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It is predicted that neutron stars contain a liquid interior of superfluid neutrons
and superconducting protons. The effect of these superfluid components on the
various oscillation modes and stability of a rotating neutron star is investigated. We
model our superfluid using a simple non-relativistic, two-fluid model, where one fluid
consists of the superfluid neutrons and the second fluid contains all the remaining
constituents (protons, electrons). The two fluids are coupled through the equation
of state, in particular by entrainment, and are free to rotate at different rotation
rates around the same axis. The initial approach involves Eulerian perturbation
theory and subsequently a Lagrangian perturbation framework is developed. The
advantage of the Lagrangian framework is that we can construct a canonical energy
for the system allowing us to develop stability criteria for superfluid stars analogous
to the single fluid results by Friedman and Shutz [39]. At present our stability
analysis neglects the entrainment effect, and its inclusion is the focus of future work.
However, we do include entrainment in our normal mode investigations. We consider
a self-gravitating, Newtonian, superfluid cylinder. Numerically, we investigate the
normal mode solutions and investigate their dependence on the relative rotation
rate and on entrainment. We observe avoided crossings of modes and the onset of

a two-stream instability at a critical relative background rotation rate.

Our investigations are complicated by the presence of various singularities. As a
result there exists situations for which we are unable to obtain a numerical solu-
tion. To check our numerics we limit our investigations to situations where these
numerical problems are not encountered. We discover this corresponds to negative
values of the entrainment function, . Although it is predicted that in the neutron

star core the entrainment will be positive, negative entrainment is not physically



unrealistic. In fact it has been shown [28] that it is what is predicted for neutron

star crusts.
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Chapter 1
Introduction

A new generation of extremely sensitive detectors, with the mission of observing the
theoretically predicted gravitational waves are now operational. Despite no positive
detection thus far it seems inevitable that after decades of controversy over its
existence, this gravitational radiation will finally be observed. Gravitational waves
are produced when matter is accelerated in an asymmetrical way. The challenge in
detection lies in the fact that a detectable level of radiation is only generated by
the acceleration of very large masses in very strong gravitational fields. It has been
suggested [7] that instabilities in neutron stars could result in oscillations growing
such that the resulting gravitational waves reach a detectable level. Building a
realistic model of a neutron star to investigate these oscillations requires a detailed
understanding of the physics behind them. This work focuses on the idea that
neutron stars contain various superfluid components. Our purpose is to explore
the effects that this superfluidity has on the dynamics of the star, in particular

investigating the effect on the oscillations and stability.

1.1  An introduction to neutron stars

In 1934, only two years after the discovery of the neutron, the existence of neutron
stars was proposed by astrophysicists Baade and Zwicky [17]. They suggested
that neutron stars would be about 10km in diameter and would be formed during
supernova explosions as massive old stars collapse. For many decades after the first
prediction however, neutron stars were just hypothetical phenomena. It was over
thirty years later that PhD student Jocelyn Bell and her supervisor Antony Hewish
confirmed the theories when they detected these stars in the form of a pulsar [46].
They noticed rapid radio pulses from a specific direction of the sky. Due to the
frequency of pulses it was concluded that the object producing these pulses was
very small and the connection was made with the already theoretically predicted
neutron stars. In reality pulsars do not pulse but emit two beams of radio waves

in opposite directions along their magnetic axis. These beams sweep around the



sky once per stellar rotation, much like the beacon of a lighthouse. Therefore an
observer receives a short pulse each time one of the radio beams points toward the
Earth.

The life of a neutron star begins where that of an ordinary star ends. Throughout
its life a chain of thermonuclear reactions take place within a star generating enough
pressure to keep it from collapsing due to gravity. Initially hydrogen is burnt into
helium followed by helium to carbon. If a star is massive enough heavier and heavier
atoms will be fused until the star is composed of several concentric shells, each
dominated by a particular fusion reaction, the hottest shell at the centre containing
iron. Fusing iron to form heavier elements actually requires energy so at this point
all the fuel is used up and the core collapses under its own weight. During this
collapse, the outer layers of the star are blown off in a supernova explosion. What
remains at the centre becomes either a black hole or if the initial weight is low
enough a neutron star [41]. Stars with an initial mass of roughly 15 to 30 times the
mass of our sun are believed to eventually form neutron stars, however, as supernova

simulations become more precise these limits should become more absolute.

Neutron stars are predicted to have a radius of only 10km yet a mass 1.4 times
that of our sun resulting in core densities which are well beyond what is accessi-
ble to laboratory experiment, [62], [63]. Therefore despite considerable theoretical
analysis much of the physics of these compact objects is not well understood. The
present model of a neutron star [73] consists of a solid outer crust, with various
layers, enclosing a much hotter fluid core. We illustrate this model in Figure 1.1.
Following a rather thin ocean, we find an outer crust consisting of nuclei, ranging
from %%Fe to 18Kr, held together by Coulomb forces. The inner crust is made up
of a lattice of nuclei, and of superfluid neutrons. It is believed that the uncon-
fined neutrons condense by forming Cooper pairs. The neutrons therefore become
endowed with the property of superfluidity enabling them to flow freely past the
metallic lattice. At the base of the inner crust the nuclei dissolve and we find a
uniform fluid composed mainly of superfluid neutron but also with a smaller num-
ber of superconducting protons and electrons. In addition to neutrons and protons
the super-nuclear densities present within neutron stars give rise to various other
hadronic possibilities, [42]. Hyperons, a class of sub-atomic particle, are predicted
to appear in neutron star matter at a density of 0.38fm ™3, about twice the nu-
clear saturation density [60]. Under terrestrial conditions hyperons are unstable
and decay into nucleons through the weak interaction. The conditions in neutron
stars, however, can make the conversion of nucleons into hyperons energetically
favourable. Since Ambartsuniyan and Saakyan [4] first suggested the appearance of

hyperons in neutron stars in 1960 substantial theoretical analysis has been carried



Outer Crust

[nner Crust

Core

Neutron Voriex
Neutron

Supertluid Magnetic Flux Tubes

|
=

Neutron Supertluid +
Proton Superconductor  —1
Nuclei in a e — N )
Lattice Vot

Figure 1.1: Model of a Neutron Star: In the atmosphere and outer crust we find
nuclei ranging from % Fe to '8 Kr, held together by Coulomb forces. The inner crust
consists of superfluid neutrons and a lattice of proton clusters. The unconfined neu-
trons condense by forming Cooper pairs thus becoming superfluid. This superfluidity
allows them to flow freely past the metallic lattice. At the base of the inner crust the
nuclei dissolve and we find a uniform flurd composed mainly of superfluid neutron
but also with a smaller number of superconducting protons and electrons.

out on the consequences for neutron star physics. The principal effect caused by
hyperon formation is a softening of the equation of state [91]. Other more exotic
possibilities that have been suggested for the neutron star core include meson con-
densation and a deconfined quark phase. We focus our attention in this thesis on
the effect of superfluidity in neutron stars and thus neglect the presence of these
other more exotic particles. However, since these additional particles may also be
superfluid, [84], one could conceivably adapt this analysis in some way to include

their presence.

1.2 Superfluidity

Traditionally in physics one learns that the world is divided into two. There is the
microscopic world of quantum mechanics and there is the macroscopic world where
classical physics still reigns. Superfluids are astonishing in that they shatter this

barrier between worlds. Quantum effects are essential for the existence of these



systems yet they can exist on length scale of a um, a cm, or even 10*%km. Consider
a liquid which can freely flow through a narrow capillary without transferring any
of its momentum to the wall. This fluid would be moving without friction and
this is what is known as a superfluid, [48]. The property of superfluidity was
first observed in liquid helium He*, which at a temperature of 2.18K undergoes
a second-order phase transition. At this point, known as the lambda point, a
remarkable discontinuity in heat capacity occurs, the liquid density drops, and a
fraction of the liquid becomes a zero viscosity superfluid. Keesom [47] used the
terms helium I and helium IT to distinguish the liquid above and below the lambda
temperature respectively. Helium II behaves as if it were a mixture of two different
liquids with their own velocity fields and densities. There is a normal, viscous
fluid component which is basically a classical Navier-Stokes fluid and an inviscid
superfluid component. Energy and momentum are exchanged between the two fluids
by an interaction known as mutual friction. The relative proportion of normal and
superfluid is determined by the absolute temperature 7. At absolute zero helium II
is still a liquid and is entirely superfluid. The property of superfluidity and the fact
that helium remains liquid down to absolute zero can not be explained by classical
theory and are connected with quantum phenomena. As is well known, there are
two stable isotopes of helium, He® and He*. The liquid which exhibits superfluidity
is the one formed from atoms of He* that is, from particles obeying Bose statistics.
He® atoms also form a quantum liquid, known as a Fermi liquid, but do not exhibit
superfluidity at temperatures of the order 1 or 2 K. This is because superfluidity
arises from the fraction of helium atoms which have condensed to the lowest possible
energy. Bosons can condense in unlimited numbers into a single ground state since
they are governed by Bose-Einstein statistics where as fermions, such as He® atoms,
are constrained by the Pauli exclusion principle. At low enough temperatures,
however, pairing can occur in Fermi liquids, forming Bose type particles and hence
instigating the occurrence of superfluidity. This is known as Cooper pairing and is

essential for the formation of superfluids in neutron stars.

In a standard superconductor a Cooper pair consists of two electrons which are
attracted to each other sufficiently strongly that they form a bound state. The
force between the two negatively charged electrons becomes attractive as a result
of their interactions with the crystalline lattice through which they are travelling.
As one electron passes through a given region of the lattice it attracts the positive
ions toward itself. The electron moves on, but the heavier ions take a longer time
to return to their original position, and during this time they attract the second
electron. The interaction with the lattice is shown schematically in Figure 1.2.

These two electrons are known as a Cooper pair. If the energy required to bind
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Figure 1.2: A schematic representation of the basis for the attraction interaction
between two electrons via lattice deformation. As one electron passes through a given
region of the lattice it attracts the positive tons toward itself. The electron moves
on, but the heavier tons take a longer time to return to their original position, and
during this time they attract the second electron. The electron pair remain bound
provided the energy required to bind them together is less than the energy from the
thermal vibrations of the lattice attempting to break them apart. [48].

these electrons together is less than the energy from the thermal vibrations of the
lattice attempting to break them apart, the pair will remain bound [43].

In neutron stars superfluidity occurs through the creation of pairs of neutrons and
protons. The Cooper pairs which are formed are bound systems of two fermions
and must therefore be described by wave functions which are anti-symmetric under
exchange of the coordinates and spins of the pairs. This results in the existence
of two types of states, the spin-singlet state, 1Sy, with spin zero and the spin-
triplet state, 3P, with spin 1. Figure 1.3 is a plot of temperature against density
illustrating the transition from normal matter to superfluid matter. The regions
below the curve represent the existence of the corresponding superfluid state. At the
lower densities, typical for the neutron star crust we can expect to find superfluid
neutrons in the 'Sy state. At roughly 2 x 10'g/cm® which indicates the crust-
core interface, we observe, not only the emergence of 1S protons but the dominant
attraction for the neutrons now occurs in the 3P, channel. Hence in the neutron
star core we expect to find both superfluid protons in the 'S, state and superfluid
neutrons in the 3P state [75]. It is now believed that the 3P, curve is lower than
shown in the Figure, although maximum values of the transition temperature can

vary considerably for different macroscopic models [87].
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Figure 1.3:  Plot of transition temperature against density illustrating the transition
from normal matter to superfluid matter. The regions below the curve represent the
ezistence of the corresponding superfluid state. At the lower densities, typical for the
neutron star crust, we can ezpect to find superfluid neutrons in the 'Sy state but an
absence of superfluid protons. At roughly 2 x 10*g/em? which indicates the crust-
core interface, we observe, not only the emergence of 'Sy protons but the dominant
attraction for the neutrons now occurs in the 3P, channel. Hence in the neutron
star core we expect to find both superfluid protons in the 'Sy state and superfluid
neutrons in the 3P, state [75]. It is now believed that the *P, curve is lower than
shown in the Figure.

One of the most distinct features of superfluidity is its response to rotation. If we
consider a normal fluid in a rotating cylinder, such as water in a rotating glass, after
some initial slowness the fluid will begin to rotate uniformly with the cylinder. In
the case of a superfluid we might assume that since the superfluid does not interact
with the walls of the cylinder it would remain stationary. However, this conclusion
is not observed experimentally. What happens is that the superfluid mimics rigid
body rotation very closely by forming an array of vortices, see Figure 1.4 [64], [38].
A cylindrical non-superfluid region surrounded by stable currents spontaneously
appears in the superfluid as shown in Figure 1.5. These tornado like tubes have
non-zero curl and thus lead to a non-zero global circulation. It should be noted
that the presence of a single vortex in a superfluid leads to an extremely non-rigid
body flow. In this case, the flow is rapid near the centre of the vortex and falls
off as 1/ where 7 is the distance from the vortex centre. However, with increased

rotation more vortices can be added to the superfluid and a smooth average over a



Figure 1.4: A schematic representation of the vortez state in the interior neutron
superfluid. The superfluid mimics rigid body rotation very closely by forming an
array of vortices. If the superfluid is rotated at a constant angular velocity the
vortices form an ordered array with the vortex lines being aligned with the azis of
rotation. The number of vortices present is directly proportional to the angular speed

of the superfluid.
JQ)\ Vortex core

Y

25>

( ¢> <} Streamhnes

Figure 1.5: A schematic representation of a vortez line, a cylindrical non-superfluid
region surrounded by stable currents. These tornado like tubes which allow the
superfluid to mimic rigid body rotation have non-zero curl and thus lead to a non-
zero global circulation.

large number of vortices causes the system to rotate in an increasingly rigid-body

like manner [48].
The key property of a superfluid vortex line is that the circulation is quantised,

. = h
n—jivs-dl 2\/IN (1.1)

Where N is an integer and M is the bare neutron mass [43], [79]. The factor of

two in equation (1.1) arises because we are considering neutron pairs. The energy
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Figure 1.6: A schematic sketch of an observational plot of pulsar period against
time for the Vela pulsar. Glitches, indicated by the arrows, occur when the pulsar
suddenly speeds up by a very small amount. The largest glitches have relative ampli-
tudes (Av/v) of several parts per million, but the range of amplitudes covers many
orders of magnitude. The recovery back to the pre-glitch rotation rate ranges from

days to years [44].

associated with a vortex line depends on x?. Therefore it is energetically favourable
to have two vortices each with one quantum of circulation, rather than one vortex
with two quanta [25]. If the superfluid is rotated at a constant angular velocity
the vortices form an ordered array with the vortex lines being aligned with the axis
of rotation. The number of vortices present is directly proportional to the angular
speed of the superfluid. As the speed of rotation decreases a new equilibrium state
can only be achieved by the destruction of vortices. This process proceeds by the
outward flow of vortices, and annihilation of vorticity at the interface between the

superfluid and the boundary.

Strong observational evidence for the existence of superfluid components in neutron
stars is provided by the well-known glitch phenomenon [29]. Signals received from
pulsars arrive at a remarkably constant frequency which is considered to be the
rotation frequency of the star. A startling observation was made, however, in 1969
when the Vela pulsar suddenly seemed to speed up [19]. This phenomenon has
been called a glitch. Following this glitch event is a slow recovery of the angular
deceleration back to the pre-glitch spin-down rate, see Figure 1.6. The timescale

for this return is macroscopic, ranging from days to years.

The origin of glitches is poorly understood. However, since the interior of a neutron

star is superfluid, it is useful to see if the observed speed-ups can in some way



be attributed to the properties of a rotating superfluid. A possible explanation
for the glitches, suggested by Packard [67], is the metastability of superflow. A
system can be described as metastable if it is above its minimum energy state, but
requires an energy input before it can reach a lower energy state. Experiments on
rotating vessels of liquid helium reveal that the vortices tend to pin themselves to
imperfections on the walls of the vessel. If the vessel is decelerated the vortices
may remain attached to the vessel and a metastable flow is created in which the
superfluid is flowing faster than the vessel. The superfluid will spin down only if the
vortices are destroyed on the vessel walls. In the case of a neutron star, to achieve
equilibrium between the superfluid and the neutron star crust the superfluid must
expel vortices as the star slows down. Pinning of this vorticity in the crust is thus
a mechanism for storing superfluid kinetic energy, see Figure 1.7. As the relative
velocity between the superfluid and crust builds up, the force tending to expel the
vorticity increases, [34]. Eventually this will overcome the pinning forces. At a
critical value of the relative angular speed of the superfluid and crust the vortices
will unpin. A problem with this model is that to account for the observed change
in angular acceleration roughly 10'* vortices must simultaneously depin during a
glitch. We observe this in the following way; by considering equation (1.1) in the

form,

h
] .2
oM v (1.2)

7[ v, -dl = (QR) x (2nR) =
c
we can see that the change in the number of vortices, i.e the number of vortices
that must depin, d N can be written as,
4w M R?
§N = ”T(mc (1.3)
Where (), is the change in angular velocity of the crust during a glitch. To look

at this quantitatively we note that typically
6Qc = 1072571 (1.4)

giving
§N = 3.16 x 10" (1.5)

As can be seen in Figure 1.6 after a glitch event comes a long period of relaxation.
The source of this long recovery has been the focus of much theoretical analysis
[33], [73], [74], [85], [2] & [3]. Alpar et al [2] & [3] have, over many years, de-
veloped a model of the post-glitch relaxation in terms of the rotational dynamics

of a superfluid with vortex pinning inside the neutron star crust, known as vortez
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Figure 1.7:  An illustration of vortexr pinning in a neutron star leading to a
metastable flow in which the superfluid is flowing faster than the normal flurd. The
velocity of the normal fluid, v,, decreases due to magnetic breaking but since the
vortices are pinned to the crust the number of vortices remains unchanged and thus
the superfluid velocity, vs, cannot change. Observationally deduced rotation rates
are believed to correspond to v, since the magnetic field 1s locked to the crust.

creep theory. An alternate theory suggests the crustal lattice itself drifts while the
vortices remain pinned [73], [74] & [85]. At present there is no firm consensus on
the theory connected with neutron star glitches, however, the evidence is strong
that both the glitch event and the subsequent relaxation reflect changes in the an-
gular momentum distribution inside the star. This gives great confidence to the

predictions of superfluidity in neutron stars.

1.3 Non-radial oscillations of neutron stars

It is well known that stars, being essentially large fluid balls, will tend to oscillate
both radially and non-radially. Radial oscillations are simple contractions and ex-
pansions of the star whereas non-radial oscillations result in deformations whereby
the star loses its symmetrical shape. Neutron stars are capable of experiencing a
wide range of oscillatory modes which can be excited by various different astrophys-
ical processes. Each restoring force which acts on a star will result in a family of
pulsation modes and the modes are categorised accordingly. p modes are generated
by acoustic waves for which pressure is the restoring force. The lowest acoustic
mode is normally considered the fundamental mode, or f mode, of oscillation. The

g modes are generated by gravity waves for which buoyancy is the restoring force.
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Finally the r modes are from rotational waves where the Coriolis force is responsible
for restoration. For a more in depth explanation of this extensive subject see [80]
or review articles such as [14]. In 1988 Epstein [35] proposed that superfluidity in
neutron stars should introduce additional modes to the oscillation spectrum. The
first numerical observation of these mode was by Lee [51] who not only discovered
the existence of modes not present in single fluid models but also the absence of ¢
modes. Further evidence for the absence of these ¢ modes was found analytically by
Andersson & Comer [11] using a local analysis. Since the identification of these su-
perfluid modes substantial research has been done taking into account entrainment,
general relativistic effects and rotation [68], [26], [13]. One of the predominant mo-
tivations for studying stellar oscillations is the hope that we can use the information
acquired to gain insight into the interior structure of the star. Helioseismology, the
study of the Sun’s interior using the solar oscillations, has revealed vast amounts of
information on the internal structure of the Sun [78]. By investigating how waves
propagate through the Sun scientists can iufer the temperature, density, and com-
position of the material they pass through. An interesting proposition for neutron
stars is the idea of grawvitational wave asteroseismology, using gravitational wave
data to probe neutron star interiors [15], [20]. Any non-axisymmetric pulsations
will generate gravitational radiation. If these waves were to reach a detectable level
they could allow us to put constraints on the interior structure of the star. Unfortu-
nately the field of gravitational wave astronomy is highly challenging. The strongest
astrophysical signals are predicted to produce signal amplitudes that are so small
they could easily remain unnoticed amongst detector noise. To have any hope of
detection we require not only a large signal but also an accurate model of the signal
we are hoping to detect. Unstable oscillations of neutron stars could grow until the
resulting gravitational waves reach a detectable level. Therefore investigating the

instabilities of neutron star modes is of great astrophysical importance.

The instabilities discussed in this thesis can be identified as either dynamic or
secular. Consider a star in hydrostatic equilibrium. Any small disturbance, which
will inevitably be present in a real system, will create an imbalance of pressure and
gravity resulting in oscillations. For a dynamically stable state these oscillations
will be short-lived. However, if the system is dynamically unstable the fluctuations
will grow on a timescale similar to that of the oscillation. Secular instabilities on
the other hand are driven by some dissipative mechanism and act on a much longer
time-scale. Of particular importance for superfluid neutron stars is the idea of
the superfluid two-stream instability discovered by Andersson, Prix & Comer [9]
which they suggested was a possible trigger mechanism for neutron star glitches
[8]. It is well known that when two inter-penetrating streams in a plasma have

a relative motion an instability can be produced, in which a perturbation in one
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Figure 1.8:  An dllustration of the mechanism behind the Kelvin-Helmholtz insta-
bility which arises as a result of relative motion of two surface waves [36]. The
sinusoidal disturbance on the interface of the two fluids gives rise to pressure per-
turbations. At the peaks we observe an increase in fluid velocity and hence a decrease
in pressure compared to the undisturbed value. In contrast at the dips a decrease in
velocity and hence increase in pressure 1s observed. This pressure imbalance leads
to an increase in the amplitude of the disturbance which in turn creates even larger
variations in the pressure. As this proceeds we observe a self amplifying perturba-
trom.

stream produces a spatial bunching of the second [37], [5]. More recently it was
shown that a similar two-stream instability can be induced in superfluids by the
relative motion of the normal and superfluid components of the same liquid [9].
This instability is analogous to the Kelvin-Helmholtz instability which arises as
a result of relative motion of two surface waves [36]. If we introduce a sinusoidal
disturbance on the interface of the two fluids, as shown in Figure 1.8, we notice that
the dips and peaks will give rise to pressure perturbations. At the peaks we observe
an increase in fluid velocity and hence a decrease in pressure compared to the
undisturbed value. In contrast at the dips a decrease in velocity and hence increase
in pressure is observed. These perturbations result in an increase in the amplitude
of the disturbance which in turn creates an even larger pressure imbalance. As this
proceeds we observe a self amplifying perturbation which is the main mechanism
behind the Kelvin-Helmholtz instability. The difference in the case of the two-
stream instability is that the two fluids are inter-penetrating. It was shown that
the instability sets in once the relative flow between the two fluids reaches a critical
value. This result has also been confirmed in a mode calculation on inertial modes of
non-stratified superfluid stars [68]. These results highlight the importance of further
investigations into superfluid systems. In particular they provide motivation for
developing stability criteria for superfluid stars analogous to the single fluid results
derived by Friedman and Schutz [39], [40]. This derivation is the focus of much of

the work in this thesis.



Since the effect of these two-stream instabilities has been investigated only for the
case of inertial modes of non-stratified stars, we investigate general modes in the
stratified case by limiting our considerations to a rotating superfluid cylinder, using
cylindrical coordinates (r, ¢, z). The advantage over the spherical case lies with the
fact that in a cylindrical system the problem of linear oscillations can be reduced
to the solving of a one dimensional system of ordinary differential equations. By
considering infinite self-gravitating cylinders we can not only ignore variations in
the z-direction we can also assume that the unperturbed quantities depend solely
on r. Furthermore if we assunie that the azimuthal dependence of the perturbations
is given by exp(im¢) we arrive at a system of ordinary differential equations which
depend only on 7. It is expected that many of the features that are valid for rotating
superfluid cylinders will also hold for rotating superfiuid stars [81]. More specifically,
the study of rotating superfluid cylinders may contribute to the understanding of

oscillations in the equatorial regions of these stars.

An exciting possibility is experimental tests of these superfluid oscillations and in
particular the superfluid two-stream instability in, for example, superfluid *He.
The equations used to describe our superfluid neutron stars are analogous to the
standard Landau model for superfluid helium. Modifications to our equation of
state and boundary conditions should in principle allow us to investigate the oscil-
lations and stability of superfluid *He. Since the experimental setup for rotating
fluid experiments usually consists of a rotating bucket, 1.e. a cylindrical problem,
our analysis of superfluid neutron stars in terms of superfluid cylinders should be

relevant for this alternate situation.

This thesis begins in Chapter 2 where we define a general Newtonian model for
a rotating, self-gravitating single fluid star and subsequently extend the results
to describe a two-fluid system. One fluid is composed of the superfluid neutrons
while the other comprises of the remaining constituents, such as the crust nuclei,
core protons and crust and core electrons. In Chapter 3 we find solutions to these

systems for the case of uniformly rotating fluids in cylinders.

In Chapter 4 both Eulerian and Lagrangian perturbation theory are used to inves-
tigate superfluid neutron stars. Initially the problem of a normal fluid in a rotating
cylinder was studied using Eulerian perturbation theory. In the same framework
we develop a system of equations for the superfluid case. In order to investigate the
stability properties of the two-fluid system a Lagrangian perturbation framework
is constructed, analogous to the single fluid results developed by Friedman and
Schutz [39]. Initially we ignore the entrainment effect which is a coupling between
the two fluids in which the movement of one of the fluids induces a momentum

in the other. This is a serious omission and hence we make a preliminary step in
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developing stability criteria for this more complicated system by deriving the La-
grangian perturbation equations. Constructing the corresponding canonical energy

equation and the associated stability criteria is left for future work.

In Chapters 5 and 6 we apply the results obtained to investigate the modes of
oscillation of a rotating cylinder of superfluid, where the two fluids are allowed to
rotate at different velocities. Initially we consider the entrainment free problem
where we find numerous different modes of oscillation and show that the r modes
are secularly unstable, in agreement with previous work on spherical systems. The
final consideration is that of a system with constant entrainment. We find this

inclusion drastically complicates the corresponding system.

Our final Chapter brings together all the key results from this thesis and discusses
the astrophysical relevance of our investigations. We conclude by considering ex-
tensions and improvements which must be made in order for this superfluid neutron

star research to proceed.
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Chapter 2
Newtonian hydrodynamics

We investigate the oscillations and stability of superfluid systems by solving the
relevant ordinary differential equations. In Appendix A we introduce the numerical
techniques required to solve these equations. In this Chapter we introduce the rel-
evant Newtonian hydrodynamic equations we hope to solve. To understand how a
fluid in a rotating cylinder or in a neutron star behaves we must consider the equa-
tions which govern fluid flow. Fluid dynamics is a macroscopic science, concerned
with properties that can be observed and measured on the laboratory scale. To
describe a fluid completely requires a function which gives the distribution of the
fluid velocity ¥ = ¥(z,y, 2, t) and any two of the fluid’s thermodynamic quantities
such as density and pressure. There are four equations which when combined give
a complete mathematical description of the fluid. These are the Euler equation, the
equation of continuity, Poisson’s equation and an equation of state. The relevant
equations for a single fluid and a two-fluid system are discussed in this chapter,
however, for a detailed description of fluid dynamics and a variational description

of multi-fluid hydrodynamics see Landau and Lifshitz [49] and Prix [70] respectively.

2.1 Single fluid equations

Throughout this thesis an analysis of the single, perfect fluid case is used as a
prelude to the superfluid problem. This allows a straightforward introduction to
the relevant formalism which can subsequently be extended to the two-fluid case.
The Euler equations are the equations of motion of the fluid which, for a single-fluid,
can be written as,

(8 + vV )y + %Vip LV =0 (2.1)

Where v; is the fluid velocity, p the fluid density, p the fluid pressure and & the
gravitational potential. In some circumstances it is more constructive to work in
terms of the chemical potential, u, rather than the pressure. The reason for this is

that in the two-fluid case we have a separate velocity and density for each of the two
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fluid components but the pressure is a variable that depends on contributions from
both the normal and superfluid parts. Thus by working with the chemical potentials
we have terms which describe the individual fluid components but which if needed
can be combined to tell us the pressure. The chemical potential of a thermodynamic
system is the change in the energy of the system when an additional constituent
particle is introduced, with the entropy and volume held fixed. If a system contains
more than one species of particle, there is a separate chemical potential associated
with each species, defined as the change in energy when the number of particles of

that species is increased by one. The precise definition is,

(o8 (.
F=\on v '

Where g is the chemical potential, £ is the energy, N is the number of particles

[\]
[N
~—

and s and V' are the entropy and volume respectively. The chemical potential can

be related to the pressure as follows,
Vp=nVpu (2.3)

where n is the number density. We make use of equation (2.3) and introduce the
notation fi = p/mg, where mp is the particle mass, to write the Euler equation in

terms of the chemical potential,

((9t + ’Ujv]')’l)i -+ VI[L -+ V;I) =0 (24)

The equation of continuity is the equation which expresses the conservation of

matter. It can be written as,

Bip + Vi(pv') = 0 (2.5)
which in terms of the number density, n = p/mg, becomes

oy + Vi(nv') =0 (2.6)
Poisson’s equations is a mathematical description of the gravitational field,

V20 = 4nGp = 47Gmgn (2.7)

The final equation necessary to describe the single-fluid system is an equation of
state relating the pressure to the density. For the interior of a neutron star the true
equation of state is far from indisputable. The many so-called realistic models which

have been proposed vary considerably, largely due to nuclear physics uncertainties
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in the interactions of matter at the extreme densities which occur within these
compact objects. Consequently we chose to describe our system using a simple

polytropic equation on state.
p=Kp" (2.8)

Where K is a constant and I" is the polytropic exponent, such that I' = 1 + 1/n.
It is important to note that here n refers to the polytropic index and should not
be confused with the number density. For a neutron star we expect a value of n
between 1 and 1.5, [16].

2.2 Two-fluid hydrodynamics

An accurate description of the crust and outer core of a neutron star consists of three
main constituents; neutrons, protons and electrons. However we describe our system
using a simple two-fluid model which describes a superfluid as a mixture of two fluid
components, the normal fluid and the superfluid [13], [50], [61], [10], [70]. Each
fluid has its own velocity v%, and number density nx. X = n,p are the constituent
indices with n representing the superfluid neutrons and p representing the remaining
constituents (protons, electrons, etc). The justification for this simplified picture is
as follows. The electrons in a neutron star behave as a normal fluid, however, the
protons will exist either in nuclel in the crust or as superconducting protons in the
core. Due to the magnetic field on a very short timescale it has been shown that
these protons are coupled to the normal electron fluid [1]. We therefore consider
the electrons and protons to be locked together and we label this constituent the
protons. The superfluid neutron component on the other hand is able to move

independently due to a lack of viscosity.

In Section 1.2 the creation of a lattice of microscopic vortices to allow for rotation
of superfluids was discussed. Locally the superfluid is constrained to be in a state
of irrotational flow, however, in order to describe the dynamics of our superfluid
neutron star we need only consider macroscopic properties. In a typical pulsar it is
predicted that the density of neutron vortices is 10> — 105¢m ™2 [70]. Therefore on
a macroscopic scale we can average over many vortices and find that the superfluid
behaves almost as if it were an ordinary fluid. Our model treats the superfluid and
normal fluid identically as two ordinary fluids which are able to move relative to each
other, due to the absence of local superfluid viscosity. A further complication is the
presence of an interaction which exists between the vortex lattice and the normal
fluid [61], [1], [31]. In general this dissipative effect, known as mutual friction acts
to bring the two fluids into co-rotation. However, if this interaction is either very
weak or very strong a stationary description of the star with the two fluids rotating

at different rates around the same axis is appropriate [69]. In this investigation we
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assume that on the timescales we are considering the vortex friction is negligible,
such that the two fluids are free. This assumption allows us to avoid unnecessary
complications resulting from the inclusion of vortex friction and focus our attention

on the effect of coupling by entrainment.

We also assume that the electron and proton charge densities are balanced (n, = n.)
allowing us to neglect electrodynamic effects. Furthermore we neglect the presence
of exotic matter, which is expected to exist within the neutron star inner core, and
the presence of an elastic crust.

=l ol (wyx = 0h—vk)

where Y # X. In order to avoid confusion we should stress that repeated constituent

We define the relative velocity of the two fluids as, w

indices never imply summation, while repeated vector component indices always do.

Following an identical approach as Prix [70] we introduce a Lagrangian density, Ay,
to describe the Newtonian hydrodynamics of our two fluid system. Ay depends on

the number densities ny and currents n%, = nxvy such that,
Mg = Au(nx,n) (2.9)

The dynamical quantities of our system such as the ‘energy’, p, and 'momentum’,

p, are defined by the differential of Ay,

dAg = Y (pgdnx + pidn) (2.10)
X=n,p
giving,
OA . BA
X . Po= 2.11
pO anx_ pX an}( ( )

In this work we consider a hydrodynamic Lagrangian density of the form,

i
Ny

2
~E (2.12)

nx

. 1
AH(nI,nZX) = 5 Z mx

X=n,p

where E is the internal action. Prix [70] showed that E must satisfy Galilean

invariance which implies the velocity dependence of E must be,
B = Blnx, uly)

Since we restrict our investigations to isotropic fluids this internal action can only
be of the form,
E = E(nx,wyy) (2.13)
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The first law of thermodynamics can be represented by the total differential of
E(nx,w%x),
dE = Z pxdnyx + ad(wy) (2.14)

X=n,p

This leads to the definition of the two chemical potentials
OF
lix = <_> (2.15)

as well as the entrainment «. The entrainment function describes how the internal

energy of the system depends on the relative velocity of the two fluids.

oF
a=|——-— 2.16
(a(w%X)>nx,ny ( )

We therefore find the momentum of our system can be written as,

pf{ = mB(viX + axwfx) (2.17)
where
ex =2a/nx (2.18)

is introduced as a dimensionless entrainment parameter. A flow in one of the
fluid components will induce a momentum in the other constituent. A fundamental
consequence of entrainment is that in general the momenta are not aligned with the
respective fluid velocities. It is only in the case where there is either no entrainment
or no relative velocity between the two fluids that the familiar result that p;* =

X

1

mpv: 18 observed.

In our superfluid model we ignore f-reactions (n = p + e + 7) between the two
fluids, as has been done in many previous investigations of oscillations in superfluid
systems [53] & [68], such that strict conservation of neutrons and protons applies

and we have the following two continuity equations
Oinx + Vi(nxvy) =0 (2.19)
We also find two coupled Euler equations
(0, + V5 V) (v +exw!™) + Vi (® + fix) + exw! ¥V =0 (2.20)

Where iy = px/mp. These can be derived from the Lagrangian density using a
convective variational principle, as was done by Prix [70]. We emphasise that equa-

tion (2.20) is expressed in terms of the chemical potential rather than the pressure.
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As discussed earlier we find this constructive in the two fluid case since the pressure
is a variable that depends on contributions from both the normal fiuid and the su-
perfluid where as there exists an individual chemical potential for each constituent.
The final equation is the standard Poisson equation for the gravitational potential
e,

V20 = drmgG (n, +np) (2.21)

In this study we assume a stationary and axisymmetric background, with the normal
flutd and the superfluid rotating around the z-axis at different angular velocities €2,

and §2,. Hence we have

[N\
[N\
[N}
~——

fo = thpi and wé,x = (Qy — Qx)api (2.

with ' given by
©'0; =0, . (2.23)

The system of equations we have constructed to describe our superfluid neutron
star could equally describe any rotating two-fluid system, e.g. rotating superfluid
helium. However, in the field of condensed matter physics an alternative formalism
where the interaction between the two fluids is described in terms of an effective
mass, rather than entrainment, is often used [92]. A detailed discussion of this
alternative formalism can be found in Prix et al 2002, [69]. It is important to
understand the connection between entrainment and effective mass if we are to
have any hope of applying our work to this alternative scenario. The effective mass
of a particle is the mass that it seems to carry. For example consider electrons
and holes in a crystal. Under most circumstances the particles respond to electric
and magnetic fields almost as if they were free particles in a vacuum, but with
a different mass. The entrainment and effective mass can be related through the

following equation,

My
2a=p, | 1 — — (2.24)

mp
Where m is the proton effective mass. Prix et al [69] discuss the proton effective
mass at neutron star densities and conclude that it can range over values 0.3 <

my/mp < 0.7.



Chapter 3

Equilibrium models of rotating,

polytropic cylinders

Having introduced, in Chapter 2, the equations describing the behaviour of single
and two fluid systems we now consider equilibrium models for uniform rotation in
self gravitating, polytropic cylinders. Since much of the work intended to be done
in this project is in a cylindrically symmetric system it is necessary to obtain these
background solutions. The model we will consider is uniform rotation about the
z-axis, allowing the possibility that in the two-fluid case the fluids can rotate at
different speeds. The edge of the cylinder is defined as the point at which the fluid
densities vanishes. This would be similar to what one would expect for a star. We

begin by considering the single fluid case.

3.1 A single fluid in a cylinder

In an infinitely long cylinder in hydrostatic equilibrium, rotating uniformly about

its axis of symmetry, equation (2.1) becomes,

1 Q2
~Vip= -V, (@ - —r2> (3.1)
0 2

I

Combining this with the polytropic equation of state, equation (2.8),

VZ‘ [K(n + 1),0””] = —Vi <@ — QTT'2> (32)

Integrating this equation directly gives,

2

Q_
K(n+1)(ps/™ = p/™) + 5T =0 - & (3.3)

Where py and &g are the values of the density and gravitational potential along the
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axis of symmetry. Substituting this expression for ® into Poisson’s equation (2.7)
gives,

2

—K(n+1)Vpt/m™) + Vv? (%7‘2> =4rGp (3.4)

In cylindrical coordinates we can express this as,

1d

—K(n+1)-— { : (pl/")] +20% = 4nGp (3.5)

dr
Where we have used the fact that the density has only a radial dependence, i.e.

p = p(r). Finally we scale the variables as follows,

p = pobd”, 0 = 7rGPOW2

1
Kn+1)p"|°
= = |— /7 3.6
r=af, « G (3.6)
to obtain the Lane-Emden equation for a rotating cylinder, [66],
1d dg w?
() = e 3.7
edGIREA D
The boundary conditions on the axis of symmetry are,
d6(0)
6(0) =1 d ——= =0 3.
(0) an i (3.8)
and the boundary condition at the free surface, p(¢ = ;) = 0, requires that,
6(¢s) =0  where (= R/« (3.9)

In the two special cases when n = 0 and n = 1 the cylindrical Lane-Emden equation
is linear and the solutions can be easily obtained, [65].

9

—9
=2
g ¢

2 2

n=1 6= (1—%) Jo(CH%— (3.10)

n=0 f=1+2

Where Jy(¢) is the zeroth order Bessel function. For all other values of n the equa-
tion must be solved numerically. By reducing the second order Lane-Emden equa-
tion to two first-order differential equations the Runge-Kutta integration method,
outlined in Appendix A.2, can be used to obtain a numerical solution to our prob-

lem. The two first order equations that need to be integrated are,
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dy y 0 w?

¢ ¢ 2
Since the point { = 0 is a singular point of equation (3.12), we derive a series expan-
sion for # around ¢ = 0 and use this expansion to start the numerical integration

at a small distance from the centre. We find,

0 =1+ ay(*+ asC* +asC®+ ... (3.13)
dé ) 5
@ = 2a5C + 4a4C° + 6a6C° + ... (3.14)

with

a6 = —11’;2 (1 - “’;) [gju(n— 1) (1— “’;M (3.17)

The value of ¢ for which 8 equals zero for the first time determines the value of (.

3.1.1  Physical parameters and the condition for mazimum rotation

A solution to equation (3.7) exists provided the density remains positive (6 > 0)
and its derivative remains negative (df/d¢ < 0). Therefore at the surface,

do

— <0 (3.18)

daq e,
The configuration where this derivative is equal to zero determines the maximum
value of the rotation of the system. At this point the centrifugal force is balanced
perfectly by the gravitational force and increasing the rotation rate further would
result in mass shedding. By trial and error we can determine the value of this max-
imum rotation for different values of the polytropic index, n, using our numerical

integration scheme, see Table 3.1.

The mass per unit length of our system is given by,

27 R Cs
M :/ dgb/ prdr = 2/7(12,00/ 0™ Cd¢ (3.19)
0 0 0
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If we substitute for 8" from the Lane-Emden equation we find,

2 de
M =21a?p |22 — ¢, & 3.2
relpy [cs TG J (320)
which is related to the mean density, g by,
M =nR’p = na*(%p (3.21)

Equating equations (3.20) and (3.21) we obtain an expression for the ratio pg/p,

which is a measure of the mass concentration,

po w? 2 df
p 2 (¢ dC

} (3.22)
€s

This equation shows that maximum rotation is characterised by,

QQ
- =9 3.2

This limit is independent of the polytropic index n.

If we assign the parameters in a non-rotating cylinder with an index * the mass per

unit length of a non-rotating system can be written as,
M. = 1a2C2, 5, (3.24)
Therefore we can relate the mass of a cylinder in rotation to that of a non-rotating

M (aN'(GN\h
M. (a_> (c) 2 (3.25)

If we substitute for o from equation (3.6) we find,

cylinder such that,

M K L/n
=) (2 (3.26)
M* K* ,00’*

- (&) (22) 1)

The factor f is always greater than one and we can obtain it from the numerical

where,

calculation. Supposing K is kept constant as the rotation varies, such that the
equation of state does not change, we observe that we can insist the mass of our

cylinder remains constant as we change the rotation rate provided the value of the



central density is altered. This is the conventional approach taken when investi-
gating stars. An alternative to considering spinning up a cylinder of fixed mass,
is to consider various cylinders with an identical central density such that as the
rotation rate is increased the mass of the system must be increased accordingly. In
the two fluid case, we consider a system such that the two fluids share a common
surface. In this problem keeping both the proton mass and the neutron mass fixed
whilst simultaneously insisting both densities vanish at a common surface is non
trivial. Hence in this more complicated problem we take the approach of insisting
the neutron central density is constant and allow the other parameters to change
accordingly. It makes sense therefore to proceed in a similar fashion in the single
fluid case by insisting the central density is fixed. We stress that consequently as

we vary the rotation rate, w, we are not considering the same cylinder.

3.1.2 Numerical results and discussion

We integrated equations (3.11) and (3.12) numerically for various values of n and
w. Figures 3.1 and 3.2 show how the density varies with radius for different config-
urations. Increasing the polytropic index results in a considerable increase in mass
concentration. This can also be observed in Table 3.1 where we show (s, po/p and
df((s)/dC for various values of w and n. We also highlight the values of maximum
rotation obtained through the method of trial and error. In agreement with results
by Robe [72] and Veugelen [83] we discover that increasing the rotation, w, leads to
an increase in both ¢; and mass concentration. This is due to the centrifugal force,
which has a larger effect on the outer layers of the cylinder. This gives rise to a
stronger expansion of the outer layers and thus to an increase in the concentration

of mass. These results are illustrated clearly in Table 3.1.
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Figure 3.1:  The density of a single flutd in a rotating cylinder against radius for
various values of the polytropic index, n. Increasing the polytropic indez results in
a constderable increase in mass concentration.
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Figure 3.2:  The density of a single fluid in a rotating cylinder against radius for
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Rotation, w? | Surface, Mass concentration, po/p | d0((s)/6C
Cylinder withn = 1
0 2.41 2.32 -0.52
0.1 2.01 2.35 -0.47
0.3 2.78 2.47 -0.35
0.57422 3.82 3.47 -0.0025
Cylinder with n = 3
0 3.57 8.63 -0.21
0.02 3.69 9.03 -0.19
0.06 4.01 10.26 -0.14
0.10947 5.49 18.18 -0.00076
( Cylinder with n = 6
0 6.73 48.35 -0.07
0.004 7.04 52.76 -0.06
0.01 7.75 63.39 -0.04
0.016422 10.75 121.02 -0.0003

Table 3.1:  Properties of uniformly rotating, self gravitating cylinders for various
values of the polytropic indezx, n. The results highlight the effect of increasing the
rotation of the system on the mass concentration and radius, (;. As w s increased
the centrifugal force increases. Since it has a larger effect on the outer layers of
the cylinder it gives rise to a stronger ezpansion of the outer layers and thus to an
increase of the mass concentration. It is also clear from the results that increasing n
significantly increases the mass concentration. A key result highlighted in the Table
s the mazimum rotation rate at which point the centrifugal force is balanced by the
gravitational force. These values are emphasised with a grey boz. In this Figure w
is the scaled, dimensionless, rotation rate such that w? = Q?/7Gpy.



3.2 Two fluids in a cylinder

The problem of a fluid in a rotating cylinder can be extended to the superfluid case
by adding another fluid. We consider two cases; the situation where the entrainment
function, ¢, is a constant and the situation where the dimensionless entrainment
parameter, £x, is a constant. We find that in both cases the background solutions
are identical and independent of the entrainment. The two fluids are coupled only
through the gravitational potential. We begin our analysis by introducing an energy

functional of the form,

E = yanl + yponl + awy (3.28)

which is simply a sum of two ordinary polytropes and an entrainment term. This
equation of state is similar to that used by Prix & Rieutord [71] and Andersson &

Comer [10] and is effective for investigating the characteristics of a two-fluid system.

The chemical potentials are defined by equation (2.15). We notice that the chemical
potentials will be different for each of our two cases. When we assume « to be

constant we find,
oF

x = —— = 27YxN; 3.29
Hx Brix YXNx ( )

whereas when we consider £ to be a constant we find,

oF 135
HX = 5 = 2yxnx + TW%X (3.30)
and 5E
Uy = 8— = Q’Yyﬂy (331)
iy

In this equilibrium state both the fluids are uniformly rotating around the z-axis
such that
v = Qx ¢ (3.32)

and since the velocities are stationary,

i
ovly

5 =0 (3.33)

The Euler equations (2.20) therefore become,

d
—rQ% + (@ +hx) =0 (3.34)

Integrating gives the Bernoulli equation,

1
—57 0% + @+ iy = Cx (3.33)
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Equation (3.35) gives us 2 equations, one with index n and one with index p. By

eliminating ® we can combine these two equations to give,

1 - ~
5(9%, — B3P +ix -y +C =0 (3.36)

To obtain an equation for the densities we must substitute for zx. We initially
consider the first case, where « is assumed constant. In this situation we find,
mp

Py =

2yx 12 24,2 337
= — —(Q —Q - 3.3
Q’YY[ pr+2( % X)r°+C (3.37)

The constant of integration C' is found by insisting that both the densities vanish

at a common surface, r = R. Thus

2
mp | 27x 1, 9 2 2 9
Py vy [mQB pPx + 2( y — Q%) (r" — R%) (3.38)

In the £, constant case equation (3.36) gives us

Py =

my {2% Ex
2y

1
2 2 2 2 :
- px+ W + §(Qy - Q5 )r° + C} (3.39)
Implementing the boundary condition leads once again to equation (3.38), giving
an identical relationship between the two densities in both cases.

To obtain a differential equation for py we also require Poisson’s equation which

for this equilibrium state can be written as,

1d dd
rdr

Tﬂ] = 47(’G(,0X + ,0y) (340)

By eliminating ® and py we find for both the « constant and £y constant cases,

2Q2 p— %ﬁ_ -—de — 4 G —Jr- mQB 2"}/){ ! _];(QQ . Q2 ) 2 RQ)
X rmb dr Tar | T 2 my T Y o
(3.41)

To simplify the equations we introduce the scaled variables given in Table 3.2 which
will be used throughout this thesis. In the Table p,o represents the central density

of the neutrons and 7y is defined such that,
Yo = 2nGmpr} (3.42)

We stress that this definition, which has been made in order to eliminate v, from
equation (3.41), indicates that 7, jiy and ® are not dimensionless variables as one

might expect. We also introduce the following,
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Physical variable Corresponding scaled variable
Density, px Bx =0x = px/pno
Angular velocity, Q) Qx = Qx /471G png
Radius, r F=r/ro

Chemical potential, px Lx = px/(A7wGpnors)
Gravitational potential, ® ® = ®/(47G prord)
Entrainment function, o & = mpa/ pnoTa
Entrainment parameter, € x Ex = mpex /T8

Table 3.2: Scaled variables

Ky=2%
Yy
and
Ny =X
Tn

Dropping the bars we arrive at the generalised Lane-Emden equation,

v 1y (+Kx), 2 Kx a2 23(.2 2
Which we can simplify to
y 1 P _ 2 2 Kn 2 2 2 2
T [VX 2

Before finding a solution to equation (3.44) it is important to look at the boundary
conditions that apply to the problem. We define a common surface for our system
as the point at which both densities vanish, i.e px(R) = 0. The other conditions
apply at the origin. At this point ,(0) = 1 and 6;(0) = 0. If we solve equation
(3.44) for 6, we can straightforwardly obtain 6, using a scaled version of equation
(3.38),

0, = Ky |00 + %(Qf) — Q) (r* — R?) (3.45)
Initially this problem was solved in FORTRAN by integrating the equations numer-
ically, obtaining solutions for 8x and ®. Subsequently Green’s functions were used
to attain an analytic solution. The analytical results are summarised in Appendix

C. The first step in solving the equations numerically is to write equation (3.44) as

two coupled first order equations,

S=0 (3.46)
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S+ s + (14 Kp)0, =202 — Qu(r? — R?) (3.47)
T

Where,

Qn = f; (2 —Q7) (3.48)

As in the single fluid case we find that » = 0 is a singular point of our equa-

tions. Once again we expand 6, as a power series around this point, to obtain an

appropriate starting point for integration,

1 >
0, =1+ Z(292 +QuR* 1~ K, )r?*— 1—16(29,; +QuR*—1— Ky +Qu)r*+ ... (3.49)

S =90,

n—

(202 + Q. R*—1—-K,)r — %(mﬁ +QuR?—1— Ky +Qu)r*+... (3.50)

N

3.2.1 Physical parameters and the condition for mazimum rotation

A solution to equation (3.44) exists provided both densities remains positive (0x >

0) and their derivatives remain negative (dfx/dr < 0). Therefore at the surface,

dox

< 3.51
7| <0 (351)

In the single fluid case the maximum rotation of the system occurred for a value of
w such that df/d( vanished at the surface. In the superfluid case we are allowing
the two fluids to rotate at different velocities. Therefore the maximum rotation of a
particular constituent corresponds to a value of Q) x such that dfx /dr vanishes at the
surface. At this point the centrifugal force is balanced perfectly by the gravitational

force and increasing the rotation rate further would result in mass shedding.

We define the mass per unit length of the neutrons as M,

R
M, = 27rrgpn0/ rf,dr
0

1 K do
= 2mrip, 202 + (O - QYR - R 3.52
g B RO - R R | 652
and the mass per unit length of the protons as,
R
M, = 27Tr§pn0/ ropdr
0
Y Kﬂ 2 2 2 4
ft [xnﬂfn - T'ﬁ'ropno(Qp - QH)R (353)



The conventional approach when investigating rotating stars is to vary the rotation
rate whilst keeping the mass fixed. In this way we are considering the same system
at a variety of different rotation rates. In the superfluid problem we have the mass
of the neutrons and the mass of the protons to consider. In equations (3.52) and
(3.53) for a certain choice of Q, and Q, we are free to specify the parameters g,
ono and K. Therefore as we alter the rotation rates we can in principle keep the
masses fixed by an appropriate choice of values for these quantities. In the single
fluid case we found that we could straightforwardly assign the central density at
each value of € to ensure that the mass of the system stayed the same. In this more
complicated problem we must firstly insist that the ratio of neutrons to protons
remains constant at which point we can specify p,o to keep the masses fixed. The

total proton fraction, M,/My, can be written as,

— K, — (% - %)/ (3.54)
My " 8(L+ K. | [R292 + Ea(Q2 —Q2)R' — R %] ] ’

o)

M, y K,

8 dr

Ensuring this remains fixed as we vary the rotation rates is in principle possi-
ble. Since the radius R is determined numerically through integration of the Lane-
Emden equation, preserving the total proton fraction requires numerically solving
equation (3.54) as an eigenvalue problem for K,. Due to the non-trivial nature of
this procedure we choose instead to investigate the effect of rotation whilst keep-
ing KA, constant. As a consequence we find that the total proton fraction changes
with Q. and €. If we increase {2, whilst keeping {), constant we observe that the
neutrons will tend to spread out due to the increased centrifugal force. To ensure
that the protons and neutrons continue to share a common surface an increase in
the total proton fraction is inevitable. It is important to stress therefore that in our

analysis we are not considering the same system at different rates of rotation.

In the single fluid case we used the ratio py/g, as a measure of the mass concen-
tration. In this two fluid case it is interesting to look at the mass concentration of

each individual constituent, i.e. pno/fn and ppo/dp.

Pno 1+ Kn |: 2 QnRQ 1 dgn :| - -
— =yt — - = (3.55)
Pn 2 4 R dr |,
Similarly for the protons
b R
p][—)io - (Kn - Qn) [—K’n (;0> - Q2 :| (356)
P n
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In analogy with equation (3.19) the total mass per unit length in this two fluid

system can be written as,

R
M = 27rr§pn0/ {0y + 0,)dr
0

df,

= 2773 pno {RQQ?I - R o

} (357

We can relate this to the mean density using equation (3.21) giving,

~ 1 df
h=2|= =
{R dr

Therefore maximum rotation of the neutrons occurs at a point such that,

02 1 ]
<7> =3 (3.59)

If we take into account the scaling used we observe that this is identical to equation

i + QQ] (3.58)

(3.23), the limit for maximum rotation in the single fluid problem. This makes
sense since we are balancing the gravitational force, which depends on the total
mass of the system, to the centrifugal force, which depends on the rotation rate at
the surface. However, in our analysis we are not considering the same system at
different rates of rotation and it is not therefore constructive to investigate these

values numerically.

3.2.2 Results and discussion

Equations (3.46) and (3.47) were integrated numerically to calculate px(r) for spec-
ified values of {2y and Ky. We look initially at the co-rotating case, shown in
Figures 3.3 and 3.4. We observe that the proton fraction remains constant for all
r, l.e. the cylinder is non-stratified. As we increase the rate of rotation the radius
is enlarged and the mass concentration intensified. This is a result of the increase
in the centrifugal force as the rotation rate increases. Since the effect is greatest on
the outer layers a larger expansion near the surface and hence an increase in the
mass concentration is observed. These results are emphasised in Table 3.3. Figure
3.4 demonstrates the effect of varying K, which we can recall is 7, /v, from the two
fluid equation of state. As K, is decreased the protou fraction is also decreased. In
the co-rotating case we can see that the proton fraction, z, = pp/pn = K,. As one
would expect the total density distribution, p(r) = pa(7)+ pp(r), in this co-rotating

case 1s identical to the density distribution in the single fluid case.

Introducing a relative rotation between the two fluids leads to stratification, see

Figure 3.5. The proton fraction no longer remains constant throughout the cylinder.
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Figure 3.3:  Graph of density against radius for two co-rotating fluids in a cylinder
illustrating the effect of varying the rotation rates, {2, and §1,. The neutron and
proton densities 1 this configuration are identical since K, = 1. As we increase
the rate of rotation the radius is enlarged and the mass concentration intensified.
This is a result of the increase in the centrifugal force as the rotation rate increases.
These results are emphasised in Table 3.3.

We take a similar approach as Prix, Comer and Andersson [68] and choose to use
the proton angular velocity (2, as the reference rotation rate. The motivation for
this choice is that observationally deduced rotation rates obtained from pulsars
are believed to correlate with the proton rotation rate. The rotation rate of the
neutrons on the other hand is unfortunately not directly observable. We thus define

the relative rotation rate R as

(3.60)

From Figure 3.5 we confirm that increasing the rotation rate of the neutrons, whilst
keeping (), and K, fixed results in an increase in the total proton fraction. Table
3.3 reveals that at co-rotation, with K, = 0.5, M,/M, = 0.5, but as we increase
the neutron rotation rate this value increases to 0.57. Similarly if we decrease the
neutron rotation rate the proton fraction is observed to decrease accordingly. This
is a consequence of our decision to keep K, constant as we alter the rotation rates
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Figure 3.4:  Graph of density against radius for two co-rotating fluids in a cylinder

dlustrating the effect of varying K,. In this co-rotating case the proton fraction,
T, = pp/Pn = Kyn, remains constant throughout the cylinder.

yet still insist that the neutrons and protons share a common surface. Another
effect of introducing a relative rotation, apparent from Table 3.3, is that the mass
concentration of the fluid which is moving faster increases while that of the slower
moving fluid decreases. If we increase 1, the centrifugal force on the neutrons
increases. Since it has a larger effect on the outer layers it gives rise to a stronger
expansion near the surface and hence an increase in mass concentration. However,
the reverse is true for the protons which continue to rotate at the same velocity.
The increase in neutron rotation rate leads to an increased radius R, see Table
3.3. Therefore at the surface the centrifugal force on the protons is decreased and
a corresponding decrease in proton mass concentration is observed. These results
highlight the fact that we are not considering the same system at different rotation
rates and it is important to keep this in mind during our mode analysis in Sections
5 and 6.

In neutron stars it is estimated that about 10% of the mass is found in the protons
and the remaining 90% results from the superfluid neutrons. It is also predicted,
from observations of large Vela glitches, that the maximum relative rotation of the
neutrons and protons is roughly R ~ 107* [59]. We can reproduce this situation

by selecting appropriate values of K, {2, and {2, this can be seen in Figure 3.7. It
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Figure 3.5:  Graph of density against radius for two fluids in a cylinder, illustrating
the effect of introducing a neutron and proton relative rotation. We observe that
relative rotation leads to a stratification of the two fluids and a change in the total
proton fraction (this is emphasised in Table 8.3). This is a consequence of our
decision to keep K, constant as we alter the rotation rates yet still insist that the
neutrons and protons share a common surface. Another effect of introducing a
relative rotation, s that the mass concentration of the flutd which is moving faster
increases while that of the slower moving fluid decreases. This is due to the increase
in centrifugal force on the faster fluid and a corresponding decrease on the slower

Sfluid.

should be pointed out that although we are trying to make the data as similar as
possible to actual neutron stars there are still many approximations being made and
thus we do not expect to achieve any results that we could compare to any observable
physical quantities. For instance we are considering cylinders and assuming that
the density of both constituents drops to zero at the same point. In a real neutron
star one would expect an approximately spherical configuration and a neutron and
proton composition more similar to that shown in Figure 3.6, where the protons
and electrons extend further than the neutrons mimicking the configuration in the
neutron star crust. Nonetheless our model should provide a sufficiently complex
background configuration to allow us to meaningfully investigate the oscillations of

a superfluid system.
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Figure 3.6: A schematic sllustration of a more realistic neutron star configuration,
where the protons and electrons extend further than the neutrons.
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Figure 3.7: A graph of density against radius for a typical neutron star mass

ratio and relative rotation. The relative rotation leads to stratification of the fluids.
However, since R s small the effect is minimal.
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Properties of superfluid cylinders

Surface’ R Pno/ﬁn ppO/ﬁp Mp/Mn
(a) Co-rotating cylinder with K, =1
Q=0 1.71 2.32 2.32 1
Q=025 2.30 2.77 2.77 1
(b) Co-rotating cylinder with 0, =, = 0.1
K, =0.3 2.45 2.48 2.48 0.3
K,=01 2.76 2.53 2.53 0.1
(¢) Cylinder with K, = 0.5, Q, = 0.05
R=0 2.08 2.37 2.37 0.5
R =2 2.26 2.92 2.00 0.57
R=-1 2.00 2.33 2.57 0.47

(d) Cylinder with typical neutron star configuration, R ~ 107*
| 276 ] 25310 | 25312 | 0.1

Table 3.3:  Properties of uniformly rotating, self gravitating two fluid cylinders
for vartous values of Qy, Q0 and K,. For the co-rotating cylinders in (a) and (b)
increasing the rotation rate results in an increase in the radius R and the mass
concentration. This is due to an increase in the centrifugal force which has a larger
effect on the outer layers of the cylinder giving rise to a stronger expansion of the
outer layers and thus to an increase in the mass concentration. We also observe
from (b) that varying K, results in a corresponding change in the total proton frac-
tion. The results in (c) highlight the effects of introducing a relative rotation. We
confirm that increasing the rotation rate of the neutrons, whilst keeping §2, and K
fized results in an increase in the total proton fraction. Another effect of introduc-
g a relative rotation is that the mass concentration of the fluid which is moving
faster increases while that of the slower moving flurd decreases. In (d) we illustrate
the results for a cylinder with a typical neutron star proton fraction and relative
rotation.
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Chapter 4
Linearised perturbation theory

In Chapter 3 we obtained solutions for single and two fluid uniformly rotating, poly-
tropic cylinders. We now hope to investigate what happens as we move away from
this equilibrium configuration. Superimposing small perturbations, representing
weak disturbances, upon an otherwise unperturbed system is the basis of perturba-
tion theory. By assuming the disturbances are sufficiently small we can neglect any
terms which are non-linear in the perturbation resulting in equations describing the
linear oscillations of our system. Solving these equations as an eigenvalue problem

gives us the normal mode solutions.

4.1 Eulerian and Lagrangian perturbations

Two types of description can be used to analyse the oscillations of a system about
a known state of equilibrium. Either we specify disturbances noted by an external
observer who, at every instant ¢, views a given volume element at a fixed location
in space, or we describe the fluctuations within a given mass element which is
followed along its path. These are named Eulerian and Lagraﬁgian perturbations
respectively. These descriptions can be written mathematicaﬂy in the following
way. We define Q(7,t) and Qo(Z,t) to be the values of a physical quantity in the

perturbed and unperturbed flow. If £(Z,t) represents the perturbation the Eulerian
(0) and Lagrangian (A) change in the physical quantity @ can be written,

0Q = Q(T,1) — QolT, 1) (4.1)

AQ :Q(f+§(f>t)’t)_ QO(fa t) (42)

These two different types of perturbation are related through the following relation.

AQ =00 + £:Q (4.3)
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Where £¢ represents the Lie derivative. Lie differentiation involves comparing a
tensor, T%(z') which is already at a point @ with the tensor 7'**(z’) which has
been dragged along the curve from point P to point ). This is shown in Figure 4.1,

'Dragged—along tensor’ at Q

"Tensor’ at P A
| "Tensor’ at Q
X (P) : a
X Q)
Q
P

Figure 4.1: A schematic diagram illustrating how the Lie derivative compares two
tensors at the point Q.

For a scalar f the Lie derivative is defined as,

Lef =EVif (4.4)
For contravariant vector fields v?,
Levt =8V 0b — V€ (4.5)
For covariant vector fields v;,
£5’Ui = fjv]"vi + 'UjVifj (46)

In this section the general Eulerian perturbation equations for a single and a two
fluid entrainment free system are derived. To study the oscillations and stability of
the infinite, self gravitating, uniformly rotating cylinder introduced in Section 2 we
subsequently express these equations in cylindrical co-ordinates and for the single

fluid case investigate the normal modes.

4.2 Eulerian perturbation equations for a single fluid

We begin by deriving the Eulerian perturbation equations for a single fluid. It is
convenient in this case to work in terms of perturbations to the density, dp, and
the radial part of the displacement vector &.. This is the conventional approach
which has been used in a vast range of studies of single fluid systems [14].[71], and
allows for a straightforward comparison to previous work on linear oscillations in
cylinders, [81], [82].

A displacement vector, &, can be defined to describe how the perturbation affects

the fluid. This correspond to a change in fluid velocity,
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AUi = atfi (47)

Since the background configuration is stationary and axisymmetric we can separate
the displacement vector into a radial part and an azimuthal part. The azimuthal
function should be proportional to €, with m an integer. If we also assume a

harmonic time dependence we can write the displacement vector as,
&, 9,1) = &(r)e o) (4.8)

We have also made the assumption that there is no variation in the z-direction
and hence the displacement vector has 7 and ¢ components only. Equations which
govern how the perturbed fluid behaves can be obtained by substituting v; —
v+ 0, p—=>p+dp,p—p+dipand ® — &+ 0P in the equations which describe
the fluid flow. Where dp , dp and §® represent the Eulerian perturbations in the
density, pressure and gravitational potential. It is convenient in this cylindrically
symmetric case to work in a rotating frame of reference, such that the background
velocity of the fluid is zero. We define, Q, as the rotation rate of this frame such

that in cylindrical coordinates,
G = Qoe, (4.9)

In this frame the Euler equations can be written as:
= - ~ 1
OU+T-VUi+20x T+ 0 x (A x7)=—-=Vp—-V (4.10)
P
Where the centrifugal term can be rewritten as,
L. 1 - )
Qx (Qx7) :—§V(Q><r") (4.11)
By perturbing and linearising equation (4.10) we obtain the following differential
equation,
op
2
Where we have made use of the fact that the background velocity in the rotating

..o 1
0:0v + 200 X fv = —Vp — ;Vép —Véd (4.12)

frame is zero. Assuming condition (4.8) leads to,
R =~ = 0p 1 ,
iwév + 20 X v = = Vp — =Vip — Vid (4.13)
1% P

or using indicial notation,

A A 1. .
iwdvi + Q»Eiijj(S’Uk - ;’ggfvjp -+ ;gfvjép + gfvjé@ =0 (414)
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We must also represent the conservation of mass of our system. Introducing a per-

turbation to equation (2.5) we obtain the following linearised continuity equation,

0;0p + Vi(pdvt) + Vi(§pv*) = 0 (4.15)

Since the background velocity is zero in the rotating frame and the density variation

me+wt

can be written as 6p = §pel ) the continuity equation becomes,

iwép + iwV;(p€) =0 (4.16)

Which can be simplified to,

5p+ Vi(p€') =0 o (4.17)

By considering perturbations to equation (2.7), the equation for the gravitational

field, we arrive at the following perturbed Poisson equation,

0;0"6® = 4nGép (4.18)

The final consideration required is to prescribe an equation of state for the pertur-
bation. Since, on the short timescale associated with the perturbation, different
physical processes may dominate we can not automatically assume that this equa-
tion of state is identical to that of our background configuration. The Lagrangian
perturbations of pressure and density can be related by,
S0 _p o .
D P
Where I'y is the adiabatic index. Which gives the following equation for the Eulerian

density and pressure,

1 1, T N
“op+ =E'Vip = —bp+ —E'Vip (4.20)
p- P p p

Since the background density and pressure vary only in 7 this equation becomes,

p dp dp
6p = — |6 = —&-=
p o <p+€rd,r> S
_ dp (1dp_dn),
- cdr dr)"
op g  ldp
N T 4.2
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op=—+—¢ (4.22)

Where g is the effective gravity,

dd ldp
=— —rQ=—->— 4.2
g dr "0 pdr (4.23)
cs is the adiabatic sound speed, and N? is the square of the Brunt-Vaisala frequency,
given by
1d
N = g ( 2. i) (4.24)
p dr

If this frequency is zero we can say that the system is isentropic and the perturbation
obeys the same equation of state as the background fluid. We now have a set of
equations describing the Eulerian perturbations for a general single fluid system.
To investigate the oscillations and stability of a rotating cylinder we express the

perturbed equations in cylindrical coordinates.

4.3 FEulerian perturbations in a cylinder

Appendix B summarises the basic properties of a cylindrical coordinate system
and introduces the various operators using this framework. The linearised Euler
equation gives us the following two equations,

6p dp 1dép déd

—w2E, — 2w A 4.2

and
1mop B 1mmo®

—wy + 21w, = — (4.26)

pr T
In cylindrical coordinates the divergence and Laplacian are given by equations

(B.11) and (B.14) respectively. Thus the continuity equation becomes,

imp

5p +§r—+——( &)+ 6 =0 (4.27)
and the perturbed Poisson equation becomes
8%6® 186 m? 6p pN?
- —=0d = — 2
572 + - F o 3 0P = 4nC [ > fr} (4.28)

The Euler equations, the continuity equation and the equation of state can now be

combined to give the following equations for the normal modes.
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N 20um] bp 20 ds2
: (5_17) = [w - 403 - N7 & + [w— - Om} Al Cy
g

dr 0 T 0 T T

Combined with equation (4.28) these two equations fully describe the perturbed

System.

It is appropriate to use the Cowling approximation, which constitutes ignoring the
perturbation to the gravitational potential, to greatly simplify our investigations,
132]. It has been shown that for perfect fluid cylinders making this approximation
introduces only a very small error for low frequency modes, [81]. This can be

understood in the following way. Consider the integral of the Poisson equation,

5O = —G/ 90(r') (4.31)

]

For some modes the contributions dp(r’) from different places within the cylinder
tend to cancel each other out leaving a negligible net effect. Thus it is reasonable

to drop the perturbation to the gravitational potential from our analysis.

The normal mode solutions for a rotating self-gravitating cylinder were found using
a spectral linear eigenvalue solver package, called LSB, developed by L. Valdettaro
and M. Rieutord. The LSB program is a FORTRAN code which evaluates ap-
proximate eigenvalues and eigenvectors for boundary value problems using spectral
methods. The program takes an equation or a system of equations, which must
be written in a specific data file and then calculates the eigenvalues subject to the

specified boundary conditions.

Before looking at the eigenfunctions of the normal modes it is of interest to know the
regions in which the different waves can propagate. This is done by local analysis
with the aid of propagation diagrams. Since we are neglecting perturbations to the
gravitational potential we can ignore the Poisson equation and the problem reduces

to that of two equations,

= (4.32)



N? 20
s R e L e A =)
dr \ p g r p

The method of local analysis is performed by assuming that the perturbed displace-

ment and pressure can be written as plane waves,

1.
& = ;frkem (4.34)
6p = Spret™” (4.35)

Where k is the wavenumber and &, and dp, are constants. Substituting these into

equation (4.32) gives,

2mQ0
T

. . 2 ) .
ikw?Ene™ = w { + w%] Epe* + [T—n—— - wQLQ] Pk gikr (4.36)
cS

T cs| p

A similar substitution into equation (4.33) leads to,

) ,
[ik +wg— - onm} %em
p

1 .
= 2402 — N?| =g e 4.37
P . w [W 0 ] Tf k€ ( )

Equation (4.37) can then be used to eliminate dp, from equation (4.36) giving the

following dispersion relation for w(k),

) 1dp 2mSo g 2mSl N?
3? — P [ =2 ) k+ + w= — W
w ww (p d'r> w , wcz , w g

m? 1
+ (w®—40f - N?) (-2 — u)?—?)] =0 (4.38)
Using the quadratic formula,
1 5(1ldp 1 oL dp,
e -z —— [ —wb(==)2 — 4w 4.39
g 9.6 (pdr)i‘ZwG\/ LL)(pdr) e (4:39)
where,
N? 2 1
T c? T g T c
(4.40)
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The condition for propagation is that k has a real part for real w. Therefore we
require the term in the square root to be greater than zero. This gives the following

criterion for propagation,

1 21 /1dp\° 1
wh— —w? [T——%—( _p) + =402 | +w

r2 4 ; dr c?

omQy [ N? 2
™5 ( 92>+m—N2>0 (4.41)
T q C

Solving this inequality for every value of 7 determines the regions of propagation in
an (r,w) diagram. The propagation diagram of a non-rotating (o = 0), isentropic
(N? = 0) cylinder is shown in Figure 4.2. In the non-rotating case the regions of
propagation are symmetric with respect to the line w = 0. There are two regions
of propagation observed in this case known as A-regions. They are both regions of
acoustic wave propagation where pressure is the main restoring force. The regions
where w > 0 are given the index (b) since the waves propagate in the backward
direction with respect to the pattern speed of the mode. Similarly the regions where
w < 0 are labelled (f) since these waves propagate in the forward direction. In this

non-rotating, isentropic case we can write equation (4.41) as

1 2 1 /1dp\?

and it is obvious why we observe two distinct regions.

Figure 4.3 shows the regions of propagation for a uniformly rotating but still isen-
tropic cylinder. The rotation has given rise to an additional region of propagation
known as the R-region which is defined as a region of propagation of rotational
waves. It is clear from equation (4.41) why this occurs. Non-zero {Jy results in
the inclusion of an additional term involving w in the inequality. We can therefore

factor out w and the three regions result from solving the remaining cubic,

1 m? 1 /1dp 2
3 2
¢ ¢ — = — 4+ — _ _+___4()
{ c? [7‘2 4(pdr> cg 0

As well as showing the regions of propagation Figures 4.2 and 4.3 show some of

2ong

2
rey

} >0 (4.43)

the mode eigenfrequencies and the zeros of the associated radial displacement. The
eigenfunctions are oscillatory in the propagation regions. All zeros of the p modes
lie within the A region and all zeros of the r modes lie within the R-region. The

f modes are surface modes, which do not originate from propagating body waves
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Figure 4.2:  The propagation diagram of a non-rotating isentropic cylinder. There
are two regions of propagation observed in this case which are symmetric with respect
to the line w = 0. These are known as A-regions. The regions where w > 0 are
given the index (b) since the waves propagate in the backward direction. Similarly
the regions where w < 0 are labelled (f) since these waves propagate in the forward
direction. Also shown are the mode eigenfrequencies and the zeros of the associated
radial displacement (o). All zeros of the p modes lie within the A region. The f
modes are surface modes, which do not originate from propagating body waves and
thus lie outside the regions of propagation. In this example we consider n = 3,

’)’24/3,m:2,90=0

and thus lie outside the regions of propagation.

In the non-isentropic, non-rotating case when N # 0 and 2y = 0 condition (4.41)

1 m? 1dp
gL g m”
g mei )

and we observe four distinct regions of propagation. These are the two A-regions

reduces to

+ r_2N2 >0 (4.44)

and additional regions called G-regions, which are regions of low-frequency gravity
waves. For non-isentropic uniformly rotating cylinders we once again observe four
regions of propagation. No distinct 7 modes or g modes exist in this case [81]. We
can consider the non-acoustic regions as either a region of ¢ modes modified by

rotation or a region of r modes modified by non-isentropy.

48



b
| A
oL ) L
RLRLE b — ~J
- nth) 2 ﬁ\\ ~ 'y ~ ® i /—
- Inlgh)_u —— = e
2 E 1 “""“_FT)“)___'
=3
> | _
E
3 Y =~ — = — —m—— = ——————————————————— oo =
T L) e R - —_—
2 8 ——— Y &
= - n
| f(”
- ()
P—m //'_-———_—_ * \\
1§0) / -9 - \
-2 ln_:“ / L 4 L d » -
)
i A
-3
0
Radius, r/R

Figure 4.3:  The propagation diagram for a uniformly rotating but still isentropic
cylinder. The rotation has given rise to an additional region of propagation known
as the R-region which is defined as a region of propagation of rotational waves.
We also observe that the acoustic regions are mno longer symmetric with respect
to w = 0. The Figure illustrates the mode eigenfrequencies and the zeros of the
associated radial displacement (o). In this ezample we consider n = 3, v = 4/3,
m = 2, QO =0.1.

As well as calculating the eigenfrequencies LSB can also find eigenfunctions. Figure
4.4 shows the influence of rotation on the f modes. We can see that as the angular
velocity of the cylinder is increased the modes become less important in the central
regions and relatively more important near the surface. The graphs are normalised
such that réu, is unity at r/R = 1, where R is the radius of the cylinder. Figure
4.5 shows the first three modes for a uniformly rotating cylinder. The f mode has

no nodes, the p; mode has one and the p, mode has two.

The results from this single fluid analysis are confirmed by previous research by
Veugelen [81] where an identical approach was taken to investigate the effect of
differential rotation on self-gravitating cylinders. The focus of this work is the
effect of introducing an additional fluid. We now look at the Eulerian perturbation

equations for this situation.
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Figure 4.4: The fundamental mode for a single fluid in a uniformly rotating
cylinder, considering various values of the angular velocity, Qy. As the rotation
rate is increased the modes become less significant in the central regions and more
significant in the outer layers. The eigenfunctions are normalised such that rdu, is
unity at r/R=1. In this ezample n =3, v = 4/3 and m = 2.
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Figure 4.5: The lowest 8 modes of oscillation for a single flurd in a uniformly

rotating cylinder. The f mode has no nodes, the py mode has one and the py mode
has three. The eigenfunctions are normalised such that réu, is unity at v/R = 1.
In this ezample n =3, vy =4/3, m = 2 and 4y = 0.1.
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4.4 Eulerian perturbation equations for a two fluid system

We now look at Eulerian perturbations in the two-fluid case. Since we now have
the possibility of two distinct rotation rates, that of the protons and that of the
superfluid neutrons, we no longer find it constructive to work in a rotating frame.
The system is described by equations (2.19), (2.20) and (2.21). We begin our
analysis with the case of vanishing entrainment, i.e. a = 0. A perturbation can be
applied to this system such that, vi — v% + dvl, @ — @ + 6@, ux — px + dux,

and nx — ny + dnx giving the following linearised Euler equations,

ov,
ot
the following perturbed continuity equations,

+ 0%, Vi0vh + 0,V vk + g9V;(60 + Gjix) = 0 (4.45)

8(5 nx
ot

and the perturbed Poisson equation,

-+ Vi(nxévf‘{) + Vz(énxv}() =0 (446)

8i8i(5(b = 47TGTTLB((STLX + (Sny) (447)

Since we have assumed a = 0 the perturbed equations are only coupled gravitation-
ally through 6@ and chemically through the equation of state. We can investigate

this chemical coupling by looking at diix. In terms of dny and ény,

(SI[LX = (81&1‘{) (STZ,X + (8/1}() (Sny (448)
ny,w? nyx,w?

Onx %

If we assume the perturbation obeys the same equation of state as the background
configuration described in Section 3.2, where we use a simple sum of two ordinary

polytropes, we observe that (gﬁ—x> = 0 giving,
Y Tlx,u)2

Siix = (8‘”) Sny (4.49)

If we also assume the Cowling approximation, i.e. ignore variations to the gravita-
tional potential, we find the perturbation equations are no longer coupled. In this
case there will be completely independent oscillation modes for each fluid, which

will be identical to those in the single fluid case.

Using results from Appendix B we express the two fluid perturbation equations in
cylindrical coordinates. Equation (4.45), the linearised perturbed Euler equations,
lead to,

v 20y
iw + mQy)ov’ — =22

a%(&lx) =0 (4.50)

5%\ +
-

02



and
Q .
i(w + mQ)3vf + 250X + (67ix) = 0 (4.51)
T T
Equation (6.87), the continuity equation in the perturbed system, becomes
9 X

(w4 mQx)onx + nTXE(T(SUT )+

on imn
XX 4 X

ar r - ((5’U¢)X =0 (452)

Combining these equations to eliminate dnx gives us the following four first order

differential equations in §v;* and vy’

X ~ ~
dov; {m <8M—X> nXTQ] + v {m (8MX> r(ny 4+ n'yr) — 2Qxoxr?

or onx onx
Oix 2| .
+ vy {mQ <8nx> nx — O’?\/T?:| i=0 (4.53)

a6v [ <agx
m
877,,\/

o ——) O'ani| + 51};( [ZQ,\/O’%]

i
+ suX {m (85::) (2Qxnyr — moxny) — 4Q5%0xr*| i =0 (4.54)

P

It would be possible to investigate the two-fluid equations using numerical inte-
gration in the same way the single fluid equations were analysed. However, we
instead chose to investigate the two-fluid equations in a Lagrangian perturbation
framework, allowing us to investigate the stability of the system. The equations
describing the two fluid system with non-vanishing entrainment can be derived in
an identical way. This is discussed further in Section 6.8 to highlight the differences

between an Eulerian and a Lagrangian approach in this more complicated case.
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4.5 Lagrangian perturbation theory

The strong advantage that Lagrangian perturbation theory offers over the corre-
sponding Eulerian description lies in its capability to determine whether or not a
system is stable. Friedman and Schutz [39], [40], developed a Lagrangian perturba-
tion framework describing rotating Newtonian stars. In doing so they were able to
construct appropriate stability criteria and show that all rotating, self-gravitating
perfect fluids are unstable or marginally unstable to gravitational radiation. The
aim of this section is to extend the work of Friedman and Schutz to create a system
of equations describing a superfluid neutron star in terms of Lagrangian perturba-
tions. Before investigating the problem of a rotating superfluid it is useful to look
at the case of a single fluid. This allows us to develop a formalism in the simplest
case which can subsequently be extended to the more advanced two-fluid system.
Although the single fluid problem has been investigated previously we will redo the
calculation as we prefer to work with the number density n, the fluid velocity v;,

and the chemical potential u rather than the pressure p.

This system can be described by the single fluid Euler equations (2.4), a continuity
equation (2.6) and an equation for the gravitational potential (2.7). The Lagrangian

change in the fluid velocity follows from
Avt = §;&* (4.55)
where £ is the Lagrangian displacement. Given this, and
Agi; = Vi&; + V& (4.56)

we have

Av; = 0:; + vsz-éj + ’Ujiji . (4.57)
It is also useful to note that the Eulerian variations are given by
§vt = 0,8 +1IV;E — V0 (4.58)

and
(S’Ui = 8@ -+ vjVjéi - §jVj’Ui (459)

since v; = g;;v7 and Vyg;; = 0).
j 5

Applying a perturbation to this system the continuity equation becomes,

An = —nV;&" — én = —V;(n€") . (4.60)
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and consequently the gravitational potential equation becomes,
V36® = 4rGmpén = —4rGmpV,(n") (4.61)
Perturbing the Euler equations gives,

A[(@t + ’UjVj)'Ui + Vi + VI(I)] =0 (462)

Since the Lagrangian variation commutes with the Lie derivative such that A(d; +

£,)v; = (0p + £,)Av; it is convenient to write,

vjVjvi = £,v; — vsz—'Uj (4.63)

Vi'U2 == Vi(vjvj) = ’U]'Vivj + vjVivj = 2'Ujvi'l}j (464)
A 1_

= ’U]Vj'U.L' = °€vvi — 5Viv (465)

F4

Thus the perturbed equation of motion becomes,

Each term in this equation can be investigated individually enabling us to write

this equation in terms of the displacement vector &;. For the first term we obtain,

(0 + £,)Av; = 8[8,& +VIV.& + VIV ] + v VA + Av Vi

826, + 07 Vi€ + vVIVi0E; + BT V& + v V,8,E;

+ VIV,[0.& + VRV € + VRG] + Av; V0

B2, + 209V ;0,6 + vIV,0,65 + VIV (vFV &)

+ (V)% 4+ Av;Va? + 007 V.E + 07V i, (4.67)

Since 8,v7 = 0 this becomes,
(O + £)Av; = 87& +207V;0,& +VIV,:0,6 + v V(v V&) + (v V)3,
+ Av; V! (4.68)

We now need to look at the perturbations of the gravitational and chemical poten-

tials.
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ADP =50+ £:0 =60+ ¢V, 0 (4.69)

Therefore

ViAD = V60 + V,(67V;0)
= Vi6d + (V&) (V;0) + ¢V, V,;® (4.70)

The equilibrium equation gives,

V;® = vV, — Vi (4.71)

Consequently

VA® = V60 + 6V, V8 — (V.8 (v Vv + V1) (4.72)

Finally the Lagrangian perturbation of the chemical potential can be written as,

AL = Sp+&V;i
Op o -
= a—n§n+§]V]u

9 . _
= —2EV,(ng) + V0 (4.73)

Therefore

Vidp = =V, [%Vj(nﬁj)} + Vi [EV;4]

oL . . .
= —Vi [%V](nfj)] + Vifjvj'/l + fJViVj[L (474)

Finally the last term in the perturbed Euler equation can be written as,

AV = A(viv;) = v/ Avj + v; A0 (4.75)

~Pyiav?) = —gvi(vmvj)—gvi(vjmj)

g”Uj [Vi(Av))] — gA”j[V'i(”j)]

= L9, - SauTi)] -
= = [Vi(Avy)] = pAv;[Vi(v)]

= —p![Vidi&] - pAv; V(7)) (4.76)



Substituting these results into the perturbed Euler equations,

O + 2UjV]0t§¢ + vjViatfj + vjV]‘(kaifk) + (UjVj)in + Avjvivj
- Uj[Viatﬁj] - Avj[Vi(vj)] + VICS@ + SJVZ-V]-CI) - (Vifj)(vkvkvj + V],[L)
Ol . , .
- Vi [a—zvj(nfj)} +Vi&Vin+ ViV =0 (4.77)
Upon cancellation we obtain,

’I’La?& —+ 2nvjV]-8t§i + n(vjVj)in + ’I’LVICS@ + nfjvivj@ + nngiVj/]

P A
—-Tﬁh[E%VAngﬁ =0 (4.78)

This equation can be written in the following, simplified form,

ABE + BOE+CE=0 (4.79)

Where
ABZE = nd¢; (4.80)
Bo,£ = 2m7V ;6,8 (4.81)

Cé‘ = n(UjVj)Q&‘ + ’I’LVICS@ + nﬁjViVjCI) — nVi [g—zvj(nfj)} -+ nfjvivjﬁ (482)

The equation for the perturbed gravitational potential, equation (4.61), can be

solved using Green’s functions. The equation is of the form,

Lo(T) = f(Z) (4.83)

where L is, in our case, the Laplacian operator, and ¢(Z) is the solution. The

solution to this problem is,

4(3) = / G5, 7) (&) T (4.84)

When the operator is V? the Green’s function is,



Applying this to the perturbed equation for the gravitational potential gives,

1 1 ! =AY !
5o = /Ef_f/'élmeVi[n({)]dV

= mG/ Ly (7 (€] dV'

|z — 7|
1 - ~ 1
= mG/ {V; [ﬁn/(gl)/} ——n/(gl)lv,/i [ = - :|}dV/
77 77|
= _mG/n’(gi)’vg [ - L — } dav’ (4.86)
T - 2|

4.5.1 Trivial displacements
In Friedman and Schutz [39] the idea of trivial displacements was introduced re-
vealing that a physical perturbation does not uniquely determines a displacement

£*. We can describe the Eulerian perturbations in terms of £ such that,

8p = —Vi(p€) (4.87)

§s = —£'V;s (4.88)

6V = 0,6 + VIV, — €IV 0 (4.89)
0p = —ypVil — £'Vp (4.90)

where equation (4.88) describes the entropy for an adiabatic perturbation. If we
look closely at these four equations we can see that there are values of £ for which
the corresponding Eulerian changes in p, p, v* and s all vanish. If we call this trivial

displacement n* then when n* satisfies the following three equations,

Vi(pn') =0 (4.91)
n'Vis =0 (4.92)
[0; + £,)0° = 0" + IV — P V08 =0 (4.93)

£ and € correspond to the same physical perturbation, where we have defined £

as,
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=47 (4.94)

The general solution, taken from Friedman and Schutz [39] is,

pn’ = €7V sV f (4.95)

Where f is a scalar which must be constant along fluid trajectories,

(8 + £,)f =0 (4.96)

These trivial displacements are problematic in the sense that they affect the value
of the canonical energy, F,, which we introduce in Section 4.5.4. Since we intend
to use E, to test the stability of our system it is important to ensure the data is
not contaminated by these trivial displacements. In Section 4.6.7 we consider the
implications for the constructed stability criteria and discuss how to overcome this

unfortunate complication.

4.5.2  Formal properties of the equations and of the conserved quantities

To analyse the stability of our system we construct certain conserved quantities
known as the canonical energy and the canonical angular momentum. The reasons
why and how these assess whether or not a system is stable will be discussed later
for now we will simply calculate their form. Using the conventional definition for

the inner product,

(n',&) = /(n")*&dv (4.97)

we can prove that the following symmetries hold,

{y, AS) = (¢, Ay)” (4.98)
{y, B§) = — (&, By) (4.99)
(y, C&) = (£, Cy)’ (4.100)

We prove these symmetries as follows,



(v, AE) = / (v') n&dV

= {[wimterav}
{ [erawav}
= (& Ay)” (4.101)

(v, BE) = / y 2 6 dV

{ {V; [2n(y")v7(&)7] = 2n(&)"v Viy — 2(4") (&) V(') } dV}

- — {/Qn(fi)*vjvj(yi)(ﬂ/}*

= — (& By) (4.102)

/ (yi)znvaj@)*dV}*

Where we have used the fact that V;(nv?) = 0. The final task is to prove the
symmetry of C. Expanding the inner product (y, C&) gives us the following 5 terms

which we can then analyse individually.

(y,CE) = /(yi)* {n (vjVj)Qé} +nV;6:P — nV; l%gvj(néj)}
+ nEVV;® -+ neIV, V0 }dv (4.103)

The first term is,

[y wveay = [ {95 vt w) O] - mvt (95w (ViE)
= [Vilm0")] v () (Ve€) [V
= [ noieF 9,007 (Ve )V

= /n@(vjvj)z(yi)*dV (4.104)

By substituting for 6® in the second term we see that,
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/{n(yi)*vm}dv = /{n(yi)*vi {—mBG/n'(gj)’V; (ﬁ_lﬂ) dV’HdV

= [ {nehv,,0)}av (4105

Finally by rearranging the third term we get,

/{n(yi>*vi {%Vj(nﬁj)}}dv — / V; n(yi)*%Vj(nﬁj)} dv

Therefore

1,08 = [ {n6eV 20 +nie)v ey

Loy EVIYS (@ + ) - nEY, (%Vz’ [n(?f?*]) pav

= (&,Cy)" (4.107)

4.5.8 Symplectic structure

A symplectic structure is a dynamically conserved antisymmetric product involving
the configuration space variables and their conjugate momenta. The symplectic

structure is written as,

1 1
Wiy, ¢) = <y, A0 + SBE> — <Aaty + 53y,§> (4.108)
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where y and £ both solve the perturbed Euler equation. It is easily shown that this

inner product is conserved,

1 1
Wiy, & = <at@/7 Ad€ + §Bf> + <y,A8t2§ + §Bat§>

Using the fact that A9?¢ + BO,£ + CE =10

Wiy, &) = <0ty, A0y + %B§> + <y, —%Baté - C§>

1 1
- <——§B8ty - Cy,€> - <A<9ty + §Byyat§>
= (8, ABL) — (Adyy, BiL))

(0, BE) + (BOw, &)

~ 5 (v, BAE + (By, 46)

({y,C&) —(Cy, &)
= 0 (4.110)

4.5.4  Canonical energy

The canonical energy is the conserved energy of the perturbation. It is defined as,

B, = Z2W(£,6) - (4.111)

Expanding this out gives,

E, = %Katg ABL + = B§> <A8?§+-;—B<9t€,€>}
= ?{atg ABi€) + <at§,§B§>+<%B8t§+C§,§>}
- %{até ABE) + (CE,€)}
- %{@5 ABE) + (¢, C€)} (4.112)

Substituting for the operators A and C,

1
"2 (0, A0) = T2 [ nlogPay =3 [ olaPav (4.113)



. ) 0 )
%(g,(}g) _ %/{@* (n(U]Vj)Q&-{-nvi(S@—nvi la—gvj(ngy)]
+ nEV,V,0 4 eIV, V) }dv (4.114)

The terms in this equation can again be analysed individually. For the first term

we write,

% [{nerwvieay = =5 (oo (9,678} av
= _%/{pwfngﬂ?}dv (4.115)

The second term can be written as,

‘ -

Tf/{(ﬁi)*nvi(agcb)}dv = m?/{v )'88) = 80V [n(€) ]}V
_ %/{Réw VH(53)" }dV
/]

(Vi [0V (69)*] — Vi6DV*(6D)*) } %

B
3
1)

_ _%/{ﬁva@vi(é@)*}dv
_ _%/{ﬁw 5@|2} (4.116)

Finally

T2 [ {nervi | Evimen| av = -1 [{9:]nter3evmen) fav
; 5/{8“ (n€)V [(s)*]}dv

_ %/{g—gén(én)*}cﬂ/

= %/{g—gmﬂ?}dv (4.117)

Substituting everything back gives the following expression for the canonical energy,
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_ 1 2 L ITLER Y v.sa) e ——
=5 = ;5 [ {dlocr - il - Zoiver + ) evivie

+ p(éi)*éjvivju+g—g|5n|2 }dv (4.118)

4.5.5 The canonical angular momentum

The canonical angular momentum is defined as,

1
J.(€) = —§W(8¢§,§) (4.119)
1 1 1
Je(€) = =5 K%é, A0 + 5B§> — <A8t¢§ + §BG¢§,§>] (4.120)
<A8¢£ + %B8¢§,§> = <a¢ (Ag’ + %Bﬁ) 7§> = / { [@b (Ag’ + %Bg)] 5} dv
(4.121)

Using integration by parts

<Aa¢§' + %Baqbg, g> = KA& + %Bg) * g} - / { (Ag‘ + %Bﬁ) * a¢§} dV (4.122)
= < (Ag’ + %Bﬁ) ,a¢§> = — <a¢,g, (Ag’ + %Bg) > (4.123)

= g6 =5 [<a¢g, <A8t§ + %Bg) > + <a¢g, (Ag + %Bg) H (4.124)

= J.(6) = —Re <a¢§, AB,E + %B§> (4.125)

4.5.6 Normal modes

For normal mode solutions we have £ = £'(z)e™?
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B = 5 (¢ A¢) +%<£,C£>
= ;<w5,zwA5> 5 (6,-4¢ - Bé)
= 2 [ ey wAg av + 22 (6, 48) - 1 (e wBe)
- %/{w*g*z’wAf}dVJr %wQ (€, Ag) —%(&iBé)
= Lo (6 49+ (6. A0 - L 6,iBE
- w{%(w*—kw) (6. 46) - 3 €150 |

. {Re(w) (€, AE) — % (€, z‘Bf)} (4.126)

To calculate to canonical angular momentum for the normal modes we write & =
E(r, §)etme+wt)  Thus giving,

J(€) = —Re (0, AdE + B§>

(imé, iwAE) + (sz B{)}

Ll NN I

= —Refum (6.46) - g (6.5}

Il
/_/;\/_/H/\

= —Re(wm") (£, AE) + ;Re( ") (€, iBE)

1 .
= - {Retw 6,49 - § (c.086) (4127
Where the final step assumes m is an integer. Therefore for normal modes,

- _Z=yg, (4.128)

Which defines the pattern speed of the mode. Since (£, AE) and (£,7B¢&) are both

real and we know E, is real the canonical energy must vanish if w is not real.

4.5.7 Stability of modes

The canonical energy provides the basis for our stability analysis. Dynamical in-
stabilities correspond to a vanishing canonical energy. The amplitude of the mode
can grow indefinitely while the canonical energy remains unchanged. Instabilities
also arise if the system is coupled to radiation such as gravitational waves. If E,. is

initially positive then, because of the time independence of the equilibrium, it must
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always remain positive. Thus it can only radiate a finite amount of energy and will
consequently return eventually to the equilibrium state. However, if the initial data
is such that E. < 0 then since the radiation can only carry away positive energy the
perturbation is unable to die away in time. Thus the evolution is unstable. This

gives us the following criterion for stability,

e [f £, > 0 initially the configuration is stable.

o [f F. < 0 initially the configuration is unstable or marginally unstable.

This situation is complicated slightly by the existence of the trivial displacements
introduced in Section 4.5.1. These displacements leave the physical variables un-
changed but do affect the canonical energy. This is unfortunate because we would
like to be able to use the condition that E. is positive definite as a stability test. To
overcome this problem we must ensure that the displacement vector £ is orthogonal
to all trivials. Fortunately for normal modes one can prove that this is the case [39]
and thus we can now use the above criteria to consider the stability of the normal

modes.

If we consider a real frequency mode we can write,

€ o) - T g

Using cylindrical coordinates and by writing v/ = Q¢

J(6) _ (8,100 VE) (4.129)

—ip(&) VI V;E = —ip(&) (86 + TjyE")
= —ipQ) [lm &) &+ (8)"(—r&?) +(§2)*(%51)}
= —i1p) [lm|§z|2 — (&) + - (52) 5]
= —ipQ [im|E]* — 1 ((€)7€* - (52)*51”
= o |mlef+i (&) x €) | (4.130)

Where we have used the fact that in cylindrical coordinates (£)* = (£!)* and
(&)* = 12(£%)*, Therefore,

(€,ipi- VE) i {[@ =€ Jav
e €0 (4.131)

Since |(£)* x &).] < |€]* we find the following limits for the canonical angular

momentum,
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1 Je 1
UP_Q(1+T—TL->SWSUP—Q<1—E) (4132)

We recall that for normal modes,

If we consider the situation where the rotation is small (2 — 0) then we find

Small Rotation Case (2 — 0)

| 0p <0 ] 0, >0
L - +
E. + +

Table 4.1:  Regions of stability for a single fluid with small rotation. We observe
that regardless of the sign of the mode pattern speed the canonical energy is positive.
We conclude that as 0 — 0 the system s stable.

Since for both co-rotating modes (o, > 0) and counter-rotating modes (o, < 0) the
canonical energy is positive the system will be stable. However, in a system with
finite €} we find the results summarised in Table 4.2. When o, < 0, and the mode
is counter-rotating, we observe that it is stable. However, as it begins co-rotating
the canonical energy becomes negative and the mode unstable. In the non-rotating
limit we found no such instability, and hence we deduce that this change of sign

signifies the introduction of an instability at a critical rotation rate.

Finite Rotation Case (2 # 0)
[0, <0]0<0, <Q1-2)]0,>0(1+ )]
A = +
B + — +

o

o

Table 4.2:  Regions of stability for a single fluid with finite rotation. When o, < 0,
and the mode is counter-rotating, we observe that it 1s stable. However, as it begins
co-rotating the canonical energy becomes negative and the mode unstable. In the
non-rotating limit we found no such instability, and hence we deduce that this change
of sign signifies the introduction of an instability at a critical rotation rate.

4.5.8 The r mode instability

Inertial modes are those which have the Coriolis force as the main restoring force.
In Newtonian stars inertial modes have velocity fields described by a mixture of

both polar and axial parity components. The r modes are a class of inertial modes
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which at order {2 have axial parity components only and a frequency given by

w = ms) {1 T i 1)} (4.133)

Since the discovery by Andersson [6] that the r modes of rotating neutron stars are
unstable, much work on the r mode instability has been doue, [57], [21], [56], [52] &
[88]. It is interesting to revisit this work in the framework developed to demonstrate

how the canonical energy can be used to prove stability.

For the 7 modes we assume the perturbations obey the following ordering in 2,
T 67~ Em O(), 66 ~6n~ O(2) and v, ~ O(Q2)  (4.134)
which when combined with the continuity equation leads to
V60~ 0% =V £~ 0 (4.135)

Thus to order 2% equation (4.118) reduces to the following expression for the canon-

ical energy,

1 . .
Eer 3 / p{low] — |v- VEP + £V, V;(® + A) } dV (4.136)

Using the equations that govern the axisymmetric equilibrium we can rewrite the

last term in equation (4.136) as,

EEV VP + ) = QXY V;(r?sin’6)
20°r? [cos? 0]¢€°|* + sin® 0|7 )] (4.137)

and
BRI QQ{mQ|§|2 — 2imr?sinf cos § [é%’“’* — 6“’60*}
+ 7 [oos? 6J¢°|2 + sin? 6)¢¥|"] | (4.138)
which means that the canonical energy can be written in the form

Ber =5 [ p{(m = w)(m@ + W)€ - 2imS2r?sind cos O [€°67" - €96 aV

(4.139)
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Introducing the axial stream function,

U

- _ma(pylmeiwty (4.140)
& = r?iiUneaBY‘meM’ (4.141)
we have )
R R (4142
and
1 cosd

ir?sin § cos § [£P67 — £96%] = m|UP [V 0 Y™ + V™0, Y] . (4.143)

72 sin @
After performing the angular integrals, we find that

l{I+1)

B, =- {(mQ )@ ) - 2 } /p|U|2dr . (4.144)

I(1+1)

Therefore we see that for all { > 1 » modes the canonical energy is less than zero,
and the | = m = 1 r mode results in £, = 0. This agrees with previous work

suggesting the r modes are unstable against the gravitational radiation reaction.
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4.6 The superfluid problem

We now wish to extend the Lagrangian perturbation analysis to the superfluid
case. For this system we use the two-fluid model outlined in Section 2. To recap, the
essential equations are two continuity equations (2.19), two coupled Euler equations
(2.20), and an equation for the gravitational potential (2.21). As a first step we
will initially only be considering the case of vanishing entrainment for which we can

write the Euler equations as,

1
(0 + Loy )V + V5 (cI>+/_1X — gvi) =0 (4.145)

we recall that X =n or p.

To investigate the Lagrangian perturbations of this system we introduce two distinct
Lagrangian displacement vectors &%, one for the neutrons £, and one for the protons

5;. To distinguish between the two possibilities we use variations Ax such that
AxQ =0Q + £¢,Q . (4.146)
The continuity equations therefore become,
Axnx = —nx V& — énx = —Vi(nx&y) . (4.147)

The equation describing the perturbed gravitational potential is,

V25® = drmpG(dnx + dny) = —4rmgGV,(nx & + ny&l) (4.148)

This equation is linear which means that we can write,

§® = 5B, + 5B, (4.149)

Where
VQCS@X = 47rmBG5nX = —47rmBGVi(nX§f\,) (4150)

As in the single fluid case these equation can be solved using Green’s functions to

give,
1

| = 7|

0bx = _mBG/nIX( L)'V, { } dav’ (4.151)

Applying a perturbation to the Euler equations gives,



(4.152)

(& + £UX>AX'U1‘X + Vi (qu) +AX,ELX - 5

1
—A;wi) =0

We can see that this is almost identical to the single fluid perturbed Euler equations.

Therefore we can immediately write,

0265 + 203, V0,68 + (Vi V)25 + V60 + €3, V,V ;8 — (Vi&h ) V,fix + Vildx fix = 0.

(4.153)
The Lagrangian perturbation of the chemical potential can be written as,
Axpix = Ofix +E&Viix
ol o[ ;
= ( NX) onyx + <ﬂ> ony + £§(VJ/1X
8nx ny 8ny nx
Ofix ; Ofix ;
—_ < V 7N A . J
(8nx ) N i(nx&) (any N Vi{ny&)
+ &,Viix (4.154)
Therefore
_ [ (O N V&b N
Vixix = —V; fx V;i(nx&)| — Vi Zhx Vi(ny&)
i 8nx ny | i 8ny nx J
+ Vi [ﬁffvj/lx}
Opix ; Opx :
= =V; (nx&) | — Vi || =— V; !
(52) witmesh| - v (32) Wit
+ Vi Viix + ViV ix (4.155)

and we arrive at the following form for the perturbed Euler equations

26X+ 20 V,0,68 + (Vi V)X + V6D + EViV;(D + fix)

Opx
8nx

Ot ; _
a%f-) N Vj(nygg,)] =0 (4.156)

)

[

As in the single fluid case we can write these equations as

) Vi(nx&) + (

Ax8i&x + Bx8iéx + Cxéx + Dxby =0 (4.157)

Where



AxO7€) = nxd¢f (4.158)

Bx 0,6 = 2nxvIV;0,6° (4.159)

Cx&" = nx(WV)’6f +nxVid®, + nx& ViV,@
oL . ) B
- nXVi (a#—x> V](Tbxfg() +7’fog(vivj'/1,x (4160)
Nx ny
y Opx j
DX&; —_nxvi aT Vj(nyfy) +nxvi5@y (4161)
Y /) nx

4.6.1  Trivial displacements

In Section 4.5.1 we introduced the idea that for a particular physical perturbation
there does not exist a corresponding unique displacement vector £*. We identified
certain triwial displacements that while not affecting the physical perturbation can
alter the canonical energy. In the two-fluid case we need to introduce two such
displacements, one for each fluid. The equations these displacements need to satisfy
are identical to equations (4.91) - (2.19) except now we require two sets of equations.
Once again it can be shown that for the normal modes the displacement vectors &%
are orthogonal to all the trivials and hence the canonical energy can be used to test

for stability given a normal mode solution.

4.6.2 Symmetries of the operators

In analogy with the single case we want to derive conserved quantities for the system
to enable us to assess stability. Given the single fluid results it can easily be shown

that the following symmetries hold,

(nx, Ax€x) = (nx, AxEx)"
(nx, Bx€x) = — (nx, Bx¢x)"
(nx,Cxéx) = (nx,Cx&x)” (4.162)

4.6.8  Symplectic structures

We introduce the symplectic structures which are used to construct the canonical
energy. To do this we consider two sets of solutions to our perturbation equations,
[€n, €] and [, 7], and define,

!
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1 1
Wx(nx,&x) = <77X,Ax3t€x + §Bx€x> — <Ax3t77x + §Bx77x,§x> (4.163)

Therefore,

1 1
OWx(nx,€x) = (Omx, Ax0:x + §Bx€x> + <77x, Ax02x + —Bxatfx>

2

1 1
AxOnx + §Bxat77x,fx> - <Ax3t77x + §BX77X1 at§x>

1
§Bxatfx - Cxéx — DX§Y>

= <8t77x,x4x3tfx + %Bxfx> + <77X) -

1 1
QBxamx — Cxnx — Dxﬁy,§x> - <Ax3t77x + ;Bxﬁ)m 3tfx>
= (Omx, Ax0€x) — (Ax0Onx, Oeéx)

1
+ <8mx, X§X> + <5Bxat77Xa§X>

x> 5 x3t§x> <%BX77X, atfx>
X, fox) (Cxnx,&x)

nx, Dx&v) + (Dxny, €x)

= —(nx, Dx&vr) + (Dxny,&x)

(
(

S (4.164)
Explicitly,
OWn = = (1, Dn&p) + (Damp, n) # 0 (4.165)
and
O:Wp = — (1p, Dp&n) + ( Dy, &) # 0 (4.166)

We can see that individually W, and W, are not conserved, so we look to see if the

sum of the two is conserved. Since,

a Y )
( “X) v, (vl
nx

any

Dxnx = —nxV; +nxViddy (4.167)

we can write,



1% 6:[]41 j
oW, = [ nuriV; ( aﬂ) Vi(negj) | dV
1 a:ﬂ’n j*
- /nngnvi (anp>nn v] (npné ) av
— / Ny Vi, @pdV + / na& Vi(8y, ©p)*dV (4.168)
and
_ 1% a:[lp 7
OWy = | npnVi Vi(na&)| av
Oy -
i aﬂp j %
- Tlpé.pvi an V](nnnf,) av
— / npmy Vibe, 2adV + / NpEs V(6 Bn)*dV (4.169)
Using the fact that,
Oy Ofin
= 4.170
(), = (o), m
P n
the first term in 6,W, can therefore be written as
1% a:&’ ] I* a~ :
/npnp 1 <anp) v](nn£g> av = /vl npnp <6ZP> v](”n&%) av
"/ ng n/ np
- / Oln ) . (1) Vs(ngri?)dV
anp e J n P'/p
j a,ﬂ’n 1%
— —/Vj nnél (a”p>nn Vi(npny) | dV
1 | a,&’n 1% ] y
+ /nné_ng (anp>nn Vi(npnp) dV
RN N
— /nnggvj (anp)nn Vi(npny) | dV
(4.171)

Therefore when added to 9; W, this term will cancel with the second term. Similarly,
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av

dV = /nnnﬂ*vj

i Ok ; Ofin i
[ ot (52) Witrant (52) vt
(4.172)

Therefore the second term of ;W will cancel with the first term of 0,W,. If we
now look at the third term of 0,W,

/nP(n;)*vi&Dndv = /np(ﬁé)*vi {—mBG/n;(fg)’V;{

1
= —mBG’// 2 ( np )"V, V. {ﬁ— _‘/J V'dv

2 \/ 1 L\*TT 1 !
- _mBG/ n(gn) /vz (np(np) Vz l'f_f,|:| dVdV

= /nnggvi(écbp) (4.173)
Similarly
/{npg ) }dV = /{nn(n;)*via@p} av (4.174)
Therefore it is clear that
W, + 8, W, =0 (4.175)

and, Wy (m, &) + Wp(np, &) is a conserved quantity.

4.6.4 Canonical energy

The canonical energy of the system is defined as,

E, = T—“QE[Wn(atgn,&n) + W, (B, &)] (4.176)

Expanding this out gives,

1 . 1
EC = mTB [<5‘t§n, Anatgn + iBn§n> - <44nat2§n + aBnaté—na £n>
1 . 1 -
-+ <at§p; Apatgp + §Bp§ - p> - <Apatzgp + inatgp’ §P>} (4'1'{ {)

Which easily leads to,

mp

Ec = [<at§n; A at§n> <at§pu Apat§ - p> + <£n; Cn§n>* + <§p: Cp§p>*
+ <£n; nSp> < Spy p£n>*} (—1178)
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The terms involving A and C are identical to those in the single fluid case, thus we

P

(4.179)

By analogy with the results from the single fluid case it follows straightforwardly

need only consider the final two terms. We can see that,

%E (Eyv,DxEx)" = / {P/\'&Vi@(l’y)* —nx&&V;

() it

that the canonical energy can be written as,

1

E, = 5/ {Pn|at£n|2 + Ppiaﬁgp'Q - Pn|vgng?|2 - pp|vgvj£ﬂ2

+ [0aElE + ppEr VIV + nabh& ViV s + np€LE ViV,

Opn 2 Opp 2 1 2
J2 o (e > 1 g0
+ (ann>np |0 |” + (8np nn|6np| 47rG|V |
alu‘ﬂ * *
+ (8np> N [0nndng + dngdng] }dV (4.180)

4.6.5 Canonical angular momentum

The canonical angular momentum is defined as,

J, = —%Wn(ad,gn,gn) _ %Wp(a&p,gp) (4.181)

Using the result from the single fluid case,

1 1
']c = —mpRe {<a¢£nu -Arlatgn —+ ;Bn£n> —+ <a¢£p7 -Apatgp + ;Bp£p>} (4182)

4.6.6 Normal mode solutions

If we consider a normal mode of the form,

§ = Eetltmoted (4.183)

and considering initially only the terms with index n we get,



Ecn = %Bi [<at§n7 Anat§n> + <§na Cné-n + Dné-p)*]
_ % {(iwfn,iwAnfn) + <§n, _AE — Bng}l>*]
= T [ (G, Anka) + &7 (6n, Anka) — i (6, Bate)]
mp

= & W+ w) G Anka) —w (&, iBa&n)] (4.184)

Where £, = 0, &0 = 02&,, and where we have used the symmetry of A, to
substitute (£n, Anén)” = (€n, An&y). Finally we obtain,

Eup = muw[Re(w) (£, Anka) — % (€0 iBoEn)] (4.185)

Including the proton terms the total canonical energy becomes,

E. = mpw{Re(w)[{&, An&n) + (§ps Apdp)]
— SHEn B + (6 By} (4.136

By comparison with the single fluid results the canonical angular momentum for

the case of normal modes is,

Jo = —mpm{Re(w)[{&n; Ankn) + {&p) Ao
- %[<€n7'LBn€n> + <§p7 ZBPé-PH} (4187)
i%:—%EUP (4.183)

4.6.7 Stability

In the single fluid case when the pattern speed changes sign a counter-rotating mode
becomes unstable. We can see if this remains valid in the two fluid case. We consider
the canonical angular momentum for normal modes in cylindrical coordinates under

uniform rotation. In this case equation (4.187) becomes,

Jo = —mAw[{&n, pnén) + (&, Poép)] = [{€ns 10nTn - Vén) + (py ippTp - VEN}
(4.189)



Therefore

e = —muw + m<£n’ 1patn - Viéa) + (£p, 05T - VEp)

(€ay Pnn) + (§py Po&p) (€ns Pabn) + (€pr Po&p)

(4.190)

As in the single fluid case we can use cylindrical coordinates, vg( = Qx¢’ giving,

—ipx (Exi) V5 Vi€ = pxQx [mléx? +i(Ex x Ex). (4.191)

Since |(€x % €x). < |Ex|?

pxQx|€xP(m — 1) < —ipx (Exd) Vi Vi€ < pxQx|Ex|*(m + 1) (4.192)
Therefore
(¢x, px v Viéx)
> —QOx(m+1 4.193
(ExypxEx) + (v, préy) — x( ) ( )
and consequently
(&x, pxz’vi}ijx> > —Qx(m+1ax (4.194)

Where ax = (€x, pxEx) > 0. The next challenge is to find an upper limit. From
equation (4.192)
(€x, pxivy Viéx) Qx

G o) & Erpre) = 3 M=) (4.195)

and hence

. Q;
<5X,waf\rvjfx> < - 2\,

(m — 1)ax (4.196)

Combining the two cases we obtain the following condition for the canonical angular

momentum,

1\ = 1 1Y =
oplan +ap) — <1 + —T—n—> Q< J./m? < opan + ap) — 5 (1 — T—n—) Q (4.197)

&

Where © = [Q,a, +Q,a,]. In the same way as in the single fluid case we can use this
canonical angular momentum limit along with the relationship between the pattern
speed, the canonical energy and the canonical angular momentum (o, = E./J.) to
investigate the stability of the normal modes. If both the fluids are rotating slowly
(Q — 0) we find the results summarised in Table 4.3.
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Small Rotation Case (Q — 0)

HUP<O‘ op >0
A +
B + +

Table 4.3:  Regions of stability for a two fluids with small rotation.Since for both co-
rotating modes (o, > 0) and counter-rotating modes (o, < 0) the canonical energy
18 positive the system will be stable.

Since for both co-rotating modes (g, > 0) and counter-rotating modes (g, < 0) the
canonical energy is positive the system will be stable. However, in a system with
finite © we find the results summarised in Table 4.4. Therefore we can conclude
that as in the case of a single fluid when ¢, < 0, and the mode is counter-rotating,
we observe that it is stable. However, as it begins co-rotating the canonical energy

becomes negative and the mode becomes unstable.

Finite Rotation Case (Q # 0)

0p <0 0<oplan+ap) < 1= 10 aplay +ap) > (1+1)0

Je - — +
E. |+ - n

Table 4.4:  Regions of stability for a two fluids with finite rotation. When o, < 0,
and the mode 1s counter-rotating, we observe that it is stable. However, as it begins
co-rotating the canonical energy becomes negative and the mode unstable. In the
non-rotating limit we found no such instability, and hence we deduce that this change
of sign signifies the introduction of an instability at a critical rotation rate.

4.6.8 The superfluid r mode instability

We now extend the analysis of the » mode instability introduced in Section 4.5.8
to the superfluid case. Again a significant amount of previous work has been done
on this topic and we will make use of their results in our investigation. Many
studies have restricted their analysis to co-rotating backgrounds, &, = Q,, [53],
[76], [10] where it is found that provided the background model is not stratified, i.e.
if Vz, = 0, the system can be separated into purely co- and counter-moving modes.
However, in the general case with a background allowing the two fluids to rotate
at different rates around the same axis, i.e. Q, # €, Prix et al [68] showed that
purely co- or counter-moving modes are not observed. However, their investigations
showed that in the absence of entrainment the r mode fluid motion must be such
that only one of the fluids oscillates. We will consider this entrainment free case

before turning our attention to the co-rotating case with entrainment.



The case with relative rotation

Since we have ignored entrainment the two fluid system is basically two uncoupled
systems with identical solutions. Therefore when 2, # €2, we cannot find a single

mode solution. What we find is that only one fluid will oscillate giving,

-, 2
vy 20, 60y =0, w=mly {1_l(l+1)}' (4.198)

and by analogy with the single fluid case we immediately get,
1 , . ~
E.=3 / {px|0:Ex|” — px |V V&5 P + pxEXEX ViV (P + ax) }dV (4.199)

Thus both these classes of modes will be unstable due to the emission of gravita-

tional radiation.

The co-rotating case {1, = (), = ()

If we write,
i + npgf .
G =" " " = (4.200)
n P
and
& =6-& (4.201)

then when £* = £P and the two fluids move together only &' is present. We can

write the canonical energy in this situation as,

1 ; P
Be = 3 / {PlOEF = plv? V& P + p€LEY VIV,
+ fi f[nnvivjﬂn +aniVjup]} av (4.202)

where we have neglected the higher order contributions from énx and §®.

In this expression, the last term can be rewritten using the fact that we must have
Viﬂn = Viﬂp = VIM (4203)

if the two fluids rotate at the same rate, cf equation (4.152). This immediately
leads to
nnViVjun + an.iVjup = nViVju (4204)

(where n = n, + np) and consequently

1 ) S -
B = 5 [ollBg"? ~ Vg + VIV, @+ YAV (4205)
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This is identical to the single fluid problem, suggesting that pure E’L modes are

unstable.

The next case we consider is the canonical energy for counter-rotating modes where,
nn&l +npky = 0. (4.206)

In this situation only & is present, and we have

& = & (4.207)
Tp n N

& = — =178 (4.208)
p

By substituting the above expressions into equation 4.180 we get

]. y 1 ] * ~
Ee=3 / onp {10 + [V V6P + ELEEViV;(D + i) } AV (4.209)

where z, = n,/n is the proton fraction. Since the expression in the bracket has the
same form as in the single fluid case, and the prefactor p,x, is positive definite, it

is easy to prove that £, < 0 also for the counter-moving modes.
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4.7 Lagrangian perturbation theory with entrainment

The next step in our Lagrangian perturbation analysis is to consider the situation
where the entrainment parameter « is non-zero. In the entrainment free case our
neutron and proton equations are coupled chemically through the equation of state
and gravitationally since variations in the number densities of one fluid affects the
gravitational potential and hence affect the other fluid. The function o describes
how the internal energy of the system depends on the relative velocities of the two
fluids and introduces a much stronger coupling of the equations. The Euler equation

with entrainment, equation (2.20) is,

(8, + V5 V;) (v +exw!™) + Vi (@ +fix) +exw! ¥Vl =0 (4.210)
Where ex = 2a/nyx. Since we can write,
VeV (exw!™) = £, (exw]™) —exw! ¥ Vivk (4.211)
we can write the Euler equations as

2
(8, + £ay) (v +exwf™) +V, <<I>+ﬁx - %) =0 (4.212)

To investigate Lagrangian perturbations of this system we take the same approach
as in the entrainment free case and introduce two distinct Lagrangian displacement
vectors, £%. The continuity equations and the Poisson equation are not affected by
entrainment and thus we can simply use equations (4.147) and (4.148) to describe
the perturbations of the gravitational potential and the densities. Perturbing the

Euler equations gives,

AX U?{
K)

L

(0 + £ux) [AxvS + Ax (exw!™)] + V; (Ax@ + Axfix — ) =0 (4.213)

We recognise the terms (8, + £, ) Ax v and V; (Ax® + Axfix — Axv%/2) from

]

the entrainment free problem and can hence immediately write,

(0 + £ay) Axv = 26" + 04 V;0,E° + v V,0,6f
+ Uff{Vk (Axvix) + <”_\X’Uf;{> vk
(4.214)



and

_ Ax? . .
Vi (Ax@ +Axpix — };UX> = —8t§§(ViUJX - Ug{viatéjx
— ok (Vi + Vi) Var
— (V) Vigh — ik Vvl
+ Vib® + E ViV, (O + fix) + Vibiix
(4.215)

In this case djix depends on the entrainment. This is obvious from Section 2.2
where we observe that the chemical potential, py, is simply a partial derivative of
the energy functional, £, with respect to the corresponding number density, ny.
Since £ depends on the entrainment the Fulerian variation in the chemical potential

also depends on the entrainment. We can write it as follows,

y Ofix ' Opix . O
5,U’X - (%) nY1w2 VJ (nXé{Y) B <—>anw2 V] (nX fY) + <aw2 nXan 5w2

8ny
(4.216)
where . ) 5
(L’;) - (_a ) (4.217)
ow nxny B A\ONX /) e
and
bw? = w}-/xéw{//\, + w{}xdw}/x = Qw;-/xdw{/X (4.218)
giving
~ allX i aﬂ\f ; 2 ;
5 = | — . 7Y i . J A YX5 7
Hx <8nx > ny ,w? V] (nX§X) <8ny nx w? V] (nY§Y) * mgs Xw] Yrx
(4.219)
Where we have introduced 5
Ay = (—a> (4.220)
877,)( 2
ny ,w
and where we can write,
Swly = vl — vl
= 0l + 1L Vil — ELV ] — 8,6, — v Vi + E4V ik
(4.221)

The remaining term in equation (4.213), which was not present in the entrainment

free problem, we can write as,

(O + £,¢) Ay (u\w}\) =ex (0 + Loy) Axw! N +w! ™Y (0, + £,,) Axey (4.222)
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We begin by looking at (8; + £, ) Axwl ¥

(8 + £uy) Axw! ™ = (0, + £4,) Axv] — (0 + £4,) Axvy® (4.223)

Where,

(B + £4x) Axv = 076 + v V0,61 +vi V0.
+ vV, (Axvix) + (Axv) Vv

02X + Vi V0,61 + v Vi8,ES + vk Vi
Vi V(W V€8 + 05 V(v Vi€) + 865 Vivk
(vﬁ(Vjé,f)Vlvﬁ( =+ (Uf‘{ngjx) Vﬂjgc(

+ 4+

Il

026 + 207 V8,68 + Vi VitiE + (v V;)2ES
Bl Vvt + v (V68 + Vi) Vivk + (vﬁvkug()vig"
u/’;ufgvkvigf (4.224)

+ o+

and,
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(8,5 + £'ux) Ax'UZ-Y

I + o+ o+ o+ o+ + o+

+ + + +

0FEl + v V;0.8Y — 0.8 Vvl + 0.1Vl + V0.
vV [0 + vl V&l + vl Vil — GVl + &V
8,67 + ] V&Y + 0 Vill — GVl + E V)] vk

026y + (vl + i) V;06F + 8,6} [V — Vil
atfjxvj’viy + fu;viatgj( R AV

(V5 Vir]) Vi€l = k& ViVl — (V5 Vid)) Viu!
U?{fg(vkvjviy + (vé}Vkéﬁ;) Vvl + vf(v{',vkvigf
(W5 Vi]) VieX + (v} V;€)) Vil — (Y 0) Vivk
(EVul) Vivk + (v V&) Vavk

0zEr + (v +v%) V0.8 + 8:&l, [Vavf — VoY

0 Vvl + vl ViogS + (& — &) vk ViVl

[ Vi (6 — )] Vool + (v Vind) [V,€) + Vg
vﬁ/v%-vkvj§f + vf\/v{}VkViéjf\/ + (v{,ij,Z) Viv’;(

(3 Vivk) Vil + (& — &) (Vi) (Vivk)  (4.225)

We can define ¢, = &, — & giving

8y + Loy) Axv)

Il

02l + (v} +v%) V6.8 + 0.8l [Vivl — Vo))

BV vf + v Vi8S + Wiy vk ViV

(05 Vi (Why)] Vivi + (v Vird) [V,€ + Vig)']
VRV Vi V56 + il Vi ViES + (0] V€Y Vik

(v} Vivk) V&l + kv (Viu) (Vavk) (4.226)

+ o+ o+ o+

Combining equations (4.224) and (4.226) gives,



(8t+£UX)AXw1YX - (at+£UX)Ax’UZ-Y—(at-i-fUX)Ax'l}iX

~ 26X + 204 V068 + (i V) €]

(026 + 20 V,0,60 + (v V,)°¢] ]

(vk —vd) V3060 — [0:68 (Vivk) + v5 Vidi&)f

Vi (V€8 + Vi) Vivk + (v Vivk) Vgl

Vi ViVl + 0l (Vv — Vol | + 065 Vi)
vYViatSJX + wxyv')‘{VkV »'U-Y + (kaV;cszYj) V]-viy
(vaVkv{,) \Y, 5 + 'UXL{ ViV, 5 + (v V]f,z/) Vivk
(U{,Vivfy) Vkéj + ( y VUL ) A\ ?)X

+ 4+ + A+ o+ A+ o+

= [076 + 20, V08" + (V5 V,)%E]

[02¢) + 2v§Vjat§Y + (v} V)%

(atg{ - atg{/) ( iV -V v ) + wYX [V at£X Vjat&iy]
Wy v ViV 0} — (vXVivX + v,(v»ux) V,Ef

(v{,Vivf{) (V& + Vkﬁjx) + (Wy Vi) ) Vivl

(V5 Vidbley) Vvl + [0 Vivd — vE Viok] Vi
viwl x Vi Vil — Vi (v} V5€)) (4.227)

+ + + + + +

Where we have used the fact that

ViV (V€)= (W3 95) € + (vl — uk) Vi (] V5€)) (4.228)

To investigate the second term in equation (4.222), (0; + £,, ) Axex, we begin by

looking at Axex.

Axex =dex + & Vjex (4.229)

Using the definition for ey, equation (2.18), we find,

2 2
v = 8(22) o6em (2)
nx nx
2c 2

2
= —ba-—
nx Ny

4

xVio — =& Viny
nx
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We can use the perturbed continuity equation, dnxy = —V; (nx&%), to give,

2 2a . 2 . Qv
Axex = —da+ —V; Y)+ —&Via— —£&V;
XEX x a 2 (nx€x) nxfx j nifx 51X

2 2 i i i 2

= —ba+ — [nx Vil + EVinx — ExVinx| + —&Vja
nx Ny nx
S P (Vi€ + & Vi

= —o« — |V, e’
N N X X
25+2v(§i) (4.230)

= —O0Q _ i s
nx nx ox

The entrainment function, « is a function of nx, ny, and w? i.e & = a(ny, ny, w?)
and hence,
S = Axbny + Aydny + 24,w) *owl (4.231)

where once again Ax is given by equation (4.220) and we define

oo
A, = [ 22 4.232
(5%) (4.232)
nx,ny
Since
Sl = vl — 60l (4.233)
where
vl = B+ vV - €T (4234)
we can write da as,
ba = —AxV; (nxfl‘{> — Ay V; (an§f>
+ 24,w] ¥ (0] — 8% + Vi Vit — Vi Vitk — &Vl + & Vivk]
(4.235)
and consequently
2 : ) )
Axex = ;L—;[—Axvi (nxék) — Ay Vi (nv&) + Vi (afy)
+ 240w (0 x — Ok + vy Vil — Vi Vilk + Py Vvl + € Vivk)]
2 . ) .
= —{ (@ Axnx) Viék + € Vi — AxEy Vin
— Ay [y Vi€, + & Viny| + 2AwijX§fYViw{,X
+ 24wl [y Vitd — Oy + Vi — vk Vigh] | (4.236)
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Using the substitution

Via=AxVinx + AyV,ny + 2Aww;/Xviw{/X (4.237)
gives,
2 . . .
Axex = E{AY [Wyy Viny — ny Vi€y | + (0 — Axnx) Vi€
+ 2Ag0) X [Py Vil - By + 0 Vit — i Vigl] | (4238)
Finally,
2 . . )
(00 + £0,) xex = —{ Av [0y Viny — ny VidiE] + (0~ Axnx) Viditk
+ 24,00 % [Biey Vivd — 020y + viViBiE] — vl ViB,EL] }

4 .
+ 'U?(Vk [—EAWU)JYX@, ‘;(Y:|

2

Nx

+ V5V, [ {AY [y Viny —ny Vigy | + (@ — Axnx) Vi€

+ 24,07 % (Why Vil 0y + v Vel — v VL) }

(4.240)

Consider for a moment simply the term vV, [—4Aww]}-/x(9tw§(y/nx]. We can write

this as,

4 , 2 :
vV, —E(—Awwfxat@/}f‘{y} = —E{QAww;/va(Vkatd)ﬂ(y

+ 2Aw8td)§<yv§(vkw;/x}

‘ 44,
— w Xy vk Vi (—n ) (4.241)
X

If we assume the system is axisymmetric the final term in the above equation

vanishes. Giving,

4 - 2 Xk . .
vEV | ——Ayw] 0, ;Y} = ——’{2_4“,11)]‘-[ sz,@vkatw{w+2Awat¢{wv§vkw;’x}

nx nx
(4.242)
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Similarly

2

nx

(0 - Axnx) Vi) = - (a—nxAx)kViVig  (4.243)

vf{Vk{ o
X

where we have used the fact that in an axisymmetric system,

v’)“(Vka = Axvkan‘(—l-Ay'UXVk—l-QA wYX kawYX

=0 (4.244)
We can also write

2 . _ 2 _
vivk{aAy [Wiey Viry —nyVigh] } = E{Ay{w;yvivkviny

+ (Viny) vk Vitly — myvh ViViy } b (4.245)

The final term in equation (4.239) becomes,

Yvk{n 24w} ™ (e Vitl Oy + 0} Vit — v Vih)] |
= 24, {Wyy Vi Vi () Vid) + (WX Vil ) v Vily
+ (Vi) ™) (4 Vi) — v Vigk) + w) Cw T ok Vi (v Vi) — vk Vigk)
= 24, {Yiy vk Vi (W Vivd) - (vng. X) vh Vidy
+ (VkVew) ") (W Vi — vk Vi) +wf N w v Vi (v, Vigl - vk Vigh)
(4.246)

In our system we are assuming the background is axisymmetric and hence we can

write,
vh = Qx¢t (4.247)
and
Wl = (Qy — Qx) ¢ (4.248)
with ¢* given by
©'0; = 0, (4.249)

Therefore we find,

U)]}'/Xvi'l}{/ = Qy (Qy — Qx) SDsz‘SOj = —Qy (Qy — Qx) ¢!V, = _'U{/vjwiyx
(4.250)
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Thus,

4 . 2 ‘
0+ £0) Axex = —— Ayl Gy + —{ (0= nxcAx) Viditk
nx nx
— nyAy V0,6 + 2Aww]¥X (vi + %) V0.8,
— 44w V0,8,

[Akany + 24, (w}/XVkv{, — U}Vi)} 8twf(y

(o —nxAx)vE ViVl

Ay {5 ViViny + (Viny) v Vibly — nyvi Vi Vil }
2 A, {Wiy v Vi () ¥ Vird) = (v Viw ) vk Vi,

(V% Vew) ™) (v} Vigl - vk Vitk)

w5V () Vil - vk Vi) }} (4.251)

+ 4+ + + + o+

We can combine everything in a schematic way to give us
Ax 026" + Bx 85" + COx&F + Dx&) + Ex(65,60) =0 (4.252)

It is important to note that Ay is an operator and should not be confused with
Ax. The Operators A, B, C' and D are identical to those in the entrainment free
problem where D couples the neutron and proton systems through the equation
of state. The operator £ is highly complicated, consisting of a combination of
equations (4.219), (4.227), and (4.251). It depends explicitly on both o and w)*
and acts on both the neutron and proton displacement vectors as well as their first

and second time derivatives.

It is clear that introducing an entrainment term substantially complicates the re-
sulting perturbation equations. It would be highly constructive to continue from
this point to derive a canonical energy equation for this general two-fluid system.
In doing so we can hope to develop stability criteria for superfluid neutron stars.

This analysis will hopefully be the focus of future work.

In this work we will study oscillations of a simple test problem with @ = constant.
This simplifies the Lagrangian perturbation equations greatly since, as we see from
equations 4.220 and 4.232,

Ax =4, =0 (4.253)
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In this simplified case the perturbation equations can be written as,

+ o+ + o+ +

where

o2&x + Uf‘yvjatgf + vf;viatgj( + 05V, (AXU{Y) + (Axvf) Vv
2a

- { = 1026 + 20, 9,065 + W V,)%6] + [07€) + 2] V067
(v V5)PEX ]+ (0% — L) (Viv) = Vi) wl x [VidigS - V,0,]]
ey Vi ViViol — (Vi Vivk + 5 Vivk) V&8 + (vl Vivk) (Vi€ + Vigfl)
(Whey Vi) Vivl + (V5 Vitddy ) Vool + [v5 Vird — vk Vid] Vigf
vkwh x VeVigl = Vi (v, V5€)) } + wiyx{i—i (Vidi€ + vk ViVitl) }
i Vivy — V0" = vk (Vi + ng,f)/viv;; - (v Vi) Vigk
Vv Vi Vil + Vib® + ViV (@ + fix) + Vidjix =0

(4.254)

o Nz |
Six = — ( “X> V; (nx€l) - <ﬂ> V; (nyé)) (4.255)

%—; ony

91



Chapter 5

The oscillations and stability of
superfluid cylinders: the

entrainment free case

Having constructed Lagrangian perturbation equations in Chapter 4 we have reached
a point where we can use this framework to study the modes of oscillation for a
cylinder of superfluid. We begin with the case of vanishing entrainment, i.e. o = 0.
This involves expressing equation (4.156) in cylindrical coordinates, establishing ap-

propriate boundary conditions and subsequently solving the equations numerically.

5.1 The equations

We proceed by assuming; (i) the time and azimuthal dependence of the perturbation
is given by exp(iwt+1im¢), where w is the oscillation frequency and m is the integer
wave-number; (ii) both fluids exhibit uniform rotation about the z-axis such that,
vi = Qx¢t; (iii) the fluids obey an energy functional of the form equation (3.28);
and finally assuming (iv) the Cowling approximation can be taken, ie. & = 0.
Using Table 3.2 and the substitution, §, = —ir0m§¢, the variables in these equations
are scaled giving the following four equations (the bars have been dropped to avoid

the equations becoming cluttered),

OEX | [ Ou, : O dp;
85; [(5g,\\:>n%wz meTZ +§;\’ (8g—;>w,wz mr <px + T g:) - QQXO'X7-3]
+ f;\, {(gg_x> mipx — mU‘QyTQ:| =0 (5.1)
X/ ny w2



and

O | (Oux)
or? Onx ny w? px
8{;( Opx 2
i W[(%)ny,wzmpxr
[/ Oux px  Opx
x| [ 9Hx 2 X 2.3
+ & <8”X>n,,,wzr<r 5,2 + 7 o px | +oxr

9] 0
+ ff <—MX> m? (r ;TY - 2,0x> +2mflxox 72} =0 (5.2)
L ny w2

08X | (Oux ) Opx
T or [(m N

8nx

Where o0x = w + m{ly and once again X and Y are the constituent indices which
can represent either the neutrons or the protons. When X represents the neutrons,

Y represents the protons and vice versa.

To find solutions to these equations numerically we express them as four first order
equations. Equation (5.1) is already first order and to make equation (5.2) first order
involves solving Equation (5.1) for 9¢,./0r, differentiating to obtain an expression

for 52¢,/0r? and finally substituting these into equation (5.2). This results in,
g

a X
% {mQ (3MX> UXPXT:I —'r—fq/;\/ [2777,(2){0’?(7‘]
ny ,w?

Onx

Oux Opx
+ &F [m (anx>n%w2 (maxpx — 20 xr 5 +4QEXU){7‘2 =0 (5.3

Where we have used the fact that the background gravitational potential can be
written as,

¢ = %TQQ;? — fix + Constant (5.4)
Equations (5.1) and (5.3) give us four first order differential equations representing
the perturbations to our two fluid system. In analogy with the entrainment free
Eulerian perturbation case we find that the neutron and proton systems are coupled
only through the background gravitational potential. There will be an independent
set of normal modes for the neutron superfluid and a second set for the proton
fluid. Only in the co-rotating case will the mode frequencies be the same. If we
introduce a relative rotation, modes will be either purely neutron or purely proton.
One fluid will oscillate while the other remains stationary. If we considered non-
zero perturbations to the gravitational potential, e.g. d® # 0, we would find that a

coupling exists between the equations in this entrainment free case.
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5.2 A local analysis

Our objective is to study the influence of different relative rotation rates of the two
fluids and varying K on the normal modes of superfluid cylinders. As a starting
point we classify the modes by using a local analysis to construct propagation

diagrams. We assume the modes take the following form,
1 _ c s
& = ;grk exp (zkr) (5.5)

&p = &k exp (1kT) (5.6)

Substituting these into equations (5.1) and (5.3) leads to the following dispersion

relation,

a,LL\’ 2,9 : a,U'X 2 a,U'X
T ) oxpxT?k® =i | === | oxplyr?k + m?® | — —o3r?
(aﬂx> XPX 8nx XPx 8nx IxPx oxT
o}
~ om [ 9EX Qxpyr +4Q%0xr* =0 (5.7)
a'nx
For propagating waves to exist £ must have a real part and hence the condition for

propagation is

Opx 2 Opx
dpxricy — K—an,y) (P )’r? + 16Q5% pxr? + 4m? <——8nx px| 0%

0
4+ 8m (%) prxp/XTO’X >0 (58)

X

This is equivalent to equation (4.44), the condition for propagation in the single
-Aﬂuid,' isentropic case. In this two fluid example we find distinct regions of prop-
agation for the neutron modes and separate regions for the proton modes. The
effect of one fluid on the propagation regions of the other occurs only through the
coupling of the background densities through the gravitational potential. Only in
the co-rotating case, where the neutrons and protons are rotating at the same ve-
locity do these regions coincide. When both the fluids are stationary two regions of
acoustic wave propagation are found, see Figure 5.1. These regions are symmetric
with respect to w = 0. The direction of propagation depends on the sign of w,
waves with opposite signs propagate in opposite directions. When w < 0 the waves
move forward and are consequently designated the label (f) in the Figure. Those for
which w > 0 are labelled (b) as they move in the backward direction with respect
to the pattern speed of the mode. In addition to the p modes which propagate in
the acoustic regions we find, for both positive and negative frequencies, an f mode
lying just outside. These modes do not originate from propagating body waves

which is why they are situated outside the propagation areas.
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Figure 5.1: The graph shows the regions of propagation for two non-rotating
fluids in a cylinder. We observe two regions of acoustic wave propagation which are
symmetric with respect to w = 0. The direction of propagation depends on the sign
of w, waves with opposite frequencies propagate in opposite directions. When w < 0
the waves move forward and are consequently designated the label (f). Those for
which w > 0 are labelled (b) as they move in the backward direction. In addition to
the p modes which propagate in the acoustic regions we find, for both positive and
negative frequencies, an f mode lying just outside. Also shown in the graph are the
mode eigenfrequencies and the zeros of the associated radial displacement. In this
ezample m=2,Q,=0,Q,=0, K =1.

We now look at the effect of a relative rotation of the fluid components on the
modes. In Figure 5.2, where €2, = 0.3 and 2, = 0, we observe an additional
region of propagation known as the R-region for the neutron superfluid modes. The
forward and backward modes are now divided by the line w = —mf),. Waves with a
frequency less than this are moving forward with respect to the background rotation,
whereas for w > —mf2, the waves move backward with respect to the background
rotation. Since the protons remain stationary we do not observe a presence of
proton r-modes. The propagation regions for the protons are almost identical to
those in the case where both fluids are stationary. Minimal modifications emerge
due to the effect of the motion of the neutrons on the background density of the

protons.
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Figure 5.2: The graph shows the regions of propagation for the neutron fluid
in a cylinder containing two fluids, where the neutrons rotate while the protons
remains at rest. In addition to the acoustic regions we observe an additional region
of propagation known as the R-region for the neutron superfluid modes. The forward
and backward modes are now divided by the linew = —mS),. Waves uith a frequency
less than this are moving forward with respect to the background rotation, whereas
for w > —mf2, the waves move backward with respect to the background rotation.
Also shown in the graph are the mode eigenfrequencies and the zeros of the associated
radial displacement. In this ezample m =2, Q, =03, Q, =0, K =1,

We investigate the effect of varying K on the allowed regions of propagation. Figure
5.3 shows the results for the case where K = 0.1. Since the coupling between the
two fluids is weak the effect of this alteration is minimal. Table 5.1 summarises
the frequencies of the various modes illustrated in the propagation diagrams. The
Table highlights the effect of increasing the rotation rate on the mode frequency. A
key observation is that the frequency of the forward moving modes is significantly
altered whereas that of the backward moving modes changes only slightly. The
Table also illustrates the effect of changing the value of K. While the r mode
frequencies remain fairly unaltered the magnitude of the frequency of the p modes

and f modes is decreased.

5.3 Normal mode solutions

We now investigate the oscillation modes of the system by integrating equations
(5.1) and (5.3) numerically. If the term multiplying the derivative vanishes the
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Figure 5.3: We investigate the effect of varying the proton fraction on the propaga-
tion diagrams by considering an ezample containing 90% neutrons, similar to what
one would expect for a neutron star. The graph shows the regions of propagation
for the neutron fluid in a cylinder containing two fluids, where the neutrons rotate
while the protons remains at rest. By comparison with Figure 5.2 we find that in
this entrainment free case altering the proton fraction has very little effect on the
propagation diagram. In this ezample m =2, 0, = 0.3, Q, =0, K =0.1.

respective equation will be singular and numerically we will encounter difficulties
obtaining a solution. Clearly this will arise when either » = 0 or px = 0 corre-
sponding to the centre and the surface of our cylinder. Consequently Frobenius
expansions of the perturbations around these points were performed in order to
obtain appropriate starting points for numerical integration. Integration of these
equations is performed in exactly the same way as for the Lane-Emden equation
using a FORTRAN fourth-order Runge-Kutta routine. The program integrates
equations (5.1) and (5.3) along side the Lane-Emden equation; initially forward
from r = 0 to r = R/2 and subsequently backward from r = R to r = R/2. At
the mid point the program evaluates D = £ — £2“€4, where £™ represents
the value of the radial part of displacement vector, &, obtained from the forward
integration and £°“ the value from the backward integration. If the eigenfunctions
match D will equal zero. For most values of w a match is not found, however, for
the normal modes a match will be found and hence we can obtain the eigenfre-
quencies. The modes considered are those with an azimuthal wave-number, m = 2.
The reason for this is they are the most significant for the gravitational wave driven
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Frequency
Mode ™o 0 5 1 | 0.—03 K=1 ] 0.=03 K-01
py) -3.35 -4.89 -3.32
pgf) -2.54 -3.86 -2.69
pl/) -1.70 -2.79 -2.04
& -0.78 -1.35 -1.02
rif) -0.77 -0.76
) -0.70 -0.70
rif) -0.67 -0.67
£ 0.78 0.71 0.37
p{¥) 1.70 1.67 0.91
p{) 2.54 2.67 1.50
P(lb) 3.35 3.66 2.11

Table 5.1:  The frequency spectrum of the various modes which are plotted in the
propagation diagrams 5.1-5.3. The Table highlights the effect of varying the neutron
rotation rate and the proton fraction. In all the examples the frequency is in natural
units {2, /4mGpno and O, = 0.

instability in a real star.

5.3.1 Boundary and regularity conditions

When solving the background Lane-Emden equation, equation (3.49) was obtained
as an expression for p, around the origin. Performing a power series expansion of
the solution around the centre we find that to first order &, and & take the following

form

X = Axrx (5.9)

T

£X = Bxr™

By substituting these into equations (5.1) and (5.3) and we find near the centre the

Lagrangian displacements can be approximated by,

X = Axr™! (5.10)
Ax

X __A.m

¥ m r

At the surface of the cylinder (r = R) equations (5.1) and (5.3) contain singularities
due to the fact that the densities vanish at this point. The value of the densities

and their derivatives at the surface can be evaluated numerically from integration
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of the Lane-Emden equation. By insisting that the perturbed Euler equation are

regular at the surface we find,

& =Cx (5.11)
€X — _CX QQXR _ IOIX (R) a/lx
¢ mox o% Onx ) 2

Where Cx is a constant. This corresponds to the Lagrangian perturbation of the

pressure vanishing at the surface.

5.5.2 Numerical results

Since entrainment has been ignored the equations are coupled only through the
background gravitational potential and the modes of each fluid are calculated in-
dependently. Initially the proton fluid was considered to be rotating at 2, = 0.15
and the neutron superfluid to be rotating at 2, = 0.2. For this situation there
was found to be f, p and 7 modes for both the neutrons and the protons. The f
mode and p modes for the neutron fluid are plotted in Figure 5.4 and in Figure 5.5
we plot the r modes. Figures 5.6 and 5.7 show how the frequencies of particular
modes vary as {2, changes. They also show how the modes of the normal fluid are
affected by varying €2,.  We can see from Figures 5.6 and 5.7 that as €, increases
the frequency of the superfluid modes decreases. For the normal fluid however
the frequency of the backward moving p modes (those with positive frequency) is
observed to increase slightly while the frequency of the forward moving pmodes de-
crease slightly. However since the modes are essentially uncoupled the effect of the
superfluid rotation on the proton modes is reasonably insignificant. Another key
feature to note is that when the normal fluid and superfluid rotate with the same

angular velocity the frequency of their modes are identical as one would expect.

5.8.8 Canonical energy

The motivation for investigating the oscillations of our system in a Lagrangian per-
turbation framework is that it gives us the opportunity to assess the mode stability
through the canonical energy. A positive canonical energy suggests a stable mode
while a negative canonical energy signifies a secular instability. Finally a dynam-
ically unstable mode corresponds to zero canonical energy. In Section 4.6.4 the
canonical energy for the normal modes of an entrainment free two fluid system was
constructed in the form of equation (4.186). We now use this result to investigate
the stability of the oscillations of our cylindrical system. Since the modes consist

of one of the fluids oscillating while the other remains stationary we construct the
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The figure shows the fundamental mode and the lowest three p modes

Figure 5.4:
for the neutrons in a rotating superfluid cylinder. The configuration is such that the
two fluids are rotating uniformly around the same azxis at different angular velocities.

We consider a cylinder with 90% neutrons, similar to what one would ezpect in a
neutron star. We observe that the modes are all most influential in the outer layers.

The parameters used in this ezample are m = 2, Q, = 0.2, ), = 0.15, K = 0.1.
The normalisation is such that £P(R) = 1.

canonical energy for the neutron modes and set £, = 0. After some manipulations

the equation in our cylindrical system becomes,

E. =
(5.12)

R
C’/ {—mPpar?E3e + (£2)°[—2m?r*QE — dmrio,Qy + 4r'ol]
0
+ fffg[—‘ZmQrpn —2m*r?p, + 4mQno,r
lond
—dr

+ (52)2[~2m4pn +4mP e, Qur? — 2mrol] } 3

-

Where C is a normalisation constant. The canonical energy was calculated for the
It was found that for the

various modes of the two fluid system, see Table 5.2
configuration chosen the f and p modes had positive canonical energy while the
canonical energy of the r modes was negative. This leads to the conclusion that
the 7 modes are unstable to gravitational waves. This agrees with the conclusions

reached in Andersson, Comer & Grosart [12] where we use the canonical energy to
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Figure 5.5:  The figure shows the lowest four r modes for the neutrons in a rotating
superfluid cylinder. The configuration is such that the two fluids are rotating uni-
formly around the same azis at different angular velocities. We consider a cylinder
with 90% neutrons, similar to what one would expect in a neutron star. In contrast
with the f and p modes it appears that the r modes are more influential in the inner

regions than the outer regions. The parameters used in this example are m = 2,
O, =02, Q,=015 K =0.1. The normalisation is such that {*(R) = 1.

show that all r modes are secularly unstable to gravitational radiation.

In Section 4.6.7 we discussed the onset of a gravitational-wave driven CFS instability
at the point where the (inertial frame) pattern speed of an originally backward
moving mode changes sign. We investigate this for our two fluid system. By setting
{2, = 0 we expect the instability to appear as the mode frequency changes from
w > mil, to w < mf,. Figure 5.8 illustrates the effect of varying the neutron
rotation rate, {,, on the canonical energy of the originally backward moving f mode.
Also plotted is the inertial frame pattern speed. We observe that the canonical
energy becomes negative, signifying the onset of an instability, at the point where

the mode becomes co-rotating confirming our analytical results.
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The graph shows how the eigenfrequencies of the f, p and r modes

change as Q, s increased whilst (), = 0. The graph shows the eigenfrequencies
for the modes of both the neutron fluid and the proton fluid. As Q, increases the
frequency of the neutron modes decrease. However since the modes are coupled only
through the background gravitational potential the effect of the neutron fluid rotation
on the proton modes is minimal. Another key feature to note 1s that when the proton
fluid and neutron fluid rotate with the same angular velocity the frequency of their
modes are identical as one would expect. An important observation is the absence of
proton r modes (since Q, = 0). The parameters in this ezample are m = 2, 0, = 0.
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Figure 5.7 The graph shows how the eigenfrequencies of the f, p and r modes
change as ), is increased whilst Qf, = 0.05. The graph shows the eigenfrequencies
for the modes of both the neutron fluid and the proton fluid. As €1, increases the
frequency of the neutron modes decrease. However since the modes are essentially
uncoupled the effect of the neutron fluid rotation on the proton modes is reasonably
insignificant. Another key feature to note is that when the proton fluid and neutron
fluid rotate with the same angular velocity the frequency of their modes are identical
as one would expect. The parameters in this example are m = 2, sz, = 0.05.
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Frequency Mode Canonical Energy
-3.49749994 p3 22.7622039
-2.74945307 p2 25.9618476
-1.96757817 pl 26.3387658
-0.946015716 f 0.207443564
-0.491015702 rl -0.917476246
-0.443750083 r2 -0.443750083
-0.425859451 r3 -0.323072024
-0.417031318 r4 -0.22729282
-0.412187576 rd -0.169533188
-0.40906259 6 -0.163646528
0.541328013 b 0.498597932
1.25929677 plb 7.74693899
1.99390614 p2b 10.4634301
2.72390604 p3b 11.0756489
3.44914055 p4b 10.8534123

Table 5.2:  The canonical energies for the various modes of a two fluid system,
in which the neutrons and protons are rotating at different wvelocities around the
same azis. We consider a configuration with 90% neutrons similar to what one
would expect in a neutron star. For the configuration chosen the f and p modes had
positive canonical energy while the canonical energy of the r modes was negative.
This leads to the conclusion that the r modes are unstable to gravitational wave
emission. The parameters used in this ezample are K = 0.1, 2, = 0.2, Q, = 0.15.

104



0.5

Canonical energy
Inertial [rame pattern speed

| | | I 1 1
0.1 0.2 0.3
Rotation, £2q

Figure 5.8: The graph illustrates the effect of varying the neutron rotation rate,
Qn, on the canonical energy of the originally backward moving f mode. Also plotted
is the inertial frame pattern speed. We observe that the canonical energy becomes
negative, signifying the onset of an instability, at the point where the mode becomes

co-rotating confirming our analytical results. We consider an example in which
Qp,=0andm=2.

105



Chapter 6

The oscillations and stability of
superfluid cylinders: the case with

non-vanishing entrainment

In the previous chapter we investigated the oscillations in superfluid cylinders for
the situation where the entrainment is zero. In order to model more realistic config-
urations we must take into account entrainment. In Chapter 4 we observe that the
inclusion of non vanishing entrainment in our calculation drastically complicates
the corresponding perturbation equations. To simplify matters we will consider the
case of constant entrainment, more specifically we will assume « to be a constant.
An alternative would be to choose €, constant, as was done by Prix and Rieutord
[71] and by Prix, Comer and Andersson [69]. Then ¢, is constrained by equation
(6.1), and we have

L P, (6.1)

Pp Po

The justification for simplifying the equations in this way is that there are such
great uncertainties in any realistic models which nuclear physics has provided for
the entrainment that we may as well begin with the most straightforward case. In
doing so we hope to gain insight into what we can expect in more realistic cases.
Incorporating constant entrainment is already a big technical step and allowing it

to vary will not change anything conceptually.

The first step is to write the Lagrangian perturbation equations with entrainment
in cylindrical coordinates. Scaling the variables as in Section 3.2, see Table 3.2, we

obtain the following four equations,
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oEX 0
& [( ﬂx) mpsr? — 2aaxwyx'r4}
ny ,w?

0 0
+ &X <_“_X> mpxT (px + T%) — Baoxwyxr® — 2QXUXPXT3]
ny ,w?

0
+ & ( uX) m®p% + 2omriox (ox — 2mwyx) — Moy pXTQ]
ny,w?

8nx
+ §¢ [—2mPaoxoyr®] =0 (6.2)
and
825){ a,uX 3 2
[ Onx ny,uﬂT Px
86;‘( [ d/lX 2 apX
o (anx R -

06X | /8
+ %o | (Onx m?pir — 2mao xwy xr°
or onx ny w?

[ (Bux ,0%px  Opx
+ X == Tpx | TP T — — 2a0%rd + 0% pxr?
é‘r <an/‘( > ny w? p‘( < 87‘2 a’r pX aax /‘(pXT

+ & [.QCYO’)(T'BO'y]

Ol 0
+ §;‘f X mgpx(r—p£ —2px) + dmaoxwy xr? + 2mQxoxpxr’| =0
87’LX ny w? 37‘

(6.3)

Once again X and Y are the constituent indices which can represent either the
neutrons or the protons. When X represents the neutrons, Y represents the protons

and vice versa.

In the entrainment free problem we reduced the analogous system to four first order
differential equations which we subsequently solved numerically in FORTRAN. In
that simpler case the approach taken was to solve the first order differential equa-
tions in £X for 06X /9r, differentiate with respect to r, and substitute 96X /9r and
o* X/@r2 into the remaining equations. This gave first order differential equations
in £7. The coupling of the equations that has arisen as a result of non-zero entrain-
ment introduces slight complications. Performing an identical procedure gives us,
instead of two uncoupled differential equations in & and £} as in the entrainment

free case, two coupled equations which can be combined to give the following matrix
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equation,

X 53{
agrb gY
Al & | =B (6.4)
¢ X
5 &
34

Where A is a 2 x 2 matrix and B a 4 x 2 matrix. If A is invertible we can write,

ex

0 55,{ _ 34

5(%)” £x (0:9)
34

Where C is a 4 x 2 matrix. However, if detA = 0 we observe the equations are

singular.

We write our equations schematically as a system of four first order differential

equations. Equation (6.2) can be written as,

x O
L or

G S+ fagy =0 (6.6)
and we express equation (6.4) in the following form,

i3 y
o2+ o€+ g€ + ol + ol =0 (6.7)

Where the coefficients are regular functions of r.

6.1 Singularities

It is clear that problems may be encountered at points where the coefficients f;*
and g7 vanish. At such points our equations are singular and numerically we should
expect difficulties. The location and nature of these singularities will be investigated

throughout this section.

For the first two equations the singularities arise when
=0 (6.8)

From equation (6.2) we see that this corresponds to,

n O
(f—?) = 20Wpn 0y /M (85 ) (6.9)

and
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(p_§> 20wy, fm (%) (6.10)

The position of these singular points vary with frequency. The quantities p% /r? vary
with r going from infinity at the centre to zero at the surface. Since m (Oux/Ony)
is always greater than zero the first singular point will be encountered at some point
within our cylinder if cwp,0, > 0, which I will refer to as condition (a), and the
second encountered if cwp,0, < 0, condition (b). Figure 6.1 illustrates when we

expect these singular points to arise.

For the equations involving derivatives of &f we expect singular points when the
determinant of matrix A vanishes. Let us look more closely at this matrix to see

where the singularities occur. We have

—oamlda®wl r* + p2p2Yy]  —2ampl (ngL:)n 0P
2]
A=4g (6.11)
—2amp? (g%’;)n ,0n —opmldctwl r? + p2plY,)
where
@= (/1 7) (6.12)
and 5 5
Yy = (pX; 2) ( “X> (6.13)
Py anX ny w?
The determinant of matrix A is therefore
detA = ff‘ff’crnapm2{[4a2wgnr2 + papaYal[dePwl r® + plplY]

O o
— 4P r21 2 ( n) <_p> }
P pp ann np,w? anp Ton, w2

(6.14)

Opin Opip 2 2
_ Oup 1
v <6n> (anp)nmwz/pnpp (6.15)
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Figure 6.1:

(a) Satisficd

(b) Satisficd

(a) Satistied

(b) Satisfied

(a) and (b) Satisfied

The figures illustrate for which values of 0, and Q, we expect to

encounter singularities in equations (6.6) for various values of w. In the top figure
we consider o > 0 and in the bottom figure we consider a < 0. In this ezample (2,
is kept fized as we vary 2,. For o > 0 we observe that if both fluids are moving in
the same direction with respect to the pattern speed of the mode one singularity will
be present. However, in the mized region where one fluid is moving forward with
respect to the mode, while the other moves backward no singularities are observed.
In the o < 0 case we once again notice the existence of one singularity if both fluids
are moving in the same direction with respect to the pattern speed of the mode but
in the mized region two singularities will be present.
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can be written as,

16atw? }

detA = flnflpaname{ pzpzpn rf +do’wl, (Yo + Yp)r* + pﬁpi(YnY;, — 40°T)
nFp

(6.16)
It is obvious therefore that equations (6.7) will be singular when f;* vanish indicat-

ing that none of our equations are well behaved when condition (6.8) applies. In

addition we also find singularities when,

S=x"4+ Yo+ Yoz + (VoY, —4a’T) =0 (6.17)
Where do2ey?
atw

T= G 2pnr2 (6.18)
p2p?

Interestingly, S is dependent solely on the background quantities and completely
independent of the frequency, w. These are therefore different from co-rotation
singularities, such as those observed in a differentially rotating single fluid problem,
(Watts et al [86]), where the singularities arise at a point where the mode and the

fluid are rotating with the same frequency.

In order to investigate the nature of the singularities it is constructive to combine

our four first order differential equations into one fourth order equation of the form,

x4 B G xx G+ Ox G+ ex] =0 (6.19)

Where 7x, Bx, xx, 0x, and ex are all regular functions of . What we discover

is that my = S. The functions, f;{, which cause concern in our first order system
X
@
§§ to &X. We conclude therefore that all the functions and their derivatives are

are not a problem in this equation or in any of the equations relating £, &5, and
continuous at these points. It is important to remember, however, that the first
order equations we are solving numerically are singular when f;* vanish and so
care must be taken when integrating through these points. We deal with these

singularities by performing a second order extrapolation across the singular points.

The singularities that occur when S = 0 require greater consideration. Since they do
not depend on the frequency, an appropriate choice of parameters may allow them
to be avoided. In this way we can check our numerics without the complication of
the singularities. In general, however, we need to worrv about this problem since
these singular points may be present in a realistic configuration. For a fixed value of

the relative rotation and constant entrainment Yy and 7" vary with . We proceed
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by writing equation (6.17) in the following way,
S=12*42B(z)z+C(z) =0 (6.20)

If we assume there is a solution to this equation at r = r, such that,

Ao w?

T = PRr2 = g, 6.21
27 (6:21)

we can deduce that,
1, = —B(z,) = /B(z,)?2 — C(z,) (6.22)

If the only possible solution to this equation is such that z, is either negative or
complex we can say that the singularity will not be present in our system. Equation
(6.20) has real roots if B(z,)?> > C(z,). If C(zs) > 0 we notice that both the roots

will be negative. Hence there will be no singularities if either,

1. C{z;) > 0 and B(z,) >0 or
2. B(z,)? < C(zs)

The first case results in two real negative roots, if there are any solutions at all, and

the second leads to two complex roots. However,
B —C = [(Ya+Y) —(Ya¥, — 40°T)

[(Ya = Y,)? + 160°T] £ 0

I N SN

Thus case two never arises. Therefore we find there will be no singularities present
if B(zs) > 0 and C(z;) > 0. The first of these two conditions will apply if,

% [Ya(zs) + Yp(zs5)] > 0 (6.24)
Al 20) (G2) + 200, - 20) (322) ] >0 (6.5

giving,




In addition C(z;) > 0 if,

V.Y, > 40T (6.27)
(pa — 20)(pp — 20) > 40? (6.28)

giving finally
a< &(;:—fpp) (6.29)

Using the relationship between the entrainment and the effective mass, equation

(2.24), we discover condition (6.29) corresponds to,
m; +m, > mp (6.30)

By writing the effective mass of one constituent in terms of the other this can be

written as,

AN p): (6.31)

If we define the effective number density as,

ny = £X (6.32)
the condition for singularity avoidance becomes
n>nk (6.33)

Provided condition (6.33) holds it is straightforward to show that the condition
(6.26) is always satisfied. Thus the singularity will not be present if the total
number density of the baryons is greater than the effective number densities of
both the neutrons and the protons. Predicted values of the effective masses for
neutron stars give typically myx > %mB which suggests that for any real system
these singularities will not be a problem.

Figure 6.2 illustrates the regions C(z;) > 0 and B(z;) > 0. Values of « that lie
below both lines will satisfy the necessary condition for singularity avoidance. Since
pn and p, tend to zero at the surface a negative value of the entrainment parameter
o will ensure these singularities are never encountered. However, this does not
necessarily mean that there will always exist a singular point for o > 0. In fact if
we look at S numerically we find that there is a small range of positive o where

these singularities are not present, see Figure 6.3.

Ideally we would like to solve the problem in both the situation where the singu-
larities are not present and the case where they are present. The latter involves

investigating the behaviour of the functions at the singular points using a power
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Figure 6.2:  The graph shows the regions C(zs) > 0 and B(zs) > 0. The area
shaded grey represents points where the singularities that appear when det4 = 0
will definitely not be present. These singularities occur in equations (6.7), two of
the four first order differential equations that describe our superfluid cylinder with
entrainment. The configuration considered is K = 0.1, Q, = Q, = 0.1.

series expansion. The complexity of our equations makes this unfeasible in the time
available and so we chose to investigate in detail the former problem while for the
second case we will simply outline the process that would be involved and discuss

the complications.

6.2 Boundary conditions

6.2.1 At the centre

In order to characterise the behaviour of the solutions at the centre we approximate

the background densities, as in Section 3.2, as power series of the form,

pn =1+ asr? (6.34)
Pp = bo + bgl‘z

In order to satisfy our system of equations the solutions, £ and {;;\, must vanish

at 7 = 0. A power series expansion around the centre gives (to leading order),

114



0.3 =
0.25 [/
0.2 1=\

0.15 =

Relative Rotation

0.1

0.05 =

Entrainment, C

Figure 6.3:  If a < 0 we have shown that the g, singularities will not appear in
our cylinder. However, there 1s also a small range of positive o in which they will
not be present. We perform a numerical analysis to investigate the regions in which
condition (6.20) is not satisfied for all 0 < r < R. The shaded area is a Tegion in
which the singularities will not be present. The configuration considered 1s K = 0.1,

=0, =0.1.

EX = Axr®¥ (6.35)

£

£y = Bxr’s

We observe that, to first order, the two sets of equations (the one with X =n and
the one with X = p) decouple at the centre. The resulting constraint is identical

to that found in the entrainment free case.

f,;\' = Ayr™! (6.36)
Ay

cX . _OX . m

Se ™ r

We obtain two linearly independent solutions by considering different values of A4,
and A,. For simplicity we initially consider A, =1 and A, = 0 followed by 4, =0

and Ay, = 1. The true solution is a linear combination of the two results.



6.2.2 At the surface

In the entrainment free problem we imposed a condition on the eigenfunctions at the
surface to ensure regularity of the solutions. This corresponded to the Lagrangian
perturbation of the pressure vanishing at this point. Ideally in this more complicated
problem we would construct a similar constraint. However, the assumption that
a = constant leads to a highly unphysical surface. It is unlikely that as the fluid
densities vanish the entrainment remains constant and in this sense the behaviour
near the surface is artificial. We find that there is no longer a singularity at the
surface. The densities of the two fluids vanish, yet the entrainment remains finite
and hence the terms involving the entrainment dominate the system. Therefore,
in order to guarantee that the solution is regular as the entrainment vanishes we

impose an identical constraint as that imposed in the entrainment free problem.

¢X = Bxo% (6.37)

fgf:BX

(aux> pv(R) — 20xoxR/m (6.38)
anx ny,w2

With this condition imposed we are left with the following four equations which

must be satisfied at the surface,

oEX
—%[2aaxwyxr4] — &8 [Baox Wy x73] + f(;.‘{ [2amriox(ox — 2mwyx)]
— & 2mPaoxoyr?] =0 (6.39)
and
%33 3 X 23], oY 3 X 2
—meaaxwyxr | = & 2aoyr?| + & 2aoxr oy] + &5 [Amaoxwy x7°] = 0

(6.40)

Initially it was assumed that these equations would automatically be satisfied by the
numerical Runge-Kutta routine when integrating from the surface. Subsequently a
more detailed approach which involved solving the above system analytically at the
surface resulted in almost identical results, see Table 6.1. The main discrepancy be-
tween the two methods arises as a consequence of the fact that in the initial method
our two independent solutions were such that one of the two fluid displacement vec-
tors vanished at the surface. In the more detailed calculation a combination of the
two fluid displacement vectors was required to satisfy the analytic solution. We are
confident that these solutions are precise enough to illustrate the general behaviour

of our toy problem. Thus in this work we present the results from the first case.
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Mode

Frequency using

first approach

Frequency using

second approach

mode
mode
mode
mode
mode
mode
mode
Py mode
p1 mode
f mode

P9
s
D7
Ds
D5
Da
D3

-4.271
-3.825
-3.795
-3.350
-2.890
-2.622
-2.422
-1.951
-1.463
-1.212

-4.275
-3.825
-3.795
-3.3501
-2.900
-2.600
-2.400
-1.912
-1.444
-1.239

Table 6.1:  In order to guarantee that the solution at the surface is regular as
the entrainment vanishes we impose an identical constraint as that imposed in the
entrainment free problem. We consider two different methods of initiating our nu-
merical integration, one which relies on the Runge-Kutta routine automatically sat-
isfying any additional constraints and a second in which we insist these constraints
are satisfied by analytically solving the equations at the surface. The results indicate
that the two approaches give almost identical Tesults. In the table all the modes are
mouing forward with respect to the fluid.

6.3 FEigenvalues and matching

As was mentioned earlier there exists two independent solutions initiating at the
centre and two initiating at the surface. The desired solution will be a linear
combination of the two independent solutions from the centre matched to a linear
combination of the two independent solutions from the surface. We can construct

an equation at the matching point,

&(e) &(c2) (1) £(s2)
ol s |l e | e | g

2(c1) 2(e2) 2(s1) (52

&(e) &(c2) (51 £(52)

Where ¢ means from the centre and s from the surface. We can write this as a

matrix equation,

e(ct) e(ed) —€&(s1) —€(s2) ) [ o
() &(2) —gen g6 || d | _, 642
ee(cl) () —€p(s1) —€2(s2) | | da
(1) €(c2) ~€R(s1) —€2(s2) ) \ da
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For the existence of non-trivial solutions for d we require the determinant of the
above matrix to vanish. We shall call this matrix Y. By finding where detY
vanishes we are able to obtain the eigenvalues and corresponding eigenvectors of

the system.

6.4 Ordinary and superfluid modes

In many previous studies of superfluid neutron star oscillations [54], [55], [76], [10],
alternative variables were introduced in an attempt to distinguish between modes in
which the neutrons and protons were co-moving, sometimes referred to as ordinary
modes, and those in which the two constituents were counter-moving, superfluid

modes. Namely,

'djsf = gp —&n (643>

and
'9[}0 = ngp + Ingn (644>

Where z, is the proton fraction and z, the neutron fraction. Prix [71] showed that
it is only in the non-stratified case, i.e. when there is no composition gradient, that
the two types of mode decouple. In general the modes will not be purely co-moving
or counter-moving. However, using the above variables does allow us to determine
if modes are predominantly of one or the other type. During analysis of the results

it is often constructive to make the separation into ordinary and superfluid modes.

6.5 Negative entrainment

We consider two specific background configurations; one in which K = 1 and the
neutron and proton central densities are similar and another in which K = 0.1
and we have central neutron fraction close to what we would expect for a typical
neutron star. The density profiles for these configurations are illustrated in Figures
3.3 to 3.7.

Following the same strategy as in the entrainment free case we begin with a local
analysis of the equations to investigate the qualitative nature of the solution using
propagation diagrams. Subsequently we investigate how the frequency of the modes
change firstly as we vary the relative rotation for fixed entrainment and secondly

as we vary the entrainment for a fixed relative velocity.

6.5.1 A local analysis

We investigate the local behaviour of our equations by assuming the modes take

the following form,
1
& = =& exp (ikr) (6.45)
”

s = Egrexp (1kT) (6.46)
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Substituting these into equations (6.6) and (6.7) leads to a dispersion relation be-
tween &k and w. Regions in which waves can propagate are regions in which & has
a real part for real w. Figures 6.5 to 6.6 illustrate the effect of decreasing the en-
trainment function, « slowly from 0 to —1 and Figure 6.7 illustrates the effect of
varying the relative rotation, R. The blue areas represent regions where we find
four solutions to the dispersion relation in which &£ has a real part and hence there
exists the possibility of four propagating waves. The grey regions highlight where
two waves can propagate and the white regions are where we find only evanescent
solutions. Figure 6.5 is the propagation diagram for the situation where o = 0. Tt
is identical to a superposition of the two independent propagation diagrams that
exist in this case, one for the neutron fluid and a second for the proton fluid. This
result is identical to that found in Section 5.2. As we introduce entrainment to the
problem we notice that the propagation diagrams very rapidly become exceptionally
complicated. The Figures not only illustrate the emergence of additional regions of
propagation but also highlight the complexities introduced by the f{* singularities.
It appears the singular points, represented in the Figures by a red line, split the
propagation regions. Since the solutions are regular at this point I expect that this
splitting is a consequence only of the way in which we have chosen to express our
equations and in no way represents a physical effect. However, the general shape
of the diagrams should give an approximation of where we can expect to observe
oscillatory modes.

A key observation concerns the regions of propagation of the r modes. In the
entrainment free case, Figure 6.5, we observe two distinct R-regions corresponding
to the oscillations of the individual fluids. The location of these regions is directly
beneath the line w = m{2x such that the r modes will all be moving forward with
respect to the corresponding fluid. In the mized region m2, < w < mf2, the proton
r modes will move forward with respect to the protons but backward with respect
to the neutrons. As we introduce entrainment the location of the proton R-region
changes until it appears on the opposite side of the line w = m{2,, see Figure 6.6.
The neutron r modes still move forward with respect to both fluids but the proton r
modes now move backward with respect to both fluids. The mized region in between
seems almost free of modes. Another interesting observation is the extension of the
acoustic regions toward w = 0 as the magnitude of the entrainment is increased,
particularly close to the surface. The same effects are observed as we increase the

relative rotation for a fixed value of the entrainment, see Figure 6.7.
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~~ Singularity

Figure 6.4: Key for propagation diagrams: Shaded areas represent regions where
either 4, 2 or no waves can propagate.
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Figure 6.5: The propagation diagram for an entrainment free superfluid cylinder
in which the two flurds are rotating at different angular velocities around the same
azis. In this case the regions of propagation correspond to a superposition of the
two independent propagation diagrams that exist in this entrainment free case, one
for the neutron fluid and a second for the proton fluid. The parameters we are
considering are « =0, K =1, and R = 0.2
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Figure 6.6: The propagation diagrams for superfluid cylinders with non-vanishing
entrainment in which the two fluids are rotating at different angular velocities
around the same azis. The diagrams illustrate the effect of decreasing the entrain-
ment function, «. It appears the singular points, represented by a red line, split
the propagation regions. As we increase the magnitude of the entrainment the loca-
tion of the proton R-region changes until it appears on the opposite side of the line
w = mfl,. The neutron r modes continue to move forward with respect to both fluids
but the proton r modes move backward with respect to both fluids. The mized region
in between seems almost free of any modes. Another interesting observation is the
extension of the acoustic regions toward w = 0 as the magnitude of the entrainment
is increased, particularly close to the surface. The parameters we are considering
are K = 1, R = 0.2, and from the top to the bottom o = —0.01, « = —0.1, and
o= —1.
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Figure 6.7: The propagation diagrams for superfluid cylinders with non-vanishing
entrainment in which the two fluids are rotating at different angular velocities
around the same axis. The diagrams illustrate the effect of increasing the relative
rotation. Again the singular points, represented by a red line, split the propagation
regions. As we increase the relative rotation the location of the neutron R-region
changes until it appears on the opposite side of the line w = mfdy,. The proton r
modes continue to move forward with respect to both flutds but the neutron r modes
move backward with respect to both fluids. The mized region in between becomes
almost free of any modes. Another interesting observation s the extension of the
acoustic regions toward w = 0 as the size of the relative rotation is increased, par-
ticularly close to the surface. The parameters we are considering are K = 0.1,
o = —0.01, and from the top to the bottom R = —0.01, R = —0.5, and R = —1.
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6.5.2 Convergence and extrapolation across the singularity

Although the solution is not singular at f{¥ = 0 numerically we will encounter
problems at these points. Ideally a Frobenius expansion around the singularity
could be done, however, due to the complexity of the equations we instead chose to
use a second-order extrapolation to obtain the solution across the singularity. It is
important to test if this technique is accurate so we performed a convergence test.
This involved finding a solution with three different number of steps say &, 2k and

4k. In Figure 6.8 we plot the function

(6% — gty

T e ey

(6.47)
Since we are using a fourth-order Runge-Kutta method for numerical integration
we expect that before we reach the singular point the solution should be fourth-
order convergent and we expect the above function to take a value of approximately
16. However, after extrapolation we can no longer expect the solution to have this
property. Since we use a second-order extrapolation across the singularity we expect
the solution to be approximately second-order convergent, which is what we observe

in Figure 6.8.

6.5.3 The effect of relative rotation

We investigate the effect of relative rotation of the neutron and proton components
by varying R whilst holding « fixed. We recall that the relative rotation is defined
as,
R = =&y
2

In the co-rotating case, where R = 0, we find the coupling of the equations through
the entrainment vanishes. The equations reduce to the entrainment free system and
we recall from Section 5 that in this co-rotating case the modes are identical for both
the neutrons and the protons. If we consider the modes in terms of the ordinary and
superfluid variables introduced in Section 6.4, ¥ = & — & and ¥, = 2,6, + Tnés,

it is obvious that s = 0 and hence we describe the modes as being ordinary.

Relative rotation initiates a coupling between the neutron and proton equations. We
begin by considering a configuration typical for a neutron star, where the densities
are such that the cylinder is composed of approximately 90% neutrons. There
are great uncertainties concerning appropriate values for the entrainment. It is
predicted that in the neutron star core the entrainment is positive. Nuclear physics
calculations put constraints on realistic values for this entrainment [18], [23]. In
Prix & Rieutord [71] they state that these calculations give realistic values which

lie between 0.3 < ¢, < 0.7. Although to demonstrate the qualitative behaviour
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Figure 6.8: The graph illustrates the convergence of our numerical solution. Since
we are using o fourth-order Runge-Kutta integration method we expect the solution
to be fourth-order convergent. This would result in a value of 16 for Cy, which is what
we observe before we reach the singular point. Here we observe a decrease in Cy to
a value of approzimately 4 which tells us the solution at this point is approzimately
second-order convergent. Since we perform a second-order extrapolation across the
singularity this is what we would expect.

more clearly they consider the broader range —0.8 < e, < 0.8. Furthermore, recent
work by Carter et al [27], [28] predicts negative entrainment for neutron star crusts.
In the constant o case we are considering, since e, = 20/ p,, regardless of the value
of «, the entrainment parameter €, will approach infinity at the surface. Although
this is unphysical we already expect the behaviour near the surface to be artificial

as a result of insisting a common surface for both the neutrons and the protons.

To investigate the effect of relative rotation we consider the entrainment function,
a = —0.01. Figure 6.9 illustrates how the frequency of the f modes and p modes
vary with R. Subsequently the individual modes are focused on in more detail
beginning in Figure 6.10 with the f modes, followed by the p; modes in Figure 6.11
and finally the p, modes in Figure 6.12. Although the modes are not strictly co-
moving or counter-moving, we define ordinary-type modes, represented graphically
by a solid line, as those which continue from R = 0. Since in the co-rotating case

we observe only modes of the ordinary-type the superfluid-type modes, represented
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by a dashed line, appear to emerge from w = 0. For this reason we find it difficult
to resolve our solutions close to R = 0, and hence the shaded area in the figures
represents the undetermined region. By looking at the eigenfunctions it is clear that
1ss dominates over 1), for the superfluid-type modes whereas for the ordinary-type

modes the dominance lies with ,.

3= T | ~< R T } = —
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Figure 6.9: The graph illustrate how the frequency of the f modes and p modes
vary with R. Although the modes are not strictly co-moving or counter-moving, we
define ordinary-type modes as those which continue from R = 0. While there are no
avoided crossings between any two modes of the same type, we do observe avoided
crossings between the ordinary-type modes and the superfluid-type modes. We find
it difficult to resolve our solutions close to R = 0, and hence the shaded area in the
Figures represents the undetermined region. The parameters in this ezample are
o= —0.01 and K =0.1.

While there are no avoided crossings between any two modes of the same type, we
do observe avoided crossings between the ordinary-type modes and the superfluid-
type modes. As in Prix et al [68] the crossings coincide with an exchange in mode
properties. After such a crossing the ordinary-type mode will become a superfluid-
type mode and vice-versa. Consider for example the avoided crossing between the
ordinary-type f mode and the superfluid-type p; mode. Figure 6.13 illustrates this
crossing. We consider two particular points on either side of the crossing, labelled

points A = D, and investigate the change in the mode behaviour. Figure 6.14 shows
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Figure 6.10: The graph illustrates in detail how the frequency of the f modes, from
Figure 6.9, vary with R. We observe an avoided crossing between the ordinary-
type mode and the superfluid-type mode. The crossing coincides with an exchange
in mode properties. After such a crossing the ordinary-type mode will become a
superfluid-type mode and vice-versa. We find it difficult to resolve our solutions
close to R = 0, and hence the shaded area in the figures represents the undetermined
region. The parameters in this ezample are « = —0.01 and K = 0.1.

the ordinary and superfluid eigenfunctions, 1, and 15y, of each of these four modes.
At point A we observe that the eigenfunction is dominated by the 1, part which
resembles an f mode. This is coupled to an 1), ; part which is significantly smaller in
magnitude and resembles a p; mode. Consequently the mode at point A is labelled
an ordinary-type f mode. The eigenfunctions at point B on the other hand, also
shown in Figure 6.14, are dominated by the 1,; part which we observe looks like a
p1 mode. Therefore, we classify this mode as a superflurd-type p; mode. After the
crossing the lower mode, at point D, is dominated by the %), part, resembling an f
mode. We thus label this mode an ordinary-type f mode. The upper mode at point
C, however, appears to have switched to a superfluid-type mode. The superfluid
part of the solution, %;¢, looks like a p; mode but the ordinary part of the solution,
), now also resembles a p; type mode. Prior to the avoided crossing the 1, part of
superflurd-type mode looked like an f mode. However, if we investigate closer to the
crossing there is a very small region after the switch takes place where 1), resembles

an f mode. It is clear that the avoided crossing has resulted in an exchange in mode
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Figure 6.11: The graph illustrates in detail how the frequency of the p; modes, from
Figure 6.9, vary with R. We observe an avoided crossing between the ordinary-type
mode and the superfluid-type mode. The crossing coincides with an exchange in
mode properties. The parameters in this ezample are « = —0.01 and K = 0.1.

properties. Similar exchanges in mode character resulting from avoided crossings

have been observed in many neutron star mode investigations, [68], [13], [90].
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Figure 6.12: The graph illustrate in detail how the frequency of the po modes, from
Figure 6.9, vary with R. We observe avoided crossings between the ordinary-type
modes and the superflurd-type modes. The crossing coincides with an exchange in
mode properties. The parameters in this ezample are « = —0.01 and K = 0.1.
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Figure 6.13: We magnify the avoided crossing between the ordinary f mode and the
superfluid p1 mode to investigate the exchange of mode properties in more detail.
Highlighted in the Figure are two particular points on either side of the crossing.
Figure 6.14 shows the eigenfunctions at these different points wllustrating the ez-
change in mode properties which results from avoided crossings.
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Figure 6.14: The Figure shows the eigenfunctions at various points before and
after an avoided crossing. On the top left are the eigenfunctions found at point A
where we observe that the mode is dominated by the ¥, part which resembles an f
mode. This part 1s coupled to the superfluid part, ;. The eigenfunctions at point
B on the other hand, which appear on the top right, are dominated by the s part,
resembling a p; mode. After the crossing at point D, seen on the bottom right, the
dominant part of the mode 1s the ¥, part, which looks like an f mode. However, the
mode at point C, shown on the bottom left, appears to have switched to a superfluid-
type mode dominated by the 1, part, which resembles a p; mode. What we observe
18 that the avoided crossing coincides with an exchange of mode properties.
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In the single fluid case we found an infinite number of r modes, moving back-
ward with respect to the fluid, lying closer together as they approached the line
w = —mf2. In the two fluid case we introduce the possibility of two distinct rota-
tion rates. There will therefore exist regions where modes can be moving forward
with respect to one constituent and yet backward with respect to the other. These

mized regions are highlighted in Figure 6.15. In Prix et al (2004) [68] it was discov-
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Figure 6.15:  Illustration of regions in which the modes are moving in opposite
directions with respect to the two different fluids.

ered that the onset of the two-stream instability in the inertial modes occurred in
or close to these so-called mized regions. This serves as a strong motivation to in-
vestigate closely the superfluid » modes in our cylindrical problem. Due to the vast
number of modes arising in this area we choose to represent our results schemati-
cally, see Figure 6.16. What we discover is that rather than finding modes which are
predominantly either ordinary or superfluid, we find modes which predominantly
involve motion in either the proton fluid or the neutron fluid. The amplitude of os-
cillation of one fluid remains small while the other fluid dominates. What we notice
from Figure 6.16 is that the r modes corresponding to the fluid which is rotating
faster predominantly move forward with respect to both fluids, where as the modes
corresponding to the slower fluid tend to exist either in the mized region or in a
region where they are moving backward with respect to both fluids. The greater

the relative rotation the fewer the number of modes we observe moving in different
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directions with respect to the two fluids. This confirms the results concerning the

allowed regions of propagation in Section 6.5.1.

There are a number of particularly interesting features apparent in Figure 6.16
such as avoided crossings and the merger of two modes at a critical value of the

relative rotation. We consider these details individually beginning by concentrating

0.3
3 0.4
2
=
[«D]
= -0.5
L
&3

0.6

-0.5
Relative Rotation

[l Region containing an infinite number of "neutron’ r-modes

[[] Region containing an infinite number of 'proton’ r—modes

- Specific, particularly interesting modes 4. Co-rotating modes

Figure 6.16: A schematic representation of the r modes for the superfluid cylinder
with entrainment, highlighting key features. For R < 0, the proton r modes are
observed to be moving forward with respect to both flurds. However the neutron r
modes tend to exist either in the mized region or in a region where they are moving
backward with respect to both fluids. For R > 0 the reverse is observed. This
confirms the results concerning the allowed regions of propagation in Section 6.5.1.
There are a number of particularly interesting features apparent in this Figure such
as avotided crossings and the merger of two modes at a critical value of the relative
rotation. These features are focused on in Figures 6.17 and 6.19. The parameters
wn this ezample are K = 0.1, a = —0.01.

on a single mode in the region close to co-rotation, highlighted as region 1. We
observe avoided crossings between proton-type modes, see Figure 6.17. Since at co-
rotation the frequencies of the neutron-type mode and the proton-type mode should
be identical we hypothesise that the frequency of the neutron-type mode follows a

132



path from point (a) to point (b). We are unfortunately unable to resolve the modes
in this region due to the fact that we have an infinite number of modes crossing each
other. Figure 6.18 illustrates the modes at points 1 and 2 and emphasises why we
label them as being either of neutron-type or proton-type. At point 1 the amplitude
of the proton oscillation remains small while that of the neutron oscillation is large.
At point 2 the reverse is observed.
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Figure 6.17:  This Figure is a magnification of region I from Figure 6.16 and
highlights one particular 1 mode and its associated properties. We observe avoided
crossings between proton-type modes. We are unable to resolve the modes in cer-
tain regions but since at co-rotation the frequencies of the neutron-type mode and
the proton-type mode should be identical we hypothesise that the frequency of the
neutron-type mode follows a path from point (a) to point (b). The parameters in
this example are K = 0.1, o = —0.01.

We now investigate the modes in region two. What we observe is two modes merging
at a critical value of the relative rotation. Further analysis shows that at this
point the mode frequencies become complex signifying the onset of a dynamical
instability. Figure 6.19 shows the real and the corresponding imaginary part of this
unstable mode in detail. After the modes merge the mode frequencies are complex
conjugates, and the real part of the mode appears to be approximately linear in
R. This agrees with results of Prix et al [68] where it was observed that when
inertial modes merged, becoming unstable, the real part of the frequency was linear

133



0.4 T T T T T T T T T T T T T T

— Newrron displacement, 3, |7 o) — —

Proten displacement. &, \
30— \ —

20~ / : \‘\ _

- J'lll E
/
20 .

a2 1 | e 1 i ) | L 1 | 1 ] 1 | 1 1 1
i 2 )4 0.0 0.8 1 0 0.2 0.4 0.6 0.8 1
Radius, r/R Radius, /R

Trequency. @
Frequency.

Figure 6.18: This Figure illustrates the modes at points 1 and 2, from Figure 6.17
and emphasises why we label them as being either of neutron-type or proton-type.
The graph on the left shows the modes at point 1 and we observe that the amplitude
of the proton oscillation remains small while that of the neutron oscillation is large.
At point 2, the graph on the right, the reverse i1s observed. The parameters in this
example are K = 0.1, « = —0.01.

in R. Figure 6.20 illustrates the modes before they merge. It appears that these
are an f mode and a p; mode. Not only are these modes interesting due to their
instability they are also unusual in that it is not clear how they should be classified.
The ordinary-type and superfluid-type f and p; mode both occur at frequencies
higher than this. The modes are also neither predominantly of one type or the
other. However, what we observe is modes which become dynamically unstable at

a critical value of the relative rotation signifying a two-stream wnstability.

6.5.4 The effect of entrainment

We investigate the effect of entrainment on the modes of our superfluid cylinder.
Since we are ignoring perturbations to the gravitational potential, i.e. d® = 0,
when o = 0 we observe two independent sets of modes; one in which the neu-
trons move while the protons remain stationary and another where the neutrons
remain stationary and the protons oscillate. Introducing entrainment eliminates
this independence and introduces a coupling between the modes. Figure 6.21 illus-
trates that as mode frequencies approach each other instead of crossing they tend to
avoid each other. These avoided crossings are only observed between ordinary-type
modes and superflurd-type modes and never between modes of the same type. Dur-
ing this process the superfluid-type modes which are predominantly counter-moving
become predominantly co-moving and the ordinary-type modes become predomi-

nantly counter-moving. As we move toward the entrainment free case the frequency
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Figure 6.19:  This Figure shows the modes in region 2 of Figure 6.16. What we
observe is two modes merging at a critical value of the relative rotation and becoming
complex signifying the onset of a dynamical instability. On the left we see the real
part of this unstable mode and on the right the corresponding imaginary part. After
the modes merge the mode frequencies are complex conjugates, and the real part of
the mode appears to be approzimately linear in R. The parameters in this ezample
are K =0.1, a = —0.01.
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Figure 6.20: This Figure illustrates the eigenfunctions of the modes before they

merge. It appears that these are an f mode and a p; mode. The parameters in this
ezample are K = 0.1, o = —0.01.
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Figure 6.21: This Figure illustrates the effect of varying the entrainment on the
frequency of various modes. We observe many avoided crossings between ordinary-
type modes and superfluid-type modes. During this process the superfluid-type modes
which are predominantly counter-mouving become predominantly co-moving and the
ordinary-type modes become predominantly counter-moving. As we move toward the
entrainment free case the frequency of the superfluid-type modes appear to approach
infinity. Therefore close to o = 0 the Figure becomes overcrowded and to prevent
confusion we do not try to resolve it and shade this area in grey. Interestingly the
frequency of both the ordinary-type f mode and p, mode are relatively unaltered by
the introduction of entrainment. The parameters we constder in this example are
K =0.1 and R = 0.025.

of the superfluid-type modes approaches infinity. Therefore close to & = 0 the Fig-
ure becomes overcrowded and to prevent confusion we do not try to resolve the
region near & = 0 and shade this area in grey. We have considered a case with
approximately 90% neutrons and a small relative rotation, R = 0.025, in order to
relate the results to a neutron star. An interesting observation is that the frequency
of both the ordinary-type f mode and p; mode are relatively unaltered by the in-
troduction of entrainment. What does occur is the emergence of a vast number of
superfluid-type modes. However, if we consider a much larger relative rotation, see
Figure 6.22, the frequency of the ordinary-type modes are greatly affected. In this
case distinguishing the mode type from the eigenfunctions becomes difficult as they

no longer appear to be predominantly of one type or the other. The split which
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Figure 6.22: This Figure illustrates the effect of varying the entrainment on the
frequency of various modes. The relative rotation in this case is much larger than
that in Figure 6.21 and we observe that in contrast to that case the frequency of the
ordinary-type modes are greatly affected by «. The parameters we consider in this
example are K = 0.1 and R =0.4.

was so apparent when the relative rotation was low is now much less obvious. We
classify the ordinary-type modes as those which extend from the entrainment free
results and the superfluid-type modes as those which appear from infinity. What is
clear is that there are two coupled families of modes which instead of crossing will

avoid each other and exchange mode properties.

6.6 Frobenius expansions around the singular points

The singularities that are independent of the mode frequency and are present in the
fourth order equation can be avoided if we consider negative entrainment. However,
in neutron star cores the entrainment is generally expected to be positive so it is

important to consider this case. We recall that these singularities arise when,
Where 7y is defined such that

x5 + Bx X" + xx €+ 6xEX +ex€X =0
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If we consider a point 7 = 7y where such a singularity exists, we can hypothesise

that there is nevertheless a solution of the form,

& =1 Z anz™ (6.49)

where z = r —ry. We investigate the existence of such a solution by substituting the
power series solution into the fourth order equation and equating coefficients of the
dominant term (namely the term of lowest degree in z). If the resulting equation
is independent of v there is no solution of this form. Otherwise the equation is a
polynomial in v and we have an equation, known as the indicial equation, of the

form

P(v) =0 (6.50)

Since we have a fourth order differential equation there will be four roots of this
indicial equation. If the roots are distinct and no two of them differ by an integer
there will be four linearly-distinct solutions of the type considered. If, on the other
hand, two or more of the roots are equal or differ by an integer we require solutions

of a less simple character.

We find that for our fourth order equation there are points where wx vanishes but
all the other coefficients remain non-zero. Since the coefficients depend on r we can

power series expand them around the singularity, such that
T =Mz + Tz’ + ... (6.51)

8= 0o+ bz + foz’ + ... (6.52)

and the other coefficients take the same form as 5. We have dropped the X subscript

to avoid our equations becoming cluttered. What we find is an indicial equation of

the form
v(v —1)(v—2)(v = 3)m +v(v = 1)(v —2)8 = 0 (6.53)
v(v = 1) (v —2)[(v — 3)m1 + Bo] = 0 (6.54)
giving
v =2 (6.55)
v =1 (6.56)
v3 =0 (6.57)
vy =3 f—f (6.58)
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Assuming that fy/m is not an integer, we see that we have 3 roots which differ
from each other by integer values. Since v; > vy > v3 we have one solution of the
form

wy = 1wy (z) = 72u(2) (6.59)

where

= Z anz" (6.60)
n=0

At this stage we introduce a function v such that there will also exist a solution ws

where,

wy = W /vd:z: (6.61)

Substituting this into equation (6.19) gives the following third order equation in v,

Twi v + (drwy +Pwr ) v" + (61w +3fw] +yw )v'+ (drw! + 3w + 2yw| +dw )v = 0

(6.62)
Assuming v takes the form
v=7z'u(z) = aztz bpx™ (6.63)
n=0
we find the following roots,
hh=vy—1uy —1=-2 (6.64)
ty = Vg — V] — 1=-3 (665)
t3:1/4—1/1—1:—@ (6.66)
™
Consequently there exists a solution,
wy = w /a:(”z_”l_l)u(a:)da:
= w /a:_z,u(:z:)dx
= W /(boﬂ?_2 + bzt 4 by + b3z + ..)dz
1
= w[—boz™t + b logz + byz + §b3:1:2 + ..
= 1"[ui(z) log T + ug(z)] (6.67)
where -
ugn(z) = Z Caz" (6.68)
n=>0
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The third solution is dealt with in an identical fashion. Again we begin by assuming

we can introduce a function y such that there is a third solution,

w3 = wz/yd:c (6.69)

Following an identical procedure we find,

wy = wg/:c(”s_”l_l)w(:c)d:c
= wellogz + uss(z)]

= 2"y (z)(logz)? + use(z) log = + uss(z)] (6.70)

where the functions u(z) are all power series expansions which are analytic in the
neighbourhood of z = 0. Therefore at the singular points we find solutions of the

form

eX = 2?uy (2)+2° [ur () log(z) + uae(z)]+22 {11 (z) [log(z)]* +usz (z) log(z) +uss (z) }

(6.71)
Since 1 log(z) and z[log(z)]® are regular at £ = 0 we observe that £X and its
derivative at this point are in fact finite and continuous. However, the second

derivative of £X is singular. £ can be inferred from &X using the following relation,
& = ar&" + ast]" + asEX + aul) (6.72)

where the coefficients are all regular functions of r. We deduce that since £ depend
on the second and third derivatives of £ it must be singular. Similarly we note

that since we can write,
€5 = 0 + bo&X + byl + ba&] (6.73)

both fé}/ and f;/ are also singular at this point. We therefore conclude that at the

singularity we have one function that is regular and three that are singular.

[t may seem unphysical that there exists a singular solution at any point within our
system. However, such complications arise in numerous mode calculations, [86] [68].
In Watts et al [86] the singularities resulted in a finite step in the first derivative
which meant that there were two solutions that met the boundary conditions for any
frequency; a continuous spectrum. Removing the step and looking simply at zero
step solutions resulted in normal modes which could merge and become dynamically
unstable. A major difference in their problem was that the singularity depended

on the mode frequency. In this case the solution can be regularised by solving the
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initial value problem. The resulting integral solution will not be singular and the

continuous spectrum will have physical relevance.

Since our singularities do not depend on the mode frequency we can not take this
approach to overcome our problem. In principle we could use the Frobenius analysis
to find an approximation to the solution close to the singular point. We could
obtain one solution either side of the singularity and subsequently integrate in both
directions and match with solutions from the centre and surface. In practise we
expect the equations to be regularised by physics, [58]. For example, introducing
terms such as superfluid dissipation or viscosity may eliminate the singularities we
have encountered. The singular nature of our equations is almost certainly a result
of assumptions or approximations we have made in constructing our system and is

unlikely to be a genuine physical phenomenon.

6.7 Constant &,

In the previous section we took constant entrainment to mean that the entrainment
function « is constant. The entrainment can also be characterised by the two

dimensionless entrainment functions €, and e, such that,

. 2¢
Pn

En

and
_ 20 _ pa

Ep = En (6.74)
Pp Pp

An alternative to choosing constant « is to choose €, to be constant. This is the
approach taken by Prix et al [68] and Yoshida & Lee [89]. The explicit difference
between the two possibilities is that in the first case we find that at the surface e, —
oo and the entrainment terms dominate the perturbed Euler equations. However, in
the second case we observe that « vanishes at the surface. The entrainment terms
are no more influential at the surface than throughout the rest of the cylinder. It is
interesting to investigate the effect this has on the system in a hope to determine
whether or not the difficulties involving the singular points and the artificial surface
condition are in any way connected to our decision to assume « constant. We
begin with the Lagrangian perturbation equations for £, constant. In this case
the equations are no longer symmetric with respect to n and p and in cylindrical

coordinates may be written as,

a n a n n a n
2 m < s > par? + £ [m <8M ) r(pn + 7 P ) = 20,007 — 28, Wpn0a T
- .

or on, ong or
+ & [mg’ (%’;ﬁ—) P+ molri(e, — 1)} — &8 [megoir?’] =0 (6.75)
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O&P 0
5 |:m <8ZP> pp + EqWpnOpT 2(pn - pp)

o]
s
& [me

Opn
m ( ) roplpp + 7~ oy %) = 2Q0ppp7° + EnWpn0pr* (3pn — Pp)}

o
( p) pp — mapppr + men ppnr + 2m2 e Wpn 0T (P — pp)}

8np
2(mwpnpp — 0ppn)] =0 (6.76)
o0& 2 06 [(Om 2 Opn
Or'’? ( ) 87‘ Kann) T (pat 2r or )1
n 8 pn apn 3 2
+ & [(8 ) 57 +rar—pn)+7‘an(1—5n)
o9&y o o op
n n n_ 9 ) ‘
+ { ( > nr} + &5 { (8%) (r a9 20n) + 2mo,m (Qy + EnWpn)
agp 3 3
- [msnwpnapr | + € [enonopr®] =0 (6.77)
O*€P Oup\ o 3  OEP Opip 2/6..0Pp
T YHp 2 T “rFp 9y 2P
or’ <8np> T T [(877@) o 7 or +,0p)}
ou 0%p dp
P P 2 P ZFp 3 _
85}2 o (Opp\ o 3
+ B {m <%> PpT + MENWpa 0T (Pn — pp)}
P o ( Oup 8Pp 2 2
+ & m | 2= | pp(r— = 2pp) + 2mQp0onppT” — 2MERWn0n PaT
onp or
ogn
+ 8: [manwpinTB(an — mwpn)] + &0 [5nanppr3(an — mwpn)] (6.78)

Once again we have two first order equations and two second order equations.
Following an identical procedure as in the « constant case we can make use of

equations (6.75) and (6.76) to write equations (6.77) and (6.78) as,

. &¥

'y 134

) ar _ r
A oY =B ex
or (Z;/
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and thus write our system schematically as,

X
x f

+E e+ fE =0

and
X

9
o 55+ g o) ol e v g =0
We will again encounter singularities when f{ and g vanish. We can see immedi-

ately that,

Olin
fi=m ( = ) Pt (6.79)
and
fp ) a#p 2 2
L =r‘m 3 Py + EaWpn0pT™ (Pn — pp)] (6.80)
p

Clearly f! will vanish at the centre and at the surface whereas f will vanish at the

centre and at,

Oup
m(8) 7
r= oo (6.81)
EnWpn0p (pn — pp)
This singular point is similar to the £ singularities we discovered in the constant
« analysis, however, in that case both f{ and f} vanished at such points. We recall
that the g, singularities appear when the determinant of matrix A vanishes, i.e

when

. 9
f?ffanap[r2(6;w§n(pp—pn)(pp—pn+€npn))+(azp> P2 (en(pptpn)—pp)] =0 (6.82)
p

Once again we have both singular points which depend on the frequency and ones
which depend solely on the background quantities. It is possible to chose a config-
uration where the frequency independent singularities do not exist, however, it is
clear that we can also find parameter values where they are present. In this sense
the problem is identical to that of the o constant problem. We can conclude that

the singularities are not an artifact of the assumption that o = constant.

In the v constant problem difficulties arose concerning how to define an appropriate
condition at the surface. In the entrainment free case by insisting the equations were
regular we were able to impose a suitable constraint. The aim, as we introduced a
non-vanishing entrainment, was to identify a condition which satisfied the necessary
equations but which also reduced to the regularity constraint as a became zero. The
resulting procedure was to simply apply the entrainment free condition for all o and
allow the numerical routine to insist that the equations were satisfied. This appeared

to be effective, see Section 6.2.2, although it remains slightly artificial. It is thus
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interesting to investigate whether a more suitable surface condition is apparent in

the €, constant case. Demanding equation (6.75) is regular at the surface we find,

& (R) {m <gzn> apgiR) — 2000, R — 26, wpnon R| + E5(R) [mol (e, — 1)]

= &(R) [meaoy] =0 (6.83)

Equation (6.76) is regular at the surface. Close to the surface we can approximate
the densities as px = cx(R — r). Keeping only leading order terms in R — r and

noting that at the surface p, = Kp, we obtain,

a&? 2 1 p all'p apn 3
or I:EnwanpR (K = 1):| + §r |:m (a—np o — QQDUDR + EnwanpR(f(— — 1)
2 .
o, TERD 1 . o
+ 65 {_m(jp + K * + 2m25nwpnap(? - 1)] + &, [mgnan(mwpn - }(2)} =0

For the case where K = 1 this leads to,

\ Opp ) Opn(R)
EP(R)[m (a—np> o

+ 52(3) [menon(mwp, — 0p)] =0

— 20,0, R + eqwpn20,R] + §£(R)[—mag + menol)

(6.85)

In this case we have two equations, (6.83) and (6.85), and four unknowns. Elimi-
nating two of the variables leaves us with two free parameters which we can assign
appropriately to give us two independent solutions at the surface, as required. It is
clear to see that equations. (6.83) and (6.85) also reduce to the necessary constraint
as €, — 0. However, if K # 1 the equations are once again not singular at the

surface and we have an identical problem to that found in the « constant case.

It is apparent that the decision to choose « constant as opposed to €, constant did
not result in complications that were otherwise not present. The singular points
and the problems at the surface seem to be generic of the problem and were not a

result of our decision to use a constant entrainment.

6.8 Comparison with the Eulerian case

Finally we look at Eulerian perturbations in the two-fluid case with non-vanishing
entrainment. Our motivation is to investigate whether or not a similar analysis in an
Eulerian framework would free us of the complications involving the singular points
and the surface problems encountered in the Lagrangian example. The system is
described by equations (2.19), (2.20) and (2.21). A perturbation can be applied
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to this system such that, v% — v + dvy, ® — & + 6P, ux — ux + Sux, and

nx — nyx + dnx giving the following linearised Euler equations,

00V + v}, V0u' + v Vv + g9V, (6D + Sfix)

2 2
+ o (—aéwiyx> + 0 (——Qawiyxénx>
n n

X X
; 2 ; 2 ; 2
+ vV, (—aéwiyx> + 0v% V; (——Qawiyxénx> + 0vi V; (—awiyx)
Nx UP Nx
200 yx . 2o . 2a X ;
+ ij Viovh + —Eéw]’-/xvivg( - n—%;énxw;/ Vivk =0 (6.86)

the following perturbed continuity equations,

aénx

and the perturbed Poisson equation,

Our intentions in this Eulerian analysis are to compare the perturbed equations to
the Lagrangian perturbation equations. We thus consider an identical configuration.
That is we consider two fluids in a cylinder, which are free to rotate at different
uniform velocities around the z-axis. We take the Cowling approximation, i.e.
assume 0P = 0, and assume the entrainment function, «, is constant. We also note

that in principle d/ix depends on the entrainment. We can write it as follows,

_ Ofix Opix Ofix 2
= - s :
= (Gu)., ot (o)t (303, 7 6

where . . 5
X - - (= (6.90)
W) peny B A\ONX )

Since we are assuming « constant and since our equation of state is such that
(Q‘-‘l) = 0 we find,
nx,w2

ony

5/1}( = (a/,bx> (57’LX (691)

The result is six equations; two continuity equations and four equations obtained
by taking components of each of the two Euler equations. The continuity equations

become

O5vX
or

nxr?) 4+ 6v (ny + n'yr)r + 6vl (imny) + dnx (ioxr?) =0 6.92
T X o]
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Taking the ¢ component of the Perturbed Euler equations gives us,

sv ¥ [Qan?YT + 2cwy xT(2nx — n'r)] + 51);( [axng( - 2aoxnyx + Qmawyxnx] 1
Ofix

Onx) n% — 2aoxwyxr?| i =10 (6.93)

+ 5v§[aaxnx]z' + ony [m (

and taking the r component

Do X
8r¢ 20wy xr] — 6v) [2Qxnx + dawyx] + 0v) [oxT(nx — 2a)]i + 6v) [2a0xT]i
66nx a/]X _

In the Lagrangian case our system consists of four first order equations in £X and
5(;}’. In order to compare the Eulerian equations we eliminate ényx from the above
system by substituting from equation (6.93) into equations (6.92) and (6.94). In

solving equation (6.93) for dny we observe that there is a singular point when,

[m <a/~b_x) n& — 2aoxwyxr’| =0 (6.95)
Onx

This is identical to the f{¥ singularities in the Lagrangian case. What results from

these substitutions is four equations which can be written schematically as,

svX
ay 5 XouX + a3 5v¢ + aj 5% =0 (6.96)
and
odvy L 00vS dbuX
X ¢ ¢ T X X
by 5 + by R + b3 ar +b5 + b 5v¢+b svX + 0560 =0 (6.97)
An important observation is that aff = f;¥. By substituting for 96vX /dr from

equation (6.96) equation (6.97) becomes,

351}X 35%

@
6r+26r

it +c; 5v¢ +c; 5v¢ + v + e duY (6.98)
Since X and Y are constituent indices we note that we now have one first order
differential equation in dv?, one in 92, and two coupled first order equations in
vy and 5’05. The differential equations in évX are singular at af = f;¥ = 0. This
is identical to the situation in the Lagrangian analysis where the &X differential
equations are singular when fX = 0. We can investigate the singularities of the

5%\’ equations by writing the two equations which result from equation (6.98), one
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with X = n, ¥ = p and another with X =p, Y =n, as

SuX
361);( %
dv
A or, =B " 6.99
3‘;3; (51)5,( ( )
Y
5U¢

We recall that the singularities correspond to det(A) = 0. This gives the following

condition for a singularity

Ofin % 2,20 _ 42,22 Ofin 2_% 2]
(ann> (anp> nnnp(nn np) dar Wyp on. n, anp ng| = 0 (6_100)

Once again these are singularities that depend solely on the background system

and are independent of the frequency. We can choose parameter values where these
singularities do not occur, however we can equally choose values where they are
present. We conclude therefore that a Eulerian framework is no less problematic
concerning singular points than the corresponding Lagrangian framework. It is also
clear that since equations (6.96) are singular at f;¥ = 0 and not at the surface

identical difficulties will be encountered defining an appropriate surface condition.

These results confirm that our choice to analyse oscillations and stability in a La-
grangian framework and defining constant entrainment as a = constant does not
introduce unnecessary difficulties. The singularities and surface complications ap-

pear to be generic of the superfluid cylinder problem.
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Chapter 7

Conclusions and future work

Various different secular and dynamical instabilities can in principle exist in rotat-
ing, superfluid systems. Throughout this thesis the oscillations and stability of such
a system have been investigated in detail. By develbping a Lagrangian perturba-
tion framework, an initial step has been taken in constructing stability criteria for
superfluids analogous to the single fluid results obtained by Friedman and Schutz
[39]. It was shown that in the entrainment free, two-fluid case the onset of a ra-
diation driven instability at a critical rate of rotation remains unchanged from the
single fluid case. At present we have yet to fully develop the problem with non-
vanishing entrainment. Since the inclusion of this effect introduces a much greater
coupling between the two fluids constructing analogous stability criteria is an excit-
ing yet highly challenging prospect. However, normal mode calculations show that
the inclusion of entrainment gives rise to numerous interesting modes. Not only
do we observe a new family of superfluid modes we also observe avoided crossings
of modes and the presence of instabilities at critical values of the relative rotation.
This provides motivation to continue the Lagrangian investigations with the hope

of obtaining stability criteria in this complex, non-vanishing entrainment case.

Neutron stars are extremely complicated astrophysical objects, which to model fully
requires an understanding of a vast range of physical extremes. General relativity,
magnetic fields, supranuclear physics, particle physics and superfluidity are a few
of the areas which must be considered in order to accurately describe these stars.
Encompassing such an extensive range of physics into a single model is exceptionally
challenging, and due to numerous uncertainties in each individual field unlikely to
provide an accurate description of a real neutron star. Thus any analysis will
have limitations and approximations which must be considered when making any
conclusions about the astrophysical relevance of results obtained. Our investigations
focused on the effect of superfluidity using a simple two-fluid model. Not only did

we ignore general relativistic effects, magnetic fields and the presence of exotic
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particles in the core we also neglected the presence of superfluid dissipative effects
such as shear viscosity due to electron-electron scattering and mutual friction. For
our instabilities to be important for real neutron stars the unstable modes must
grow faster than the timescales related to this superfluid dissipation. The inclusion
of these dissipative effects in our equations is highly nontrivial [61]. The approach
to investigating their effect on damping times is to solve the simpler non-dissipative
equations and calculate the damping time via the introduction of a real energy
functional, F, such that, ' | uE

YT (7.1)
The appropriate energy functional can be found in Lindblom & Mendell (1995) [54].
They showed that mutual friction tends to stabilise the f mode CFS gravitational
wave driven instability in a rotating Newtonian star. However, in a subsequent
paper [55] they proved that the CFS 7 mode instability can be suppressed by mutual
friction only for a small fraction of the presently accepted models. They conclude
that it seems unlikely that mutual friction is acting to suppress this instability in
neutron stars. It would be interesting to investigate this damping time for the
secularly unstable r modes and f mode shown to exist within our entrainment free
superfluid cylinder. From the results of Lindblom & Mendell we can hypothesise
that while mutual friction will most likely suppress the f mode instability the

unstable r modes remain and thus could occur in real neutron stars.

One reason unstable modes of oscillation are exciting is the prospect of the resulting
gravitational wave emission reaching a detectable level. If this is achieved the
information obtained could allow us to put constraints on the interior structure of
the star. It is interesting therefore to investigate how efficient unstable oscillations
of neutron stars are as a source of gravitational waves. To accurately model the
gravitational waves from neutron stars we must use a relativistic description. This is
incredibly demanding and we are often forced to work with Newtonian models and
subsequently estimate the gravitational waves using a post-Newtonian approach.
An estimate of the total energy radiated and the frequency of the signal may be
enough to assess the relevance of an event as a gravitational wave source. We
compare the effective gravitational wave strain h. to the sensitivity of the various
gravitational wave interferometers to investigate whether or not particular modes
produce detectable signals. h. can be evaluated using the following formula taken
from Andersson (2003) [7].

he ~ 5 x 107% b SN D \™ (7.2)
°” 103 Mpc? 1kHz 15Mpc '

where E is the energy radiated, f the frequency and D the distance to the source. In
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Andersson, Comer & Grosart (2004) [12] we discuss the gravitational wave emission
from the oscillations of superfluid neutron stars. We calculate the current multipoles
for a superfluid star which could be used to analyse the rate at which the motion
generates gravitational radiation and hence the relevance of instabilities. These
results are for a spherical configuration. Since our cylindrical system is not a very
accurate representation of the shape of a real star it is not constructive to investigate
the gravitational wave emission associated with our instabilities. However, the
presence of the instabilities in the cylinder do give hope that the same modes will
exist in a sphere. If we can investigate the corresponding oscillations in this system it

will then make sense to investigate the amplitude of the gravitational wave emission.

In principle a two-stream nstability can operate in any system where there exists
relative motion between two interpenetrating fluids. The onset of the instability
occurs at a critical relative rotation [9]. It is unclear to what extent this instabil-
ity may effect true physical neutron stars, it is however interesting to consider the
possibilities. It has been suggested that it may be a trigger mechanism for neutron
star glitches. It is generally believed that glitches occur as a rotation difference
builds up between the normal fluid, which slows down due to magnetic braking,
and the superfluid neutrons which are unable to slow down due to vortex pinning.
Since both the two-stream instability and glitches are predicted to occur at a critical
relative rotation it is intriguing to hypothesise as to whether the first can be the
cause of the latter. The question we must consider is whether or not realistic data
can instigate the onset of this instability. The difficulty with this lies in the fact
that there are great uncertainties in the values of the true parameters. Neutron
stars are such complicated objects that so far no firm conclusions have been drawn
on typical values of the entrainment function and on how big a rotational lag can
be built up in various regions of the star. Much further theoretical work in this
area is an essential requirement if we hope to understand the true astrophysical
relevance of our instabilities. At present, the estimated critical point for the oc-
currence of a glitch event is at a relative rotation of R = 5 x 107*, [59]. In our
calculation, since the superfluid-type modes all originated from the origin, close to
R = 0 distinguishing between modes was exceptionally challenging. Unfortunately
this physically realistic region occurred outside of the area we were able to resolve.
Inclusion of the perturbation to the gravitational potential, 6®, would mean that
even in the co-rotating case we should find both ordinary and superfluid modes and
would not expect the sudden emergence of a vast number of modes as we move away
from co-rotation. Therefore including §® is a possible way to clarify the uncertain-
ties close to co-rotation. Another limmitation lies in our inability to investigate the
modes when the parameters were such that the g;¥ singularities appeared. This is

disappointing as the conditions in a neutron star core lead to parameters whereby
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this singularity exists. It is possible that an alternative numerical approach could
allow investigations in this region. We used a FORTRAN numerical integration
routine. However, Prix et al [68] worked with a spectral method code which by
expanding the solution in terms of Chebyshev polynomials insists that the solution
is regular. In fact they used the same linear eigenvalue solver package, LSB, that
we made use of in Section 4.3. An identical approach in the superfluid problem is
an appealing prospect. Provided the solution is in fact regular this approach will
allow us to avoid the numerous difficulties introduced by the singularities in our

system.

The Lagrangian perturbation framework developed for our two-fluid system is in
no way limited to superfluid neutron stars. The equations developed could equally
describe any system involving two interpenetrating fluids. Primarily they may be
of significance in laboratory situations involving rotating superfluid helium. Thus
stability criteria developed could be use to investigate instabilities, such as the
two-stream instability, in laboratory experiments. What is particularly appealing
is the possibility of testing the calculations and detecting these instabilities in a
true physical system. Confirmation of the presence of the superfluid two-stream
instability in a real system would give considerable confidence in the prediction of
their existence in superfluid neutron stars. The primary consideration we must
take to investigate this analogous system is to determine an appropriate equation
of state. Investigating the relevant superfluid helium literature is therefore the first

step we must take in order to move forward with this research.

As well as extending the Lagrangian stability analysis to develop criteria for the
onset of instabilities in superfluid systems with entrainment there are also many
improvements that should be made to our mode analysis. In particular investiga-
tions into the singularities, their physical relevance and how to deal with them in a
numerical investigation is a key step which should be the focus of more work. An-
other question our mode analysis raised concerned an appropriate choice of surface
condition. Since the situation where each species extends from the centre of the
star all the way to the surface is not a physically realistic model we believe that any
condition at this point would be in some sense artificial. While we therefore believe
our boundary constraint is justified developing a more physically realistic condition
would be desirable. Establishing a more realistic scenario would involve extending
the protons and electrons further than the neutrons to mimic the configuration in
the neutron star crust. A physically realistic model would also account for the elas-
ticity of this crust. It is clear that there is still tremendous scope for improvenients
and extensions to our work to enhance our knowledge of the effects of superfluidity

in neutron stars. It is also undeniably an area of research full of exciting prospects
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for interesting astrophysical effects. Thus while investigations may be challenging
it is evident that if we hope to understand the dynamics of these stars we must

continue this work.



Appendix A
Numerical techniques

Various numerical techniques are employed throughout this work to obtain solutions
to systems of differential equations. In this appendix the main two methods used

will be outlined. These are spectral methods and numerical integration.

A.1 Solving eigenvalue problems with spectral methods

Solving boundary value, eigenvalue and time-dependent problems with spectral
methods is a highly effective numerical technique. Using the harmonic oscillator
as a simple illustration the general principles involved in solving ordinary differen-
tial equations with spectral methods are outlined in this chapter. For a more in
depth introduction see [24], [45] & [30] while for a demonstration on how to use
spectral methods to overcome some of the difficulties involved in solving equations
which arise from astrophysical problems in the framework of general relativity see

Bonazzola, Gourgoulhon,and Marck [22].

Solving differential equations with spectral methods involves expanding the solu-
tion to the equation in terms of some finite basis of polynomials or trigonometric
functions. By minimising the residual function, which is obtained by substituting
the approximate solution into the differential equation, the coeflicients of the ex-
pansion can be found. The method uses test functions to ensure that the differential
equation is satisfied as closely as possible by the truncated series expansion. There
are three different methods classified according to the choice of test function. In
the Galerkin method the test functions are identical to the trial functions and each
function satisfies the boundary conditions. The Tau method also has the test func-
tions equal to the trial functions but in this case they do not satisfy the boundary
conditions, instead they are enforced by an additional set of equations. The third
method is the pseudospectral method in which the test functions are delta functions
located at certain grid points known as the collocation points. This introduction to

spectral methods will focus on the final case.
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Consider a differential equation defined by the operator L subject to certain bound-
ary conditions,
Lu(z) = s(z) (A1)

The approximate solution, @, can be written as,

iy(z) = ) dxdi(z) (A.2)

where % are the coefficients of the expansion, ¢, (z) are the basis functions, and N
is the number of basis functions considered. The residual function is defined as,
R=Lu-s (A.3)
By requiring R to vanish at certain collocation points, z,, we arrive at the following
equation,
La(z,) = 5(zn) (A.4)

Solving this equation with appropriately chosen basis functions and collocation

points is found to give accurate numerical approximations to the solution.

A.1.1 Choice of basis functions and collocation points

In most cases in spectral methods Chebyshev polynomials are taken as the basis
set. They not only form a complete basis but are easy to compute and converge

rapidly. The Chebyshev polynomials are defined by,

Te(z) = cos(kcos™ z) (A.5)
A suitable choice of collocation points is the roots of the first neglected basis func-

tions. For the Chebyshev polynomials this turns out to be,

Z, = COS (%) (A.6)

A.1.2 Boundary conditions

There are two methods of imposing the boundary conditions in spectral method

problems. The first involves adding additional explicit constraints,

N
Zﬁkgbk(y) =qa, yeB (A7)
k=0
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Where B is the boundary. The second involves selecting basis functions that inde-
pendently satisfy the boundary conditions.
A.1.83  Figenvalue problems

The pseudo-spectral collocation method can be used to approximate eigenvalues

and eigenvectors of boundary value problems. Consider the eigenvalue problem,

Lu(z) = Au(x) (A.8)

If we represent the operator L in terms of a matrix, the eigenvalues an eigenvectors
of the system are simply the eigenvalues and vectors of the matrix.
A.1.4 A simple example
Consider the harmonic oscillator equation,
d*u
dz?

with the boundary condition being that u(£1) = 0. For eigenvalue problems it is

= —\u (A.9)

particularly useful to choose basis functions that independently satisfy the boundary
conditions. This is because the explicit constraints which must be imposed if the
basis functions do not satisfy the boundary conditions do not depend on A and as
such the matrix equation is not a standard eigenvalue problem. This introduces
complications in the eigenvalue calculation which do not exist otherwise. Therefore

we define the basis functions,

bon(z) = Ton(z) =1 n=1,2,.. (A.10)
ons1(z) = Toner(z) — 2 n=1,2,.. (A.11)

By rewriting this problem as a generalised eigenvalue problem, such that,

Hb = —ABb (A.12)

we find the matrix representing the operator H is simply,

Hij = 0j41,22(%3) (A.13)

The double z in the index represents the second derivative and the collocation

points are,

Z; = — oS <M> i=1,2,.,(N—2) (A.14)
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In this basis set
Bij = ¢j11(x:) (A.15)

If we consider the case where N = 4 then this equation becomes

4 —16.97056274 —1.000000001  1.414213563
b=—)\ b (A.16)
4 16.97056274 —1.000000001 —1.414213563

This give A} = 12, Ay = 4 and the corresponding eigenvectors,

0 1.0
b, = and b, = (A.17)
1.0 0

It is now trivial to convert these eigenvectors back into an ordinary Chebyshev basis

by noting that,

2n<(N-1)
a=- > bn (A.19)
n=1
(2n+1)<(N+1)
a) = — Z b2n+1 (AQO)
n=1

Where a,, is the coefficient in the Chebyshev series expansion, such that,

N-1

u(z) = Z anTr(z) (A.21)

Therefore the solutions in the ordinary Chebyshev basis are,

[0 ] [ —1 ]
-1 0
a, = and G, = (A.22)
0 1
1 Lo ]

Since it 1s straightforward to evaluate solutions to the harmonic oscillator problem
analytically we investigate the accuracy of our spectral analysis. Figure A.1 shows
the first two solutions to the harmonic oscillator equation for the N = 4 case and
the corresponding exact solutions. While the solutions are obviously similar to
the exact results it is clear that there are significant discrepancies. To obtain a

greater degree of precision we increase the number of basis functions considered.
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Figure A.1: The first two ezact eigenvectors for the harmonic oscillator problem,
alongside our approximate solutions obtained using a pseudo-spectral method. In
this ezample we consider only 4 basis functions, N = 4, and the exact solution is
normalised such that une, = 1. While the solutions are obviously similar to the
ezact results it is clear that there are significant discrepancies.

Figure A.2 illustrates the effect of increasing N on the accuracy of the resulting
eigenvalue solutions. As N increases the eigenvalues rapidly become within a few
percent of the true solution. Since the y-axis is logarithmic and the graphs are
roughly linear we conclude that the accuracy improves exponentially. However, for
a particular value of NV not all the calculated eigenvalues have a similar precision.
With N = 25 for example we obtain 23 eigenvalues, 12 of which are accurate to
within 0.2 percent and the rest of which are reasonably inaccurate. It appears that
this is always the case, [24]. When applying a spectral method with (N + 1) terms
typically the lowest N/2 terms are accurate to within a few percent while the larger
N/2 numerical eigenvalues differ from those of the differential equation by such
large amounts as to be useless. The only reliable test is to repeat the calculation

with different N and compare the results.
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Figure A.2: Illustration of the effect of increasing the number of basis functions
considered on the accuracy of the solution. As N increases the eigenvalues rapidly
become within a few percent of the true solution. Since the y-azis 1s logarithmic and
the graphs are roughly linear we conclude that the accuracy improves ezponentially.
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A.2 Numerical integration

Solutions to ordinary differential equations can be approximated numerically using
numerical integration. A fourth order Runge-Kutta FORTRAN scheme is used to
solve equations throughout this work. This is an extension of the Euler method
using a trial step at the mid-point of an interval to cancel out lower order terms.

Consider the curve in Figure A.3.

Y A

Yos2[

| | | )
Xn X n+l X n+2 X

Figure A.3: The Euler Method: FEuler’s method makes an approzimation to the
solutions at x,41 by extrapolating along the derivative as shown by the dotted line.

If we define the gradient at a particular point as dy/dz = f(z,y), Euler’'s method
makes an approximation to the solutions at z,,; by extrapolating along the deriva-
tive as shown by the dotted line. Thus,

Yn+1 = Un + kl + O(hQ) (A24)

Where h is the step size. The second order Runge-Kutta method adds one extra

step, as we can see in Figure A.4. The second order formula is

1 1
kQ = hf(xn + ih, UYn + 5]4?1) (AZS)
Ynil = Yn + ko + O(R®) (A.26)
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Figure A.4: Second Order Runge-Kutta Method: This is an extension of the Fuler
method using a trial step at the mid-point of an interval to cancel out lower order
terms.

Extending this to the fourth order formula gives,

1 1
ks = hf(z, + §h, Un + 51‘62) (A.27)
1 1
ks = hf(on + 3 byt ko) (A.25)
11 1 1 ;
Yntl = Un + =k1 + =ka + k3 + =ks + O(R°) (A.29)

6 3 3 6
This system is reasonably simple, robust and good for numerical solutions of differ-

ential equations.
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Appendix B

Cylindrical coordinates

Many operators have a particularly simply form in Cartesian coordinates. However,
in situations where a problem has a specific symmetry it is useful to use a coordinate
system which exploits this symmetry. Much of the work in this PhD focuses on
cylindrical systems and consequently we use cylindrical coordinates. This Appendix
summarises the properties of such a coordinate system and explains how one can

express operators using this framework.

Cylindrical coordinates are an extension of the two-dimensional polar coordinates to
three-dimensions by superimposing a height, z, axis. The coordinates (r, ¢, z) can

be related to the Cartesian coordinates (z,y, z) through equations (B.1) to (B.3).

tang = % (B.2)

Figure B.1: Cylindrical Coordinates

The basis vectors in this coordinate system are defined as a set of orthonormal
vectors pointing in the direction of increasing coordinate values. In contrast with
Cartesian basis vectors, the cylindrical basis vectors depend on position; €,(Z) points
in different directions for points with coordinates (z,y, z) = (1,0,0) and (z,y, z) =

(0,1,0). As aresult we observe that in cylindrical coordinates the partial derivatives
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of the basis vectors with respect to the coordinates do not necessarily vanish, i.e
0;€; # 0 for all 7 and j. The non-zero cases are,
oe, 0ey

a¢ = €¢ and % = €, (B4)

We introduce the metric tensor, g;; and the connection coefficients Fk for cylindrical

systems. These will be needed for various calculations throughout this thesis.

100
g95=0 r* 0 (B.5)
00 1
and
0 0 0 0 Lo 000
=10 - 0|, 0%=|L00|,T5=|000 (B.6)
0 0 0 000 000

For cylindrical coordinates, the physical components are denoted {v,, v4,v,}. When-

ever a formula is derived in terms of the general covariant and contravariant vector
components it is a good idea to convert the final result to physical coordinates and

the physical basis. For cylindrical coordinates these conversion formulae are,

U] = Uy, vl =, (B.7)
Vg = Ty, v? = 1;_¢, (B.8)
Uz = Uy, v} =, (B.9)

B.1  Vector calculus in cylindrical coordinates

The vector operator V can be expressed explicitly in cylindrical coordinates. We

begin with the gradient,

_of  _.19f f
—g L €5 B.1
Vfi=¢ 5 1€ €p— P + € (B.10)
The divergence can be written as
- 190 10F, OF,
- F=-—(rF, —— B.11
v ror (r£7) O¢ * 0z (B.11)



The concept of divergence can be generalised to tensor fields where it is known as

the covariant derivative, written
VA= A% (B.12)

The curl of a vector F is,

. (_19F, 0OF,\ _ (0F OF,\ _1/0d oF.
V % F = <€T;a—¢ - E—) +€¢, ( 82 - 87‘ ) +e,— (— (T'F¢,) — ) (B13)

And finally we can write the scalar Laplacian as,

10 ( ﬂ) 42 O'f + i (B.14)

2,_ 10 I T
vf_rar "or 2 0¢? 022
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Appendix C

Solving the two-fluid Lane-Emden

equation with Green’s functions

A Green’s function is an integral kernel that can be used to solve an inhomogeneous
differential equation with boundary conditions.

We can rewrite the Lane-Emden equation for two fluids in a cylinder, equation
(3.44) as

@+§@+§:f@) (C.1)

Where,
0= (1+K,)b0, (C.2)

s=+1+ Kyr (C.3)

f(s) =202 + R*Q, — ] f}(n s (C.4)

and a prime represents a derivative with respect to s. The Green’s function is a

function G(s, sq) of the two variables s and sy that satisfies,

1
G”+§G’+G:5(3—30) (C.5)

If we can solve for this equation for G(s, sg), the Green’s function, we can then

obtain #(s) as follows. Equations (C.1) and (C.5) can be rewritten as,

1d

gzj£0+é:f@) (C.6)
d
~—(sG") + G = 3(s = 50) (C.7)
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(C.6) xG— (C.7) x0

Gdiis—(se_') - é%(SGI) = 5f(s)G — s6(s — 80)0 (C.8)
%[ng' — 005G = sf(s)G — s6(s — 50)8 (C.9)

If we now integrate this equation from 0 — S, , where S = /1 + KR,

S
[Gsf' — 0sG")5 = /0 sf(s)Gds — sp0(s0) (C.10)

We can chose the term in the square bracket to equal zero leaving,

S
500(s0) :/ sf(s)Gds (C.11)
0
Rearranging and relabelling gives
_ 1 [
(s) = ;/ s0f(s0)G(s, s0)dsg (C.12)
0
Thus once we know G we can obtain 8. To solve for G we note that for s # so we
have
17 1 !
G'+-G'+G=0 (C.13)
and therefore
G(s, s0) = AJy(s) + BYy(s) (C.14)

Where Jy(s) and Yy(s) are Bessel functions.

8 < 8o G~ (3,8) = aly(s) (C.15)
S > 8y G+(S, 80) = AJ()(S) -+ BY()(S) (016)

Where the first result is achieved by noting that Y;(s) is singular at r = 0. These
two results must be consistent with each other and since G(s, s¢) is continuous they

must equate at s = s¢,

aJo(so) = AJo(s0) + BYo(s0) (C.17)

Another condition we can impose on G(s, so) is that G(S, sg) = 0, i.e the Green’s

function goes to zero at the edge of the star.



Yo (S)
Jo(5)

The final condition involves matching the derivatives of G(r, 7o) at ro. At this point

A=-B

(C.18)

the differential equation is

d%(SGI) + sG = s6(s — s9) (C.19)

We can integrate this equation over the range sg — ¢ — sp + ¢, and then take the
limit as € — 0.

/:if{é%@G@]ds=so (C.20)
[SG=50r — [sGP=¢ = 5 (1)
(Gp=sot — [G=s = 1 (C.22)
Gt (s,80) — G (s,80) =1 (C.23)
ai(s0) — A (50) — BYi(s0) = 1 (C.24)

Equations (C.17), (C.18), and (C.24) can be solved to give 4,B, and «

_ Yo(s0) Jo(s0)
A T RS Walo0)(s0) — Yi (50} Taloo)] (©29)
. JO(S())
B = (501 (50) = Y (50) (s0) (C.26)
_ Jo(S5)Yo(s0) — Yo(5)Jo(s0) (C.27)
Jo(5)[¥o(s0)J1(s0) — Y1 (s0)Jo(s0)] '
Equation (C.12) can then be applied giving,
0(s) = 202 + 1%5;(“ + <1 + K, — 202 — IQ:;!) Jo(s)
_an [ s 2
e +Kn)LJ0(5)30(3)(2552,—1(5) - 257
+ Yo(s)J1(s)(4s — s*) + 5Jo(s)Y1(5)s3,0(8)] (C.28)

Where so _1(s) and s3¢(s) are the Lommel functions.
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This exact solution can be compared to our numerical solution illustrating that our

numerical results are accurate.

1 | T T T | T
- — Exact solution i
08— = = (Numerical error)x 100 | —
E<_>0.6 — ]
Q- -
>
Z 04 =
(D]
[
O 2 L -~ -7 . - =~ ~ ]
o " \\
L -~ e _
e e
,/ ~ o
O e o — g h“\
~
~
"~
02 ! | ! | ! | ! | A
0 0.2 0.4 0.6 0.8 !
Radius, r/R

Figure C.1:  The Figure llustrates the ezact solution to the two-fluid Lane-Emden
equation and also the error in our numerical integration. The error is defined as
difference between the exact solution and the numerical solution, Peract — Prumerical,
and in the Figure has been multiplied by 100.
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