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This thesis provides a coherent and adaptable methodology for multivariate
ordinal and binary data. Two main aspects of data modelling are considered.
The first is to formulate a model for the data and to estimate the model
parameters using Bayesian computation. The second is to assess model choice;
models considered are the set of directed acyclic graphical models and the set
of decomposable models.

The model is based on the multivariate probit model (Chib and Greenberg,
1998) but parameterised in a way that makes computation convenient. In
particular, the conditional posterior distributions of the model parameters are
standard and easily simulated from using Gibbs sampling techniques. Prior
parameters are chosen to be noninformative but not overly diffuse. The Gibbs
sampler is applied successfully to examples, and the goodness-of-fit of the
model is assessed using simulation techniques. The model parameterisation
allows ordinal and binary data and a mixture of both data types to be modelled
within the same framework.

Reversible Jump Markov chain Monte Carlo methods are used to estimate
posterior model probabilities for directed acyclic graphical models. Under the
model parameterisation described, a suitable proposal distribution is easily
specified.

The issue of model choice is also investigated for the set of (undirected)
decomposable models. Under some model parameterisations, the conditional
independence structure of a decomposable model can not be specified. A
further Reversible Jump Markov chain Monte Carlo step is described to move
between model parameterisations. Both Reversible Jump algorithms are found
to rapidly explore the model and parameter spaces.

The model is extended for data where covariates are also observed. The
Reversible Jump algorithms described previously are adapted and applied to
examples. A further Reversible Jump step is developed and implemented to
assess which covariates should be included in a model to predict the data.
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Chapter 1

Introduction

The aim of this thesis is to provide a coherent methodology for multivariate
ordinal and binary data. Ordinal data are characterised by the response taking
the form of discrete, ordered categories and occur in many fields of research,
in particular in the social sciences and in medicine. Ordinal data are often
treated using the same methods as for nominal (unordered) categorical data,
but this ignores the extra structure due to the categories being ordered. The
main difference between models for nominal data and models for ordinal data is
that those for nominal would give the same results if the order of the response
categories were permuted. In this thesis, we introduce a Bayesian methodology
for modelling ordinal data. There are two main aspects to this methodology:
the first is to set up a model for multivariate ordinal data and to estimate the
parameters using Bayesian computation. The second is to assess model choice,
that is, to find which models may be used to best predict a given data set. In

this Chapter, we introduce the principles underlying the work.

1.1 Bayes’ Theorem

The fundamental principle of Bayesian analysis is that uncertainty is repre-
sented through probability. This means that the parameters that describe the
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probability distribution of the observed data are treated as random variables
in their own right, with associated probability distributions. Suppose we ob-

serve data y and require inference about a parameter vector 8. Then Bayes’

(o) — L WOIO)
[ f(ylo)f(8)do

where f(0|y) is the posterior distribution of the parameter vector 8 given the
data y, f(y|0) is the likelihood of the data y given the parameter vector 6,
and f(0) is the prior distribution of the parameter vector 8. The prior distrib-
ution may be chosen to reflect our beliefs about what values parameters take.
Therefore the posterior distribution is formed from our initial beliefs about the
parameters, updated by the data that have been observed. Since the integral
[ f(y|@)f(6)do is simply the normalising constant for the posterior distrib-

ution, it is often omitted and Bayes theorem is expressed and implemented

theorem states that:

as.

f(81y) < f(y]0)f(6) (1.1)

1.2 Contingency Tables

Multivariate ordinal data are usually represented in a contingency table, with
each margin of the table consisting of ordered categories. The contingency
table may be highly structured and modelling this structure helps us to under-
stand the relationship between the variables. The standard way to represent
the structure is wa a log-linear model, which relates the log of the cell means

to a set of model parameters.

Suppose we have a set of multivariate categorical data, with n individuals
cross-classified by p categorical variables, so that the data can be represented
by a p—way contingency table. Let I" denote the set of classifying variables, so
Il = p. Following the notation introduced by Darroch et al. (1980), the set of
cells in the table is denoted by I = Hver IL,, where I, is the set of levels that
variable 7y can take. A single cell is denoted by ¢ = (i, : v € I') and we let n;
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denote the corresponding cell count and p; the corresponding cell probability,

where > .., ny=nand ) ., p; =1

For example, consider a three-way table cross-classified by variables X (with
three categories), Y (with five categories) and Z (with two categories). Then
the dimension is p = 3, the set of classifying variables if I' = {X, Y], Z}and
the numbers of levels of the classifying variables are |{x| = 3, |Iy| = 5, and
Izl =2

1.3 The Multinomial-Dirichlet Model for Nom-
inal Data

A standard model for the situation where observations are classified into a finite
number of categories is the multinomial distribution. From a total population
of size n, suppose that n; individuals are assigned at random to a particular
cell 4+ with probability p;, with >, n, = n and >, p; = 1. Then the vector of
cell counts m has a multinomial distribution with likelihood

f(n|p) = n! Hp

The natural conjugate prior for the cell probabilities p is the Dirichlet distri-
bution which has density
I'(e) ;—1
o)== 117"

I Tew) ];[
where the elements of a are parameters which control the location and spread
of the distribution, and a = >, ;. By Bayes’ theorem, the posterior distrib-
ution of the cell probabilities is then

r(&+n) ai+n;—1

)

i.e. the Dirichlet distribution with parameter vector @ + nm. Note that this
approach is invariant to ordering of categories, but is often applied to ordinal

data, ignoring its extra structure.
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1.4 Log-Linear Models

One of the main points of interest when analysing contingency tables is to
model the association between classifying variables. The standard way of doing
this is by representing the underlying statistical model as a log-linear model.
This associates the expected cell counts with a linear combination of para-
meters. Suppose the cell counts n; are observations of independent Poisson
random variables with means ;. Then following Darroch et al. (1980), the

log-linear model may be denoted

log 115 = Zfa(ia) 1]

aClIl
where 7, is the marginal cell 4, = (iy,v € a). The functions &, are the
interactions among the factors in a. If |a| = 1, & is a main effect and if
la| = m, &, is an m-way interaction. The general non-saturated log-linear

model involves setting certain &, to be zero; for the saturated model, there is a
full set of interaction terms. To ensure identifiability, constraints are imposed

on the &,.

1.4.1 Hierarchical models

In practice, general log-linear models are not easy to interpret, so attention is
generally restricted to the set of hierarchical models, a subset of the general
log-linear models. To obtain these, we impose restrictions on the &,, namely
that if &, is specified to vanish and b D a then & must also be forced to vanish,
i.e. if there are no interactions among factors in a then there is no interaction

of higher order involving all the factors in a.

1.4.2 Graphical models

The set of graphical models is a subset of the hierarchical models. A graphical

model can be represented by a graph consisting of vertices and edges where,
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v X A

Figure 1.1: Illustration of conditional independence

in the contingency table setup, each vertex corresponds to a classifying vari-
able of the table. Graphical models may also be represented in terms of their
conditional independence structure, which is immediately apparent from the
graph itself, as described below. They therefore have a more straightforward
interpretation than the hierarchical models, in terms of conditional indepen-
dences. Let V be the set of vertices and & be the set of all possible edges
between them. Following Dawid and Lauritzen (1993), let (X,Y’) € £ denote
the edge between variables X and Y. If two vertices are not joined by an edge,
then the corresponding variables are conditionally independent given the other
variables. Conditional independence can also be defined for sets of variables.
A subset C' of the set of all classifying variables I' is called a clique if the
subgraph containing only elements of C has an edge connecting each pair of
vertices and the inclusion of another vertex from V in C would result in at
least one pair of unconnected vertices. The subset S is a separator of cliques
A and B if every path from any vertex in A to one in B must pass through
a vertex in S. In such a case, variables in A are conditionally independent of

those in B, given those in S.

For example, if I' = {U,V, W, X, Y, Z}, consider the model represented by the
graph in Figure 1.1. There are five cliques: C, = UVW, Cy = WX, C3 = X Z,
Cy = YZ and C5 = WY with corresponding separators S; = W, Sy = X,
S3 = 7 and Sy =Y. Then the following conditional independence statements
can be made: {U,V'} is conditionally independent of { X,Y, Z} given W; W is
conditionally independent of Z given X and Y'; X is conditionally independent
of Y given Z and W; and Z is conditionally independent of W given X and
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Y.

The description above assumes that edges in the graph are undirected, that is
we do not distinguish between (X,Y) and (Y, X). Graphs where we make this

distinction are called directed graphs.

In a directed graph, if (X,Y") € £ but (Y, X) ¢ £ then there is a directed edge
from X to Y, denoted by X — Y. X is called the parent of Y, and Y is the
child of X. For both the directed and undirected cases, a path of length n from
X to Y is defined as a sequence X = Xj,...,X,, =Y of distinct vertices such
that (X;-1,X;) € Eforall i = 1,...,n. An n cycle is a path of length n with
the modification that it begins and ends at the same point. A directed acyclic

graph (DAG) is a directed graph without cycles.

Directed acyclic graphs permit an ordering of the vertices such that no edge
(X,Y) exists when Y precedes X in the ordering. Directed graphical models
correspond to DAGs and have the following conditional independence inter-
pretation. The absence of a directed edge between two variables means they
are conditionally independent given all other variables which precede either of

them in the ordering.

1.4.3 Decomposable models

The set of decomposable models is a further subset of the graphical models. All
directed acyclic graphical models are decomposable. An undirected graphical
model is decomposable if it does not contain cycles of length greater than
three without a chord ¢.e. an edge which short-cuts the cycle. The model
represented by the graph in Figure 1.1 is not decomposable as it contains a
cycle of length four in W XY Z. However the submodel with vertices U, V., W,
X is decomposable. Decomposable models clearly exclude many potentially
useful models. However, they have many useful computational properties for

model selection procedures. These will be discussed in 1.5.
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If a model is decomposable, then the undirected conditional independence
graph may be used to construct a directed acyclic version with the same

Markov structure. This will be discussed extensively in Chapter 4.

1.5 Model Uncertainty

The standard approach for Bayesian model comparison is to calculate the mar-
ginal likelihoods for competing models and hence the posterior model proba-

bilities. The posterior model probability for a model m is

 fmfyim)
Jmiy) = s~ s f yim)

where f(y|m) is the marginal likelihood of model m, defined as:

f(ylm) = / S, 0,) f (B} A6, (1.2)

8., is the set of parameters in model m, and f(6,,|m) is the conditional prior

distribution of 8,,.

The marginal likelihood as defined above is analytically intractable in many
examples. However, for decomposable graphical models, Dawid and Lauritzen
(1993) construct a family of prior distributions, which allow posterior densities
and marginal likelihoods to be calculated directly. In particular, the marginal
likelihood for each model can be expressed in terms of the cliques and separa-
tors associated with that model, and hence model comparison can be carried

out with calculations local to single cliques.

Hence it is in principle possible to calculate all posterior model probabilities.
However in practice, for high-dimensional contingency tables, the number of
calculations required to do so is prohibitively large. Two methods proposed for
overcoming this problem are Occam’s window (Madigan and Raftery, 1994)
and Markov chain Monte Carlo model composition (Madigan and York, 1995).

Occam’s window provides a strategy whereby the number of models considered
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is dramatically reduced. It does this wvia three basic principles. Firstly if
a model predicts the data far less well than the model which provides the
best predictions it is no longer considered. Secondly, complex models which
receive less support from the data than their simpler counterparts are excluded.
Finally, if a model is rejected then all its submodels are rejected. Markov chain
Monte Carlo model composition is a process which generates a Monte Carlo
sample from f(m|y). This method is more appropriate for making predictions
when the posterior distribution of some quantity is of particular interest than

for inferring the nature of the ‘true’ model.

1.6 Bayesian Computation

1.6.1 Computation for parameter estimation

In a Bayesian framework, we wish to estimate the posterior and prior distri-
butions and various summaries of them. This generally involves integrating a
function of the posterior (or prior) distribution, for example to calculate the

mean of the posterior distribution, we must find
£0) = [ 65(6ly)do

Evaluating this integral may be difficult (especially in higher dimensions) or
analytically impossible. Many methods have been developed in order to over-
come these difficulties. The two methods which we shall use in this thesis are
the Gibbs sampler and Reversible Jump Markov chain Monte Carlo, both of
which form part of a large group of numerical methods called Markov chain
Monte Carlo (MCMC). MCMC uses the basic statistical theory that says fea-
tures of an unknown distribution can be approximated if we generate random
samples from the distribution. Suppose that 8, 0@ ... W) form an identi-
cally distributed sample from the posterior distribution f(8ly). Then E(b(8))

can be estimated accurately by:

E(b(0)) ~ %2[3(9@) (1.3)
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This is the principle of Monte Carlo integration.

1.6.2 Markov chain Monte Carlo

It can be difficult in many problems to sample independently from f(8ly).
However, due to the ergodic theorem (Tierney, 1994), the estimate for E(b(6))
in (1.3) does not require independent sampling. MCMC methods use a Markov
process (where the distribution of the parameters 0% at the ith stage of the
chain depends on 9@_1)) to produce dependent observations in such a way that

their equilibrium distribution is f(0)y).

Suppose that the Markov chain can be run until equilibrium is approximately
reached at iteration ¢. Then the parameter vectors 8, ¢+ . @E+N) are a
dependent sample of size N from the posterior distribution f(8|y), and (1.3)
may then be used to estimate summaries of this distribution and any function
of it. The value ¢ at which equilibrium is approximately reached and the
total number of iterations N are chosen so that the sample is considered to be

representative of the posterior distribution f(0|y).

The value ¢ is known as the burn-in length and observations before this should
be discarded. However, if the chain is started at a plausible observation from
f(Oly) then the burn-in is theoretically zero and no observations need be dis-
carded. The samples obtained using MCMC methods are by definition depen-
dent, but the degree of dependence varies. If the parameter space is explored
rapidly by the Markov chain, then it is said to be mixing well and successive
samples are not highly dependent. Conversely, if there is high correlation be-
tween successive observations, then the sampler is said to be mixing poorly
and a highly dependent sample will be produced, which will require a very

long run length to produce a representative sample.
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1.6.3 The Metropolis-Hastings method

One method of constructing a suitable Markov chain is the Metropolis-Hastings
method, first introduced by Metropolis et al. (1953) and developed by Hastings
(1970). In this approach a sequence of samples is generated from the posterior

distribution in the following manner:

1. Let 8 be the current sample from the posterior distribution f(8|y).

2. Generate a candidate vector of parameter values 8° from a proposal
density ¢(0%|6")

3. Accept the proposal with probability a where

] SV
10T)g(67160)

and set 80 = 0%, Otherwise set ¢+ = (),

The random walk is a special case of the Metropolis-Hastings algorithm. For
this method, g(67|6") is chosen to be such that 8* = 8 + n where 7 is
a random increment whose distribution does not depend on 8. Often, the
distribution of 7 is symmetric about 0 so that g(810%) = ¢(6*]6") and the

acceptance probability simplifies to

a:mm{Lﬁg%}

1.6.4 The Gibbs sampler

Another method of constructing a suitable Markov chain is the Gibbs sampler
(Geman and Geman, 1984). This is an iterative procedure that works by

generating each component of 6 one at a time from a univariate conditional

10
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distribution. Suppose that the unknown parameter vector € has p components
6 = (0,,...,0,) and let the tth iterate generated be denoted by 6%, To
generate a sample from the posterior distribution with density function f(8|y),
we choose starting values 8 = (GY)), o ,9](,0)) and the Gibbs sampler draws

oY) = (99), . ,Géj)) from U~ = (9971), . ,9,(331*1)) in p steps as follows:

1. Sample 6 from f(61/65 ", 65 ... 0f V. y)
2. Sample Géﬁ') from f(92!9§j), géj—l), 94(1341)’ o 9](3341)’ Y)

3. Sample 657 from f(6:/6", 05,0707 ™" v)

i. Sample 89 from f(6;69, 050, ... 69,6870 0970 . 097V )

p. Sample 91(3) from f(9p{9§j), 9;”, e ,Q;j_)l, Y)

At each step, we sample from the full conditional posterior distribution, con-
ditional on the new values of parameters already sampled in earlier steps, and
on the old values of parameters still to be sampled in later steps. The end

result is a sample 8, 0% ... W)

1.6.5 Data augmentation

The Gibbs sampler particularly lends itself to problems involving data aug-
mentation. This method was originally proposed by Tanner and Wong (1987)
and is often used in situations where some data are unobserved or missing, as
will be the case in this thesis. Suppose that y is the observed data while z
represents data which are unobserved or missing and suppose that the poste-

rior distribution of the parameter vector 8, f(8|y, z) is easy to sample from,

11
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possibly using MCMC methods. Then the conditional distribution of the un-
observed data f(z|y,8) may also be sampled from. A Gibbs sampler may
then be constructed as follows. Initial values are chosen for the parameters
0 and the unobserved data z, and an iterative procedure is then carried out.
At each iteration, a draw from f(8|y, z) is made using the current sampled
values of the unobserved data z, and then the unobserved data are sampled

from f(z|y, 8) given the updated values for the parameters 6.

1.6.6 Computation for model determination

Chib (1995) introduced an approach for computing the marginal likelihood of
a model m from the output of a Gibbs sampling scheme. In order to use this
method, it is necessary that all normalising constants of the full conditional
distributions in the Gibbs sampler be known. Chib uses the fact that the
marginal likelihood is also the normalising constant of the posterior density to
arrive at the following identity:
N [(ylm, 0:) f(0:n|m)

flyim) = S (1.4
i.e. the marginal likelihood is equal to the product of the likelihood and the
prior (with all integrating constants included) over the posterior density of 8.
The identity (1.4) holds true for all values of 8. The method for evaluating
this runs as follows. Firstly, a high posterior density point (for example, the
posterior mean) 8* is chosen. Suppose that the posterior density estimate at
6" is denoted by f(6*|y). Then the log of the marginal likelihood is

log f(y|m) = log f(y|6") + log f(87) — log f(8"|y) (1.5)

Clearly the first two terms in this expression are generally easily evaluated,
leaving only the posterior density estimate f (0"|y) which can be found from
the Gibbs output. Consider the specific case where we have augmented data

z and unknown parameters 8, and suppose that Gibbs sampling is applied to

the complete conditional densities

f(8ly, z); f(zly,0)

12
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Let the output from the Gibbs algorithm be given by {0(9),2(9)}521. The

posterior density can be written as

fBly) = /f (Bly, z) f(zly)dz = E.(f(Oy, 2))

so from the Gibbs sampler output, a Monte Carlo estimate of f(8|y) at 8 is

given by the sample mean:
G
f(67y) = Z (6°ly, 2'9)

since 29 is a draw from the distribution z|y. So, substituting in (1.5), the

log marginal likelihood may be evaluated as

G
log f(y|m) = log f(y|0") + log £(6") 10g{52 F07y, (g)}

Note that if the Gibbs sampling scheme contains more than two sampling

blocks, this approach may be extended.

1.6.7 Reversible Jump Markov chain Monte Carlo (RJM-
CMC)

Reversible Jump (Green, 1995) provides a MCMC method that is capable of
jumping between parameter subspaces of differing dimensionality. It therefore
provides a framework for model determination, a situation where there is a
discrete choice between a set of models, each with an associated parameter
vector of differing dimension with an interpretation depending on the model
in question. RIMCMC for model choice involves constructing a Markov chain
which simulates from f(m, 0,,), the joint distribution over models and associ-
ated parameters. The Reversible Jump algorithm involves proposing a move
type p to a parameter subspace of potentially different dimension from the

current subspace via a proposal distribution ¢,(). Let 95,? denote the set of

13
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parameters in the current model and €/ the set of parameters in the proposed
model, and suppose that data y are observed. If the proposed move is to a
model with parameter vector €, of higher dimension than the current set of
parameters 95,’?, then 8 can be constructed by generating a vector u which
has dimension equal to the difference in dimensions of the two models, using
proposal distribution g,(u) and setting 0/, = g,(8\Y,u) where g is a one-to-
one function. The ‘reverse’ move from a model with parameter subspace of
higher dimension to one of lower dimension is achieved by applying the inverse
transformation (6,,,u') = g, 1(8%)) and discarding «’. The proposed move

should be accepted with Reversible Jump probability <, where for a move to

a parameter space of higher dimension:
(0. )

. 700, 14)i(0.6.,) 2
= {1’ 760 19)i(p, 6 )q(ul6D) /awﬁif,u) )} (16)

and for a move to a parameter space of lower dimension:

e in J 1 T Onl)i(,6,)0(w'16,,) |0(6;,, w)
- {1 £(691y)j(p,69) 3(95;3)} (1.7)

where j(p, 8) is the probability of making move type p given the state of the

Markov chain 8,,.

The algorithm runs as follows. Choosing initial values 8, and proposal density

g, the following iterative process is carried out.

1. Choose a move type p with probability j(p, 952))

2. Using the current value of the chain 95?, propose a new value 6/ using

the proposal distribution g, if necessary and the transformation gy,.
3. Accept the proposal with probability « defined in (1.6) and (1.7).
4. Tf accepted, set O+ = @ otherwise set 80 = 91,

m

5. Return to step 1 and repeat.

14
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For many applications, a major obstacle to the efficient implementation of
Reversible Jump is the difficulty in finding a suitable proposal distribution.
However, due to the model parameterisation used here, such a proposal distri-

bution is available.

1.7 Outline of the Thesis

In this Chapter, we have introduced the basic theory that underpins this the-
sis. In Chapter 2, we give an outline of previous work specifically for ordinal
data, including classical approaches but focusing primarily on Bayesian meth-
ods. In Chapter 3, we extend some of these approaches to develop a full
methodology for modelling multivariate ordinal or binary data (or a mixture
of both). Goodness-of-fit is also discussed and the approach illustrated with
examples. In Chapter 4, we discuss the issue of model determination and
give a Reversible Jump MCMC method for moving between directed decom-
posable graphical models. The RIMCMC algorithm is applied to data where
the classifying variables have a natural ordering. Results are compared with
other approaches in the literature. The method is extended in Chapter 5 for
undirected decomposable graphical models and applied to data where there
is no natural ordering to the classifying variables. In Chapters 3, 4 and 5,
covariates are not considered. In Chapter 6, we incorporate covariates into the
model and also give a further extension to the Reversible Jump methodology
to assess covariate model selection in two examples. Conclusions are discussed

in Chapter 7.
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Chapter 2

Review of Previous Work

2.1 Models for Univariate Ordinal Data

The focus of this thesis will be on ordinal data. Such data occur when the
response, which may be multivariate, takes the form of discrete, ordered cate-
gories. In this way, it is different from nominal data. The methods described
in the previous section are sometimes applied to ordinal data but they are
somewhat unsatisfactory as they ignore the ordinal structure of the data, i.e.
parameter estimates are invariant to orderings of categories. Note that binary
data may always be treated as a special case of ordinal data, where there are

only two categories.

Suppose individuals ¢ = 1, ..., n are categorised into k ordered categories. The
categorical response vector y is observed, where y; is the response category of

the t" individual.

y:(91>92,~--;yn) yze{laﬂk}

Suppose also that we observe covariates x; for each individual, and that the &
ordered categories of the response have probabilities p; (@;), p2(x:), . . ., pr(@:).
Define the cumulative probability for category j to be

Fi(z:) = pr(x:) + pa(@s) + - + pj(x:)

16



2. REVIEW OF PREVIOUS WORK

MecCullagh (1980) introduced an important class of regression models for or-
dinal data. These models are all based on the assumption of the existence of
an underlying continuous random variable z; for each y;. The categories of the
(univariate) response y; are envisaged as contiguous intervals on the continu-
ous scale for z;, the end points of the intervals are called cut points and are
denoted by 8g,6,,0,,...,0,_1,0; where the response has k categories. Hence,
y; = cif and only if z; € (0._1,6.]. The first and last cut points are set to —oo
and oo respectively.
Oy = —0 O, = oo

All the models suggested by McCullagh share this assumption, but they differ

in their assumptions concerning the distribution of the latent variable.
The cumulative link regression model is defined by:
Fy(z;) = H(6; — = B)

where 3 is a k x 1 vector of unknown parameters, and H(.) is a known cdf
linking the cumulative probabilities F;(x) with the linear structure « 8. To
ensure that the parameters are identifiable, it is necessary to impose a further
constraint. Typically this might involve constraining an intercept parameter

in B to be equal to zero, or constraining ;.

The cumulative link regression model for y; is equivalent to the following model

for the underlying latent variable z;:
Zi = ﬂ%TB + €
where ¢€; has cumulative distribution function . Then,

Py < j) = Fi(m:) = H(0;—x{B)

17



2. REVIEW OF PREVIOUS WORK

2.1.1 The proportional odds model

The proportional odds model is obtained if H is the cdf of the standard logistic
distribution. The model is therefore defined by:

log <1_F—j%) 6, — 2B

2.1.2 The proportional hazards model

The proportional hazards model is obtained if H is the cdf of the extreme value

distribution. The model is therefore defined by:

log [log (1 — Fj(x))] = 0; — x; B

2.1.3 The probit model

This is obtained if H is the standard Normal cdf. The model is therefore
defined by:
r

J

(z) = @6, — =] B)

Once an appropriate link function has been chosen, the models may then be
fitted using maximum likelihood. Inferences about the mode! are based on the

associated asymptotic theory.

The proportional odds model was applied to the data in Table 2.1 taken from
Holmes and Williams (1954) which shows 1398 children classified according
to their tonsil size. The response has 3 ordered categories: Not Enlarged,
Enlarged and Greatly Enlarged. There is one covariate: whether or not a
child is a carrier of the Streptococcus pyogenes virus. Parameter estimates with
associated standard deviations were obtained by maximum likelihood and are
displayed in Table 2.2. The intercept is set to zero and 3; is the additional

effect on the latent logistic variable scale of carriers over non-carriers.

18



2. REVIEW OF PREVIOUS WORK

/ Present but Enlarged Greatly
not enlarged enlarged

Carriers 19 29 24

J Non-carriers 497 560 269

Table 2.1: Tonsil size of carriers and non-carriers of
Streptococcus pyogenes

| Parameter | Estimate (s.e.)
7 ~0.509 (0.056)
6, 1.363 (0.067)
) -0.603 (0.227)

Table 2.2: Parameter estimates from the proportional
odds model for the tonsil data

2.2 Bayesian Approaches for Univariate Ordi-
nal Data

Various authors have found that there can be problems with the maximum
likelihood approach. Griffiths and Pope (1987) found the maximum likelihood
estimator to have significant bias for small samples, while Zellner and Rossi
(1984) also commented on the inaccuracy of the normal asymptotic approxi-
mation for small sample size. The maximum likelihood approach also has no
meaningful interpretation if the model contains any covariates which are per-
fect predictors. The Bayesian approach developed by Albert and Chib (1993)

and outlined in the next section overcomes these problems.

The Bayesian approach is again based on the assumption of the existence of
an underlying continuous random variable z for each respondent, as in the

Classical approach.

We wish to estimate the unknown parameter vector (3 using a Bayesian ap-

proach. We do this by applying Bayes theorem.
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2. REVIEW OF PREVIOUS WORK

Applying Bayes theorem and for any choice of prior 7(3) for 3, the posterior
density of 3 is given by:

n k
£(8,6ly) < w(B)m(0) | [ | [[H(0; — = B) — H(0;-1 — {8 =) (2.1)
i=1 j=1
which is somewhat intractable. However, Albert and Chib (1993) suggested a
simulation-based approach for computing the exact posterior distribution for
(3 which uses the ideas of data augmentation (Tanner and Wong, 1987) and the
Gibbs sampler. The method runs as follows: Suppose that the link function
H(.) is chosen to be @, leading to the probit model. This corresponds to an
assumption that the latent continuous variables z; are independently normally
distributed:
z~ NI, 1) (2.2)
We assume the existence of ordered cut points #;,6s,...,0;_; such that y;
takes the ¢ level if z; falls between the lower and upper cut points for the ¢
level.
yy=c i 0.1 <z <60, (2.3)
As in the classical approach, the first and last cut points are set to —oo and oo
respectively: 6y = —o0, 8, = co. As it stands the model is over parameterised

so the additional constraint #; = 0 is imposed.

We now include the latent variables z, ..., z, as unknown parameters. Under
this formulation, the parameters z = (21,...,2,),3,0 = (02, ...,0,_1) are un-
known and may be estimated using Bayes Theorem. Applying Bayes Theorem

to the unknown parameters yields the following result:

f(z,8.0ly) < f(y|z,8,0)f(z,8,6)

Since vy is fully determined by z and 6 this reduces to:

f(2,8,0ly) < f(y|z,0)f(z,8.6)

Then decomposing f(z, 8, 6) and choosing independent priors for 8 and 8,

f(2,8,8ly) o f(ylz,0)f(z|8)f(8)f(0) (2.4)
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2. REVIEW OF PREVIOUS WORK

where f(y|z,0) is deterministic, as defined in (2.3), f(z|8) is the density of
N(zfB,1), and f(B) and f(8) are the prior densities for 3 and 6 respectively.

We choose these priors as follows:

® 3 ~ N,(0,T) where T = diag(rf,...,7}) where p is the number of
explanatory variables, N, denotes the p-dimensional multivariate normal

distribution, and 77 is large.

e f(0) 1 (uniform), subject to ordering constraints #; < f3 < -+ < 8y,
Substituting these priors into Equation 2.4 gives a somewhat intractable joint
posterior distribution. Albert and Chib suggest using a Gibbs sampler to
generate from the conditional posteriors of the parameters, thus yielding a

dependent sample from approximately the joint posterior distribution. The

method runs as follows:

2.2.1 Algorithm 1

1. Starting with initial values for all parameters, sample the parameter

vector 3 from its conditional distribution

Blz,0 ~N,((X"X+T ")' X"z, (X'X+T")") (2.5)
2. Sample the new latent data from their conditional distributions

%|8,0 ~ N(zlB,1) (2.6)

with z; truncated to the interval (6,,_,,6,,). This distribution is non-
standard and may be sampled from using the inverse cumulative distri-

bution function method of Devroye (1986), pages 27-29.

3. Let {2 : y; = 7} denote the set of latent variables z; with corresponding
observed data y; taking level j. Then the new cut points are sampled

from their conditional distribution

0;|z ~ Uniform (max{zi cyi=Jfhmin{z Yy, =7+ 1}) (2.7)
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4. Go back to step 1 and repeat.

Algorithm 1 was applied to the data in Table 2.1 using 10,000 iterations of the
Gibbs sampler. Parameter estimates for 8 and 6 are displayed in Table 2.3.

Remember that 8; is set to 0. These results are not comparable with those

| Parameter | Estimate (s.e.)
05 1.206 (0.152)
B 10.342 (0.069)
o -0.365 (0.135)

Table 2.3: Parameter estimates from the Bayesian pro-
bit model for the tonsil data

obtained using the Classical Proportional Odds model approach, because they
use different link functions. The logit link was used in the Classical approach.
The logistic distribution can be shown to be approximately linearly related to
the t-distribution with 8 degrees of freedom as discussed in Albert and Chib
(1993). Using results from Ntzoufras et al. (2003) the relationship between any
linear predictor provided by the logit and t(8) link functions is approximated

by

91,(1/2)

91,(1/2)
where g, is the link function for the logistic model and gy, is the link function
for the ¢(8) model, both evaluated at the median for the best approximation.

This can be seen to be equivalent to:

35 3
16\/§ t(®)

Therefore, if we can implement the Bayesian approach with a t(8) link, the

ﬁlogit = (28)

parameters estimates can be transformed by Equation (2.8) to be compared

with the classical approach logit link results.

Albert and Chib (1993) also provide an algorithm for the #(v) link function.

The latent variables z; are now assumed to be independently distributed from
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the t distribution with locations ] 3 and degrees of freedom v (which we will
choose to be 8).
&~ Ha! B,v) (2.9

Introducing the additional random variable o;, this is equivalent to:

zlop ~ N(ziB,o7}) (2.10)
1
J—f ~ (Gamma <g ;) (2.11)

where we use the following parameterisation for the gamma distribution:

()-8 w(z) e

Using the same priors as for the probit link case, we arrive at the conditional
distributions for the unknown parameters which are then used to implement

a Gibbs sampler, as described in Algorithm 2:

2.2.2 Algorithm 2

1. Starting with initial values for all parameters, sample the parameter

vector B3 from its conditional distribution

Bz, T~ N, (X"l Xx+T ) X"y 1z, (XT2'X+T D!
| p

2. Sample the parameter matrix ¥ =diag(o?,...,02) from its conditional

distribution

v+1 y+(zi—a:fﬁ)2)

02|z, B ~ Inverse Gamma ( 5 5

i.e.

— |z, B ~ Gamma

7

2 2

<V+ I v+ (2 — m;ﬁy)

with the parameterisation defined in (2.12).
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3. Sample the new latent data from their conditional distributions
21’13’ Ui, U;-Z, 0 ~ ‘]v(m3187 012)

with z; truncated to the interval (6,, 1,6,,).

4. Sample the new cut points from their conditional distribution

6|z ~ Unif (max{zi Y =gjhmin{z Yy =5+ 1})

5. Go back to step 1 and repeat.

Algorithm 2 was applied to the data in Table 2.1 and the parameters estimates

(along with standard deviations) are displayed in Table 2.4.

Parameter | Estimate (s.e.)
0 1.227 (0.012)
B -0.343 (0.003)
51 -0.380 (0.008)

Table 2.4: Parameter estimates from the Bayesian t(8)
model for the tonsil data

The results must be transformed from those given by the #(8) link to be com-
parable with those given by the logit link using (2.8). Table 2.5 shows the
parameter estimates for the data in Table 2.1, with the first column showing

the Bayesian results and the second column showing the Classical results.

[ Parameter | Bayesian Estimate | Classical Estimate
0, -0.530 -0.509
) 1.367 1.363
o -0.588 -0.603

Table 2.5: Comparison of parameter estimates from the
Bayesian and classical approaches for the tonsil data
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Comparing the results from the classical and Bayesian approaches for each data
set shows that the two approaches give very similar results. We can therefore
conclude that the approach suggested by Albert and Chib (1993) provides
an attractive and flexible alternative to the classical approach for univariate

ordinal data.

However, there are some computational issues. Although the algorithm de-
scribed above is straightforward to implement, it can be difficult to obtain
satisfactory convergence. This is due to the cut point generation step which
can only sample values between the maximum latent data value in the lower
category and the minimum latent data value in the upper category that it
divides. Therefore, if there are many individuals in the corresponding cell of
the table, leading to many values for the latent data, the cut points can be
extremely slow-moving with high autocorrelations. There have been several
studies into methods for accelerating convergence for the cut points. Cowles
(1996) suggests the use of a multivariate Metropolis-Hastings step which up-
dates cut points and latent variables simultaneously, while Nandram and Chen
(1996) further improved this with a proposal density based on the Dirichlet
distribution. However, the latter is only effective when cell counts are reason-
able evenly distributed. For multivariate data, Ishwaran (2000) bypasses the
problem entirely by proposing a reparameterisation with covariate specific cut
points that allows parameter estimation to be carried out via a leapfrog hybrid

Monte Carlo approach.

2.3 A Bayesian Approach for Multivariate Bi-
nary Data

We have considered various modelling approaches for univariate ordinal data,
and now turn our attention to the multivariate case. Chib and Greenberg
(1998) build on the framework laid down by Albert and Chib (1993) to model

multivariate binary data using a multivariate probit model as suggested by
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Asghford and Sowden (1970). Suppose that individuals ¢ = 1,...,n are clas-
sified by binary variables j = 1,...,p. Independent binary response vectors
y, are observed, where respondent i takes category y;; for the j™ variable.
Suppose also that the set of covariates @;; are observed for the ;™ response.
The multivariate probit model says that the likelihood of observing response

vector y; given parameters 3, ¥ and covariates x;; is:

f(wilB. %) :/A /A ,(t]0, T)dt

where ¢,(¢|0,X) is the density of a p—variate normal distribution with mean
vector 0 and correlation matrix 3 = {0}, A;; is the interval
o 1o

il £y =0
B; € R% is an unknown parameter vector and 8’ = (3},...,8,). Note that
the problem is parameterised in terms of the correlation matrix in order to
ensure identifiability for the parameters. This is analogous to assuming o2 = 1
in the latent normal distribution of Albert and Chib (1993). The multivariate
probit model is then re-formulated using the methods of Albert and Chib
(1993) as described in section 2.2. Specifically, latent normal random variables
z; ~ N,(X;8,X) are introduced, such that

Yis = [(Zij > 0) (2.13)

where X ,=diag(a},, ... ,z;,). Implicitly, the single cut point 0 is set to be

zero, again for identifiability.

Let o = (012,013, ...,0p-1,) denote the p(p — 1)/2 distinct elements of 3.
Then the values of o that allow a positive definite matrix ¥ form a convex
solid body in the hypercube [—1,1]?; denote this set by C. Using Bayes’
theorem, the posterior density of the unknown parameters 8,3 and Z given

the observed data y is:

f(B,o.Zly) x f(yB,% 2)f(B.%,2Z)
< f(ylB.%,2)f(Z]8,X)f(B,%)

x f(B.2)][[6,(2:18.2)f(y,1Z:. 8. %)

i=1
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where from (2.13),

P

j=1
and ¢,(Z;|3,%) is the multivariate normal density with the constraint that
ocC.

Chib and Greenberg assume prior independence of 3 and o and assign multi-
variate normal distributions to each, with the prior distribution for o having
mean oy and variance G;' and being truncated to the region C. Following
Albert and Chib, a Gibbs sampler technique may then be used to evaluate the

posterior distribution, and runs as follows.

2.3.1 Chib and Greenberg’s method

1. Sample the latent data Z; from their conditional posterior distribution
Z;|y;, B,% which is truncated p-dimensional multivariate normal. This
can be sampled using the method of Geweke (1991), which consists of a
cycle of p Gibbs sampler steps, each from a univariate truncated normal

distribution.

2. Sample the parameter vector 3 from its conditional posterior distribution

B|Z,y, ¥ which is multivariate normal.

3. Sample the off-diagonal elements o of ¥ from their joint conditional
distribution o|Z,y,3. This distribution is non-standard and requires
the use of the Metropolis-Hastings algorithm (Hastings, 1970) outlined

below.

4. Go back to step 1 and repeat.

The conditional posterior distribution for o is given by:

f(el2,.8) « [(a)f(Z|8,%)
x ¢p(olon, Go')op(Z|ziB,5) (0 € C)
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i.e. the product of two multivariate normal distributions truncated to the re-
gion C'. This is sampled using the Metropolis-Hastings algorithm. Firstly, a
suitable proposal distribution must be found. Chib and Greenberg suggest a
procedure based on a proposal density that is tailored to the un-normalised
target density g(o|Z,8) = f(o)f(Z|B,X)I(o € C) (in the acceptance prob-
ability, the normalising constants would cancel). The proposal generating pro-
cedure uses a hierarchical variant of a random walk chain and involves a num-
ber of tuning parameters for added flexibility, leading to a proposal from the

distribution ¢(o’|e, Z, 3). This proposal is accepted with probability « where

W [H@ZBDI € C)lolo’. 2.9
oo, o) = { 1@ (2 3.0 eC) qlolo, Zﬁ)’l} (2:14)

In unpublished work, Fronk (2003) uses a similar latent data approach to
model binary data and applies a Reversible Jump algorithm to investigate

model choice between competing DAGs.

2.4 Approaches for Multivariate Ordinal Data

Chen and Dey (2000) use a similar approach to that of Chib and Greenberg
(1998) to model correlated ordinal data. They introduce a general class of
scale mixtures of multivariate normal (SMMVN) link functions, a special case

of which is the multivariate probit model.

Suppose that individuals i = 1,...,n are classified according to j = 1,...,p
ordinal variable, with each ordinal variable having L levels. For each indi-
vidual, the ordinal response vector y, = (vi1,¥i2, ..., Yip) i observed, along
with covariate vector x;; = (xijl,xijg,...,xijpj) for each variable j. Let
B; = (Bj1, Bj2, - .., Bjp,) denote the corresponding vector of regression coeffi-
cients, with 8 = (8,,8,,...,8,)". Again, following Albert and Chib (1993) the
existence of an underlying multivariate random variable z; = (21, 22, - - - , Zip)

is assumed, as is the existence of cut points which divide the range of z;; into L
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contiguous intervals corresponding to the categories. Let 8(j, ¢) denote the cth
cut point for the jth variable. Then y;; takes the cth level if z;; falls between

the lower and upper cut points for the cth level:
yy=c if 0(j,c—1) <z <0(j,¢) (2.15)

To ensure identifiability, (7, 1) = 0. The latent variables z; are assumed to be

independent and identically distributed multivariate normal random variables:
z; ~ Ny(z,;8, c(A)X) (2.16)

and

A~ f(A) (2.17)
where k() is a positive function of one-dimensional positive-valued scale mix-
ing variable A and f(A) is a mixing distribution which is either discrete or
continuous. X is taken to be in correlation form to ensure the identifiability

of the parameters.

There are two difficult sampling problems to be tackled in order to fit this
model, one is the generation of the cut points, the other is generating from
the correlation matrix. In order to tackle these problems, Chen and Dey

reparameterise the model:

1

% = GG L=1)

05, k)" = 3;0(5, k), B; =0;8;, 2= 0;2

for 7 = 1,2,...,p and ¢ = 1,2,...,n. Under this parameterisation, the
SMMVN-link models defined in (2.15) and (2.16) become

yiy=c it 0(j,c—1)" < 2 < 0(7, c)”

and
z; ~ Ny(x; 8", k(M) E")

where the reparameterised cut points are —oo = 6(5,0) < 0(j,1) = 0 <
6(5,2) <---<0(j,L—1)=1<86(j,L) = oo, and £* is now in unrestricted

covariance form. This makes posterior simulation of the parameter £ much
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more straightforward. Note that under this new parameterisation, for each
classifying variable there are only L — 3 unknown cut points to be determined,
as effectively, this approach is exactly equivalent to fixing the scale of the
latent variables. However this is achieved by fixing two cut points 6(j, 1) and
6(j, k — 1) rather than one cut point 6(j, 1) and a variance 3,;. Note therefore
that this re-parameterisation is intractable for binary data, where there is only

a single cut point.

A special case of the SMMVN model is the multivariate probit model. This
can be found by taking k() = 1 and f(\) = f(1) = 1. Other possible models
contained within the class of SMMVN-link models are the the multivariate

t-link models.

Posterior simulation is again carried out using a Gibbs sampler. Choosing
independent multivariate normal and inverse Wishart priors for 8~ and X"
respectively and uniform priors for the cut points, all conditional posterior
distributions are standard. Therefore, no extra Metropolis-Hastings steps are

necessary.

This approach has been successfully applied to genetic data (Kizilkaya et al.,
2003) and dose-finding in clinical trials (Bekele and Thall, 2004).

2.5 Other Bayesian Approaches for Multivari-
ate Ordinal Data

There have been few other attempts at modelling multivariate ordinal data
in a Bayesian framework and those that there are tend to focus on multirater
data, where items/individuals are rated by several different judges. Observer
agreement can then be assessed. One such example is the paper by Johnson
(1996), in which a hierarchical model is proposed. This follows a similar frame-
work as Chen and Dey (2000) except with one important extra assumption,

that is that there exists a ‘true’ rating scheme through which each item ¢ can
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be assigned a latent trait measure z;, referred to as the item score. Judges are
assumed to rate items by first estimating this item score and then assigning an
ordinal rating based on these scores. This is effectively the same assumption
introduced by Albert and Chib (1993) except with the constraint that for each
judge, there is the same underlying true score for a particular item. The ap-
proach can therefore not be applied where the classifying variables are in fact
measuring completely different quantities. Using the same notation as above,
except that the p classifying variables are now considered as p ‘judges’, and
letting z;; be judge j’s estimate of item i’s score z;, the model can be written
as
2 = z; + by +

where

g, =k i 00 k—1) < z; <005, k)

Here b;; denotes the nonrandom item-specific bias for judge j, potentially mod-
elled using covariates, and «;; denotes the random component of the error made
by judge j in estimating z;. The «,; are generally assumed to be item indepen-
dent. Assigning appropriate prior distributions to the unknown parameters
and using the latent data approach of Albert and Chib, posterior estimation
is then carried out via a Gibbs sampler. Further work and applications of this
method have been carried out by Johnson and Albert (1999), Johnson et al.
(2002) and Ishwaran and Gatsonis (2000).

Rossi et al. (2001) use a similar approach to model multivariate ordinal data
which arise from survey research, where respondents respond to a number of
different questions, giving answers on an ordinal scale. Noting that respondents
vary in their use of such a scale - for example, some use only the middle range
of the scale, while some only use extremes - Rossi et al. introduce a model to
account for these differences. In this situation, the p classifying variables are
the p questions asked, and again, we let y;; denote the response of individual
i to question j. Again, using the approach of Albert and Chib, the response
vector y; is assumed to be a discrete version of a latent underlying continuous

random variable z} which Rossi et al. (2001) assume to have the distribution

31



2. REVIEW OF PREVIOUS WORK

zF ~ N,(B7,X}). The discretising set of cut points (fy, ..., 0 ) are assumed
to be common to all p variables. Note that this is an alternative approach to
those previously discussed in that each individual is assumed to have a different
latent mean and variance but with common cut points across variables, whereas
others have assumed common mean and variance for individuals and different
cut points across variables. As it stands this model is overparameterised; to
overcome this, for each individual the latent variable z} is assumed to be a
location-scale shift of a common underlying latent variable z;:

z! = /8+Ti+0'izi

13

PR NP(O,E)

Note that the original mean and covariance structure can be generated using
B* =B+ 71 and ¥* = ¢?X. The cut points have the identifiability constraint

>~ 0, = constant and are re-parameterised to take the quadratic form:
0 = a + bk + ek?

in order to allow for non-linear spread. Priors are chosen for all parameters in
the hierarchical model and posterior estimation is carried out using a Gibbs
sampler in five blocks with Metropolis-Hastings steps. The approach suggested
by Rossi et al. has a high level of complexity due to the nature of the applica-
tion, that of overcoming scale usage heterogeneity. Such a level of complexity

is unlikely to be necessary to model standard multivariate ordinal data.
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Chapter 3

A Bayesian Model for
Multivariate Ordinal and
Binary Data

In this chapter, we extend the approach for univariate data described by Albert
and Chib (1993) and implemented in Chapter 2. In contrast to the approaches
of Chib and Greenberg and Chen and Dey, this approach will be sufficiently
general to encompass applications with either binary or ordinal variables or
both. We make the same assumption that the ordinal categorical data are a
discrete version of underlying continuous data. This means that we assume
the existence of a latent continuous multivariate random variable associated
with each response. The domain of the latent variable is divided by cut points
into contiguous regions in JR? where p is the dimension of the data. We will

focus on developing a model to fit ordinal multivariate data with no covariates.

3.1 The Model

For each individual y;, we assume the existence of a latent multivariate con-

tinuous variable z; € R?. In the univariate case, the latent variables z; were
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assumed to be normally distributed with mean ;3 and variance 1. With no
covariates this reduces to a mean 3. If we were to follow the analogous setup
in the multivariate case, the variance matrix of the latent data would be in
correlation form. However, there are problems in working with the correlation
matrix as outlined in Chapter 2. For these reasons we assume the covariance
matrix to be in unrestricted form. Therefore, each z; is assumed to be normally

distributed with common mean 3 and variance-covariance matrix 2.

z; = (21, Zi2, oy Zip) ~ Np(B, 2) i=1,..,n

We assume the existence of ordered cut points which, for each classifying vari-
able, divide the real line into intervals corresponding to the ordered categories.
Let 6(j,c) denote the cth cut point for the jth variable. Then y;; takes the

cth level if z;; falls between the lower and upper cut points for the cth level:
yiy=c i 0(j,c—1) <z <0(jc) (3.1)

The first and last cut points in each dimension are set to —oo and oo re-
spectively. To ensure identifiability, the following additional constraints are
imposed:

6(45,1) =0, 6(5,2) = 1.

Two constraints need to be imposed for each dimension, so that the scale of
the latent data is identified. This is equivalent to fixing the single cut point
and forcing 3 to be in correlation form in the binary case. This is an arbitrary
choice of constraints and alternatives will be investigated later. This is an
analogous model to that described in Chen and Dey (2000).

The model is determined by the parameters 3,3, z;, 8. By Bayes theorem,

their joint posterior distribution is given by:
f[(z,8,%,0ly) < f(yzB%,0)f(z8,%,0)
Since y is fully determined by z and 8 this reduces to:

f(z,8,%,0ly) x f(yz.0)f(z,8,X%,0)
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Then decomposing f(z, 8, 2, 8) and choosing independent priors for 8, £ and

0, this becomes:
f(2,8,%,0ly) x f(yiz,0)f(z|8,X)/(8)f(3)/(0) (3.2)

where f(y|z, 0) is deterministic as described in (3.1), f(z|3,X) is the normal
density N,(8,%), and f(3), f(X) and f(@) are the prior densities for 8, X

and @ respectively. We choose these priors as follows:

e 0(j,m) ~ uniform
e B3~ N,(0,T)
e ¥ ~ Inverse-Wishart (¢, A) with probability density function

gtpt [_ tr(E_lA)}

J(E) o [B]777  exp 5 (3.3)

These priors were chosen in order to yield posterior distributions that are
standard and thus easily simulated from. In our examples we choose the para-
meters of these priors to give as noninformative priors as possible. The matrix
T is a diagonal matrix T = diag(r},73,, ... ,7,,) Where 77 is large. A neces-
sary condition for the inverse-Wishart distribution to be proper is that ¢ > p;
however the smaller the value of g, the less informative the prior; ¢ is therefore
set to be p+ 1. It is less clear what to set A to be, for now it is set to be
the identity matrix I,; sensitivity to the choice of prior parameters will be

investigated later.

Substituting these priors into Equation (3.2) yields the posterior distribution
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of the unknown parameters:

n P k;

i=1j=1 |m=1
o 1
COREIRE
1
X e —
Gy [T 7

exp {—%(zi —B)'E (=i — B)}
exp {—%BTT”B}
tr(X7'A)

% ‘2’—(q+p+1)/2 exp [_ :

} (3.4)

We wish to estimate properties, such as the mean and variance, and marginal
distributions of these unknown parameters, but this involves integrating the
Equation (3.4) above. To overcome this problem, we use a Monte Carlo Markov

Chain (MCMC) to generate random samples from this distribution.

To sample this posterior density, the following Gibbs sampler method was
used. This method was chosen due to the standard form of the conditional

distributions of the unknown parameters.

3.2 Algorithm 3

1. Starting with initial values for all parameters, sample the mean 3 of the

latent data from its conditional distribution

Blz, 2 ~ N, ((nE_l +7HTsT Zzi , (nET 4 Ttl)_l>

i=1
2. Sample the variance X of the latent data from its conditional distribution
3|8, z ~ Inverse-Wishart (A + nS,B? q+ n)

where Sg = LS (2—B)(z;—B)T and the inverse-Wishart distribution

is parameterised as in (3.3).
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3. Sample the new latent data from their conditional distributions
zily;, 8, 5,0 ~ Np(8, %)
with z;; truncated to the interval (0(7,yi; — 1), 0(J, yi;))-
4. Sample the new cut points from their conditional distribution:
6(j,m)|z ~ Unif (m;ax{zij LYy = m}, miin{zij DYy =M+ 1})

5. Go back to step 1 and repeat.

If a large enough sample is generated from the Markov Chain, this is a depen-
dent sample from approximately the joint posterior distribution, and hence
samples from the marginal distributions of each of the parameters (and any
functions of interest) can be easily evaluated. All the conditional distributions
are standard apart from those used to generate the latent data z; which are
multivariate truncated normal distributions. Sampling from this distribution
is carried out via a sequence of univariate truncated normals using the method
developed by Geweke (1991). This consists of a cycle of p Gibbs steps through
the components of z;, which have truncated univariate normal distributions.

These are generated using the inverse distribution function method (Devroye,
1986).

3.3 Example 1: Oesophageal Cancer Dataset

The scheme outlined in Algorithm 3 was applied to the two-way con-
tingency table displayed in Table 3.1 (Breslow, 1982), which shows the results
from a Case-Control study investigating the relationship between drinking bev-

erages at burning hot temperatures and incidence of oesophageal cancer.

The Gibbs sampler was implemented using 30,000 iterations. The posterior
means along with the posterior standard deviations were obtained for 8, 3

and 6.
—0.132(0.42) )

E(Bly) = ( —2.448(0.73)
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Control
Case | 0 1 2 3
0 31 5 5 0
1 12 1 0 0
2 14 1 2 1
3 6 1 1 0

Table 3.1: Number of beverages drunk at burning hot
temperatures for oesophageal cancer case-control pairs

[ 7.936(0.564) —0.025(0.180)
EXly) = ( —0.025(0.180)  10.403(1.091)

E(6(case,3)|y) = 3.315(0.670)
E(6(control,3)|y) = 4.571(0.421)

Table 3.2 shows the mean posterior predictive table (the expected data) es-
timated by the model. This was found by taking a sample of size 80 from
the normal distribution with mean and variance generated at each iteration
of the Gibbs sampler. These latent data were then categorised using the cut
points generated at the same iteration of the Gibbs sampler. The mean over
all 30,000 tables was then taken.

Control
Case 0 1 2 3
0 32.48 3.62 4.60 0.59
1 9.49 1.06 1.33 0.16
2 14.41 1.61 2.07 0.26
3 6.45 0.74 0.99 0.14

Table 3.2: Mean posterior predictive data for oe-
sophageal cancer case-control pairs
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3.3.1 Discussion

e A comparison of the observed and expected data in Tables 3.1 and 3.2
indicates that the model is performing well, as observed and expected

cell counts are very close.

e The mean in both dimensions is less than zero, which corresponds to
the cell Case=0, Control=0, i.e. the model indicates that the data are

concentrated in this area. This agrees with the observed data.

e The correlation between Case and Control is —0.006. The model in-
dicates that there is little correlation between the Case-Control pairs.
Again, this agrees with the observed data, as there is no obvious strong

dependence structure.

e The estimated third cut point for the Controls (columns) is higher than
that for the Cases (rows). This implies that there are fewer people to
have drunk more drinks at burning hot temperatures in the Controls.

Again this agrees with the observed data.

The mean posterior predictive density of the latent variables z; is shown in
Figure 3.1, complete with the mean posterior cut points. This clearly illustrates

the lack of dependence structure.

3.4 Model Diagnostics

3.4.1 Convergence
In order to check the convergence of the Gibbs sampler, trace plots were plotted

for each of the parameters estimated. Figures 3.2 and 3.3 show the trace plots

for 4, and X respectively.
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Control

Figure 3.1: Mean posterior distribution of the latent variable with posterior
means for cut points overlaid.

f T T T T T
0 5000 10000 15000 20000 25000 30000

iteration

Figure 3.2: Trace plot for 3, for oesophageal cancer data
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Figure 3.3: Trace plot for >;; for oesophageal cancer data

These are typical of the trace plots for each estimated parameter. They show

that the Gibbs sampler is mixing well, with negligible burn-in period.

As discussed in Chapter 2, it has been noted that convergence of the Gibbs
sampler is sometimes slow when there are free cut points to be estimated,
especially if the sample size is large. This is due to the way that the free
cut points are generated. Their conditional distribution is uniform on the
space between max;{z; : y;; = m} and min{z; : y;; = m + 1}. Clearly if
there are many individuals in each category, this space will be small. As a
consequence, the cut point values can change very little between successive
iterations. This can also affect the convergence of the other parameters, and
hence the convergence of the Gibbs sampler. Figure 3.4 shows the trace plot

for the free cut point for Case.

Note that although this is not moving as freely as the other parameters, it
still appears to be converging satisfactorily. This is probably due to the small
sample size of 80, so that there are relatively few individuals in each category.

We shall see some examples in Chapter 4 where the convergence of the free
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iteration

Figure 3.4: Trace plot for 8(Case, 3) for oesophageal cancer data

cut point is more questionable. As discussed in Chapter 2, Cowles (1996) and
Nandram and Chen (1996) have suggested methods of speeding up convergence

of cut points.

The convergence of the data augmentation Gibbs sampler algorithm could also
be improved by employing the method of parameter expansion described by
Liu (2001). Parameter expansion works by introducing extra parameters with-
out distorting the original observed data model. Liu and Wu (1999) identify
conditions under which a parameter expansion algorithm can be guaranteed
to outperform a standard data augmentation algorithm. In the discussion of
van Dyk and Meng (2001), Liu provides a particular example of the parameter
expansion method for the multivariate probit model, while Imai and van Dyk

(2005) use the method for the multinomial probit.
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3.4.2 Goodness-of-fit

In order to assess the quality of the model, we need some measure of
its goodness-of-fit. We use a simulation-based method proposed by Dey et al.
(1998), which assesses the probability of the observed data being predicted by
the model. To do this, 30,000 tables were generated, one for each iteration, us-
ing the mean, variance and cut points produced at that iteration. We therefore

have the observed table cell counts:

{y:i=1,..,16}

2 3

and 30,000 tables generated during the MCMC:

{yPredd i =1,..,16;5 = 1,..., 30,000}

If the model provides a good fit to the data, we would expect the original
table to be typical of tables generated by the model. In order to assess this,
three distance measures are used to measure the ‘distance’ between each of the
30,000 tables and the posterior predictive mean table, and also the distance
between the initial data and the posterior predictive mean table. If the model
fits poorly, we would expect the latter distance to lie in the upper tail of
the distribution of distances. The distance measures used are the Pearson’s

distance, Deviance distance, and the Maximum Absolute Difference distance:

e Pearson’s distance:
16 pred,j  —predy2
(yi - Y )
—pred

i=1 Y

e Deviance distance:
16 pred,j

2 Z y!"** log yjpred
Y;

i=1

e Maximum Absolute Difference distance:

max{ pred,j —gyred
7

yi yL

}
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T T T T 1
0 20 40 60 80 100

Pearson’s Distance

Figure 3.5: Estimated density of Pearson’s distance measure for oesophageal
cancer data

Figures 3.5, 3.6 and 3.7 show the densities of the Pearson’s, Deviance and
Maximum Absolute Difference distance measures respectively. Note that cell
counts of less than 5 were pooled. The vertical line represents the distance
between the observed data {y?**} and the posterior predictive mean table.

The fact that for each distance measure, the vertical line is well into the lower

tail of the density shows that the model fits very well.
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60

Deviance Distance

Figure 3.6: Estimated density of deviance distance measure for oesophageal
cancer data
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Absolute difference between observed and expected

Figure 3.7: Estimated density of maximum absolute difference distance mea-
sure for oesophageal cancer data
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3.5 Example 2: Blackbird Dataset

The scheme outlined in Algorithm 3 was applied to the three-way con-
tingency table displayed in Table 3.3, taken from Anderson and Pemberton
(1985), which shows 90 ‘first-year’ blackbirds cross-classified on three aspects
of their colour. The colours of the lower mandible (LM ), the upper mandible
(UM) and the orbital ring (OR) were recorded as ordered categorical vari-
ables, ranging from all black (1) to all yellow (3). For each variable, there are

three ordered categories.

Lower Upper | Orbital Ring

Mandible | Mandible | 1 2 3
1 40 19 0

1 2 0 0 0

3 0 1 0

1 1 6 0

2 2 1 2 1

3 0 1 0

1 1 2 0

3 2 0 1 1

3 0 6 7

Table 3.3: Ninety blackbirds classified by colour of upper
mandible, lower mandible and orbital ring.

The Gibbs sampler was implemented using 30,000 iterations. The posterior
means along with their standard deviations were obtained for 8 and 3. Note
that since there are only three categories for each variable, there are no free
cut points to be estimated. The data were ordered so that Variable 1 = LM,
Variable 2 = UM and Variable 3 = OR.

—3.79(0.01)
EBly) = | —13.01(0.02)
0.062(0.001

)
84.20(2.62) 95.49(3.35) 4.21(0.81)
E(S|y) = | 95.49(3.35) 434.58(6.08) 9.91(1.02)
4.21(0.81)  9.91(1.02) 0.68(0.04)
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As we would expect, the posterior means for LM and UM are well below zero,
corresponding to category 1 (all black). This is due to the fact that most of
the observed birds fall into this category. However there are birds that fall into
category 3 (all yellow) for the variables LM and UM. The posterior variance is
high to allow for this despite the mean being (relatively) much smaller than 0.
The posterior mean for OR falls on the borderline between categories 1 and 2,
thus reflecting the fact that birds are more evenly spread over categories for

this variable.

Table 3.4 shows the mean posterior predictive table (the expected data) es-
timated by the model, calculated using the method described in Section 3.3.

Lower Upper Orbital Ring
Mandible | Mandible 1 2 3
1 36.16 17.05 1.37
1 2 0.36 0.61 0.10
3 1.50  3.57 1.04
1 1.07 178 0.30
2 2 0.06 0.14 0.05
3 0.16 0.76 0.32
1 264 6.59 2.01
3 2 0.11  0.56 0.30
3 0.64 529 5.46

Table 3.4: Mean posterior predictive data for blackbird
colouring data

The model appears to provide a good fit to the data. We use the simulation
goodness-of-fit method described in 3.4.2 to check this. The chi-squared and
deviance statistics are not entirely satisfactory as many of the posterior mean
cell counts are small and thus have a high influence on the goodness of fit
statistics measures. The absolute distance measure is unaffected by this and
the density is shown in Figure 3.8, with the vertical line representing the

distance between the observed data and the posterior predictive mean table.
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Figure 3.8: Estimated density of maximum absolute difference distance mea-
sure for the blackbird data

This agrees with observation of Tables 3.3 and 3.4 that the model appears to fit

well. Trace plots of the parameters indicated that convergence was satisfactory.

3.6 Binary Data

We require a general method for both ordinal and binary data (or a mixture
of both). If a classifying variable is binary, there is only one finite cut point to
be constrained, leaving a remaining constraint to be imposed to ensure identi-
flability. For binary data, Chib and Greenberg (1998) constrain the marginal
variances 0. This requires specifying a prior distribution and simulating from
the posterior distribution of a restricted-covariance matrix. The prior normal-
ising constant for such a distribution over covariance matrices restricted in this
way is not generally available, which creates difficulties for model determina-

tion as this constant is explicitly required in the marginal likelihood (1.2). We
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introduce an alternative parameterisation of the model that not only aids com-
putation for the single model case but also provides a very neat framework for
model determination: the inverse covariance matrix is parameterised in terms
of its Cholesky decomposition

Sl =0T (3.5)
where @ is an upper triangular matrix. This parameterisation is motivated
by the following decomposition of the joint likelihood for the latent variables
f(z:i) = f(za, 2i2y s Zz'p)i

fzi) = f(zip)f(zi)p—l‘Zip)f(zi,p—Q‘Zi,p—l; Z’L'p) o Sz zi, 2y s Zip)

This can be expressed as the following recursive set of equations.

B 1
Zp = N (ﬂp:g) (3-6)

PP

Q‘):D—l,p 7 1
zip-1lzp = Bpo1— o e TN {0
#p—1p—1 p—1,p—1
Op—2 Op—2,p—1 1
_ Pp—2,p p—2,p
Zi,p—Q‘Zi,p—ly Zip = ﬁp—2 - Zip — Zip—1 T N |0, =
‘ﬁp—2,p—2 ¢p727p—2 %—2,:0—2
. O1p O1p—1 D12 . 1
zil‘zi%---azip = /61——Zip— Zip—1 — ,—Zi2+l7V O,T
o1 on P11 P11
In matrix form, this is equivalent to
_ _$12 ¢ _%w -
il ’Bl 0 o11 ¢11 T é11 Zil
29 B 0o e _ 9 Zio
@22 P22
. 0 _ Pp—1,p
’ @p*l,p—l
Zip ﬁp 0 Zip

X 1
+ N, (O;dlag (0_121))

Rearranging and taking variances (and using the facts that Var(ATX) =
ATVar(X)A and Var(z;) = £) we arrive at the following equation.

1 .
Y = U ldiag (U—2> U’

i
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where U is the upper-triangular matrix:

1 %1z dus _%1p
¢11 1 T P11
P23 P2p
¢z P22
U= : :
1 )¢p—l,p
¢p71,p71

Taking inverses, this can be expressed as
> '=U"D"DU

where D is the diagonal matrix diag(¢;;). Therefore we finally arrive at the
Cholesky decomposition parameterisation of the inverse variance matrix ex-
pressed in (3.5), with @ = DU. From (3.5), we see that ¢;; can be interpreted
as the conditional precision of the latent data for variable i given the latent
data for all variables preceding 7 in the decomposition. The off-diagonal ele-

ments ¢;; can be interpreted as scaled regression coefficients.

The model is now determined by the parameters 3, ®, z, 8. By Bayes theorem,

their joint posterior distribution is given by:
[(z,8,2,0ly) « [(ylz,8®,0)f(z,3,®,0)
Since vy is fully determined by z and @ this reduces to:
[(z,8,2,0ly) « [(y|z,0)f(z8 ®,0)

Then decomposing f(z, 3, ®,0) and choosing independent prior distributions
for 3, ® and 6, this becomes:

[(2,8,%,0ly) o f(y|z,0)f(z8.®)f(8)f(@)f(0) (3.7)

where f(y|z, 0) is deterministic as described in (3.1), f(z|3, ®) is the density
Ny (B, (®@7®)~1), and f(B), f(®), and f(8) are the independent prior densities
for B, ® and 0 respectively.
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The standard conjugate prior for covariance matrices is the inverse-Wishart
distribution (3.3). This distribution has an inherent lack of flexibility for spec-
ifying prior information, as there are @ hyperparameters (the elements
of A) to give a point estimate for 3 but only a single scalar parameter (q)
with which to quantify uncertainty about this estimate. To overcome this,
Brown et al. (1994) proposed the generalised inverse Wishart (GIW) distrib-
ution which provides an extremely flexible prior distribution for a covariance
matrix. We follow a particular parameterisation of the GIW distributino pro-
posed by Daniels and Pourahmadi (2002). They showed that if independent
gamma prior distributions are placed on the diagonal elements ¢; of ® and if,
conditional on ¢;;, independent multivariate normal priors are placed on the
partial rows @; = (¢ 11, ..., ¢ip) of the upper triangle of the matrix ®, then
this prior is conditionally conjugate. For a certain choice of parameters, this
distribution simplifies to the inverse-Wishart distribution, the usual conjugate
prior for covariance matrices. Since we do not have strong prior beliefs about
the covariance structure we use this prior. However, our approach is sufli-
ciently flexible to allow prior information to be incorporated when available.
Garthwaite and Al-Awadhi (2001) propose elicitation methods for quantify-
ing expert opinion (where available) via both the generalised inverse Wishart
and inverse Wishart distributions. Suppose that X is assumed to be, a priors,

inverse-Wishart with parameters A and ¢. Then the equivalent prior distrib-

Gii ~ 4/ biX?Ile (3.8)

ution for ® is:

Gl b~ Np_i(Pups, A7) (3.9)
where
bi = (CL.L‘.L' — aiA;la?)_l
p = A
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and A~! is partitioned as follows:

Z’th

column

Al = . lay | a; — ™ row

a~T Al

These priors are conditionally conjugate, therefore the posterior conditional
distributions of ¢,|¢; and ¢;|@,; are multivariate normal and gamma respec-
tively. This is very useful for posterior computation. Convenient priors for
the other unknown parameters are 6(j,c¢) ~ 1 and 8 ~ N,(0,T), a standard

conjugate prior.

On substituting these priors into (3.7), we arrive at the posterior distribution
which is again analytically intractable. We therefore use a Gibbs sampler
approach to find a dependent sample from the posterior distribution of the
unknown parameters. In order to do this, we need to find the conditional

posterior distributions of ®, 3, z, 0.

The joint likelihood for the elements of ® is

2
f(@i, &ilz) o H Py; €XP {—%(gm - giGi_lg;r):l

rows i of @

& - P
exp {—’Z_(sz +0ug:G; ) Gild; + 0ug: G, 1)1

where G = Y7 (z; — B)(z; — B)7 is partitioned as follows:

Z’th
column
G = sl g — it row
T
g; G;
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The posterior distribution of ®|z, 8 can now be found using Bayes’ Theorem
(1.1). Defining

. o
by = 2 3.10
T b (3.10)
the conditional posterior distributions for 9, = (¥; 11, .. .,%;,) and ¢Z; are as
follows:
1 _
0128~ Ny (1A - )4+ G (A +G) ) (3a)
2 5
gbu‘qzbw Z,,B ~ Gamma s 5 (312)
where o
L _9tn+tp+l—q (3.13)
2
1 o
6 = ™ + i — 9:G; gl + (W, — p) A (v, — )"
+ (% +6:G )G + 9,6 (3.14)

The latent data z are sampled from
Zi‘yia /67 (ﬁa 0 ~ Np (/37 (éT@)—l)

with z;; truncated to the interval (6(j,v:;; — 1), 0(j,vi;)). To sample from this
distribution, we again use the method of Geweke (1991). The mean B of the

latent data is sampled from the multivariate normal distribution:
Blz,® ~ N, ((n(I)T@ +T)RTRY "z, (n®TD+ T*l)l)
i=1
Finally, the cut points are generated from their conditional distributions

0(j,c)|z ~ Unif (max{zij cyi = ch,min{z; cy,; =c+ 1})

Starting with initial values for all parameters, the sampling scheme runs by

sampling iteratively from the conditional posterior distributions in the or-

der [ﬁ‘z’@]v {fb%ll"wlazw@]:'--: [ég%p"wp?zng [¢1|‘ %la'zu@}a"'a hbp'gb;pazwg]a
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z1|ly,, B8, ®,0], ..., [z.|y,, 3, ®, 0] and [0]z]. We refer to this as Algorithm
4.

Clearly, posterior simulation of the matrix ® may be carried out via inde-
pendent draws from ¢;|¢;, z and ¢;;|¢;, z. The immediate advantage of this
is that the conditional precision ¢? for any binary variable may be fixed to
ensure identifiability. Such precisions are never updated by sampling, but the
fact that they are fixed has no implications for any other conditional distrib-
ution. The resulting posterior distribution for ® and hence for the restricted
covariance matrix 3 is now easily generated using independent draws from
,1¢:i, z. This is due to the conditional independence structure provided by
the Cholesky decomposition parameterisation. Purely ordinal data, purely bi-
nary data or a mixture of both can all be modelled with this approach. This
gives a great advantage of this approach over others suggested and reviewed
in Chapter 2. A further advantage is in the implementation of the model

determination method described in Chapters 4 and 5.

3.7 Example and Results

In order to illustrate the method, we consider the 2 x 3 x 4 table from
Knuiman and Speed (1988), shown in Table 3.5. It shows 491 subjects, clas-
sified according to Obesity (3 ordered levels), Hypertension (2 levels) and
Alcohol Intake (4 ordered levels).

We order the table so that variable 1 is Obesity, variable 2 is Hypertension
and variable 3 is Alcohol Intake. The conditional variance for the binary
margin of the table, Hypertension was set to 1: @9 = 1. Algorithm 4 was
applied to this data set, using 400,000 iterations. The following estimates for
the posterior means along with their standard deviations were obtained for 3,
= (®"®) ! and 6:

0.000(0.120)

E(Bly) = | 0.635(0.062)
0.042(0.073)
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Alcohol Intake
: : drinks/day)

Obesity | Hyperte (

esity ypertension 0 19 Py 51

Low Yes 5 9 & 10

No 40 36 33 24

Average Yes 6 9 11 14

No 33 23 35 30

. Yes 9 12 19 19

High
& No 24 25 28 29

Table 3.5: Three-way table showing 491 subjects, clas-
sified by Hypertension, Alcohol Intake and Obesity
(Knuiman and Speed, 1988)

5.576(0.772) —0.459(0.152)  0.407(0.188)
E(Sly) = | —0.459(0.152) 1.036(0.027) —0.260(0.095)
0.407(0.188)  —0.260(0.095) 2.120(0.221)

E(0(Alcohol,3)]y) = 2.034(0.060)

Note that E(X|y) has been estimated based on the generated sample of ®.

Table 3.6 shows the mean posterior predictive data (the expected data as

predicted by the model).

Alcohol Intake
: : (drinks/day)

Obesity | Hypertension 0 19 35 54
Low Yes 6.74 7.46 9.37 9.37
No 38.87 32.80 33.99 25.86
Average Yes 7.52 9.17 12.30 13.56
No 30.49 29.02 32.46 27.45
High Yes 8.35 11.11 16.09 19.95
No 24.18 25.34 30.57 28.96

Table 3.6: Mean posterior predictive cell counts for
the Hypertension, Alcohol Intake and Obesity data
(Knuiman and Speed, 1988)
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3.7.1 Discussion

It is harder to conclude anything for the 3-way table because the struc-
ture of the data is not as simple to interpret as in the 2-way case. However,

there are still some points to be noted from these results.

e The expected data appear to be very close to the observed data.

e The posterior mean for Hypertension (0.635) falls clearly into the ‘No’
category, indicating that people in this data set are less likely to have
Hypertension. This agrees with inspection of the observed data. The
posterior means for Alcohol Intake and Obesity correspond to the cate-

gories ‘3-5’ and ‘Average’ respectively.

e If we consider the estimated posterior mean correlation matrix, calcu-
lated from E(X|y), we find that there is slight positive correlation be-
tween Alcohol Intake and Obesity (0.12), and slight negative correlation
between Alcohol Intake and Hypertension (-0.18) and between Obesity
and Hypertension (-0.19). Bearing in mind that Hypertension has been
coded so that ‘Yes’ is the lower category and ‘No’ the higher category
(as Hypertension is a binary variable, it can be ordered either way),
these results agree with common sense. There is correspondence between
higher alcohol intake and higher obesity, between higher alcohol intake
and presence of hypertension, and between higher obesity and presence

of hypertension.

e Generally, there are no extreme values in the model. This indicates
that respondents are fairly well spread out over the whole table, with no
strong concentration in any particular area. Again, this agrees with the

observed data.
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Figure 3.9: Trace plot for 3, for hypertension, alcohol intake and obesity data

3.7.2 MCMC diagnostics

Convergence

In order to assess the convergence of the Gibbs sampler, trace plots were
plotted for each of the parameters estimated. Figures 3.9 and 3.10 show the

trace plots for 3, and %3 respectively.

These are typical of the trace plots for each estimated parameter. They show
that the Gibbs sampler is mixing well, with negligible burn-in period. We can

therefore conclude that the convergence of the Gibbs sampler is satisfactory.

Figure 3.11 shows the trace plot for the free cut point for Alcohol Intake.
Note that although the Gibbs sampler appears to be traversing the parameter
space, it is doing so slightly more slowly than for the mean and variance
parameters. This is due to the fact that the categories either side of this free

cut point contain approximately 100 individuals each, a fairly large number of
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Figure 3.10: Trace plot for X3 for hypertension, alcohol intake and obesity
data
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Figure 3.11: Trace plot for 8(Alcohol, 2) for hypertension, alcohol intake and
obesity data
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Figure 3.12: Autocorrelation function plot for 3y for hypertension, alcohol
intake and obesity data

individuals in each group, thus constraining the cut point to move slowly as

discussed in Section 3.5.

This is emphasised by considering plots of the autocorrelation function. Figure
3.12 shows the autocorrelation function plot for F, while figure 3.13 shows the

autocorrelation function plot for §( Alcohol, 2).

Clearly the autocorrelation function plot for 8(Alcohol, 2) indicates slow con-
vergence, but this does not seem to affect the convergence of J, or any of the

other parameters.

Goodness-of-Fit

To assess the goodness-of-fit or otherwise of the model, the method
outlined in Section 3.4.2 was applied. Figures 3.14, 3.15 and 3.16 show the
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Figure 3.13: Autocorrelation function plot for §(Alcohol, 2) for hypertension,
alcohol intake and obesity data

densities of the Deviance, Pearson’s, and Maximum Absolute Difference dis-
tance measures, with the vertical line representing the original data set. Again,

the model appears to fit extremely well.

3.7.3 Fitting a single graphical model

So far, we have not considered the issue of model choice, and have restricted our
attention to results gained from the saturated model. However, investigating
which explanatory variables (and interactions between them) are significant
and should therefore be included in a model for the data, is perhaps of even

greater interest.

In order to demonstrate ideas that will be used in the next chapter when model
determination is fully discussed, we show how all parameters for a single non-
saturated graphical model may be estimated. Models are characterised by

the structure of the inverse covariance matrix £~' and hence by ®. A zero
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Figure 3.14: Estimated density of Pearson’s distance measure for hypertension,
alcohol intake and obesity data

Density
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Figure 3.15: Estimated density of deviance distance measure for hypertension,
alcohol intake and obesity data
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Density

Absolute difference

Figure 3.16: Estimated density of maximum absolute difference distance mea-
sure for hypertension, alcohol intake and obesity data

entry in X! and hence in @ corresponds to conditional independence between
variables. The characterisation of a model by ® is actually somewhat more
complex than stated here and will be described fully in Chapter 4, but the
method of estimating a single model described below is unaltered by this (just

the interpretation is).

Parameter estimation for a non-saturated graphical model is carried out using
the Gibbs sampler, just as for the saturated model. The only thing that is
changed is the off-diagonal structure of ®. Therefore the conditional posterior
distributions for 3, z, ¢;; and @ are unchanged. For7 = 1, ...,n the conditional
posterior distribution for ¢, may be altered by the fact that some elements
of ¢, are zero. There is no need to generate the zero elements of ¢, as they
are zero, and the non-zero elements of ¢, can be found by conditioning on the
zero elements. In order to do this, we use the standard result for conditional

distributions of subsets of multivariate normally distributed random variables.
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From (3.11), the conditional posterior distribution of %, is
%me z,B8 ~ Nyi (A K)
where A = (1, 4; — g;)(A; + Gi) ™ and K = 7 (A; + G

Re-ordering the vector ; so that 9] = (1,,,,) where 1, represents non-
zero elements of 1, to be generated and 1, represents the zero elements of

1, to be conditioned on, the conditional distribution of %), is:
Yl63, 2,8~ NA — K nKyg Ay, K — K gKy Ko) (3.15)

where A and K are partitioned as follows:

AT = (A1, A0)
K, Ky
K:
( Ky Koy )

Parameter estimation for a non-saturated model is thus carried out using a
Gibbs sampling procedure, which samples iteratively from the conditional
posterior distributions in the order [8|z, ®], [¢%, (¢, 2, B],. ... [¢2,|%,, 2z, B],
il65. 28] [, 62,28, [y, B, 9.6, ... [za[y,. B, ©.6] and [6]2].

We demonstrate this with an example using the data in Table 3.5. We fit the
model A 4+ OH; since Variable 1 = Obesity, Variable 2 = Hypertension and
Variable 3 = Alcohol Intake, the constraints ¢35 = ¢93 = 0 are imposed on
the matrix ®. There is therefore only one off-diagonal element of ® to be
estimated, that is ¢15. This is generated in the Gibbs sampler step for 1,
conditioning on ¢13 = 113 = 0 as described above. Since ¢,3 = 0, there is no

generation step for 1,.

The following estimates for the posterior means along with their standard

deviations were obtained for B, & = (®7®)!, and 6:
0.050(0.060)
E@Bly) = | 0.627(0.061)
1.119(0.089)
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1.397(0.194)
E(Z|y) = | —0.220(0.075)

0(0)

E(6(Alcohol,2)|y)

—0.220(0.075)

1(0)
0(0)

— —0.066(0.000)

0(0)
0(0)

2.458(0.385)

Note that since Alcohol Intake is marginally independent of both Obesity and

Hypertension, the corresponding elements of the covariance matrix > are 0.

The resulting posterior predictive mean data, generated in the usual way, are

shown in Table 3.7. For comparison, the predictive posterior means generated

from the saturated model are displayed below in blue with the true values

alongside in parentheses.

Obesity | Hypertension 0 Alco}f; Intake (drlgl_l;s/ day) 5
Ves 7.9 (5) 7.7 (9) 9.1 (8) 8.5 (10)

Low 6.7 7.5 9.4 9.4
No 31.1 (40) 30.4 (36) 36.1 (33) 33.4 (24)

38.9 32.8 34.0 25.9
Yes 10.1 (6) 9.9 (9) 11.8 (11) 10.9 (14)

Average 7.5 9.2 12.3 13.6
No 28.4 (33) 27.9 (23) 33.0 (35) 30.6 (30)

30.5 29.0 32.5 27.5
Yos 13.1 (9) 12.8 (12) 15.2 (19) 14.1 (19)

High 8.4 11.1 16.1 19.9
No 25.9 (24) 25.3 (25) 30.1 (28) 27.9 (29)

24.2 25.3 30.6 28.9

Table 3.7: Mean posterior predictive cell counts gener-
ated using model A+OH with true values in parentheses
and saturated model estimates in blue

As would be expected, the model A + OH does not fit the data as well as
the saturated model. This can also be seen in a plot of the Pearson’s statistic
density curve for the model A + OH (Figure 3.17) when compared with that
of the saturated model in Figure 3.14.
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Figure 3.17: Estimated density of Pearson’s distance measure for the A +OH

model

In this Chapter, we have developed a Gibbs sampler method for estimating the
parameters in a full saturated model, and also shown how this method may be
adapted to estimate parameters in a particular graphical model. In Chapter 4,

we shall extend these ideas to investigate the issue of model choice.
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Chapter 4

Model Determination for

Decomposable Directed
Graphical Models

4.1 Directed Acyclic Graphical Models

As we have seen, the Cholesky decomposition parameterisation 7! = ®’ ® is
equivalent to the recursive system of equations (3.5). This gives the elements
of @ an interpretation as parameters of the conditional distributions involved
in this recursive factorisation, that is, the squared diagonal elements of ® are
the conditional precisions and the off-diagonal elements are scaled conditional
regression coeflicients. The recursion also means that the variables take an
‘ordering’ which depends on the order in which they appear in the factorisation,
or equivalently, the order in which they are taken into the covariance matrix
3.. This means that conditional independence between variables may only be
characterised given the variables that have been conditioned upon already and
not on those that have not yet appeared in the ordering. Thus, any given ®

corresponds to a particular decomposable directed graphical model.

More formally, if ¢;; = 0, then variables i and j are conditionally independent

given the variables preceding either of them in the ordering.
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H

Figure 4.1: DAG represented by the saturated model under the order OHA

For example, consider the Alcohol, Obesity and Hypertension data set. In
Chapter 3, analysis on these data was carried out under the ordering Variable
1 = Obesity, Variable 2 = Hypertension and Variable 3 = Alcohol Intake.
Under the Cholesky decomposition parameterisation, this is equivalent to the

following decomposition of the joint density of the latent data:

f(z:) = f(zia) [(zin|zia) f(zio| 2ia, zim)

Under this ordering, it is only possible to make conditional independence state-
ments about O and H given A, or about O and A given H. It is not possible
to make any conditional independence statement about A and H given O,
because O occurs last in the conditioning. Here setting ¢4y = 0 imposes

marginal independence of A and H.

Under this ordering, the saturated model is equivalent to the DAG shown in

Figure 4.1.

Similarly, under this ordering, the single graphical model A + OH used as an

example in Section 3.7.3 has associated DAG displayed in Figure 4.2.

Clearly, the use of the Cholesky decomposition parameterisation particularly
lends itself to the analysis of data where there is a natural ordering to the
classifying variables, for example, in longitudinal data. An example of a data
set where such ordering exists is taken from two general social surveys of adults
in Germany published by the Central Archive for Empirical Social Science
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H

Figure 4.2: DAG represented by the model A + OH under the order OHA

Research at the University of Cologne. The data set in full is given in Wermuth
and Cox (1998). Tt contains 6039 individuals cross-classified by five factors:
political attitude (“how well does the political system function today?”, A)
with four categories; type of formal schooling (B) with five categories; age
group (C) with five categories; year of survey (D) with two categories and
region of survey (F) with two categories. Variables A, B and C are ordinal

and variables D and E are binary. Table 4.1 shows the levels of the five

variables.
A B C D E
1: Very poorly | 1: Basic incomplete | 1: 19-29 | 1: 1991 | 1: West Germany
2: Poorly 2: Basic 2: 30-44 | 2: 1992 | 2: East Germany
3: Well 3: Medium 3: 45-59
4: Very well 4: Upper medium | 4: 60-74
5: Intensive 5 > 75

Table 4.1: Levels of the five variables for the Germany
data

Variables D and E are fixed by design and must therefore come first in the
ordering. Variable A is the primary variable of interest and is possibly depen-
dent on all other variables which are explanatory; it must therefore come last
in the ordering. For the remaining variables, it is possible that B depends on
C. Therefore, C must come before B in the ordering. From this information,

the ordering of the variables shown in Figure 4.3 can be derived.
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Region, E

— | Age, C | —— |Schooling, B| —— | Attitude, A

Time, D

Figure 4.3: Ordering of the classifying variables for Germany data

Since D and E are both fixed by design, they can take either order DE or
ED. The saturated model for the latent variable z under this ordering has the

decomposed joint density

f(zi) = f(zz‘E)f(ZiD‘Zz‘E)f(ZiC‘ZiD;ZiE)f(ZiB’ZiC;ZiD:ZiE)f(ZiA“ZiBaZiC;ZiD;ZiE)

= flzip)f(zislzin) f(zic)zip, zie) f(ziB|zic, 2ip, 2ig) f(zia|ziB, Zics ZiD, %iB)

So under the Cholesky decomposition parameterisation, the variables must be
taken into the covariance matrix ¥ (and hence into @) in either the order
EDCBA or the order DECBA.

4.2 Choice of Prior Parameters

In Chapter 3, the prior parameters were chosen to be noninformative. How-
ever, we must be more careful in our choice of prior parameters when it comes
to model selection; a highly diffuse prior gives low probability to regions of
the parameters space with non-negligible likelihood and hence the marginal
likelihood can be very small. This behaviour is exacerbated in high dimen-
sions hence leading to the selection of more parsimonious models. Conversely
unjustifiably strong priors should be avoided. The choice of prior parameters
for ¥ is particularly tricky as it is unclear what effect varying the parameters
of the Inverse-Wishart distribution ¢ and A will have. In order to choose ap-
propriate prior parameters for X, we take the amount of information provided
by the prior to be the same as that provided by a single observation from the
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likelihood, in a similar spirit to that suggested by Kass and Wasserman (1995).
This is an example of a ‘reference’ prior, which is computed from modelling
assumptions only and does not otherwise depend on the specifics of the prob-
lem. It is not possible to use many of the standard methods for eliciting prior
distributions (Berger (1985), pages 74-117), because in all examples shown

here, we do not have any prior information.

We begin our investigation of choice of prior parameters by considering the
marginal distribution of the latent data for a single classifying variable, which
is univariate normal z;; ~ N(5;,X). To aid the approach, we first adjust the
constraints imposed on the model parameters. Previously, the first and second
cut points in each dimension were constrained to be 0 and 1 respectively,
while for binary data, the single cut point was constrained to be 0 and the
conditional variance was constrained to be 1. Clearly, setting such constraints
‘scales’ the distribution of the latent variable, but it is unclear how this scale
may be quantified. To improve the situation, we now choose to constrain the

first and last cut points in each dimension to be -1 and 1 respectively:
0(5,1)=—1 0(j.k;—1) =1

We assume that a priori each category is equally likely. Since the first and
last cut points have been chosen so that the distribution of the latent data is
symmetric around 0, it makes sense to choose the prior mean for 3; to be 0.
To avoid making this prior too strong, we again choose the prior variance T’

to be the diagonal matrix T = diag(7i1, Te2, . .., 7,p) Where 7;; is large.

We now consider how to choose the prior parameters ¢ and A for the matrix
®. As seen in Chapter 3, the Inverse-Wishart prior for 3 has the following

equivalent prior distributions for ®:

Qi ~ 1/ bixi_m

&; |0~ Np—i(—dua; A7, A7) (4.1)

where
—-1_T\-1
bi = (CL“ — CLiAi a; )
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and A~! is partitioned as follows:

Z’th

column

l

Al = .l ay | a; «— " row

)

We wish to choose values for ¢ and A so that the amount of information
provided by the prior is the same as that provided by a single observation

from the likelihood. The joint likelihood for n observations is given by:

, " 2 _
(@i, pilz) H Py; €XP {_7(9“ - 9,G; 19?)} X
rows i of ®
2 -
exp {—%(cﬁi + 0:9:G; ") Gy, + 049,G; l)f}

where G = >"" | (z; — B8)(z; — 8)" is partitioned as follows:

Z‘th
column
G = - gn | g — it" row
T
g; | Gi

so that the conditional likelihood of the partial row ¢, given ¢;; is:
) n 1 , _ / 1\
f(@;|bu,z) o ¢ exp _§<¢i + 059G )Gl + 0u9,G )T

7.€.

bilGii, 2 ~ Np-i(—0i9,G; 1, G7) (4.2)
Comparing (4.1) and (4.2), we see that in order for the prior to correspond

to one unit of information, the matrix A~ should be approximately equal to

the matrix G. However as G depends on unobserved data, we replace A~" by
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E(G), under the model where the latent variables are independent. Hence the
prior is centred on a null model. Under this model, the form of G is a diagonal
matrix. Therefore, A~ is chosen to be diagonal so that @; = 0. Thus the prior
mean for ¢, is 0. It therefore only remains to consider the diagonal elements
A~ which will determine the prior variance for ¢; and all prior information
for ¢;. The diagonal elements of A™! should be chosen to equal the diagonal
elements of G. Consider the distribution of G. For a single observation, G is

a diagonal matrix with elements (z;; — 3;)?. Now, for a particular 7,
Zij — Bj ~ ]V(O, 0'32)

where 032 is the marginal variance of z;;, independently for i = 1,...,n. There-

fore,
n

D (=B ~ o
i=1

Using the fact that the expectation of a chi-square distribution with n degrees

of freedom is n,
EDY (z;—8)")=0in
i=1

We therefore have:
A™! = d x diag(o?) (4.3)
where d is the number of units of prior information. However this depends on

the unknown 032- which is the marginal variance of z;;.

Assuming a priori that for each classifying variable, each category is equally

likely means that each category has probability ;- where there are &k levels
J

for the 7th variable. Thus, by considering the first category which is bounded

above by the cut point at —1, the following statement can be made:

1
J

Then, z; ~ N(0,0?) implies
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with ¢ the N(0,1) cdf. Solving for o;:
-1
[ = e 4.4
% = TR o
The appropriate value for the corresponding diagonal element of the matrix
A~! is then calculated by taking the square of o; and multiplying by the

number of units of prior information d:
a;; = dUJZ
For the matrix A, diagonal elements A;; are found by taking the inverse:

1 1 ¢ H1/k)?

If a classifying variable is binary, we cannot use this argument to estimate a
value for 0?. Instead we assume that the marginal variance af is approximately
equal to the conditional variance é, which is constrained to be 1. Hence A;; =
é. This can be justified by the prior centreing assumption that the classifying
variables are independent and the latent data are normally distributed. Under

this assumption, marginal and conditional variances are equal.

Finally we consider how to choose the degrees of freedom parameter g. For the

pth latent variable (where there are p classifying variables) 51;

(4.3), we replace o2 by E [L}

2
¢PZD

A*:dxdm%E<éJ} (4.6)

73i

= 0,. Hence in

. 2 2 . . _ 1 —1 : : 1
Since ¢2, ~ byX2 ,, in the prior, and b, = - because A~ is diagonal, F——

is inverse gamma with parameters q_?z’;“ and 1/2. Thus,

(L)
@pp q_p_l

Upp

g—p—1

From (4.6),
app = d
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This implies that ¢ = d + p + 1. We wish to choose the number of units
of prior information to be equivalent to one observation from the likelihood;

hence d = 1. So, the degrees of freedom parameter ¢ should be chosen as:
g=p+2 (4.7)
For one unit of prior information, Table 4.2 gives the values of A;; correspond-

ing to number of levels of the classifying variable. These values will be used

in all examples that follow.

ki | Ay
2 1

3 1 0.185
4 | 0.455
5 | 0.708

Table 4.2: Choice of prior parameter A,;

4.3 Reversible Jump Markov chain Monte Carlo
(RJIMCMC)

We require a method of comparison for the set of decomposable directed graph-
ical models. The marginal likelihood is analytically intractable in this case so
cannot be used. Instead we use a Reversible Jump Markov chain Monte Carlo
(RIMCMC) approach to estimate posterior model probabilities. As explained
above, models are characterised by the structure of the inverse covariance ma-
trix X! and hence by ®, with each different structure of ® corresponding to a
unique decomposable directed graphical model. There exists an edge between
variables 7 and j in the model if and only if there is a non-zero value for ¢;;.

Conversely, no edge between variables ¢ and j is equivalent to ¢;; = 0.

A move to a new model can be made by either adding or subtracting an edge

from the current model. An edge is added to the current model by proposing
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a non-zero value for an element of ® which was previously zero. An edge is
removed from the current model by proposing a value of zero for a previously
non-zero element of ®. Reversible Jump provides a MCMC method that is
capable of jumping between parameter spaces of differing dimensionality, which

is exactly the situation described here.

Formally, we define the RIMCMC procedure as follows. At each stage of the
RIMCMC, there are (é’) move types (each corresponding to one of the (12’)
possible edges in the model or entries in @), and the null move. Each move
involves removing an edge if already present, and adding an edge otherwise.
These correspond respectively to proposing a new value for an element ¢
which was previously 0, and setting an element ¢;; which previously had some
non-zero value to 0. For the null move, no dimensional change is made, as it

simply consists of re-generating parameters of the current model.

Suppose the current state of the Markov chain at time t is represented by

(m() '3 ()( ) where E .y represents the values of the unknown parameters in
(

model m® at time t:

® (¢ t
Em(t) = ( ) /Bm(t)a m(t)) o' ))

Adding an edge involves a proposed move to a new model m/ and corresponding
s With dimension dlm(f( )@)) + 1, i.e. there is one extra

parameter to generate. Suppose £, is created by generating a univariate

proposal u from a proposal distribution g,(u) and setting &, = g(EffL)(t), u),

parameter vector &

where g is a one-to-one function.

Removing an edge involves a move to a model m’ with corresponding para-
meter vector £, of dimension dim(EffL)(t))—l, then &/ , is created from fi,?m by

applying the inverse transformation (& ,,u') = g_l(ﬁg(t)) and discarding u'.

Suppose that the probability of making move type r given the current state of
the Markov chain (m £(t(t)) is j(r, m(t),fsb)(t)). Then Green (1995) showed

that, if we propose to add an edge by generating a new parameter u from
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proposal distribution ¢.(u), (m’,&.,) should be accepted as the next real-
isation of the chain, so that (m(t“ E(t(, +1J) = (m/, &,,) with probability

} (4.8)

Similarly, if we propose to drop an edge and move from parameter vector Eii)(t)

to & ., (m’,&,) should be accepted as the next realisation of the chain with

probability a = a(m®, Eg)(t),m’, ¢ ), where

a = a(m®, ¢t )(t),m & /), where

O(&w)
(€, )

a:mm{L F € 1) (70 E1)
lf(Sm(t m(t 1Y) (r,m®, fmm) -(w)

and rejected otherwise, so that m®*+D = m®.

f(fl m"y)j(’r', m/>€ )qT(Sm(t)\m )
f(gm(t) ) mi ‘y)J< Sm(:‘)

(&)
(€m(t)’ )

(4.9)

o =min < 1,

and rejected otherwise.

We now need to specify each element of these acceptance probabilities. Firstly,
for our approach, the transformation g is chosen to be the identity transforma-
tion, so u is simply the additional parameter in ¥ when adding an edge where
W is the matrix with elements ;; = i—ﬂ and 1s on the diagonal. We use W
as the off-diagonal elements ¢, are generated via draws from the conditional
posterior distribution of 1, which is standard. We therefore must include ¥
in the vector of unknown parameters £&. However, we do not remove ® as
the diagonal elements ¢;; cannot be inferred from W. Since g is the identity
transformation, the Jacobian term in the acceptance probability is simply 1.
Secondly, each move type is chosen to be made with equal probability, re-
gardless of the current state, so these terms (j(r, m®, 57(3(”) and j(r,m’,&,.))

cancel.

The joint posterior distribution of the model and its associated parameters can
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be simplified. Dropping the m suffix:

[ mly) = f(2,0,%9,® 6 mly)
fy,z,019,®,8m)f(¥,®,06,m)

)
_ J]2,6,9,2,8m)/(2 0% ® 8,m) (¥ ® 8m)/(m)
)
_ [(ylz,0)f(216,%,®,8,m)f(0)/(¥, P, Bm)/f(m)
f(y)

(4.10)

The final step uses the fact that y is determined purely by z and the prior for
0 is independent of the model and other parameters. When this expression is
substituted into (4.8) and (4.9), then f(y|z,80), f(6) and f(y) will all cancel
in the numerator and denominator as they are model independent. We assume
that all models are, a priori, equally likely; hence f(m) will cancel in (4.8) and
(4.9) as well. This leaves

a:mm{l (et @l B (Pl Gl) ] } )
( m(f) {éﬁrtb(t)’ m(f )f(éffb(t) ) /B(t(t) ‘m(t)) qr(q’m’)

and
(t)
o = min 4 1, — Zn P Brnr) J (P B[ ) CAAIOINTY (4.12)
f(z m<t>‘q)£i<t>> S;)m)f (‘I’ﬁ?mﬁ“m\m“) 1

when adding or removing edges respectively. Note that the distribution of z,,
is fully determined by ®,, and 3,, since all the information about the model

m is encapsulated in ®,,.

It now remains to specify the likelihoods f(z,|®.m, 3,,), the prior distributions
f(®., B,,/m) and the proposal distribution g,(®,,).

The likelihood of the latent data z is given by the normal distribution, the

parameters of which depend on the model. The dimension of the mean 3 is
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independent of the model, but the structure of the variance (®*®) ! varies

with the model (i.e. by setting appropriate elements of ® to zero).

We now consider the prior distributions for ®,, and 3,,,, which can be decom-

posed as:

P

f( @, Blm) = F(Blm) [ | £(¢uilm) f(i|u, m) (4.13)

i=1
The priors for 8, ¢; and 1, are conditionally independent given m and the
priors for B and ¢, are chosen to be independent of the model. Therefore
in the expressions for « (4.11) and (4.12), these will cancel out, leaving only
the priors for the partial rows of ®, {¢,}. These priors have the multivariate
normal distribution, as specified in (3.8), conditioned on the model using the

standard result for conditional multivariate normal distributions.

Lastly, we consider the proposal distribution g¢,.(¥,,). Here, the use of the
Cholesky decomposition parameterisation provides us with a further useful
property that a suitable proposal distribution can be specified to be the con-
ditional posterior distribution of the element of ¥ to be added or removed.
This is not often possible in RIMCMC samplers, as normalised conditional
distributions are often only available when the marginal likelihood (includ-
ing the posterior normalising constant) can be evaluated. Here, the set up of
the model and the subsequent Gibbs sampler algorithm is useful in that the

conditional density for 4); is already supplied in (3.11). It is:

Y| ¢ii ~ Np—i(n, P) (4.14)
where
n = (A —g)(A+G)! (4.15)
1
= E(Ai +Gy) (4.16)

However, when moving between models, we are proposing to change just one
element of the vector 1), while other elements remain fixed. We therefore
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need to find the conditional distribution for v;;|é, ¥, ;. This is derived
from (4.14) using the standard result for conditional distributions of subsets
of multivariate normally distributed random variables. Re-ordering the vector
1, so that ¥ = (1, 1#56#) and partitioning n and P as follows:

n" = (1, Mhs;)

P = I
( p; P; )
the proposal distribution for ;; is:
Uil biss Wiy ~ N (05 + P, P7 Wiy — Megy) s 03 — 0 P'py)  (417)

The corresponding value for ¢;; is then found by simply transforming from ;;

using the identity (3.10) i.e., ¢;; = ¥i;0u-

The null move for the saturated model was described in Chapter 3. If the
current model is not the saturated model, then this method is easily adapted
as described in 3.7.3. The Reversible Jump procedure is now fully specified.

The Algorithm runs as follows:

4.3.1 Algorithm 5

An initial model and values for all parameters in this model are speci-

fied. Then the following process is carried out.

1. With probability p, remain in the current model and re-generate all
model parameters (the null move). Else, with probability 1 — p, a new
model is proposed by either adding or subtracting a randomly selected
edge (edges are chosen with equal probability) from the current model,

involving generating or setting to zero the corresponding ;.
2. Generate the random variate u ~ Uniform(0, 1).
3. If u < a, accept proposed model (with probability «). Otherwise reject.

4. Go back to step 1 and repeat.
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4.4 Examples

We apply the Reversible Jump algorithm to the Germany data set which, as
described above, already has a natural ordering. These data have also been

analysed by Wermuth and Cox (1998) using frequentist methods.

Since D and FE are binary variables, we constrain their conditional and mar-
ginal variances respectively: ¢1;7 = ¢93 = 1. There are also no free cut
points to be generated for these variables whereas A, B and C have one,
two and two free cut points to be generated respectively. The prior pa-
rameters were chosen using the methods described in Section 4.2 and are
A = diag(0.455,0.708,0.708,1,1), ¢ = 7 and T = diag(50). The Reversible
Jump algorithm was implemented using 100,000 iterations. Table 4.4 shows

the posterior model probabilities:

‘ Model Posterior Model Probability
ABC + ADFE 0.474
ABC + ACD + ADE 0.280
ABC + ABE + ADE 0.104
ABC + ACD + ABE + ADE 0.039

Table 4.3: Posterior model probabilities for Germany
data

These results show that the data set is highly structured, with the outcome of
interest - “how well does the political system function today?” being related

in a complex manner to all predictive variables.

For ease of comparison with the results of Wermuth and Cox (1998), we split
the data set into two marginal tables, one for each value of variable E. Algo-
rithm 5 was then applied to both marginal tables, each with 100,000 iterations.
The prior parameters for each region were A = diag(0.455,0.708,0.708,1),
¢ = 6 and T = diag(50) and the posterior model probabilities are shown in
Table 4.4. The Reversible Jump algorithm explored the model space fairly
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Bast Germany West Germany
Posterior Posterior
Model Probability Model Probability
AD+ BC + BD 0.262 ABC + AD 0.654
AD + BC 0.203 ABC + ACD 0.286
AB+ AD + BC 0.201 ABC + ABD 0.044
ABD + BC 0.114 ABCD 0.017

Table 4.4: Posterior model probabilities for Germany
data by region

rapidly with the proposed move accepted approximately 16% of the time for
East Germany and 12% of the time for West Germany. Generally the most
probable models for East Germany are simpler than those for West Germany.
However, the posterior model probabilities are more diffuse for East Germany,
indicating greater model uncertainty. While the first two models for the West
Germany data set account for 95% of the posterior model probability, it takes
the first five models for the East Germany data set to account for 87% of
the posterior model probabilities. For both East and West, political opinion
is dependent on year of survey, with further dependences in West Germany
on age group and type of formal schooling. As might be expected, in both
regions, schooling (B) is linked to age group (C). In Fast Germany, political
opinion is conditionally independent of formal schooling given year of survey.
The most probable models for each region are shown in Figure 4.4, with those
predicted by Wermuth and Cox (1998) shown underneath. While the most
probable model selected using the method described here for West Germany
agrees with that selected by Wermuth and Cox, the most probable models for
East Germany differ. However, there is not much to choose between them in

terms of posterior probability so this does not give cause for concern.
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Figure 4.4: Most probable models by region for
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4.4.1 Model diagnostics

We will use a similar method to that described in 3.4.2 to assess the fit of these
models. Since there is a natural splitting of the data over region, we consider
the fit of the models separately for Fast and West Germany. We consider
the model averaged fit. This means that instead of just considering the fit
of the most probable model or the set of most probable models, we consider
all models generated during the Reversible Jump procedure. To do this, N
tables were generated, where N is the number of iterations in the Reversible
Jump procedure, using the mean, variance and cut points produced under the
model at each iteration. The generated cell counts are then compared with the
posterior predictive mean table using the same method and distance measures

as described in Section 3.4.2.

West and East gave very similar results, we therefore just show those for West
Germany. Figures 4.5, 4.6 and 4.7 show the densities of the chi-squared,
deviance and distance measures respectively, with the vertical dotted line again
representing the distance between the observed data and the model averaged

posterior predictive mean.

The main point to note is that there is a much poorer fit than in previous
examples. This is shown by the vertical line representing this distance being
well into the tail of the distribution. There are three possible reasons for
this: either the models selected are not the most appropriate to describe the
data, that is, the Reversible Jump procedure is choosing the wrong models;
or the distance measures used are inappropriate for assessing goodness-of-fit
for varying dimensional models fitted using the Reversible Jump procedure; or
the parameterisation is such that even the saturated model would not predict
the data especially well. The first of these possible reasons may be discounted
by fitting the saturated model and observing that the fit is only a very slight
improvement on that provided by the model averaged choice of models. In
order to see this, compare the goodness-of-fit graphs in Figures 4.8, 4.9 and
4.10 with those in Figures 4.5, 4.6 and 4.7.
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Figure 4.5: Estimated density of Pearson’s distance measure for West Germany
data
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Figure 4.6: Estimated density of deviance distance measure for West Germany
data
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Figure 4.7: Estimated density of maximum absolute difference distance mea-

sure for West Germany data
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Figure 4.8: Estimated density of Pearson’s distance measure for West Germany

data using the saturated model
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Figure 4.9: Estimated density of deviance distance measure for West Germany
data using the saturated model
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Figure 4.10: Estimated density of maximum absolute difference distance mea-
sure for West Germany data using the saturated model
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In order to investigate the second possible reason, Table 4.5 shows the posterior
predictive mean data (rounded to the nearest integer) with true values in
parentheses. From this table, it is clear that the model is providing a fairly
reasonable fit in many areas of the table, but there are also a number of areas
where the fit is less good, for example the cells where A=2, B=1 and A=2,
B=2. From this we can see that a small number of cells contribute a large
proportion of the distance between the observed data and the model averaged

posterior predictive mean data.

The relative lack of fit is perhaps not unexpected as the parsimonious nature
of the model fitting procedure means that there are only 18 parameters with
which to predict 200 cellcounts. In fact, it is perhaps surprising that the model
provides as good a fit as it does in most examples as it is much more parsimo-
nious than a log-linear model with every two factor interaction contributing a
single parameter. Lack of fit could be due to the assumption that the latent

variable z has the multivariate normal distribution being inappropriate.

Despite these difficulties, it is encouraging to note that despite not being able
to predict the data as well as we may have hoped, the models chosen to do
so are very similar to those selected by others. The main focus of this part
of the work is on model selection. Convergence was assessed using trace plots
and found to be satisfactory. For example, Figure 4.11 shows the trace plot
for B, (Time) for West Germany, and figure 4.12 shows the corresponding

autocorrelation function plot.
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Figure 4.11: Trace plot for 3, for West Germany data
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Figure 4.12: Autocorrelation function plot for 8, for West Germany data
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4.5 Example 2 - Coronary Heart Disease Risk
Factors Data

This data set is taken from Edwards and Havranek (1985) and concerns 1841
men cross-classified according to six coronary heart disease risk factors: A,
smoking (yes or no); B, strenuous mental work (yes or no) ; C, strenuous
physical work (yes or no); D, systolic blood pressure (< 140 or > 140); E,
ratio of & and 3 lipoproteins (< 3 or > 3); F, family anamnesis of coronary

heart disease (positive or negative). The data are shown in Table 4.6.

i F Negative Positive
B No Yes No Yes
A | No Yes| No Yes| No Yes | No Yes
" E D C
<3 <140 No | 44 40 | 112 67 | 5 7 121 9
Yes | 129 145 12 23 | 9 17 | 1 4
>140 No | 3 12 | 80 33 | 4 3 11 8
Yes | 109 67 7 9 14 17 | 5 2
>3 <140 No | 32 32|70 66 | 7 3 14 14
Yes | 50 80 7 13 1 9 16 | 2 3
> 140 No | 24 25 | 73 57 | 4 0 13 11
Yes | 51 63 7 16 | 5 14 | 4 4

Table 4.6: Risk factors for coronary heart disease

Following the argument of Madigan and Raftery (1994 ), the variables are as-
sumed to take the ordering FCBAED, that is, all possible edges are directed
and any edge between two variables leads from the variable earlier in the or-
dering to the variable which comes later in the ordering. Due to the way the
Cholesky decomposition is parameterised, this means that variables must be
taken into the covariance matrix in the order DEABCF'. All six variables are
binary. We therefore fix the conditional variance for each to be 1: ¢;; = 1 for
all 7. Under the method described in 4.2, priors were chosen to be A = diag(1),
g = 8 and T = diag(50). Algorithm 6 was applied using 200,000 iterations,
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and the resulting posterior model probabilities are shown in Table 4.5. The
RJMCMC was found to be very mobile with proposed moves accepted approx-
imately 34% of the time. The four most probable models all contain the edges

Model Posterior Model Probability
CB+CA+AE+ BE+AD+ ED (a) 0.474
CB+CA+AE+ BE+ AD+ ED+CE (b) 0.280
CB+CA+AE+CE+ AD+ ED (c) 0.104
CB+CA+AE+ BE+ ED (d) 0.039

Table 4.7: Posterior model probabilities for directed
models for heart disease data

CB,CA, AE, ED. The edges AD and BE occur in three out of the four most
probable models, with the edge C'E occurring twice. The four most probable

models are illustrated in Figure 4.13.

The most striking feature of these models is the high posterior probability of
marginal independence of F' (family anamnesis of coronary heart disease). For
comparison, the two most probable models found by the method of Edwards
and Havranek are models (a) and (c) respectively, while the two most probable
models found by the method of Madigan and Raftery are models (¢) and (a)
respectively. The main difference between the results gained here and by them

is in the selection of model (b) but this simply contains the union of the edges

of models (a) and (c).

Goodness-of-fit was assessed using the simulation method. The Pearson’s dis-
tance graph shown in Figure 4.14 is typical of the model fit. As for the Ger-
many data, the fit is not particularly good. However, the posterior predic-
tive mean values (shown in Table 4.6) themselves appear to be fairly close
to the true values, perhaps indicating that the distance measure method for
assessing goodness-of-fit is in appropriate for higher-dimensional and varying-
dimensional models. Tt is important to note again that the main focus of the

work is on model selection.
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Figure 4.13: Most probable models for the heart disease data
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Figure 4.14: Estimated density of deviance distance measure for heart disease

data
F Negative Positive
B No Yes No Yes
A No Yes | No Yes | No Yes | No Yes
E D C
<3 <140 No | 629 48.2 8.5 60.3|10.2 7.8 |14.2 10.0
Yes | 106.6 112.6 | 32.3 30.9,17.2 183 | 5.3 5.1
>140 No | 46.6 30.5 |64.7 385 76 5.0 | 10.7 6.4
Yes | 78.0 704 | 239 195|127 11.5| 40 3.3
>3 <140 No | 36.6 37.7 | 626 583| 6.0 6.2 104 9.8
Yes | 51.8 733 [ 196 252 85 12.0, 3.3 4.2
>140 No | 33.1 29.1 [ 569 453 54 48 | 95 7.6
Yes | 46.2 558 | 176 194 | 76 9.2 | 29 3.3

Table 4.8: Mean posterior predictive cell counts for coro-
nary heart disease data

93




4. MODEL DETERMINATION FOR DECOMPOSABLE DIRECTED GRAPHICAL
MODELS

Convergence was assessed using trace plots and was found to be satisfactory.

In this Chapter, we have restricted the methods to finding DAGs for data where
the classifying variables are ordered. In the next Chapter, we will extend the
methods developed here to investigate model selection for data where there is

no clear ordering to the classifying variables.
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Chapter 5

Model Determination for
Undirected Graphs

5.1 Relationship between Directed and Undi-
rected Decomposable Graphical Models

In Chapter 4, the model space was restricted to the set of decomposable di-
rected graphical models. Given the way models were parameterised using
the Cholesky decomposition, this was the natural set of models to consider.
However, such models are easiest to interpret when the classifying variables
take a natural ordering. In this Chapter, we extend the model determination
method to the class of undirected decomposable graphical models, and as a

consequence, to those data sets where there is no single natural ordering.

In order to do this, we consider the relationship between directed and undi-
rected graphical models. Given a directed graph D, it is possible to construct
an undirected graph G with the same Markov structure (same conditional in-
dependence structure). See Dawid and Lauritzen (1993). The associated undi-
rected graph G is obtained from D by taking the associated moral graph D¥
of D and replacing the directed edges by undirected edges. The moral graph

DU is obtained from D by “marrying” all unmarried parents in the graph, i.e.
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\VARRV/

Figure 5.1: Example of moralising

if any two parents of a variable are not connected by an edge, an undirected
edge will be added between them. This is illustrated in Figure 5.1.

However, note that the models implied by the two graphs in Figure 5.1 are not

equivalent, as the directed graph implies marginal independence of A and O.

As a consequence of this, in any ordering of the variables, there are some
undirected graphs whose conditional independence structure does not corre-
spond to that of any directed graph. For example, consider again the Alcohol,
Obesity and Hypertension data set, in the order Alcohol Intake, Hyperten-
sion, Obesity. Suppose we wish to consider the undirected graphical model
AO + HO so that A and H are conditionally independent given O. This is

illustrated in Figure 5.2.

Under the ordering OH A, the only directed model that could have the same
conditional independence structure is the one with the same edge set, shown
in Figure 5.2. The arrows take their directions from the ordering, with arrows
going from vertices that are higher in the ordering to those lower down. How-
ever this does not have the same Markov structure as the undirected graph,
due to the fact that the directed graph must be moralised by adding an edge
between A and H to find its Markov equivalent undirected graph. Hence, the

directed graph shown in Figure 5.2 has the conditional independence struc-
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H H

Figure 5.2: Model AO + HO and corresponding (but non Markov equivalent)
undirected model.

A O

H

Figure 5.3: Equivalent saturated model with correct Markov structure.

ture of the undirected graph shown in Figure 5.3, which implies no conditional

independences.

To summarise, in a given ordering (which is equivalent to a given parameteri-
sation of the Cholesky decomposition) only certain patterns of zeros in @ cor-
respond to undirected decomposable graphical models, and not all undirected
decomposable graphical models are available in a single ordering. However, for
every decomposable undirected graphical model there does exist at least one
ordering where the directed model with the same edge set is Markov equiva-
lent. Therefore, in order to carry out model determination in situations where
we have not fixed a specific ordering, the ordering is unclear or we are inter-

ested in undirected models, we must find a way to cover all possible undirected
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models.

If the Reversible Jump procedure described in Chapter 4 is carried out within
a particular parameterisation, it is not possible to estimate posterior model
probabilities for all undirected decomposable graphs. We overcome this by us-
ing an extra Reversible Jump step to move between orderings of the variables.
Even though there is no change in the dimension of the parameter subspace,
a Reversible Jump approach is required as the interpretation of parameters
varies depending on the ordering. By using this approach, all possible undi-

rected decomposable models may be considered.

5.2 A Transformation between Orderings

A move to a new parameterisation consists of proposing to switch two adjacent
variables in the current ordering and we observe that any possible ordering of

the variables may be reached in a finite number of such moves.

In general, if variables j and 5+ 1 (j = 1,...,p — 1) in the original ordering
are switched to get the new ordering, the parameters in the model undergo a

transformation defined as follows, where ’ represents the new parameter.

® z=Zij11, %44 =& fori=1,...,n
o 3 =01, B = 0;
e 0(j,¢)=0(+1,¢),00+1¢c)=00c forc=1,....k —1
The transformation for the decomposed covariance matrix ® is less straight-

forward. In terms of the covariance matrix ¥, the transformation may be

obtained by permuting the rows and columns corresponding to the variables
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to be switched. The corresponding transformations for elements of ® are

, 5 ) 1
O = (D50 + & 1m)?
o, = PjjPii+1
VIV . 1
<¢.?,j+1 + ¢?+1,j+1) 2
) - S0+ D . h. .
¢;k _ i i1Pjk + Qji1j41Pj+1.k for E—it2..m

) I
(651 + ¢?+1,j+1)2

G5 Pi1,+1

2 (2 i
(0741 + OFi1,41)7
QikDjr1,j+1 — Pjj+10j+1.k

T
(¢?,j+1 + ¢_?+1,j+1) 2

(!
Pji1,1

Pivip = for k=j+2,....m

Forr=1,...,7—1,

@;j = @TA/j—f—l
é;,_;‘ﬂ = (,%
G = Onk for  k#7,7+1

Forr=75+2,....,m

Gr = Ork for k=7+2,....,m

For a purely ordinal data set, that is one where all classifying variables are
ordinal, this transformation is self-inverse. However, when one or more of the
margins of the table are binary, the transformation must be adapted to allow
for the fact that the conditional precision, ¢Z corresponding to a binary margin
is constrained. The resulting transformation is then not self-inverse, but the
inverse is easily found. The two cases to be considered are (i) switching two
binary variables and (ii) switching a binary and an ordinal variable. Ior the
case where the variables to be switched are binary with constraints ¢;; = k;,

for switching variable j and 7 +1 (j=1,...,p — 1) in the ordering, we arrive
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at the following transformation for ®.

O = Kin
& _ kidjj+1
(02 ;41 1 KF1a)?
¢;~k = ('b]’j“f]k T jzlgbj;l’k for k=j+2,....m
( Sl T kj+1)2
o =k
Div1,j+1 j
, bk — b 1o ‘

) I
(97541 T K50
The rest of the transformation is the same as for the purely ordinal case.

This transformation is no longer self-inverse but the inverse is easily found to
be:

G55 = K
il
kj+1¢j,j+1
2 g2 1
(kj ¢j,j+1)2
& Y (kQ—@/Z )%
5.+1P5 T Pir16(F5 = @550

Qi = for k=j4+2,...,m
k;

Gjj+1 =

Gjrrgt1 = K

2 (2 1 ! '
Giw(ks — @F01)2 — 100k

Pjt1e = for k=j+2,....m
k;

To ensure reversibility, for any pair of variables A, B which can be involved
in such a move, it needs to be specified in advance which switch corresponds
to the forward move, and which to the reverse move. In practice, this choice
does not have a great effect on the performance of the algorithm. Note that if
kJQ — ;2] 41 <0, the move is prohibited and hence automatically rejected.

The only remaining case to consider is when a move to a new ordering is
made by switching an ordinal and a binary variable. We choose to specify the
‘forward’ move as the binary variable moving up the ordering while the ordinal

variable moves down. By moving down the ordering, we mean that the variable
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moves further down the conditional structure so its distribution is modelled
on one more variable. Assuming that the conditional variance corresponding
to the binary variable is set to be k;, the forward and reverse transformations

are defined as follows:

The forward transformation is:

2 2 1/2
O = (95,50 + Brarje)
5o kidj+1
A, .+
7 (@J J+1 + ¢J+1 ]+1) /2
i/ _ @J,J+1¢Jk -+ @]+17]+1¢j+1»k o
Qi = Y 172 for k=7+2,...,m
Qi1 T Pji1j41
¢,/7'+1,j+1 = k’j
. Oik@j1,541 — 10541k .
o 1k = : TR for k=j+2,...,m
a (@541 + S51500)"

The reverse transformation is:

G55 = Ky
L
N
bjj+1 = —k],Hl
"7
;1@ + Giau (K — #e1)? ,
Qi = LI = for k=j+2,....,m
kj
. ( @] ]+1)—
Djrlj+1 = -
7
W(k2— @2 VT —
¢j+1,k _ ¢jk( J @j,jrli ; ],]+1¢]+1,k for Lk — i+2,...m

J
If k2 — ¢/?;,; < 0, the move is prohibited and automatically rejected. Again,

all other transformations are the same as for the ordinal case.

At each stage of the RIMCMC, there are p— 1 move types, each corresponding
to the p— 1 possible adjacent pairs of variables. Each move involves permuting
an adjacent pair of variables, with the model parameters being transformed via

the transformation g defined above. Suppose that at time ¢, the Markov chain
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is in order o, and that Eg?t) represents the values of the unknown parameters

in order o®:

(t) (®) (t
Eo(t) = ( O(t)H@ (z); ot 9 (1)(]; ))

A move to a new ordering ¢ is proposed, with &/, = (Eom) Suppose that the
probability of making move type T given the current state and model of the
Markov chain (ot E( ) y) is 7 (r, Eo(tl ,m m) Then the move should be accepted

} (5.1)

Note that there is no proposal distribution because no new parameters are

with probability « where

order
o(&,)
8

o :mm{l J (& ity 9|9)i(r &y, i)
oraer
f(&o?f)anli(Z)aO(t Y)J(r, E(()?t) gt(?t))

being proposed. We choose each move type to be equally likely so that the
probabilities j(.) cancel. Then applying Bayes’ theorem (1.1) to the posterior
distribution and simplifying gives (dropping suffixes):

f(&,m,oly) = f(z,®8,0,m,oly)
f(ylz,0,®,8,m,0)f(z,0/®,8,m,0)f(®,B,m,0)

f(y)
_ f(ylz,0)f(2,0®.8,m,0)f(®,B8/m,o0)f(m o)
()
_ [(ylz.0)f(2(0,®,8,m,0)[(0/®,8,m,0)[(® Blm,0)f(m, g
f(y) o

The final step uses the fact that gy is determined purely by z and 6. On
substituting (5.2) into (5.1), f(y|z,0), f(0|®,3,m,0) and f(y) will cancel in
the numerator and the denominator because they are order independent. This

leaves the acceptance probability:

o (@4, Byld',my) [0, my) (&)
Qorder = Min {1, 20370 0, m® © O | 5re® (5.3)
f( o) O(t) ‘0 RUNO) )f(O 7m0(t)) (Eo(t))

The prior term f(®, 3lo', m) may be decomposed as follows:

p

[ (@0, B,)0.m) = f(Blo,m) [ f(gilo.m)f(;|ii, 0,m) (5.4)

i=1
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The priors for B are chosen to be independent of the model, therefore in the
expression for .o these will cancel out, leaving only the priors for the
inverse variance decomposition matrix ® to consider. These priors are given
in (3.8) and (3.9), for the unconstrained ¢;;.

The prior matrix A is diagonal with entries dependent on the number of levels
of each classifying variable. Since the off-diagonal elements of A are 0, (3.8)
reduces to
¢i|‘¢ii ~ Np,i(O, Ai_l)

When any two classifying variables are switched in the ordering, the corre-
sponding elements of A must also be switched and new values for ¢, are
proposed. Therefore, the prior terms for those rows affected must be included
In Qrger. The prior for the diagonal elements ¢; reduces to

, 1

Pi; ~ _Xg_i+1

Q4

These are order dependent as when an order change is proposed, new values

for ¢; are proposed so these terms must be included in ,pger

Finally, we consider the model and order prior f(m, o). When moving between
models within a single ordering of the variables as described in Chapter 4,
each possible model is assumed to be a priori equally likely. However not all
undirected graphical models are representable in each ordering and there are a
different number of orderings available for each model. Therefore, when moving
between orderings, we need to weight competing orderings accordingly, via the
prior term f(m, o). Thus for a particular model and ordering, f(m, o) is the
reciprocal of the number of orderings in which the conditional independence

structure of the model m can occur.

For a purely ordinal data set, the Jacobian of the transformation of @ is:

g = o) | _ s (5.5)
8(5(()2)) (Cfb.?,jﬂ + ¢?+Lj+l) 2
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When one or more of the margins of the contingency table are binary, the

Jacobian is altered. This is because the corresponding conditional variances

are constant so the Jacobian is not a function of these. For the all binary case,

the Jacobian of the transformation is:

‘ ’ _ a(s;’) o k]k;2+1 (5 6)
= — ——— ,
a(sit()t)) (@]2',]'+1 ™ k}ﬂ) 2
and that of the reverse move is:
‘ l _ a(si)’) _ kakj-f*l (5 7)
= ) - .
BEL)| (k2 — ¢,
For the binary and ordinal switch, the Jacobian of the forward move is:
’J’ _ a(si)’) — k,@;j-}»l,j-}»l (58)
BEDN | i T O
and that of the reverse move is:
\J‘ — a(siy’) — ¢; (5 9)
. 1 '
a(fff()t)) (k2 — @fjﬂ)z

The full method now runs as follows.

5.2.1 Algorithm 6

1. An initial ordering, model and values for all parameters in this model

are specified.

. With probability 1/3, remain in the current model and re-generate all
parameters (the null move). Otherwise, a new model is proposed by
either adding or subtracting a randomly selected edge from the current
model. If the proposed model is unavailable in the current ordering, go
to Step 3. Otherwise the proposed model is accepted with Reversible
Jump probability « as defined in (4.11) and (4.12).
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3. A new ordering is proposed by randomly selecting a pair of adjacent
variables in the current ordering and proposing to switch them. If the
current model is not available in the proposed ordering, then go to step
2. Otherwise, the proposed ordering is accepted with Reversible Jump

as defined in (5.3).

probability o qer

4. Return to step 2 and repeat.

Note that this algorithm attempts an ordering switch at every iteration. This

is not necessary but was found to be most efficient.

5.3 Examples

5.3.1 Alcohol, Obesity and Hypertension Data

Algorithm 6 was applied to the Knuiman and Speed (1988) data set. Ior
reasons described in Section 4.2, the conditional variance for H was fixed to
be 1. Starting the RIMCMC in order OH A, the initial prior parameters were
A = diag(0.185,1,0.455), ¢ = 5 and T = diag(50). The prior matrix A
must be permuted in the same way as the classifying variables at each order
change, in order that the priors for the model parameters are consistent across
models. Since the matrix T is order invariant, this need not be permuted at
each order change. The algorithm was run for 500,000 iterations. During this
time, the proposed order change move was accepted approximately 50% of the
time and the proposed model change move was accepted approximately 10% of
the time. The Markov chain was therefore relatively mobile. Posterior model
probabilities are displayed in Table 5.3.1. The most probable model is OH +
AH. There is high posterior probability of conditional independence of Obesity
and Alcohol Intake as this interaction appears in none of the most probable
models. There is also fairly high posterior probability of an association between

Hypertension and Obesity, as this appears in the two most probable models.
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Model Posterior Model Probability
OH + AH 0.262
A+0H 0.171
O+ AH 0.122
A+O+H 0.119
OA+OH 0.119
AOH 0.075
AH + AO 0.069
H+ OA 0.062

Table 5.1: Posterior model probabilities for alcohol, obe-
sity and hypertension data

As has been noted for other examples, the posterior probability is fairly diffuse
over the model space with even the least likely model claiming 6.2% of the

posterior model probability.

The data set was also modelled by Dellaportas and Forster (1999), who com-
pared the results from various methods, none of which took account of the
ordinal structure of the data. The methods used were a Reverisble jump proce-
dure described in the paper, an exact hyper-Dirichlet prior approach suggested
by Madigan and Raftery (1994) and the approximate Bayes factor approach
described by Raftery (1996). Various prior parameters were used. For all meth-
ods used, they found the four most probable models to be (in varying order
according to the method), OH +AH, O+ AH, A+ OH and A+O+ H. These
are also the four most probable models selected by the RIJIMCMC method
described here. Their results differ from those here in that they are far less
diffuse over the model space, and for most of the methods described, one or
two models claim a very high percentage of the posterior model probability.
On average, the two most probable models were found to be A + HO and
H+ O + A, indicating that the method described here favours more complex
models in terms of independence structure than the methods described by Del-
laportas and Forster. However note that the dependence structure is modelled

more parsimoniously here, because each edge has just a single corresponding

106



5. MODEL DETERMINATION FOR UNDIRECTED GRAPHS

Density
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Figure 5.4: Estimated density of Pearson’s distance measure for hypertension,
alcohol intake and obesity data

model parameter.

We now examine the goodness-of-fit of the models, averaging over all models
produced during the Reversible Jump. This procedure was carried out by con-
verting all output from the Reversible Jump back to the initial ordering. The
means, variances and cut points produced at each iteration were then used to
generate predictive tables for each iteration in the usual manner. Figures 5.4,
5.5 and 5.6 show the densities of the Pearson’s, Deviance and Absolute Differ-
ence distance measures respectively. As usual, the vertical line indicates the
distance between the observed and posterior predictive mean data, and gives

a measure of how likely the set of models are to predict the original data.
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Density

100

60 80

40

Deviance Distance

Figure 5.5: Estimated density of deviance distance measure for hypertension,

alcohol intake and obesity data

Density

0
Absolute difference

Figure 5.6: Estimated density of maximum absolute difference distance mea-

sure for hypertension, alcohol intake and obesity data
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For each distance measure the fit appears to be good, with the posterior pre-
dictive mean data well into the lower tail of the distribution of generated
tables. As would be expected, the set of models passed through during the
RJIJMCMC do not provide as good a fit as the saturated model (see Figures
3.14, 3.15 and 3.16) but they improve greatly on the single model example
(Figure 3.17). Convergence of the RIMCMC was assessed using trace plots
of quantities which have a common interpretation across models (again pro-
duced by converting the output back to the initial ordering) and was found
to be satisfactory. The Reversible Jump procedure was found to be relatively
mobile with approximately one proposed move out of every six accepted for
the model change step and greater than one in three proposed moves accepted

for the order change step.

5.3.2 Risk factors for coronary heart disease: a 2° table

For the second example we return to the coronary heart disease data taken
from Edwards and Havranek (1985) and displayed in Section 4.5. In Chapter
4, the classifying variables were assumed to take the order FCBAED and
the posterior probabilities of DAG models were calculated using Algorithm
5. However this order is by no means clear so here we assume no order and
consider the set of undirected decomposable graphical models. All six classi-
fying variables are binary so the conditional precision @2 for each is fixed to
be 1. Following the arguments of Section 4.2, the matrix A is the identity ma-
trix, the degrees of freedom parameter ¢ = 8 and the mean dispersion matrix
T = diag(50). Since the matrix A is order invariant, it need not be permuted
at each order change. Starting in the order ABCDEF', the RIMCMC proce-
dure described in Algorithm 6 was applied with 500,000 iterations. Again the
procedure was relatively mobile with order changes accepted approximately
every one in two proposed moves and model changes accepted approximately
every one in twelve moves. The six most probable models along with their

posterior model probabilities are shown in Table 5.3.2.
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Model Posterior Model Probability
ACE+ BC + F 0.027
ACE+ BC+ DE + F 0.024
ACE+ ADE+ BC+ F 0.018
ACE+ BCE+ F 0.016
ACE+BCE+DE+ F 0.015
ACE+ ADE+ BCE+ F 0.014

Table 5.2: Posterior model probabilities for coronary
heart disease data

Between them, these models account for 11.4% of the posterior model proba-
bility. When this data set was previously analysed in Chapter 4, the first four
models accounted for 36.1% of the posterior model probability. Clearly, the
order change and subsequent greater choice of models available is the main
reason for this. The posterior distribution amongst the most probable models
seems much more diffuse over the set of undirected models than over the set

of directed models.

There is strong evidence for the marginal independence of F. There is also high
posterior probability of AC,BC,AE and CFE interactions as these appear in
each of the four most probable models. There is some evidence for interactions
AD, BE and DE.

The four most probable models are illustrated in Figure 5.7. The data were
also analysed by Edwards and Havranek (1985), Madigan and Raftery (1994)
and Dellaportas and Forster (1999). Madigan and Raftery give the two most
probable decomposable models as BC + ACE+ ADE+ F and ABC+ ABE +
ADE + F. The most probable models found by Edwards and Havranek only
contained one decomposable model, that was BC' + ACE + ADE + F. Del-
laportas and Forster give the three most probable models as BC' + ACE +
ADE+ F, BC + ACE + DE + F and BC + AD + ACE + F. The model
BC+ ACE+ ADE + F is found to be one of the most probable models by all
three; this is the third most probable model found using the RJIMCMC method

described here. The main difference between the sets of models selected by
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Figure 5.7: Most probable undirected models for the heart disease data
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others and the set of models selected here is that the RIMCMC gives smaller
posterior probability that the AD term should be included in the model. How-
ever, in the analysis carried out by Edwards and Havranek, the exact test for
zero partial associateion of A and D reported had a significance level of 0.04,
which was the largest of any of the links whose absence was rejected at the
5% level. There is therefore some precedent for doubt about an association

between A and D.

The goodness-of-fit of the models selected by the Reversible Jump procedure

was assessed using the simulation technique described in section 3.4.2.

Convergence was also assessed with trace plots and was found to be satisfac-

tory.
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Chapter 6

Model Determination for Data
with Covariates and Covariate
Selection

In Chaper 2, the method of Albert and Chib (1993) was applied to univariate
ordinal data with covariates. For the multivariate case we have so far only
considered data sets with no covariates. In this Chapter we firstly describe
how data sets involving covariates may be modelled and secondly show that

the issue of covariate selection may also be tackled within the same framework,

using a Reversible Jump method.

6.1 A Model for Data with Covariates

For the non-covariate case - where individuals are simply cross-classified by
p variables, with variable j having &; levels - the structure of the underlying
latent data is p—variate Normal with mean 8 and variance matrix 3. Now
suppose that for individual 7, we observe multivariate ordinal response vector
1y, and also associated covariate matrix X ;. X is a matrix with p rows where p

is the dimension of the mutivariate response, with the jth row representing the
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values of the C' covariates associated with respondent 7 and classifying variable
j. In practice, the covariates often take the same values for every classifying
variable, so that the rows of X, are identical. The situation where this is not
true occurs most often for longitudinal data, where the classifying variables
represent the values of the same response variable at different time points and,
depending on the application, covariates may be measured at each time point.
There is an example of this later in the Chapter, in the crossover trial example.
Here, for each individual, one of the covariates (treatment) varies over each

time point.

Covariates may be coded in different ways depending on the form of the co-
variate information. If a covariate is continuous, then it supplies information
for one column of the matrix X;. If it is a factor with two categories (e.g.
male or female) then one of these categories can be chosen to be the baseline
category. Such a covariate then supplies one column of the matrix X; taking
the value 1 for non-baseline category and 0 for baseline category. Finally there
is the situation where a covariate is a factor with more than f, categories where
fe > 2. In this situation, the covariate supplies f, columns to the covariate
matrix, each corresponding to one of the factor levels. As in the binary factor
case, one of the factor levels may be set to 0, so that the remaining f, — 1
levels are thought of as contrasts and provide f, — 1 columns corresponding to

covariate ¢ in the covariate matrix.

Suppose that covariate ¢ contributed f, columns to X ;. Then we have covariate

matrix

X, =

where each vector a;; is of length L = Y f. + p, and associated common

parameter vector 3, also of length L.

From here, the model is constructed following the same strategy as before,
except that the distribution of the latent data is now dependent on the co-

variates. Let ¥ = (®”®)~! be the usual covariance matrix between the p
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classifying variables. Then, the existence of a latent variable z; is assumed,

with the distribution

The usual assumptions are made about the cut points and necessary con-
straints on cut points (or conditional variances in the binary case) for identi-
fiability. That is,

and gb?j = 1 for binary classifying variables.

Clearly the covariates must now be incorporated into the posterior distribu-
tion of the unknown parameters 3, ®, z; and 8. The usual prior for 3 is
extended so that it is now a L-variate Normal distribution with mean 0 and
covariance matrix T' = A, where A is large. Other priors are unaffected and
the remaining effect of the covariates is through the likelihood. The resulting
conditional posterior distributions for use in the Gibbs sampler for parameter

estimation in the saturated model are as follows.

o 2|y, 3,8,0 ~ N, (X,8,(®"®)"!) with z; truncated to the interval
(007, yi; — 1), 005, 915))

n -1 n
° Blz,®~ Ny p (Z XTeTdX, + T‘1> Y X[ ®z
=1 =1
n -1
(Z XToTo X, + T1>
i=1
@ 9(_7, C)I‘Z ~ Unlf (maxl[zw(yw = C)}, mlnz[zw(yw =c+ ].)D

Yi|6%, 2,8 ~ N,y <(M¢Az’ —9,)( A+ G (A + Gi)_l)

2
7

%1, z, 3 ~ Gamma (7, 2) where v and J are given in (3.13) and (3.14)

respectively.
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In the ¢; and 1, generation steps, the matrix G is now dependent on the

covariates:

G = Z(zz — X.B)(z: — X:8)"
i=1

Starting with initial values for all parameters, the sampling scheme runs by
sampling iteratively from the conditional posterior distributions in the or-
der [8lz, @], [¢11[91, 2, 8], -, | gphbpa z, 6], [¥1let, 2, 8], .. [¢p'¢§pa z,8,
[z1|y,, 8,9,0], ..., [z.y,,3,®,0] and [0|z].

6.2 Model Choice with Covariates

We have described a method for estimating the unknown parameters in the
model with covariates. For data with covariates there are two kinds of model
choice. The first is the model choice that has been discussed in Chapters 4
and 5 and involves investigating the relationship between classifying variables
as characterised by the matrix ®. The second is to consider which covariates
should be included in a model to predict the data. In this section, we will
adapt the methods described in Chapters 4 and 5 so that they may be applied
to data with covariates and give examples. In the next section, we will discuss
the second type of model choice, that of covariate selection. Note that the
model choice discussed in Chapters 4 and 5 relates to modelling the covariance
structure whereas the type of model choice discussed later in this Chapter

corresponds to modelling mean structure.

The method used for model choice is a simple adaptation of the reversible jump
algorithms described in Chapters 4 (if we are only interested in directed graph-
ical models or there is a fixed ordering to the data) and 5 (if there is no fixed
ordering and we are considering the set of all undirected decomposable graph-
ical models). Let us first consider the acceptance probability « defined in 4.11
and 4.12 for moves between models. There are three terms in this acceptance
probability: the likelihood of the data given the parameters f(z.,|®m, 8,,), the
prior distributions f(®,,,3,,/m) and the proposal distribution g¢,(®.,). Each
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of these must be evaluated for both the current and the proposed model. The
likelihood term is now a product of normal densities with individual means
X, and common variance (®7®)~!. Both the prior distributions and the
proposal distribution are unaffected by the presence of covariates, except that

in the proposal, G now depends on X;.

Now let us consider the acceptance probability o, qe defined in 5.3 for moves
between variable orderings. This consists of the prior terms f(®,3|o,m) and
f(o,m) and a Jacobian. None of these are unaffected by the presence of covari-
ates. However, if an order change is accepted, the covariate order should also
be changed to reflect this, but only if the data set is one in which covariates

vary with classifying variables.

We now apply this adaptation of Algorithms 5 and 6 to two data sets.

6.2.1 Examples

Example 1 - Crossover Trial

The first example is taken from Jones and Kenward (2003) and concerns a
cross-over trial for pain relief for 86 (n1=86) patients suffering from primary
dysmenorrhea. The trial is a three treatment, three period cross over trial
with ordinal response. The three treatments were A (placebo), B (low dose
analgesic) and C (high dose analgesic), and there were three periods 1, 2
and 3. The 86 patients were randomised to each of the 6 possible treatment
sequences. At the end of each treatment period, each subject rated the degree
of pain relief as: none (1), moderate (2) and complete (3), thus providing a
trivariate response (p = 3) with each classifying covariate taking three levels

(k; = 3 for all j). The resulting data are reproduced in Table 6.1.
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Table 6.1: Cross over trial for pain relief
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There are two covariates for this data set (C = 2): the treatment and the pe-
riod. Each has three levels (f; = fo = 3). Note that this is a situation where
for each respondent, the values of the covariates vary by period. The three
periods also provide the three classifying variables for each response. Due to
the order upon which variables are conditioned in the Cholesky parameterisa-
tion, we must take them into the covariance matrix in reverse time order; thus
classifying variable 1 = Period 3, classifying variable 2 = Period 2 and classi-
fying variable 3 = Period 1. For example, under this ordering, an individual in
the first column, second row of the Table 6.1 has response y, = (1,1,1) while
an individual in the sixth column, first row of Table 6.1 has response vector
Yy, = (3,2,1). These two individuals would have covariate matrices:
01 0/1 00

z, = 00 1]0 1 0
10 0/0 01

and
1 00/1 00

z,=| 0 1 0/0 1
001001

respectively. The left-hand partition of the covariate matrix a; corresponds to

the treatment effects while the right-hand partition corresponds to the period

jen}

effects. Note that we assume a common treatment effect across periods.

The response is trivariate ordinal with three categories in each period. Hence
the first two cut points in each dimension are constrained to be —1 and 1

respectively and there are no free cut points to be estimated.

The data were first modelled using the saturated model. The Gibbs sampler
was implemented using 100,000 iterations. The posterior means along with

their standard deviations were obtained for 3 and X.

—2.035(0.130)

0.45(0.129)

| 0.860(0.130)

E(Bly) = 0.149(0.129)
—0.509(0.131)
—0.412(0.130)

119



6. MODEL DETERMINATION FOR DATA WITH COVARIATES AND COVARIATE
SELECTION

Placebo
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- High dose
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Figure 6.1: Posterior densities of the three treatment effects for the crossover
trial data

4.973(0.054)  0.299(0.163)  0.019(0.161)
E(Sly) = | 0.209(0.164)  6.31(0.070) —1.137(0.159)
0.019(0.161) —1.137(0.159)  3.324(0.092)

The posterior means for the covariate effects take the order: Treatment A
(placebo), treatment B (low dose), treatment C (high dose), period 3, period
2 and period 1. The higher the response, the more effective the pain relief.
Thus we see that as would be expected, both treatments show improved pain
relief over the placebo, with the higher dose being slightly more effective than
the lower dose, although the difference between the two is small when com-
pared with the difference between each and the placebo. This is illustrated in
Figure 6.1 which shows the posterior densities of the three treatment effects:

Placebo, Low dose and High dose.

These results agree with those found by Jones and Kenward (2003) who find
that there is an overwhelming effect of active treatment over placebo, but that
there is a smaller difference between active treatment effects. The period effect

is less clear, period 3 shows improved pain relief over periods 1 and 2, which
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Period 1
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Figure 6.2: Posterior densities of the three period effects for the crossover trial
data

are approximately equal. This is illustrated in Figure 6.2 which shows the

posterior densities of the three period effects.

Note that the standard deviations for the mean estimates are approximately
equal. This is possibly due to the fact that all three of the factor levels of the

two factors period and treatment are included in the covariate matrix.

The posterior means for X indicate that there is little correlation between
periods as the majority of the off-diagonals are fairly close to zero. The one
exception is the covariance between Periods 1 and 2. To gain further insight

into this, we calculate the correlation matrix R:

1 0.053  0.005
R=| 0.053 1 —0.248
0.005 —0.248 1

The correlations between Periods 1 and 3 and Periods 2 and 3 are very close to

zero, with that for Periods 1 and 3 being smaller than that for Periods 2 and
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3 as we would expect. The correlation between Periods 1 and 2 is stronger, so
there may be some probability of a relationship between these Periods. This
will be investigated using the RIMCMC model choice algorithm.

To investigate this further, the issue of model choice was considered. Note that
model search is carried out within the set of directed decomposable graphical
models, as the data is longitudinal. Therefore, there is no need to move be-
tween orderings. The Reversible Jump algorithm (Algorithm 5) from Chapter
4 with adaptations described above was applied with 100,000 iterations. The
prior parameters were chosen to be noninformative following the arguments of
section 4.2: A = diag(0.185,0.185,0.185), ¢ = 5 and T' = diag(50). Table 6.2.1

shows the posterior model probabilities for each model.

Model Posterior Model Probability
Period1+4-Period2+Period3 0.110
Period2:Period3 + Periodl 0.049
Period1:Period3 + Period?2 0.026
Period1:Period2 + Period3 0.470

Period1:Period3 + Period2:Period3 0.016
Period1:Period2 + Period2:Period3 0.166
Periodl:Period2 + Periodl:Period3 0.10

Periodl:Period2:Period3 0.061

Table 6.2: Posterior model probabilities for crossover
data

The most popular model is Periodl:Period2 + Period 3, followed by Pe-
riod1:Period2 + Period2:Period3 and then the null model Periodl + Period2 -
Period3. Together, these three models account for 74.6% of the posterior prob-
ability. There is therefore high posterior probability of a relationship between
responses in Periods 1 and 2, and some posterior probability of a relationship
between responses in Periods 2 and 3. As we would expect, there is strong
evidence that responses in Periods 1 and 3 are conditionally independent given
the response in Period 2. The fact that the independence model is the third

most popular model agrees with the finding that the treatment received in
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Figure 6.3: Trace plot for 53 for crossover data

each period has an effect on the response, because otherwise we would expect

greater correlation between the responses for an individual over each period.

It is difficult to assess the goodness-of-fit for this data set as the number of
observations is small compared to the number of cells into which they are
classified. Convergence of the MCMC was assessed using trace plots and au-
tocorrelation function plots. The trace plots for 33 (Treatment=high dose)
and ;7 (Period 3) are shown in Figures 6.3 and 6.4 respectively, while the

autocorrelation function plot for 313 is shown in Figure 6.5.

Example 2 - Shoulder Tip Pain

The second example is taken from Lumley (1996) and concerns data from a
randomised trial of abdominal suction to reduce shoulder tip pain after laparo-
scopic surgery. Forty-one patients were asked to rate their shoulder pain on a

scale of 1 (low) to 5 (high) at six separate time points. The response therefore
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Figure 6.4: Trace plot for ¥; for crossover data
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Figure 6.5: Autocorrelation function plot for 3,5 for crossover data
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takes the form of a six-dimensional multivariate ordinal vector with each clas-
sifying variable having 5 levels (p = 6 and k; = 5 for all j). There were four
covariates (C = 4): Treatment (Yes or No, f; = 1), Sex (f; = 1), Age in years
(fs = 1) and Time (f; = 6). Note that the binary factors only supply one
column each to the covariate matrix as one level for each was chosen to be the
baseline. For Sex, the baseline was chosen to be Female while for Treatment,
No was chosen to be the baseline category. Therefore for each i, X, takes the

form of a 6 X 9 matrix.

For this data set, in contrast with the crossover trial data, the covariates are
constant over each time point, so each row of X, is the same. The data set is
longitudinal; therefore, as for the crossover example, times are taken into the
covariance matrix in reverse order, in order that models with directed edges
having the correct edge direction. As each variable has five levels, there are

two free cut points to be estimated in each dimension.

In Chapter 3, the Gibbs sampler algorithm for parameter estimation was im-
plemented with the constraints that the first two cut points in each dimension
were set to be 0 and 1 respectively. Then in Chapter 4, the new constraints
6(j,1) = —1 and 6(j, k; — 1) = 1 were chosen to give symmetry to the model
and thus facilitate prior parameter selection. The shoulder pain data exam-
ple gives further support for this choice of parameter constraints. Using the
constraints 6(7,1) = 0 and 6(j,2) = 1 leads to the estimate of 508,179 for
the highest cut point for classifying variable Time 6, with associated standard
deviation 3,829. This result is due to the fact that no patients fall into the
highest category (level ) for Time 6 so there is no latent data to constrain
the highest cut point. Such a high posterior mean estimate for this parameter
also has a strong influence on the latent data and hence the posterior mean 3
and in particular the variance ¥. By using the constraints 6(j,1) = —1 and

6(j,k; — 1) = 1 the problem is avoided and convergence unaffected.

The Gibbs sampler for saturated model parameter estimation was run for

20,000 iterations and the posterior means along with their standard deviations
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were obtained for 8, X and 6.

—0.955(0.148)
—0.031(0.127)
—0.014(0.012)
—0.193(0.138)
EBly) = | —0.194(0.140)
0.379(0.143)
0.136(0.146)
0.475(0.42)

0.39(0.142)

1.236 0.877 0.575 0.541 0.489 0.337
0.877 1.569 0.764 0.727 0.645 0.362
0.575 0.764 0.946 0.805 0.717 0.399
0.541 0.727 0.805 1.438 1.052 0.547
0.489 0.645 0.717 1.052 1.370 0.584
0.337 0.362 0.399 0.547 0.584 1.449

with standard deviations:
0.705 0.283 0.156 0.151 0.145 0.138
0.283 0.404 0.180 0.185 0.150 0.122
0.156 0.180 0.186 0.157 0.131 0.113
0.151 0.185 0.157 0.288 0.182 0.150
0.145 0.150 0.131 0.182 0.225 0.166
0.138 0.122 0.113 0.150 0.166 0.243

The posterior predictive means are displayed for the 2 free cut points for each
classifying variable. Note that the first and last cut points were set to be -1

and 1 respectively. The six rows of the matrix correspond to the six classifying

E(Xly) =

variables (Time Points).

—0.200(0.099) 0.657(0.093)

—0.428(0.084) 0.284(0.105)
| —0.462(0.071) 0.045(0.081)
EOlY) =1 _0.452(0.079) 0.152(0.089)
—0.277(0.079) 0.303(0.083)
—0.449(0.074) 0.274(0.098)
The elements of 8 correspond to the covariates Treatment (with baseline no
treatment), Male (with baseline female), Age and the six Time points respec-

tively. A higher response corresponds to more pain, so we can therefore draw
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Figure 6.6: Posterior density of the treatment effect for shoulder pain data

the following conclusions from these results. The active treatment clearly im-
proves pain levels compared to no treatment. Males rate pain as marginally
lower than females. As age increases, reported pain levels decrease. However,
both covariate estimates for sex and age are very close to zero so this effect
may not be significant. The posterior distributions for the covariates Treat-
ment (with baseline no treatment), Sex (with baseline female) and Age are

shown in Figures 6.6, 6.7 and 6.8 respectively.

For the time covariate, there appears to be an overall trend from Time 1 to
Time 6 of decreasing pain. The posterior distributions of the Time effects are

shown in Figure 6.9.

These results agree on the most part with those found by Lumley (1996). The
only point on which they do not agree is that Lumley finds that overall males
rate pain more highly than females. However the posterior standard deviation
of this estimate is larger than the posterior mean itself and is therefore not

significant.
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Figure 6.7: Posterior density of the sex effect for shoulder pain data
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Figure 6.8: Posterior density of the age effect for shoulder pain data
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Time effect

Figure 6.9: Posterior densities of the six time effects for shoulder pain data

From the posterior mean of the covariance matrix 3, we note that covariances
decrease further from the diagonal. To investigate this, consider the correlation

matrix R:

1
0.630
0.532
0.406
0.376
0.252

0.630
1
0.627
0.484
0.440
0.240

0.532 0.406 0.376 0.252
0.627 0.484 0.440 0.240
1 0.690 0.630 0.341
0690 1 0.750 0.379
0.630 0.750 1 0.414
0.341 0.379 0.414 1

The correlations decrease going away from the diagonal, although they do not

decrease enough to fit an AR(1) structure.

The issue of model choice was then considered. Note that model search is
carried out within the set of directed decomposable graphical models, as the
data is longitudinal. Therefore, there is no need to move between orderings.
The Reversible Jump algorithm (Algorithm 5) from Chapter 4 with adap-
tations described above was applied with 100,000 iterations. Following the
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arguments of section 4.2, the priors were set to be A = diag(0.708), ¢ = 8 and
T = diag(h0). Table 6.2.1 shows the posterior model probabilities for the 5

most probable models which between them account for 10% of the posterior

probability.
Model Posterior Model Probability
T1:T2 + T2:T3 + T3:T4 + T4:T5:T6 0.029
T1:T2 4+ T2:T3:T4 + T4:T5:T6 0.027
T1:T2 4+ T2:T3:T4 + T4:T5 + T5:1T6 0.018
T1:T2:T3 + T3:T4 + T4:T5:T6 0.017
T1:T2 + T2:T3 + T3:T4 + T4:T5 + T5:T6 0.013

Table 6.3: Posterior model probabilities for shoulder
pain data

There is very high posterior probability of relationships between Times 1 and
2,2 and 3, 3 and 4, 4 and 5, and 5 and 6. These dependences occur in each of
the most probable models. The two most probable models also involve a three-
way interaction between Times 4, 5 and 6, and slightly less popular models
involve other three-way interactions of adjacent variables in the ordering. The
autocorrelation structure could possibly be lag 1 or lag 2. The four most

probable models are shown in Figure 6.10

Again, goodness-of-fit is difficult to assess as the number of observations is
small compared to the number of classifying cells. Convergence is assessed
using trace plots. The trace plots for f5 (Age) and (1, 3) (third cut point for

Treatment) are shown in Figures 6.11 and 6.12.

6.3 Covariate Selection

So far, we have not considered whether each covariate has a significant effect
on the response, and have included them all in the model. However, this may

not always be appropriate as some covariates may have little or no effect on
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Figure 6.10: Most probable models for shoulder data
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Figure 6.11: Trace plot for g3 for shoulder pain data
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Figure 6.12: Trace plot for 6(1, 3) for shoulder pain data

the response. In this section, we describe and implement an extra Reversible
Jump step to decide which covariates should be included in a model for the
data. Throughout this section, whenever the phrase model choice is used, we

are referring to covariate model choice.

For a covariate not to be in the model, all elements of B corresponding to
that covariate should be set to zero. This seems appropriate for the longitu-
dinal examples considered here. Where classifying variables do not represent
the same response at different time points it may be desired to allow mod-
els where a particular covariate may affect one classifying variable but not
another. The general RIMCMC approach proposed here would allow such
models to be considered. If a covariate is included in the model, then there is
no restriction on the corresponding values of 3. Therefore a model in this case
is characterised by the covariate vector 3 for the full model with parameters
for ‘missing’ covariates set to zero. For a data set with C' covariates, there are
C possible move types, each corresponding to one of the covariates. A move

can consist of dropping a covariate if it is present in the current model or of
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adding in a covariate if not present in the current model. Dropping the covari-
ate corresponds to setting the corresponding values of 3 to zero, and adding

the covariate corresponds to proposing a new value for the appropriate values

of 8.

Suppose that at time ¢, the current state of the Markov chain is represented by

( cov: E ® w ) where E ® v represents the values of the unknown parameters
cov MCOV

in model mcov- Adding a covariate ¢ with f, levels involves a proposed move to

a new model m,y, and corresponding parameter vector é’;n,c ov with dimension

dim( E(t %V) + £ Em’ rov is created by generating a proposal u from a f.-variate
proposal distribution ¢,(u) and setting E;n g(E( )(t) ,U).
MOV

. . . . t -
Removing a covariate ¢ with f. levels from the current model méév involves

a move to a model mgyy with corresponding parameter vector Ei”b ov with

dimension dlm(f(tm ) — fe, then & , is created from E( « by applying
meov cov meov

the inverse transformation (S”E:ov’ u') = gfl(E(t)(t) ) and discarding u'.

meov

. Y . . !
Suppose that a move to a new covariate model mgqy, is proposed, with Sm'cov =

g(E(t) ) and suppose that the probability of making move type r given the

(1)
meov
(t)

current state of the Markov chain is j(r, & ® ) ,Meoy). Then a move to a new
ele)

v
model by adding a covariate should be accepted with probability acov where

Qcov = min < 1, f(smcov Meov YN (T Moy, Emcov) a(sm'coV)
f(f( @) mcov‘y) (7, mcovf(t(t) )a-(u) |0 (5( W@ )
"oV OV

(6.2)
For the reverse move to a new model by removing a covariate, the acceptance

probability is

()
f EZ”/ UL Y)r ™ m qr 5 t ; ! /
Gcov = min ¢ 1 ( cov cov 917> meov. & COV) ( mépy\m cov) a(s”bcov)
- : -
P& o y)ilr meoe. €%, ) (€Y, u)
meov meov
(6.3)
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Each move type is made with equal probability, so 7() terms will cancel in (6.2)
and (6.3). Also, as we take the transformation g to be the identity transfor-
mation, there is no Jacobian term. Using the same derivation as (4.10), and
assuming a priori that each covariate model is equally likely, equations (6.2)
and (6.3) will then simplify to:

fz010. B, (@Y, 8, Imeov) 1
Gcov = min q 1, T a0 el A e (6-4)
" F(z0|® LB /(29,8 0 imayy) (B )
[¢10)% ov
and
®) ® (B ,
ooy = min /(z0]29 'Gmcov)f(@ "Gmcov’mco") ¢ (ﬁm%v\ﬁmCOV)
’ , t t
(089,87, )f(@0,8Y, Imil ) )
meov cov

(6.5

when adding or removing covariates respectively.

The likelihood terms f(z|®, 8, ) are given by the p—variate normal distri-
bution, the parameters of which depend on the covariate model. The variance
(®"®)~! is independent of the covariate model, but the structure of the mean
X8 varies according the model, with covariates not included in the model

leading to the presence of zeros in 3.

The prior terms f(®, 'Gmcov imcov) are factorised as f('Bmcov imeov) f(®|mcov)
due to the choice of independent priors for ® and 3,, oV Since @ is covariate
model independent, these terms will cancel in the reversible jump acceptance
probabilities. The priors for 3,, coy for the full model are multivariate normal
with mean vector 0 and variance the diagonal matrix T". Since in any reduced
model, some of these means are set to zero if the corresponding covariates are
not in the model, these zero elements are conditioned on to obtain the prior
for the reduced. Since the prior mean is 0 and the prior variance is diagonal,
the prior density will be simply multivariate normal with dimension equal to
the number of non-zero elements of 3, mean vector O and variance matrix

T = diag(732).
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Finally we consider the proposal. As in Chapter 4, we have the useful property
that the normalised conditional posterior distribution is available and may be
used to find a suitable proposal distribution for the element of 3 to be added.
The joint conditional posterior distribution for all covariate means 3 is as

follows:

n -1 n
Blz, ® ~ N, (ngfcp’fcpxiﬂr—l) Y X"z

i=1 i=1

n -1
(Z XTeTax, + T‘1>
i=1
When proposing to add a covariate, we must propose new values for all ele-
ments of 3 associated with that covariate. A suitable proposal may therefore
be found by conditioning on the other elements of 3 in the usual manner
for conditional multivariate normal distributions (see section 3.7.3). When
proposing to remove a covariate, the proposed values for the corresponding

elements of 3 are 0.

The full algorithm including both types of model choice and order choice now

runs as follows.

6.3.1 Algorithm 7

An initial model, order, covariate model and values for al parameters in this

model are specified. Then,

1. With probability p, remain in current graphical model, order and covari-
ate model and re-generate all parameters (the null move). Else, with
probability 1 — p, a new model is proposed by either adding or subtract-
ing a randomly selected edge from the current model. If the proposed
model is unavailable in the current ordering, go to Step 2. Otherwise the
proposed model is accepted with Reversible Jump probability « specified
in (4.11) and (4.12).
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2. A new ordering is proposed by randomly selecting a pair of adjacent
variables in the current ordering and proposing to switch them. If the
current model is not available in the proposed ordering, then go to step
3. Otherwise, the proposed ordering is accepted with Reversible Jump

probability « as defined in (5.3).

order

3. A new covariate model is proposed by randomly selecting a covariate and
proposing to set the corresponding elements of 3 to 0 if the covariate is
in the current model, or proposing new values for the corresponding
elements of 3 if the covariate is not in the current model. The proposed
model is accepted with Reversible Jump probability acoy defined in (6.4)
and (6.5).

4. Go to step 1 and repeat.

Note that it is possible to focus on a particular aspect of the model and covari-
ate model selection procedure by skipping step 3 or step 1 respectively. Also,

step 2 is not required if the order of the classifying variables is fixed.

6.3.2 Examples

We apply this method to the same two examples.

Example 1 - Crossover Data

Algorithm 7 was applied to the crossover data set with 50,000 iterations and
with the same priors as before. The Reversible Jump step for covariates was
found to be far less mobile than both the model change and order change
Reversible Jump steps, with proposed moves being accepted approximately
2% of the time. The posterior covariate model probabilities are shown in
Table 6.3.2. The most popular model is the Treatment main effect model
which accounts for 95.4% of the posterior model probability. Clearly there is
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Model Posterior Model Probability
Treatment + Period 0.029
Treatment 0.954
Period 0.003
No Covariates 0.014

Table 6.4: Posterior covariate model probabilities for
crossover trial data

very strong evidence that the Treatment main effect should be included in a
covariate model for the data set. Note that the fact that one model is found
to be far more probable than all other models accounts for the fact that the
proposal is not often accepted. This is demonstrated by the fact that proposals

to move to the Treatment model are accepted at a rate of 97%.

Example 2 - Shoulder Pain Data

Algorithm 7 was applied to the shoulder pain data with 100,000 iterations
and with the same prior parameters as for the non covariate selection case.
The Reversible Jump step for covariate mode change was far more mobile for
this example with a proposed move acceptance rate of 9%. Table 6.3.2 shows
the posterior covariate model probabilities for the four most popular covariate

models for the shoulder pain data. Between them, these four covariate models

{ Model Posterior Model Probability
Treatment 0.702
Sex + Treatment 0.253
Period + Treatment 0.032
Period 4+ Sex + Treatment 0.011

Table 6.5: Posterior covariate model probabilities for
shoulder pain data

account for 99.8% of the posterior probability. The treatment covariate occurs
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in each of the models, there is therefore very high posterior probaility of a
treatment effect. There is also some probability of both Sex and Period effects,

but only in the presence of the Treatment effect.

Both examples given here only require reversible jump between directed mod-
els, but as the reversible jump algorithm for changing orderings is unaftected

by the presence of covariates, this would not create any difficulties.
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Chapter 7

Discussion and Extensions

7.1 Discussion

The aim of the thesis has been to provide a coherent methodology for multi-
variate ordinal and binary data, encompassing both parameter estimation and

model selection.

Methods proposed previously were discussed in Chapter 2, with particular em-
phasis on those introduced by Albert and Chib (1993) and Chib and Greenberg
(1998), as in this work we use similar ideas to those suggested by these au-
thors. The methods of Chib and Greenberg (1998) and Chen and Dey (2000)
may be applied to multivariate binary data and multivariate ordinal data re-
spectively. However, we have given a new parameterisation that is far more
flexible, allowing for the modelling of ordinal or binary or a mixture of both

types of data.

The parameterisation involves characterising the model in terms of the Cholesky
decomposition of its inverse variance matrix. The use of the Cholesky de-
composition parameterisation allows for conjugate prior distributions so that
sampling from the posterior distributions of the model parameters is straight-

forward. The model parameters are estimated using a Gibbs sampler and a
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data augmentation approach. The approach has been illustrated with applica-
tions to two examples, one all ordinal and one a mixture of binary and ordinal.
Goodness-of-fit of the saturated model can be assessed by use of a simulation
approach and may be seen to be extremely good for data with three or fewer

dimensions.

The issue of model choice for decomposable directed graphical models is con-
sidered in Chapter 4. Such models imply an ordering of variables with directed
edges going from variables earlier in the ordering to those later in the ordering.
Models are characterised by the structure of the Cholesky decomposition ma-
trix ®@. A zero entry in @ is equivalent to conditional independence between

the corresponding variables given all variables preceding them in the ordering.

A Reversible Jump approach is employed to investigate which models are most
likely to predict the observed data. Standard Bayesian methods for model
comparison involve comparing the marginal likelihoods of competing models.
However, this is not often possible as the marginal likelihood is analytically
intractable and must be estimated by other means, for example, by simulation.
In this work, the marginal likelihood is unavailable. The Reversible Jump
procedure circumvents this problem by sampling from the joint model and

associated model parameter space.

Moves take the form of either adding or removing an edge from the current
model, which corresponds to generating or setting to zero an appropriate ele-
ment of ® respectively. The Reversible Jump acceptance probability takes a
fairly simple form as the prior distributions for many of the model parameters
are model independent. The Cholesky decomposition parameterisation pro-
vides a further useful property here in that a suitable proposal distribution for
the Reversible Jump procedure is simply the conditional posterior distribution

of the elements of ® to be added or removed.

The Reversible Jump procedure was applied to two data sets where the clas-
sifying variables take a natural ordering. For both examples, it was seen to

be very mobile with proposed moves accepted approximately 1 in 7 times and

140



7. DISCUSSION AND EXTENSIONS

1 in 3 times respectively. Models estimated were compared with results from
others’ analysis of the two sets of data and were found to be very similar. The
goodness-of-fit was assessed for both examples and here there was some cause
for concern as the model averaged fit was not as good as might be hoped.
However, despite this lack of fit the models selected were still comparable to

those found by less parsimonious approaches.

Prior parameters were also discussed in Chapter 4. The choice of these can be

shown to have a strong effect on the models selected by the Reversible Jump

procedure.

The model provides a natural framework for fitting directed acyclic graphical
models for data where the classifying variables are ordered, but it may also
be extended to situations where this is not the case. In Chapter 5, we con-
sidered model selection for decomposable graphical models using Reversible
Jump MCMC. As discussed in Chapter 4, the parameterisation of the model
leads to a natural ordering of the classifying variables. However, not all undi-
rected graphs are available in any one particular ordering as the conditional
independence structure is unsupported by the ordering. The Reversible Jump
procedure described in Chapter 4 was extended to take account for this. In
the extra step, a proposed move involves permuting two classifying variables
in the ordering. In this way, all undirected models are covered by the model

space that the Reversible Jump procedure passes through.

All examples considered up to this stage did not involve covariates; in Chap-
ter 6, the methods described for modelling and choosing appropriate models
with which to do so were adapted to allow for the presence of covariates. The
Gibbs sampler algorithm for estimating parameters in a single model and the
Reversible Jump algorithms for moving between models and between orderings
were adapted and successfully applied to two data sets. A futher Reversible
Jump step was then described that moved between covariate models by propos-

ing to add or remove a covariate from the current model.
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7.2 Extensions

The work has many possibilities for further extension and investigation. A
simple extension would be to apply the methods described here to mixed data,
that is, data where there is a mixture of ordinal (or binary) and continuous
response variables. For such data one might model the joint distribution of
the latent variables for the categorical responses with the continuous responses.
Thus no latent data generation step is required for the continuous variables
so modelling such data would in fact be less computationally intensive than
modelling purely categorical data. There are also no cut points to be generated

for the continuous responses.

There is some suggestion from the examples given in Chapters 4 and 5 that
the model may struggle to fit the data well if it is of higher dimension. This is
almost certainly due to the highly parsimonious nature of the models described
here. For example, consider fitting a standard log linear model to the Alcohol,
Obesity and Hypertension data shown in Table 3.5. Fitting the saturated
log-linear model AOH requires estimating an extra 12 parameters than when
fitting the log-linear model AH-+OH for example. In contrast, with the models
described here, only one extra parameter is required to be estimated. For this
work, this has not caused a computational problem as the main focus was on
model determination. However, there are certain modifications that could be
applied to overcome this. For example, the use of the multivariate normal
distribution may not be appropriate. Perhaps a heavier-tailed distribution
would provide a better fit. Also, it may be unrealistic to expect the data to be
centered on a single mean, so a mixture of normal distributions (McLachlan
and Peel, 2000) may provide a better fit.

The performance of the data augmentation Gibbs sampler algorithms appears
to have been satisfactory for the examples given here. However, it is possible
that convergence could be improved in two ways. Various methods described in
Section 2.2.2 could be implemented to speed convergence of the free cut points,

while the method of parameter expansion described in Section 3.4.2 could also
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be implemented to improve model convergence, although this approach has

not previously been applied to ordinal data.

Models are underparameterised so that effectively, we are using an approach
that attempts to fit a model using combinations of two factor interactions.
This does however have some advantages in the parsimonious nature of the
models selected to do so. It would not be recommended to use this approach
for data of very high dimension, that could not practically be represented in a

contingency table for example.

Another avenue for further exploration is in the choice of prior distributions.
The prior distributions for elements of ® were chosen to be equivalent to an
Inverse Wishart distribution for 3; however, it would be possible to choose
the prior parameters to correspond to a more flexible prior distribution for 3,

the generalised inverse Wishart distribution.

In this thesis, the covariance matrix has been modelled with no restrictions on
its structure. Another approach to modelling the covariance matrix could be
to specify models in terms of competing correlation structures. For example, a
common model for correlation structure for longitudinal data is to consider the
set of autoregressive models, denoted AR(p) for a model of order p. For longi-
tudinal data examples, one could construct a Reversible Jump move between

competing orders of AR models.

All computation described in this thesis was carried out using custom-written
C source code. However, it is worth noting that due to the fact that the
conditional posterior distributions for all model parameters are standard, the
Gibbs sampler procedure described here to estimate model parameters may

also be carried out in the software package BUGS (Gilks et al., 1994).
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