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It is predicted that neutron stars contain a liquid interior of superfluid neutrons 

and superconducting protons. The effect of these superfluid components on the 

various oscillation modes and stability of a rotating neutron star is investigated. vVe 

model our superfluid using a simple non-relativistic, two-fluid model, where one fluid 

consists of the superfluid neutrons and the second fluid contains all the remaining 

constituents (protons, electrons). The two fluids are coupled through the equation 

of state, in particular by entrainment, and are free to rotate at different rotation 

rates around the same axis. The initial approach involves Eulerian perturbation 

theory and subsequently a Lagrangian perturbation frame"work is developed. The 

advantage of the Lagrangian framework is that we can construct a canonical energy 

for the system allowing us to develop stability criteria for superfiuid stars analogous 

to the single fluid results by Friedman and Shutz [39]. At present our stability 

analysis neglects the entrainment effect, and its inclusion is the focus of future work. 

However, we do include entrainment in our normal mode investigations. vVe consider 

a self-gravitating, Newtonian, superfiuid cylinder. Numerically, we investigate the 

normal mode solutions and investigate their dependence on the relative rotation 

rate and on entrainment. vVe observe avoided crossings of modes and the onset of 

a two-stream instability at a critical relative background rotation rate. 

Our investigations are complicated by the presence of various singularities. As a 

result there exists situations for which we are unable to obtain a numerical solu­

tion. To check our numerics we limit our investigations to situations where these 

numerical problems are not encountered. vVe discover this corresponds to negative 

values of the entrainment function, a. Although it is predicted that in the neutron 

star core the entrainment will be positive, negative entrainment is not physically 



unrealistic. In fact it has been shown [28J that it is what is predicted for neutron 

star crusts. 
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Chapter 1 

Introduction 

A ne,v generation of extremely sensitive detectors, with the mission of observing the 

theoretically predicted gravitational waves are now operational. Despite no positive 

detection thus far it seems inevitable that after decades of controversy over its 

existence, this gravitational radiation will finally be observed. Gravitational waves 

are produced when matter is accelerated in an asymmetrical way. The challenge in 

detection lies in the fact that a detectable level of radiation is only generated by 

the acceleration of very large masses in very strong gravitational fields. It has been 

suggested [7] that instabilities in neutron stars could result in oscillations growing 

such that the resulting gravitational waves reach a detectable level. Building a 

realistic model of a neutron star to investigate these oscillations requires a detailed 

understanding of the physics behind them. This work focuses on the idea that 

neutron stars contain various superfluid components. Our purpose is to explore 

the effects that this superfluidity has on the dynamics of the star, in particular 

investigating the effect on the oscillations and stability. 

1.1 An introduction to neutron stars 

In 1934, only two years after the discovery of the neutron, the existence of neutron 

stars was proposed by astrophysicists Baade and Zwicky [17]. They suggested 

that neutron stars would be about 10km in diameter and would be formed during 

supernova explosions as massive old stars collapse. For many decades after the first 

prediction however, neutron stars were just hypothetical phenomena. It was over 

thirty years later that PhD student Jocelyn Bell and her supervisor Antony Hewish 

confirmed the theories when they detected these stars in the form of a pulsar [46]. 

They noticed rapid radio pulses from a specific direction of the sky. Due to the 

frequency of pulses it was concluded that the object producing these pulses was 

very small and the connection \vas made with the already theoretically predicted 

neutron stars. In reality pulsars do not pulse but emit two beams of radio waves 

in opposite directions along their magnetic axis. These beams sweep around the 
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sky once per stellar rotation, much like the beacon of a lighthouse. Therefore an 

observer receives a short pulse each time one of the radio beams points toward the 

Earth. 

The life of a neutron star begins where that of an ordinary star ends. Throughout 

its life a chain of thermonuclear reactions take place within a star generating enough 

pressure to keep it from collapsing due to gravity. Initially hydrogen is burnt into 

helium followed by helium to carbon. If a star is massive enough heavier and heavier 

atoms will be fused until the star is composed of several concentric shells, each 

dominated by a particular fusion reaction, the hottest shell at the centre containing 

iron. Fusing iron to form heavier elements actually requires energy so at this point 

all the fuel is used up and the core collapses under its own weight. During this 

collapse, the outer layers of the star are blown off in a supernova explosion. VVhat 

remains at the centre becomes either a black hole or if the initial weight is low 

enough a neutron star [41]. Stars with an initial mass of roughly 15 to 30 times the 

mass of our sun are believed to eventually form neutron stars, however, as supernova 

simulations become more precise these limits should become more absolute. 

Neutron stars are predicted to have a radius of only 10km yet a mass 1.4 times 

that of our sun resulting in core densities which are well beyond what is accessi­

ble to laboratory experiment, [62], [63]. Therefore despite considerable theoretical 

analysis much of the physics of these compact objects is not well understood. The 

present model of a neutron star [75] consists of a solid outer crust, with various 

layers, enclosing a much hotter fluid core. VVe illustrate this model in Figure 1.1. 

Following a rather thin ocean, we find an outer crust consisting of nuclei, ranging 

from 56Fe to 118Kr, held together by Coulomb forces. The inner crust is made up 

of a lattice of nuclei, and of superfluid neutrons. It is believed that the uncon­

fined neutrons condense by forming Cooper pairs. The neutrons therefore become 

endowed with the property of superfluidity enabling them to flow freely past the 

metallic lattice. At the base of the inner crust the nuclei dissolve and we find a 

uniform fluid composed mainly of superfluid neutron but also with a smaller num­

ber of superconducting protons and electrons. In addition to neutrons and protons 

the super-nuclear densities present within neutron stars give rise to various other 

hadronic possibilities, [42]. Hyperons, a class of sub-atomic particle, are predicted 

to appear in neutron star matter at a density of 0.38fm- 3 , about twice the nu­

clear saturation density [60]. Under terrestrial conditions hyperons are unstable 

and decay into nucleons through the weak interaction. The conditions in neutron 

stars, however, can make the conversion of nucleons into hyperons energetically 

favourable. Since Ambartsumyan and Saakyan [4] first suggested the appearance of 

hyperons in neutron stars in 1960 substantial theoretical analysis has been carried 
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Figure 1.1: Model of a Neutron Star: In the atmosphere and outer crust we find 
nuclei ranging from 56 Fe to 118 K r, held together by Coulomb forces. The inner crust 
consists of super fluid neutrons and a lattice of proton clusters. The unconfined neu­
trons condense by forming Cooper pairs thus becoming super fluid. This superfluidity 
allows them to flow freely past the metallic lattice. At the base of the inner crust the 
nuclei dissolve and we find a uniform fluid composed mainly of superfluid neutron 
but also with a smaller number of superconducting protons and electrons. 

out on the consequences for neutron star physics. The principal effect caused by 

hyperon formation is a softening of the equation of state [91] . Other more exotic 

possibilities that have been suggested for the neutron star core include meson con­

densation and a deconfined quark phase. We focus our attention in this thesis on 

the effect of superfiuidity in neutron stars and thus neglect the presence of these 

other more exotic particles. However, since these additional particles may also be 

superfluid, [84], one could conceivably adapt this analysis in some way to include 

their presence. 

1.2 Superfl.uidity 

Traditionally in physics one learns that the world is divided into two. There is the 

microscopic world of quantum mechanics and there is the macroscopic world where 

classical physics still reigns. Superfiuids are astonishing in that they shatter this 

barrier between worlds. Quantum effects are essential for the existence of these 
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systems yet they can exist on length scale of a Mm, a em, or even l04km. Consider 

a liquid which can freely flow through a narrow capillary without transferring any 

of its momentum to the wall. This fluid would be moving without friction and 

this is what is known as a superfluid, [48]. The property of superfluidity was 

first observed in liquid helium He4
, which at a temperature of 2.18K undergoes 

a second-order phase transition. At this point, known as the lambda point, a 

remarkable discontinuity in heat capacity occurs, the liquid density drops, and a 

fraction of the liquid becomes a zero viscosity superfluid. Keesom [47] used the 

terms helium I and helium II to distinguish the liquid above and below the lambda 

temperature respectively. Helium II behaves as if it were a mixture of two different 

liquids with their own velocity fields and densities. There is a normal, viscous 

fluid component which is basically a classical Navier-Stokes fluid and an inviscid 

superfluid component. Energy and momentum are exchanged between the two fluids 

by an interaction known as mutual friction. The relative proportion of normal and 

superfluid is determined by the absolute temperature T. At absolute zero helium II 

is still a liquid and is entirely superfluid. The property of superfiuidity and the fact 

that helium remains liquid down to absolute zero can not be explained by classical 

theory and are connected with quantum phenomena. As is well known, there are 

two stable isotopes of helium, H e3 and H e4
. The liquid which exhibits superfluidity 

is the one formed from atoms of H e4 that is, from particles obeying Bose statistics. 

H e3 atoms also form a quantum liquid, known as a Fermi liquid, but do not exhibit 

superfluidity at temperatures of the order 1 or 2 K. This is because superfluidity 

arises from the fraction of helium atoms which have condensed to the lowest possible 

energy. Bosons can condense in unlimited numbers into a single ground state since 

they are governed by Bose-Einstein statistics 'where as fermions, such as H e3 atoms, 

are constrained by the Pauli exclusion principle. At low enough temperatures, 

however, pairing can occur in Fermi liquids, forming Bose type particles and hence 

instigating the occurrence of superfluidity. This is known as Cooper pairing and is 

essential for the formation of superfluids in neutron stars. 

In a standard superconductor a Cooper pair consists of two electrons which are 

attracted to each other sufficiently strongly that they form a bound state. The 

force between the two negatively charged electrons becomes attractive as a result 

of their interactions with the crystalline lattice through which they are travelling. 

As one electron passes through a given region of the lattice it attracts the positive 

ions toward itself. The electron moves on, but the heavier ions take a longer time 

to return to their original position, and during this time they attract the second 

electron. The interaction with the lattice is shown schematically in Figure 1.2. 

These two electrons are known as a Cooper pair. If the energy required to bind 
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Figure 1.2: A schematic representation of the basis for the attraction interaction 
between two electrons via lattice deformation. As one electron passes through a given 
region of the lattice it attracts the positive ions toward itself. The electron moves 
on, but the heavier ions take a longer time to return to their original position, and 
during this time they attract the second electron. The electron pair remain bound 
provided the eneryy required to bind them together is less than the energy from the 
thermal vibrations of the lattice attempting to break them apart. !43j. 

these electrons together is less than the energy from the thermal vibrations of the 

lattice attempting to break them apart, the pair will remain bound [43] . 

In neutron stars superfluidity occurs through the creation of pairs of neutrons and 

protons. The Cooper pairs which are formed are bound systems of two fermions 

and must therefore be described by wave functions which are anti-symmetric under 

exchange of the coordinates and spins of the pairs. This results in the existence 

of two types of states, the spin-singlet state, ISO, with spin zero and the spin­

triplet state, 3 P2 , with spin 1. Figure 1.3 is a plot of temperature against density 

illustrating the transition from normal matter to superfluid matter. The regions 

below the curve represent the existence of the corresponding superfluid state. At the 

lower densities , typical for the neutron star crust we can expect to find superfluid 

neutrons in the 1So state. At roughly 2 x l014g/ cm3 which indicates the crust­

core interface, we observe, not only the emergence of 1 So protons but the dominant 

attraction for the neutrons now occurs in the 3 P2 channel. Hence in the neutron 

star core we expect to find both superfluid protons in the 1 So state and superfluid 

neutrons in the 3 P2 state [75] . It is now believed that the 3 P2 curve is lower than 

shown in the Figure, although maximum values of the transition temperature can 

vary considerably for different macroscopic models [87]. 

5 



,...., 1.5 
;, ___ I So neutrons 
~ 

~ 
'--' 
~ 
s.. 
:= ...... 

1.0 ~ 
s.. 
~ 
Q. 

5 
~ ...... 
I: IS 3 protons 3p 0 neutrons .. 0.5 ...... 2 .. j rJJ 
I: 
~ 
s.. 

Eo-
- crust- core iI1lerracc 

o 
0.07 0.57 1.91 4.53 8.84 

Figure 1.3: Plot of transition temperature against density illustrating the transition 
from normal matter' to superfiuid matter. The regions below the curve represent the 
existence of the corresponding superfiuid state. At the lower densities, typical for the 
neutron star crust, we can expect to find superfiuid neutrons in the 1 So state but an 
absence of superfiuid protons. At roughly 2 x 1014glcm3 which indicates the crust­
core interface, we observe, not only the emergence of 1 So protons but the dominant 
attraction for the neutrons now occurs in the 3 P2 channel. Hence in the neutron 
star' core we expect to find both superfiuid protons in the 1 So state and superfiuid 
neutrons in the 3 P2 state ['l5}. It is now believed that the 3 P2 curve is lower than 
shown in the Figure. 

One of the most distinct features of superfluidity is its response to rotation. If we 

consider a normal fluid in a rotating cylinder, such as water in a rotating glass, after 

some initial slowness the fluid will begin to rotate uniformly with the cylinder. In 

the case of a superfluid we might assume that since the superfluid does not interact 

with the walls of the cylinder it would remain stationary. However, this conclusion 

is not observed experimentally. What happens is that the superfluid mimics rigid 

body rotation very closely by forming an array of vortices, see Figure 1.4 [64], [38]. 

A cylindrical non-superfluid region surrounded by stable currents spontaneously 

appears in the superfluid as shown in Figure 1.5. These tornado like tubes have 

non-zero curl and thus lead to a non-zero global circulation. It should be noted 

that the presence of a single vortex in a superfluid leads to an extremely non-rigid 

body flow. In this case, the flow is rapid near the centre of the vortex and falls 

off as 1/r where r is the distance from the vortex centre. However, with increased 

rotation more vortices can be added to the superfluid and a smooth average over a 
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Figure 1.4: A schematic representation of the vortex state in the interior neutron 
superfluid. The superfluid mimics rigid body rotation very closely by forming an 
array of vortices . If the superfluid is rotated at a constant angular velocity the 
vortices form an ordered array with the vortex lines being aligned with the axis of 
rotation. The number of vortices present is directly proportional to the angular speed 
of the superfluid. 

Vortex core 

<J- Streamlines? 

Figure 1.5: A schematic representation of a vortex line, a cylindrical non-superfluid 
region surrounded by stable currents . These tornado like tubes which allow the 
superfluid to mimic rigid body rotation have non-zero curl and thus lead to a non­
zero global circulation. 

large number of vortices causes the system to rotate in an increasingly rigid-body 

like manner [48J . 

The key property of a superfiuid vortex line is that the circulation is quantised, 

K, = v-; . dl = - N i ... h 

c 2M 
(1.1 ) 

Where N is an integer and M is the bare neutron mass [43], [79J. The factor of 

two in equation (1.1) arises because we are considering neutron pairs. The energy 
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Figure 1.6: A schematic sketch oj an observational plot oj pulsar period against 
time Jor the Vela pulsar. Glitches, indicated by the arrows, occur when the pulsar 
suddenly speeds up by a very small amount. The largest glitches have relative ampli­
tudes (6..1//1/) oj several parts per million, but the range oj amplitudes covers many 
orders oj magnitude. The recovery back to the pre-glitch rotation rate ranges Jrom 
days to years !44J. 

associated with a vortex line depends on /'1,2. Therefore it is energetically favourable 

to have two vortices each with one quantum of circulation, rather than one vortex 

with two quanta [25J. If the superfluid is rotated at a constant angular velocity 

the vortices form an ordered array with the vortex lines being aligned with the axis 

of rotation. The number of vortices present is directly proportional to the angular 

speed of the superfluid. As the speed of rotation decreases a new equilibrium state 

can only be achieved by the destruction of vortices. This process proceeds by the 

outward flow of vortices, and annihilation of vorticity at the interface between the 

superfluid and the boundary. 

Strong observational evidence for the existence of superfluid components in neutron 

stars is provided by the well-known glitch phenomenon [29J . Signals received from 

pulsars arrive at a remarkably constant frequency which is considered to be the 

rotation frequency of the star. A startling observation was made, however, in 1969 

when the Vela pulsar suddenly seemed to speed up [19J. This phenomenon has 

been called a glitch. Following this glitch event is a slow recovery of the angular 

deceleration back to the pre-glitch spin-down rate, see Figure 1.6. The timescale 

for this return is macroscopic, ranging from days to years. 

The origin of glitches is poorly understood. However, since the interior of a neutron 

star is superfluid, it is useful to see if the observed speed-ups can in some way 
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be attributed to the properties of a rotating superfiuid. A possible explanation 

for the glitches, suggested by Packard [67], is the metastability of superfiow. A 

system can be described as metastable if it is above its minimum energy state, but 

requires an energy input before it can reach a lower energy state. Experiments on 

rotating vessels of liquid helium reveal that the vortices tend to pin themselves to 

imperfections on the walls of the vessel. If the vessel is decelerated the vortices 

may remain attached to the vessel and a metastable fiow is created in which the 

superfiuid is fiowing faster than the vessel. The superfiuid will spin down only if the 

vortices are destroyed on the vessel walls. In the case of a neutron star, to achieve 

equilibrium between the superfiuid and the neutron star crust the superfiuid must 

expel vortices as the star slows down. Pinning of this vorticity in the crust is thus 

a mechanism for storing superfiuid kinetic energy, see Figure 1.7. As the relative 

velocity between the superfiuid and crust builds up, the force tending to expel the 

vorticity increases, [.34]. Eventually this will overcome the pinning forces. At a 

critical value of the relative angular speed of the superfiuid and crust the vortices 

will unpin. A problem with this model is that to account for the observed change 

in angular acceleration roughly 1013 vortices must simultaneously depin during a 

glitch. vVe observe this in the following way; by considering equation (1.1) in the 

form, 

i - h v--;' dl = (DR) x (21fR) = -. N 
c 2JVI 

(1.2) 

we can see that the change in the number of vortices, i.e the number of vortices 

that must depin, oN can be written as, 

(1.3) 

·Where oDe is the change in angular velocity of the crust during a glitch. To look 

at this quantitatively we note that typically 

(1.4) 

glvmg 

oN ~ 3.16 x 1013 (1.5) 

As can be seen in Figure 1.6 after a glitch event comes a long period of relaxation. 

The source of this long recovery has been the focus of much theoretical analysis 

[33], [73], [74], [85], [2] & [3]. Alpar et al [2] & [3] have, over many years, de­

veloped a model of the post-glitch relaxation in terms of the rotational dynamics 

of a superfiuid with vortex pinning inside the neutron star crust, kno·wn as vortex 
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Figure 1.7: An illustration of voriex pinning in a neutron star leading to a 
metastable flow in which the superfluid is flowing faster than the normal fluid. The 
velocity of the normal fluid, Vn , decreases due to magnetic breaking but since the 
vortices are pinned to the crust the number of voriices remains unchanged and thus 
the superfluid velocity, V s , cannot change. Observationally deduced rotation rates 
are believed to correspond to Vn since the magnetic field is locked to the crust. 

creep theory. An alternate theory suggests the crustal lattice itself drifts while the 

vortices remain pinned [73], [74] & [85]. At present there is no firm consensus on 

the theory connected with neutron star glitches, however, the evidence is strong 

that both the glitch event and the subsequent relaxation reflect changes in the an­

gular momentum distribution inside the star. This gives great confidence to the 

predictions of superfluidity in neutron stars. 

1.3 Non-radial oscillations of neutron stars 

It is well known that stars, being essentially large fluid balls, will tend to oscillate 

both radially and non-radially. Radial oscillations are simple contractions and ex­

pansions of the star whereas non-radial oscillations result in deformations whereby 

the star loses its symmetrical shape. Neutron stars are capable of experiencing a 

wide range of oscillatory modes which can be excited by various different astrophys­

ical processes. Each restoring force which acts on a star will result in a family of 

pulsation modes and the modes are categorised accordingly. p modes are generated 

by acoustic waves for which pressure is the restoring force. The lowest acoustic 

mode is normally considered the fundamental mode, or f mode, of oscillation. The 

g modes are generated by gravity waves for which buoyancy is the restoring force. 
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Finally the r modes are from rotational waves where the Coriolis force is responsible 

for restoration. For a more in depth explanation of this extensive subject see [80] 

or review articles such as [14]. In 1988 Epstein [35] proposed that superfluidity in 

neutron stars should introduce additional modes to the oscillation spectrum. The 

first numerical observation of these mode was by Lee [51] who not only discovered 

the existence of modes not present in single fluid models but also the absence of g 

modes. Further evidence for the absence of these g modes was found analytically by 

Andersson & Comer [11] using a local analysis. Since the identification of these su­

perfiuid modes substantial research has been done taking into account entrainment, 

general relativistic effects and rotation [68], [26], [1.3]. One of the predominant mo­

tivations for studying stellar oscillations is the hope that we can use the information 

acquired to gain insight into the interior structure of the star. H elioseismology, the 

study of the Sun's interior using the solar oscillations, has revealed vast amounts of 

information on the internal structure of the Sun [78]. By investigating how waves 

propagate through the Sun scientists can infer the temperature, density, and com­

position of the material they pass through. An interesting proposition for neutron 

stars is the idea of gravitational wave asteroseismology, using gravitational wave 

data to probe neutron star interiors [15], [20]. Any non-axisymmetric pulsations 

will generate gravitational radiation. If these waves were to reach a detectable level 

they could allow us to put constraints on the interior structure of the star. Unfortu­

nately the field of gravitational wave astronomy is highly challenging. The strongest 

astrophysical signals are predicted to produce signal amplitudes that are so small 

they could easily remain unnoticed amongst detector noise. To have any hope of 

detection we require not only a large signal but also an accurate model of the signal 

we are hoping to detect. Unstable oscillations of neutron stars could grow until the 

resulting gravitational waves reach a detectable level. Therefore investigating the 

instabilities of neutron star modes is of great astrophysical importance. 

The instabilities discussed in this thesis can be identified as either dynamic or 

secular. Consider a star in hydrostatic equilibrium. Any small disturbance, which 

will inevitably be present in a real system, will create an imbalance of pressure and 

gravity resulting in oscillations. For a dynamically stable state these oscillations 

will be short-lived. However, if the system is dynamically unstable the fluctuations 

will grow on a timescale similar to that of the oscillation. Secular instabilities on 

the other hand are driven by some dissipative mechanism and act on a much longer 

time-scale. Of particular importance for superfluid neutron stars is the idea of 

the superfluid two-stream instability discovered by Andersson, Prix & Comer [9] 

which they suggested was a possible trigger mechanism for neutron star glitches 

[8]. It is well known that when two inter-penetrating streams in a plasma have 

a relative motion an instability can be produced, in which a perturbation in one 
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Figure l.8: An illustration of the mechanism behind the Kelvin-Helmholtz insta­
bility which arises as a result of relative motion of two surface waves [36]. The 
sinusoidal disturbance on the interface of the two fluids gives rise to pressure per­
turbations. A t the peaks we observe an increase in fluid velocity and hence a decrease 
in pressure compared to the undisturbed value. In contrast at the dips a decrease in 
velocity and hence increase in pressure is observed. This pressure imbalance leads 
to an inc-rease in the amplitude of the disturbance which in turn creates even larger 
variations in the pressure. As this proceeds we observe a self amplifying perturba­
tion. 

stream produces a spatial bunching of the second [37], [5]. More recently it was 

shown that a similar two-stream instability can be induced in superfluids by the 

relative motion of the normal and superfluid components of the same liquid [9]. 

This instability is analogous to the Kelvin-Helmholtz instability which arises as 

a result of relative motion of two surface waves [36]. If we introduce a sinusoidal 

disturbance on the interface of the two fluids, as shown in Figure 1.8, we notice that 

the dips and peaks will give rise to pressure perturbations. At the peaks we observe 

an increase in fluid velocity and hence a decrease in pressure compared to the 

undisturbed value. In contrast at the dips a decrease in velocity and hence increase 

in pressure is observed. These perturbations result in an increase in the amplitude 

of the disturbance which in turn creates an even larger pressure imbalance. As this 

proceeds we observe a self amplifying perturbation which is the main mechanism 

behind the Kelvin-Helmholtz instability. The difference in the case of the two­

stream instability is that the tvvo fluids are inter-penetrating. It was shown that 

the instability sets in once the relative flow between the two fluids reaches a critical 

value. This result has also been confirmed in a mode calculation on inertial modes of 

non-stratified superfluid stars [68]. These results highlight the importance offurther 

investigations into superfluid systems. In particular they provide motivation for 

developing stability criteria for superfluid stars analogous to the single fluid results 

derived by Friedman and Schutz [39], [40]. This derivation is the focus of much of 

the work in this thesis. 
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Since the effect of these two-stream instabilities has been investigated only for the 

case of inertial modes of non-stratified stars, we investigate general modes in the 

stratified case by limiting our considerations to a rotating superfluid cylinder, using 

cylindrical coordinates (r, cP, z). The advantage over the spherical case lies with the 

fact that in a cylindrical system the problem of linear oscillations can be reduced 

to the solving of a one dimensional system of ordinary differential equations. By 

considering infinite self-gravitating cylinders we can not only ignore variations in 

the z-direction we can also assume that the unperturbed quantities depend solely 

on r. Furthermore if we assume that the azimuthal dependence of the perturbations 

is given by exp( im(p) we arrive at a system of ordinary differential equations which 

depend only on T. It is expected that many of the features that are valid for rotating 

superfluid cylinders will also hold for rotating superfluid stars [81]. More specifically, 

the study of rotating superfluid cylinders may contribute to the understanding of 

oscillations in the equatorial regions of these stars. 

An exciting possibility is experimental tests of these superfluid oscillations and in 

particular the superfluid two-stream instability in, for example, superfluid 4 He. 

The equations used to describe our superfluid neutron stars are analogous to the 

standard Landau model for superfluid helium. l'vIodifications to our equation of 

state and boundary conditions should in principle allow us to investigate the oscil­

lations and stability of superfluid 4 He. Since the experimental setup for rotating 

fluid experiments usually consists of a rotating bucket, i.e. a cylindrical problem, 

our analysis of superfluid neutron stars in terms of superfluid cylinders should be 

relevant for this alternate situation. 

This thesis begins in Chapter 2 where we define a general Newtonian model for 

a rotating, self-gravitating single fluid star and subsequently extend the results 

to describe a two-fluid system. One fluid is composed of the superfluid neutrons 

while the other comprises of the remaining constituents, such as the crust nuclei, 

core protons and crust and core electrons. In Chapter 3 we find solutions to these 

systems for the case of uniformly rotating fluids in cylinders. 

In Chapter 4 both Eulerian and Lagrangian perturbation theory are used to inves­

tigate superfluid neutron stars. Initially the problem of a normal fluid in a rotating 

cylinder was studied using Eulerian perturbation theory. In the same framework 

we develop a system of equations for the superfluid case. In order to investigate the 

stability properties of the two-fluid system a Lagrangian perturbation framework 

is constructed, analogous to the single fluid results developed by Friedman and 

Schutz [39]. Initially we ignore the entrainment effect which is a coupling between 

the two fluids in which the movement of one of the fluids induces a momentum 

in the other. This is a serious omission and hence we make a preliminary step in 
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developing stability criteria for this more complicated system by deriving the La­

grangian perturbation equations. Constructing the corresponding canonical energy 

equation and the associated stability criteria is left for future work. 

In Chapters 5 and 6 we apply the results obtained to investigate the modes of 

oscillation of a rotating cylinder of superfluid, where the two fluids are allowed to 

rotate at different velocities. Initially we consider the entrainment free problem 

where we find numerous different modes of oscillation and show that the T modes 

are secularly unstable, in agreement with previous work on spherical systems. The 

final consideration is that of a system with constant entrainment. We find this 

inclusion drastically complicates the corresponding system. 

Our final Chapter brings together all the key results from this thesis and discusses 

the astrophysical relevance of our investigations. We conclude by considering ex­

tensions and improvements which must be made in order for this superfluid neutron 

star research to proceed. 
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Chapter 2 

Newtonian hydrodynamics 

vVe investig'ate the oscillations and stability of superfluid systems by solving the 

relevant ordinary differential equations. In Appendix A we introduce the numerical 

techniques required to solve these equations. In this Chapter we introduce the rel­

evant Newtonian hydrodynamic equations we hope to solve. To understand how a 

fluid in a rotating cylinder or in a neutron star behaves we must consider the equa­

tions which govern fluid flow. Fluid dynamics is a macroscopic science, concerned 

with properties that can be observed and measured on the laboratory scale. To 

describe a fluid completely requires a function which gives the distribution of the 

fluid velocity iJ = iJ(x, y, z, t) and any two of the fluid's thermodynamic quantities 

such as density and pressure. There are four equations which when combined give 

a complete mathematical description of the fluid. These are the Euler equation, the 

equation of continuity, Poisson's equation and an equation of state. The relevant 

equations for a single fluid and a two-fluid system are discussed in this chapter, 

however, for a detailed description of fluid dynamics and a variational description 

of multi-fluid hydrodynamics see Landau and Lifshitz [49] and Prix [70] respectively. 

2.1 Single fluid equations 

Throughout this thesis an analysis of the single, perfect fluid case is used as a 

prelude to the superfluid problem. This allows a straightforward introduction to 

the relevant formalism which can subsequently be extended to the two-fluid case. 

The Euler equations are the equations of motion of the fluid which, for a single-fluid, 

can be written as, 
. 1 

(at + VJ\lj)Vi + -ViP + ViC!) = 0 
p 

(2.1 ) 

vVhere Vi is the fluid velocity, p the fluid density, P the fluid pressure and C!) the 

gravitational potential. In some circumstances it is more constructive to work in 

terms of the chemical potential, p, rather than the pressure. The reason for this is 

that in the two-fluid case we have a separate velocity and density for each of the tvvo 
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fluid components but the pressure is a variable that depends on contributions from 

both the normal and superfluid parts. Thus by working with the chemical potentials 

we have terms which describe the individual fluid components but which if needed 

can be combined to tell us the pressure. The chemical potential of a thermodynamic 

system is the change in the energy of the system when an additional constituent 

particle is introduced, with the entropy and volume held fixed. If a system contains 

more than one species of particle, there is a separate chemical potential associated 

with each species, defined as the change in energy when the number of particles of 

that species is increased by one. The precise definition is, 

(2.2) 

~Where f-L is the chemical potential, E is the energy, N is the number of particles 

and s and V are the entropy and volume respectively. The chemical potential can 

be related to the pressure as follows, 

(2.3) 

where n is the number density. We make use of equation (2.3) and introduce the 

notation jj = f-L/ mB, where mB is the particle mass, to write the Euler equation in 

terms of the chemical potential, 

(2.4) 

The equation of continuity is the equation which expresses the conservation of 

matter. It can be written as, 

(2.5) 

which in terms of the number density, n = p/mB, becomes 

(2.6) 

Poisson's equations is a mathematical description of the gravitational field, 

(2.7) 

The final equation necessary to describe the single-fluid system is an equation of 

state relating the pressure to the density. For the interior of a neutron star the true 

equation of state is far from indisputable. The many so-called realistic models which 

have been proposed vary considerably, largely due to nuclear physics uncertainties 
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m the interactions of matter at the extreme densities which occur within these 

compact objects. Consequently we chose to describe our system using a simple 

polytropic equation on state. 

(2.8) 

'Where K is a constant and r is the polytropic exponent, such that r = 1 + lin. 

It is important to note that here n refers to the polytropic index and should not 

be confused with the number density. For a neutron star we expect a value of n 

between 1 and 1.5, [16]. 

2.2 Two-fluid hydrodynamics 

An accurate description of the crust and outer core of a neutron star consists of three 

main constituents; neutrons, protons and electrons. However we describe our system 

using a simple two-fluid model which describes a superfluid as a mixture of two fluid 

components, the normal fluid and the superfluid [13], [50], [61], [10], [70]. Each 

fluid has its own velocity v~'(, and number density nx. X = n, p are the constituent 

indices with n representing the superfluid neutrons and p representing the remaining 

constituents (protons, electrons, etc). The justification for this simplified picture is 

as follows. The electrons in a neutron star behave as a normal fluid, however, the 

protons will exist either in nuclei in the crust or as superconducting protons in the 

core. Due to the magnetic field on a very short timescale it has been shown that 

these protons are coupled to the normal electron fluid [1]. vVe therefore consider 

the electrons and protons to be locked together and we label this constituent the 

protons. The superfluid neutron component on the other hand is able to move 

independently due to a lack of viscosity. 

In Section 1. 2 the creation of a lattice of microscopic yortices to allow for rotation 

of superfluids was discussed. Locally the superfluid is constrained to be in a state 

of irrotational flow, however, in order to describe the dynamics of our superfluid 

neutron star we need only consider macroscopic properties. In a typical pulsar it is 

predicted that the density of neutron vortices is 102 - 105cm- 2 [70]. Therefore on 

a macroscopic scale we can average over many vortices and find that the superfluid 

behaves almost as if it were an ordinary fluid. Our model treats the superfluid and 

normal fluid identically as two ordinary fluids which are able to move relative to each 

other, due to the absence of local superfluid viscosity. A further complication is the 

presence of an interaction which exists between the vortex lattice and the normal 

fluid [61], [1], [31]. In general this dissipative effect, known as mutual friction acts 

to bring the two fluids into co-rotation. However, if this interaction is either very 

weak or very strong a stationary description of the star with the two fluids rotating 

at different rates around the same axis is appropriate [69]. In this investigation we 
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assume that on the timescales we are considering the vortex friction is negligible, 

such that the two fluids are free. This assumption allows us to avoid unnecessary 

complications resulting from the inclusion of vortex friction and focus our attention 

on the effect of coupling by entrainment. 

vVe also assume that the electron and proton charge densities are balanced (np = ne) 

allowing us to neglect electrodynamic effects. Furthermore we neglect the presence 

of exotic matter, which is expected to exist within the neutron star inner core, and 

the presence of an elastic crust. 

vVe define the relative velocity of the two fluids as, wrx = vr -vf (w~x V~-v~y) 

where Y i= X. In order to avoid confusion we should stress that repeated constituent 

indices never imply summation, while repeated vector component indices always do. 

Following an identical approach as Prix [70] we introduce a Lagrangian density, A H , 

to describe the Newtonian hydrodynamics of our two fluid system. AH depends on 

the number densities nx and currents n~ = nxv~ such that, 

(2.9) 

The dynamical quantities of our system such as the 'energy', p~, and 'momentum', 

p~y, are defined by the differential of AH , 

giving, 

dAH = L (P: dnx + piY 
dn:y) 

x BAH 
Po =-­

Bnx 

X=n,p 

In this work we consider a hydrodynamic Lagrangian density of the form, 

ni 2 
X E mx---

nx 

(2.10) 

(2.11) 

(2.12) 

where E is the internal action. Prix [70] showed that E must satisfy Galilean 

invariance which implies the velocity dependence of E must be, 

Since we restrict our investigations to isotropic fluids this internal action can only 

be of the form, 

(2.13) 

18 



The first law of thermodynamics can be represented by the total differential of 

E(nx, w~x)' 
dE = L /-Lxdnx + ad(w~x) (2.14) 

X=n,p 

This leads to the definition of the two chemical potentials 

( OE) /-Lx - --
- onx ny,w2 

(2.1.5) 

as well as the entrainment a. The entrainment function describes how the internal 

energy of the system depends on the relative velocity of the two fluids. 

(2.16) 

We therefore find the momentum of our system can be written as, 

(2.17) 

where 

EX = 2alnx (2.18) 

is introduced as a dimensionless entrainment parameter. A flow in one of the 

fluid components will induce a momentum in the other constituent. A fundamental 

consequence of entrainment is that in general the momenta are not aligned with the 

respective fluid velocities. It is only in the case where there is either no entrainment 

or no relative velocity between the two fluids that the familiar result that pf = 

mBW,'( is observed. 

In our superfluid model we ignore ,B-reactions (n ~ p + e + D) between the two 

fluids, as has been done in many previous investigations of oscillations in superfluid 

systems [53] & [68], such that strict conservation of neutrons and protons applies 

and we have the following two continuity equations 

(2.19) 

vVe also find two coupled Euler equations 

(2.20) 

Where fix = ~LX 1mB. These can be derived from the Lagrangian density using a 

convective variational principle, as was done by Prix [70]. vVe emphasise that equa­

tion (2.20) is expressed in terms of the chemical potential rather than the pressure. 
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As discussed earlier we find this constructive in the two fluid case since the pressure 

is a variable that depends on contributions from both the normal fluid and the su­

perfluid where as there exists an individual chemical potential for each constituent. 

The final equation is the standard Poisson equation for the gravitational potential 

<1'>, 

(2.21) 

In this study we assume a stationary and axisymmetric background, with the normal 

fluid and the superfluid rotating around the z-axis at different angular velocities On 

and Dp. Hence we have 

with rpi given by 

i n i 
Vx = HXrp (2.22) 

(2.2.3) 

The system of equations we have constructed to describe our superfluid neutron 

star could equally describe any rotating two-fluid system, e.g. rotating superfluid 

helium. However, in the field of condensed matter physics an alternative formalism 

where the interaction between the two fluids is described in terms of an effective 

mass, rather than entrainment, is often used [92]. A detailed discussion of this 

alternative formalism can be found in Prix et al 2002, [69]. It is important to 

understand the connection between entrainment and effective mass if we are to 

have any hope of applying our work to this alternative scenario. The effective mass 

of a particle is the mass that it seems to carry. For example consider electrons 

and holes in a crystal. Under most circumstances the particles respond to electric 

and magnetic fields almost as if they were free particles in a vacuum, but with 

a different mass. The entrainment and effective mass can be related through the 

following equation, 

2cx = Pp (1 - ::) (2.24) 

·Where m~ is the proton effective mass. Prix et al [69] discuss the proton effective 

mass at neutron star densities and conclude that it can range over values 0.3 ~ 

m~/mB ~ 0.7. 
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Chapter 3 

Equilibrium models of rotating, 

polytropic cylinders 

Having introduced, in Chapter 2, the equations describing the behaviour of single 

and two fluid systems we now consider equilibrium models for uniform rotation in 

self gravitating, polytropic cylinders. Since much of the work intended to be done 

in this project is in a cylindrically symmetric system it is necessary to obtain these 

background solutions. The model we will consider is uniform rotation about the 

z-axis, allowing the possibility that in the two-fluid case the fluids can rotate at 

different speeds. The edge of the cylinder is defined as the point at which the fluid 

densities vanishes. This would be similar to what one would expect for a star. vVe 

begin by considering the single fluid case. 

3.1 A single fluid in a cylinder 

In an infinitely long cylinder in hydrostatic equilibrium, rotating uniformly about 

its axis of symmetry, equation (2.1) becomes, 

(3.1) 

Combining this with the polytropic equation of state, equation (2.8), 

(3.2) 

Integrating this equation directly gives, 

(3.3) 

'Where Po and CPo are the values of the density and gravitational potential along the 
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axis of symmetry. Substituting this expression for cP into Poisson's equation (2.7) 

gives, 

(.3.4) 

In cylindrical coordinates we can express this as, 

-K(n + 1)~~ [r~(pl/n)] + 2[22 = 47TGp 
r dr dr 

(3.5) 

"Where we have used the fact that the density has only a radial dependence, l.e. 

p = p(r). Finally we scale the variables as follows, 

r = aC a= 

1 

[
K(n + 1)p~/n12 

47TGpo 

to obtain the Lane-Emden equation for a rotating cylinder, [66], 

1 d ( de) 
(d( (d( 

The boundary conditions on the axis of symmetry are, 

e(o) = 1 and de(O) = 0 
d( 

and the boundary condition at the free surface, p( ( = (8) = 0, requires that, 

where C =R/a 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

In the two special cases when n = 0 and n = 1 the cylindrical Lane-Emden equation 

is linear and the solutions can be easily obtained, [65]. 

n = 0, 

n = 1, (3.10) 

'Where 10 (() is the zeroth order Bessel function. For all other values of n the equa­

tion must be solved numerically. By reducing the second order Lane-Emden equa­

tion to two first-order differential equations the Runge-Kutta integration method, 

outlined in Appendix A.2, can be used to obtain a numerical solution to our prob­

lem. The two first order equations that need to be integrated are, 
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dy y n W
2 

- = -- -e +-
d( ( 2 

(3.11) 

(3.12) 

Since the point (= 0 is a singular point of equation (3.12), we derive a series expan­

sion for e around ( = 0 and use this expansion to start the numerical integration 

at a small distance from the centre. We find, 

with 

a2 = _~ (1 _ ~2) 

a4 = ;4 (1 _ ~2) 
a6 = -~ (1 - W2) [~+ (n _ 1) (1 _ W2)] 

1152 2 2 2 

(3.13) 

(.3.14) 

(3.15) 

(3.16) 

(3.17) 

The value of ( for which e equals zero for the first time determines the value of (s' 

3.1.1 Physical parameters and the condition for maximum rotation 

A solution to equation (3.7) exists provided the density remains positive (e ;:::: 0) 

and its derivative remains negative (de/d( :::; 0). Therefore at the surface, 

del - <0 de, -
(5 

(3.18) 

The configuration where this derivative is equal to zero determines the maximum 

value of the rotation of the system. At this point the centrifugal force is balanced 

perfectly by the gravitational force and increasing the rotation rate further would 

result in mass shedding. By trial and error we can determine the value of this max­

imum rotation for different values of the polytropic index, n, using our numerical 

integration scheme, see Table 3.1. 

The mass per unit length of our system is given by, 

(3.19) 
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If we substitute for en from the Lane-Emden equation we find, 

(3.20) 

which is related to the mean density, p by, 

(3.21) 

Equating equations (3.20) and (3.21) we obtain an expression for the ratio pol p, 

which is a measure of the mass concentration, 

(3.22) 

This equation shows that maximum rotation is characterised by, 

- =2 ( 
[22 ) 

'!rGp max 

(3.23) 

This limit is independent of the polytropic index n. 

If we assign the parameters in a non-rotating cylinder with an index * the mass per 

unit length of a non-rotating system can be written as, 

(3.24) 

Therefore we can relate the mass of a cylinder in rotation to that of a non-rotating 

cylinder such that, 

M ()2(()2_ 
NI* =:* (s~* ~ (3.25) 

If we substitute for a from equation (3.6) we find, 

!vI ( K) ( Po ) lin 

Al* = f K* PO,* 
(3.26) 

where, 

f = (~) 2 ( PI Po ) 
Cs,* P*/Po,* 

(3.27) 

The factor f is always greater than one and we can obtain it from the numerical 

calculation. Supposing K is kept constant as the rotation varies, such that the 

equation of state does not change, we observe that we can insist the mass of our 

cylinder remains constant as we change the rotation rate provided the value of the 
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central density is altered. This is the conventional approach taken when investi­

gating stars. An alternative to considering spinning up a cylinder of fixed mass, 

is to consider various cylinders with an identical central density such that as the 

rotation rate is increased the mass of the system must be increased accordingly. In 

the two fluid case, we consider a system such that the two fluids share a common 

surface. In this problem keeping both the proton mass and the neutron mass fixed 

whilst simultaneously insisting both densities vanish at a common surface is non 

trivial. Hence in this more complicated problem we take the approach of insisting 

the neutron central density is constant and allow the other parameters to change 

accordingly. It makes sense therefore to proceed in a similar fashion in the single 

fluid case by insisting the central density is fixed. vVe stress that consequently as 

we vary the rotation rate, W, we are not considering the same cylinder. 

3.1.2 Numerical results and discussion 

vVe integrated equations (3.11) and (3.12) numerically for various values of nand 

w. Figures 3.1 and 3.2 show how the density varies with radius for different config­

urations. Increasing the polytropic index results in a considerable increase in mass 

concentration. This can also be observed in Table 3.1 where we show (s, Pol j5 and 

d8((s)/d( for various values of wand n. vVe also highlight the values of maximum 

rotation obtained through the method of trial and error. In agreement with results 

by Robe [72] and Veugelen [83] we discover that increasing the rotation, w, leads to 

an increase in both C and mass concentration. This is due to the centrifugal force, 

which has a larger effect on the outer layers of the cylinder. This gives rise to a 

stronger expansion of the outer layers and thus to an increase in the concentration 

of mass. These results are illustrated clearly in Table 3.1. 
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Figure 3.1: The density of a single fluid in a rotating cylinder against radius for 
various values of the polytropic index, n. Increasing the polytropic index results m 
a considerable increase in mass concentration. 
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Figure 3.2: The density of a single fluid in a rotating cylinder against radius for 
various values of w. We can see that increasing the TOtation leads to an increase of 
the mass concentration. When w2 = 0.57422 the gravitational force at the surface 
is roughly equal to the centrifugal force and we see that for this case dp/ dr "'" 0 at 
the surface. 



Rotation, w2 Surface, (8 Mass concentration, Pol p de( C) 15( 

Cylinder with n = 1 

0 2.41 2.32 -0.52 
0.1 2.51 2.35 -0.47 
0.3 2.78 2.47 -0.35 

0.57422 3.82 3.47 -0.0025 

Cylinder with n = 3 

0 3.57 8.63 -0.21 
0.02 3.69 9.03 -0.19 
0.06 4.01 10.26 -0.14 

0.10947 5.49 18.18 -0.00076 

Cylinder with n = 6 

0 6.73 48.35 -0.07 
0.004 7.04 52.76 -0.06 
0.01 7.75 63.39 -0.04 

0.016422 10.75 121.02 -0.0003 

Table 3.1: Properties of uniformly rotating, self gravitating cylinders for various 
values of the polytropic index) n. The results highlight the effect of increasing the 
rotation of the system on the mass concentration and radius) (8' As w is increased 
the centTifugal force incTeases. Since it has a laTgeT effect on the outer layeTs of 
the cylinder it gives rise to a stronger expansion of the outer layers and thus to an 
increase of the mass concentration. It is also clear from the results that increasing n 
significantly increases the mass concentration. A key result highlighted in the Table 
is the maximum rotation rate at which point the centrifugal force is balanced by the 
gravitational force. These values are emphasised with a grey box. In this Figure w 
is the scaled) dimensionless) rotation rate such that w2 = 0 2 /,rrG Po. 
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3.2 Two fluids in a cylinder 

The problem of a fluid in a rotating cylinder can be extended to the superfluid case 

by adding another fluid. We consider two cases; the situation where the entrainment 

function, 0:, is a constant and the situation where the dimensionless entrainment 

parameter, Ex, is a constant. We find that in both cases the background solutions 

are identical and independent of the entrainment. The two fluids are coupled only 

through the gravitational potential. We begin our analysis by introducing an energy 

functional of the form, 

(.3.28) 

which is simply a sum of two ordinary poly tropes and an entrainment term. This 

equation of state is similar to that used by Prix & Rieutord [71] and Andersson & 

Comer [10] and is effective for investigating the characteristics of a two-fluid system. 

The chemical potentials are defined by equation (2.15). VVe notice that the chemical 

potentials will be different for each of our two cases. When we assume 0: to be 

constant we find, 
aE 

/-Lx = -a = 2,xn x 
nx 

whereas when we consider Ex to be a constant we find, 

and aE 
/-LY = -- = 2,yny 

any 

(3.29) 

(3.30) 

(3.31) 

In this equilibrium state both the fluids are uniformly rotating around the z-axis 

such that 
. . 
2 n 12 

Vx = HXqJ (3.32) 

and since the velocities are stationary, 

(3.33) 

The Euler equations (2.20) therefore become, 

d _ 
-TD~ + dr (<p + /-Lx) = 0 (3.34) 

Integrating gives the Bernoulli equation, 

1 2 2 -
--T Dr+<p+/I,·=Cv 2.x r.·' "' (3.35) 
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Equation (3.35) gives us 2 equations, one with index n and one with index p. By 

eliminating cP we can combine these two equations to give, 

(3.36) 

To obtain an equation for the densities we must substitute for ilx. We initially 

consider the first case, where a is assumed constant. In this situation we find, 

m~ [2rx 1 2 2 2 ] 
Py = - -Px + - (D - D )T + C 

2ry m~ 2 y x 
(3.37) 

The constant of integration C is found by insisting that both the densities vanish 

at a common surface, T = R. Thus 

m~ [2rx 1 2 2 2 2 ] 
py = 2ry m~ Px + '2(Dy - DX)(T - R ) (3.38) 

In the en constant case equation (3.36) gives us 

m~ [2rx ex 2 1 2 2 2 ] py = ~ -2 Px +?w + -2(Dy - DX)T + C 
~ yy mE ~ 

(3.39) 

Implementing the boundary condition leads once again to equation (3.38), giving 

an identical relationship between the two densities in both cases. 

To obtain a difFerential equation for Px we also require Poisson's equation which 

for this equilibrium state can be written as, 

1 d [ dCP] --d T- = 47fG(px + py) 
T T dT 

(3.40) 

By eliminating cP and py we find for both the a constant and ex constant cases, 

22rxd[dPx] ( m~[2rx ,12 22 2]) 2Dx - --2 -d T-
d 

= 47fG Px + - -2 Px T -2(Dy - DX)(T - R ) 
TmE T T 2ry mE 

(3.41) 

To simplify the equations we introduce the scaled variables given in Table 3.2 which 

will be used throughout this thesis. In the Table PnO represents the central density 

of the neutrons and TO is defined such that, 

(3.42) 

VVe stress that this definition, which has been made in order to eliminate ~(n from 

equation (3.41), indicates that T, flx and (j) are not dimensionless variables as one 

might expect. VVe also introduce the following, 
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Physical variable Corresponding scaled variable 

Density, Px P x = ex = P x I PnO 
Angular velocity, Dx Ox = Dx I .j47fGpno 
Radius, r if = rlro 
Chemical potential, /-Lx P,x = /-Lx/(47fGpno r5) 
Gravitational potential, 1> 1> = 1>1 (47fG Pnor5) 
Entrainment function, a - I 2 a = mBa PnOro 
Entrainment parameter, EX - I 2 Ex = mBEX ro 

Table 3.2: Scaled variables 

and 

Kx = IX 
IY 

N - IX x--
In 

Dropping the bars we arrive at the generalised Lane-Emden equation, 

'Which we can simplify to 

(3.43) 

(3.44) 

Before finding a solution to equation (3.44) it is important to look at the boundary 

conditions that apply to the problem. We define a common surface for our system 

as the point at which both densities vanish, i.e Px(R) = O. The other conditions 

apply at the origin. At this point en (0) = 1 and e~ (0) = O. If we solve equation 

(3.44) for en we can straightforwardly obtain ep using a scaled version of equation 

(3.38), 

ep = Kn [en + ~(D~ - D~)(r2 - R2)] (3.45) 

Initially this problem was solved in FORTRAN by integrating the equations numer­

ically, obtaining solutions for ex and 1>. Subsequently Green's functions were used 

to attain an analytic solution. The analytical results are summarised in Appendix 

C. The first step in solving the equations numerically is to write equation (3.44) as 

two coupled first order equations, 

s = e' n (3.46) 
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(3.47) 

·Where, 

(3.48) 

As in the single fluid case we find that r = 0 is a singular point of our equa­

tions. Once again we expand en as a power series around this point, to obtain an 

appropriate starting point for integration, 

1 2 2 2 1 2 2 )4 en = 1 + - (2Dn + QnR - 1- Kn)r - - (2Dn + QnR -1- Kn + Qn r + ... (3.49) 
4 16 

I 1 2 2 1( 2 2 ) 3 ( ) S = en = - (2Dn + QnR - 1 - Kn)r - - 2Dn + QnR - 1 - Kn + Qn r +... 3.50 
2 4 

3.2.1 Physical parameters and the condition for maximum rotation 

A solution to equation (3.44) exists provided both densities remains positive (ex 2: 
0) and their derivatives remain negative (dex / dr ::::; 0). Therefore at the surface, 

dex I < 0 
dr R-

(3.51) 

In the single fluid case the maximum rotation of the system occurred for a value of 

w such that de / d( vanished at the surface. In the superfluid case we are allowing 

the two fluids to rotate at different velocities. Therefore the maximum rotation of a 

particular constituent corresponds to a value of Dx such that dex / dr vanishes at the 

surface. At this point the centrifugal force is balanced perfectly by the gravitational 

force and increasing the rotation rate further would result in mass shedding. 

We define the mass per unit length of the neutrons as lV!n, 

(3.52) 

and the mass per unit length of the protons as, 

(3.53) 
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The conventional approach when investigating rotating stars is to vary the rotation 

rate whilst keeping the mass fixed. In this way we are considering the same system 

at a variety of different rotation rates. In the superfluid problem we have the mass 

of the neutrons and the mass of the protons to consider. In equations (3.52) and 

(3.53) for a certain choice of Dn and Dp we are free to specify the parameters To, 

PnO and Kn· Therefore as we alter the rotation rates we can in principle keep the 

masses fixed by an appropriate choice of values for these quantities. In the single 

fluid case we found that we could straightforwardly assign the central density at 

each value of D to ensure that the mass of the system stayed the same. In this more 

complicated problem we must firstly insist that the ratio of neutrons to protons 

remains constant at which point we can specify PnO to keep the masses fixed. The 

total proton fraction, !vIp / ivIn , can be written as, 

(3.54) 

Ensuring this remams fixed as we vary the rotation rates is in principle possi­

ble. Since the radius R is determined numerically through integration of the Lane­

Emden equation, preserving the total proton fraction requires numerically solving 

equation (3.54) as an eigenvalue problem for Kn. Due to the non-trivial nature of 

this procedure we choose instead to investigate the effect of rotation whilst keep­

ing Kn constant. As a consequence we find that the total proton fraction changes 

with Dn and Dp. If we increase Dn whilst keeping Dp constant we observe that the 

neutrons will tend to spread out due to the increased centrifugal force. To ensure 

that the protons and neutrons continue to share a common surface an increase in 

the total proton fraction is inevitable. It is important to stress therefore that in our 

analysis we are not considering' the same system at different rates of rotation. 

In the single fluid case we used the ratio Po/p, as a measure of the mass concen­

tration. In this two fluid case it is interesting to look at the mass concentration of 

each individual constituent, i.e. PnO/Pn and ppo/pp. 

PnO 

Pn 

Similarly for the protons 

33 

(3.55) 

(3.56) 



In analogy with equation (3.19) the total mass per unit length in this two fluid 

system can be written as, 

M 

We can relate this to the mean density using equation (3.21) giving, 

iJ = 2 [~ den I + D~] 
R dr R 

Therefore maximum rotation of the neutrons occurs at a point such that, 

1 

2 

(3.57) 

(3.58) 

(3.59) 

If we take into account the scaling used we observe that this is identical to equation 

(3.23), the limit for maximum rotation in the single fluid problem. This makes 

sense since we are balancing the gravitational force, which depends on the total 

mass of the system, to the centrifugal force, which depends on the rotation rate at 

the surface. However, in our analysis we are not considering the same system at 

different rates of rotation and it is not therefore constructive to investigate these 

values numerically. 

3.2.2 Results and discussion 

Equations (3.46) and (3.47) were integrated numerically to calculate px(r) for spec­

ified values of Dx and Kx. \lVe look initially at the co-rotating case, shown in 

Fig'ures 3.3 and 3.4. We observe that the proton fraction remains constant for all 

r, i.e. the cylinder is non-stratified. As we increase the rate of rotation the radius 

is enlarged and the mass concentration intensified. This is a result of the increase 

in the centrifugal force as the rotation rate increases. Since the effect is greatest on 

the outer layers a larger expansion near the surface and hence an increase in the 

mass concentration is observed. These results are emphasised in Table 3.3. Figure 

3.4 demonstrates the effect of varying Kn which we can recall is In/lP from the two 

fl uid equation of state. As Kn is decreased the proton fraction is also decreased. In 

the co-rotating case we can see that the proton fraction, xp = ppl Pn = Kn. As one 

would expect the total density distribution, p(r) = Pn(r) + pp(r), in this co-rotating 

case is identical to the density distribution in the single fluid case. 

Introducing a relative rotation between the bvo fluids leads to stratification, see 

Figure 3.5. The proton fraction no longer remains constant throughout the cylinder. 
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Figure 3.3: Graph of density against radius for two co-rotating fluids in a cylinder 
illustrating the effect of varying the rotation rates) nn and np. The neutron and 
proton densities in this configuration are identical since Kn = 1. As we increase 
the rate of rotation the radius is enlarged and the mass concentration intensified. 
This is a result of the increase in the centrifugal force as the rotation rate increases. 
These results are emphasised in Table 3.3. 

We take a similar approach as Prix, Comer and Andersson [68] and choose to use 

the proton angular velocity np as the reference rotation rate. The motivation for 

this choice is that observationally deduced rotation rates obtained from pulsars 

are believed to correlate with the proton rotation rate. The rotation rate of the 

neutrons on the other hand is unfortunately not directly observable. We thus define 

the relative rotation rate n as 

(3.60) 

From Figure 3.5 we confirm that increasing the rotation rate of the neutrons, whilst 

keeping np and Kn fixed results in an increase in the total proton fraction . Table 

3.3 reveals that at co-rotation, with Kn = 0.5, Mp/ Mn = 0.5, but as we increase 

the neutron rotation rate this value increases to 0.57. Similarly if we decrease the 

neutron rotation rate the proton fraction is observed to decrease accordingly. This 

is a consequence of our decision to keep Kn constant as we alter the rotation rates 
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Figure 3.4: Graph of density against radius for two co-rotating fluids in a cylinder 
illustrating the effect of varying Kn. In this co-rotating case the proton fraction, 
X p = pp/ Pn = K n, remains constant throughout the cylinder. 

yet still insist that the neutrons and protons share a common surface. Another 

effect of introducing a relative rotation, apparent from Table 3.3 , is that the mass 

concentration of the fluid which is moving faster increases while that of the slower 

moving fluid decreases. If we increase nn the centrifugal force on the neutrons 

increases. Since it has a larger effect on the outer layers it gives rise to a stronger 

expansion near the surface and hence an increase in mass concentration. However, 

the reverse is true for the protons which continue to rotate at the same velocity. 

The increase in neutron rotation rate leads to an increased radius R, see Table 

3.3. Therefore at the surface the centrifugal force on the protons is decreased and 

a corresponding decrease in proton mass concentration is observed. These results 

highlight the fact that we are not considering the same system at different rotation 

rates and it is important to keep this in mind during our mode analysis in Sections 

5 and 6. 

In neutron stars it is estimated that about 10% of the mass is found in the protons 

and the remaining 90% results from the superfluid neutrons. It is also predicted, 

from observations of large Vela glitches, that the maximum relative rotation of the 

neutrons and protons is roughly R rv 10-4 [59]. We can reproduce this situation 

by selecting appropriate values of K n , nn and np , this can be seen in Figure 3.7. It 
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Figure 3.5: Graph of density against radius for two fluids in a cylinder, illustrating 
the effect of introducing a neutron and proton relative rotation. We observe that 
relative rotation leads to a stratification of the two fluids and a change in the total 
proton fraction (this is emphasised in Table 3.3). This is a consequence of our 
decision to keep Kn constant as we alter the rotation rates yet still insist that the 
neutrons and protons share a common surface. Another effect of introducing a 
relative rotation, is that the mass concentration of the fluid which is moving faster 
increases while that of the slower moving fluid decreases. This is due to the increase 
in centrifugal force on the faster fluid and a corresponding decrease on the slower 
fluid. 

should be pointed out that although we are trying to make the data as similar as 

possible to actual neutron stars there are still many approximations being made and 

thus we do not expect to achieve any results that we could compare to any observable 

physical quantities . For instance we are considering cylinders and assuming that 

the density of both constituents drops to zero at the same point . In a real neutron 

star one would expect an approximately spherical configuration and a neutron and 

proton composition more similar to that shown in Figure 3.6, where the protons 

and electrons extend further than the neutrons mimicking the configuration in the 

neutron star crust. Nonetheless our model should provide a sufficiently complex 

background configuration to allow us to meaningfully investigate the oscillations of 

a superfiuid system. 
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Figure 3.6: A schematic illustration of a more realistic neutron star configuration, 
where the protons and electrons extend further than the neutrons. 
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Figure 3.7: A graph of density against radius for a typical neutron star mass 
ratio and relative rotation. The relative rotation leads to stratification of the fluids. 
However, since R is small the effect is minimal. 
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Properties of superfluid cylinders 

Surface, R PnO/ Pn ppo/ Pp Mp/Mn 

(a) Co-rotating cylinder with Kn = 1 

D = 0 1.71 2.32 2.32 1 
D = 0.25 2.30 2.77 2.77 1 

(b) Co-rotating cylinder with Dn = Dp = 0.1 

Kn = 0.3 2.45 2.48 2.48 0.3 
Kn = 0.1 2.76 2.53 2.5.3 0.1 

(c) Cylinder with Kn = 0.5, Dp = 0.05 

R=O 2.08 2.37 2.37 0.5 
R= 2 2.26 2.52 2.00 0.57 
R= -1 2.00 2.33 2.57 0.47 

(d) Cylinder with typical neutron star configuration, R rv 10-4 

2.76 2.5310 2.5.312 0.1 

Table 3.3: Properties of uniformly rotating, self gravitating two fluid cylinders 
for various values of Dn, Dp and Kn. For the co-rotating cylinders in (a) and (b) 
increasing the rotation rate results in an increase in the radius R and the mass 
concentration. This is due to an increase in the centrifugal force which has a larger 
effect on the outer layers of the cylinder giving rise to a stronger expansion of the 
outer layers and thus to an increase in the mass concentmtion. We also observe 
from (b) that varying K n results in a corresponding change in the total proton fmc­
tion. The results in (c) highlight the effects of -introducing a relative rotation. We 
confirm that 'increasing the rotation mte of the neutrons, whilst keeping Dp and Kn 
fixed results in an increase in the total proton fraction. Another effect of introduc­
ing a relative rotation is that the mass concentmtion of the fluid which is moving 
faster increases while that of the slower moving fluid decreases. In (d) we illustrate 
the results for a cylinder with a typical neutron star proton fmction and relative 
rotation. 
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Chapter 4 

Linearised perturbation theory 

In Chapter 3 we obtained solutions for single and two fluid uniformly rotating, poly­

tropic cylinders. vVe now hope to investigate what happens as we move away from 

this equilibrium configuration. Superimposing small perturbations, representing 

weak disturbances, upon an otherwise unperturbed system is the basis of perturba­

tion theory. By assuming the disturbances are sufficiently small we can neglect any 

terms which are non-linear in the perturbation resulting in equations describing the 

linear oscillations of our system. Solving these equations as an eigenvalue problem 

gives us the normal mode solutions. 

4.1 Eulerian and Lagrangian perturbations 

Two types of description can be used to analyse the oscillations of a system about 

a known state of equilibrium. Either we specify disturbances noted by an external 

observer who, at every instant t, views a given volume element at a fixed location 

in space, or we describe the fluctuations within a given mass element which is 

followed along its path. These are named Eulerian and Lagrangian perturbations 

respectively. These descriptions can be ·written mathematically in the following 

way. vVe define Q(x, t) and Qo(x, t) to be the values of a physical quantity in the 

perturbed and unperturbed flow. If {(x, t) represents the perturbation the Eulerian 

(0) and Lagrangian (6) change in the physical quantity Q can be written, 

oQ = Q(x, t) - Qo(x, t) ( 4.1) 

6Q = Q(x + {(x, t), t) - Qo(x, t) ( 4.2) 

These two different types of perturbation are related through the following relation. 

( 4.3) 
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Where £~ represents the Lie derivative. Lie differentiation involves comparing a 

tensor, Tab(x') which is already at a point Q with the tensor T,ab(x') which has 

been dragged along the curve from point P to point Q. This is shown in Figure 4.1, 

'Dragged-along tensor' at Q 

'Tensor' at P i0 'Tensor' at Q 

a 
X (Q) 

Figure 4.1: A schematic diagram illustrating how the Lie derivative compares two 
tensors at the point Q. 

For a scalar f the Lie derivative is defined as, 

( 4.4) 

For contravariant vector fields Vi, 

(4.5) 

For covariant vector fields Vi, 

(4.6) 

In this section the general Eulerian perturbation equations for a single and a two 

fluid entrainment free system are derived. To study the oscillations and stability of 

the infinite, self gravitating, uniformly rotating cylinder introduced in Section 2 we 

subsequently express these equations in cylindrical co-ordinates and for the single 

fluid case investigate the normal modes. 

4.2 Eulerian perturbation equations for a single fluid 

vVe begin by deriving the Eulerian perturbation equations for a single fluid. It is 

convenient in this case to work in terms of perturbations to the density, 5 p, and 

the radial part of the displacement vector ~r. This is the conventional approach 

which has been used in a vast range of studies of single fluid systems [14],[71], and 

allows for a straightforward comparison to previous work on linear oscillations in 

cylinders, [81], [82]. 

A displacement vector, ~i' can be defined to describe how the perturbation affects 

the fluid. This correspond to a change in fluid velocity, 
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(4.7) 

Since the background configuration is stationary and axisymmetric we can separate 

the displacement vector into a radial part and an azimuthal part. The azimuthal 

function should be proportional to eim¢, with m an integer. If we also assume a 

harmonic time dependence we can write the displacement vector as, 

(4.8) 

vVe have also made the assumption that there is no variation in the z-direction 

and hence the displacement vector has T' and rP components only. Equations which 

govern how the perturbed fluid behaves can be obtained by substituting Vi --7 

Vi + b'Ui, p --7 P + bp , P --7 P + b p and cI> --7 cI> + bcI> in the equations which describe 

the fluid flow. vVhere bp , bp and bcI> represent the Eulerian perturbations in the 

density, pressure and gravitational potential. It is convenient in this cylindrically 

symmetric case to work in a rotating frame of reference, such that the background 

velocity of the fluid is zero. We define, D, as the rotation rate of this frame such 

that in cylindrical coordinates, 

(4.9) 

In this frame the Euler equations can be written as: 

( 4.10) 

vVhere the centrifugal term can be rewritten as, 

(4.11) 

By perturbing and linearising equation (4.10) we obtain the following differential 

equation, 
---> ---> ---> bp 1 

Otbv + 2D x 5v = --;;"vp - - \l5p - \l5cI> 
p P 

( 4.12) 

Where we have made use of the fact that the background velocity in the rotating 

frame is zero. Assuming condition (4.8) leads to, 

---> ---> ---> 5p 1 
iw5v + 2D x 5v = 2\lP - -\l5p - \l5cI> 

p p 
(4.13) 

or using indicial notation, 

. k 5p· 1· . 
iw5v + ?EI.DJ 5v" - -gJ\lp + -gJ\l5p + gJ\l5cI> = 0 

~ - ~J '" ') ! J ~ J ! J 
p- P 

( 4.14) 
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We must also represent the conservation of mass of our system. Introducing a per­

turbation to equation (2.5) we obtain the following linearised continuity equation, 

(4.15) 

Since the background velocity is zero in the rotating frame and the density variation 

can be written as op = opei(mr/J+wt) the continuity equation becomes, 

( 4.16) 

'Which can be simplified to, 

( 4.17) 

By considering perturbations to equation (2.7), the equation for the gravitational 

field, we arrive at the following perturbed Poisson equation, 

( 4.18) 

The final consideration required is to prescribe an equation of state for the pertur­

bation. Since, on the short timescale associated with the perturbation, different 

physical processes may dominate we can not automatically assume that this equa­

tion of state is identical to that of our background configuration. The Lagrangian 

perturbations of pressure and density can be related by, 

6.p = f1 6.p 
P P 

( 4.19) 

Where f 1 is the adiabatic index. Which gives the following equation for the Eulerian 

density and pressure, 

IIi f1 f1 i 
-op + -~ ViP = -op + -~ ViP 
P P P P 

(4.20) 

Since the background density and pressure vary only in r this equation becomes, 

op 

(4.21 ) 
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bp pN2 

bP=-+-~r 
c~ g 

( 4.22) 

Where g is the effective gravity, 

d<I> 2 1 dp 
g = - - rD = ---

dr 0 p dr 
(4.23) 

Cs is the adiabatic sound speed, and N 2 is the square of the Brunt-Vaisala frequency, 

given by 

N2 = _ g (~ dp + fL) 
p dr c~ 

( 4.24) 

If this frequency is zero we can say that the system is isentropic and the perturbation 

obeys the same equation of state as the background fluid. We now have a set of 

equations describing the Eulerian perturbations for a general single fluid system. 

To investigate the oscillations and stability of a rotating cylinder we express the 

perturbed equations in cylindrical coordinates. 

4.3 Eulerian perturbations in a cylinder 

Appendix B summarises the basic properties of a cylindrical coordinate system 

and introduces the various operators using this framework. The linearised Euler 

equation gives us the following two equations, 

2 . . bp dp 1 dbp db <I> 
-w ~r - 2zwDo~q\ = -- - -- - --

p2 dr p dr dr 
( 4.25) 

and 
2. imbp imb<I> 

-w ~q\ + 2zwDo~r = - -- - --
pr r 

( 4.26) 

In cylindrical coordinates the divergence and Laplacian are given by equations 

(B.ll) and (B.14) respectively. Thus the continuity equation becomes, 

op p a imp 
bp + ~r or + -;: or (r~r) + -r-~q\ = 0 ( 4.27) 

and the perturbed Poisson equation becomes 

( 4.28) 

The Euler equations, the continuity equation and the equation of state can now be 

combined to give the following equations for the normal modes. 
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2 d [2mno g] [m2 2 r] 5p m
2 

W -(r~r) =W --+W- r~r+ - -W - -+-5<1> 
dr r c; r c; p r 

( 4.29) 

d (5P) [ 2 2J [N2 2nom]5P 2nOm d5<1> - - = W W - 4nO - N ~r + w- - -- - - --5<1> - - (4.30) 
dT p 9 r P r dr 

Combined with equation (4.28) these two equations fully describe the perturbed 

system. 

It is appropriate to use the Cowling approximation, which constitutes ignoring the 

perturbation to the gravitational potential, to greatly simplify our investigations, 

[32]. It has been shown that for perfect fluid cylinders making this approximation 

introduces only a very small error for low frequency modes, [81]. This can be 

understood in the following way. Consider the integral of the Poisson equation, 

5<1> = -eJ 5p(r') dr' 
IT - r'l 

( 4.31) 

For some modes the contributions 5 p(r') from different places within the cylinder 

tend to cancel each other out leaving a negligible net effect. Thus it is reasonable 

to drop the perturbation to the gravitational potential from our analysis. 

The normal mode solutions for a rotating self-gravitating cylinder were found using 

a spectral linear eigenvalue solver package, called LSB, developed by L. Valdettaro 

and M. Rieutord. The LSB program is a FORTRAN code which evaluates ap­

proximate eigenvalues and eigenvectors for boundary value problems using spectral 

methods. The program takes an equation or a system of equations, which must 

be written in a specific data file and then calculates the eigenvalues subject to the 

specified boundary conditions. 

Before looking at the eigenfunctions of the normal modes it is of interest to know the 

regions in which the different waves can propagate. This is done by local analysis 

with the aid of propagation diagrams. Since we are neglecting perturbations to the 

gravitational potential we can ignore the Poisson equation and the problem reduces 

to that of two equations, 

2 d. [ 2mno g] [m2 2 r] 5p w -(r~r)=w --+w- r~T+ --w - -
dr T c2 r c2 p s s 

( 4.32) 

45 



d (6P) [ 2 2 2J [N2 200m]6P - - =W W -40 -N ~T+ w---- -
dr P 0 9 r P 

( 4.33) 

The method of local analysis is performed by assuming that the perturbed displace­

ment and pressure can be written as plane waves, 

(4.34) 

(4.35) 

Where k is the wavenumber and ~Tk and 6Pk are constants. Substituting these into 

equation (4.32) gives, 

( 4.36) 

A similar substitution into equation (4.33) leads to, 

( 4.37) 

Equation (4.37) can then be used to eliminate 6Pk from equation (4.36) giving the 

following dispersion relation for W (k), 

W k -iw -- k+w --+w-3 2 3 (1 dP) [( 2mOo g) 
P dr r c; 

( 2 2 2) (m2 2 1 )] + w - 400 - N ~ - w c~ = 0 ( 4.38) 

Using the quadratic formula, 

1 . 3 (1 dP) 1 k=-zw -- ±-
2w6 P dr 2w 6 

1 dp -w6 ( __ )2 - 4w3C 
P dr 

( 4.39) 

where, 

m" [0· 2 22 m 2 1 
( 

2 n 1\T2 ) (2) ] -r- - Wg + (w - 400 - N) ~ - w c~ 
(4.400) 
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The condition for propagation is that k has a real part for real w. Therefore we 

require the term in the square root to be greater than zero. This gives the following 

criterion for propagation, 

4 1 2[m2 1(ldP)2 1 2] 2mDo(N2 g) m
2

2 ( w--w -+- -- +-4,0 +w-- ---- +-N >04.41) 
c2 1'2 4 P d1' c2 0 l' 9 c2 1'2 s s s 

Solving this inequality for every value of l' determines the regions of propagation in 

an (1', w) diagram. The propagation diagram of a non-rotating (Do = 0), isentropic 

(N2 = 0) cylinder is shown in Figure 4.2. In the non-rotating case the regions of 

propagation are symmetric with respect to the line w = O. There are two regions 

of propagation observed in this case known as A-regions. They are both regions of 

acoustic wave propagation where pressure is the main restoring force. The regions 

where w > 0 are given the index (b) since the waves propagate in the backward 

direction with respect to the pattern speed of the mode. Similarly the regions where 

w < 0 are labelled (f) since these waves propagate in the forward direction. In this 

non-rotating, isentropic case we can write equation (4.41) as 

{ [

? (d ) 2] } ? 2 1 m- IIp 
w- w - - - + - -- > 0 c; 1'2 4 P d1' 

( 4.42) 

and it is obvious why we observe two distinct regions. 

Figure 4.3 shows the regions of propagation for a uniformly rotating but still isen­

tropic cylinder. The rotation has given rise to an additional region of propagation 

known as the R-region which is defined as a region of propagation of rotational 

waves. It is clear from equation (4.41) why this occurs. Non-zero Do results in 

the inclusion of an additional term involving w in the inequality. vVe can therefore 

factor out wand the three regions result from solving the remaining cubic, 

{ [

2 .) 1 } 31m 1 1 dp - 1 ') 2mDog 
w w - - w - + - (--) + -4,0- - > 0 

c2 1'2 4 P d1' c2 0 1'c2 
s s s 

( 4.43) 

As well as showing the regions of propagation Figures 4.2 and 4.3 show some of 

the mode eigenfrequencies and the zeros of the associated radial displacement. The 

eigenfunctions are oscillatory in the propagation regions. All zeros of the p modes 

lie within the A region and all zeros of the l' modes lie within the R-region. The 

f modes are surface modes, which do not originate from propagating body waves 
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Figure 4.2: The propagation diagram of a non-rotating isentropic cylinder. There 
are two regions of propagation observed in this case which are symmetric with respect 
to the line w = O. These are known as A-regions. The regions where w > 0 are 
given the index (b) since the waves propagate in the backward direction. Similarly 
the regions where w < 0 are labelled (f) since these waves propagate in the forward 
direction. Also shown are the mode eigenfrequencies and the zeros of the associated 
radial displacement (.). All zeros of the p modes lie within the A region. The f 
modes are surface modes} which do not originate from propagating body waves and 
thus lie outside the regions of propagation. In this example we consider n = 3, 
"( = 4/3, m = 2, no = O. 

and thus lie outside the regions of propagation. 

In the non-isentropic, non-rotating case when N =1= 0 and no = 0 condition (4.41) 

reduces to 

w - -w -+- -- +-N >0 4
1 2[m2 1 (ldP)2] m

2
2 

c~ r2 4 P dr r2 
( 4.44) 

and we observe four distinct regions of propagation. These are the two A-regions 

and additional regions called G-regions, which are regions of low-frequency gravity 

waves. For non-isentropic uniformly rotating cylinders we once again observe four 

regions of propagation. No distinct r modes or g modes exist in this case [81J . We 

can consider the non-acoustic regions as either a region of g modes modified by 

rotation or a region of r modes modified by non-isentropy. 
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Figure 4.3: The propagation diagram for a uniformly rotating but still isentropic 
cylinder. The rotation has given rise to an additional region of propagation known 
as the R-region which is defined as a region of propagation of rotational waves. 
We also observe that the acoustic regions are no longer symmetric with respect 
to w = O. The Figure illustrates the mode eigenfrequencies and the zeros of the 
associated radial displacement (e). In this example we consider n = 3, I = 4/3, 
m = 2, no = 0.1. 

As well as calculating the eigenfrequencies LSB can also find eigenfunctions. Figure 

4.4 shows the influence of rotation on the f modes. We can see that as the angular 

velocity of the cylinder is increased the modes become less important in the central 

regions and relatively more important near the surface. The graphs are normalised 

such that r5u r is unity at r / R = 1, where R is the radius of the cylinder. Figure 

4.5 shows the first three modes for a uniformly rotating cylinder. The f mode has 

no nodes, the PI mode has one and the P2 mode has two . 

The results from this single fluid analysis are confirmed by previous research by 

Veugelen [81 J where an identical approach was taken to investigate the effect of 

differential rotation on self-gravitating cylinders. The focus of this work is the 

effect of introducing an additional fluid . We now look at the Eulerian perturbation 

equations for this situation. 
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Figure 4.4: The fundamental mode for a single fluid in a uniformly rotating 
cylinder, considering various values of the angular velocity, 0 0 . As the rotation 
rate is increased the modes become less significant in the central regions and more 
significant in the outer layers. The eigenfunctions are normalised such that rOur is 
unity at r / R = 1. In this example n = 3, 'Y = 4/3 and m = 2. 
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Figure 4.5: The lowest 3 modes of oscillation for a single fluid in a uniformly 
rotating cylinder. The f mode has no nodes, the Pi mode has one and the P2 mode 
has three . The eigenfunctions are normalised such that r6u r is unity at r / R = 1. 
In this example n = 3, , = 4/3, m = 2 and 0 0 = 0.1. 
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4.4 Eulerian perturbation equations for a two fluid system 

We now look at Eulerian perturbations in the two-fluid case. Since we now have 

the possibility of two distinct rotation rates, that of the protons and that of the 

superfluid neutrons, we no longer find it constructive to work in a rotating frame. 

The system is described by equations (2.19), (2.20) and (2.21). We begin our 

analysis with the case of vanishing entrainment, i.e. ex = O. A perturbation can be 

applied to this system such that, V~y ----+ v~ + oVx, 1:> -t 1:> + 01:>, /-Lx ----+ /-Lx + O/-Lx, 

and nx ----+ nx + onx giving the following linearised Euler equations, 

OOV~y j \7 "i "j \7 i ij\7 (,,;r.. "-) - 0 
~+VXVjuvx+UVXVjVx+g VjU,±,+u/-Lx- (4.45) 

the following perturbed continuity equations, 

oonx \7 ( "i) (" i ) at + Vi nxuvx + Vi unxvx = 0 ( 4.46) 

and the perturbed Poisson equation, 

(4.47) 

Since we have assumed ex = 0 the perturbed equations are only coupled gravitation­

ally through 01:> and chemically through the equation of state. We can investigate 

this chemical coupling by looking at 0 iLx. In terms of onx and ony, 

_ (oiLx) (OiLx) O/-Lx = on onx + on ony 
x ny,w2 Y nx,w2 

( 4.48) 

If we assume the perturbation obeys the same equation of state as the background 

configuration described in Section 3.2, where we use a simple sum of two ordinary 

poly tropes, we observe that (~~x) = 0 giving, 
y nx,w2 

,,_ (a iLx ) " 
U /-Lx = -a unx 

nx ny,w2 

( 4.49) 

If we also assume the Cowling approximation, i.e. ignore variations to the gravita­

tional potential, we find the perturbation equations are no longer coupled. In this 

case there will be completely independent oscillation modes for each fluid, which 

will be identical to those in the single fluid case. 

Using results from Appendix B we express the two fluid perturbation equations in 

cy lindrical coordinates. Equation (4.45), the linearised perturbed Euler equations, 

lead to, 
. -:( 2Dx x a _ 
~(w + mDx)ov~ - --C)V¢ + -a (O~LX) = 0 

T T 
( 4.50) 

52 



and 
.( ) x Dx x im(r_) ~ w + mDx fJv rP + 2-fJvr + - uJ-bx = 0 

r r 
(4.51) 

Equation (6.87), the continuity equation in the perturbed system, becomes 

. nx 0 x onx x imnx 
~(w + mDx )fJnx + -!)(rfJvr ) + ~fJvr + --(fJvrP)x = 0 

r ur ur r 
( 4.52) 

Combining these equations to eliminate fJnx gives us the following four first order 

differential equations in fJv;Y and fJv;. 

( 4.54) 

It would be possible to investigate the two-fluid equations using numerical inte­

gration in the same way the single fluid equations were analysed. However, we 

instead chose to investigate the two-fluid equations in a Lagrangian perturbation 

framework, allowing us to investigate the stability of the system. The equations 

describing the two fluid system with non-vanishing entrainment can be derived in 

an identical way. This is discussed further in Section 6.8 to highlight the differences 

between an Eulerian and a Lagrangian approach in this more complicated case. 
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4.5 Lagrangian perturbation theory 

The strong advantage that Lagrangian perturbation theory offers over the corre­

sponding Eulerian description lies in its capability to determine whether or not a 

system is stable. Friedman and Schutz [39], [40], developed a Lagrangian perturba­

tion framework describing rotating Newtonian stars. In doing so they were able to 

construct appropriate stability criteria and show that all rotating, self-gravitating 

perfect fluids are unstable or marginally unstable to gravitational radiation. The 

aim of this section is to extend the work of Friedman and Schutz to create a system 

of equations describing a superfluid neutron star in terms of Lagrangian perturba­

tions. Before investigating the problem of a rotating superfluid it is useful to look 

at the case of a single fluid. This allows us to develop a formalism in the simplest 

case which can subsequently be extended to the more advanced two-fluid system. 

Although the single fluid problem has been investigated previously we will redo the 

calculation as we prefer to work with the number density n, the fluid velocity Vi, 

and the chemical potential M rather than the pressure p. 

This system can be described by the single fluid Euler equations (2.4), a continuity 

equation (2.6) and an equation for the gravitational potential (2.7). The Lagrangian 

change in the fluid velocity follows from 

( 4.55) 

where ~i is the Lagrangian displacement. Given this, and 

( 4.56) 

we have 

( 4.57) 

It is also useful to note that the Eulerian variations are given by 

( 4.58) 

and 

(4.59) 

(since Vi = 9ijV
j and V\9ij = 0). 

Applying a perturbation to this system the continuity equation becomes, 

( 4.60) 
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and consequently the gravitational potential equation becomes, 

(4.61) 

Perturbing the Euler equations gives, 

( 4.62) 

Since the Lagrangian variation commutes with the Lie derivative such that 6.(Ot + 
£v)Vi = (Ot + £v)6.Vi it is convenient to write, 

.1 2 ----'- vJ \7 v - £ V· - _\7 V 
----r vJ~- v~ 2v~ 

Thus the perturbed equation of motion becomes, 

( 4.63) 

( 4.64) 

(4.65) 

( 4.66) 

Each term in this equation can be investigated individually enabling us to write 

this equation in terms of the displacement vector ~i' For the first term we obtain, 

Ot[Ot~i + VjYi~j + VjYjc;i] + VjYj6.Vi + 6.VjYiVj 
2 . . . . 

0t ~i + OtVJYi~j + VJYiOt~j + OtVJYj~i + vJYjOtc;i 
. k k . + vJYj[Ot~i + V Yi~k + V Yk~i] + 6.VjYiVJ 
2 . . . k 

0t~i + 2vJYjOt~i + VJYiOt~j + vJYj(V Yi~k) 
. 2 .. . 

+ (vJYj) ~i + 6.VjYiVJ + OtVJYi~j + OtVJYj~i (4.67) 

Since Otvj = 0 this becomes, 

( 4.68) 

vVe now need to look at the perturbations of the gravitational and chemical poten­

tials. 
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( 4.69) 

Therefore 

Vi6<I> Vi6<I> + Vi (eVj<I» 

Vi6<I> + (Vi~j)(Vj<I» + ~jViVj<I> (4.70) 

The equilibrium equation gives, 

(4.71 ) 

Consequently 

Finally the Lagrangian perturbation of the chemical potential can be written as, 

(4.73) 

Therefore 

( 4.74) 

Finally the last term in the perturbed Euler equation can be written as, 

(4.75) 

(4.76) 
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Substituting these results into the perturbed Euler equations, 

2 . . . k . 2 . 
at ~i + 2vJ"\lJat~i + vJ\liat~j + vJ"\lj(V \li~k) + (vJ\lj) ~i + 6.Vj'1iVJ 

. . . . k 
vJ['1iat~jl- 6.Vj['1i(VJ)] + '1iQ<I> + e'1i'1j<I> - ('1ie)(V '1kVj + '1jp,) 

- '1i [~~\lj(ne)] + '1i~j'1jP, + ~j'1i'1jP, = 0 (4.77) 

Upon cancellation we obtain, 

(4.78) 

This equation can be written in the following, simplified form, 

(4.79) 

'Where 

(4.80) 

(4.81 ) 

The equation for the perturbed gravitational potential, equation (4.61), can be 

solved using Green's functions. The equation is of the form, 

L¢(i) = f(i) (4.83) 

where L is, in our case, the Laplacian operator, and ¢(i) is the solution. The 

solution to this problem is, 

¢(i) = J G(i, X')f(X')d3 X' (4.84) 

vVhen the operator is '12 the Green's function is, 

GCT,X') = } I~ 1 ~'I 
'±7f x - X 

(4.85) 
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Applying this to the perturbed equation for the gravitational potential gives, 

4.5.1 Trivial displacements 

In Friedman and Schutz [39] the idea of trivial displacements was introduced re­

vealing that a physical perturbation does not uniquely determines a displacement 

E,i. vVe can describe the Eulerian perturbations in terms of E,i such that, 

(4.87) 

( 4.88) 

( 4.89) 

( 4.90) 

where equation (4.88) describes the entropy for an adiabatic perturbation. If we 

look closely at these four equations we can see that there are values of E,i for which 

the corresponding Eulerian changes in p, p, vi and s all vanish. If we call this trivial 

displacement T)i then when T)i satisfies the following three equations, 

( 4.91) 

( 4.92) 

( 4.93) 

E,i and ti correspond to the same physical perturbation, where we have defined ti 

as, 
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~i = ~i + r/ ( 4.94) 

The general solution, taken from Friedman and Schutz [39J is, 

( 4.95) 

Where f is a scalar which must be constant along fluid trajectories, 

( 4.96) 

These tTivial displacements are problematic in the sense that they affect the value 

of the canonical energy, Ee , which we introduce in Section 4.5.4. Since we intend 

to use Ec to test the stability of our system it is important to ensure the data is 

not contaminated by these tTivial displacements. In Section 4.6.7 we consider the 

implications for the constructed stability criteria and discuss how to overcome this 

unfortunate complication. 

4.5.2 FOTmal pTOpeTties of the equations and of the conseTved quantities 

To analyse the stability of our system we construct certain conserved quantities 

known as the canonical energy and the canonical angular momentum. The reasons 

why and how these assess whether or not a system is stable will be discussed later 

for now we will simply calculate their form. Using the conventional definition for 

the inner product, 

( 4.97) 

we can prove that the following symmetries hold, 

(y, A~) = (~, Ay)* ( 4.98) 

(y, B~) = - (~, By)* (4.99) 

(y, C~) = (~, Cyr (4.100) 

We prove these symmetries as follows, 
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(y, A~) - J (yi)*n~idV 
- {J (yi)n(~i)*dV } * 
- {J (~i)*n(yi)dV } * 
- (~, Ay) * ( 4.101) 

(y, BO - J y*2nvjVj~idV 
- {J (yi)2nvjVj(~i)*dV } * 
- {J {Vj [2n(yi)v j (~i)*] - 2n(~i)*vjVjY - 2(yi)(~i)*Vj(nvj)} dV} * 

- -{J 2n(~i)*vjVj(yi)dV } * 

- - (~, By)* (4.102) 

'Where we have used the fact that Vj(nvj ) = O. The final task is to prove the 

symmetry of C. Expanding the inner product (y, C~) gives us the following 5 terms 

which we can then analyse individually. 

J . { (. )2 [Ojj. ] (y, C~) - (y~)* n VJVj ~i + nVi5~1> - nVi on Vj(ne) 

+ n~jViVj1> + n~jViVjjj }dV (4.103) 

The first term is, 

J n(yi)*(vjVj)2~idV - J {Vj [nvjvk(Yi)*V k~i] - nvjvk [Vj(Yi)*] (V k~i) 

- [Vj(nvj)] vk(Yi)*(Vk~i) }dV 

- -J nvjvk [Vj(Yi)*] (Vk~i)dV 

- J n~i(vjVj)2(yi)*dV (4.104) 

By substituting for 51> in the second term we see that, 
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J {n(yi)*v\O<p} dV - J {n(yi)*Vi [-mBG J n' (~j)'vj (Ii ~ i'l) dV'] } dV 

- -mBG J J {n' (~j)'n(yi)*Vi vj (Ii ~ i'l) } dV'dV 

- -mBG J {n'(e)'Vj J [n(yi)*Vi (Ii ~ i'I)]} dVdV' 

( 4.105) 

Finally by rearranging the third term we get, 

J {n(yi)*Vi [~~Vj(n~j)]} dV J {Vi [n(yi)*~~Vj(n~j)]} dV 

Therefore 

- J {~~Vj(ne)Vi [n(yi)*J } dV 

-J {~~Vj(ne)Vi [n(yi)*J } dV 

-J {Vj (n~j~~Vi [n(yi)*) } dV 

+ J {n~jVj (~~Vi [n(yi)*J) } dV 

- J {neVj (~~Vi [n(yi)*J) } dV 

(4.106) 

(y, C~) - J {n~i(vjVj)2(yi)* + n(e)Vj(O<P)* 

+ n(yi)*~jViVj(<P+Jt) -n~jVj (~~Vi [n(yi)*J) }dV 

- (~,Cy)* (4.107) 

4.5.3 Symplectic structure 

A symplectic structure is a dynamically conserved antisymmetric product involving 

the configuration space variables and their conjugate momenta. The symplectic 

structure is written as, 

(4.108) 
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where y and ~ both solve the perturbed Euler equation. It is easily shown that this 

inner product is conserved, 

Ot W(y,~) (OtY, AOt~ + tB~) + (y, Ao;f, + tBOtf,) 

- (AO;Y + tBOtY, ~) - (AOtY + tBY, Ot~) 

Using the fact that Ao; ~ + B Ot~ + C f, = 0 

Ot W(y,~) - (OtY, AOt~ + tB~) + (y, -tBOt~ - C~) 

- (-tBOtY - Cy, f,) - ( Aoty + tBy, Otf,) 

- ((oty,AotO - (Aoty,ot~)) 
1 

+ 2((OtY, B~) + (BotY,~)) 
1 

- 2((y,Bot~)+(By,ot~)) 

- ((y,C~) - (Cy,~)) 

o 

4.5.4 Canonical energy 

( 4.109) 

(4.110) 

The canonical energy is the conserved energy of the perturbation. It is defined as, 

(4.111) 

Expanding this out gives, 

Ec ~B { (Ot~, AOt~ + tB~) - (AO;~ + tBOt~, ~) } 

~B {(Ot~, AOt~) + (Ot~, tB~) + (tBOt~ + C~, ~) } 

mB 2 {(Ot~, AOt~) + (C~,~)} 
mB 2 {(Ot~, AOt~) + (~, Cf,)} (4.112) 

Substituting for the operators A and C, 

(4.113) 
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~B (f" Cf,) - ~B J {(f,i)* (n(Vhl j )2f,i + nViOW - nVi [~~Vj(nr,J)l 
+ nf,jViVjw + nf,jViVjiJ, ) }dV (4.114) 

The terms in this equation can again be analysed individually. For the first term 

we write, 

~B J {n(C)*(v j V j )2f,i}dV - -~ J {pvjvk(Vj(f,i)*)(VkC)}dV 

-~ J {plvjVjf,iI2} dV (4.115) 

The second term can be written as, 

~B J {(f,i)*n Vi ( O~W)} dV = ~B J {Vi(n(f,i)* OW) - owV i [n(f,i)*]} dV 

- ~ J {4:COWViVi(OW)*} dV 

- ~ J {4:C (Vi [OWVi(OW)*] - ViOWVi(OW)*) } dV 

- -~ J {4:C ViOWVi(OW)* } dV 

- -~ J {4:CIViOWI2} dV (4.116) 

Finally 

Substituting everything back gives the following expression for the canonical energy, 
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=? Ee - ~ J {plat~12 - PlvjVj~il2 - 4:cIVi5<P12 + p(~i)*~jViVj<P 

+ p(~i)* eVi Vj /-1 + ~~ 15nl2 }dV (4.118) 

4.5.5 The canonical angular momentum 

The canonical angular momentum is defined as, 

(4.119) 

(4.120) 

Using integration by parts 

( 4.123) 

( 4.124) 

( 4.125) 

4.5.6 Normal modes 

For normal mode solutions we have ~i = ~i(x)eiwt 
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1/. .) 1 2 \~,A~ + 2 (~,C~) 
1 1 / .. .) 2 (iw~, iwA~) + 2 \~, -A~ - B~ 

~ J {(iw~)* iwAO dV + ~W2 (~, A~) - ~ (~, iwB~) 

~ J {w*CiwAO dV + ~W2 (~, A~) - w (~, iB~) 
2 2 2 
1 w2 W 
2ww* (~, A~) + 2 (~, A~) - 2 (~, iB~) 

w {~(w* + w) (~, A~) - ~ (~, iB~)} 

w { Re(w) (~, AO - ~ (~, iB~) } (4.126) 

To calculate to canonical angular momentum for the normal modes we write ~i = 

e(T, e)ei(mHwt). Thus giving, 

-Re (8¢~, A8t~ + ~B~) 

-Re { (im~, iwA~) + ~ (im~, B~) } 

-Re {wm* (C A~) - ~m* (~, iB~)} 

-Re(wm*) (~, A~) + ~Re(m*) (~, iB~) 

-m { Re(w) (~, A~) - ~ (~, iB~)} (4.127) 

'Where the final step assumes m is an integer. Therefore for normal modes, 

Ec w - = -- = (5 J
c 

m - P 
( 4.128) 

'Which defines the pattern speed of the mode. Since (~, A~) and (~, iB~) are both 

real and we know Ec is real the canonical energy must vanish if w is not real. 

4.5. 7 Stability of modes 

The canonical energy provides the basis for our stability analysis. Dynamical in­

stabilities correspond to a vanishing canonical energy. The amplitude of the mode 

can grow indefinitely while the canonical energy remains unchanged. Instabilities 

also arise if the system is coupled to radiation such as gravitational waves. If Ec is 

initially positive then, because of the time independence of the equilibrium, it must 
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always remain positive. Thus it can only radiate a finite amount of energy and will 

consequently return eventually to the equilibrium state. However, if the initial data 

is such that Ee < 0 then since the radiation can only carry away positive energy the 

perturbation is unable to die away in time. Thus the evolution is unstable. This 

gives us the following criterion for stability, 

• If Ee > 0 initially the configuration is stable . 

• If Ee < 0 initially the configuration is unstable or marginally unstable. 

This situation is complicated slightly by the existence of the trivial displacements 

introduced in Section 4.5.1. These displacements leave the physical variables un­

changed but do affect the canonical energy. This is unfortunate because we would 

like to be able to use the condition that Ee is positive definite as a stability test. To 

overcome this problem we must ensure that the displacement vector C is orthogonal 

to all trivials. Fortunately for normal modes one can prove that this is the case [39] 

and thus we can now use the above criteria to consider the stability of the normal 

modes. 

If we consider a real frequency mode we can write, 

(4.129) 

Using cylindrical coordinates and by writing v j = O<jY, 

-ip(~i)*vj(8je + f%je) 

-ipO [im(~ire + (6)*(-re) + (6)*(~e)] 

-ipO [iml~iI2 - r(6)*e + ~(6re] 
-ipO [iml~12 - r ((e)* e - (ere) ] 
pO [ml~12 + i ((~* x 0 J (4.130) 

'Where we have used the fact that in cylindrical coordinates (6)* 

(6)* = r 2 (e)*, Therefore, 

(~, ipiJ· \l~) = 0 (m + i J { [(~* x ~1 z}dV) 
(~,p~) (~,~) 

(4.131) 

Since I(()* x ~zl ::; 1~12 we find the following limits for the canonical angular 

momentum, 
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J - n (1 +~) < Jc < J - n (1 -~) 
p m - m 2 (~, pf,) - p m 

( 4.132) 

We recall that for normal modes, 

If we consider the situation where the rotation is small (n ----+ 0) then we find 

Small Rotation Case (n ----+ 0) 

II J p < 0 I J p > 0 

Ii: II + I + 
+ 

Table 4.1: Regions of stability fOT a single fluid with small TOtation. We obseTve 
that TegaTdless of the sign of the mode pattem speed the canonical eneTgy is positive. 
We conclude that as n ----+ 0 the system is stable. 

Since for both co-rotating modes (Jp > 0) and counter-rotating modes (Jp < 0) the 

canonical energy is positive the system will be stable. However, in a system with 

finite D we find the results summarised in Table 4.2. \tVhen J p < 0, and the mode 

is counter-rotating, we observe that it is stable. However, as it begins co-rotating 

the canonical energy becomes neg'ative and the mode unstable. In the non-rotating 

limit we found no such instability, and hence we deduce that this change of sign 

signifies the introduction of an instability at a critical rotation rate. 

Finite Rotation Case (D =I=- 0) 

II J p < 0 I 0 < J p < D(1- ~) I J p > D(l + ~) 

Ii: II + I I + 
+ 

Table 4.2: Regions of stability fOT a single fluid with finite TOtation. When J p < 0, 
and the mode 'is counteT-TOtating, we obseTve that it is stable. HoweveT, as it begins 
cO-Totating the canonical eneTgy becomes negative and the mode unstable. In the 
non-TOtating limit we found no such instability, and hence we deduce that this change 
of sign signifies the intToduction of an i'nstability at a critical TOtation rate. 

4.5.8 The T mode instability 

Inertial modes are those which have the Coriolis force as the main restoring force. 

In Newtonian stars inertial modes have velocity fields described by a mixture of 

both polar and axial parity components. The 'I' modes are a class of inertial modes 
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which at order D have axial parity components only and a frequency given by 

w = mD [1 - l (l ! 1) 1 (4.133) 

Since the discovery by Andersson [6] that the r modes of rotating neutron stars are 

unstable, much work on the r mode instability has been done, [57], [21], [56], [52] & 

[88]. It is interesting to revisit this work in the framework developed to demonstrate 

how the canonical energy can be used to prove stability. 

For the r modes we assume the perturbations obey the following ordering in D, 

( 4.134) 

which when combined with the continuity equation leads to 

(4.135) 

Thus to order D2 equation (4.118) reduces to the following expression for the canon­

ical energy, 

( 4.136) 

Using the equations that govern the axisymmetric equilibrium we can rewrite the 

last term in equation (4.136) as, 

D2~i*~j\li\lj(r2 sin2 e) 

2D2r2 [cos2 elel2 + sin2 el~cpl2J (4.137) 

and 

Ivi\li~jI2 D2{m21~12 - 2imr2sinecose [e~cp* - ~cpe*] 

+ r2 [cos2 elel 2 + sin2 el~cpl2J } (4.138) 

which means that the canonical energy can be written in the form 

Ec ~ -1 J P {(mD - w)(mD + w) 1~12 - 2imD2r2 sin e cos e [e~cp* - ~cp~lh] dV 

(4.139) 
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Introducing the axial stream function, 

we have 

and 

_ iU 8 y;meiwt 
r2 sin e 'P l 

iU ~ y;m iwt 
. VB l e 

r 2 sme 

After performing the angular integrals, we find that 

l(l + 1) { 2m
2

D2 } J 
Ec = - 2 (mD - w)(mD + w) - l(l + 1) plUl 2

dr. 

(4.140) 

( 4.141) 

( 4.142) 

(4.143) 

(4.144) 

Therefore we see that for all l > 1 r modes the canonical energy is less than zero, 

and the l = m = 1 r mode results in Ec = O. This agrees with previous work 

suggesting the r modes are unstable against the gravitational radiation reaction. 
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4.6 The superf1uid problem 

'vVe now wish to extend the Lagrangian perturbation analysis to the superfluid 

case. For this system we use the two-fluid model outlined in Section 2. To recap, the 

essential equations are two continuity equations (2.19), two coupled Euler equations 

(2.20), and an equation for the gravitational potential (2.2l). As a first step we 

will initially only be considering the case of vanishing entrainment for which we can 

write the Euler equations as, 

(4.145) 

we recall that X = n or p. 

To investigate the Lagrangian perturbations of this system we introduce two distinct 

Lagrangian displacement vectors (~, one for the neutrons ~~, and one for the protons 

~~. To distinguish between the two possibilities we use variations 6.x such that 

(4.146) 

The continuity equations therefore become, 

( 4.147) 

The equation describing the perturbed gravitational potential is, 

( 4.148) 

This equation is linear which means that we can write, 

( 4.149) 

'Where 

(4.150) 

As in the single fluid case these equation can be solved using Green's functions to 

gIVe, 

6W x = -mEG J n~'( (~~'( )'\7~ [Ii ~ i'l] dV' (4.151) 

Applying a perturbation to the Euler equations gives, 
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( 4.152) 

vVe can see that this is almost identical to the single fluid perturbed Euler equations. 

Therefore we can immediately write, 

EJ;~r +2v~y'VjEJt~r +(V~'Vj)2~r +'Vi6<I>+~i'Vi'V/P-('Vi~~)'Vjj1,X+'ViD..Xj1,X = o. 
( 4.153) 

The Lagrangian perturbation of the chemical potential can be written as, 

(4.154) 

Therefore 

V;!;x,"x -Vi [ (~~:) ny Vj(nx<~ll- Vi [ (~~:) nx vj(ny<tl] 

+ 'Vi [~~ 'V j j1,X] 

-Vi [ (~~:) ny vj(nxm]- Vi [ G~:)"X Vj(ny<~l] 
+ 'Vi~~'Vjj1,X +~i'Vi'Vjj1,X (4.155) 

and we arrive at the following form for the perturbed Euler equations 

( 4.156) 

As in the single fluid case we can write these equations as 

( 4.157) 

vVhere 
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(4.158) 

( 4.159) 

nx(vjVj)2~r + nXViO<Pn + nx~~ ViVj<P 

nXVi [ (~~:) ny Vj(nx'~)l + nX,~V,Vji'x (4.160) 

Dx,r ~ -nxV, [(~~~ t Vj(nY'~)l +nxV,o<py (4.161) 

4.6.1 Trivial displacements 

In Section 4.5.1 we introduced the idea that for a particular physical perturbation 

there does not exist a corresponding unique displacement vector C. We identified 

certain trivial displacements that while not affecting the physical perturbation can 

alter the canonical energy. In the two-fluid case we need to introduce two such 

displacements, one for each fluid. The equations these displacements need to satisfy 

are identical to equations (4.91) - (2.19) except now we require two sets of equations. 

Once again it can be shown that for the normal modes the displacement vectors ~x 

are orthogonal to all the trivials and hence the canonical energy can be used to test 

for stability given a normal mode solution. 

4.6.2 Symmetries of the operators 

In analogy with the single case we want to derive conserved quantities for the system 

to enable us to assess stability. Given the single fluid results it can easily be shown 

that the following symmetries hold, 

(T/x, Ax6-) = (Tlx, Ax 6:) * 

(T/x, Bx~x) = - (T/x, Bx~x)* 

(T/x, Cx~x) = (T/x, Cx~x)* 

4.6.3 Symplectic structures 

(4.162) 

We introduce the symplectic structures which are used to construct the canonical 

energy. To do this we consider two sets of solutions to our perturbation equations, 

[~n' ~pl and ['fln, T/p], and define, 
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Therefore, 

OtVVxC'7X,~x) (OtTJX,AXOt~X + ~BX~X) + (TJx,Axol~x + ~BXOt~X) 

Explicitly, 

and 

- (AXOZTJX + ~BXOtTJX'~X) - (AXOtTJX + ~BXTJX,Ot';X) 

(OtTJX, Axot~x + ~BX~X ) + (TJX, -~BXOt~X - Cx~x - DX';y) 

- (-~BXOtTJX - CxTJx - DXTJY,';X) - (AXOtTJX + ~BXTJX' Ot~X ) 
(OtTJx, Axot';x) - (AxotTJx, Ot';x) 

+ (OtTJX, ~BX';X) + (~BXOtTJX'';X) 
- (TJX, ~BXOt';X ) - (~BXTJX' Ot~X ) 
- (TJx,Cx~x) + (CxTJx,';x) 

- (TJx,Dx&) + (DxTJY,&) 

- (TJX, Dx~Y) + (DxTJy, ~x) 

=J 0 ( 4.164) 

( 4.165) 

( 4.166) 

vVe can see that individually Wn and Wp are not conserved, so we look to see if the 

sum of the two is conserved. Since, 

(4.167) 

we can write, 
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&,Wn J nnry;'Vi [(~~:)n" Vj(np<~)] dV 

- J nnf:Vi [ (~~:) n" vj(np%')] dV 

- J nn7]~*V'i5l;p<I>pdV + J nn~~V'i(57]p<I>p)*dV (4.168) 

and 

&tWp J npry;'Vi [ (~~:) n, vj(nn<D] dV 

- J np<;Vi [ (~~:) n, vj(nnti,·)] dV 

- J np7]~*V'i5l;n<I>ndV + J np';~V'i(57]n<I>n)*dV (4.169) 

Using the fact that, 

(4.170) 

the first term in at Wp can therefore be written as 

J npry;'Vi [ (~:) n, Vj(nn<~)] dV = J Vi [npry;. (~~:) n, vj(nnW] dV 

- J (~~n) V'j(nn~~)V'i(np7]~*)dV 
p nn 

-J Vj [nnf; (~:t V;(npry;')] dV 

+ J nn<tVj [ (~~J" Vi(n,ry;')] dV 

J nnf~Vj [ (~~:) n" Vi(npry;')] dV 

(4.171) 

Therefore when added to at vVn this term will cancel with the second term. Similarly, 
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J npl;;'Vi [ (~~:) n. Vj(n"~)l dV = J n"~'Vj [ (~~:) no Vi(npl;~)l dV 

( 4.172) 

Therefore the second term of Ot Wp will cancel with the first term of Ot Wn. If we 

now look at the third term of Ot Wp 

Similarly 

Therefore it is clear that 

J np(17~)*\li [-mBG J n~(~~)'\l~ [Ix ~ xII] dV
I] dV 

-mBG J J n~(~~)/np(17~)*\li\l~ [Ix ~ xII] dV'dV 

-mBG J n~(~~)' J \l~ (np(17~)*\li [Ix ~ xII]) dVdV' 

J nn~~\li(c5<I>p) (4.173) 

(4.174) 

(4.175) 

and, vVn (17n, ~n) + Wp (17p , ~p) is a conserved quantity. 

4.6.4 Canonical energy 

The canonical energy of the system is defined as, 

(4.176) 

Expanding this out gives, 

Ec ~B [\ Ot~n, AnOt~n + tBn~n) - \ Anoi~n + tBnOt~n' ~n) 

+ \ Ot~p, Apot~p + ~Bp~ - p) - (4pO;~p + tBpOt~p, ~p)] (4.177) 

'Which easily leads to, 

Ec Tf~B [(Ot~n, Anot~n) + (Ot~Pl Apot~ - p) + (~n' Cn~n) * + (~p, Cp~p) * 
+ (~n) Dn~p) * + (~p, Dp~n) *] (4.1 is) 
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The terms involving A and C are identical to those in the single fluid case, thus we 

need only consider the final two terms. vVe can see that, 

T~B «y, Dx<x)' ~ J {px<'x V,( 51>y)' - nx<'x V, [ (~~: t V ;(ny«t)')]} dV 

(4.179) 

By analogy with the results from the single fluid case it follows straightforwardly 

that the canonical energy can be written as, 

Ec ~ J {PnIOt~nI2 + pplot~pl2 - Pnlv~'Vj~FI2 - pplv~'Vj~fI2 
+ [Pn~~~~* + PP~~~~*l'Vi'Vj<D + nn~~~~*'Vi'VjJ-Ln + np~~~~*'Vi'VjJ-LP 

+ (OJ-Ln) 16nnl2 + (OJ-Lp) 16npI2 _ -1-.I'V i 6<D12 
onn np onp nn 41fG 

+ (~~n) [6nn 6n; + 6n~6npl }dV (4.180) 
p nn 

4.6.5 Canonical angular momentum 

The canonical angular momentum is defined as, 

( 4.181) 

Using the result from the single fluid case, 

4.6.6 Normal mode solutions 

If we consider a normal mode of the form, 

(4.183) 

and considering initially only the terms with index n we get, 
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~B [(at~n, Anat~n) + (~n, Cn~n + Dn~p)*l 

~B [(iw~n' iwAn~n) + (~n' -An~~ - Bin) *] 

~B [w*w (~n' An~n) + w2 (~n' An~n)* - iw (~n' Bn~n)*J 

~B [w(w* + w) (~n' An~n) - W (~n' iBn~n)*l ( 4.184) 

\Nhere ~n at~n, ~~ = a;~n' and where we have used the symmetry of An to 

substitute (~n, An~n)* = (~n' An~n). Finally we obtain, 

( 4.185) 

Including the proton terms the total canonical energy becomes, 

(4.186) 

By comparison with the single fluid results the canonical angular momentum for 

the case of normal modes is, 

4.6.7 Stability 

Jc -mBm{Re(w)[(~n' An~n) + (~p, Ap~p)l 
1 

- 2[(~n' iBn~n) + (~p, iBp~p)]} (4.187) 

(4.188) 

In the single fluid case when the pattern speed changes sign a counter-rotating mode 

becomes unstable. We can see if this remains valid in the two fluid case. We consider 

the canonical angular momentum for normal modes in cylindrical coordinates under 

uniform rotation. In this case equation (4.187) becomes, 

Jc = -m{w[(~n,Pn~n) + (~p,pp~p)l- [(~n,iPnvn' V~n) + (~p,ippvp' V~p)]} 
( 4.189) 
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Therefore 

(4.190) 

As in the single fluid case we can use cylindrical coordinates, v~ = DxcpJ giving, 

-ipX(~Xi)*V~Vj~~ = PxDx [ml~xI2 +i(~;* x ~;)z] 

Since I(~;* x ~;)zl :::; l~xl2 

Therefore 

and consequently 

(4.191) 

( 4.192) 

(4.193) 

( 4.194) 

'Where ax = (~x, Px~x) > O. The next challenge is to find an upper limit. From 

equation (4.192) 

( 4.195) 

and hence 

( 4.196) 

Combining the two cases we obtain the following condition for the canonical angular 

momentum, 

( 4.197) 

'Where D = [Dnan +Dpap]. In the same way as in the single fluid case we can use this 

canonical angular momentum limit along with the relationship between the pattern 

speed, the canonical energy and the canonical angular momentum (O"p = Eel Jc) to 

investigate the stability of the normal modes. If both the fluids are rotating slowly 

(D -+ 0) we find the results summarised in Table 4.3. 
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Small Rotation Case (0 -+ 0) 

Il O"p < 0 I 

Ii: II + I + 
+ 

Table 4.3: Regions of stability for a two fluids with small rotation. Since for both co­
rotating modes (O"p > 0) and counter-rotating modes (O"p < 0) the canonical energy 
is positive the system will be stable. 

Since for both co-rotating modes (0" P > 0) and counter-rotating modes (0" P < 0) the 

canonical energy is positive the system will be stable. However, in a system with 

finite D we find the results summarised in Table 4.4. Therefore we can conclude 

that as in the case of a single fluid when O"p < 0, and the mode is counter-rotating, 

we observe that it is stable. However, as it begins co-rotating the canonical energy 

becomes negative and the mode becomes unstable. 

Finite Rotation Case (0 i: 0) 

I~: II + I I: I 
Table 4.4: Regions of stability for a two fluids with finite rotation. When O"p < 0, 
and the mode is counter-rotating, we observe that it is stable. However, as it begins 
co-rotating the canonical energy becomes negative and the mode unstable. In the 
non-rotating limit we found no such instability, and hence we deduce that this change 
of sign signifies the introduction of an instability at a critical rotation rate. 

4.6.8 The superfluid r mode instability 

vVe now extend the analysis of the r mode instability introduced in Section 4.5.8 

to the superfluid case. Again a significant amount of previous work has been done 

on this topic and we will make use of their results in our investigation. Many 

studies have restricted their analysis to co-rotating backgrounds, Dn = Dp , [55], 

[76], [10] where it is found that provided the background model is not stratified, i.e. 

if V xp = 0, the system can be separated into purely co- and counter-moving modes. 

However, in the general case with a background allowing the two fluids to rotate 

at different rates around the same axis, i.e. Dn i: Dp , Prix et al [68] showed that 

purely co- or counter-moving modes are not observed. However, their investigations 

showed that in the absence of entrainment the T mode fluid motion must be such 

that only one of the fluids oscillates. vVe 'vvill consider this entrainment free case 

before turning our attention to the co-rotating case with entrainment. 
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The case with relative rotation 

Since we have ignored entrainment the two fluid system is basically two uncoupled 

systems with identical solutions. Therefore when Dn =f. Dp we cannot find a single 

mode solution. vVhat we find is that only one fluid will oscillate giving, 

OiJx =f. 0, 5vy = 0, w = mDx [1 - l (l ! 1) ] (4.198) 

and by analogy with the single fluid case we immediately get, 

( 4.199) 

Thus both these classes of modes will be unstable due to the emission of gravita­

tional radiation. 

The co-rotating case Dn = Dp = D 

If we write, 
~: = nn~r + npa 

nn + np 
( 4.200) 

and 

(4.201) 

then when ~r = a and the two fluids move together only ~: is present. vVe can 

write the canonical energy in this situation as, 

Ec ~ ~ J {plat~+12 - plvh\7j~:12 + P~~~t*'Vi'Vj<I> 
+ ~~~r[nn 'Vi'Vj/-ln + np'Vi'Vjf-LpJ} dV 

where we have neglected the higher order contributions from 5nx and 5<I>. 

( 4.202) 

In this expression, the last term can be rewritten using the fact that we must have 

( 4.203) 

if the two fluids rotate at the same rate, cf equation (4.152). This immediately 

leads to 

( 4.204) 

(where n = nn + np) and consequently 

( 4.205) 
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This is identical to the single fluid problem, suggesting that pure [+ modes are 

unstable. 

The next case we consider is the canonical energy for counter-rotating modes where, 

In this situation only ~i- is present, and we have 

nPe-:­
<"2 , 

n 
nn nn en - c-

--;:<"i - ---:;;:Si . 
P 

By substituting the above expressions into equation 4.180 we get 

( 4.206) 

( 4.207) 

( 4.208) 

( 4.209) 

where xp = np/n is the proton fraction. Since the expression in the bracket has the 

same form as in the single fluid case, and the prefactor Pnxp is positive definite, it 

is easy to prove that Ec < 0 also for the counter-moving modes. 
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4.7 Lagrangian perturbation theory with entrainment 

The next step in our Lagrangian perturbation analysis is to consider the situation 

where the entrainment parameter a is non-zero. In the entrainment free case our 

neutron and proton equations are coupled chemically through the equation of state 

and gravitationally since variations in the number densities of one fluid affects the 

gravitational potential and hence affect the other fluid. The function a describes 

how the internal energy of the system depends on the relative velocities of the two 

fluids and introduces a much stronger coupling of the equations. The Euler equation 

with entrainment, equation (2.20) is, 

(4.210) 

Where ex = 2a/nx. Since we can write, 

( 4.211) 

we can write the Euler equations as 

( 4.212) 

To investigate Lagrangian perturbations of this system we take the same approach 

as in the entrainment free case and introduce two distinct Lagrangian displacement 

vectors, ~~. The continuity equations and the Poisson equation are not affected by 

entrainment and thus we can simply use equations (4.147) and (4.148) to describe 

the perturbations of the gravitational potential and the densities. Perturbing the 

Euler equations gives, 

vVe recognise the terms (at + £vx) 6 x v{ and Vi (.6.x <I> + 6xlix - 6xv'i/2) from 

the entrainment free problem and can hence immediately write, 

( 4.214) 
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and 

j x j X 
-Ot~x ViVj - Vx ViOt~j 

V~ (V k~f + V j~f) ViV~ 

(V~VjV;;) Vi~~ - V~V~VjVi~;; 

+ Vio<I>+~lViVj(<I>+,uX)+ViO)LX 

( 4.215) 

In this case o,ux depends on the entrainment. This is obvious from Section 2.2 

where we observe that the chemical potential, /.Lx, is simply a partial derivative of 

the energy functional, E, with respect to the corresponding number density, nx. 

Since E depends on the entrainment the Eulerian variation in the chemical potential 

also depends on the entrainment. We can write it as follows, 

5:- _ (OMX) (j) (OMX) (j) (o,ux) 5: 2 u/.Lx - - on Vj nx(,y - on ? Vj nx~x + Ow2 uW 
X ny,w2 Y nx,w- nX,ny 

( 4.2l6) 

where 

(
OMX) 1 (00.) 
ow2 

n n = mB onx n w 2 x, y y, 

( 4.217) 

and 
5: 2 YX 5: j j 5: YX 2 YX 5: j uW = Wj UWYX + WYXUWj = Wj UWYX ( 4.218) 

glvmg 

5:- _ (OMX) n ( d) (OMX) n ( j) 2 A YX5: j u/.Lx - - on v j nx<.,x - on v j ny~y + - XWj uWyX 
X ny,w2 Y nx,w2 mB 

( 4.219) 

Where we have introduced 
A _ ( 00. ) 

X - onx ny,w2 
(4.220) 

and where we can write, 

( 4.221) 

The remaining term in equation (4.213), which was not present in the entrainment 

free problem, we can write as, 
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'Where, 

(Ot + £vx) 6.x v{ O;~{ + v~ VjOt~{ + v~ ViOt~f 

+ vivk (6.x v{) + (6. x vf) vivi 

O;~{ + vi VjOt~{ + vi ViOt~f + vi VkOt~{ 

+ ViVk(V~Vj~{) +ViVk(V~Vi~f) +[)t~fViVi 

+ (vi Vj~f)ViVi + (v~ V k~f) vivi 

O;~{ + 2v~ VjOt~{ + v~ ViOt~f + (vi Vj)2~{ 

( 4.223) 

+ Ot~fViVi +v~ (vj~f + Vkf;f) vivi + (ViVkV~)Vi~f 

and, 

+ k j n n t:X VxVXVkViSj ( 4.224) 
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al~r + v~ vjat~r - at~JvjVr + at~JvjVr + v~ Viat~J 
+ v~ V k [at~r + v~ Vj~r + v~ Vi~J - ~~ Vjvr + ~~ VjvrJ 

+ [at~r + v~ Vj~r + v~ v k~J - ~~ Vjvr + ~~ VjVn ViV~ 

al~r + (v~ + v~) Vjat~r + at~~ [VivJ - VjvrJ 

+ at~JVjVr +V~Viat~J +V~V~VkVj~r 

+ (V~VkVn Vj~r - Vi~~VkVjVr - (V~Vk~~) Vjvr 

+ V~~~VkVjVr + (V~Vk~~) Vjvr +V~V~VkVi~;Y 

+ (ViVk~~) Vi~J + (v~Vj~r) vivi - (~~,VjVn vivi 

+ (~~VjVn vivi + (V~Vk~J) vivi 

al~r + (v~ + v~) Vjat~r + at~~ [VivJ - VjvrJ 

+ at~JVjVr + v~ Viat~J + (~~ - ~n vi v k vjvr 

[ k ( j j )] Y (k j) [Y X] + Vx V k ~x - ~y VjVi + Vx V kVy Vj~i + Vi~j 
k j \7 \7 eY I k.J \7 \7 eX + ( j \7 eY) \7 k + VXVy v k v jc"i T VXVy v k v ic"j Vy v jc"k v iVX 

+ (V~ViV~) Vk~J + (~~ - ~~) (VjVn (vivi) (4.225) 

We can define 1/J~y = ~~ - ~~ giving 

al~r + (v~. + v~ )Vjat~r + at~~ [VivJ - VjvrJ 

+ at~JVjVr + v~ Viat~J + 1/J~yV~ V k VjVr 

+ [ViVk (1/J~y)] Vjvr + (ViVkV~) [Vj~r + Vi~J] 
k j \7 \7 eY k j \7 \7 eX (j \7 eY ) \7 k + VXVy v k v jc"i + VXVy v k v ic"j + Vy v jc"k v iVx 

+ (v~vivi) Vk~J +1/J~y (VjVr) (vivi) (4.226) 

Combining equations (4.224) and (4.226) gives, 
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- [O;~; + 2v~VjOt~; + (V~Vj)2 ~;] 
+ [O;~; + 2vtVjOt~; + (VtVj)2,;r] 

+ (V~ - vt) VjOt~r - [Ot(;;Y (ViV~) + V~ ViOt~f 
+ v~ (vj~f + Vk~f) ViV~ + (V~VkV~) Vi~f 

+ V~V~ V k Vi,;f] + Ot,;t [vivf - v jvrJ + Ot~~ VjV; 

+ vtviOt~f +1jJ~yV~VkVjV; + (V~Vk1jJXyj) VjV; 

+ (V~VkVn Vi,;f +V~V~,VkVi,;f + (vtVj';[) ViV~ 

+ (VtViV~) Vk,;f + (1jJ~yVjVn ViV~ 

- [O;~; + 2v~ VjOt,;; + (v~ Vj)2,;;] 

+ [O;~; + 2vtvjOt,;; + (VtVj)2,;r] 

+ (Ot';~ - Ot~t) (VjV; - ViVjY) + wtx [ViOt~f - VjOt,;r] 

+ 1jJ:yyV~VkVjV; - (V~ViV~ +V~ViV~) vj~f 

+ (VtViV~) (Vj';[ + Vk~f) + (1jJ~yVjv[) ViV~ 
+ (V~Vk1jJ~y) VjV; + [V~VkVt - V~VkV~] vi~f 

+ v~wtxVkVi~f - V k (vtVj';;) (4.227) 

'Where we have used the fact that 

( 4.228) 

To investigate the second term in equation (4.222), (at + £vx) L::,.xEx, we begin by 

looking at 6.xEx. 

( 4.229) 

Using the definition for Ex, equation (2.18), we find, 

6.x Ex = 0 (2a) +~~Vj (2a) 
nx nx 

2 2a 2 j 2a j 
-oa - -onx: + -~ Va - -~ Vnx: 
n n2" n x J n2 x J J 

X X X X 
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We can use the perturbed continuity equation, r5nx = -Vi (nx~~), to give, 

(4.230) 

The entrainment function, a is a function of nx, ny, and w 2 i.e a = a( nx, ny, w 2) 

and hence, 
YX . 

r5a = Axr5nx + A y r5ny + 2Awwj r5wtx (4.231) 

where once again Ax is given by equation (4.220) and we define 

( aa) 
Aw = [j2 

W nX,ny 

( 4.232) 

Since 

(4.233) 

where 

( 4.234) 

we can write r5a as, 

r5a -Ax Vi (nx~~) - AyVi (ny~~) 

+ 2A YX [a dad + i n din d {:i n j + {:i n jJ wWj t<"y - t<"x Vy Vi<"y - Vx Vi<"X - <"y ViVy <"X ViVx 

(4.235) 

and consequently 

+ 2A YX (a ol,j ad + i n din d + ol,i n j + {:i n j)] wWj t'f'yX- t<"x VyVi<"y-VxVi<"X 'f'xyViVy <"xViVX 

~{ (a - Axnx) Vi~~ + ~~ Via - Ax~~ VinX 
nx 

Ay [nyvi~~ + ~~vinYJ + 2Awwrx~~Vi'wtx 

+ 2Aw wr'( [1/J~n'ViV~. - at 1/J:'(y + vt- Vi~~ - v~ Vi~~J } ( 4.236) 
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Using the substitution 

( 4.237) 

gives, 

~{Ay [1/J~y\7iny - ny\7i~~J + (0: - Axnx) \7i~~ 
nX 

+ 2AwwJx [1/J~y \7iV~ - at1/J~y + Vt- \7i~~ - V~ \7i~~J} (4.238) 

Finally, 

n
2
x {Ay [at1/J~y\7iny - ny\7iat~~J + (0: - Axnx) \7iat~~ 

+ 2AwwJx [at1/J~y\7iv~ - a;1/J~y + v~\7iat~~ - v~\7iat~~J } 

+ k n [ 4 A YX;::) 01,] ] Vx v k -- wWj Utlf/XY 
nx 

+ V~\7k [~{AY [1/J~y\7iny-ny\7i~~J +(o:-Axnx)\7i~~ 
nx 

+ 2A YX (ol,i n j;::) 01,] + i n cJ i n {:j ) } wWj If/XY v iVyUtlf/XY vY v i<,y - Vx v i<,X 

( 4.240) 

Consider for a moment simply the term v~\7 k [-4AwwJx at1/J~y/nxJ. We can write 

this as, 

kn [ 4 A YX;::) oJ.J ] Vx v k - nx wWj Utlf/XY 

(4.241) 

If we assume the system is axisymmetric the final term III the above equation 

vanishes. Giving, 

kn [ 4,\ YX!:lOI']] Vx v k --l""1wWj Utlf/XY 
nx 

_ 2 {2.1 Y X k n !:l 01,] ?A!:l 01,] k n Y X } - -- ~f-1wWj Vx v kUtlf/XY + ~ wUtlf/XYVX v kWj 
nx 

( 4.242) 
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Similarly 

where we have used the fact that in an axisymmetric system, 

'vVe can also write 

Axvivknx + Ayvivk + 2AwwJxvivkW{X 

o 

The final term in equation (4.239) becomes, 

( 4.243) 

( 4.244) 

( 4.245) 

( 4.246) 

In our system we are assuming the background is axisymmetric and hence we can 

write, 

and 

with cpi given by 

Therefore we find, 

i n i 
Vx = HXCP ( 4.247) 

( 4.248) 

( 4.249) 

, YX\7 j _ n (n n) j\7 _ n (n n) j" _ j \7 YX 
Wj v iVy - Hy Hy - HX cP v iCPj - -Hy Hy - HX cP v jCPi - -vy v jWi 

(4.250) 
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Thus, 

+ ( k \7 YX) ( i \7 d i \7 d ) 
VXVkWj VyVi<,y-VxVi<,X 

+ y X k \7 ( i \7 r: j i \7 d ) }} Wj Vx v k Vy v i<,y - Vx v i<,X (4.251) 

We can combine everything in a schematic way to give us 

( 4.252) 

It is important to note that Ax is an operator and should not be confused with 

Ax. The Operators A, B, C and D are identical to those in the entrainment free 

problem where D couples the neutron and proton systems through the equation 

of state. The operator E is highly complicated, consisting of a combination of 

equations (4.219), (4.227), and (4.251). It depends explicitly on both a and wJx 
and acts on both the neutron and proton displacement vectors as well as their first 

and second time derivatives. 

It is clear that introducing an entrainment term substantially complicates the re­

sulting perturbation equations. It would be highly constructive to continue from 

this point to derive a canonical energy equation for this general two-fluid system. 

In doing so we can hope to develop stability criteria for superfluid neutron stars. 

This analysis will hopefully be the focus of future work. 

In this work we will study oscillations of a simple test problem with a = constant. 

This simplifies the Lagrangian perturbation equations greatly since, as we see from 

equations 4.220 and 4.232, 

Ax = Aw = 0 ( 4.253) 
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In this simplified case the perturbation equations can be written as, 

[J;~{ +v:yY'j[Jt~{ +V~yY'i[Jt~r +ViY'k (6x v{) + (6xvf) Y'ivi 

+ 20: { _ [[J;~{ +2v~Y'j[Jt~{ + (V~Y'j)2~{J + [[J;~r +2v~Y'j[Jt~r 
nx 

+ Cv~ Y'j)2~n + ([Jt~~ - [Jt~~) (Y'jVr - Y'iVr) W~x [Y'i[Jt~r - Y'j[Jt~n 

+ 1fJ:yyViY'kY'jvr - (v~Y'ivi + ViY'iV~) Y'j~f + (v~Y'ivi) (Y'j~r + Y'k~r) 

+ (1fJ~yY'jVn Y'ivi + (ViY'k1fJ:yy ) Y'jVr + [ViY'kV~ - ViY'kV:~J Y'i~r 

+ viw~x Y' k Y'i~r - Y' k (V~ Y'j~r) } + W;x {20: (Y'i[Jt~~ + vi Y' k Y'i~1-) } 
nx 

[Jt~~Y'iVr - V~Y'i[Jt~r - v~ (Y'k~r + Y'j~f) Y'iV~ - (v~Y'jvf) Y'i~~ 

V:y v ~ Y' j Y' i ~ f + Y'i 6" <I> + ~ ~ Y'i Y' j (<I> + p, x) + Y'i 6" P, x = 0 

( 4.254) 

where 

(4.255) 
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Chapter 5 

The oscillations and stability of 

superfluid cylinders: the 

entrainment free case 

Having constructed Lagrangian perturbation equations in Chapter 4 we have reached 

a point where we can use this framework to study the modes of oscillation for a 

cylinder of superfluid. vVe begin with the case of vanishing entrainment, i.e. a = O. 

This involves expressing equation (4.156) in cylindrical coordinates, establishing ap­

propriate boundary conditions and subsequently solving the equations numerically. 

5.1 The equations 

vVe proceed by assuming; (i) the time and azimuthal dependence of the perturbation 

is given by exp( iwi + im¢), where w is the oscillation frequency and m is the integer 

wave-number; (ii) both fluids exhibit uniform rotation about the z-axis such that, 

v~'( = DXcpi; (iii) the fluids obey an energy functional of the form equation (3.28); 

and finally assuming (iv) the Cowling approximation can be taken, i.e. 5Cf> = O. 

Using Table 3.2 and the substitution, ~¢ = -irom~¢, the variables in these equations 

are scaled giving the following four equations (the bars have been dropped to avoid 

the equations becoming cluttered), 

a~; afJx 2 x afJx apx () 3 
'( [() ] [() ( ) ] or anx ny,w

2 
mpxr + ~r anx ny,w

2 
mr Px + rar - 2HxO"xr 

+ ~: [(afJX) m 3px - mO"k r2 ] = 0 (5.1) 
anx ny,w 2 
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and 

aa2~( [( aaf-lX) r3 PX] + aa~; [( aaf-lX) r2 (PX + 2r aaPX ) 1 r nx ny,w2 r nx ny,w2 r 

a~: [(af-lX) 2] + -- -- m PXr ar anX ny,w2 

(5.2) 

·Where CJx = w + mDx and once again X and Yare the constituent indices which 

can represent either the neutrons or the protons. ·When X represents the neutrons, 

Y represents the protons and vice versa. 

To find solutions to these equations numerically we express them as four first order 

equations. Equation (5.1) is already first order and to make equation (5.2) first order 

involves solving Equation (5.1) for a~r/ar, differentiating to obtain an expression 

for a2~r/ar2 and finally substituting these into equation (5.2). This results in, 

(5.3) 

·Where we have used the fact that the background gravitational potential can be 

written as, 

(5.4) 

Equations (5.1) and (5.3) give us four first order differential equations representing 

the perturbations to our two fluid system. In analogy with the entrainment free 

Eulerian perturbation case we find that the neutron and proton systems are coupled 

only through the background gravitational potential. There will be an independent 

set of normal modes for the neutron superfluid and a second set for the proton 

fluid. Only in the co-rotating case will the mode frequencies be the same. If we 

introduce a relative rotation, modes will be either purely neutron or purely proton. 

One fluid will oscillate while the other remains stationary. If we considered non­

zero perturbations to the gravitational potential, e.g. cl<P #- 0, we would find that a 

coupling exists between the equations in this entrainment free case. 
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5.2 A local analysis 

Our objective is to study the influence of different relative rotation rates of the two 

fluids and varying K on the normal modes of superfluid cylinders. As a starting 

point we classify the modes by using a local analysis to construct propagation 

diagrams. We assume the modes take the following form, 

1 
~r = -E,rk exp (ikr) 

r 

E,¢ = ~¢k exp (ikr) 

(5.5) 

(5.6) 

Substituting these into equations (5.1) and (5.3) leads to the following dispersion 

relation, 

(.5.7) 

For propagating waves to exist k must have a real part and hence the condition for 

propagation is 

(5.8) 

This is equivalent to equation (4.44), the condition for propagation in the single 

fluid, isentropic case. In this two fluid example we find distinct regions of prop­

agation for the neutron modes and separate regions for the proton modes. The 

effect of one fluid on the propagation regions of the other occurs only through the 

coupling of the background densities through the gravitational potential. Only in 

the co-rotating case, where the neutrons and protons are rotating at the same ve­

locity do these regions coincide. "When both the fluids are stationary two regions of 

acoustic wave propagation are found, see Figure 5.1. These regions are symmetric 

with respect to w = O. The direction of propagation depends on the sign of w, 

waves with opposite signs propagate in opposite directions. vVhen Lei < 0 the waves 

move forward and are consequently designated the label (f) in the Figure. Those for 

which w > 0 are labelled (b) as they move in the backward direction with respect 

to the pattern speed of the mode. In addition to the p modes which propagate in 

the acoustic regions we find, for both positive and negative frequencies, an J mode 

lying" just outside. These modes do not originate from propagating body waves 

which is why they are situated outside the propagation areas. 
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Figure 5.1: The graph shows the regions of propagation for two non-rotating 
fluids in a cylinder. We observe two regions of acoustic wave propagation which are 
symmetric with respect to w = 0. The direction of propagation depends on the sign 
of w, waves with opposite frequencies propagate in opposite directions. When w < ° 
the waves move forward and are consequently designated the label (f)· Those for 
which w > ° are labelled (b) as they move in the backward direction. In addition to 
the p modes which propagate in the acoustic regions we find, for both positive and 
negative frequencies, an f mode lying just outside. Also shown in the graph are the 
mode eigenfrequencies and the zeros of the associated radial displacement. In this 
example m = 2, iln = 0, ilp = 0, K = 1. 

We now look at the effect of a relative rotation of the fluid components on the 

modes. In Figure 5.2, where iln = 0.3 and ilp = 0, we observe an additional 

region of propagation known as the R-region for the neutron superfluid modes. The 

forward and backward modes are now divided by the line w = - miln . Waves with a 

frequency less than this are moving forward with respect to the background rotation , 

whereas for w > -miln the waves move backward with respect to the background 

rotation. Since the protons remain stationary we do not observe a presence of 

proton r-modes. The propagation regions for the protons are almost identical to 

those in the case where both fluids are stationary. Minimal modifications emerge 

due to the effect of the motion of the neutrons on the background density of the 

protons. 
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Figure 5.2: The graph shows the regions of propagation for the neutron fluid 
in a cylinder containing two fluids , where the neutrons rotate while the protons 
remains at rest. In addition to the acoustic regions we observe an additional region 
of propagation known as the R-region for the neutron superfluid modes. The forward 
and backward modes are now divided by the line w = - mOD' Waves with a frequency 
less than this are moving forward with respect to the background rotation, whereas 
for w > - mOn the waves move backward with respect to the background rotation. 
Also shown in the graph are the mode eigenfrequencies and the zeros of the associated 
radial displacement. In this example m = 2, On = 0.3, Op = 0, K = 1. 

We investigate the effect of varying K on the allowed regions of propagation. Figure 

5.3 shows the results for the case where K = 0.1. Since the coupling between the 

two fluids is weak the effect of this alteration is minimal. Table 5.1 summarises 

the frequencies of the various modes illustrated in the propagation diagrams. The 

Table highlights the effect of increasing the rotation rate on the mode frequency. A 

key observation is that the frequency of the forward moving modes is significantly 

altered whereas that of the backward moving modes changes only slightly. The 

Table also illustrates the effect of changing the value of K. While the r mode 

frequencies remain fairly unaltered the magnitude of the frequency of the p modes 

and f modes is decreased. 

5.3 Normal mode solutions 

We now investigate the oscillation modes of the system by integrating equations 

(5.1) and (5 .3) numerically. If the term multiplying the derivative vanishes the 
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Figure 5.3: We investigate the effect of varying the proton fraction on the propaga­
tion diagrams by considering an example containing 90% neutrons, similar to what 
one would expect for a neutron star. The graph shows the regions of propagation 
for the neutron fluid in a cylinder containing two fluids , where the neutrons rotate 
while the protons remains at rest. By comparison with Figure 5.2 we find that in 
this entrainment free case altering the proton fraction has very little effect on the 
propagation diagram. In this example m = 2, On = 0.3, Op = 0, K = 0.1. 

respective equation will be singular and numerically we will encounter difficulties 

obtaining a solution. Clearly this will arise when either r = 0 or Px = 0 corre­

sponding to the centre and the surface of our cylinder. Consequently Frobenius 

expansions of the perturbations around these points were performed in order to 

obtain appropriate starting points for numerical integration. Integration of these 

equations is performed in exactly the same way as for the Lane-Emden equation 

using a FORTRAN fourth-order Runge-Kutta routine. The program integrates 

equations (5 .1) and (5.3) along side the Lane-Emden equation; initially forward 

from r = 0 to r = R/2 and subsequently backward from r = R to r = R/2. At 

the mid point the program evaluates D = e~ne¢'Ut - e~'Ute~n , where ein represents 

the value of the radial part of displacement vector, er, obtained from the forward 

integration and e°'Ut the value from the backward integration. If the eigenfunctions 

match D will equal zero. For most values of w a match is not found , however, for 

the normal modes a match will be found and hence we can obtain the eigenfre­

quencies. The modes considered are those with an azimuthal wave-number, m = 2. 

The reason for this is they are the most significant for the gravitational wave driven 
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Frequency 
Mode 

Dn = 0, K = 1 Dn = 0.3, K = 1 Dn = 0.3, K = 0.1 

p~J) -3.35 -4.89 -3.32 
p~J) -2.54 -3.86 -2.69 
piJ) -1.70 -2.79 -2.04 
f U) -0.78 -1.35 -1.02 
rTf) 

1 -0.77 -0.76 
r U) 

2 -0.70 -0.70 
r U) 

3 -0.67 -0.67 
{ro! 0.78 0.71 0.37 

(b) 
P3 1.70 1.67 0.91 

(b) 
P2 2.54 2.67 1.50 

(b) 
Pi 3.35 3.66 2.11 

Table 5.1: The frequency spectrum of the various modes which are plotted in the 
propagation diagrams 5.1-5.3. The Table highlights the effect of varying the neutron 
rotat'ion rate and the proton fraction. In all the examples the frequency is in natural 

units Dn/47rGPnO and Dp = O. 

instability in a real star. 

5. 3.1 Boundary and regularity conditions 

vVhen solving the background Lane-Emden equation, equation (3.49) was obtained 

as an expression for Pn around the origin. Performing a power series expansion of 

the solution around the centre we find that to first order ~r and ~¢ take the following 

form 

e< = Axrax (5.9) 

~: = Bxrbx 

By substituting these into equations (5.1) and (5.3) and we find near the centre the 

Lagrangian displacements can be approximated by, 

~:'( 4 m-l = -' xr (5.10) 

~¢'( 
Ax m 

=--1' 
m 

At the surface of the cylinder (1' = R) equations (5.1) and (5.3) contain singularities 

due to the fact that the densities vanish at this point. The value of the densities 

and their derivatives at the surface can be evaluated numerically from integration 
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of the Lane-Emden equation. By insisting that the perturbed Euler equation are 

regular at the surface we find, 

~: = ex (5.11) 

~: = -ex [2DxR - p'x~R) (OJ-Lx) 1 
mrJx rJx onx 2 ny,W 

Where ex is a constant. This corresponds to the Lagrangian perturbation of the 

pressure vanishing at the surface. 

5.3.2 Numerical results 

Since entrainment has been ignored the equations are coupled only through the 

background gravitational potential and the modes of each fluid are calculated in­

dependently. Initially the proton fluid was considered to be rotating at Dp = 0.15 

and the neutron superfluid to be rotating at Dn = 0.2. For this situation there 

was found to be f, p and r modes for both the neutrons and the protons. The f 

mode and p modes for the neutron fluid are plotted in Figure 5.4 and in Figure 5.5 

we plot the r modes. Figures 5.6 and 5.7 show how the frequencies of particular 

modes vary as Dn changes. They also show how the modes of the normal fluid are 

affected by varying Dn. VVe can see from Figures 5.6 and 5.7 that as Dn increases 

the frequency of the superfluid modes decreases. For the normal fluid however 

the frequency of the backward moving p modes (those with positive frequency) is 

observed to increase slightly while the frequency of the forward moving pmodes de­

crease slightly. However since the modes are essentially uncoupled the effect of the 

superfluid rotation on the proton modes is reasonably insignificant. Another key 

feature to note is that when the normal fluid and superfluid rotate with the same 

angular velocity the frequency of their modes are identical as one would expect. 

5.3.3 Canonical energy 

The motivation for investigating the oscillations of our system in a Lagrangian per­

turbation framework is that it gives us the opportunity to assess the mode stability 

through the canonical energy. A positive canonical energy suggests a stable mode 

while a negative canonical energy signifies a secular instability. Finally a dynam­

ically unstable mode corresponds to zero canonical energy. In Section 4.6.4 the 

canonical energy for the normal modes of an entrainment free two fluid system was 

constructed in the form of equation (4.186). VVe now use this result to investigate 

the stability of the oscillations of our cylindrical system. Since the modes consist 

of one of the fluids oscillating while the other remains stationary we construct the 
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Figure 5.4: The figure shows the fundamental mode and the lowest three p modes 
for the neutrons in a rotating superfluid cylinder. The configuration is such that the 
two fluids are rotating uniformly around the same axis at different angular velocities. 
We consider a cylinder with 90% neutrons, similar to what one would expect in a 
neutron star. We observe that the modes are all most influential in the outer layers. 
The parameters used in this example are m = 2, Dn = 0.2, Dp = 0.15, K = 0.1. 
The normalisation is such that ~~(R) = 1. 

canonical energy for the neutron modes and set ~p = O. After some manipulations 

the equation in our cylindrical system becomes, 

Ee C lR {-m2pnr2e¢~~' + (~n2[-2m2r4D~ - 4mr 4(Jn Dn + 4r4(J~] 
+ ~~~:;[-2m2rpn - 2m2r2Pn' + 4mDn(Jnr3] 

+ (~:;)2[-2m4Pn + 4m3(JnDnr2 - 2mr2(J~]) P~dr (5.12) 
r 

Where C is a normalisation constant. The canonical energy was calculated for the 

various modes of the two fluid system, see Table 5.2. It was found that for the 

configuration chosen the f and p modes had positive canonical energy while the 

canonical energy of the r modes was negative. This leads to the conclusion that 

the r modes are unstable to gravitational waves. This agrees with the conclusions 

reached in Andersson, Comer & Grosart [12] ,>vhere we use the canonical energy to 
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Figure 5.5: The figure shows the lowest four r modes for the neutrons in a rotating 
superfl:uid cylinder. The configuration is such that the two fluids are rotating uni­
formly around the same axis at different angular velocities. We consider a cylinder 
with 90% neutrons, similar to what one would expect in a neutron star. In contrast 
with the f and p modes it appears that the r modes are more influential in the inner 
regions than the outer regions. The parameters used in this example are m = 2, 
Dn = 0.2, Dp = 0.15, K = 0.1. The normalisation is such that ~~(R) = 1. 

show that all r modes are secularly unstable to gravitational radiation. 

In Section 4.6.7 we discussed the onset of a gravitational-wave driven CFS instability 

at the point where the (inertial frame) pattern speed of an originally backward 

moving mode changes sign. vVe investigate this for our two fluid system. By setting 

Dp = 0 we expect the instability to appear as the mode frequency changes from 

w > mDn to w < mDn' Figure 5.8 illustrates the effect of varying the neutron 

rotation rate, Dn , on the canonical energy of the originally backward moving f mode. 

Also plotted is the inertial frame pattern speed. vVe observe that the canonical 

energy becomes negative, signifying the onset of an instability, at the point where 

the mode becomes co-rotating confirming our analytical results. 
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Figure 5.6: The graph shows how the eigenfrequencies oj the j , p and l' modes 
change as On is increased whilst Op = O. The graph shows the eigenfrequencies 
for the modes of both the neutron fluid and the proton fluid. As On increases the 
frequency of the neutron modes decrease . However since the modes are coupled only 
through the background gravitational potential the effect of the neutron fluid rotation 
on the proton modes is minimal. Another key feature to note is that when the proton 
fluid and neutron fluid rotate with the same angular velocity the frequency of their 
modes are identical as one would expect. An important observation is the absence of 
proton l' modes (since Op = 0). The parameters in this example are m = 2, Op = O. 
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Figure 5.7: The graph shows how the eigenfrequencies of the f , p and r modes 
change as On is increased whilst 0; = 0.05. The graph shows the eigenfrequencies 
for the modes of both the neutron fluid and the proton fluid. As On increases the 
frequency of the neutron modes decrease. However since the modes are essentially 
uncoupled the effect of the neutron fluid rotation on the proton modes is reasonably 
insignificant. A nother key feature to note is that when the proton fluid and neutron 
fluid rotate with the same angular velocity the frequency of their modes are identical 
as one would expect. The parameters in this example are m = 2, 0; = 0.05. 
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I Frequency I Mode I Canonical Energy I 

-3.49749994 p3 22.7622039 
-2.74945307 p2 25.9618476 
-1.96757817 pI 26.3387658 
-0.946015716 f 0.207443564 
-0.491015702 r1 -0.917476246 
-0.443750083 r2 -0.443750083 
-0.425859451 r3 -0.323072024 
-0.417031318 r4 -0.22729282 
-0.412187576 I;) -0.169533188 
-0.40906259 r6 -0.163646528 
0.541328013 fb 0.498597932 
1.25929677 p1b 7.74693899 
1.99390614 p2b 10.4634301 
2.72390604 p3b 11.0756489 
3.44914055 p4b 10.8534123 

Table 5.2: The canonical energies for the various modes of a two fluid system, 
in which the neutrons and protons are rotating at different velocities around the 
same axis. We consider a configuration with 90% neutrons similar to what one 
would expect in a neutron star. For the configuration chosen the f and p modes had 
positive canonical energy while the canonical energy of the r modes was negative. 
This leads to the conclusion that the r modes are unstable to gravitational wave 
emission. The parameters used in this example are K = 0.1, nn = 0.2, np = 0.15. 
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Figure 5.8: The graph illustrates the effect of varying the neutron rotation rate, 
nn, on the canonical energy of the originally backward moving f mode. Also plotted 
is the inertial frame pattern speed. We observe that the canonical energy becomes 
negative, signifying the onset of an instability, at the point where the mode becomes 
co-rotating confirming our analytical results . We consider an example in which 
np = 0 and m = 2. 
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Chapter 6 

The oscillations and stability of 

superfluid cylinders: the case with 

non-vanishing entrainment 

In the previous chapter we investigated the oscillations in superfiuid cylinders for 

the situation where the entrainment is zero. In order to model more realistic config­

urations we must take into account entrainment. In Chapter 4 we observe that the 

inclusion of non vanishing entrainment in our calculation drastically complicates 

the corresponding perturbation equations. To simplify matters we will consider the 

case of constant entrainment, more specifically we will assume 0: to be a constant. 

An alternative would be to choose cp constant, as was done by Prix and Rieutord 

[71] and by Prix, Comer and Andersson [69]. Then c n is constrained by equation 

(6.1), and we have 
20: Pn 

cp = - = -Cn 
Pp Pp 

(6.1 ) 

The justification for simplifying the equations in this way is that there are such 

great uncertainties in any realistic models which nuclear physics has provided for 

the entrainment that we may as well begin with the most straightforward case. In 

doing so we hope to gain insight into what we can expect in more realistic cases. 

Incorporating constant entrainment is already a big technical step and allowing it 

to vary will not change anything conceptually. 

The first step is to write the Lagrangian perturbation equations with entrainment 

in cylindrical coordinates. Scaling the variables as in Section 3.2, see Table 3.2, we 

obtain the following four equations, 
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and 

02~; [(OJ-lX) 32] -- -- T Px: 
OT 2 onX ny,w2 ./ 

+ ax; [ (~~:) ny,w' r'px (PX + 2r a;;) ] 
O~: [(OJ-lX) 22 3] + aT an m PXT - 2mcxaxwYXT 

x ny,w2 

X [( a J-l x ) ( 2 0
2 
P X a P x ) + ~r ~ TPx T ~ + T-;:;- - Px 

unX ny,w2 uT uT 

+ ({ [2cxaXT3ay] 

eX [( a J-l x ) 2 (a P X) 2 n 2] + '-,1 ~ m Px T-;:;- - 2px + 4mCXaXWYXT + 2mHxaXPxT = 0 
unx ny,w2 uT 

(6.3) 

Once again X and Yare the constituent indices which can represent either the 

neutrons or the protons. vVhen X represents the neutrons, Y represents the protons 

and vice versa. 

In the entrainment free problem we reduced the analogous system to four first order 

differential equations which we subsequently solved numerically in FORTRAN. In 

that simpler case the approach taken was to solve the first order differential equa­

tions in ~; for o~;'( / aT, differentiate with respect to T, and substitute o~; / aT and 

02 ~:'( / OT 2 into the remaining equations. This gave first order differential equations 

in ~¢'(. The coupling of the equations that has arisen as a result of non-zero entrain­

ment introduces slight complications. Performing an identical procedure gives us, 

instead of two uncoupled differential equations in ~¢'( and ~; as in the entrainment 

free case, two coupled equations which can be combined to give the following matrix 
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equation, 

A 
( 

a:f ) 
a~r = B 
Br 

~; 
(( 

~: 
~~ 

(6.4) 

Where A is a 2 x 2 matrix and B a 4 x 2 matrix. If A is invertible we can write, 

~ (~: ) = C or ~~ 
(6.5) 

Where C is a 4 x 2 matrix. However, if detA = 0 we observe the equations are 

singular. 

We write our equations schematically as a system of four first order differential 

equations. Equation (6.2) can be written as, 

OC X 
j X_"'_r + jXCX + jX~X + j cY = 0 

1 or 2 "'r 3 "'rp 4",rp (6.6) 

and we express equation (6.4) in the following form, 

0(( 
g x_rp + gXCX + gX~Jf + gX~Y + gXCY = 0 

1 or 2 "'r 3 "'rp 4 "'r 5 "'rp (6.7) 

Where the coefficients are regular functions of r. 

6.1 Singularities 

It is clear that problems may be encountered at points where the coefficients j{'\ 

and g{ vanish. At such points our equations are singular and numerically we should 

expect difficulties. The location and nature of these singularities will be investigated 

throughout this section. 

For the first two equations the singularities arise when 

j{ = 0 (6.8) 

From equation (6.2) we see that this corresponds to, 

(6.9) 

and, 
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( p~) I (aMP) -:;:2 = -2awpn (Tp m anp (6.10) 

The position of these singular points vary with frequency. The quantities p'ilr2 vary 

with r going from infinity at the centre to zero at the surface. Since m (aMx I anx) 

is always greater than zero the first singular point will be encountered at some point 

wi thin our cylinder if aWpn (Tn > 0, which I will refer to as condition ( a), and the 

second encountered if aWpn(Tp < 0, condition (b). Figure 6.1 illustrates when we 

expect these singular points to arise. 

For the equations involving derivatives of ~: we expect singular points when the 

determinant of matrix A vanishes. Let us look more closely at this matrix to see 

where the singularities occur. We have 

A=a (6.11) 

-2amp~ (~~:) 2 (Tn -(Tpm[4a2W~nr2 + p;p~Ypl 
nn,w 

where 

(6.12) 

and 
Yx = (PX ~ 2a) (aMX ) 

py anX n w 2 y, 

(6.13) 

The determinant of matrix A is therefore 

(6.14) 

·Which by substituting 

(6.15) 
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cx>o Qn , D (a) Satisfied 
, , 1,\ , , 

Wpn<O , , , , D (b) Satisfied 
' I 
'I Wpn=O 
~, 
I , 
I , 
I , 

"" (0 
-m.Q , , , 

PI , 
I \ Wpn> 0 , , , , 

\ , , , , 
crn.Qn , , 

CX<O 
Qn 

" -1 , 
~~ , 

\ , , Wpn<O 
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\, 
\ 

\ 
\ 

\, 
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... 

-mQ I \ -
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co D (a) and (b) Satisfied 
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, , 
-JJ:1{2 n , , 

Figure 6.1: The figures illustrate for which values of nn and np we expect to 
encounter singularities in equations (6.6) for various values of w. In the top figure 
we consider a > 0 and in the bottom figure we consider a < O. In this example np 
is kept fixed as we vary nn. For a > 0 we observe that if both fluids are moving in 
the same direction with respect to the pattern speed of the mode one singularity will 
be present. However, in the mixed region where one fluid is moving forward with 
respect to the mode, while the other moves backward no singularities are observed. 
In the a < 0 case we once again notice the existence of one singularity if both fluids 
are moving in the same direction with respect to the pattern speed of the mode but 
in the mixed region two singularities will be present. 
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can be written as, 

It is obvious therefore that equations (6.7) will be singular when ff vanish indicat­

ing that none of our equations are well behaved when condition (6.8) applies. In 

addition we also find singularities when, 

·Where 
4 2 2 a Wpn 2 

X = --,---~r 

P~P~ 

(6.17) 

(6.18) 

Interestingly, 5 is dependent solely on the background quantities and completely 

independent of the frequency, w. These are therefore different from co-rotation 

singularities, such as those observed in a differentially rotating single fluid problem, 

("Watts et al [86]), where the singularities arise at a point where the mode and the 

fluid are rotating with the same frequency. 

In order to investigate the nature of the singularities it is constructive to combine 

our four first order differential equations into one fourth order equation of the form, 

e XII
/! + (3 ,eX/II + eXII + 6 eXt + eX = 0 

7rXc,r )( c'r XXc'r Xc'r EXc,r (6.19) 

·Where 7rx, (3x 1 Xx 1 6x 1 and EX are all regular functions of r. vVhat we discover 

is that 7rx = S. The functions, ff, which cause concern in our first order system 

are not a problem in this equation or in any of the equations relating ({, ~¢" and 

~J to ~:"'(. vVe conclude therefore that all the functions and their derivatives are 

continuous at these points. It is important to remember, however, that the first 

order equations we are solving numerically are singular when f{ vanish and so 

care must be taken when integrating through these points. vVe deal with these 

singularities by performing a second order extrapolation across the singular points. 

The singularities that occur when 5 = 0 require greater consideration. Since they do 

not depend on the frequency, an appropriate choice of parameters may allow them 

to be avoided. In this way we can check our numerics without the complication of 

the singularities. In general, however, we need to worry about this problem since 

these singular points may be present in a realistic configuration. For a fixed value of 

the relative rotation and constant entrainment l~"'( and T vary with x. vVe proceed 
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by writing equation (6.17) in the following way, 

s = X2 + 2B(x)x + C(x) = 0 (6.20) 

If we assume there is a solution to this equation at r = rs , such that, 

(6.21) 

we can deduce that, 

(6.22) 

If the only possible solution to this equation is such that Xs is either negative or 

complex we can say that the singularity will not be present in our system. Equation 

(6.20) has real roots if B(xs)2 > C(xs). If C(xs) > 0 we notice that both the roots 

will be negative. Hence there will be no singularities if either, 

1. C(xs) > 0 and B(xs) > 0 or 

2. B(xs)2 < C(xs) 

The first case results in two real negative roots, if there are any solutions at all, and 

the second leads to two complex roots. However, 

1 2 2 4(Yn + Yp) - (YnYp - 40: T) 

l[(Yn - Yp)2 + 160:2TJ I- 0 

Thus case two never arises. Therefore we find there will be no singularities present 

if B(xs) > 0 and C(xs) > O. The first of these two conditions will apply if, 

(6.24) 

(6.25) 

(6.26) 
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In addition C(xs) > 0 if, 

giving finally 

(6.27) 

(6.28) 

(6.29) 

Using the relationship between the entrainment and the effective mass, equation 

(2.24), we discover condition (6.29) corresponds to, 

(6.30) 

By writing the effective mass of one constituent in terms of the other this can be 

written as, 

If we define the effective number density as, 

* Px nx =--
m* x 

the condition for singularity avoidance becomes 

n> n'X 

(6.31) 

(6.32) 

(6.33) 

Provided condition (6.33) holds it is straightforward to show that the condition 

(6.26) is always satisfied. Thus the singularity will not be present if the total 

number density of the baryons is greater than the effective number densities of 

both the neutrons and the protons. Predicted values of the effective masses for 

neutron stars give typically mx > ~mB which suggests that for any real system 

these singularities will not be a problem. 

Figure 6.2 illustrates the regions C(xs) > 0 and B(xs ) > O. Values of a that lie 

below both lines will satisfy the necessary condition for singularity avoidance. Since 

Pn and Pp tend to zero at the surface a negative value of the entrainment parameter 

a will ensure these singularities are never encountered. However, this does not 

necessarily mean that there will always exist a singular point for a > O. In fact if 

we look at S numerically we find that there is a small range of positive a where 

these singularities are not present, see Figure 6.3. 

Ideally we would like to solve the problem in both the situation where the singu­

larities are not present and the case where they are present. The latter involves 

investigating the behaviour of the functions at the singular points using a power 
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F igure 6.2: Th e graph shows the regions C (xs) > 0 and B (x s) > O. Th e area 
shaded grey represents points where the singularities that appear when detA = 0 
will definitely not be present. Th ese singularities occur in equations (6. 7), two of 
th e four first order difJerential equations that describe our superfluid cylinder with 
entrainment. The configuration considered is K = 0.1 , stn = stp = 0.1. 

series expansion. T he complexity of our equat ions makes t his unfeasible in the t ime 

availab le and so we chose to investigate in detail t he fo rmer problem while for t he 

second case we will simply out line the process t hat would be involved and discuss 

t he complications. 

6.2 Boundary conditions 

6.2.1 At the centre 

In order to characterise the behaviour of t he solut ions at the centre we approximate 

the background densit ies , as in Section 3.2, as power series of the form , 

Pn = 1 + a2r 2 

2 Pp = bo + b2r 

(6.34) 

In order t o satisfy our system of equat ions t he solut ions, f,;.Y and f,;pY, must vanish 

at T = O. A power series expansion around the centre gives (to leading order) , 
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Figure 6.3: If a < 0 we have shown that the gl singularities will not appear in 
our cylinder. How ever, th ere is also a small range of positive a in which they will 
not be present. We perform a numerical analysis to investigate the regions in which 
condition (6.20) is not satisfied for all 0 < r < R. The shaded area is a region in 
which the singularities will not be present. The configuration considered is K = 0.1 , 

.on = Dp = 0.1. 

~:'( = Axrax 

~¢'( = B x rbx 

(6.35) 

vVe observe that , to first order , the two sets of equations (the one wit h X = nand 

the one with X = p) decouple at the centre. The resulting constraint is identical 

to t hat found in the entrainment free case . 

~:'( = Axrm - 1 (6 .36) 

v Ax m 
~¢\ = --r 

m 

vVe obtain two linearly independent solut ions by considering different values of An 

and Ap. For simplicity we initially consider An = 1 and Ap = 0 fo llowed by An = 0 

and Ap = 1. The true solution is a linear combinat ion of the two results. 
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6.2.2 At the surface 

In the entrainment free problem we imposed a condition on the eigenfunctions at the 

surface to ensure regularity of the solutions. This corresponded to the Lagrangian 

perturbation of the pressure vanishing at this point. Ideally in this more complicated 

problem we would construct a similar constraint. However, the assumption that 

a = constant leads to a highly unphysical surface. It is unlikely that as the fluid 

densities vanish the entrainment remains constant and in this sense the behaviour 

near the surface is artificial. We find that there is no longer a singularity at the 

surface. The densities of the two fluids vanish, yet the entrainment remains finite 

and hence the terms involving the entrainment dominate the system. Therefore, 

in order to guarantee that the solution is regular as the entrainment vanishes we 

impose an identical constraint as that imposed in the entrainment free problem. 

r:X B 2 
c'r = XCIX (6.37) 

(6.38) 

vVith this condition imposed we are left with the following four equations which 

must be satisfied at the surface, 

at;,X - a; [2a()xwyxr4
] - ~:'([6a()x VVy~'\-r3] + ~(n2amr2()x(()x - 2mwyx)] 

~J[2m2a()x()yr2] = 0 (6.39) 

and 

x -a:: [2ma()xwYXr3]- ~:'([2a()~r3] + ~;[2a()xr3()y] + ~:[4ma()xwYxr2] = 0 

(6.40) 

Initially it was assumed that these equations would automatically be satisfied by the 

numerical Runge-Kutta routine when integrating from the surface. Subsequently a 

more detailed approach which involved solving the above system analytically at the 

surface resulted in almost identical results, see Table 6.1. The main discrepancy be­

tween the two methods arises as a consequence of the fact that in the initial method 

our two independent solutions were such that one of the two fluid displacement vec­

tors vanished at the surface. In the more detailed calculation a combination of the 

two fluid displacement vectors was required to satisfy the analytic solution. vVe are 

confident that these solutions are precise enough to illustrate the general behaviour 

of our toy problem. Thus in this work we present the results from the first case. 
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Mode Frequency using Frequency using 

first approach second approach 

pg mode -4.271 -4.275 
P8 mode -3.825 -3.825 
P7 mode -3.795 -3.795 
P6 mode -3.350 -3.351 
P5 mode -2.890 -2.900 
P4 mode -2.622 -2.600 
P.3 mode -2.422 -2.400 
P2 mode -1.951 -1.912 
PI mode -1.463 -1.444 
f mode -1.212 -1. 239 

Table 6.1: In order to guarantee that the solution at the surface is regular as 
the entrainment vanishes we impose an identical constraint as that imposed in the 
entrainment free problem. We consider two different methods of initiating our nu­
merical integration, one which relies on the Runge-Kutta routine automatically sat­
isfying any additional constraints and a second in which we insist these constraints 
are satisfied by analytically solving the equations at the surface. The results indicate 
that the two approaches give almost identical results. In the table all the modes are 
moving forward with respect to the fluid. 

6.3 Eigenvalues and matching 

As was mentioned earlier there exists two independent solutions initiating at the 

centre and two initiating at the surface. The desired solution will be a linear 

combination of the two independent solutions from the centre matched to a linear 

combination of the two independent solutions from the surface. We can construct 

an equation at the matching point, 

~~(c1) ~~(c2) ~~( sl) ~~(s2) 

d l 
~¢(c1) + d2 

~¢(c2) 
= d3 

~¢(sl) + d4 
~¢(s2) 

(6.41) 
~f(c1) ~f(c2) ~f(sl) ~f(s2) 

~~(c1) ~~(c2) ~~( sl) ~~(s2) 

'Where c means from the centre and s from the surface. vVe can write this as a 

matrix equation, 

~~(c1) (~(c2) -~~(sl) -(~(s2) dl 

~¢(c1) ~¢(c2) -~¢(sl) -~¢(s2) d2 
=0 (6.42) 

~f(c1) ~f(c2) -~f(sl) -~·f(s2) d3 

~~(c1) ~~(c2) -~~(sl) -~~(s2) d4 
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For the existence of non-trivial solutions for J we require the determinant of the 

above matrix to vanish. We shall call this matrix Y. By finding where detY 

vanishes we are able to obtain the eigenvalues and corresponding eigenvectors of 

the system. 

6.4 Ordinary and superfiuid modes 

In many previous studies of superfluid neutron star oscillations [54], [55], [76], [10], 

alternative variables were introduced in an attempt to distinguish between modes in 

which the neutrons and protons were co-moving, sometimes referred to as ordinary 

modes, and those in which the two constituents were counter-moving, superfiuid 

modes. Namely, 

(6.43) 

and 

(6.44) 

'Where xp is the proton fraction and Xn the neutron fraction. Prix [71] showed that 

it is only in the non-stratified case, i.e. when there is no composition gradient, that 

the two types of mode decouple. In general the modes will not be purely co-moving 

or counter-moving. However, using the above variables does allow us to determine 

if modes are predominantly of one or the other type. During analysis of the results 

it is often constructive to make the separation into ordinary and superfiuid modes. 

6.5 Negative entrainment 

We consider two specific background configurations; one in which K = 1 and the 

neutron and proton central densities are similar and another in which K = 0.1 

and we have central neutron fraction close to what we would expect for a typical 

neutron star. The density profiles for these configurations are illustrated in Figures 

3.3 to 3.7. 

Following the same strategy as in the entrainment free case we begin with a local 

analysis of the equations to investigate the qualitative nature of the solution using 

propagation diagrams. Subsequently we investigate how the frequency of the modes 

change firstly as we vary the relative rotation for fixed entrainment and secondly 

as we vary the entrainment for a fixed relative velocity. 

6.5.1 A local analysis 

We investigate the local behaviour of our equations by assuming the modes take 

the following form, 
1 

~T = -~7'k exp (ikr) 
T 

l18 

(6.45) 

(6.46) 



Substituting these into equations (6.6) and (6.7) leads to a dispersion relation be­

tween k and w. Regions in which waves can propagate are regions in which k has 

a real part for real w. Figures 6.5 to 6.6 illustrate the effect of decreasing the en­

trainment function, a slowly from 0 to -1 and Figure 6.7 illustrates the effect of 

varying the relative rotation, R. The blue areas represent regions where we find 

four solutions to the dispersion relation in which k has a real part and hence there 

exists the possibility of four propagating waves. The grey regions highlight where 

two waves can propagate and the white regions are where we find only evanescent 

solutions. Figure 6.5 is the propagation diagram for the situation where a = O. It 

is identical to a superposition of the two independent propagation diagrams that 

exist in this case, one for the neutron fluid and a second for the proton fluid. This 

result is identical to that found in Section 5.2. As we introduce entrainment to the 

problem we notice that the propagation diagrams very rapidly become exceptionally 

complicated. The Figures not only illustrate the emergence of additional regions of 

propagation but also highlight the complexities introduced by the ff singularities. 

It appears the sing'ular points, represented in the Figures by a red line, split the 

propagation regions. Since the solutions are regular at this point I expect that this 

splitting is a consequence only of the way in which we have chosen to express our 

equations and in no way represents a physical effect. However, the general shape 

of the diagrams should give an approximation of where we can expect to observe 

oscillatory modes. 

A key observation concerns the regions of propagation of the r modes. In the 

entrainment free case, Figure 6.5, we observe two distinct R-regions corresponding 

to the oscillations of the individual fluids. The location of these regions is directly 

beneath the line w = mDx such that the r modes will all be moving forward with 

respect to the corresponding fluid. In the mixed region mDp < w < mDn the proton 

r modes will move forward with respect to the protons but backward with respect 

to the neutrons. As we introduce entrainment the location of the proton R-region 

changes until it appears on the opposite side of the line w = mDp) see Figure 6.6. 

The neutron r modes still move forward with respect to both fluids but the proton r 

modes now move backward with respect to both fluids. The mixed region in between 

seems almost free of modes. Another interesting observation is the extension of the 

acoustic regions toward w = 0 as the magnitude of the entrainment is increased, 

particularly close to the surface. The same effects are observed as we increase the 

relative rotation for a fixed value of the entrainment, see Figure 6.7. 
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Figure 6.4: Key for propagation diagrams: Shaded areas represent regions where 
either 4, 2 or no waves can propagate. 
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Figure 6.5: The propagation diagram for an entrainment free superfluid cylinder 
in which the two fluids are rotating at different angular velocities around the same 
axis. In this case the regions of propagation correspond to a superposition of the 
two independent propagation diagrams that exist in this entrainment free case, one 
for the neutron fluid and a second for the proton fluid. The parameters we are 
considering are a = 0, K = 1, and n = 0.2. 
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Figure 6.6: The propagation diagrams for superfluid cylinders with non-vanishing 
entrainment in which the two fluids are rotating at different angular velocities 
around the same axis. The diagrams illustrate the effect of decreasing the entrain­
ment function, a. It appears the singular points, represented by a red line, split 
the propagation regions. As we increase the magnitude of the entrainment the loca­
tion of the proton R -region changes until it appears on the opposite side of the line 
w = mOp . The neutron r modes continue to move forward with respect to both fluids 
but the proton r modes move backward with respect to both fluids . The mixed region 
in between seems almost free of any modes. Another interesting observation is the 
extension of the acoustic regions toward w = 0 as the magnitude of the entrainment 
is increased, particularly close to the surface. The parameters we are considering 
are K = 1, R = 0.2, and from the top to the bottom a = - 0.01, a = - 0.1 , and 
a =-1. 
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Figure 6.7: The propagation diagrams for superfluid cylinders with non-vanishing 
entrainment in which the two fluids are rotating at different angular velocities 
around the same axis. The diagrams illustrate the effect of increasing the relative 
rotation. Again the singular points, represented by a red line, split the propagation 
regions. As we increase the relative rotation the location of the neutron R-region 
changes until it appears on the opposite side of the line w = mDn . The proton r 
modes continue to move forward with respect to both fluids but the neutron r modes 
move backward with respect to both fluids. The mixed region in between becomes 
almost free of any modes. Another interesting observation is the extension of the 
acoustic regions toward w = 0 as the size of the relative rotation is increased, par­
ticularly close to the surface. The parameters we are considering are K = 0.1, 
a = - 0.01, and from the top to the bottom n = -0.01 , n = -0.5, and n = -l. 
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6.5.2 Convergence and extrapolation across the singularity 

Although the solution is not singular at ff = 0 numerically we will encounter 

problems at these points. Ideally a Frobenius expansion around the singularity 

could be done, however, due to the complexity of the equations we instead chose to 

use a second-order extrapolation to obtain the solution across the singularity. It is 

important to test if this technique is accurate so we performed a convergence test. 

This involved finding a solution with three different number of steps say k, 2k and 

4k. In Figure 6.8 we plot the function 

(6.47) 

Since we are using a fourth-order Runge-Kutta method for numerical integration 

we expect that before we reach the singular point the solution should be fourth­

order convergent and we expect the above function to take a value of approximately 

16. However, after extrapolation we can no longer expect the solution to have this 

property. Since we use a second-order extrapolation across the singularity we expect 

the solution to be approximately second-order convergent, which is what we observe 

in Figure 6.8. 

6.5.3 The effect of relative rotation 

vVe investigate the effect of relative rotation of the neutron and proton components 

by varying R whilst holding a fixed. vVe recall that the relative rotation is defined 

as, 

In the co-rotating case, where R = 0, we find the coupling of the equations through 

the entrainment vanishes. The equations reduce to the entrainment free system and 

we recall from Section 5 that in this co-rotating case the modes are identical for both 

the neutrons and the protons. If we consider the modes in terms of the ordinary and 

superfiuid variables introduced in Section 6.4,zPsj = ~p - ~n and 1/Jo = xp~p + xn~n, 
it is obvious that 1/Jsj = 0 and hence we describe the modes as being ordinary. 

Relative rotation initiates a coupling between the neutron and proton equations. vVe 

begin by considering a configuration typical for a neutron star, where the densities 

are such that the cylinder is composed of approximately 90% neutrons. There 

are great uncertainties concerning appropriate values for the entrainment. It is 

predicted that in the neutron star core the entrainment is positive. Nuclear physics 

calculations put constraints on realistic values for this entrainment [18], [23]. In 

Prix & Rieutorcl [71] they state that these calculations give realistic values 'which 

lie between 0.3 :s; cp :s; 0.7. Although to demonstrate the qualitative behaviour 
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Figure 6.8: The graph illustrates the convergence of our numerical solution. Since 
we are using a fourth-order Runge-Kutta integration method we expect the solution 
to be fourth -order convergent. This would result in a value of 16 for Ck which is what 
we observe before we reach the singular point. Here we observe a decrease in Ck to 
a value of approximately 4 which tells us the solution at this point is approximately 
second-order convergent. Since we perform a second-order extrapolation across the 
singularity this is what we would expect. 

more clearly they consider the broader range - 0.8 :::; cp :::; 0.8 . Furthermore, recent 

work by Carter et al [27], [28] predicts negative entrainment for neutron star crusts. 

In the constant a case we are considering, since cp = 2aj PP' regardless of the value 

of a , the entrainment parameter cp will approach infinity at the surface. Although 

this is unphysical we already expect the behaviour near the surface to be artificial 

as a result of insisting a common surface for both the neutrons and the protons. 

To investigate the effect of relative rotation we consider the entrainment function, 

a = - 0.01 . Figure 6.9 illustrates how the frequency of the f modes and p modes 

vary with n. Subsequently the individual modes are focused on in more detail 

beginning in Figure 6.10 with the f modes, followed by the Pl modes in Figure 6.11 

and finally the P2 modes in Figure 6.12. Although the modes are not strictly co­

moving or counter-moving, we define ordinary-type modes, represented graphically 

by a solid line, as those which continue from n = O. Since in the co-rotating case 

we observe only modes of the ordinary-type the superjluid-type modes, represented 
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by a dashed line, appear to emerge from w = O. For this reason we find it difficult 

to resolve our solutions close to R = 0, and hence the shaded area in the figures 

represents the undetermined region. By looking at the eigenfunctions it is clear that 

1/Jsf dominates over 1/Jo for the superjluid-type modes whereas for the ordinar'!rtype 

modes the dominance lies with 1/Jo. 
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Figure 6.9: The graph illustrate how the frequency of the f modes and p modes 
vary with R. Although the modes are not strictly co-moving or counter-moving, we 
define ordinary-type modes as those which continue from R = O. Mile there are no 
avoided crossings between any two modes of the same type, we do observe avoided 
crossings between the ordinary-type modes and the superjluid-type modes. We find 
it difficult to resolve our solutions close to R = 0, and hence the shaded area in the 
Figures represents the undetermined region. The parameters in this example are 
a = - 0.01 and K = 0.1. 

While there are no avoided crossings between any two modes of the same type, we 

do observe avoided crossings between the ordinar'!rtype modes and the superjluid­

type modes. As in Prix et al [68] the crossings coincide with an exchange in mode 

properties. After such a crossing the ordinar'!rtype mode will become a superjluid­

type mode and vice-versa. Consider for example the avoided crossing between the 

ordinar'!rtype f mode and the superjluid-type Pi mode. Figure 6.13 illustrates this 

crossing. We consider two particular points on either side of the crossing, labelled 

points A --7 D, and investigate the change in the mode behaviour. Figure 6.14 shows 
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Figure 6.10: The graph illustrates in detail how the frequency of the f modes, from 
Figure 6.9, vary with R. We observe an avoided crossing between the ordinary­
type mode and the superfLuid-type mode. The crossing coincides with an exchange 
in mode properties. After such a crossing the ordinary-type mode will become a 
superfLuid-type mode and vice-versa. We find it difficult to resolve our solutions 
close to R = 0, and hence the shaded area in the figures represents the undetermined 
region. The parameters in this example are a = - 0.01 and K = 0.1. 

the ordinary and superfluid eigenfunctions, 7/Jo and 7/Js f, of each of these four modes. 

At point A we observe that the eigenfunction is dominated by the 7/Jo part which 

resembles an f mode. This is coupled to an 7/Js f part which is significantly smaller in 

magnitude and resembles a Pi mode. Consequently the mode at point A is labelled 

an ordinary- type f mode. The eigenfunctions at point B on the other hand, also 

shown in Figure 6.14, are dominated by the 7/Jsf part which we observe looks like a 

Pi mode. Therefore, we classify this mode as a superfLuid-type Pi mode. After the 

crossing the lower mode, at point D, is dominated by the 7/Jo part, resembling an f 
mode. We thus label this mode an ordinary-type f mode. The upper mode at point 

C, however, appears to have switched to a super fluid-type mode. The superfluid 

part of the solution , 7/Jsf, looks like a PI mode but the ordinary part of the solution, 

7/Jo now also resembles a P1 type mode. Prior to the avoided crossing the 7/Jo part of 

superjiuidrtype mode looked like an f mode. However, if we investigate closer to the 

crossing there is a very small region after the switch takes place where 7/Jo resembles 

an f mode. It is clear that the avoided crossing has resulted in an exchange in mode 
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Figure 6.11: The gmph illustmtes in detail how the frequency of the PI mod~s, from 
Figure 6.9, vary with R . We observe an avoided crossing between the ordinary-type 
mode and the superjiuid-type mode. The crossing coincides with an exchange m 
mode properties. The pammeters in this example are a = - 0.01 and K = 0.1. 

properties. Similar exchanges in mode character resulting from avoided crossings 

have been observed in many neutron star mode investigations, [68], [13], [90J. 
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Figure 6.12: The graph illustrate in detail how the frequency of the P2 modes, from 
Figure 6.9, vary with R. We observe avoided crossings between the ordinary-type 
modes and the superfiuid-type modes. The crossing coincides with an exchange in 
mode properties. The parameters in this example are a = - 0.01 and K = 0.1. 
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Figllre 6.13: We magnify the avoided crossing between the ordinary f mode and the 
superfiuid Pi mode to investigate the exchange of mode properties in more detail. 
Highlighted in the Figure are two particular points on either side of the crossing. 
Figure 6.14 shows the eigenfunctions at these different points illustrating the ex­
change in mode properties which results from avoided crossings. 
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Figure 6. 14: The Figure shows the eigenfunctions at various points before and 
after an avoided crossing. On the top left are the eigenfunctions found at point A 
where we observe that the mode is dominated by the 'l/Jo part which resembles an f 
mode. This part is coupled to the superftuid part, 'l/Jsf' The eigenfunctions at point 
B on the other hand, which appear on the top right, are dominated by the 'l/Jsf part, 
resembling a Pi mode. After the crossing at point D, seen on the bottom right, the 
dominant part of the mode is the 'l/Jo part, which looks like an f mode. However, the 
mode at point C, shown on the bottom left, appears to have switched to a superftuid­
type mode dominated by the 'l/Jsf part, which resembles a Pi mode. What we observe 
is that the avoided crossing coincides with an exchange of mode properties. 
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In the single fluid case we found an infinite number of r modes, moving back­

ward with respect to the fluid, lying closer together as they approached the line 

w = -mO. In the two fluid case we introduce the possibility of two distinct rota­

tion rates . There will therefore exist regions where modes can be moving forward 

with respect to one constituent and yet backward with respect to the other. These 

mixed regions are highlighted in Figure 6.15. In Prix et al (2004) [68] it was discov-
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moving forward with re.specl 

to the neutrons but backward 

Modes in this region will be 
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with respect to the neutrons. 
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Mixed region 

- 0.6 with respect to the protons. 
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Figure 6.15: Illustration of regions in which the modes are movmg m opposite 
directions with respect to the two different fluids. 

ered that the onset of the two-stream instability in the inertial modes occurred in 

or close to these so-called mixed regions. This serves as a strong motivation to in­

vestigate closely the superfluid r modes in our cylindrical problem. Due to the vast 

number of modes arising in this area we choose to represent our results schemati­

cally, see Figure 6.16. What we discover is that rather than finding modes which are 

predominantly either ordinary or superfluid, we find modes which predominantly 

involve motion in either the proton fluid or the neutron fluid. The amplitude of os­

cillation of one fluid remains small while the other fluid dominates. What we notice 

from Figure 6.16 is that the r modes corresponding to the fluid which is rotating 

faster predominantly move forward with respect to both fluids, where as the modes 

corresponding to the slower fluid tend to exist either in the mixed region or in a 

region where they are moving backward with respect to both fluids. The greater 

the relative rotation the fewer the number of modes we observe moving in different 
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directions with respect to the two fluids . This confirms the results concerning the 

allowed regions of propagation in Section 6.5.1. 

There are a number of particularly interesting features apparent in Figure 6.16 

such as avoided crossings and the merger of two modes at a critical value of the 

relative rotation. We consider these details individually beginning by concentrating 
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Figure 6.16: A schematic representation of the r modes for the superfluid cylinder 
with entrainment, highlighting key features. For n < 0, the proton r modes are 
observed to be moving forward with respect to both fluids. However the neutron r 
modes tend to exist either in the mixed region or in a region where they are moving 
backward with respect to both fluids. For n > 0 the reverse is observed. This 
confirms the results concerning the allowed regions of propagation in Section 6.5.1. 
There are a number of particularly interesting features apparent in this Figure such 
as avoided crossings and the merger of two modes at a critical value of the relative 
rotation. These features are focused on in Figures 6.17 and 6.19. The parameters 
in this example are K = 0.1, a = -0.01 . 

on a single mode in the region close to co-rotation, highlighted as region 1. We 

observe avoided crossings between proton-type modes, see Figure 6.17. Since at co­

rotation the frequencies of the neutro~type mode and the proton-type mode should 

be identical we hypothesise that the frequency of the neutron-type mode follows a 
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path from point (a) to point (b). We are unfortunately unable to resolve the modes 

in this region due to the fact that we have an infinite number of modes crossing each 

other. Figure 6.18 illustrates the modes at points 1 and 2 and emphasises why we 

label them as being either of neutron-type or proton-type. At point 1 the amplitude 

of the proton oscillation remains small while that of the neutron oscillation is large. 

At point 2 the reverse is observed. 
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Figure 6.17: This Figure is a magnification of region 1 from Figure 6.16 and 
highlights one particular r mode and its associated properties. We observe avoided 
crossings between proton-type modes. We are unable to resolve the modes in cer­
tain regions but since at co-rotation the frequencies of the neutron-type mode and 
the proton-type mode should be identical we hypothesise that the frequency of the 
neutron-type mode follows a path from point (a) to point (b). The parameters in 
this example are K = 0.1 , a = -0.01. 

We now investigate the modes in region two. What we observe is two modes merging 

at a critical value of the relative rotation. Further analysis shows that at this 

point the mode frequencies become complex signifying the onset of a dynamical 

instability. Figure 6.19 shows the real and the corresponding imaginary part of this 

unstable mode in detail. After the modes merge the mode frequencies are complex 

conjugates, and the real part of the mode appears to be approximately linear in 

R. This agrees with results of Prix et al [68] where it was observed that when 

inertial modes merged, becoming unstable, the real part of the frequency was linear 
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Figure 6.18: This Figure illustrates the modes at points 1 and 2, from Figure 6.17 
and emphasises why we label them as being either of neutron-type or proton-type. 
The graph on the left shows the modes at point 1 and we observe that the amplitude 
of the proton oscillation remains small while that of the neutron oscillation is large. 
At point 2, the graph on the right, the reverse is observed. The parameters in this 
example are K = 0.1 , a = - 0.01. 

in R . Figure 6.20 illustrates the modes before they merge. It appears that these 

are an f mode and a Pi mode. Not only are these modes interesting due to their 

instability they are also unusual in that it is not clear how they should be classified . 

The ordinary-type and superfluid-type f and Pi mode both occur at frequencies 

higher than this . The modes are also neither predominantly of one type or the 

other. However, what we observe is modes which become dynamically unstable at 

a critical value of the relative rotation signifying a two-stream instability. 

6.5.4 The effect of entrainment 

We investigate the effect of entrainment on the modes of our superfluid cylinder. 

Since we are ignoring perturbations to the gravitational potential , i.e. c5<I> = 0, 

when a = 0 we observe two independent sets of modes; one in which the neu­

trons move while the protons remain stationary and another where the neutrons 

remain stationary and the protons oscillate. Introducing entrainment eliminates 

this independence and introduces a coupling between the modes. Figure 6.21 illus­

trates that as mode frequencies approach each other instead of crossing they tend to 

avoid each other. These avoided crossings are only observed between ordinary-type 

modes and superfluid-type modes and never between modes of the same type. Dur­

ing this process the superjluid-type modes which are predominantly counter-moving 

become predominantly co-moving and the ordinary-type modes become predomi­

nantly counter-moving. As we move toward the entrainment free case the frequency 
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Figure 6.19: This Figure shows the modes in region 2 of Figure 6.16. What we 
observe is two modes merging at a critical value of the relative rotation and becoming 
complex signifying the onset of a dynamical instability. On the left we see the real 
part of this unstable mode and on the right the corresponding imaginary part. After 
the modes m erge the mode frequencies are complex conjugates, and the real part of 
the mode appears to be approximately linear in R. The parameters in this example 
are K = 0.1 , a = - 0.01. 
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Figure 6.20: This Figure illustrates the eigenfunctions of the modes before they 
merge. I t appears that these are an f mode and a Pl mode. The parameters in this 
example are K = 0.1, a = - 0.01. 
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Figure 6.21: This Figure illustrates the effect of varying the entrainment on the 
frequency of various modes. We observe many avoided crossings between ordinary­
type modes and superjiuid-type modes. During this process the superjiuid-type modes 
which are predominantly counter-moving become predominantly co-moving and the 
ordinary-type modes become predominantly counter-moving. As we move toward the 
entrainment free case the frequency of the superjiuid-type modes appear to approach 
infinity. Therefore close to a = 0 the Figure becomes overcrowded and to prevent 
confusion we do not try to resolve it and shade this area in grey. Interestingly the 
frequency of both the ordinary-type f mode and Pi mode are relatively unaltered by 
the introduction of entrainment. The parameters we consider in this example are 
K = 0.1 and n = 0.025. 

of the superjiuid-type modes approaches infinity. Therefore close to a = 0 the Fig­

ure becomes overcrowded and to prevent confusion we do not try to resolve the 

region near a = 0 and shade this area in grey. We have considered a case with 

approximately 90% neutrons and a small relative rotation, n = 0.025 , in order to 

relate the results to a neutron star. An interesting observation is that the frequency 

of both the ordinary-type f mode and Pi mode are relatively unaltered by the in­

troduction of entrainment. What does occur is the emergence of a vast number of 

superjiuid-type modes. However, if we consider a much larger relative rotation, see 

Figure 6.22, the frequency of the ordinary-type modes are greatly affected. In this 

case distinguishing the mode type from the eigenfunctions becomes difficult as they 

no longer appear to be predominantly of one type or the other. The split which 
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Figure 6.22: This Figure illustrates the effect of varying the entrainment on the 
frequency of various modes. The relative rotation in this case is much larger than 
that in Figure 6. 21 and we observe that in contrast to that case the frequency of the 
ordinary-type modes are greatly affected by a. The parameters we consider in this 
example are K = 0.1 and R = 0.4. 

was so apparent when the relative rotation was low is now much less obvious. We 

classify the ordinary-type modes as those which extend from the entrainment free 

results and the superfiuid-type modes as those which appear from infinity. What is 

clear is that there are two coupled families of modes which instead of crossing will 

avoid each other and exchange mode properties. 

6.6 Frobenius expansions around the singular points 

The singularities that are independent of the mode frequency and are present in the 

fourth order equation can be avoided if we consider negative entrainment. However, 

in neutron star cores the entrainment is generally expected to be positive so it is 

important to consider this case. We recall that these singularities arise when, 

7rX = S = 0 (6.48) 

Where trx is defined such that 

7r e X 1I1I + f3 eX III + e XII + 6 eX! + E e X = 0 X ':.r X':.r XX ':.r X ':.r X':.r 
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If we consider a point T = TO where such a singularity exists, we can hypothesise 

that there is nevertheless a solution of the form, 

00 

~; = xVLanXn (6.49) 
n=O 

where x = T -TO' We investigate the existence of such a solution by substituting the 

power series solution into the fourth order equation and equating coefficients of the 

dominant term (namely the term of lowest degree in x). If the resulting equation 

is independent of v there is no solution of this form. Otherwise the equation is a 

polynomial in v and we have an equation, known as the indicial equation, of the 

form 

P(v) = 0 (6.50) 

Since we have a fourth order differential equation there will be four roots of this 

indicial equation. If the roots are distinct and no two of them differ by an integer 

there will be four linearly-distinct solutions of the type considered. If, on the other 

hand, two or more of the roots are equal or differ by an integer we require solutions 

of a less simple character. 

VVe find that for our fourth order equation there are points where trx vanishes but 

all the other coefficients remain non-zero. Since the coefficients depend on T we can 

power series expand them around the singularity, such that 

(6.51) 

(6.52) 

and the other coefficients take the same form as (3. We have dropped the X subscript 

to avoid our equations becoming cluttered. What we find is an indicial equation of 

the form 

giving 

v(v - 1) (v - 2) (v - 3)7ri + v(v - l)(v - 2)(30 = 0 

v (v - 1) (v - 2) [ (v - 3) 7r 1 + (30 1 = 0 

Vi = 2 
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Assuming that f30/7r1 is not an integer, we see that we have 3 roots which differ 

from each other by integer values. Since VI > V2 > V3 we have one solution of the 

form 

(6.59) 

where 

(6.60) 

At this stage we introduce a function v such that there will also exist a solution W2 

where, 

(6.61) 

Substituting this into equation (6.19) gives the following third order equation in v, 

7rWIVIll +(47rw~ +f3wdv" +(67rw~ +3f3w~ +iWl)V' +(47rw~' +3f3w~ +2iW~ +OWl)V = 0 

(6.62) 

Assuming v takes the form 

00 

v = xt f.L(x) = xt ~ bnxn 

n=O 

we find the following roots, 

Consequently there exists a solution, 

where 

W2 = WI J X(V2- Vl- I ) f.L(x )dx 

WI J X-
2f.L(x)dx 

WI J (box- 2 + b1x- 1 + b2 + b3x + ... )dx 

[
II 2 

WI -box- + bi log x + b2x + "2b3x + ... ] 
XV1[UI(X) logx + U22(X)] 

00 

U22(X) = ~ cnxn 

n=O 
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The third solution is dealt with in an identical fashion. Again we begin by assuming 

we can introduce a function y such that there is a third solution, 

Following an identical procedure we find, 

W3 W2 J X(V3-V
l-

1)'IjJ(X )dx 

w2[logx + U33(X)] 

XV1 [Ul(X)(logX)2 + U32(X) logx + U33(X)] 

(6.69) 

(6.70) 

where the functions u( x) are all power series expansions which are analytic in the 

neighbourhood of x = O. Therefore at the singular points we find solutions of the 

form 

~;'( = X2Ul(X)+X2 [Ul(X) log(x) + U22(X)]+X2{Ul(X) [log(x)]2+u32(x) log(x)+U33 (x)} 

(6.71) 

Since x log(x) and x [log(x)]2 are regular at x = 0 we observe that ~; and its 

derivative at this point are in fact finite and continuous. However, the second 

derivative of ~;'( is singular. ~; can be inferred from ~; using the following relation, 

(6.72) 

where the coefficients are all regular functions of r. 'vVe deduce that since ~; depend 

on the second and third derivatives of ~;'( it must be singular. Similarly we note 

that since we can write, 

(6.73) 

both ~: and ~J are also singular at this point. We therefore conclude that at the 

singularity we have one function that is regular and three that are singular. 

It may seem unphysical that there exists a singular solution at any point within our 

system. However, such complications arise in numerous mode calculations, [86] [68]. 

In 'vVatts et al [86] the singularities resulted in a finite step in the first derivative 

which meant that there were two solutions that met the boundary conditions for any 

frequency; a continuous spectrum. Removing the step and looking simply at zero 

step solutions resulted in normal modes which could merge and become dynamically 

unstable. A major difference in their problem was that the singularity depended 

on the mode frequency. In this case the solution can be regularised by solving the 
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initial value problem. The resulting integral solution will not be singular and the 

continuous spectrum will have physical relevance. 

Since our singularities do not depend on the mode frequency we can not take this 

approach to overcome our problem. In principle we could use the Frobenius analysis 

to find an approximation to the solution close to the singular point. We could 

obtain one solution either side of the singularity and subsequently integrate in both 

directions and match with solutions from the centre and surface. In practise we 

expect the equations to be regularised by physics, [58]. For example, introducing 

terms such as superfluid dissipation or viscosity may eliminate the singularities we 

have encountered. The singular nature of our equations is almost certainly a result 

of assumptions or approximations we have made in constructing our system and is 

unlikely to be agenuine physical phenomenon. 

6.7 Constant en 

In the previous section we took constant entrainment to mean that the entrainment 

function ex is constant. The entrainment can also be characterised by the two 

dimensionless entrainment functions En and Ep such that, 

and 

2ex 
En =­

Pn 

2ex Pn 
Ep = - = -En 

Pp Pp 
(6.74) 

An alternative to choosing constant ex is to choose En to be constant. This is the 

approach taken by Prix et al [68] and Yoshida & Lee [89]. The explicit difference 

between the two possibilities is that in the first case we find that at the surface En -+ 

CXJ and the entrainment terms dominate the perturbed Euler equations. However, in 

the second case we observe that ex vanishes at the surface. The entrainment terms 

are no more influential at the surface than throughout the rest of the cylinder. It is 

interesting to investigate the effect this has on the system in a hope to determine 

whether or not the difficulties involving the singular points and the artificial surface 

condition are in any way connected to our decision to assume ex constant. vVe 

begin with the Lagrangian perturbation equations for En constant. In this case 

the equations are no longer symmetric with respect to nand p and in cylindrical 

coordinates may be written as, 

(6.75) 
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o~~ 2 [ ( O/-Lp ) 2 2 ( )] or r m onp Pp + EnWpnO"pr Pn - Pp 

+ ~~ [m (~~:) rpp(pp +ro;n) - 2DpO"pppr3 + EnWpnO"pr3(3Pn - pp)] 

cP [ 3 (0 /-Lp ) 2 2 2 2 2 2 2 2 ( )] c,¢ m onp Pp - mO"pppr + mEnO"pPnr + m EnWpnO"pr Pn - Pp 

+ et [mEnO"nr2(mwpnPp - O"pPn)] = 0 (6.76) 

(6.77) 

(6.78) 

Once again we have two first order equations and two second order equations. 

Following an identical procedure as in the a constant case we can make use of 

equations (6.75) and (6.76) to write equations (6.77) and (6.78) as, 

( 
a(i ) 

A a:! =B 
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and thus write our system schematically as, 

oeX 
f X_,>_r + fXe x + jXeX + f eY = 0 

1 or 2 '>r 3 '>C/> 4,>¢ 

and 
0( 

gx _¢ + gX eX + gX eX + gX e Y + gX e Y = 0 
1 or 2 '>r 3 '>¢ 4 '>r 5 '>¢ 

vVe will again encounter singularities when ff and g{ vanish. We can see immedi­

ately that, 

f n (Of-Ln) 2 
1 = m ann Pnr (6.79) 

and 

f p - 2[ (Of-Lp ) 2 2()] 
1 - r m onp Pp + EnWpnO"pr Pn - Pp (6.80) 

Clearly ff will vanish at the centre and at the surface whereas ff will vanish at the 

centre and at, 

EnWpnO"p(Pn - pp) 

m (B/-Lp) p2 
Bnp p 

(6.81) r= 

This singular point is similar to the ff singularities we discovered in the constant 

a analysis, however, in that case both fl and fi vanished at such points. We recall 

that the gl singularities appear when the determinant of matrix A vanishes, i.e 

when 

Once again we have both singular points which depend on the frequency and ones 

which depend solely on the background quantities. It is possible to chose a config­

uration where the frequency independent singularities do not exist, however, it is 

clear that we can also find parameter values where they are present. In this sense 

the problem is identical to that of the a constant problem. vVe can conclude that 

the singularities are not an artifact of the assumption that a = constant. 

In the a constant problem difficulties arose concerning how to define an appropriate 

condition at the surface. In the entrainment free case by insisting the equations were 

regular we were able to impose a suitable constraint. The aim, as we introduced a 

non-vanishing entrainment, was to identify a condition which satisfied the necessary 

equations but which also reduced to the regularity constraint as a became zero. The 

resulting procedure was to simply apply the entrainment free condition for all a and 

allow the numerical routine to insist that the equations were satisfied. This appeared 

to be effective, see Section 6.2.2, although it remains slightly artificial. It is thus 
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interesting to investigate whether a more suitable surface condition is apparent in 

the Cn constant case. Demanding equation (6.75) is regular at the surface we find, 

+ ~~(R) [mCJ~(cn - l)J 

(6.83) 

Equation (6.76) is regular at the surface. Close to the surface we can approximate 

the densities as Px = cx(R - r). Keeping only leading order terms in R - rand 

noting that at the surface Pp = K Pn we obtain, 

For the case where K = 1 this leads to, 

P( )[ (OMP) oPn(R) ] P()[ 2 2] ~r R m onp or - 2DpCJpR + cnwpn 2CJpR + ~<P R -mCJp + mcnCJp 

+ ~~(R)[mcnCJn(mwpn - CJp)] = 0 

(6.85) 

In this case we have two equations, (6.83) and (6.85), and four unknowns. Elimi­

nating two of the variables leaves us with two free parameters which we can assign 

appropriately to give us two independent solutions at the surface, as required. It is 

clear to see that equations (6.83) and (6.85) also reduce to the necessary constraint 

as Cn -----t O. However, if K #- 1 the equations are once again not singular at the 

surface and we have an identical problem to that found in the a constant case. 

It is apparent that the decision to choose a constant as opposed to Cn constant did 

not result in complications that were otherwise not present. The singular points 

and the problems at the surface seem to be generic of the problem and were not a 

result of our decision to use a constant entrainment. 

6.8 Comparison with the Eulerian case 

Finally we look at Eulerian perturbations in the two-fluid case with non-vanishing 

entrainment. Our motivation is to investigate ,vhether or not a similar analysis in an 

Eulerian framework would free us of the complications involving the singular points 

and the surface problems encountered in the Lagrangian example. The system is 

described by equations (2.19), (2.20) and (2.21). A perturbation can be applied 
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to this system such that, v~ --+ v~ + 6v~, <1> --+ <1> + 6<1>, Mx --+ Mx + 6Mx, and 

nx --+ nx + 6nx giving the following linearised Euler equations, 

the following perturbed continuity equations, 

a6nx n ( ,i) (' i ) ---at + Vi nXuvX + Vi unXvX = 0 

and the perturbed Poisson equation, 

(6.87) 

(6.88) 

Our intentions in this Eulerian analysis are to compare the perturbed equations to 

the Lagrangian perturbation equations. vVe thus consider an identical configuration. 

That is we consider two fluids in a cylinder, which are free to rotate at different 

uniform velocities around the z-axis. We take the Cowling approximation, i.e. 

assume 6<1> = 0, and assume the entrainment function, a, is constant. We also note 

that in principle 6fJ,x depends on the entrainment. We can write it as follows, 

- (afJ,x) (afJ,x) (afJ,x) 2 6 Mx = an 6nx + an 0 6ny + aw 2 6w 
x ny,w2 y nx ,w- nx ,ny 

(6.89) 

where 

( afJ,x) 1 (aa) 
aw2 

nX,ny = mE anx ny,w2 
(6.90) 

Since we are assuming a constant and since our equation of state is such that 

( ap,x) = 0 we find 
any 2 ' nX,w 

,_ (afJ,x) , uMx = a unx 
nx ny,w2 

(6.91) 

The result is six equations; two continuity equations and four equations obtained 

by taking components of each of the two Euler equations. The continuity equations 

become 

(6.92) 
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Taking the ¢ component of the Perturbed Euler equations gives us, 

(6.93) 

and taking the r component 

aov; X" x y 
a:;:-[2awyxr] - ov¢ [2Dxnx + 4awyx] + oVr [axr(nx - 2a)]i + oVr [2aaxr]i 

+ aonx [(ap,x) nxr] = 0 ar anx (6.94) 

In the Lagrangian case our system consists of four first order equations in ~; and 

~¢'(. In order to compare the Eulerian equations we eliminate onx from the above 

system by substituting from equation (6.93) into equations (6.92) and (6.94). In 

solving equation (6.93) for onx we observe that there is a singular point when, 

[ ( ap,x) 2 2] m anx nx - 2aaxwyxr = 0 (6.95) 

This is identical to the If singularities in the Lagrangian case. What results from 

these substitutions is four equations which can be written schematically as, 

(6.96) 

and 

An important observation is that a·{ = If. By substituting for aov~'( / ar from 

equation (6.96) equation (6.97) becomes, 

(6.98) 

Since X and Yare constituent indices we note that we now have one first order 

differential equation in ov~, one in ovf, and two coupled first order equations in 

ov¢ and ov~. The differential equations in o'u; are singular at af = If = O. This 

is identical to the situation in the Lagrangian analysis where the e( differential 

equations are singular when If = o. 'vVe can investigate the singularities of the 

ov; equations by writing the two equations which result from equation (6.98), one 
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with X = n, Y = p and another with X = p, Y = n , as 

6V X 

( ) 
r 

88vt 
6VY 

A a;:- =B r (6.99) 
88vr 6Vx 
a;:- ¢ 

6vY 
¢ 

vVe recall that the singularities correspond to det(A) = O. This gives the following 

condition for a singularity 

Once again these are singularities that depend solely on the background system 

and are independent of the frequency. We can choose parameter values where these 

singularities do not occur, however we can equally choose values where they are 

present. \Ve conclude therefore that a Eulerian framework is no less problematic 

concerning singular points than the corresponding Lagrangian framework. It is also 

clear that since equations (6.96) are singular at f{ = 0 and not at the surface 

identical difficulties will be encountered defining an appropriate surface condition. 

These results confirm that our choice to analyse oscillations and stability in a La­

grangian framework and defining constant entrainment as ex = constant does not 

introduce unnecessary difficulties. The singularities and surface complications ap­

pear to be generic of the superfluid cylinder problem. 
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Chapter 7 

Conclusions and future work 

Various different secular and dynamical instabilities can in principle exist in rotat­

ing, superfluid systems. Throughout this thesis the oscillations and stability of such 

a system have been investigated in detail. By developing a Lagrangian perturba­

tion framework, an initial step has been taken in constructing stability criteria for 

superfluids analogous to the single fluid results obtained by Friedman and Schutz 

[39]. It was shown that in the entrainment free, two-fluid case the onset of a ra­

diation driven instability at a critical rate of rotation remains unchanged from the 

single fluid case. At present we have yet to fully develop the problem with non­

vanishing entrainment. Since the inclusion of this effect introduces a much greater 

coupling between the two fluids constructing analogous stability criteria is an excit­

ing yet highly challenging prospect. However, normal mode calculations show that 

the inclusion of entrainment gives rise to numerous interesting modes. Not only 

do we observe a new family of superjluid modes we also observe avoided crossings 

of modes and the presence of instabilities at critical values of the relative rotation. 

This provides motivation to continue the Lagrangian investigations with the hope 

of obtaining stability criteria in this complex, non-vanishing entrainment case. 

Neutron stars are extremely complicated astrophysical objects, which to model fully 

requires an understanding of a vast range of physical extremes. General relativity, 

magnetic fields, supranuclear physics, particle physics and superfluidity are a few 

of the areas which must be considered in order to accurately describe these stars. 

Encompassing such an extensive range of physics into a single model is exceptionally 

challenging, and due to numerous uncertainties in each individual field unlikely to 

provide an accurate description of a real neutron star. Thus any analysis will 

have limitations and approximations which must be considered when making any 

conclusions about the astrophysical relevance of results obtained. Our investigations 

focllsed on the effect of sllperfluidity using a simple two-fluid model. Not only did 

we ignore general relativistic effects, magnetic fields and the presence of exotic 
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particles in the core we also neglected the presence of superfluid dissipative effects 

such as shear viscosity due to electron-electron scattering and mutual friction. For 

our instabilities to be important for real neutron stars the unstable modes must 

grow faster than the timescales related to this superfluid dissipation. The inclusion 

of these dissipative effects in our equations is highly nontrivial [61]. The approach 

to investigating their effect on damping times is to solve the simpler non-dissipative 

equations and calculate the damping time via the introduction of a real energy 

functional, E, such that, 
1 1 dE 

(7.1) 
T 2E dt 

The appropriate energy functional can be found in Lindblom & Mendell (1995) [54]. 

They showed that mutual friction tends to stabilise the f mode CFS gravitational 

wave driven instability in a rotating Newtonian star. However, in a subsequent 

paper [55] they proved that the CFS T mode instability can be suppressed by mutual 

friction only for a small fraction of the presently accepted models. They conclude 

that it seems unlikely that mutual friction is acting to suppress this instability in 

neutron stars. It would be interesting to investigate this damping time for the 

secularly unstable T modes and f mode shown to exist within our entrainment free 

superfluid cylinder. From the results of Lindblom & Mendell we can hypothesise 

that while mutual friction will most likely suppress the f mode instability the 

unstable T modes remain and thus could occur in real neutron stars. 

One reason unstable modes of oscillation are exciting is the prospect of the resulting 

gravitational wave emission reaching a detectable level. If this is achieved the 

information obtained could allow us to put constraints on the interior structure of 

the star. It is interesting therefore to investigate how efficient unstable oscillations 

of neutron stars are as a source of gravitational waves. To accurately model the 

gravitational waves from neutron stars we must use a relativistic description. This is 

incredibly demanding and we are often forced to work with Newtonian models and 

subsequently estimate the gravitational waves using a post-Newtonian approach. 

An estimate of the total energy radiated and the frequency of the signal may be 

enough to assess the relevance of an event as a gravitational wave source. We 

compare the effective gravitational wave strain he to the sensitivity of the various 

gravitational wave interferometers to investigate whether or not particular modes 

produce detectable signals. he can be evaluated using the following formula taken 

from Andersson (2003) [7]. 

( E) 1/2 ( f ) -1/2 ( D )-1 h ~ 5 X 10-22 
e ~ 10-3Nloc2 1kHz 15Nlpc 

(7.2) 

where E is the energy radiated, f the frequency and D the distance to the source. In 

149 



Andersson, Comer & Grosart (2004) [12] we discuss the gravitational wave emission 

from the oscillations of superfluid neutron stars. We calculate the current multipoles 

for a superfluid star which could be used to analyse the rate at which the motion 

generates gravitational radiation and hence the relevance of instabilities. These 

results are for a spherical configuration. Since our cylindrical system is not a very 

accurate representation of the shape of a real star it is not constructive to investigate 

the gravitational wave emission associated with our instabilities. However, the 

presence of the instabilities in the cylinder do give hope that the same modes will 

exist in a sphere. If we can investigate the corresponding oscillations in this system it 

will then make sense to investigate the amplitude of the gravitational wave emission. 

In principle a two-stream instability can operate in any system where there exists 

relative motion between two interpenetrating fluids. The onset of the instability 

occurs at a critical relative rotation [9]. It is unclear to what extent this instabil­

ity may effect true physical neutron stars, it is however interesting to consider the 

possibilities. It has been suggested that it may be a trigger mechanism for neutron 

star glitches. It is generally believed that glitches occur as a rotation difference 

builds up between the normal fluid, which slows down due to magnetic braking, 

and the superfluid neutrons which are unable to slow down due to vortex pinning. 

Since both the two-stream instability and glitches are predicted to occur at a critical 

relative rotation it is intriguing to hypothesise as to whether the first can be the 

cause of the latter. The question we must consider is whether or not realistic data 

can instigate the onset of this instability. The difficulty with this lies in the fact 

that there are great uncertainties in the values of the true parameters. Neutron 

stars are such complicated objects that so far no firm conclusions have been drawn 

on typical values of the entrainment function and on how big a rotational lag can 

be built up in various regions of the star. Much further theoretical work in this 

area is an essential requirement if we hope to understand the true astrophysical 

relevance of our instabilities. At present, the estimated critical point for the oc­

currence of a glitch event is at a relative rotation of R = 5 X 10-4 , [59]. In our 

calculation, since the superfiuid-type modes all originated from the origin, close to 

R = 0 distinguishing between modes was exceptionally challenging. Unfortunately 

this physically realistic region occurred outside of the area we were able to resolve. 

Inclusion of the perturbation to the gravitational potential, 6 <I> , would mean that 

even in the co-rotating case we should find both ordinary and superfiuid modes and 

would not expect the sudden emergence of a vast number of modes as we move away 

from co-rotation. Therefore including 6<I> is a possible way to clarify the uncertain­

ties close to co-rotation. Another limitation lies in our inability to investigate the 

modes when the parameters vvere such that the gf singularities appeared. This is 

disappointing as the conditions in a neutron star core lead to parameters whereby 
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this singularity exists. It is possible that an alternative numerical approach could 

allow investigations in this region. We used a FORTRAN numerical integration 

routine. However, Prix et al [68] worked with a spectral method code which by 

expanding the solution in terms of Chebyshev polynomials insists that the solution 

is regular. In fact they used the same linear eigenvalue solver package, LSB, that 

we made use of in Section 4.3. An identical approach in the superfluid problem is 

an appealing prospect. Provided the solution is in fact regular this approach will 

allow us to avoid the numerous difficulties introduced by the singularities in our 

system. 

The Lagrangian perturbation framework developed for our two-fluid system is in 

no way limited to superfluid neutron stars. The equations developed could equally 

describe any system involving two interpenetrating fluids. Primarily they may be 

of significance in laboratory situations involving rotating superfluid helium. Thus 

stability criteria developed could be use to investigate instabilities, such as the 

two-stream instability, in laboratory experiments. vVhat is particularly appealing 

is the possibility of testing the calculations and detecting these instabilities in a 

true physical system. Confirmation of the presence of the superfluid two-stream 

instability in a real system would give considerable confidence in the prediction of 

their existence in superfluid neutron stars. The primary consideration we must 

take to investigate this analogous system is to determine an appropriate equation 

of state. Investigating the relevant superfluid helium literature is therefore the first 

step we must take in order to move forward with this research. 

As well as extending the Lagrangian stability analysis to develop criteria for the 

onset of instabilities in superfluid systems with entrainment there are also many 

improvements that should be made to our mode analysis. In particular investiga­

tions into the singularities, their physical relevance and how to deal with them in a 

numerical investigation is a key step which should be the focus of more work. An­

other question our mode analysis raised concerned an appropriate choice of surface 

condition. Since the situation where each species extends from the centre of the 

star all the way to the surface is not a physically realistic model we believe that any 

condition at this point would be in some sense artificial. vVhile we therefore believe 

our boundary constraint is justified developing a more physically realistic condition 

would be desirable. Establishing a more realistic scenario would involve extending 

the protons and electrons further than the neutrons to mimic the configuration in 

the neutron star crust. A physically realistic model would also account for the elas­

ticity of this crust. It is clear that there is still tremendous scope for improvements 

and extensions to our work to enhance our knowledge of the effects of superfluidity 

in neutron stars. It is also undeniably an area of research full of exciting prospects 
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for interesting astrophysical effects. Thus while investigations may be challenging 

it is evident that if we hope to understand the dynamics of these stars we must 

continue this work. 
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Appendix A 

Numerical techniques 

Various numerical techniques are employed throughout this work to obtain solutions 

to systems of differential equations. In this appendix the main two methods used 

will be outlined. These are spectral methods and numerical integration. 

A.I Solving eigenvalue problems with spectral methods 

Solving boundary value, eigenvalue and time-dependent problems with spectral 

methods is a highly effective numerical technique. Using the harmonic oscillator 

as a simple illustration the general principles involved in solving ordinary differen­

tial equations with spectral methods are outlined in this chapter. For a more in 

depth introduction see [24], [45] & [30] while for a demonstration on how to use 

spectral methods to overcome some of the difficulties involved in solving equations 

which arise from astrophysical problems in the framework of general relativity see 

Bonazzola, Gourgoulhon,and Marck [22]. 

Solving differential equations with spectral methods involves expanding the solu­

tion to the equation in terms of some finite basis of polynomials or trigonometric 

functions. By minimising the residual function, which is obtained by substituting 

the approximate solution into the differential equation, the coefficients of the ex­

pansion can be found. The method uses test functions to ensure that the differential 

equation is satisfied as closely as possible by the truncated series expansion. There 

are three different methods classified according' to the choice of test function. In 

the Galerkin method the test functions are identical to the trial functions and each 

function satisfies the boundary conditions. The Tau method also has the test func­

tions equal to the trial functions but in this case they do not satisfy the boundary 

conditions, instead they are enforced by an additional set of equations. The third 

method is the pseudospectral method in which the test functions are delta functions 

located at certain grid points known as the collocation points. This introduction to 

spectral methods will focus on the final case. 
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Consider a differential equation defined by the operator L subject to certain bound­

ary conditions, 

Lu(x) = s(x) (A.l) 

The approximate solution, u, can be written as, 

N 

UN(X) = L Uk¢k(X) (A.2) 
k=O 

where Uk are the coefficients of the expansion, ¢k (x) are the basis functions, and N 

is the number of basis functions considered. The residual function is defined as, 

R = Lu - s (A.3) 

By requiring R to vanish at certain collocation points, X n , we arrive at the following 

equation, 

(A.4) 

Solving this equation with appropriately chosen basis functions and collocation 

points is found to give accurate numerical approximations to the solution. 

A .1.1 Choice of basis functions and collocation points 

In most cases in spectral methods Chebyshev polynomials are taken as the basis 

set. They not only form a complete basis but are easy to compute and converge 

rapidly. The Chebyshev polynomials are defined by, 

TdX) = cos(k cos- 1 x) (A.5) 

A suitable choice of collocation points is the roots of the first neglected basis func­

tions. For the Chebyshev polynomials this turns out to be, 

Xn = cos (~~) (A.6) 

A .1. 2 Boundary conditions 

There are two methods of imposing the boundary conditions in spectral method 

problems. The first involves adding additional explicit constraints, 

N 

L Uk¢k(Y) = CY, YfB (A.7) 
k=O 
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'Where B is the boundary. The second involves selecting basis functions that inde­

pendently satisfy the boundary conditions. 

A .1. 3 Eigenvalue problems 

The pseudo-spectral collocation method can be used to approximate eigenvalues 

and eigenvectors of boundary value problems. Consider the eigenvalue problem, 

Lu(x) = AU(X) (A.8) 

If we represent the operator L in terms of a matrix, the eigenvalues an eigenvectors 

of the system are simply the eigenvalues and vectors of the matrix. 

A .1.4 A simple example 

Consider the harmonic oscillator equation, 

(A. g) 

with the boundary condition being that u(±I) = O. For eigenvalue problems it is 

particularly useful to choose basis functions that independently satisfy the boundary 

conditions. This is because the explicit constraints which must be imposed if the 

basis functions do not satisfy the boundary conditions do not depend on A and as 

such the matrix equation is not a standard eigenvalue problem. This introduces 

complications in the eigenvalue calculation which do not exist otherwise. Therefore 

we define the basis functions, 

¢2n(X) = T2n(X) - 1 n = 1,2, .. . 

¢2n+ 1 ( x) = T2n+l (X) - x n = 1, 2, .. . 

By rewriting this problem as a generalised eigenvalue problem, such that, 

Hb = -ABb 

we find the matrix representing the operator H is simply, 

(A.I0) 

(A.l1) 

(A.12) 

(A.13) 

The double x m the index represents the second derivative and the collocation 

points are, 

(A.14) 
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In this basis set 

(A.15) 

If we consider the case where N = 4 then this equation becomes 

[ 

4 -16.97056274] Q = -A [-l.000000001 l.414213563] Q 

4 16.97056274 -l.000000001 -l.414213563 
(A.16) 

This give A1 = 12, A2 = 4 and the corresponding eigenvectors, 

Q1 = [ 0 ] 
l.0 

and (A.17) 

It is now trivial to convert these eigenvectors back into an ordinary Chebyshev basis 

by noting that, 

2n~(N-1) 

ao = - L b2n 

n=l 

(2n+1)~(N+l) 

a1 = - L b2n+1 

n=l 

Where an is the coefficient in the Chebyshev series expansion, such that, 

N-1 

u(x) = L an Tn (x) 
n=O 

Therefore the solutions in the ordinary Chebyshev basis are, 

0 -1 

-1 0 
~h = and Q2 = 

0 1 

1 0 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

Since it is straightforward to evaluate solutions to the harmonic oscillator problem 

analytically we investigate the accuracy of our spectral analysis. Figure A.l shows 

the first two solutions to the harmonic oscillator equation for the N = 4 case and 

the corresponding exact solutions. 'While the solutions are obviously similar to 

the exact results it is clear that there are significant discrepancies. To obtain a 

greater degree of precision we increase the number of basis functions considered. 
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Figure A.1: The first two exact eigenvectors jor the harmonic oscillator problem, 
alongside our appTOximate solutions obtained using a pseudo-spectral method. In 
this example we consider only 4 basis junctions, N = 4, and the exact solution is 
normalised such that Umax = 1. While the solutions are obviously similar to the 
exact results it is clear that there are significant discrepancies. 

Figure A.2 illustrates the effect of increasing N on the accuracy of the resulting 

eigenvalue solutions. As N increases the eigenvalues rapidly become within a few 

percent of the true solution. Since the y-axis is logarithmic and the graphs are 

roughly linear we conclude that the accuracy improves exponentially. However, for 

a particular value of N not all the calculated eigenvalues have a similar precision. 

With N = 25 for example we obtain 23 eigenvalues, 12 of which are accurate to 

within 0.2 percent and the rest of which are reasonably inaccurate. It appears that 

this is always the case, [24] . When applying a spectral method with (N + 1) terms 

typically the lowest N /2 terms are accurate to within a few percent while the larger 

N /2 numerical eigenvalues differ from those of the differential equation by such 

large amounts as to be useless . The only reliable test is to repeat the calculation 

with different N and compare the results. 

157 



>. 
v 
~ 
::l 
:.J 

~ (J.D I 

4 

Firsl eigenval ue 

"" Second eigenvalue 
" " " " " 

5 

" " " " " " " " " 

6 

" " " 

N 

" " " '" " '" , , , , , 
'" '" , , 

'" 
7 8 

Figure A.2: Illustration of the effect of increasing the number of basis functions 
considered on the accuracy of the solution. As N increases the eigenvalues rapidly 
become within a few percent of the true solution. Since the y-axis is logarithmic and 
the graphs are roughly linear we conclude that the accuracy improves exponentially. 

158 



A.2 Numerical integration 

Solutions to ordinary differential equations can be approximated numerically using 

numerical integration. A fourth order Runge-Kutta FORTRAN scheme is used to 

solve equations throughout this work. This is an extension of the Euler method 

using a trial step at the mid-point of an interval to cancel out lower order terms. 

Consider the curve in Figure A.3. 

y 

Yn+2 

Yn+l 

Xn 

I 
I 

I 
I 

_e 

Xn+l Xn+2 x 

Figure A.3: The Euler Method: Euler's method makes an approximation to the 
solutions at Xn+l by extrapolating along the derivative as shown by the dotted line. 

If we define the gradient at a particular point as dyjdx = f(x, y), Euler's method 

makes an approximation to the solutions at Xn+l by extrapolating along the deriva­

tive as shown by the dotted line. Thus, 

(A.23) 

(A.24) 

Where h is the step size. The second order Runge-Kutta method adds one extra 

step, as we can see in Figure A.4. The second order formula is 

(A.25) 

(A.26) 
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Figure A.4: Second Order Runge-Kutta Method: This is an extension of the Euler 
method using a trial step at the mid-point of an interval to cancel out lower order 
terms. 

Extending this to the fourth order formula gives, 

(A.27) 

(A.28) 

(A.29) 

This system is reasonably simple, robust and good for numerical solutions of differ­

ential equations. 
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Appendix B 

Cylindrical coordinates 

Many operators have a particularly simply form in Cartesian coordinates. However, 

in situations where a problem has a specific symmetry it is useful to use a coordinate 

system which exploits this symmetry. Much of the work in this PhD focuses on 

cylindrical systems and consequently we use cylindrical coordinates. This Appendix 

summarises the properties of such a coordinate system and explains how one can 

express operators using this framework. 

Cylindrical coordinates are an extension of the two-dimensional polar coordinates to 

three-dimensions by superimposing a height, z, axis. The coordinates (r, q;, z) can 

be related to the Cartesian coordinates (x, y, z) through equations (B.1) to (B.3). 

z 

~ 

ee 

r = Jx2 +y2 (B.1) 

tanq; 
y 

(B.2) 
x 

y 

z =Z (B.3) 

x 

Figure B.1: Cylindrical Coordinates 

The basis vectors in this coordinate system are defined as a set of orthonormal 

vectors pointing in the direction of increasing coordinate values. In contrast with 

Cartesian basis vectors, the cylindrical basis vectors depend on position; er(i') points 

in different directions for points with coordinates (x, y, z) = (1,0,0) and (x, y, z) = 

(0,1,0). As a result we observe that in cylindrical coordinates the partial derivatives 
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of the basis vectors with respect to the coordinates do not necessarily vanish, i.e 

aie; #- 0 for all i and j. The non-zero cases are, 

(B.4) 

vVe introduce the metric tensor, gij and the connection coefficients rt for cylindrical 

systems. These will be needed for various calculations throughout this thesis. 

(B.5) 

and 

r~j = [~ ~r ~ 1 ' r0 = [~ ~ ~ 1 ' r:J = [~ ~ ~ 1 (B.6) 
000 000 000 

For cylindrical coordinates, the physical components are denoted {vr , vcp, vz }. When-

ever a formula is derived in terms of the general covariant and contravariant vector 

components it is a good idea to convert the final result to physical coordinates and 

the physical basis. For cylindrical coordinates these conversion formulae are, 

Vl = Vr , 
1 v = Vr , (B.7) 

V2 = rvcp, V 2 = V¢ (B.8) , 
r 

V3 = V z , 
3_ v - V z (B.g) 

B.l Vector calculus in cylindrical coordinates 

The vector operator \7 can be expressed explicitly in cylindrical coordinates. We 

begin with the gradient, 

(B.lO) 

The divergence can be written as 

- 1 a 1 aFcp aFz 
\7. F = --(rFr ) + --+-

r ar r a¢ az 
(B.11) 
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The concept of divergence can be generalised to tensor fields where it is known as 

the covariant derivative, written 

(B.12) 

The curl of a vector F is, 

F- - (- loFz OF¢;) - (OFr OFz) - 1 ( a ( F) OFr) (B.13) V' x - er-- - - + e¢; - - - + ez - - T ¢; --
T o¢ OZ oz aT T aT o¢ 

And finally we can write the scalar Laplacian as, 

(B.14) 
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Appendix C 

Solving the two-fluid Lane-Emden 

equation with Green's functions 

A Green's function is an integral kernel that can be used to solve an inhomogeneous 

differential equation with boundary conditions. 

vVe can rewrite the Lane-Emden equation for two fluids in a cylinder, equation 

(3.44) as 

81f + ~ 8' + 8 = 1 ( s ) 
s 

(C.1) 

Where, 

(C.2) 

(C.3) 

(C.4) 

and a prime represents a derivative with respect to s. The Green's function is a 

function G(s, so) of the two variables s and So that satisfies, 

If 1 , ( ) G + -G + G = 0 s - So 
s 

(C.5) 

If we can solve for this equation for G(s, so), the Green's function, we can then 

obtain 8(s) as follows. Equations (C.1) and (C.5) can be rewritten as, 

1 d - -
--(s8') + 8 = 1(s) 
s ds 

~dd (sG' ) + G = o(s - so) 
s s 
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(C.6) xG- (C.7) xe 

d - - d -
G-

d 
(se') - e-(sG') = sf(s)G - s5(s - so)e 

s ds 

d - - -
ds[Gse' - esG'] = sf(s)G - s5(s - so)e 

If we now integrate this equation from 0 -+ S, , where S = yil + K R, 

[Gs!? - esG']g = 1S 

sf(s)Gds - soe(so) 

vVe can chose the term in the square bracket to equal zero leaving, 

soe(so) = 1S 

sf(s)Gds 

Rearranging and relabelling gives 

- 118 

e(s) = - sof(so)G(s, so)dso 
s 0 

(C.8) 

(C.g) 

(C.lO) 

(C.lI) 

(C.12) 

Thus once we know G we can obtain e. To solve for G we note that for s =I=- So we 

have 

and therefore 

1 
Gil + -G' + G = 0 

s 

G(s, so) = AJo(s) + BYo(s) 

Where Jo(s) and Yo(s) are Bessel functions. 

s < So G-(s, so) = aJo(s) 

s> So G+(s, so) = AJo(s) + BYo(s) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

Where the first result is achieved by noting that Yo(s) is singular at r = O. These 

two results must be consistent with each other and since G(s, so) is continuous they 

must equate at s = so, 

(C.17) 

Another condition we can impose on G(s, so) is that G(S, so) = 0, i.e the Green's 

function goes to zero at the edge of the star. 

165 



A = _BYo(S) 
Jo(S) 

(C.18) 

The final condition involves matching the derivatives of G(r, ro) at roo At this point 

the differential equation is 

d 
ds (sG') + sG = s5(s - so) (C.19) 

vVe can integrate this equation over the range So - E -+ So + E, and then take the 

limit as E -+ O. 

l
so

+
E 

[ d ] -d (sG') ds = So 
SO-E S 

(C.20) 

[sG,]s=so+t - [sG,]s=ro-t = So (C.21) 

[G,]s=so+t _ [G,]s=SO-t = 1 (C.22) 

+'( -') G s, so) - G (s, So = 1 (C.23) 

(C.24) 

Equations (C.17), (C.18), and (C.24) can be solved to give A,B, and ex 

(C.25) 

(C.26) 

Jo(S)Yo(so) - Yo(S)Jo(so) ex = --;--,--:-:,..:-:-,-------:--'-----',-------:-_'------'-c-----:'------'-c-----:-:;-

Jo(S)[Yo(so)J1(so) - Yl(SO)JO(so)] 
(C.27) 

Equation (C.12) can then be applied giving, 

e(s) = 202 + Qn S2 + (1 + K _ 202 _ Qn S2 ) ], (s) 
n 1 + Kn n n 1 + Kn 0 

- 2(1:~n) [Jo(s)Yo(s)(2SS2,-1(S) - 2S2) 

+ Yo(s)J1(s)(4s - S3) + sJO(S)Y1(S)S3,0(S)] (C.28) 

·Where S2,-1 (s) and S3,0 (s) are the Lommel functions. 
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This exact solution can be compared to our numerical solution illustrating that our 

numerical results are accurate. 

1~--~r-----r-----r-----r----'r----'-----'-----'-----'-----' 

0.8 

00.6 
Q. --Q. 

Q 
.;z; 04 c . 
Q) 

C 

0.2 

- Exact solution 

- - (Numerical error)xlOO 

----- ... 
."".' ........... 

" ... " ... " ... " ... " ... " ... " ... " ... 
O ~--------~~,,-"--------------------------------------... ~------~ 

..... _----

-0.2L---~----~----~----~----~----~----~----~--~----~ 
o 0.2 0.4 0.6 0.8 

Radius, r/R 

Figure C.1: The Figure illustrates the exact solution to the two-fluid Lane-Emden 
equation and also the error in our numerical integration. The error is defined as 
difference between the exact solution and the numerical solution, Pexact - Pn'Umerica/, 

and in the Figure has been multiplied by 100. 
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