

models reduces to the class of graphical log-linear models and when p = 0, it 

reduces to the class of graphical Gaussian models. The term mzjied grojpAzcaZ 

modeZ is used here to exclude both of these pure cases. Lauritzen and Wermuth 

(1989) as well as Wermuth and Lauritzen (1989) also consider directed versions 

as well as mixed graphical chain models but these will not be considered here. 

A typical observation is a; = (i,i/), where % is discrete-valued and is real-

valued. z takes values in the space % x R, where % = (xggA-^a) and 7̂  is the set 

of levels of discrete variable <). Similarly, for a C A and 6 G F, i/;, denote 

subvectors corresponding to a and 6. 

The conditional independences in a graphical model can be represented by a 

marked graph, in which the two types of variable are distinguished by two types of 

vertex: Conventionally, dscrete variables are represented by cbts and continuous 

variables by circles. Discrete variables are denoted as A, ia etc. and continuous 
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variables by }2 etc., although in specific examples with small numbers of 

variables, A, B and C and %, Y and Z will be used, respectively, for the two 

types. 

4.2 The Conditional Gaussian Distribution 

Graphical association models and hierarchical interaction models are based on the 

conditional Gaussian (CG) distribution, which is deSned by letting the marginal 

distribution of A be arbitrary and the conditional distribution of F given A be 

multivariate Normal (Gaussian), that is f ( / == %) = ^(2) and (}^|f = t) ^ 

7v',(//(t), 2(%)). The term "CG Model" will be used here to denote such models. 

A special case is the conditional Gaussian (HCG) distribution 

in which the variance of the conditional variables does not depend on %, that is 

Z(%) = Z. This type of model is discussed in Olkin and Tate (1961). 

{ p ( t ) , ^ ( i ) , 2 ( i ) } ^ ^ , collectively known as the moment parameters, are the 

cell probabilities, conditional means and conditional variances respectively. The 

{p(t)} are positive scalars such that {/^(^)} g x 1 real-valued 

vectors and {S(%)} are positive definite, symmetric g x g matrices. 

The joint density is thus 

-^(%/-/^(%)) 'S(2) 

4.1) 

/ ( z ) = /(%,;/) =p(t)(27r) '^/^|S(t)| ^/^exp 

which can be rewritten as 

/ ( z ) = /(%, 1/) = exp [p(t) + /i(2)'^ - ^3/'n(2)i/] (4.2 

where 

(̂%) log(p(z)) - ^Zop(27r) - ^log(|S(2)|) - ^;/(&)'i:(2)-^A^(2) 

/t(2) = S(%)-^ju(i) 

n ( i ) = s(%)-^ 

Equation 4.2 can be rewritten as 

/(%) = /(%,%/) = exp 

-yer ver (er 

(4.3) 



, collectively known as the canonical parameters, are the 

discrete and linear canonical parameters and the conditional precision matrix 

respectively. 

The notation, will be used to represent the collection of 0(%)'s as the ^th 

entry. This is to distinguish it from O, which denotes a single common precision 

matrix in a HCG model. 

Using the convention that etc., expansions can be made as 

follows: 

aCA oCA aCA 

Or equivalently, 

g { i ) = ^ A-(:) 

aCA 

ZA 

aCA 

These terms on the right hand side are called and there are 

(1 + g 4- sets of |%| of them - one for the discrete variables, one for each 

continuous and one for each pair of (not necessarily distinct) continuous variables. 

They are given special names as follows: 

is the Zog Since = 1, 

exp(A'̂  (4.4) 

where o;(%) = EaCA\{0} 

The A'̂ , G 0 terms are(pure)(i2acre^e When |a| = 1, they are 

(f(5cre(e mom 

The terms are mam e_̂ eĉ 5. The remaining terms are 

Zmeor between a continuous variable and the discrete variables in a. 

are The terms are pwe m-

between pairs of continuous variables. The remaining i/''' terms are 

mixed quadratic interactions between pairs of continuous variables and the dis-

crete variables in a. Note that a CG distribution is HCG if and only if it has no 

mixed quadratic interactions. 
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Inserting the interaction terms into eqnation(4.2) or (4.3) we get the following 

representation of the logarithm of the density: 

Iog/(a;) = log/(%,%/) = ^77^(2)2/7-^ ^ ^ (4 5) 
aCA aCA -yEF aCA T,C6r 

In practice, additional constraints are required for identihability of the inter-

actions. One possibility are "sum-to-zero" constraints so that 

= 0 V o C A \ { 0 } 

= 0 V G C A \ { 0 } V - y e r 
/ V ' 7 

tEZ 

((%) = 0 V ( Z C A \ { 0 } V ^ , ( E r 

To illustrate, let A = {A} with 7,̂  = {0,1}, that is a binary discrete vari-

able. The A-terms are A^,A'^(0) and A(l). Sum-to-zero constraints require 

A'̂ (O) = — A'^(l). This reduces the number of parameters by one and it will not 

matter which we choose to vary freely and which is determined by constraint. 

This is the principal motivation for this type of identiEability constraint. In gen-

eral, the number of A-parameters is the number of cells, although one of these is A® 

and is constrained as shown above. The same applies to the zy- and ^-parameters. 

The parameterization can thus be written (A, j f , $ ) , where A = (A^ A'̂ (O))', 

= (/; 77^ (̂0))' and $ = ( $ ^"^(0))'. This accounts for the identihability 

constraints and the sum-to-one constraints on the probabilities. 

The identihability constraints may be embodied using a (feazg'n maMa; Z) and 

the transformations, 

G = B A (4.6) 

V i ' G r (4.T) 

V ' y , ( E r (4.8) 

where G, h..y and are |%| x 1 vectors of g(%)'5, /%^(»)'s and w^((i)'s respec-

tively. The expressions 4.7 and 4.8 may be written concisely as 

(4.9) 

0 - (4.10) 
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where ^ is an array of ^^'s. 

Conversely, the inverse of the design matrix can be used to transform canonical 

parameters to interactions as follows: 

A = (4.11) 

(4.12) 

(4.13) 

The remaining (constrained) interactions may be obtained from the Z)(^) 

matrices. 

For sum-to-zero constraints, Z) is given by 

the outer product of the |(̂ | x |(5| matrices, one for each discrete variable, of form 

D{S] 

where 7 is an identity matrix. 

Also, 

/ l 
1 

1 

I 

/ 

jD((^)- (4.14) 

4.3 Graphical; Hierarchical and other models 

Models are specified by setting certain interactions to zero. The fundamental 

result for graphical models in Lauritzen and Wermuth (1989) is that two variables 

are conditionally independent given the remaining variables if and only if all 

interaction terms involving these two are zero. The Markov properties can be 

stated explicitly as follows: 
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-U- = 0, 7̂ " = 0, = 0 (4-15) 

whenever j , A: E a C A 

{) -U-^|(-Z'A\{;},^r\{t}) ?7t = 0, '^kr = 0 V r e r (4.16) 

whenever j E a C A 

4=^ V a C A (4.17) 

Here, ?y" denotes the array (77''(%), 2 6%) and the array ('Î (̂%), % E %). 

Analogously to the case of log-linear models, the class of graphical association 

models is part of the larger class of hierarchical association models, which allow 

higher order interactions to be removed (set to zero) without removing the inter-

actions they contain. The principle which must be respected is the same ag in 

hierarchical log-linear models, namelv that if an interaction term is removed, so 

must all other interaction terms involving all the same variables that it does. This 

is sometimes called the marginality principle. More precisely, the requirements 

are, 

1. If G C 6 C A and {A''(t) : % E %} are set to zero, then {A (̂%) : % E %}, 

{7;̂ (%) : 2 E %} and {^t((^) : % E %} must also be set to zero for all"/, ( E F. 

2. If a C 6 C A, ^ E r and {77"(%) : % E %} are set to zero, then {97̂ (2) : % E %} 

and {V''̂ (̂̂ ) : % E %} must also be set to zero for all C E F. 

3. If a C 6 C A, "y, ( E F and {^^"((2) : % E %} are set to zero, then : 

% E %} must also be set to zero. 

4. If G C 6 C A, ^ E F and {'!/;̂ (̂%) : 2 E %} are set to zero, then {"(/" (̂(t) : 2 E 

%} must also be set to zero for all ( E F. 

This is how a hierarchical interaction model is defined by Edwards (1990) how-

ever Lauritzen (1996) defines them using only the hrst three conditions, referring 

to models satis^ing all four as "MIM models". It is noted in the discussion of Ed-

wards (1990) that the condition 4 is hard to justify and there are sensible models 

which are hierarchical in Lauritzen's sense. Despite this, the hierarchical models 

considered in this thesis are the "MIM" models, satisfying all four requirements. 

As noted in the next two chapters, the methods described there can be easily 
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adapted to deal with the other type of hierarchical model. Indeed, they are easier 

to deal with since they are less restrictive. 

We must be careful to distinguish between interactions and interaction hernia, 

which are parameters quantifying interactions for each cell. Interactions between 

discrete variables will be denoted as AB, ylBC etc. Linear interactions between 

a continuous variable and a set of discrete variables will be denoted as Ay, j i B F 

etc. Interactions between two continuous variables will be denoted as XY etc. 

Quadratic interactions between a continuous and a set of discrete variables aa 

y i y y , A B y y etc. and between two continuous and a set of discrete as v4%y, 

y l B Z y etc. 

The class of CG models is a very Sexible class of models (arguably, too flexi-

ble) and contains other standard classes of models, including standard MANOVA, 

Multivariate regression, general location (GLOM) and location-scale models. Ed-

wards (1990,1995) provides a good description of the connections to some of these 

(but not the latter two) as well ag to others. For convenience brief descriptions 

follow: 

The general MANOVA (Morrison 1976), or multivariate ANOVA, model may 

be written 

y = i)<9 + e, 

where "K is a M x g matrix of responses, Z) is a M x A; design matrix, 0 is a 

A X g parameter matrix and e is a random error matrix with E'(e) = 0 and 

var(e) = Hypotheses to be tested are expressed as = 0, where 

C and Af are given matrices. If Af = 7, we have a standard MANOVA model. 

This can be related to HCG models by setting the columns of 0 to be interaction 

expansions of the cell means rather than of the linear canonical parameters. In 

this way, mean-linear HCG models correspond to linear hypotheses. = 0. 

The general location model (GLOM) is a class of model for dealing with both 

discrete and continuous variables which has been used since before the introduc-

tion of association models but in fact corresponds to the class of HCG models. 

Barnard et al. (2000) discuss this model class and introduce a more flexible gener-

alization based on their "separation strategy". Interestingly, they remark, "While 

it is clearly inadequate in many applications to assume common covariance across 

cells, especially when there are many cells, it is also clear that allowing each cell 

to have its own covariance matrix is impractical. For one thing, such a model 

often haa many more parameters than data points." This their motivation for 
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the generahzation. The next two chapters attempt to show that this concern 

notwithstanding, general CG models have use at least for relatively small num-

bers of cells and continuous variables. All examples examined also have numbers 

of observations su&ciently large relative to the number of parameters. 

The general location-scale model introduced by Barnard et al. (2000) is sim-

ilar to the extensions to GLOM models introduced by Liu and Rubin (1998), 

which have different but proportional covariance matrices. The general location-

scale models allow standard deviations to vary across cells but assume a common 

correlation matrix. This is a compromise between the above extension and CG 

models which may be useful if the number of parameters is a concern. This sug-

gests a similar generalization to the HCG models, v^here the partial precisions 

may vary between cells but a common partial correlation matrix is assumed. This 

corresponds to absence of all mixed quadratic interactions involving more than 

one continuous variable (e.g. etc.), which is easily dealt with in 

the context of the methods described in the next two chapters. They also suggest 

a partitioning of the cells into groups, with a separate correlation matrix for each 

group, if the common correlation assumption is too restrictive. 

4.4 An alternative parameterization 

While the moment parameterization is the most intuitive and most easily inter-

pretable, the interaction expansion has the advantage of the simplicity of the 

graphical constraints. However, while these constraints are simple, they greatly 

restrict the parameter space of the quadratic interaction parameters and, as shown 

in Section 4.6, make prior specihcation difhcuk. 

A simple solution is to instead use the quadratic canonical parameters, namely 

the conditional precision matrices, f]2 in place of quadratic interaction matrices. 

The log-density in this case is: 

log/(2;) = log/(%,%/) = ^ ^ " " ( 2 ) + - ^i / 'n( i) ; / . (4.18) 
aCA aCA "ysr 

The constraints on corresponding to constraints on the quadratic interac-

tions may be expressed concisely using Recall that = 

V"/. ( G r . A constraint matrix corresponding to a given set of missing in-

teraction terms is obtained from the design matrix Z) by setting certain columns, 

corresponding to interactions to be set to zero, to zero. 
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For example, if there are two discrete variables, v4 and each with two levels, 

the constraints for a missing A F interaction are expressed as 

1 0 0 \ / \ ( 1 
1 - 1 0 0 

1 1 0 0 

\ 1 - 1 0 0 / 

The constraint matrix is the matrix on the right. If we denote this by jiT and 

the vector on the left as wy, we have 

/ W y ( 0 , 0 ) \ 

^y(0,1) 

Wy (1,0) 

V Wy(l, l) y 

V'y 

iOy — K D ^Wy 

It is easy to see that the constraints for a missing continnons-continnous edge 

(or missing continuous-continuous interaction in a hierarchical model] are given 

by 

0 V%E% (4.19) 

Less obvious but straightforward to see is that the constraints for a missing 

v4A7y interaction are as follows, where v4 is indexed by 2;̂  so 
% = 

W x y ( i ) = w x y ( 0 , j ) V;/. (4.20) 

To illustrate the constraints for a missing interaction, consider again 

the case of two binary variables, A and B, where the interaction is absent. 

In this case we have 

wxy — 

/ 1 1 1 0 \ / 1 1 1 1 \ 

1 1 - 1 1 0 1 - 1 1 - 1 

4 1 1 -- 1 0 1 1 —1 - 1 

\ 1 - - 1 0 / V 1 —1 — 1 1 y 

/ 3 1 1 1 \ 

1 

4 

\ 

3 

4 

1 

W%y 

1 3 / 

W%y 

So, Wxy(2, j ) — ^ [3wxy(2, j ) + Wxy(l — %, 

The four constraints are in fact all the same: 

(0, 0) — wxy(0,1) — wxy(l , 0) + w^y (1,1) 0, 

Wxy 4 1 - 2 , 1 ; ) ] . 



When v4 has levels and B has Zg levels, we have 

h i 
— l)wxy(2, j ) + (Z^ — 1) ^ W x y ( ^ , 6) 

+(Zg — 

and hence 

1 
(̂ A — l)(Zg — 1) 

(Z/4 - 1) 
6#J 

(Zg - 1) yi^%y(G,;) - (^'xy(o, 6) (4.21) 

This gives — 1)(ZB — 1) independent constraints. 

It can be shown that the same result holds in general, with extra indices 

for further discrete variables inserted, for fixed levels of the remaining discrete 

variables. 

Finally, the following holds for a missing 3-way discrete interaction: 

+ Zg + J, ^) + ^ 1) j, c) 

+ (ZA — l)(Zc — 1) + (Zg — 1) (^c — 1) ^ 2 .7' 

— (̂ A — 1) c) — (/g — 1) ^ ^ 0(G,j , c) 

— (Zg; —1) ^ ] 0(0 , 6, A;j-h ^ ] (!(«, 6, c) 

A pattern can be seen to emerge from this, from which it may be possible 

to express constraints for missing higher order interactions or even for arbitrary 

missing interactions but this will not be pursued here. 

4.5 The Likelihood 

Suppose there are M independent observations, cc = (a ; \ cc^,..., — 

((%% 2/^), (2 ,̂ 2/^).. . , (2", 2/")), 0:1 then the logarithm of the likelihood function 

is 



logi/ E 
A;=l 
7% 

E 
A;=l 

IT—̂  

E 

gii") + 5 tr ( ^ n ( i* ) ! / ' ( ! / * ) ' 
\A;=1 

7sr ver (er 

7er yer (er 
1 

g(z)M(%) + - - tr ( n ( 2 ) f (%)) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

where 

M(%) = ^ 2 1 

the number of observations in cell %; 

S ( i ) = E y ' 

the sum of the ?/-vectors in cell », with components 

A::!. 

p(i) = E fv'yy' 

the matrix of sums of squares and products of 2/-vectors in cell z, with components 

In order to account for the identiAability constraints, the likelihood can be 

rewritten as follows 

1 
log^ = + ^ ( ^ ^ ) ' f ) n , - - ^ ( f v J ' - D V , 

• / C 
(4.26a) 

yer 7,(er 

N ' D A + tr(Z)B-5") - ^ tr ( ^ ( ; ) f (z)) (4.26b) 
J, 

+ t r ( i ) f f 5 " ) - - ^ tr ( n (%) f (%) f4.26c) 

iei 
where N , 5'.y and f are vectors of cell counts, cell sums and cell sums-of-

products, respectively; A is vector consisting of and the discrete interactions; 
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is a vector of mixed linear interactions involving 7 E T; and 1/;̂ ^ is a vector 

of mixed quadratic interactions involving "y, ( E F. 

When the data are such that the observed means are greater than the observed 

standard deviations, poor mixing can result when implementing MCMC for these 

models, as described later, due to posterior correlation between parameters. For 

this reason the continuous data are relocated within cells. More precisely, for 

each level % and for each A; such that 2*̂  = %, 

1/'' z'' = - a(%). 

Covariance matrices, and hence precision matrices, are invariant to centring, 

that is so only the discrete and linear parameters will be changed: 

Hence, 

j y , = , (4.21 ^ — zv ftz — ^2, — JV Ui, 

where is the matrix with j t h row 

Thus, for the centred data, the equivalent of setting an entry of H";, to zero is 

to set the corresponding entry of to the negative of the corresponding entry 

1-of 

Also. 

Hence. 

A, = = A^ + Z)-^U2, (4.28) 

where U2 is the vector with _;'th entry (/^^(j) — ^ a ( j ) ) ' f ] ( j ) a ( j ) . 

Thus, the equivalent of setting a particular Ay to zero is to set the correspond-

ing to the corresponding entry in Z)"^U2. 

In practice, we set a = in which case we obtain a simplification of the 

likelihood, the logarithm of which becomes 

log /(%, z |A, , n ) = N ' D A , - ^ ^ t r ( ^ ( 2 ) ^ ( 4 - 2 9 ) 

since the centred matrix of sums is identically zero. Notice that the 

enter only through the log normalizing constant, Note also that f*z(t) = 

(71(2) — l)S(zl . where S( t ) is the observed variance in cell i 



Although setting a to be a data dependent value may seem odd particularly 

ag a prior for this is then required, for the kinds of diffuse priors used in this 

thesis the effect is slight although the computational advantages are great. 

4.6 Prior Distributions 

Rather than specify priors for the original ^-interactions and derive the corre-

sponding priors for the z-interactions, it is more practical to simply specify priors 

for the latter directly. To ease the notation, from this point forward, it is assumed 

that the interactions are the z-interactions and the z subscripts will be dropped, 

unless required for clarity. Of course, they may easily be transformed back to the 

original scale, if desired. 

A is a vector of real-valued parameters, which, apart from may vary freely. 

Any prior suitable for the interaction parameters in a log linear model is also 

suitable as a prior for A here. A simple choice is a Normal with mean zero and 

diagonal covariance matrix so that the priors are independent. 

is a matrix of real-valued parameters, which may vary freely so indepen-

dent zero-mean normal priors may be used here also. Indeed, these are more 

appropriate for the %'s as the centring moves them towards zero. 

The quadratic interaction matrices, are real-valued but are required to be 

such that each is positive definite (and symmetric). 

This greatly restricts the parameter space, making prior specification, as well 

aa proposal generation in MCMC algorithms, di&cult. To illustrate, consider this 

simple case with two binary variables, /i and B, using sum-to-zero identihability 

constraints: 

n(0 ,0) = ^ + ^ ^ ( 0 ) 4 - ^ ^ ( 0 ) + ^-^^(0,0) 

n ( i , o ) = + 

We need ( ^ , ^"^(0), ^^ (0 ) , 0)) such that each of the above linear combi-

nations is positive dehnite and this is quite a tall order. 

It is for this reason that the alternative parameterization (A, ) is pro-

posed. The constraints for (4.19,4.20 and, for two discrete variables, 4.21) are 
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not as straightforward but they are quite manageable. The idea is to use the con-

straints to identify a subset of parameters with the remainder being determined 

by constraint. 

Any priors suitable for (jZ in a graphical Gaussian model may be used here 

but must take account of the graphical constraints. This is quite straightforward 

if the precisions are decomposed as 

- diag(T(2))C(2)diag(r(z)), 

just as in the graphical Gaussian case, and the nonconjugate priors described 

in Chapter 2 are used. Note that in an extension of the GGM decomposition, 

the conditional partial precision and for j A;, 

and (?(%) is the matrix with entry — t h e 

negative of the conditional partial correlation. For notational convenience, 

Wjj will be used in preference to 7^ and it may be more convenient to express 

constraints and assignments in terms of rather than 

The graphical constraints simply reduce the number of parameters requiring 

priors. For example, if A = {A}, F = {1,2} and v4 _U_ 1|2, then Ti(0) and each 

r2(^) will have independent gamma priors; ^12(0) will have a [/(—1,1) prior; and 

the remaining 7-1(2)'s and pi2(2)'s are determined by the graphical constraints, 

namely 

Ti (z) = Ti (0) Vz > 0 

and 

P12W = > 0. 

Prior variances are chosen so that the prior is diSuse but not so diffuse that 

more complex models are unnecessarily penalised. There is no simple rule for 

determining a suitable prior variance but analysis of simulated data from a known 

model can be a useful guide. See Section 5.5.1 for more on this. 

As with GGM's, prior normalizing constants can be found by simulation. 

However, it is not quite as straightforward since since some of the partial corre-

lations will be functions of both other partial correlations and partial precisions 

as in the above example. In this caae, we have 

f2(l) 

Pl2(0)Ti 7-2(0) 

r#(0) 

Pl2(0)Ti 7-2(0) 
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1 A2 0 

So that 

C ( 0 ) = 
1 

C ( l ) = ( ' 

This extremely simple example shows that it is necessary to generate ail of 

, not just the partial correlation matrices, in order to determine the prior nor-

malizing constant. More explicitly, we need to generate |%| g x g matrices with 

unconstrained diagonal entries drawn from a Gamma distribution, unconstrained 

oS-diagonal entries the product of a draw from a Uniform(-l,l) distribution with 

square root of the product of the two corresponding diagonal entries and con-

strained entries determined by the model constraints. We then test whether 

the matrices are positive-dehnite. 

If this is done a large number of times, the proportion of times that all of 

the matrices are positive definite (the acceptance rate) will be approximately the 

reciprocal of the normalizing constant. Naturally, the more cells there are, and 

hence the more matrices, the smaller these proportions, so a practical upper limit 

is reached much sooner than for GGM's. Table 4.1 gives the smallest proportions 

for any of the models, based on 100000 sets of matrices for various values of g 

and combinations of numbers of levels for models with p = 1 and p = 2. Note 

that these are not necessarily the saturated models; In the above example, the 

acceptance rate under the saturated model is 1 but three models have smaller 

acceptance rates. 

The practical upper limit for models with one discrete variable appears to 

be g =: 4 with a moderate number of levels or possibly, for graphical models, 

g = 5 with no more than 2 levels. For models with two discrete variables and a 

moderate number of levels for each, up to g = 4 seems feasible. Again, this sort 

of practical limitation will arise for any nonconjugate priors but, as with GGM's, 

it does not prevent their use for hxed model inference. 

It is possible to solve the problem of prior specification for the quadratic 

interactions by hrst specifying a prior on the precision matrices as described 

and then obtaining the corresponding prior for the interactions using appropriate 

transformations. Note that the Jacobians for such transformations are always 

constants and so are not required for hxed-model inference. However, when it 

comes to proposal generation in an MGMC algorithm, it is more difficult to 

satisfy the positive dehniteness requirement on the precision matrices when using 
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9 levels GM HM LRG LRH 

2 2 8 9 0.56 

3 0.43 0.41 

4 0.35 

3 2 64 95 0.21 

3 0.11 

4 2 1024 2489 0.02 

3 0.01 

5 2 32768 173433 0.001 0.000 

2 2,2 64 146 0.34 

2,3 0.19 

2,4 0.12 

3,3 0.08 

3 2,2 1024 7460 0.04 

2,3 0.04 

Table 4.1: Numbers and Acceptance rates of CG Models. 

The second column gives the number of levels of the discrete variable (s), the third 

gives the number of graphical models, the fourth gives the number of hierarchical 

and the last two give the lowest acceptance rates for graphical models and for 

hierarchical models, where they differ. 

interactions. For this reason, the precisions have been used in preference to the 

interaction matrices. 

4.7 Conditional distributions 

Because the likelihood (4.26) factorizes readily, conditional distributions are easily 

expressed as 

oc /(A)exp(A/-'Z)A) (4.30) 

y(B-|A,(12,%,2/) (X /(jH-)exp[MA^ + tr(Z)H'5")] 

; ( f f , | A „ ^ % , 2 , z ) (X y ( j f , ) e x p M 

/ ( ^ l A . a ' , ! , ? / ) oc y ( ^ ; ) e x p [ n A ' ' ' - ^ ^ ^ t r ( n ( t ) f ( z ) ) ] 

where A0 is given by equation 4.4. These distributions will be required for the 

implementation of a Gibbs sampler as described in the next two chapters. 
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Chap te r 5 

Condi t ional Gaussian Models 

W i t h One Discrete variable 

5.1 Introduction 

This chapter deals with the special case where p = 1, tha t is conditional Gaussian 

models with exactly one discrete variable. These are particularly simple as most 

of the di&cnlty in CG models comes from the discrete interactions, of which there 

are none in this case. There are, in fact, only four types of interaction: continuous-

continuous (Xy) , mixed linear (AA"), 2-way mixed quadratic and 3-way 

mixed quadratic (A%y). 

Throughout, A Wll denote the discrete variable, taking values 0 , 1 , . . . , 1-1. 

The parameters are: 

A = ( A , A ( 0 ) , . . . , A ( W ) y , 

/ ... % ^ 
%(0) . . . %(0) 

i f = 

1) . . . 1) y 

and = {^(z) = diag(T(z))C'(2)diag('r(2)) : z = 0 , . . ., Z — 1} . 

Since there are no discrete interactions, the highest order of interaction is 

three and there are three types of model constraints: 

* A missing three-way mixed interaction AATY requires wxy(2) = wxy(O) for 

each 2 — 1 , . . . , Z. A missing two-way mixed quadratic interaction 

requires - Wxx(O) for each % = 1 , . . . , Z—1. 
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e A missing two-way mixed linear interaction requires (̂ ) = 0 for each 

2 = 0 , . . . , / — 1 . 

# A missing pure continuous interaction requires w%y(%) = 0 for each 

2 = 0 , . . . , 1. This necessarily means the ^4%]^ interaction will be absent 

also. 

For hierarchical models, the quadratic interaction can be missing only 

if each interaction is also missing; the continuous interaction can be 

missing only if the interaction is missing and the linear AX interaction can 

be missing only if A X X is missing. 

For graphical models, a missing (X, Y) edge is equivalent to a missing 

(and A X y ) interaction and a missing (A, is equivalent to the linear AX 

and each two- and three-way mixed quadratic interaction involving %, AX'y, all 

missing. 

The design matrix is = -D(A) as in Equation 4.14. 

5.2 MCMC for Fixed models 

To generate from the posterior, a Gibbs sampler may be used. The following is 

an outline of the scheme used here. As the conditionals are only available up 

to a normalizing constant, a Metropolis-within-Gibbs scheme must be followed. 

Note that prior normalizing constants are not required for inference based on a 

single hxed model. A random-walk scheme is a convenient and effective way of 

generating proposals but several pilot runs may be necessary in order to hnd pro-

posal variances that give optimal acceptance rates or at least allow good mixing. 

Acceptance ratios are particularly simple as the likelihood factorizes as shown in 

the previous chapter. Strictly, the conditional distributions are simpler than used 

here and the acceptance ratios simplify further but for computational purposes it 

is more convenient to evaluate one of the block conditional distributions in 4.30 

and these may also be used if a block updating scheme is preferred. 

Updating A The first element, A, is the likelihood normalizing constant so is 

not updated independently. The rest are discrete main effects so are all updated. 

The acceptance ratio is 
/(A*)exp(N'Z)A*) 

/ (A)exp(N 'Z)A) ^ 
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Updating j f The first row consists of hnear main effects, which are always 

updated. For each "y E T, if a linear interaction is present in the model, each 

77̂ (2) is updated, otherwise none of them are. When the data are centred, the 

acceptance ratio is simply a ratio of normalizing constants times a prior ratio, 

exp [nA*] 

/ ( f f ) exp [^A] 
(5.2) 

Updating This is done in much the same way as in GGM's but the con-

straints corresponding to missing mixed interactions must also be preserved. To 

illustrate, let % and Y be specific continuous variables and let % > 0. 

'rx(O) is always updated. If the interaction is missing, this also changes 

each If the interaction is missing but the is not, it also changes 

each pxy(^), because in this case, 

Tx(0)Ty(0)p%y(0) 
= - -

T-x(2)Ty(%) 'rx(^)'ry(z) 

) missing, th 

Ty(0)/)%y(0) 

If the v4XX interaction is also missing, this reduces to 

which is independent of 7%(0). 

is updated if and only if the interaction is present. If the AXY 

interaction is missing, this also changes each as in the above expression. 

Pxy(O) is updated if and only if the interaction is present. If the A X F 

interaction is missing this also changes each pxy(%)-

Pxy(%) is updated if and only if both the and AXY interactions are 

present. 

Note that for each of the above updates, if any linear interactions are missing 

and the data are centred, must also be amended as it depends on through 

4.27. 

The acceptance ratio each time is 

/(i|2*)exp [^A* -
f5.3l 

/ ( i ^ )exp M̂A - (^))] 

5.3 Reversible Jump Sampling 

The two types of model, graphical and hierarchical, are considered separately but 

the structure is essentially the same for each: Firstly, a type of edge/interaction 



is selected. Secondly, a specific edge/interaction of tha t type is selected. If it is 

present, it is proposed to remove it, if not is is proposed to add it. Finally, the 

parameters in the new model are updated as for a Axed model. In the case of 

hierarchical models, certain move types are not allowed and these must always 

be rejected when proposed. SpeciScally, only the maximal terms present may be 

removed and only minimal terms absent may be added. 

Before running the reversible jump sampler, two models are run using the 

Exed-model sampler in order to obtain proposal variances which give satisfac-

tory mixing. A run of the saturated model gives these proposal variances for 

each of the parameters in the saturated model. Constrained r ' s are regarded as 

parameters separate from those in the saturated model as they represent a com-

mon partial precision rather than a partial precision at a particular level of vl. 

For this reason, the model with all mixed edges or mixed quadratic interactions 

missing (but no others) is run to obtain proposal variances for these parame-

ters. Constrained p's could be treated similarly but the situation with these is 

more complicated, as there are two continuous variables involved. It has been 

found in each case, however, that the random walk variances obtained for the 

saturated model sufhce for all models. This is most likely due to the restricted 

range of values these parameters can take leading to relatively small posterior 

variances. These proposal variances are used for between-model moves as well as 

for within-model moves as in the hxed-model run. 

Recall from Section 1.6.3 that that the acceptance ratio is obtained as the 

product of a prior ratio, a likelihood ratio, a jump ratio, a proposal ratio and a 

Jacobian. For each move type, these various ratios are described, although not 

necessarily given explicitly, as in most cases an explicit expression of the full ratio 

would be unnecessarily complicated and not particularly informative. 

5.3.1 Hierarchical Models 

There are g possible mixed linear interactions, — 1) possible two-way con-

tinuous interactions and -I-1) possible two- and three-way mixed quadratic 

interactions so these types of interactions are chosen with probabilities l / (g 4-1), 

(g — l)/2(g -t-1) and respectively. Next a specific interaction of the chosen type 

is chosen at random. If this interaction is in the current model, it is proposed to 

remove it, otherwise it is proposed to add it. In this way, the jump ratio is 1. 

Note that there may often be proposed models which must be rejected as they 

are not hierarchical. 



To clarify the rather detailed algorithm, the following running example of a 

binary variable and two continuous variables will be used. This is, of course the 

minimal example. 

Z = 2, F = {X, y} , with parameters 

7x(0) 'ry(O) ,9(0) 

rA-(l) 'ry(l) p(l) 

In the following, the parameters present in each model (current and proposed) 

will be explicitly stated, except for A, whose two components are always present. 

An asterisk (*) will denote a parameter that may or may not be present. An 

absent parameter will be denoted by a zero or a blank space, as appropriate. 

2-way Mixed Linear Interactions 

EzampZe: 

% ^ / Tx(0) Ty(0) p(0) 

0 * 

% A / Tx(0) T-y(O) p(0) 

* y \ % 

Suppose hrstly the linear interaction has been chosen for addition. The 

required (—1 new 7)A'(^)'s are generated independently from Normal distributions 

with zero mean and variance determined by a pilot run of a hxed saturated model. 

The proposal ratio is thus the reciprocal of the product of these normal densities 

evaluated at the values of the new parameters. 

The posterior ratio reduces to 

i - x p [ , U » + a ( D H ' S ' ) ] n t o / ( % ( : ) ) 

exp [nA''' + tr(i)H'5")] 

and finally, the Jacobian is 1. 

If, instead, has been chosen for removal, each )7x(^) is set to zero, the 

proposal density is the product of the normal densities described above, evaluated 

at the current values of the parameters which are being set to zero and the 

posterior ratio reduces to 

exp + tr(Z)B-*5")l 

e x p i n , \ » + b i D H S ' l j n " „ 
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Note that since only hierarchical modela are being considered, this move is only 

permitted when all quadratic interactions involving JY7 (AXX, etc) are 

Cont inuous In te rac t ions 

% \ / 7x(0) 'ry(O) 0 

* * y y * % 0 

;7X W \ / Tx(0) Ty(0) /)(0) 

* * y \ * * 0 

Suppose next that the X F continuous interaction is to be added. Since it is 

absent from the current model, and the current model is hierarchical, must 

also be absent Therefore, only one new partial correlation, Pxy(O), is required as 

the remainder will be determined by the model constraint (s). In order to ensure 

positive dehniteness of each precision matrix, hrst obtain G; and the endpoints 

of the allowed intervals for each cell i Since for each % we require 

and 

Pxy{') = 

the endpoints of the interval from which to draw /)xy(0) ii:! order to ensure 

positive definiteness are 

mm I a . M a i d i l ' l and 6 = m a x (b. 
'7x(0)n"(0)y \ T;j(0)T-y(0) 

Of course, if either or both of the or v4yy interactions are absent, these 

expressions simplify. 

The proposal ratio is simply (6 —a) and the Jacobian is 1. The posterior ratio 

reduces to the ratio of conditional distributions, 5.3. 

Suppose, instead, the interaction is to be removed. To keep the model 

hierarchical, this is only permitted when the . 4 X y interaction is currently absent, 

therefore the (%, F) term in each 0(2) is set to zero. To determine the proposal 

ratio, the interval endpoints must be obtained as when adding the interaction. 

Otherwise, the acceptance ratio is the same. 
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0) 01 

2-way Quadra t i c In te rac t ions 

EzrampZe: 

% 77y ^ / Tx(0) 

* 

77% \ T-y(O) p(0) 

* / \ 7x(l) ^ 0 

Suppose next the two-way mixed quadratic interaction is to be removed. 

To keep the model hierarchical, this is only permitted if all mixed quadratic 

interactions involving X, : -y E F \ {%}}, are currently absent. What is 

required is that each ^^(2) has the same value. There are only really two ways to 

achieve this: One is simply to average over levels. The drawbacks of this are that 

the Jacobian is not as simple and the reverse move is more complicated. The 

other way is to generate independently of the current Tx(2)'s. A sensible 

choice of proposal distribution in this caae is a normal distribution with mean 

and variance given by the estimates of posterior mean and variance based on a 

pilot run of the model with all two-way mixed quadratic interactions missing. (In 

fact; any model with missing will do but removing all of them will give 

estimates for each continuous variable). 

Before considering the details of each of these, hrst consider the reverse move, 

adding the interaction. This is only permitted if the corresponding linear 

interaction is currently present and will only happen when all three-way 

interactions involving % are absent. 

If independent proposals are to be used for removal, they must also be used 

for addition. The mean and variance here would be based on a pilot run of either 

the saturated model or the model with all three-way interaction missing but all 

others present. The Jacobian in this case is , naturally, 1 and the proposal ratio 

is 

Hz y(r(z)) 

where Tx is the common value in the current model and E and V are respectively 

the mean and variance estimates. is the normal density function. 

If, instead, averaging is to be used for removal, the new for the addition 

move must be such that they average to the current common value. This is 

achieved as follows: Generate —̂1 independent observations, from a 
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normal distribution with mean zero and variance given by the estimate of the 

posterior variance of as before. 

For each % = 0 , . . . , 1, set 7x(^) = — it, where M = y we 

define - 0. Now, '7x(^) = ?% + "u - « = T%, satisfying reversibility. 

The proposal ratio is simply the reciprocal of the product of the proposal 

densities, evaluated at the 2 '̂s. 

Returning to the removal of this interaction, the proposal ratio for the inde-

pendence scheme is the inverse of that for addition. For the averaging scheme, 

the proposal ratio is obtained as follows: We have 

/ 1 ( / - ! ) / / -1 /Z 

1 -1// - 1)/Z 

1 

- lA ^ / 

A j l 

-1/Z . . . - 1 / ^ 

y 1 —i/z —i/z . . . ""1/^ y 

or, for the reverse move, 

/ 1/Z 1/^ . . . 1/Z l / ( ^ 

1 0 . . . 0 - 1 

0 1 . . . 0 - 1 

y y 

Ty(0) 

/ T;^(0) ^ 

'A-(1) 

\ 7x(z-i) y 

2/0 

y y 
\ 0 ... 0 1 - 1 y 

The Jacobians are the absolute values of the determinants of the left-hand 

matrices, which are both 1. 

We can also obtain the w's as 

- TA-(/ - 1) / o r 2 ^ 0 , . . . , Z-2 

and hence obtain the proposal ratio as the inverse of tha t for the addition move. 

The posterior ratio for both addition and removal under both schemes again 

reduces to 5.3. 

The averaging scheme tends to work better (that is, to give better acceptance 

rates) and so it is the one used for any results given here. It has also been found 

that performance may improve when the average is scaled by a suitable value. 

In most of the examples examined, this scaling was not necessary and for those 

where it helped, a value of 0.5 was generally sufBcient. It is not known at this 

stage why such a scaling might be necessary or what kind of values are suitable 

in general. 
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3-way Q u a d r a t i c In te rac t ions 

W A / Tx(0) T-y(O) p(0) 

/ \ Tx(l) 7-y(l) 0 

% \ / T-x(O) Ty(0) p(0) 

)7y y \ Tx(l) T-y(l) p(l) 

Finally, suppose the three way mixed quadratic interaction is to be 

added. In order to keep the model hierarchical, this is only permitted when the 

AJ'CA', A y y and interactions are all currently present. The current model 

has only one partial correlation parameter, with the rest determined by the model 

constraints, but the proposal model has one for each level. These are generated 

in the same way as described in Chapter 2 for GGM's, that is, for each level %, 

End the interval (<%;, from which to draw that ensures is positive 

definite. 

If instead, the interaction is to be removed (and this is always permitted since, 

if present, it is the highest order interaction), each concentration wxy(%) must be 

equal, so only one partial correlation, needs to generated. This is done in 

exactly the same way as adding the X Y interaction when both ^4^"% and AFY 

interactions are present, as the proposal models are the same. 

In both cases, the posterior ratio again reduces to the ratio of conditional 

distributions, 5.3. 

The proposal ratio is 
, ( . ) ^ n.i;-. - » . ) 

(6- a) 

for the addition move and the reciprocal of this for removal. Finally the Jacobian 

is again 1. 

5.3.2 Graphical Models 

There are g possible mixed edges and + 1) possible continuous-continuous 

edges therefore a mixed edge is chosen with probability 2 / (g+3) and a continuous 

with probability (g+ l ) / (g + 3). If the former, a continuous variable is chosen at 

random. If the latter, two distinct continuous vertices are selected at random. In 

each cage, if the corresponding edge is present, it is proposed to remove it; if not 

it is proposed to add it. Since the current and proposed graphs differ in exactly 

one edge and each edge has an equal probability of being selected, the jump ratio 

is again one. 

102 



Cont inuous -Con t inuous edges 

Suppose Brstly that the edge (%, Y) has been chosen to be added to the graph. 

There are now two possibilities: (l)If both and (A, y ) edges are currently 

present in the graph, we need to generate Z new partial correlations, one for each 

level. This is done in exactly the same way as when adding the interaction 

in a hierarchical model as the proposal models are exactly the same. The proposal 

ratio is 

% 

and the Jacobian is 1. 

(2)If either of these mixed edges is missing, the procedure is exactly as when 

adding an interaction in a hierarchical model when either or both v4X% and 

v4yy are absent. The proposal ratio is 

g('u) = (6 — a) 

and the Jacobian is 1. 

In both cases, the posterior ratio again reduces to the ratio of conditional 

distributions, 5.3. 

If instead, (%, y ) has been chosen for removal, simply set each to zero, 

regardless of which other edges are present or absent. However, to determine the 

proposal ratio, the interval endpoints must be obtained as when adding the edge. 

Otherwise, the acceptance ratio is the same. 

Disc re te -Con t inuous edges 

Now suppose the edge (A, %) has been chosen for removal. This is equivalent to 

removing the and interactions as well as all mixed quadratic interac-

tions involving It is important, however, that these actions are performed in 

the following order (since quantities updated in one step are used in the next): 

1. First generate a common precision, in the same way as when removing 

the interaction, that is either by averaging or by using independent 

proposals. 

2. Second, for each 7 E F \ {%}, if the (X, edge is present, generate 

in the same way as when removing the interaction. From this any 
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for ^ > 0 may be found from 

p : v , W = P x , ( 0 ) ^ 

or, more conveniently for computation, 

for 2 = 0 ,1 , . . . Z-1. 

Of course, if, for any 'y, the (A, Y) edge is missing, each is the same and 

the above expressions simplify. Notice that in this case there is a common 

partial correlation. 

3. Finally, for any missing mixed edge, (/I,?), including (A,%), for 2 > 0, set 

ru-*i if using centring 

= 1 0 if not 

If centring is not being used, this step may be performed hrst, if desired. 

If, instead, the edge (A, is to be added, the following steps are necessary: 

1. Generate / partial precisions, one for each level i This is done in 

the same way as when adding the interaction, that is either using 

independent proposals or random increments, depending on which scheme 

is used for the removal step. 

2. For each 'y E F \ {%} where the (.Y, 'y) edge is present, if the (A, 'y) edge is 

present, generate Z partial correlations, one for each level i This is 

done in the same way as when adding an .4%^ interaction. 

3. Generate Z — 1 mixed linear interaction parameters, 77x(%) = This 

is done in the same way as when adding the A A" interaction. 

The full acceptance ratio for the addition step is 

^ exp + t r ( Z ) f f ' ^ ' ) - 1 t r (n*M^(^) ) ] 

exp [/ZA0 + t r ( B f f ^ ' ) - | E , t r (n(2)r(2))] n H o 

1 

n l l i 

The acceptance ratio for the removal step is the reciprocal of this with current 

and proposal values reversed. 
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5.4 Model Indexing 

Graphical models are indexed as described in Section 1.3.2 with the discrete 

variable v4 always being hrst so for example, when g = 2, graph 5 is 

xP Oy 

Hierarchical models are indexed as follows: Let % be an indicator vector of 

length g(g + 1), the total number of possible interactions. The first g of these 

refer to mixed linear interactions, . . . , the next + 1) to mixed 

quadratic interactions, ordered as 

- - -; &nd the last 

—1) to pure continuous interactions, ordered as with GGM's, . . . , Yi)',, 

la I s , . . . , ^2}^, . . . , ^(^1),. Each component of % is 1 if the corresponding inter-

action is present and 0 otherwise. Treating % as a binary number, it is converted 

into its decimal form, which is used as the index, much as for graphical models. 

For example, when g = 2, model 50 includes the y iy and AYY interactions 

only and written in Edwards' notation is A/A%, AY/Ay, %. The graphical model 

shown above is written as 101001 or 41. Obviously, not all indices correspond to 

valid hierarchical models. 

5.5 Examples 

Some examples of using the reversible jump MCMC samplers just described are 

now presented. One is from Edwards (1990,1995,2000), one from Whittaker 

(1990) and the last, which is an example of the most complex case that can 

be dealt with using the priors as described (due to the limitations of the prior 

described in Section 4.6), has not been treated in the context of graphical mod-

els before. Firstly, simulated data examples are presented in order to assess the 

performance of the sampler for graphical models and its sensitivity to the prior 

variance of the partial precisions. For brevity, a similar assessment of the sampler 

for hierarchical models is not presented but its performance is comparable to that 

for graphical models. 

The priors used in all examples are those described in Section 4.6. Posterior 

model probabilities are based on runs of 100 000 iterations after 
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A 

X( ' Y X ) Y 

Figure 5.1: Graphs of the models from which data were generated 

10 000 of burn-in and MCMC standard errors are based on batches of size 1000. 

The chains were initialised at the saturated model with the MLEs under this 

model. 

5.5.1 Simulated data examples 

Data were generated from graphical models with graphs shown in Figure 5.1, 

each with a single discrete variable, A and two continuous variables, % and Y. 

This is the smallest type of model that the sampler deals with. One set of data 

was generated from the saturated model (graph 7) and two from the model with 

the discrete-continuous edge AX missing (graph 3). In the hrst two, A has two 

levels and in the third it has three. 

For the saturated model, the discrete data were hrst generated from a binomial 

distribution with f (A = 0) generated from a Uniform(0,1) distribution. The 

continuous data were then generated independently from three bivariate Normal 

distributions with means and variances generated respectively from a multivariate 

Normal distribution with mean zero and an inverse Wishart distribution with 3 

degrees of freedom and unit matrix as parameter. The parameters of the CG 

distribution from which the second dataset were generated were obtained from 

those for the first dataset by setting appropriate interaction parameters (those for 

the A X X and AXY interactions) to zero. The third dataset was generated 

similarly, using a trinomial and three bivariate Normal distributions. The total 

number of observations in each case was 50. 

The posterior model probabilities are presented in Table 5.1. Section 3.4 

investigated sensitivity of the posterior model probabilities to the prior for the 

partial correlations so this will not be pursued here. However, unlike with GGMs, 

the partial precision parameters in CGMs are not always present so there is the 

possibility of sensitivity of posterior model probabilities to their prior variance. 

To assess this, three different values for the prior variance of the partial precision 

parameters were used. In Table 5.1, results from setting ^ = 0.1, from 

^ = 0.001 and p3 from = 0.00001, corresponding to prior variances of 10, 
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1000 and 100 000. As expected, in each case the probability for the saturated 

model relative to that for the model with the edge missing decreases 

as the prior variance increases. However, this eEect is not great and the true 

model has the highest posterior probability in each case, more than twice as 

probable as the next. As remarked in Section 4.6, if the prior variance is too 

great, more complex models may be unnecessarily penalised, leading to smaller 

posterior probability being assigned to them. There is little evidence of this 

effect in these examples, although it must be borne in mind that these models 

have relatively few parameters. The effect is more likely with more parameters, 

particularly with greater numbers of levels of the discrete variable. The discrete 

variables in the examples in the following section (and also in the next chapter) 

all have either two or three levels so this is not a problem that arises. All further 

examples the value of used is 0.001. 

Notice that for the hrst two datasets, only two models account for nearly 

all the posterior probability and the second is due to differences between true 

and observed values of the parameters. This is also true for the third dataset, 

although to a lesser extent, due to the extra level of the discrete variable. These 

are common phenomena, with a greater tendency towards a more diffuse posterior 

distribution for the model with increasing numbers of levels and posteriors for 

both model and parameters dominated by the data. 

Trace plots of batch model probabilities for the two most probable models in 

each case, based on batches of size 1000 and using ^ = 0.001, are given in Figure 

5.2 and indicate satisfactory mixing over the model space. 

Good mixing across the parameter space is indicated by trace plots for the 

parameters, given in Figure 5.3 for the case of the first dataset and 

= 0.001. They also indicate posteriors centred near the observed parameter 

values, as would be expected, but the true values are always well within the 

posterior mass, even when they differ somewhat from the observed values. Trace 

plots in the case of the other two values of are indistinguishable and those for 

the second and third datasets are similar. 

5.5.2 A drug trial using mice 

This example is from Morrison (1976) and is also treated in Edwards (1990,1995,2000) 

and in Mardia et al. (1979). It concerns a trial using mice to determine whether 

use of a drug affects the level of three biochemical compounds in the brain. After 

randomization, the drug was administered to 12 mice and 10 served as controls. 
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X -

P1 = 0.861 (0.016) 
P2 = 0.7o6 (0.020 
P3 = 0.743 (0.019) 

A 

X ) Y 

Pi = 0.138 (0.016) 
M = 0.228 (0.019) 
P3 = 0.256 (0.019) 

X -

Pi = 
P2 = 
P3 = 

Y 

0.001 (0.005) 
0.001 (0.004) 
0.001 (0.003) 

X - ' Y 

Pi = 0.673 (0.033) 
P2 = 0.680 (0.027) 
P3 = 0.710 (0.022) 

X' . 
Pi = 0.327 (0.033) 
P2 = 0.317 (0.027) 
P3 = 0.290 (0.022) 

X ' ' Y 
Pi = 0.000 (0.000) 
P2 = 0.003 (0.003) 
P3 = 0.000 (0.000) 

A 

X ) Y 

Pi = 0.554 (0.007) 
P2 = 0.593 (0.008) 
P3 = 0.564 (0.008) 

X -
pi = 0.231 (0.006) 
P2 = 0.169 (0.005 
P3 = 0.146 (0.004) 

X ' 
Pi = 0.106 (0.003) 
P2 = 0.102 (0.003) 
P3 0.099 (0.003) 

Table 5.1: Posterior model probabilities for three simulated CG datasets. Stan-

dard errors are in brackets. 

First dataset 

Second dataset 

w 
20 40 »o ao 100 

Third dataset 

20 *0 60 

Figure 5.2: Trace plots of the highest posterior model probabilities for three 

simulated CG datasets. The lines show the averages, that is probabilities based 

on the entire sample. 
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Partial Precisions at A=0 

0 2000 4000 

Partial Precisions at A=1 

Partial Corr at A=0 

MM 1 ^ 0 w x a w 

2000 4000 0000 8000 10000 0 2000 4000 6000 8000 10000 

Partial Corr at Aa1 

0 2000 4000 8000 8000 10000 0 2000 4000 8000 10000 

Figure 5.3; Trace plots of parameters for a simulated C G dataset. The solid lines 

show the true values and the dashed lines the observed. The output has been 

thinned to every tenth iteration. 
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The treatment variable is denoted by v4 with levels 0 and 1 corresponding to the 

treatment group and control groups respectively. The chemical measurements 

are denoted by F , and Z. Edwards selects (by backward elimination) graph 

52. This is also the most probable graph according to the reversible jump output 

and it accounts for about half of the posterior probability. The next three graphs 

additionally have the (X, Z) edge, the (Y, Z) edge and both, respectively and the 

next four repeat this pattern, but lack the (X, Y) edge. No other graphs had 

nonzero posterior probability. The posterior model probabilities are tabulated in 

Table 5.2. 

Edge inclusion percentages are tabulated in Table 5.3 , trace plots in Fig-

ures 5.5 and 5.6, and plots of the batch posterior probabilities for the four most 

probable graphs in Figure 5.4. Notice the Aat trace plot for the AZ interaction, 

reflecting the fact that the chain never visits models with the (A. Z) edge (after 

burn-in). Run time was about 15 minutes. 

52 

xP-

54 53 
O'' 

Oy xP-
0.480 

(158) 
0.208 

(90) 
0 .189 

(105) 

xP Oy 
0.084 

(38) 

48 
^0 QZ 

XP "Oy 
0.019 

(26) 

50 
QZ 

}(P Py 
0.010 

49 
^ 0 Q Z 

xP "Oy 
0.007 

(4) 

51 
A* QZ 

xP Oy 
0.003 

(2) 

Table 5.2: Posterior model probabilities for mice data, graphical models. Stan-

dard errors xlO^ are in brackets. 

AX AY AZ XY XZ YZ 

100 100 0.00 96.92 16.63 14.62 

Table 5.3: Edge inclusion %ages for mice data 

For the reversible jump over hierarchical models, the results are tabulated 

in Table 5.4. Notice that 3492 is the graphical model 52 and the rest are very 

similar. The inclusion percentages for each interaction are also tabulated in Table 

5.5 , trace plots in Figures 5.8 and 5.9 and plots of batch posterior probabilities 

for the most probable model in Figure 5.7. 
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Graph 52 

Graph 5 3 

O 20 40 60 80 100 

Graph 54 

Graph 55 

0 20 40 M W 0 ^ ^ W W 
B a t c h B a t c h 

Figure 5.4; Batch Posterior Model Probabilities for Mice data, graphical models. 

The lines are the averages over the entire sample. 
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Linear Main Effects 
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AZ int 

200 400 800 800 1000 
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Figure 5.5: Trace plots for mice data (1), graphical models 
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Figure 5.6; Trace plots for mice data (2), graphical models: Partial Precisions 

(PPrec) at each level of A and Partial Correlations (PCor) at each level of A. 
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Most Probable Hierarchical iVIodel for IVIice Data 

Batch 

Figure 5.7: Batch Posterior Model Probabilities for Mice data, hierarchical mod-

els. The lines are the averages over the entire sample. 
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Figure 5.8: Trace plots for mice data (1), hierarchical models 
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Figure 5.9: Trace plots for mice data (2), hierarchical models: Partial Precisions 

(PPrec) at each level of A and Partial Correlations (PCor) at each level of A. 

114 



Model Interactions present Probability SExlO^ 

3492 AX, AY, XY, AXX, AYY, AXY 0.223 64 

3364 AX, AY, AXX, AYY, XY 0.155 55 

4004 AX, AY, AZ, XY, AXX, AXY, AYY 0.126 29 

3876 AX, AY, AZ, AXX, AYY, XY 0.084 18 

3494 AX, AY, XY, XZ,AXX, AYY, AXY 0.061 9 

3493 AX, AY, XY, YZ,AXX, AYY, AXY 0.055 11 

3366 AX, AY, AXX, AYY, XY, XZ 0.047 9 

Table 5.4: Posterior model probabilities for mice data, hierarchical models 

AX AY AZ AXX AXY AXZ AYY AYZ AZZ 

100 100 38.592 100.00 57.323 0.00 100.00 0.00 0.00 

XY XZ YZ 

98.509 24.036 25.892 

Table 5.5: Inclusion %age8 for interactions for mice data 

5.5.3 Fisher's Iris data 

These data were considered in Chapter 3.5, where graphical Gaussian models were 

used for each species separately. Considering the different results for each species, 

it seems unlikely a single graph will provide a good fit for the continuous data. 

Indeed, applying reversible jump to the continuous portion of the whole data gives 

almost 80% of the posterior probability to the saturated model, indicating that it 

is inappropriate to pool the data. If, instead a discrete variable corresponding to 

species is included, graph 1011, shown in Figure 5.10, receives about 95% of the 

posterior probability. This seems reasonable considering the diSering separate 

results and it also makes the expected connections - petals to petals, sepals to 

sepals, lengths to lengths and widths to widths. This is also the graph selected 

by Whittaker. In fact, only three other graphs receive any posterior probability: 

1019, which has an extra (1,4) edge, 1015, which has instead an extra (2, 3) edge 

and 1023, the saturated model. 

The results for hierarchical models are in Table 5.6. Note that the most 

probable model is the same graphical model as before, 1011 and the rest are 

predictable minor variations. 
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Figure 5.10: Most probable graph for iris data 

Model Interactions missing Probability SB xlO'^ 

1043443 A14, A23, 14, 23 0.32286 31 

1042931 A14, A23, A24, 14, 23 0.20849 16 

1035251 A13, A14, A23, 14, 23 0.11618 10 

1034739 A13, A14, A23, A24, 14, 23 0.08374 5 

1027059 A12, A14, A23, 14, 23 0.0409 3 

1026547 A12, A14, A23, A24, 14, 23 0.03788 3 

Table 5.6: Most probable hierarchical models for iris data 

5.5.4 Tibetan Skulls 

This example comes from Morant (1923) . Colonel L.A. Waddell collected 32 

skulls in the south-western and eastern districts of Tibet. Type A comprises 

17 skulls from graves in Sikkim and neighbouring areas. Type B comprises 15 

skulls picked up on the battlefield in the Lhasa district and were believed to be 

those of native soldiers from the eastern province of Khams. The original source 

gives about 50 measurements but the five principal ones (in mm) are, (l)Greatest 

length of skull, (2)greatest horizontal breadth of skull, (3)height of skull, (4)upper 

face height and (5)face breadth (between outermost points of cheek bones). 

As noted in the previous chapter, hve continuous variables is probably the 

maximum number that can be dealt with using the priors described but only for 

graphical models. These priors cannot be used for hierarchical CG models with 

g = 5 so only results based on graphical models are given. 

First, the reversible jump sampler for GGM's was applied for each type sep-

arately. The eight most probable graphs obtained are shown in Tables 5.7 and 

5.8 but note that the posterior is very diffuse in each case, with Type B be-

ing extremely diSuse. Perhaps surprisingly, quite different graphs have higher 

probability for each but it must be borne in mind that the di:^useness of the 

distributions mean that relative differences in probability are not great. The only 
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common feature of the graphs shown is the presence of the (1,4) edge in all graphs 

for each type. This feature is not surprising since the measurements are quite 

similar. 

Since the posterior in each case is so diffuse, the edge inclusion percentages, 

tabulated in Table 5.9 along with those for an analysis using CGMs (described 

below), are probably more informative. The two edges mentioned have the highest 

inclusion rates (nearly 100%) for Type A skulls. For Type B, their inclusion rates 

are lower but they are still two of the three most frequently included edges, along 

with (4, 5). For both types, all other edges have fairly moderate inclusion rates 

of 30% to 60%. Those for the COM analysis are mostly unsurprising, with (2,5), 

(1,4) and (4,5) having very high exclusion rates. All others, except (1,3) and 

(2,4) have inclusion rates of about 25%. 

The posterior probabilities for the 27 most probable graphs, which are all 

those with posterior probability of 1% or more, when CGM's are used for the 

whole dataset are given in Table 5.10, using the clique-list labelling. The hrst 

few of these graphs are shown in Figure 5.11 and trace plots of the probabilities 

for the first four based on batches of size 1000 are given in 5.12. Edge inclu-

sion percentages for the continuous-continuous edges are given in Table 5.9 (all 

discrete-continuous edges have very low inclusion rates). Note that the discrete 

variable has been labelled as '7' since is one of the two types. The posterior 

in this case is still very diffuse and the most notable feature is that there are no 

mixed edges in any of these. The other edges are what would be expected given 

the results for the separate types. Considering the lack of edges to f in any of 

these graphs, it is no surprise that if f is removed from the model and reversible 

jump for GGMs applied to the continuous data, the results are much the same 

with the same graphs (without f ) the most probable. The posterior probabilities 

resulting from this analysis are also given in the same table as Most of the 

model probabilities for these models under the two separate group analyses do 

not appear in Tables 3.7 and 5.8 so are also given in Table 5.10 as and f g . 

Note that the model indices are the same due to the way the mixed models are 

indexed. The posteriors are so diffuse that these probabilities are not in fact 

much smaller than those given in Tables 5.7 and 5.8. 
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200 
0.031 (21) 

648 
0.025 (17) 

137 
0.018 (15) 

904 
0.016 (11) 

456 
0.016 (12) 

712 
0.015 (12) 

665 
0.014 (11) 

649 
0.014 (17) 

Table 5.7: Most probable graphs for type A skulls. Numbers in brackets are SB's 

xlO'^ 

133 
0.080 (8) 

141 
0.007 (6) 

173 
0.006 (5) 

165 
0.005 (7̂  

389 
0.005 (5) 

1 4 

2 -

137 
0.005 (5) 

397 
0.005 (6) 

429 
0.004 (5) 

Table 5.8: Most probable graphs for type B skulls. Numbers in brackets are SB's 

xlO^ 
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Edge (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) 

Type A 49.04 43.88 96.11 46.76 36.18 32.54 98.31 32.65 29.51 44.15 

Type B 35.06 49.95 64.95 38.04 43.01 31.63 52.81 53.99 38.33 66.87 

Both 28.21 74.62 99.82 47.28 24.35 52.76 98.87 29.67 25.24 90.74 

Table 5.9: Edge inclusion %ages for Tibetan skulls data, using GGMs for each 

type separately and CGMs for both together. 

409 473 393 

451 413 921 

Figure 5.11: The eight most probable graphs for Tibetan skulls data 
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Model Cliques Prob. PA PB Pc SE xlO^ 

409 1/13/14/245 0.101 0.005 0.003 0.078 37 

473 1/13/145/245 0.058 0.003 0.001 0.048 14 

393 1/13/14/45/25 0.049 0.010 0.006 0.048 11 

457 1/13/145/25 0.037 0.007 0.003 0.033 10 

413 1/134/245 0.028 0.004 0.002 0.024 5 

921 1/13/124/245 0.027 0.008 0.002 0.026 5 

441 1/13/14/23/245 0.025 0.003 0.002 0.021 4 

411 1/13/14/35/45/245 0.025 0.003 0.001 0.020 4 

969 1/125/145/3 0.024 0.004 0.002 0.023 6 

153 1/14/245/3 0.021 0.007 0.002 0.020 6 

985 1/13/1245 0.018 0.005 0.001 0.019 2 

475 1/135/145/245 0.018 0.002 0.001 0.014 2 

477 1/134/145/245 0.017 0.003 0.001 0.018 3 

157 1/14/34/245 0.017 0.002 0.004 0.017 3 

905 1/13/14/12/25/45 0.016 0.008 0.004 0.016 2 

505 1/145/13/23/245 0.016 0.002 0.001 0.016 2 

456 1/13/14/15/25 0.016 0.016 0.002 0.014 9 

397 1/134/25/45 0.014 0.008 0.005 0.017 2 

425 1/13/14/23/25/45 0.014 0.004 0.004 0.016 2 

489 1/145/13/23/25 0.013 0.003 0.003 0.012 2 

461 1/134/145/25 0.013 0.005 0.002 0.011 2 

395 1/13/14/35/45/25 0.012 0.003 0.003 0.014 2 

137 1/14/45/25/3 0.012 0.018 0.005 0.014 2 

217 1/145/245/3 0.011 0.006 0.001 0.011 2 

459 1/135/145/25 0.011 0.004 0.002 0.011 2 

968 1/125/13/14 0.010 0.010 0.001 0.010 2 

141 1/14/25/34/45 0.010 0.006 0.007 0.013 2 

Table 5.10: Posterior probabilities for Tibetan Skulls data, using CGMs, separate 

group analyses and combined analyses. Standard errors are for CGMs. 
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Graph 409 

40 60 

Batch 

Graph 473 

40 60 
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Figure 5.12: Batch Posterior model probabilities for Tibetan skulls data. The 

lines are the averages over the entire sample. 

5.6 Mo del-averaged predictive distributions 

Section 1.6 described how to obtain model-averaged predictive densities for some 

of the variables, given future values of the remaining variables, and Section 3.6 

showed how this can be done for GGMs. To perform similar prediction for CGMs, 

we hrst need the following important result from Lauritzen and Wermuth (1989) 

giving the conditional distribution of (T, given (J , 1^2) = (^,2/2), which is 

also CG: 

If — ((Z U J ) , ( y i U 1^2)) has CG distribution with moment parameters 

j ) ) , and S and O are partitioned as 

= 
Ml 

M2 
S — 

^11 S12 

^21 S22 
o = (111 rzi2 

(122 

then the conditional distribution of (2,1^1) given ( J , Vs) 

with moment parameters given by 

(^,2/2) is CG 
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l0gX»l:7,%/2) - - | l0g|Z22(%J)| -

+A^2(t, j ) + ^3/2^^X^,^)1/2 - logK(j,1/2) 

s(^|j,2/2) = 

The term /((j,2/2) is a normalizing constant given by 

/(b',%/2) = ^ e x p [ l o g p ( 2 , j ) - | l o g | S 2 2 ( % , j ) | - § A t 2 ( 2 j ) 2 ^ ^ A t 2 ( » , j ) 
% 

j ) S ; / ( i . j ) + j > 2 ] 

In particular, if J = 0, the distribution of given (f , 1^2) = (^,2/2) is 

Normal with mean — ^2) and variance This 

is the same as for GGMs but conditioned on f . 

The predictive density is thus obtained in exactly the 

same way as /('Ki|%/"'''^,z) for GGM's in Section 3.6 but within cell i 

As an illustration, consider the mice data. Model-averaged predictive (uni-

variate) densities, y ( % | y = i/ ,Z = = 2,data), based on graphical models 

and based on hierarchical models, for a randomly selected observation from each 

level of A are given in Figures 5.13 and 5.14. As before, the observations used 

for prediction were excluded from the data used to generate the RJ sample. 

These suggest that better prediction results from using hierarchical models but 

this is to be expected as it is a richer class of models. There is less improvement 

for the iris data in using hierarchical models as can be seen from from the plot of 

a typical model-averaged density in Figure 5.15. This is likely due to to a more 

concentrated posterior distribution for the model than in the case of the mice 

data. Naturally, since there are more observations, prediction tends to be better 

in this case. 
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Figure 5.13: Model-averaged predictive densities for % given F = 2/, Z = 

0,data in mice example 

Graphical Models 
Hierarchical Models 
Observed value 

Figure 5.14: Model-averaged predictive densities for % given F = 1/, Z = z, A 

l,data in mice example 
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Figure 5.15: Predictive densities for given ^2,2/3,2/4,^ = 2,data in iris example 
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We also have the conditional distribution of i given (J , y ) = ( j , i/) given by 

+ / ( 2 , - log/.(j , i /) 

and in particular the distribution of all the discrete variables f given the 

continuous y = 1/ is given by 

logp(%|i/) = logp(z) - I log |2 ( i ) | -

- log/<(%/) 

The probability p(2|i/) is easily seen to be 

/(»,%/) 
E z ; ( » , 2/) 

Model-averaged predictive probabilities, p ( 7 | y , data) , for the discrete vari-

ables (or variable in the case of the models in this chapter) may then be estimated 

as the average of ^ ( Z | y , A, f f , f l , m) over the reversible jump output as foUows: 

For each iterate A of TV iterations of reversible jump MCMC output, obtain 

cell probabilities, ^^(i), cell means, //^(z) and cell precisions, f2^(z). Next, use 

these and a given set of continuous observations, 3/, to obtain the conditional 

probabilities, 

p^(jr = 2 | y = i/,data)— / 

p(7 = %|y = 2/, data) is then estimated by = %/, data). 

In this way, we obtain a predictive classiAcation rule for future observations, 

which is that an observation is classified to be in the cell with greatest predictive 

probability. Similarly to before, if the observations are taken from the data, 

this predictive classiEcation may be checked by comparing the predicted value 

of Z with the observed value. Indeed, we can classify each observation in the 

data. Table 5.11 compares the predictive probabilities, = 0|2;,2/;Z, data), 

both based on graphical models and based on hierarchical models, with the actual 

treatment group for each observation (2;'=,2/^,z^). Since there are only two 

groups, these probabilities are all that are required and the classification rule is 

that if the probability is greater than 0.5, A = 0 is predicted, otherwise A = 1 

is predicted. In this case, only two observations out of 22 are misclassihed, the 

same two for each. 

The predictive classihcation is just as good for the iris data, with only three 

observations out of 150 misclassihed. Two are misclassified as /. 

Y'zrpmzco and one /. mrgmzca as 
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Prediction fails for the Tibetan skulls data due to only graphs with no mixed 

edges receiving any posterior probability. This results in predictive probabilities 

that are independent of the continuous observations and based only on cell prob-

abilities. The actual value in this case is just over 0.5, leading to all observations 

being classihed as type A. This illustrates an important point, which is that there 

needs to be some association between the predictand (7 in this case) and the pre-

dictors for such prediction to be effective. In a similar way, prediction is very 

poor for Z in the mice example due to only graphs with edges to Z receiving any 

posterior probability. 

A; = 0) = 0) G* A: = 0) = 0) 

1 0.662 0.666 0 11 0.237 0.250 1 

2 0.944 0.973 0 12 0.105 0.074 1 

3 0.978 0.981 0 13 0.170 0.142 1 

4 0.991 0.994 0 14 0.048 0.038 1 

5 0.916 0.912 0 15 0.071 0.045 1 

6 0.889 0.878 0 16 0.481 0.467 1 

7 0.925 0.913 0 17 0.043 0.029 1 

8 0.988 0.989 0 18 0.167 0.154 1 

9 0.270* 0.233* 0 19 0.078 0.018 1 

10 0.267* 0.203* 0 20 0.176 0.257 1 

21 0.044 0.031 1 

22 0.237 0.136 1 

Table 5.11: Model-averaged predictive probabilities for mice data, denotes a 

probability based on graphical models, one based on hierarchical models and 

* denotes a misclassiScation. 
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5.7 Discussion 

As with the MCMC samplers for GGMs, performance of the MCMC samplers 

described in this chapter is particularly good, despite the use of one-at-a-time 

updating. For fixed models, once the proposal variances have been tuned using 

pilot runs, mixing is generally very good and convergence is fast. For the reversible 

jump, provided appropriately tuned proposal variances are used, mixing is still 

good, although tends to be slower through the model space than for GGMs and 

hence convergence is not as rapid but not slow enough to require very long runs. 

Run times, although much slower than for GGMs, are still moderate on a modern 

computer. 

The longest run time for the examples presented was still less than 30 minutes 

(this was for the iris data using hierarchical models). The reversible jump may 

not be as simple using the precision matrices aa it would be using quadratic inter-

actions but still poses no great difficulty and full interaction expansions are still 

possible for fixed models due to the Metropolis-Hastings algorithm not requiring 

prior normalizing constants. 

The results for the three examples presented are comparable to those for 

GGMs in that they are reasonable and agree with those of other authors using 

deviance-based inference for the same data. 

It must be noted however that all the above only applies when the data are 

centred as described in 4.5. Mixing tended to be very poor for most examples 

examined (including those shown here) when the data were not centred. A brief 

investigation into this phenomenon suggested that this is due to means which are 

greater than standard deviations resulting in high posterior correlation between 

linear and quadratic parameters. This is often seen in regression models, where 

the same solution, expressing the data as deviations from the mean, is employed. 

An important point is that, as in the case of GGMs, there is no restriction 

to decomposable models. Indeed, flexibility is very great when using the class 

of hierarchical GG models, showing that a restriction to decomposable, homo-

geneous, MANOVA or other reduced model classes is not necessary. If desired, 

however, restriction to homogeneous models or other specific types of interaction 

model are relatively straightforward. Recall that a HCG model has no mixed 

quadratic interactions, or equivalently has a single precision matrix. A reversible 

jump sampler for HCG models is simply one for hierarchical GG models that 

rejects all proposed addition of mixed quadratic interactions. 
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As noted in Section 4.3, the hierarchical models dealt with here are 'MIM' 

models, that is hierarchical in the sense of Edwards (1990) rather than Lauritzen 

(1996). Lauritzen's class of hierarchical models is larger than Edwards' but mod-

i6cation of the methods described here are easily modiSed to deal with larger 

class since there is one less condition to be enforced. 
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Chap te r 6 

Condit ional Gaussian Models 

wi th More T h a n One Discre te 

Variable 

6.1 Introduction 

CG models with more than one discrete variable are considerably more complex 

due to possible interaction between these discrete variables and the dependence of 

the distribution of the continuous on the combination of the levels of the discrete. 

This chapter will focus on the case of two discrete variables as a more general 

treatment would be excessively complicated and it is likely that the methods 

described here are of little practical use beyond two or three. A discussion of how 

to extend the methods to three or more discrete variables is in the hnal section. 

The discrete variables will be denoted as .4 and 5 with and Zg levels 

respectively so the levels are labelled 0 , 1 , . . . , — 1 and 0 , 1 , . . . , Zg — 1. These 

will be indexed with t with % denoting the set of possible values of %. 

The number of cells, that is combinations of levels, is Z = |%| = 

There are now four additional types of interaction: 2-way discrete-discrete 

interaction (AB), 3-way mixed linear (ABF), 3-way mixed quadratic (ABYy) 

and 4-way mixed quadratic 

The parameters are: 
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A 

/ a 

AA(0) 

/\Ag(0, 0) 

\ A_4g(Z;i — 2, (g — 2) y 

/ 77i 

(Zg - 2) 

^f(O) 

773" (ZA - 2) 

< ^ ( 0 , 0 ) 

% 
< ( 0 ) 

— 2) 

^^(0) 

- 2) 

77^^(0,0) 

f|2 

—2, Zg —2) . . . —2,/g —2) y 

= diag(T(%;i,%g))C(%A,2g)diag(T(2A,:^B] 

2;! 0, . . . , 2B = 0, . . . , Zg} 

(6.1) 

(6.2) 

(6.3) 

Notice the interaction parameters are ordered with the B interactions before 

the .4. With more discrete variables, they are in reverse order, adding one at a 

time, for example, D, C, CD, B, BD, BC, BCD, A, AD, AC, ACD, AB, 

ABD, ABC, ABCD. This is so that the canonical parameters are in the "right" 

order, according to cells, (0,0), (0 ,1 ) , . . . , (0, Zg - 1). ( 1 , 0 ) , . . . , (Z^ - 1, - 1)-

For two binary variables and two continnous variables % and y . 

A 

/ A \ / %' T/y \ 
A'4 

-
A® 

\ / ^y^ / 
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Where, for example, and 0). The bracketed levels 

have been dropped as there are only two levels for A and B. The precision 

matrices may be conveniently laid out in a table as: 

(^xx(0,0) (^xy(0,0) 

Wyy(0, 0) 

^yy(0,1) 

1) Wxy(0,l) 

Wyy(0, 1) 

^ y y ( l , 1) 

Where, recall, =7:^(2^,^5) and 

The diEerent types of model constraint are as follows: 

# A missing interaction requires wxy(i) = 0 for each t E %. In hierarchi-

cal models, this also requires the v4.%F, and interactions to 

be missing. 

# A missing interaction requires for ^ach 

iyi = 1, 2 , . . . , Consequently, 

/. . \ 7-x(0,2g)T-y(0,2g)pxy(0,Zg) 
= 71—r-i; 71 r^; 

This expression simplifies if either of the A F F , or B F Y 

interactions are also missing. Similarly for a missing interaction, 

simply reverse the roles of A and B. In hierarchical models, both also 

require the interaction to be missing. 

# A missing interaction requires, as in equation 4.21, 

1 
^ I) ^ I 

+(^g — ^ w%y(a,6) f6.4) 

This may be interpreted as a set of constraints on wxy(2;i.%g) for 

= 1 , . . . , — 1 and = 1 , . . . , - 1 given the rest. In the example, 

this means w^y (1,1) = '^'xy(0,1) + wxy(l, 0) — a;xy(0, 0). 
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# Putting y = % in these give the constraints for missing and 

interactions. In a hierarchical model, vAXX can only be missing if 

is missing and A B X X is missing only if each is missing. 

# A missing .4X interaction requires each - 0. Similarly for a missing 

interaction. Both also require the interaction to be missing. In 

a hierarchical model, the interaction can be missing only if the ylBA" 

and each are. 

# A missing interaction requires each zg) = 0 . In a hierarchical 

model, the interaction is missing only if the interaction is. 

# A missing interaction requires each = 0. In a hierarchical 

model, the AB interaction can be missing only if each and AB'y^ are. 

In a graphical model, a missing (%, Y) edge corresponds to a missing 

interaction (and hence also A%y, and ABA'y) ; A missing (A, edge 

corresponds to missing AA", AB%, AĴ T'y and AB.Y^y interactions for each i' E F; 

A missing (A, B) corresponds to missing AB, AB'y, A B ^ ( interactions for each 

7, C G r. 

6.2 MCMC for fixed models 

Again, a Gibbs sampler may be used to generate from the posterior distribution 

for any fixed model, using random walk Metropolis steps for each update. Several 

pilot runs may be required to achieve satisfactory mixing. As in the previous 

chapter, acceptance ratios may simplify from the full posterior ratio but it is 

more convenient to compute block conditional density ratios. Recall that, as 

ever, prior normalizing constants are not required for inference based on a single 

hxed model. 

Updating A The hrst element, A[0] is the likelihood normalizing constant, A, 

so is never updated independently. It is however changed whenever any other 

parameters are updated as it depends on all of them. The next — 1) + (Z/i — 1) 

elements are the discrete main effects so are always updated. The remaining 

elements, discrete interactions, are updated if and only if the AB interaction is 

present. The acceptance ratio is given by 5.1. 

132 



Updating The hrst row consists of the continuons linear main effects so 

are always updated. The remainder are updated if and only if the corresponding 

interactions are present, that is if unconstrained, which in the case of uncentred 

data means if nonzero. The acceptance ratio is given by 5.2. 

Updating (|2 The precision matrices may be divided into four groups, similarly 

to the table in the example: 

1. n(0,0): 7A:(0,0) is always updated, to r^(0,0). 

If the A X X interaction is missing, we also set each 0) = 0). 

If the interaction is missing, set each 7;^(0, 0)-

If both are present but the ABXA" interaction is not, it changes each 

k r ^ 0, f 0, according to 6.4. 

If any yUYY interaction is missing, we also have 

• • 

Similarly, if any B X y interaction is missing, we also have 

- = • 

If any ylBXY interaction is missing but not the or (2̂ ,̂ zg) 

is changed, according to 6.4, for each — 1 and zg = 

1 , . . . , Zg — 1, from which we can calculate although there is 

no need to do this. 

P.Yy(0,0) is updated if and only if the interaction is present. If any 

of the or interactions are missing, the above applies 

again. 

2. (1(0,2a) ^ 0: Tx(0,%g) is updated to T^(0,2g) if and only if the B X X 

interaction is present. If the interaction is not present, we also set 

each = 7x(0,%g). If it is but the is not, we set each 

T x ( U j B ) = +T-x(0,2g) for 2^ 7̂  0. 

If any ylXY interaction is missing, we also have 

Pxy( . , . IB) = ( ° i M = 1 , L 
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Similarly, if any B X y interaction is missing, we also have 

If any ABXY interaction is missing but not the or BA'Y, for each 

= 1 , . . . , — 1, is changed according to 6.4. 

Pxy (0, is updated if and only if the % y , BYY and B X F inter-

actions are all present. If the interaction is missing, we set 

. / - ; \ _ T-x(0,ZB)T-y(0,%B)p3^y(0,Zg) 
Pxy 1̂ .4, — 77 r-7 — 1,. . ., ^ — 1. 

If not, but the interaction is missing, we again change 

according to 6.4. 

3. 0) ^ 0: 0) is updated to 0) if and only if the 

interaction is present, pxy 0) is updated if and only if all three of the 

j 4 y y and v4%y interactions are present. The procedure in each case 

is exactly the same as with n(0,2g), with the roles of v4 and reversed. 

4. ^ 0 2a ^ 0: is updated if and only if all three of 

the and A B X X interactions are present. If ABXY is absent, 

we again change wxy(2yt,2B) according to 6.4. 

is updated if and only if all of the interactions % y , vlXX, 

B Z Z , A y y , B y y , X B y y , A x y , g % y and A B X y are present. 

This is the most straightforward update aa no other quantities need to be 

changed at the same time. 

For each of the above updates, must also be amended if any linear interac-

tions are missing and A must also be amended if the A 5 interaction is missing. 

The acceptance ratio for each is most conveniently obtained as the full posterior 

ratio even though it may simplify much further. 

6.3 Reversible Jump Sampling 

In principle, this proceeds much as in the case of a single discrete variable: A 

particular edge or interaction is chosen at random. If it is present in the current 
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model, it is proposed to remove it, otherwise it is proposed to add it. The main 

diEerence here is that there are discrete-discrete edges/interactions to consider 

so there are new move types, namely 

adding/removing a discrete-discrete edge and discrete-discrete, discrete-discrete-

continuous and discrete-discrete-continuous-continuous interactions. Again, it 

must be taken into consideration which moves are valid in the case of hierarchical 

models as only one interaction is removed/added at a time. Any proposed moves 

that are not valid must be rejected. Again also, since current and proposal models 

differ in exactly one edge/interaction, the jump ratio is always 1. 

As in the case of models with one discrete variable, random walk variances 

which give good mixing are first obtained from runs of Sxed models and these 

are also used for between-model moves. This time, however, more models are 

required: A run of the saturated model gives variances for all unconstrained 

parameters. The model with ail edges or quadratic interactions v4Xy, 

involving A and a continuous variable but no others missing 

gives variances for -r's which vary only between levels of B. Similarly, the model 

with all edges or quadratic interactions involving ^ and a continuous variable 

but no others missing gives variances for -r's which vary only between levels of 

vl. The model with all mixed edges or mixed quadratic interactions missing gives 

variances for r ' s which do not vary between cells. 

Arguably, the model with the (v4, edge or all quadratic interactions involv-

ing and B should be run also but for all examples presented here it has been 

found that the variances for the r ' s in the saturated model sufhce for those in 

this reduced model. 

6.3.1 Hierarchical Models 

For the purposes of illustration, the following example with two binary and two 

continuous variables will be used. 

= Zg = 2, F = {%, y}, with parameters 

A \ 

A'" 

f 1? \ / fTy \ 

J \ J 
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/ T x ( 0 , 0 ) r y ( 0 , 0 ) X 0 , 0 ) \ 

Tx(0,l) 'ry(0,l) X0,1) 

Tx(l,0) Ty(l,0) p(l,0) 

\ T x ( l , l ) Ty(l, 1) p ( l , l ) y 

As in the previous chapter, the parameters present in each model (current and 

proposed) will be explicitly stated except for A and/or when their coponents 

are all present in both. An asterisk (*) will denote a parameter that may or may 

not be present. An absent parameter will be denoted by a zero or a blank space, 

as appropriate. 

D i s c r e t e I n t e r a c t i o n s 

/ A \ 

\ 0 y 

/ A \ 

A^ 

A^ 

/ /y \ 

\ 0 / 

/ r] \ 

( T A ' ( 0 , 0 ) 7-^(0,0) p(0,0) \ 

V / 

/ Tx(0,0) Ty(0,0) X0,0) \ 

* 
* 

* 

* 

V y V 0 / V / 

Suppose hrstly that the interaction has been selected. To add this in-

teraction, (and this move is always permitted since there are no lower order 

interactions involving A and B) we must generate 

(Zyi — 1) * (Z^ — 1) new A-terms, namely A[2], 2 = 4- — 1 , . . . — 1, 

corresponding to A'̂ ^(2yt, ig) for = 0 , . . . , (/t — 1 and ig = 0 , . . . , (g — 1. 

Two simple choices of proposal distribution are the prior and a normal distribution 

with mean and variance given by estimates of the posterior mean and variance, 

taken from a pilot run of the (hxed) saturated model (or even any model with 

the AB interaction present). The latter, naturally, tends to generate better pro-

posals and is the one used here. The Jacobian in either case is 1, the prior ratio 

is simply the product of the (independent) priors for the parameters generated, 

the proposal ratio is simply the reciprocal of the product of the normal densities 

used to generate the new parameters and the likelihood ratio is 

exp(N'Z)A*) 

exp(A/-'BA) ' 
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To remove this interaction, we must set these same A-terms to the corre-

sponding entries in or to zero if not using centring. The acceptance ratio 

is simply the reciprocal of that for adding. Note that this move is only permitted 

if the and interactions are missing for all G T. 

2-way Mixed Linear In terac t ions 

Suppose next the two-way mixed linear interaction has been selected. Ea;-

/ "0^(0,0) 7-y(0,0) 

0 

V 0 
* 

* y 

/ % 

V 0 

?7y \ 

* 
* 

/ Tx(0,0) 

7 V 

* 

* 

Ty(0,0) 

* 

* 

* 

p(0,0) \ 

/ 
To add this interaction, and this move is always permitted since it is a 2-

way interaction, we must generate — 1 new T^-terms. These are 2 = 

— 1 and the terms remain constrained. Note that this will 

change A if the AB interaction is missing. This can be done in the same way as 

generating A-terms and the acceptance ratio is similar with likelihood ratio the 

same. 

To remove the interaction, these 7;-terms are set to the corresponding entries 

in or to zero if not using centring. Again, the acceptance ratio is the 

reciprocal of that for adding the interaction. Since only hierarchical models are 

being considered, this move is only permitted if all quadratic interactions involv-

ing A and X are missing, namely, AJY'y and for all E F. 

The same applies if the interaction has been selected but this time the 

7;-terms in question are % = ! , . . . ,(g — 1 . 
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3 - w a y M i x e d L i n e a r I n t e r a c t i o n s 

/ ?7y 
77̂  * 

\ 

A 
Vx 

\ 0 

* 

* J 

/ 7-x(0,0) 7-1^(0,0) p(0,0) \ 

* 
* 

/ % ?7y \ ^ 7-x(0,0) Ty(0,0) p(o.o) \ 

* * * * 

* 5 * * * 

\ * / I * / 
If the ABA" linear interaction has been selected,the parameters in question 

are j i f z = + Zg — 1 , . . . , Z/iZg — 1, corresponding to the 77^^-terms. The 

procedure is otherwise the same as for and B X interactions. Note however, 

that, in order to keep the model hierarchical, the addition of this interaction is 

only permitted when the current model contains both and interactions 

as well as the interaction. The removal move is permitted only if the ABA'AT 

quadratic interaction, and hence for all 'y 6 F, are absent from the current 

model. Hence, for both addition and removal, A is not altered except for the hrst 

entry, the likelihood normalizing constant, which is always changed by any change 

in the other parameters, and the likelihood ratio becomes 

exp [MAg 

exp [MA0] 

2 - w a y Q u a d r a t i c I n t e r a c t i o n s 

Suppose next that the 2-way quadratic interaction has been selected. 

/ ?7y \ / TA:(0,0) T-y(0,0) p(0,0) \ 77% 77y 
* 

* 

= * / 
/ % 

* 

V 

* 

* 

7 

/ T ; , ( 0 , 0 ) Ty(0,0) X 0 , 0 ) \ 

* * : 

T-x(l,0) * 

\ / 
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In hierarchical models, addition of this interaction is only permitted if the 

corresponding linear interaction, ^4%, is present in the cnrrent model. Removal 

is only permitted if the v lBXX and all for 'y E F interactions, and hence all 

interactions, are absent from the current model. Note that in both caaes, 

since only hierarchical models are being considered, and A^X'y, 7 G P, are 

absent from, and vlX is present in, both cnrrent and proposal models. 

There are then two cases, depending on whether the B.YA" interaction is 

present or not. If it is not present, we currently have (if adding) a common 7% 

for all cells and we require one for each level 2̂ 1 of A. If is present, 

we currently have (if adding) one 7x(za) for each level, of B and for each level 

of B we require one T^(2A, ̂ g) k r each level of A. Contrariwise of course for the 

reverse move. 

The procedure is exactly as for models with one discrete variable but in the 

case of present, is repeated for each level of ^ and in the case of 

absent, is done at the first level of B and then we have 

by constraint. As before the proposals may be generated either by constraint 

or independently. Note also that if the AB interaction is missing, A must be 

changed and if any linear interactions are missing, must be changed. Hence 

the full likelihood must be used in general. 

Naturally, the same applies for the interaction, with the roles of 4̂ and 

B reversed. 

3 - w a y D i s c r e t e - D i s c r e t e - C o n t i n u o u s Q u a d r a t i c I n t e r a c t i o n s 

Next suppose that the 3-way quadratic interaction v4B%% has been selected, a 

move type not encountered in single discrete variable models. 

\ / Tx(0,0) 

T%(0,1) 

Tx(l,0) 

/ VY 
* 

/ 

' Y ( 0 , 0 ) p ( 0 , 0 ) \ 

V / 

* 

* 

I He ) 

l y (0,0) p ( 0 , 0 ) \ 
* 

* 

/ Tx(0,0) 

TA(0, 1) 

7'%(1, 0) 

\ T x ( i , i ) * y 

For hierarchical models, the addition of this interaction is permitted only if the 

AB, ylXX. B X X and AB% (and hence v4% and B%) interactions are present. 
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Removal is permitted only if each ABX'y is missing. Note that in each case, /IB, 

AXX, A A" and B X are present in and each vlBX'y is absent from 

both current and proposal models. 

To remove this interaction we need to impose the constraint 6.4, which for 

the example is 

1) = TlKO, 1) + 7x(l , 0) - T^(0, 0) 

The Arst thing to note is that since the interaction is present in the 

current model, none of the current r^ ' s are constrained so we have the maximum 

number - one for each cell. We could generate the unconstrained but this is 

generally not necessary and the remainder are given by constraint. 

For the reverse move, we need to generate unconstrained for > 0 

and ig > 0. The remainder are generated only if they are also generated for 

the addition move. Similarly to when adding the interaction, proposal 

generation is by a random walk style move, that is 

where each 2/ is from a Normal distribution with mean zero and variance given 

by the posterior estimate of the variance of baaed on a pilot run of 

the saturated model. The proposal ratio is then the reciprocal of the product of 

these proposal densities, evaluated at the it's and the Jacobian is 1. The prior 

ratio is 

i/l>0,zg>0 

for addition and 

for removal. 

If any linear interactions are missing, i f must be amended. A is not amended 

since the AB interaction is necessarily present. The likelihood ratio is given by 

5.3. 
Con t inuous -Con t inuous In te rac t ions 

Suppose next that the X F continuous interaction is to be added. 

/ 'rx(0,0) ry(0,0) 0 \ 

* * 0 

* * 0 

* * 0 y 
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/ Tx(0,0) 7-y(0,0) P(0,0) \ 

V / 
This move is always permitted and since is currently missing and the cur-

rent model is hierarchical, AXY, BXY, and are also absent. Therefore, 

aa in the previous chapter, only one new partial correlation, ^)' required 

as the remainder will be determined by the constraint. This parameter is there-

fore generated the same way. Note that if any linear interactions are missing, 

must also be amended and if AB is missing, A must be amended and hence in 

general, the full likelihood ratio must be used. 

If is to be removed, simply set each = 0 . To keep the model 

hierarchical, this move is only permitted if all quadratic interactions involving 

both % and F , namely and ABA'y, are currently missing. As in the 

previous chapter, the interval endpoints from which p^y(0,0) is generated must 

be obtained but otherwise the acceptance ratio is the same as for the addition 

move. 

3-way D i sc re t e -Con t inuous -Con t inuous Q u a d r a t i c In te rac t ions 

Next suppose the interaction is to be added. 

/ 7-x(0,0) Ty(0,0) X0,0) \ 

ry ( l ,0 ) 

/ 

^TY(0,0) T-y(0,0) p ( 0 , 0 ) \ 
* * * 

TA-(1,0) '7-(l,0) p ( l ,0 ) 

V / 
Note that since only hierarchical models are being considered, this move is 

permitted only if XY, A X X and AYY are currently present and ABXY is 

necessarily absent. 

There are two cases to consider, depending on whether B X F is present or 

not. If not, the current are all equal and the proposal 2B)'s 

diEer between levels of A. Therefore, the proposals Oj's, for the first level 
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of B, may be generated in the same way as when adding the interaction in a 

model with a single discrete variable and the remainder are given by = 

w xy (2^,0). 

If is present, the proposals are generated in the same way as when 

removing the A B X F edge (see below) as the proposal models are the same. 

Once again, if any linear interactions are missing, must be amended and 

if AB is missing A must also be amended and the full likelihood ratio must be 

used in general. 

To remove the AA'y interaction, there are again two cases depending on 

whether the B X F interaction is present. If not, the proposal are 

all equal so there is only one parameter to generate and this is done in the same 

way as when adding the X F interaction as the proposal models are the same. 

If is present, the wxy(2,^,%g)'s currently satisfy constraint 6.4. The 

proposals must only satisfy = w1^y(0,%g) for each and therefore 

may be generated in the same way as when removing when B is not in the 

model but this is done separately for each level of 5 . 

For hierarchical models, this move is only permitted if A B X F is currently 

absent. In each case, the relevant interval endpoints for generating proposals in 

the reverse move must be obtained to give the numerator of the proposal ratio. 

Of course, all this applies to the interaction, with the roles of A and B 

reversed. 

4-way D i sc re te -Disc re te -Cont inuous -Cont inuous Quad ra t i c In terac t ions 

Finally suppose the term, the highest possible order of term when p = 2, 

has been selected. 

Eiamp/e: 

/ T x ( 0 , 0 ) ry(0,0) X 0 , 0 ) \ 

'rx(0,1) ry(0,1) p(0,1) 

'ry(l,0) p(l ,0) 

\ T x ( i , o ) Tx(i,o) y 

/ T^(0,0) 7-y(0,0) p(0,0) \ 

T-x(0,1) 'ry(0,1) p(0,1) 

TA(1,0) Ty(l,0) p( l ,0) 

7-y(l,l) X I , 1 ) / 

To keep the model hierarchical, addition of this term is only permitted if all 

other interactions involving two or more of v4, B, % and Y are present. There is 
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therefore one k r each cell and these are generated independently in 

the usual way. 

Removal of this term is always permitted as there are no higher order inter-

actions and proposals must satisfy the constraint 6.4. For A and B binary as in 

the example, this is 1) — 1) 4- 0) — w^y(0,0). 

In order to preserve positive deGniteness, proposals are generated as follows 

for the example, dropping the X Y subscript to ease notation : 

/)*(0,1) and p*(l, 0) are generated as for the saturated model. 

The endpoints of the intervals to ensure positive deEniteness of the remaining 

precision matrices are found so we have 

Goo < < 6oo and for each cell From the 

constraint above, we thus have 

dii < W(0,1) + (^(1,0) — (^(0,0)) < 6ii. 

Hence, 

l)Ty(l, l)6ii4-w(0, l )+w(l , 0) < w(0, 0) < Tx(l, l)Ty(l, l)Gii+w(0,1)+Lj(l, 0) 

and hnally, 

(1, l ) 6 i i + w ( 0 , 1 ) + w ( l , 0 ) ) 
Tx(0,0)T-y(0,0) 

<p(0 ,0) 

^ 1)^11 + c j ( 0 , 1 ) + w ( l , 0 ) ) , 
T%((J , U j T y ( U , U j 

giving the interval from which to draw p*(0,0). 

These expressions may seem very awkward but are really quite manageable 

even when there are more cells. Note that if there are only two continuous 

variables, the endpoints are always —1 and 1 since any value between these gives 

a positive dehnite precision matrix so no computation is required. 

The remainder of the wxy(2, j ) ' s are given by the constraint. Once again, 

if any linear interactions are missing, must be amanded but since ylB is 

necessarily present, A need not be and the likelihood ratio is given by 5.3. 
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6.3.2 Graphical Models 

Here, there are three types of edge and hence six different move types (addition 

and removal of each), although there may be different cases to consider depending 

on which other edges are currently present. 

C o n t i n u o u s - C o n t i n u o u s edges 

Suppose hrstly that the edge (%, F ) has been chosen to be added to the graph. 

There are 6ve di%rent cases to consider depending on which other edges are 

present. 

If all of the (A, B), (A, y ) and edges are present, we 

must generate one for each cell. This is done in the usual way, by drawing 

from the uniform distribution over the interval from which draws preserve positive 

dehniteness. 

If either (or both) (^ , %) or (v4., F ) is missing but neither of (B, %) or (B, Y) 

are, we only require one for each level of B as (t/t, ig) is the same across 

levels of .4, for Sxed zg For each level, of B, wj^y (0,2^) is drawn in the same 

way as when removing either (A,%) or (A, y ) in a model without B. Then for 

each i = — 1, 

^xy(^).7) = ^xy(0;.7) = P x y ( 0 , j)T%(0,^)Ty(0,_;). 

The same applies if either (or both) (B, %) or (B, y ) is missing but neither 

of (A, X) or (.4, y ) are, with the roles of A and B reversed. 

If either (or both) (A,%) or (A, y ) either (or both) (B,%) or (B,}") are 

missing, we require only to generate /)^y(0, 0) and the remainder are given by 

0)Tx(0,0)Ty(0, 0). This parameter is generated 

as in the previous two cases but across all cells, not jus t across levels of A or B. 

The hnal case is when (A.B), (A,X). (B,%) and (v4,y) are all present but 

(v4, B) is not. 

Proposals for this move are generated in the same way as when removing the 

A B % y interaction in a hierarchical model as the proposal models are the same. 

If (%, y ) has been chosen for removal, as before, simply set each p^y to 

zero, regardless of which other edges are present or absent. Again, the interval 

endpoints to determine the proposal ratio must be obtained aa when adding the 

edge. 
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Discre te -Cont inuous edges 

Suppose next that the (A, X) edge has been chosen for addition. If both (v4, B) 

and (B, edges are present, the procedure for generating proposal concentra-

tions is as when adding this type of edge in a model with one discrete variable 

but is carried out within each level of Linear mixed interactions are generated 

in the same way as when adding AX and ABX interactions in a hierarchical 

model simultaneously. Note that if any other mixed edges are absent, must 

be amended according to Since is present, A is not changed and the 

likelihood ratio is 5.3. 

If (B,%) is not present, the procedure for generating proposal concentrations 

is again as when adding the edge in a model without B but is carried 

out at only one level of as the proposal concentrations are constrained to be 

the same between levels of B but allowed to di&r between levels of A. It makes 

no diEerence whether (v4, is present or not in this case as its absence does 

not constrain proposals further than they are by the absence of the (B, edge. 

Again, if any other mixed edges are absent, must be amended according to 

and if (A, B) is absent, so must A and the full likelihood ratio must be used. 

If (B,%) is present but (v4,B) is not, we have a combination of the addition 

of A X X and interactions for each -y E F for hierarchical models. Again, if 

any other mixed edges are absent, must be amended according to and so 

must A as (A, B) is absent. Again, the full likelihood ratio must be used. 

If the (A, edge is to be removed, we have a combination of the removal of 

each ABX, AA", ABA'-y and in the case of hierarchical models, implemented 

as follows: 

1. If the (B ,A) edge is absent, T^'s di&r only between levels of A so at 

the hrst level of B, proposal Tj^'s are generated in the same way as when 

removing the (A, A) edge in the previous chapter and the remainder are 

given by constraint. 

If the (B, A) is present as well as (A, B), proposal r ^ ' s are generated in the 

same way as when removing the (A, A) edge in the previous chapter but 

within each level of B. 

If (B ,A) is present but (A, B) is not, proposal Tj^'s are generated in the 

same way as when removing the A A A interaction in the presence of the 

B A A interaction. 

145 



2. For each A' ^ 'y 6 F, if (B,%) and are both present, proposal 

are generated, within levels of in the same way as when removing the 

(A, edge in the previous chapter (or, indeed, when removing the AA'y 

interaction). Otherwise, proposal p^^'s are generated in the same way as 

when removing the interaction in the absence of the interaction. 

3. Tif' is generated as a combination of removal of AA" and interactions, 

that is each and is constrained by setting each , for 

% = — 1, to the corresponding entry in Some of these 

may be already constrained if (B,%) is absent. If any other mixed edges 

are absent, is further amended according to f|%*. 

4. Finally, if (A, B) is absent, A must be amended. 

D i s c r e t e - D i s c r e t e e d g e s 

Removal of the (A, B) edge corresponds to the removal of the AB interaction 

as well as any of AB ŷ and AB'-yC interactions that may be currently present. 

Specifically, the procedure is as follows: 

1. Impose the constraints 6.4 on the partial precisions. Some may already 

satisfy this if any mixed edges are missing. 

2. Generate the proposal partial correlations in the same way as when remov-

ing an AB%y interaction, but applied to eocA pair of continuous variables. 

3. Constrain each term by setting each for 

% = //I + — 1,.. -, — 1 to the corresponding entry in or to zero 

if not using centring. Also adjust any other constrained entries of f f . 

4. Constrain each for = 0 , . . . , - 1 and = 0 , . . . , Zg — 1 by 

setting 2 = — 1 , . . . , — 1 to the corresponding entries in 

or to zero if not using centring. 

To add the (A, B) edge, 

1. Update A in the same way as when adding the AB interaction in a hierar-

chical model. 

2. For each G F, if the (A, and (B,^) edges are present, generate 7?;̂ ^ as 

when adding the AB^ interaction in a hierarchical model. 
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3. For each 'y e T, if the (A,'y) and (B,'}) edges are present, generate -n̂ 's as 

when adding the interaction in a hierarchical model. 

4. For each ( G F, if (A, 'y), (A, (), (B, 'y) and (B, are all present, generate 

/)* '̂s in the same way aa when adding the interaction in a hierarchical 

model. 

5. Finally, amend any constrained entries in using f|%*. 

6.4 Examples 

In this section, an example using simulated data is presented as well as two 

examples to be found in (Whittaker 1990), one of which also appears in Ed-

wards(1990,1995). 

Only results based on graphical models are given as a satisfactory sampler 

for hierarchical models has proved surprisingly diGcult to implement. It may 

be expected that a sampler for graphical models would be more problematic as 

the between-model moves are larger but this has not proved to be the case. It 

is possible that the larger moves for graphical models avoid some problems that 

occur for hierarchical models. The same prior distributions were used as in the 

previous chapter, with ^ — 0.001 in the prior for the partial precisions. The issue 

of prior sensitivity will not be pursued here but it is no more of a problem than 

in the previous chapter. 

As before, posterior model probabilities are based on runs of 100 000 iterations 

after 10 000 of burn-in and MCMC standard errors are based on batches of size 

1000. 

6.4.1 A simulated data example 

In order to test the reversible jump sampler for two discrete variable models 

by comparing with that for one discrete variable models and to demonstrate its 

operation, data based on the mice data presented in the previous chapter were 

generated as follows: 

Maximum likelihood estimates under model 52 (recall this had a complete 

graph on and no edge to Z), which had two-thirds of the posterior proba-

bility and was chosen by Edwards, were obtained using MIM. Two sets of data 

were generated from the model with these estimates as parameters, one for each 

level of a dummy binary variable. The graph of the model used to generate the 
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Figure 6.1: Graph of the model used to generate a set of simulated test data 

data is thus the one in Figure 6.1, numbered 388 by the indexing scheme described 

above. The intention is that the models with highest posterior probability will 

be similar to those for the mice data but with an additional discrete vertex (with 

few or no adjacencies) and this is largely what occurred. The eight most probable 

graphs, which are all with probabilities greater than 5% are tabulated in Table 

6.2 and the edge inclusion rates in Table 6.1. The most probable graph is 388, 

the true graph and the next few most probable are very similar, with one or two 

edges different. Trace plots for the parameters are omitted for brevity but they 

show satisfactory mixing, as with previous examples. 

It is worth noting that the posterior is very diEuse but considering the large 

model space (1024 graphs), this is not a great concern. Deviance-based forward 

inclusion in MIM selects 388 and backwards elimination selects 916, which has 

two additional edges, (^,B) and (B,y) . 

AB AX AY AZ BX BY BZ XY XZ YZ 

23.6 80.1 57.6 7.9 5.1 10.3 7.7 97.7 41.4 38.9 

Table 6.1: Inclusion %ages for edges for simulated data 

6.4.2 A drug trial using rats 

This example is treated in Morrison (1976), Mardia, Kent and Bibby (1979), Ed-

wards (1987,1990,1995) and Whittaker (1990). The data are from a randomized 

drug trial in which weight losses of rats under three drug treatments are studied. 

Four male and four female rats were given each drug and their weight losses after 

one and two weeks were measured. Hence there are two discrete variables, A 

(sex), with two levels, and B (treatment), with three levels, and two continuous 
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390 391 260 262 

XP 
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0.092 

(7.9) 

"Oy 

P' 

xP Py 
0.082 

(7.3) 

XP 

O" 

0.071 

(7.4) 

Oy 

O" 

xO Oy 
0.063 

(7.0) 

Table 6.2: Posterior model probabilities for simulated data, graphical models. 

Standard errors xlO^ are in brackets. 

variables, X (weight loss after one week) and Y (weight loss after two weeks). 

In MIM, backward elimination selects the saturated model; Forward inclusion 

selects model 7, which has all edges connecting A missing. 

Edwards uses a stepwise deviance-based procedure in MIM to select model 

39, which has (A, %) and (v4, y) missing. 

The model selected by Morrison (1976) and Mardia et al. (1979) is nongraph-

ical and contains the AB, BX, BY, and XY interactions only, without the BXX, 

BYY and BXY interactions in Edwards' model. 

The posterior model probabilities according to the reversible jump output are 

tabulated in Table 6.3 and the edge inclusion percentages in Table 6.4. Trace 

plots of the batch posterior probabilities for the four most probable graphs are 

displayed in Figure 6.2. 

The most probable graphs are 7 and 5, each with approximately one quarter of 

the posterior probability. The absence of the (A,B) edge, while disagreeing with 

Morrison's and Edwards' selected models, is not so surprising given the designed 

nature of the experiment (the cell counts were clearly chosen in advance). This is 

also an instance of a deviance-based method selecting a model with more edges 

than a Bayesian method. Edwards' graph is the next most probable, with about 

half the probability of 7 and 5. The remaining graphs are much less probable. 
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33 
QX 

B * O y 
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47 

Oy 
0.034 

(1.8) 

55 
Am QX 

0.082 

(7.7) 

Oy 

0% 

O y 

0.030 
(0.1) 

Table 6.3: Posterior model probabilities for rats data, graphical models. Standard 

errors xlO* are in brackets. 
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Figure 6.2: Batch Posterior Model Probabilities for rats data. The lines are the 

averages over the entire sample. 
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AB AX AY BX BY XY 

35.43 8.85 14.44 94.01 57.01 91.43 

Table 6.4: Inclusion %ages for edges for rats data 

6.4.3 College Smoking Habits 

This example is from Wermuth and Lauritzen (1989) and concerns smoking habits 

and personality traits of 384 college students, and is treated in Whittaker (1990), 

who gives the cell counts, observed means and observed variances. There are two 

discrete variables, each with three levels: A is students' smoking status (smoker, 

quit, never smoked); B is parents' smoking habits (neither smoke, one smokes, 

both smoke). There are two continuous variables: X, trait anxiety, and Y, trait 

anger. 

Both Wermuth and Lauritzen and Whittaker use chain models since B is ex-

pected to be an inSuence on the other variables but not conversely but undirected 

models may still be used. Whittaker uses two blocks, {B} and {^,%, Y}, and 

suggests the model with directed edges from B to both A and X and undirected 

edges (%, y ) and (A, Y). This graph is Markov equivalent to the undirected 

graph, 45, in Figure 6.3 and seems intuitively very reasonable. The graph sug-

gested by Wermuth and Lauritzen is Markov Equivalent to the undirected graph, 

41, in Figure 6.4 and does not contain the (B,%) edge. In MIM, 41 is also se-

lected by forward inclusion and backward elimination selects 61, which has the 

additional (/I, %) edge. 

45 

Figure 6.3: Undirected version of Whittaker's suggested graph for College Smok-

ing Habits data 

The results from the reversible jump sampler are consistent, assigning over 

three-quarters of the posterior probability to graph 41. This means a much more 

concentrated posterior than the previous examples but it is worth noting that 

the magnitudes of some of the parameters are very small (of the order of 10" ,̂ 

making proposal generation very difficult and this along with the greater number 

of cells leads to slow mixing within the model space, which is rejected in the 
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41 

Figure 6.4: Undirected version of Wermuth and Lauritzen's graph for College 

Smoking Habits data 

relatively high MCMC standard errors. 

41 
^ 

3# O x 
0.779 
(23.8) 

33 

B# O x 
0.163 
(19.3) 

0.034 

A. _f_oY 

B* Ox 
0.020 

(2.2) 

Table 6.5: Posterior model probabilities for Smoking Habits data, graphical mod-

els. Standard errors xlO^ are in brackets. 

AB AX AY BX BY XY 

100.00 5.60 83.46 2.24 0.24 100.00 

Table 6.6: Inclusion %ages for edges for Smoking Habits data 

6.5 Discussion 

These examples show that the methodology used for CGMs with a single dis-

crete variable can successfully be extended to those with two and still produce 

reasonable results. The most challenging aspects of the models in this chapter 

are addition and removal of interactions involving the two discrete variables as 

well as consideration of the possible presence of these interactions when making 

other move types. Increasing the number of continuous variables is not nearly as 

challenging and is only limited by the prior as discussed in 4.6. 

In principle, extension to three or more discrete variables is straightforward, 

although the models become considerably more complex and could well be im-

practical with four or more. The main difhculties are the higher order of discrete 

interaction, constraints corresponding to, for example, a missing ABCXX inter-

action and the greater number of interactions whose presence/absence must be 

considered for some move types. 
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Run times are greater in general than those for the p = 1 case due to the 

additional complexity but were still reasonable for all examples examined with 

100 000 never taking more than 30 minutes for the three examples presented. 

Parametric mixing (within models) is as good aa the p = 1 case but again only 

when the data are centred within cells. Mixing across the model space for the 

reversible jump sampler is generally slower than for the p = 1 case and the chain 

is prone to "sticking'" (not moving) for long periods but after several pilot runs 

and a suEciently large number of iterations, coverage is usually satisfactory. 

Restriction to reduced model classes, if desired, is no more difficult than for 

p — 1 and there is a further type of restriction within the class of graphical 

models possible now. This is to fix the (^, B) edge in or out. This can be useful 

when dealing with "designed" discrete data, where the cell counts are decided in 

advance. In addition, extension to the hierarchical models of Lauritzen (1996) is 

staightforward, as already noted. 

A closely related type of model is also useful for dealing with such situations 

and avoids much of the difficulty involved in accounting for AB interaction. This 

type of model is a simple example of a graphical chain model (or block recursive 

as Lauritzen and Wermuth (1989) call them) with two blocks, one for the discrete 

variables and one for the continuous. The saturated model for g = 2 is shown in 

Figure 6.5 

1 

X -

Figure 6.5: Saturated model in a simple class of graphical chain models 

The fundamental difference with this type of model is that presence or ab-

sence of discrete-discrete edges (within the first block) has no effect on the condi-

tional distribution of the continuous given the discrete. This block structure en-

sures that despite the discrete-continuous edges being directed, the corresponding 

graphical constraints are identical to those for the undirected case and of course 
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constraints corresponding to missing continuous-continuous edges are the same 

too. 

This class of model, although not as Sexible as the undirected versions and not 

that different in the case of p = 2, is much easier to deal with for greater values of 

p and is possibly more promising for extension to these higher dimensional cases. 
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Chap te r 7 

S u m m a r y and Fur ther Work 

7.1 Graphical Gaussian Models 

Chapters 2 and 3 of this thesis have addressed the issue of nonconjugate Bayesian 

inference for general graphical Gaussian models and in particular inference under 

model uncertainty. For this purpose, a class of prior was introduced which is 

considerably more flexible than priors based on the Wishart distribution. This is 

because it avoids the restrictions of the Wishart distribution - common degrees of 

freedom for each diagonal entry, for example and allows individual components of 

the precision matrix to be dealt with separately, and independently with different 

marginal priors. 

The major drawback of nonconjugate inference or, more precisely, of the use 

of priors not based on the Wishart distribution, is that the number of variables 

that can be dealt with is limited due to constraining of the space of (partial) 

correlation matrices. Section 2.3 showed that six variables is the practical upper 

limit for a jointly uniform prior on the partial correlations. Section 3.3 discussed 

how it may be possible to deal with more variables but only at the expense of 

having a more informative prior. Wishart-based priors avoid this problem as they 

are distributions over a space of positive definite matrices. Note that this is a 

restriction on any such non-Wishart-based prior not just those described here. 

A possibility, which has not been investigated, to get around this problem 

is to ignore the contribution of the ratio of prior normalizing constants to the 

reversible jump acceptance probabilities as it very often close to 1. 

The MCMC methods described here are not dependent on this prior and so 

provide a general framework, easily modified for virtually any prior. This thesis 

has, though only examined the use of a single prior class. An investigation of 

the effect of using other priors for the partial correlations may be useful. In 

particular a marginally uniform prior, as in Barnard et al. (2000), or the priors 
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of Wong, Carter and Kohn (2003) or Liechty, Liechty and Muller (2004). Another 

possibility, which may be worth investigating is the use of a Normal prior for the 

Fisher-z transformation of the partial correlations. However, whichever prior is 

used for the partial correlations, the positive dehniteness constraint will always 

apply and so the limitations mentioned above will always apply. 

Although it was possible in most of the examples presented to compare results 

with with those of other authors, it may be useful in general to have another 

method of obtaining posterior model probabilities or Bayes factors to compare 

against. One possibility is the use of (Diciccio et al. 1997). This 

involves sampling from a "bridge distribution", which should approximate the 

posterior but be easy to sample from. This was investigated brieAy but it proved 

very di&cult to find a suitable bridge distribution. In particular, a multivariate 

Normal distribution failed to produce correct results in examples where these 

were known or could be calculated directly. 

The issue of prediction was investigated brieSy but there is plenty of scope 

for further investigation including obtaining bivariate and multivariate predic-

tive densities and a more thorough investigation of how much better prediction 

based on decomposable models is compared with that based on all models. An 

investigation into the eEect of different priors may also be useful. 

7.2 Mixed Graphical and CG Models 

Chapters 4, 5 and 6 have attempted to address the so far neglected issue of 

Bayesian inference for mixed graphical models and for CG models in general. 

The approach taken is essentially an attempt to extend the methods and prior 

distributions for GGMs and this has been, to some extent at least, successful. 

The separate consideration of the case of models with a single discrete variable 

is a useful one as it is not only interesting in itself and more easily considered as 

an extension of GGMs, but also shows the way for much of what is needed for 

those models with more discrete variables. 

What makes separate consideration of this case especially useful is the possi-

bility of using the methods developed to handle latent variable models where a 

set of continuous variables are associated through an unobserved, or "hidden", 

discrete variable. The joint distribution is thus CG. The unobserved discrete ob-

servations would be generated as part of the MCMC similarly to the classification 

rule described at the end of Chapter 5. Given this data, an MCMC scheme would 

then proceed in much the same way as for CGMs. 

The priors used suffer from the same drawback as those for GGMs as they are 
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essentially the same bnt otherwise the Bexibility and application are just as good. 

There may well be other sensible choices of prior for mixed models; those used 

here are merely convenient, in particular the priors on the quadratic parameters 

extends those for GGMs. A conjugate class of prior may prove especially useful 

and it may be possible to generalize the HIW or constrained Wishart priors for 

GGMs although it is unclear how this may be done. 

The extension to the case of models with two discrete variables has been 

equally successful for Sxed models but less successful for reversible jump and 

the reasons for this need further investigation. In particular, a more satisfactory 

method of generating proposals in order to improve mixing over the model space 

is required. Proposal generation would be much simpler if a full interaction 

expansion were used and simpler still if centring were not necessary. As discussed 

in 4.6, the use of quadratic interactions under model uncertainty is hampered by 

the positive dehnite requirement on the cell variances but if a suitable method for 

generating proposals could be found, they would be preferable for the purposes of 

reversible jump sampling as the model constraints are much simpler and between-

model moves consist of either setting interactions to zero or inserting newly-

generated proposal interactions. 

In the absence of a satisfactory reversible jump algorithm for general CGMs, 

the simple chain graphs, mentioned at the end of Chapter 6 may prove to be 

more practical as they avoid the complication of the effect of missing discrete-

discrete edges on the distribution of the continuous variables. This still leaves the 

discrete-continuous edges, however ajid much of the difficulty of these CG models 

comes from the constraints corresponding to absence of these edges. 

Once the case of two discrete variables has been satisfactorily resolved, ad-

dition of further discrete variables is, in principle at least, straightforward, with 

the extra difhculties being mainly computational. However, it is likely that the 

models would start to get excessively complicated if there are more than three or 

four. In particular, the number of parameters quickly becomes very large. For 

this reason, a reduced class of models, such as the simple chain graphs or the 

generalised location-scale model, may be more practical in general. 

The case of hierarchical CG models with two (or more) discrete variables is 

also incomplete but once graphical models are dealt with, these should pose no 

further diGiculty, just as in the case of models with a single discrete variable. 

As for GGMs, the issue of prediction has been dealt with in a fairly limited 

way and there is scope for further investigation, especially for models with more 

than one discrete variable. 
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Appendix A 

Graphs for G G M ' s 

Here, tables of unlabelled directed pure graphs with up to six vertices are pre-

sented along with the following information for each: the number of edges; 

5, the degree sequence; m, the number of graphs with this structure, that is the 

number of distinct graphs obtainable by permuting vertices; d, the determinant 

measure used for indexing and c, the prior normalizing constant for the partial 

correlations in any graphical model with this unlabelled graph. The c's are ob-

tained from a rejection sampler as described in Section 2.3. Standard errors are 

not quoted but are typically 0.001 or less. 

Unlabelled graphs with three vertices 

0.2027 

2 3 4 

A O o 

( / b o o o o 
n = 2 n = 1 n = 0 
s = (2,1,1) s = (1,1,0) s = (0,0,0) 

m =3 m = 3 m = 1 
c = 0.3185 c =0.5000 c = 1.000 
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Unlabelled graphs with Eve vertices 

n = 10 
s = (4,4,4,4,4) 
d = 6 
m = 1 
c — 0.044 

n = 9 
s = (4,4,4,3,3) 
d = 4 
m = 10 
c = 0.052 

s = (4,3,3.3,3) 
d = 0 
m = 15 
c = 0.061 

n = 8 
s = (5,3,4,4,2) 
d = 4 
m = 30 
c = 0.062 

n = 7 
8 = (3,3,3,3,2) 
d = -4 
m = 30 
c = 0.072 

n = 7 
s = ^,4,2,2,2) 

m = 10 
c = 0.082 

10 11 12 

n = 7 
s = (4,3,3,2,2) 
d = 4 
m = 60 
c = 0.073 

s = ^,3,3,3,1) 

m = 20 
c = 0.072 

-6 
n = 6 
s = (3,3,2,2,2) 
d = -16 
m = 10 
c = 0.097 

s = (3,3,2,2,2) 
d = 0 
m = 60 
c = 0.085 

s = (4,3,2,2, 
d = 4 
m = 60 
c = 0.097 

n = 6 
s = (3,3,3,2,1) 
d = 4 
m = 60 
c = 0.086 

13 14 15 16 17 18 

s = 
d : 
m 
c = 

: 7 
(4,2,2,2,1) 

: 6 
= 15 
0.082 0.085 

-O 
n = a 
s = (3,2,2,2,1) 
d = : - 4 
m = : 6 0 
c = 0.114 

n = o 
B = (4,2,2,1,1) 
d = 4 
m = 30 
c = 0.129 

n = 0 
s = (2,2,2,2,2) 
d = 4 
m = : 1 2 
c = 0.102 

O 
n 
s 
d 
m = 60 
c = 0.114 

(3,3,2,1,1) 

19 20 21 22 23 24 

5 - ^ , 2 , 2 , 2 , 1 ) 

m = 60 
c = 0.097 

' ^ ,3 ,2 ,2 ,0) 

= 30 
(^114 

4 n 
S : 
d : 
m = 5 
c = 0.203 

4,1,1,1,1) s = (2,2,2,2,0) 
d = 0 
m =15 
c = 0.152 

6 
n = 4 
s = (3,2,1,1,1) 
d = 4 
m = 60 
c = 0.152 

n = 4 

d%^ 
m = 60 
c = 0.129 

2 ,2 ,1 ,1 ) 

25 26 27 28 29 30 

d : 
m 
c = 

' ^ 2 , 2 , 1 , 0 ) 

= 60 
&152 

II 
s 
d 
m = 10 
c = 0.101 

^ 2 , 2 , 1 , 1 ) 
n = 3 
s = (3,1,1,1,0) 

m : 
c = 

= 20 
0 239 

o-
n = j 
s = (2,2,1,1,0) 
d = 10 
m = 6 0 
c = 0.203 

n = j 
s = (2,1,1,1,1) 
d = 12 
m = 30 
c = 0.159 

d : 
m 
c = 

%2,2 
= 10 
0.203 

, 0 , 0 ) 

31 32 33 33 

n = 2 
s = (2,1,1,0,0) 
d = 16 
m = 30 
c = 0.319 

d : 
m 
c = 

(1^1,1 ,1 ,0) 

= 15 
0.250 

:=gji,o,o,o) 
m = 1 0 
c = 0.500 

n = 0 
s = 1̂ 0,0,0,0) 
m = 1 
c = 1.000 
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Unlabelled graphs with six vertices 

n = 14 
s = (5.5.0.5.4.4 
d = 4 
m = 15 
c = 0.035 

13 
5.5.4.4.4.4 

n = 12 
s = (5,4,4,4,4,3) 

n = 12 
a = (5,5,5,3,3,3 

n 
s 
d 
m = 60 
c = 0.042 

0,0,0,0,5,5 5,0,0,4,4,3 
d = -4 
m = 180 
c = 0.039 

4 
20 

0.042 0.032 0.036 

12 
4,4,4,4,4,4 

n = 12 

m = 180 
c = 0.039 

n = 12 
s =: (5,5,4,4,4,2 

n = 11 
s = (5,4,4,3,3,3 

n = 11 
s = (4,4,4,4,3,3 

n = 11 
s = (4,4,4,4,4,2) s 

d 
m = 45 
c = 0.039 

d 
m = 30 
c = 0.039 

d = -16 
60 

c — 0.046 

8 
60 

0.041 

d = -13 
m = 180 

0.041 

n = 11 
8 = (4,4,4,4,3,3 

n = 11 
5,5,4,3,3,2 

m = 180 
c = 0.0455 

n = 11 
s = (5,4,4,4,4,1) 
d = 7 
m =: 30 
c = 0.042 

11 
0,4.4.4.3.2 

360 
c = 0.042 

0,0.3,3.3.3 
d = -4 
m = 90 
c = 0.0415 

d — 0 
m = 360 
c = 0.042 

45 
0.041 

n = 10 
a = (4,4,3,3,3,3 

n = 10 
a = (4,4,4,3,3,2 

10 
s = (4,4,3,3,3,3 

n = 10 
s = (4,4,3.3,3.3 
d = -5 
m = 360 
c = 0.044 

n = 10 
a = (5.5,3,3,2,2) 
d = -4 

90 
c = 0,054 

n = 10 
3 = (4,4,4,3,3,2 

36 
m = 60 
c = 0.049 

16 
m = 180 
c = 0.049 

360 
0.044 0.043 

n = 10 
a = (4,4,4,4,3,1) 

10 
a = (5,4,3,3,3,2 
d = -4 
m =: 360 

0.049 

n =10 
s = ^,4,4,4,2,2 

m = 90 
c = 0.044 

10 
a = (4.4,4.3,3,2 
d = 0 

360 
c = 0.044 

n = 10 
s = (3,4,4,3,2,2 

10 
5,3,3,3,3,3 s 

d 
m = 72 
c = 0.044 

d = 3 
m = 120 
c = 0.044 

360 
0.049 

n = 9 
^ (4,3,3,3,3,2) 

d = -20 
m = 360 
c = 0.047 

a = 10 
s = (5,4.4.3,3.1 
d = 4 
m = 180 
c = 0.049 

a = 10 
(5,4,3,3,3,2 

d = 4 
m = 360 
c = 0.043 

n = 9 
s = (4,4,3,3,2,2 
d = - 3 2 
m = 90 
c = 0.058 

3 = (3,3,3,3,3,3 
d = -80 

10 
c = 0.038 

12 
m = 6 
c = 0.044 

contmued overJeaf 
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Unlabelled graphs with six vertices (ccxntiiiiiecl) 

n = 9 
s = (3,5,2,2,2,2 

m 
c = 

-16 
= 15 
0.072 

38 39 

n = 9 
s = (4,4,3,3,2,2 
d = -16 
in = 180 
c = 0 052 

n = 9 
s = (4,4,3,3,2,2 
d = : - 5 
rn := 720 
c = 0.052 

40 

n : _ 
a = (4,3,3,3,3,2 
d = -5 
m = 360 
c = 0.046 

41 

n = 9 
8 = (4,4,3,3,3,1 
d = ~4 
rn := 360 
c = 0.052 

n = 9 
s = ^,4,3,2,2,2) 

in = 360 
c = 0.058 

43 44 

^,3,3,3,3,1 

= 90 
0.058 

n : 
s = (4,4,3,3,2,2; 
d = 0 
m = 360 
c = 0.046 

s = (4,3,3,3,3,2 

in = 360 
c = 0.047 

n = 9 
s = ^,3,3,3,3,3 

m = 60 
c = 0.047 

5,3,3,3,2,2) 5,4,3,3,2,1 

0.058 0.051 

s = (4,4,3,3,3,1 
d = 3 
i n : = 180 
c = 0.046 

52 

s 
d 
in:= 180 
c = 0.046 

n = 9 
s — (4,4,4,3,2,1 
d : 
in = 360 
c = 0.052 

n = 9 
s = (4,4,4,2,2,2* 
d =: 4 

= 120 
c = 0.052 0.043 

5,3,3,3,2,2 
n = 9 
s = ^,4,4,3,3,0) 

m = 60 
c = 0.052 

56 57 58 59 

(4,4,2,2,2,2 
: -64 
= 15 
0.077 

s = (3,3,3,3,2,2 
d = : - 4 8 
m = 90 
c = 0.062 

d : 
m 
c = 

(4,3,3,2,2,2 

= 360 
0.061 

s = (4,3,3,3,2,1 
d = -13 
m = 360 
c = 0.062 

s = 
d : 
m 
C z 

(3,3,3,3,3,1 

= 180 
0.054 

s = (4,3,3,3,2,1) 
d = - 8 
in = 360 
c = 0.061 

61 62 

n 
8 = (4,3,3,2,2,2 
d = -5 
[n := 720 
c = 0.054 

n = 8 
s = (3,3,3,3,2,2 
d = -5 
rn := 360 
c = 0.056 

s = (0,4,2,2,2,1 
d = -4 
rn := 120 
c = 0.077 

66 

(4,4,3,2,2,1 
: -4 
= 180 

0.061 

s = (4,4,2,2,2,2 
d = 0 
m = 90 
c = 0 061 

n 

d 
m = 90 
c = 0.061 

4,3,3,3,3,0) 

s = ||4,3,3,2,2,2 

in = 360 
c = 0.054 

s = 1^,3,2,2,2,2 

rn := 180 
c = 0.048 

3,3,2,2,1 

0.068 

n = 8 
s = (4,4,3,2,2,1 
d = 3 
rn := 720 
c = 0.062 

s = (3,3,3,3,2,2 
d = 3 
i n : = 180 
c = 0.050 

8 = (5,3,3,3,1,1) 
d = 4 
m = 60 
c = 0.068 

coctmued overleaf 
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Unlabelled graphs with six vertices (continued) 
73 

s = (5,3,2,2,2,2 
d = 4 
m = 180 
c = 0.058 

s = (4,3,3,3,2,1 
d = 4 
m = 720 
c = 0.054 

, 2 , 2 , 2 

0.046 

n = 7 
a (3,3,2,2,2,2 

0.064 

76 
0 0 

% * 

o o 0 
n = 8 n = 
s = (4,4,3,3.1,1 8 = 
d = 4 d = 
m = 180 m = 
c = 0.061 c = 

77 78 O 

120 
0 046 

s = (^4,4,3,3,2,0) 
d = 8 
m = 180 
c = Ô M 

80 83 84 

n = f 
s = (4,3,2,2,2,1 
d = -36 
m = 120 
c = 0.082 

8 - ( 3 , 3 , 3 , 2 , 2 , 1 

m = 180 
c = 0.072 

n = / 
s = (4,2,2,2,2,2 
d = -8 
m = 180 
c = 0.061 

n = i 
8 = (3,3,3,3,2,1 
d = -8 
m = 180 
c = 0.0^ 

n = 7 
s = (4,3,2,2,2,1) 
d = -5 
m = 720 
r — 0.073 

85 86 

o- -o 
7 
(3,3,3,2,2,1 

n 
s 
d 
m = 720 
c = 0.064 

7 
s = (3,3,2,2,2,2 
d = -4 
m = 180 
c = 0.066 0.091 

89 90 

5,3,2.2,1,1 

o 

: 7 
1^,4,2,2,2,0 

= 60 
0.082 

—O 

n = 7 
8 = (4,3,3,2,1,1 

m 
c = 

= 180 
0.072 

o o 

s = (3,3,3,2,2,1) 
d = 0 
m = 360 
c = 0.064 

0.077 

92 

5,2,2,2,2,1 
n = 7 
s = ^,3,3,2,1,1 

m = 720 
c = 0.072 

95 

n = I 
8 = (^,3,3,3,1,1 

m = 180 
c = 0.064 

n = 7 
s = (4,4,2,2,1,1 
d = 4 
m = 180 
c = 0.082 

n = I 
8 = (4,3,2,2,2,1 
d = 4 
m = 360 
c = 0.062 

-O 
8 = 
d : 
m 
c = 

: 7 
(3,3,3,2,2, 

: 4 
= 360 
11054 

97 

o' 
n = 7 
8 = (3,3,2,2,2,2 
d = 4 
m = 360 
c = 0.057 

99 100 1 0 1 , 102 . 

s 
d 
m = 360 
c = 0.062 

4,3,2,2,2,1 
n = 7 
s = (3,3,2,2,2,2 
d = 7 
m —90 
c = 0.046 

O- -o 
8 = ^,3,3,2,2,0 

m = 360 
c = 0.073 

n = / 
8 = (4,3,3,3,1,0 
d = 12 
m = 120 
c = 0.073 

n = 7 
8 = (3,3,3,3,1,1) 
d = 13 
m = 15 
c = 0.043 

103 104 103, 106 

-o a - o 

107. 108 

n : 
s = 
d : 
m 
c = 

6 
(3,3,2,2,2,0 

= 60 
0.097 

n = 6 
8 = (4,2,2^ 
d = : ^ 
m = 180 
c = 0.097 

,1 ,1 
n = 6 
s = (3.3,2,2,1.1 
d = - ^ 
m = 180 
c = 0.085 

n = 6 
s = (3,3,2,2,1,1 
d = : ^ 
m = 360 
c = 0.085 

o 
n = 6 
8 = (3,2,2,2,2,1 
d = : - 8 
m = 360 
c = 0.073 

8 = (5,2,2,1,1,1) 
d = -4 
m = 60 
c = 0.121 

contjDued overJeaf 
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Unlabelled graphs with six vertices (continued) 

s = ^,3,2,2,2,0 

m = 360 
c = 0.085 

110 

o 
n = 6 
s = ,̂2,2,2,2,2 
m = 60 
c = 0.066 

111 

n = 6 
s = ,̂2,2,2,1,1 
m = 360 
c = 0.082 

112 

n = b 
3 = ,̂2,2,2,2,1 
m = 360 
c = 0.076 

113 

n = b 
8 = (4,3,2,1,1,1 
d = 4 
m = 360 
c = 0.097 

114. 

a- -o 
n = 6 
s = (3,3,2,2,1,1) 
d = 4 
m — 180 
c = 0.073 

115 

0.086 

116 . 

3,3,3,1,1,1 
n = 
3 = 
d = 
m : 
c = 

(3,3,2,2,1,1 

= 720 
0.073 0.062 

118 , 1 1 9 . 120 . 

6- -O 
,2,2,1 

n = b 
s = ^,3,2,2,1,0 

m = 360 
c = 0.097 

O 
n = 6 
8 = ^,3,3,2,1,0 

m = 360 
c = 0.086 

d-
n = 6 
3 = (4,2,2,2,2,0) 
a = 12 
m = 90 
c = 0.082 

121. 122 . 123. 124 1 2 3 . 126 

O-
n = 6 
s = (^3,2,2,1,1 

m = M 
c = 0.057 

= 10 
11041 

2,2,2 
n = 6 

^3 ,3 ,3 ,0 ,0 

m = 1 5 
c = 0.085 

6 o 

d : 
m 
c = 

(5,1,1,1,1,1 
: - 1 6 

= 6 
0A89 

(3,2,2,2,1,0 
n 
s = 
d 
m = 360 
c = 0.114 

n = a 
3 = (4,2,1,1,1,1) 
d = -4 
m = 120 
c = 0.129 

127 128 . 129 

-O 
^,3,1,1,1,1 

0.114 

8 = ^ ,2 ,2 ,2 ,1 ,1 

m = 45 
c = 0.076 

130 131 132, 

3,2,2,1,1,1 3 = (3,2,2,1,1,1 
d = 4 
m = 360 
c = 0.097 

n = o 
s = (2,2,2,2,1,1 
d = Y 
m = 360 
c = 0.082 

^ , 2 , 2 , 1 , 1 , 0 ) 

= 180 
&129 

133 134 o 135 136 137 138 

d : 
m 
c = 

^ ,2 ,2 ,2 ,2 ,0 

= 72 
&101 

n z 
3 = 
d = 
m 
c = 

(^3,2,1,1,1 

= 360 
0.114 

n = 5 
s = (3,2,2,2,1,0 
d = 12 
m = 360 
c = 0.097 

n = 0 
3 = (3,2,2,1,1,1 
d 
m 
C : 

: 15 
= 180 
0.076 

-o 
n = 5 
8 = (3.3.2.2.0.0 
d = ld 
m = 90 
c = 0.114 

O 
n = 5 
s = (2,2,2,2,1,1) 
d = 16 
m = 60 
c = 0.065 

139 

d = 
m : 
c = 

4 
^,1 ,1 ,1 ,1 ,0 

= 30 
0.203 

140. 141. 142 143 1 4 4 . 

n = 
s = 
d = 
m 
c = 

^,2 ,2 ,2 ,0 ,0 

= 45 
0.152 

n = 
s = 
d = 
m 
c = 

^,2 ,1 ,1 ,1 ,0 

= 360 
0.152 

n = 4 
s = (3,1,1,1,1.1 
d = 12 
m = : 6 0 
c = 0.119 

'o 
11 — 4 
s = (2,2,2,1,1,0 

m = 360 
c = 0.129 

O- ~0 
n = 4 
a = (2,2,1,1,1,1) 
d = l 5 
m = 90 
c = 0.101 

contmued oveHeaf 
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Unlabelled graphs with six vertices (continued) 
145 146. 

Q. P 

-o 
n = 4 
s = (2,2,1,1,1,1 
d = 16 
m = 180 
c = 0.101 

n = 4 
s = (3,2,2,1,0,0 
d = 20 
m = 180 
c = 0.152 

147. 

O-
n = 4 

-O 

d : 
m 
c -

^ 2 , 2 , 1 , 1 , 0 

= 60 
0^01 

148 149. 

O o 
n = 3 
s = (3,1,1,1,0,0 
d = 16 
m = 30 
c = 0.239 

n 
s 
d 
m = 180 
c = 0.203 

150 
O p 

o-
1 , 1 , 0 , 0 

n 
s 
d 
m = 180 
c = 0.160 

^ 1 , 1 , 1 , 1 , 0 ) 

151. 152 153 154, 155, 

O— 

o-
n = 3 
s = (1,1,1,1.1,1 
d = 27 
m — 45 
c = 0,125 

n 
s 
d 
m = 20 
c = 0.203 

;̂ 2,2^ 0 , 0 , 0 

= 60 
0.318 

1 , 0 , 0 , 0 

3 O 
: 2 
g l̂,1,1,0,0 

= 45 
0.250 

n = 1 
s = (1,1,0,0,0,0 
d = : 4 8 
m = 15 
c = 0.500 

156, 

o o 
n = 0 
s = (0,0,0,0,0,0) 
d = 64 
m = 1 
c = 1.000 

Unlabelled graphs with four vertices 

n = 6 
s = ,̂3,3,3) 
m = 1 
c = 0.085 

: (3,3,2,2) 
d = 4 
m — 6 
c = 0.114 

(3,2,2,1) 

0.152 

2 , 2 , 2 , 2 ) 

= 3 
&152 

n = 3 
s = (3,1,1,1) 
d = 4 
m = 4 
c = 0.239 

o o 

- o 
n = 3 
s = (2,2,1,1) 
d = o 
m = 12 
c = 0.203 

7 

2,2,2,0) 

0.203 

o 

o 

o 

o 
s = 
d = 
m 
c = 

, 1 , 1 , 1 ) 

= 3 
0.250 

o 

O-

o 

o 
, 1 , 1 , 0 ) 

= 12 
0.319 

10 

o 

o 
1 

o 

o 
n 
s 
d : 
m = 6 
c = 0.500 

, ^ , 0 , 0 ) 

11 

O 

O 

O 

O 
n = U 
s = (0.0,0,0) 
d = 16 
m — 1 
c = 1.000 
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Append ix B 

Marked Graphs for mixed 

graphical models 

Here, tables of unlabelled undirected marked graphs containing one discrete ver-

tex and up to four continuous are presented as well as those containing two 

discrete variables and two continuous. The number of edges, M and the number 

of distinct permutations of the vertices, m are also given for each graph. The 

jointly uniform priors (which are constants), described and used in this thesis, 

for the partial correlations in mixed graphical models with these graphs are given 

as Q (for one discrete variable) where Z is the number of levels of the discrete 

variable. In the hnal table they are given for both discrete variables having two 

levels, for one with two and one with three and for both with three. Standard 

errors are not quoted but are typically 0.001 or less. 

Marked Graphs with p=l , q=:2 

0.250 
U.125 

U.U63 

n : 
m 
c = 

: 2 
= 1 

1.00 0.850 
1.160 

1.430 

4 

/• 
5 

# 

0 ^ O Q o 
n — 1 n = 1 
m = 2 m = 1 
c = 1.00 c = 0.500 

o o 
n = 0 
m = 1 
c = 1.00 
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Marked Graphs with p=l , q=3 

0.125 

m = 1 

C9 = 1.00 
C3 = 1.00 0.125 

a 
m = 3 
C2 = 1.00 
C3 = 1.00 

m = 3 
C2 = 1.00 
C3 = 1.00 
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Marked Graphs with p = l , q=4 

n = 9 
m = 6 
C9 = 0.013 
C3 = 0.001 

a = _ 
rn = 3 
C9== 0.023 
C3== 0.004 

n 
m = 12 
C9 = 0.186 
C3 = 0.130 

n = _ 
in = 6 
« = 0.137 
C3 = 0.122 

0.007 0.0979 
0.001 0.024 

7 
12 
0.128 
0.074 

n 
m = 12 
C2 = 0.072 
C3 = 0.035 

n 
m = 6 
&):= 0.375 
C3 = 0.893 

n 
m = 12 
o = 0.364 
C3 = 0.460 

n 
m 
C9 = 0.206 
C3 = 0.182 

12 
0.023 
0.004 

7 
4 
0.036 
0.014 

n = 7 
m = 4 
C9 = 0.042 

= 0.008 

7 
12 

c, - 0.041 
C3 = 0.008 

7 
24 
0.152 
0.100 

12 
0.054 
0.017 

0.165 
0.226 

n 
m = 24 
C') = 0.101 
C3 = 0.032 

24 
Co = 0.183 
C3 = 0.145 

12 
0.236 
0.381 

12 
0.255 
0.290 

12 
0.134 
0.054 

C9 = 0.063 
cq = 0.016 

n = 6 
m — 4 

C2 — 0.041 
C3 =: 0.008 

12 
0.145 
0.123 

1 
C9 = 0.086 

= 0.095 

6 
0.484 
0.933 

0.225 
0.211 2.451 

n 
m = 24 
c , = 0.288 
C3 = 0.230 

n 
m = 12 
C2 = 0.302 
C3 = 0.282 

n 
m = 12 
M = 0.251 
C3 = 0.300 

n 
m = 24 
C9 = 0.457 
C3 = 0.856 

12 
0.862 
1.190 

24 
0.112 
0.051 

coDtmued overJeaf 
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Marked Graphs with p=l , q :4 (continued) 
37 38 

n = o 
m = 6 
C2== 0.250 

0.125 

n =: 0 
m = : 1 2 
C2:= 0.283 
03:= 0.453 

39 40 

6 6 
n = o 
m = 12 
C2 = 0.222 
03:= 0.248 

n = 0 
m = 12 
C2:= 0.297 
03:= 0.248 

41 

6 

42 

O 
n = 0 

m = 24 
C2:= 0.271 
03:= 0.178 

O 
n = 0 
rn:=24 
C2:= 0.282 
C3 = 0.383 

43 

n = o 
m = : 1 2 
C2:= 0.280 
03:= 0.383 

0.490 
0.762 

45 46 47 48 

n = o 
m = 24 
(%:= 0.608 
C3 := 1.033 

n = 5 
m = 12 
Co = 0.647 
63:= 1.126 

o-

n = 5 
m = 24 
C2:= 0.173 
03:= 0.406 

-o 6 -o 
n — 0 

m = 12 
C2:= 0.213 
03:= 0.142 

49 

-O 
n 0 m = : 1 2 
C2:= 0.368 
C3 : 0.510 

50 51 52 53 

-O 

C2 
C3 : 

12 
: 0.256 
0.324 

o -o 
n = 
m 
C2 
C3 

S 
= 12 
= 0.563 
= 1.008 

ci = 0.115 
0.104 

o 

n = o 
m = : 1 2 
C2:= 0.303 
03:̂ 0.343 

54 
O 

C9 = 0.101 
C3 = 0.034 

-o 

o— 
n = 4 
m = 24 
C2:= 0.364 
03:= 0.546 

-O 

56 58 59 

-O 

O- -O 

-o 

-o 

-o 

60 

6 

o 

o- - o 6 

o 

-o 
n = 
m 
C2 
C3 

12 
0̂ 42 
1.155 

m 
Co 

C3 

4 
= 12 
= 0.576 
= 0.859 

m 
C2 

C3 

4 
= 12 
= 0.413 
= 0.523 

n — 4 
m = : 2 4 
C2:= 0.343 
C3 : 0.448 

n = 4 
m = 24 
C9:= 0 545 
C3:= 0.737 

61 

O 

# — 

n =4 
m = 1 2 
C2:= 0.719 
C3== L337 

-O 

62 

O -o 
n = 
m 
C2 
C3 

6 
&125 
0.063 

63 64 65 66 
O 

-o 
n =4 
m = 4 
C2:= 0.202 
C3:= 0.210 

0.151 
0.152 

Co = 0.900 
1.572 

0.152 
O.I05 

o 

0.279 
0.188 

68 69 70 71 72 
O o 

0.250 
0.125 

0.364 
0.530 

O o 

n = 4 
m = 1 
02== LOOO 
(#:= 1.000 

n = 4 
m = : 1 2 
C2== 0.447 
03:= 0.622 

o 
n = 3 

C2:= 0.203 
C3:= 0.210 

-o 

contmued overJeaf 
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Marked Graphs with p=l , q=4 (continued) 

n = 3 
m = 24 
C9 = 0.545 
C3 = 0.762 

n 
m = 12 
C9 = 0.500 
C3 = 0.500 

0.858 0.239 1.000 0.595 
L174 C3 = 0.267 1.000 0.865 

n = 3 
m = 12 
o = 0.420 
C3 = 0.572 

a =3 
m zz 4 
C2 = 0.203 
C3 = 0.155 

12 
0.3i ; 
0.318 

6 
0.250 
0.125 

12 
C9 — 0.500 0.250 
C3 = 0.500 0.250 

n 
m = 6 
C9 = 1.000 
C3 = 1.000 

m = 1 
C2 = 1.000 
C3 = 1.000 

0.842 0.319 0.500 1.000 
1.124 0.319 0.500 1.000 
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Marked Graphs with p 

C22 = 0.063 
C23 = 0.016 
C33 = 0.002 

0.063 C22 = 0.6a9 
C23 = 0.416 
C33 = 0.629 

1.000 
1.000 
1.000 

1.443 
1.980 
2.677 

1.000 
1.000 
1.000 

0.016 
0.002 

0.424 
0.579 
0.291 

1.000 
1.000 
1.000 

1.435 
1.888 
2.383 

0.25 
0.125 

2̂5 
C22 = 0.250 
C23 = 0.125 
C33 = 0.125 

C99 = 1.000 
C23 = 1.000 
C33 1.000 

1.000 
1.000 
1.000 

1.165 
1.429 
1.661 

C22 = 0.852 
C23 = 0.854 
C33 = 1.166 

1.000 
1.000 
1 .000 

1.000 
1.000 
1.000 

C22 = 1.443 
C23 = 1.980 
C33 = 2.677 

C22 = 1.000 
C23 = 1.000 
C33 

0.500 
0.500 
0.500 

1.000 
1 .000 
1.000 

1.000 
1.000 
1 .000 

1.000 
1.000 
1.000 

C22 = 0.849 
C23 = 1.164 
C33 1.000 L164 

1.000 
1.000 
1.000 

1 .000 
1.000 
1.000 

0.500 
0.500 
0.500 

1.000 
1.000 
1.000 
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