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It is often claimed that supersymmetry naturally explains the observed dark 

matter relic density. We provide a quantitative study of the fine-tuning re

quired to fit the observed dark matter relic density within the Minimal 

Supersymmetric Standard Model (MSSM) and a semi-realistic type I string 

model. \¥ithin the MSSM we find the degree of tuning to be closely cor

related to the dominant annihilation channel of neutralinos in the early 

universe. Some annihilation channels, such as t-channel slepton exchange, 

can require no fine-tuning at all whereas others, such as annihilation via an 

on-shell Higgs hO , can require tuning at the 0.1% level. We go on to consider 

a semi-realistic type I string model. \¥e find many of the regions require the 

same degree of tuning as in the MSSM. Where there are large variations we 

find that they can be explained by relations between the input parameters 

of the string model and those of the MSSM. This opens up the possibility of 

guiding research into models of SUSY breaking by attempting to minimise 

fine-tuning. 
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Chapter 1 

Introduction 

1.1 Motivation 

The Standard Model of particle physics (SM) has survived extensive testing 

throughout the 20th century. At the beginning of the 21st, the discovery of 

neutrino masses, the observed relic density of non-baryonic dark matter and 

extreme sensitivity of the Higgs mass to Planck scale physics all suggest that 

era of the Standard Model is coming to an end. To solve these problems we 

must look for physics Beyond the Standard Model (BSM). 

One of the leading contenders for BSM physics is supersymmetry (SUSY). 

Low energy SUSY stabilises the Higgs mass, provides an excellent dark mat

ter candidate, naturally generates electroweak symmetry breaking (E'.¥SB) 

and has close ties to string theory. Unfortunately the Minimal Supersym

metric Standard Model (MSSM) has 124 free parameters, so concrete pre

dictions are hard to make. This freedom comes from our ignorance about 

the source of SUSY breaking. To make contact with experiment it is im

portant to constrain these free parameters using present experimental data 
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or to derive SUSY and the mechanism of SUSY breaking from some more 

fundamental theory, such as a string model, with fewer degrees of freedom. 

Different regions of the remaining parameter space correspond to differ

ent mechanisms of SUSY breaking. Though each of these regions satisfy 

present experimental bounds, they are not all equally well-motivated. Two 

primary motivations of SUSY are that it provides a mechanism for break

ing electroweak symmetry and that it provides a natural explanation for 

dark matter. Different structures of SUSY breaking can provide more or 

less natural explanations of these phenomena. This is quantified in terms of 

the fine-tuning of the parameters that is required to produce both radiative 

electroweak symmetry breaking of the correct form, and the tuning required 

to produce the observed dark matter density. 

Models that require large fine-tuning are not ruled out. The MSSM 

is not proposed as a complete theory, rather it is an effective theory that 

arises from some more fundamental physics. It is this more fundamental 

theory that should remove any fine-tuning present within the MSSM, just 

as SUSY removes the tuning of the Higgs mass required within the Standard 

Model. Therefore if evidence for a model that requires large fine-tuning were 

discovered by experiment, the degree and type of fine-tuning should provide 

a clue as to the structure of the more fundan1.ental theory. 

Therefore by studying the experimental constraints on MSSM models 

and the fine-tuning required to produce EWSB and dark matter: 

• We constrain the parameter space allowing predictions for the phe

nomenology of supersymmetric theories at future collider and direct 

dark matter detection experiments. 
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• Studying the fine-tuning allows us to compare how naturally different 

regions explain EWSB and dark matter. 

• SUSY is motivated by its removal of the fine-tuning in the Standard 

Model. Equally, if the Large Hadron Collider (LHC) finds evidence for 

a finely tuned region of the MSSM parameter space we can use this 

fine-tuning to motivate a theory of SUSY breaking. 

1.2 Thesis structure 

This thesis is organised as follows. In Chapter 1 we introduce the Stan

dard Model (SM) and motivate the need to move beyond it. We specifically 

consider N = 1 supersymmetry (SUSY) in the form of the Minimal Super

symmetric Standard Model (MSSM). We highlight the reasons for taking 

SUSY seriously as well as noting the open questions. 

In Chapter 2 we look at the methods used to constrain supersymmetric 

models. 'lye summarise the most restrictive experimental bounds and look 

at the patterns of input parameters that are required to satisfy them. We 

focus particularly on the calculation of the dark matter relic density. There 

are a few distinct channels by which supersymmetric models can reproduce 

the observed relic density. Each has their own distinct signature. 'lYe also in

troduce means of measuring the fine-tuning required to provide electroweak 

symmetry breaking and dark matter. This allows us to quantify how nat

urally any given SUSY model explains two of the significant problems that 

plague the Standard Model. 

In Chapter 3 we study the MSSM with different boundary conditions. 
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We begin by looking at the simplest case, the Constrained Minimal Su

persymmetric Standard Model (CMSSM), before going on to study less re

stricted models. We catalogue the parameter space that satisfies all ex

perimental bounds and analyse the fine-tunings required in each case. This 

allows us to study the tunings required to produce the observed dark matter 

density through different annihilation channels. Once we move beyond the 

CMSSM we find regions that require no tuning to account for the observed 

dark matter density whereas others require tuning at the 0.1% level. 

In Chapter 4 we extend this analysis to a semi-realistic type I string 

theory. We introduce the model and the relevant aspects of model building 

within type I string theories. U sing experimental bounds we once again 

constrain the parameter space. We study the phenomenology of the remain-

ing regions, finding distinctive experimental signatures. By studying the 

fine-tuning required for EWSB and dark matter within we once again find 

natural dark matter. This also allows us to study the variation of fine-tuning 

between the MSSM and more fundamental theories, highlighting the use of 

fine-tuning as a guide to model building. 

The overall conclusions of this thesis are presented in Chapter 5. 

1.3 The Standard Model 

Before we consider SUSY, we must understand why there is a need for 

new physics. This means considering the present theory of particle physics, 

the Standard Model. The Standard Model (SM) of particle physics is a 

renormalisable gauge quantum field theory based on the gauge group GSM = 
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Field Spin SU(3)c SU(2)L U(l)y 
Left-handed quarks, QiL == (UiL, diL) 1/2 3 2 1/6 

Right-handed up quarks UiR 1/2 3 1 2/3 
Right-handed down quarks dm 1/2 3 1 -1/3 

Left-handed leptons LiL == (ViL' eiL) 1/2 1 2 -1/2 
Right-handed electrons em 1/2 1 1 -1 
Gluons, gCi, a E {I, ... , 8} 1 8 1 0 

Weak bosons, W a , a E {I, 2, 3} 1 1 3 0 
Hypercharge boson, B 1 1 1 0 

Higgs boson, ¢ == (¢+, ¢o) 0 1 2 1/2 

Table 1.1: Gauge representations of the Standard Model fields. Note 
that left-handed (right-handed) fields transform as doublets (singlets) under 
SU(2)L. There are three generations of fermionic matter. These are desig
nated by the subscript i on the quark and lepton fields where Ui E {u, c, t}, 
di E {d,s,b}, ei E {e,J.L,T}, Vi E {ve,vJL,VT }. 

SU(3)c ® SU(2)L ® U(l)yl. Every fundamental particle observed to date 

corresponds to a field within this quantum field theory. Table 1.1 lists these 

particles along with their gauge quantum numbers. 

The Standard Model has been fantastically successful in accounting for 

experimental data. All the leptons have been directly observed. The quark 

model accounts for the wide spectrum of hadrons observed. Quarks and 

gluons also explain data from deep inelastic scattering (DIS) experiments. 

The hypercharge and weak bosons mix when electroweak symmetry is broken 

to form the photon, Z and W±. These have been directly produced at 

colliders, and of course the existence of the photon was proved long ago. 

Beyond such direct evidence there is a wealth of precision data such as the 

measured rates of rare decays that test quantum corrections to processes 

from loop diagrams involving the Standard Model fields. From this data 

there are only a handful of signals that cannot be clearly accounted for by 

the fields in Table 1.1. The only particle that remains unobserved is the 

1 Here we summarise the Standard Model and introduce the features that are important 
to motivate the search for new physics. For the technical details of the Standard Model 
see for example [1], [2]. 
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Higgs boson. 

1.3.1 The Higgs mechanism 

Though it has yet to be observed, the Higgs boson is an integral compo

nent of the Standard Model. Without the Higgs, all the particles would be 

massless. We are forbidden from writing down a mass term for the gauge 

bosons and the fermions by the requirement that the Lagrangian be gauge 

invariant. Through the Higgs boson we can break electroweak symmetry 

and generate masses in a gauge invariant way. 

The Higgs mechanism is somewhat ad hoc within the Standard Model. 

One of the primary motivations for SUSY is that it naturally results in 

electroweak symmetry breaking (EWSB). As EWSB is both a key feature 

of SUSY and one of its primary motivations, we summarise EWSB in the 

Standard Model here. First we notice that we are allowed to write down a 

gauge invariant Yukawa interaction term of the form: 

If the Higgs field develops a non-zero vacuum expectation value (VEV), 

such terms give rise to masses for the quarks and leptons. In the Standard 

Model we postulate the Higgs potential to have the form: 
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where DJ1 is the covariant derivative: 

(1.3) 

Here g' is the U(l)y hypercharge coupling and g is the SU(2)L gauge cou-

pling. 

Now consider the form of the potential Eq. 1.2. If mJ-r > 0 and A > 0 the 

minimum of the potential is no longer at ¢ = O. This results in the Higgs 

field developing a non-zero VEV: 

(¢) = J~J-r. (1.4) 

Such a VEV spontaneously breaks electroweak symmetry (EWSB): 

SU(2)L @ U(l)y ---+ U(l)em. (1.5) 

To perform calculations in quantum field theory we must take perturba-

tions around the minima of the potential. Therefore we rewrite the Higgs 

field: 

1 ( 0 ) ¢(x) = J2 
v + h(x) 

(1.6) 

where v is the VEV, (¢), and h(x) is the physical Higgs field. If we substi-

tute Eq. 1.6 into Eq. 1.2, the first term of Eq. 1.2 gives rise to mass terms2 

for W± and the ZO. In the process of giving mass to the gauge bosons three 

2The physical fields W±, Zo,,' are formed of linear combinations of \iVa and B that 
have definite electric charge. We do not cover this step here as it is well described in 
textbooks and somewhat off the spine of the argument. Similarly note that Eq. 1.1 does 
not lead directly to the physical masses of the fermions, we must perform a rotation first. 
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of the Higgs bosons develop Goldstone modes and are "eaten", leaving one 

real physical Higgs boson, three massive gauge bosons and a massless pho

ton. Equally when we substitute Eq. 1.6 into Eq. 1.1 the Yukawa couplings 

generate a mass for the fermions. 

The Higgs mechanism provides a very clean method of providing mass to 

the Standard Model particles. Unfortunately no mechanism within the Stan

dard Model naturally generates a Higgs potential of the form in Eq. 1.2, we 

must put it in by hand. The various free parameters are set by experiment. 

The size of the Higgs VEV is set by the gauge boson masses. The entries in 

the Yukawa matrices are set by the observed masses of the fermions. In all, 

the Standard Model has 27 free parameters that must be set by experiment. 

1.3.2 Successes of the Standard Model 

The Standard Model has been rigorously tested since its inception and ac

counts for the vast wealth of experimental data [3] almost without exception. 

However it does more than accommodate the observed experimental data. 

It explains the observed phenomena and has a long list of predictions that 

have been borne out by experiment. 

Measurements of the ZO width at LEP have constrained the number 

of active neutrinos with masses mv < Mz /2 to be three. This requires 

that there be three generations of quarks and leptons which is in agreement 

with observations. The quark model successfully predicts the mass spec

tra of light mesons and baryons. The unitarity of the Cabibbo-Kobayashi

Maskawa (CKM) matrix [4] results in the Glashow-Iliopoulos-Maiani (GIM) 

mechanism [5] for the suppression of flavour changing processes and allowed 
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for the prediction of the charm quark. The Higgs mechanism explains how 

the bosons and fermions can acquire mass in a gauge invariant way. This 

in turn explains the short range of the weak force. The process of renor

malisation allows us to understand the running of physical parameters with 

energy which, when applied to the strong force, allows us to understand 

the confinement of quarks into hadrons. Finally, perturbative calculations 

allow us to calculate quantities to successively higher degrees of accuracy. 

These calculations are then tested by precision experiments and allow us to 

continually test the accuracy of the Standard Model. 

This phenomenal agreement with experiment coupled with a long list 

of accurate predictions makes the Standard Model one of the most robust 

theories in physics. 

1.3.3 Problems of the Standard Model 

Having survived many years of testing it is now becoming clear that the 

Standard Model will not be a valid description of particle physics at higher 

energies. In other words it appears to be an effective field theory. There are 

also good reasons to believe that major discrepancies with Standard Model 

predictions should appear at energies just above those currently probed by 

experiment. These expectations will be tested by the Large Hadron Collider 

(LHC) at CERN which is due to turn on in 2008. Until then, our best guide 

to physics beyond the Standard Model is in the few areas where the Standard 

Model already comes up short. 

• Neutrino masses 
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The Sudbury Neutrino Observatory (SNO) measured the flux of elec

tron neutrinos from the Sun, V e , and the total flux of neutrinos from the 

Sun. Though the total neutrino flux agreed with the predictions of the 

Standard Solar Model (SSM), the flavours of the observed neutrinos were 

in clear disagreement [6]. The observations could only be accounted for if 

neutrinos could oscillate between different flavour eigenstates between their 

creation in the Sun and their detection on Earth. Such oscillations can only 

occur if neutrinos have mass. However within the Standard Model, massive 

neutrinos are forbidden . 

• Dark matter abundance 

The success of the Standard Model is founded in the fact that all matter 

observed in experiment can be explained in terms of the fundamental fields 

in Table l.l. Unfortunately astrophysics experiments have shown that this 

is not true of all the matter in the universe. In 1933 Zwicky postulated [7] 

the existence of a large quantity of dark matter in galaxy clusters to account 

for their motions. More recently, the measurement of the velocity of stars 

within galaxies has been shown to require a substantial quantity of dark 

matter. Finally, proof of a large quantity of non-baryonic dark matter in 

the universe was provided by measurements of the anisotropies in the cos

mic microwave background (CMB) by the Wilkinson Microwave Anisotropy 

Probe (WMAP) [8, 9]. WMAP precisely measures the CMB, the radiation 

emitted at the surface of last scattering when photons decoupled from mat

ter and the universe became transparent to electromagnetic radiation. This 

data provides a wealth of information about the physics of the early uni-
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f 

Figure 1.1: The form of the loop corrections to the Higgs (mass? from 
Standard Model fermions f. 

verse. With regards to dark matter, it shows that dark matter is not only 

required to account for observations, but that it is non-baryonic and that 

it makes up roughly 23% of the energy density of the universe. Unfortu-

nately for the Standard Model, SM matter only accounts for 4%. Thus the 

majority of the matter in the universe is beyond the Standard Mode13 . 

• The hierarchy problem 

In the Standard Model the size of the Higgs VEV determines the particle 

masses. From Eq. 1.4 the magnitude of the VEV is determined by m'k 

and A. Therefore we can directly constrain the size of m'k through the 

experimentally measured particle masses. This requires the Higgs (mass)2 

to have a size of the order m'k = 0 (-(100 GeV?). At the tree level we 

can set the mass to have this size by hand. However as soon as we allow 

for quantum corrections we must add in corrections to the Higgs mass from 

diagrams such as Fig. 1.1. Each such diagram introduces a correction to the 

3rt could be objected that the rotation curves of gala.xies can be accounted for via 
modifications of Newtonian gravity (MOND) [10]. Such modifications are empirically 
motivated alterations rather than arising from a solid theoretical framework. However 
the theory is under active research and may well prove to be a fruitful contender to dark 
matter explanations of rotation curves. Kevertheless modifications of gravity still have a 
very hard time accounting for the WMAP data. 
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Higgs mass of the form: 

.6.m~ = ~~;: [-2A&v + 6m} In (Auv Imf) + ... J ' (1.7) 

where Af is the coupling between the Higgs and the fermion in the loop. 

Auv is the high energy cut-off, the energy at which new physics enters. As 

the Standard Model does not incorporate gravity, new physics must enter 

at or near the reduced Planck scale Mp = 2.4 x 1018 GeV. Unfortunately if 

Auv ;:;::j Mp these loop corrections mean that the natural size of the Higgs 

mass is of the order of the Planck scale4 , 16 orders of magnitude larger than 

the scale required by experiment. 

To end up with m~ of the correct size after quantum corrections we 

must set the tree-level mass to almost completely cancel out the quadratic 

divergences: 

(1.8) 

where m~o is the tree-level Higgs (mass)2. As .6.m~ '" A&v, we require that , 

the tree-level Higgs mass and the quantum loop corrections cancel exactly to 

16 decimal places. As these quantities are fundamentally unrelated within 

the Standard Model, such a cancellation can only be achieved through ex-

treme fine-tuning of the parameters by hand. Such a massive conspiracy 

between two unrelated quantities hints strongly at some deeper physical 

mechanism at work. 

40ne option would be to set Auv very low. However it proves extremely difficult to 
shield the Higgs mass from Planck scale corrections. See [16] for a good discussion of this 
point. 
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Therefore there are two problems with the Higgs mechanism within the 

Standard Model. Firstly we have we have to set the form of the Higgs 

potential by hand rather than it being a natural result of the theory. Sec

ondly quantum corrections to m1 quickly destroy such a potential unless 

we indulge in some extreme fine-tuning. 

• Gauge unification 

When we calculate the running of the gauge couplings with the energy 

scale, using the Standard Model renormalisation group equations (RGEs), 

we find that they appear to converge at some high energy scale. This, 

coupled with previous successful attempts at unifying forces, prompted at

tempts to build Grand Unified Theories (GUTs) in which the Standard 

Model gauge group GSM is a subgroup of some much larger group GOUT. 

Such models have many benefits, yet they all require the gauge couplings to 

unify. Unfortunately for such a programme, further work showed that, with 

the Standard Model RGEs, the gauge couplings do not unify. 

These problems have spawned a number of theories of BSM physics. 

Within this work we study one of the leading candidates for BSM physics, 

SUSY. 

1.4 Supersymmetry 

SUSY is a symmetry that relates fermions and bosons: 

Q [Boson) p:j [Fermion) 

Q [Fermion) p:j [Boson). 
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As fermions and bosons have different spins, the generator Q must carry 

spin-1/2. This means supersymmetry is a spacetime symmetry and as 

such extends the Poincare group to the super-Poincare group. The form 

of such algebras are limited by the Haag-Lopuszanski-Sohnius extension of 

the Coleman-Mandula theorem [11, 12]. This theorem requires the genera-

tors Q and Qt to have the commutation properties: 

(1.9) 

0, (1.10) 

[PIL, QJ o (1.11) 

where plL is the momentum generator. As we intend only to provide a broad 

overview of SUSY rather than a technical introduction5 , all spinor indices, 

and hence all spin or matrices, have been suppressed throughout. 

From the commutation properties we can see that one application of Q 

transforms a fermion (boson) to a boson (fermion), but two applications 

reverts it back to the original boson (fermion). Therefore the particle con-

tent of a supersymmetric theory naturally divides into groups of particles 

related to each other by the SUSY transformations. These are referred to as 

supermultiplets. As _p2, the mass generator, commutes with the operators 

Q and QT, particles in the same supermultiplet must have the same mass. 

Equally, Q and Qt commute with the generators of gauge transformations so 

particles within the same supermultiplet must have the same gauge quantum 

numbers. 

5There are many good sources for a technical introduction to SUSY, see for example 
[13, 14, 15, 16] 
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Under SUSY transformations particles with different spins transform 

separately. A single Weyl fermion has two helicity states, each of which 

transform differently under Q and Qt. Therefore a single Weyl fermion will 

have two scalar partners. This is required for supermultiplets to have the 

same number of bosonic and fermionic degrees of freedom. 

If we wanted, we could have a theory in which there were more than one 

copy of the generators Q and Qt. In such a theory we would have more than 

one set of bosonic partners for each fermion and vice versa. Though such 

models are interesting, especially in models with extra dimensions, they are 

not phenomenologically feasible in D = 4. Here we only consider N = 1 

SUSY in which there is only one set of generators. 

1.4.1 The MSSM 

We can use this new symmetry to extend the Standard Model by creating 

supersymmetric partners (superpartners) for all the Standard Model fields. 

Superpartners are represented by adding a tilde to the Standard Model 

notation. The naming convention depends on whether the new particle is a 

fermion or a boson. If the superpartner is a bosonic partner to a Standard 

Model fermion we prepend an s- (short for scalar) to the name of the SM 

particle. If the superpartner is a fermionic partner of a Standard Model 

boson, we append an -ino. So the partner of the gluon is called the gluino and 

is written 9 whereas the partner to the right-handed charm quark is called 

the scharm and is written CR. Note that though the subscript indicates a 

handedness the scharm is a spin-O particle and thus it has no handedness. 

Instead the subscript designates the handedness of its fermionic partner. 
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Spin 0 Spin-1/2 Spin-1 SU(3)c SU(2)L U(l)y 

QiL QiL - 3 2 1/6 
~ - -2/3 - 3 1 um um -
~ -
diR diR - 3 1 1/3 

LiL LiL - 1 2 -1/2 
~ 

em em - 1 1 1 
- gOL gOL 8 1 0 
- Wa Wa 1 3 0 

~ 

- B B 1 1 0 

Hu Hu - 1 2 1/2 

Hd Hd - 1 2 -1/2 

Table 1.2: The GSM representations of the field content of the MSSM. Note 
that right-handed field degrees offreedom have been CF-conjugated to make 
them transform as left-handed fields. 

However, merely adding a superpartner for every SM particle introduces 

problems. In the Standard Model there are no triangle anomalies as the 

contributions of the fermions in loops cancel exactly. When we supersym-

metrise the Higgs doublet we produce higgsinos, fermions with hypercharge 

y = +1/2. This introduces a non-zero triangle anomaly. To cancel this 

anomaly we need to introduce a second Higgs doublet with Y = -1/2. In 

this case the contributions from the Y = 1/2 and Y = -1/2 higgsinos cancel 

exactly leaving the theory anomaly free. It turns out that the extra Higgs 

doublet is also are required for the supersymmetric analogue of electroweak 

symmetry breaking. The doublet with hypercharge Y = +1/2 gives mass to 

the up-type quarks and leptons whereas the doublet with Y = -1/2 gives 

mass to the down-type quarks and leptons. For this reason they are often 

designated as Hu and Hd respectively. 

This completes the minimal field content required to create a consis-

tent supersymmetric field theory that contains all the fields of the Standard 

Model. This is known as the Minimal Supersymmetric Standard Model 
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Figure 1.2: In SUSY the correction to the Higgs (mass)2 comes from both 
fermion and scalar loops. 

(MSSM). The particle content is summarised in Table 1.2. 

1.4.2 The hierarchy problem revisited 

By supersymmeterising the Standard Model we more than double the num-

ber of fundamental fields in our theory. "What do we get in return? The 

most immediate result is that we solve the hierarchy problem of the Stan-

dard Model. In the Standard Model fermions in loops provide corrections 

to the Higgs mass of the form: 

.6.m~ = IAjl: [-2A~v + 6m} In (Auv Imj) + ... J . 
1671' 

(1.12) 

In section 1.3.3 we noted that there must be some conspiracy at work 

cancelling out the quadratically divergent terms to the Higgs (mass)2. It 

happens that if a theory contains a scalar particle that couples to the Higgs 

through a term of the form -Asl¢12ISI2, then it will provide a loop correction 

to the Higgs (mass)2 via processes such as that shown in the right hand 

diagram of Fig. 1.2. The size of the correction from such processes is: 

.6.m~ = As 2 [A~v - 2m~ In (Auv Ims) + ... J ' 
1671' 
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where ms is the mass of the scalar particle. Note that the quadratically 

divergent A~v term cancels exactly if and only if (i) there are two such 

contributions for every fermion and (ii) [Af[2 = AS. 

Within the MSSM we guarantee both of these conditions are fulfilled. 

Firstly, to even out the fermionic and bosonic degrees of freedom in each 

supermultiplet SUSY requires that there be two scalars partnering every 

Standard Model fermion, satisfying the first criteria. Secondly, when we 

construct our Lagrangian we find that the coupling strength to the Higgs 

of particles in the same supermultiplet must satisfy [Af[2 = As. Thus, via 

SUSY, we automatically remove quadratic divergences to the Higgs mass. 

There will still be a contribution to Lim'Jr that is sensitive to Auv but this 

sensitivity is only logarithmic. Therefore supersymmetric theories remove 

the need to tune the tree level Higgs mass to 16 orders of magnitude. 

1.4.3 Breaking supersymmetry 

Within the MSSM as presented so far there is a serious problem. If SUSY is 

an exact symmetry, superpartners must have the same mass as their Stan-

dard Model counterparts. This cannot be the case. A light select ron, for 

example, should have a mass of 0.511 MeV and would have been spotted 

years ago in collider experiments. Therefore SUSY must be broken. 

Despite many years of hard work, there is no leading model of SUSY 

breaking6 . To make progress we must parameterise our ignorance. We do 

this by adding SUSY breaking terms to the Lagrangian with coefficients that 

we set by hand. We require that a theory of SUSY breaking determine these 

6The mechanism behind SUSY breaking has been the focus of a lot of work over the 
years and has given rise to a substantial literature. For a recent review of work in this 
field see [17]. 
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parameters, until then we consider them as free inputs. As we do not want 

to reintroduce quadratic divergences to the Higgs (mass)2 we limit the SUSY 

breaking terms we can include. Terms that avoid quadratic divergences are 

called soft terms. The soft SUSY breaking Lagrangian is: 

_£MSSM 
soft 

+ 

(1.14) 

where the terms in bold are 3 x 3 complex matrices in family space. Once 

again we have suppressed spinor indices. 

As these terms explicitly involve the superpartners without their Stan-

dard Model counterparts they clearly break SUSY. In the first line we have 

explicit mass terms for the gauginos. In the second line we have trilinear 

couplings between three scalar fields that parallel the Yukawa couplings. In 

the third line we write masses for the squarks and sleptons. Finally in the 

fourth line we write a mass term for the two Higgs doublets as well as a 

bilinear term (b) that couples Hu and Hd. By varying these soft mass terms 

we are able to set the superpartners masses to lie beyond the present reach 

of experiment and so satisfy present experimental bounds. 

As we do not know how SUSY breaking occurs, in principle all of the 

coefficients of fields in Eq. 1.14 are arbitrary. As many of the coefficients are 

complex matrices, this introduces an enormous number of free parameters 

into the MSSM. After rotating away unphysical phases, we are left with 124 
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free parameters within the MSSM. 

If all these parameters were actually free then SUSY would have a serious 

problem. It is very hard for a theory with this degree of freedom to make 

any meaningful predictions. Only after enough data were collected to fix the 

majority of these parameters could the theory make solid predictions and 

thus be truly falsifiable. 

Thankfully we do not need to deal with the full 124 dimensional param

eter space. Firstly, the parameters of Eq. 1.14 are not a priori free. They 

should be generated dynamically through some mechanism of SUSY break

ing. Even without an explicit model of SUSY breaking, there are many 

well motivated proposals for the form the parameters of LsoJt should take, 

often specified at some high energy scale such as mGUT ~ 2 x 1016 Gev. In 

these models the parameters of LsoJt are determined by a small set of more 

fundamental parameters at the high energy scale. We then use the renor

malisation group equations (RGEs) to run their values to the low energy 

scale. It is these low energy values that then determine the phenomenology 

that would be observed in experiments. Secondly, in precision testing the 

Standard Model, a lot of possible BSM physics was ruled out. This exper

imental evidence tightly constrains many of the parameters in Eq. 1.14. In 

particular, the lack of observation of exotic flavour changing neutral cur

rents (FCNCs) constrains the off-diagonal elements of the sfermion (mass)2 

matrices to be vanishingly small. 

Within this work we make a number of assumptions to simplify the pro

cess of studying the MSSM parameter space. V.,Te take all of the parameters 

in LsoJt to be real. This is not ideal but the numerical codes presently 
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available are unable to cope with complex phases. We take sfermion and 

squark mass matrices to be diagonal to suppress dangerous FCNCs. Finally 

we take the trilinear terms to be proportional to the Yukawa matrices: 

(1.15) 

This minimal flavour violating scenario (MFV) helps in suppressing FCNCs 

and CP violating processes in addition to greatly simplifying the parameter 

space. However the MFV scenario is not a necessary condition FCNC and 

CP violation bounds. Therefore there are no hard phenomenological or 

theoretical reasons to expect that such a scenario must be realised. 

1.4.4 Breaking electroweak symmetry 

As well as SUSY, electroweak symmetry must be broken. However, whereas 

we have no good model of SUSY breaking, electroweak symmetry occurs 

naturally within the MSSM for most choices of the parameters in Lsojt. 

Not only does this answer one of the questions left open in the Standard 

Model, by requiring that electroweak symmetry be broken we fix some of 

the soft parameters. To understand electroweak symmetry breaking within 

the MSSM we need to consider the form of the Higgs potential. At the tree 

level this is: 

(1p,1 2 + mlJ IHul
2 + (1p,1 2 + mlJ IHdl

2 

+ t (g2 + g12) (I HuI 2 - IHd12)2 + ~g2lHuHdl2 

(BP,HdHu + h.c.) , 

21 

(1.16) 



where 9 is the SU(2h gauge coupling, g' is the U(I)y hypercharge coupling 

as before, J-L is a SUSY preserving Higgs mass and B J-L = b. 

For this potential to break electroweak symmetry the Higgs doublets 

must acquire non-zero VEVs. Via SU(2)L gauge transformations we are 

always allowed to rotate the fields such that the VEVs appear in the neutral 

components of the fields: 

(1.17) 

To give the correct masses to the Standard model particles we also require 

that v 2 = v~ + v2 = (174 Ge v)2. Though this fixes the magnitude of v 2 , it 

does not fix the ratio of Vu to Vd. This ratio is written tan f3 = vulvd and is 

an important quantity in phenomenological studies of the MSSM. 

For the Higgs potential to develop the correct symmetry breaking mini-

mum we must satisfy the relation: 

(1.18) 

For large tan f3 or small mld this reduces to: 

(1.19) 

In this limit electroweak symmetry is only broken if mlu is negative and 

has a magnitude slightly larger than J-L. In general, negative m1u is not 

necessary to achieve electroweak symmetry breaking, but it helps. 

For SUSY to naturally provide electroweak symmetry breaking it must 
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naturally generate soft Higgs masses with values that satisfy Eq. 1.18. In 

specifying our parameterisation of SUSY breaking we specify m'ir at some 
u,d 

high energy scale, taken to be mCUT throughout this work. To find their low 

energy values we run them down using the MSSM RGEs. However within 

the MSSM the Higgs RGEs are dominated by quantum corrections from 

the 3rd family squarks. These corrections naturally push m'Jr. to values 
u,d 

that satisfy Eq. 1.18. Thus SUSY provides a mechanism that generates 

electroweak symmetry breaking. This is known as radiative electroweak 

symmetry breaking (REWSB). 

Through the requirement that a SUSY model must exhibit REWSB and 

give the correct mass to Standard Model gauge bosons, we can fix the size 

of J.-L (up to a sign) and exchange the soft parameter b for tan,B. This is 

common in phenomenological studies and we do this throughout. We must 

sound a note of caution here. If m'ir are much larger than m~ (as they 
u,d 

must be), we must have a degree of cancellation between the soft Higgs 

(mass)2 and J.-L 2• This would suggest that J.-L2 and m'ir are related in some 
u,d 

way. Unfortunately as J.-L is a SUSY preserving mass term, it cannot be 

related to the parameters of .csoJt. If we are forced to consider soft masses 

msoJt > 10 Te V, the degree of tuning required becomes large. We consider 

this point in more detail in Chapter 2. 

1.4.5 The physical particle spectrum 

In the Standard Model the "va and B fields mix to create the physical W±, 

ZO and ,. In the MSSM a similar process occurs. As in the Standard Model, 

after electroweak symmetry breaking three Higgs bosons develop Goldstone 
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modes and are "eaten" to give masses to the W± and Zoo However, as the 

MSSM contains 2 complex Higgs doublets we have 5 remaining real physical 

Higgs bosons rather than 1: 

• hO, HO, the light and heavy neutral CP-even Higgs bosons (mho < 

• A 0 , the CP-odd Higgs boson. 

• H±, the charged Higgs bosons. 

After electroweak symmetry breaking fields with the same quantum num-

bers mix. This allows mixing between the SU(2)L and U(l)y gauginos, and 

the higgsinos. The neutral states mix to form the neutralinos: 

(1.20) 

where conventionally i = 1 designates the lightest neutralino and i = 4 des-

ignates the heaviest. Equally the charged states mix to form the charginos: 

- + -+ (+) (W ,Hu) --7 Xi ,i E {I, 2} 

(1.21 ) 

Again i = 1 conventionally designates the lighter chargino. 

As the lightest neutralino is often the lightest superpartner (LSP), and 

will turn out to be the best MSSM candidate for particulate dark matter, 

it is worth considering in more detail here. The exact composition of the 
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neutralinos is found by diagonalising the mass matrix: 

MI 0 -mzcf3sw mzsf3sw 

0 M2 mZcf3cw -mzsf3Cw 
(1.22) 

-mzcf3sw mZcf3Cw 0 -f-L 

mzsf3sw -mzsf3 cw -f-L 0 

where cf3 = cos f3, sf3 = sin f3, Cw = cos ew, Sw = sin ew· 

The equivalent mass matrix for the charginos is: 

(1.23) 

There are three limiting cases that will be of interest. If MI « M 2 , f-L at 

the electroweak scale, the lightest neutralino will be pure B, or bino. The 

charginos will be significantly heavier as their masses depend on M2 and f-L. 

If M2 « M I , f-L at the electroweak scale, the lightest neutralino will be W 

or wino, as will the lightest chargino. As a result x~ and xi will be almost 

degenerate in mass. Finally, if f-L « A/[I, M2 at the electroweak scale x~, xg 

and xi will be higgsino and close in mass. Therefore the ratio of ]\/[I : A/[2 : f-L 

at the low energy scale entirely determines the masses and properties of the 

spectrum of neutralinos and charginos. Through this mechanism, these three 

parameters have a large effect on the phenomenology of MSSM models. 

As mentioned, the lightest neutralino is the best candidate for dark mat-

ter within the MSSM. It is uncoloured, electrically neutral, weakly interact-

ing, massive and non-baryonic. However, before we can conclude that it is 

a good candidate we must ensure that it is stable. 
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-----< 
Figure 1.3: A process forbidden by R-parity conservation. The superpartner 
( dashed) has PR = -1 whereas the final state SM fermions (solid) have 
PR = 1. 

Figure 1.4: A process allowed by R-parity conservation. The superpartner 
( dashed) has PR = -1 and the final state with one SM fermion (solid) and 
a superpartner (dashed) has PR = 1. 

1.4.6 R-parity 

Supersymmetry on its own does not forbid terms of the Lagrangian that 

violate baryon or lepton number. If such terms were allowed there would be 

a number of unfortunate consequences, such as proton decay. To rule out 

such terms we introduce a discrete symmetry to the theory called R-parity. 

It is a multiplicatively conserved quantum number defined as: 

(1.24) 

where B is baryon number and L is lepton number. Under this parity, 

superpartners have PR = -1, whereas all Standard Model fields and Higgs 

bosons have PR = 1. 
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R-parity conservation guarantees baryon and lepton number conserva

tion. It also forbids processes such as those of Fig. 1.3 while allowing pro

cesses of the form shown in Fig. 1.4. Thus though SUSY particles can 

decay to lighter SUSY particles, no one SUSY particle can decay entirely to 

Standard Model matter. This means the lightest superpartner is absolutely 

stable. Superpartners can only annihilate in pairs. 

With this final piece of information, required to avoid proton decay, the 

LSP finally fulfils all the criteria required of a good dark matter candidate. 

1.4.7 Motivations for SUSY 

'.Ale have now introduced the entire MSSM spectrum, highlighted the phys

ical low energy states and noted the input parameters that will define the 

phenomenology. However, at time of writing, no supersymmetric particles 

have been directly observed. Before we introduce the methods we use to 

study MSSM phenomenology in Chapter 2, we pause to review the motiva

tions for SUSY, and summarise the new questions that it raises . 

• The hierarchy problem 

Within the Standard Model it is very hard to avoid quadratically diver

gent corrections to the Higgs mass via fermion loops (particularly the top). 

By introducing scalar partners to the SM fermions, SUSY automatically 

cancels the quadratically divergent terms exactly. This removes the need to 

fine-tune the tree level Higgs (mass)2 to 16 decimal places . 

• Dark matter 
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When we construct the minimal supersymmetric extension of the Stan

dard Model, and require that it conserve Baryon and Lepton number, we 

automatically end up with a massive, non-baryonic, weakly interacting, sta

ble particle. If we choose our soft parameters to ensure that it is neutral 

as well we have an excellent dark matter candidate. However, just having a 

candidate is not enough to explain the observed dark matter relic density. 

Any candidate particle must occur in the right amounts to explain the ex

perimental observations. In Chapter 2 we look at how such a relic density 

is generated and we address the question of whether SUSY really provides 

a natural explanation for dark matter. 

• Unifying the fundamental forces 

In the Standard Model, if we run the gauge couplings to high energies 

they fail to unify. Within SUSY, the ,6-function coefficients that govern the 

running are different. To run the gauge couplings in the MSSM to high 

energies we use the Standard Model ,6-functions until we reach the mass 

scale of the supersymmetric particles and then we switch to the MSSM ,6-

functions. If the mass of the supersymmetric particles is 0(1- 10 Te V), the 

gauge couplings unify around 2 x 1016 GeY. Thus SUSY provides a good 

framework for the study of GUTs. 

1.4.8 Open questions 

Though the MSSM provides a good framework for addressing big questions 

within particle physics, it also raises a few of its own. 

• How is SUSY broken? 
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SUSY must be broken. The soft masses generated by SUSY breaking 

determine much of the low energy phenomenology of a supersymmetric the

ory. However the mechanism of SUSY breaking is unknown. The challenge 

for theorists is twofold. Firstly there is a need to produce models of SUSY 

breaking from more fundamental theories such as string models. Such mod

els would determine the parameters of £80jt in terms of fewer more funda

mental parameters. Secondly it is important to understand the links between 

the soft parameters and the phenomenology. This will allow theorists to use 

the experimental evidence gathered by the LHC and other future experi

ments to constrain the parameters of £80jt thus gives information about the 

structure of SUSY breaking . 

• The J..L problem 

Eq. 1.18 requires J..L rv mHv.,d for REWSB to reproduce the Z mass. As J..L 

appears as a SUSY preserving Higgs mass term it can have no connection to 

the soft masses. This raises a question and a problem. The question is, could 

J..L be generated by more fundamental physics than suggested by the MSSM? 

In some Next to Minimal Supersymmetric Standard Models (NMSSMs), J..L 

is generated via the VEV of some new field J..L ~ (N). The problem for the 

MSSM is, as J..L is unrelated to the soft masses, we must resort to a degree of 

fine-tuning between J..L and the soft masses if we are to satisfy the condition 

in Eq. 1.18. This fine-tuning will never be of the order required to achieve 

the correct Higgs (mass)2 in the Standard Model. However, the larger the 

soft masses and J..L are required to be (for example if no light superpartners 

are found at the LHC), the larger the degree of fine-tuning required. This 
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fine-tuning directly reduces SUSY's claim to provide a natural mechanism 

for electroweak symmetry breaking. In Chapter 2 we introduce a measure 

to quantify this fine-tuning. We use this measure to study the naturalness 

of REWSB within a general MSSM model in Chapter 3 and a string model 

in Chapter 4 . 

• Why should nature choose the MSSM? 

Here we have considered the supersymmetric extension to the Standard 

Model with the minimal field content (the MSSM). Why should nature 

choose such a model? The are no good theoretical reasons other than Oc

cam's Razor. We shouldn't introduce new fields to our theories without good 

reason. However theorists have managed to come up with many reasons to 

add new fields and so have created a range of supersymmetric theories that 

go beyond the MSSM. These reasons range from explaining inflation to fam

ily symmetries between generations of matter to explaining the origin of f-L. 

Here we just consider the MSSM but note that SUSY could appear in a 

different form to that considered here. 
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Chapter 2 

Constraining the MSSM 

In the previous chapter we introduced the Minimal Supersymmetric Stan-

dard Model. Within the MFV approximation, and after requiring radiative 

electroweak symmetry breaking, the MSSM is fully specified by the param-

eters: 

(2.1) 

where the mass matrices mf are taken to be diagonal. 

This is still an enormous parameter space to study. We make progress 

in two ways: 

• Use theory to impose structures on LsoJt so that we can determine 

aMSSM in terms of fewer parameters . 

• Use experiment to constrain the values of aMSSM· 

In this chapter we introduce the methods used to study the phenomenol-

ogy of the MSSM. In section 2.1 we summarise the numerical codes used to 
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relate the parameters aM SSM to experimental data. In section 2.2 we sum

marise the experimental bounds from particle searches, measurements of 

BR(b -t 5,) and SUSY contributions to (g-2)w We then go on to consider 

two of the major motivations for SUSY in more detail. In section 2.3 we 

look at how radiative electroweak symmetry breaking can be directly related 

to the soft parameters. In section 2.4 we look at how SUSY reproduces the 

observed dark matter density, and review the current experimental measure

ments. As these last two conditions are not only bounds on the MSSM, but 

phenomena the theory is expected to explain, we also require that it satisfy 

these conditions naturally. In section 2.5.1 we introduce a measure to quan-

tify the fine-tuning required for the MSSM to provide REWSB. In section 

2.5.2 we introduce an analogous measure to quantify the fine-tuning required 

for the MSSM to reproduce the observed dark matter density. These mea

sures lie at the core of our studies of naturalness within the MSSM and 

beyond. 

2.1 Methodology 

Theoretical studies of SUSY breaking generally specify the parameters of 

Lsojt at some high energy scale, usually mGUT ~ 2 x 1016 GeV. To relate 

these theories to the low energy physics studied in colliders or in direct dark 

matter detectors we must run the parameters of the theory using the MSSM 

RGEsl. To do this we use the publicly available numerical code SOFTSUSY 

v. 1. 9.1 [18]. 

IFor a comprehensive list of the MSSM RGEs see the appendix of [17]. 
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SOFTSUSY takes aM SSM as inputs. It starts by running the Standard 

Model masses and gauge couplings to mz. These values are then used 

as constraints. The programme then makes a first guess at the Yukawa 

couplings before running both the Yukawa couplings and gauge couplings 

up to the point at which gauge coupling unification is achieved. This sets 

mCUT. Here the soft parameters are set to agree with the values provided as 

inputs. The whole set-up is then evolved back down to low energy where the 

condition of radiative electroweak symmetry breaking is imposed. The size 

of f-L is calculated and tan j3 is set. At mz the SUSY corrections to the gauge 

and Yukawa couplings are calculated and the whole process is repeated with 

the new values. This loop is iterated until a user defined degree of accuracy 

is achieved. Once this is satisfied, the pole masses of the Higgs bosons and 

the sparticles are calculated and output. 

Once we have the particle spectrum for a given model point we can 

impose a number of experimental constraints. Firstly, at this point we can 

rule out a model point if it fails to produce REWSB, shown in SOFTSUSY 

by the calculated value of f-L2 being negative. We can also rule out a model 

point if it results in a tachyon. At this stage we also impose the experimental 

limits on the particle masses. Finally we rule out a region of parameter space 

if it results in an LSP that is not the lightest neutralino. 

In the remaining parameter space we calculate the SUSY contribution 

to BR(b --+ s')') and (g - 2)J.l' as well as the predicted dark matter relic den

sity. These calculations are involved and we use the public code micrOMEGAs 

v.i. 3.6 [19]. This interfaces with SOFTSUSY via the format laid out in the 

SUSY Les Houches Accord (SLHA) [20]. This computational structure al-
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lows us to produce numerical scans of the parameter space that directly 

relate aMSSM to low energy phenomenology. We consider all of the con

straints we impose, and their relation to the soft parameters, in the following 

sections. 

2.2 Experimental bounds 

2.2.1 Particle searches 

Experiments have been looking for BSM particles for years. It was hoped 

that they would show up at LEP or the Tevatron. The lack of any evidence 

for SUSY at these experiments puts stringent bounds on sparticle masses. 

The tightest bounds come from run 2 of the Large Electron Positron Collider 

(LEP2) at CERN. The results of SUSY searches at the four separate LEP 

experiments, ALEPH, DELPHI, L3 and OPAL, have been combined by the 

LEP2 SUSY Working Group and are compiled on their web pages [21]. 

The exact structure of a given SUSY theory affects how likely it would 

be for a given experiment to see a superpartner of a given mass. Therefore 

the LEP experiments do not generally place a direct cut on the mass of 

a given superpartner. For example, consider the case of a model in which 

the lightest neutralino X~ is the LSP and the next to lightest superpartner 

(NLSP) is a slepton. Now the slept on will decay to a neutralino via the 

process f -r X~ + l. If the mass difference between the LSP and the NLSP 

is small then the lepton produced will have very low energy. As we decrease 

the mass difference between the LSP and NLSP, at some point the energy of 

the lepton drops below the sensitivity of the detector. Therefore the LEP2 

34 



bounds on slepton masses only apply when the mass difference between 

the slepton and the lightest neutralino is greater than a few Ge V. Equally, 

different choices of MSSM parameters can change the coupling strengths 

altering the interaction cross-sections that go into calculating the LEP2 

bounds. Within this work we generally place a conservative lower limit on 

the masses of the superpartners. Where there are clear exceptions, such as 

in the case of a nearly degenerate f and X~ we include this check into our 

application of the mass bounds. 

Of all of the unseen particles predicted by the MSSM the lightest Higgs 

hO deserves a special mention. The present mass bound on the lightest 

Higgs within the Standard Model is mho> 114 GeV. However the mass 

limits on the lightest Higgs boson in the MSSM are somewhat lower. \rve 

take a conservative bound of mho> 111 GeV throughout2 . 

2.2.2 BR(b ---t 8,) 

The variation of BR(b -7 s')') from the value predicted by the Standard 

Model is highly sensitive to SUSY contributions. To date, no variation 

from the Standard Model has been detected. The present experimental 

measurement of this value comes from BELLE [23], CLEO [24] and ALEPH 

[25]. We follow the analysis of [85] and take the value to be: 

BR(b -7 s')') = (3.25 ± 0.54) x 10-4
. (2.2) 

We calculate the SUSY contribution to the branching ratio using micrOMEGAs. 

2For a more sophisticated treatment of the Higgs bound in numerical studies see, for 
example, [70]. 
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\Afithin micrOMEGAs all I-loop effects and some 2-1oop contributions are in-

eluded. There is a detailed discussion of their implementation in [19]. 

The I-loop SUSY contributions to BR(b -7 s,) involve loops with a 

charged Higgs and a top quark and loops with a chargino and a squark. 

Contributions from a charged Higgs are large if the charged Higgs is light. 

Contributions from charginos and squarks are enhanced when either squarks 

or charginos are light. They are also enhanced when a chargino and squark 

are elose in mass. The individual contributions depend upon the exact 

composition of the charginos. As the mass and composition of the chargino 

is determined by J-L, M2 and (3, we expect the scale of the SUSY contribution 

to be sensitive to these parameters. 

To summarise, BR(b -7 s,) depends primarily on the soft squark masses 

m6, the soft Higgs masses m'1 ,M2, J-L and tan (3. There is also some 
'U,d 

dependence on Ml and M3 through running effects. 

2.2.3 (g - 2) of the muon 

Present measurements of the value of the anomalous magnetic moment of the 

muon aJ.L deviate from the theoretical calculation of the SM value. However 

questions remain around the exact form of the Standard Model calculation, 

specifically whether we should use T or e+ e- data in the analysis of the 

hadronic vacuum polarisation. At ICHEP '04 [26] there was general agree-

ment that the T data should be disregarded though that agreement has been 

challenged by recent measurements3 . Here we take the result obtained by 

3Note that the SND Collaboration recently reported a result that was out of line with 
the e+ e- results from other groups, being more consistent with the T data. However very 
recently an error was reported in their analysis, and now the most recent result from SKD 
is completely consistent with the e+ e- results from other groups [27]. This effectively 
will serve to increase the discrepancy of the muon 9 - 2 with the Standard Model beyond 
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using the e+ e- data and consider its implications for a SUSY theory. With 

the present experimental value from [28] and the theoretical calculation of 

the SM value from [29] there is a discrepancy: 

(2.3) 

This amounts to a 2.7 (J deviation from the Standard Model. 

The SUSY contributions to aJ-L come from penguin diagrams of two types. 

One is mediated by a chargino and a muon sneutrino, the other is mediated 

by a neutralino and a smuon. For a detailed discussion of these contribu-

tions, see [30]. For our purposes it is enough to note that there will be 

enhancements to the SUSY contribution whenever smuons, mu-sneutrinos, 

charginos and neutralinos become light. 

The form of the penguin diagrams mean that we expect the value of 

5aJ-L to increase for small (m~)22' M I , M2, J-L as these set the masses of 

the particles in the loops. MI and M2 should also be small as they provide 

positive contributions to the mass of the smuon through running effects. 

From the details of the calculation we also find an enhancement for large 

tanf3 and large negative Ae. Finally, the relative sign between M I , M2 and 

J-L is important for the calculation of 5aJ.L" 

2.3 Radiative electroweak symmetry breaking 

One requirement of any SUSY theory is that it break electroweak symme-

try radiatively (REWSB). We recall from Eq. 1.18 that the condition for 

2.70', but since the new analysis has not yet been performed here we shall continue to 
conservatively assume the 2.70' deviation. 
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electroweak symmetry breaking with two Higgs doublets can be written: 

2 _ m1d (t) - m1Jt) tan2 j3 1 2 
fJ, (t) - 2 j3 - -2 m z(t). 

tan -1 
(2.4) 

where t = log Q and Q is the energy scale at which we want to determine fJ,. 

For REWSB to exist in a given model, we must have a positive value of fJ,2 

at the low energy scale Q r-..J mz. We rule out any point that doesn't satisfy 

this criteria. 

To see how the soft masses affect fJ,2, we must consider the RGE evolution 

from the GUT scale. As the Higgs doublets have many couplings, their RGEs 

are complicated. This is one reason why we use sophisticated codes such as 

SOFTSUSY. However it is possible to calculate fJ,2 approximately as a function 

of the high energy soft parameters [31] for a given value of tan j3. We consider 

regions with tan j3 = 10 extensively throughout this work. Taking this value, 

the low energy value of fJ,2 is approximately related to the GUT scale soft 

parameters via the relation: 

-0.94fJ,2 + 0.0l0m1d - 0.19M? - 0.0017Mr - 0.63m1" + 0.38 (m¢)33 

+0.38 (mt) 33 + 0.093A; - 0.01lAtM1 - 0.070AtM2 - 0.30At M3 

(2.5) 

where mz and fJ, are defined at (mz) and the rest of the masses are defined 

at (mcuT)' 

To calculate this dependence we have used the I-loop RGEs. We have 

also simplified the calculation by noting that the Yukawa couplings are dom-
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inated by the third family. This allows us to make the approximation that 

only the third families contribute to the Higgs running. When we perform 

our numerical scans using SOFTSUSY we use the full 2-100p RGEs and don't 

assume third family dominance. Therefore Eq. 2.5 should not be taken as 

an exact result, but instead can be used to understand the dominant con-

tributions from the soft mass terms at the GUT scale to the size of f-L at 

mz· 

The dominant positive contributions arise from -M3, the gluino mass, 

and (m¢) 33' (m't) 33' the third family squark (mass)2. These terms all 

push m~u negative, helping to satisfy Eq. 2.4. Unsurprisingly the dominant 

negative contribution is m~u. If m~u is large and positive at the GUT 

scale, larger running effects are required to push it small or negative at the 

electroweak scale. Therefore to achieve REWSB we need small m~'U and/or 

large (m¢) 33' (m't) 33' -M3· 

Eq. 2.5 also shows that fine-tuning is necessary if soft masses greatly 

exceed mz (as they must). If we have a large positive contribution due 

to large Ml (for example), this must be cancelled by large contributions 

from the negative terms. This condition allows us to determine the size of 

f-L2, resulting in if-Li being an output of SOFTSUSY. However, the larger the 

contributions from the soft masses, the larger if-Li, and so the greater the 

degree of fine-tuning required to fit the measured value of mz. We consider 

this point in more detail in section 2.5.1. 
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Figure 2.1: Diagrams by which Standard Model matter (solid) annihilates 
to superpartners (dashed) and vice versa. 

2.4 Dark matter 

Experiments require the existence of a substantial density of non-baryonic, 

massive, electrically (and colour) neutral dark matter in the universe. To 

explain such observations within particle physics we not only need a can-

didate particle with the correct properties, but we also need the theory to 

naturally produce a relic density of the observed magnit ude. 

The relic density is determined by a combination of particle physics and 

cosmology. In the early universe t here is a period in which t he temperature 

is such that T » mLSP and both processes in Fig. 2.1 occur at equal rates 

resulting in the LSP being in equilibrium with Standard Model matter. Once 

t he universe expands and cools to an era in which T < mLSP , processes of 

the form shown in the left hand diagram of Fig. 2.1 are kinematically disal-

lowed. In this era the LSPs annihilate in pairs to SM matter, decreasing the 

number density of superpartners in the universe. Finally when T « mLSP , 

this annihilation rate becomes vanishingly small. As R-parity conservation 

ensures the LSP is stable, this results in a stable LSP relic density. The 

exact magnitude of the relic density is governed by the annihilation t hat 

occurs just after the LSP falls out of equilibrium. It is t he details of t his 
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process that determine whether or not a supersymmetric theory naturally 

explains the observed relic density. 

In section 2.4.1 we summarise the experimental evidence for dark matter 

and the present experimental bounds on the relic density. In section 2.4.2 

we consider the candidates for dark matter within the MSSM and motivate 

the neutralino as the best candidate. In section 2.4.3 we briefly cover the 

details of the calculation of the relic density and highlight its dependence 

on the MSSM soft parameters. 

2.4.1 Evidence for dark matter 

In 1933 Zwicky studied the velocity dispersion of galaxies in the Coma cluster 

and inferred that there must be 400 solar masses per solar luminosity [7], 

requiring the majority of matter in a galaxy cluster to be non-luminous. 

This provided the first evidence for dark matter. Since then a number of 

different sources have provided evidence for dark matter. For a good review 

of the present experimental evidence see [32]. The evidence can be divided 

up according to distance scale . 

• Galactic scales 

The smallest distance scale for dark matter evidence is that of galaxies. 

The mass distribution within a galaxy can be measured in two ways. Firstly 

the mass can be estimated from the luminosity of the galaxy. Secondly, 

the mass distribution can be calculated through its effect on the motion of 

the stars. If a star at radius r has velocity v then we can use Newtonian 
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Figure 2.2: An example of using a spherical halo of dark matter to fit the 
observed rotation curves of the Milky Way, from [33]. The solid line is the 
rotation curve from disk + bulge + halo. 

dynamics to calculate the total mass M within the radius r: 

(2.6) 

In Fig. 2.2 we show an example of the rotation curves expected from 

the luminous matter in the disk and the bulge compared to the rotation 

curve actually measured. Not only is the total mass calculated from the 

luminosity too low to give the observed rotation curves, it is also distributed 

in the wrong regions. However if an approximately spherically symmetric 

halo of weakly interacting neutral dark matter with a density distribution 

p ex 1/r2 is added (the dot-dashed line in Fig. 2.2), the observed rotation 
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curve can be accounted for. This finding is true not just in the Milky Way, 

but in the vast majority of galaxies observed . 

• Galaxy clusters 

Dark matter also exists on the scale of galaxy clusters, as noted by 

Zwicky. As well as measuring the mass from the luminosity and movement 

of galaxies within clusters, it is also possible to measure the mass of a cluster 

via gravitational lensing. Once again the mass measurements only match 

up if there is a substantial quantity of dark matter. 

• Cosmological scales 

Though measurements on smaller scales prove that some quantity of 

dark matter is required in the universe, they only loosely constrain the total 

quantity of dark matter in the universe. To measure the total dark matter 

density we need to look on cosmological scales. The most accurate studies on 

these scales have been performed by the Wilkinson Microwave Anisotropy 

Probe (WMAP) [8,9]. WMAP measures the cosmic microwave background 

(CMB), the left over radiation from the surface oflast scattering in the early 

universe. This radiation is highly isotropic (down to the level of 10-5) and 

fits the spectrum of black body radiation with a temperature of 2.726K. 

The anisotropies in this radiation give clues as to the structure and form of 

the early universe and it is these anisotropies that W""MAP was designed to 

study. 

These studies have been highly successful and tightly constrain cosmo

logical models. In this work we are only interested in their implications for 
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the density of cold dark matter. Throughout we use the WMAP 1 year 

results [8] that measure the non-baryonic cold dark matter density to be4 : 

DCDMh2 = 0.1126 ± 0.0081. (2.7) 

Comparison with to the measured baryonic density Dbh2 = 0.0224 shows 

the universe contains a much larger density of dark matter than baryonic 

Standard Model matter. 

• Direct detection 

The rotation curves of galaxies show that dark matter must exist in 

roughly spherical halos in every galaxy. This allows us to estimate the local 

dark matter density and thus the local flux. Efforts are currently underway 

to detect this flux through direct detection at more than 20 experiments 

around the world. The detection of WIMPs depends primarily upon the 

mass of the dark matter particle and the interaction cross-section. For a 

comprehensive listing of the current experimental bounds, and an interac-

tive plotting programme to display them, see [34]. No direct evidence for 

dark matter has been found to date. However, present experiments are only 

beginning to explore the regions of the (a, mx~) parameter space in which we 

would expect to find the MSSM neutralino. A direct detection signal would 

allow us to constrain both the mass and composition of a dark matter parti-

cle independently of data from the LHC. These two research programmes are 

therefore highly complimentary and should allow the form of BSM physics 

4The WMAP three year results [9] came out during the course of this work. For 
consistency we stick to the 1 year values throughout but note that the three year results 
showed a drop in the central value of DCDMh

2 to 0.1046. 
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to be tightly constrained over the course of the next 10 years. 

2.4.2 The candidates for particulate dark matter 

We have already mentioned that if the lightest neutralino is the LSP, it 

makes a good dark matter candidate. However as the LSP in an R-parity 

conserving SUSY theory is always stable, the MSSM contains other can

didates for dark matter. Firstly we can rule out any particle that carries 

electromagnetic charge or colour quantum numbers. Coloured dark matter 

would interact strongly. Charged dark matter would become trapped inside 

atoms, providing anomalously heavy nuclei. Such nuclei have never been 

observed. 

Even after ruling out all charged particles we are left with four candidates 

within the MSSM . 

• Neutrinos 

Neutrino dark matter has an edge over the other candidates as neutrinos 

have been shown to exist. However we also know the approximate density 

of neutrinos in the universe and their masses are so low that they cannot 

provide the observed mass density. They are also disfavoured because they 

are relativistic (hot) around the time of galaxy formation which poses serious 

problems for models of structure formation . 

• Sneutrinos 

Just as the neutrino provides an uncharged stable candidate, so too must 

its superpartner, the sneutrino [35]. LEP bounds require the sneutrino mass 

to be mf; ;::: 70 GeV. This ensures that it is non-relativistic (cold) in the 
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early universe. However the cross-section for scattering of sneutrinos off 

nuclei [36] are large enough to have been ruled already by direct detection 

experiments5 . 

• The neutralino 

The lightest neutralino is uncharged, weakly interacting and stable (if it 

is the LSP). LEP bounds require that it have a mass mX.~ .2: 35 GeV meaning 

it is a cold dark matter candidate [37]. Furthermore in many SUSY models 

it is naturally the lightest particle in the SUSY spectrum. Within this work 

we require that the neutralino be the LSP and rule out regions of parameter 

space in which this is not satisfied . 

• Dark matter beyond the MSSM 

If we are willing to venture outside the confines of the MSSM, we find 

a wealth of possible candidates for dark matter. Some of these arise as 

by products of solutions to other theoretical problems (such as the axion 

[38, 39], and axino [40]) whereas others do not. Though we do not wish to 

catalogue all the particles in the "dark matter zoo", special mention must 

be made of the gravitino, a particle that appears if we require SUSY to be 

a local symmetry. 

If we require SUSY to be a local symmetry we are forced to include 

a spin-2 graviton in the theory. The superpartner of the graviton is the 

spin-3/2 gravitino. Such a particle is weakly interacting (its couplings are of 

5Rick Gaitskell and Vic Mandic maintain a web page [34] that allows the generation of 
plots of the current experimental limits in the (lvIDM, 0" (nucleon)) plane. These pages also 
contain an up to date and comprehensive list of the papers reporting the current results 
of direct dark matter detection experiments from around the world. 
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the gravitational scale), massive and neutral so meets the primary require-

ments for a dark matter candidate [42], [43]. However the extremely weak 

coupling of gravitino dark matter can raise its own problems. With very 

weak couplings, the NLSP will be pseudo-stable, resulting in decays to the 

gravitino long after supersymmetric matter decouples from Standard Model 

matter. The energetic photons that are produced in this process can destroy 

Big Bang Nucleosynthesis (BBN). These problems are not insurmountable, 

but have lead to the gravitino being disfavoured in considerations of dark 

matter. In Chapter 4 we study a model that contains a gravitino. However 

other constraints mean the gravitino is never the LSP in this model. 

2.4.3 Calculating the relic abundance 

The number density of neutralinos in the early universe is governed by the 

Boltzmann equation which can be written in the form: 

(2.8) 

where n is the number density at time t, neg is the number density in ther-

mal equilibrium, H is the Hubble constant and (CJv) the annihilation cross-

section for neutralinos with an average velocity v. 

For massive particles in the non-relativistic limit we can write: 

(2.9) 

where m is the particle mass and T is the temperature. 

For heavy states we can can simplify the calculation considerably by 
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expanding the cross-section in terms of v: 

(2.10) 

From these we can find the present number density of a relic. This gives 

the density as Px = mxnx. This in turn is related to the quantity constrained 

by WMAP via: 

n = Px 
HX- , 

Pc 
(2.11) 

where Pc is the critical density required for a flat universe: 

(2.12) 

By solving the Boltzmann equation6 to find nx we get the dark matter 

relic density as: 

Sl h2 ~ 1.07 X 109 Ge V m 1 
CDM ~ Mpl TF y9; (a + 3bTF/m) ' 

(2.13) 

where TF is the freeze-out temperature and g* is the number of relativistic 

degrees of freedom, evaluated at freeze-out. 

This calculation is performed in detail by micrOMEGAs in our work. Here 

we are interested in the general behaviour of SlCDMh2 across the parameter 

space. To this end we can re-write Eq. 2.13 as [44]: 

(2.14) 

6For a more in depth treatment of this calculation see [32, 44]. 
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which is useful for order of magnitude estimates. Here we see that the dark 

matter density is entirely set by the annihilation cross-section. To under

stand whether the MSSM naturally explains the observed dark matter den

sity, we need to consider the annihilation channels that go into calculating 

(CJV) . 

2.4.4 Coannihilation 

Griest and Seckel [45] noticed that if the NLSP were only slightly heavier 

than the LSP and if they shared a quantum number, then the presence of 

a significant quantity of NLSPs around Tf resulted in the calculation of 

section 2.4.3 being incorrect. In such a case we need to not only consider 

interactions of the form X~X~ -7 XSM (where XSM is some set of Standard 

Model particles), but also interactions of the form X~ + XNLSP -7 XSM and 

X.NLSP+ XNLSP -7 XsM . Obviously if there is more than one particle close 

in mass to the X~, we must add in extra annihilation channels. If there are 

a lot of particles close in mass to the X~, there can be a lot of annihilation 

channels open. 

To perform a calculation similar to the one above in the case of many 

particles, we change Eq. 2.8 to include the number density of NLSPs as 

well. The larger the mass-difference between the LSP and NLSP, the lower 

will be nNLSp. This serves to reduce the magnitude of coannihilation ef

fects. The details of coannihilation in general can be found in [32] and in 

the case of the neutralino specifically in [46]. The exact form of the equa

tions for neutralino-slepton annihilation are presented in [47]. micrOMEGAs 

automatically calculates coannihilation effects for all SUSY particles. 
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Figure 2.3: Higgsino LSPs have enhanced contributions from annihilation 
via the t and u-channel exchange of a neutralino or chargino where the final 
state particles are neutral or charged Higgs bosons respectively. 

The effect of coannihilation on DCDMh2 depends very strongly on the 

mass difference 6m = mNLSP - mx~' If the lightest neutralino and the 

NLSP are degenerate in mass, the co annihilation contribution will often 

2.4.5 OCDM h2 and the composition of X~ 

The annihilation cross-section for X~x~ ---) XS M primarily depends upon the 

mass and composition of the lightest neutralino x~ [37]. As this is deter-

mined by the parameters M I , M 2 , J-b from Eq. 1.22 we can start by analysing 

the dark matter density in the limits in which one of these parameters is 

much lighter than the others . 

• J-b« M I , ],,12 : higgsino dark matter 

In this limit both x~ and xg are higgsino and lie close in mass. Not only 

this but xi is also higgsino and of a similar mass to x~ and xg. This obvi-

ously introduces a large coannihilation effect to the calculation of DCDMh2. 

Secondly, neutralino annihilation via t-channel chargino or neutralino ex-

change, shown in Fig. 2.3, is greatly enhanced for light xg, xi and enhanced 

couplings to final state Higgs bosons. Both of these conditions are fulfilled 
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Figure 2.4: Wino LSPs have enhanced contributions from annihilation via 
the t and u-channel exchange of a chargino to W±. 

in the case of higgsino dark matter. 

These effects combine to result in higgsino dark matter annihilating and 

co-annihilating too efficiently to account for the observed dark matter den-

sity. If we are to require MSSM matter to explain the observed dark matter 

density this allows us to rule out regions in which J.L «MI , M 2 . 

• A12 «MI , J.L: wino dark matter 

In this limit the lightest neutralino is wino, as is the lightest chargino. 

Once again this results in a large coannihilation effect that suppresses DCDMh2 . 

A wino LSP also results in neutralino annihilation via t and u-channel 

chargino exchange to W bosons (as in Fig. 2.4) being greatly enhanced. 

Once again the combination of these effects results in a value of DCDMh2 

well below that measured by experiment. 

• MI «M2 , f.L: bino dark matter 

In this limit the LSP is bino. x8 and xi both depend on M2 and J.L and 

so will both have a much larger mass that the LSP, removing any coanni-

hilation effects from these particles. Across most of the parameter space, 

the dominant contribution to bino annihilation is via t-channel sfermion ex-
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Figure 2.5: Annihilation to fermions via t,u-channel sfermion exchange. This 
channel dominates bino annihilation across most of the parameter space. 

change shown in Fig. 2.5. This contribution is inversely proportional to the 

sfermion mass. 

The only regions in which this annihilation channel can provide a large 

enough contribution to (CJv) to account for the observed relic density is when 

there are very light sfermions and a light neutralino. This is known as the 

bulk region. Across much of the parameter space, such regions are ruled out 

by LEP bounds. 

If we do not have light sleptons to mediate processes such as those in 

Fig. 2.5, bino dark matter will generally result in a dark matter density far 

in excess of that observed by \iVMAP. Any region that predicts such a value 

of DCDMh2 is ruled out absolutely as it would overdose the universe7 . 

Another means of enhancing the bino annihilation cross-section is through 

on-shell production of a Zo, hO, HO or AO (Fig. 2.6). This is possible when-

ever 2mx-o ~ mz h H A· In general these processes result in a very large 
1 ' ) , '-' 

contribution to the annihilation cross-section, often resulting in a value of 

DCDMh2 well below the measured value. However with just enough of a 

contribution from these channels, we can have bino dark matter that results 

7By resorting to exotic early universe cosmologies it is possible to reduce the dark 
matter density independently of properties of the neutralino. We do not consider such 
models here but see for example [48]. 
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Figure 2.6: Examples of annihilation to Standard Model fields via the on
shell production of a Z or a Higgs boson. These annihilation channels can 
greatly enhance the decay rate of a bino LSP. 

in a relic density in agreement with measurement. 

Finally, if there are sleptons that are close in mass to the bino LSP, co an-

nihilation effects can reduce the predicted value of o'CDMh2. The magnitude 

of these contributions depends primarily on the mass difference between the 

sfermion in question and the LSP . 

• "Well-tempered" dark matter 

As well as enhancements to the annihilation cross-section of bino dark 

matter, we can also fit the observed o'CDMh 2 by moving away from the 

LSP being pure bino, wino or higgsino. As wino and higgsino LSPs gen-

erally produce o'CDMh2 « 0,'tJ1JP h 2 , whereas bino LSPs generally re-

suIt in o'CDMh2 » 0,'tJ1JP h 2, there must be regions in which the LSP 

is just the right mixture of either bino/wino or bino/higgsino to satisfy 

dark matter constraints. Arkani-Hamed, Delgado and Giudice [49] chris-

tened such regions "well-tempered". In [69], we extended this to the case of 

bino/wino/higgsino regions which we refer to as "maximally-tempered". 
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Region Condition 
Well-tempered bino/wino M1 ~ M2 at mSUSY 

Well-tempered bino/higgsino M1 ~ J-L at mSUSY 

Maximally-tempered bino / wino /higgsino M1 ~ M2 ~ J-L at mSUSY 

Bulk region (t-channel j exchange) light X~ and j 
sfermion coannihilation mx~ ~ mj 

Resonant annihilation 2mxo ~ mZ,h,H,A 

Table 2.1: The list of annihilation channels that allow the MSSM to fit the 
observed relic density. Note that as wino or higgsino LSPs annihilate too 
efficiently, the last three channels generally require a bino LSP. 

2.4.6 Summary of dark matter allowed regions 

Taking all of these considerations into account we can list the regions that 

we expect to reproduce the observed dark matter density within the MSSM. 

These are shown in Table 2.1. Each of these regions requires a different 

pattern of the input parameters aMSSM. 

The low energy phenomenology of each of these regions will have a dis-

tinctive form. Signals of SUSY at the LHC are determined by the parameters 

aMSSM. Therefore we can relate the dark matter regions to distinct signals. 

In the case of direct dark matter detection the only SUSY particle involved 

is the LSP, here considered to be the neutralino. Direct detection signals 

are solely sensitive to the mass and composition of the neutralino and thus 

to J.,11 , M2 and J-L. Therefore a signal in a direct detection experiment will 

provide clear information about which region of Table 2.1 neutralino dark 

matter must occupy to fit the observed data. 

2.5 Fine-tuning In the MSSM 

In this work we are not only interested in finding MSSM models that satisfy 

all experimental constraints. The aim of this work is to move beyond this to 
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consider how naturally any given MSSM model explains two of the key ques-

tions that are left unanswered by the Standard Model, namely the source of 

electroweak symmetry breaking and the source of the observed dark matter 

density. 

Questions of naturalness are interesting for two reasons. Firstly, the 

fact that SUSY can explain both electroweak symmetry breaking and the 

observed dark matter density has been a significant motivation for taking 

SUSY seriously. If we were to find that a region of the MSSM parameter 

space required an enormous amount of fine-tuning of the input parameters 

to fit the observed dark matter density or provide electroweak symmetry 

breaking, these motivations would be significantly weakened. Regions that 

exhibit low fine-tuning are better motivated8 . Secondly, if the LHC finds 

evidence to suggest a specific pattern of soft parameters that require fine-

tuning, the structure of this fine-tuning can act as a guide to more funda-

mental theories such as theories of SUSY breaking, just as the fine-tuning 

required to stabilise the Higgs mass in the Standard Model motivates the 

move to SUSY. 

For these reasons we wish to study the degree of fine-tuning required in 

the MSSM for both dark matter, and electroweak symmetry breaking. To 

do this we need to define a measure. 

2.5.1 Electroweak fine-tuning 

The naturalness of radiative electroweak symmetry breaking from SUSY has 

been extensively studied [50]-[63]. In such studies, the following measure is 

8Note we do not believe that just because a point exhibits large fine-tuning, and is 
therefore less theoretically motivated than another, it will not be found by experiment. 
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commonly used to quantify the degree of fine-tuning required for a given 

model point: 

6.EW = aln (m~) 
a aln (a) 

(2.15) 

where a includes all the soft parameters msoft at the GUT scale together 

with tan (39. We take the total tuning of a point to be equal to the largest 

individual tuninglO 6.EW = max(6.;W). The value of this measure gives 

the percentage change in m~ under a 1% change in the parameter a. If 

6.;W = 100, a 1 % change in a results in a 100% change in m~. Such a point 

therefore requires us to precisely fix the value of a to fit the experimental Z 

mass. 

To understand how 6. EW depends on the soft parameters, consider this 

measure in the context of the explicit expression for m~, Eq. 2.5. If, for 

example, we are interested in the sensitivity of m~ to M3 we calculate the 

quantity 6.fi;' and find: 

"EW = 1

10l
v.f
i I DM3 2' mz 

(2.16) 

Thus even if M3 rv mz we would still have a tuning 6.1&';' ;::::j 10. As we 

increase M3 (as we are required to do to fit experimental bounds) we quickly 

increase the degree of tuning required to fit the observed Z mass. This 

general behaviour is true of all the soft parameters in Eq. 2.5. As the soft 

masses increase, so too does 6.EW . If we want to avoid such fine-tuning we 

9We also include the top Yukawa in our set of input parameters for 6 EW. Though 
it is not a soft parameter, it is an input of the theory that we later set by requiring the 
masses of the quarks to agree with experiment. In theory we should include all of the 
Yukawa couplings in our calculation but in practise it is only the top Yukawa provides a 
significant contribution. 

lOThere is a divide in the literature as to whether 6 = max(6a ) or 6 = jI:a 6~. 
Which definition one takes to be more accurate is a matter of taste. Throughout this 
work we take 6 = max(6a ). 
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would have to impose a structure on the soft masses such that positive and 

negative terms in Eq. 2.5 automatically cancel. As J.i2 is independent of the 

soft masses within the MSSM we cannot use such a tactic to remove .6. EW. 

However if we keep the other contributions small, J.i will be small and so 

.6. EW will be small. Therefore we can predict that regions with low J.i will 

provide low fine-tuning. 

We use the sensitivity parameters .6. EW to quantify the degree of fine

tuning required of the parameters for a given model point to agree with 

experiment. However the assumption that sensitivity directly quantifies fine

tuning is not a trivial statement. There are almost as many concepts of what 

is considered to be fine-tuning as there are physicists. However, we do not 

use the measure .6. EW as a hard bound on the parameter space, rather it is 

to be used as a guide. Therefore a precise definition of fine-tuning in terms of 

sensitivity parameters is not required and we consider a point that exhibits 

a large sensitivity of the output (here Mi) to small changes in the inputs 

to be fine-tuned. Therefore large .6.EW corresponds to large fine-tuning for 

our purposes. 

It is worth addressing one specific criticism of these sensitivity param

eters and their relation to fine-tuning before we move on. In [64]-[66] an 

alternative measure of fine-tuning was proposed that arguably gives a more 

reliable estimate of fine-tuning. They define a fine-tuned point in parameter 

space to be a point in which the output (such as Ali) is unusually sensitive 

to the inputs. Thus the authors of [64]-[66] claim that to provide a reliable 

measure of fine-tuning we must normalise the sensitivity parameters to some 

average value of sensitivity for a given parameter. Thus they advocate using 
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instead the fine-tuning parameter fa defined by, 

(2.17) 

where the average value 6.a is defined as discussed in [64]-[66]. The definition 

in Eq. 2.17 gives a different sense to the numerical value of the sensitivity 

parameter. For example it may be the case that all values of the sensitiv-

ity parameter are large over the entire theoretically allowed range of input 

parameters. Fine-tuning then corresponds to some unusually high levels of 

sensitivity above the typical values, where the typical values are themselves 

high. 

We do not agree with this definition of fine-tuning. In the present work 

it is sufficient to consider the unnormalised sensitivity parameters 6.a as 

a reasonable guide to fine-tuning. Our purpose is to compare fine-tuning 

across different regions of parameter space. For this purpose the simpler 

measure of Eq. 2.15 is sufficient. 

2.5.2 Dark matter fine-tuning 

\iVhereas the naturalness of electroweak symmetry breaking has been ext en-

sively studied, the fine-tuning required for dark matter has notll. In [49] 

Arkani-Hamed, Delgado and Giudice consider the conditions required to ac-

cess each of the regions in Table 2.1 and conclude that, with the exception of 

the bulk region, the MSSM does not provide natural dark matter. Vie take 

11 A similar measure to Eq. 2.18 was previously defined and used to study the CMSSM in 
[67], [68]. One motivation of these studies was to study the sensitivity that the LHC would 
need to achieve to give a corresponding accuracy in the predicted dark matter density. 
This is an interesting question and our results can also be applied in this context, though 
we do not focus on that here. 

58 



up this challenge and provide the first quantitative analysis of naturalness in 

the case of MSSM dark matter. To study this we use an analogous measure 

to Eq. 2.15 to quantify the degree of fine-tuning required to reproduce the 

observed dark matter density: 

b,.D = Gln (DCDMh
2

) 

a Oln (a) 
(2.18) 

Though the measures are analogous, the calculations of radiative elec-

troweak symmetry breaking and the calculation of the relic density of dark 

matter have important differences. In the case of electroweak symmetry 

breaking, the MSSM inputs aMSSM provide a complete set of inputs. This 

is not the case for dark matter. The calculation of the present day relic 

density necessarily involves some assumptions about the cosmology of the 

early universe12 . These assumptions are: 

• At some point in the universe's history (after inflation) there was a 

radiation dominated period in which T ~ m x , where mx is the mass 

of the LSP . 

• There are no exotic non-thermal production methods for dark matter. 

If the first assumption holds then there was a period in the history of 

the universe in which Standard Model matter and supersymmetric matter 

(particularly the LSP) were in equilibrium. As the universe expands and 

cools a relic of stable SUSY particles is left behind. No further assumptions 

are required in the calculation of this relic density. 

12The calculation of the dark matter relic density will also depend upon the Yukawa 
couplings, as did .6. EW. Due to the difficulty of implementing this within the computer 
codes we use, this is not done for .6.". 
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If the second assumption holds then the LSP relic density is the only 

dark matter present in the universe. In this work we stay within such a 

cosmological framework. In such a framework the inputs of the MSSM, 

aMSSM, provide the complete set of parameters for calculating the relic 

density of dark matter. As a result, we can use Eq. 2.18 to quantify the 

naturalness of dark matter. In more exotic cosmologies, the set of input 

parameters aMSSM would need to be expanded to include variations in the 

details of early universe cosmology, but such models are beyond the scope 

of this work. 

As the calculation of the relic density is significantly more convoluted 

than the calculation of electroweak symmetry breaking, we can't extract 

any straightforward estimates as we did for ,0,.£';. Instead we have written 

a code to numerically find the value of the derivative in Eq. 2.18 for each 

model point. To understand the naturalness of dark matter within the 

MSSM we must take sets of parameters that reproduce the observed dark 

matter density through each of the channels identified in section 2.4.6. By 

calculating the values of ,0,. S1 in each of these regions we will find out whether 

the MSSM really does provide natural dark matter as has been claimed. 
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Chapter 3 

How Natural is MSSM Dark 

Matter? 

3.1 Introduction 

To study the naturalness of dark matter within the MSSM, we need to con

sider specific structures of the MSSM input parameters aMSSM that provide 

access to the dark matter annihilation channels in Table 2.1. There is an 

extensive literature on using dark matter to constrain the MSSM parameter 

space [70]-[99], however ours is the first study to consider the naturalness 

of dark matter outside the Constrained Minimal Supersymmetric Standard 

Model (CMSSM) [100]. In section 3.2 we begin by considering the CMSSM. 

In this model all the parameters aMSSM are determined in terms of 4 free 

parameters: 

aCMSSM E {mo, ml/2, Ao , tan,B} , (3.1) 

61 



and the sign of f-L. Here mo is the common scalar mass that determines all 

the diagonal entries of the squark and slept on mass matrices. ml/2 is the 

universal gaugino mass. Ao is the common trilinear coupling. Finally tan f3 

is the ratio of the Higgs VEV s as defined previously. 

Such a model is motivated via its close ties to minimal Supergravity 

(mSUGRA) models, as well as its simplicity. As a result, the CMSSM 

has been extensively studied in the literature1 . We use it as a datum to 

which we can compare less constrained models. Within the CMSSM we can 

access well-tempered bino/higgsino dark matter (the Focus Point region), 

X~ - T coannihilation and X~ annihilation via the production of an on-shell 

pseudoscalar Higgs AO (the Funnel region). We find the T-coannihilation 

channel to be the least fine-tuned whereas both the Focus Point region and 

the Funnel region exhibit significant fine-tuning. 

Taking the CMSSM as our starting point we go on to rela.x the universal

ities imposed the soft parameters at the GUT scale. In section 3.3 we allow 

non-universality between the 3rd family squark and slepton soft masses and 

the 1st and 2nd families. Dark matter with non-universal third family scalar 

masses has been considered in [85] motivated by purely phenomenological 

consideration, or in [86], [88] motivated by specific GUT models. The col

lider phenomenology of such models has also been studied in [87]. For our 

purposes it is interesting as such models allow access to eR - X~ and fiR - X~ 

coannihilation channels, the edge of the bulk region and a bino /higgsino 

region that agrees with oaJ-L at 117. 

In section 3.4 we consider the effect of allowing non-universal gaugino 

lSee [70], [71] for a recent comprehensive analysis of the CMSSM parameter space. 
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masses at the GUT scale. Such models naturally arise in SUGRA models 

with non-minimal kinetic terms, models with gauge mediated SUSY break

ing and models with anomaly mediated SUSY breaking. The dark matter 

phenomenology of models with non-universal gaugino masses has previously 

been studied in [72]-[78] and particular high energy models that give rise to 

non-universal gauginos have been analysed in [79]-[84], [88]. Non-universal 

gaugino masses are clearly interesting for studying natural dark matter. By 

varying Ml and M2 we directly control the wino and bino components of the 

LSP. This allows us to study the naturalness of the bino/wino well-tempered 

region. Within these models we are also able to access the bulk region, the 

hO resonance and the ZO resonance. 

In section 3.5 we perform the first study of a model in which we have 

both non-universal scalar and gaugino masses. This allows us to study the 

robustness of our previous results to further non-universality. We are also 

able to access the maximally tempered bino/wino/higgsino region. 

Finally, in section 3.6 we summarise our conclusions on the naturalness 

of dark matter within the MSSM. 

3.2 CMSSM 

The simplest model of SUSY breaking is the CMSSM. In such a model all 

soft mass matrices are diagonal at the high scale, taken here to be MCUT, 

and have a universal mass squared, m6, between generations. The gauginos 

also have a universal soft mass ml/2' As such the model is defined by the 

parameters aCMSSM defined in Eq.3.1. 

Studies of the CMSSM find three regions that satisfy dark matter bounds. 
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Figure 3.1: The (ml/ 2, mo) plane for the CMSSM with Ao = 0, tan /3 = 10. 

At large mo, f.L can become very small which in turn results in a bino/ higgsino 

neu t ralino - the Focus Point region . At large tan /3 (~ 50) and moderately 

large ml/ 2 the pseudoscalar Higgs boson becomes light giving rise to re-

gion in which 2mx-o ~ mA o Here neutralino annihilation proceeds through 
/ 1 

s-channel exchange of a pseudoscalar Higgs boson, known as t he Higgs Fun-

nel. The third region that reproduces the observed value of D CDM h 2 is 

where we have coannihilation of the neut ralino with t he lightest stau. This 

region appears at low values of mo and ml/ 2 where mf ~ mx~' This region 

has a light SUSY spectrum and satisfies 8aJ.L and BR(b -7 s')' ) at 1CJ. 

In Fig. 3.1 we study the CMSSM in the (ml/2, mo) plane with Ao = 0, 
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tan;3 = 10 and sign(f.,L) positive. Low ml/2 values are excluded by LEP2 

bounds (light blue) on the lightest Higgs mass. Low mo values are excluded 

as they result in the stau becoming the LSP (light green). In the remaining 

parameter space we plot the 1 and 20- bounds on oap.- BR(b -+ 8,) is satis

fied at 10- through the entire parameter space and so does not appear. We 

plot the calculated value of the electroweak tuning required using contours 

(blue). Finally, the region in which the calculated dark matter relic density 

DCDMh2 agrees with the WMAP measurement within 20- is plotted as a 

multicoloured stripe running alongside the light green region representing 

a T LSP. The colour of the dark matter strip corresponds to the degree 

of fine-tuning of the parameters aCMSSM required to fit the dark matter 

data. The colours correspond to the log scale on the right hand side. 'lve 

have considered relatively low values of mo and ml/2 as it is only in these 

regions that the CMSSM can satisfy oaiL and it allows us to study the T 

co annihilation region in detail. 

The co annihilation strip is the only viable dark matter region for the 

range of parameters in Fig. 3.1. The thinness of the stau coannihilation strip 

indicates that some degree of tuning is required. From the colour coding 

we can see that the total fine-tuning of the coannihilation strip varies from 

,6.[1 ~ 3 at low mo to,6.[1 ~ 15 at large mo. To understand the origin of this 

tuning we need to consider the general form of dark matter in the CMSSM. 

The ratio of Ml : M2 at the low energy scale determines the wino and 

bino components of the LSP. In the CMSSM, the gauginos have a universal 

soft mass at the GUT scale. The running of the gaugino masses is almost 

identical to the respective gauge couplings. This is very straightforward 
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and allows us to use a useful rule of thumb, M1(mz) ~ 0.4M1(mcuT) 

and M 2(mz) ~ O.8M2(mcuT). Therefore if Ml = M2 at the GUT scale, 

Ml ~ O.5M2 at the electroweak scale and the LSP will be bino. The only 

exception is when we have small j.L. In the CMSSM this only occurs for 

very large mo, not visible in Fig. 3.1. Therefore throughout the displayed 

parameter space the lightest neutralino is bino. As mentioned in 2.4.5, bino 

dark matter alone generally results in a dark matter density greatly in excess 

of that measured by experiment. Thus in Fig. 3.1 values of mo above the 

coloured WMAP strip are ruled out as they overdose the universe. 

Without coannihilation effects the dominant annihilation process is via 

t-channel T exchange. However this on its own is not efficient enough and 

we end up with OCDMh2 ~ 0(1). The addition of coannihilation2 reduces 

this by an order of magnitude. Co annihilation is generally considered to 

require a large degree of fine-tuning so the low values of fine-tuning of the 

co annihilation strip in Fig. 3.1 are something of a surprise. 

The magnitude of coannihilation effects depends critically on 6.m = 

mNLSP - mx~· Any variation in either mNLSP or mx~ will lead to a consid

erably larger variation in 6.m. Therefore, unless mx~ and mLSP are coupled 

in some manner we would expect coannihilation regions to be finely-tuned. 

In the case of Fig. 3.1, the coannihilation is between a bino LSP and a T. 

The first has its mass set at the soft scale by ml/2 whereas the latter's soft 

mass is set by mo. These are independent parameters so we would expect 

to see a larger fine-tuning than that discovered here. 

To understand this unexpected result we take the point C1 with mo = 

2For a detailed study of coannihilation within the CMSSM see [47], [109]. 
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Parameter Value 
Cl 

.6.11 3.5 ma 

.6.D 3.4 ml/2 

.6.fan;3 1.4 

.6. 20 0 

.6. II 3.5 

.6.J2;W 160 

Table 3.1: Fine-tuning sensitivity parameters in the CMSSM with Ao = 0, 
tanj3 = 10 at point Cl in Fig. 3.1 with mo = 70 GeV, ml/2 = 350 GeV. 

70 GeV, ml/2 = 350 GeV, Ao = 0 and tan j3 = 10 and consider all of the 

separate sensitivities .6.~. The results are presented in Table 3.1. 

As expected, the sensitivity comes from the parameters mo and ml/2 that 

set the soft masses at the GUT scale. There is also a subsidiary dependence 

on tan j3, as this also affects the mass of the T. The smallness of the tuning 

comes from the fact that along the coannihilation strip mo < ml/2. Now the 

running of the right handed slept on masses are strongly dependent on MI. 

"\iVhen mo is small, the dominant contribution to the low energy T mass is 

via this running contribution from MI. Thus in this region of the CMSSM 

mf depends strongly on ml/2, resulting in a correlation of the masses of the 

nemralino and the stau. This gives considerably more natural coannihilation 

than would be expected. 

This correlation is strongest for small values of mo. Also, as we move 

to smaller mo, contributions from t-channel T exchange are enhanced. In 

these regions we need less coannihilation to satisfy DCDMh2 . This has the 

effect of reducing the total sensitivity to mo. These effects combine to give 

low values of .6. D for low mo and ml/2 within the CMSSM, regions which 

also give a SUSY contribution to (g - 2)J.l that explain Saw Equally, if the 
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Figure 3.2: The (ml/2,mo) plane for the CMSSM with Ao = 0, tanf3 = 50. 

measured value of (g - 2)J.L is found to agree with the Standard Model value, 

the CMSSM will be forced to larger values of mo and ml/2 and we will have 

to accept a greater degree of fine-tuning to fit DYf!f~JPh2. 

Finally, note the behaviour of 6. EW across the parameter space. The 

primary dependence is on ml/2, This is to be expected from 2.5 as the term 

with the largest coefficient is M? Therefore moving to larger values of ml/2 

will also increase the degree of electroweak fine-tuning required. 

In Fig. 3.2 we move to tan f3 = 50 and expand the ranges of mo and 

ml/2 that we scan over. This allows us access to new dark matter regions 

beyond just T-coannihilation. There are a number of interesting features 
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in this plot. For large mo, REWSB fails (light red) as we are unable to 

drive mlu small enough through RGE effects. Along the edge of this region 

fL is small, resulting in a neutralino with significant higgsino component. 

Therefore the multicoloured WMAP strip that runs along the edge of the 

light red region is due to a well-tempered bino/higgsino LSP. The kink in 

this strip at ml/2 ;::::; 450 Ge V is where mX.~ ;::::; mt and the process X~X~ -7 it 

becomes allowed. 

As in Fig 3.1, low values of mo are ruled out by a i LSP. Along the edge 

of this region there is a i-coannihilation strip. However this strip is very 

thin and this scan struggles to resolve it. The strip appears as a series of 

disconnected points along the edge of the light green i LSP region. 

Along a line from (ml/2 = 1050 GeV, mo = 700 GeV) to (ml/2 

1750 GeV, mo = 2100 GeV) the mass of the LSP is such that 2mx.~ 

mA and the LSP annihilates via an on-shell pseudoscalar Higgs AO. ,iVhen 

2mx.~ = mAo is exactly true, the contribution from resonant annihilation 

is too large, resulting in DCDMh2 «D~ifA;lPh2. Therefore we only fit the 

measured dark matter density D~lfjPh2 on the either edge of the resonance. 

In these three separate channels we find a wide range of fine-tunings. The 

well-tempered bino/higgsino region exhibits tuning ranging from .6.0 = 30 

at the low ml/2 end to .6.° = 60 at large ml/2. The co annihilation region 

here has a tuning .6.0 ;::::; 40. However the Higgs Funnel clearly exhibits the 

greatest tuning with much of it plotted in grey corresponding to .6.0 > 100. 

To understand how these tunings arise we take the points C2, C3 and C4 for 

the Higgs Funnel, i-coannihilation and well-tempered regions respectively 

and study the different contributions to .6.°. The results are presented in 

69 



Parameter Value 
C2 C3 C4 

t:,. S I 6.9 38 63 ma 
t:,.Q 11 30 37 ml!2 

t:,.Pan jJ 91 49 10 

t:,. 20 0 0 0 
t:,.1l 91 49 63 
t:,..t;w 600 750 2800 

Table 3.2: Fine-tuning sensitivity parameters in the CMSSM with Aa = 0, 
tan,8 = 50 from Fig. 3.1. C2 has ma = 920 GeV, ml/2 1000 GeV. 
C3 has ma = 625 GeV, ml/2 = 1120 GeV. C4 has ma = 4025 GeV, 
ml/2 = 1000 GeV. 

Table 3.2. 

Point C2 represents a point where neutralino annihilation is dominantly 

to the pseudoscalar Higgs. It is unsurprising that a process that proceeds 

via resonant production of a particle should be fine-tuned. Here the tun-

ing depends primarily on tan,8 as it is this parameter that dominates the 

determination of the pseudoscalar Higgs mass. 

At point C3 the relic density calculation is dominated by coannihilation 

between the T and the X~. In this region the tunings with respect to ml/2 

and ma have risen. This is to be expected as the contribution from t-channel 

T exchange is negligible for these large values. Also large ma reduces the 

correlation between mx~ and mi. However the primary contribution to the 

total tuning is due to tan,8. This is because when tan,8 is large the stau 

mass has a strong dependence on tan,8. On the other hand, mx~ is entirely 

independent of tan,8. Therefore, in this case, there is no correspondence 

between mx~ and mi· As a result we have large fine-tuning, just as would 

be expected for co annihilation between two unrelated particles. 

Finally point C4 represents the bino/higgsino well-tempered region. This 
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point exhibits a large sensitivity to mo and a smaller sensitivity to ml/2. 

This channel directly depends upon the higgsino fraction in X~. This is 

determined by the ratio f.-L : MI. As it is the Higgs masses that determine 

f.-L at tree level, the large sensitivity to mo is unsurprising, especially as the 

low energy value of Ml has no dependence on mo. The fact that .6.;;1/2 is 

smaller is worth a comment. To understand this consider Eq. 2.5. Though 

Eq. 2.5 is for tan f3 = 10, it does show that f.-L2 ex: Mi. Therefore as we 

increase ml/2 we not only increase 1\111, we also increase f.-L and so varying 

ml/2 does not change the ratio f.-L : Ml as drastically as might be expected. 

The points C1-C4 serve as datums to which we can compare models in 

which we relax the universalities of the CMSSM. We will start by breaking 

the universality between the sfermion generations. 

3.3 Non-universal Third Family Scalar Masses 

The first deviation we take from universality of the CMSSM is to allow the 

3rd family sfermion mass squared to vary independently of the 1st and 2nd 

families. This results in a model with five parameters and a sign: 

aCMSSM+mo,3 E {mo, mO,3, ml/2, tanf3, Ao} (3.2) 
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and the sign of p,. These determine the soft masses of the squarks, sleptons, 

Higgs and gauginos at McuT to be: 

m 2 

° 
0 0 

2 2 2 2 2 
m 2 m Q, mL' mil' ma' me 0 
° 

0 

0 0 2 
mO,3 

2 2 
mHu = mHd 

2 
mO,3 

Met ml/2 

where a = 1,2,3 labels the three gauginos. We have set the Higgs soft 

masses to be equal to the third family soft mass mO,3 since it seems reason-

able that all soft masses involved in EWSB should be of the same order. 

This is also the case in certain string models [101]' [103]. 

From a purely phenomenological point of view, we gain a lot by allowing 

ourselves this extra freedom, as pointed out in [85]. Firstly, the size of p, is 

highly sensitive to the third family squark masses and the Higgs masses as 

shown in Eq. 2.5. On the other hand oa/1 is sensitive to the first and second 

family slept on masses. If we allow the 3rd generation soft masses to vary 

independently of the 1st and 2nd, we can access regions with low p, in which 

the neutralino is a bino/higgsino mix and which still agree with oa/1 at 10-. 

However we have to be careful with low values of p,. Small p, results 

in light charginos which enhance the SUSY contribution to BR(b -+ S,). 

However the charginos appear in loops with stops, and with a large value of 

mO,3, the stops become heavy and help to suppress this contribution. Thus 

in this model, BR(b -+ S,) will be problem at large mO,3 but not as much 

as might be initially expected. 
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Figure 3,3: The (ml/2, mo) plane for non-universal sfermion masses with 
mO,3 = 1 TeV, Ao = 0, tan f3 = 10. 

In Fig. 3.3 we take the same range for mo and ml/ 2 as we did for Fig. 3.1 

but we now set mO,3 = 1000 Ge V. With a large value of mO,3 the stau is no 

longer the lightest slepton, we now have a normal mass hierarchy (NMH) in 

the sfermions. The immediate result of t his is that t he coannihilation strip 

at low mo is now coannihilation with selectrons and smuons rather t han 

staus. This also means that we can now access mo = 0 without ending up 

with a charged LSP. This happens at ml/ 2 = 230 Ge V. The lower bound 

on ml/2 from LEP2 constraints on t he lightest Higgs also changes between 

Fig. 3.1 and Fig. 3.3 from 300 GeV to ml/ 2 ~ 200 GeV. 

As we can access low values of both m l/ 2 and mo, we can access regions 
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Parameter Value 
81 82 

t:,.ll 2.4 0 ma 

t:,.~a3 0.15 0.30 
t:,.0' 4.2 1.8 ml/2 

t:,.Pan fJ 0.061 0.033 

t:,.2n 0 0 
t:,. It 4.2 1.8 
t:,.t;W 240 200 

Table 3.3: Fine-tuning sensitivity parameters for different points in Fig. 3.3 
with mO,3 = 1 TeV, Ao = 0, tan,B = 10. 81 has mo = 50 GeV, ml/2 = 
350 Ge V. 82 has mo = 0 Ge V, ml/2 = 230 Ge V 

with light sleptons that in turn mediate the process X~X~ ---+ if. As we move 

to low mo and ml/2 this process becomes competitive with coannihilation. 

This has the effect of reducing the overall fine-tuning, represented by the 

wl\1AP strip changing from red to green. Along the edge of the LEP2 

bounds there is even the hint of yellow, representing points where t:,. 0 < 1. 

However accessing this region comes at a cost. For low mo and ml/2 < 

250 Ge V the smuons become so light that the SU8Y contribution to 5aJ.L 

is too large. This large contribution could be reduced if we were to allow 

Ml and M2 to have different signs. Finally the dashed red line is also an 

early warning. For ml/2 < 350 Ge V the charginos are light enough that we 

violate the bounds on BR(b ---+ 8,), though only at 1a. 

To understand the tuning of a eR, fl,R-coannihilation region and t-channel 

sfermion exchange we consider two points on the successful dark matter 

strip: 81 at mo = 50 GeV, ml/2 = 350 GeV; and 82 at mo = 0 GeV, 

ml/2 = 230 GeV. The fine-tuning of these points with respect to our 5 

parameters is shown in Table 3.3. 

We choose point 81 to allow direct comparison with the CM88M. Once 
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again we find a tuning of around 25% with respect to ml/2 though the de-

pendence on mO,3 is minimal. This shouldn't be surprising as the neutralino 

annihilation channels in question depend primarily on the mass of the smuon, 

selectrons and the neutralino, none of which are sensitive to mO,3. From this 

region, there is nothing to suggest that selectron and smuon co annihilation 

channels are any more natural that the stau co annihilation channel in the 

CMSSM. 

Point S2 is considerably more interesting. Here there is a dramatic de-

crease in the sensitivity to the soft parameters. The primary reason for this 

is that there are more channels at work than just coannihilation. At mo = 0, 

the select ron and smuon are light enough that t-channel slepton exchange 

in the process X~X~ --+ e+ e- or f-L+ f-L- becomes competitive. Indeed at this 

point such processes account for 60% of the annihilation of SUSY matter 

whereas co annihilation processes only account for 40%. 

This combination of annihilation channels is responsible for the drastic 

decrease in dark matter sensitivity to the soft parameters. By decreasing 

ml/2 we decrease the mass of the neutralino and to lesser extent the selectron 

and the smuon. This increases the mass splitting between the states, sup-

pressing coannihilation effects. However lower slept on masses enhance the 

cross-section for t-channel slepton exchange. This has the effect of smearing 

out the region of successful dark matter in the ml/2 direction. 

If mo = 0, ~~o = 0 automatically3. However we would also expect ~~o 

to be small whenever mo is small. Whenever mo « ml/2 the masses of 

3Due to the definition of b,. n, whenever a = 0, b,.~ = O. However we have checked that 
this has not resulted in an artificially low b,. by taking a number of points of decreasing 
mo. From this we conclude that as mo --+ 0, b,.~o --+ 0 smoothly. 

75 



both the sleptons and the neutralino are going to be primarily dependent 

upon ml/2' Therefore the low energy phenomenology will be dominated by 

ml/2 so neither t-channel slepton exchange or coannihilation should depend 

strongly on ma when ma is small. 

This particular combination of channels smears out critical dependence 

on the soft parameters. Moreover, both channels will naturally occur in any 

model with light ma and reasonably light ml/2' However light selectrons 

and smuons also enhance oaJ.L and, as a result, point 82 slightly exceeds the 

2a bound on oaJ.L 4. 

Having access to ma = 0 also permits a solution to the 8U8Y flavour 

changing neutral current (FCNC) problem, at least for the first two genera-

tions, where it is most severe. Being zero at high energies, non-zero elements 

of the low energy upper block of the squark and slepton mass matrices pro-

portional to the unit matrix are generated via gaugino running effects, giving 

a universal form involving the first two families, greatly suppressing the most 

severe FCNCs. This mechanism is analogous to "gaugino mediated 8U8Y 

breaking" [104]' [105] but applies here to only the first two families. It was 

first studied in the framework of a particular brane setup in [106] where it 

was referred to as "brane mediated 8U8Y breaking" . 

As in Fig. 3.1, the electroweak tuning is primarily dependent upon vari-

ations in ml/2 through the contributions of M3 to the running of the Higgs 

masses. We have slightly larger values of ,6.EW throughout because we have 

set ma,3 = 1 TeV. 

Having considered the behaviour of a model with ma,3 = 1 Te V, we now 

4 As mentioned earlier this can be avoided if we allow a relative sign between Ml and 
M2. 
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Figure 3.4: The (ml/ 2, ma,3) plane for non-universal sfermion masses with 
ma = 50 GeV, Aa = 0, tan ,8 = 10. 

go on to consider t he case of general m a,3 in Fig. 3.4. We fix ma = 50 GeV 

and allow ma,3 to vary from 1 to 4 TeV. For t he majority of t he plot , 

the light shaded (green) region represents the region ruled out due to a 

smuon or select ron LSP. The dark matter strip that runs parallel to it is 

due to coannihilation with smuons and selectrons, as exemplified by point 

Sl studied previously in Fig. 3.4. 

As we mentioned earlier , if we increase ma,3 enough we lower p,2 to 

t he point where it becomes negative and REWSB fails. As we approach the 

region in which REWSB fails , 1p,1 decreases and therefore we steadily increase 
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Parameter Value 
83 84 85 

6.11 1.5 0.67 0.12 mo 
6.~o 3 0.41 2.4 30 
n' 2.4 2.8 18 6.m1 /2 

6.~anf3 0.23 1.0 12 

6.20 0 0 0 
6.Sl 2.4 2.8 30 
6..t;w 91 1300 950 

Table 3.4: Fine-tuning sensitivity parameters at points in Fig. 3.4. 83 has 
mO,3 = 80 GeV, ml/2 = 320 GeV. 84 has mO,3 = 2700 GeV, ml/2 = 
470 GeV. 85 has mO,3 = 2308 GeV, ml/2 = 350 GeV 

the higgsino component of the neutralino. This results in an analogue of the 

Focus Point region in the CM88M. The main difference here is that as mo is 

still small, the selectrons and smuons still provide a substantial contribution 

to the annihilation cross-section. Therefore point 85 is not solely due to the 

L8P being bino /higgsino as is the case for the focus point in the CM88M. 

The last band in Fig. 3.4 that agrees with OCD M h2 is at low ml/2 ~ 

160 GeV and mO,3 ~ 1.2 to 2 TeV. In this region the select ron and smuons 

are light enough to mediate t-channel sfermion exchange. However this 

region is ruled out at 20- by BR(b --7 Sf) and 5aJ-L so we do not study it 

further here. 

To study the naturalness of the dark matter regions in more detail, we 

take the points 83-85 as shown in Fig. 3.4 and Table 3.4. Point 81 also 

shown in Fig. 3.4 was considered previously. This allows a comparison of 

the Focus Point region with its well-tempered neutralino in point 85 to the 

smuon/selectron coannihilation region of point 81. We also take points 83 

and 84 where these regions meet. Having found a hint of natural dark 

matter in point 82 in which we had more than one annihilation channel at 
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work, 83 and 84 allow us to study tuning in regions that exhibit different 

combinations of annihilation channels. 

Point 83 lies on the point at which selectrons, smuons and staus all 

contribute to annihilation rates equally. We also have a 47% contribution 

from t-channel slept on exchange. Because the stau coannihilation depends 

almost solely on mO,3 and the select ron and smuon co annihilation depends 

on mo, the sensitivity to either of these parameters is reduced. In addition, 

if we increase either mO,3 or mo we are increasing the mass of either the staus 

or the smuons and selectrons, which always leaves at least one light slepton 

to mediate t-channel slepton exchange. As a result 83 has a lower fine

tuning than either primarily stau co annihilation (as with C1) or selectron 

and smuon co annihilation (as with 81). 

Point 84 also lies on an intersection in annihilation channels. This time 

it is the intersection of the bino/higgsino well-tempered strip and the selec

tron, smuon co annihilation strip. The quoted t:,.~ values should therefore 

be compared to 85 and 81 respectively. The selectron, smuon coannihila

tion strip is primarily sensitive to mo and ml/2 through their effect on the 

sparticle masses. In contrast the bino/higgsino strip, represented by point 

85, is highly sensitive to mO,3 and ml/2 through their effects on the low en

ergy values of f-L and MI' Once again by combining channels we reduce our 

dependence on anyone parameter. In this case we manage to achieve a low 

degree of fine-tuning while also having a well-tempered neutralino. However 

with mO,3 = 2700 Ge V and t:,. EW ~ 1000 we are in peril of reintroducing 

fine-tuning complaints in the electroweak sector. 

Finally, note that in both the CM88M and this model with non-universal 
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third family scalars, the tuning of the well-tempered bino/higgsino is larger 

than the tuning required for the slept on coannihilation regions. In [49] 

the well-tempered neutralino is suggested as some of the most plausible 

options for dark matter within a general 8U8Y theory. However here we 

have shown that, at least in certain models, such well-tempered regions 

are more fine-tuned with respect to soft parameters than the co annihilation 

regions rejected in [49]. 

In summary, allowing mO,3 to vary independently of the first and second 

family masses, and in particular to become independently large, we find the 

following features: 

• Access to mo = 0, and hence a solution to the 8U8Y FCNC problem 

for the 1st and 2nd families, with lower t::,. 0 than in the CM88M at 

the expense of large 8U8Y contributions to (g - 2)w 

• Access to the well tempered bino/higgsino region which agrees with 

oaJ.L at 1cr, but this well tempered point involves 3% dark matter fine

tuning. 

• We can access certain regions such as 83, 84 in which we have a number 

of different annihilation channels at work and these lead to lower values 

of t::,. 0 and more natural solutions to the dark matter problem. 

• Large mO,3 implies a high degree of fine-tuning for REW8B, as ex

pected, so a fully natural model is not possible in this case. 
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3.4 Non-universal Gaugino Masses 

As with high 3rd family masses, there are good reasons for allowing the soft 

gaugino masses to be non-universal. From a theoretical point of view, non

universal gaugino masses are interesting as they naturally occur in SUGRA 

models with non-minimal gauge kinetic terms, which arise from many string 

constructions (see e.g. [101], [103]). They also naturally occur in gauge 

mediated SUSY breaking [107] and anomaly mediated SUSY breaking [108]. 

From a phenomenological point of view, non-universal gauginos are ex-

tremely useful. By allowing MI and M2 to take different values, we can 

directly change the bino/wino balance in the neutralinos allowing access to 

wino and well-tempered bino/wino LSP states. M3 allows us to vary the 

squark sector independently of the sleptons through its effects on the run

ning masses. fL also depends on M3 as shown in Eq. 2.5. Therefore by 

allowing our gaugino masses to be non-universal we gain control over M I , 

M2 and to a lesser extent fL. 

To be precise we consider the parameters: 

and the sign of fL. 

In Fig. 3.5 we keep M2 = M3 = 350 GeV, tanfJ = 10 and Aa = 0, but 

allow ma and MI to vary. As we have a unified mass for the sfermions, the 

light shaded (green) region at low ma is excluded by a stau LSP. The LEP2 

bound at MI ~ 100 GeV is due to the neutralino becoming too light. The 

LEP bound for low ma and low ml/2 is a bound on the mass of the T. With 
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Figure 3.5: The (Ml' mo) plane for non-universal gauginos with 1112 = M3 = 

350 GeV, Ao = 0, tan;3 = 10. 

Nh = 350 Ge V the Higgs mass is above the LEP limit across the whole 

The most striking feature of Fig. 3.5 is the multitude of different regions 

that satisfy DCDMh2
. There is the coannihilation strip for 300 GeV < Ml < 

500 Ge V containing the point C1 at Ml = 350 Ge V which coincides with 

the CMSSM point considered previously, with bino dark matter and a stau 

coannihilation channel. In addition there is the well tempered bino/ wino 

LSP at Ml ~ 600 GeV containing the point G4. When Ml = 700 GeV, 

M1(mCUT) = 2M2 (mCUT) and so, through our rule of thumb 1\11 (msusy) ~ 

5In parallel to Fig. 3.1, we can take M3 down to 300 GeV without violating the LEP2 
bound on the lightest Higgs mass. This also results in the lowest value of J-L. 
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M2(msUSY). As we approach Ml = 700 GeV, we steadily increase the wino 

proportion of the LSP. When Ml ;::::;j 600 Ge V, there is just enough wino 

in the LSP to satisfy dark matter constraints, the so called well-tempered 

bino/wino. The two vertical lines at Ml = 130 GeV and Ml = 140 GeV 

correspond to the points at which 2mx~ = mz, mhO respectively and we have 

resonant s-channel annihilation. The Higgs resonance stretches all the way 

to mo > 500 GeV but the resolution of the scan is such that it can't resolve 

the width of the resulting dark matter lines. However the most interesting 

region is the bulk region plotted in yellow containing the point G1 which 

arises from the very low values of 150 GeV < Ml < 250 GeV, which are 

allowed now that gaugino universality is relaxed, which allows the sleptons 

to be light enough that X~X~ -----+ zI can produce the observed relic density 

on its own. The colour coding allows us to gauge the total tuning of these 

different regions. The most natural region is the bulk region with .6. D < 1. 

This is followed by the coannihilation region with a tuning comparable to 

that of the CMSSM. The well-tempered bino/wino region exhibits a tuning 

.6. D ;::::;j 30 throughout, comparable to that of the lower end of the Z and 

Higgs resonance. The only region we can't see in detail here is the Higgs 

resonance for large mo. To study this region, and understand the sources 

of tuning in the other regions in more detail, we take the points C1, G4, 

G5, and G1 in each region and for points G2, G3 where two annihilation 

processes contribute equally. The results are presented in Table 3.56 . 

It is striking that two of the points in Table 3.5, namely Gland G2, have 

6Though point Cl has the same values for the soft parameters as in Table 3.1, here we 
allow the gaugino masses to vary independently. Therefore the tuning is calculated using 
the parameters aCMssM+Mi rather than aCMSSM and so Cl here does not represent the 
CMSSM. This is the point at which a model with non-universal gauginos makes contact 
with the CMSSM. 
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Parameter Value 
G1 G2 G3 G4 G5 C1 

6.11 0.83 0.97 3.0 0.65 5.7 3.5 mo 
6.12 0.80 0.51 8.0 28 1100 2.7 Ml 
6.12 0.23 0.36 3.4 26 4.8 0.64 M2 
6.12 0.24 0.44 2.3 5.8 91 1.4 M3 

6.Pan i3 0.20 0.50 1.2 0.20 4.1 1.4 

6.2n 0 0 0 0 0 0 
6.11 0.83 0.97 8.0 28 1100 3.5 
6.EW 110 110 111 111 110 160 

Table 3.5: Fine-tuning sensitivity parameters for points taken from Fig. 3.5 
with M2 = M3 = 350 GeV, Aa = 0, tanj3 = 10. G1 has ma = 70 GeV, 
M1 = 190 GeV. G2 has ma = 55 GeV, M1 = 220 GeV. G3 has ma = 
100 GeV, M1 = 550 GeV. G4 has ma = 300 GeV, M1 = 590 GeV. G5 has 
ma = 300 GeV, M1 = 146.15 GeV. 

a dark matter sensitivity parameter below unity, corresponding to "super-

natural" dark matter (i.e. no fine-tuning required at all to achieve successful 

dark matter). Point G1 lies in the middle of the bulk region in which an-

nihilation proceeds through t-channel sfermion exchange. As this process 

depends directly upon the mass of the sleptons that are exchanged, it is un-

surprising that the majority of the dependence is on ma and ]1,{1' However it 

is clear that the dependence is significantly lower than in the CMSSM. This 

is because the cross-section for X~X~ ---7 zI varies slowly with mf in compar-

is on to co annihilation processes that depend upon precise mass differences 

between particles. In the neighbouring point G2 both co annihilation and 

t-channel slept on exchange are competitive. Here the sensitivity to ma in-

creases slightly (due to the coannihilation channel) but the sensitivity to M1 

decreases significantly for the same reasons as point S2 in the the case of 

non-universal scalars. 

The advantage of combining annihilation channels is shown by compar-

ing the point G3 and G4. G4 has been chosen to lie on the well-tempered 
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bino/wino line. As with the bino/higgsino region, as we move away from 

a pure bino LSP the annihilation and co annihilation cross-section rise dra-

matically, leading to a sharp drop in DCDM h2 . Here, as before, such well-

tempered regions exhibit fl~ values of ~ 30, values well in excess of slepton 

coannihilation regions with low mo. G3 lies in the region in which we have 

both coannihilation with staus and a significant wino component in the 

neutralino. This results in a region that is both well-tempered and exhibits 

lower values of fl 12 . 

Finally we briefly consider the naturalness of s-channel annihilation re-

gions. As these are sharply peaked whenever 2mx-o = mz h, we expect there 
1 ' 

to be a substantial dependence on any parameter that directly affect the 

neutralino mass. As point G5 shows, this dependence is extreme. If we were 

to find ourselves to be living in this part of parameter space we would have 

to look for some further theoretical justification. A fl 12 value greater than 

1000 cannot be considered natural. 

Note that there are no contours of electroweak tuning in Fig. 3.5. This 

is because neither Ml or mo greatly affect flEW in this region. We find 

flEW ~ 110 across the parameter space displayed. 

Once again, these studies of naturalness can only be considered in the 

case of a given model. In this model with non-universal gaugino masses 

we have showed that the well-tempered region is considerably more fine--

tuned than t-channel slepton exchange or even slepton coannihilation re--

gions. However the tuning in the well-tempered region pales in significance 

when we consider the amount of tuning required to land us on the edge of 

the light Higgs annihilation channel. 
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However the fate of the bino/wino dark matter strip could be considered 

to be better than that of the bino/higgsino neutralino. The reason for this 

is that the bino/higgsino region depends precisely on Md f-L whereas the 

bino/wino region depends on MdM2. In the latter case to guarantee that 

we land in the bino/wino well-tempered strip it is only necessary to have 

a model that requires M1(mcUT) ~ 1. 7M2 (mCUT). In such a model the 

large dependence on Ml and M2 in G4 would disappear and a bino/wino 

neutralino could provide a dark matter candidate. However there is no 

magic ratio at the high scale that will obviously reproduce the relevant 

bino/higgsino ratio at the low scale. To see this it is enough to consider 

the dependence of f-L on the soft parameters. To guarantee a given ratio 

between f-L and Ml it would be necessary to have a model that relates all 

the parameters in Eq. 2.5 in just the right way. 

Leaving aside such questions of models of SUSY breaking, the most vivid 

results of allowing non-universal gaugino masses are: 

• The bulk region involving bino annihilation via t-channel slepton ex

change can be accessed, since low Ml is possible leading to light 

sleptons. This allows "supernatural" dark matter exemplified by the 

points Gl and G2. 

• Low ma and Ml also allow us to fit baJ.L at 10". 

• A well tempered bino/wino neutralino scenario is possible, for example 

point G4, but this requires 3% fine tuning similar to the well tempered 

bino/higgsino of point S5. 

• Combinations of annihilation channels on the edge of such regions such 
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as point G3 lead to lower fine-tuning . 

• To achieve the observed value of o'CDMh2 through resonant annihila

tion such as at point G5 through a light Higgs requires extremely large 

fine-tuning for large mo. 

3.5 Non-universal Gauginos and Third Family Scalar 

Masses 

Having considered non-universal gauginos and the situation in which we al

low the third family sfermion and Higgs masses to be large, we now consider 

the effect of including both of these extensions to the CMSSM at once. This 

results in a model with 7 free soft parameters and a sign: 

anon-univ E {mo, mO,3, M 1, M2, M 3, tan/3, A o} (3.4) 

and the sign of fL. 

It is clear from the two previous sections that the mechanics of dark 

matter annihilation can be sensitive to many of these parameters. To get 

a true handle of the sensitivity of these regions to the soft parameters, we 

should allow all of the different parameters to vary at once. In addition, by 

allowing all parameters to vary simultaneously, we open up the possibility of 

accessing new regions in which we satisfy dark matter that have even lower 

~ n values than we have found so far. However having large mO,3 clearly 

means that REWSB will be fine-tuned. Nevertheless a new result of having 

both types of non-universality together is that we can access a maximally 
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Figure 3.6: The (MI' mo) plane for non-universal gaugino and sfermion 
masses with M2 = M3 = 350 GeV, mO,3 = 1000 GeV, Ao = 0, tan ,8 = 10. 

tempered bino/wino/higgsino neutralino . 

In Fig. 3.6 we take M2,3 = 350 GeV, tan ,8 = 10 and Ao = 0 as in Fig. 3.5 

but set mO,3 = 1 TeV. The introduction of a high 3rd family mass has had 

the same general effects as in Fig. 3.3. The light shaded (green) excluded 

region is now due to smuon and selectron LSPs rather than staus which once 

again allows access to mo = O. The lack of a light stau has also reduced the 

x~x~ --t zI cross-section across the entire parameter space. Thus we need 

lower values of mo and M I , and thus lighter smuons and selectrons , to access 

a region in which t-channel slepton exchange alone can satisfy dark matter 

constraints. As a result much of the bulk region is once again ruled out by 
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Parameter Value 
SG1 SG2 

b,.ll 0.35 1.6 rno 

b,.~o 3 0.10 0.15 
n' 0.04 8.9 b,.M 
n

1 

0.028 7.7 b,. M2 

b,.n 0.036 0.89 M3 

b,.Pan i3 0.014 0.056 

b,.20 0 0 
b,.1l 0.35 8.9 
b,..t;w 240 240 

Table 3.6: Fine-tuning sensitivity at points taken from Fig. 3.6 with M2 = 
M3 = 350 GeV, mO,3 = 1000 GeV, Ao = 0, tan,8 = 10. SG1 has mo = 
25 GeV, Ml = 205 GeV. SG2 has mo = 85 GeV, Ml = 585 GeV. 

LEP particle searches. 

Apart from these details, the general features remain the same as in 

Fig. 3.5. We cannot access Ml < 100 GeV due to LEP2 bounds on the 

lightest neutralino. At low Ml we have thin lines corresponding to the light 

Higgs and Z resonances. The line is broken due to the resolution of the grid 

used to scan the space - a testament to extreme sensitivity of these regions to 

MI. At low kh and low mo we have dominant contributions from t-channel 

slept on exchange. For moderate values of 1V[1 we have co annihilation with 

selectrons and smuons and when Ml ~ 600 GeV we get bino/wino dark 

matter. Once again b,.EW varies slowly across the parameter space so there 

are no contours displayed. In general b,. EW ~ 250 throughout. 

In our hunt for natural dark matter, we consider points in which many 

different annihilation channels contribute. We take point SG1 at the in-

tersection of the selectron, smuon co annihilation region and the t-channel 

slepton band. Point SG2 is taken in the region where bino/wino dark mat-

ter also coannihilates with selectrons and smuons. SG 1 once again shows 
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Figure 3.7: The (Nh , mo) plane for non-universal gaugino and sfermion 
masses with M2 = M3 = 350 GeV, mO,3 = 2250 GeV, Ao = 0, tan/3 = 10. 

that regions with low mo and Ml exhibit small fine-tuning. Here the dark 

matter band appears at lower mo and lower Ml in Fig. 3.6 than in Fig. 3.3. 

The result, through a combination of the effects discussed earlier, is an or-

der of magnitude decrease in the sensitivity of this region in comparison 

to the most favourable region of the CMSSM. Point SG 1 again provides a 

supernatural solution to dark matter7 . 

Fig. 3.7 contains the maximally tempered neutralino at point SG3. With 

Nh = Nfs = 350 GeV, we take mO,3 = 2250 GeV to achieve small enough j..t. 

7In this region we also agree with oal" in contrast to rno = 0 point in section 3.3 . This 
is because M2 = 350 GeV which avoids charginos that are too light and keeps oal" at the 
correct level. 
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Parameter Value 
SG3 

.6..ll 0.064 rno 

.6..;;03 3.8 
n' 2.0 .6..M 
n 1 

0.52 .6..M 
n 2 

3.7 .6..M 
n 3 

1.0 .6..tan (3 

.6..20 0.015 

.6..ll 3.8 

.6...t;w 240 

Table 3.7: Fine-tuning sensitivity at the maximally tempered point SG3 
taken from 3.7 with M2 = M3 = 350 GeV, mO,3 = 1000 GeV, Ao = 0, 
tan (3 = 10. SG3 has mo = 0 GeV, Ml = 375 GeV. 

Once again this raises questions of fine-tuning in the electroweak sector but 

we leave such concerns aside for the time being. The region of interest lies 

at Ml >:::: 400 GeY. This line is rather disjointed as SOFTSUSY has difficulty 

calculating the spectrum in regions where f-L is small. In this band the 

neutralino has significant portions of bino, wino and higgsino. This results 

in all of the neutralinos and charginos being close in mass and so results 

in a large number of annihilation and co annihilation processes in the early 

universe. In Table 3.7 we study point SG3 at mo = 0 GeV, jU1 = 375 GeV. 

The maximally-tempered neutralino at point SG3 exhibits dramatically 

lower fine-tuning than either the bino/wino (G4) or bino/higgsino (S5) re-

gions. By allowing the neutralino to be maximally mixed, we decrease the 

degree of tuning required to satisfy dark matter by an order of magnitude 

with respect to merely well-tempered cases. Note that this is particular to 

low mo, as we move to larger mo we return to degrees of fine-tuning of the 

same order as the bino/wino region ion Fig. 3.5 or the bino/higgsino region 

of Fig. 3.3. 
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As with the case of non-universal gaugino masses alone, or just a high 

third family scalar mass, we find that there are certain points in parameter 

spaces where different annihilation channels contribute with roughly equal 

strength. These regions are characterised by a sharp drop in the fine-tuning 

of soft parameters required to reproduce DCDM h2 . By allowing both non-

universal soft gaugino masses and non-universal 3rd family scalar masses we 

find that not only are these regions stable against further non-universalities, 

but also that we can access values of !:::..~ an order of magnitude smaller than 

in the CMSSM. 

3.6 Conclusions 

We have explored regions of MSSM parameter space with non-universal 

gaugino and third family scalar masses in which neutralino dark matter 

may be implemented naturally. In order to examine the relative naturalness 

of different regions we employed a dark matter fine-tuning sensitivity pa

rameter, which we use in conjunction with the similarly defined sensitivity 

parameter used for EWSB. Employing these quantitative measures of fine

tuning we find that 7'-coannihilation channel in the CMSSM may involve as 

little as 25% tuning, due to renormalisation group (RG) running effects. 

For non-universal third family scalar masses in which mO,3 is allowed 

to become independently large, we find that we have access to mo = 0, 

and hence a solution to the SUSY FCNC problem, with lower !:::..~ than 

in the CMSSM at the expense of large SUSY contributions to (g - 2)w 

Alternatively, with non-universal third family scalar masses, we can also 

access the well tempered bino/higgsino region which agrees with 5aJ-L at 10", 
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but this well tempered point involves 3% dark matter fine-tuning. We can 

access certain regions in which we have a number of different annihilation 

channels at work and these lead to lower values of dark matter fine tuning. 

However large mO,3 implies a high degree of fine tuning for REWSB, as 

expected, so a fully natural model is not possible in this case. 

With non-universal gauginos the bulk region involving bino annihilation 

via t-channel slepton exchange can be accessed, since low Ml is possible 

leading to light sleptons. This allows supernatural dark matter (for example 

at points Gl, G2) with minimal EWSB fine-tuning, depending on how low 

A13 is taken consistently with the LEP Higgs bound. Low mo and Ml 

also allow us to fit 5aJL at 10". Alternatively, with non-universal gauginos, 

the well tempered bino/wino neutralino scenario is also possible, but again 

requires 3% fine-tuning as in the case of the well tempered bino/higgsino. 

However combinations of annihilation channels on the edge of such regions 

such as point G3 lead to lower fine-tuning. To achieve the observed value of 

DCDM h2 through resonant annihilation such as at point G5 through a light 

Higgs requires extremely large fine-tuning. 

With both non-universal third family masses and non-universal gaug

inos, a new feature appears: the maximally-tempered bino/wino/higgsino 

neutralino where the LSP consists of roughly equal amounts of bino, wino 

and higgsino (for example point SG3). Although the maximally tempered 

neutralino has quite low fine-tuning for low mo, the large value of mO,3 

inherent in this approach always means that EWSB will be very fine-tuned. 

In general, having non-universal third family and gaugino masses opens 

up new regions of MSSM parameter space in which dark matter may be im-
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Region Typical 6 11 

Well-tempered bino/wino rv 30 
Well-tempered bino/higgsino 30 - 60 
Maximally-tempered bino / wino /higgsino 4- 60 
Bulk region (t-channel 1 exchange) <1 
slepton co annihilation (low M I , mo) 3 -15 
slepton coannihilation (large M I , mo) rv 50 
Z-resonant annihilation rv 10 
hO-resonant annihilation 10 - 1000 
A 0 - resonant annihilation 80 - 300 

Table 3.8: The general tunings found for the different neutralino annihilation 
channels within the MSSM. 

plemented naturally. In particular allowing non-universal gauginos opens up 

the bulk region that allows bino annihilation via t-channel slept on exchange, 

leading to "supernatural" dark matter corresponding to no fine-tuning at all 

with respect to dark matter. By contrast we find that the recently proposed 

well-tempered neutralino regions involve substantial fine-tuning of MSSM 

parameters in order to satisfy the dark matter constraints, although the 

fine-tuning may be ameliorated if several annihilation channels act simulta-

neously. Although we have identified regions of "supernatural" dark matter 

in which there is no fine-tuning to achieve successful dark matter, the usual 

MSSM fine-tuning to achieve EWSB always remains. 

Within these patterns of MSSM parameters, we have found that the 

fine-tuning of dark matter primarily depends on the channel involved, rather 

than the magnitude of the parameters. This is in contrast to 6 EW in which 

the tuning is almost always directly proportional to the magnitude of the 

input parameters. The exception is that for very low mo, the slepton coan-

nihilation channels become significantly more natural, due to the emergence 

of a correspondence between mx~ and mf for bino dark matter. Using the 

94 



general results of these scans we can categorise the regions in Table 2.1. We 

present these results in Table 3.8. 
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Chapter 4 

Dark Matter from a String 

Model 

4.1 Introduction 

Though such a non-universal MSSM provides a general framework for study

ing natural dark matter regions, it may not be realistic to regard the mass 

terms in the soft SUSY breaking Lagrangian as fundamental inputs since 

the soft masses merely parameterise the unknown physics of SUSY break

ing. In any realistic model of SUSY breaking the soft breaking terms in 

the Lagrangian should be generated dynamically. It is the parameters that 

define the mechanism of SUSY breaking that should be taken as the funda

mental inputs. As we have mentioned, this is a problem as the true origin of 

SUSY breaking is unknown. In string theory the unknown SUSY breaking 

dynamics may be manifested as F-term vacuum expectation values (VEVs) 

of hidden sector moduli fields appearing in the theory. Therefore the val

ues of these F-terms may be regarded as being more fundamental input 
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parameters than the soft mass terms of the MSSM. Although the values of 

the F-terms are unknown, they may be parameterised in terms of so called 

Goldstino angles which describe the relative magnitude of the F-terms as

sociated with the different moduli fields, as was done for example in type I 

string theories in [110]. A more reliable estimate of fine-tuning sensitivity 

should therefore result from using such Goldstino angles, together with the 

gravitino mass m3/2, and some other undetermined electroweak parameters 

such as the f.L parameter and the ratio of Higgs vacuum expectation values 

tan (3 as inputs. Therefore fine-tuning should more properly be calculated 

with respect to these inputs. It is possible that fine-tuning when calculated 

in terms of such inputs could yield very different results. 

In this chapter we extend the previous analysis of the non-universal 

MSSM to a semi-realistic type I string theory model of the form origi

nally proposed in [102] and phenomenologically analysed in [103] (see also 

[101], [102]' [113]). Using such a string model we can address two ques-

tions. Firstly, how does the fine-tuning of a particular dark matter region in 

the non-universal MSSM compare to a similar region in the string model? 

Secondly, do some regions of SUSY breaking parameter space in the string 

model more naturally explain dark matter and electroweak symmetry break

ing than others? The model we use to address these points is the type I 

string inspired model in [102] in which we can obtain SUSY breaking from 

any of twisted (Y) moduli, untwisted (T) moduli or the dilaton (S). The phe

nomenology of SUSY breaking in this model has been studied in [103]. Neu

tralino dark matter has not so far been studied in this string model, or any 

string model involving twisted moduli, although it has been studied in other 
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string models [82], [114]-[116]. However in none of these cases has the ques

tion of the naturalness of the predicted dark matter density been addressed 

and, as discussed, one of the main motivations for the present study is to 

explore how such results obtained in the non-universal MSSM translate to 

the case of a "more fundamental" string theory where such non-universality 

arises automatically. The main motivation for revisiting the model in [102]' 

[103] is that it exhibits non-universal gaugino masses and non-universality 

between the 3rd family and the 1st and 2nd family squarks and sleptons, 

similar to the structures analysed in Chapter 3. This allows a direct com

parison between the non-universal MSSM and a corresponding type I string 

model, since the latter shares many of the dark matter regions previously 

considered. We will find that dark matter constraints close off much of the 

parameter space of the type I string model, for example the benchmark 

points suggested in [103] are either ruled out (DCDMh2 » D-rglfJPh2) or 

disfavoured (DCDMh2 «D-rglfJP h2). However we will find new successful 

regions of dark matter in the string model, which mirror some of those found 

in the non-universal MSSM, some of which exhibit degrees of fine-tuning in 

agreement with previous results [69], and some which vary significantly. 

The layout of this chapter is as follows. In section 4.2 we summarise 

the string model of [103] and analyse the structures of the GUT scale soft 

masses specifically with respect to their implications for dark matter. In 

section 4.3 we use numerical scans to study the fine-tuning of dark matter 

within such a model. In section 4.4 we present our conclusions from the 

string model. 
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Figure 4.1: The brane set-up from [102], [103]. 

4.2 The Model 

4.2.1 The brane set-up 

Type I string theory not only contains open and closed strings, but also 

contains extended objects to which the ends of opens strings are attached. 

These are known as Dp-branes where the brane extends in p+1 dimensions. 

From a model building perspective D-branes are extremely useful. A given 

stack of D-branes will have a set of open strings confined to move on its 

surface. By identifying a given field with a given open string, we fix its 

properties and the number of dimensions in which it can propagate. 

We start with the brane set-up shown in Fig. 4.1, originally proposed in 

[102], [103]. Here we have two perpendicular intersecting stacks of D5 branes 

51 and 52. Each holds a copy of the MSSM gauge group. To maintain gauge 

coupling unification at the GUT scale we take the limit of single brane 

dominance R52 » R51 · The twisted moduli Y2 is trapped at a fixed point in 

the D52-brane. The untwisted moduli 'Fi, and the dilaton propagate in the 
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Figure 4.2: The Goldstino angles are defined to parameterise the F-term SUSY breaking 
coming from the S,T and Y moduli. (e, ¢) = (0,0) corresponds to twisted moduli (Y2) 
SUSY breaking. (e,¢) = (0,7r/2) corresponds to untwisted moduli (Ti) SUSY breaking. 
e = ° corresponds to dilaton (S) SUSY breaking. 

laD bulk. We identify the first and second families with open strings with 

one end on the 51 brane and the other on the 52 brane. This localises them 

at the intersection of the branes and effectively sequesters them from the 

twisted moduli. The third family and the Higgs bosons are identified with 

strings on the 52 brane. 

In such a model the SUSY breaking can come from the twisted moduli 

(Y2) localised at a fixed point in the 52 brane, the untwisted moduli (Ti) 

in the bulk or the dilaton (8). Each of these forms of SUSY breaking 

gives rise to distinct GUT scale soft masses and so to distinct low energy 

phenomena. As the exact form of their contribution to the SUSY breaking 

F-terms is not known, we use Goldstino angles [110] to parameterise the 

relevant contributions of each. These angles are defined as shown in Fig. 4.2. 
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4.2.2 GUT scale soft masses 

The model determines the soft masses at the GUT scale to be [102]' [103]: 

m 2 
a 0 0 

2 2 2 2 2 
m 2 0 (4.1) m Q, mi.,' mil' m d, me 0 a 

0 0 2 
ma,3 

2 2 
mHu = mHd = 2 

mH, (4.2) 

where m6 is defined as: 

2 2 [ 3. 2 1 2 ·2 
ma m 3/ 2 1 - 2" sm e - 2" cos e sm ¢ 

( 1 - e-(T2+T2)/4) cos2 e cos2 ¢ 

~ cos2 e sin2 ¢ oGS (1 _ e-(T2+T2)/4) 

X2 -_ 
+ 96 cos2 e sin2 ¢ e-(T2+T2)/4(T2 + T2)2 

1 --
10 cos2 e cos ¢ sin ¢ e-(T2+T2)/4 {8(T2 + T2) + oGS X} X 

16y3 

+ 0 lOGS e-(T2+T2)/4ll ' (4.3) 
(T2 + T2) 

with X = Y2 + Y2 - oGS In(T2 + T2), where oGS is the Green-Schwartz 

parameter. m6,3 and m~ are defined as: 

2 
ma,3 
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The soft gaugino masses and trilinears are: 

V3m3/2 g~ e [sin ¢ {fTl rf'i Sa. s: } 
87f cos V3 .1- 2 + .1- 2 + 47f UGS 

¢ 6GS Sa. 0 6GS { } [( )2]] 
cos T2 + T2 - 47f + T2 + T2 ' 

(4.6) 

A -m3/2 (cos e sin ¢ + 0 [ 6GS 2])' 
(T2 + T2) 

(4.7) 

where we follow [117] in taking the parameter Sa. to be equal to the MSSM 

I-loop ,s-function coefficients: Sa. = ,sa. where ,sa. = 27f {33/5, 1, -3}. Note 

that all the soft masses scale as m3/2 as expected in any SUGRA theory. 

4.2.3 Fine-tuning and the set of input parameters 

Given the form of our measure of fine-tuning, Eq. 2.18, it is clear that the 

value of .6.S1 depends directly on our choice of inputs. In the non-universal 

MSSM studied previously we took our inputs at the high energy (GUT) 

scale as a = anon-univ where: 

anon-univ E {mo, mO,3, M l , M2, M3, Ao, tan,s} , (4.8) 

and the sign of fJ,. 

Within the present type I string model we take a = astring where: 

and the sign of fJ,. 

Here tan,s and sign(fJ,) are as in the general MSSM study as they result 

from the requirement that the model provide radiative electroweak sym-
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metry breaking. e and ¢ are the Goldstino angles that parameterise the 

different contributions to SUSY breaking from the moduli and the dilaton. 

The remaining parameters are directly related to the moduli. The untwisted 

moduli Ti determine the radii of compactification. T2 + T2 parameterises 

the compactification radius in the 52 direction via the relation [110]: 

( 4.10) 

As the twisted moduli are trapped at the fixed point at one end of the 

52 brane and the 1st and 2nd families of scalars are trapped at the other 

end of the brane, the radius of compactification, and therefore T2 + T 2, 

governs the degree of sequestering. This is evident in the limits of Eq. 4.3: 

Within this paper we follow [103] in taking T2+T2 = 50 and Y2+ Y 2 = O. 

This maintains the validity of the series expansion in 6Gs/(T2 + T 2) used to 

determine the F-terms. However, as these VEVs are essentially arbitrary, 

we include them in our set of parameters for determining dark matter fine-

tuning. 

6GS is a model dependent parameter that depends upon the details of the 

anomaly cancellation in the twisted sector. This calculation is beyond the 

scope of this paper and we set 6GS = -10 throughout. However this value 

can vary and so we include it in our calculation of fine-tuning parameters. 
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Region ¢ M 1 : M2: M3 
Twisted moduli (Y2) dominated 0 3.5 : 0.7 : -1.3 
Untwisted moduli (Ti) dominated 7i /2 5.7: 26 : 38 

Table 4.1: The ratio of the GUT scale gaugino masses in the twisted moduli (Y2) and 
untwisted moduli (Ti) SUSY breaking limits. 

4.2.4 The structure of the neutralino 

The studies of the previous chapter clearly showed that the principle fac-

tors in the determination of the dark matter relic density are the mass and 

composition of the lightest neutralino. These are determined by the ratio 

between M 1 , M2 and J-L at the low energy scale. Though we cannot predict 

the size of J-L from the form of the soft masses, we can find Ml and 1112. 

The values of Mi at mCUT can be simplified from Eq. 4.6 once we have set 

Ml 0.03m3/2 cos e (5.7 sin ¢ + 3.5 cos ¢) 

0.03m3/2 cos e (26 sin ¢ + 0.7 cos ¢) . (4.11) 

M3 0.03m3/2 cos e (38 sin ¢ - 1.3 cos ¢) 

The overall magnitude of the gaugino masses is set by m3/2 and cos e. 

The ratio of GUT scale gaugino masses is determined by ¢, as shown in Table 

4.1. To analyse the low energy gaugino mass ratio, and so study the com-

position of the x2, we once again use the rule of thumb that Ml (M su Sy) ~ 

0.4M1 (mcuT) and M 2(1I1sUSY) ~ 0.81112 (mCUT ). This allows us to see that 

in the twisted moduli dominated limit, in the absence of small J-L, we have 

wino dark matter. In the untwisted moduli dominated limit, again without 

small J-L, we have bino dark matter. To find the bino/wino well-tempered 
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Point e ¢ m3/2(TeV) tan !3 X~ 0,CDMh'L 

A 0 0 5 4 wino 0,CDMh'L ~ 0,Y5jjtiYh~ 

B 0.1 0.1 2 10 bino 0,CDMh
2 ~ 0,rfJfJ

P
h

2 

C 0.6 0.1 2 20 bino 0, h2 0,WMAPh2 CDM ~"CDM 

Table 4.2: Benchmark points from [103]. Band C overdose the universe and so are ruled 
out by dark matter. A lies in a region inaccessible within our studies as the parameter space 
is ruled out by LEP2 bounds on the lightest Higgs for mt = 172.7 GeV. However even 
if the parameter space were allowed, the LSP would be wino and so could not reproduce 
the observed dark matter density. 

region we need to find the value of ¢ that gives Ml(msUSY) ~ M2(msUSY). 

This occurs when Ml (mcuT) ~ 2M2 (mcuT) and so the switch from bino to 

wino dark matter will occur around ¢ ~ 0.05. Therefore to study bino/wino 

"well-tempered" dark matter we should consider low values of ¢. At lower 

values of ¢ dark matter will be wino and so will annihilate too efficiently to 

explain the observed dark matter. At larger ¢, dark matter will be bino or 

bino /higgsino. 

In Table 4.1 we have not included the dilaton dominated limit e = 7T /2 

for two reasons. Firstly, as e ---t 7T /2, 1I1i ---t 0 and the parameter space 

will be ruled out by LEP bounds on the neutralinos, charginos and the 

gluino. As cos e is a common coefficient, the degree of dilaton contribution 

only affects the overall mass scale of the gauginos, not their composition. 

Secondly we are forbidden from accessing e = 7T /2, the dilaton dominated 

limit, by Eq. 4.5. Here we keep the squared Higgs mass positive at the GUT 

scale throughout and so limit our studies to e < sin-1 (1/v'3). Therefore 

the dilaton contribution can only suppress the gaugino masses by a factor of 

0.8 at the most. The primary effect of e on the phenomenology is through 

the sfermion and Higgs masses. 

By considering the mass and composition of the lightest neutralino we 
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can quickly analyse the implications of dark matter for the benchmark points 

proposed in [103]. In Table 4.2 we list the soft parameters that define the 

three benchmark points and note the resulting composition of the LSP. Point 

A corresponds to the twisted moduli dominated limit and the LSP is wino. 

Remember that wino dark matter annihilates efficiently in the early universe 

resulting in a relic density far lower than that observed today. For point A 

to remain valid, there would have to be non-thermal production of SUSY 

dark matter or some other, non-SUSY, particle responsible for the observed 

relic densityl. 

Points Band C both result in bino dark matter. For the density to be 

in agreement with its measured value, we need to look for regions in which 

annihilation channels are enhanced. This can happen if (i) the NLSP is close 

in mass to the neutralino, allowing for coannihilation, (ii) neutralinos can 

annihilate to a real on-shell Higgs or Z or (iii) there exist light sfermions 

that can mediate neutralino annihilation via t-channel sfermion exchange. 

None of these mechanisms exist in the case of points B or C, resulting in a 

predicted dark matter density far in excess of that measured by"\iVMAP. 

Having noted that the previously proposed benchmark points fail to 

account for the observed dark matter we go on to scan the parameter space 

to find regions that agree with the WMAP measurement of DCDMh2 . 

1 As we will show in section 4.3.1, this point is also ruled out by LEP2 bounds on the 
lightest Higgs if we take mt = 172.7 GeV, as we do throughout this paper. 
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Soft Mass Value 

ma 3.7 x 10 -6 m3/2 

ma,3 m3/2 
mH m3/2 
Ml 0.1 m3/2 
M2 0.02 m3/2 
M3 -0.04 m3/2 
A 0 

Table 4.3: In the twisted moduli (Y2) dominated limit, e = if; = 0, the soft masses take 
the form shovm. This limit is characterised by the exponential suppression of the 1st and 
2nd family scalar soft masses and a light wino LSP. 

4.3 The astring parameter space 

4.3.1 Twisted moduli dominated SUSY breaking 

In the twisted moduli dominated limit (e = 1; = 0) the soft masses simplify 

to the values shown in Table 4.3. In this regime the 1st and 2nd family 

scalars have exponentially suppressed soft masses due to their sequestering 

from the twisted moduli. The third family scalars and the Higgs bosons 

have a universal soft mass equal to m3/2' Finally the lightest neutralino is 

wino and very light. 

In Figs. 4.3( a)-( d) we examine the phenomenology of the parameter space 

as T-moduli contributions are gradually switched on by slowly increasing 1; 

from O. In the twisted moduli dominated limit (Fig. 4.3(a)) the parameter 

space is either closed off by LEP bounds on the lightest Higgs and chargino 

or because f.-L2 < 0, resulting in a failure of radiative electroweak symmetry 

breaking. This disagrees with [103] because we take mt = 172.7 Ge V as 

opposed to mt = 178 GeV. Therefore the twisted moduli dominated limit 

is ruled out by experimental bounds for the present top mass. 

In Fig. 4.3(b )-( d) we take incrementally larger values of 1; = 0.05, 0.07 
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F igure 4.3: Panel (a) shows the twisted moduli dominated limit e = ¢ = O. As we 
switch on contributions from T-moduli, the LEP and REWSB bounds recede. In (b) 
¢ = 0.05, (c) ¢ = 0.07 and (d) ¢ = 0.1. e = 0 throughout. In panels (c) and (d) there are 
regions allowed by WMAP. These regions are plotted in varying colours corresponding to 
the degree of fine-tuning t hey require. In panel (c) we present a legend for this colour 
coding. F inally, we represent EW tuning by contours in panels (b) -(d). BR(b -> 3')') 

agrees with measurement at 10- across the open parameter space but (g - 2)/" agrees with 
the Standard Model value. The low energy SUSY spectra corresponding to these panels 
are discussed in [103]. 
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and 0.1 respectively. This has three primary effects. Firstly M2 increases, 

and to a lesser extent so does Ml from Eq. 4.11. This changes the LSP 

from wino to bino and quickly increases the mass of the charginos, helping 

to satisfy LEP bounds. Secondly the 1st and 2nd family soft scalar masses 

receive a substantial contribution from the T-moduli from Eq. 4.3. Finally 

M3 becomes positive and then steadily increases in size, helping to mitigate 

the bounds from REWSB and from the LEP bounds on the lightest Higgs 

boson. 

The combination of these effects opens up the parameter space as we 

increase cP, where the area of parameter space consistent with collider phe

nomenology is shown as white space in the figures, and within this white 

space the area consistent with WMAP allowed neutralino dark matter is 

shown as thin coloured bands, where once again the colour coding corre

sponds to the degree of fine-tuning. The colour scale remains the same as 

before with green representing low tuning and blue representing large tun

ing. The first evidence of the model providing a dark matter density in 

agreement with that measured by WMAP is in Figs. 4.3(c) and 4.3(d). In 

both of these scans, if fL were large the LSP would be bino, with a small 

proportion of wino. However as much of the parameter space is closed off 

because fL2 < 0, along the edge of this region fL will be of a comparable 

magnitude to Ml resulting in "well-tempered" bino/higgsino dark matter. 

In such regions, co-annihilation with xg and xi become significant and re

duces the dark matter density to the magnitude observed. However the 

well-tempered region visible at 4 - 8 TeV is plotted in dark blue, corre

sponding to a fine-tuning ,6,. S1 ~ 60. This is comparable in magnitude to the 
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tuning found for bino-higgsino regions previously studied. As f-L is sensitive 

to tan (3 and Ml is not, there is no reason for these masses to be correlated 

as is required for bino/higgsino dark matter. Therefore it is unsurprising 

that the tuning is large and the majority of the tuning is due to tan (3, which 

strongly affects the size of f-L. 

As we move to lower values of m3/2, the colour of the dark matter strip 

moves from blue to red. This corresponds to a drop in .6.. D. To understand 

this we need to once again consider the composition of the LSP. Away from 

the region with low f-L, the neutralino is primarily bino with a small but 

significant wino component. This results in x~ and xi being slightly heavier 

than x~. Across much of the parameter space this mass difference is large 

enough that co-annihilation effects are unimportant. However, as the overall 

mass scale drops, so does the absolute value of the mass difference between 

the LSP and the NLSPs. Below m3/2 = 4 TeV, the mass difference is small 

enough for there to be an appreciable number density of xi and x~ at 

freeze out to co-annihilate with the LSP. The efficiency of coannihilation is 

primarily sensitive to the mass difference between the LSP and the NLSP. 

This mass difference scales slowly with m3/2 resulting in a bino/wino well

tempered region that exhibits low fine-tuning .6.. D ~ 10, lower than the 

tuning required for bino/wino regions considered in the previous chapter. 

In Fig. 4.3 (b), though there is a region of parameter space that satisfies 

LEP bounds and REWSB, there is no WMAP allowed strip. This is because 

here the wino component of the LSP is already too large and dark matter 

annihilates too efficiently in the early universe. This is unfortunate as it 

is only for low ¢ that we have exponentially suppressed soft masses for the 
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1st and 2nd families. We would like to be able to access such a region of 

parameter space as light 1st and 2nd family sleptons can provide neutralino 

annihilation via t-channel slepton exchange and low fine-tuning. Such a 

region is not available in this string model because as soon as we move away 

from ¢ = 0 the first and second families gain substantial masses. As soon 

as we can access bino dark matter, the sleptons are already too heavy to 

contribute significantly to neutralino annihilation. Though we fail to find 

a light slepton bulk region in this limit, in the limit of untwisted moduli 

dominated SUSY breaking we will find a light T bulk region. 

Finally we note that the electroweak fine-tuning is large right across this 

parameter space. This is a direct result of the large values of m3/2 that 

are required to satisfy LEP bounds. \iVhen ¢ = 0, M2 = 0.02 m3/2 from 

Eq. 4.11 and charginos are too light. As we increase ¢, the coefficient of 

proportionality between M2 and m3/2 increases but remains small for small 

¢. To reach low m3/2 we need to move to regimes in which sin ¢ ~ 0(1), 

away from the twisted moduli dominated limit. These large values of m3/2 

are responsible for large electroweak tuning as before. To access regions with 

low EW fine-tuning we need to access low m3/2, and that means taking large 

¢, as we consider next. 

4.3.2 T-moduli dominated SUSY breaking 

In the limit in which all the SUSY breaking comes from the untwisted T

moduli (8 = 0, ¢ = 1f/2) , the soft masses take the form shown in Table 

4.4. In the gaugino sector, as lvh < 1\/[2, the lightest neutralino will have no 

wino component. Unless there is a part of the parameter space with low /-l, 
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Soft Mass Value 

mo 131 m3/2 
mO,3 0 
mH m3/2 
Ml 0.17 m3/2 
M2 0.78 m3/2 
M3 1.14 m3/2 
A -m3/2 

Table 4.4: The soft masses in the untwisted moduli (Ti) dominated limit, e = 0, ¢ = 7r /2. 
This limit is characterised by vanishing 3rd family scalar masses and a bino LSP. 

the LSP will be bino. As bino dark matter on its own generally annihilates 

extremely inefficiently there would need to be other contributions to the 

annihilation cross-section to satisfy WMAP bounds. The other defining 

feature of this limit is that mO,3 = O. As the third family particles all pick 

up masses through loop corrections, they will not be massless at the low 

energy scale. However these corrections are smallest for 1\ and will leave it 

light. This opens up the possibility that t-channel stau exchange and stau 

co-annihilation will help to suppress the bino dark matter density. 

As the 1st and 2nd family particles have a large soft mass, they will not 

provide a contribution to the muon (g - 2) value. Therefore this limit will 

not agree with the measured deviation oaJ.L from the standard model value 

[26]. In this limit, the model predicts a value of (g - 2)J.L in agreement with 

the Standard Model. 

In Figs. 4.4(a)-(d) we gradually switch on twisted moduli contributions 

by slowly decreasing ¢ from 7T /2 while keeping e = O. This immediately gives 

a non-zero mass to the 3rd family squarks and sleptons. Writing ¢ = 7T /2-0, 

for small ° we can write the 3rd family scalar mass: 

(4.12) 
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F igure 4.4: Panel (a) shows the T-moduli dominated limit () = 0, ¢ = 7r / 2 in which the 
parameter space is entirely closed off by experimental bounds. As soon as we move away 
from ¢ = 7r /2, the parameter space opens up and we find dark matter allowed regions. In 
(b) ¢ = 157r /32, (c) ¢ = 77r / 16 and (d) ¢ = 37r / 8. Once again we switch off the dilaton 
contribut ions by taking () = ° throughout. In panel (a) we label the different bounds that 
rule out t he parameter space. In panel (b)-(d) t he WlVIAP allowed regions are plotted in 
varying colours corresponding to the degree of fine-tuning. EW fine-t uning is represented 
by contours. BR(b --> 8,) agrees with measurement at 10' across the open parameter space 
but (g - 2)J.L agrees with the Standard Model value. The SUSY spectra corresponding to 
these panels are discussed in [103]. 113 



In Fig. 4.4( a) the parameter space of tan /3 < 10 is entirely closed off by 

LEP bounds on the stau or the stau being the LSP. As we reduce ¢, we give 

a soft mass to the stau and so increase its physical mass, helping to satisfy 

the LEP bound and push its mass above that of the X~. In Figs. 4.4(c),(d) 

the stau LEP bound is no longer important. The remaining LEP bounds 

are the Higgs for low tan/3 and the lightest neutralino for m3/2 < 270 GeV. 

Large tan /3 is ruled out by a failure of RE"\¥SB (p,2 < 0) and the stau being 

the LSP. 

There are 4 distinct regions that satisfy dark matter bounds in the T

moduli dominated limit. Alongside the region in which the stau is the LSP, 

there is a corresponding dark matter strip in which the stau is close in 

mass to the neutralino and X~ - T co-annihilation reduces DCDMh2 to the 

observed value. This is visible in Figs. 4.4(b)-(d) at m3/2 > 450 GeV. For 

lower values of m3/2, the stau is light enough that X~X~ --) T+T- via t

channel stau exchange is enhanced to the point that it alone can account for 

the observed dark matter density. This T bulk region is a direct analogue 

of the bulk region in Fig. 3.5. As we reduce m3/2) we are also reducing 

the mass of the LSP. Before the LEP bounds close off the parameter space 

there are regions in which 2mx~ = mZ,ho. These lie at m3/2 = 310 GeV and 

m3/2 = 400 Ge V respectively. In these regions, the lightest neutralino can 

annihilate via a real on-shell Z or hO. 

Each of these regions has a distinct measure of fine-tuning. The biggest 

surprise is the stau co-annihilation strip, shown in grey. In contrast to 

the stau co-annihilation strips we saw in the previous chapter, this co

annihilation strip exhibits fine-tuning /:::,. D. > 100. This is an order of magni-
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tude increase over the typical ,6 D of previous stau co-annihilation regions. 

The reason for this is the extreme sensitivity to ¢ highlighted by Eq. 4.12. 

In previous studies the soft stau mass was so light that loop corrections from 

the gauginos dominated the determination of its low energy mass. This re-

duced the sensitivity to variations in the soft stau mass and resulted in the 

low energy stau and neutralino masses being correlated. In this model, the 

extreme sensitivity of the stau soft mass to ¢ (for ¢ = 1.47, a 10% variation 

in ¢ results in a 150% change in ma,3) breaks this correspondence. As a 

result, for e = 0, the model does not have a region in which mf and mxS 

are correlated. 

We can see this by considering the effect of changing from varying the 

soft mass directly to varying it via ¢. Under a change of variables: 

( 4.13) 

When e = 0, the coefficient of proportionality between ,6~ and ,6;;0,3 is 

¢tan¢, so as ¢ -+ 7r/2, ,6D -+ 00. This dramatically demonstrates the 

model dependence of fine-tuning. 

Eq. 4.13 is exact and a similar change of variables can be performed to 

find all of the,6~ . in terms of ,6 DaMSSM. In general these expressions are 
str'l..ng 

convoluted and not particularly informative. However in cases such as that 

of the T co annihilation region, we can use Eq. 4.13 to understand the change 

in the fine-tuning. 

The bulk region is shown in red in Figs. 4.4(c),(d) corresponding to ,6D 

of order 10. This tuning is entirely from ¢. In the general MSSM study, 
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the tuning of the bulk region came equally from 6.}&1 and 6.~o where mo 

was the soft mass of the slept on that mediated t-channel annihilation. This 

resulted in low tuning of the bulk region 6.0 < 1. When we change variables 

from aMSSM to astring, for 0 ~ 0.1, e = 0, Eq. 4.13 gives 6.~ ~ 106.~o,3 

in the bulk region. This explains the order of magnitude increase in the 

tuning. 

Finally we consider the resonances. The lower edge of the Higgs res

onance exhibits a tuning 6. 0 ~ 50 whereas the edge at larger m3j2 is so 

steep that the scan has failed to resolve it. What we can see of it exhibits 

tuning well in excess of 100. In contrast the Z resonance exhibits rela

tively low fine-tuning. This is because annihilation via an s-channel Z is 

inefficient and provides only a small contribution to the total annihilation 

cross-section. This is because the Z is spin 1, whereas the neutralino is 

a spin 1/2 Majorana fermion. This means that in the vx~ ......... 0 limit, the 

annihilation cross-section via on-shell Z production becomes negligible. As 

this contribution is small, it hardly affects the dark matter fine-tuning. 

The electroweak fine-tuning is shown by contours on the open parameter 

space. As we noted in the previous section, electroweak fine-tuning depends 

closely on the largest 3rd family masses. As we can access low m3j2 for large 

cp, we end up with electroweak fine-tuning of 0(100), similar to the lowest 

electroweak fine-tuning found in the MSSM. 

4.3.3 Switching on the dilaton. 

In the limit of dilaton dominated SUSY breaking, e = 'if /2 the soft mass 

terms take the form shown in Table 4.5. This structure of soft masses 
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Soft Mass Value 

m6 -0.5 m~/2 
2 

ma,3 
2 

m 3/2 
m2 

H -2 m~/2 
Mi 0 
A 0 

Table 4.5: The soft masses in the dilaton (S) dominated limit, e = 7[/2. This limit is 
characterised by vanishing gaugino masses and negative Higgs (mass? 

gives rise to a plethora of problems. Firstly, negative soft sfermion (mass2) 

will result in tachyons. Secondly, massless gauginos are ruled out by LEP. 

However the biggest problem lies in the Higgs sector. If the soft term m'k 

is negative we run the risk of breaking electroweak symmetry at the GUT 

scale. This happens when m'k + f.L2 < 0 at the GUT scale. We steer clear 

of such regions by constraining our parameters to give m'k > O. This allows 

us to impose the constraint 0 < 8 < 0.6. 

When we consider the maximum allowed dilaton contribution, there are 

two interesting limits. For (8 = 0.6, if; = 0) we have (S, Y2) SUSY breaking. 

When (8 = 0.6, if; = 7f/2) we have (S, Ti ) SUSY breaking. 

For if; = 0, dark matter is still wino and so cannot reproduce the observed 

dark matter density. The only change is that we can access large values of 

tan/3. Therefore we cannot have a model in which there is no T-moduli 

contribution to SUSY breaking and reproduce the observed dark matter 

density. 

In Fig. 4.5(b) if; = 7f /2, 8 = 0.6 giving Ml < M2 and hence the LSP 

is bino. By introducing non-zero 8 we increases the stau mass and avoid 

the LEP bounds on the stau that ruled out 8 = 0, if; = 7f /2. It is only 

for large tan /3 that the stau is light enough to contribute to neutralino 
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Figure 4.5: Here we show the maximum dilaton contribution (J = 0.6. For larger values 
of (J , m~ 2 < 0 at the GUT scale. The regions that satisfy dark matter constraints are 

1. 

plotted in varying colours to represent the required quantity of fine-t uning. This colour 
cod ing is as per the legend in Fig. 4.4(b) . The electroweak fine-tuning is represented by 
contours in the open parameter space. The BR(b ---> 8, ) la limit is plotted as a red dashed 
line. In panel (a) ¢ = 0.06, here we have maximally tempered bino/ wino/ higgsino dark 
matter, plotted in purple. In panel (b) ¢ = 7r / 2, the limit in which there is no twisted 
moduli (Y2) contribution. Again (g - 2)1' agrees with the Standard Model. 
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annihilation via t-channel T exchange. As before this region is shown in red, 

corresponding to b,.S1 ~ 10. As we can still access low m3/2, there exists a 

region in which the neutralinos can annihilate via the production of a real 

on-shell hO or Z. The Z resonance shows up as a small blip in the bulk 

region at m3/2 = 400 GeV. The hO resonance appears as a highly tuned 

region (dark blue) in the stau bulk region around m3/2 = 500 GeV and 

also at tan (3 = 5 - 10. For tan (3 = 10 - 40, even resonant annihilation via 

on-shell Higgs production is not enough to suppress the dark matter density. 

As we steadily decrease ¢, the staus increase in mass removing the stau 

bulk region. Small ¢ also reduces the gaugino masses, requiring ever larger 

values of m3/2 to satisfy LEP bounds. There is no change in the dark matter 

phenomenology until ¢ = 0.06, when the neutralino acquires a large wino 

component. In Fig. 4.5(a) we display this region of parameter space. Here 

Ml ~ M2 ~ f.L at the low energy scale, resulting in maximally tempered 

bino/wino/higgsino dark matter. This in turn gives a wide dark matter 

annihilation strip shown in purple that corresponds to b,. S1 = 23, similar to 

the well-tempered regions we looked at within the MSSM. The tuning arises 

from the soft mass sensitivity to ¢. This dependence is understandable as 

it is ¢ that determines the size of the bino and wino contributions to the 

lightest neutralino. 

The electroweak fine-tuning is dependent upon the size of m3/2. There

fore Fig. 4.5(b) exhibits low b,.EW in agreement with Fig. 4.4 and Fig. 4.5(a) 

exhibits large b,.EW as in Fig. 4.3. 
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Dark Matter Region e ¢ m3/2(TeV) Typical,6.d Typical,6.bw 

bino /higgsino 0-0.6 < 0.4 1-10 60 > 3000 
bino/wino 0-0.6 ~ 0.06 1-3 10 300 - 3000 
bino /wino /higgsino 0-0.6 ~ 0.06 2-5 10-20 1000-6000 
T -co-annihilation 0-0.6 > 0.8 0.4-0.9 100 500-800 
t-channel T exchange 0-0.6 > 0.8 0.25-0.45 10 100-200 
h 0 resonance 0-0.6 > 0.4 ~0.4 > 80 200 
zO resonance < 0.3 >0.4 ~ 0.3 4-20 130 

Table 4.6: A summary of the successful regions of parameter space in the type I string 
model considered here that satisfy experimental bounds on the dark matter density with 
corresponding typical values of ,6." and ,6. EW. 

4.4 Conclusions 

In this chapter we have achieved two things. Firstly, we have used the 

measured dark matter relic density to constrain the type I string model of 

[103]. Secondly, we have studied fine-tuning in the string model for both 

electroweak symmetry breaking and dark matter. 

We have found that dark matter constraints close off much of the param-

eter space of the type I string model, for example the benchmark points sug-

gested in [103] are either ruled out (nCDM h2 » nYfl!JPh2) or disfavoured 

(nCDM h2 «nYfl!JPh2). However, by performing a comprehensive scan 

over the parameter space, we found successful regions of dark matter within 

the string model. As in the previous chapter, these regions fall within the 

dark matter channels listed in Table. 2.1. This allows a direct comparison 

of the degree of fine-tuning within the string model and the general MSSM 

parametrisation. Some regions exhibit degrees of fine-tuning in agreement 

with the previous results while others vary significantly. The results are 

summarised in Table 4.6. 

From Table 4.6 it can be seen that the observed dark matter density 

tightly constrains the available parameter space. For ¢ > 0.07, without un-
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usual contributions to the annihilation cross-section the model predicts an 

over-abundance of dark matter that would over-close the universe. Equally 

for ¢ < 0.05, the LSP is wino and the model predicts a dark matter abun

dance orders of magnitude less than that observed. By imposing dark matter 

constraints we have ruled out the benchmark points proposed in [103]. In

stead, we propose a benchmark point within the region of lowest fine-tuning, 

the stau bulk region combined with on-shell Z production. The SUSY spec

trum of this point is presented in Table 4.7. 

In addition to constraining our models, we have been able to study how 

fine tuning varies between the MSSM studied in [69] and a type I string 

model of SUSY breaking, which was one of our main motivations for this 

study. From Table 4.6 it can be seen that, in the string model, the lowest 

dark matter fine-tuning exists in the bulk region, corresponding to t-channel 

T exchange. The Z resonance, the well tempered bino/wino and the maxi

mally tempered bino/wino/higgsino regions also have low dark matter fine

tuning. Of these, the lowest electroweak fine-tuning arises in the bulk (t

channel T exchange) and Z resonance regions. These results are consistent 

with the conclusions based on the previous MSSM analysis, although the 

bulk region in the MSSM corresponding to first and second family slept on 

exchange cannot be accessed in the string model as discussed. Thus in most 

cases the degree of fine-tuning is found to be the same order of magnitude 

as found for similar dark matter regions within the MSSM. However this 

is not always the case. Whereas the well tempered bino /higgsino region in 

Table 4.6 continues to be highly fine-tuned as in the MSSM, the well tem

pered bino/wino in Table 4.6 has a fine tuning of about 10 as compared 
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to the MSSM value of about 30, making this scenario more natural in the 

framework of string theories such as the one considered here. 

In some cases there is a sharp disagreement between the fine tuning 

calculated in the MSSM and in the string model, for example in the stau co

annihilation region. Due to the form of the SUSY breaking in this model, the 

stau mass, and so the dark matter density, is very sensitive to ¢ which leads 

to an order of magnitude increase in the dark matter fine-tuning in the string 

model as compared to the MSSM, making this region less natural in the 

string model. This can be understood via Eq. 4.13 which shows that, through 

a general change of variables, the variation of the fine-tuning between a 

general MSSM model and a string model can be calculated. In principle a 

similar change of variables is responsible for all the differences in fine tuning 

calculated in the MSSM and the string model. In practise however, such 

a change of variables is not analytically tractable, and numerical methods 

such as those used in the present paper are required in order to obtain 

quantitative results. However the results in this paper indicate a general 

strategy for reducing fine tuning within string models, namely to search for 

string models that minimise the coefficients of the tuning measures. This 

in turn will minimise .6..0, providing more natural dark matter than the 

MSSM for a given region of parameter space. Such a strategy could also 

be employed to reduce electroweak fine tuning once the solution to the J.L 

problem is properly understood within the framework of string theory. 
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Point A' 
e 0 
¢ 37r/8 

m3/2 310 
tan,8 13 

mhO 115 
mAo 550 
mHO 550 
mH± 556 
m-o Xl 44.5 
m-o X2 213 
m-± 

Xl 
213 

mg 930 
mil 546 
mh 757 

mCL' mUL 3390 
mCR' m UR 3390 

m-bl 687 
m-

b2 739 
m SL , maL 3390 
m SR , map 3390 

mh 104 
m T2 222 

milL, meL 3290 
mji2' m e2 3280 
m ve , mVI" 3290 

mV-r 197 
LSP -;;0 

Xl 

Table 4.7: Sample spectra for benchmark point A' corresponding to a point in Fig. 4.4(d) 
at m3/2 = 310 GeV and tanj3 = 13. At this point we satisfy WMAP bounds on the 
dark matter density, BR(b -+ s-y) and all present mass bounds. This point requires a 
tuning to achieve electroweak symmetry breaking: .6, EW = 125, and a tuning to agree 
with WMAP: .6,0 = 3.9. The annihilation of neutralinos in the early universe is due to 
40% X~X~ -+ 7+7- via t-channel f exchange and 60% X~X~ -+ fJ via the production of 
an on-shell Z. All masses are in GeV. 
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Chapter 5 

Conclusions 

In this thesis we have addressed the question of whether the Minimal Super

symmetric Standard Model can naturally explain the observed dark matter 

density. We have also addressed the question of how fine-tuning varies be

tween the MSSM and a more fundamental string model. 

In Chapter 2 we introduced a measure of fine-tuning for dark matter and 

went on in Chapter 3 to use this to study the tuning required in the regions 

of the MSSM that fit the observed relic density. We showed that, within the 

structures of MSSM parameters we considered, there are typical tunings for 

each specific region. We also showed that in certain regions of parameter 

space, these tunings can vary. For example, generally slept on coannihilation 

regions exhibit a tuning 6. D ~ 50. However when mo, the soft slept on mass, 

is small, the physical slept on mass is dominated by loop corrections from AIl 

that result in the slepton and gaugino masses being correlated. This results 

in a significant decrease in the tuning required within a co annihilation region. 

From this general study we found the most natural regions to be the 

slepton bulk region in which neutralino annihilation proceeds via t-channel 
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slepton exchange. Such regions are not accessible in the CMSSM and so 

motivate a move to less constrained models. Slepton co annihilation regions 

with low ma and some maximally-tempered regions provide the next lowest 

values of !:::.0.. Moderately large tunings, !:::.0. ~ 10 - 60 are found for the 

Z resonance, and both well-tempered bino/higgsino and bino/wino regions. 

Finally the A a and h a resonances provide the largest tunings !:::. 0. ~ 50 -1000. 

These tunings refute recent claims that the MSSM fails to provide nat-

ural dark matter. They also provide a means of analysing the relative the-

oretical motivation of different regions of the MSSM parameter space. 

In Chapter 4 we extended this analysis to consider how the dark mat-

ter fine-tuning varies when the MSSM is generated from more fundamental 

physics. Whereas in Chapter 3 we use dark matter to constrain the MSSM, 

in Chapter 4 we constrain a semi-realistic type I string model. We find 

that the majority of the tunings remain of the same order as in the general 

MSSM. The tunings that differ can be explained via the change of variables: 

!:::. 0. = "'" astring 8aMSSM!:::. 0. 
astring a ~ aMSSM 8astring aMSSM 

MSSM 

(5.1) 

This relation allows us to use the fine-tuning of dark matter as a guide 

when studying more fundamental theories of SUSY breaking. To minimise 

fine-tuning we should look for a set of parameters that minimise the coef-

ficients of !:::.~MSSM' Therefore, if the LHC provides evidence for a region 

of the MSSM that would require a large tuning, we have a means of guid-

ing our search for a fundamental theory that really will provide a natural 

explanation of dark matter. 
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