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We study the next to leading order (NLQO) weak corrections (order a%aw) to a number
of hadronic processes. We discover the weak correction to bb production at Tevatron
to be small (fractions of one percent) at inclusive level but potentially of some signif-
icance in the forward backward asymmetry. The correction to the total bb production
cross-section at LHC is also found to be small (-2%) but possibly large enough to be
significant following NNLO QCD calculations. We find the total cross-sections for two
jet production at both Tevatron and LHC to be significantly larger - up to -3% at Teva-
tron and up to -30% at LHC. Calculations of polarised observables are also performed
for both RHIC and a hypothetical polarised LHC. We find wealk corrections to these
observables to be typically tens or even hundreds of percent. A calculation of the ¢t
production cross-section is also carried out. The corrections to a number of differential
cross-sections for gg — tt at LHC are found to be potentially significant - in the region

of 5 to 10%. For ¢§ — tt we find corrections of a similar magnitude.
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Chapter 1

Introduction

1.1 General Motivation

In this thesis we present a number of calculations of NLO (cy%aw) weak corrections
to hadronic processes. These calculations will be performed for the two TeV energy
colliders, LHC (Large Hadron Collider) and Tevatron, as we expect to see large weal
effects at high energy machines. We will also present some calculations for RHIC
(Relativistic Heavy Ion Collider) where, as RHIC is a polarised machine, it is possible
to define observables where weak corrections will be qualitatively distinct from QCD
due to their parity violating nature.

Three calculations will be studied in detail - the bb production rate (assuming massless
quarks), the full proton - (anti)proton to two jet rate (also assuming massless quarks)
and the (¢ production rate (where the top mass is non zero.).

All of these calculations will he calculated for gg — final state and gg — final state
(and, where appropriate, gg — final state). The processes with gluons in the initial
state are IR finite at aZaw order but the four quark processes will always contain

infrared (IR) (soft and collinear) divergences. These will have to be cancelled using a



suitable subtraction method if we are to obtain matrix elements which are integrable

via Monte Carlo methods.

1.1.1 Why Are Standard Model Calculations Important?

It is important and interesting to study weak corrections in a standard model calculation
for a number of reasons. Firstly, via the calculation and measurement of asymmetries,
we may examine weak effects even if the inclusive cross section is small. These asym-
metries allow us to study qualitative effects that arise from weak physics and, in the
case of entirely parity violating asymmetries, this means we can eliminate any errors
associated with QCD (as pure QCD graphs will not contribute to these observables).
Another reason we are interested in weak effects is that weak corrections are typically
more significant than one would expect from a simple comparison of couplings with,
for example, QCD. This is a consequence of potentially large non cancelling single and
double logarithms which become significant at large centre of mass energies. The im-
portance of weak corrections is discussed at length in Chapter 2.

It is also worth mentioning here why we are interested in standard model calculations
at all. Calculations of this nature are important as part of the ongoing testing of the
standard model. There are a number of discrepancies hetween current standard model
predictions and experimental data that wonld potentially benefit from calculation of
weak corrections.

Firstly the b jet excess detected at Tevatron. The transverse momentum (pg) distri-
bution of b-jet production at Tevatron shows a distinct disagreement with theoretical
predictions [1] (currently calculated to NLO in QCD [2]). Tt is expected that compar-
ison between b-jet production and predictions will continue at LHC at much higher

accuracy [3]. Any improvement to the theoretical predictions here would clearly be of



some potential use. A calculation of the NLO weak contribution to bb production is
presented in Chapter 4.

Another signal that should be considered is the high pr jet excess discovered by the
CDF collaboration at Run 1 of Tevatron [4]. Although it appears that this discrepancy
may by solvable via a modification of the gluon Parton Distribution Functions (PDI’s)
[5] further theoretical examination of this region is likely to be of some interest.
Finally, a reliable standard model background is required for searches for physics be-
vond the standard model. A good example, and one where weak corrections are of
particular importance, would be in searches for the exotic W and Z bosons described
in (for example) [6]. In an attempt to detect physics of this nature it would be sensible
to look for discrepancies between measurement and theoretical predictions of parity
violating observables. As mentioned above this would eliminate any errors associated
with QCD and these observables should be particularly sensitive to the existence of

additional parity violating interactions.

1.2 The Colliders We Will Be Studying

The calculations presented here will be performed (where appropriate) for three differ-
ent colliders - Tevatron, LHC and RHIC. Following is a brief discussion of the different
machines properties;

Tevatron at Fermilab is the worlds highest energy currently operating collider. It is a
proton-anti-proton collider with a centre of mass energy of around 2000GeV. Whilst
this energy is above the threshold where the logarithmic corrections (see section(2.4))
to weak processes becomes large we need to remember that partonic energies will be
scaled by the Bjorken = and as such will typically be in the region of the W mass - not

high enough for us to see large weak logarithms.



LHC at CERN will become the worlds most powerful collider when it starts running
within the next few years. It will be a proton-proton collider with a centre of mass
energy of about 14TeV. This will result in partonic energies far above the W mass
leading to potentially high significance for weak corrections.

RHIC at Brookhaven National Laboratories was designed as a heavy ion collider but
has been used as a polarised proton proton collider. RHIC is a comparatively low en-
ergy collider when compared with LHC or Tevatron (at about 600GeV), however the
fact that it can run with polarised beams means that it is an interesting machine from
the point of view of weak physics. The asymmetries mentioned above (and described
in section(2.2.1)) are defined for the case of polarised beams and as such, out of the

three colliders considered, may only be measured at RHIC.

1.3 Qutline Of Chapters

Below is a brief description of the contents of each chapter following this introduction:

e Chapter 2 - Why Weak Corrections Are Important:
Presented here is a description of why we expect weak corrections to be important
in what we would expect to he QCD dominated interactions. Discussed within
are the parity sensitive observables that can be defined at a polarised collider and
the forwards backwards asymmetry to which we expect to have a detectable weak
contribution. We also consider the large non cancelling logarithms that appear

in weak cross sections and which enhance them at high centre of mass energies.

o Chapter 3 - Methods For The Cancellation Of Soft And Collinear Divergences:

Described in this chapter is the subtraction method of Catani & Seymour [7] that



we use to cancel IR divergences. This method is the one used in the calculations

presented in Chapter 4 and Chapter 5 - those calculations where we make the

assumption of massless external quarks.

Chapter 4 - bb Production:

The first calculation presented is an evaluation of the NLO weak correction to
bb production at Tevatron and LHC (this calculation is not performed for RHIC
as at that machine there is no capability to efficiently identify b jets). The total

cross section will he calculated along with the forwards backwards asymmetry at

Tevatron.

Chapter 5 - Proton Proton To Two Jets:

Following on from the bb production we extend the calculation to include all pos-
sible two jet final states with massless external particles. We will calculate the
total cross section for both LHC and Tevatron and also the parity sensitive po-
larised observables for RHIC. Also presented will be an evaluation of the polarised

observables at a hypothetical LHC with polarised proton beams.

Chapter 6 - tt Production:

Finally we will evaluate the NLO weak correction to # production. This will be
a very similar calculation to the case of bb production (in fact, topologically it
is identical) but the necessary addition of the external top mass will complicate
matters slightly. Here we use the subtraction method of Stefan Dittmaier [8] to

render our results finite.

Chapter 7 - Conclusions:
Here we will briefly reiterate the implications of the results obtained during the

course of this research and indicate where further work is required.



Chapter 2

Why Weak Corrections Are

Important.

At the order where the calculations will be performed (a?ayy ) one would usually expect
QCD effects to dominate by a factor of o/ however there are a number of reasons
why weak corrections may be of some interest to calculate. There are qualitative
differences between wealk and QCD effects as a consequence of the parity violating
nature of weak vertices which may be measurable at some colliders. There are also

large non-cancelling logarithms that exist in the electroweak (EW) corrections that

enhance them with respect to QCD.

2.1 Comparison To Two Loop QCD

Work is currently being done in an attempt to evaluate QCD corrections at two loop

(NNLO) order [9]. A simple comparison of coupling constants,

ooy > ol (2.1)
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shows us that we can expect NLO weak effects to be at least of a comparable size to
NNLO QCD effects. Clearly, if we are interested in improving theoretical predictions
to the level of two loop QCD we will also need the one loop weak effects.

(Tt is worth mentioning that the simple comparison of couplings does not tell the whole
story. The very large number of interferences that contribute to the two loop QCD will
enhance the magnitude of that contribution compared to the NLO weak beyond what

v . r 3
we may expect from comparing the couplings alone.[9])

2.2 Parity Violation

Another important justification of the value of calculating Weak corrections comes from
the qualitative nature of the results generated by the parity violating nature of the weak
vertices.

The Feynman rule for the Z-vertex is:

: 5 -
o (M ), o2
where f is the fermion flavour (although in most of what follows the Z vertex will
be expressed in terms of vector and axial couplings rather than left and right handed
couplings).

Clearly, assuming that cp # ¢z, we would obtain a different result from a left handed
incoming state than a right handed incoming state - this is parity violation. We also
generate parity violation from W boson interactions - a W boson does not couple to
right handed particles at all.

(Note that the QCD vertex:

—igsyHt? (2.3)



does not have an axial part and that therefore purely QCD interferences will not con-
tribute to any parity violating observables ie: the interferences will be insensitive to

the incoming/outgoing helicities).

2.2.1 Polarised Observables

If we are performing calculations for a machine which has two polarised beams (for
example RHIC) then one of the observables that can be examined is the double helicity
hadron asymmetry [10] -

doyy —doy. —do_ +do__ (2.4)
doyy +dogy +do_y +do__ B

Arp =

(where -+/— refers to the helicity of the incoming particle(s))

If we have no parity violation (ie: doy; = do__ and doy_ = do_) then this reduces
to:-
doyy —dog_ 5
App = ————— (2.5)

© doy .y tdog_
In general this is non-zero so, whilst A7y will be sensitive to weak effects, we would
expect it to be dominated by QCD effects in hadronic processes.
There are however a number of variables that can be defined which are only sensitive
to parity violating effects. For example, again at a machine with both beams polarised,

we have the parity violating asymmetry [10]:-

loyy —do—_
ARy = 20— O 2.6
LL 2doror (26)

(where doror is the cross-section summed over all helicity combinations)

or, for a single polarised beam we have the single helicity hadron asymmetry [10]:

dos —do..
Ap = =1 7 (2.7)
2dopor
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Figure 2.1: Tree level Z exchange in the t-channel. i and j are the incoming quark flavours

and A and p are the helicities and momenta of the external particles

Clearly, if the interaction is insensitive to the helicity of the external particles (as is
the case for purely QCD processes), do, 4. will equal do_(_y, meaning that both ALY
and A;, will be zero.

These observables are only measurable at machines with polarised beam(s) and cur-
rently the only high energy polarised hadron collider is RHIC at Brookhaven. In prin-
ciple LHC could be modified to incorporate polarised proton beams during a round of
upgrades but this appears to be unlikely [11] [12]. Despite this Arr, Ay and AJLD‘L/ are
calculated for LHC to show the size of effect that would be measured at that machine.
However, if we consider a top pair production process, we can study the polarisation
structure of the final state quarks. In this way we can measure a variation on the

polarised observables. This process is explained in more detail in chapter(6).

2.2.2 A Simple Example Of Parity Violation

A tree level diagram that violates parity is shown in fig(2.1)

Using the Feynman rule for the Z-vertex given in eq(2.2) the expression for this am-



p ;A
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Figure 2.2: Tree level gluon exchange in the u-channel.

plitude is (dropping coupling constants):

_ TN 1=~ 1 /142
u(p1 )y [( 2/)CR+< 2/>C}J <_‘_2i u(pa)

~ T++°\ L=\ 41/ 1+ 090
u(pQ)’\m l:( 2 ! >C§E+ < 9 ' )C}J} ("—ij““ ‘U,(pb)

1
o, LESP MO PPY (2.8)

So, il the helicity of incoming particle a is positive(negative), we pick up the term

proportional to ¢k (c} ) and for particle b we pick up the term proportional to CJR(C‘i)
This means that the ++, ——, +— and —+ incoming helicity components will in general
all be different.

The square of this diagram is an allowed interference but, since that would include
two Z exchanges, it would be very small (proportional to af,) compared to QCD
corrections. With this in mind we will interfere the diagram shown in fig(2.1) with
the QCD interference shown in fig(2.2). (The interference between the t-channel 7
exchange and t-channel gluon exchange has a vanishing colour factor)

Note that the expression for the u-channel gluon exchange will include the helicity
conserving d-functions dy, 5, 0,4, If these are combined with the delta functions from
eq(2.8) then we discover that only the ++ and —— incoming helicity states will be non

zero. Also, because we are interfering a t-channel diagram with a u-channel and have

no flavour changing interactions (W-vertices for example) only the states with the same

10



incoming flavours will contribute.

If we evaluate this interference in the usual way then we obtain the two results:

ii w9705 s? s’ L2 (2.9)
o, = —8Tr(t4%) - ) en :
Aoy l"( )C052 Qw <u(l - TTLE) " t(u - m%)> f

for incoming positive helicities and:

2 9 2 2
) 9%9: s ' i ? :
o™ = —8Tr(t%¢ > % #10
ao—— t )COSQ O <u(t —m2) " t{u — mg)) g 1)

for incoming negative helicities. Here we have included the contributions from two
possible interferences, the one described above and then the same pair of amplitudes
with the gluon and Z-boson interchanged (ie: t-channel gluon exchange interfering with
u-channel Z exchange).
If we substitute these two expressions into eq(2.6) then we find that:

i2

il —c
PV _ "R L 2.11
LL 2((‘_2}{2‘}_012) ( )

2.2.3 Tree Level Asymmetries

A discussion of the tree level asymmetries at RHIC may be found in [10]

Shown in fig(2.3), fig(2.4) and fig(2.5) are the tree level values for the A, Az and
Af}f (respectively) asymmetries at RHIC., Afg and A; both only include the parity
violating agayy and the O‘%v contributions. Ay also includes an a‘z‘ contribution as it
is not an exclusively parity violating observable. We can see that the absolute value
of the Ay asymmetry is the largest however, this observable is not exclusively parity
violating and as such will have a contribution at all orders from pure QCD. The abso-
lute values of 4; and Af]‘j are a factor of ten smaller but, as they are entirely parity
violating observables the only contribution will be from weak effects and as such the

relative correction due to a%aw should be larger.
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Figure 2.5: The tree level result for ATY at RHIC (Solid line 300GeV, dashed 600GeV).
2.3 Forward Backward Asymmetry

Another observable that can be studied is the forward/backward asymmetry. This
observable is simplest to define if the initial state is a proton anti-proton pair and can
only be defined for processes where the final state is a particle anti-particle pair. For

example, the forward/backward asymmetry for bb production at a pp machine is:

g de 0O do
jO dcosgdcos& f*], dcosgdcosﬁ

Apg =
1 . do
f-— 1 dcost dcos @
bb bb
ag — g
=4 = (2.12)
ol ot

(Here abf’ corresponds to the cross-section for events where the b is produced in the
same direction as the p-beam and ¢ corresponds to the cross-section for events where
the b is produced in the opposite direction to the p-beam.)

In fact App can only really be measured for heavy quark production due to the dif-

ficulty involved in accurately tagging light ¢uark jets. Unlike Ap; and A we can
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Figure 2.6: If we see a jet configuration like this at a pp collider then we can say, with reasonable

assurance, that the quark was provided by the right hand beam and the anti-quark by the left
hand beam.

measure the forward/backward asymmetry at machines where polarised beams are not
available, for example at LHC and Tevatron. This is potentially quite important as
the only currently available high energy polarised collider, RHIC, has a centre of mass

energy of about the W-mass. This means that the logarithmic enhancement to weak

effects (proportional to In” (msg >, see section(2.4)) will be insignificant meaning that
W

the one loop weak contributions will be significantly smaller than at the higher energy
machines.

It is also interesting to note that it is possible to define the forwards/backwards asym-
metry at colliders that do not have particle anti-particle beams (for example LHC) [13].
Fach time a bb event is detected it is studied to see in which direction the system has
to be boosted from the lab frame to make the jets back to back. From this one can
deduce which proton beam provided the higher momentum parton to the interaction.
The proton PDFE’s tell us that the higher momentum parton is more likely to be a

quark than an anti-quark so with this knowledge we can define Arp as follows:

bbb
P (2.18)
) Uib + gt

Where J_b,,b now refers {o an event where the b jet is in the opposite direction to the

boost and ¢® to an event where the b jet is in the same direction as the boost.
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Figure 2.7: The QCD interferences that contribute to forwards/backwards asymmetry with

outgoing quarks @ and Q. The cut V corresponds to the virtual corrections and the cut R to

the real corrections.

2.3.1 App Without Parity Violation

When studying the forward/backward asymmetry it is important to consider the fact
that (unlike Af}/ or Ar) it is possible to generate a contribution without parity violat-
ing vertices as shown in [14]. The effect appears in QCD and is briefly repeated here.
The contribution originates when we interfere two diagrams in which gluons are ex-
changed in the s-channel (fig(2.7)) (Because we can only really measure App for heavy
quark production, and we assume that there are no heavy quarks in the initial state
(anti)protons, all of the contributing diagrams must be in the s-channel for both o2

2 y .
and ajoyy.). The colour factors for these two interferences are:

. 1 .
Coly = Tr(1*1*°) Tr(t°t°¢") = 6 e dane) (2.14)
‘ 1, )
Coly = Tr(tt“t2) Tr(t4") = (- 2o+ d2e) (2.15)
9]
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Where [t %] = i fopot® and {t% 17} = idgpet®.

If we drop the colour factors then we have the following relation.

doo(Q, Q) = —doy(Q, Q)

(2.16)

This holds true for both the real and virtual corrections (ie: both cuts in fig(2.7))

So, the total cross-section that contributes to the asymmetry is:
dUAFB (Q: Q) = COlad(fa(Qa Q) + COlbd(fb(Q; Q)
and, if we exchange the outgoing quark and anti-quark:

(ZUAFB(Q; Q) = Colydo,(Q, Q) + Colydop(Q, Q)

(From eq(2.16)) = —Col,doy(Q, Q) — Colydo,(Q, Q)
So the charge asymmetry is:

doapg(Q,Q) — doapgs (Q,Q)
— (Coly + Coly)(doo(Q, Q) + doy (Q, Q))

- % (Ao (Q, Q) + doy(Q, Q)

(2.19)

(This result also shows that we can generate App from QED since 'dgp,’ is trivially non

Zero.)

This asymmetry relating to the exchange of final state quarks and anti-quarks is exactly

equivalent to an asymmetry under the interchange of the final state momenta - ie: a

transposition of the Mandelstam variables ¢ and u (this is only true for the total cross-

section, it is not true for individual interferences) - this asymmetry in the matrix

element generates the forwards/backwards asymmetry in the final cross-section.



2.4 Sudakov Double Log Enhancement

It can be shown [15] [16] [17] (and references therein) that calculations of wealk correc-
tions tend to result in (potentially) large, non cancelling, Sudakov logarithms of the
form In?(-%;) (where m is some weak mass in the diagram). The presence of these
logs means that, at high energies, weal corrections will be enhanced relative to QCD
corrections (where similar logarithms cancel).

It is worth pointing out that the s that appears in these logarithms is the partonic s
and as such will be scaled by the Bjorken x. As a result of this the machine centre

of mass energy must be well above the weak masses for the logarithms to be large.

If we consider as an example the graph pictured in fig(2.8) where we have a weak

V.

s,Wuge —

Figure 2.8: An example weak vertex correction to an s-channel gluon exchange.

boson vertex correction to s-channel gluon exchange (In what follows we will consider
only light guarks and make the simplification that the weak boson has only a vector
coupling to fermions. The double logarithms are still in evidence if we do not make

these simplifications although the process involves somewhat more algebra.).
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The expression for the amplitude shown in fig(2.8) is:

VS‘,V/'UQE =
a4 ) il + 1) . i(l — o)
——— (D1 ~P X g H LAP PR, _
/ (QW)dq,L(P.)ZQW Y (Z n p1)2 1957y (l — pQ)ZZgW /pv( pg)
—1 —1
ey o U Pb)igsy 2.20
(12 _ m%‘/) U( pb)LQS /;Lu(l”a) ( )

(Where the notation s, Wuge denotes that we have a W vertex correction with a gluon
exchange in the s channel)

If we go to the infrared (IR) (I — 0) limit we obtain:

Vs,W’vge -

/ dl —l o o 1
A -1,
@n)? s WIS T N1 p)2(1 = po)”

wpL )Y Py Paypv(—p2)B(=po)vuu(pa) (2.21)
We now perform a little Dirac algebra and obtain:

3
P1aP28Y VY Y

= dp1.pay” (2.22)
Substituting this back into eq(2.21) we obtain (in the limit):
Vs woge —
oo | i et 22

Where T, is the tree level amplitude for a gluon exchanged in the s-channel. If we

substitute in the scalar Veltman and Passarino function

o / d% 1
07 | in? (12 = m2) (- p1)%(l — p2)?

we obtain:

W 9sCy (2.24)
T

Vs‘,W/vgﬁ - "’Ts,g X
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In the large s limit (s >> m¥,) Cp — %lng (ﬂ—;ir) Therefore we can rewrite eq(2.24)

in this limit as:

. aw , o 5
Vs,W@ge - *‘Ts,g X —=In 5
4 ms,

An almost identical argument shows us that we also generate logs of a very similar form
from box diagrams that include a massive internal boson.

We generate similar logarithms in pure QCD (although of course we do not include the
weak mass scale) however they cancel during the subtraction procedure against the IR
divergences generated by diagrams with real gluon emission.

In the weak case we need not consider diagrams with real W or Z boson emission as they
will correspond to events which are experimentally distinguishable from those generated
by virtual weak corrections (This is due to the real W/Z boson being unstable and
typically decaying into high pr leptons or jets which can be captured by the detectors).
As a result these large Sudakov logs will remain in and enhance exclusive observables.
We do not generate these Sudakov logarithms from the scalar corrections even though
we are also ignoring the possibility of real scalar emission.

If we rewrite eq(2.21) for a scalar boson in the loop, again ignoring any pseudo scalar

coupling but this time adding in a fermion mass m;, we get:

Vs guge —
A -1, 1
/ @0 s @ = mDI0+ p)? - w310 - p2)” — ]
B(p1)(f1 -+ m )7 (o + mp)o(—p2)(—p) vur(pa) (2.26)

Any term in the numerator that contains a p; or a o is killed by the Dirac equation
so the only terms that remain are those proportional to mf (so in the massless fermion

case this diagram will vanish when the loop momentum goes soft). If we follow the
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above argument through to eq(2.25) we obtain:

So the log is suppressed by a factor of the fermion mass in the loop over s.
Nevertheless, the large logarithms generated by the W and Z boson graphs will enhance
wealk corrections relative to QCD corrections, amplifying their importance (especially

at high energies).



Chapter 3

Methods For The Cancellation Of

Soft And Collinear Divergences.

(The subtraction method described in this chapter was presented by S. Catani and M.
Seymour in [7])

To calculate processes containing IR divergences (which in all the calculations presented
here are four quark processes - at a%.aw g9 — qq will not contain IR divergences as there
are no possible bremsstrahlung diagrams) we need to follow some kind of subtraction
algorithm to allow us to cancel these divergences in a fashion that will enable us to
perform the phase space integral safely.

The Kinoshita, Lee, Nauenberg (KLN) theorem tells us that we expect there to be
cancellations between the soft IR divergences arising from virtual loop corrections and
real gluon emission when studying an IR safe observable. The remaining collinear

divergences associated with initial state gluons are absorbed into the parton distribution

functions.
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3.1 General Motivation

All of the processes that will be calculated will be either two to two body processes or
(when we have an external, real gluon) two to three body processes. The subtraction

method used will be described below with this in mind.

The cross section to one loop order may be written:

UFRI&E+U!\/LO:/ dUTREE+/
{1,2]

doREAL / doVIRTUAL (3.1)
(1,2,3] {1,2]

Here doT7E is the tree level differential cross section (which is finite in four di-
mensions), do’PAL is the cross section for diagrams with real gluon emission and
doVTRTUAL s the cross section for interferences involving virtual corrections (both di-
vergent in four dimensions). The subscripts i1,2] and [1 23 indicate terms where we are
integrating over the phase space of the two final state quarks and over the phase space
of the two final state quarks and an emitted real gluon respectively.

The divergences in doTPAL will manifest themselves as terms proportional to ﬁ
(where p3 is the four momentum of the emitted gluon and p; is the four momentum
of the parton from which it is emitted) - this will diverge when ps is either soft or is
collinear to p;.

The divergences in doV/RTUAL will manifest themselves as % or E% IR poles (working
in 4 — 2¢ dimensions and having renormalised all UV poles).

Therefore if we wish to perform the phase space integrals we need to introduce a sub-

traction term in the following way:

do™NEO [doTEAL daA] + do?t + doVIRTUAL (3.2)

Where do! is the subtraction term, constructed to have the same singular behaviour as

doTtEAL and to be analytically integrable over a single parton phase space (see below).
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If this is the case then we can write:

GNLO _ / MUHEAL _ d,gA} N /
(1,2,3] [1,2,3]

d(jA + / dO_V[RTUAL’ (33)
[1,2]
where [do 4% — do?] can be evaluated in four dimensions (by definition). If we can

integrate do” over the phase space of the gluon then we have:

{dUVIRTUAL + / CZO'A} (34)

J,2) (3]

oNLO _ / {dUREAL —do4] + /
1,2,3)

(Actually, we also need to include the Altarelli-Parisi term in the integrand integrated
over the two body phase space.)
[dUVIRTUAL + fliﬁ do?] can be integrated in four dimensions as the % and 6% poles
should cancel between the two terms.
This cancellation does not exist in general but rather only for IR safe observables, that
is observables that are defined so that they are insensitive to the number of soft or

collinear partons in the final state. This restriction is not a problem in the calculation

presented here as all observables considered are IR safe.

3.2 Ewvaluating the Dipole Terms

(In what follows we will label the incoming quark momenta as p, and py and the outgo-
ing quark momenta as p; and pe. If we are looking at a bremsstrahlung diagram then
the real gluon will be labelled with momentum ps)

Also, the divergent contributions to the processes that will be evaluated in what fol-
lows will be QCD corrections to agayw tree level interferences. Therefore, the tree

level contributions will look something like M. ear X M@CD (up to some interference

M|? in what follows. Consider a

factor). However, for brevity, this will be written as
bremsstrahlung matrix element with three QCD partons in the final state (Mgp1,2,3)-

The dependence of the matrix element squared on the momentum of one final state



particle (p;) is divergent in two regions of phase space - the region where p; goes soft
(p; = Ag, A — 0 where ¢ is any momentum) and the region where p; goes collinear to
any other parton in the interaction (denoted by p;) - for later convenience this collinear
region will be described by the limit p; — (1 — z)p; /2.

In both of these cases the matrix element squared will depend on a factor 1/(pip;) as
p;p; tends to zero in the divergent regions.

It is important to note that one of the strengths of the dipole subtraction method from
7] is that the divergent structure of the matrix element squared is independent of the
precise form of the matrix element. That is, (for a two to two body tree level process)
we can factorise out the divergent part of [M,p103/% with respect to |Ma,b,1)2[2.

Therefore we can write:

dot = > do™*P @ dVipore (3.5)

alldipoles

So we can also rewrite eq(3.4) as:

NLO ‘ REAL TREE
o = / ((iU )5:0 — Z do oy d‘/{iz‘pole
[1,2,3] alldipoles e=0
_+/ [dUV[HTUAL + dO_TREE ® ]}5:0 (36)
[1,2]
St R

Where we have written:

dVdipole =17 (37)

alldipoles [3]

/here @ is a phase space convolution where we are summing over colour indices.
In the example of the LO matrix element |M, 1 |? there are potentially 16 interfer-

ences between diagrams with real gluon emission from external particles - ie:

*

Z Mzgeak'x Z Mgo[) (38)

i=a,b,1,2 j=a,h1,2

Where M?® is the bremsstrahlung diagram where a gluon with momentum pj is emitted
from particle 4.

24



However, as mentioned above, the dipole structure is independent of the precise form
of |[Mgp12]?. Therefore, we simply have one dipole for each possible combination of

emitter/emitted particles (p;, p;) and spectator particles (pg). Symbolically this gives

us, for the dipole counter-term to \/\/Ia,b,l,Q,S\Qi

JMa,b_,l,QlQ ® Vijk (3.9)

(Where ¢,k = a,b,1,2 and j = 3)

3.3 Constructing the Dipoles

To aid us in constructing the dipoles we need to study the behaviour of the bremsstrahilung

interferences in the soft and collinear limits.

3.3.1 The Soft Limit

As stated above the soft limit is parameterised by p; = Ag, A — 0 (where ¢ is any

momentum). In this limit the bremsstrahlung matrix element squared goes like: [18]

| 2
(Map1,23" —

1

4?/»52692’ 2a < ]7 2: 3; a, b\[J“(Q)PJ/L(Q)“a 27 37 a, b >2,a (310)

Where J#(q) is the eikonal current defined in this case as:

p I n p
gy =T, P e o 1oy P2 (3.11)
Pa-q Dv-q P1.q P2.q

Where T, are the generators of SU(3) up to a possible factor of minus one. We pick up
a factor of minus one in 7,.7}, if m and n correspond to a particle and an anti-particle

or if they correspond to an incoming and an outgoing parton. For example, if we are



considering ¢.gy — q1¢2 then we would have:

To Ty = ( Dt by
T1 rIQ ( )tl to
To. Ty = (—1)ta.ts

T, Ty = t4.ty (here we pick up two factors of -1) (3.12)

And so on.

So the square of the eikonal current is:

) )= S T, (p:;?)“(%;qf) (3.13)

m,n=a,b,1,2

If we write:

Pm-Pn _ Pm-Pn 1 Pm-Pn (3.14)
(Pm-¢)Pr-@)  (Pm-@)Pm +00)-a  (Pn@)(Pm + Pn)-q

then we obtain, for the right hand side of eq(3.10):

__9 7& 2 Z Z pm Pn Tm-Tn’Ma,b,l,'Z 2 (3.15)
Pm-q 7 Pn)-
Where Ma,b,w]g i1s the LO interference with its colour factor removed.
If we extract a single combination of ¢ and & we obtain:
2 q 9, L o Ly A 10
_iﬁ 2T, Ty PP (3.16)

g T b pe)a
(This will be useful for comparison later) Note that any particular combination of ij, k
does not correspond directly a bremsstrahlung interference even though the sum over

1,7 and k does of course equal the sum over all interferences.

3.3.2 The Collinear Limit

To study the behaviour of the matrix element squared in the collinear limit we must
be careful in defining that limit.

26



When p; and p; (two final state partons) go collinear we have:

kin“
péL =2t kﬁ B 2zpn
k2 nH
oH TR L
b (] - V.
Py =t 2L 21— 2)pn
k?
= (3.17)

2pipj = )

Where p# is the direction of the two collinear vectors, Aﬁ is the direction along which
the collinear limit is approached (the collinear limit is the & — 0 limit) and n* is a
vector forming a plane with p* that is perpendicular to k‘i

In the region described by these limits the bremsstrahlung matrix element squared

becomes:

‘Mabl 23'2 -

1
Pi.Pj

1205 2,0 < 15, ks 0, bl Bijyi (2, ks €)1, ki a,b >0 (3.18)

Here the matrix element on the right is the tree level matrix element with parton j
(parton 1 or parton 2 in practice) replaced by (ij). In practice this means that the
interference will be equal to the normal tree level expression but with the emitter
momentum replaced by pH.

Here f’(.ij),i is the Altarelli-Parisi splitting function associated with the splitting parton

17 — t 4 7. In all the cases we are looking at this will be ¢ — ¢ + ¢. In this case the

splitting function (acting on the spin index of the (i5)) will be:

. . X 14 22
<Pyl F1i I 5= b | 15— 1= 2)] (3.19)

Where ¢ is the dimensional regularisation parameter.

When we have p, and p; (one initial state parton and a final state parton) go collinear



we define the limit as:

1.2 I
ki n

1—22p,.n

b= (1= alpl 4 K -

K

as k; — 0 (3.20)

2p;.pa = 7
The splitting process here is a — (ai) +1¢ (¢ — g + ¢). This time in the collinear limit
we have:

2
—

‘Ma,b,l,Q,S

1 1

T Pi-Pa

20793 5.0 < J, k5 ad, 0| By (aay (@, ks €)15, ki ai, b >0 (3.21)

Again the matrix element on the right hand side is obtained by taking the tree level,
this time replacing parton @ (in practice a or b) with a parton (ai) - as dictated by the
splitting described above. This means that parton ¢ will have momentum zpf, and we
require an overall factor of gi

As in the case where two final state particles go collinear a and ai both correspond to

quarks so the expression for P will be as in eq(3.19) (if we swap z for ).

3.3.3 TIixpressions for do”

We now need to find an expression for do” (not integrated over the gluon phase space)
in eq(3.4) which matches eq(3.15) and eq(3.18,3.21) in the soft and collinear limits re-
spectively.

do* will be a sum of a number of different dipoles. There will be two dipoles associ-
ated with each possible bremsstrahlung interference - for example, for the interference
between emission from particle 1 and emission from particle a there will be one dipole
where particle 1 plays the role of emitter and a plays the role of spectator (Dfy) and

one where a is the emitter and 1 the spectator (D).



If we look back at eq(3.14) we see how we break the different terms of the eikonal cur-
rent squared Into pairs of terms with the emitter and spectator particle defined. In the
first term on the right hand side of eq(3.14) p,, is the emitter and p,, is the spectator -
the reverse is true in the second term.

Note that this association does not mean that a particular dipole will necessarily cancel
the divergences of a specific interference - in practice the sum of all dipoles including
a factor of (for example) 1/p1.ps will cancel the sum of all interferences including the
same factor. The cancellation does not always work on a diagram by diagram basis.
This is because, in the soft limit, each dipole has a 1/\? pole which will cancel with
the divergent part shown in eq(3.16) - however, as we will see below, each dipole also
has a 1/ pole. This is not required to cancel any divergence (and will in fact cancel
between the sum of all dipoles) but rather is required to make the dipole tend to the
correct form in the collinear limit. The consequence of this is that if we attempt to
check that our dipole expression gives a finite answer in the soft limit we will not be
able to do it on a diagram by diagram basis as the 1/ poles will give us an erroneous
divergence.

The expressions required to construct the various dipoles differ depending on whether

our emitter and spectator particles are in the initial or final state. We will look at each

combination individually below,



Final State Emitter and Final State Spectator (Dij)

We will first look at the case where we have hoth emitter and spectator in the final

state. The expression for this dipole (ij emitter and k spectator) is:

» -1 Tk Ay :
i SRy M ]
k2, Tfj R |

Vi = 2g50%er | — (L 5) — (1 ~ &)

Dy =
—QCFggw Ty 13y r 2 ~ (14 7)
2pip; T 11— Z(1 = i) 2
X’ML‘J’}:'Q (322)

Where "M,Lr, @jg is the tree level interference with the colour factor removed and pg

replaced with pj, and p; replaced with py;.

Yijk = Pi-Bj

TR pipy -+ pypk - DR

~ Pi-Pk
Zi=——

Pj-Pk 1+ Pi-Dk
1

~fh bt
Py = 77—

Tyt

S 1 Yij k n ‘
PSS : 3.23
By = v +9) — _?/Uykm (3.23)

ng in the Soft Limit

In the soft limit p; — Ag. In the limit characterised by this we will have:

Yije = 0, 2z — 1
therefore, pj, — p and ﬁ’LL/ — ph (3.24)
Note that since the scaled momenta become the unscaled momenta in the soft limit

the tree level interference in eq(3.22) will become the normal tree level interference

expressed as a function of unscaled Mandelstam variables.
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This means that in the soft limit eq(3.22) tends towards:

i _
DI =

—QCFQ%T;C.T%j 1 2pg.p;

2pig TS N +pe)a
Vi

x| M|? (3.25)

If we take the term proportional to 1/A? then we have:

k‘ [ 7
Mpig Y (pi+pk)a

1 243 Dr-Di .
95 Ty PEPL s My ) (3.26)

If we compare this with eq(3.16) (where we have extracted a single combination of 1
and k from the summations in the expression for the total soft limit eq(3.15)) we see
that they are equal.

Dzj in the Collinear Limit

In the limit (defined in eq(3.17)) where two final state particles go collinear the variables

in the dipole become:

—k2
ik T
therefore, py — pj, and ﬁé; — pH (3.27)
(Where p, z and k| are as defined in eq(3.17))
Therefore the term in square brackets becomes:
9
T (142 3.28
] (329

Thus the expression for the dipole in the collinear limit is:

L1 (1422 o
—QQK%Tk-TLjﬁ ( ki J x |M(p — p“)lg (3.29)
ipy L1 —z

(Here the matrix element squared is equal to the normal LO tree level interference with
the emitter quark’s momentum changed to p*.)
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Now we can see that eq(3.29) is equal to eq(3.18). This combined with the observation
that the dipole also matches the bremsstrahlung interference in the soft limit means

that this dipole expression fulfils the requirement of matching the singular behaviour

of dO’REAL.

Final State Emitter and Initial State Spectator (Df;)

We next consider the other case including a final state singularity, that with an initial
state spectator. The expression for this dipole with emitter 47 and spectator a is:

-1 1 T.T

a iJ 2
= S M
I Gy, 1 Mo
a D) 2 2 2 ~ . ~
Vij = 29517 "cr | 1 = R e (14 2) —e(l+ &)
ij =
—2cpg% T, Ty 1 [ 2 o 2')J
2p;.p; Té Tija |1 — 2+ (1 — zija) '
x| Mz |2 (3.30)

ij,a
Where [M 5% is the tree level interference with the colour factor removed and pq

replaced with p, and p; replaced with p;; and we also have:

_ Di-Pat PjPa— PiP5
Zija =
Pi-Pa t+ Pj-Pa
_ PiPa
Pj-Pa + Pi-Dj

8Y

T
SHO— e
Pl = Tijaly

Py = i 4+ 0 — (1= mij,0)ph (3.31)
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ij in the Soft Limit

In the soft limit (defined by p; — Ag, A — 0) we have:

Tija — 1

(1+2)—2
~ ;.14 _+_, o
l_ZiJf‘l*F[fij,a: M
PiPa T Pj-Pa
| : i (3.32)
Tl l =y Aq.(pi + pa)

o i P 1
So the part of Dj; proportional to 55 is:

2 . -
1 QQST T"%!/\/{i a.‘z (3.33)

Mg “T Y q.(pi + pa)

Which cancels the divergence in eq(3.16).

DL“‘] in the Collinear Limit

Again we use the collinear limit as defined as in eq(3.17). In this case:

Zi — 2

1.2
_I”L

1 — a4y I
e 22(1 — z)p.pa

Tija — 1
Pa = Pl
Py = o 4ol = p* (3.34)
Therefore, in the collinear limit the dipole becomes:
Dy =
T | - (0 8 MG = (3.35)

Which clearly cancels with the dipole interference in the collinear limit shown in
eq(3.18).
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Initial State Emitter and Final State Spectator (D)

For the dipole with an initial state singularity and a final state spectator (emitter az,
spectator k) we have the expression:

~1 1 Tk~Taivaii _|2
5 -— T Yk Vg
ZPg. D5 sz}c,a ai

ai, ki

ai __
DY =

) 9
VE = 9g%1%cp |- - — (I 4+ zip o) — €1 = Tig )
k S l _ IE,;C@ + U ) y

DY =
—2cpgi Ty Ty 1 2 1
: S : = (1+ ika) |
2papi T Tiga |1 — Tika W |
X \Mmy? (3.36)
Where we now have:
_ Pk-Pat Di-Da — Pi-Pk
Lika =
Pk -Pa + Pi-Pa
_ Di-Da
Uy = e
Pi-Pa+ Pk-Pa
P =ph +0 = (1 =z o)l
Phy = Tik,ally (3.37)
Dgi in the Soft Limit
In the soft limit (p; — Ag, A — 0) we have x;;, — 1 and also:
2 ) 1 2pp.pa
-
1-— Tik,a T Uy A (pa + pk)-(]
S, in the soft limit, the divergent part of eq(3.36) becomes:
DY =
11 ¢ 2Pk Da i 2 c
— T Toi 295 1% [m X M| (3.38)
Mpaq " [ (pat pr)g

Again, in the soft limit, we can express the tree level interference as a function of

unscaled Mandelstam variables.



This expression is equal to that given in eq(3.16) so again we can easily see that the
soft divergences will cancel.

’Dgi in the Collinear Limit

Because we are now looking at the case where the gluon goes collinear with an initial
state particle we need to use the collinear limit as defined in eq(3.20). If we do this
then we discover that, in that limit, we obtain:

Lifa — T, Uj = ———
ik,a y g 2pk~-pa,(1 _ £)

therefore, py = pi + pi' — (1 — &)pk and p, = zp/ (3.39)
So for the dipole in the collinear limit we have:
Dt =

1 1
T PiPa

2 ‘
205 [ — ()| X LM = apl)? (3.40)
This is equal to the bremsstrahlung interference in the collinear limit as given in

eq(3.21).

Initial State Emitter and Initial State Spectator (Db‘“)

The final dipole we need is the one where we have an initial state emitter (aj) and an

initial state spectator (b). In this case we have the expression:

. —1 1 Ty Ty

et me./\/['““

T 2D g T° o
aih _ 2e 2 . 1
Vel = 2021 cp | —— — (14 zi0) — €(1 = Ziayp)

1- Liab ]
D =
~2epgs Ty To 1 2
,S — — (14 @0p)

2pa-pi Tm’ Ziab 1 - Zigbh

X [Mm bi (3.41)



Where:

_ DPa-Pb— Pi-Pa— Pi-Po

Tiab = i
Pa-Pb
ﬁgi = mi,abpﬁ
- 2k (K + K) . 2k; K -
R = gt - A (K4 KM SR

KH = pl+py —

i =+ plt (3.42)

Here k;t are the modified momenta of all final state particles. This modification is
required because we ideally want to be in a frame where p, is unshifted - but we need

to maintain the momentum conservation:

Pt ph =) _kj =0 (343)
D in the Soft Limit
In the soft limit
Tiap = 1
120 — pi-(Pa + o) (3.44)

Pa-DPb

In the soft limit p!; — ph and for the final state momenta we have:

KHJRE = plt o+ pt

- . 2k (2pa + 2pp) 2k;.(pa + o)
R g 2P T o) gyt 2P TPV o) ) = k(3,45
J ’ (2pa + 2pp)* (2 +2p) (pa + po)? (ba+2v) j345)

Therefore, in the soft limit, the shifted tree level interference tends to the unshifted
tree level interference as required.

So, in the soft limit the dipole becomes:

1 293 ,, Pa-Pb 2
s O T M 3.46
22 pa.(]ﬂ bed aj (Pa T pb)-([ | ‘ ( )
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Which is of the form required.

’Dgi in the Collinear Limit

In the collinear limit z; o, — @ so the dipole shown in eq(3.41) manifestly has approxi-
mately the correct form. ﬁsi — xph so, provided that the final state momenta tend to
their unshifted values in the collinear limit the tree level interference will also have the

correct form.

e

K# = plt +plf — pi' — xpl + )
Ku - SCPS +p/bl

(Qmpa + 2pb)u +

. s (2P + 2 2% (27
P ! 2o - Zb) 2h;-(wpa 1 Pr) Z;b) (xpa + po)H
(2zpa + 2pp) (zpa + pb)

— LM /
kS (3.47)
Therefore the tree level interference in the dipole tends to the normal tree level expres-

sion with p, replaced with xp, meaning that the dipole matches with the expression

given in eq(3.21).

3.3.4 Integrating the Dipole Terms

To obtain the terms needed in eq(3.3) we will need to be able to integrate the Dipole

terms over the three body phase space.

Integrating D;j
The first term we will look at is the case with final state emitters and final state

spectators. The three body phase space is:

dp; dp;
A®(p:, pj, pr; Q) = ayd 1 (P;) (%)dj_l 54(p3)
ddl)@ i |
@#T‘s‘ﬂ"(pi)(‘?”)dod(Q —Dpi—pj— Pr) (3.48)
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If we rewrite this in terms of the shifted momenta then we have:

dq)(piapjapk:; Q)

- d’p; .
= dq)(pij:pjé Q)m5+(]73>j(?i; pij;]?j)

= d®(piy, pys Q){dpi(Piy, Dr, Zi, Yij i) } (3.49)

Where J, the Jacobian for this change of variables, is:

o )23
(it 1) e (3.50)

T (pi; Big, By) = O(1 = Z)O(1 — y4j 1) T2

Where the Z; and v;,, variables are as defined in eq(3.23). We can now rewrite
i Y,

{dpi(Pij, Dx, Z, vijk)} in terms of these dipole variables as follows:

{dpi(Pis, Prs Zi> Yij )} =

O (1 — )0 (e (1 — vy )) (B (1 = 2) (1 —yyn) >y (3.51)
We can now, in principle, perform the integral:

/{dpi (Dij, Prs 20, Yig p) YO =

T}c~Tij

7

Vi M 12 (3.52)

ij,k

Here we have done the phase space integral over the emitted parton ¢ leaving us with
the two body phase space integral still to do. If we look at eq(3.49) we can see that
the two body phase space left over is an integral over the shifted momenta. In eq(3.52)
we see that the integrand’s dependence on the shifted momenta is just the normal tree
level interference with the shifted momenta as arguments. The consequence of this is
that the two body phase space integral will be equal to the normal unshifted phase

space integral of the normal, unshifted matrix element squared.
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The V terms in eq(3.52) are:

' - - - 1
Vijk = -/{dpi(pij>pk>Zi;yij,k)}mv,‘j,k
_as 1 4o p? EVH
o I(l—e) \ 2000 )
1 3 9 g?
Vij = cr L—Q + 9 55t @(G)J (as ¢ — 0) (3.53)

]
~=

Vij ke 18 defined in eq(3.2

Integrating D
In the case of an initial state spectator and a final state emitter the three body phase

space is:

d®(pi, pj; Q + pa) =

d*p; oy d%p; 2 d5(d) A
(QW)d_ldJr(pi)(f)Tr)d,l 6*%(pj)(27r) 9 (Q -+ Do — Pi _pj) (35 )

If we again split off the phase space of the single emitted parton we end up with the

phase space convolution:

-1

d®(p;i, pj; Q + pa) = / ded® (pij; Q + xpa) X
Jo

do.
{ 2'p 5+(p?)®(:v)@(1m)é(x’—:bij’a)l—_lf:}

Zi

1
2/ dxd®(pij; Q + xpa){dpi (Pij, Pa, Tija, 25 T) } (3.55)
0

Where the term in braces is the single particle phase space and the Jacobian for this
change of variables.
Again we can re-express the Jacobian and the single body phase space (the term in

braces) in terms of the dipole variables (and, in this case, also in terms of the convolution
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variable z) as follows:

{dpi(.ﬁijapm Tij as Zi; 11?)} =

(2pijpa)’ ¢ dQ4S
16w (2m)1—2¢

dzidzi,.©(Z(1 — )0 (z(1 — z))

(Z:(1 = 2)) (7 — wij0) (1 — )7 (3.56)
So for the integral of the dipole we will have:

/{dpi (ﬁe’j: Poy Tif,as zi; x)}D’Z =

ag 1 4\ Ty T .
= Ay z; - M:‘. ~ 3.57
Qa F(l _ 6) <2ﬁup{l 1] (7’ 6) T,i ‘ 'L],al ( )
Where Vi;(xz; €) is defined similarly to before:

/{dpi(f)ij;pa;frij,a; Zis) VG =

g 1 4 \ €

- Viilx; e 3.58

2 (1 — ¢) (Q;ﬁijpa i3 €) (3.58)

We have to be a little more careful about the exact behaviour of V;;(z; €) as e approaches
zero as we pick up a singularity in  at = 1. To avoid this we introduce the +

prescription. If we do this we obtain:
1
Vij(zye) = Vi(z; €)l +6(1 — x) / dzVi;(z;¢€) (3.59)
Jo

where the ‘plus prescription’ part is defined (for some non plus prescription function

f) as:
1 1
| et@Witiol = [ aare) - sy (aie) (3.60)

0

If we perform the integral of V5 then we obtain:

Vij(z;€) =
2 1 3 1 2
; ) —— -+ In(2 —
or {(13:“1—:1:)»}« 2(1~I>+ 1 1—:‘1:n( z)
- 3 ;
-{-O(l — ’L) [V’ij — ECF:! -+ O(F) (361)

Where V;; is the function given in eq(3.53).
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Integrating Dgi

We now consider the case with an initial state emitter and a final state spectator.

Again we split off the single particle part of the phase space and are left with the phase

space convolution:

-1

dq-)(pia Pk Q + Pa) = dzd® (ﬁkﬁ? Q + :Bpa)
0

d%p; 5
P 20201 — 2)6(x — wipa)

(2m)d-1 1 —

+ 1
- / dzd® (5 O + £pe){dp: (P Dy ity 13 7))
0

(3.62)

We now change variables to obtain an integral over the dipole variables u; and T o

{dpi(ﬁk;pa;xik,azuﬂ fﬁ)} =

(2Pkpa)t ¢ dd=3)
1672 (2m)1-2

duidrg, o

O(wi(l —1,))O(x(l — 2))(w (1 — w)) 6z — zyp o) (1 — )¢

(3.63)

(Note that we can easily perform the z;; , integral due to the presence of the delta

function)

We once again define a V term as the integral of the relevant V term:

1 .
— Vi (g ,a; wi) =
Ha

/{dpz'(ﬁk,’pa,%k,a,u/z;fL")}];

i

os 1 <4mLQ>EV“’M(z;6>

%F(l —€) \ 2PxPa

So the integral of the dipole over the single particle phase space will be:

/ {dpi(ﬁk;pa; Tik,ay Ui; m)}pzb —

EYE 1 < 47FM2 ) ‘ Va’ai(ﬂ;’; 6)

2m D(1 =€) \ 2pkpa
Tk:jjm' 2
X Mgl

at
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The expression we obtain for V*%(z;¢) (when a and ai both correspond to quarks as
1s the case in the calculations presented here) is:
a4 L pag [ 5
VP (z;e) = —=P¥(z) + 6(1 — x) Lng(e) + 3T =0 er
3

‘HFP( L 1)+* 2 @2 —2) 4 (1)

l—z 1—=z 1—x

—(1+ z)in(1l — z)] (3.66)

Where %, the Altarelli Parisi function for emission of a gluon from a quark, is:

1 2
PY(z) = cp < R > (3.67)
) 1—=x i

Integrating Df*

We finally consider the second case with an initial state emitter, that with an initial

state spectator. Splitting off the p; part of the integral we obtain:

dd(p;, by pa + pp)

. ~ Cld’ ;
= [ b (Ey om0 0 (OO0 = )8z — 2
O =

l ~
:/ dzd® (kj...; 2pa + po){dpi(Pa, Poy Tiab; ) } (3.68)
0

Once again - this can be rewritten in terms of the dipole variables:

{dp;i(pa, po, Tiap; )} =

(2papp)* ¢ dnd—3
1672 (2m)1—2e

a‘xrkﬂm“mm”(1%x<l‘1?x)> (3.69)

(Where we have defined the new dipole variable p; = %)

1—=x

dvider; O (x(1 — 2))O(5;)0 <1 Vi )

Once again we define the integral of the V term as:

1 .
/{dpi (/pa;pb, Ti ab; 17)}-—_27) o Va‘Zb((IL‘i,ab) =
Da -1

- 11 <47r“2 )VZ (3.70)
27 (1 — ) \ 2pa.p
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So the integral of the dipole over the single particle phase space will be:

/{dpi(p(,,,pb, @ apy ) YD =
as 1 drp” \© o
27 (1 —€) \ 2pa.po

Ty T M
7

8]

(3.71)

ai,bl

Where, after performing the integral, we obtain an expression for V*% of the form:

f}a,,m‘, — V(L,(li + T? 2 ln 1 + 2 ln(2 — Z')
“I\1—z 1-2 L Lz

+ K% () + Ole)

- : 2 2
K9 (z) = P ()In(1 — x) + T2 [(1 In(l— 1)) - —7;—0(1 - CI‘):I (3.72)
‘ —x
+
V®a s the same expression as given in eq(3.66) and P (z) = —cp(1 + z)

3.4 Constructing ¢'V/¢

The total expression for the NLO cross section is:

U;VLO _ / (dO'R . CIZO'A) +
J/[1,2,3]

/ do? + / doV + / do® (3.73)
[1,2,3] [1,2] [1,2]

Where do® is the initial state collinear counter term:

do® (pa, py, pir) =

ag 1 -1 1 B
_ i orn/, ,
27r 1—‘(1*6) ./[) C?}A dZdU (ypadzpb)

51— y) {—% ( “«2“2) E Pl’b(z)J } (3.74)

Where:

Tg ((L)ns (b) P (papb

. : 1 o
dO'BOTn(pCI)pb) - )dq)(pl,pg;pa,pb)——ﬁj(pl,pg;pa,Pb)

S
X‘Mpa,pblfz (3.75)
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This is the Altarelli-Parisi subtraction term. This term arises to account for the IR
divergences associated with the 3 — 2 body interactions that are absorbed into the
PDFs.

We will now consider each term separately. The first term (f[l,g,a}(dUR — do?)) can be
integrated over the three body phase space as it is finite in both the soft and collinear
regions (by construction, as shown above).

We now look at the Ldo® term. In terms of the dipoles do is (in the case of two
J[1,2,3] I

to two quark scattering):

do ™ (pa, pv) = Mn%dfﬁ(pum,pa) X

{D130 x Fj(D13, D2, PasP) + D2z X Fy(P1, D23, Pa, Pb)
+DYy X Fr(Pr3, p2, Pas pv) + Doy X Fr(p1, P23, Pas Pb)
+DV3 X Fy(Bis, 02, Pay Bs) + Dba X Fr(p1, P23, Pa, P)
+D3 X Fy(p1, D2, Baz, pb) + D5 X Fy(p1, P2, Bazs Pb)
+DY % Fs(p1,po, Pay Bis) + D5 x Fr(p1, P2, Pa, Pr3)

+,D113,b X FJ"(;'E] , D2, ﬁa37pb) + D 5 Fy (ﬁlaﬁ?; Pa, p~b3)} (376)
We split the dipole term into four parts:
do (pas pv) = do™ (pa, po) + Ao (pa, po) + Ao (pa, py) + do™ (pa, ) (3.77)

Each of these terms refers to the sum of a particular kind of dipole - specifically Al is
the sum of all final emitter - final spectator dipoles, A2 is the sum of all final emitter
- initial spectator dipoles, A3 is the sum of all initial emitter - final spectator dipoles
and A4 is the sum of all initial emitter - initial spectator dipoles. We will look at each

of these in sequence:



The Expression for do?!

Firstly we will consider the part of do® that contains the final state emitter - final state
mortatar i 13, 23
spectator dipoles (D3° and Di*).

The expression for this sum of dipoles is built up from the expressions given in section(3.3.4).

/ do = / Ny X
- rn.
(1,23 1,2)

. 1 L
{dq-’(l?la,Pg;pa-,pb)gF](Pm,PQ;pa;Pb)

Tlg.TQI 2 vg 1 < 47T/.l

A 33 AT/ =
T123 B2 or 1 (1 —¢€) \ 2p13.P2

2 €
Vi3 (e)

+d<1>(p],pzs;pa,-,pb)EFJ(pums;pa,pb)

T . Ths 5 (G 1 47m2 ¢ )
— " M T2 v 3.78
/:[1223 |'/ 1,23‘ 271_ Iﬂ(l o 6) 21513]52 23 (6> ( )

Where Vg, is a catch all term for non QCD dependent quantities and the % term is a
symmetry factor. V;(e) is defined in eq(3.53)

If we change the variables of integration in both the first and second terms of eq(3.78)
from the shifted to the unshifted momenta then we can gather the terms (noting that

Vi3 = Va3) under a single phase space integral as follows:

. ' 1
/ do?t = ~/ QMnd@(m,pg;pa,pb)-§f*.](]717]72;pa,pb)
(1,2,3) 11,2] -
Ty ,as 1 drp? \
M : 3.79
Cp M 2 (1 —€) \ 2p1.p2 Vag €) ( )
For later convenience we will make the definition:
TTyas 1 darp® N\ €
I(e,p1, o) = — =222 Vaole 3.80
(€,p1,p2) cr 27 T(1—¢) <2p1.p2> qg(F) ( )
So:
/ doM = / do B 5 I(e, p1,p2) (3.81)
[1,2,3] [1,2]
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The Expression for do??

This part of do”* contains the four dipole terms with an initial state spectator and a
; it tter b b
final state emitter (Dfy, D;, D%y and Dis).

Again, using the expressions shown in section(3.3.4) we obtain:

1
/ do?? = — / Nin / dz %
[1,2,3] (1,2} 0
1

dd (P13, p2; e, Po) = L1 (P13, P23 TDa, Pb)
S

yags 1 ( 4
27 T(1 — €) \ 21304

T13‘/]j(7, ]M -
T ! 13,2pa
13

€
) V13 (ZE, 6)
. . 1 .
+d® (p1, P23} TPa, pb)gFJ (p1,D23; TPas Pb)

T23-Ta (X 1 47TILL2 €
p el Vas(x,€) + (a— b 3.82
71223 ' 23,.1[)0,‘ 2T F(l _ E) 22523.])& 23(3" 6) ((L ) ( )

(Note that this expression depends on xp, this is because we have used the delta
function 6(x — x5,4) in eq(3.55) to do the zj;, integral) In a similar fashion to the final

- final case we can rewrite this as:

1
) - 1
/ do? = ~/ /\Qn/ dzd®(p1, p2; Tpa, Pu) = Fr(p1, P25 TPa, Pb) X
{1,2,3] 11,2] 0 S

| M, | Vg (2, €)

T, ag 1 drp® \© N 5.7, avg 1 47ru2 ¢
cp 2r (1 —€) \ 2p1.pa "o 2m 11— €) \ 2p2.pa

+(a —b) (3.83)

Vyg(2, €) is defined in eq(3.61) as:

ng($:5) =

2 1 3 1 2 1
in — = 5 In2—=x
CF{(lfmﬂl—:L)Jr fZ(l-—f{:)_Fﬂ ].—xn( z)

+6(1—2) {vq (e) - SCF}
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If we plug this into eq(3.83) we obtain (using the delta function §(1 — «) to do the x

integral in some terms) we obtain:
A2 ! 1
/ do’* = ~/ /\ﬂm/ dzd®(p1, p2; wpa,pb)gfb(pl,pz; TPa, Pb) X
1,2,3) 1,2) 0
2 1 37 1 2 3
[ Map, [*er In- — 5l + - In(2—x)—o6(1— [C)-—}
l—z 1-2), 2\l-z/, l-z 2
TT,as 1 4 2 f+ Ty Ty g 1 A \©
cp 2 T(1—€) \ 2p1.pq cp 2 T(1 —¢) QpQ.pa)

+ / (ZgBorn % I(e,p1,pa) + / deBorn ~ I(G;]?Q,pa)
1,2 1,2
+(a —b) (3.84)

The Expression for do??

This part of do* contains the four dipole terms with a final state spectator and an
initial state emitter (D&, D§?, DI and DL?).

Again using the integrations shown in section(3.3.4) we have:

- 1
/ do?® = —/ /\/m/ dx
1,2,3] 1,2] 0

1
S
9 N\ €
5 (LG 1 dr p a,ad
Cpas_ 7 PO (¢
l,lpa’ 2 I‘(] — e) (2]91-]9@) (T 6)
1

SFJ(Pif)% TPa, Pb)

Ta3 T - 2 &S 1 47T/L2 ‘ a,at(,.
-’MQ,xpu ZF(] _ 6) <2ﬁ2pa V (CL, 6) + (CL — b) (385)

{d@ (D1, p2; 2o, b)) = Fr (D1, D2; TPa, Db)

Lo 11
ry2
1 a3

|M

+dd (p17152§ QT}DQ,P}))

Once again we may rewrite this as:

3 " 21 .
1

/ do™ = — / Nin / dzd®(p1, p2; £Pa, pb) = Fr(p1, D2; TPa, P) X
1,2,3] 1.2 0 S

| Mop, [PV (2, €) x
{Ta.Tl as 1 ( 4y ) N ToThag 1 < 4 >}
cr 2 (1 —¢€) \ 2p1.p, cr 2m (1 —€) \ 2p2.7q
+(a — b) (3.86)
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Vaai(z €) is defined in eq(3.66) - note that this term also includes an I(¢) term. So,

separating out the z dependant and x independent terms we have:

. .1 -
i 1

/[123 do®® = —/ ]/\/m/ Cli‘fl‘l’(]ﬂl,p-‘z;-’Epmpb)gpj(]?l,]?z;fpmpb) X
2,3] 1,2 0 ;

[ Map, [PV (2, €) = 5(1 — )Vyy(€)) x

T, T g 1 drp® \°© } T, Thag 1 drp® \©
crp 21 (1 —€) \ 2p1.pa cr 2 T(1 —€) \ 2p2.pa
+ / dUBOTIn X I<E7 phPa) =+ / dUBOTTL X I(E) P2, pa)
(1,2 1,2
+(a — b) (3.87)

The Expression for do?

This part of do*! contains the two dipole terms with a final state spectator and final

state emitter (D@ and DI3).

. ) 11
/ dot = — / Nip, / dx
[1,2,3] (1,2] 0

1
d®(p1, po; xpa,pb)—é Fi(p1,p2; 2pa, b ) | Map,|

as 1 ( 4 pi? )E T3 Ty
20 T(1 =€) \2papy) 1%

2

1}113,& ((L‘, 6)

+(a—b) (3.88)
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Where V&2(z, ¢) is defined in eq(3.7

another [(e) term as follows:

2

).

Again note that this expression will generate

. 1
/ do™ = — / N, / dz
[1,2,3] 11,2) 0

1
d® (p1, p2; TPa, Pb) = Fu(p1, p2; 200, Do) [ Map, |
S

€

og 1 i
2r T'(1 —€) \ 2pg-pp

+(a — b)

752 LV (g, €) — (1 — ) Vyy(e))
a3

+/ do P X I(€, pa, py)
11,2}

+(a —b)

(3.89)

3.4.1 The Total Expression for the Integrated Dipoles

The term proportional to I(€), that is the term independent of z, will cancel the

divergences in doV. This is difficult to show in general but will be demonstrated in
g g

some detail in the specific case for each calculation.

If we factorise out a Born cross section that depends on (zpg, pp) then the  dependent

parts of do4?~% can be written as (the term that depends on (pa, xps) will have much

the same form):

. 1 .

. ' 1
d Az:v/ d:c/(l Born(apa, as_ -
/51,2,3] 7 0 7 (#Pe, P2) 2r (1 —¢)

{Tl.Ta < dari® )
CF 2p1.Pa

N T, <{47m2 ﬂ
cp \2p2.pa

X (Vyg(,€) — 6(1 — 2)Vyy(e)) (3.90)

. 1 1
d ',AS — _*/ d: /d Borny ., gﬁ

{Tl.Ta ( dr 1 )
cr \2p1.Pa

‘ v T5.Ty <‘47ru2 )T
cr \2p2.pa

K(VPU(z, €) — 6(1 — )V (e)) (3.91)



1
, s 1
dot = —/ dm/doﬁom(a:p . Db) ?i-»—j
/[1,2,3] ! 0 ¢ 2 (1 —¢)
[TLTLL ( 47T/J,Q >E 5.1, ( 4L7T,LL2 )E}
P + I
Cr 2p1.Pa Cr 2p2.pa

X (V99(z, €) — 6(1 = 2)Vyg(©)) (3.92)

We now collect these terms (along with the term in eq(3.74) proportional to do o™ (zpa, py,))

together:

. 1 .
/ do 4-/ do® :/ daﬁ/do—Bom(mpa]pb) x Io(€, 2,4, Db) (3.93)
[1,2,3] [1.2] 0

’

Where:

]a(fa :Eapa,-.pb) =

og 1 {
2r (1 —¢)
{Tl.Ta < 4o ps? )6 .7, < darpi? )j
+ :
CF \2p1.Pa cr \2p2.Pa

X (Vyg(,€) = 8(1 = 2)Vy(e)) |

27T I1 1-— 6 {
[Tl T, < darpi® > i, Iy Ty (47w2 )J
cr \2P1.Da cr \2p2.pa

X (V89(z, €) — §(1 —a)Vyy(c))

. [T:L.Ta ( dmry? ) T (r‘lmﬂ ”
cr \2P1.Pa cr \2p2.Pa

< (V9 (z,€) = §(1 — &)V e))

" [—é (42—1*1)13(1(1(1)” (3.94)




We can re-write the second term as follows:

@g;{
2r (1 —¢)
T, [ Anp® N\ T, [ Anp® \© To Ty [ Arp? \°
3 + 3 + I3 ><
cr \2p1.0a cr o\ 2p2.Pa cr o \2pa.py

|
Ve, + L) 60~ ]

(T, <4w2 ):_ 5.7, (zmﬂ >* T..T, (4mﬂ >f+ <4w2>5> y
( cr o\ 2p1.pa cr \2p2.pa)  cr \ 2Py 5

1
= pad(
cPY(e)

Ty Ty (47W2
?’p(rpb

) | V99(z, ) — VI x, cﬂ} (3.95)

Cp
We can simplify this expression if we notice that the term in square brackets is finite

as € — 0 and can be rewritten as follows:

1
VO (a,€) + —PU(a) — (1~ 2)Vyg(e) =

_ 2 1 2
‘ caa (. »aa —Cr ) In(2 —
K% (z) + P*(x)ln(z) — cp [(1 — $l77 T 513)_;_. + 7 n( m)J

R09(z) =

1—= T

CFK i lnl_ml(1+:r)ln]';w+(lx)—5(1~.@)(5—w2)} (3.96)

Given that this term has no 1/¢ poles when we make the expansion (X )¢ — 1+eln(X)+

... we only keep the first terms as ¢ — 0. This means that the first term in parentheses

will be:

T, ( 4mp® \© T T, [ 4Awp? \© T, Ty [ 4mp? ‘
, + _ + =
cr \2P1.Da cr o \2p2.Pa crp \2Pa-D
(T1+T2+Tb)‘Ta _ <3'97)
Cr

So the entirety of the first term in eq(3.95) is:

—K%(z) — P“(2)in(z) + cp K 2 2 )T + In(2 — x)} (3.98)

l—z 1-—=z 1—=z

5l



We now rewrite the second term in eq(3.95) (the term proportional to 1 P%(x)):

€ 20N\ € 2\ € y o\ €
{Tl ( 4o ) N T,.T, (47m ) N T,.T; (47m ) N <l7ré¢ ) } 8
cr \2p1.Pa cr o \2p2.pa cr \ 204D [
1
~qu(:c)
.T 4 Agr?
= { L (l—} dn( TW >> <1+dn (( il ))
c 2p1.Pa 2p2.Pa
.. T 4 1.
a-th <1+ eln ( >> (1+fln< il ))J = P99(g)
Cr 2Da-py €
_ {TLTQZ” < 4 14 ) N Tg.fam ( drp? ) N Ta.Tbm ( 4 pi? )
cr 2p1.pq cp 2p2.Pa Cr 2Da-Pb

4 T+ Ty +1).T, 1 .
Tin < Wél > + <( 1+ 42+ b) a + l> _} Paa(x> (399)
5 CF €

Note that by colour charge conservation the 1/e term will cancel and if we rewrite

4o 11 (Ty+To+T). Ta A p® ;
In <_‘7f_§l,) ag — MDA ) Ty 1:5‘ then we obtain:

Hye CR Y
7.1, 2 1T, 7 T,.T; 2 ,
_ { 1 (ln< HE ) 1 2 aln< M ) 4 a bln( I3 )J Paa(x>
92 2p1Pa cr 2p2-Pa cF 2Pa-Py
(3.100)
Finally we can rewrite the last term in eq(3.95) as:
121 - /o2 1 2
K%() + 1,7, l In(2—zx 3.101
cr (@) + T b[(1~aznl—m>+1—m ( ) ( )

If we gather together eq(3.98), eq(3.100) and eq(3.101) and insert them into eq(3.94)

we obtain (for € — 0):

Ia,(67 msP(Lan) =

CYS{[T] a1, < dar )E Ty T, ( 4 p? )7
o +

2m cr 2p1.pa Cr 2p9.0a

X (Vg (,€) = (1 = )V () }

-SSR @) - P )in(z) + op K 2 i ) +1Emln(2—w>}

2 l—-z 1—=x
.7 2 T, 2 2
_ [ 1 aln< 29 ) _+_f2 azn< HE >_+_T Tbl ( o )J Paa(x>
CF 2p1.Da CF 2p2.pa Cr 2pa Db
T, T 2 1 2 ,
Lot paagyy L T, I n In(2 — } 3.102
™ Cp ( >4 b[(l—xn1~w> l ,'L—mm( (Lﬁ ( )



So, the final expression we have collecting together both the I(¢) term and the x

dependant part is:

/ do™ + / do® =

/[ {4077 ) (e o)

1,2
. .1 v

+/ 1/ da:[ngW”(:z;pa,pb) X 1,(€, 2, pa, pp)]
1,21 Jo

1
+/ / dz[do B (g, xpy) X Ly(e, T, pa, vo)] (3.103)
11,2 Jo

We can re-express eq(3.103) as in [7] to obtain:

/ do?t + / do® =
{17273,[ {172}

‘/[ [dUBOTn(]?a,pb) X I(6>I)Cb7pb)}

1
/ dz[do B (xpy, o) X PY(x, zp,))

. 1 .
+/ / d:L‘[&NLO{l’Q}(:L'; TPa, D) + GNLOALZ (1 py )] (3.104)
1,21 Jo

Where:
as (1+2*\
])a,a(a?,l'pa) = Tor < 1— 2 ) f}g
2 : ) T2
21pq. "Da ]
[Tl,Taln ( Lp(;“) + Ty Thln (2@3% p2> T, Tyin ( e p“” (3.105)
u g



and

@) = 22
m

aa N 2 L (1 —
o (mngy e nngs) (1), +o0-2)

K (z) — Kpg

1 =
—Ta.TbTQK“’a(sc)J , (3.106)

a
where v, /2 = %c’:p.
Following this method we are able to cancel IR divergences between the real and virtual
parts of the calculations in such a way as to allow for numerical integration over the
remaining phase space. The equations derived here will be used in the next two chapters
where we perform calculations where we assume massless external quarks.
The subtraction method is slightly different when we allow for massive external particles

(as we must for the ¢f calculation) and is described in chapter(6)



Chapter 4

b b-bar Production.

4.1 Introduction

The first calculation we will perform will be the one loop corrections to the bb produc-
tion rate. This calculation is actually two processes (gg — bb and four quark process
nine, as designated in the following chapter) of the full four-quark calculation.

The observables that will be calculated are the total cross-section and forwards-backwards
asymmetry for LHC and Tevatron. None of the polarised observables (Ary etc.) will
be studied for this process as RHIC (the only available polarised collider) is unable
to positively identify b quarks in the final state (for a general discussion of RHIC’s
capabilities see [19]). Should a polarised collider become available which can tag b-jets
then the appropriate calculations could easily be performed.

This calculation is potentially of some interest due to the observed discrepancy between
theory and experiment at Tevatron where an excess of b/b jets has been observed [1].
Any improvement in the theoretical prediction of bb production rates at Tevatron could

perhaps help to explain this observation.

Since the calculation is being performed for hadron colliders we can make the assump-



tion that we have no bottom or top guarks in the initial state. This is a reasonable
assumption since we know that the Parton Distribution Functions (PDF’s) for b and ¢
quarks in the proton are very small [20] [21] [22]. This means that, in general terms,

we can describe the bb productions rate as the sum of two processes:

99 — qq

qq — ¢'q (+real gluon)

That is, two gluons going to quark-anti-quark pair and quark-anti-quark pair going to
a quark-anti-quark pair of a different generation (none of the initial state particles will
be of the same generation as the b-quark) with a possible emission of a real gluon. This
means that the number of contributing interferences will be guite limited.

For the gg — ¢¢ we will have the diagrams shown in fig(4.1). An interference between
any of the tree level diagrams and one of the one loop diagrams will give an allowed
interference at the order we are interested in (cyécm/) We know that the sum of
these interferences will not contain any IR divergences as there are no possible gluon
bremsstrahlung diagrams that we could draw to the same order for gg — ¢g. This
means that we can safely evaluate this contribution using numerical methods. We will
use similar reduction methods to those described below to simplify the box diagrams
(see also the very similar processes in ¢7).

The virtual interferences for q7 — ¢'¢’ will be only those shown in fig(4.2) - all other
interferences will have vanishing colours factors or, in the case of diagrams including W-
boson exchange, will be subject to Cabibbo suppression. The g7 — ¢'q + g interferences
that will cancel the IR divergences of the virtual corrections will be those shown in

fig(4.3) - again, all other combinations will have vanishing colour factors.



:at tree level

___,‘__

H—? K
i 2%
L.

:at one loop

4- t-channel — u-channel
------ =Z/W/p/H

Figure 4.1: The interferences that contribute to gg — g7 at aZaw order

Figure 4.2: The interferences that contribute to ¢ — ¢’¢’ at a%ayw order. The factors of two
attached to the box diagrams are associated with an interchange of the gluon and the Z-boson.
The factor of two attached to the vertex correction diagram is associated with putting the

triangle on either the initial or final state particles.



+ All permutations where we interfere
initial state radiation with final

state radiation

Figure 4.3: The interferences that contribute to ¢7 — ¢’q’ + g at a%aw order

4.2 Evaluating The Virtual Corrections

The virtual correction amplitudes (here and in the full two jet calculation and ¢t cal-

culation) are calculated using the following method and FORM [23].

4.2.1 Helicity Amplitudes For Massless Quarks

To evaluate the virtual correctic;ns in the bb (and indeed for the 4-quark and ¢ case) case
we will use the Helicity amplitudes method. This method has a number of advantages
- firstly, since we are calculating amplitudes rather that interferences we expect that
each expression we use will be comparatively simple (this isn’t particularly important
in the calculations with massless quarks but the expressions for interferences in the t¢
rate would be very large, potentially thousands of terms)
If we take an example of a general t-channel amplitude then we would have a diagram
as described in fig(4.4). As mentioned above, all of the virtual corrections required for
the bb production rate are actually in the s-channel however, we can easily cross the
t-channel amplitudes generated by this method to the s-channel as is required.

For example, we will look at a box diagram with two internal gluons (fig(4.5)). This

will include a hox integral which we will define from the scalar Veltman & Passarino



S -C d — - — -
50{1;;;&%1;%?61 = [ (g—rjg X F o a(pr, A)T1u(pa, A1) X @(pg, Ao)Tou(ps, A2)

Dy ‘—AZ—"[)% /\2

Iigure 4.4: The expression for a general t-channel diagram will be of the form shown here. I is

some overall factor including couplings, colour factors and internal propagators, I'y 5 are strings
of gamma matrices and momenta (including loop momenta). We will also have an integration
over any loop momenta present (this calculation is to one loop order only so there will only

ever be at most one loop momentum to be integrated over).

(l tpa)

Pa

DPi

Figure 4.5: A t-channel massless box diagram

function as follows:

© 4] 1 d?]
D —_— — - = — i 41
0 /m2z2(1+pa)2(z+pa—p])2(z—p,,)2 /mﬂ’ (1)

The expression for the diagram in fig(4.5) will be:

Amplitude =

Gx&/ dl —1
75 )M AR+ p)2 (L pa — p)2(1 — py)?

TP, AV + Fa) 00, M V(s M) (L — )yl No)
So the terms in fig(4.4) will be:

F=C x gh(—do)

[y ="+ pa)y”

Loy =~ — )" (4.2)




Where C is some colour factor. In practice this factor will only be evaluated at the
interference level and can therefore be dropped until that point. Also note that the
terms including I'y » are under the loop integral.

First let’s look at the pg/py line. A general form of I'y is:
4
5
Iy = Z“/“(ﬂi + by )vig
i=1
Vip = Paps V2 = Plus V3 = P2y Vap = Ny, (4'3)

Where n,, is a vector of length /s that is normal to the scattering plane.

However, from the Dirac equation for spinors, we know that:
u(p1)gau(pe) = ulp1)pru(ps) = 0 (4.4)
so we are only interested in the terms a3 4 and b3 4.

u(pr, M)u(pe, M) =

w(p1, M) (aspo + baphy®)u(pa, A1) + @(p1, A1) (aart + baty™)u(pa, A1)

_ 1= Ay
= (a3 + bsA)u(p) | —5— ) P2 w(pa)
1= Ay
+(aq + by )u(pr) <—21L> Hu(pg)
= As+ Ay (4.5)

Take the mod-square of the term including as/bs (As).

(@2 + 0270 (o A”)mmz)

= (az + b3A1)%4(pa.p2) (p1.2)

The square root of this is (we will fix the phase later):
Az = (a3 + 53/\1)\/ —Ssu (&6)
Similarly, for the term including a4/b4 (A4), we obtain:

. 1— My
Ag = (ag + byh)i(p) <~—m€_’-> fu(py) — (aq + byd)V—ts (4.7)

2
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In this process of squaring and square-rooting we have lost any information about
phases. Since this amplitude will eventually be squared we don’t need to worry about
the absolute phase merely the relative phase between the two terms. We can extract
this relative phase by evaluating the product of A3 and Ay4. Assume that the A4 term
has some phase P4 attached to it. From eq(4.6) and eq(4.7) the product of the two

terms will be:

Agflz = {az + bg/\l)([u + b4/\1)\/—75u\/ —ts x Pf (4.8)

Where we know that +/—suy/—%s must be positive. We also know that:

Aad} = (6o bad)a + 0T (i (- ’\”)ma/n)

1 M,
'pl,up21/pa/)nar1r (,\/u,\/u,\/p,\/a)

= (a3 + bzA1)(aq + bsAy) {2

A
+= 9 pl,LLPZl/papnng(“/u V”/p“/g“/S)} (4.9)

The first term will be a sum of scalar products which will vanish since n dotted into

any of the momenta is zero. So, from the second term we get:
Az Ay = 2(ag + bgA1){aa + baA)p1upavpapne e (1A1) (4.10)

We now define p1,paypopnec”’*? to be positive (we have this freedom because n' can
be either in or out of the scattering plane) - this means that P} must be equal to (iA1).
1€ P4 = (—Z/\l)

Therefore:

a(pr, M)T1w(pa, A1) =

(a3 4 b3 A1)V —su — iA1{ay 4 byr1)V/ —ts (4.11)
We now need to find expressions for az 4 and by 4 in terms of I'y. From above we had:

'y = y"aspo, + "//J’bg”yspzu +Hagn, + 7“1347571# (4.12)
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We need to define a vector w* such that w.p, = w.p; =w.n =0 and w.ps = 1.

wo_ p(#LL‘Lp/ll o t 413
il vt ey (4.13)

So we have:
Ty w, = YR aspa, v wy + vb3y popy”w, + vHagm, P w, + 7“1)475%#7“11),, (4.14)
Therefore:
Tr(1 v w,) = dasphw, = 4as (4.15)
[Using Tr(7y.ay.b) = 4a.b] So, if we substitute in for w, we have:

(sTr(Tygfe ) — uTr(Tygf ) + tTe(Ty ) (4.16)

as = ———
SU

Similarly if we evaluate Tr(I'1v*y"w,) we obtain:

1 i
by = —R(STI'(PYYOZ{Q ) - UTI'(Fl"/Sﬂl ) -+ tTl‘(Fl"/sp{Q )) (417)

To find a; and by in the same way we will need a vector that satisfies w'.p, = w'.p1 =
w' py =0 and w'.n = 1. w* = —int will work. From this we can discover:
Ly )
a4 = ——1r(L N
ds

1 .
b» o ——TI‘ I“ ”D" /118
4 " (I1y°n ) (4.18)
If we use the same method to express the I'y line we obtain:

w(pa, Aa)lou(py, Ao) =
((,’3 + /\ng)\/ —8U — (i)\g)((j_x; -+ )\2(14)\/ -5t
Where:
_1 T, : r
= ——-;(.5 J,l’(l—‘gﬂb ) - "LLTI‘(FQﬂQ ) -+ ﬁI‘l(Fgﬂl ))
-1 » ‘
dy = R(sTr(rﬁm ) — uTr (Do ) 4 tTe(Tovy 1 )
-1, ;
cq = 4—3’1&(?27@ )
e ;
dy = =——Tr(Doyh ) (4.19)
s



(I+ po +pp)

Tigure 4.6: Interference between a one loop diagram with two gluons exchanged in the s-

channe! and a tree level diagram with a single Z-boson exchanged in the s-channel
(Note that when we extracted the relative phase between the ’3” and ’4' terms in this
case we must use the convention that py,papoynee is positive as in the 1y case.)

So, we finally have:

Amplitude =

F x [(ag + A\ib3)(cy + Aads)(—su)

—MAg(ag + Aibyg)(cq + Aady)(—st)

—ida{az + A1b3)(ca + dady) v/ —su/—st

—iA1(as + Aiba)(c3 + Aads)v/—sur/—sl] (4.20)

With a3 4, b3 4, 3,4 and d3z 4 defined as above.

4.2.2 Structuring The Loop Integrals

We will deal with the loop integrals using the prescription described in the paper
by Veltman & Passerino [24]. We take the example of one of the interferences that
contributes to the bb rate - interference between a diagram with two gluons exchanged
in the s-channel and a tree level diagram with a single Z-boson exchanged in the s-

channel (fig(4.6)). The expression for this interference from the Feynman rules will
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be:

1

Tom2 0

(couplings/colour) x B

s
Tr(u(pr, A)a(pr, MY (L + #)7 v (pa, X2)B(p2, Xao)(ey + cary®)y”)
Tl‘('l}(pb, Ab)@(pb: Ab)”/z/([ + ]/a)’,yuu(pay Aa)a(paa Aa)(CV + CA“/S)”}/[))

Where the scalar box integral is:

dl 1
Do — a’t 4.21
0 /’[ﬂg ZQ(Z+pa)2(Z ’1‘1)1)2(l+pa,+pb)2 ( )

To avold having to evaluate tensor box integrals we will reduce the box diagram down
to a sum of simpler triangle integrals.

From eq(4.21) we can see that we should only get at most two powers of the loop
momentum in the numerator. This means that the reductions shown in eq(4.24—4.27)
and eq(4.30—4.33) will be sufficient to express the interference in terms of more simple
integrals.

If we again use the definition:

ddl 1 d
Do= |75 ‘ = [ —=d 4.22
i /’WQZQUﬂ?a)Q(Z+pa*p1)2(lpb)2 /27r2 ° (422)
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then we obtain:

/ ddll z / d4] 1 - (1.23)
a = \ .
172 " ”T (l + Pa) (l -+ 7)1) (l -+ Pa -+ ])b)Q 0(1)
(I + pg)? 1Pdy + 2Lpady)
’L7T“
/ d°l 1 _ o
i (14 p)2(L+ pa +pp)2 @
d?l 1 ‘
B —lpado = §(Co( — Con) (4.24)
d4] Ly
/ (l +]91) dy = / T—Q(ZQCZO + 2[.]?1([0)
J i
_ / ddl 1 _ .
w2 P+ pa)2(L 4 pa +pp)2 0
' / ad 1 o
3 aloido = S (Copy — Coy) (4.25)
d?l ) Cddl
W(l + po + pp)dy = M—Q(l‘do + 2l.pady + 2L.ppdy + sdp)

= Cog)

o} —

N /d—d2 (1 + pa)

ndl 1
/lpbdo ;(CO(Q))—Z XDO—ZZanDo—éXDg)

(I +p1)?

= 5(00(3) — Cogz)y — sDo) (4.26)
P11+ P2 = Pat Py
/ f—ll pady = /gg(l-l)ado + Lppdy — L.p1dp)
= §(Co(3) — Coay — 8Do) (4.27)
Here Cpy,y are triangle diagrams generated by 'pinching off” the propagator labelled «
from fig(4.6). These triangle diagrams are shown in fig(4.7). Massless scalar and tensor

triangles are comparatively easy to deal with so we can now use the methods described

in [24] to simplify express the interference in terms of Veltman-Passarino (triangle)
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propagator with momentum ! - however it is easier to manipulate the loop integrals (using

the VP methods) if we still have a Iiz propagator. With this in mind we will shift the loop
momentum in all terms proportional to Ciyy (as we are free to do) such that { — [ —p, leaving

us with the triangle integral shown.
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functions. The general form is:

Co; Cu; Cuv(p1, p2, my, ma, my) =

1 Gl
= 5 | dU e
o)

in? (12 = mI)((L+p1)? = m3)(( + p1 + p2)? —m3)

Cp=plCii +p5Cho

C;LIJ - pélplllcm + p.ﬁL;UgCQQ =+ (Plfpg + I)SPT)Om + guuC% (428)
If we define:
d
Cowy = / 2 C00) (4.29)

then for the shifted Cpiyy we have:

dl
/W_OCO( ylqr = Crigy (e — p1)-a1 — Crayp2-t1
d?l
ﬁco(l)l'(ﬂl'@ = (Pa — P1).q1(Pa = P1)-02C21(1) + P2.0102.02C1)

~((pa — 1) 01p2-02 + (Pa — pl)'(]QPQ'(Jl)CQS(]) — (pa — 101)~p2024(1) (4.30)
For Cy(ny we have:

C Y
/ —;CO(Q)Z-CM = Cl]( )(Pa +pp)-q1 010(2)779 q1

T
"l
7(.0(”[ q1l.q2 = (Pa 4 b).q1 (D0 + D) .02Co1(2) + P2-01P2.92C22(2)

~((pa + Po)-a102-q2 + (Pa + Pv)-q2p2.01)Caz(ay — (Pa + P1)-p2Caszy  (4.31)

For Cp3) we have:

d® .
/ —coyl-q1 = Crigypa-q1 + Cray(py — p2).q1
dl ,
3ol 0la2 = Paqipa-0200(3) + (pp — p2).q1(py — P2).q2C52(3)

+(pa-q1(pp — p2)-q2 + Pa-q2(pp — P2)-01)Cagsy + Da-(pp — P2)Coazy  (4:32)
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And for Cyyy we have:

dél
i?co@)l.(h = CriayPa-q1 + Cro@Po- 01
d4l
WCO(A‘)Z-QIZ‘QQ = Pa-q1Pa-32C01(4) + Pv-q1P5-92C22(4)

+(Pa-q1P6-92 + Pa-22P5-01) Cas(ay + Pa-PyCoa(4) (4.33)

Although this process was described for only the box diagram with two gluons ex-
changed in the s-channel (as shown in fig(4.6)) however it is simple to extend it to the
other box diagrams required. The box diagram with a Z-boson and a gluon exchanged
in the s-channel (the first interference shown in eq(4.2)) can be dealt with as follows:

We need to redefine the scalar box integral to include the Z-mass on one of the propa-

gators, ie:

a4 1
° /mQ (1 =m)( + pa)*(L+ p1)*( + pa + pv)* .

Here we have (compared to fig(4.6)) replaced the gluon with momentum [ with a Z-
boson (we could have also replaced the | + p, + p, propagator however this choice will
manifest itself as an overall factor of two on this diagram.). We also need to evaluate

the contributions from the two crossed boxes (the second and fourth interferences from
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fig(4.2)). These can be evaluated by using the following crossing relation:

Let:

By gq = masslessbox (s, t, A1, Ap)

and

B gz = massivebox(s,t, A1, Ay, mz)
Crossing gives:

B gg,x = masslessbox(s, u, A1, —Ap)

and

B gz,x = massivebox(s, u, A1, — Ay, M) (4.35)

Where (with all exchanges in the s-channel) By g, is the uncrossed gluon-gluon box,
Be ¢z is the uncrossed gluon-Z box, By g4 x is the crossed gluon-gluon box and Bs gz x
is the crossed gluon-Z box.

These are all of the box diagrams required for the IR divergent virtual corrections.
We can now interfere these amplitudes with appropriate tree level diagrams (a Z in
the s-channel for the double gluon boxes and a gluon in the s-channel for the gluon-Z
boxes), calculate the relevant colour factors and thus find the interferences.

To complete the calculation of the virtual corrections for this process we also need to
evaluate the one-loop weak corrections to the pure QCD tree level interferences.
These will include all of the corrections to gg — bb (shown in fig(4.1)) and the correc-
tions to the interference between two s-channel gluon exchanges (the last interference
in fig(4.2)).

We know that the virtual corrections to gg — bb must at least sum to being IR finite
- this is because there are no possible gluon bremsstrahlung corrections to this process

at aQSaW (the tree level gg — bb is order a% so we only have weak corrections to this -
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X

%X

Figure 4.8: All of the real gluon emission diagrams that contribute to the bb production rate
at order a%aw.

not QCD corrections) and therefore there are no collinear or soft divergences to cancel
any divergences in the virtual interferences. In fact, in Feynman gauge, all of the in-
terference graphs that contribute to the gg process are individually finite. This means
that we can easily do this part of the calculation using numerical methods.

The weak vertex corrections to g — bb are also individually finite so, again, we may

evaluate them simply using numerical methods.

4.3 Evaluating The Real Corrections

Having evaluated all of the virtual corrections that contribute to the process we need to
calculate the contribution from diagrams including real gluon emission. These interfer-

ences are those shown in fig(4.8) For example, the expression for the first interference
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on the first line of fig(4.8) is:
> 1 1 1 1 1
cos? Oy 16 2p1.py 2pa-Po —2pa-P3 2p1.P3

X {a(1 = My )vHo(p2)B(1 + M) vu(Fa— 3 )Y e (p3)ulpa)}

colour x gé

< {a(p1)(1 = M) ep(ps) Wt 3 )77 (ev + can®)

v(p2)0(pe) (1 + 207 Yo (ev + car)ulpa) )

_CFea 94 92 i 1 1 1 1
2 * cos? Oy 16 2p1.p2 2pa.Pb 2Pa-P3 2P1.D3

xTr(gy (1 — /\17/5)“,/“1/2 ¥ (ht 3 )7p€;(P3)>

X Tx(#y (1 + My )y (o= #3 )7 €0 (P3)a 7o) (4.36)

When the traces are evaluated this expression will yield terms proportional to 1/p1.p3
and 1/p,.p3; these are the terms that will diverge in the soft (p3 — 0) and collinear
(p1.03, Pa-p3 — 0) limits. The other interferences will give terms proportional to the
inverse of p3 dotted into the other external momenta - this means that the contribution
from the real corrections will go infinite when p; is either soft or collinear with any of
the external momenta.

In the case of the bb production rate the collinear divergences will actually cancel
amongst themselves.

We look at the interference between real gluon emission from particle a (where the
emitted gluon has momentum zp,. ie: the emitted gluon is collinear to particle a) and
£

the two diagrams with real gluon emission from the two final state particles (fig(4.9)).

If we look at the expression for the gluon exchange diagram we have:



WW
X +

Figure 4.9: A set of cancelling diagrams in the collinear Iimit.

. ip :

5(pe)igs” mlgs"fcﬁo (zpa)u(pa)
a-

—1 _ )

~ ulpr)igsypu(pe)

—gs

- m@(m)igmp [Pay’ € (Tpa)]u(pa)

_ .
Tﬂ(pl)lgs”fpv (p2)

—9s 7 ; P o N
=T N 2pq. — )
T pep, o957 2pe-clapa) =76 (apa)alu(pe)
—u(p1)igsov(p2)
= w@(pb)igsﬁ“pu(pa);iﬂ(pﬂigg“,’pv(pg) (437)
(1 — z)pq.p3 s

So the amplitude for the diagram with bremsstrahlung of particle a is:

—295pa-€(zpa)
(1 - m)pa-pB

X T g (4.38)
Where T 4 is the tree level amplitude for gluon exchange in the s-channel.

If we perform a similar manipulation for the two diagrams on the right hand side we
obtain an expression for the total interference of (we have dropped the axial part of

the Z-boson coupling. This will not affect the cancellation but will make the equations

easier to read.):

'295'pa~5($pa)
(1 - 'T)pa-pB

{ —gs

22p1.pa

98
22p9.Pa

2 x X

» | e

X Ts g X U(pa)igyvav(pes)

ﬂ(p'l)igfya [26* ('Tpa)'(pl + -Tpa) - ";’#EZ(IPQ)I]ﬁa]U(pl)

3(p2)[2¢™(2pa). (P2 + zpa) — Ve, (wpa) TPhaligy“ulpr)]  (4.39)
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If we now explicitly multiply the p,.c(zpy) on the left hand side into the right hand
side we obtain (using the relation > ¢#e”* — —g* as we are in Feynman gauge. Note
that only in this gauge can we obtain a diagram by diagram correspondence with the

IR divergences):

29%

2X — 2
2$<1 - I>pa~p3

_ : 7
X TS>9 X u‘(?a)@@'?a”(]?b); X

o T02)i93 =200 (o1 + ) + bl
L 5(pa) [~ 2pa-(p2 + ) + Tperaligr*ulpr) (4.40)
P2.-Pa

Dropping terms proportional to p2(= 0) gives us:

“N 901 — e e s U LGV U Z
22?(1 —Qj)pa.ps 59 Pa )t YV \Pb p
1 — .
[ 'U(PQ)ZQ”)’Q(—2p1.pa)u(pl)
P1-Pa
1

- t(p2)(—2p2.pa)igy*ulp) (4.41)
P2.Pa

Which clearly cancels. A similar cancellation exists for all of the possible combinations

of diagrams.
Note that the soft divergences remain and will need to be dealt with via the subtraction
method. Also note that this cancellation does not work in general and that in the full

pp — two jets calculation we will have collinear divergences.

4.4 Evaluating The Dipole Terms

We now need to evaluate the dipole terms according to the prescription described
earlier.

Because the only bremsstrahlung diagrams that contribute to the bb production rate
are the ones shown in fig(4.8) we will only need the four initial state er‘nitter/ﬁnal state

spectator dipoles and the four initial state spectator/final state emitter dipoles (ie: no
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final/final or initial/initial terms).
All of the dipoles needed will be proportional to the interference between tree level gluon
exchange in the s-channel and tree level Z exchange in the s-channel. The expression

for this tree level interference is:

2Ts,gT5-7Z(§> E A1, )\b> =

1 ¢2¢° 1 o -
2 cossz Ow 3(3 —m%) (b + M) (e = )28+ (1= MA)3)? (442)
‘ Z

Where cl{,/A are the vector and axial couplings to the bottom quark and c‘{//A are the
vector and axial couplings of the incoming quark flavour, §, £ and @ are the Mandelstam
variables constructed (where necessary) from the shifted momenta, A; is the helicity of
the outgoing quark and A, is the helicity of the incoming anti quark.

So, the dipoles will be:

For the case of particle 1 emitter, particle a spectator:

-1 1 2
Diy = 5 293cF
2P1-P3 T13,a

—(1+ 21)}

1—% +(1—1134)

x2Ts oTs.7(3,%, A1, Ap)
where:
§= 204Dy, DPa= T13,aPa

t = —2py.pa(# —2Pa-p1)

_ D1-Pa + P3.-Pa — P1.P3
D1.-Pa +P3~Pa

~ P1-Pa

= —" " -
P1.Pa + P3-Pa

T13,a

In the collinear imit this becomes:

242 —(1+2 | Do Dby —2PaP1s Ay Ap) (4,43
2p1.p3 9sCF [1_51 ( +Zl>:' XQTS,gI,s)Z(Qp Db Pa-P1, AL, b) ( )

(The overall minus sign here is from the colour factor used in [7] (see eq(3.12)) as we

have an outgoing quark and an incoming quark.)
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For the case of particle 1 emitter, particle b spectator:

o — _ iy — <
B opipszigy f 1—Z1+ (1—mz3p)

X2T519T512(5, E, /\1, /\b)
where:

§=2pe.Pps,  Pb = T13,6Pb

t = —2Pp.pn
_ P1-Pp + P3.Pb — P1-P3
T13,p = ,
P1-Pb T P3.Dp
= P1-Py
Z =
D1-Pb + P3Py

In the collinear limit this becomes:

2 -
ZQ.SQ-CF = (1+2) x 2T5,9TS,Z(2pa'pb> —2pa-p1, A1, Ap) (444)

2p1.p3 1-2

(The overall plus sign here is again from the colour factors used in the subtraction
process as we have an outgoing quark and an incoming anti-quark.)

So in the limit where pj is collinear with p; the contributions from D% and DY5 cancel.
This is what we would expect to happen given we know that the collinear divergences
cancel in the bremsstrahlung interferences.

Similarly, for the dipoles D§; and D33 in the limit where po goes collinear with p3 we

have:

-1 2 ,
a 2 _ I ? _
Doy = papa 2g9ccr [Ml 3 (1+ zg)J X 2T oTs 7 (2pa-Dby —2Da-P1, A15 Ab)

+1 2 - .
DbB = Qg:;ch = (1 + 22) X QTS,g’—Zs,Z(prpby —2pa.p1, A1, /\b)
2p2.p3 1— 2

Where:  Zp = P2-Paft (4.45)
DP2-Pafb T P3-Payb

Again the contribution with particle a as spectator cancels with the contribution where
particle b is the spectator (in the collinear limit only).

The dipoles for initial state emitter and final state spectator are of a slightly different

-
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form.

For the case of particle a emitter and particle 1 spectator:

a3
1

-1 1, [ 2 (1t )
= — 240, CF - i 1331,
2pa.P3 T31,a 9s L1 — 31,0 +us3 ¢

x2Ts oTs z(3, 1, A1, Ap)
where:

§=2p1.p2, P1= T31,aP1
t=—2p,po

_ P1-Pa T P3.Pa — P1.P3
Z31,0 =

P1-Pa + P3.Pa
_ D3-Pa

Uy = — e

P1.Pa + P3-Pa

(4.46)
And for the case of particle a emitter and particle 2 spectator:
+1 1 5 2 .
D33 = 2g.cp | ——————— — (1 4+ z32,
? 2Pq.-P3 T32,4 Is 1 — 324 +us ( @)

x2T T 7 (3, t, A1, )
where:
§=2p1.p2, P2 = T32aP2
t = —2py.po

_ P3.DPa T P2.Pa — P2.P3
T32,a =

P3-Pa + P2.Da
P3-Pa

US = —

P3-Pa + P2-Pa

(4.47)
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For the case of particle b emitter and particle 1 spectator:

b +1 1

= — (1 + z31p)
Y oppps (

1 —z31p + us

X2TS,QT$,Z(§7 Ev }\1‘, /\b)
where:

= 2p1.p2, P1 = T31P1

V20

E: —2pa-p~1

_ D1-by + P3Py — P1-D3
P1.Py + P3-Dp
P3-Dp
ug = ————————
P1.Pb T P3-Pp

T31,b

(4.48)

And for the case of particle b emitter and particle 2 spectator:

2 79
2Pb-P3 T32b

2
2¢%cp |[————— — (1 +x
9sCF | T Tazy + U3 (1+ 232,)

XQTstTS;Z(gv E? }\1> >‘b)
where:
§= 2]91-]52; p~2 = T32,bD2

t= —2pq.p1

_ P3-py + P2.py — P2.P3
P3-Dp + D2.Dp
. P3-Pb
Uy = ——————
P3.Py + P2.Dy

T32.b

)

(4.49)

As in the case with final state emitter and initial state spectator these dipoles also all

cancel amongst themselves in the collinear limits p,.ps — 0 and py.pg — 0.
The remaining dipoles (Dig, D, Dy, and DY) do not contribute as they all have

vanishing colour factors (typically Tr(t*)Tr(tPt4t?)) - this is not true in general and

77



these dipoles will he needed for the two jet calculation.

If we now sum all of the non zero dipole terms and add them to the sum of all real
correction interferences then we will obtain a result that is finite in the soft limit (This
cancellation is shown in some detail in chapter(3)). This means that we can safely

perform the integration over the two to three body phase space to find the ¢ — bb+ g

cross section.

4.5 The Integrated Dipole Subtractions

The insertion term will be proportional to the agsay order tree level interference. From
[7] and eq(3.80) the general expression for the integrated dipole for a two to two body

interaction is:

I(pa\pbaplap% £, M2> =

_95 1
872 T(1—¢)

{%—121/1(6) [Tl.Ta

() + 75
) {TQ.TQ ( Armyi” ) YTy T, ( dryi?
(o) 7%

2p2.pa 2pq Dy
1 4\ © 4rp® \ € drp? \
+‘—‘l/b(€> {Tl‘Tb < > + 1.1 < ) + T, T < 4.50
T? 2p1.Pb 2p9. Db “70\ 2pa-pe (4.50)

For the process we are studying here we know that the colour factor associated with

initial-initial and final-inal interferences will vanish. As a consequence of this we can

set 73,. 7, and T7.75 to zero. The other colour factors will be:

1 1 1 1 1

T.Ty = Ty.T) = — CFQCA
7Ty = Ty T, = CFQCA (4.51)
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For gluon emission from a quark or anti-quark we have [7]:

wl:‘m

1 3 9
U 2.a(€) = cp { toots— 5 T O(e)J (4.52)

Substituting this in (and dropping the overall factor of f(—(%) gives:

I(pavpba P1; P2, € /lg) =

gol 3.
{72 2¢

o {[(52) - <2p1pa) <op2pa>*(zp‘:;ﬂ} 49

If we now replace (z)€ with 1 — (¢)in(1/z) + (e2/2)In*(1/z) we obtain:

2

9
2

-
2

I(Das Do, P1, 02, €, 12) =

(b2 3o (32) o) o (52)
+ L—lz + 2% + g - %2 = %Zn <2p:'2p1> + %mQ <2p:'2p1> - gln (ZP:QPIH
St () () ()
JoeEd () () (3]

- 45;929% (4.54)

Here we have left the four contributions from the four possible combinations of emit-

ter and spectator separate. So, the divergent part of the integrated dipoles for the

combination emitter ¢ and spectator j is:

—1 CFC 4 6 4 20;.D4 .
10y, c ) = + 1 0d A (:ﬁ" —zn( plfﬂ)) (4.55)
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Therefore, including the tree level interference, the total insertion term for the bb pro-

duction rate is:

(_I(_t7 € /HQ) T I(—U, €> ,LLQ) -+ I(_U/ = u?) - [(—tv €, ,LL2)) X

(Ts,gTs,Z>
2 4
_ 1 99
167T2 4 COS2 9\4/

& (1N 4[|yl 1 ) )
S (Y T () (s 2t — sa)? 4.56
[ 6n<ﬁ)+6n<u2 oy T ) (4:36)

crea(cl -+ A (el — Apcdy) x

(Where the T ,T; 7 is the interference between tree level, s-channel Z and gluon ex-

change with the colour factor removed.)

(T@,gn,Z) =

993

_J I8 2t — sA )2 4.57
4 cos? Gy (s +2t = shih) (4.57)

b by, ,
(e 4+ M) (c] — hech)  p——"y

In an interference between two s-channel diagrams we actually need to sum over any
outgoing helicities since, in these topologies, they are unconstrained. Here however all
helicities have been left completely general as the cancellation of divergences should
work helicity by helicity. We have also omitted a factor of two for interference, a factor
of 1/9 for averaging over colours and a factor of 4y, _», ensuring that the incoming
particles are in an allowed (ie: opposite) helicity combination. These factors have been
omitted since they are trivially common to both the integrated dipole and the virtual
corrections.

The virtual corrections that will contain an IR divergence will be the first four inter-
ferences shown in fig(4.2).

The first interference will be B, 4, (the amplitude for a box diagram with two uncrossed
gluons exchanged in the s-channel) x T z (the amplitude for a tree diagram with one Z

exchanged in the s-channel) x “£4 (the colour factor associated with this interference).
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Evaluating these amplitudes using the methods described earlier and then dropping all

non divergent parts yields:

Bggg x Ts,z X CF;A
2 4
_ Crta g74g T N AN 1
=5 mﬁlcos&W(CV Earcn)(ey /\bCA)lGW-z
4 4 |t 1 2
STy P L ) — 2t — gha A 4.58
{ ”(JJ Sfemmg) ST ) )

Note that this is proportional to T ;75 z as the divergent part of By gg is proportional
to the gluon tree level diagram (this is not true for the non divergent parts however).
The second interference will be Bj 4¢ x (the amplitude for a box diagram with two

crossed gluons exchanged in the s-channel) x Ty 7 x 2574

CFCA
2

By ggx x Tz %

2.4
__Crta G793 by g gy 1
— A J 55 ¢ — el )
2 Teos by <V T M~ Ma) g
4 4 ul 1 2
S T /¥ s U ) [ 2t — A1 A 4.59
oo ()| gt Y

The double (6%) poles will cancel between the box and crossed box diagrams.
The third interference will be T , (the amplitude for a tree diagram with one g ex-
changed in the s-channel) x Bg 47 (the amplitude for a box diagram with an uncrossed

gluon and Z exchanged in the s-channel) x €54 x 2 (we have an extra factor of 2

associated with exchanging the gluon and Z2)

2% Bsgz x 154 X CF;A

2 4
o 995 b b4 gy 1
= cj CA4COS ™" (et + Arcy) (el — )\bCA)IGWQ

ﬂ TLT(S $ 9t — sAih)? (4.60)

2 2 [t] 4 s
-+ -ln{ =S |+-inl|l-—
€ € w? € m? s —m%)

The fourth and final contributing virtual interference will be Tsg X Bsgzx (the am-

plitude for a box diagram with a crossed gluon and Z exchanged in the s-channel) x
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CFCA w D

2% Bsgz,x X Tsg X %ﬁl
2 .4 -
995 b . 1
= —Cp 44 5(9‘ (CV -+ )\1CA>(CV — Abch> 167r2
2 2 |’U, 4 . S 1 9
—=+4+=ln|— | +-In{ 1- — (s + 2t — sMA 4.61
{ €2 en<u2> enQ m? )} s(s—mzz)(sr hk)” (461)

) terms both cancel between the crossed

Here the double poles and the In (’1 -5

z

and uncrossed boxes.

If we sum these four contributions together we obtain for the total IR divergence from

the virtual corrections:

9%95 b b (.9 gy 1
STl G S S e
4 t 4 , 1
(1Y Z 4, (ﬂ ————— (s + 2t - sAh)? (4.62)
€ e € u? )| s(s —m3y)

This is equal and opposite to the divergent part of the integrated dipole (fig(4.56)) so

we can confirm that the final answer will be finite.

4.6 The x Dependent Integrated Dipoles And Phase Space
Integration

The remaining integrated dipoles will be a subset of those for the full four quark case
and, unlike the z independent part there is little to be gained by looking at them
separately. For a full description of the ‘K’ and ‘P’ terms see section(5.5).

The Monte Carlo integration over the phase space will be essentially identical to that

performed in the full four quark case. For a description of this see section(5.6).



4.7 Results For bb Production

The results presented below were first published in [25].

The NLO QCD corrections to bb production may be found in [26].

4.7.1 Total Cross Sections

Tevatron

Presented in fig(4.10) are the results for the total bb production cross section at the
Tevatron. The centre of mass energy of the pp pair used was 27T¢eV and the rapidity
range integrated over was -2 to +2 (This is actually a somewhat larger range than can
be observed at Tevatron, 0.1 < || < 0.7 would be more realistic, but the results have
only a very small dependence on 7). The a%aw contribution is split up into gg — bb
and qg — bb parts. Also presented for comparison are the tree level weak and QCD
contributions and the one loop QCD corrections.

Fig(4.11) shows the ratio of the NLO weak corrections calculated here to the LO QCD
cross section.

The QCD contribution is absolutely dominant across the entire spectrum of transverse
momentum with the weak corrections being limited to a fraction of one percent. The
weak corrections are nowhere near large enough to explain the current theory vs. data
differences at Tevatron [1]. This is a result of the fact that at Tevatron the parton
energies are typically small enough (not significantly larger than the W or Z mass)
that the contribution to the weak corrections from the Sudakov logarithms is not large.
The LO weak corrections are some three orders of magnitude smaller than the QCD
rates (away from the Z resonance at any rate). Note that both LO and NLO QCD

are of similar magnitudes - this is indicative of the fact that the QCD results have
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Figure 4.10: The total cross section contributions to bb production at Tevatron (E.n,, = 2TeV)

plotted against the transverse momentum of the b-jet.

significant K factors (defined as Zgzgij), about 2, for the gg rate and 1 for the gq rate.
These large K factors suggest that the QCD results are not entirely perturbatively safe
at this order.

The NLO weak corrections are generally up to a further order of magnitude smaller
than the LO weak cross section although the structure is more complicated. The
qq — bb at a%aw begins negative at low pr briefly becoming positive at the Z resonance
and becoming positive again at higher pr (300GeV). The gg — bb starts positive but
becomes negative at a pr of about 400GeV (note that the gg rate does not show any
particular structure around the Z resonance as there are no contributing diagrams with
a Z boson in the s-channel as there are in the ¢ rate).

Fig(4.11) clearly shows how small the a%aw corrections are when compared with the

QCD corrections.
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Figure 4.11: Ratio of the one loop weak result (aZay ) to the tree level QCD (a2) bb production
rate. Also presented for comparison are the tree level weak corrections (a,) and the one loop

QCD corrections (o).
LHC

Fig(4.12) shows the results for bb production at LHC. The rapidity range is again re-
stricted to || < 2 (reasonably realistic for LHC) but this time the centre of mass
energy for the initial pp pair is set at 14TeV - this should be high enough such that the
partonic energies are large enough that the Sudakov logs begin to contribute signifi-
cantly. As in the Tevatron plot we split the a%aw cross section into both the gg and
gq terms and also show the LO QCD and pure weak corrections along with the NLO
QCD corrections.

Firstly it can clearly be seen that the NLO weak corrections are indeed relatively
larger when compared to the QCD cross sections than they were at Tevatron - 1 —2%

(see fig(4.13)) of the LO QCD.
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Figure 4.12: The total cross section contributions to bb production at LHC (Eu, = 14T€eV)

plotted against the transverse momentum of the b-jet.

Other characteristics worth noting are that the gg — bb processes are significantly
larger than the ¢g process both at LO and NLO QCD and NLO weak at LHC whereas
they were of comparable size at Tevatron. This is as would be expected due to the
preponderance of gluons in the initial state protons at LHC energies. In fact, it can be
seen that the a%aw gg corrections are somewhat larger than the LO (o) due to the
tree level weak calculation not including any gg diagrams.

The qualitative structure of the NLO weak corrections is the same as at Tevatron with
the two contributions fluctuating between positive and negative corrections and with a
peak in the ¢ curve at the Z resonance. In fig(4.13) we can see clearly the significance
of the weak corrections to the total cross section. The correction rises to as high as
2% of the tree level QCD cross section. As things stand this correction is swamped
by the uncertainty in the higher order QCD corrections (estimated to be of the order

of 10% [26] - as can be seen in fig(4.12) the K factors for QCD at LHC are somewhat

86



H i T i T T l T T T i |
t ﬂ
1 J‘ﬁ solid: o(qq - bb @ «2) Jo(pp — bb @ cxg)wi
r[ \ deshed: o(pp » bb @ aiay)/o(pp - bb @ &&)
‘ -
[ \ /’M
0 b - &
N 1l
— - N 4=
N \ >
= L . 17
@ L . ] %
-1 \ JRO
L ~ _
~
r ~ - -
~ -
- ~ - - T
. ~ - -
—2 S - ]
T I i ‘ ! i L i L ! L 1 g 7
0 500 1000 1500
pr (GeV)

Figure 4.13: Ratio of the one loop weak result (aZaw ) to the tree level QCD (a%) bb production
rate. Also presented for comparison are the tree level weak corrections (a2,). Here the one

loop QCD results have been omitted as they are currently perturbatively unreliable {26]

higher than at Tevatron, as much as 4 for the gg cross section, indicating a large degree
of perturbative uncertainty). However [9] work is being carried out to obtain the a‘é
(NNLO) QCD corrections. Once these calculations are complete it is likely that a -2%
correction will be of some significance - probably detectable at LHC owing to the very

high luminosity, and hence, statistics at that machine.

4.7.2 Asymmetries

Fig(4.14) shows the calculated forward backwards asymmetry for bb production at Teva-
tron. The one loop correction can be seen to be both larger and of the opposite sign to
the tree level weak contribution with an absolute asymmetry of approximately 0.5%.
In principle this should be detectable at Tevatron Run 2.

It is important to note that, as mentioned in section(2.3.1), NLO QCD also generates a
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Figure 4.14: The forwards backwards asymmetry at the Tevatron (27°e¢V’) plotting the con-

tribution from both o:?gaw and a%y orders. The dominant contribution to Arp however will

come from o order (see fig(4.15)).

contribution to the forwards backwards asymmetry [14]. Fig(4.15) shows the variation
of the QCD contribution to App with both cos(f) and centre of mass energy. As can
be seen from the first plot the QCD contribution is largest at high cos(8) (and therefore
low pr and high n) - however, as mentioned above, in practice we should restrict the
rapidity range such that we ignore events strongly along the beam pipe.

A realistic maximum rapidity of 0.7 corresponds to a cosf of about 0.6 (n = —In(tan(8/2))).
Across the reasonable cos(f) range the absolute asymmetry is at most 5%. Given this
we see that the weak correction to App will generally be about 10% of the total asym-
mety. (Note that the helicity dependent observables have not been calculated for bb
production as RHIC is the only currently available high energy polarised machine and
does not have the capability to tag b jets [19]. These results would be of interest were

it to become possible for polarised heams to be used at LHC.)
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Chapter 5

Proton - Proton To Two Jets.

We will now extend the bb calculation to a general calculation of all proton (anti)proton
to two jet processes. We will make similar assumptions to in the earlier calculation -
there are no b or ¢ quarks in the initial states, we still consider only massless external
quarks and we drop any suppressed W exchange diagrams (ones where the W emission

changes quark generation).

5.1 The Virtual Corrections in the 4-Quark Case

There are eleven different four quark processes that contribute to the pp — two jets rate:

e Process 1) - gg — gg
e Process 2) - g7 — 4q

Process 3) - g¢' — g¢' (same generation)

Process 4) - g§’ — g7’ (same generation)
o Process §) - g¢' — g¢’ (different generation)
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Process 6) - ¢’ — ¢g (different generation)

Process 7) - g7 — gq

Process 8) - q7 — ¢'q (same generation)

Process 9) - g7 — q'q’ (different generation)
)

Process 10) - ¢g§' — ¢qg' (same generation)

Process 11) - q¢' — ¢¢ (different generation)

(Note that process 9 is the same process as considered in the bb production calculation.)

5.2 The Bremsstrahlung Corrections to the 4-Quark Case

The tree level interferences shown in fig(5.13) form the basis of all the possible bremsstrahlung
corrections to ¢q/qq — gq/qq processes (that is processes one to six).

In principle there will be twenty bremsstrahlung interferences associated with each tree
level topology - the four possible bremsstrahlung diagrams involving s,t or u channel
Z/W boson exchange (real gluon emission from external leg a,b,1 and 2) interfered with
the five possible bremsstrahlung diagrams involving s,t or u channel gluon exchange
(real gluon emission from external quark a,b,1 and 2 and real gluon emission from the
internal virtual gluon). Not all of these twenty interferences will contribute for a given
topology due to possible vanishing colour factors.

Note that not all of the tree level interferences shown actually contribute at tree level
due to having vanishing colour factors. For example the gtZt interference in fig(5.13)

will have zero colour factor - Tr(¢t4)Tr(t4) = 0. However when we add soft gluon
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Figure 5.1: The set of interferences that contributes to process one (qg — gq) and two (g —

4q), the latter obtained by reversing the arrows on all fermion lines of the former.
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Figure 5.2: Continuing the set of interferences that contributes to process one {¢g — g¢) and

two (g7 — Gq), the latter obtained by reversing the arrows on all fermion lines of the former.
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With Z/W/¢ With Z/W/¢
X external leg X external leg
corrections corrections
With Z/W/¢
2% X external leg
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Figure 5.3: Continuing the set of interferences that contributes to process one (g¢ — qg) and

two (g7 — qg), the latter obtained by reversing the arrows on all fermion lines of the former.

emission to both diagrams in the interference we will change the colour factor, po-
tentially rendering it non zero. For example, again looking at the gtZt interference
in fig(5.13) - if we add gluon emission from particle one on the left hand diagram
and from particle two on the right hand diagram then the colour factor will become
Tr(tMP)YTr(t45) = cpea/2. Tf, on the other hand, we interfere two diagrams with
emission from particle one then the colour factor will be Tr(t4tP¢tP)Tr(¢#) which is
still zero.

The tree level interferences that provide the basis for the bremsstrahlung corrections
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Figure 5.4: The set of interferences that contributes to process three (¢Q — ¢Q (same gen-
eration)) and four (§Q — ¢g@Q (same generation)), the latter obtained by reversing the arrows
on all fermion lines of the former. Here, the weak couplings to the two fermion lines will be

different, this means we cannot implement the last two interferences as a factor of 2 as we could

in Figs. 5.1, 5.2.
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Figure 5.5: The set of interferences that contributes to process five (¢Q — ¢@ (different

generation)) and six (GQ — ¢@ (different generation)), the latter obtained by reversing the

arrows on all fermion lines of the former. Here, the weak couplings to the two fermion lines will

be different, this means we cannot implement the last two interferences as a factor of 2 as we

could in Figs. 5.1, 5.2.
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Figure 5.6: The set of interferences that contributes to process seven (¢¢ — ¢q)-
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Figure 5.7: The set of interferences that contributes to process seven (gq — ¢g): continued

from Fig. 5.6.
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Figure 5.8: The set of interferences that contributes to process seven (¢g§ — gg): continued

from Figs. 5.6 and 5.7.
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Figure 5.9: The set of interferences that contributes to process eight (¢7 — QQ (same gener-

ation)).
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Figure 5.10: The set of interferences that contributes to process nine (g7 — QQ (different

generation}).
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Figure 5.11: The set of interferences that contributes to process ten (g@Q — g() (same genera-

tion)).
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Figure 5.12: The set of interferences that contributes to process eleven (¢g@ — ¢Q (different

generation)).
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Figure 5.13: The tree level topologies that, following the addition of soft gluon emission, form

the basis of the bremsstrahlung corrections to qg — gq and gz — &q.

to processes one to six are:

- Process 1) - gtZt, guZu, gtZu, guZt
- Process 2) - gtZt, guZu, gtZu, guZt
- Process 3) - gtZt, gtWu, guWt

- Process 4) - gtZt, gtWu, guWt

- Process 5) - gtZt

- Process 6) - gtZt

(5.1)

The tree level interferences shown in fig(5.14) form the basis of the bremsstrahlung

corrections to g§ — g processes (that is, processes seven to eleven).

The tree level interferences that provide the basis for the bremsstrahlung corrections
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Figure 5.14: The tree level topologies that, following the addition of soft gluon emission, form

< Z/W _gsZ{Wt

the basis of the bremsstrahlung corrections to g — ¢q.

to processes seven to eleven are:

- Process 7) - gsZs, gtZt, gsZt, gtZs
- Process 8) - gsZs, gsWt

- Process 9) - gsZs

- Process 10) - gtZt, gtW's

- Process 11) - gtZt (5.2)

If we have an expression for the sum of all bremsstrahlung interferences based on the

tree level interference gtZs of the form:

9t Z sprem = (91 + M194) (9% — Mg%) f (Pas o, D1, P2, P3, M2z, Uz)



and an expression for the sum of all bremsstrahlung interferences based on the tree

level interference gsZs of the form:
95Z shrem = (94 + Mah) (6% = 209%)9(Par Py P1. P2, p3, M2, T2)
then for the other topologies we have:

ththeTTL = _(g‘l/ - Algh) (g\Q/ - AQQ%&)Q('pQ»plnpla —Da,P3,MZ, FZ)

QUthTE’m = _(g‘l/ + Alg}ﬁl)(g\%’ + Ang)f(pba —P2,P1, _pa»vamZ‘,FZ)

cos? (Ow)

2 f(pba_P27])1>*pa>p3;771w>rW)

guW tprem = —(1 + )\1)(1 -+ )\2)

gt Zuppem = — (g% — M1g4) (9% — X26%) f (Pas —P2, 01, —Pby P3, M2z, T'2)

cos?(Ow)

9 f(ptlv_pQ:pl?—pb>p37m‘WarW)

GEW lprem = (1 + Al)(l T >\2)
guzu’b')"e'rﬂ = (g%/ - AlQ}l)(g%/ - AQgi)g(pﬂn —DP2,P1; — Py, P3,MZ, FZ)

95 Ztbrem = (g1 + X19%) (Y — Mg f (=p2, Py, P1, —Pa, 3, Mz, L'2)

cos?(@
gSVthrem - (1 + Al)(l - Ab)J‘—)f(

é —P2, b, P1, —PmpSamW':rW)
cos? (0w )
2

gtWSb’l"eTfL = (1 + Al)(l - Ab) f(pa:pb>p1>p23p3>m’W7FW) (53)

52 7). .
(the factor of EO;é—e“—) is to compensate for the difference between the Z and W cou-

plings.)

5.3 The Dipole Subtraction Terms in the 4-Quark Case

If we first consider process one (g7 — ¢g of the same flavour) we have four topologies
at agsaw order - interference between two t-channel tree level diagrams (one with a
Z boson exchanged and one with a gluon exchanged) - gtZ¢, interference between two
u-channel diagrams (again one Z and one gluon) - guZu and the two possible interfer-
ences between t-channel and u-channel exchanges (one with the gluon in the t-channel

and the Z in the u-channel and vice versa) - gt Zu and guZt.
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Note that not all of these topologies actually contribute at leading order, specifi-
cally gtZt and guZu both have vanishing colour factors. However we will have gluon
bremsstrahlung corrections to all four topologies as the additional gluon will change
the colour factor, therefore we will have dipole subtraction terms proportional to each
of the four tree level interferences (up to colour factors)(as usual, the incoming quarks
will have momenta p, and p, and the final state quarks will have momenta p; and p2
with the emitted gluon having momentum ps).

If we start by looking at the case of gtZt there will be eight dipoles that contribute:

e Interference between emission from particle a and particle 2. One case where a is

the emitter and 2 the spectator and one case the other way round.

Interference between emission from particle b and particle 1. Again with either

particle playing the role of emitter.

Interference between emission from particle 1 and particle 2.

Interference between emission from particle a and particle b.

The dipoles associated with interference between particle a and particle 1 and the
interference between particle b and particle 2 both have vanishing colour factors.

All of these dipoles will be proportional to the tree level interference:

TRQTEZ ('ga f> A17 AQ) =

9*g%

1 - .
A — 25+ A A9)? 5.4
4 cos? Oy, S (525 2k (54)

1 1Ny,2 2
¢+ Aea) (el + Agch )=
(cv + Area)(cy A>t(t—m%)
This is simply the tree level matrix element squared with the colour factor omitted

(which, in this case, is zero). § and £ are the usual Mandelstam variables but poten-

tially rescaled by the z factor from [7].
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For the term where we interfere emission from particle & with emission from particle 2

we have:

o — P2Pa -+ D3.Pa — P2-P3
D2-Pa + P3-Pa
D2-Pa
= —=""
D2 Pa + P3-Pa
P3-Pa
U=
D2.Pa + P3-Pa

t = 2p1.py — 2Tpg.Dp

§=uzs

P23 = pP2.P3

Pa3 = Pa-P3

colourfactor = —226—'4 (5.5)

For the term where we interfere emission from particle b with emission from particle 1

we have:

. P1-Po + P3.Pp — P1-D3
D1-Dp + D30
o P1-Py
P1.Pp + P3Py
. Ps-py
Uy = ————
D1-Po + P3.Db

t = 2py.pa — 2Tpa.py

W
l

i
n

P13 = P1-P3

DPb3 = Db-P3

rea (5.6)

colourfactor = —
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In either of these two cases the dipoles for a final state emitter and initial state spec-

tator will be:

/b
olourfactor Vi (z,) -

oA i TigThz(5,7, 0, 1

17 2]?1'3 T X Ltg t,Z(S/ y N 2)

4 -
V(2 2) = - Al+2) (5.7)
And for the case with an initial state emitter and final state spectator:

- lourfactor V' (z, )

D;a/b __ colourfactor V; (z,u) X ThgTh 2 (5,21, D)
2Da b3 T

'a/b 4 o

‘/i]/(z’x):_"m1—x+u_2(l+x) (5.8)

For the two cases with final state emitters and final state spectators (interference be-

tween emission from particle 1 and emission from particle 2) we have:

. colourfactor _ = 7
D = - V(e )T Tz (3,100, 00)
2pi3
‘ 4
V.’Lﬂ , = - — (1 z 5.9
k(520) = 7 e 21+ 2) (5.9)

If the emitter is particle 1 (and the spectator is particle 2):

P1-P2
P1-P2 + D2.P3
_ P1.p3
- Pa-Pb

z =

g Y
1= —2|p1.pa + P3.Pa — mPQ-Pa
5= pa.pp

P13 = P1.p3

crea (5.10)

colourfactor =
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If the emitter is particle 2:

5= P1-D2

P1.p2 + P1.P3

P2.P3
y =

Pa-Po
t” — _2p1~pa

1—-y
5 = pa-Pb
P23 = P2.P3
> C ’

colourfactor = CF() A (5.11)

L

Finally, for the two cases where we have initial state emitters and initial state specta-
tors (interference between emission from particle a and emission from particle b) we

have:

b/a colourfactor | 4 s fa
Di/é = ——'—5:,0—/;3—-—_‘/;/{;) ($>Tt,gﬂ,z LS, tv )\17 )\2)
/b
v;“/{] ()= 7= —2(1+2) (5.12)

If the emitter is particle a (and the spectator is particle b):

_ DP3-Pat D3Pp
Pa-Pb

z =1

1= —2((1+ 2)p1.pa + p1-pp — P1.03

2Da-Pb — P3-Da
drpa.py + (1 — 2)p3.pa)

—(2p1.pp + (1 + 2)p1.pa — p1.p3)T

§ = p1.p2
Pa3 = Pa-P3
colourfactor = EF{)ﬂ (5.13)

Z
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If the emitter is particle b:

_ P3-Pa 1 P3P
Pa-Pb

r=1

t = —2(2p1.pa + P1.Pb — P1.P3

‘ (1+2)pa-py — P3.Pa
—@p1.pa + (1 + x)p1.p — P1.D03 ] 3
(2p1-pa + (1 + 2)p1.pp — p1.p )45Epa.pb+ (1 — z)ps.pp)

§=p1.p2

Py3 = DPb-P3
crea (5.14)

colourfactor =

L

For completeness it is also worth noting that in the case where we have interference

between emission from particle 1 and particle a we have:

- P1-Pa 1+ P3-Da — P1-P3

P1-Pa + P3.Pa
P1-Pa
7= —
P1-Pa + P3-Da
D3.Da
Y =
P1-Pa + D3.0q
t=—2p2.pp
S=1Is
P13 = P1-P3
Pa3 = P3-Pa

colourfactor = 0 (5.15)
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For interference between emission from particle 2 and particle b:

- P2.Py + P3Py — P2-D3
‘ P2.Py + P3-Pb

.= P2-Dy

P2-Py + P3.Db
P3Py

U= —————
P2.Pp + P3-Db

E = "2p1-pa

§=2xs

P23 = P2.P3

Db3 = P3-Pb

colourfactor = 0 (5.16)

(Although the colour factors for these pairs of particles for this topology vanish they
won’t for every topology. The expressions for.the dipole variables given above are
independent of topology.)

Depending on which particle is the emitter and which is the spectator the dipoles can
be evaluated using eq(5.7) and eq(5.8). Eq(5.7) for a final state emitter and eq(5.8) for
an initial state emitter.

In the case where we are evaluating dipoles for corrections to interference between two
t-channel exchanges the colour factors come out to be zero and as such these terms do
not contribute - they will, however, contribute to other topologies.

For the other topologies (see above) the values of z, z, wu, §, t, pis and pg3 and the
expressions we use to obtain the dipole for a particular interference remain the same
- the only things that change are the colour factors and (of course) the tree level

interference.



For the guZu topology we have:

CrCA

colourfactor, 1 = —

I\

colourfactory o = 0

colourfactory; = 0

cre
colourfactory o = — I~2 A
cpe
colourfactor; o = I~2 4
cpe
colourfactor, , = —%é (5.17)

Where (for example ) colourfactor, ; is the colour factor for interference between emis-
sion from particle a and particle 1.

The tree level interference for guZu is:

S| =+

292 24 -
_II5 (el ) (e o+ dadh) — s (1 4o - >\1>\2> (5.18)

4 cos? Oy o —my
Where @ = —5—f. We obtain expressions for , z, u, §, {, p;3 and pg3 from the equations

given below:

interference, 1 — eq(5.15)

interference, o — eq(5.5)

interference; ; — eq(5.6)

interference; 5 — eq(5.16)

interference; o — eq(5.10) or eq(5.11)

interference, ;, — eq(5.13) or eq(5.14)

[depending on which is the emitter and which is the spectator] (5.19)
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For the gtZwu topology we have:

colourfactor, 1 = —¢pcalcr — ca/2)
_ 2
colourfactory, o = —cpca
2
colourfactory 1 = —cpca
colourfactory o = —cpea(cr — ca/2)

colourfactori o = crea(cr — ca/2)

colourfactory , = crea{cr —ca/2) (5.20)
With a tree level interference of:
TigTu,z (T, 1, A1, Ag) =
———gfg—é—(clz+/\1c1)(c2,+/\oc2)~——§gw 2+£+2> (5.21)
4cos? iy k AJTY A — TrIQZ u ot
For the guZt topology we have:
colourfactor, ; = —c%cA
colourfactory o = —crea(cr — ca/2)
colourfactory; = —cpca(cr — ca/2)
colourfactory o = —c‘?‘;cA
colourfactory o = crealcr — ca/2)
colourfactor, y = cpealcrp — ca/2) (5.22)
With a tree level interference of:
Tj’uﬁgT;ﬁ,Z(ﬂ: Eu Al? AZ) —
———g—gi(cl + Aicl) (et +/\r)cg)—§-§—~ ‘7+£+E (5.23)
4 cos? fw v 1A A TnQZ Ut

These are in fact all of the possible topologies for quark-quark {or anti-quark-anti-
quark) scattering, for quark-anti-quark scattering we will have:
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gszs:

colourfactor, 1 =
colourfactorg o =
colourfactory 1 =
colourfactory o =
colourfactory o =

colourfactor, , =

gtZt (quark-anti-quark) this will differ from the

factor (see eq(3.12)):

gtZs:

0 (5.24)

quark-quark case due to the colour

colourfactory; = 0

colourfactorg g = EFO—CA—

colourfactor, 1 = CFZCA

colourfactory o = 0

colourfactory s = —CFQCA

colourfactor, , = — CFQCA (5.25)
colourfactor, 1 = —creca(cr — ca/2)

colourfactor, o = crea(cr —ca/2)

colourfactory 1 = crea(cp —ca/2)

colourfactory s = —cpca(cy — ca/2)
colourfactory o = —c%cA
colourfactor, , = —chep (5.26)
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gsZt:

colourfactor, ; = —chey
colourfactor, o = crealcy — ca/2)

colourfactory ; = crealer —ca/2)

colourfactory o = —C%CA
colourfactory o = —cpealcy —ca/2)
colourfactor, p = —crcalcr — ca/2) (5.27)

5.4 The Integrated Dipole Subtractions

Shown below is a demonstration of the cancellation of the IR divergences coming from
the one loop corrections to the interference between a t-channel gluon exchange and an
s-channel Z exchange. These poles will cancel with an integrated dipole term that is
proportional to the same tree level interference.

In practice this will be one part of process seven (g7 — ¢g shown in fig(5.6, 5.7 and 5.8))
- for the complete process we would also need corrections to t-channel Z and s-channel
gluon, t-channel Z and gluon and s-channel Z and gluon. The IR poles generated
by corrections to each of these interferences will cancel individually with their own
integrated dipole term.

The s-channel graph squared part will be mechanically very similar to the case for bb
production (shown in eq(4.55 - 4.62)) and the t-channel squared part can be obtained
by crossing this result.

The full expressions for all of the prototype diagrams needed for this calculation are

given in Appendix B.
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5.4.1 The Pole Parts of The Virtual Corrections
The Box Diagrams

There will be two interferences including two gluon box diagrams. Firstly we have the
interference between a t-channel, uncrossed two gluon box (B, 4,) and s-channel, tree
level Z exchange (Ts 7). Keeping only the pole parts of this interference we have:

2 X Bigg x Te z X Chea =

Oxg =200 21 Oxy 00 X

2 4
2¢2 99 (o, ot
FCA o2 iy (gv + A194)(gv — Xpg4) e
L + 4Zn Is]
€ ¢ e
— (2 (1 — X)) (2 — 5.28
t(s—mQZ)( s+ (1 Al 2))( t—}-S(l >\1>\b)) (D )

Where we have a factor of two for interference and the colour factoriscpca = tr(tAtBtBtA)
(note there will be an overall factor of &y, »,0x, 1, 0,1, attached to every interference
to ensure helicity conservation - for convenience this will be omitted from this calcula-
tion from here on).

Secondly we will have the interference between a t-channel, crossed two gluon box

(Btgg,x) and s-channel, tree level Z exchange (7% z). From this we will obtain:

2 x Bt,gg,X X Tg 7z X crealer —ca/2) =

2 4
9°g 1
2 — N2 28 _
erealer — caf2) = . (9v + Mga)gv — Mega) 15
e e\ pu?

Here the colour factor is tr(t4tPt48) = crea(cr — c4/2).

There will also be two interferences including the gluon-Z box. Firstly the interference
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between a t-channel, tree level gluon exchange (77 ,) and the s-channel gluon-Z box
(Bsg2):

4 x Tt’g X .Bs,gz X CFCA<CF — Ca/Z) =

2 4 1
depea(cr —caf2 )m(gv + Mga)(gv — AbQA)Tﬂ‘
2 2 1t 4m? s
e N ) e A
(et ()5 ()

ts —m3y)
Here we have a factor of two for interference and a factor of two associated with inter-
changing the gluon and the Z.
Secondly we will have the interference between a t-channel, tree level gluon exchange

(T3,) and the s-channel gluon-Z crossed box (B gz x):

4% Ty g% Bggzx x crealcr —ca/2) =

9gt

1
I Is Y ) ——
Tcos? 6y (gv +Xga)lgv — Aega) 15—

depea(cr —ca/2)

@i () e (i-))
w;%%5@$+“1*AMﬂX%+SO—AyMD (5.31)

So the sum of the contributions from all of the box diagrams will be:

2By goTs zchca + (2By g xTs,z + 4T1.gBs gz + 4Ty Bs gz x)crealcr — ¢a/2) =

2.4
979 1
A — Aoga) s (2 — A 1— A
Toos2 6y (v T A1ga)ov NﬂA>(S__W@>(S%-ﬂ1 Arda)) (2t + s(1— M)
! 2,4 & 2 4 lul
1672 {%FCAZZ” (E —CF CA 2 2crealcr — CA/Q)—ZTL <M2

srentee a2 (‘e (1) - o (24))] o)

The Vertex Corrections

We will also have contributions from a number of interferences including triangle di-

agrams. Firstly the interference between a QED-type gluon vertex correction to a
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t-channel gluon exchange (Vfgefge ) and the s-channel, tree level Z exchange (1% 7).

4 X V:c?;gge X TS,Z X CFCA(CF — CA/Q) =
9°9; 1
4 ey )2) 20 Mga)(gy — —
crealcr —caf )4(:052 O (9v + Mga)(gv AbQA)lGWQ
2 3 n 21 It]
—_— — - p— n —_—
€ € ¢ w?
1
(25 + t(1 — 2t +s(1 — X 5.33
t(s—m%)( 8 ( >‘]>\2))( +'5( 1>\b)) (D )

Here we have two factors of two, one for the interference and one to account for the
fact that we can have the vertex correction on either of the two quark lines.
Secondly we will have the interference hetween a QCD-type gluon vertex correction to

a t-channel gluon exchange (V, ged ) and the s-channel, tree level Z exchange (I z).

t,9vge
ged , CFC,Qq
4 x Vt,g»uge X Ts 7z % 5 =
2 2 4
CFCh  9°Gs 1
4—=£ 7 75 A — A —
2 T by (gv + X ga)(gy bQA)mWQ
1
€
(2s + {1 — M) (2t + s(1 — A1) (5.34)

t(s — m?)
Finally we have the interference between a QED-type gluon vertex correction to an

s-channel Z exchange (Vsqeiz .) (in this case we cannot have a QCD-type vertex) and a

tree level t-chanmnel gluon exchange.

ged 2
4xV. X Tyg X cpca =

s,guZe
2 4
5 1

4c2es—99s _

CFCA T oos2 gy IV T M4V = Mga) 1
< 2 3 2 <|s;>>

——— -+ —In )

. € € € 7
m(% + (1 = AtA)) (26 + s(1 — M) (5.35)
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If we combine the triangle results we obtain:

2
~qed ; , rged CFCyH rged 2 _
4"/¢?9U96T5,ZCFCA(CF —ca/2) + 4Vt,gvge,T$sZT —+- 4V.9,ngeTi»QCFcA =

9%g?

99 A .
4 cos? Gy (gv + A1ga)(gv bgA)

R;j;g@8+ﬂl—AMﬂx%+su~AM@)

1 2 3 2 [l
L L (222302, 1
1672 [ Crea ( 2 T (/ﬂ))

5 3 2 /|
2
a2 (1)
—1 9 )

The I(¢) Term

Using the formulae presented in Chapter 3 we have, for the integrated dipole term:

2xI(e) =
9°gs
s _
Tcos2 6y (gv + A194)(gv — Asga)
(28 + (1 — A1 A 2t +s(1 — XA
t(s——mg)( 5 ( 1 2))( +'5( 1 b))
1 ] 9 4 6 4 Is|
W {4CFCA (6—2 + E - Eln (;ﬁ))
4 t|
—4crpep(cr —ca/2)=In (%)
€ 2
4 ul
+dcrea(cr — ca/2)=In — (5.37)
€ 2

If we sum the contributions from eq(5.32, 5.36 and 5.37) we obtain a complete cancel-
lation of all the log terms and all of the double poles. We are however left with the

single pole:

9%ge
Toos2 o COSQEW (9v + A1ga)(gv — Aoga)
(25 + t(1 — A 2t T —MA
t(s—mg)( s+ 1( 122))(2t + 5( 175))
1 4
2
CFCA‘W‘E‘ (5‘38>
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This left over pole will be cancelled by the IR divergent part of the external quark
self energies. These diagrams have thus far been ignored as they do not have a finite
contribution to the matrix element (This was not required in the bb case as there the
interferences including external quark self energies have vanishing colour factors).

Given this proof that the IR poles cancel we can safely drop the poles in both the
virtual corrections and in I(e) when we code the process. Note that unlike in the bb
case we do have collinear divergences (from initial-initial and final-final interferences

that are no longer forbidden by colour) as well as soft poles.

5.5 The z Dependent Parts Of The Integrated Dipoles

We recall, from Chapter(3), that the expression for the total next to leading order cross

section 1is:

NEO (pg, py) =

UNLO{I,Q}( o NEO{1,23}(

Pas Db) + Da>Db)

1
*/ dz{GN PO (2 wp,, py) + SV O (2 pg, )] (5.39)
0

Where {1, 2} indicates a term that has been integrated over the phase space of the two
final state quarks and {1, 2, 3} indicates a term integrated over the phase space of the
two final state quarks and an emitted final state real gluon.

The first two terms have already been evaluated (oVO11.2}(p,, py) is the sum of all
virtual corrections rendered finite by the I(e) term and oVFO{L23}(p,, py) is the sum
of all bremsstrahlung corrections rendered finite by the dipole terms) but we still need

to deal with the third term.
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From Chapter(3}, eq(3.104) we have:

-1
~NL .21 ~ N {1.2} R :
/ de[eN O (1 2p,, py) + SNV OB (2 p, )]
0

1
[ [ ofFE apa ) @ (5 + P e +
0 11,2
1
/ iz / (doTREE (py, zpy) @ (K + P)*(x)]ezg
0 1,2]
! (1,2)
:/ dm/d@l’Q)(mpa,pb)Fj’ (p1,P2; 2D, Pb)
0
< p1,P2, T0q, Dul (K *%(2) + P (2pg, x))|D1, D2, TPas P >
1
+/ dm/d@l’”(pmmpb)Fﬁl’Q)(phpg;pa,l‘pb)
0

< p1, D2, Pa, 20bl (K0 (z) + PP*(zps, 2))Ip1, D2, Pay TP6 > (5.40)

Where the function £ §1,2) defines the particular observable we are intending to compute.
Here we are again integrating over the phase space of the two final state quarks.

As for both the virtual and real corrections (and their respective dipole parts) we need
to break the calculation down into the eleven sub-processes defined at the start of
this chapter. The topologies that contribute to the insertion terms for a given process
are the same as those that contribute to the I(e), dipole terms and bremsstrahlung
interferences - those given in eq(5.1) and eq(5.2). We have a & term for each individual
topology (denoted by top) in a given process.

From [7] and eq(3.105) we have (in the case of soft gluon emission from a quark):

s 1+ z?
Pa’a(ﬂf,ﬂfpa) :_0{5 ( +z ) CFr

2\ 1—z n f[Tg
2 . 2 . 2 .
i (52) nn (252 e ()
H 2 2
3 - 1 + 1132 Cr
pob y = 25 2

2xpy. 2zpy. 2 .
{Tl.Tbln ( IZprl) T Tyin ( a:pt;m) + T, Tyln (ﬁﬂ%ﬁﬂ (5.41)
m b

(T2 and T = cp).
This term is proportional to a ‘plus prescription’ part and as such the integral over z
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1s treated as a convolution of the form:
(plus prescription partj. x [f{z) — f(1)] (5.42)

This means that the terms proportional to P/ will be:

1+ 22\ ag
( >2W C(top)

l—-z
, _u
K,‘Z Zn<6)+(T T]+TbT2)m< )+(T T2+TbTUZn( ))
u? p? p?
X M3, (s,t, top)

5 _ -
(OT Tblﬂ (u ) —+ <T T] TTb TQ}ZfL <2§ —+ (Ta.TQ —+ Tb.Tl)]/TL <—2>>

Hey H
SEIVEINCY: topﬂ

(5.43)

Where C(top) is the tree level coupling of the particular topology we are dealing with
(see below).

For the ‘K’ part we have:

a,a @s

aa 71 Y2 1 YR
o (5.3 1) () o)

+K%%(z) — Kg

—Ta.TbﬁKﬂ o(g )J (5.44)

(Clearly 6%% in this case will be one since the two particles are both quarks but it has

been included for completeness. Again T2 = cr)
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Rra,a —

choltm@[ 2 Zn(l_m) —(1+x)ln<1ﬂx>+(1—w)}
11—z T + T

—cpcolipeed (1 — ) (5 — WQ)

E%9(z) =

—(14 2)In(1 —z) + §%T2 Kl 2 In(l - :z:)) - %25(1 - m)}

— X

The scheme dependent part, K¢, is zero in the MS /DR schemes.

Therefore we have for the total part proportional to K ®®/8:0:

ag |1 -
C(top)g—ﬂ_ {;M?Tee(s,t,top) — M2 (st top)J X

1 3
{(h—_) 9 (T1~Ta + Ty Ty +T1.7 + TQ.Tb)

11—z

2 1—=x 2
_CFCOltreel — rZn < - ) —To. Ty (1 _mln(l — m))}

1 aS a f
Tc(top)ﬁMtgree(S'/tatop) X

[—cholm [(1 + 2)in (1 - m) +(1- m)}

T

1
+T,. Ty — (1 4 z)ln(1 — m)}
CF

Q
+C(t0p) 5 Miree (3, 1, top)
T

9

3 27
{— (Th. Ty + To Ty + T1. Ty + To.Ty) — 2¢pcolipee (5 — 7) —i—Ta,-Tb%} (5.46)

Where we have used the definition vy = %(F
In the term proportional to M2, (s, t,top) we have used the delta functions to perform

the z integral - therefore this term will not appear underneath the integral.
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So, the total term for a particular topology will be:

(ton) o
[aat ARSI AL (ot t0p)
T

3 . 2m?
[i) (Tl.Ta +To T, + TV Ty + Tg.Tb) — QCFCOZWBQ(E) — 7T2) -i—T'aATb—%-

1+ z? 14 2 (-t
+ ( i > o, Tyln <i2) + ( i~ > (To. Ty + Ty Th)in (—2>
1—2z " l—=z 7

14 22 —1u
- T . —
+(1_‘$>(T Ty + le)Zn(/LQ)}

2w

1
- .10y C(t / 1 R
+/O dm/dq){l,Q}F}l,?)m {EMgree(é,tJop) »M%,e@(s,tjtap)} X

1 3
!i<~1—~:;> 5 (Tl.Ta + TQ.Ta + Tl-Tb + TQTb)

2 1—=x 2
—(:Fcoltreel_mln< . )—Ta.Tb <1—$ln(1-—m))J

1
. ~(1.2) C(t .
+/O dx/dCID{l’Z}FJ(‘l’Q)M——-——( ;i)as,/\/lfree(é, t,top) X

3 272
{5 (Tl.Ta +To Ty + 1. Ty + TQ.Tb) — QCFC0Z1/T65(5 — 7T2) +Ta~Tb—g’

1+22\ 1 § 1422\ 1 —t
— —27,. — | — —(La- . . )
(1_3;) 19T, Tiin (ﬂﬁ) (1_$>$(T T1+TbT2)ln<#2
1+ 22\ 1 —10
— —(T. . — .
(1-3:) :E( aTQ+TbT1)ZTL<#2>:, (547)

Where:
dd 112 = 4o (b2 (2p, py) = d& 1B (py, zpy)
2% = a2 (p,, py) (5.48)
The equality in the first line is true in all cases as the phase space is Lorentz invariant.
U = F (wpa, pyipy, p2) = FS2 (pay 2pe 1, p2)
E& = F (pg, py; pr,pa) (5.49)

Here the equality in the first line only holds in cases where the observable being exam-

ined is Lorentz invariant. If we were studying (for example) the scattering angle then
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|

Topology T, T/ 10T 10T, /T Ty TV.T,/ToTa | coliree
9tZt(qq) A 0 _eEca 0
guZu A — e 0 0
quZt (cp—ca/2)crca —C%cA —(crp —ca/2)crca | crca
gtZu (cr—ca/2)crca  —(cr—ca/2)crca —c%cA CFCA
gtZt(qq) — e 0 croa 0
gsZs 0 — <A LA 0
gsZt —(cr —caf2)cpca —ctca (cr —ca/2)crea | crea
gtZs —chea ~(cr —ca/2)crea chca CrcA

we would have to split up the function into two parts.

Table 5.1: Colour factors for the various topologies.

The colour factors (7;.7;) will vary depending on which topology we are considering.

Note that again these are colour factors as defined in [7] and as such will potentially
differ from the normal colour factor by a factor of -1 (we pick up a factor of -1 if we
interfere emission from a particle and emission from an antiparticle similarly if we in-
terfere emission from an initial state particle and emission from a final state particle).
The colour factors associated with each topology are given in table(5.1). Note that the

colour factors for the topologies including a W will be the same as for the corresponding

Z topology.

The coupling factors (C(top)) are given in table(5.5):
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top C(top)

giZt || g*g2/cos® (0w )5 (g — Mgn) (9 — A2g3)

gtZu || g*g3/cos?(Ow) (g — Mgh) (g8 — Xog3)

guZt | g*g%/cos*(Ow) 1 (gt + Mgh) (g% + Xag’)
guZu || g*g%/cos?(0w)1 (gt — Mgk gl — Aagd)

gsZs || g%g%/cos®(bw) (gt + Mgi)(gd — Xogh)

gtZs || g°g%/cos®(Ow) (gt + Mgk (g — Xegh)
gsZt || g%g5/cos® (0w )1 (gt + M1ga) (b — Moga)
guWt 2g22(1+ 2 (1 + X2)
gtWu g25(1+ M) (1+A2)
gtWs 9251+ M)(1 =)
gsWit g2 (14 A)(1—Xp)

Table 5.2: The couplings for the various topologies.
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5.6 Integrating Over The Phase Space

To perform the integral over the phase space (and also over the dipole variable z) we

use a Monte Carlo type method - specifically the VEGAS [27] code.

5.6.1 How Does VEGAS work?

Because the phase space integral is multidimensional it is significantly faster to use a
Monte Carlo type approach rather than a trapezium rule inspired method.
In the simplest terms a Monte Carlo integral works as follows. For some observable

O(z) the mean value can be calculated as:

J dzw(z) NSoo N
Where each ; corresponds to a particular phase space point and where w(z) is some
weighting function for each point in phase space.
We can, with reasonable ease, use numerical methods to evaluate the last term in
eq(5.50) for large values of N which therefore allows us to get a handle on the integral
in the second term.
A value for pr is calculated for each phase space point - the result for that point is then
binned according to this value. This allows us to evaluate observables as a function of
pT.
We restrict the integral over rapidity (or, equivalently, the scattering angle) to the
region that can be measured at the experiment we are calculating for. This allowed
rapidity range is dependent on the detectors ability to pick up events with the jets
oriented along, or close to, the beam axis. This range is machine dependent - the exact
values are given in section(5.7).

VEGAS uses so called ’adaptive sampling’. On the first iteration of the Monte Carlo
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the phase space points are selected at random across the entire phase space volume.
On second and subsequent iterations a weighting is implemented that ensures that
more phase space points are sampled in the regions where the cross section is large.
This ‘importance sampling’ results in enhanced accuracy where it is most important.
VEGAS also increases the weighting in regions of phase space that contribute most
to the error (‘stratified sampling’) - the combination of these two weightings makes

VEGAS the most popular algorithm for this kind of calculation.

5.6.2 The Two to Two Body Part of the Phase Space

The two body phase space is:

1 d3py d3po

— A12(27)45% —p1 — (5.51
4B, Eylvg — vy (21)32E, (2%,)3252 M7 (27)"6%(pa + pp — P2 p2) ( )

do

The Lorentz invariant part is:

P = P AP s )P (552
*l | (271_)321_;1 (27T)32E2 < DPa Dy D1 P2)i i

Following some changes of variable and using the delta function to do some of the

integrals we obtain:

2 —1
dI1| M 12 = dQ_,_p.L._._ p_l 2 | A 12
fMJ 167{'2E1E2 El + E2 |M)
1 1])1' ) )
= s e 5.53
1672 EcmlM‘ (5.53)

Substitute this back into the equation for do and we obtain:

1 (101| 12
do = d§) 5.54
’ 2E A2 |va — vy (27124 B0, M) (5:54)

In the case where all external masses are negligible (in fact, in the the case where all

external masses are equal):

| A2
do = dn 240 (5.55)



If we modify this to account for the integration over the PDE’s (f(z,)) then we have:

do = Zfz (z1 fj 64/ 6i-2% \dexld:zgdédcosg (5.56)
ij

§ = z1228, (note that ‘/\_4\12] is a function of §). The indices ‘1’ and ‘2’ correspond to
the two incoming hadrons (pp for LHC and pp for Tevatron) and the summation over ¢
and j corresponds to a summation over all possible combinations of incoming partons.
The PDI’s also depend on an energy scale - in this case we use the renormalisation
scale p (we set the renormalisation scale to be either E., or Er depending on which
PDF’s we are using) to match up with the prescription we use for the cancellation of
IR divergences.

When calculating unpolarised observables we use the CTEQ PDF’s [20] and when
calculating polarised observables we use the Gehrmann-Stirling set A (GSA) PDF’s [21].
The dependence of the results on the exact PDF’s used is discussed in section(5.6.4).
Ideally we want the limits of the integrals in the phase space to be fixed as this is easier
for the integration programs (in this case "VEGAS’ [27]) to deal with. To change the

variables of integration so that this is the case we first multiply through by £:

1 ¢ d - o
do = Zj:fl T1 fj 132)64 QS\M”] P L dzozded cos 0 (5.57)
Change variables from z7 to In(z;) (————dlzgl) = %) and from z2 to pg (§ = 21225 =
EZ, = AE? = 4p).
do = fl(z1)f} (2o )8 s M2 Ipgldin(a1)dpgd@singds (5.58)
i
We would now like to change variables from @ to 7, the rapidity.
0 "o
n=—in |tan (5.59)
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In practice we will constrain the rapidity integral to only include events that can actu-
ally be detected at whatever experiment we are performing the calculation for. Typi-
cally this means we only integrate up to some maximum rapidity (corresponding to a
minimum value of 0).
1 2 .9 .
do =Y flx1)f; (IQ)S e M2 |pgldin(z1)dpgdesinddn (5.60)

if

dpr _

Finally we will exchange p, for the transverse momentum, pr. pr = sinfpg so e —
sind.
1 -
do = Zf}(:ﬁﬂfﬁ(ﬂ:g)m\M\fjplen(m)dedédn (5.61)
)
This is the final form of the two body phase space measure that is used in the Monte

Carlo calculations for the massless cases (both pp to two jets and bb production).

5.6.3 The Two to Three Body Part of the Phase Space

The integration over the two to three body phase space is somewhat less complicated
than the two to two as there is no x dependent part of the unintegrated dipoles. The

phase space used in the massless case is:

_ 1t 1 ‘leﬁ 5 —m3y
~ (2m)° 164 2 2%

dmyodQ1dQ3 (5.62)
Where § is s scaled by the Bjorken z’s, and m?, is the invariant mass squared of the
two final state quarks, (pg + pp — p3)?. dQ; is the scattering angle of particle 1 in the
centre of mass frame and d{23 is the scattering angle of particle 3, the gluon, also in
the centre of mass frame.

Note that once again we have had to define a phase space where the limits on the

integrals are constant - this is because this is what VEGAS requires.

131



5.6.4 Dependence Of Results On The PDF’s

The polarised PDF’s are less accurately known than the unpolarised and are also only
valid up to a maximum value of p? of about 1TeV - therefore the maximum pr that
can be studied is 500GeV.

We compare our results using two possible options for our PDF’s - GSA and Glick-

Reya-Stratmann-Vogelsang standard set (GRSV-STN) [21] {22]. Fig(5.15) shows that

jet—production (n| < 1)
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Figure 5.15: The dependence of both the total cross section and the beam asymmetries on the

choice of PDF’s (GSA and GRSV-STN). The results both both RHIC-spin energies are plotted.

the dependence of the total cross section at RHIC on the (polarised) PDF used is
insignificant.

However, there does appear to be some effect on the asymmetries. The Apy correction
remains at a very similar magnitude although where the peak of the correction lies on
the pr scale is dependent of the PDF used (140GeV for GSA and 80Gev for GSRV-

STN). For Ar the GSRV-STN result generates a larger correction at low pr (above the
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Z resonance) but which tends to the GSA result near the pp limit.

In fig(5.16) we can see that, at LHC, there is a very small variation on the total cross

jet—production (in| < 2.5)

GSA (solid) 6 = (NLO-LO)/LO w = E,,
GRSV—-STN' (dashed) vV s = 14000 GeV u = Eq
r-[ T [ 17 \ [ ( T TT 7 I_ 5 TIT!? T3 ']f"{ T } TTTT T T T7T]
- ' b ‘ A
. ——_ 4 ﬁj
i 7 BE s
© 1 2 =)
- do/dE 3 lé - E
C I} S -
_3%‘& Lob L b L B3 1.k } i i it O FW/K i [ l | ’ R !3
0 100 200 300 400 500 0 100 200 300 400 500
E, (GeV) E, (GeV)
T H T 200 _4._;'1‘_1 }71 T ITTTX ]rl T T (;: I:
For PV ]
—~ 0 H ~
X s - o
© _200F . ~200 [~ —
—400 S 400 -3
i { 1 L[l FI N j ;J |3} }! id Ii LN . R i !J:
0 100 200 300 400 500 0O 100 200 300 400 500
E; (GeV) Er (GeV)

Figure 5.16: The dependence of both the total cross section and the beam asymmetries at a

polarised LTIC on the choice of PDF’s (GSA and GRSV-STN).

section depending on which PDF is used (a larger variation than at RHIC but still
insignificant).

In the polarised observables we see only a small variation in the results for the correction
to Ary but the correction to Ay, varies greatly depending on the PDF used. At low pr
the GSRV-STN PDF’s give corrections that are large and positive (+200% compared
with +40% for GSA) but at high pr, when both corrections become negative, the GSA
result is somewhat larger (-440% compared with -360%).

It is potentially of some interest that there seems to be a variation in the results for
these asymmetries with choice of PDF. One of the purposes of a polarised experiment
(such as RHIC-spin) is to reduce the uncertainty inherent in polarised PDF’s. If we

measure an observable that has a strong dependence on choice of PDF and compare it
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with theoretical predictions that make use of varying PDF’s then in principle we may
be able to shed some light on the polarisation structure of the proton.

Note that here the variation in Ay is of most interest as it is entirely parity violating
and as such will have no contribution from pure QCD. Ay is not a parity violating

observable and as such we would need to include NLO QCD to obtain a reliable NLO

result.

5.7 Results For The Full Four Quark Calculation

5.7.1 Total Cross-sections
Tevatron

The results presented below were first published in [28].

Presented in fig(5.17) are the total results for two jet production at Tevatron - here
they have been integrated over a rapidity of 0.1 < {n| < 0.7 to match the CDF detector
coverage. The correction here is significantly larger than in the case of the bb produc-
tion rate - of the order of 3% compared with a small fraction of 1%. The partonic
energies are still not however, in general, high enough to make the Sudakov logarithms
large. The correction is enhanced due to the fact that we have many more diagrams
contributing to the one Joop correction (a factor of ten or more than in the bb case,
see section(5.1)) than we did in the bb calculation, whereas the number of diagrams
contributing to the QCD tree level has only increased by a factor of three or so.

It is interesting to compare these results with the Run 1 results from the CDF ex-
periment [4]. We can see from fig(5.18) that a large positive correction would help to
explain this experimental result using only the standard model (it is worth mentioning

that work has been done to explain this disagreement by modifying the gluon PDE’s,
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jet—-production (0.1 < [n] < 0.7)
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Figure 5.17: Presented here is the total two jet production rate at the Tevatron (2TeV) plotted
against pr. The lower plot gives the percentage correction of the a%aw term relative to the

sum of all tree level processes (a%,, awas and a%).

see [5]. Also, preliminary data from Run 2 indicates that the discrepancy between data
and theory may not be significant [29]). However the result obtained from the NLO
weak corrections is negative meaning that the agreement between theory and experi-
ment is actually worse. However, at 500GeV the weak correction is only between 1 and

2% which is small compared with the statistical errors.

LHC

At LHC we integrate the rapidity over a range of -2.5 to 2.5 - this is reasonable for the
LHC detectors. Fig(5.19) shows the total cross section for two jet production plotted
against Ep. Once again § is the correction to the LO cross section (a%? agaw and
aZ,) from the NLO weak correction.

As can easily be seen in the figure the corrections are again greatly enhanced when
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Figure 5.18: [4] Shown above are are plots showing the discrepancy between theory and

experiment at Tevatron [(Data-Theory)/Theory] for several different PDF’s.

compared to the bb production cross section (an increase from 2% to as much as 30%).
Once again this is a result of the significantly larger number of diagrams that contribute
to the correction. At LHC the NLO weak corrections are large across the majority of
the pr spectrum rising to 10% and above at anything over 1000GeV this means that
the weak correction to the total two jet cross section is significant even when compared
to the current uncertainties associated with the NLO QCD results [30] [31] [32].

In fig(5.20) the various contributing parts of the two jet cross section are shown as in
comparison to the LO QCD (both gg and gg to 2 jets). We can clearly see that at low
pr the gg contributions are dominant but that the gq contributions become comparable

and eventually larger between 1000 and 2000 GeV.
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jet—production (Jnl < 2.5)
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Figure 5.19: Presented above is the total two jet production rate at LHC (14TeV) plotted
against pr. The lower plot gives the percentage correction of the a%ay term relative to the

sum of all tree level processes (a¥,, o, as and o).
5.7.2 Polarised Observables

The results presented below were first published in [33].

RHIC

In fig(5.21) we present the total cross section at RHIC as well as the three polarised
beam asymmetries (A, Arp and ALY all defined in section(2.2.1)). We integrate over
arapidity || < 1 and at the two RHIC-spin energies (300 and 600GeV). The first result
it is interesting to observe is that the correction to the total cross section is somewhat
larger than at Tevatron (see fig(5.17)); 8% at 300GeV compared with about 1% at
Tevatron. This is perhaps surprising given that the centre of mass energy at RHIC is
significantly smaller than at Tevatron meaning that the Sudakov logs will be even less

significant.
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jet—production (ni < 2.5)
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Figure 5.20: The relative sizes of the LO and NLO corrections compared with the tree level

QCD results.

The explanation for this large correction can be discovered if we break the correction
down and look at the contributions from the subprocesses. This breakdown is shown
in Table(5.3). If we look at the contribution to the LO cross section from the different
processes we see that the dominant four quark processes are gg — gg and g¢’ — q¢’.
These two processes also have not insignificant corrections to them from the one loop
weak effects and are therefore the dominant contribution to the total §. These largest
corrections will be suppressed at Tevatron due to the initial state being a pp resulting
in the correction to the total cross section being smaller at that machine.

Looking at the asymmetries we see that the effects are very significant. For App
we have, for the 300(600)GeV machine, a maximum of some 25(60)% at an Ep of
70(140)GeV. Ay and Apy both rise to as high as -70% corrections at high Fp (140GeV
for \/s=300GeV and 300GeV for /s=600GeV) and to +100% at low Br (away from

the resonance effects at the Z mass).
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Figure 5.21: The total cross section, Ay, Ar and Apy calculated for RHIC at a centre of
mass energy of both 300 and 600 GeV plotted against Fr. Each observable is also presented

as a correction to the total tree level contribution.

All of these results should be observable at RHIC.

A Hypothetical Polarised LHC

The results for the polarised asymmetries at a hypothetic polarised LHC are shown in
fig(5.22). Here we use the standard LHC energy of 14TeV and |n| < 2.5. The plot of
the total cross section is the same as that given in fig(5.19) but over a restricted Ep.
This restriction is in place because the polarised PDI’s used (GSA) to evaluate the
polarised observables are only valid up to an Er of about 500GeV.

The behaviour of the asymmetries at LHC compared to those at RHIC could benefit
from some explanation. Both of the LHC asymmetries are somewhat smaller than those
at RHIC on an absolute scale. The one loop weak correction relative to the tree level

asymmetry is smaller at LHC than RHIC for Az, (the non parity violating asymmetry)
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JE = 600, Ep =140 (GeV)

Subprocess Vs =300, Ep =70 (GeV) )|
LO (%) Corr (%) LO (%) Corr (%) B

99 — 99 1.35 1.17

99 — qq 0.065 0.027 0.057 -0.18

qq — 99 0.19 0.025 0.18 ~0.18

q9 — 49, 99 — qg 24.7 -0.06 23.0 -0.26

99 — 99, 99 — 49 46.1 -0.90 47.1 -3.0

q¢' — q¢', g7 — g (same gen.) 23.8 -6.64 24.6 -14.7

qq' — qq¢', q7' — qg (diff. gen.) 0.72 0.055 0.7 -0.84

99 — qq 0.95 —0.25 0.93 -0.71

q7 — ¢'g'(same gen.) 0.06 10.9 0.057 25.5

qq — ¢'q'(diff. gen.) 0.18 1.23 0.17 1.17

q§' — qq'(same gen.) 1.28 3.2 1.25 2.24

qq' — qq'(diff. gen.) 0.72 0.05 0.71 -0.8

Table 5.3: A breakdown of the contribution to the RHIC total cross section from each possible

sub-process. The column labelled ‘1.O’ shows the percentage of the total leading order cross

section associated with each process and the column labelled ‘Corr’ shows the percentage NLO

weak correction to that process.

but larger for the parity violating Ay.

At RHIC energies the proton PDF’s are dominated by gg pairs so we can say, to
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jet—production {Inl < 2.5)
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Figure 5.22: The total cross section, Arr, Ar and Apy calculated for LHC at a centre of
mass energy of 14 TeV plotted against Ey. Note that the asymmetries are only measurable
at a collider with polarised beams which is currently not the case at LHC - these results are
presented to show what would be visible at a hypothetical polarised LHC. Each observable is

also presented as a correction to the total tree level contribution.
reasonable degree of accuracy, that:

ARHIC _ Arro(gq)

do (qq)
yru1C _ Aro(gg)
do(gq)
Apro=dosy +do__ —dos_ — do__
Arpoc=doy —do_ (5.63)

This is true at both tree level and NLO.

However, at LHC the PDF’s are generally dominated by gg (this is true across the
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entire pr spectrum accessible to the polarised PDEF’s) so we should write:

ALHC _ Arpo(gq) + Appol(qg) + Arrolgg)
’ do(qq) + do(qg) + do(gg)
ALHO _ Aro(qq) + Apoleg) + Aro(gg) (5.64)
do(qq) + do(qg) + do(99)

At leading order, the contribution to Ay at LHC reduces to:

Aro(qq) -
do(qq) + do(qg) + do(gg) (565)

AFPC(LO) =
This is because, at tree level, quark-gluon and gluon-gluon scattering do not have any
parity violating terms (they must be pure QCD interferences). As a result the LO Ap
is very small (the numerator is suppressed by the PDF’s relative to the denominator).
This argument does not apply at NLO where we do have a%aw, parity violating con-
tributions to both gg and qg scattering. This means that the NLO will be enhanced
relative to the LO leading to a larger correction. This argument does not apply at
RHIC as the preferred gq scattering contributes both at LO and NLO.
The absolute asymmetries are reduced at LHC due to the gg dominance of the PDF’s
we would therefore expect them to rise with increasing pr as we move into regions with

higher incidences of gq initial states however this is difficult to test at present due to

the restrictions associated with polarised PDF’s.
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Chapter 6

t t-bar Production.

The final calculation we will look at is the proton-(anti)proton to ¢t rate. This calcu-
lation will be very similar to that for the bb rate however due to the large top mass
we may no longer make the approximation that all external masses are zero. We may
still assume that there are no b or ¢t quarks in the initial state so the topologies of the
diagrams we consider will be restricted to those we had in the bb calculation.

A calculation of the top production rate will be of interest at the LHC due to the enor-
mous number of tops expected to be created at that machine. Weak contributions to
the top production process are of particular interest as, if we can study parity violating
observables, then we effectively remove any uncertainty in our predictions resulting
from QCD (unknown higher order corrections for example). As described in chapter(2)
it is simple to define parity violating observables when we have polarised beams, but
these are not available at LHC. However, as it is possible to get a handle on the helicity
of a produced top quark we can define similar helicity dependent observables despite
the lack of polarised beams. Rather than being dependent on the helicity of the incom-
ing particles these observables will depend on the helicity of the outgoing tops.

The lifetime of a top (anti)quark is too short to measure the helicity directly but it is
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possible to do so indirectly by studying the top decay products [34].

6.1 Studying The Helicity Of tf Pairs

When we have calculated the matrix element for top anti-top pair production (with

helicities A7 and As respectively) we have the helicity matrix element:

ML BV
R{2 = Moy, pg M1 (6.1)
(Note that there is interference between \; = +1 and A\, = —1)

To calculate real observables we need to generate a pp — top decay products cross

section rather than simply a pp — tt cross section.

In the narrow width approximation (m; > ' and E.;, — my; > I') this cross section is

proportional to:

MM, (a)h (@) S
> :Rxmpxg oy (6:2)
N5
Where:
( A E3
pﬁ) 1 _ /i;?/i’(am
(& >\ _(7 —x{y
P = e (6.3)

and uf\a)(ﬁ&a)) is the matrix element for the decay of a top (anti)quark of helicity A

into a particular state a(a).

If we integrate pf\?‘)/\l over all phase space except for the angle of one of the decay
1

products (I) we obtain something of the form:

(o) (1 +R14r.0) | (6.4)

B
4qr

(E@Xg .
and for ﬁ/‘\z’”\z integrated over all phase space bar the angle of decay product J:

Js
B@ (1+h%4s.0) (6.5)
47
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Where B(®/(3) i the branching ratio of ¢/f into channel a/& and §r and d; are unit
vectors in the rest frame of the quark and anti-quark respectively.

We choose two vectors, by and by, to be polar vectors in the rest frame of the quark
and anti-quark. If we integrate eq(6.2) over all phase space excepting the polar angle of
decay product I (the angle between by and §r, 07) and the polar angle of decay product

J (the angle between by and gy, @) then we obtain the differential cross section:

Ao i
decosle,decostrdeost X
[4A + 2B3hfcos0r + 2B3h? + Cazcos6rcosh ] (6.6)
where:
Looxins
A= SR
By = 2 (by.o) R
3= 5(bs-0)3 30,
Ao L e phid
Caz = (b3.0) M (by.0) 2 RI12 (6.7)
33 = (bs-0)3 (85.0)37 )1 '

Thus we can extract the helicity structure of the production matrix element from study
of the angular distribution of the decay products.

This analysis of the results obtained here has not yet been performed. Presented in
section(6.8) along with the total top production cross sections (where this analysis is
not necessary) are the observables Ay, Ay and AEX calculated as if we could measure
the helicity of the top quarks directly. These are not realistic observables but do give

some indication of the maximum significance of realistic study of polarised observables.

145



6.2 gg to it

The first contribution to the tf production cross section that we will look at is the

gluon-gluon goes to top-anti-top process. At order a%aw these contributions will be

bubble, vertex and box corrections to the tree level gg — ¢I. As was the case for

gluon-gluon to massless quarks we know that the total cross section for these virtual

corrections must be IR finite (since there are no gluon bremsstrahlung diagrams at this

order to cancel any divergences).

6.2.1 Helicity Amplitudes For gg To tt

Consider the case where we have incoming gluons with momenta p, and py and outgoing

massive quarks with momenta p; and ps. The axes are set up (for convenience) such

that:

Pt

_ (éj0,0, 3—4771?)
20 2
" NG /5 —4m?
Py = ——7Oa07_'—_——_’*
2 2
o= (x/g,—gsm&(),?cos@)

The gluon polarisations may

€

be taken to be:

—

g = — (07 COSQ-/ 'Z:Aa, sin 9)

[\]

—= (0, —cos0, —i\y, — sin §)
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i

P2 0/ p1
/g

Py

Figure 6.1: The incoming gluons are in the x-z plane with angle # to the z-axis and the

outgoing quarks are emitted in the positive and negative z-direction

The spinors are:

x(A2)
7 — 0,1 ; 1 APt
Ulp1, M) =y u'(p, 1) = VE+mg | x (M);—E ——x"(\)
- 1T
= _ 0 1y, o )\gp t 1
0(p2, A2) =70 (P2, M) = VE +my | —=——,—x"(A2) (6.10)
E+my

. \/5—4m? . . .
Where p = ¥ 5 ™ and E = ? In general the expression for the interaction shown

in fig(6.1) will be:
w(p1, M ){T}o(pa, A) (6.11)

(Here I" is a string of gamma matrices depending on pg, Dy, D1, P2, €q, € and any loop

momenta ([).) This can then be split into vector, axial and tensor parts:
w(p1, MHT}u(p2, A2) =
V#‘H’(p] 3 >‘1>/\/HU<p27 AQ) +

Aua(pr, MYy u(po, Ao) +

T i(p1, A1 )o™ v(p2, A2) (6.12)
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where ot = Sy — yVH).

This statement is equivalent to saying:

- 7 . 5 \
D= v + 0"y + 5T (9" = 7"9") + ST+ P1y (6.13)

where S is a scalar term and P is a pseudoscalar term. V,, will be a combination of S
and v, and A, will be a combination of P and a,.
So we have:
TH(T) = 0, Tr(39) = 40
1 0
sovf = =Tr(TH7)
4
Tr(Tpy) = SpyTr(1) = 4Sp]
0 1 1 I
- Sy = Tr(lpY)
Tr(0y"°) = au Tr(v#47(7°)?) = 4a”

1 =
caf = ZTr(F’ypﬂ/o)

1 N
L Ppl = Z—lTr(prﬂf'S) (6.14)

All other terms trace to zero.

The Dirac Equation for spinors is:

B(p2, o) ('p1y — Img)ulpr, M) =0
soa(pr, M) (e — Img)u(pe, M) = 0

u(p1, A1) <1%t1—#> v(pa, A2) = ©(p1, A1) (1)v(p2, A2) (6.15)

5o when we sandwich I" between spinors we can write:

_ ‘ SN
u(pla /\1){1—‘}7)(}72; /\2) = <Uu + %‘) U(pl, /\1)7“11(])27 /\2)
2

1w P )
+ <“@u + p;; > @p1, M) u(p2, A2) + %Tuuﬁ(}?b A1)a*v(pa, A2) (6.16)
T
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So, if we substitute in from eq(6.14), then we discover:

1 . 1 .
V= ZTT(f“m) + MTT(FPM)

1 1 .
A, = —ZTr(Fﬁm’ys) + MT1~(rp1M7/a)

(6.17)
We can also calculate that:
1 -
TT(FJPU> = _ZT}LVTT((V’#”I/V - "J/V’}/M) (’Yp’YU - ,\/o,\],p» — 4(Tpo - Top) (6'18>

All of the other traces vanish.
We know that the left hand side is antisymmetric under the interchange ¢ < p and

that therefore T, = —7T5,. So we now have:
1
Ty = gTr(rglw) (6.19)

We now define [* and n” to be unit vectors in the 1 and 2 (z and y) directions. This

) w o)k . . ; . .
means that we have (—p-l\i};l, ¥, n, (ll—% as unit vectors in the 0,1,2 & 3 directions.
S— 77'lt

So, for the vector part, we can say:

- (p1 — pa)t (1 + p2)¥
w(pr1, M )Vu(pa, Aa) = al” + bmH + ¢ +d
D ulpa, Yo P a2
o)
X @—jﬁ)—;(unit vector in the 3 direction) —
Vs —4m?
—a(p1, M)y v(p2, Ae) = —c¢ (6.20)
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If we write this out in detail then we get:

3 Aop
A 0 o ~Eimg (A2)
c=(E+my) (XT(/\l)>_'E P ) Fme
Y+ My
—a® 0 x(Ae)
2
p- 0 3
=(E+7 — 4+ 1] x'(A1)o"x(A
B+ m) (=3 L +1) 6 u)o*x0n)
If Ay = Ay =1 then: x'(A\)ox(A\o) = 1
If Ay = dg = —1 then: xT(A\)o®y(A2) = —1
If A1 # Mg then: x'(A)o®x(Aa) =0
Therefore: xT(A1)ox(A2) = A1y,
Thus: ¢ = 2meA16x, 0, (6.21)
The expressions for y!'oty will be needed later on and are:
XT(/\I)01X(/\2> = cs/\l,—/\‘z
XA x(e) = = Aridn, -,
Y O x(A2) = Mbaa, (6.22)

Similarly if we multiply through by a unit vector in the 2 direction (n#) we can obtain:

b= (E+m) (—@%‘/\Q—Ti;ﬁ + 1> xT(A1)o?x(Aa)

= =2\ FEdy (6.23)
If we repeat this process for the other two directions we end up with:

a = 2E5,\17,,\2
b= —2@A1E5,\1’_,\2

c = 2mt/\1(5,\1,\2

d=0 (6.24)
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Therefore:
_ , 5 B9y, N S
u(p1, M)V (P2, M) = 2E05, —x,v) — 200 B8y, a,v5 4 2myA16a 0, U5

where vj, v}, vy, 'uéf are a set of basis vectors.

We can perform the same analysis on the axial part. If:
a(ps, )\1)7#75@@2) Ap) = wa + l_)vg + Evéf - &vél
then we end up with:

ﬂ(‘pl, )\1)“,’“’)/51}(]72, AQ) = 2]9)\15,\17_/\2’0/11 — Q’chs;\h_;\z’b‘g -+ 27TL15,\1,\2’L)5

(6.25)

(6.26)

(6.27)

The process for extracting an expression for the tensor structure is a little different and

is worth explaining in some detail. We are trying to express:

a(pl, A )o" v(pa, Ag)

(6.28)

in are more convenient form so we need to break ¢*¥ into its component parts. Begin-

ning with the purely spatial components.

o =50 =)
i 0 ot 0 o7
= | : |
—ot 0 —og? 0
i [ los,o5] 0
T2

0 o4, 03]

Then, since [0}, 0;] = 2i€; 10k, we have:

L or 0
i _
o =€

0 O

(6.29)



So we have:

L. Ol 0
a(pl, \)oYv(pa, A2) = ulpl, A1 )egjk v(pa, A2)
0 o
—A2p
= e (2 + my) (X(/\I)Uk; 5 24 XT(/\I)U;;> e
2 + Ty
x(A2)
= —eiup(M + da)x () orx(Ma) (6.30)

Clearly this will only be non-zero when A; = A so (according to eq(6.22)) the only

term that will contribute will be the term including ¢3. Therefore:
a(pl\ /\I)UIQ'U(pﬂa /\2) = —2]75,\1,\2 (631)

We also need to look at components with one time index:

ok __ !

o™ = S (" =75

i 1 0 0  op
=3 ,

0 -1 —0Ok 0
7 0 ZUk
. 5\

=5 (= ioky?) (6.32)

- ZUk 0

So, if we sandwich this between spinors we get:

0 Ok
©(pl, Ao % u(pa, A2) = @(pl, Ay )i v(p2, Aa)
o 0O
Aap
, py ‘ . —2—x(A2)
=8+ m) (o O Ol ) |
+ My
x(A2)
Y2 /\1/\2]72 .
= 1i(L + my) (m + 1) xT"(A1)orx(A2) (6.33)

This does not vanish for any helicity combination and therefore the terms including
01,09 & o3 will all contribute. Using the expressions from eq(6.22) we obtain:
a(pl, A1)o " v(pa, A2) = 12meby, (6.34)
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a(p1, A)oPu(pz, Ay = 2himediy -y, (6.35)
a(pl, M) u(pa, Aa) = 20EA16x, 5, (6.36)

Combining the results from eq(6.31) and eq(6.34—6.36) eventually yields:

u(py, A1) v(p2, A2) =
—2p6 A g (Vi — vhvY) + 12mby, o, (W VY — Vi)

+2X1M:65,,a, (VHVE — vE0E) — 20BN 0A1 Mg (Vi v — vhvy) (6.37)

So we have, from eq(6.12), eq(6.17), eq(6.19), eq(6.25), eq(6.27) and eq(6.37), an ex-

pressicn for the gg — tf amplitude:

a(pr, M{THo(p2, A2) =
(T )+—1—Tr(r A1 x
4 T 4my by

[2E6y, _xv) — 200 Edy, _x,vh +2medy 8y, 5,08 ] —
ETT(F“/ ) + —LTT(FP“ )| x

_4 # 4mt 1

Ppkl(s/\l,—/\’zlullL - 21’]75/\1,—/\21)5 + th(s/\l/\ivm +

1
gTT(PO’M/)J X

[~ 2060 Aa 005 — w0t + 2mebay, —a (VERY — vhef)

+2X01 1m0, —a, (Vh VY — vhug) — 20EA 80 Mg (vhvg — vhvy)] (6.38)

If we wish to extract a similar expression for the g7 — ¢t amplitude then we simply
multiply the expression above by a second term of the form ul'v this time referring
to the initial quark line. If the initial state quarks are massive then this expression
will have the same form as given above, however in the calculation presented here the
initial state quarks are always considered to be light. The method for expressing ul'v

for massless quarks is presented in some detail in the chapter on g§ — bb.
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Inserted onto: ) ?{ii ) W

Figure 6.2: Bubble Diagrams with neutral bosons
6.2.2 One Loop Corrections To gg To tt

External Leg Self Energy Corrections

For the neutral particle loops (Higgs, Z and ¢y) we have bubble diagrams like those

shown in fig(6.2). The external particle will be a top quark and both of the internal lines

will have masses associated with them (since the flavour of the top will be unchanged

by the emission of a neutral boson): The expression for a general bubble diagram of

this form (with boson mass my, ) is:

o 5y (4 + ™) BTN !
/ CL ) (A + By )}mmmw/ )u(p) (¥ 77 —mzm

= Bo{[u(p)7*(A+ By) (=1 v (A + BY")Ju(p)]
+[a(p)[Y* (A + By®)maly. (A + BY%) u(p)]}
= Bi[a(p)[v*(A + By (=) [vu (4 + BY®)]u(p)]

+Byma[t(p) (A + By*))[vu (A + By ]ulp)] (6.39)
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Here A and B are the vector and axial couplings of whichever neutral particle is in the
lo)

(24} functions:

i 5 _/ d’l 1
16m270 7 ) (2m)d (12 = m2)(

loop. By and B; are two point Veltman & Passarino

O +p)® m2Z/H)
; ddl [#
— By = / .
672 @) (2 = m)({((+ p)2 = mZ )

We can rewrite eq(6.39) as

QBI(”@JHQZ/H:pQ)]é + 73mtB0(m§> m%/HaPQ)

(6.41)
(Both o and 3 could have an axial part so @ = ay + ax~® and 3 = By + Sa°)
Now expand By in p? around m?
a[Br(mi,m%,p,p?) + Bi(mi, my g, p?) (02 — md)($ — me)
+C¥[B1 (mgl m%/HPQ) + B{ (thI mQZ/]-Iap2> (pQ - m?)}m
+/3mt[B0<m?7 mQZ/H>p2) + BE)(WL%? 7n‘%/’H7 pQ)(pQ - m?)] <‘6'42)
where BO/l BO/l Now use (p? —m?) = (p—me)(Pp+me) = (B—me)(p—me+2my):

[Bl<7ntumZ/H m)|(p - ma)
+oz[B1(mt2,mZZ/H,mt2)(*) + Bﬂ(m§7mQZ/H, m2)2my (P — my)my

+8[Bo(ms, M5 mi)*) + By(m, mQZ/Ha mi)2m (p — me)my

+O(p — my) 2= (6.43)

The terms marked *) are removed by renormalisation and the terms marked (*) vanish

due to the on-shell condition.

So at the level of Feynman rules the expression for a tree level diagram with a neutral



external leg correction will be:

/ 2 2 2 ¢ 2 ot 2 2 2
[aBi(mi, mz g, mi) + 20mi By(m{, my,y,m{)
2 2 2 201
+28m; Bo(mg, Mz gy )]
x (Tree level IM|)

(6.44)

remembering that o and /8 both contain axial parts and as such need to be included in
the trace. Performing a similar manipulation for the case of a charged boson (W’H“

or ¢/ in the loop we obtain:

0By (0, 13y, m2) + 20m2 B (0, mby, m2)] x
x (Tree level | M)

(6.45)

(In this case the internal quark will be a bottom and can therefore be treated as
massless, this means that the propagator in eq(6.39) would have the form (—12({%7) As
a consequence of this we would lose the term proportional to m; meaning that there
would be no dependence on By.)

So, for example, in the case of the external Z self energy inserted onto the t-channel
diagram (the left most diagram in fig(6.2)) we would have:

F 2

i85 L a v
D= 0 (A4 By )9l (pa) (o — 2 + )" (o) (6.46)
t

Where I' is the string of gamma matrices between the Dirac spinors in the t-channel
amplitude - as used in eq(6.38). A = aZB) + 2m?aZ B} 4 2m?BE B} and B = oZ By +

2.7 13t 282 !
2myaq By + 2mi B4 8.
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Finding o And § For The Five Self Energy Diagrams

If we now obtain an expression for the 1PT function for the five different bubble diagrams
in a form similar to eq(6.41) then we will be able to extract values for o and 3 for each

of the corrections. For example, the 1PI function for the Z-boson bubble has the form:
. 2 . ' = _
P < g ) / a4l (e, = Y0 me — Dvlel, — 4y
(

K 21 (- mA ([ + p)? — md)

Cos GW

. 2
7 g i . .
T g <(‘OS GW) 1672 {T“M(Cg/ - C‘tﬂ'a)"/u(c%/ — clyy”)m: Bo

(el = " pleh = ) B} (647)

If we look at the term proportional to m.Bg and multiply out the brackets then we get:

(V) 7™ = () mur® = (el 7Py — () ™
= 4((c))? = (c4)) (6.48)
Similarly, for the term proportional to Bj:
{=20(cv)? + ()] = [4(c ) 1o (6.49)

—~

So, substituting these into eq(6.47), we have:

11 g ? t N2 t N2 arrt N2 £\2 ¢ tN5
( )@m%@wm-4%>»+&@ww>+@m>+4wmm>m

41672 \ cos Oy
(6.50)
Comparing this with eq(6.41) we find:
11 g \?
z t\2 t\2
Z - 2
of = 1503 (g ) 2+ (40%)
11 2
z _ * g t .t
A 4 1672 (COS Qw> (4levea))
11 ?
nz _ 1 1 g L\2 12
f= 1o (o) Y — ()
GZ =0 (6.51)



If we perform the same manipulations for the other four possible internal particles we

find (remembering that J is trivially zero for charged bosons):

2 /. 2
7 g My 1
H _ i |
Ty (mw) 167('2< )

afjf =0
2 2
}{ g TTLt 1
1 = — — o n _1
by 4 (mw) 167r2< )
g =0
di)O _ ﬁ Mt 1 )
Vi 4 \my, ) 1672
a/io =0
2 2
goo = 9- (M) L
v 4 \my ) 16727
B =0
2
We,o go 1
: =L __ (4
v 8 Tom2 Y
2
we,o  go 1
=2 " _(4
%a 8 16,2
2 " 2
ado g [ m _i__ 9
o7 R <mw> 1672 )
. 2 2
YR (] 1
ox’ :§<H‘) 162 ) (6:52)
W :

Internal Self Energy Corrections

We can also use the bubble 1PI functions derived above to evaluate the internal self
energy corrections. These will again be bubble diagrams with an internal Z, H, ¢y,
W, ,_ or ¢ ,_. For example, consider the diagram shown in fig(6.4) - the internal Z
self energy correction to t-channel gg — tt.

The expression for this diagram derived from the Feynman rules is:



i \ Z/CDO/JE{

Figure 6.3: The bubbles may be inserted onto the internal top line of a t or u channel diagram.

These will interfere with the s,t and u channel tree level diagrams.

Da
—_ pl

VA
(pl - pa) 2
0000 ——>——
Db P2

Figure 6.4: The internal Z self energy correction to gg — tf in the t-channel. All quark

propagators have mass ms,.

(- 2) x Alp)r e, (p >{
; wlpa) S T =2

w2 1677 cos? 6w 4 (12— m2)((p1 — pa + 1)2 — m2)

{i(pi — P +m2t)}7yéu(pb)v(p2)

(p1 — pa)? — m?

i(pf —ph -+ me) }

We can rewrite the term in square brackets as:

- g° 1 / dl {’YP(CV — can®) (me)vpley — can®)
1672 cos? O 4 ) im? | (12— m2)((py — pa + )2 — m?2)
APy = ear®) Dvplev — cmf’)}

= D) (@r — o+ P —md)
=i g> 1
N EW_Q cos? QVV Z

ior?

{v*(ev — eay®)vp(cv — cay®)meBo(p?)

=7*(ev = car®) B (ev — car”) B1(p*)}
(Where p = p1 — pq.) From eq(6.48) and eq(6.49) we know that:

Y (ev — cay’ )y, (e — cay®) = 4(ch — c&)
Y (cy — ear®)(B)vp(cv — can®) = [=2(ch + ) — devear’p
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So we have:
—t g 1 2 2 2
—_— Al — ¢ B —
1672 cos? Oy 4{ (e = ca)miBo(p”)

(—2(ct; + ¢h) — 4evear’lpBi(p*)} (6.56)

Referring back to eq(6.51) this can be written as:

)]
(G2}
=

~—

~i[B{meBo(p®) + ofpB1(p?) + aZp B ()] (6.
Therefore, we would calculate the amplitude in eq(6.53) using a I' term of:

=

(p1 — pa)? — m?

(=2t e (pa) {i(Pi —pi + mt)}

—i[8FmBo(p®) + ot pB1(p*) + o4 pB1(p?)]

()

The same result would be reached for the W, H, ¢y and ¢.,_ cases where a and 3

would be defined as in eq(6.52).

Vertex Corrections

The weak vertex corrections that will contribute to the gg — tt rate at a%aw order
are those shown in fig(6.5).
If we look at, for example, a general vector boson correction to the t-channel diagram we

obtain an expression for I (this can easily be crossed to give the u-channel correction):

. —1 dil . L
U= [ Sl A+ By + o+ myr (oo

. % -
0+ m (A + Byt — 2+ moy b (o) X 2 (6.59)

The factor of two comes from allowing the correction to appear on either vertex.

Where

d4l 1 ddl
in? 2 2 — (< )2 5 = | ;= =Co
i (I +pa—p1)? = m2)(1* = mz} (1 + pa)? — m7) i
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Figure 6.5: The interferences with virtual corrections that contribute to gg — tt. The internal

boson can again be a Z, W, H or ¢.

For the general vector boson correction to the s-channel diagram we have:

—i [ d¥l 51 )
P=— [ 50" A+ BY) (o + po+ 1+ M)

(L + mg) el (A + By

‘ '
(0 = 2}) + 9”205 + 12) + 9" (=20, — p})) 5 (pa) ey () X 75— (6:60)

Here the triangle integral will be slightly different:

/ d4l 1 [ dol
— - = —5C — CO~
i (5 pa+p0)2 — D) P — (s g~ m2) ) in?

In both cases A, B, myq & m, depend on whether we have a Z or W correction.

« . _ g _ —g _ _
For a Z we have A = ;-Z,—cy, B = Seos Oy CA> g = MMy, Ty = T
~ 7 o A — ¢ _ =g — —

For a W we have A = 2\/§’B = 5770 Mg = My My = My

The expressions for the same diagrams but with a scalar vertex correction can be
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obtained from eq(6.59) and eq(6.60) by removing the gamma matrices that appear in
square brackets.
For a H we have A = %% B =0,mg =my,m, =my

For a ¢g we have A =0, B = ¥ 1= m, = my, my, = mg
&)

: o A= 9 e B 9 mi — _
For a ¢+ we have A = zﬁmuﬂB = 3 Mg = Ty, Ty = Ty

To evaluate these diagrams we need to manipulate the Veltman and Passarino functions
in much the same way as we did in the massless cases (explained in detail in the
bb production chapter). This manipulation is only very slightly complicated by the

inclusion of the top mass.

Box Corrections

We also need to consider box corrections to the gg — tt. These corrections need to
be applied to the t and u channel tree level diagrams as shown in fig(6.6). For the
t-channel diagram we have an expression for I'z, (the string of gamma matrices as

defined in section(6.2.1) for the Z or W box):

1 air .
Uzw = v [ =AY (A+ By )l + Pa + B + My )7v-€(pa)
167 m

an

(b + Po+ mop)v-e(po) L+ Mo )va (A + By®) (6.61)

.

Figure 6.6: Box corrections in both the t and u channels. The internal weak particle can be a

Z, Wy, b0, ¢4/ or a Higgs. If the internal weak particle is a W or a ¢, ,_ then the internal

fermion is a bottom quark otherwise the internal fermion is a top quark.



Where

2

S

- g 1 adl
/—'__Q»rw 277 N 27 \ V2 2 91 ) %:/'__Z-dO:DO’
iw? {12 — mg/tj{h + ) — mb/t}l(l + pa +5)% — mb/t“(l —p2)? —mgy,] i7

Ag = g/2/ cos(bw)gv,
Bz = —g/2/ cos(0w)ga,
Aw = g/2/V2,

By = —g/2/v2

For the scalar contribution we have:

1 d4l 5 ,
Vaeosss =152 / ado(A+ By )i+ Pa +p+ M/t )7 -€(Pa)
(L Po + mipse)7-€(pe) (L + M) (A + BYY) (6.62)

Where dy is defined as above and we also have: Ay = ¢/2 my/muy,

A@ - O,

Bgy = 19/2 my/may,
As,, = 9/2//2 s [y,
By, =9/2/\/3 mefm

Once again, to obtain the final result for these amplitudes we will need to manipulate

the Veltman and Passarino functions in a similar fashion to the bb case.

Fermion Loop Corrections

Another contribution to the gg — tf rate is the process where the two incoming gluons
couple to an s-channel weak particle via a top quark triangle (as shown in fig(6.7)).
We also can use the helicity amplitudes method to evaluate this interference. The

expression we have for 1" (the string of gamma matrices between the Dirac spinors
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Figure 6.7: gg — tf via a top loop

associated with the external top quarks) is:

2 dz " 5
Is / d (et by) x vert, (6.63)

(Pa+pp)? =my S (@m)¢ 12 = m[(l + pa)® — mE][(L — po)® — m]]

where
verty, = Tr(vPep(pa)({ +mu)y7es (po)(l — po + ma)vu(a + 0y) (L + pa +my))  (6.64)

Here we are looking at the case where a general vector boson is being exchanged - in
actual fact the only vector boson that can be exchanged in this diagram is a Z-boson
- the W-boson being disallowed by charge conservation. To modify the expression

for the scalar exchanges we simply drop the two v* matrices and select appropriate
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substitutions for a and b. The only allowed scalar particles are the ¢p or Higgs, again
the ¢/ exchanges are disallowed by charge.

The diagram with a gluon exchanged in the s-channel, whilst it is non-zero (Furry’s
theorem does not hold for three gluons), is not required for this calculation as the lowest
order in ag it can ‘come in’ at is a%‘

Note that for each exchanged weak particle we need to include two contributions -

one where the top loop is running clockwise (as shown) and one where the top loop is

running anti-clockwise.

6.3 qq to tt

We now need to evaluate the diagrams that contribute to the four quark top production
process. This process, unlike the gluon gluon case will include IR divergences as there

are now bremsstrahlung contributions to the cross-section.

6.3.1 Helicity Amplitudes For g To tt

The helicity amplitudes method in the four quark case is very similar to that in the
gluon gluon case. Because we are assuming that there are no bottom or top quarks in
the initial state (as we did for bb production) all of the one loop interferences will be
corrections to the interference between two tree-level s-channel diagrams (either gluon
exchange squared or gluon exchange interfered with Z-boson exchange).

This means that we will have an outgoing massive fermion line which can be treated in
the same way as in the gluon gluon case. However, this time rather than contract the
free Lorentz index (or indices in the case of a box diagram) of the top quark line with

the two incoming gluon polarisation vectors we contract them with the expression for
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+ correction to initial state particles

Figure 6.8: The IR finite loop correction interferences that contribute to qg — tt. The
correction (either bubble or vertex) to a final state top may be a Z, W, H, ¢/ or ¢o. The

correction to an initial state light quark will either be a W or a Z.

a massless fermion line (obtained for the bb calculation).

6.3.2 The IR Finite Loop Corrections To g7 To it

In practise we find that the IR divergences are limited to the box diagrams so we will
deal with them later.

The IR finite terms will be topologically identical to those in the bb case (see fig(6.8) with
mp — m¢) with the addition of neutral Goldstone and Higgs corrections to the final state
particles. These corrections did not apply in the massless case as the relevant couplings
depend on the mass of the associated fermion. Note that the charged Goldstone did
contribute in the bb case as emission of a ¢_ turns a bottom quark into a top meaning

that the top mass will appear in the coupling.
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External Leg Self Energy Corrections

There will be two distinct sets of contributing diagrams to this part of the correction.
Those where we have an external leg self energy correction to either of the final state
top quarks and those where the correction is on one of the initial state light quarks.
In the case where the correction is on one of the top quarks we will have both a vector (W
and 7 boson) and a scalar (Goldstone and Higgs boson) contributions. The mechanics
of calculating this term are almost identical to the case in the gluon gluon calculation
where we had an external leg correction to the s-channel gg — tt diagram given in
section(6.2.2). We simply substitute a different tree level amplitude into eq(6.44 &
6.45).

When we have an external leg correction on one of the incoming quarks we only have a
contribution from the vector boson as all of the scalar particle couplings are proportional
to the mass of the quark and this is only non-negligible in the case of a top - as we are
assuming that there are no bottom or top quarks in the initial state we will always be
setting this mass to zero. In this case the corrections can be calculated exactly as they

were in the massless quark cases so long as we include the top mass at the tree level.

Vertex Corrections

Again we will have two distinct contributions. One where we have a vertex correction
to the final state top quarks and one where we have a vertex correction to the initial
state light quarks.

The method of evaluating the correction on the final state particles is again analogous
to the calculation performed to find the vertex corrections to the s-channel gg — it
process described in section(6.2.2).

For the same reason as in the case of the external leg corrections we will only have
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vector boson corrections to the incoming auarks and, once again, this means they can
be calculated in a similar manner to in the massless quark calculations so long as we

allow for the top mass in the final state.

6.3.3 The IR Divergent Loop Corrections To gg To tt

Box Diagrams

The only IR divergent terms in g — ttf will be the four possible box diagrams (s-
channel exchange of two gluons or a gluon and a Z-boson in both crossed and uncrossed
topologies). Note that there will not be Higgs or Goldstone box corrections in the gg
case as the couplings to the initial state quarks will be zero. There are also no W
corrections here due to the very specific flavour combination heing considered.

Once again the process of actually evaluating these interferences is very similar to that
used in the bb case. We need to use the expressions obtained earlier for the massive
helicity amplitudes and also use expressions for the Veltman & Passarino functions that
include the top mass when applicable. After these changes the process is identical to
the massless case.

The results in the massless case were sufficiently simple that we could compare the pole
structure in the loop diagrams with that obtained during the subtraction procedure
(see section(4.5) for this check in the massless case and section(6.6.1) for the integrated
dipoles in the massive case) by hand to ensure that the divergences cancelled. This
is impractical in the massive case due to the increased complexity of the expressions
obtained. As a result we simply input both the VP functions and the endpoint terms
in the subtraction method with the poles set explicitly to zero with the assumption

that they will cancel.
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6.4 Bremsstrahlung Corrections To ¢ To tt

The bremsstrahlung topologies that contribute to this calculation are identical to those
that contribute to the bb case (see fig(4.8)). Once again those terms where we interfere
a final(initial) state emission with another final{initial) state emission are disallowed
by colour.

With the exception of the obvious addition of the top mass to the calculation the pro-
cess of evaluating the real corrections is exactly that described in the massless case.
The bremsstrahlung result must be combined with the sum of all contributing dipole
terms (see section(6.5.1)) prior to integration - this renders the result finite and inte-

grable.

6.5 The Subtraction Method With Massive Final State
Particles

6.5.1 The Dipole Subtractions

For the case of massive external particles we use the subtraction method described in
[8].

Analogously to the massless case we need to obtain a term do“ such that,

[doEAL _ do4) (6.65)

1

is finite in both the soft and collinear limits.
In the soft limit the bremsstrahlung in the top production case is very similar to that
in the massless case. Namely:

(Map,2,3(mi)> —

1 2e¢ 2 pg 'Pg .o p? PEL 2| (o 2312 =YD
—EM 9s T“p 7 + prb o T Tlp q + 15 Po.q E«Ma,b,l,mmt)l (6.66)
a- -4 1~ .
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Where p3 = Ag as A — 0. This expression is identical to eq(3.10) with the tree level
matrix element squared replaced with the formula for the massive case.

The behaviour of the top-top bremsstrahlung in the collinear limit i1s a little more
complicated.

For the case where we have two final state particles (p; and p;) going collinear the

expression is:

(Map,23(m2, pi, \i)|* —

2 final

12g2g] " (pi, p3)| Ma 1,2 (i, pi + pa, )P

2 final

+1% 950 " (04, p3)l M2 (md pe + pa, =) P

(6.67)
Where we define:
G20l (i, pe) = —— {P (o) T J — 9%/ (p1,p3)
5 i+ W e Dip3 1,1\ <1 DiD3 ST, ey M
2 9
inal m 11—z -
98917 (pi, p3) = A (6.68)

S 2pips)? x

The second term in eq(6.67) is the ‘spin flip’ term. This term allows for the possibility
that the emission of the collinear gluon flips the helicity of the final state quark that is
emitting it. For example, if we are calculating a term with final state quark helicities A
and Ay and are considering the case when the emitted gluon goes collinear with particle
1 then we will have two terms. One, the normal term, which is proportional to the tree
level |M(A1, A2)|? and a second, the spin flip term, which is proportional to the tree
level |M(—X1, Xo)[2. The final state quark in the spin flip term still has helicity A; but
the p1 quark in the tree level is the quark prior to gluon emission and as such has the
opposite helicity.

As we can safely make the assumption that the incoming particles are massless the
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expression when the gluon (p3) goes collinear with an initial state particle Is very

similar to the massless case:

Mab123(mi pa)* —

2¢ 2 _initial

H 859 + (pmﬁs)f/\/[a,b;l,z(mg,%Pa)\Q

(6.69)
Where:

1

ZaPa-P3

initial

9i+ (pa,pa) = P(L,a($a> (670)

This term is identical to eq(3.20) with the massless tree level matrix element replaced

with the expression for the top production case.

6.5.2 Final State State Emitter, Initial State Spectator

In the case where we have a final state emitter and an initial state spectator the dipole

has the form:

5= —gs x (col) x
{g'i,a,%-(piapaap?); Lias Zia)"M(Sy t) >\a,7 >\17 )‘2”2

Gia,— (Pi Pas P3s Tiay Zia ) M8, 8, Mgy — i, )] (6.71)

Where (col) is the colour factor.
Here the second term (proportional to g, —() is the ‘helicity flip’ term described above.
This should exactly cancel with the equivalent term in eq(6.68) in the collinear limit.

Note that in the soft limit z;, — 1 s0 gio,— will vanish. This means that the helicity
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flip term will not affect the cancellation with eq(6.66) in the soft limit,

) \ 1 2 _ my
Gia,+\Pis Pas> P35 Tia, Zia) = : — — 1=z —
TipPi-P3 |2 — Tia — Zia Pi-D3
S N
—~Gia,~\PisPas P3s Tias Zla)
2 ’ \2
\ ™m; (1 —z4) .
gifl,_ (pi;pa«,pfﬁ?mimzm) = (6{2)

2(pi.p3)?et,  zia
Dipole D{,

The dipole variables for the case where the emitter is particle 1 and the spectator is

particle a.

R CFCA |
(col) = — !
(col) = =5

_ P1.Pg + P3.Pa — P1-P3
T1g = :

P1.Pa T P3-Pa
~ P1-Pa
“la

- DP1.Pa + P3-Pq

t = —2po.py +m]
§ = 2T14Pa Db (6.73)
Dipole D&,

The dipole variables for the case where the emitter is particle 2 and the spectator is

particle a.

CrCA
(col) = ==
\ / 2

_ P2-Pa + D3.Pa — P2.P3
T2aq =
D2.Pg + P3.Pa

o P2.Pa
<2a

 P2.Pa + P3-Da

t=2p1.pp — 2T2aPa Py + m?

s = 2x2apa~pb (674)



Dipole DY,

The dipole variables for the case where the emitter is particle 1 and the spectator is

particle b.

CrCA
col) = ——
(col) = 2

P1-Pp + P3-Pp — P1-P3
Ty =
P1-Py + P3-Po

o P1.Py
Z1p =

D1-Pp + P3-Dp

t = 2pa.pg — 2C16Pe Py + My

5 = 2T15Pa Db

Dipole D5,

The dipole variables for the case where the emitter is particle 2 and the spectator is

particle b.

CrCa

(col) = 5

oy = P2-Pp + D3 :pb — D2.D3
D2-Py T P3-Pb
P2.Db

p = —————
P2-Py + P3.Pp

t = —2p1.pg + m?

$ = 2T2Pa Py (6.76)

It can be shown that, in the soft and collinear limits, these terms cancel the divergences

shown in eq(6.66) and eq(6.68).
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6.5.3 Initial State State Emitter, Final State Spectator

The dipoles associated with emission from the (massless) incoming quarks do not in-

clude a ‘helicity flip’ term and have the form:

D® = —gg x (col) x

Gai(Pas Pi P3» Tias Zia ) M8, 1, Aay A1y Ao)l? (6.77)
Where gq; 1s defined as:
1 2 : B
gai(paapiap&xia;zia) = { = 1 — x4 \(6(8)
TiaPa-P3 L2 — Tia — Zia .

Dipole D§?

The dipole variables for the case where the emitter is particle 1 and the spectator is

particle a.

CEFCA
col) = —
(cot) = =
. P1Pa + P3.Da — P1.D3
i T
D1-Pa + P3.-Pa
Pi-Pa
Rlg= ————
P1.Pa + P3.Dq

t = —2po.pp + m?

5 = 2T14Pa-Ph (6.79)
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Dipole D43

The dipole variables for the case where the emitter is particle 2 and the spectator is

particle a.
CrCA
(col) = —=
(col) = £
D2-Pa + P3-Pa — P2.03
L2q =
P2-Pa + P3-Pa
_ P2.Pa
220

" poPa + P3Pa

t = 2p1.pp — 2200 pa. Py + MY

8 = 2294Pa Db (6.80)

Dipole D%
The dipole variables for the case where the emitter is particle 1 and the spectator is

particle b.

CrCAa

(col) =

_ P1-Ps + P3.0p — P1.P3
Pi.-Py + D3.Dpy
_ P1-Py
Zp =
P1-Py + P3-Db

Z1b

t = 2py.pa — 2T1pPa. Py + M7

§ = 221,Pa Db (6.81)
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Dipole D}

The dipole variables for the case where the emitter is particle 2 and the spectator is

particle b.
CFCA
ol) = —
(col) = =2
_ P2.py +P3-Pp — P2-P3

Top = —
D2-Py T P3-Pb
P2-Pb

zZ

9h = ———————
D2.Pb -+ P3Py

t=—-2p1.pq + m?

5= 2Z9pPa Db (6.82)

It can be shown that, in the soft and collinear limits respectively, these terms cancel
the divergences shown in eq(6.66) and eq(6.69).

Rather than performing an analytical check it was confirmed that the dipoles cancel
the soft and collinear divergences via a simple numerical check.

Note that, as in the bb case the remaining possible dipoles (all associated with initial-

initial or final-final interferences) are all forbidden by colour.

6.6 The Integrated Dipoles

By integrating the dipole terms given in eq(6.73—6.82) over the single particle phase
space we will obtain an expression analogous to that given in eq(3.103) for the mass-
less case. Similarly to that result the expression will comprise of an x dependant part

integrated over z and an z independent ’endpoint’ term.
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6.6.1 The Endpoint Terms

The endpoint terms are roughly analogous to the [{¢) terms in the massless case
(eq(3.80) and onwards) - the z independent divergent parts of the integrated dipoles.
Similarly to the massless case the divergences in these terms should exactly cancel the

poles generated in the virtual corrections.
The expressions obtained for the endpoint terms are as follows:

The endpoint term for the case where the emitter is incoming particle a and the spec-

tator is outgoing particle 1:
Q-Eggzc;q (Gm(f)\M(‘ VDN ).2
8772 2 + \" 8,1, Ag, AL |
TG () M5yt = Aay AP (6.83)

The case where the emitter is incoming particle a and the spectator is outgoing particle

2:

Q_Qq CFCA @i p 9
N @_T (G+ (LL)‘M (S5 t‘, >‘a5 >‘2)‘

+GT(“)‘M(57 ta _“>‘a7 AQ)‘Z) (684)
Where the expressions for G‘ﬁ/_ are:

GL ) =

ai 3 1
G (p?) = 3 (6.85)

Note that the fact that G* is independent of the Mandelstam variable means that the

spin flip term will cancel between the a,1 term and the a,2 term (due to the minus sign
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in the colour factor).

Also note that here we have dropped the divergent terms as these are assumed to cancel
the divergent terms in the virtual corrections (in principle it is possible to demonstrate
this as in the massless case however when we include the top mass the expressions
become prohibitively complicated).

The case where the emitter is outgoing particle 1 and the spectator is incoming particle

2
Go CFCA ia
|25 A (G0 0, M)

HGE ()M (s, Ag, —M1)1?) (6.86)

The case where the emitter is outgoing particle 1 and the spectator is incoming particle

b:
[ 95 erea (G ()| M5, t, 2o, M)
872 2 g A :
+ G () M(s,t, Ay, — A1) 1) (6.87)

\ p? —2m? 2 ™m
Gl ST GO S DU 1
2p? mf‘ 6 2p?

(6.88)

Note that again the spin flip term cancels across these two expressions as it still doesn’t

depend on the momenta.
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6.6.2 The z Dependent Terms

The z dependent parts of the integrated dipoles are found to be as follows.

The case where the emitter is incoming particle a and the spectator is outgoing particie

1:

—

(/ da:/d@%Gi"'(t}x‘)fM(@f,)\a,Al)ig
zo
1 .
- dz/d@Gf‘;(t,I)]/\/I(s,t,Aa,)\1)[2
Zo
! 21 .
+/ dm/d@—G‘f’(t,x}}M(é,t,—Aa,Al)iz
Zo x
1 .
—/ dz/d@Ga_"’(t;x‘);M(s,t,—Amxl)@
Zo

Here 3,1 are the Mandelstam variables scaled by :

A(EE,Y

S c

£

g
WLtQ' - '2_ + ZEgmpgmcosg

(6.89)

(6.90)

Where EZ  and pf,, are the partonic centre of mass energy and momentum scaled by

z.

Also zo = m#/EZ,. This lower limit on the z integration ensures that the partonic

energy is sufficient to produce the top pair. The case where the emitter is incoming

particle a and the spectator is outgoing particle 2:

2
_ | gs creal
872 2

1 e 7 .
(/TO dm/d@;Gf(u,z){M(s,t, Ao, M)
1 .
—/ dI/d@Gi’f(u,I)!M(S,t,)\C“)\2)‘2
;(1] ~1 . -
+/ dm/d@—GT(u,z)!,M(é:t, —Xa, Ag) 2
. T
1 |
—~/ dm/d@GT(u,I)iM(s,t,—)\a,)\2)[2>
2o
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Where G%, (p?,z) are defined as:
v/ ’ /

G p?, z) =

2 _ 2\
Pya(z) <Zn <mu2 L ) Lin(l— z(z)) — 1)

4

+(1+x)n(l-1z) - In2 -z — z(zx))

Gl_l'_i(pQ}I) =1 -z (692)

Once again the spin flip terms will cancel due to the fact that G%(p?, z) is independent
of the momenta.
In the case where the emitter is outgoing particle 1 and the spectator is incoming

particle a:

2
95 creal
Y

22
1 1 . 5
(/ dI/d@*Gf(t:I)i./'\/[(\g,t,Aa,)\1){“
- T
T
—/ dm/d@G'f(t,x)!JM(s,t, Doy M)
s
i -1 -
+/ dx/d@—G’_“(t,z)[M(é,tJm—/\1),2
o T
1
- [ e [ avGi, )Mt 00 -2 ) (6.93)
zo
In the case where the emitter is outgoing particle 1 and the spectator is incoming
particle b:

2
gs crea

- LSWQ 2| .
1 A1 R .
< d:c/dcb—Gf(u, )| M8, 1, Ay, M1))?
Zp x
1
—/ dx/d@Gf(u,x)’M(s,t,)\b:Al)}Q
v A
+/ dx/d@—GT(u,x)j/M(é,t,/\b,—/\l)'Q
Zo x

1
—/ dI/d@GT(UCE)%M(S t,Am—*)q)iQ) (694)
o
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T 1 I ; i 1 +
Where the functions G*¢, (p*, z) are defined as:
/

Giep* ) =
zi(z) —1 34 2(x) - 4mt \
2(1 — ) (p2m2)( l—m}

1 9z — 2z ,
+ 2in ( i (I)> — G (p?, 1)
1—xz l—=z

ia/, 2 th 1 1
G (p%,7) = 5ty lin(21(@)) + 5(1 — (2))(3 — z1(x))|  (6.95)
pr—mil—=z 2

2
My )

m2—p(1-z)

(Where z1(z) =

This time the spin flip term does depend on the momenta and as such will not cancel

between eq(6.93) and eq(6.94)

6.7 Performing The Phase Space Integrals

6.7.1 Integrating Over The Two Body Phase Space

We will need two versions of the two body phase space - the first of these (d®) is
independent of z and is the measure we use for integrating the virtual corrections and
some parts of the integrated dipoles (see section(6.6.2)). We will also need a measure
that is shifted by = (a@) which we use as the measure when integrating the remainder
of the integrated dipoles (the term integrated dipoles is referring to dipoles integrated
over the phase space of the single emitted gluon - we now need to integrate them over
the phase space of the remaining two particles).

We will begin by defining the z dependent part as the z independent part can be simply
obtained by setting z to one.

We first set the value of s%*®™ (in what follows we will also refer to the partonic s
denoted simply by s and also the partonic s scaled by = denoted by &) , the energy of
the beam. This will be determined by the collider energy (for example at LHC this

will be in vicinity of 14TeV). From this we will also need the beam centre of mass
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energy BLeOm = y/sbeam /9 Another variable that is determined by the experiment
that we are performing the calculation for is the maximum rapidity mme,. We will be
integrating over the rapidity in the phase space integral but must restrict this so that
we only consider events that can be picked up in the detector we are modelling. High
n (= —In(tan(6/2)) where 8 is the scattering angle) corresponds to events where the
jets are oriented along the beam pipe where they typically cannot be picked up by the
detectors.

We also fix both the incoming and outgoing helicities for each run and need to run the

Monte Carlo once for each possible combination of helicities.

We start with a phase space measure of:

. 1 z
dd = (—,)—)—2 / a’,a:da:ld:rgd(cosé))dEfmd¢P-;ﬂ§(rla:ga:s — 2712028 EL) (6.96)
2

/II1 o gheam

Here E7, is the partonic centre of mass energy scaled by «, where EZ, = ~——%5—— =
VTEem.
P 1s the partonic momentum, again scaled by z, p%,, = /(E%,)? — m;.

We use the z, integral to eliminate the delta function, (aﬁ— (r119T8 — 2, /T12228EY,) =

z32

I212) and we exchange the EZ integral for an integral over E.p, (dE%, = /TEm).

Making these changes and performing the integral over ¢ we obtain:

s 1 2
d6 = — [ dE,,dzidzd _Pem__ 6.97
= mdride (COSQ)\/Ezls (6.97)

We now rewrite \/z as —%:;—7: and change variables from cosé to r. The Jacobian for this
change of variables is dcost = —sin?@dn, however the 0 integral runs from 0 — 7 which
corresponds to a rapidity integral of +oc — —oo. We really want this to be the other
way round so we add in a minus sign to the Jacobian ie: dcosf = sin?0dn.

This leaves us with:
1 ¢ Bom o .
5= | ABemde:dedn P sin? (6.99)

2w 18
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We also need to set the limits on these integrals to only include the physically allowed

region.

The rapidity integral, as mentioned above, is defined to run from —Mmar 0 4+7Jmaz 88
fixed by the collider being studied.

The scaled partonic centre of mass energy (E¥ ) must at least equal the top mass -
this means that, since z has a maximum value of 1, that the minimum allowed value

of E.p, is also my. The maximum value is limited by the beam energy and is therefore

\/ gbearn
3 .

The allowed region of both the z; and z integrals are fixed by the value of E.,. We

m2 ‘
already have E., > m; to produce a top pair so we know that = > E_ﬁéf (the maximum

value of z is of course 1).

4 P . . . L. - r1Xx28 Y
The minimum value of z; is found by considering the equation E., = Y. The

D2
crmn.

. , .y . 4E
maximum value of zg is 1 so the minimum value of x7 is e

Therefore, the phase space measure and Jacobian we use is:

) 1 Eheam +mar ;
dd® = — a’,Ecm/ da:l/ da:/ dn pcmE Lem e i 20 (6.99)

2 mas L L18

We also need the unshifted phase space. This is obtained by setting z to one in the

above equation:

1 BT +nmm 7
dd = —/ dEpm/ da:l/ da:/ n20 (6.100)
27 —c— = Mmax 11'}15

We also need to include the flux factor and the appropriate parton distribution func-

tions.

Note that the integral over x remains as we will still have an z dependence in the
integrand.
At each iteration of the Monte Carlo we randomly generate a point in phase space

within these bounds ie: an allowed set of values for (z, 1, Ecm, 7).
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We will wish to generate a pr distribution and so will have to bin the results ac-
cording to their value of pr. The terms proportional to d® should be binned by pr
(= /(E%,)* — m?sinf) and those proportional to d® are binned by the unshifted pr

(= /(Eem)? — m?sing).

6.7.2 Integrating Over The Three Body Phase Space
The three body phase space integral is somewhat simpler than the two body integral
as none of the integrands will include integration over z or any shifted quantities.

The phase space we use is:

1 1 9 m%Q — thQ 5 — m%Z

Where m?, is the invariant mass squared of the top pair (= (pa + pp — p3)?), § is s
scaled by the Bjorken z’s, Q1 is the scattering angle of particle 1 in the centre of mass

frame and Qg is the scattering angle of the gluon (particle 3) also in the centre of mass

frame.

6.8 Results For tt Production

The NLO QCD corrections to tt production may be found in [26]

6.8.1 Comparison With The Single And Double Logarithm Calcula-
tion
As a check of the results it is possible to make a comparison with the results presented

in [35] (also of some interest would be comparisons with [36]) where the single and

double logarithms that contribute to the ¢t rate are calculated. We expect the double



logarithm contribution to be dominant at high energy so a check between our results

and the logarithm result in the asymptotic limit should show some agreement.

gg to tt

Fig(6.9) and fig(6.10) compare the correction to gg -— ¢ due to weak effects with the
logarithmic correction for two different combinations of top helicities. The comparison
is between the partonic matrix elements. Note that the cosf selected is far away from
the beam axis as we do not expect the logarithmic approximation to be very accurate
at high rapidity.

The first obvious feature is that the correction to the cross section with a final state
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Figure 6.9: Plot showing the correction from NLO weak effects to gg — tf (with a left handed

top and right handed anti top) compared with the corrections predicted by large logarithms.

including a left handed top quark is larger than that to a final state including a right
handed top quark. This is a consequence of the W coupling to a right handed particle

being suppressed.
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Figure 6.10: Plot showing the correction from NLO weak effects to gg — t¢ (with a right
handed top and left handed anti top) compared with the corrections predicted by a large

logarithms.
The lowest /s plotted is 400GeV and the agreement is good even at this low energy.
The two methods seem to differ by a constant across the range of /s in both helicity

combinations but the agreement is close enough that we can be confident in the accuracy

of the complete results.

q7 to tt

Fig(6.11) and fig(6.12) compare the correction to g7 — t* due to NLO weak effects with
the logarithm approximation. Once again cosf) has been taken such that the events are
not along the beam pipe. Firstly it can be seen that the correction to the down-type
Initial state is somewhat stronger than that to the up-type interaction. This is due to

the stronger vector coupling of the Z to down quarks compared to up quarks.
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Figure 6.11: Plot showing the correction to v — tf due to NLO weak effects compared to the

large logarithm approximation of the same correction.
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Again the agreement between the logarithms and the complete calculation is very good

and we can be confident in the accuracy of the complete calculation.

6.8.2 The Total Cross Section

gg to tt

The results presented below (and in section(6.8.3)) are to be published in [37].

In this section we present the results obtained for the differential cross section for
gg — tt at LHC plotted against a number of different quantities (fig(6.13), fig(6.14),
fig(6.15) and fig(6.16)). The aZaw correction to the inclusive cross section (the integral
of any of the curves in this section) is quite small but we find some of the differential
cross sections to be significant.

The differential cross section against pr (fig(6.13)) is 5% - 10% in regions where the
cross-section should be large enough for the corrections to be visible.

We present the My (the invariant mass of the top pair) distribution in fig(6.14) -
here we see a correction with a very similar shape to that for % but at just over half
the size.

Corrections to the E; and rapidity spectrum are both small but it is worth noting
that the cross-section remains large across the full range of these observables, thus we

may expect accurate measurements of these cross-sections.



101 I [ r SEE S I Ty B e T
o [0 1

10 o -

1071 = —
% 10_2 N ;r‘/"‘\k 7
O _3 \ T
N i0 — 1 T —
RO
= 10T T .
£ 1075 — | i — ~
~ S — —
% 10 ; | l i

10~ L ! 1 1 L 1 L 1 1 1 i 1 [ ¢ 1 Filivions S ]

[$)
Ty
-
4
i
-

5 (%)

l}!lllllk!ilt?ll})ll

, | . |
500 1000

n
0

—
[9)
(@]
(@]
[oN]
(@]
(@]
(@]

Pr (GeV)

Figure 6.13: Presented here is the differential cross-section for gg — tt plotted against pr. In
the upper frame the dotted line denotes the a% contribution and the black(grey) line denotes
the positive(negafive) correction due to a%aw. The lower frame shows the relative correction

due to NLO weak effects.

qq to tt

The calculation of the g7 — ¢t has been recently published in [38] and [39].
Note that all results in this section are preliminary.

In fig(6.17) we see the differential cross section for gg — tt against transverse
momentum. The results are also plotted as a correction to the full LO result (a2, + o
note that there is no agaw correction due to the colour structure. This means that
the LO weak correction is very small as it comes in at Oz%,v only.) Integrated over pr
to give an inclusive cross section these results show reasonable agreement with those in
[38] [39].

The inclusive cross section at NLO weak for g7 — ¢t calculated here is 0.0018 pb (0.0396

pb from the matrix element and -0.0378 pb from the integrated dipoles). This compares
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Figure 6.14: Presented above is the differential cross-section for gg — ti plotted against the
invariant mass of the top pair. In the upper frame the dotted line denotes the a% contribution
and the black(grey) line denotes the positive(negative) correction due to a%aw. The lower
frame shows the relative correction due to NLO weak effects.

reasonably well with the results of [38] (for mpy=150GeV).

Presented in fig(6.18) are the ¢g results for LHC. We see 10 to 15% corrections in the
regions where the absolute value of the cross section is large. Here we obtain an inclusive
cross section at NLO weak of -1.229 pb (-1.6459 pb from the matrix element and 0.4171
pb from the integrated dipoles). It is worth noting that this result is approximately
50% larger than that presented in [38] however, as mentioned above, work on our result

is continuing.
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Figure 6.15: Presented above is the differential cross-section for gg — tt plotted against the
energy of the top quark. In the upper frame the dotted line denotes the a% contribution and
the black(grey) line denotes the positive(negative) correction due to azaw. The lower frame

shows the relative correction due to NLO weak effects.
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correction due to NLO weak effects.
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6.8.3 The Asymmetries

Presented below are the App, Ar and Af X asymmetries. Note that to calculate these
asymmetries we have imagined that the helicity of the top anti-top pair is directly mea-
surable, however, as this is not the case, these are not realistic observables (to generate
realistic observables we would have to follow the method outlined in section(6.1)). They

should, however, give some indication of how significant realistic observables could be.

gg to tt
gg—+tt
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Figure 6.19: Presented here is Ar; plotted against the invariant mass of the top pair. In the
upper frame the a% contribution is denoted by the dotted line and the a%aw by the solid line.

In the lower frame we have the relative correction due to NLO weak effects.

In fig(6.19) we see the correction to the non parity violating asymmetry, Arr. As
we saw in the pp — two jets case, the QCD contribution to this observable is large at

LHC, however a 3%-5% correction to this from could be detectable.
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Figure 6.20: Presented here is the a%aw calculation of Ay plotted against the invariant mass
of the top pair. Note that there is no contribution to this asymmetry due to oz% as it is a parity

violating cbservable.
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Figure 6.21: Presented here is the oZaw calculation of Ay plotted against the invariant mass
of the top pair. Note that there is no contribution to this asymmetry due to a% as it is a parity

violating observable.
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We may only plot the absolute values of the two parity violating observables (fig(6.20)
and fig(6.21)) as there is no contribution from tree level QCD. These absolute values are
not insignificant (especially that for A7 which remains somewhat above 0.5% over the
entire py range) however it is difficult to make a determination as to their detectability

without a proper treatment of the top quark decay.

198



Chapter 7

Conclusions.

7.1 bb Production

We studied the bottom anti-bottom production rate at both Tevatron and LHC. The
correction to the total inclusive cross-sections at Tevatron were found to be very small
(fractions of one percent) and undetectable. The correction to the inclusive cross-
section at LHC was also found to be quite small (approximately -2% at high pr) and
currently swamped by QCD uncertainties, however following NNLO QCD calculations
this level of accuracy may be required.

Also studied was the one loop weak contribution to the forward backward asymmetry

at Tevatron, the contribution was found to be a not insignificant fraction of the one

loop QCD correction.

7.2 pp To Two Jets

Following bb the full proton-{anti)proton to two jet cross section was calculated, again
for Tevatron and LHC. This calculation yielded somewhat larger NLO weak corrections

than in the bb rate at the inclusive level - as much as a -3% correction at Tevatron and
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a -30% correction at LIIC. The weak corrections at LHC are significantly larger than
those at Tevatron (both in the two jet and bb cases) due to the former machines partonic
centre of mass energy being typically above the threshold where Sudakov logarithmic
enhancements become important.

Weak corrections to the polarised observables Apr, Ar and AILDX were also calculated
for the full two jet case. At RHIC the absolute value of the non parity violating observ-
able (A7) was found to be large and the weak correction to it to be as high as 60% (at
/s =600GeV). The absolute values of the parity violating observables (Ar and AV
were found to be smaller but the weak corrections to them to be large (between -20%
and -75%) across most of the pr spectrum.

The same observables were calculated for a hypothetical polarised LHC. Here the abso-
lute value of all the asymmetries was found to be smaller than at RHIC and the NLO
weak correction to the parity conserving observable to be reduced (3%). The one loop
weak corrections to the parity violating observables on the other hand were found to

be very large indeed - -200% to -400% over most of the pr range.

7.3 tt Production

Finally we performed the calculation for ¢ production. At the inclusive level gg — tt
corrections were found to be small but some of the differential cross sections (f};—‘; for
example) were found to generate measurable corrections in the region of -5 to -10%.
qq — tt contributions were also calculated as a check of [38] and [39] with reasonable
agreement in the case of the Tevatron. We also calculated some observables dependent
on the helicity of the top pair (Arr, Ar and Afg) where we make the assumption that
we can measure the helicity of a produced top quark directly. In reality this is not the

case and we actually need to look at the observables defined in {34]. This work has yet
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to be carried out.
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Appendix A

Veltman & Passarino Functions

The Veltman & Passarino functions [24] for the box diagram with two massless bosons

(gluong) exchanged. For Dy, the scalar box integral, we have:

— In? <§> —m0(s) — 7r29(t)} (A1)

Figure A.1: The box diagram corresponding to Dg.
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Figure A.2: The box diagram corresponding to Dy for the case with one massive internal

propagator.

Coiy corresponds to the scalar triangle integral created by ’pinching off” propagator 1

in fig(A.1).
Co3) =
| S
1 Fi L (%‘) + Zin? (‘—";’) —~ 7.*2@(5)} (A.2)
s € € ‘
Cog) =
1T 1 (Y LY
If we take care to shift the loop momentum then we also have Cpy = Cpy(z)y and

Cozy = Co(a)- For the vector boxes we have:

€

17 1 13|
Cra@y = —= [‘* —2+In (%)} (A4)
E 1

Crizy = 2 x Cryz) (A.5)

171 I¢]
C =2 -2 _94] L A6
2 ¢ { e AT (uzﬂ (4.8)

Crigy = 2 x Ciyq (A7)

The Veltman & Passarino functions for the box diagram with one gluon and one Z-

boson exchanged. For Dy, the scalar box integral, we have:
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p u 12
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Again Cy(yy corresponds to the scalar triangle integral created by 'pinching off’ propa-

gator 4 in fig(A.2).

CO(l) -
Lyl 1 sl 1, 5 (lsl 20¢ A 9)
Co) =
1 1, [|m2—t 1, [ lm2—t
— ,__lr = — I_.__Z__.._...I_
t{en( - )—}-zln 2
mg . [2 /
—~720(t — m2) — In? (/ﬁ) — Liy (t - mﬁ)} (A.10)
1 ’7'1'2 . 8 /
t —m? |m?2 — ¢ 1
Cra) =
171 m2\  2(t —m?) Im?2 — t| 2
Flre i (5) X () —a e micun | (419
Cre) =
2,2 2
1 —9ln Er_ —9 4 Zm‘zﬂ- _@_le 5 (A.14)
s m? s 6 mg
1
Ca) = 500 (A.15)
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Appendix B

Prototype Diagrams For Massless

Quark Interactions

The prototype diagrams required for the ¢¢g — ¢ are:

The s-channel tree level gluon exchange:

,I‘S,g(& t, >‘1> >‘b) -

| —

93— (s 42t — sAi k) (B.1)

n

D

The s-channel tree level Z exchange:

TS,Z(‘97 t) >\1; >\b) =

2
g 1 1yeb b 1
Acos? (By) (ey + Aca)(ey — Mvey)

= + 2t — SA1A B.2
§—my +7:er2(5 ! b) ( )

The s-channel tree level W exchange:

j_‘S,VV(Sr ta >\17 >\b) -

1
s — mQW + 1 Twmw

%—2(1 + A1) (1 = A) (-2t — sAiAp) (B.3)



A box diagram amplitude with two gluons exchanged in the s-channel:
to)

B~S,gg(5> t? Al: Ab) =

1 1 —4 4 It
4 CE ]
gSmXE(S-}-Qt—AlAb)X ri—zw*zln <_2_>}



A box diagram amplitude with one gluon and one Z or W boson exchanged in the

s-channel:

B.SggZ/gW’(Sa i, >‘17 Ab) =

Czyw
, 2
1 2 2 it 4 M7 ;
{16"'2 {*Q'Jr —In (—7—> -‘r'———ﬂlﬂ (’1— 26 ):J
7 € € JIE € 8 | my
! (s 42t — A1 Ap)
= g — A1Ap
(S - m%/w + ’LFZ/'VVm’Z/VV>
2
1 1 s 9 Mzw
+ _ In|1——— XN | -8myy +4——+4s
327’(’2 (S — mQZ/W =+ ’er/u/mz/m/> l: ( mQZ/W) ( Z/W S
2
$ Mzw 2 2 [ $
+in|l— ——— SmQZ w—4 —4s | +8myyin {1 - AL
( mQZ/W) ( / 8 / M

t —t
) (-16m22/w; - SmQZ/W> +In (m2 ) M Ap(dm py — 48)
ZJW

2 5 .
, . U ~
I V[ t A 2 5 2 4m%/W 4 5
+in n + )\l b _bm/Z/VVa_éBmZ/W—{»‘ U + 4s + E

—t —t
+in? ( 5 ) 25\ Ay + (—2s — 4t)in® | — ‘
Mz w Ty rw
2 2
—t m _ m
tin [ 5o Vi [ =2 Y asan 4 in [ i [ 2 ) (—as - st)
Mz w p? mQZ/W P
2
Mz/w s
[ . — 2

m} ; m% .t m2 v
+in ( igW In (1 - m; ) (—16 2 SmQZ/W) +In? <—/7-/2ﬂ> 2501 b
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m 2

S 'ZIW 3

My | —8m% = — 8m% y + 4 45+ 4—
1 b( mZ/wu 7TLZ/W + u +4s + U>

4
. —1 S . m g2 _
+Lig ( 5 ) <8m%/wa + 8mé/W —4 ZW —4s 4+ 8t — 4;)} } (B.5)

2

4cos?(Ow)
2
Cw = 92T (1+ M)(1 - X) (B.6)

Cy = g2 (e + ek (el — doch)

A gluon QED type vertex correction to s-channel gluon exchange:

Vilotae (8,6, M1, ) =

1 2 3 2 1
g4~ {:——— ) <%>J _.(S+ 2t — >\1)\b>

e € € u s

1 —S i

4 2

i ! 1 Z

I8 1r2 [n (;ﬁ) ( 25 )\1>\b>

— t t _
In (—j) <3+6——3)\1>\b) —7—14- +7)\1>\b:j (B.()
u s 5
A gluon vertex correction to s-channel Z or W boson exchange:

d
VS?;UZ/VVE (87 t) )\l, )\b) =

CZ/W X

1 2 3 2
[____+_m (Sy ! (5 + 2t = M)

1672 e € ¢ u? J 5 mQZ/W + il wmziw

1 o[ —s 14
-+ 167‘(’2 {ln <'#—2> (—‘l — QE + >\1)\b>
S

—s t t
In <—§> <3 +6- — 3)\1>\b> —7—14-+ 7)\1>\5J 5 , (B.8)
n 5 s s —myy +ilzywmzw




Where Cz and Cy are as defined above.

A gluon QCD type vertex correction to s-channel gluon exchange:

Vel (s,t, A1, Np) =

s,guge

17171
2
N S (P VY
95167.*2{ GJ 3(8 2= M)

1 -5 t t
+Q§T@ [ln (F) (——1 - 22 + /\1/\b> + 1+ 2; — MAp (Bg)

The fermion self energy correction to s-channel gluon exchange:

SEM (st A1, ) =

s, ferm

Em (;—j) (1= M) + gm (ij—) ﬂ (B.10)

Where N is the number of active flavours for the internal quarks - a flavour is "active’
if \/s > two times the mass of the quark flavour. Note that since the internal particles
need not be real the contribution is only suppressed beneath threshold rather than
ruled out entirely - however setting the contribution to zero below threshold is a good
approximation.

The gluon self energy correction to to s-channel gluon exchange:

SE;Z;(Sr t, /\17 /\b) =

g 1 y
95167T2

[—gzn C—j) (1—MNy) - %Om C—j) ﬂ (B.11)

The Z or W vertex correction to s-channel gluon exchange:

d «
V:?EZ/VVUgc(’Sv t, /\1, /\b) =

1
Do X ——
ZIW % qgpr %
(2B + sCi1 + 8C19 +4C%) — (C12 — Ci1)s (B.12)
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Where, when the vertex is attached to the out going quarks we have:

2
Y g9 1L aly)2
Dz = 54005 (HW)(CV - eah)
Dw :gég—(l _1_)\1)2 (B,13)

8

And when the vertex is attached to the incoming quarks we have:

The ¢+I/,

Zm%V 2M 5&’

9 b b 2
Dy =gé—5 — A
z 951 Q(QM )(CV+CA b)
92

vertex correction to s-channel gluon exchange:

VQEd (‘57 t )‘lv )‘b) =

s,¢uge
2

29 2 1
41—1—)\ X ——F X

2 2

—t (—=2Bp — sC11 — sC1g + 4C734) — (C12 — C11)s (B.15)

This expression is for the case where the vertex is attached to the final state quarks

which is in fact the only contribution. The ¢ vertex will only contribute if the external

quarks associated with it are bottoms - in which case the internal quark will be a top

making the ¢ coupling significant.

Z and W external leg self energy corrections to s-channel gluon exchange.

Where:

S :ijt/VV(S; t, )\1, )‘b) =

1
EZ/W X ~327T2 X

1
(4B1+2)E(S+2t—)\1)\b) (B‘IG)
2 92 1 2 b b 2
EZ:gS4COSQ(9 )2((CV+CA)\1) +(CV +CA)\b) )
2
Ew = g5 T2((1 4+ 2)” + (1+ 1)%) (B.17)
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The ¢, ;.. self energy correction to s-channel gluon exchange.

SEfg(é, t, /\1, /\b) =

E.x —
¢ 32 "
2
—Qﬂ;—Bll(s%—Qt— A ) (B.18)
’ITLZ S
Where:
2
By = g5 22((01+20)" + (1 + X)) (B.19)

The ¢ self energy only contributes if the quark it is attached to is a bottom - in this case
the internal quark in the loop is a top meaning that the ¢ coupling is not negligible.
For a given s-channel amplitude A4(s,t, A1, Ay) the crossing relation to the t and u

channels are:

A = Ag(ty s, A1, Ag)
Au = As (’LL, t, /\1, —Ag) (BZO)
For a given s-channel box amplitude Bg(s, ¢, A1, Ap) the crossed box amplitude in the
s,t and u channels are given by:
BS,X = BS(S7 U, A1, _/\b)
Bt,X = Bs(t7 U, Al; _A2)

Bux = Bs(u,t, A1, —2) (B.21)
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