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This thesis provides a coherent' and adaptable methodology for multivariate 
ordinal and binary data. Two main aspects of data modelling are considered. 
The first is to formulate a model for the data and to estimate the model 
parameters using Bayesian computation. The second is to assess model choice; 
models considered are the set of directed acyclic graphical models and the set 
of decomposable models. 

The model is based on the multivariate pro bit model (Chib and Greenberg, 
1998) but parameterised in a way that makes computation convenient. In 
particular, the conditional posterior distributions of the model parameters are 
standard and easily simulated from using Gibbs sampling techniques. Prior 
parameters are chosen to be noninformative but not overly diffuse. The Gibbs 
sampler is applied successfully to examples, and the goodness-of-fit of the 
model is assessed using simulation techniques. The model parameterisation 
allows ordinal and binary data and a mixture of both data types to be modelled 
within the same framework. 

Reversible Jump Markov chain Monte Carlo methods are used to estimate 
posterior model probabilities for directed acyclic graphical models. Under the 
model parameterisation described, a suitable proposal distribution is easily 
specified. 

The issue of model choice is also investigated for the set of (undirected) 
decomposable models. Under some model parameterisations, the conditional 
independence structure of a decomposable model can not be specified. A 
further Reversible Jump Markov chain Monte Carlo step is described to move 
between model parameterisations. Both Reversible Jump algorithms are found 
to rapidly explore the model and parameter spaces. 

The model is extended for data where covariates are also observed. The 
Reversible Jump algorithms described previously are adapted and applied to 
examples. A further Reversible Jump step is developed and implemented to 
assess which covariates should be included in a model to predict the data. 
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Chapter 1 

Introduction 

The aim of this thesis is to provide a coherent methodology for multivariate 

ordinal and binary data. Ordinal data are characterised by the response taking 

the form of discrete, ordered categories and occur in many fields of research, 

in particular in the social sciences and in medicine. Ordinal data are often 

treated using the same methods as for nominal (unordered) categorical data, 

but this ignores the extra structure due to the categories being ordered. The 

main difference between models for nominal data and models for ordinal data is 

that those for nominal would give the same results if the order of the response 

categories were permuted. In this thesis, we introduce a Bayesian methodology 

for modelling ordinal data. There are two main aspects to this methodology: 

the first is to set up a model for multivariate ordinal data and to estimate the 

parameters using Bayesian computation. The second is to assess model choice, 

that is, to find which models may be used to best predict a given data set. In 

this Chapter, we introduce the principles underlying the work. 

1.1 Bayes' Theorem 

The fundamental principle of Bayesian analysis is that uncertainty is repre­

sented through probability. This means that the parameters that describe the 

1 



1. INTRODUCTION 

probability distribution of the observed data are treated as random variables 

in their own right, with associated probability distributions. Suppose we ob­

serve data y and require inference about a parameter vector (). Then Bayes' 

theorem states that: 
f(yJ())f(()) 

f( ()Jy) = J f(yJ())f( ())d() 

where f(()Jy) is the posterior distribution of the parameter vector () given the 

data y, f(yJ()) is the likelihood of the data y given the parameter vector (), 

and f(()) is the prior distribution of the parameter vector (). The prior distrib­

ution may be chosen to reflect our beliefs about what values parameters take. 

Therefore the posterior distribution is formed from our initial beliefs about the 

parameters, updated by the data that have been observed. Since the integral 

J f(yJ())f(())d() is simply the normalising constant for the posterior distrib­

ution, it is often omitted and Bayes theorem is expressed and implemented 

as: 

f(()Jy) ex: f(yJ())f(()) (1.1 ) 

1.2 Contingency Tables 

Multivariate ordinal data are usually represented in a contingency table, with 

each margin of the table consisting of ordered categories. The contingency 

table may be highly structured and modelling this structure helps us to under­

stand the relationship between the variables. The standard way to represent 

the structure is via a log-linear model, which relates the log of the cell means 

to a set of model parameters. 

Suppose we have a set of multivariate categorical data, with n individuals 

cross-classified by p categorical variables, so that the data can be represented 

by a p-way contingency table. Let r denote the set of classifying variables, so 

Jf! = p. Following the notation introduced by Darroch et al. (1980), the set of 

cells in the table is denoted by I flYEr In where Iy is the set of levels that 

variable I can take. A single cell is denoted by i = (i"( : I E r) and we let ni 

2 



1. INTRODUCTION 

denote the corresponding cell count and Pi the corresponding cell probability, 

where LiEf ni n and LiEf Pi = 1. 

For example, consider a three-way table cross-classified by variables X (with 

three categories), Y (with five categories) and Z (with two categories). Then 

the dimension is P = 3, the set of classifying variables if f = {X, Y, Z}and 

the numbers of levels of the classifying variables are IIxl = 3, Ilyl = 5, and 

IIzI = 2. 

1.3 The Multinomial-Dirichlet Model for Nom­
inal Data 

A standard model for the situation where observations are classified into a finite 

number of categories is the multinomial distribution. From a total population 

of size n, suppose that ni individuals are assigned at random to a particular 

cell i with probability Pi, with Li ni = nand Li Pi = 1. Then the vector of 

cell counts n has a multinomial distribution with likelihood 

The natural conjugate prior for the cell probabilities p is the Dirichlet distri­

bution which has density 

where the elements of a are parameters which control the location and spread 

of the distribution, and a Li ai' By Bayes' theorem, the posterior distrib­

ution of the cell probabilities is then 

J(pln) = f(a + n) IIpfi+ni-1 
Il f(ai + ni) . 

~ 

~. e. the Dirichlet distribution with parameter vector a + n. ~ote that this 

approach is invariant to ordering of categories, but is often applied to ordinal 

data, ignoring its extra structure. 

3 



1. INTRODUCTION 

1.4 Log-Linear Models 

One of the main points of interest when analysing contingency tables is to 

model the association between classifying variables. The standard way of doing 

this is by representing the underlying statistical model as a log-linear model. 

This associates the expected cell counts with a linear combination of para­

meters. Suppose the cell counts ni are observations of independent Poisson 

random variables with means Pi. Then following Darroch et al. (1980), the 

log-linear model may be denoted 

log Pi L~a(ia) i E I 
a<;:;r 

where ia is the marginal cell ia = (il,l E a). The functions ~a are the 

interactions among the factors in a. If lal = 1, ~a is a main effect and if 

lal = m, ~a is an m-way interaction. The general non-saturated log-linear 

model involves setting certain ~a to be zero; for the saturated model, there is a 

full set of interaction terms. To ensure identifiability, constraints are imposed 

on the ~a. 

1.4.1 Hierarchical models 

In practice, general log-linear models are not easy to interpret, so attention is 

generally restricted to the set of hierarchical models, a subset of the general 

log-linear models. To obtain these, we impose restrictions on the ~a, namely 

that if ~a is specified to vanish and b ::2 a then E,b must also be forced to vanish, 

i.e. if there are no interactions among factors in a then there is no interaction 

of higher order involving all the factors in a. 

1.4.2 Graphical models 

The set of graphical models is a subset of the hierarchical models. A graphical 

model can be represented by a graph consisting of vertices and edges where, 
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1. INTRODUCTION 

U W Y 

v x Z 

Figure 1.1: Illustration of conditional independence 

in the contingency table setup, each vertex corresponds to a classifying vari­

able of the table. Graphical models may also be represented in terms of their 

conditional independence structure, which is immediately apparent from the 

graph itself, as described below. They therefore have a more straightforward 

interpretation than the hierarchical models, in terms of conditional indepen­

dences. Let V be the set of vertices and [; be the set of all possible edges 

between them. Following Dawid and Lauritzen (1993), let (X, Y) E [; denote 

the edge between variables X and Y. If two vertices are not joined by an edge, 

then the corresponding variables are conditionally independent given the other 

variables. Conditional independence can also be defined for sets of variables. 

A subset C of the set of all classifying variables r is called a clique if the 

subgraph containing only elements of C has an edge connecting each pair of 

vertices and the inclusion of another vertex from V in C would result in at 

least one pair of unconnected vertices. The subset S is a separator of cliques 

A and B if every path from any vertex in A to one in B must pass through 

a vertex in S. In such a case, variables in A are conditionally independent of 

those in B, given those in S. 

For example, if r = {U, V, W, X, Y, Z}, consider the model represented by the 

graph in Figure l.l. There are five cliques: C1 = UVW, C2 = WX, C3 = XZ, 

C4 = YZ and C5 = WY with corresponding separators Sl = W, S2 = X, 

S3 Z and S4 = Y. Then the following conditional independence statements 

can be made: {U, V} is conditionally independent of {X, Y, Z} given W; W is 

conditionally independent of Z given X and Y; X is conditionally independent 

of Y given Z and W; and Z is conditionally independent of W given X and 

5 



1. INTRODUCTION 

Y. 

The description above assumes that edges in the graph are undirected, that is 

we do not distinguish between (X, Y) and (Y, X). Graphs where we make this 

distinction are called directed graphs. 

In a directed graph, if (X, Y) E [ but (Y, X) ¢. [ then there is a directed edge 

from X to Y, denoted by X -----+ Y. X is called the parent of Y, and Y is the 

child of X. For both the directed and undirected cases, a path of length n from 

X to Y is defined as a sequence X X o, ... ,Xn = Y of distinct vertices such 

that (Xi-I, Xi) E [ for all i = 1, ... ,n. An n cycle is a path of length n with 

the modification that it begins and ends at the same point. A directed acyclic 

graph (DAG) is a directed graph without cycles. 

Directed acyclic graphs permit an ordering of the vertices such that no edge 

(X, Y) exists when Y precedes X in the ordering. Directed graphical models 

correspond to DAGs and have the following conditional independence inter­

pretation. The absence of a directed edge between two variables means they 

are conditionally independent given all other variables which precede either of 

them in the ordering. 

1.4.3 Decomposable models 

The set of decomposable models is a further subset of the graphical models. All 

directed acyclic graphical models are decomposable. An undirected graphical 

model is decomposable if it does not contain cycles of length greater than 

three without a chord i. e. an edge which short-cuts the cycle. The model 

represented by the graph in Figure 1.1 is not decomposable as it contains a 

cycle of length four in W XY Z. However the submodel with vertices U, V, W, 

X is decomposable. Decomposable models clearly exclude many potentially 

useful models. However, they have many useful computational properties for 

model selection procedures. These will be discussed in 1.5. 
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1. INTRODUCTION 

If a model is decomposable, then the undirected conditional independence 

graph may be used to construct a directed acyclic version with the same 

Markov structure. This will be discussed extensively in Chapter 4. 

1.5 Model Uncertainty 

The standard approach for Bayesian model comparison is to calculate the mar­

ginal likelihoods for competing models and hence the posterior model proba­

bilities. The posterior model probability for a model m is 

f(mIY) = f(m)f(Ylm) 
Lm f(m)f(Ylm) 

where f(Ylm) is the marginal likelihood of model m, defined as: 

(1.2) 

Om is the set of parameters in model m, and f(Omlm) is the conditional prior 

distribution of Om. 

The marginal likelihood as defined above is analytically intractable in many 

examples. However, for decomposable graphical models, Dawid and Lauritzen 

(1993) construct a family of prior distributions, which allow posterior densities 

and marginal likelihoods to be calculated directly. In particular, the marginal 

likelihood for each model can be expressed in terms of the cliques and separa­

tors associated with that model, and hence model comparison can be carried 

out with calculations local to single cliques. 

Hence it is in principle possible to calculate all posterior model probabilities. 

However in practice, for high-dimensional contingency tables, the number of 

calculations required to do so is prohibitively large. Two methods proposed for 

overcoming this problem are Occam's window (Madigan and Raftery, 1994) 

and Markov chain Monte Carlo model composition (Madigan and York, 1995). 

Occam's window provides a strategy whereby the number of models considered 

7 



1. INTRODUCTION 

is dramatically reduced. It does this via three basic principles. Firstly if 

a model predicts the data far less well than the model which provides the 

best predictions it is no longer considered. Secondly, complex models which 

receive less support from the data than their simpler counterparts are excluded. 

Finally, if a model is rejected then all its submodels are rejected. Markov chain 

Monte Carlo model composition is a process which generates a Monte Carlo 

sample from f(mly). This method is more appropriate for making predictions 

when the posterior distribution of some quantity is of particular interest than 

for inferring the nature of the 'true' model. 

1.6 Bayesian Computation 

1.6.1 Computation for parameter estimation 

In a Bayesian framework, we wish to estimate the posterior and prior distri­

butions and various summaries of them. This generally involves integrating a 

function of the posterior (or prior) distribution, for example to calculate the 

mean of the posterior distribution, we must find 

E(O) = J 0 f( Oly )dO 

Evaluating this integral may be difficult (especially in higher dimensions) or 

analytically impossible. :Many methods have been developed in order to over­

come these difficulties. The two methods which we shall use in this thesis are 

the Gibbs sampler and Reversible Jump Markov chain Monte Carlo, both of 

which form part of a large group of numerical methods called Markov chain 

Monte Carlo (:MCMC). MCMC uses the basic statistical theory that says fea­

tures of an unknown distribution can be approximated if we generate random 

samples from the distribution. Suppose that 0(1) ,0(2), ... ,e(N) form an identi­

cally distributed sample from the posterior distribution f( Oly). Then E(b( 0)) 

can be estimated accurately by: 
N 

E(b(O)) ~ ~ L b(O(i)) (1.3) 
i=l 
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1. INTRODUCTION 

This is the principle of ~lonte Carlo integration. 

1.6.2 Markov chain Monte Carlo 

It can be difficult in many problems to sample independently from f(8IY). 
However, due to the ergodic theorem (Tierney, 1994), the estimate for E(b(8)) 
in (1.3) does not require independent sampling. MCMC methods use a Markov 

process (where the distribution of the parameters 8(i) at the ith stage of the 

chain depends on 8(i-l)) to produce dependent observations in such a way that 

their equilibrium distribution is f(8Iy). 

Suppose that the Markov chain can be run until equilibrium is approximately 

reached at iteration t. Then the parameter vectors 8(t), e(t+1
) , ... ,8(t+N) are a 

dependent sample of size N from the posterior distribution f(8Iy), and (1.3) 

may then be used to estimate summaries of this distribution and any function 

of it. The value t at which equilibrium is approximately reached and the 

total number of iterations N are chosen so that the sample is considered to be 

representative of the posterior distribution f(8Iy). 

The value t is known as the burn-in length and observations before this should 

be discarded. However, if the chain is started at a plausible observation from 

f(8Iy) then the burn-in is theoretically zero and no observations need be dis­

carded. The samples obtained using MCMC methods are by definition depen­

dent, but the degree of dependence varies. If the parameter space is explored 

rapidly by the Markov chain, then it is said to be mixing well and successive 

samples are not highly dependent. Conversely, if there is high correlation be­

tween successive observations, then the sampler is said to be mixing poorly 

and a highly dependent sample will be produced, which will require a very 

long run length to produce a representative sample. 
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1. INTRODUCTION 

1.6.3 The Metropolis-Hastings method 

One method of constructing a suitable :Markov chain is the Metropolis-Hastings 

method, first introduced by Metropolis et al. (1953) and developed by Hastings 

(1970). In this approach a sequence of samples is generated from the posterior 

distribution in the following manner: 

1. Let O(t) be the current sample from the posterior distribution j(OIY). 

2. Generate a candidate vector of parameter values 0* from a proposal 

density g( 0* I O(t)) 

3. Accept the proposal with probability a where 

and set O(t+l) = 0*. Otherwise set O(t+l) O(t). 

The random walk is a special case of the Metropolis-Hastings algorithm. For 

this method, g(O*IO(t)) is chosen to be such that 0* = O(t) + 11 where 11 is 

a random increment whose distribution does not depend on O(t). Often, the 

distribution of 11 is symmetric about 0 so that g(O(t)I()*) = g(O*IO(t)) and the 

acceptance probability simplifies to 

. { j(O*)} 
a = mm 1, j(O(t)) 

1.6.4 The Gibbs sampler 

Another method of constructing a suitable Markov chain is the Gibbs sampler 

(Geman and Geman, 1984). This is an iterative procedure that works by 

generating each component of 0 one at a time from a univariate conditional 

10 
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distribution. Suppose that the unknown parameter vector e has p components 

e = (e1,"" ep ) and let the tth iterate generated be denoted by e(t). To 

generate a sample from the posterior distribution with density function f(ely), 
we choose starting values e(O) (eiO) , ... ,e~O)) and the Gibbs sampler draws 

e(j) = (eij) , ... ,e~j)) from e(j-l) = (eij - 1
), ... ,e~j-l)) in p steps as follows: 

1. Sample eij ) from f( elle~j-l), e~j-1), ... ,e~j-l), y) 

2. Sample e~j) from f( e2 Ieij ), e~j-l), eij - 1
) , ... ,e~j-l), y) 

3. Samplee~j) fromf(e3Ie~j),e~j),eij-l), ... ,e~-I),y) 

S I e(j) f f(e le(j) e(j) e(j) e(j-l) e(j-1) e(j-l)) z. amp e i rom iI' 2 , ... , i-I' HI , H2 , ... , p ,y 

At each step, we sample from the full conditional posterior distribution, con­

ditional on the new values of parameters already sampled in earlier steps, and 

on the old values of parameters still to be sampled in later steps. The end 
result is a sample e(1), e(2), ... , e(N). 

1.6.5 Data augmentation 

The Gibbs sampler particularly lends itself to problems involving data aug­

mentation. This method was originally proposed by Tanner and Wong (1987) 

and is often used in situations where some data are unobserved or missing, as 

will be the case in this thesis. Suppose that y is the observed data while z 
represents data which are unobserved or missing and suppose that the poste­

rior distribution of the parameter vector e, f(ely, z) is easy to sample from, 

11 
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possibly using MCMC methods. Then the conditional distribution of the un­

observed data f(ziy, ()) may also be sampled from. A Gibbs sampler may 

then be constructed as follows. Initial values are chosen for the parameters 

() and the unobserved data z, and an iterative procedure is then carried out. 

At each iteration, a draw from f(()iy, z) is made using the current sampled 

values of the unobserved data z, and then the unobserved data are sampled 

from f(ziy, ()) given the updated values for the parameters (). 

1.6.6 Computation for model determination 

Chib (1995) introduced an approach for computing the marginal likelihood of 

a model m from the output of a Gibbs sampling scheme. In order to use this 

method, it is necessary that all normalising constants of the full conditional 

distributions in the Gibbs sampler be known. Chib uses the fact that the 

marginal likelihood is also the normalising constant of the posterior density to 

arrive at the following identity: 

f(yim) = f(yim, ()m)f(()mim) 
f(()iy, m) 

(1.4) 

~. e. the marginal likelihood is equal to the product of the likelihood and the 

prior (with all integrating constants included) over the posterior density of (). 

The identity (1.4) holds true for all values of (). The method for evaluating 

this runs as follows. Firstly, a high posterior density point (for example, the 

posterior mean) ()* is chosen. Suppose that the posterior density estimate at 

()* is denoted by j ( ()* i y). Then the log of the marginal likelihood is 

log j(Yim) log f(yi()*) + log f(()*) -log j(()*iy) (1.5) 

Clearly the first two terms in this expression are generally easily evaluated, 

leaving only the posterior density estimate j(()*iy) which can be found from 

the Gibbs output. Consider the specific case where we have augmented data 

z and unknown parameters (), and suppose that Gibbs sampling is applied to 

the complete conditional densities 

f(()iy, z); f(ziy, ()) 

12 
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Let the output from the Gibbs algorithm be given by {O(g), z(g) }~=1' The 

posterior density can be written as 

J(Oly) = J J(Oly, z)J(zly)dz = Ez(f(Oly, z)) 

so from the Gibbs sampler output, a Monte Carlo estimate of J(Oly) at 0* is 

given by the sample mean: 

G 

j(O*ly) = ~L J(O*ly, z(g)) 
g=l 

since z(g) is a draw from the distribution zlY. So, substituting in (1.5), the 

log marginal likelihood may be evaluated as 

log j(yjrn) ~ log f(yjO') log f( 0') log { ~ ~ 1(0' jy, zig)) } 

Note that if the Gibbs sampling scheme contains more than two sampling 

blocks, this approach may be extended. 

1.6.7 Reversible Jump Markov chain Monte Carlo (RJM­
CMC) 

Reversible Jump (Green, 1995) provides a MCMC method that is capable of 

jumping between parameter subspaces of differing dimensionality. It therefore 

provides a framework for model determination, a situation where there is a 

discrete choice between a set of models, each with an associated parameter 

vector of differing dimension with an interpretation depending on the model 

in question. RJMCMC for model choice involves constructing a Markov chain 

which simulates from J(m, Om), the joint distribution over models and associ­

ated parameters. The Reversible Jump algorithm involves proposing a move 

type p to a parameter subspace of potentially different dimension from the 

current subspace via a proposal distribution qpO. Let Oe,;: denote the set of 

13 
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parameters in the current model and O'm the set of parameters in the proposed 

model, and suppose that data yare observed. If the proposed move is to a 

model with parameter vector O'm of higher dimension than the current set of 

parameters O};}, then O'm can be constructed by generating a vector u which 

has dimension equal to the difference in dimensions of the two models, using 

proposal distribution qp( u) and setting O'm = gp( O};}, u) where 9 is a one-to­

one function. The 'reverse' move from a model with parameter subspace of 

higher dimension to one of lower dimension is achieved by applying the inverse 

transformation (O'm, u') = g; 1 (O};}) and discarding u'. The proposed move 

should be accepted with Reversible Jump probability 0:, where for a move to 

a parameter space of higher dimension: 

. { 1 f ( O'm I y )j (p, O'm) I [) ( (}'m) I } () 
o:=mm 'f(O};}ly)j(p,O~))q(uIO};}) [)((}~,u) 1.6 

and for a move to a parameter space of lower dimension: 

where j (p, 0) is the probability of making move type p given the state of the 

Markov chain Om. 

The algorithm runs as follows. Choosing initial values (}o and proposal density 

q, the following iterative process is carried out. 

1. Choose a move type p with probability j(p, O};}) 

2. Using the current value of the chain O};}, propose a new value O'm using 

the proposal distribution qp if necessary and the transformation gpo 

3. Accept the proposal with probability 0: defined in (1.6) and (1.7). 

4. If accepted, set O~+l) = O'm, otherwise set O~+l) = (}~. 

5. Return to step 1 and repeat. 

14 
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For many applications, a major obstacle to the efficient implementation of 

Reversible Jump is the difficulty in finding a suitable proposal distribution. 

However, due to the model parameterisation used here, such a proposal distri­

bution is available. 

1. 7 Outline of the Thesis 

In this Chapter, we have introduced the basic theory that underpins this the­

sis. In Chapter 2, we give an outline of previous work specifically for ordinal 

data, including classical approaches but focusing primarily on Bayesian meth­

ods. In Chapter 3, we extend some of these approaches to develop a full 

methodology for modelling multivariate ordinal or binary data (or a mixture 

of both). Goodness-of-fit is also discussed and the approach illustrated with 

examples. In Chapter 4, we discuss the issue of model determination and 

give a Reversible Jump MGMC method for moving between directed decom­

posable graphical models. The RJMCMC algorithm is applied to data where 

the classifying variables have a natural ordering. Results are compared with 

other approaches in the literature. The method is extended in Chapter 5 for 

undirected decomposable graphical models and applied to data where there 

is no natural ordering to the classifying variables. In Chapters 3, 4 and 5, 

covariates are not considered. In Chapter 6, we incorporate covariates into the 

model and also give a further extension to the Reversible Jump methodology 

to assess covariate model selection in two examples. Conclusions are discussed 

in Chapter 7. 
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Chapter 2 

Review of Previous Work 

2.1 Models for Univariate Ordinal Data 

The focus of this thesis will be on ordinal data. Such data occur when the 

response, which may be multivariate, takes the form of discrete, ordered cate­

gories. In this way, it is different from nominal data. The methods described 

in the previous section are sometimes applied to ordinal data but they are 

somewhat unsatisfactory as they ignore the ordinal structure of the data, i.e. 

parameter estimates are invariant to orderings of categories. Note that binary 

data may always be treated as a special case of ordinal data, where there are 

only two categories. 

Suppose individuals i = 1, ... , n are categorised into k ordered categories. The 

categorical response vector y is observed, where Yi is the response category of 

the ith individual. 

Yi E {I, ... , k} 

Suppose also that we observe covariates Xi for each individual, and that the k 

ordered categories of the response have probabilities PI (Xi), P2(Xi), ... ,Pk( Xi)' 

Define the cumulative probability for category j to be 

16 
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McCullagh (1980) introduced an important class of regression models for or­

dinal data. These models are all based on the assumption of the existence of 

an underlying continuous random variable Zi for each Yi' The categories of the 

(univariate) response Yi are envisaged as contiguous intervals on the continu­

ous scale for Zi, the end points of the intervals are called cut points and are 

denoted by eo, el , e2 , .. . , ek - l , ek where the response has k categories. Hence, 

Yi = c if and only if Zi E (ee-l, eel. The first and last cut points are set to -()() 

and ()() respectively. 

eo -()() 

All the models suggested by McCullagh share this assumption, but they differ 

in their assumptions concerning the distribution of the latent variable. 

The cumulative link regression model is defined by: 

where f3 is a k x 1 vector of unknown parameters, and H(.) is a known cdf 

linking the cumulative probabilities Fj (x) with the linear structure XI f3. To 

ensure that the parameters are identifiable, it is necessary to impose a further 

constraint. Typically this might involve constraining an intercept parameter 

in f3 to be equal to zero, or constraining el . 

The cumulative link regression model for Yi is equivalent to the following model 

for the underlying latent variable Z( 

where Ci has cumulative distribution function H. Then, 
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2. REVIEW OF PREVIOUS WORK 

2.1.1 The proportional odds model 

The proportional odds model is obtained if H is the cdf of the standard logistic 

distribution. The model is therefore defined by: 

( 
Fj(x) ) T 

log 1 _ Fj(x) = Bj - Xi (3 

2.1.2 The proportional hazards model 

The proportional hazards model is obtained if H is the cdf of the extreme value 

distribution. The model is therefore defined by: 

log [log (1 - Fj(x))] = Bj - xf (3 

2.1.3 The probit model 

This is obtained if H is the standard Normal cdf. The model is therefore 

defined by: 

Once an appropriate link function has been chosen, the models may then be 

fitted using maximum likelihood. Inferences about the model are based on the 

associated asymptotic theory. 

The proportional odds model was applied to the data in Table 2.1 taken from 

Holmes and Williams (1954) which shows 1398 children classified according 

to their tonsil size. The response has 3 ordered categories: Not Enlarged, 

Enlarged and Greatly Enlarged. There is one covariate: whether or not a 

child is a carrier of the Streptococcus pyogenes virus. Parameter estimates with 

associated standard deviations were obtained by maximum likelihood and are 

displayed in Table 2.2. The intercept is set to zero and /31 is the additional 

effect on the latent logistic variable scale of carriers over non-carriers. 

18 
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Present but 
Enlarged Greatly 

not enlarged enlarged 
Carriers 19 29 24 

::'-Jon-carriers 497 560 269 

Table 2.1: Tonsil size of carriers and non -carriers of 
Streptococcus pyogenes 

Parameter Estimate (s.e.) 
()1 -0.509 (0.056) 
()2 1.363 (0.067) 
(31 -0.603 (0.227) 

Table 2.2: Parameter estimates from the proportional 
odds model for the tonsil data 

2.2 Bayesian Approaches for Univariate Ordi­
nal Data 

Various authors have found that there can be problems with the maximum 

likelihood approach. Griffiths and Pope (1987) found the maximum likelihood 

estimator to have significant bias for small samples, while Zellner and Rossi 

(1984) also commented on the inaccuracy of the normal asymptotic approxi­

mation for small sample size. The maximum likelihood approach also has no 

meaningful interpretation if the model contains any covariates which are per­

fect predictors. The Bayesian approach developed by Albert and Chib (1993) 

and outlined in the next section overcomes these problems. 

The Bayesian approach is again based on the assumption of the existence of 

an underlying continuous random variable Zi for each respondent, as in the 

Classical approach. 

We wish to estimate the unknown parameter vector f3 using a Bayesian ap­

proach. We do this by applying Bayes theorem. 

19 
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Applying Bayes theorem and for any choice of prior Jf((3) for {3, the posterior 

density of (3 is given by: 

n k 

f({3, ely) ex Jf({3)Jf(e) II II [H(8 j - xi (3) - H(8 j - 1 - xi (3)V(Yi=j) (2.1) 
i=l j=l 

which is somewhat intractable. However, Albert and Chib (1993) suggested a 

simulation-based approach for computing the exact posterior distribution for 

{3 which uses the ideas of data augmentation (Tanner and Wong, 1987) and the 

Gibbs sampler. The method runs as follows: Suppose that the link function 

H(.) is chosen to be <P, leading to the probit model. This corresponds to an 

assumption that the latent continuous variables Zi are independently normally 

distributed: 

Zi rv N(xi (3, 1) (2.2) 

We assume the existence of ordered cut points 81,82 , ... ,8k - 1 such that Yi 

takes the cth level if Zi falls between the lower and upper cut points for the d h 

level. 

(2.3) 

As in the classical approach, the first and last cut points are set to -00 and 00 

respectively: 80 -00,8k 00. As it stands the model is over parameterised 

so the additional constraint 81 = 0 is imposed. 

\Ve now include the latent variables Zl, ... ,Zn as unknown parameters. Under 

this formulation, the parameters z = (Zl' ... , zn), {3, e = (82 , ... , 8k - 1 ) are un-

known and may be estimated using Bayes Theorem. Applying Bayes Theorem 

to the unknown parameters yields the following result: 

f(z, (3, ely) ex f(ylz, {3, e)f(z, (3, e) 

Since y is fully determined by z and e this reduces to: 

f(z, (3, ely) ex f(ylz, e)f(z, (3, e) 

Then decomposing f(z, (3, e) and choosing independent priors for {3 and e, 

f(z, (3, ely) ex f(ylz, e)f(zl{3)f({3) j( e) (2.4) 
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where J(ylz,8) is deterministic, as defined in (2.3), J(zlj3) is the density of 

N(xTj3, 1), and J((3) and J(8) are the prior densities for j3 and 8 respectively. 

\Ve choose these priors as follows: 

• (3 r'V Np(O, T) where T = diag( Tf, ... ,T;) where p is the number of 

explanatory variables, Np denotes the p-dimensional multivariate normal 

distribution, and T? is large . 

.. J(8) ex: 1 (uniform), subject to ordering constraints ()2 < B3 < ... < Bk - 1 

Substituting these priors into Equation 2.4 gives a somewhat intractable joint 

posterior distribution. Albert and Chib suggest using a Gibbs sampler to 

generate from the conditional posteriors of the parameters, thus yielding a 

dependent sample from approximately the joint posterior distribution. The 

method runs as follows: 

2.2.1 Algorithm 1 

1. Starting with initial values for all parameters, sample the parameter 

vector (3 from its conditional distribution 

2. Sample the new latent data from their conditional distributions 

(2.6) 

with Zi truncated to the interval (()Yi- 1, ByJ. This distribution is non­

standard and may be sampled from using the inverse cumulative distri­

bution function method of Devroye (1986), pages 27-29. 

3. Let {Zi : Yi = j} denote the set of latent variables Zi with corresponding 

observed data Yi taking level j. Then the new cut points are sampled 

from their conditional distribution 
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4. Go back to step 1 and repeat. 

Algorithm 1 was applied to the data in Table 2.1 using 10,000 iterations ofthe 

Gibbs sampler. Parameter estimates for f3 and () are displayed in Table 2.3. 

Remember that e1 is set to O. These results are not comparable with those 

Parameter Estimate (s.e.) 
e2 1.206 (0.152) 
Po -0.342 (0.069) 
PI -0.365 (0.135) 

Table 2.3: Parameter estimates from the Bayesian pro­
bit model for the tonsil data 

obtained using the Classical Proportional Odds model approach, because they 

use different link functions. The logit link was used in the Classical approach. 

The logistic distribution can be shown to be approximately linearly related to 

the t-distribution with 8 degrees of freedom as discussed in Albert and Chib 

(1993). Using results from Ntzoufras et al. (2003) the relationship between any 

linear predictor provided by the logit and t(8) link functions is approximated 

by 
gL (1/2) 
gL (1/2) 

where gL1 is the link function for the logistic model and gL2 is the link function 

for the t(8) model, both evaluated at the median for the best approximation. 

This can be seen to be equivalent to: 

35 
PZogit = 16y12Pt(8) (2.8) 

Therefore, if we can implement the Bayesian approach with a t(8) link, the 

parameters estimates can be transformed by Equation (2.8) to be compared 

with the classical approach logit link results. 

Albert and Chib (1993) also provide an algorithm for the t(v) link function. 

The latent variables Zi are now assumed to be independently distributed from 
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the t distribution with locations xT f3 and degrees offreedom v (which we will 

choose to be 8). 

Introducing the additional random variable O"i, this is equivalent to: 

rv N(xT f3, O"T) 

rv Gamma (~ ~) 
2'2 

(2.9) 

(2.10) 

(2.11) 

where we use the following parameterisation for the gamma distribution: 

( 
1 ) (~)~ ( 1 ) ~-1 ( v) 

f 0"; = f( ~) 0"; exp - 20"-; (2.12) 

Using the same priors as for the probit link case, we arrive at the conditional 

distributions for the unknown parameters which are then used to implement 

a Gibbs sampler, as described in Algorithm 2: 

2.2.2 Algorithm 2 

1. Starting with initial values for all parameters, sample the parameter 

vector f3 from its conditional distribution 

2. Sample the parameter matrix ~ =diag( O"r, ... ,0";) from its conditional 

distribution 

2 (V+1 v+(zi- xTf3?) O"i I Zi, f3 rv Inverse Gamma -2-' 2 

z.e. 
1 I f3 G (v + 1 v + (Zi - xT f3?) - z· rv amma --0"2 ~, 2' 2 

2 

with the parameterisation defined in (2.12). 
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3. Sample the new latent data from their conditional distributions 

with Zi truncated to the interval (8Y;-1,8yJ. 

4. Sample the new cut points from their conditional distribution 

5. Go back to step 1 and repeat. 

Algorithm 2 was applied to the data in Table 2.1 and the parameters estimates 

(along with standard deviations) are displayed in Table 2.4. 

Parameter Estimate (s.e.) 
82 1.227 (0.012) 
f30 -0.343 (0.003) 
,81 -0.380 (0.008) 

Table 2.4: Parameter estimates from the Bayesian t(8) 
model for the tonsil data 

The results must be transformed from those given by the t(8) link to be com­

parable with those given by the logit link using (2.8). Table 2.5 shows the 

parameter estimates for the data in Table 2.1, with the first column showing 

the Bayesian results and the second column showing the Classical results. 

Parameter Bayesian Estimate Classical Estimate 
81 -0.530 -0.509 
82 1.367 1.363 
f31 -0.588 -0.603 

Table 2.5: Comparison of parameter estimates from the 
Bayesian and classical approaches for the tonsil data 
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Comparing the results from the classical and Bayesian approaches for each data 

set shows that the two approaches give very similar results. We can therefore 

conclude that the approach suggested by Albert and Chib (1993) provides 

an attractive and flexible alternative to the classical approach for univariate 

ordinal data. 

However, there are some computational issues. Although the algorithm de­

scribed above is straightforward to implement, it can be difficult to obtain 

satisfactory convergence. This is due to the cut point generation step which 

can only sample values between the maximum latent data value in the lower 

category and the minimum latent data value in the upper category that it 

divides. Therefore, if there are many individuals in the corresponding cell of 

the table, leading to many values for the latent data, the cut points can be 

extremely slow-moving with high autocorrelations. There have been several 

studies into methods for accelerating convergence for the cut points. Cowles 

(1996) suggests the use of a multivariate Metropolis-Hastings step which up­

dates cut points and latent variables simultaneously, while N andram and Chen 

(1996) further improved this with a proposal density based on the Dirichlet 

distribution. However, the latter is only effective when cell counts are reason­

able evenly distributed. For multivariate data, Ishwaran (2000) bypasses the 

problem entirely by proposing a reparameterisation with covariate specific cut 

points that allows parameter estimation to be carried out via a leapfrog hybrid 

Monte Carlo approach. 

2.3 A Bayesian Approach for Multivariate Bi­
nary Data 

We have considered various modelling approaches for univariate ordinal data, 

and now turn our attention to the multivariate case. Chib and Greenberg 

(1998) build on the framework laid down by Albert and Chib (1993) to model 

multivariate binary data using a multivariate probit model as suggested by 
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Ashford and Sowden (1970). Suppose that individuals i = 1, ... , n are clas-

sified by binary variables j 1, ... ,po Independent binary response vectors 

Yi are observed, where respondent i takes category Yij for the lh variable. 

Suppose also that the set of covariates Xij are observed for the lh response. 

The multivariate probit model says that the likelihood of observing response 

vector Yi given parameters (3, 2: and covariates Xij is: 

f(Yil(3, 2:) = r . ... ( cPp(tIO,2:)dt JA,p JAil 
where cPp(tIO, 2:) is the density of a p-variate normal distribution with mean 

vector ° and correlation matrix 2: = {(}jd, Aij is the interval 

A .. _ { (-00, X~j(3j) if Yij = 1 
lJ - (' (3 )·f -x ij j' 00 1 Yij - 0 

(3j E Rkj is an unknown parameter vector and (3' = ({3~, ... ,(3~). Note that 

the problem is parameterised in terms of the correlation matrix in order to 

ensure identifiability for the parameters. This is analogous to assuming (}2 = 1 

in the latent normal distribution of Albert and Chib (1993). The multivariate 

probit model is then re-formulated using the methods of Albert and Chib 

(1993) as described in section 2.2. Specifically, latent normal random variables 

Zi rv Np (X i (3, 2:) are introduced, such that 

Yij = J(Zij > 0) (2.13) 

where Xi=diag(x~l' ... ' x~p). Implicitly, the single cut point e1 is set to be 

zero, again for identifiability. 

Let (j = ((}12, (}13, ... , (}p-l,p) denote the p(p 1)/2 distinct elements of 2:. 

Then the values of (j that allow a positive definite matrix 2: form a convex 

solid body in the hypercube [-l,ljP; denote this set by C. Using Bayes' 

theorem, the posterior density of the unknown parameters (3,2: and Z given 

the observed data Y is: 

f((3, (j, Zly) ex f(yl(3, 2:, Z)f((3, 2:, Z) 

ex f(yl(3, 2:, Z)f(ZI(3, 2:)f({3, 2:) 
n 

ex f((3,2:) II cPp(Zil(3,2:)f(YiI Zi ,(3,2:) 
i=l 
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where from (2.13), 

P 

f(YiIZi, /3, b) = II [I(zij > O)I(Yij = 1) I(zij < O)I(Yij = 0)] 
j=l 

and ¢p(Zil/3, b) is the multivariate normal density with the constraint that 

u E C. 

Chib and Greenberg assume prior independence of /3 and u and assign multi­

variate normal distributions to each, with the prior distribution for u having 

mean 0"0 and variance Gr/ and being truncated to the region C. Following 

Albert and Chib, a Gibbs sampler technique may then be used to evaluate the 

posterior distribution, and runs as follows. 

2.3.1 Chib and Greenberg's method 

1. Sample the latent data Zi from their conditional posterior distribution 

ZilYi, /3, b which is truncated p-dimensional multivariate normal. This 

can be sampled using the method of Geweke (1991), which consists of a 

cycle of p Gibbs sampler steps, each from a univariate truncated normal 

distribution. 

2. Sample the parameter vector /3 from its conditional posterior distribution 

/3IZ, y, b which is multivariate normal. 

3. Sample the off-diagonal elements u of b from their joint conditional 

distribution ulZ, y, /3. This distribution is non-standard and requires 

the use of the YIetropolis-Hastings algorithm (Hastings, 1970) outlined 

below. 

4. Go back to step 1 and repeat. 

The conditional posterior distribution for u is given by: 

f(uIZ, (3) ex f(u)f(ZI/3, b) 

ex ¢p(uluo, G(1)¢p(Zlxi/3, ~)I(O" E C) 
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l.e. the product of two multivariate normal distributions truncated to the re­

gion C. This is sampled using the Metropolis-Hastings algorithm. Firstly, a 

suitable proposal distribution must be found. Chib and Greenberg suggest a 

procedure based on a proposal density that is tailored to the un-normalised 

target density g(aIZ, (3) = f(a)f(ZI(3, L.)I(a E C) (in the acceptance prob­

ability, the normalising constants would cancel). The proposal generating pro­

cedure uses a hierarchical variant of a random walk chain and involves a num­

ber of tuning parameters for added flexibility, leading to a proposal from the 

distribution q(a'la, Z, (3). This proposal is accepted with probability 0: where 

o:(a, a') . {f(a')f(ZI(3, L.)I(a' E C) q(ala', Z, (3) I} 
mm f(a)f(ZI(3, L.)I(a E C) q(a'lcr, Z, (3)' 

(2.14) 

In unpublished work, Fronk (2003) uses a similar latent data approach to 

model binary data and applies a Reversible Jump algorithm to investigate 

model choice between competing DAGs. 

2.4 Approaches for Multivariate Ordinal Data 

Chen and Dey (2000) use a similar approach to that of Chib and Greenberg 

(1998) to model correlated ordinal data. They introduce a general class of 

scale mixtures of multivariate normal (SMMVN) link functions, a special case 

of which is the multivariate probit model. 

Suppose that individuals i = 1, ... ,n are classified according to j = 1, ... ,p 

ordinal variable, with each ordinal variable having L levels. For each indi­

vidual, the ordinal response vector Yi (Yil, Yi2, ... , Yip) is observed, along 

with covariate vector Xij (Xijl, Xij2, ... , Xijpj) for each variable j. Let 

(3 j = ({3jl, {3j2, ... , {3jpj) denote the corresponding vector of regression coeffi­

cients, with (3 ((31' (32, ... ,(3p)'. Again, following Albert and Chib (1993) the 

existence of an underlying multivariate random variable Zi = (Zil' Zi2, ... , Zip) 

is assumed, as is the existence of cut points which divide the range of Zij into L 
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contiguous intervals corresponding to the categories. Let e(j, c) denote the cth 

cut point for the jth variable. Then Yij takes the cth level if Zij falls between 

the lower and upper cut points for the cth level: 

Yij = c if e (j, c - 1) :s; Zij < e (j, c) (2.15) 

To ensure identifiability, e(j, 1) = O. The latent variables Zi are assumed to be 

independent and identically distributed multivariate normal random variables: 

(2.16) 

and 

,\ rv f('\) (2.17) 

where /"i:('\) is a positive function of one-dimensional positive-valued scale mix­

ing variable ,\ and f(,\) is a mixing distribution which is either discrete or 

continuous. ~ is taken to be in correlation form to ensure the identifiability 

of the parameters. 

There are two difficult sampling problems to be tackled in order to fit this 

model, one is the generation of the cut points, the other is generating from 

the correlation matrix. In order to tackle these problems, Chen and Dey 

reparameterise the model: 

1)' 

for j = 1,2, ... ,p and i = 1,2, ... , n. Under this parameterisation, the 

SMMVN-link models defined in (2.15) and (2.16) become 

Yij c if e(j, c - 1)* :s; z:j < e(j, c)* 

and 

z; rv Np(xd3*, /"i:('\)~*) 

where the reparameterised cut points are -00 = e(j,O) :s; e(j,l) O:S; 

e(j, 2) :s; ... :s; e(j, L - 1) = 1 :s; e(j, L) 00, and ~* is now in unrestricted 

covariance form. This makes posterior simulation of the parameter ~* much 
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more straightforward. Note that under this new parameterisation, for each 

classifying variable there are only L - 3 unknown cut points to be determined, 

as effectively, this approach is exactly equivalent to fixing the scale of the 

latent variables. However this is achieved by fixing two cut points B(j, 1) and 

B(j, k - 1) rather than one cut point B(j, 1) and a variance L,jj. Note therefore 

that this re-parameterisation is intractable for binary data, where there is only 

a single cut point. 

A special case of the SMMVN model is the multivariate probit model. This 

can be found by taking K('\) = 1 and f('\) = f(l) = 1. Other possible models 

contained within the class of SMMVN-link models are the the multivariate 

t-link models. 

Posterior simulation is again carried out using a Gibbs sampler. Choosing 

independent multivariate normal and inverse Wishart priors for f3* and :E* 

respectively and uniform priors for the cut points, all conditional posterior 

distributions are standard. Therefore, no extra Metropolis-Hastings steps are 

necessary. 

This approach has been successfully applied to genetic data (Kizilkaya et al., 

2003) and dose-finding in clinical trials (Bekele and Thall, 2004). 

2.5 Other Bayesian Approaches for Multivari­
ate Ordinal Data 

There have been few other attempts at modelling multivariate ordinal data 

in a Bayesian framework and those that there are tend to focus on multirater 

data, where items/individuals are rated by several different judges. Observer 

agreement can then be assessed. One such example is the paper by Johnson 

(1996), in which a hierarchical model is proposed. This follows a similar frame­

work as Chen and Dey (2000) except with one important extra assumption, 

that is that there exists a 'true' rating scheme through which each item i can 
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be assigned a latent trait measure Zi, referred to as the item score. Judges are 

assumed to rate items by first estimating this item score and then assigning an 

ordinal rating based on these scores. This is effectively the same assumption 

introduced by Albert and Chib (1993) except with the constraint that for each 

judge, there is the same underlying true score for a particular item. The ap­

proach can therefore not be applied where the classifying variables are in fact 

measuring completely different quantities. Using the same notation as above, 

except that the p classifying variables are now considered as p 'judges', and 

letting Zij be judge j's estimate of item i's score Zi, the model can be written 

as 

where 

Yij = k if e(j, k - 1) < Zij ::::: e(j, k) 

Here bij denotes the nonrandom item-specific bias for judge j, potentially mod­

elled using covariates, and aij denotes the random component of the error made 

by judge j in estimating Zi' The aij are generally assumed to be item indepen­

dent. Assigning appropriate prior distributions to the unknown parameters 

and using the latent data approach of Albert and Chib, posterior estimation 

is then carried out via a Gibbs sampler. Further work and applications of this 

method have been carried out by Johnson and Albert (1999), Johnson et al. 

(2002) and Ishwaran and Gatsonis (2000). 

Rossi et al. (2001) use a similar approach to model multivariate ordinal data 

which arise from survey research, where respondents respond to a number of 

different questions, giving answers on an ordinal scale. Noting that respondents 

vary in their use of such a scale - for example, some use only the middle range 

of the scale, while some only use extremes - Rossi et al. introduce a model to 

account for these differences. In this situation, the p classifying variables are 

the p questions asked, and again, we let Yij denote the response of individual 

i to question j. Again, using the approach of Albert and Chib, the response 

vector Yi is assumed to be a discrete version of a latent underlying continuous 

random variable z: which Rossi et al. (2001) assume to have the distribution 
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z; rv Np((3;, :E;). The discretising set of cut points (eo, ... , ek ) are assumed 

to be common to all p variables. Note that this is an alternative approach to 

those previously discussed in that each individual is assumed to have a different 

latent mean and variance but with common cut points across variables, whereas 

others have assumed common mean and variance for individuals and different 

cut points across variables. As it stands this model is overparameterised; to 

overcome this, for each individual the latent variable z; is assumed to be a 

location-scale shift of a common underlying latent variable Zi: 

Note that the original mean and covariance structure can be generated using 

(3* = (3 + Ti and:E* o-;:E. The cut points have the identifiability constraint 

L:: ek = constant and are re-parameterised to take the quadratic form: 

in order to allow for non-linear spread. Priors are chosen for all parameters in 

the hierarchical model and posterior estimation is carried out using a Gibbs 

sampler in five blocks with Metropolis-Hastings steps. The approach suggested 

by Rossi et al. has a high level of complexity due to the nature of the applica­

tion, that of overcoming scale usage heterogeneity. Such a level of complexity 

is unlikely to be necessary to model standard multivariate ordinal data. 
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Chapter 3 

A Bayesian Model for 
Multivariate Ordinal and 
Binary Data 

In this chapter, we extend the approach for univariate data described by Albert 

and Chib (1993) and implemented in Chapter 2. In contrast to the approaches 

of Chib and Greenberg and Chen and Dey, this approach will be sufficiently 

general to encompass applications with either binary or ordinal variables or 

both. We make the same assumption that the ordinal categorical data are a 

discrete version of underlying continuous data. This means that we assume 

the existence of a latent continuous multivariate random variable associated 

with each response. The domain of the latent variable is divided by cut points 

into contiguous regions in 1R? where p is the dimension of the data. We will 

focus on developing a model to fit ordinal multivariate data with no covariates. 

3.1 The Model 

For each individual Yi' we assume the existence of a latent multivariate con­

tinuous variable Zi E RP. In the univariate case, the latent variables Zi were 
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assumed to be normally distributed with mean xd3 and variance 1. With no 

covariates this reduces to a mean;3. If we were to follow the analogous setup 

in the multivariate case, the variance matrix of the latent data would be in 

correlation form. However, there are problems in working with the correlation 

matrix as outlined in Chapter 2. For these reasons we assume the covariance 

matrix to be in unrestricted form. Therefore, each Zi is assumed to be normally 

distributed with common mean /3 and variance-covariance matrix "E. 

i = 1, ... ,n 

We assume the existence of ordered cut points which, for each classifying vari­

able, divide the real line into intervals corresponding to the ordered categories. 

Let ()(j, c) denote the cth cut point for the jth variable. Then Yij takes the 

cth level if Zij falls between the lower and upper cut points for the cth level: 

Yij = c if ()(j, c - 1) :::; Zij < ()(j, c) (3.1) 

The first and last cut points in each dimension are set to -00 and 00 re­

spectively. To ensure identifiability, the following additional constraints are 

imposed: 

()(j, 1) = 0, ()(j, 2) = 1. 

Two constraints need to be imposed for each dimension, so that the scale of 

the latent data is identified. This is equivalent to fixing the single cut point 

and forcing "E to be in correlation form in the binary case. This is an arbitrary 

choice of constraints and alternatives will be investigated later. This is an 

analogous model to that described in Chen and Dey (2000). 

The model is determined by the parameters /3,"E, Zi, (j. By Bayes theorem, 

their joint posterior distribution is given by: 

f(z, /3, "E, 81Y) ex: f(ylz, /3, "E, 8)f(z, (3, :E, 8) 

Since y is fully determined by Z and 8 this reduces to: 

f(z, /3,"E, 81y) ex: f(ylz, 8)f(z, /3, :E, (j) 
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Then decomposing f(z, {3, :E, 0) and choosing independent priors for {3, :E and 

0, this becomes: 

f(z, {3,:E, Oiy) ex f(yiz, O)f(zi{3, :E)f({3)f(~)f(O) (3.2) 

where f(yiz, 0) is deterministic as described in (3.1), f(zif3,:E) is the normal 

density Np ({3, :E), and f({3), f(:E) and f(O) are the prior densities for {3, :E 

and 0 respectively. We choose these priors as follows: 

• B(j,m) rv uniform 

• :E rv Inverse-Wishart (q, A) with probability density function 

(3.3) 

These priors were chosen in order to yield posterior distributions that are 

standard and thus easily simulated from. In our examples we choose the para­

meters of these priors to give as noninformative priors as possible. The matrix 

T is a diagonal matrix T diag(Tfl' Ti2"'" T;p) where Ti~ is large. A neces­

sary condition for the inverse-Wishart distribution to be proper is that q > p; 

however the smaller the value of q, the less informative the prior; q is therefore 

set to be p 1. It is less clear what to set A to be, for now it is set to be 

the identity matrix Ip; sensitivity to the choice of prior parameters will be 

investigated later. 

Substituting these priors into Equation (3.2) yields the posterior distribution 
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of the unknown parameters: 

We wish to estimate properties, such as the mean and variance, and marginal 

distributions of these unknown parameters, but this involves integrating the 

Equation (3.4) above. To overcome this problem, we use a Monte Carlo Markov 

Chain (MCMC) to generate random samples from this distribution. 

To sample this posterior density, the following Gibbs sampler method was 

used. This method was chosen due to the standard form of the conditional 

distributions of the unknown parameters. 

3.2 Algorithm 3 

1. Starting with initial values for all parameters, sample the mean 13 of the 

latent data from its conditional distribution 

2. Sample the variance :E of the latent data from its conditional distribution 

:E 113, Z rv Inverse-Wishart (A + nS,6' q + n) 
where S 13 = ~ l.:..~=l (Zi-j3) (zi-j3f and the inverse-Wishart distribution 

is parameterised as in (3.3). 
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3. Sample the new latent data from their conditional distributions 

with Zij truncated to the interval (e(j, Yij - 1), e(j, Yij)). 

4. Sample the new cut points from their conditional distribution: 

e (j, m) I z rv U nif ( mfx {Zij : Yij = m}, min {Zij : Yij = m + I} ) 

5. Go back to step 1 and repeat. 

If a large enough sample is generated from the 1iarkov Chain, this is a depen­

dent sample from approximately the joint posterior distribution, and hence 

samples from the marginal distributions of each of the parameters (and any 

functions of interest) can be easily evaluated. All the conditional distributions 

are standard apart from those used to generate the latent data Zi which are 

multivariate truncated normal distributions. Sampling from this distribution 

is carried out via a sequence of univariate truncated normals using the method 

developed by Geweke (1991). This consists of a cycle of p Gibbs steps through 

the components of Zi, which have truncated univariate normal distributions. 

These are generated using the inverse distribution function method (Devroye, 

1986). 

3.3 Example 1: Oesophageal Cancer Dataset 

The scheme outlined in Algorithm 3 was applied to the two-way con­

tingency table displayed in Table 3.1 (Breslow, 1982), which shows the results 

from a Case-Control study investigating the relationship between drinking bev­

erages at burning hot temperatures and incidence of oesophageal cancer. 

The Gibbs sampler was implemented using 30,000 iterations. The posterior 

means along with the posterior standard deviations were obtained for /3, :E 

and e. 
E(f31 ) = ( -0.132(0.42) ) 

Y -2.448(0.73) 
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Control 
Case 0 1 2 3 

0 31 5 5 0 
1 12 1 0 0 
2 14 1 2 1 
3 6 1 1 0 

Table 3.1: Number of beverages drunk at burning hot 
temperatures for oesophageal cancer case-control pairs 

E(bl ) = (7.936(0.564) -0.025(0.180)) 
Y -0.025(0.180) 10.403(1.091) 

E( 6l( case,3) Iy) = 3.315(0.670) 

E(6l(control,3)ly) = 4.571(0.421) 

Table 3.2 shows the mean posterior predictive table (the expected data) es­

timated by the model. This was found by taking a sample of size 80 from 

the normal distribution with mean and variance generated at each iteration 

of the Gibbs sampler. These latent data were then categorised using the cut 

points generated at the same iteration of the Gibbs sampler. The mean over 

all 30,000 tables was then taken. 

Control 
Case 0 1 2 3 

0 32.48 3.62 4.60 0.59 
1 9.49 1.06 1.33 0.16 
2 14.41 1.61 2.07 0.26 
3 6.45 0.74 0.99 0.14 

Table 3.2: Mean posterior predictive data for oe­
sophageal cancer case-control pairs 
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3.3.1 Discussion 

CD A comparison of the observed and expected data in Tables 3.1 and 3.2 

indicates that the model is performing well, as observed and expected 

cell counts are very close. 

CD The mean in both dimensions is less than zero, which corresponds to 

the cell Case=O, Control=O, i.e. the model indicates that the data are 

concentrated in this area. This agrees with the observed data . 

• The correlation between Case and Control is -0.006. The model in­

dicates that there is little correlation between the Case-Control pairs. 

Again, this agrees with the observed data, as there is no obvious strong 

dependence structure. 

CD The estimated third cut point for the Controls (columns) is higher than 

that for the Cases (rows). This implies that there are fewer people to 

have drunk more drinks at burning hot temperatures in the Controls. 

Again this agrees with the observed data. 

The mean posterior predictive density of the latent variables Zi is shown in 

Figure 3.1, complete with the mean posterior cut points. This clearly illustrates 

the lack of dependence structure. 

3.4 Model Diagnostics 

3.4.1 Convergence 

In order to check the convergence of the Gibbs sampler, trace plots were plotted 

for each of the parameters estimated. Figures 3.2 and 3.3 show the trace plots 

for (31 and :Ell respectively. 
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Figure 3.1: Mean posterior distribution of the latent variable with posterior 
means for cut points overlaid. 
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Figure 3.2: Trace plot for (31 for oesophageal cancer data 
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Figure 3.3: Trace plot for :Ell for oesophageal cancer data 

These are typical of the trace plots for each estimated parameter. They show 

that the Gibbs sampler is mixing well, with negligible burn-in period. 

As discussed in Chapter 2, it has been noted that convergence of the Gibbs 

sampler is sometimes slow when there are free cut points to be estimated, 

especially if the sample size is large. This is due to the way that the free 

cut points are generated. Their conditional distribution is uniform on the 

space between maxi {Zij : Yij m} and mini {Zij : Yij = m + I}. Clearly if 

there are many individuals in each category, this space will be small. As a 

consequence, the cut point values can change very little between successive 

iterations. This can also affect the convergence of the other parameters, and 

hence the convergence of the Gibbs sampler. Figure 3.4 shows the trace plot 

for the free cut point for Case. 

Note that although this is not moving as freely as the other parameters, it 

still appears to be converging satisfactorily. This is probably due to the small 

sample size of 80, so that there are relatively few individuals in each category. 

We shall see some examples in Chapter 4 where the convergence of the free 
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Iteration 

Figure 3.4: Trace plot for B( Case, 3) for oesophageal cancer data 

cut point is more questionable. As discussed in Chapter 2, Cowles (1996) and 

::iandram and Chen (1996) have suggested methods of speeding up convergence 

of cut points. 

The convergence of the data augmentation Gibbs sampler algorithm could also 

be improved by employing the method of parameter expansion described by 

Liu (2001). Parameter expansion works by introducing extra parameters with­

out distorting the original observed data model. Liu and Wu (1999) identify 

conditions under which a parameter expansion algorithm can be guaranteed 

to outperform a standard data augmentation algorithm. In the discussion of 

van Dyk and Meng (2001), Liu provides a particular example ofthe parameter 

expansion method for the multivariate probit model, while Imai and van Dyk 

(2005) use the method for the multinomial probit. 
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3.4.2 Goodness-of-fit 

In order to assess the quality of the model, we need some measure of 

its goodness-of-fit. We use a simulation-based method proposed by Dey et al. 

(1998), which assesses the probability of the observed data being predicted by 

the model. To do this, 30,000 tables were generated, one for each iteration, us­

ing the mean, variance and cut points produced at that iteration. We therefore 

have the observed table cell counts: 

{yfbS; i 1, ... , 16} 

and 30,000 tables generated during the MCMC: 

{yred,j; i 1, ... , 16;j 1, ... ,30, OOO} 

If the model provides a good fit to the data, we would expect the original 

table to be typical of tables generated by the model. In order to assess this, 

three distance measures are used to measure the 'distance' between each of the 

30,000 tables and the posterior predictive mean table, and also the distance 

between the initial data and the posterior predictive mean table. If the model 

fits poorly, we would expect the latter distance to lie in the upper tail of 

the distribution of distances. The distance measures used are the Pearson's 

distance, Deviance distance, and the Maximum Absolute Difference distance: 

• Pearson's distance: 
16 (pred,j -pred) 2 
"Yi - Yi 
~ -pred 
i=l Yi 

• Deviance distance: 
16 pred,j 2" ypred,j log ~ 
~ 2 -pred 
i=l Yi 

• Maximum Absolute Difference distance: 

{ I 
pred,j -pred I } max Yi - Yi 

2 
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20 40 60 80 100 

Pearson's Distance 

Figure 3.5: Estimated density of Pearson's distance measure for oesophageal 
cancer data 

Figures 3.5, 3.6 and 3.7 show the densities of the Pearson's, Deviance and 

Maximum Absolute Difference distance measures respectively. Note that cell 

counts of less than 5 were pooled. The vertical line represents the distance 

between the observed data {yfbs} and the posterior predictive mean table. 

The fact that for each distance measure, the vertical line is well into the lower 

tail of the density shows that the model fits very well. 
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Deviance Distance 

Figure 3.6: Estimated density of deviance distance measure for oesophageal 
cancer data 

10 15 20 

Absolute difference between observed and expected 

Figure 3.7: Estimated density of maximum absolute difference distance mea­
sure for oesophageal cancer data 
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3.5 Example 2: Blackbird Dataset 

The scheme outlined in Algorithm 3 was applied to the three-way con­

tingency table displayed in Table 3.3, taken from Anderson and Pemberton 

(1985), which shows 90 'first-year' blackbirds cross-classified on three aspects 

of their colour. The colours of the lower mandible (LM), the upper mandible 

(U M) and the orbital ring (OR) were recorded as ordered categorical vari­

ables, ranging from all black (1) to all yellow (3). For each variable, there are 

three ordered categories. 

Lower Upper Orbital Ring 
Mandible Mandible 1 2 3 

1 40 19 0 
1 2 0 0 0 

3 0 1 0 
1 1 6 0 

2 2 1 2 1 
3 0 1 0 
1 1 2 0 

3 2 0 1 1 
3 0 6 7 

Table 3.3: Ninety blackbirds classified by colour of upper 
mandible, lower mandible and orbital ring. 

The Gibbs sampler was implemented using 30,000 iterations. The posterior 

means along with their standard deviations were obtained for f3 and ~. Note 

that since there are only three categories for each variable, there are no free 

cut points to be estimated. The data were ordered so that Variable 1 = LM, 

Variable 2 = UM and Variable 3 = OR. 

( 

-3.79(0.01) ) 
E(f3ly) = -13.01(0.02) 

0.062(0.001) 

( 

84.20(2.62) 
E(~ly) = 95.49(3.35) 

4.21(0.81) 

95.49(3.35) 
434.58(6.08) 

9.91(1.02) 
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As we would expect, the posterior means for LM and UM are well below zero, 

corresponding to category 1 (all black). This is due to the fact that most of 

the observed birds fall into this category. However there are birds that fall into 

category 3 (all yellow) for the variables LM and UM. The posterior variance is 

high to allow for this despite the mean being (relatively) much smaller than O. 

The posterior mean for OR falls on the borderline between categories 1 and 2, 

thus reflecting the fact that birds are more evenly spread over categories for 

this variable. 

Table 3.4 shows the mean posterior predictive table (the expected data) es­

timated by the model, calculated using the method described in Section 3.3. 

Lower Upper Orbital Ring 
Mandible Mandible 1 2 3 

1 36.16 17.05 1.37 
1 2 0.36 0.61 0.10 

3 1.50 3.57 1.04 
1 1.07 1.78 0.30 

2 2 0.05 0.14 0.05 
3 0.16 0.76 0.32 
1 2.64 6.59 2.01 

3 2 0.11 0.56 0.30 
3 0.64 5.29 5.46 

Table 3.4: Mean posterior predictive data for blackbird 
colouring data 

The model appears to provide a good fit to the data. We use the simulation 

goodness-of-fit method described in 3.4.2 to check this. The chi-squared and 

deviance statistics are not entirely satisfactory as many of the posterior mean 

cell counts are small and thus have a high influence on the goodness of fit 

statistics measures. The absolute distance measure is unaffected by this and 

the density is shown in Figure 3.8, with the vertical line representing the 

distance between the observed data and the posterior predictive mean table. 

47 



3. A BAYESIAN MODEL FOR MULTIVARIATE ORDINAL AND BINARY DATA 

5 10 15 20 25 

Absolute difference between observed and expected 

Figure 3.8: Estimated density of maximum absolute difference distance mea­
sure for the blackbird data 

This agrees with observation of Tables 3.3 and 3.4 that the model appears to fit 

well. Trace plots of the parameters indicated that convergence was satisfactory. 

3.6 Binary Data 

\Ve require a general method for both ordinal and binary data (or a mixture 

of both). If a classifying variable is binary, there is only one finite cut point to 

be constrained, leaving a remaining constraint to be imposed to ensure identi­

fiability. For binary data, Chib and Greenberg (1998) constrain the marginal 

variances ali. This requires specifying a prior distribution and simulating from 

the posterior distribution of a restricted-covariance matrix. The prior normal­

ising constant for such a distribution over covariance matrices restricted in this 

way is not generally available, which creates difficulties for model determina­

tion as this constant is explicitly required in the marginal likelihood (1.2). \Ve 
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introduce an alternative parameterisation of the model that not only aids com­

putation for the single model case but also provides a very neat framework for 

model determination: the inverse covariance matrix is parameterised in terms 

of its Cholesky decomposition 

(3.5) 

where P is an upper triangular matrix. This parameterisation is motivated 

by the following decomposition of the joint likelihood for the latent variables 

!(Zi) = !(Zil, Zi2, ... , Zip): 

!(Zi) = !(Zip)!(Zi,p-llziP)!(Zi,p-2I zi,p-l, Zip) ... !(ZilI Zi2, Zi3, ... , ZiP) 

This can be expressed as the following recursive set of equations. 

N ({3p, ¢~p) (3.6) 

¢p-l,p (1) ,Bp- 1 , Zip + N 0, -'-=-2--
q>p-l,p-l ¢p-l,p-l 

¢p-2,p ¢p-2,p-l (1) 
{3p-2 - Zip - Zi,p-l + N 0, ---=-2--

¢p-2,p-2 ¢p-2,p-2 ¢p-2,p-2 

¢lp ¢1,p-l 912 (1 ) 
jJ rf... ~p rf... ~,p- . 2 , rf...2 !-II - -. -z· - -. -z· 1 - ... - -Z'2 + N 0-

<,V 11 <,V 11 cp 11 'f'11 

In matrix form, this is equivalent to 

° 
_ </;12 _ </;13 q,lp 

<Pll </;ll - q,ll 

° 
_</;23 q,2p 

q,22 - q,22 

+ 

° 
q,p-l,p 

q,p-l,p-1 

0 f3 .p 

+ Np (0, diag (:7i) ) 

Rearranging and taking variances (and using the facts that Var(AT X) 

ATVar(X)A and Var(zi) = :E) we arrive at the following equation. 

:E = U-
1
diag (:7i) U-

T 
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3. A BAYESIAN MODEL FOR MULTIVARIATE ORDINAL AND BINARY DATA 

where U is the upper-triangular matrix: 

1 cP12 cP13 
cPn cPn 
1 cP23 

cP22 

U= 

Taking inverses, this can be expressed as 

1 

cPlp 

<Pn 
<P2p 

cP22 

cPp-l,p 

cPp-l,p-l 

1 

where D is the diagonal matrix diag( <Pii). Therefore we finally arrive at the 

Cholesky decomposition parameterisation of the inverse variance matrix ex­

pressed in (3.5), with <1> = DU. From (3.5), we see that cPii can be interpreted 

as the conditional precision of the latent data for variable i given the latent 

data for all variables preceding i in the decomposition. The off-diagonal ele­

ments <Pij can be interpreted as scaled regression coefficients. 

The model is now determined by the parameters /3, <P, Z, e. By Bayes theorem, 

their joint posterior distribution is given by: 

f(z, /3, <1>, ely) ex: f(ylz, /3, <1>, e)f(z, /3, <1>, e) 

Since y is fully determined by z and e this reduces to: 

f(z, /3, <1>, ely) ex: f(ylz, e)f(z, /3, 4>, e) 

Then decomposing f(z, /3, <1>, e) and choosing independent prior distributions 

for /3, <1> and e, this becomes: 

f(z, /3, ~,ely) ex: f(ylz, e)f(zl/3, <1> )f((3)f( <I> )f(e) (3.7) 

where f(Ylz, e) is deterministic as described in (3.1), f(zl(3, <1» is the density 

Np (/3, (<1>T <1> )-1), and f(/3), f( <1», and f( e) are the independent prior densities 

for /3, <1> and e respectively. 
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The standard conjugate prior for covariance matrices is the inverse-Wishart 

distribution (3.3). This distribution has an inherent lack of flexibility for spec­

ifying prior information, as there are PCPi l) hyperparameters (the elements 

of A) to give a point estimate for ~ but only a single scalar parameter (q) 
with which to quantify uncertainty about this estimate. To overcome this, 

Brown et al. (1994) proposed the generalised inverse Wishart (Gl\V) distrib­

ution which provides an extremely flexible prior distribution for a covariance 

matrix. We follow a particular parameterisation of the G IW distributino pro­

posed by Daniels and Pourahmadi (2002). They showed that if independent 

gamma prior distributions are placed on the diagonal elements cfJii of <I> and if, 

conditional on ¢ii, independent multivariate normal priors are placed on the 

partial rows ¢i = (cfJi,HI, ... ,cfJip) of the upper triangle of the matrix <I> , then 

this prior is conditionally conjugate. For a certain choice of parameters, this 

distribution simplifies to the inverse-Wishart distribution, the usual conjugate 

prior for covariance matrices. Since we do not have strong prior beliefs about 

the covariance structure we use this prior. However, our approach is suffi­

ciently flexible to allow prior information to be incorporated when available. 

Garthwaite and Al-Awadhi (2001) propose elicitation methods for quantify­

ing expert opinion (where available) via both the generalised inverse vVishart 

and inverse Wishart distributions. Suppose that ~ is assumed to be, a priori, 

inverse-Wishart with parameters A and q. Then the equivalent prior distrib­

ution for <I> is: 

where 

cfJii rv JbiX~-HI 
¢i I cfJii rv Np- i (cfJiiJ-li' Ai I) 

A -I 
-ai i 
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and A-I is partitioned as follows: 

A-I = 

ith 

column 

1 

;~ "~i) 
ai Ai 

These priors are conditionally conjugate, therefore the posterior conditional 

distributions of ¢il¢ii and ¢iil¢i are multivariate normal and gamma respec­

tively. This is very useful for posterior computation. Convenient priors for 

the other unknown parameters are B(j, c) rv 1 and 13 rv Np(O, T), a standard 

conjugate prior. 

On substituting these priors into (3.7), we arrive at the posterior distribution 

which is again analytically intractable. We therefore use a Gibbs sampler 

approach to find a dependent sample from the posterior distribution of the 

unknown parameters. In order to do this, we need to find the conditional 

posterior distributions of <[>,13, z, e. 

The joint likelihood for the elements of <[> is 

f(¢ii'¢iI Z ) ex: II 
rows i of <I> 

9iCi
l
9n] 

[ 
¢7i (,J.,. . C-1)C (,J.,. A, C-1)T] exp -2 'Yi + ¢iigi i i 'Yi + 'f'iigi i 

where G = L~=1 (Zi - j3)(Zi - j3f is partitioned as follows: 

ith 

column 

1 

( ";i ) G gii +- ith row 

g[ Ci 
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The posterior distribution of 1>lz, (3 can now be found using Bayes' Theorem 

(1.1). Defining 
¢ij 

7/Jij (3.10) 
¢ii 

the conditional posterior distributions for 'lfJi = (7/Ji,H1, ... ,7/Jip) and ¢7i are as 

follows: 

(3.11) 

(3.12) 

where 
q+n ,= ~----~-----1 z 

(3.13) 

1 -1 T T 
bi+gii-9iGi 9i ('lfJi J-ti)Ai('lf;i J-ti) 

+ ('lfJi + 9iG-;1)Gi('lfJi + 9iG-;1)T (3.14) 

The latent data z are sampled from 

with Zij truncated to the interval (B(j, Yij - 1), B(j, Yij)). To sample from this 

distribution, we again use the method of Geweke (1991). The mean (3 of the 

latent data is sampled from the multivariate normal distribution: 

Finally, the cut points are generated from their conditional distributions 

Starting with initial values for all parameters, the sampling scheme runs by 

sampling iteratively from the conditional posterior distributions in the or­

der [(31 z, 1>], [¢i11 'lfJ1' z, (3], ... , [¢~p 1 'lfJp , z, (3], ['lfJ1i ¢i1' z, (3], ... , ['lfJp i ¢~P' z, (3], 
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[zlIYl' (3, 4>, BJ, ... , [znIYn, (3,4>, B] and [Biz]. We refer to this as Algorithm 

4. 

Clearly, posterior simulation of the matrix 4> may be carried out via inde­

pendent draws from ¢>i I rPii, Z and rPii I ¢>i' z. The immediate advantage of this 

is that the conditional precision rP;i for any binary variable may be fixed to 

ensure identifiability. Such precisions are never updated by sampling, but the 

fact that they are fixed has no implications for any other conditional distrib­

ution. The resulting posterior distribution for 4> and hence for the restricted 

covariance matrix :E is now easily generated using independent draws from 

'lfJi I rPii , z. This is due to the conditional independence structure provided by 

the Cholesky decomposition parameterisation. Purely ordinal data, purely bi­

nary data or a mixture of both can all be modelled with this approach. This 

gives a great advantage of this approach over others suggested and reviewed 

in Chapter 2. A further advantage is in the implementation of the model 

determination method described in Chapters 4 and 5. 

3.7 Example and Results 

In order to illustrate the method, we consider the 2 x 3 x 4 table from 

Knuiman and Speed (1988), shown in Table 3.5. It shows 491 subjects, clas­

sified according to Obesity (3 ordered levels), Hypertension (2 levels) and 

Alcohol Intake (4 ordered levels). 

We order the table so that variable 1 is Obesity, variable 2 is Hypertension 

and variable 3 is Alcohol Intake. The conditional variance for the binary 

margin of the table, Hypertension was set to 1: rP22 = 1. Algorithm 4 was 

applied to this data set, using 400,000 iterations. The following estimates for 

the posterior means along with their standard deviations were obtained for (3, 

:E = (4)T 4> )-1, and B: 

( 

0.000(0.120) ) 
E((3ly) = 0.635(0.062) 

0.042(0.073) 
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Alcohol Intake 

Obesity Hypertension ( drinks/day) 
0 1-2 3-5 5+ 

Low Yes 5 9 8 10 
No 40 36 33 24 

Average 
Yes 6 9 11 14 
No 33 23 35 30 

High Yes 9 12 19 19 
~o 24 25 28 29 

Table 3.5: Three-way table showing 491 subjects, clas­
sified by Hypertension, Alcohol Intake and Obesity 
(Knuiman and Speed, 1988) 

( 

5.576(0.772) -0.459(0.152) 0.407(0.188) ) 
E(1::IY) = -0.459(0.152) 1.036(0.027) -0.260(0.095) 

0.407(0.188) -0.260(0.095) 2.120(0.221) 

E(B(Alcohol,3) IY) = 2.034(0.060) 

Note that E(1::IY) has been estimated based on the generated sample of CP. 

Table 3.6 shows the mean posterior predictive data (the expected data as 

predicted by the model). 

Alcohol Intake 

Obesity Hypertension (drinks/day) 
0 1-2 3-5 5+ 

Low 
Yes 6.74 7.46 9.37 9.37 
~o 38.87 32.80 33.99 25.86 

Average Yes 7.52 9.17 12.30 13.56 
No 30.49 29.02 32.46 27.45 

High Yes 8.35 11.11 16.09 19.95 
No 24.18 25.34 30.57 28.96 

Table 3.6: Mean posterior predictive cell counts for 
the Hypertension, Alcohol Intake and Obesity data 
(Knuiman and Speed, 1988) 
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3.7.1 Discussion 

It is harder to conclude anything for the 3-way table because the struc­

ture of the data is not as simple to interpret as in the 2-way case. However, 

there are still some points to be noted from these results . 

., The expected data appear to be very close to the observed data. 

III The posterior mean for Hypertension (0.635) falls clearly into the 'No' 

category, indicating that people in this data set are less likely to have 

Hypertension. This agrees with inspection of the observed data. The 

posterior means for Alcohol Intake and Obesity correspond to the cate­

gories '3-5' and 'Average' respectively. 

.. If we consider the estimated posterior mean correlation matrix, calcu­

lated from E(~ly), we find that there is slight positive correlation be­

tween Alcohol Intake and Obesity (0.12), and slight negative correlation 

between Alcohol Intake and Hypertension (-0.18) and between Obesity 

and Hypertension (-0.19). Bearing in mind that Hypertension has been 

coded so that 'Yes' is the lower category and 'No' the higher category 

(as Hypertension is a binary variable, it can be ordered either way), 

these results agree with common sense. There is correspondence between 

higher alcohol intake and higher obesity, between higher alcohol intake 

and presence of hypertension, and between higher obesity and presence 

of hypertension. 

CD Generally, there are no extreme values m the model. This indicates 

that respondents are fairly well spread out over the whole table, with no 

strong concentration in any particular area. Again, this agrees with the 

observed data. 
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Figure 3.9: Trace plot for /32 for hypertension, alcohol intake and obesity data 

3.7.2 MCMC diagnostics 

Convergence 

In order to assess the convergence of the Gibbs sampler, trace plots were 

plotted for each of the parameters estimated. Figures 3.9 and 3.10 show the 

trace plots for /32 and :E13 respectively. 

These are typical of the trace plots for each estimated parameter. They show 

that the Gibbs sampler is mixing well, with negligible burn-in period. We can 

therefore conclude that the convergence of the Gibbs sampler is satisfactory. 

Figure 3.11 shows the trace plot for the free cut point for Alcohol Intake. 

Note that although the Gibbs sampler appears to be traversing the parameter 

space, it is doing so slightly more slowly than for the mean and variance 

parameters. This is due to the fact that the categories either side of this free 

cut point contain approximately 100 individuals each, a fairly large number of 
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~,-----------------------------------------, 
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Figure 3.10: Trace plot for 2:: 13 for hypertension, alcohol intake and obesity 
data 

100000 200000 300000 400000 

Iteration 

Figure 3.11: Trace plot for O(Alcohol, 2) for hypertension, alcohol intake and 
obesity data 
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Figure 3.12: Autocorrelation function plot for ,82 for hypertension, alcohol 
intake and obesity data 

individuals in each group, thus constraining the cut point to move slowly as 

discussed in Section 3.5. 

This is emphasised by considering plots of the autocorrelation function. Figure 

3.12 shows the autocorrelation function plot for /32 while figure 3.13 shows the 

autocorrelation function plot for 8 (Alcohol, 2). 

Clearly the autocorrelation function plot for 8(Alcohol, 2) indicates slow con­

vergence, but this does not seem to affect the convergence of /32 or any of the 

other parameters. 

Goodness-of-Fit 

To assess the goodness-of-fit or otherwise of the model, the method 

outlined in Section 3.4.2 was applied. Figures 3.14, 3.15 and 3.16 show the 
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Figure 3.13: Autocorrelation function plot for O(Alcohol, 2) for hypertension, 
alcohol intake and obesity data 

densities of the Deviance, Pearson's, and Maximum Absolute Difference dis­

tance measures, with the vertical line representing the original data set. Again, 

the model appears to fit extremely well. 

3.7.3 Fitting a single graphical model 

So far, we have not considered the issue of model choice, and have restricted our 

attention to results gained from the saturated model. However, investigating 

which explanatory variables (and interactions between them) are significant 

and should therefore be included in a model for the data, is perhaps of even 

greater interest. 

In order to demonstrate ideas that will be used in the next chapter when model 

determination is fully discussed, we show how all parameters for a single non­

saturated graphical model may be estimated. Models are characterised by 

the structure of the inverse covariance matrix :E-1 and hence by <P. A zero 
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20 40 60 80 

Pearson's Distance 

Figure 3.14: Estimated density of Pearson's distance measure for hypertension, 
alcohol intake and obesity data 

20 40 60 80 

Deviance Distance 

Figure 3.15: Estimated density of deviance distance measure for hypertension, 
alcohol intake and obesity data 
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10 15 20 25 30 

Absolute difference 

Figure 3.16: Estimated density of maximum absolute difference distance mea­
sure for hypertension, alcohol intake and obesity data 

entry in :E-1 and hence in <I> corresponds to conditional independence between 

variables. The characterisation of a model by <I> is actually somewhat more 

complex than stated here and will be described fully in Chapter 4, but the 

method of estimating a single model described below is unaltered by this (just 

the interpretation is). 

Parameter estimation for a non-saturated graphical model is carried out using 

the Gibbs sampler, just as for the saturated model. The only thing that is 

changed is the off-diagonal structure of <I>. Therefore the conditional posterior 

distributions for /3, Z, ¢ii and {} are unchanged. For i 1, ... ,n the conditional 

posterior distribution for ¢i may be altered by the fact that some elements 

of ¢i are zero. There is no need to generate the zero elements of ¢i as they 

are zero, and the non-zero elements of ¢i can be found by conditioning on the 

zero elements. In order to do this, we use the standard result for conditional 

distributions of subsets of multivariate normally distributed random variables. 
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From (3.11), the conditional posterior distribution of'l/Ji is 

Re-ordering the vector 'lfJi so that 'lfJr = ('lfJil, 'lfJiO) where 'lfJil represents non­

zero elements of 'lfJ i to be generated and 'lfJ iO represents the zero elements of 

'lfJ i to be conditioned on, the conditional distribution of 'l/Jil is: 

(3.15) 

where A and K are partitioned as follows: 

K = (Ku KlO) 
KOl Koo 

Parameter estimation for a non-saturated model is thus carried out using a 

Gibbs sampling procedure, which samples iteratively from the conditional 

posterior distributions in the order [,I3lz, <1?], [¢ill'lfJl' Z, ,13], ... , [¢;p I 'lfJp , z,,I3], 
['lfJll¢il' Z, ,13], ... , ['lfJpl¢;p, z,,I3], [zIIYl,j3, <1?, 0], ... , [zn IYn',I3, <1?, 0] and [Olz]. 

We demonstrate this with an example using the data in Table 3.5. We fit the 

model A + OH; since Variable 1 = Obesity, Variable 2 = Hypertension and 

Variable 3 = Alcohol Intake, the constraints ¢13 = ¢23 = 0 are imposed on 

the matrix <1? There is therefore only one off-diagonal element of <1? to be 

estimated, that is ¢12' This is generated in the Gibbs sampler step for 'lfJl' 
conditioning on ¢13 = 1/J13 0 as described above. Since ¢23 = 0, there is no 

generation step for 'lfJ2' 

The following estimates for the posterior means along with their standard 

deviations were obtained for,l3,:E (<1?T<1?)-I, and 0: 

E(,I3IY) 
( 

0.050(0.060) ) 
0.627(0.061) 
1.119(0.089) 
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( 

1.397(0.194) -0.220(0.075) 
E(~ly) = -0.220(0.075) 1(0) 

0(0) 0(0) 

0(0) ) 
0(0) 

2.458(0.385) 

E(e(Alcohol,2) Iy) = -0.066(0.000) 

Note that since Alcohol Intake is marginally independent of both Obesity and 

Hypertension, the corresponding elements of the covariance matrix ~ are O. 

The resulting posterior predictive mean data, generated in the usual way, are 

shown in Table 3.7. For comparison, the predictive posterior means generated 

from the saturated model are displayed below in blue with the true values 

alongside in parentheses. 

Obesity 

Low 

Average 

High 

Hypertension Alcohol Intake (drinks/day) 
0 1-2 3-5 

Yes 
7.9 (5) 7.7 (9) 9.1 (8) 

6.7 7.5 9.4 

No 
31.1 (40) 30.4 (36) 36.1 (33) 

38.9 32.8 34.0 

Yes 
10.1 (6) 9.9 (9) 11.8 (11) 

7.5 9.2 12.3 

No 
28.4 (33) 27.9 (23) 33.0 (35) 

30.5 29 .0 32.5 

Yes 
13.1 (9) 12.8 (12) 15.2 (19) 

8.4 11 .1 16.1 

No 
25.9 (24) 25.3 (25) 30.1 (28) 

24.2 25.3 30.6 

Table 3.7: Mean posterior predictive cell counts gener­
ated using model A+OH with true values in parentheses 
and saturated model estimates in blue 

5+ 
8.5 (10) 

9.4 
33.4 (24) 

25 .9 
10.9 (14) 

13.6 
30.6 (30) 

27.5 
14.1 (19) 

19.9 
27.9 (29) 

28.9 

As would be expected, the model A + OH does not fit the data as well as 

the saturated model. This can also be seen in a plot of the Pearson's statistic 

density curve for the model A + OH (Figure 3.17) when compared with that 

of the saturated model in Figure 3.14. 
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Figure 3.17: Estimated density of Pearson's distance measure for the A + 0 H 
model 

In this Chapter, we have developed a Gibbs sampler method for estimating the 

parameters in a full saturated model, and also shown how this method may be 

adapted to estimate parameters in a particular graphical model. In Chapter 4, 

we shall extend these ideas to investigate the issue of model choice. 
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Chapter 4 

Model Determination for 
Decomposable Directed 
Graphical Models 

4.1 Directed Acyclic Graphical Models 

As we have seen, the Cholesky decomposition parameterisation :E-1 = <pT <p is 

equivalent to the recursive system of equations (3.5). This gives the elements 

of <p an interpretation as parameters of the conditional distributions involved 

in this recursive factorisation, that is, the squared diagonal elements of <p are 

the conditional precisions and the off-diagonal elements are scaled conditional 

regression coefficients. The recursion also means that the variables take an 

'ordering' which depends on the order in which they appear in the factorisation, 

or equivalently, the order in which they are taken into the covariance matrix 

:E. This means that conditional independence between variables may only be 

characterised given the variables that have been conditioned upon already and 

not on those that have not yet appeared in the ordering. Thus, any given <p 

corresponds to a particular decomposable directed graphical model. 

More formally, if ¢ij = 0, then variables i and j are conditionally independent 

given the variables preceding either of them in the ordering. 
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A o 
or------i>-}e 

H 

Figure 4.1: DAG represented by the saturated model under the order OHA 

For example, consider the Alcohol, Obesity and Hypertension data set. In 

Chapter 3, analysis on these data was carried out under the ordering Variable 

1 = Obesity, Variable 2 Hypertension and Variable 3 = Alcohol Intake. 

Under the Cholesky decomposition parameterisation, this is equivalent to the 

following decomposition of the joint density of the latent data: 

Under this ordering, it is only possible to make conditional independence state­

ments about 0 and H given A, or about 0 and A given H. It is not possible 

to make any conditional independence statement about A and H given 0, 

because 0 occurs last in the conditioning. Here setting ¢ AH = 0 imposes 

marginal independence of A and H. 

Under this ordering, the saturated model is equivalent to the DAG shown in 

Figure 4.1. 

Similarly, under this ordering, the single graphical model A + 0 H used as an 

example in Section 3.7.3 has associated DAG displayed in Figure 4.2. 

Clearly, the use of the Cholesky decomposition parameterisation particularly 

lends itself to the analysis of data where there is a natural ordering to the 

classifying variables, for example, in longitudinal data. An example of a data 

set where such ordering exists is taken from two general social surveys of adults 

in Germany published by the Central Archive for Empirical Social Science 
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A o 
• • 

H 

Figure 4.2: DAG represented by the model A + OH under the order OHA 

Research at the University of Cologne. The data set in full is given in Wermuth 

and Cox (1998). It contains 6039 individuals cross-classified by five factors: 

political attitude ("how well does the political system function today?", A) 
with four categories; type of formal schooling (B) with five categories; age 

group (C) with five categories; year of survey (D) with two categories and 

region of survey (E) with two categories. Variables A, Band C are ordinal 

and variables D and E are binary. Table 4.1 shows the levels of the five 

variables. 

A B C D E 
1: Very poorly 1: Basic incomplete 1: 19-29 1: 1991 1: West Germany 

2: Poorly 2: Basic 2: 30-44 2: 1992 2: East Germany 
3: Well 3: Medium 3: 45-59 

4: Very well 4: Upper medium 4: 60-74 
5: Intensive 5: 2 75 

Table 4.1: Levels of the five variables for the Germany 
data 

Variables D and E are fixed by design and must therefore come first in the 

ordering. Variable A is the primary variable of interest and is possibly depen­

dent on all other variables which are explanatory; it must therefore come last 

in the ordering. For the remaining variables, it is possible that B depends on 

C. Therefore, C must come before B in the ordering. From this information, 

the ordering of the variables shown in Figure 4.3 can be derived. 
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1 Region, E 1 

-I Age, C 1- Schooling, B - Attitude, A 

1 Time, D 1 

Figure 4.3: Ordering of the classifying variables for Germany data 

Since D and E are both fixed by design, they can take either order DE or 

ED. The saturated model for the latent variable z under this ordering has the 

decomposed joint density 

!(Zi) !(ZiE)!(ZiD IZiE)!(ZiG IZiD, ZiE)!(ZiB IZiC, ZiD, ZiE)!(ZiAIZiB' ZiG, ZiD, ZiE) 

!(ZiD )!(ZiElziD )!(ZiGIZiD' ZiE)!(ZiB IZiG' ZiD, ZiE )!(ZiAlziB, ZiG, ZiD, ZiE) 

So under the Cholesky decomposition parameterisation, the variables must be 

taken into the covariance matrix :E (and hence into <I» in either the order 

EDCBA or the order DECBA. 

4.2 Choice of Prior Parameters 

In Chapter 3, the prior parameters were chosen to be noninformative. How­

ever, we must be more careful in our choice of prior parameters when it comes 

to model selection; a highly diffuse prior gives low probability to regions of 

the parameters space with non-negligible likelihood and hence the marginal 

likelihood can be very small. This behaviour is exacerbated in high dimen­

sions hence leading to the selection of more parsimonious models. Conversely 

unjustifiably strong priors should be avoided. The choice of prior parameters 

for :E is particularly tricky as it is unclear what effect varying the parameters 

of the Inverse-Wishart distribution q and A will have. In order to choose ap­

propriate prior parameters for :E, we take the amount of information provided 

by the prior to be the same as that provided by a single observation from the 
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likelihood, in a similar spirit to that suggested by Kass and Wasserman (1995). 

This is an example of a 'reference' prior, which is computed from modelling 

assumptions only and does not otherwise depend on the specifics of the prob­

lem. It is not possible to use many of the standard methods for eliciting prior 

distributions (Berger (1985), pages 74-117), because in all examples shown 

here, we do not have any prior information. 

We begin our investigation of choice of prior parameters by considering the 

marginal distribution of the latent data for a single classifying variable, which 

is univariate normal Zij f'...I N(/3j , ~). To aid the approach, we first adjust the 

constraints imposed on the model parameters. Previously, the first and second 

cut points in each dimension were constrained to be 0 and 1 respectively, 

while for binary data, the single cut point was constrained to be 0 and the 

conditional variance was constrained to be 1. Clearly, setting such constraints 

'scales' the distribution of the latent variable, but it is unclear how this scale 

may be quantified. To improve the situation, we now choose to constrain the 

first and last cut points in each dimension to be -1 and 1 respectively: 

e(j, 1) = 1 e (j, k j - 1) = 1 

We assume that a priori each category is equally likely. Since the first and 

last cut points have been chosen so that the distribution of the latent data is 

symmetric around 0, it makes sense to choose the prior mean for (3j to be O. 

To avoid making this prior too strong, we again choose the prior variance T 

to be the diagonal matrix T = diag(Tll' T22, . .. , Tpp) where Tii is large. 

We now consider how to choose the prior parameters q and A for the matrix 

q,. As seen in Chapter 3, the Inverse-Wishart prior for ~ has the following 

equivalent prior distributions for q,: 

¢ii f'...I JbiX~-i+l 
cPil¢ii f'...I Np- i ( -¢iiaiAi1, Ail) (4.1) 

where 
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and A-I is partitioned as follows: 

ith 

column 

1 

K' = ( :~ iJ ~ i'" row 

We wish to choose values for q and A so that the amount of information 

provided by the prior is the same as that provided by a single observation 

from the likelihood. The joint likelihood for n observations is given by: 

f(¢ii' ¢il z ) ex II 
rows i of <P 

where G = 2..:~=1 (Zi - (3)(Zi f3f is partitioned as follows: 

ith 

column 

1 

G = (. . ;; ;,) +--- ith row 

9 2 Gz 

so that the conditional likelihood of the partial row ¢i given ¢ii is: 

~. e. 

(4.2) 

Comparing (4.1) and (4.2), we see that in order for the prior to correspond 

to one unit of information, the matrix A-I should be approximately equal to 

the matrix G. However as G depends on unobserved data, we replace A-I by 
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E( G), under the model where the latent variables are independent. Hence the 

prior is centred on a null model. Under this model, the form of G is a diagonal 

matrix. Therefore, A-I is chosen to be diagonal so that ai = O. Thus the prior 

mean for 1>i is O. It therefore only remains to consider the diagonal elements 

A -1 which will determine the prior variance for 1>i and all prior information 

for ¢ii' The diagonal elements of A-I should be chosen to equal the diagonal 

elements of G. Consider the distribution of G. For a single observation, G is 

a diagonal matrix with elements (Zij - /3j)2. Now, for a particular j, 

Zij - /3j rv N(O, 0-]) 

where a} is the marginal variance of Zij, independently for i = 1, ... , n. There­

fore, 
n 

"'(Z .. - !3.)2 rv 02X2 
~ ZJ . J J n 
i=l 

Using the fact that the expectation of a chi-square distribution with n degrees 

of freedom is n, 
n 

E[I:(Zij - /3j)2] = o]n 
i=l 

\Ve therefore have: 

(4.3) 

where d is the number of units of prior information. However this depends on 

the unknown oj which is the marginal variance of Zij' 

Assuming a priori that for each classifying variable, each category is equally 

likely means that each category has probability ~. where there are k levels 
J 

for the jth variable. Thus, by considering the first category which is bounded 

above by the cut point at -1, the following statement can be made: 

1 
P(Z" < -1) ZJ -

Then, Zij rv N(O, oj) implies 
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with cjJ the N(O,l) cdf. Solving for O'{ 

-1 
0" = ----

J cjJ-1(1/k) 
( 4.4) 

The appropriate value for the corresponding diagonal element of the matrix 

A -1 is then calculated by taking the square of O'j and multiplying by the 

number of units of prior information d: 

For the matrix A, diagonal elements Aii are found by taking the inverse: 

( 4.5) 

If a classifying variable is binary, we cannot use this argument to estimate a 

value for 0';. Instead we assume that the marginal variance 0'; is approximately 

equal to the conditional variance ¢1. , which is constrained to be 1. Hence Aii = 
JJ 

~. This can be justified by the prior centreing assumption that the classifying 

variables are independent and the latent data are normally distributed. Under 

this assumption, marginal and conditional variances are equal. 

Finally we consider how to choose the degrees of freedom parameter q. For the 

pth latent variable (where there are p classifying variables) :f- = O'p. Hence in 
'f'PP 

(4.3), we replace 0'; by E [¢~J 

( 4.6) 

Since cjJp2p rv bpX2
q_

P
+1 in the prior, and bp _1_ because A-I is diagonal, ~ 

a pp 'f'Ppapp 

is inverse gamma with parameters q-~+l and 1/2. Thus, 

E(~) app 

cfJpp q-p-1 

From (4.6), 

app = d 
app 

q p-1 

73 



4. MODEL DETERMINATION FOR DECOj\lIPOSABLE DIRECTED GRAPHICAL 
1\i[ODELS 

This implies that q = d + p + 1. We wish to choose the number of units 

of prior information to be equivalent to one observation from the likelihood; 

hence d = 1. So, the degrees of freedom parameter q should be chosen as: 

q=p+2 ( 4.7) 

For one unit of prior information, Table 4.2 gives the values of Ajj correspond­

ing to number of levels of the classifying variable. These values will be used 

in all examples that follow. 

k J A· J.J 

2 1 
3 0.185 
4 0.455 
5 0.708 

Table 4.2: Choice of prior parameter Ajj 

4.3 Reversible Jump Markov chain Monte Carlo 
(RJMCMC) 

We require a method of comparison for the set of decomposable directed graph­

ical models. The marginal likelihood is analytically intractable in this case so 

cannot be used. Instead we use a Reversible Jump ::vfarkov chain ::vfonte Carlo 

(RJ::vfCMC) approach to estimate posterior model probabilities. As explained 

above, models are characterised by the structure of the inverse covariance ma­

trix ~-1 and hence by <P, with each different structure of q. corresponding to a 

unique decomposable directed graphical model. There exists an edge between 

variables i and j in the model if and only if there is a non-zero value for cPij. 

Conversely, no edge between variables i and j is equivalent to cPij = O. 

A move to a new model can be made by either adding or subtracting an edge 

from the current model. An edge is added to the current model by proposing 
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a non-zero value for an element of <P which was previously zero. An edge is 

removed from the current model by proposing a value of zero for a previously 

non-zero element of <P. Reversible Jump provides a MCMC method that is 

capable of jumping between parameter spaces of differing dimensionality, which 

is exactly the situation described here. 

Formally, we define the RJMCMC procedure as follows. At each stage of the 

RJMCMC, there are (~) move types (each corresponding to one of the (~) 

possible edges in the model or entries in <p), and the null move. Each move 

involves removing an edge if already present, and adding an edge otherwise. 

These correspond respectively to proposing a new value for an element ¢ij 

which was previously 0, and setting an element ¢ij which previously had some 

non-zero value to O. For the null move, no dimensional change is made, as it 

simply consists of re-generating parameters of the current model. 

Suppose the current state of the Markov chain at time t is represented by 

( m(t) c(t) ) where c(t) represents the values of the unknown parameters in ''''m(t) "'m(t) 
model m(t) at time t: 

c(t) (z(t) (3(t) <p(t) e(t)) "'m(t) , m(t)' met) , 

Adding an edge involves a proposed move to a new model m' and corresponding 

parameter vector e~/, with dimension dim( e~(t») + 1 , i. e. there is one extra 

parameter to generate. Suppose e~/ is created by generating a univariate 

proposal u from a proposal distribution qp(u) and setting e~/ g(e~(t),u), 
where g is a one-to-one function. 

Removing an edge involves a move to a model m' with corresponding para­

meter vector e~/ of dimension dim( e~(t)) -1, then e~/ is created from e~(t) by 

applying the inverse transformation (e~/, u') = g-l (e~(t)) and discarding u'. 

Suppose that the probability of making move type r given the current state of 

the Markov chain (m(t) , e~(t») is j(r, m(t), e~(t)). Then Green (1995) showed 

that, if we propose to add an edge by generating a new parameter u from 
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proposal distribution qr (u), (m', e~,) should be 

isation of the chain. so that (m(t+l) c(t+l) ) , '''-mCt+l) 

- ( (t) c(t) I Cl ) h a - am '''-mCt),m '''-m' ,were 

and rejected otherwise, so that m(t+l) m(t), 

accepted as the next real­

(m', e~,) with probability 

Similarly, if we propose to drop an edge and move from parameter vector e;;Ct) 
to e~" (m', e~,) should be accepted as the next realisation of the chain with 

b b 'l't ( (t) c(t) I c l ) h pro all y a = am, "-m(t) , m '''-m' , were 

, { f(e~" m/ly)j(r, m', e~, ) qr (e;;Ct) \m') 
mIn 1,----~~--------------~~--

f( c(t) met) IY)J'(r m(t). c(t) ) 
"-m(t) , " "-mCt) 

( 4,9) 

and rejected otherwise, 

\Ve now need to specify each element of these acceptance probabilities, Firstly, 

for our approach, the transformation 9 is chosen to be the identity transforma­

tion, so u is simply the additional parameter in \]! when adding an edge where 

\]! is the matrix with elements 'ifJij = ~'J and Is on the diagonal. We use \]! 
'1/" 

as the off-diagonal elements ¢i are generated via draws from the conditional 

posterior distribution of'lfJi which is standard, We therefore must include \]! 

in the vector of unknown parameters e. However, we do not remove <P as 

the diagonal elements ¢ii cannot be inferred from \]!, Since 9 is the identity 

transformation, the Jacobian term in the acceptance probability is simply 1. 

Secondly, each move type is chosen to be made with equal probability, re­

gardless of the current state, so these terms (j (r, m (t) , eC:;Ct)) and j (r, m', e~, )) 
cancel. 

The joint posterior distribution of the model and its associated parameters can 
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be simplified. Dropping the m suffix: 

f(t;m' miy) f(z, (), \II, <P, (3, miy) 

ex: 
f(y, z, ()i\Il, <P, {3, m)f(\II, <P, (3, m) 

f(y) 
f(yiz, B, \II, <P, {3, m)f(z, ()i\Il, <P, (3, m)f(\II, <P, (3im)f(m) 

f(y) 
f(yiz, ())f(zi(), \II, <P, (3, m)f(())f(\II, cI>, (3im)f(m) 

f(y) 
( 4.10) 

The final step uses the fact that y is determined purely by z and the prior for 

() is independent of the model and other parameters. When this expression is 

substituted into (4.8) and (4.9), then f(yiz, ()), f(()) and f(y) will all cancel 

in the numerator and denominator as they are model independent. We assume 

that all models are, a priori, equally likely; hence f (m) will cancel in (4.8) and 

(4.9) as well. This leaves 

(4.11) 

and 

when adding or removing edges respectively. Note that the distribution of Zm 

is fully determined by <Pm and (3m since all the information about the model 

m is encapsulated in <Pm. 

It now remains to specify the likelihoods f(zmi<pm, (3m)' the prior distributions 

f(<p m, (3mim) and the proposal distribution qp(<pm). 

The likelihood of the latent data z is given by the normal distribution, the 

parameters of which depend on the model. The dimension of the mean {3 is 
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independent of the model, but the structure of the variance (4)T 4» -1 varies 

with the model (i.e. by setting appropriate elements of <P to zero). 

We now consider the prior distributions for 4>m and 13m' which can be decom­

posed as: 

p 

](4)m' 13m 1m) = ](f3lm) II ](¢iilm)](l/Jil¢ii, m) (4.13) 
i=l 

The priors for 13, ¢ii and 'l/Ji are conditionally independent given m and the 

priors for 13 and ¢ii are chosen to be independent of the model. Therefore 

in the expressions for 0; (4.11) and (4.12), these will cancel out, leaving only 

the priors for the partial rows of 4>, {l/JJ. These priors have the multivariate 

normal distribution, as specified in (3.8), conditioned on the model using the 

standard result for conditional multivariate normal distributions. 

Lastly, we consider the proposal distribution qr ('1! m) . Here, the use of the 

Cholesky decomposition parameterisation provides us with a further useful 

property that a suitable proposal distribution can be specified to be the con­

ditional posterior distribution of the element of '1! to be added or removed. 

This is not often possible in RJMCMC samplers, as normalised conditional 

distributions are often only available when the marginal likelihood (includ­

ing the posterior normalising constant) can be evaluated. Here, the set up of 

the model and the subsequent Gibbs sampler algorithm is useful in that the 

conditional density for 'l/Ji is already supplied in (3.11). It is: 

where 

1] 

p 

( 4.14) 

(4.15) 

( 4.16) 

However, when moving between models, we are proposing to change just one 

element of the vector 'l/Ji while other elements remain fixed. We therefore 
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need to find the conditional distribution for 1/Jij I ¢ii, 7jJ i,k=h' This is derived 

from (4.14) using the standard result for conditional distributions of subsets 

of multivariate normally distributed random variables. Re-ordering the vector 

'l/J i so that 'l/JT = (1/Jij, 'l/J[k=h) and partitioning rJ and P as follows: 

rJT = (TJj, rJ[=h) 

the proposal distribution for 1/Jij is: 

1/Jijl¢ii' 'l/Ji,k/j f'V N (TJj + Pjpjl('l/Ji,k=h - rJk=h) , Ph - pjPj1p'J) ( 4.17) 

The corresponding value for ¢ij is then found by simply transforming from 1/Jij 

using the identity (3.10) i.e., ¢ij 1/Jij¢ii' 

The null move for the saturated model was described in Chapter 3. If the 

current model is not the saturated model, then this method is easily adapted 

as described in 3.7.3. The Reversible Jump procedure is now fully specified. 

The Algorithm runs as follows: 

4.3.1 Algorithm 5 

An initial model and values for all parameters in this model are speci­

fied. Then the following process is carried out. 

1. With probability p, remain in the current model and re-generate all 

model parameters (the null move). Else, with probability 1 - p, a new 

model is proposed by either adding or subtracting a randomly selected 

edge (edges are chosen with equal probability) from the current model, 

involving generating or setting to zero the corresponding 1/Jij. 

2. Generate the random variate u f'V Uniform(O, 1). 

3. If u < a, accept proposed model (with probability a). Otherwise reject. 

4. Go back to step 1 and repeat. 
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4.4 Examples 

We apply the Reversible Jump algorithm to the Germany data set which, as 

described above, already has a natural ordering. These data have also been 

analysed by Wermuth and Cox (1998) using frequentist methods. 

Since D and E are binary variables, we constrain their conditional and mar­

ginal variances respectively: <P11 = <P22 = 1. There are also no free cut 

points to be generated for these variables whereas A, Band C have one, 

two and two free cut points to be generated respectively. The prior pa­

rameters were chosen using the methods described in Section 4.2 and are 

A = diag(0.455, 0.708, 0.708,1,1), q 7 and T = diag(50). The Reversible 

Jump algorithm was implemented using 100,000 iterations. Table 4.4 shows 

the posterior model probabilities: 

Model Posterior Model Probability 
ABC+ADE 0.474 

ABC + ACD + ADE 0.280 
ABC ABE+ADE 0.104 

ABC + ACD + ABE + ADE 0.039 

Table 4.3: Posterior model probabilities for Germany 
data 

These results show that the data set is highly structured, with the outcome of 

interest - "how well does the political system function today?" being related 

in a complex manner to all predictive variables. 

For ease of comparison with the results of Wermuth and Cox (1998), we split 

the data set into two marginal tables, one for each value of variable E. Algo­

rithm 5 was then applied to both marginal tables, each with 100,000 iterations. 

The prior parameters for each region were A = diag(0.455, 0.708, 0.708,1), 

q = 6 and T = diag(50) and the posterior model probabilities are shown in 

Table 4.4. The Reversible Jump algorithm explored the model space fairly 

80 



4. MODEL DETERMINATION FOR DECOMPOSABLE DIRECTED GRAPHICAL 
MODELS 

East Germany West Germany 

Model 
Posterior 

Model 
Posterior 

Probability Probability 
AD+BC+BD 0.262 ABC+AD 0.654 

AD+BC 0.203 ABC+ACD 0.286 
AB+AD+BC 0.201 ABC ABD 0.044 

ABD+BC 0.114 ABCD 0.017 

Table 4.4: Posterior model probabilities for Germany 
data by region 

rapidly with the proposed move accepted approximately 16% of the time for 

East Germany and 12% of the time for West Germany. Generally the most 

probable models for East Germany are simpler than those for West Germany. 

However, the posterior model probabilities are more diffuse for East Germany, 

indicating greater model uncertainty. While the first two models for the West 

Germany data set account for 95% of the posterior model probability, it takes 

the first five models for the East Germany data set to account for 87% of 

the posterior model probabilities. For both East and West, political opinion 

is dependent on year of survey, with further dependences in vVest Germany 

on age group and type of formal schooling. As might be expected, in both 

regions, schooling (B) is linked to age group (C). In East Germany, political 

opinion is conditionally independent of formal schooling given year of survey. 

The most probable models for each region are shown in Figure 4.4, with those 

predicted by Wermuth and Cox (1998) shown underneath. While the most 

probable model selected using the method described here for West Germany 

agrees with that selected by Wermuth and Cox, the most probable models for 

East Germany differ. However) there is not much to choose between them in 

terms of posterior probability so this does not give cause for concern. 
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RJ~CMC results 
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[Z 
· '" 

Wermuth Cox results 

· .. 
A D A D 

Figure 4.4: Most probable models by region for the Germany data 
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4.4.1 Model diagnostics 

We will use a similar method to that described in 3.4.2 to assess the fit of these 

models. Since there is a natural splitting of the data over region, we consider 

the fit of the models separately for East and West Germany. \Ve consider 

the model averaged fit. This means that instead of just considering the fit 

of the most probable model or the set of most probable models, we consider 

all models generated during the Reversible Jump procedure. To do this, N 

tables were generated, where N is the number of iterations in the Reversible 

Jump procedure, using the mean, variance and cut points produced under the 

model at each iteration. The generated cell counts are then compared with the 

posterior predictive mean table using the same method and distance measures 

as described in Section 3.4.2. 

West and East gave very similar results, we therefore just show those for West 

Germany. Figures 4.5, 4.6 and 4.7 show the densities of the chi-squared, 

deviance and distance measures respectively, with the vertical dotted line again 

representing the distance between the observed data and the model averaged 

posterior predictive mean. 

The main point to note is that there is a much poorer fit than in previous 

examples. This is shown by the vertical line representing this distance being 

well into the tail of the distribution. There are three possible reasons for 

this: either the models selected are not the most appropriate to describe the 

data, that is, the Reversible Jump procedure is choosing the wrong models; 

or the distance measures used are inappropriate for assessing goodness-of-fit 

for varying dimensional models fitted using the Reversible Jump procedure; or 

the parameterisation is such that even the saturated model would not predict 

the data especially well. The first of these possible reasons may be discounted 

by fitting the saturated model and observing that the fit is only a very slight 

improvement on that provided by the model averaged choice of models. In 

order to see this, compare the goodness-of-fit graphs in Figures 4.8, 4.9 and 

4.10 with those in Figures 4.5, 4.6 and 4.7. 
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Figure 4.5: Estimated density of Pearson's distance measure for West Germany 
data 
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Deviance Distance 

Figure 4.6: Estimated density of deviance distance measure for West Germany 
data 
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Figure 4.7: Estimated density of maximum absolute difference distance mea­
sure for \Vest Germany data 
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Figure 4.8: Estimated density of Pearson's distance measure for West Germany 
data using the saturated model 
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Figure 4.9: Estimated density of deviance distance measure for West Germany 
data using the saturated model 
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Figure 4.10: Estimated density of maximum absolute difference distance mea­
sure for West Germany data using the saturated model 
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In order to investigate the second possible reason, Table 4.5 shows the posterior 

predictive mean data (rounded to the nearest integer) with true values in 

parentheses. From this table, it is clear that the model is providing a fairly 

reasonable fit in many areas of the table, but there are also a number of areas 

where the fit is less good, for example the cells where A=2, B=l and A=2, 

B=2. From this we can see that a small number of cells contribute a large 

proportion of the distance between the observed data and the model averaged 

posterior predictive mean data. 

The relative lack of fit is perhaps not unexpected as the parsimonious nature 

of the model fitting procedure means that there are only 18 parameters with 

which to predict 200 cellcounts. In fact, it is perhaps surprising that the model 

provides as good a fit as it does in most examples as it is much more parsimo­

nious than a log-linear model with every two factor interaction contributing a 

single parameter. Lack of fit could be due to the assumption that the latent 

variable z has the multivariate normal distribution being inappropriate. 

Despite these difficulties, it is encouraging to note that despite not being able 

to predict the data as well as we may have hoped, the models chosen to do 

so are very similar to those selected by others. The main focus of this part 

of the work is on model selection. Convergence was assessed using trace plots 

and found to be satisfactory. For example, Figure 4.11 shows the trace plot 

for /34 (Time) for West Germany, and figure 4.12 shows the corresponding 

autocorrelation function plot. 
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A 
D 

B C 
1 1 

2 
3 
4 

55 
2 1 

2 
3 
4 
5 

3 1 
2 
3 
4 
5 

4 1 
2 
3 
4 
5 

5 1 
2 
3 
4 
5 

1 2 3 
1 2 1 2 1 2 

o (1) o (0) 4 (3) 5 (2) 2 (1) 3 (3) 
1 (0) 1 (0) 10 (1) 14 (4) 4 (1) 9 (6) 
2 (0) 1 (1) 13 (2) 19 (2) 4 (1) 11 (6) 
2 (2) 2 (1) 15 (6) 24 (4) 4 (1) 13 (5) 
1 (1) 1 (0) 7 (1) 13 (3) 2 (0) 6 (1) 
7 (5) 4 (6) 55 (63) 69 (68) 17 (5) 38 (40) 

15 (24) 10 (10) 103 (135) 140 (186) 28 (34) 69 (102) 
15 (26) 11 (19) 93 (120) 136 (182) 23 (27) 61 (102) 
15 (41) 12 (11) 84 (107) 132 (177) 18 (18) 54 (82) 
5 (8) 5 (12) 26 (8) 45 (51) 5 (9) 16 (22) 

14 (10) 9 (4) 92 (88) 114 (101) 23 (18) 52 (48) 
22 (17) 15 (7) 121 (89) 166 (100) 26 (14) 67 (67) 
18 (4) 13 (11) 87 (62) 127 (76) 17 (10) 46 (24) 

14 (12) 11 (7) 60 (32) 96 (57) 11 (3) 31 (10) 
4 (3) 3 (2) 13 (8) 23 (16) 2 (2) 7 (6) 
4 (3) 2 (0) 21 (22) 26 (17) 5 (5) 11 (3) 
5 (3) 3 (4) 23 (26) 31 (47) 4 (1) 11 (10) 
3 (2) 2 (2) 14 (17) 20 (17) 2 (2) 6 (6) 
2 (1) 2 (0) 8 (4) 13 (9) 1 (0) 4 (1) 
o (0) o (0) 1 (3) 3 (1) o (0) 1 (1) 
13 (8) 8 (7) 60 (78) 74 (100) 12 (9) 26 (29) 

12 (11) 9 (8) 50 (68) 69 (99) 8 (10) 21 (25) 
7 (5) 5 (9) 26 (29) 39 (42) 4 (3) 11 (13) 
4 (7) 3 (4) 14 (26) 22 (26) 2 (2) 5 (6) 
1 (2) 1 (1) 2 (6) 4 (6) o (0) 1 (4) 

Table 4.5: Fitted values for West Germany data with 
true values in parentheses 
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o (2) 
1 (0) 
1 (0) 
1 (1) 
o (1) 
2 (2) 
3 (2) 
2 (6) 
2 (3) 
o (0) 
3 (0) 
3 (1) 
2 (2) 
1 (0) 
o (0) 
o (0) 
o (0) 
o (0) 
o (0) 
o (0) 
1 (1) 
1 (1) 
o (0) 
o (0) 
o (0) 

4 
2 

1 (0) 
2 (1) 
2 (0) 
3 (0) 
1 (0) 
8 (6) 

13 (14) 
11 (11) 
9 (21) 
2 (7) 
9 (8) 
11 (5) 
7 (3) 
4 (5) 
1 (1) 
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Figure 4.11: Trace plot for /34 for \Vest Germany data 
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Figure 4.12: Autocorrelation function plot for /34 for West Germany data 
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4.5 Example 2 - Coronary Heart Disease Risk 
Factors Data 

This data set is taken from Edwards and Havranek (1985) and concerns 1841 

men cross-classified according to six coronary heart disease risk factors: A, 

smoking (yes or no); B, strenuous mental work (yes or no) ; C, strenuous 

physical work (yes or no); D, systolic blood pressure « 140 or 2': 140); E, 

ratio of ex and /3 lipoproteins « 3 or 2': 3); F, family anamnesis of coronary 

heart disease (positive or negative). The data are shown in Table 4.6. 

F Negative Positive 
B No Yes No Yes 
A No Yes ~o Yes ~o Yes No Yes 

E D C 
<3 < 140 No 44 40 112 67 5 7 21 9 

Yes 129 145 12 23 9 17 1 4 
2': 140 No 35 12 80 33 4 3 11 8 

Yes 109 67 7 9 14 17 5 2 
2':3 < 140 No 32 32 70 66 7 3 14 14 

Yes 50 80 7 13 9 16 2 3 
2': 140 No 24 25 73 57 4 0 13 11 

Yes 51 63 7 16 5 14 4 4 

Table 4.6: Risk factors for coronary heart disease 

Following the argument of Madigan and Raftery (1994), the variables are as­

sumed to take the ordering FCBAED, that is, all possible edges are directed 

and any edge between two variables leads from the variable earlier in the or­

dering to the variable which comes later in the ordering. Due to the way the 

Cholesky decomposition is parameterised, this means that variables must be 

taken into the covariance matrix in the order DEABCF. All six variables are 

binary. VIe therefore fix the conditional variance for each to be 1: CPjj = 1 for 

all j. Under the method described in 4.2, priors were chosen to be A = diag(l), 

q = 8 and T = diag(50). Algorithm 6 was applied using 200,000 iterations, 
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and the resulting posterior model probabilities are shown in Table 4.5. The 

RJMCMC was found to be very mobile with proposed moves accepted approx­

imately 34% of the time. The four most probable models all contain the edges 

Model Posterior Model Probability 
C B + C A + AE + BE + AD + ED (a) 0.474 

C B + C A + AE + BE + AD + ED + C E (b) 0.280 
CB C A + AE + C E + AD + ED (c) 0.104 

C B + C A + AE + BE + ED (d) 0.039 

Table 4.7: Posterior model probabilities for directed 
models for heart disease data 

CB, CA, AE, ED. The edges AD and BE occur in three out of the four most 

probable models, with the edge C E occurring twice. The four most probable 

models are illustrated in Figure 4.13. 

The most striking feature of these models is the high posterior probability of 

marginal independence of F (family anamnesis of coronary heart disease). For 

comparison, the two most probable models found by the method of Edwards 

and Havranek are models (a) and (c) respectively, while the two most probable 

models found by the method of ~adigan and Raftery are models (c) and (a) 

respectively. The main difference between the results gained here and by them 

is in the selection of model (b) but this simply contains the union of the edges 

of models (a) and (c). 

Goodness-of-fit was assessed using the simulation method. The Pearson's dis­

tance graph shown in Figure 4.14 is typical of the model fit. As for the Ger­

many data, the fit is not particularly good. However, the posterior predic­

tive mean values (shown in Table 4.6) themselves appear to be fairly close 

to the true values, perhaps indicating that the distance measure method for 

assessing goodness-of-fit is in appropriate for higher-dimensional and varying­

dimensional models. It is important to note again that the main focus of the 

work is on model selection. 
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Figure 4.13: Most probable models for the heart disease data 
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Figure 4.14: Estimated density of deviance distance measure for heart disease 
data 

E 
<3 

;:::3 

F Negative Positive 
B No Yes No Yes 
A ~o Yes No Yes No Yes No 

D C 
< 140 No 62.9 48.2 86.5 60.3 10.2 7.8 14.2 

Yes 106.6 112.6 32.3 30.9 17.2 18.3 5.3 
;::: 140 No 46.6 30.5 64.7 38.5 7.6 5.0 10.7 

Yes 78.0 70.4 23.9 19.5 12.7 11.5 4.0 
< 140 No 36.6 37.7 62.6 58.3 6.0 6.2 10.4 

Yes 51.8 73.3 19.6 25.2 8.5 12.0 3.3 
;::: 140 No 33.1 29.1 56.9 45.3 5.4 4.8 9.5 

Yes 46.2 55.8 17.6 19.4 7.6 9.2 2.9 

Table 4.8: Mean posterior predictive cell counts for coro­
nary heart disease data 
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Convergence was assessed using trace plots and was found to be satisfactory. 

In this Chapter, we have restricted the methods to finding DAGs for data where 

the classifying variables are ordered. In the next Chapter, we will extend the 

methods developed here to investigate model selection for data where there is 

no clear ordering to the classifying variables. 
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Chapter 5 

Model Determination for 
Undirected Graphs 

5.1 Relationship between Directed and Undi­
rected Decomposable Graphical Models 

In Chapter 4, the model space was restricted to the set of decomposable di­

rected graphical models. Given the way models were parameterised using 

the Cholesky decomposition, this was the natural set of models to consider. 

However, such models are easiest to interpret when the classifying variables 

take a natural ordering. In this Chapter, we extend the model determination 

method to the class of undirected decomposable graphical models, and as a 

consequence, to those data sets where there is no single natural ordering. 

In order to do this, we consider the relationship between directed and undi­

rected graphical models. Given a directed graph V, it is possible to construct 

an undirected graph Q with the same Markov structure (same conditional in­

dependence structure). See Dawid and Lauritzen (1993). The associated undi­

rected graph Q is obtained from V by taking the associated moral graph VlJ 

of V and replacing the directed edges by undirected edges. The moral graph 

VlJ is obtained from V by "marrying" all unmarried parents in the graph, i. e. 
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A o A o 

H H 

Figure 5.1: Example of moralising 

if any two parents of a variable are not connected by an edge, an undirected 

edge will be added between them. This is illustrated in Figure 5.1. 

However, note that the models implied by the two graphs in Figure 5.1 are not 

equivalent, as the directed graph implies marginal independence of A and O. 

As a consequence of this, in any ordering of the variables, there are some 

undirected graphs whose conditional independence structure does not corre­

spond to that of any directed graph. For example, consider again the Alcohol, 

Obesity and Hypertension data set, in the order Alcohol Intake, Hyperten­

sion, Obesity. Suppose we wish to consider the undirected graphical model 

AO + HO so that A and H are conditionally independent given O. This is 

illustrated in Figure 5.2. 

Under the ordering OH A, the only directed model that could have the same 

conditional independence structure is the one with the same edge set, shown 

in Figure 5.2. The arrows take their directions from the ordering, with arrows 

going from vertices that are higher in the ordering to those lower down. How­

ever this does not have the same Markov structure as the undirected graph, 

due to the fact that the directed graph must be moralised by adding an edge 

between A and H to find its ~arkov equivalent undirected graph. Hence, the 

directed graph shown in Figure 5.2 has the conditional independence struc-

96 



5. MODEL DETERMINATION FOR UNDIRECTED GRAPHS 

A o A o 
e__------.. 

H H 

Figure 5.2: Model AO + HO and corresponding (but non .:Y1arkov equivalent) 
undirected model. 

A o 

H 

Figure 5.3: Equivalent saturated model with correct Markov structure. 

ture of the undirected graph shown in Figure 5.3, which implies no conditional 

independences. 

To summarise, in a given ordering (which is equivalent to a given parameteri­

sat ion of the Cholesky decomposition) only certain patterns of zeros in cP cor­

respond to undirected decomposable graphical models, and not all undirected 

decomposable graphical models are available in a single ordering. However, for 

every decomposable undirected graphical model there does exist at least one 

ordering where the directed model with the same edge set is Markov equiva­

lent. Therefore, in order to carry out model determination in situations where 

we have not fixed a specific ordering, the ordering is unclear or we are inter­

ested in undirected models, we must find a way to cover all possible undirected 

97 
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models. 

If the Reversible Jump procedure described in Chapter 4 is carried out within 

a particular parameterisation, it is not possible to estimate posterior model 

probabilities for all undirected decomposable graphs. We overcome this by us­

ing an extra Reversible Jump step to move between orderings of the variables. 

Even though there is no change in the dimension of the parameter subspace, 

a Reversible Jump approach is required as the interpretation of parameters 

varies depending on the ordering. By using this approach, all possible undi­

rected decomposable models may be considered. 

5.2 A Transformation between Orderings 

A move to a new parameterisation consists of proposing to switch two adjacent 

variables in the current ordering and we observe that any possible ordering of 

the variables may be reached in a finite number of such moves. 

In general, if variables j and j + 1 (j = 1, ... ,p - 1) in the original ordering 

are switched to get the new ordering, the parameters in the model undergo a 

transformation defined as follows, where' represents the new parameter . 

.. Z~j = zi,j+h Z~,j+l = Zij for i = 1, ... ,n 

.. ()(j, c)' = ()(j + 1, c), ()(j + 1, c)' = ()(j, c) for c 1, ... ,kj - 1 

The transformation for the decomposed covariance matrix <P is less straight­

forward. In terms of the covariance matrix :E, the transformation may be 

obtained by permuting the rows and columns corresponding to the variables 
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to be switched. The corresponding transformations for elements of ~ are 

9' '+1 ),) 

for k = j +2, ... ,m 

( 
2 '2 )1 

¢j,j+1 + <Pj+l,j+1 '2 

¢jk9j+l,j+1 - 9j,j+1 ¢j+1,k 
for k =j + 2, ... ,m 

(9;,j+1 +9;+l,j+1)~ 

For r 1, ... ,j 1, 

¢' . 1 . r,)+ 
., 

C/Jrk for k #- j,j + 1 

For r = j + 2, ... , m 

for k =j + 2, ... ,m 

For a purely ordinal data set, that is one where all classifying variables are 

ordinal, this transformation is self-inverse. However, when one or more of the 

margins of the table are binary, the transformation must be adapted to allow 

for the fact that the conditional precision, 97i corresponding to a binary margin 

is constrained. The resulting transformation is then not self-inverse, but the 

inverse is easily found. The two cases to be considered are (i) switching two 

binary variables and (ii) switching a binary and an ordinal variable. For the 

case where the variables to be switched are binary with constraints 9jj = kj , 

for switching variable j and j + 1 (j 1, ... ,p 1) in the ordering, we arrive 
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at the following transformation for <P. 

¢' 
.1.1 

¢', 1 
' J,J+ 

( '2 k2 ) 10 
¢j,j+l + ~j+l 2 

¢j,j+l ¢jk + k j + 1 ¢j+l,k 

( 2 2) 1 ¢'+1 + k+l '2 ),) ) 

rhkk+l - rh '+1 ¢+1 k 'f').1 'f') ,) ,J , 

( '2 k 2 ) 1 
¢j,j+l + j+l '2 

for 

for 

k =j +2, ... ,m 

k =j +2, ... ,m 

The rest of the transformation is the same as for the purely ordinal case. 

This transformation is no longer self-inverse but the inverse is easily found to 

be: 

cb k ,J 

(k2 - c/P'+I)~ J ' J,) 

1 'I 'I (k2 '/2 ) 10 
¢j,j+l ¢jk ¢j+l,k j - ¢j,j+l 2 

k j 

kj+l 

,+. (k2 ,+./2 ) 10 ,+.1 'I 
'+'jk j - '+'j,j+l 2 - '+'j,)+1 ¢.i+l,k 

k j 

for k = j + 2, ... ,m 

for k =j +2, ... ,m 

To ensure reversibility, for any pair of variables A, B which can be involved 

in such a move, it needs to be specified in advance which switch corresponds 

to the forward move, and which to the reverse move. In practice, this choice 

does not have a great effect on the performance of the algorithm. Note that if 

kJ - ¢'l.i+l :S 0, the move is prohibited and hence automatically rejected. 

The only remaining case to consider is when a move to a new ordering is 

made by switching an ordinal and a binary variable. \Ve choose to specify the 

'forward' move as the binary variable moving up the ordering while the ordinal 

variable moves down. By moving down the ordering, we mean that the variable 
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moves further down the conditional structure so its distribution is modelled 

on one more variable. Assuming that the conditional variance corresponding 

to the binary variable is set to be kj, the forward and reverse transformations 

are defined as follows: 

The forward transformation is: 

¢~j 

¢~,j+1 

d/ k ") 

¢' "1 " )+1,)+ 

¢'+1 k ) , 

(¢2+1 + ¢2+1 "+1) 1/2 ),) ),J 

¢j,j+1¢jk + ¢j+1,j+1¢j+1,k 

(¢;,j+1 + ¢;+1,]+1)1/2 

kj 

¢jk¢j+1,j+1 ¢j,j+1¢j+1,k 

(¢;'j+1 + ¢;+1,j+1)1/2 

The reverse transformation is: 

dJ" " " JJ kj 

¢jj¢j,j+1 

kj 

A.' "+lA..'k + dJ' 1 k(k
2 

- dP+1)~ 'f/J,J 'f/J " J+, J ' J,J 

kj 

"I (k2 A../2 ) 1 C/Jjj ~j - 'f/j,j+1 2 

kj 

A.. (k2 ' 12 ) 1 , 1 A..I 
'f/jk j - CfJj,j+1 2 - CfJj,j+1 'f/j+1,k 

kj 

for k j + 2, ... , Tn 

for k j + 2, ... , Tn 

for k = j + 2, ... ,Tn 

for k = j + 2, ... , Tn 

If k; - ¢~:j+1 ::;; 0, the move is prohibited and automatically rejected. Again, 

all other transformations are the same as for the ordinal case. 

At each stage of the RJMCMC, there are p-1 move types, each corresponding 

to the p -1 possible adjacent pairs of variables. Each move involves permuting 

an adjacent pair of variables, with the model parameters being transformed via 

the transformation g defined above. Suppose that at time t, the Markov chain 
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is in order o(t), and that eg{t) represents the values of the unknown parameters 

in order o(t): 

c(t) ((t) /3(t) ~(t) B(t) (. )) 
"'o(t) Z oCt) , oCt) , o(t), oCt) J, C 

A move to a new ordering 0' is proposed, with e~, = g(e~~~»). Suppose that the 

probability of making move type T given the current state and model of the 

Markov chain (o(t), e~~~») is j (T, e~~~), m ~~~»). Then the move should be accepted 

with probability D:order where 

(5.1) 

Note that there is no proposal distribution because no new parameters are 

being proposed. We choose each move type to be equally likely so that the 

probabilities j(.) cancel. Then applying Bayes' theorem (1.1) to the posterior 

distribution and simplifying gives (dropping suffixes): 

f(e, m, olY) = f(z,~, /3, B, m, olY) 
f(ylz, B,~, /3, m, o)f(z, BI~, /3, m, o)f(~, /3, m, 0) 

f(y) 
f(ylz, B)f(z, BI~, /3, m, o)f(~, ,aIm, o)f(m, 0) 

f(y) 
f(ylz, B)f(zIB,~, /3, m, o)f(BI~, /3, m, o)f(~, /3lm, o)f(~.~ 

f(y) 

The final step uses the fact that y is determined purely by z and B. On 

substituting (5.2) into (5.1), f(Ylz, B), f(BI~, /3, m, 0) and f(y) will cancel in 

the numerator and the denominator because they are order independent. This 

leaves the acceptance probability: 

The prior term f(~,/3lo',m) may be decomposed as follows: 

p 

f( ~o, /3010, m) = f(/3lo, m) II f(¢iil o, m)f( <Pi I¢ii' 0, m) (5.4) 
i=l 
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The priors for f3 are chosen to be independent of the model, therefore in the 

expression for O:order these will cancel out, leaving only the priors for the 

inverse variance decomposition matrix cP to consider. These priors are given 

in (3.8) and (3.9), for the unconstrained ¢ii. 

The prior matrix A is diagonal with entries dependent on the number of levels 

of each classifying variable. Since the off-diagonal elements of A are 0, (3.8) 

reduces to 

\Vhen any two classifying variables are switched in the ordering, the corre­

sponding elements of A must also be switched and new values for ¢>i are 

proposed. Therefore, the prior terms for those rows affected must be included 

m O:order. The prior for the diagonal elements ¢ii reduces to 

1 2 
-Xq-i+l 
aii 

These are order dependent as when an order change is proposed, new values 

for ¢ii are proposed so these terms must be included in OCorder 

Finally, we consider the model and order prior f (m, 0). When moving between 

models within a single ordering of the variables as described in Chapter 4, 

each possible model is assumed to be a priori equally likely. However not all 

undirected graphical models are representable in each ordering and there are a 

different number of orderings available for each model. Therefore, when moving 

between orderings, we need to weight competing orderings accordingly, via the 

prior term f(m, 0). Thus for a particular model and ordering, f(m,o) is the 

reciprocal of the number of orderings in which the conditional independence 

structure of the model m can occur. 

For a purely ordinal data set, the Jacobian of the transformation of cP is: 

IJI = 8(e~/) 
8( c(t) ) 

"'-oCt) 

(5.5) 
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When one or more of the margins of the contingency table are binary, the 

Jacobian is altered. This is because the corresponding conditional variances 

are constant so the Jacobian is not a function of these. For the all binary case, 

the Jacobian of the transformation is: 

111 = 8(e~,) 
8(CCt ) ) 

"'oCt) 

and that of the reverse move is: 

IJI 

( '2 k2 ) 3 
CfJ+1 '+1 '2 ],] ] 

(k2 '/2 ) 3 . cp. '+1 '2 
] ],] 

For the binary and ordinal switch, the Jacobian of the forward move is: 

IJI = 8(e~,) 
8(CCt ) ) 

"'oCt) 

and that of the reverse move is: 

I J I = 8 ( e~, ) 
8( cCt) ) 

"'o(t) 

The full method now runs as follows. 

5.2.1 Algorithm 6 

'2 
(j?H1,Hl 

(k 2 ).12 )1 
- If/" "+1 2 ],] 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

1. An initial ordering, model and values for all parameters in this model 

are specified. 

2. With probability 1/3, remain in the current model and re-generate all 

parameters (the null move). Otherwise, a new model is proposed by 

either adding or subtracting a randomly selected edge from the current 

model. If the proposed model is unavailable in the current ordering, go 

to Step 3. Otherwise the proposed model is accepted with Reversible 

Jump probability a as defined in (4.11) and (4.12). 
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3. A new ordering is proposed by randomly selecting a pair of adjacent 

variables in the current ordering and proposing to switch them. If the 

current model is not available in the proposed ordering, then go to step 

2. Otherwise, the proposed ordering is accepted with Reversible Jump 

probability (Yorder as defined in (5.3). 

4. Return to step 2 and repeat. 

Note that this algorithm attempts an ordering switch at every iteration. This 

is not necessary but was found to be most efficient. 

5.3 Examples 

5.3.1 Alcohol, Obesity and Hypertension Data 

Algorithm 6 was applied to the Knuiman and Speed (1988) data set. For 

reasons described in Section 4.2, the conditional variance for H was fixed to 

be 1. Starting the RJMCMC in order OHA, the initial prior parameters were 

A = diag(0.185, 1,0.455), q = 5 and T diag(50). The prior matrix A 

must be permuted in the same way as the classifying variables at each order 

change, in order that the priors for the model parameters are consistent across 

models. Since the matrix T is order invariant, this need not be permuted at 

each order change. The algorithm was run for 500,000 iterations. During this 

time, the proposed order change move was accepted approximately 50% of the 

time and the proposed model change move was accepted approximately 10% of 

the time. The Markov chain was therefore relatively mobile. Posterior model 

probabilities are displayed in Table 5.3.1. The most probable model is OH + 
AH. There is high posterior probability of conditional independence of Obesity 

and Alcohol Intake as this interaction appears in none of the most probable 

models. There is also fairly high posterior probability of an association between 

Hypertension and Obesity, as this appears in the two most probable models. 
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Model Posterior :Model Probability 
OH+AH 0.262 
A+OH 0.171 
O+AH 0.122 

A O+H 0.119 
OA+OH 0.119 

AOH 0.075 
AH+AO 0.069 
H+OA 0.062 

Table 5.1: Posterior model probabilities for alcohol, obe­
sity and hypertension data 

As has been noted for other examples, the posterior probability is fairly diffuse 

over the model space with even the least likely model claiming 6.2% of the 

posterior model probability. 

The data set was also modelled by Dellaportas and Forster (1999), who com­

pared the results from various methods, none of which took account of the 

ordinal structure of the data. The methods used were a Reverisble jump proce­

dure described in the paper, an exact hyper-Dirichlet prior approach suggested 

by Madigan and Raftery (1994) and the approximate Bayes factor approach 

described by Raftery (1996). Various prior parameters were used. For all meth­

ods used, they found the four most probable models to be (in varying order 

according to the method), OH +AH, 0 AH, A+OH and A+O+H. These 

are also the four most probable models selected by the RJMCMC method 

described here. Their results differ from those here in that they are far less 

diffuse over the model space, and for most of the methods described, one or 

two models claim a very high percentage of the posterior model probability. 

On average, the two most probable models were found to be A + HO and 

H + 0 + A, indicating that the method described here favours more complex 

models in terms of independence structure than the methods described by Del­

laportas and Forster. However note that the dependence structure is modelled 

more parsimoniously here, because each edge has just a single corresponding 
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Figure 5.4: Estimated density of Pearson's distance measure for hypertension, 
alcohol intake and obesity data 

model parameter. 

We now examine the goodness-of-fit of the models, averaging over all models 

produced during the Reversible Jump. This procedure was carried out by con­

verting all output from the Reversible Jump back to the initial ordering. The 

means, variances and cut points produced at each iteration were then used to 

generate predictive tables for each iteration in the usual manner. Figures 5.4, 

5.5 and 5.6 show the densities of the Pearson's, Deviance and Absolute Differ­

ence distance measures respectively. As usual, the vertical line indicates the 

distance between the observed and posterior predictive mean data, and gives 

a measure of how likely the set of models are to predict the original data. 
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Figure 5.5: Estimated density of deviance distance measure for hypertension, 
alcohol intake and obesity data 
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Figure 5.6: Estimated density of maximum absolute difference distance mea­
sure for hypertension, alcohol intake and obesity data 
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For each distance measure the fit appears to be good, with the posterior pre­

dictive mean data well into the lower tail of the distribution of generated 

tables. As would be expected, the set of models passed through during the 

RJMC::VIC do not provide as good a fit as the saturated model (see Figures 

3.14, 3.15 and 3.16) but they improve greatly on the single model example 

(Figure 3.17). Convergence of the RJMCMC was assessed using trace plots 

of quantities which have a common interpretation across models (again pro­

duced by converting the output back to the initial ordering) and was found 

to be satisfactory. The Reversible Jump procedure was found to be relatively 

mobile with approximately one proposed move out of every six accepted for 

the model change step and greater than one in three proposed moves accepted 

for the order change step. 

5.3.2 Risk factors for coronary heart disease: a 26 table 

For the second example we return to the coronary heart disease data taken 

from Edwards and Havranek (1985) and displayed in Section 4.5. In Chapter 

4, the classifying variables were assumed to take the order FCBAED and 

the posterior probabilities of DAG models were calculated using Algorithm 

5. However this order is by no means clear so here we assume no order and 

consider the set of undirected decomposable graphical models. All six classi­

fying variables are binary so the conditional precision ¢;i for each is fixed to 

be 1. Following the arguments of Section 4.2, the matrix A is the identity ma­

trix, the degrees of freedom parameter q = 8 and the mean dispersion matrix 

T = diag(50). Since the matrix A is order invariant, it need not be permuted 

at each order change. Starting in the order ABCDEF, the RJMCMC proce­

dure described in Algorithm 6 was applied with 500,000 iterations. Again the 

procedure was relatively mobile with order changes accepted approximately 

everyone in two proposed moves and model changes accepted approximately 

everyone in twelve moves. The six most probable models along with their 

posterior model probabilities are shown in Table 5.3.2. 
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Model Posterior Model Probability 
ACE+BC+F 0.027 

ACE + BC + DE + F 0.024 
ACE+ADE BC F 0.018 

ACE BCE+F 0.016 
ACE + BCE + DE + F 0.015 

ACE + ADE + BCE + F 0.014 

Table 5.2: Posterior model probabilities for coronary 
heart disease data 

Between them, these models account for 11.4% of the posterior model proba­

bility. When this data set was previously analysed in Chapter 4, the first four 

models accounted for 36.1 % of the posterior model probability. Clearly, the 

order change and subsequent greater choice of models available is the main 

reason for this. The posterior distribution amongst the most probable models 

seems much more diffuse over the set of undirected models than over the set 

of directed models. 

There is strong evidence for the marginal independence of F. There is also high 

posterior probability of AC,BC,AE and CE interactions as these appear in 

each of the four most probable models. There is some evidence for interactions 

AD, BE and DE. 

The four most probable models are illustrated in Figure 5.7. The data were 

also analysed by Edwards and Havranek (1985), Madigan and Raftery (1994) 

and Dellaportas and Forster (1999). ::\1adigan and Raftery give the two most 

probable decomposable models as BC ACE ADE+F and ABC+ABE+ 

ADE + F. The most probable models found by Edwards and Havranek only 

contained one decomposable model, that was BC + ACE + ADE + F. Del­

laportas and Forster give the three most probable models as BC + ACE + 
ADE + F, BC ACE + DE + F and BC + AD + ACE + F. The model 

BC + ACE + ADE F is found to be one of the most probable models by all 

three; this is the third most probable model found using the RJMCMC method 

described here. The main difference between the sets of models selected by 
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Figure 5.7: Most probable undirected models for the heart disease data 
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others and the set of models selected here is that the RJ::\1CMC gives smaller 

posterior probability that the AD term should be included in the model. How­

ever, in the analysis carried out by Edwards and Havranek, the exact test for 

zero partial associateion of A and D reported had a significance level of 0.04, 

which was the largest of any of the links whose absence was rejected at the 

5% level. There is therefore some precedent for doubt about an association 

between A and D. 

The goodness-of-fit of the models selected by the Reversible Jump procedure 

was assessed using the simulation technique described in section 3.4.2. 

Convergence was also assessed with trace plots and was found to be satisfac­

tory. 
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Chapter 6 

Model Determination for Data 
with Covariates and Covariate 
Selection 

In Chaper 2, the method of Albert and Chib (1993) was applied to univariate 

ordinal data with covariates. For the multivariate case we have so far only 

considered data sets with no covariates. In this Chapter we firstly describe 

how data sets involving covariates may be modelled and secondly show that 

the issue of covariate selection may also be tackled within the same framework, 

using a Reversible Jump method. 

6.1 A Model for Data with Covariates 

For the non-covariate case - where individuals are simply cross-classified by 

p variables, with variable j having kj levels - the structure of the underlying 

latent data is p-variate Normal with mean (3 and variance matrix:E. Now 

suppose that for individual i, we observe multivariate ordinal response vector 

Yi and also associated covariate matrix Xi. Xi is a matrix with p rows where p 

is the dimension of the mutivariate response, with the jth row representing the 
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values of the C covariates associated with respondent i and classifying variable 

j. In practice, the covariates often take the same values for every classifying 

variable, so that the rows of Xi are identical. The situation where this is not 

true occurs most often for longitudinal data, where the classifying variables 

represent the values of the same response variable at different time points and, 

depending on the application, covariates may be measured at each time point. 

There is an example of this later in the Chapter, in the crossover trial example. 

Here, for each individual, one of the covariates (treatment) varies over each 

time point. 

Covariates may be coded in different ways depending on the form of the co­

variate information. If a covariate is continuous, then it supplies information 

for one column of the matrix Xi' If it is a factor with two categories (e.g. 

male or female) then one of these categories can be chosen to be the baseline 

category. Such a covariate then supplies one column of the matrix Xi taking 

the value 1 for non-baseline category and 0 for baseline category. Finally there 

is the situation where a covariate is a factor with more than Ie categories where 

Ie > 2. In this situation, the covariate supplies Ie columns to the covariate 

matrix, each corresponding to one of the factor levels. As in the binary factor 

case, one of the factor levels may be set to 0, so that the remaining Ie - 1 

levels are thought of as contrasts and provide Ie - 1 columns corresponding to 

covariate c in the covariate matrix. 

Suppose that covariate c contributed Ie columns to Xi- Then we have covariate 

matrix 

Xip 

where each vector Xij is of length L = L Ie + p, and associated common 

parameter vector {3, also of length L. 

From here, the model is constructed following the same strategy as before, 

except that the distribution of the latent data is now dependent on the co­

variates. Let:E = (q,T q, )-1 be the usual covariance matrix between the p 
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classifying variables. Then, the existence of a latent variable Zi is assumed, 

with the distribution 

(6.1) 

The usual assumptions are made about the cut points and necessary con­

straints on cut points (or conditional variances in the binary case) for identi­

fiability. That is, 

O(j,l) -1 O(j, kj 1) = 1 

and ¢;j = 1 for binary classifying variables. 

Clearly the covariates must now be incorporated into the posterior distribu­

tion of the unknown parameters {3, P, Zi and 8. The usual prior for (3 is 

extended so that it is now a L-variate .:.Jormal distribution with mean 0 and 

covariance matrix T = AIL, where A is large. Other priors are unaffected and 

the remaining effect of the covariates is through the likelihood. The resulting 

conditional posterior distributions for use in the Gibbs sampler for parameter 

estimation in the saturated model are as follows. 

ED ziIYi,{3,p,8 rv Np(Xd3,(pTp)-1) with Zij truncated to the interval 

(O(j, Yij - 1), O(j, Yij)) 

((

n )-1 n 

{3lz,PrvNp+I:fc ~XrpTpXi+T-1 ~XrpTpZi 

(t Xi 4'T4'X i +T 1) -I) 

9 i) (Ai + G i) -1, }2 (Ai 
'f'u 

ED ¢;JIPi, z, {3 rv Gamma (" ~) where, and 6 are given in (3.13) and (3.14) 

respectively. 
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In the ¢ii and 'lfJi generation steps, the matrix G is now dependent on the 

covariates: 
n 

i=l 

Starting with initial values for all parameters, the sampling scheme runs by 

sampling iteratively from the conditional posterior distributions in the or­

der [,61 z, <P], [¢ill'lfJu z, ,6], ... , [¢;p 1'lfJ p' z,,6], ['lfJll ¢iu Z, {3], ... , ['lfJ pi ¢;p, z, ,6], 
[zlIYl',6, <P, 0], ... , [znIYn,,6, <P, 0] and [Olz]. 

6.2 Model Choice with Covariates 

We have described a method for estimating the unknown parameters in the 

model with covariates. For data with covariates there are two kinds of model 

choice. The first is the model choice that has been discussed in Chapters 4 

and 5 and involves investigating the relationship between classifying variables 

as characterised by the matrix <P. The second is to consider which covariates 

should be included in a model to predict the data. In this section, we will 

adapt the methods described in Chapters 4 and 5 so that they may be applied 

to data with covariates and give examples. In the next section, we will discuss 

the second type of model choice, that of covariate selection. Note that the 

model choice discussed in Chapters 4 and 5 relates to modelling the covariance 

structure whereas the type of model choice discussed later in this Chapter 

corresponds to modelling mean structure. 

The method used for model choice is a simple adaptation of the reversible jump 

algorithms described in Chapters 4 (if we are only interested in directed graph­

ical models or there is a fixed ordering to the data) and 5 (if there is no fixed 

ordering and we are considering the set of all undirected decomposable graph­

ical models). Let us first consider the acceptance probability LX defined in 4.11 

and 4.12 for moves between models. There are three terms in this acceptance 

probability: the likelihood of the data given the parameters f(zml<pm, ,6m), the 

prior distributions f( <Pm, ,6mlm) and the proposal distribution qp( <Pm). Each 
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of these must be evaluated for both the current and the proposed model. The 

likelihood term is now a product of normal densities with individual means 

Xd3 and common variance (cpT cp )-1. Both the prior distributions and the 

proposal distribution are unaffected by the presence of covariates, except that 

in the proposal, G now depends on Xi' 

Now let us consider the acceptance probability C\;order defined in 5.3 for moves 

between variable orderings. This consists of the prior terms f( Cp, ,610, m) and 

f(o, m) and a Jacobian. None of these are unaffected by the presence of covari­

ates. However, if an order change is accepted, the covariate order should also 

be changed to reflect this, but only if the data set is one in which covariates 

vary with classifying variables. 

We now apply this adaptation of Algorithms 5 and 6 to two data sets. 

6.2.1 Examples 

Example 1 - Crossover Trial 

The first example is taken from Jones and Kenward (2003) and concerns a 

cross-over trial for pain relief for 86 (n=86) patients suffering from primary 

dysmenorrhea. The trial is a three treatment, three period cross over trial 

with ordinal response. The three treatments were A (placebo), B (low dose 

analgesic) and C (high dose analgesic), and there were three periods 1, 2 

and 3. The 86 patients were randomised to each of the 6 possible treatment 

sequences. At the end of each treatment period, each subject rated the degree 

of pain relief as: none (1), moderate (2) and complete (3), thus providing a 

trivariate response (p = 3) with each classifying covariate taking three levels 

(kj = 3 for all j). The resulting data are reproduced in Table 6.1. 
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Sequence Group 
Response ABC ACB BAC BCA CAB CBA Total 

(1,1,1) 0 2 0 0 3 1 6 
(1,1,2) 1 0 0 1 0 0 2 
(1,1,3) 1 0 1 0 0 0 2 
(1,2,1) 2 0 0 0 0 0 2 
(1,2,2) 3 0 1 0 0 0 4 
(1,2,3) 4 3 1 0 2 0 10 
(1,3,1) 0 0 1 1 0 0 2 
(1,3,2) 0 2 0 0 0 0 2 
(1,3,3) 2 4 1 0 0 1 8 
(2,1,1) 0 1 1 0 0 3 5 
(2,1,2) 0 0 2 0 1 1 4 
(2,1,3) 0 0 1 0 0 0 1 
(2,2,1) 1 0 0 6 1 1 9 
(2,2,2) 0 2 1 0 0 0 3 
(2,2,3) 1 0 0 0 0 0 1 
(2,3,1) 0 0 0 1 0 2 3 
(2,3,2) 0 0 0 0 0 0 0 
(2,3,3) 0 2 0 0 1 0 3 
(3,1,1) 0 0 0 1 0 2 3 
(3,1,2) 0 0 2 0 2 1 5 
(3,1,3) 0 0 3 0 4 1 8 
(3,2,1) 0 0 0 1 0 0 1 
(3,2,2) 0 0 0 1 0 0 1 
(3,2,3) 0 0 0 0 0 0 0 
(3,3,1) 0 0 0 0 0 1 1 
(3,3,2) 0 0 0 0 0 0 0 
(3,3,3) 0 0 0 0 0 0 0 
Total 15 16 15 12 14 14 86 

Table 6.1: Cross over trial for pain relief 
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There are two covariates for this data set (C = 2): the treatment and the pe­

riod. Each has three levels (11 = 12 = 3). ::'\Tote that this is a situation where 

for each respondent, the values of the covariates vary by period. The three 

periods also provide the three classifying variables for each response. Due to 

the order upon which variables are conditioned in the Cholesky parameterisa­

tion, we must take them into the covariance matrix in reverse time order; thus 

classifying variable 1 = Period 3, classifying variable 2 = Period 2 and classi­

fying variable 3 Period 1. For example, under this ordering, an individual in 

the first column, second row of the Table 6.1 has response Yi = (1,1,1) while 

an individual in the sixth column, first row of Table 6.1 has response vector 

Yi = (3,2,1). These two individuals would have covariate matrices: 

0 1 0 1 0 n Xi= 0 1 0 1 
0 0 0 0 

and 

Xi~ 0 0 0 1 0 n 1 0 0 1 
0 1 0 0 

respectively. The left-hand partition of the covariate matrix Xi corresponds to 

the treatment effects while the right-hand partition corresponds to the period 

effects. Note that we assume a common treatment effect across periods. 

The response is trivariate ordinal with three categories in each period. Hence 

the first two cut points in each dimension are constrained to be -1 and 1 

respectively and there are no free cut points to be estimated. 

The data were first modelled using the saturated model. The Gibbs sampler 

was implemented using 100,000 iterations. The posterior means along with 

their standard deviations were obtained for f3 and :E. 

E(f3ly) = 

-2.035(0.130) 
0.45(0.129) 

0.860(0.130) 
0.149(0.129) 

-0.509(0.131) 
-0.412(0.130) 
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- - High dose 
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Treatment effect 

Figure 6.1: Posterior densities of the three treatment effects for the crossover 
trial data 

( 

4.973(0.054) 
E(~ly) = 0.299(0.164) 

0.019(0.161) 

0.299(0.163) 
6.31(0.070) 
1.137(0.159) 

0.019(0.161) ) 
-1.137(0.159) 
3.324(0.092) 

The posterior means for the covariate effects take the order: Treatment A 

(placebo), treatment B (low dose), treatment C (high dose), period 3, period 

2 and period 1. The higher the response, the more effective the pain relief. 

Thus we see that as would be expected, both treatments show improved pain 

relief over the placebo, with the higher dose being slightly more effective than 

the lower dose, although the difference between the two is small when com­

pared with the difference between each and the placebo. This is illustrated in 

Figure 6.1 which shows the posterior densities of the three treatment effects: 

Placebo, Low dose and High dose. 

These results agree with those found by Jones and Kenward (2003) who find 

that there is an overwhelming effect of active treatment over placebo, but that 

there is a smaller difference between active treatment effects. The period effect 

is less clear, period 3 shows improved pain relief over periods 1 and 2, which 
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Figure 6.2: Posterior densities of the three period effects for the crossover trial 
data 

are approximately equal. This is illustrated in Figure 6.2 which shows the 

posterior densities of the three period effects . 

.Note that the standard deviations for the mean estimates are approximately 

equal. This is possibly due to the fact that all three of the factor levels of the 

two factors period and treatment are included in the covariate matrix. 

The posterior means for :E indicate that there is little correlation between 

periods as the majority of the off-diagonals are fairly close to zero. The one 

exception is the covariance between Periods 1 and 2. To gain further insight 

into this, we calculate the correlation matrix R: 

( 

1 0.053 
R = 0.053 1 

0.005 -0.248 

0.0

1

05 ) 
-0.248 

The correlations between Periods 1 and 3 and Periods 2 and 3 are very close to 

zero, with that for Periods 1 and 3 being smaller than that for Periods 2 and 
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3 as we would expect. The correlation between Periods 1 and 2 is stronger, so 

there may be some probability of a relationship between these Periods. This 

will be investigated using the RJMCMC model choice algorithm. 

To investigate this further, the issue of model choice was considered. Note that 

model search is carried out within the set of directed decomposable graphical 

models, as the data is longitudinal. Therefore, there is no need to move be­

tween orderings. The Reversible Jump algorithm (Algorithm 5) from Chapter 

4 with adaptations described above was applied with 100,000 iterations. The 

prior parameters were chosen to be noninformative following the arguments of 

section 4.2: A = diag(0.185, 0.185, 0.185), q = 5 and T = diag(50). Table 6.2.1 

shows the posterior model probabilities for each model. 

Model Posterior Model Probability 
Period 1 + Period2+ Period3 0.110 
Period2:Period3 + Period1 0.049 
Periodl:Period3 + Period2 0.026 
Period1:Period2 + Period3 0.470 

Period1:Period3 + Period2:Period3 0.016 
Period1:Period2 + Period2:Period3 0.166 
Period1:Period2 + Period1:Period3 0.10 

Period 1 :Period2:Period3 0.061 

Table 6.2: Posterior model probabilities for crossover 
data 

The most popular model is Periodl:Period2 + Period 3, followed by Pe­

riodl:Period2 Period2:Period3 and then the null model Period1 + Period2 + 

Period3. Together, these three models account for 74.6% ofthe posterior prob­

ability. There is therefore high posterior probability of a relationship between 

responses in Periods 1 and 2, and some posterior probability of a relationship 

between responses in Periods 2 and 3. As we would expect, there is strong 

evidence that responses in Periods 1 and 3 are conditionally independent given 

the response in Period 2. The fact that the independence model is the third 

most popular model agrees with the finding that the treatment received in 
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Figure 6.3: Trace plot for /33 for crossover data 

each period has an effect on the response, because otherwise we would expect 

greater correlation between the responses for an individual over each period. 

It is difficult to assess the goodness-of-fit for this data set as the number of 

observations is small compared to the number of cells into which they are 

classified. Convergence of the MCMC was assessed using trace plots and au­

tocorrelation function plots. The trace plots for /33 (Treatment=high dose) 

and I;n (Period 3) are shown in Figures 6.3 and 6.4 respectively, while the 

autocorrelation function plot for I;13 is shown in Figure 6.5. 

Example 2 - Shoulder Tip Pain 

The second example is taken from Lumley (1996) and concerns data from a 

randomised trial of abdominal suction to reduce shoulder tip pain after laparo­

scopic surgery. Forty-one patients were asked to rate their shoulder pain on a 

scale of 1 (low) to 5 (high) at six separate time points. The response therefore 
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Figure 6.4: Trace plot for 2:;11 for crossover data 
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Figure 6.5: Autocorrelation function plot for 2:;13 for crossover data 
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takes the form of a six-dimensional multivariate ordinal vector with each clas­

sifying variable having 5 levels (p = 6 and kj = 5 for all j). There were four 

covariates (C = 4): Treatment (Yes or No, 11 1), Sex (!2 = 1), Age in years 

(f3 = 1) and Time (f4 6). Note that the binary factors only supply one 

column each to the covariate matrix as one level for each was chosen to be the 

baseline. For Sex, the baseline was chosen to be Female while for Treatment, 

No was chosen to be the baseline category. Therefore for each i, Xi takes the 

form of a 6 x 9 matrix. 

For this data set, in contrast with the crossover trial data, the covariates are 

constant over each time point, so each row of Xi is the same. The data set is 

longitudinal; therefore, as for the crossover example, times are taken into the 

covariance matrix in reverse order, in order that models with directed edges 

having the correct edge direction. As each variable has five levels, there are 

two free cut points to be estimated in each dimension. 

In Chapter 3, the Gibbs sampler algorithm for parameter estimation was im­

plemented with the constraints that the first two cut points in each dimension 

were set to be 0 and 1 respectively. Then in Chapter 4, the new constraints 

()(j, 1) -1 and ()(j, kj - 1) 1 were chosen to give symmetry to the model 

and thus facilitate prior parameter selection. The shoulder pain data exam­

ple gives further support for this choice of parameter constraints. Using the 

constraints ()(j, 1) = 0 and ()(j,2) = 1 leads to the estimate of 508,179 for 

the highest cut point for classifying variable Time 6, with associated standard 

deviation 3,829. This result is due to the fact that no patients fall into the 

highest category (level ) for Time 6 so there is no latent data to constrain 

the highest cut point. Such a high posterior mean estimate for this parameter 

also has a strong influence on the latent data and hence the posterior mean f3 

and in particular the variance:E. By using the constraints ()(j, 1) = -1 and 

()(j, kj - 1) = 1 the problem is avoided and convergence unaffected. 

The Gibbs sampler for saturated model parameter estimation was run for 

20,000 iterations and the posterior means along with their standard deviations 
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were obtained for /3, ~ and O. 

-0.955(0.148) 
-0.031(0.127) 
-0.014(0.012) 
-0.193(0.138) 

E(/3jy) -0.194(0.140) 
0.379(0.143) 
0.136(0.146) 
0.475(0.42) 
0.39(0.142) 

1.236 0.877 0.575 0.541 0.489 0.337 
0.877 1.569 0.764 0.727 0.645 0.362 

E(~jy) = 0.575 0.764 0.946 0.805 0.717 0.399 
0.541 0.727 0.805 1.438 1.052 0.547 
0.489 0.645 0.717 1.052 1.370 0.584 
0.337 0.362 0.399 0.547 0.584 1.449 

with standard deviations: 

0.705 0.283 0.156 0.151 0.145 0.138 
0.283 0.404 0.180 0.185 0.150 0.122 
0.156 0.180 0.186 0.157 0.131 0.113 
0.151 0.185 0.157 0.288 0.182 0.150 
0.145 0.150 0.131 0.182 0.225 0.166 
0.138 0.122 0.113 0.150 0.166 0.243 

The posterior predictive means are displayed for the 2 free cut points for each 

classifying variable. Note that the first and last cut points were set to be -1 

and 1 respectively. The six rows of the matrix correspond to the six classifying 

variables (Time Points). 

-0.200(0.099) 0.657(0.093) 
-0.428(0.084) 0.284(0.105) 
-0.462(0.071) 0.045(0.081) 
-0.452(0.079) 0.152(0.089) 

E(Ojy) 

-0.277(0.079) 0.303(0.083) 
-0.449(0.074) 0.274(0.098) 

The elements of /3 correspond to the covariates Treatment (with baseline no 

treatment), Male (with baseline female), Age and the six Time points respec­

tively. A higher response corresponds to more pain, so we can therefore draw 
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Treatment effect 

Figure 6.6: Posterior density of the treatment effect for shoulder pain data 

the following conclusions from these results. The active treatment clearly im­

proves pain levels compared to no treatment . .:vIales rate pain as marginally 

lower than females. As age increases, reported pain levels decrease. However, 

both covariate estimates for sex and age are very close to zero so this effect 

may not be significant. The posterior distributions for the covariates Treat­

ment (with baseline no treatment), Sex (with baseline female) and Age are 

shown in Figures 6.6, 6.7 and 6.8 respectively. 

For the time covariate, there appears to be an overall trend from Time 1 to 

Time 6 of decreasing pain. The posterior distributions of the Time effects are 

shown in Figure 6.9. 

These results agree on the most part with those found by Lumley (1996). The 

only point on which they do not agree is that Lumley finds that overall males 

rate pain more highly than females. However the posterior standard deviation 

of this estimate is larger than the posterior mean itself and is therefore not 

significant. 
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-1 

Sex effect 

Figure 6.7: Posterior density of the sex effect for shoulder pain data 
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Figure 6.8: Posterior density of the age effect for shoulder pain data 
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Figure 6.9: Posterior densities of the six time effects for shoulder pain data 

From the posterior mean of the covariance matrix b, we note that covariances 

decrease further from the diagonal. To investigate this, consider the correlation 

matrix R: 

1 0.630 0.532 0.406 0.376 0.252 
0.630 1 0.627 0.484 0.440 0.240 

R= 
0.532 0.627 1 0.690 0.630 0.341 
0.406 0.484 0.690 1 0.750 0.379 
0.376 0.440 0.630 0.750 1 0.414 
0.252 0.240 0.341 0.379 0.414 1 

The correlations decrease going away from the diagonal, although they do not 

decrease enough to fit an AR(l) structure. 

The issue of model choice was then considered. Note that model search is 

carried out within the set of directed decomposable graphical models, as the 

data is longitudinal. Therefore, there is no need to move between orderings. 

The Reversible Jump algorithm (Algorithm 5) from Chapter 4 with adap­

tations described above was applied with 100,000 iterations. Following the 
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arguments of section 4.2, the priors were set to be A = diag(0.708), q = 8 and 

T = diag(50). Table 6.2.1 shows the posterior model probabilities for the 5 

most probable models which between them account for 10% of the posterior 

probability. 

Model Posterior Model Probability 
Tl:T2 + T2:T3 + T3:T4 + T4:T5:T6 0.029 

T1:T2 + T2:T3:T4 T4:T5:T6 0.027 
Tl:T2 + T2:T3:T4 + T4:T5 + T5:T6 0.018 

T1:T2:T3 + T3:T4 + T4:T5:T6 0.017 
Tl:T2 + T2:T3 + T3:T4 + T4:T5 + T5:T6 0.013 

Table 6.3: Posterior model probabilities for shoulder 
pain data 

There is very high posterior probability of relationships between Times 1 and 

2, 2 and 3, 3 and 4, 4 and 5, and 5 and 6. These dependences occur in each of 

the most probable models. The two most probable models also involve a three­

way interaction between Times 4, 5 and 6, and slightly less popular models 

involve other three-way interactions of adjacent variables in the ordering. The 

autocorrelation structure could possibly be lag 1 or lag 2. The four most 

probable models are shown in Figure 6.10 

Again, goodness-of-fit is difficult to assess as the number of observations is 

small compared to the number of classifying cells. Convergence is assessed 

using trace plots. The trace plots for /33 (Age) and e(l, 3) (third cut point for 

Treatment) are shown in Figures 6.11 and 6.12. 

6.3 Covariate Selection 

So far, we have not considered whether each covariate has a significant effect 

on the response, and have included them all in the model. However, this may 

not always be appropriate as some covariates may have little or no effect on 
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Figure 6.10: Most probable models for shoulder data 
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Figure 6.11: Trace plot for /33 for shoulder pain data 
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Figure 6.12: Trace plot for B(l, 3) for shoulder pain data 

the response. In this section, we describe and implement an extra Reversible 

Jump step to decide which covariates should be included in a model for the 

data. Throughout this section, whenever the phrase model choice is used, we 

are referring to covariate model choice. 

For a covariate not to be in the model, all elements of f3 corresponding to 

that covariate should be set to zero. This seems appropriate for the longitu­

dinal examples considered here. Where classifying variables do not represent 

the same response at different time points it may be desired to allow mod­

els where a particular covariate may affect one classifying variable but not 

another. The general RJMCMC approach proposed here would allow such 

models to be considered. If a covariate is included in the model, then there is 

no restriction on the corresponding values of f3. Therefore a model in this case 

is characterised by the covariate vector f3 for the full model with parameters 

for 'missing' covariates set to zero. For a data set with C covariates, there are 

C possible move types, each corresponding to one of the covariates. A move 

can consist of dropping a covariate if it is present in the current model or of 
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adding in a covariate if not present in the current model. Dropping the covari­

ate corresponds to setting the corresponding values of (3 to zero, and adding 

the covariate corresponds to proposing a new value for the appropriate values 

of (3. 

Suppose that at time t, the current state of the Markov chain is represented by 

(mg6v, e(t)(t) ) where e(t)(t) represents the values of the unknown parameters 
mcov mcov 

in model mg6v' Adding a covariate c with fe levels involves a proposed move to 

a new model m~ov and corresponding parameter vector e~, with dimension coy 
dim(e(t)(t) ) + fe. e'm, is created by generating a proposal u from a fcvariate 

mcov COy 
proposal distribution qr (u) and setting e'm, = g( e(t)(t) ,u). 

COy mcov 

Removing a covariate c with fe levels from the current model mg6v involves 

a move to a model m~ov with corresponding parameter vector e'm, with coy 
dimension dim(e(t)(t) ) - fe, then e'm, is created from e(t)(t) by applying 

mcov COy mcov 
the inverse transformation (e'm, ,uf

) g-l(e(t)(t») and discarding u f
• 

COy mcov 

Suppose that a move to a new covariate model m~ov is proposed, with e'm, = COy 
g(e(t)(t) ) and suppose that the probability of making move type r given the 

mcov 
current state of the Markov chain is j(r, e(t)(t) , mg6v)' Then a move to a new 

mcov 
model by adding a covariate should be accepted with probability O:cov where 

. { f(e'mcov ' m~oviy)j(r, m~ov' e'mcov ) 8(e'mcov)} 
mm 1, (t) (t) (t) (t) --:(--t)-='-'---

f(e (t) ,mcoviy)j(r,mcov,e (t) )qr(u) 8(e (t) ,u) 
mcov mcov mcov 

O:cov 

(6.2) 

For the reverse move to a new model by removing a covariate, the acceptance 

probability is 

8(e'mco) } 

8( c(t) ) 
'" (t) ,u mcov 

(6.3) 
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Each move type is made with equal probability, so j() terms will cancel in (6.2) 

and (6.3). Also, as we take the transformation 9 to be the identity transfor­

mation, there is no Jacobian term. Using the same derivation as (4.10), and 

assuming a priori that each covariate model is equally likely, equations (6.2) 

and (6.3) will then simplify to: 

{ 

f(z(t)lp(t) 13', )f(p(t).f3', 1m') 1 } . 'mcov ; mcov COV 
O:cov = mm 1 

, f(z(t)lp(t) f3(t) )f(p(t) f3(t) Im(t)) Qr(f3'm, ) 
,(t) ,(t) cov cov 

mcov mcov 

(6.4) 

and 

when adding or removing covariates respectively. 

The likelihood terms f(zlp, f3mcov) are given by the p-variate normal distri­

bution, the parameters of which depend on the covariate model. The variance 

(pT P )-1 is independent ofthe covariate model, but the structure of the mean 

X if3 varies according the model, with covariates not included in the model 

leading to the presence of zeros in 13. 

The prior terms f( P, f3mcov Imcov) are factorised as f(j3mcovlmcov )f( plmcov) 

due to the choice of independent priors for P and 13m . Since P is covariate cov 
model independent, these terms will cancel in the reversible jump acceptance 

probabilities. The priors for 13m for the full model are multivariate normal cov 
with mean vector 0 and variance the diagonal matrix T. Since in any reduced 

model, some of these means are set to zero if the corresponding covariates are 

not in the model, these zero elements are conditioned on to obtain the prior 

for the reduced. Since the prior mean is 0 and the prior variance is diagonal, 

the prior density will be simply multivariate normal with dimension equal to 

the number of non-zero elements of 13, mean vector 0 and variance matrix 

T = diag(Ti~)' 
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Finally we consider the proposal. As in Chapter 4, we have the useful property 

that the normalised conditional posterior distribution is available and may be 

used to find a suitable proposal distribution for the element of f3 to be added. 

The joint conditional posterior distribution for all covariate means {3 is as 

follows: 

When proposing to add a covariate, we must propose new values for all ele­

ments of f3 associated with that covariate. A suitable proposal may therefore 

be found by conditioning on the other elements of {3 in the usual manner 

for conditional multivariate normal distributions (see section 3.7.3). When 

proposing to remove a covariate, the proposed values for the corresponding 

elements of f3 are o. 

The full algorithm including both types of model choice and order choice now 

runs as follows. 

6.3.1 Algorithm 7 

An initial model, order, covariate model and values for al parameters in this 

model are specified. Then, 

1. With probability p, remain in current graphical model, order and covari­

ate model and re-generate all parameters (the null move). Else, with 

probability 1 - p, a new model is proposed by either adding or subtract­

ing a randomly selected edge from the current model. If the proposed 

model is unavailable in the current ordering, go to Step 2. Otherwise the 

proposed model is accepted with Reversible Jump probability cy specified 

in (4.11) and (4.12). 
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2. A new ordering is proposed by randomly selecting a pair of adjacent 

variables in the current ordering and proposing to switch them. If the 

current model is not available in the proposed ordering, then go to step 

3. Otherwise, the proposed ordering is accepted with Reversible Jump 

probability Gorder as defined in (5.3). 

3. A new covariate model is proposed by randomly selecting a covariate and 

proposing to set the corresponding elements of f3 to 0 if the covariate is 

in the current model, or proposing new values for the corresponding 

elements of (3 if the covariate is not in the current model. The proposed 

model is accepted with Reversible Jump probability Gcov defined in (6.4) 

and (6.5). 

4. Go to step 1 and repeat. 

Note that it is possible to focus on a particular aspect of the model and covari­

ate model selection procedure by skipping step 3 or step 1 respectively. Also, 

step 2 is not required if the order of the classifying variables is fixed. 

6.3.2 Examples 

We apply this method to the same two examples. 

Example 1 - Crossover Data 

Algorithm 7 was applied to the crossover data set with 50,000 iterations and 

with the same priors as before. The Reversible Jump step for covariates was 

found to be far less mobile than both the model change and order change 

Reversible Jump steps, with proposed moves being accepted approximately 

2% of the time. The posterior covariate model probabilities are shown in 

Table 6.3.2. The most popular model is the Treatment main effect model 

which accounts for 95.4% of the posterior model probability. Clearly there is 
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Model Posterior Model Probability 
Treatment + Period 0.029 

Treatment 0.954 
Period 0.003 

::.Jo Covariates 0.014 

Table 6.4: Posterior covariate model probabilities for 
crossover trial data 

very strong evidence that the Treatment main effect should be included in a 

covariate model for the data set. ::.Jote that the fact that one model is found 

to be far more probable than all other models accounts for the fact that the 

proposal is not often accepted. This is demonstrated by the fact that proposals 

to move to the Treatment model are accepted at a rate of 97%. 

Example 2 - Shoulder Pain Data 

Algorithm 7 was applied to the shoulder pain data with 100,000 iterations 

and with the same prior parameters as for the non covariate selection case. 

The Reversible Jump step for covariate mode change was far more mobile for 

this example with a proposed move acceptance rate of 9%. Table 6.3.2 shows 

the posterior covariate model probabilities for the four most popular covariate 

models for the shoulder pain data. Between them, these four covariate models 

Model Posterior Model Probability 
Treatment 0.702 

Sex + Treatment 0.253 
Period + Treatment 0.032 

Period + Sex + Treatment 0.011 

Table 6.5: Posterior covariate model probabilities for 
shoulder pain data 

account for 99.8% of the posterior probability. The treatment covariate occurs 
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in each of the models, there is therefore very high posterior probaility of a 

treatment effect. There is also some probability of both Sex and Period effects, 

but only in the presence of the Treatment effect. 

Both examples given here only require reversible jump between directed mod­

els, but as the reversible jump algorithm for changing orderings is unaffected 

by the presence of covariates, this would not create any difficulties. 
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Chapter 7 

Discussion and Extensions 

7.1 Discussion 

The aim of the thesis has been to provide a coherent methodology for multi­

variate ordinal and binary data, encompassing both parameter estimation and 

model selection. 

Methods proposed previously were discussed in Chapter 2, with particular em­

phasis on those introduced by Albert and Chib (1993) and Chib and Greenberg 

(1998), as in this work we use similar ideas to those suggested by these au­

thors. The methods of Chib and Greenberg (1998) and Chen and Dey (2000) 

may be applied to multivariate binary data and multivariate ordinal data re­

spectively. However, we have given a new parameterisation that is far more 

flexible, allowing for the modelling of ordinal or binary or a mixture of both 

types of data. 

The parameterisation involves characterising the model in terms of the Cholesky 

decomposition of its inverse variance matrix. The use of the Cholesky de­

composition parameterisation allows for conjugate prior distributions so that 

sampling from the posterior distributions of the model parameters is straight­

forward. The model parameters are estimated using a Gibbs sampler and a 
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data augmentation approach. The approach has been illustrated with applica­

tions to two examples, one all ordinal and one a mixture of binary and ordinal. 

Goodness-of-fit of the saturated model can be assessed by use of a simulation 

approach and may be seen to be extremely good for data with three or fewer 

dimensions. 

The issue of model choice for decomposable directed graphical models is con­

sidered in Chapter 4. Such models imply an ordering of variables with directed 

edges going from variables earlier in the ordering to those later in the ordering. 

Models are characterised by the structure of the Cholesky decomposition ma­

trix <I>. A zero entry in <I> is equivalent to conditional independence between 

the corresponding variables given all variables preceding them in the ordering. 

A Reversible Jump approach is employed to investigate which models are most 

likely to predict the observed data. Standard Bayesian methods for model 

comparison involve comparing the marginal likelihoods of competing models. 

However, this is not often possible as the marginal likelihood is analytically 

intractable and must be estimated by other means, for example, by simulation. 

In this work, the marginal likelihood is unavailable. The Reversible Jump 

procedure circumvents this problem by sampling from the joint model and 

associated model parameter space. 

Moves take the form of either adding or removing an edge from the current 

model, which corresponds to generating or setting to zero an appropriate ele­

ment of <I> respectively. The Reversible Jump acceptance probability takes a 

fairly simple form as the prior distributions for many of the model parameters 

are model independent. The Cholesky decomposition parameterisation pro­

vides a further useful property here in that a suitable proposal distribution for 

the Reversible Jump procedure is simply the conditional posterior distribution 

of the elements of <I> to be added or removed. 

The Reversible Jump procedure was applied to two data sets where the clas­

sifying variables take a natural ordering. For both examples, it was seen to 

be very mobile with proposed moves accepted approximately 1 in 7 times and 

140 



7. DISCUSSION AND EXTENSIONS 

1 in 3 times respectively. Models estimated were compared with results from 

others' analysis of the two sets of data and were found to be very similar. The 

goodness-of-fit was assessed for both examples and here there was some cause 

for concern as the model averaged fit was not as good as might be hoped. 

However, despite this lack of fit the models selected were still comparable to 

those found by less parsimonious approaches. 

Prior parameters were also discussed in Chapter 4. The choice of these can be 

shown to have a strong effect on the models selected by the Reversible Jump 

procedure. 

The model provides a natural framework for fitting directed acyclic graphical 

models for data where the classifying variables are ordered, but it may also 

be extended to situations where this is not the case. In Chapter 5, we con­

sidered model selection for decomposable graphical models using Reversible 

Jump MCMC. As discussed in Chapter 4, the parameterisation of the model 

leads to a natural ordering of the classifying variables. However, not all undi­

rected graphs are available in anyone particular ordering as the conditional 

independence structure is unsupported by the ordering. The Reversible Jump 

procedure described in Chapter 4 was extended to take account for this. In 

the extra step, a proposed move involves permuting two classifying variables 

in the ordering. In this way, all undirected models are covered by the model 

space that the Reversible Jump procedure passes through. 

All examples considered up to this stage did not involve covariates; in Chap­

ter 6, the methods described for modelling and choosing appropriate models 

with which to do so were adapted to allow for the presence of covariates. The 

Gibbs sampler algorithm for estimating parameters in a single model and the 

Reversible Jump algorithms for moving between models and between orderings 

were adapted and successfully applied to two data sets. A futher Reversible 

Jump step was then described that moved between covariate models by propos­

ing to add or remove a covariate from the current model. 
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7.2 Extensions 

The work has many possibilities for further extension and investigation. A 

simple extension would be to apply the methods described here to mixed data, 

that is, data where there is a mixture of ordinal (or binary) and continuous 

response variables. For such data one might model the joint distribution of 

the latent variables for the categorical responses with the continuous responses. 

Thus no latent data generation step is required for the continuous variables 

so modelling such data would in fact be less computationally intensive than 

modelling purely categorical data. There are also no cut points to be generated 

for the continuous responses. 

There is some suggestion from the examples given in Chapters 4 and 5 that 

the model may struggle to fit the data well if it is of higher dimension. This is 

almost certainly due to the highly parsimonious nature of the models described 

here. For example, consider fitting a standard log linear model to the Alcohol, 

Obesity and Hypertension data shown in Table 3.5. Fitting the saturated 

log-linear model AOH requires estimating an extra 12 parameters than when 

fitting the log-linear model AH +OH for example. In contrast, with the models 

described here, only one extra parameter is required to be estimated. For this 

work, this has not caused a computational problem as the main focus was on 

model determination. However, there are certain modifications that could be 

applied to overcome this. For example, the use of the multivariate normal 

distribution may not be appropriate. Perhaps a heavier-tailed distribution 

would provide a better fit. Also, it may be unrealistic to expect the data to be 

centered on a single mean, so a mixture of normal distributions (McLachlan 

and Peel, 2000) may provide a better fit. 

The performance of the data augmentation Gibbs sampler algorithms appears 

to have been satisfactory for the examples given here. However, it is possible 

that convergence could be improved in two ways. Various methods described in 

Section 2.2.2 could be implemented to speed convergence of the free cut points, 

while the method of parameter expansion described in Section 3.4.2 could also 
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be implemented to improve model convergence, although this approach has 

not previously been applied to ordinal data. 

~;fodels are underparameterised so that effectively, we are using an approach 

that attempts to fit a model using combinations of two factor interactions. 

This does however have some advantages in the parsimonious nature of the 

models selected to do so. It would not be recommended to use this approach 

for data of very high dimension, that could not practically be represented in a 

contingency table for example. 

Another avenue for further exploration is in the choice of prior distributions. 

The prior distributions for elements of <P were chosen to be equivalent to an 

Inverse Wishart distribution for 1::; however, it would be possible to choose 

the prior parameters to correspond to a more flexible prior distribution for 1::, 

the generalised inverse Wishart distribution. 

In this thesis, the covariance matrix has been modelled with no restrictions on 

its structure. Another approach to modelling the covariance matrix could be 

to specify models in terms of competing correlation structures. For example, a 

common model for correlation structure for longitudinal data is to consider the 

set of autoregressive models, denoted AR(p) for a model of order p. For longi­

tudinal data examples, one could construct a Reversible Jump move between 

competing orders of AR models. 

All computation described in this thesis was carried out using custom-written 

C source code. However, it is worth noting that due to the fact that the 

conditional posterior distributions for all model parameters are standard, the 

Gibbs sampler procedure described here to estimate model parameters may 

also be carried out in the software package BUGS (Gilks et al., 1994). 
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