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Adaptive cluster sampling was introduced as a reSned method for estimating 
the size of sparse clustered populations of plants or animals. Thompson 
(1990) formalised the strategy of increasing survey eSort around where a 
plant or animal of interest is found and developed a design-based analysis 
of the resulting sampling scheme. We wish to view this sampling scheme 
from a model-based perspective. The general theory for making maximum 
likelihood (model-based) inference &om sample survey data is presented in 
Breckling et al. (1994). We present an overview of this theory and use this 
to create a model-based approach to analysing sparse, clustered data. 

The ideas contained within Breckling et al. (1994) are expanded by cre-
ating a model not dissimilar to the 6nal model proposed, but simple enough 
to give an idea of the possibihties of modelling this situation in a frequentist 
framework and also an indication of where some of the complexities under-
lying the problem arise. In itself this section presents an interesting and 
stand alone extension to Breckling et al. (1994). We then explore some of 
the literature on modelling oil-pools, a situation involving continuous mea-
surements which poses similar problems to those needing to be addressed in 
the discrete clustered case. This gives us a critical insight into how to create 
a likelihood which includes a sampling proportional to size strategy. 

The main work of the thesis is in the synthesis of these ideas into a 
model which gives a more efRcient estimate of overall population totals than 
the design-based estimates proposed by Thompson (1990). This model is 
predictably complex and despite critical insights into simph^ing the prob-
lem, such as Gnessing the spatial component of the clusters, we necessarily 
use Bayesian methodology to make inference from the sample. The esti-
mates produced prove to be more efEcient than the design-based estimates 
and the model is a success. 
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Chapter 1 

Preface 

Adaptive chister samphng was proposed as a refined method for estimating 

the size of sparse clustered populations of plants and animals. In the Geld if 

we are deahng with a raie species of bird whicli is normally found in groups, 

it is tempting once a specimen is found to examine the siirrounding area for 

more. Thus the scientist gains more data with little extra effort and more 

can be learned about the species. The motivation for a sampHng scheme 

which allows for this type of sampling is clear. Thompson (1990) formalised 

the strategy of increasing survey effort around where a plant or animal 

of interest is found and developed a design-based analysis of the resulting 

sampling sclieme. The methods proposed in Thompson (1990) are used not 

only for animal and plant populations, but also in epidemiological surveys 

of rare diseases and social surveys. In chapter 2 we examine the approach 

proposed in Thompson (1990) and look at some of the apphcations and 

adaptations in more detail. 

The aim of this thesis is to view the problem of analysing sparse, clustered 

data sampled by adaptive cluster sampling, from a model-based perspective. 

Chapter 2 continues with a brief discussion of design-based versus model-

based approaches to inference. We then proceed to describe a method for 

making maximum likehhood inference from sample survey data presented 



in Breckling et al. (1994). This paper develops a method for making model-

based inference about an entire population &om a sample. The idea behind 

it is fundamental to this research. 

In chapter 3 we examine Nair and Wang (1989) in which an oil play is 

modelled. This situation involves continuous measurements such as surface 

area, volume, net pay and depth it also poses similar problems to those we 

address in the discrete clustered population case. The paper gives an insight 

into how we create a likehhood which incorporates a sampling proportional 

to size strategy. The maximum likelihood estimate is found from the model 

they present by using the EM algorithm due to the difhculty in working with 

the integrals involved in the model. A brief outhne of the EM algorithm is 

given at the beginning of this chapter as a reference. 

The work by Nair and Wang (1989) was limited by the types of distributions 

which could be used in the model due to the difhculties arising in performing 

the necessary integrals. An obvious extension of this work is to take the 

model presented in this paper and apply Bayesian analysis. This is done in 

Wisst (1996). Chapter 4 begins with an overview of Bayesian methodology 

and goes on to summarise West (1996). While this paper only examines this 

particular model, this work generalises the analysis in a way which allows 

more complicated models to be constructed and analysed using the same 

methods. 

In chapter 5 we begin to expand upon the ideas contained in Breckling 

et al. (1994) by constructing a model similar to the final model proposed, 

but simple enough that while it can be analysed within a frequentist frame-

work it also gives an indication of where some of the complexities under-

lying the problem arise. We analyse the model in both a frequentist and 

Bayesian framework and present a comparison of these approaches. This 

section presents an interesting and stand alone extension to Breckhng et al. 

(1994), while also giving us the chaiice to ensure that we can produce similar 

results using both methods and explore some of the difBculties this problem 

presents. 



In chapter 6 we synthesise all of the ideas examined to this point into a model 

for a sparse, clustered population. This model is predictably complex and 

despite the critical insights made into finessing the spatial aspect of this 

problem we And that the model is analytically intractable. We therefore 

use a Gibbs sampler similar to that proposed in West (1996) and described 

earlier in chapter 4 to perform our analysis. 

Chapter 7 is the culmination of the work in this thesis. It takes the model 

developed in the previous cliapter and extends it to model the population 

counts, giving us a method for predicting population totals from our model. 

The work in this chapter is also presented in a preprint by the author and 

Prof. Alan Welsh. The estimates produced using this model are compared 

to those obtained &om the design based methods presented in Thompson 

(1990). As hoped the estimates produced are more eScient than the design 

based estimates. 

Finally in chapter 8 we propose an alternative method for modelhng sparse, 

clustered data. Wis then return to the continuous case and examine the 

possibility of using our model in the continuous case of oil pools. 



Chapter 2 

Li te ra ture Review for 
Sampling and Model ing 

2.1 A d a p t i v e Clus te r S a m p l i n g 

2 .1 .1 I n t r o d u c t i o n 

In conventional samphng plans, the entire set of units which we wish to 

observe can be selected prior to the survey. By contrast, in adaptive cluster 

sampling the procedure for selecting units to include in the sample depends 

on the variable of interest, which is only observed during the survey (Thomp-

son and Seber, 1996). We sample units in order to achieve a given aim, for 

instance to make inference about the population as a whole. In the in-

stance of clustering, adaptive cluster samphng improves on simple random 

sampling by allowing us to increase survey effort around where a plant or 

animal of interest is found. 

2 .1 .2 M e t h o d o l o g y 

Adaptive sampling is frequently used when populations are sparse and clus-

tered since it can give predictions of population totals which in general 
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reflect the true values more closely. To demonstrate this, Erst consider a 

biological population spread homogeneously over a region with a grid of a 

given size superimposed upon it. If a simple random sample of units (grid 

cells) is taken, we can estimate the population total by using the 'expansion 

estimator' (Thompson, 1992) which scales up directly from our sample. In 

this homogeneous caae a relatively accurate estimate can be produced. Now 

consider a non-homogeneous population, for instance one in which there are 

clusters. The expansion estimator can give us an ineGicient estimator of the 

population total. If the sample includes several cluster cells the population 

total will be over estimated. If the sample includes very few cluster cells it 

will underestimate. In this situation using an adaptive samphng strategy 

can give more efEcient estimators and is therefore to be preferred in most 

cases (Thompson, 1990). 

In its simplest form adaptive cluster samphng requires that if a selected 

unit contains a member of the biological population, then the surrounding 

'nearest neighbour' units are also sampled. This will continue until a group 

of units each containing at least one member of the biological population is 

completely surrounded by units which do not contain any of the biological 

population. (The 'nearest neighbour' units can be dehned in many ways: 

the simplest way, and the method applied throughout this thesis, is to dehne 

them as the units sharing a common edge with the current unit.) The set of 

contiguous units containing members of the population make up a network, 

while the set of contiguous units sampled, both the network and the 'empty' 

units, is termed a 'cluster'. It is convenient to dehne aU singular 'empty' 

cells as networks in their own right, so an edge unit is in fact a network of 

size one. These definitions are illustrated in Figure 2.1. 

When the data are analysed, the networks become the analysis units and the 

boundary units of the networks are ignored if they do not already appear 

in the original sample (Thompson and Seber, 1996). Networks are used 

as analysis units because it is possible to calculate inclusion probabilities 

for each network, allowing the size of the networks to be accounted for. 

Networks are used eis analysis units in preference to clusters because they 
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Figure 2.1: Illustration of adaptive cluster sampling, showing a number 
of point objects in a study region of 400 units. The dark grey units are 
the original sampled units, the medium grey units highlight the sampled 
networks and the light grey units are the boundary cells. 

do not contain boundary units so there can be no overlap of networks. The 

networks are disjoint and form a partition over the region. Networks are 

used as analysis units in preference to the grid cells because the grid cells 

within networks have a dependence structure: working at the network level 

allows us to avoid making this dependence structure explicit. 

2 .1 .3 E x t e n s i o n s of a d a p t i v e c lus ter s a m p l i n g 

Several of the extensions to simple random sampling, for instance stratified 

simple random sampling, can also be applied to adaptive sampling. Methods 

for stratified adaptive cluster sampling were first proposed in Thompson 

(1991b). Another extension was proposed in Thompson (1991a). In this 

approach primary sampling units, for example groups of units arranged in 

strips or rectangles, are defined and then sampled randomly. If a member of 

the population is encountered within a primary unit, secondary units outside 

of the primary unit are added to the sample in the same way as in normal 



adaptive cluster sampling (Thompson, 1991a). This approach is illustrated 

in figure 2.2. 
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Figure 2.2: Illustration of stratified adaptive cluster sampling. Here the 
darkest shaded squares are the primary units (Thompson, 1991a). The 
networks are then formed from the secondary units 

The methodology for adaptive cluster sampling is very flexible and has there-

fore been applied in various situations such as epidemiological surveys of rare 

diseases and in observing clustering of lichens. 

Work has been undertaken to produce improvements on the unbiased esti-

mators of Thompson (1990). Discussion of this work can be found in Sarndal 

(1996) and Felix-Medina (2000). 

2.2 M o d e l - b a s e d versus Des ign-based In fe rence 

Adaptive cluster sampling is usually treated from a design-based as opposed 

to a model-based perspective. There have been numerous discussions of the 

relative advantages of the model-based and design-based approaches, see 

Royall (1976); Hansen et al. (1983); Brus and de Gruijter (1997); Thomp-

son (2002). In general terms, design-based sampling and inference treats 
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population values as /Lred. The key points underlying design-baaed infer-

ence are: 

# We deal with a fixed Enite population. 

# Selection of samphng units depends on randomisation. 

# Each member of the population has a known chance of being in the 

sample and inference depends on the randomisation and repeated sam-

pling behaviour. 

# Valid inference statements can only be constructed about hnite popu-

lation parameters (enumerative inference). 

In model based sampling and inference population values are treated as real-

isations of random variables drawn from some superpopulation distribution. 

This means that for model-based inference: 

# randomisation is not required (although this is still a useful concept). 

# Inference depends on the assumed model. 

The main beneEt of model-based inference is its efficiency in comparison 

to design-based inference when the model holds. If the model fails then 

design-based inference may or may not be more e&cient. depending on the 

robustness of the procedures. 

Adaptive cluster sampling gives a way of dealing with clustered popula-

tions in a design-based framework. However, there is as yet no comparable 

technique using the model-based approach. 



2.3 M a x i m u m Likel ihood In fe rence f r o m Sample 
Survey D a t a 

2 .3 .1 I n t r o d u c t i o n 

When samphng from a population we aim to estimate an aspect of that 

population, be it some quantitative aspect of a finite population or the 

parameters of the distribution assumed to have generated the population 

values (Skinner et al., 1989). This thesis is initially concerned with the goal 

of estimating the parameters characterising the underlying distribution of a 

sparse clustered population. To achieve this we introduce some techniques 

developed for survey samphng in Breckling et al. (1994). 

2 .3 .2 M a x i m u m Like l ihood E s t i m a t i o n in S u r v e y S a m p l i n g 

One method of estimating the parameters of a distribution is to calculate 

the maximum likehhood estimators of the parameters. When the likehhood 

is sufhciently smooth these are found by setting the score function for the 

parameter to zero, solving for the parameter and ascertaining whether the 

information fimction is positive definite. 

Using the notation and development of Breckhng et al. (1994), consider 

a finite population ? made up of # elements. We consider D, to be a 

vector containing all random variables associated with the jth element of 

the population, ji E !P. So, for example in a population ? of lizards, Dj could 

be made up of several random variables associated with the jth lizard, for 

instance its length and weight. We denote the number of random variables 

associated with each member of the population j E ? by p, so that Dj is a 

p-vector. We let D be a TV x p matrix with jth row 

Let the joint distribution of these variables over ? be / (D;^) . We wish 

to estimate 0. If D is fully observed this can usually be achieved by solv-

ing the equation sc(^) = 0, subject to info(0) being positive definite. We 

9 



deSne 8glog/(D;^) to be the vector of partial derivatives of the density 

function with respect to the set of parameters and log / ( D ; to be the 

Hessian matrix of the the density fimction with respect to the set of pa-

rameters. Then sc(^) =sc(0;D) = ^glog/(D;0) is the score function for 

g and info(^) =info(^;D) = —ggsc(^) — -9eg log / (D;0 ) is the observed 

information function for 

In sampling situations, we only have a sample (5) of size M < TV. We can also 

have non-response within the sainple itself, so in actuality we only observe 

part of D. together with information about which members of the population 

have been sampled and which members of the sample have responded. We 

denote the observed pait of the sample by and the sample design by Z 

(an TV X g matrix of values for g known auxihary variables (Scott, 1977)). 

Let 7 be a vector of inclusion indicators (1 if an element is included and 0 

otherwise) and Ag be a response indicator for the sampled elements (1 if a 

response has been recorded ajid 0 otherwise). The available sample data set 

is Js — {T^sl: Rs-, I : ^ ) -

We wish to End the maximum likelihood estimator of the parameters as a 

function only of the variables in the set jg. However, it should be noted that 

the model is now subtly different. We no longer have simply a parameter 0 

to estimate because the joint distribution of all the variables in 3̂ involves 

additional parameters and the different ways to parameterise the model 

must be taken into account. If a diSerent parameterisation of the model 

is made and the relationship between the new and original parameters is 

known then maximum likelihood estimators for the original parameters can 

still be found by transforming the score function for the new parameters 

into a score function for the original parameters. Hence reparameterisation 

does not always pose a significant problem. 

The sample score for a generic parameterisation is calculated (Breckling 

et al., 1994) as follows: 

gCg(N) = Ea[sc(N)], 
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where N is a generic parameter representing one of many possible parame-

terisations of the data and ) = jE7(- | The sample score function is 

therefore the expected value of the score function given the sample (Breck-

hng et al.. 1994; Fisher, 1925). To find the sample information function it 

is possible to diEerentiate the sample score directly. Alternatively, we can 

also 6nd the sample information &om the original score and information 

function as follows (Breckhng et al., 1994): 

m/Oa(N) = E[m/o(N) | - i;ar[gc(N) | 

This result is both satis^ing and intuitive. It shows the loss of information 

incurred when we only have sample values as opposed to the values for the 

whole population. 

The actual calculation of the sample score function begins with the joint 

density of the variables D, and Z. We express this as a function of 

N and then differentiate with respect to N to obtain the population score 

function. We then take the expectation of the score function given j/g to 

get the sample score fimction. This laat step is accomplished by taking the 

marginal distribution of jg and then finding the conditional distribution of 

Dg I js- These last two steps can be avoided in some cases as the formulae 

wiU simpli^. Wis include the steps for completeness. 
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Chapter 3 

Successive Sampling 
Discovery Models 

3.1 T h e E M A l g o r i t h m 

The EM algorithm caii be used to End maximum likehhood estimators in 

incomplete data problems, although the algorithm itself is versatile and can 

be applied to many diEerent problems. It was Erst proposed in Dempster 

et al. (1977) and has since been widely used in a number of areas. 

The algorithm essentially consists of an El-step and an M-step. giving the 

algorithm its name. 

E-step: This Ends the conditional expectation of the log-hkehhood 

with respect to the distribution of the 'missing data' given the already 

observed data and current estimation parameters, these are then sub-

stituted for the missing data values. 

M-step: This is the maximum hkelihood estimation of the parameters 

using the new values in place of the missing data. 
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More precisely, if we let be the current estimate of the parameter ^ and 

y be the observed data, the E]-step Ends the expected log-likelihood Q as 

though 0 

Q[6 \ 0^) = J I f (Xmissing I ^̂ oftserued! ^ ^ )dYmissing • 

The M-step then determines by maximising the expected likelihood 

We then iterate through these two steps successively. 

3.2 T h e c o n s t r u c t i o n of a Succcssive S a m p l i n g Dis-
covery M o d e l 

This section is a summary of a paper by Nair and Wang (1989) and some of 

the key ideas developed within it. The paper applies some of the methods to 

overcome size bias in survey sampling to oil pools and is a generalization of 

Kaufman et al. (1975). The general idea is to model the discovery process as 

sampling successively without replacement and with 

Let Yi, . . . ,Yjv represent the variables of interest. Each Y , is a vector of 

measurements related to the (th unit of the population, the population has 

members where TV is assumed known. In the case of oil pools the mea-

surements are depth, net pay surface area and volume. We assume that the 

Y's are all independent random variables and that the density function of 

the Y's with respect to the parameter vector 0 (/@) is continuous. 

We let w ( ) denote a positive weight function, so the probability of observing 

an onferetf sample (%i, ..ẑ )̂ is 

Pr{(u . . . . . .„)|Y, = y , . . = 1 A'} = g j : J - Q ; ; „Ky..) 

w/iere 'u;(i/iQ) = 0 . 
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That is, the sample is obtained by selection without replacement and with 

probability proportional to w(y) from a population of size This is differ-

ent from the usual probabihty-proportional-to-size sampling because the size 

measures are unknown a priori; in more familiar situations the size would 

be known a priori. 

The sample taken is necessarily ordered. Let X j be the value associated with 

the jth discovery. The obaerued onferecf sampk can be denoted (xi, 

so the density function of the X's is also continuous with respect to 8. If the 

labeling is irrelevant, we can relabel the hrst n elements of the population so 

Xj, - = 1, and the probabihty of observing the ordered sample 

(xi, ...,Xn) given the population is 

[xi,...,Xn|yi,...,yAr] 

r r 

n 
EILiw(y2) - E L o ^ ( y ^ J + ^(y"+i) + ' " + ^(y;v. 

n w(Xi) 
w(x;) 4 1- 'm(xn) 4- w(yn+i) 4 1- 'w(yAr) 

n 

i = l 

" / wfx 

where 6; = w(xi) -| 1- w(xn) and B = 'w(yn+i) 4 1- w(yAr). 

The ultimate aim of the paper is to predict the values of the unobserved 

data from the sample. This is accomplished by treating the unobserved 

data as missing values and using the EM algorithm exactly as described in 

the previous section to estimate We will reproduce these calculations here 

as they will be relevant later in the thesis. 

First find [xi,...,XTi;yi,....yAr] and then use this to find [xi....;XM]. We 
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have already found that 

N 

[y i , - , y jv ] = 
i=l 

and 

r I 1 TT 

i = l ^ 

where Q = which means 

[xi,...,x^,yi,...,yAr] = [xi,...,x^|yi,...,y;v][yi,...,yAr] 

= n 4 r ^ ^ : . n / » ( y . : ) ' (3.11 
1=1 ' i=l 

AH that remains in order to find the unconditional distribution of the sample 

is to integrate over the unknown values and sum over all of the possible ways 

of choosing yi , ....yn-

We Erst manipulate (3.1) to make the calculation more tractable: 

[xi , . . . ,x^,yi, . . . ,y,v] = 

i=l 2=1 

= n^'^.n/.(y.) f[ M y ) 
z=l t=l 

= n n M y . ) 
2 = 1 ^ Z=:n.+ 1 
7% / \ f / \ ^ 

= n My 
i=l ^ A:=l z=n+l 
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The values xi , ...,Xn form an ordered sample of the population yi , ...,yAr' 

We wish to End the density of (xi , . . . .xn) so we must re-label the values 

yi , - ,yAr introducing a normalization constant to the density func-

tion (Andreatta and Kaufman. 1986; Kauftiian et al., 1975). The calculation 

therefore is aa follows. 

Fx, X 1 = n ^(x^)/g(x^) 

''2=1 

%%% %% /6i(yi)(^y;,+i...dyN 

We can express the expectation in (3.2) in various ways. 

Let r — 2 ^ 1 ^ where Ei ^ independent identically distributed stmidard 

exponential variates independent of the y's. Then the moment generating 

fimction for is 

roo 

./o 
roc 

Jo 

\ 1 

A 
A + 1 
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In our case A = 1 and ( = ^. so 

n 

e 

i = l 

= 

6̂  

Z=1 
71 

e °i 

n 1 + ^ 
i = l ^ 6i 

n L 

n ^ ' (") 
z=l 

Since the y^'s are independent, if we define and let 

denote the density of T then (3.3) allows us to write 

N 

e t e n 
N 

g-^(y^)T 

i=n+l 
N 

^ n 
i=n+\ 

N 

Er n 
l=n+l 

\(Ar-n) 

fOO 

Jo 

= 5'(0) , 
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say, so Gnaily we can write (3.2) as 

/ (x i , . . . , x„) = 

AT! YY w(x;)/g(x) n 
2=1 

(3.4) 

We now have an expression for the hkehhood 

TV! Yr '»;(x:i)/e(xi 
exp (Z(g)) 

so. we take logs to 6nd 

n ^(0) 

f(0) = COMStOMt + y^log/8(X;) + log 5^(0) . 
i = l 

By diSerentiating ((^), we get the hkelihood equations, which are equiva-

lent to the score function and can be used to And the parameter estimates. 

DiSerentiating log 5 (̂0) hrst for clarity, we obtain 

iog5'(e) 
g(0) 

5 ' ( 8 ) 

g(e) 

g(e) 

Jo 

a 

aor 
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where r = and m is the dimension of 0. We define the density 

function /ig as 

h e i t ) — 

In full then. 

dlog L{0) \ ^ <9 , f ( \ 

+(7V — n) 

2=1 

log 0) 

(3.5) 

We can manipulate the score function further using the fact that 

c* log 
W r 

ddit-.O) 
98 r 

1 

t: 6 

1 

1 

d 

90, 

y , - M y ) ^ y , ( y ) d y 

-My) f 
/e(y) 

' /8(y)c(y 

d 
e ^ log /g (y) (y) dy 

a 
logye(y) A;(y|(;e)dy , (3.6) 

where we dehne another density function, 

/c(y|(i^) = 
9!)(t;0) 

19 



Substituting (3.6) into the score function (3.5) we have, 

91ogiL(0) 
d d r 

d 

z=l 

AT-Ml 

d 

log/e(y) 

i = l 

+(w—M) y JL iog/8(y) 

A;(y|^;0)/i@(t)dy ^ 

(3.7) 

A:(y|t;0)Ag(^)dt I dy . 

Now, in the same way as in Breckling et al. (1994), the hkelihood is split into 

the observed and unobserved components, so the integral above is actually 

the distribution of the unobserved data given the sample; we can show this 

using (3.1) and (3.4). 

We Srst use (3.1) to find [xi,.... x^, yn+i, - y j v ] by integrating out the val-

ues yi , . . . ,yn. We still have an ordered sample, so to find the unordered 

density function we again multiply the density by 

find (3.4). So. 

, just as we did to 

[Xi, .... X„, yn,+1! • • •; yjv 
AT! 

W - M ) ! 

TV! y-r W(xi)/@(x, 

Xi, ...,XM,yi, ...,yAr]dyi...dy;, 

(JV-M)! n 
k=L i=n+l 
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Then, 

[XI. ..., J 

rr"̂  rrn ^ TT^ fnCv-'l 

Nl rrn w(x;)/@(x;) q f a \ 
(7V-n)! i i i = l bi 

n i L i Q n L + i / o ( y . ) 
S(e) 

- A f 1 A 

Now, using (3.3), we have 

2 = 1 

g^g-(w(yri+i)+ '+u)(yAf))T' 

iV r n 
i=M+l 
N 

n ^r(e-"" 
i=n+l 

N fOO 
n / (3.8) 

V—*1_L1 "/O i=n,+ l 

If we now substitute (3.8) we obtain 

J T n i l n + i ^(y^ 1̂ ; (̂ ) 
[,^(^;a)]^-":9(g) 

N 

^ 1 
0 

^ A:(yi|(;0)/i8(t)d(. 
i = n + l 
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This density is symmetric in its arguments, therefore the conditional distri-

bution of any one of the unknown variables given the data is 

Jo 
(3.9) 

We can use (3.9) to solve (3.7) as 

a log 1(g) d 
log /e(x:i) + xi, . Xr 

Now for the M-step we must maximise the log-likehhood, so we solve, 

d 
^ = ^ ^ l o g / e ( x i ) + ( ^ - M ) E 8 . 

i = l 

log/e(Z) Xl ; Xf, 

where Z denotes any one of the (AT — n) missing variables because they are 

independent. The conditional distribution of Z, given the data, is given by 

(3.9) so the EM algorithm can be iterated as described above. 

However, even with the EM algorithm several of the integrals outhned above 

still need to be calculated. These integrals are intractable when not special 

cases which leads to the use of numerical methods. A paper extending these 

ideas (West, 1996) uses Bayesian inference and Markov Chain Monte Carlo 

simulation solve this problem. 

22 



Chapter 4 

Bayesian Methodology and 
Applicat ions to a Successive 
Sampling Discovery Mode l 

4.1 I n t r o d u c t i o n 

Bayesiaii theory provides an approach to statistical inference which is differ-

ent from the classical approach. The basic philosophy underlying Bayesian 

inference is that probability is the only sensible measure of uncertainty. 

The Bayesian approach treats parameters not as 6xed and unknown, but as 

random variables in their own right. Treating parameters in this way can 

mean that complex integrals must be evaluated, which in turn has led to us-

ing numerical forms of integration to hnd parameter estimates, for example 

Markov chain Monte Carlo. 

Markov chain Monte Carlo or MCMC as it is more widely known has be-

come popular in the lagt Sfteen years or so because it can provide a useful 

way to analyse problems that were previously considered intractable. It 

provides a method for simulating complex, non-standard multivariate dis-

tributions (Chib and Greenberg, 1995). The original method was developed 
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in Metropolis et al. (1953) and was then generalised by Hagtings (1970). The 

Gibbs sampler arises as a special case of the Metropolis-Hastings algorithm 

(Gehnan. 1992; Chib and Greenberg, 1995). 

4.2 Bayes ian S ta t i s t i c s a n d T h e Metropol is Has t -
ings A l g o r i t h m 

4.2.1 Background 

In Bayesian inference the parameters are random variables and therefore 

have both prior and posterior distributions. Let 0 represent the unknown 

parameters, then our prior beliefs about 0 are represented by the prior 7r(0), 

a probability density function. Let x be the data whicli can be written as 

Z2;..., Zn and let / ( z i , . . . . | ^) be the likehhood of the data given the 

unknown parameters. The posterior, 7r(0 | a;i,...Zn); is then our modified 

belief about ^ in light of the observed data. 

Bayes' Theorem states that the posterior distribution is proportional to the 

likelihood multiphed by the prior: 

7r(g I .%!, . . . , Z n ) (X / ( a ; i , ...,.1?^ | g ) 7 r ( ^ ) . 

This is the underlying theorem which underpins all of Bayesian statistics. 

4 .2 .2 Pr ior C h o i c e 

It is clear that Bayesian inference depends upon the prior. A prior repre-

sents the knowledge we already have about the parameter we are hoping to 

estimate, before the sample is taken. So if we know something about what 

the parameter estimate should be this information is included within the 

prior. In order to follow the Bayesian method, we are adopting a subjective 
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interpretation of probability. In this interpretation probability represents a 

degree of behef in a proposition, based on all of the available information. 

Prior choice in Bayesian statistics has produced much discussion and is dif-

ferent in each situation, so a general method for choosing a prior is unhkely. 

A good overview of the subject is provided by Kass and Wasserman (1996); 

JeSreys (1961); Besag and Green (1993). 

Conjugate Priors 

For a given class of likelihood functions [X|0], the class of priors 7r(0) 

is called a conjugate if the posterior 7r(^|X) is of the same class as 0 . If 

the prior is tractable this has the desirable outcome of making the posterior 

tractable (Bernado and Smith, 1998). For example, a binomial hkelihood 

and a Beta prior distribution will give a Beta posterior distribution, which is 

tractable and easily sampled from. Conjugate priors were widely used before 

numerical methods allowed posteriors to be estimated because they allowed 

relatively simple analytical calculation of the posterior distributions. 

There are many known distributions which have conjugate priors and these 

priors are given hyperparameters to make the shape of the prior St the prior 

knowledge. So, if we knew that our likelihood was binomial but that the 

parameter we were samphng for was likely to be small, we would choose a 

beta distribution which was weighted towards the lower tail. 

Non-Informative Priors 

If a prior distribution does not contain any information about 0, it is called 

a non-informative (vague, diffuse or Sat) prior. 

Ideally, from a subjective viewpoint we would elicit a prior on the basis of 

available information, expert opinion or past experience. However, there are 

many situations where we may have httle or no prior information about the 
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parameter we wish to estimate. We are therefore interested in a prior under 

partial or complete ignorance about a likely prior value, particularly in high 

dimensional problems. 

Although proponents of subjective probability question whether a state of 

complete ignorance exists, many will assume total ignorance as an approxi-

mation if prior information is weak. This approach allows some reconciha-

tion between frequentist and Bayesian approaches to inference because less 

prior knowledge is assumed. 

The most widely used non-informative priors are JeSreys (1961) priors: 

7r(g) = , 

where is the Fisher information. We cannot simply use a uniform dis-

tribution as a non-informative prior in all cases because complete ignorance 

about ^ implies knowledge about = g(^). A Je&eys prior gives a solution 

to this problem. The JeSreys prior is often improper: this is not a prob-

lem providing that the resulting posterior distribution is proper, something 

which should always be checked before inference is made. 

Conclusion 

There are many possible choices of prior depending on the particular sit-

uation. There are no actual rules for which prior to choose and problems 

can arise if the wrong choice is made. In fact the wrong choice of prior can 

outweigh or swamp the data. Obviously this is a problem and one which 

many believe to be one of the main diSiculties in the Bayesian approach to 

statistics. 

4.2.3 Computa t ion and Evaluation of Integrals 

Let be a normalised density function, and / ( i ) be the non-normalised 

density fimction, so g(z) = Then let 6(a;) be a function of interest. 
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Wis often want to compute expressions of the form, 

However, these integrals are often analytically intractible. 

Various methods for numerical integration (trapezoid rule or Simpson's rule 

for example) are widely known and can be found in any good mathematics 

textbook. However, these approaches are only feasible in low dimensions. 

Many distributions of interest are in higher dimensions, so new methods for 

performing integrals become necessary. Monte Carlo integration is just such 

a method (Evans and Swartz, 2000). 

Suppose we can draw a sample from ^(a;), then we can 

estimate ^g(6) by 

1 

2 = 1 

It can be shown that approaches f7g(6) for large N. This method is called 

Monte Carlo integration. 

4.2.4 Markov Chain Monte Carlo 

In high dimensions, the previous integration methods become difhcult to use 

or fail completely. This is the point where iterative Monte Carlo integration 

becomes necessary and this method is called Markov Chain Monte Carlo. 

There are a number of good papers which explain these ideas more fully and 

in more general terms, for example Geyer (1992); Tierney (1994); Chib and 

Greenberg (1995). 

The most general Markov Chain Monte Carlo algorithm is known as the 

Metropolis-Hastings algorithm, which is implemented as follows. 

1. Start at any point, say = z. 
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2. Generate 1/ from | z) where ;/ is a candidate point and g is the 

proposal or candidate distribution. 

3. Calculate a(a:, = m w j l , 

x ,t+i _ j 2/ probability a 
4. 37 — \ , 

z otherwise . 

4.2.5 The Gibbs Sampler 

Gibbs sampling is a special case of the Metropolis-Hastings algorithm where 

I a;) = I = > = 1, so the acceptance probabihty 

is always 1, candidates are always accepted. Thus, Gibbs samphng consists 

purely of sampling from full conditional distributions and there are many 

ways of samphng from the full conditional distributions including using the 

Metropolis-Hastings algorithm. The Gibbs sampler was given its name by 

Geman and Gemaa (1984) who hrst introduced MCMC into mainstream 

statistics. To date most statistical applications of MCMC have used Gibbs 

Sampling (W.R.Gilks et al., 1996). 

For a discussion of the theory behind the Gibbs sampler see Casella and 

George (1992); Smith and Roberts (1993); Tierney (1994). The Gibbs sam-

pler is implemented as follows. 

Let a; = (a;!,...,^;^)^ 7r(z) be a k-dimensional distribution. The algo-

rithm is started at any point in the support of vr, say then given 

The densities on the right are the full conditional distributions and it should 

be noted that the most up-to-date version of T is always used. 
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This simple formula hag a surprisingly rich set of applications. The idea 

behind the Gibbs sampler is that while we may not be able to 6nd the 

posterior, if we treat each parameter separately and 6nd the conditionals 

for each parameter, these conditional distributions may well be recognisable 

and we can then sample &om them to approximate the posterior. Each 

conditional is sampled from in turn and the updated values are then used 

to sample from the next conditional. 

4.2.6 Implementat ion and Convergence 

Convergence of a Gibbs sampler to a stationary distribution can be slow, 

which is why it is customary to have a 'burn-in% where the hrst values gen-

erated by the sampler are ignored while it converges. There is a theoretical 

method for diagnosing convergence in some special cases, however, this is 

not possible in general and many different 'convergence diagnostic' methods 

are often used instead. Although these methods do not prove convergence, 

they are often felt to be an adequate check. For a further discussion of 

this subject see Gelman (1996): Sahu and Roberts (1997, 1999); Brooks and 

Roberts (1998). 

While there are many convergence diagnostics available, in this thesis we 

restrict ourselves to those that aie termed output diagnostics. In other 

words those techniques which monitor selected output from the Markov 

Chain itself and therefore require no extra calculation; this avoids the need to 

run more simulations than is necessary for the inference alone. In particular 

we examine convergence using trace plots and the CUSUM method (Yu and 

Myklaad. 1998). We summarise the 'hairiness' of the CUSUM plot using the 

method of Brooks and Roberts (1998). We will present a full description of 

these particular techniques in Chapter 6 as it is convenient to discuss these 

methods at the same time as we present the examples of their use. 

There is also debate on whether multiple short cliains of the sampler should 

be used, or whether one long chain is more efficient, see Gelman and Rubin 
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(1992); Geyer (1992); Raferty and Lewis (1992). This is due to the fact that 

multiple short chains generated from a wide variety of initial starting values 

give an idea of how well the chain is 'mixing' ie. how distinguishable the 

chains are from one another. In the examples in this thesia we use one long 

chain because of the implementation issues. However, convergence occurs in 

a small number of iterations of the chain so this is not an issue. 

4.2.7 Further Gibbs samplers 

Gibbs samplers can be implemented only if a fuU conditional for ail of the 

parameters can be found. However, with very complicated distributions 

this is not always possible. In these cases more advanced tecliniques must 

be used. 

There are many different modihcations of the Gibbs sampler. In this thesis 

we will be using a Gibbs sampler with a Metropolis-Hastings step incorpo-

rated within it to allow us to sample from some of the more complicated 

conditionals. An accept-reject Metropolis-Hastings step, performed in ex-

actly the way outlined earher in this chapter, is written in to the Gibbs 

sampler in place of the unknown conditionals. However, because we only 

need to generate one value per iteration of the Gibbs sampler, only one 

accept-reject step is performed in each loop of the Gibbs sampler. 

For a detailed discussion of some of the theory behind this methodology see 

Gilks et al. (1995). 

4.3 Us ing a G ibbs s a m p l e r in a Success ive Sam-
pl ing Discovery M o d e l 

This section is a summary of West (1994, 1996) which extends the methods 

described in Nair and Wang (1989) by using a Gibbs sampler to evaluate the 

integrals, thus making it unnecessary to evaluate the integrals analytically. 
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Wisst (1996) starts with exactly the same density function as Nair and Wang 

(1989). However, in West's paper the data, Y, is spht into the observed 

part D = y i , . . ,yn and the unobserved part U = yn+i,.. ,yjv and ^ = 

w(yi) is denoted by t((7). This is an extension of the notation which 

will make the following derivations clearer because the known and unknown 

data can be separated. Adopting the notation of West (1996), we write the 

density function as. 

i " ! " ' = ( 7 ^ / I ' ' ' ' 
/ 1=1 ^ ^ i = l 

which is equivalent to equation (3.2). Unlike Nair and Wang (1989), West 

(1996) does not require the integrals to be calculated analytically therefore 

generalising the work of Nair and Wang (1989). 

The Gibbs sampler is implemented as follows. The joint density function is 

written as, 

The next step is to End the conditional densities for the random variables 0 

and U. 

For known U (4.1) implies that, 

[ e | D , u ] ( x p ( e ) n M y i ) , (4.2) 
i = l 

where p(^) denotes the prior for 0. 

For known D and (4.1) gives. 

[ u | D , e ] o c M ( ^ ( u ) + w - ^ l ] ] M y J . 
.1=1 ) i=n+l 
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It is clear that U appears in complicated ways throughout this expression, 

so at this point Wisst (1996) uses augmentation to simplify the conditional 

distributions so that it can be sampled from. 

Let (t(U) + 6;)"^ = j|^exp(—(t(U) + 5i)(^i)d(^i for each %. Then, 

f " roo 1 ^ 
[u I e , D ] (X ^ / Gxp(-(f(u) + 6i)(?)i)#i I" /6(yi)- (4-^) 

U=l"'° j z=n+l 

Let = (i^i, ...,(^;i), then (4.3) is the marginal density for U from a joint 

density for (U, ^ | 0, D) with the following conditional distributions: 

I e , U , D ] oc %%exp(-(((U) + 6^)4), (4.4) 
2 = 1 

SO the are conditionally independent exponential random variables. 

[U I (X {niLiexp(-t(%i)9^:)}nCM+i/e(yJ-

Define r = some rearrangement we have, 

N 

[U |^ , e ,D]cx : exp( -rw(yj ) / e (y i ) . (4.5) 

We now have fuU conditional distributions which can be used within a Gibbs 

sampler. 

To sample for Arst transform the y values, defining x to be the p-vector 

whose elements are the natural logs of the corresponding y. In this case p = 4 

as there are four measurements taken for each y, the volume, area, net-pay 

and depth. We assume that z ^(/^, ^) is a p-variate normal distribution 

whose mean and variance determine the parameter 0 = {//, 2} . So, as in 

Nair and Wang (1989), /g(2/) is a multivariate log-normal density. Also, 

following Nair and Wang (1989) assume the weighting of the sampled units 

is log-linear with w(3/) = for some p-vector a. In this case the vector 
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used is a' = (0,0.84,0.82,-2.68). In this special case conjugate priors for 

^ lie in the normal-inverse Wishart class (see Press (1985) Sec.7.1.6), so let 

X = Z j l i ^ and 5" = - x)^; then 

I 2 - #(%, E/AT) (4.6) 

and 

Z-M^-^(g,p,7V + p). (4.7) 

To sample for (;6, we sample &om an exponential distribution with parameter 
(^([/) + W. 

Finally we need a method for samplnig U. The general method will be 

to use rejection samphng. We note that f (:r > rw(!/) | y), 

where [x | y] ^ E'z(w(2/)); then we sample from /@(y) and [7(0,1). 

If log(l — tt) > —r'u;(y) we reject y otherwise we accept y as one of the 

sampled y's. In this case y is a vector, so for ease of computation, we 

hrst map z = o'x and hnd the distribution for z. We then generate z and 

transform back to the y's, vastly reducing the computation involved in the 

Gibbs sampler. (Finding the distributions needed here is unnecessary in this 

overview so the details are omitted. For full calculations see West (1996).) 

The Gibbs sampler is constructed as follows: 

(a) Choose an initial (7 and compute ^((7). 

(b) Sample 0 from (4.6) and (4.7). 

(c) Sample the exponentials from (4.4) conditional on the current U and 

calculate r = (;6i. 

(d) Draw (7 as outlined above using the current values of r and 0. 

(e) Iterate from (b). 
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Discussion 

This methodology can be implemented to give estimates for population to-

tals and to generate missing data. The Bayesian approach also gives us a 

method which is more versatile that that of Nair and Wang (1989) because 

the Gibbs sampler allows us to use density functions where the integrals 

cannot be determined analytically or by using the EM algorithm. 
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Chapter 5 

Applicat ions of Breckling 
et al. (1994) using b o t h a 
Frequentis t and Bayesian 
Approach 

The aim of the following sections is to apply some of the theory discussed in 

Breckling et al. (1994) and chapter 2 to some new examples to gain insight 

into the way the method can be apphed to more complex situations. 

5.1 Bernoul l i m o d e l w i t h i n fo rma t ive s a m p l i n g 

Let TV be the total number of units and M be the number of units sampled. 

Let A"!,..., be independent and identically distributed Bernoulli random 

variables with parameter a. Let X be a vector containing %i, We 

denote the realisations of these random variables by x and %i,..., z;\r respec-

tively. As in the notation used in design-baaed samphng (Thompson, 1992) 

we allow the vector X to be ordered into the sampled and non-sampled 

sections respectively, so X = (Xa,Xr 
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We will assume that the sample inclusion indicators are denoted by a vector 

I, where given X = x, each component 7; is an independent Bernoulli ran-

dom variable. So if Zi = 1 the zth unit is contained within the sample and if 

= 0 the 2th unit is not contained within the sample. (The reahsations of 

these sample inclusion indicators are not denoted by lower case Z's because 

2 is generally associated with an index set for the realisations and dual use 

can be unclear.) 

We allow the selection probabilities to depend on as 

f (7i = l |Xi = Zi) = 7r(zi) , 

for some 7r(-). In fact, as is binary, there are only two values for %( ), 

namely 

and 

f(7^ = l|X^ = l) = %(1) 

f(7^ = l|X^ = 0) = 7r(0) 

We will assume initially that the samphng probabihties 7r(0) and %(1) are 

known. 

5.1.1 Known Sampling Probabili t ies 

We will summarise the model as follows, remembering that the X / s are 

independent. 

[AT] 

and 

[7; = = a;] = 7r(a;)^(l — 7r(z))^"^ . 

It is natural to construct the model in this order, with / dependent on 

X, because the samphng probability is dependent on the variable. It is less 

36 



intuitive to formulate the model in terms of the variable being dependent 

on the inclusion indicator even though this makes mathematical sense. 

The likelihood is 

exp(Z(a)) = 

where the sums and product are over 2 = 1,..., TV, and the log likehhood is 

TV AT 
/(a) = ^ % ^ l o g ( a ) + ^ ( l - X , ) l o g ( l - a ) (5.2) 

2 = 1 2=1 

TV jV 
+ ^ 7; log(7r(Xi)) + ^ ( 1 - 7,) log(l - 7r(Xi)) . 

z = l i = l 

The hrst step is to End the maximum hkehhood estimator for a. Wis will do 

this in exactly the same stages as explained earlier (see also Breckling et al. 

(1994)). The population score function is the derivative of the log-likehhood, 

az(a) _ 
a 1 — CK 

This is then split into the sample and non-sample contributions, 

a/(a) _ 
a 1 — a 

V /-I -y- \ 

+ -
a 1 — oi 

We still have a function which involves the non-sampled, or unknown, ele-

ments so the next stage is to find the expectation of the unknown parts given 

the sample. To do this we must Erst 6nd the distribution of X^. The 's 

are independent, therefore the distribution of X^ is equal to the product of 
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the individual distributions of the for all % E r. It is therefore enough 

to Gnd the distribution for a single E X^, which is equivalent to the 

distribution of Xj | Jj = 0 for some i G r. The distribution of Xj | /« = 1 is 

unnecessary at this stage because this is part of the sample, which is known. 

The joint density function is constructed aa follows: 

Wis can therefore find the density for 7; by summing over all possible values 

ofX^, 

= ( l-a)7r(0)^'( l-7r(0))^-^' 

The density of [A"; | Ti = 0] is obtained by simply substituting 7 = 0 into 

the relevant parts of the expression 

SO 

= 0 ] = 
(1 — ai)(l — 7r(0)) + o:(l — ^(1)) 

Equivalently we can write, 

(1 — «) ( ! — %(0)) 
[Xi = 0|Ji = 0] = 

(1 — 0!)(1 — 7r(0)) + 0:(1 — 7r(l)) 

and 

- '̂'(1)) 
= 1|7{ = 0] 

(1 — a ) ( l — 7r(0)) + a ( l — 7r(l)) 
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Thus, I 7; = 0 has a Bernoulli distribution, 

& ( ! - 7 r ( l ) ) 
= 0 ^ BermoWZ* 

(1 — o:)(l — 7r(0)) + a ( l — 7r ( l ) ) 

The expected values we require are, 

E(%i|7 = 0) = = 
0,1 

o:(l — '7r(l)) 
(1 - a)( l - 7r(0)) + a ( l - 7r(l)) ' 

and 

0.1 

(1 - 0!)(1 - 7r(0)) 

(1 - « ) ( ! - 7r(0)) + a ( l - 7r(l)) ' 

so we can write the sample score in full, as 

CK 1 — CK 
(TV - - 7 r ( l ) ) 

+ 
(1 — a)( l — 7r(0)) + a:(l — 7 r ( l ) ) 

( A r - / , ) ( l - 7 r ( 0 ) ) 
(1 — a ) ( l — 7r(0)) + o:(l — 

A 1 — O! 
( A r - n ) ( 7 r ( 0 ) - 7 r ( l ) ) 

+ 
(1 — a!)(l — %(0)) + a;(l — 7r ( l ) ) 

(5.3) 

(5.4) 

The parameter a is estimated by setting the score fimction equal to zero 

and then solving for a. 

The next step is to ensure that the sample information function is positive 

definite (Breckling et ai., 1994). 
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We teike the second derivative of the log-hkehhood function 

(1 — a)^ ' 

then the information function is the negative of the second derivative, 

/n./o(a!) = — ^ 1-
(1 _ 

The expectation of the information with respect to the unknown A'i's is, 

"I" /I _\2 (1 — a)" 

(AT - M)(l - %(!)) 
+ 

a:((l — 0!)(1 - 7r(0)) + a ( l — 7r(l))) 

- 7 r ( 0 ) ) 

(1 — o:)((l — 0!)(1 — 7r(0)) + Q!(l — 7r(l))) 

Wis also need to hnd the variance of the unknown part of the score function 

(the variance of the known part is of course zero), so 

N 

v a H s c J a ) ) = ^ ( § -
i = a + l 

( 1 - ^ ) , 

y a (1 — aj 

The variance after the expectations have been taken is written, 

(1 - 7 r ( l ) ) 
rorg(sc) = (N — 7%) 

0!((1 — o:)(l — 7r(0)) + a:(l — '7r(l))) 

(1 — ^(0)) 
(1 — a:)((l — «) ( ! — 7r(0)) + Q:(l — 7r(l))) 

(1 -7r( l ) ) 
(1 — a!)(l — 7r(0)) + « ( ! — 7r(l)) 

(1 - 7r(0)) 
(1 — a)( l — 7r(0)) + a!(l — 7r(l)) 
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The sample information function is then formed directly &om these equa-

tions, 

, E k d - ^ . ) 
(1 — 

(7r(0) -7r(l))^ 
+ (jV — M) 

{(1 — a) ( l - 7 r ( 0 ) ) + a ( l — 7r(l))}^ J ' 

which is positive for aU values of a. 

The score equation can be solved using the usual formula to solve quadratic 

expressions to find a value for the parameter a. so 

» . ,5.5, 

where 

a = 7V(7r(l) - 7r(0)) , 
n 

6 = y^%i(7r(0) — 7r(l)) — — 7r(0)) + (AT — n)('7r(0) — 7r(l)) , 

C = ( 1 - 4 0 ) ) ^ % : 

i—1 

The other possible solution to the quadratic gives a value of 6 which hes 

outside the parameter space. 

It is interesting to note, that if 7r(0) = 7r(l) the score is not quadratic in a 

in this case it can be shown that the solution is 

d = . 

In other words if 7r(0) = 7r(l) the maximum likehhood estimate for ct is the 

expansion estimator as we might expect. 
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5.1.2 Unknown Sampling Probabil i t ies 

Now suppose that the sampHng probabilities are unknown. The variable 

X will be deSned in the same way and the Hkehhood is the same as (5.2). 

However, the values of 7r(3;i) are now unknown, therefore 7r(0) and 7r(l) will 

become parameters in the log-likelihood. We re-write (5.2) here for clarity. 

TV 
Z(a!,7ro,7ri) = y^Xi log(a ) 4- ^^(1 - X,) log(l - a) 

i=l 1=1 
AT AT 

+ ^ Zi log(7r(Xi)) + ^ ( 1 - / i) log(l - 7r(%i)) -
i=l z=l 

The score function for a wiU remain as before but will now include the score 

function for The full score function is now a vector of length 3. 

The Erst step, as before, is to differentiate the log-hkelihood with respect 

to the parameters and then separate out the function into the sampled and 

non-sampled parts. We will leave out the calculations for a as these are 

identical to those given above. So, 

87r(0) 7r(0) ^ \ 1 —7r(l)"'̂ '7r(0)(̂  
and 

a/ _ ^ / ( l - 7 , ) X , 7 r ( 0 ) ( i - ^ ^ ) 7 r ( l ) ( ^ ^ - l ) ' 

G)7r(l) %(!) ^ ^ 1 — 7r(l)^^7r(0)(^-"'^') 

for 2 = 1, 7; = 0 and for 7 = H -t- 1,..., 7% = 1 by deGnition. So, 

written with the sample and non-sample parts separated, we have 

a7r(0) 7r(0) \ 1 - 7r(l)^'7r(0)(i-'^') 
i=M+l 

N ^ /'X,7r(0)('-^')7r(l)(^^-i) 

a 7 r ( l ) 7 r ( l ) l - 7 r ( l ) ^ ^ 7 r ( 0 ) ( i - ^ ' ) 
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The sample score is then calculated by taking the expectation of the non-

sampled part, 

8'. , E " . i ( l - A - . ) 
9 7 r ( 0 ) 7 r (0 ) 

N 

- E 
d l . 

^7r(l) 

i = n + l 

i = l 

7 r ( l ) 

N 

E 
2=71+1 

1 (1 - a)( l - 7r(0)) 
1 — 7r(0) (1 — a ) ( l — 7r(0)) + o;(l — 7r(l)) 

and 

1 a ( l - 7 r ( l ) ) 

1 — 7r(l) (1 — a ) ( l — 7r(0)) + o:(l — ^(1)) 

The complete sample score function simpliSes to 

/ EILi , (Ar-n)(7r(0)-%(l)) \ 
1—a ' ( 1 — 7 r ( 0 ) ) + a ( l — 7 r ( l ) ) 

SCo = ?r(0) 

%(!) 

(AT—n)(l—a) 
( l - a : ) ( l - 7 r ( 0 ) ) 4 - a ( l - T ( l ) ) 

a{lV—n) 
( l - a i ) ( l - 7 r ( 0 ) ) + a ( l - T ( l ) ) 

This score equation cannot be solved for a unique solution for all three 

parameters because the equations are reducible. If we multiply the third 

equation by and the second equation by and then subtract the 

second equation from the third equation we obtain the Erst equation. This 

implies that there are an infinite set of solutions to this set of equations. 

It is still possible find a solution for 7r(0) and %(!) in terms of a (the equations 

are not presented here due to their complexity) and a in terms of 7r(0) and 

7r(l) as before. Also as before if 7r(0) = 7r(l) we can find a solution which 

turns out to be the expansion estimator for a. 

The fact that this set of equations cannot be solved for a unique solution 

can be explained if we consider what the parameters represent. If we obtain 
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a low number of ones in the sample there are two equally likely explanations 

for this; we have a low value of a in other words the probabihty in the 

Bernoulh distribution is low or we have a high value for a but a low value 

for 7r(l). These two cases are indistinguishable. 

The likehhood function can be re-parameterized as follows. Let wi = a7r(l) 

and W2 = (1 — a!)7r(l). Then 

exp(/(Q:)) = Wi—W2] 

The log-likelihood is exactly the same as before, however, we can now solve 

for and W2. 

W2 

N 

N 

This reinforces the point that it is the fact that a and 7r(l) are so closely 

related that causes the problem in solving for all three parameters. 

The calculations for the information fimction are similar to those carried 

out in the previous example and are not given in fuU here. We obtain 

Ai A2 As 
Zn/ — - I I21 ^2 ^3 

3̂1 3̂2 ^3 

where 

hi = 

(12 

(1 — { ( 1 —o:)(l —7r(0)) + O!(l —7r(l))}^ 

(TV - H ) ( l - 7r(l)) 

{(1 — 0!)(1 — 7r(0)) + a ( l — 7r(l))}^ 
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{(1 - a ) ( l - 7r(0)) + a ( l - 7r(l))}2 ' 

/ • 

(TV — M)(l — 7r(0)) 

)(1 - 7 r ( 0 ) ) + a ( l 

L 

{(1 —a)(l —7r(0)) + O!(l — 

22 

hi = -

hi 

7r(0)^ {(1 —a)( l —7r(0)) + Q:(l —7r(l))}^ 

o:(yV — M)(l — a) 
{ ( 1 — a) ( l — 7r(0)) 4-o:(l — 7r(l))F 

(7V — %)(! — 7r(0)) 

{ ( 1 — a ) ( l — 7r(0)) -t-o;(l — 7r(l))}2 

a(A'' — n)( l - a ) 

{ ( 1 — 0!)(1 — 7r(0)) -t-a ( l — 7r(l))}2 

( . V 

3̂2 — "771 TT; /nw , 71 \\in 

3̂3 = -

At this point it is clear that it would be diGcult to proceed with this model as 
the non-identi6ability problem will remain. However, to understand exactly 
where the inference problem occurs we will return to the fully identihable 
case and add in an independent variable to ascertain that it is the depen-
dence structure between the parameters a and the vr values which causes 
the problems. 

5.1.3 Two independent variables 

Assuming that TTg and TTi are known, we include a simple continuous expo-
nential variable as this changes the calculations from summations to integrals 
which on the whole can be performed more easily. 
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We will label the second dependent variable Y and assume independence 

throughout, so 

i~/, 

M = 

, 1— 

The joint distribution of and is 

1 - Vi 

fOO 1 

IT^ Vo 
'Zj 

roo 1 _ 
= / 7r(0)^'(l - 7r(0))^"^'(l - a)-e'^d2/i 

Vo 
roo 1 -V 

The conditional distribution of and given = 0 is 

= 0] = 

(1 — 7r(zi))a^'(l — 

We can use the above density to hnd the expected values needed to evaluate 

the score function as follows, 

E(%i|7^ = 0) = 

a ( l -7r( l ) ) 

^ a ( l - 7r(l)) 

(1 - Q:){1 - 7r(0)} + « { ! - 7r(l)} 
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This is identical to (5.3) as we would expect because of the independence in 

the model. 

We now must also find the expectation for so 

Z/iye A (1 - a ) ( l -7r(0)) 

- 7 r ( l ) ) 

(1 - a ) { l - 7 r ( 0 ) } + 

which can be evaluated using integration by parts to 

A(1 — o:)(l — 7r(0)) 

(1 — a ) { l — 7r(0)} + a:{l — 7r(l)} 

A a ( l — 7r(l)) 
+ 

(1 - a ) { l - 7r(0)} + a { l - 7 r ( l ) } 

The log-hkehhood fimction is written as follows 

jV TV N 
- y^%ilog(Q:) + y ^ ( l - X i ) l o g ( l - g) + y^7ilog7r(X) 

i=l i=l 1=1 
AT N y 

+ ^ ( l - / J l o g ( l - 7 r ( J ^ ) ) + 7 V l o g ( - ) - ^ y . 
i=l i=l 
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This is used to End the population score function , 

9a: 

aA 

N 

a (1 - ct) 

A ( 1 - a ) Ck 

(1 - a) 

N , E t , K / , E r : , . « Y, 

A2 + A2 

The sample score fimction for these two parameters is then 

/ 

ac. 

ct 1—a 
+(Ar - M) I (7r(0)-7r(l)) 

+ ELi-K/ 

(1—a){l—;r(0)}4-a{l—;r(l)} 

(AT-n) r (1—a!)(l—%(0)) 
A 1 (1—a){ l—7r(0 ) }+a{ l -7r ( l ) } 

_l a(l-^(l)) I 
' (1—a!){l—7r(0)}+a{l—7r(l)} J / 

This system of equations can be solved for each parameter allowing us to 

conclude that it is indeed the dependence structure between the parameters 

a and the vr values whicli causes the identihability problems. The sample 

score can then be used to find the Information function in the usual way. 

7%/ = Ai A2 
/2I 2̂2 
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(1—a)^ {(1 —a)( l —7r(0)) + a ( l —7r(l))}^ 
As = 0 

hi = 0 

r ^ , 2 E L i ^ , f ( l - a ) ( l - 4 0 ) ) 
-'22 = ~T? I r5 r [ ( 1 — a ) { l — 7 r ( 0 ) } + a { l — % ( ! ) } 

a ( l - 7r( l ) ) 

(1 - a ) { l - 7r(0)} + o:{l - 7r(l)} 

5.2 Analys is of t h e Bernoul l i m o d e l w i t h in fo rma-
t ive sampl ing , using a G i b b s s a m p l e r 

We will go on to use a Gibbs sampler to further explore the models in 

section (5.1). The Gibbs sampler should produce similar estimates to 6 for 

the Bernoulli model with known sampling probabilities and fail to produce 

good estimates for the model with unknown sampling probabilities because 

the maximum likelihood estimators of the parameters cannot be found. 

5.2.1 Known Sampling Probabilit ies 

We construct the Gibbs sampler using the hkelihood (5.1) as follows, 

a, 7r(0),7r(l)] 

The hkelihood for a is proportional to a Beta density, so we will use the 

Beta('y. (̂ ) distribution as a prior. The conditional distribution is constructed 
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aa follows. 

ocprmr(a:) x 

/AT AT \ 
oc Be(a f ^ %; + "-y — 1, ^ ( 1 — ^i ) + ^ — 1 j . 

1 1 = 1 

(5.6) 

The distribution for the unknown has already been calculated iu section 

(5.1), 

[A'zla, 7r(0),7r(l),7 = 0](xBer)2O7t/Z2 ^ ^ 
(1 - a)( l - 7r(0)) + a( l - 7r(l)) 

(5.7) 

From these two conditionals we can construct a Gibbs sampler to predict an 

estimated value for a. To initiahse the samplers we will generate populations 

with underlying parameter values &om a = 0 . 1 t o a = 0.5 with an increment 

of 0.1 and sample &om these populations using given values of 7r(0) and 7r(l) 

again each ranging from 0.1 to 0.5. The Gibbs sampler will be initialised 

from the sample. 

We let 'Y = 2 and (̂  = 5 in the sampler because the mean of the prior distri-

bution is then in the centre of the possible range of a and when compared 

to other possible priors it showed the best 6t for the model. Several other 

possible parameter values were tried in the prior and the model proved to 

be relatively insensitive to prior choice. For a fuU discussion and compari-

son of the possible priors see appendix (A.2). AU of the Gibbs samplera in 

this section are run for 9000 iterations with a burn-in of 2000. In all cases 

convergence was achieved in less than 500 iterations using the techniques 

discussed at the end of the following chapter. 
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Results 

To see how well the Gibbs sampler is performing, we will first compare the 

estimated values of a returned from the Gibbs sampler to the values of 6 

calculated from equation (5.5). 

Figure 5.1: Plot of generated estimates for a (where the generated values 
are the mean values obtained from one Gibbs sampler) against the values 
obtained using the analytical solution for a, a, for all of the different values 
o f 7 r ( l ) a n d 7 r ( 0 ) . 

The Gibbs sampler is performing well. We can see &om the graph that 

the predictions are very similar to the corresponding values of d although, 

as we might expect, the estimates improve at a = 0.25 because here the 

mean of the prior is equal to the estimator. The estimator 6 generally 

overestimates for high values of a, the generated estimate is lower than 

6 for high underlying values of a possibly showing a better fit than a. 
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The generated values at a = 0.1 are slightly higher then the predicted 

values. This needs further investigation although the discrepancy is not 

serious enough to indicate the Gibbs sampler is performing badly. 

If we now look at how weU the sample mean performs as a comparison, 

Figure 5.2: Plot of the estimates obtained using the expansion estimator for 
ck against the values obtained using the analytical solution for a, 6, for all 
of the different values of 7r(l) and 7r(0). 

we can see that the sample mean performs badly against 6. So the Gibbs 

sampler performs significantly better than the sample mean m this case. 

To look in more detail at exactly how well the sampler is performing we 

can look at the difference between the actual values of a (those used to 

generate the original population) and the estimates for a generated from 

the sampler. We are only really interested in how big these differences are 

so we have taken the modulus of all of the differences. 
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Figure 5.3: Plot of the positive diEerences between the actual values of a 
and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) against the actual values of a. 

We can see that as in figure (5.4) the predictions improve as we approach 

a = 0.5. However, most of the estimates he within 0.15 of the actual value 

and so are acceptable. The few outhers occur when a is small, suggesting 

that the estimator does not perform as well for very small values of a. To 

explore this further we can examine the plots for the different values of %. 

If we look at how well the Gibbs sampler is performing for the different 

values of 7r(0) and 7r(l) we get the following plots. 
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Figure 5.4: Plot of the positive actual diSerences between the true values of 
a and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) against the true value of 7r(0). 
Here the larger the cross, the bigger the true value of a. 

M 0.1 

71(1) 

Figure 5.5: Plot of the positive actual differences between the true values of 
a and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) against the true value of 7r(l). 
Here the larger the cross, the bigger the true value of a. 
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It is clear that if 7r(0) is large and 7r(l) is small the predictions are poor for 

smaller values of alpha. If the values of tt were to have any effect it is not 

surprising that they would have most effect at their extreme values. At these 

parameter settings we have the fewest number of I 's being sampled with a 

very low probability, which is clearly the most difficult case to make inference 

from. In most cases the sampler is actually producing over-estimates. 

To see how the values of 7r(0) and 7r(l) interact we can plot them both 

against the positive difference for each level of a . We will only show the 

plots for a = 0.1, a = 0.3 and a — 0.5 here for a full set of these graphs and 

a plot showing where the values are known, see (A.4). 

Figure 5.6: Plot of the positive actual differences between the true values of 
a and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) for a = 0.1. 
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Figure 5.7: Plot of the positive actual differences between the true values of 
a and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) for a = 0.3. 

Figure 5.8: Plot of the positive actual differences between the true value of 
a and the generated values of a (where the generated values are the mean 
values obtained from one Gibbs sampler) for a = 0.5. 
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These plots reaiRrm that the estimated values of a are less affected by the 

values of TT as a increases. All of the slopes on the plots decrease as a 

increases. However, it seems to be only the combination of a large value of 

7r(0) and a small value of 7r(l) that causes a real problem. 

Conclusion 

The estimator generated by the Gibbs sampler performs well in general, sig-

nificantly better than the sample mean and slightly better than a. However, 

the Gibbs sampler estimator begins to fail if high values of 7r(l), low values 

of 7r(0) and low values of a are combined. If we limit the parameter spaces to 

exclude these possibilities for 7r then the estimator will produce consistently 

good estimates for a. 

5.2.2 Unknown Sampling Probabilities 

It is possible to construct a Gibbs sampler for this model although we would 

expect it to give unreliable results because there is no unique solution to the 

score equations. 

To sample for a and % we will use the same conditional distributions as 

before (5.6 and 5.7). Then the conditional distributions for 7r(0) and 7r(l) 

are calculated with their conjugate Beta distribution priors as follows. 

[7r(0)|7r(l),%i,...,%Ar,A] (x pHor(7r(0))x 

Beta( ^ ^ (1 —/j) + cr — 1), 0( ^ ^ 

(5.8) 

[?[(!) |7r(0),A:i,...,XAr,a] oc Mor(7r(l))x 7r(0)^'(l-7r(0))^''^' 
Xi' s=l 

o( Be(a( ^ 7;+ 6 — 1, (1 —7i)+w —1). 

(5.9) 
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The populations are generated in the same way as before and the sampler 

is run for 9000 iterations with a burnin of 2000. We will set the prior values 

at = 2. cr = 5, e = 2 and w = 5. 

Results 

Wie must first ascertain that the Gibbs sampler is producing sensible esti-

mates for a from the data it is given. To do this we plot the estimated values 

against the values obtained for d calculated using the generated values of 

7r(0) and 7r(l). 

a from generated rvalues 

Figure 5.9: Plot of the generated values of a (where the generated values are 
the mean values obtained from one Gibbs sampler) against the estimated 
values, a, where 6 is calculated using the values of % generated in the Gibbs 
sampler. 

We can see from hgure 5.9 that there is a clear correlation, although the 

sampler estimates are all slightly too high. This is to be expected because 

we are adding in more error by estimating the value of a using estimated 

values of %. There is enough correlation to feel confident that there is no 

Haw in the execution of the Gibbs sampler. 

If we now look at a plot of the generated values of a against the value of 

6 obtained from the true values of vr. we can see that there is httle or no 

correlation at ail. 
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6 generaled with known values of % 

Figure 5.10: Plot of the generated values of a (where the generated values 
are the mean values obtained &om one Gibbs sampler) against the estimated 
values of a for the actual values 7r. 

The estimator is no improvement on what we would expect to see from the 

sample mean, in fact it is slightly less accurate because it fails to generate 

any high values of a. 

The Gibbs sampler is failing to estimate values for a if we assume the sam-

pling values are unknown. In fact the sampler fails to produce any values 

above a = 0.4 at all. 

If we look at where the generated values lie in relation to the actual values, 

Actual value of a 

Figure 5.11: Plot of the generated values of a (where the generated values 
are the mean values obtained from one Gibbs sampler) against the actual 
values of a when the % values are unknown. 
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we can see that all of the points generated for a = 0.1 are above the actual 

value so it is always predicting higher values, yet all of the values for a = 0.5 

are too low. So the model is inaccurate at both extremes and the average 

gradient does not reflect the 45° hne. 

This is in marked contrast to the previous example, where the points are 

evenly spread around the actual value and the generated gradient obviously 

follows the 45° line as we can see below. 

ID o 

Actual value of a 

Figure 5.12: Plot of the generated values of a (where the generated values 
are the mean values obtained from one Gibbs sampler) against the actual 
values of a when the 7r values are known. 
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If we look at the Gt of the 7r variables the reason for the second estimator 

performing so badly becomes apparent. 

s 
K 
'o 
(D 

C 

Actual value of 71(0) 

Figure 5.13: Plot of the generated values of 7r(0) (where the generated values 
are the mean values obtained from one Gibbs sampler) against the actual 
values of 7r(0) 

CD 

Actual value of Ji(1) 

Figure 5.14: Plot of the generated values of 7r(l) (where the generated values 
are the mean values obtained &om one Gibbs sampler) against the actual 
values of 7r(l) 
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The sampler is completely failing to produce accurate values for the 7r values 

as we would expect, giving instead the same estimate each time, regardless 

of the true value. The estimates of vr produced are those more likely to 

generate lower values of a, explaining the ear her reasonable estimates for 

these values. 

Conclusion 

If we assume that all of the underlying parameters are unknown in this model 

then we cannot make inference. There simply is not enough information in 

the sample data to estimate all of the required unknown values. The Gibbs 

sampler is rejecting this well by faihng to give accurate estimates for any 

of the parameters. However, we can make inference if we know a or we 

know 7r(0) and 7r(l). We can also make inference about functions of these 

variables for instance a7r(l) and (1 — «)%(!), however, this does not help 

us to distinguish the situation where we have a low value of a from the 

situation where we have a low value of 7r(l). 

At this point it is clear that these simple models will not help us in our 

overall aim, although they are interesting in their own right. We will not 

know the samphng probabihties before hand and we need to be able to make 

inference in this case. We must therefore begin to examine more complex 

models which contain more information about the population. 
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Chapter 6 

Modell ing Network Sizes 

6.1 I n t r o d u c t i o n 

The aim of the following chapters is to apply a model-baaed Bayesian anal-

ysis to the Adaptive Cluster sampling methods described in chapter 2. It is 

in effect a synthesis of the work presented so far. 

At present one of the main approaches to modelling spatially clustered data 

is by using point processes (Diggle, 1975; Baddeley and Turner, 2000; Brix 

and Diggle, 2001) where, although the spatial relationship between the clus-

ters is considered, the clusters themselves are thought of as points and so 

have no internal spatial structure. In our methodology we super-impose 

a grid on a region containing a clustered population. The population is 

then modelled within this grid structure giving an interdependence within 

and spatial component to the clusters themselves. This locates the clusters 

within the grid and gives them a spatial size. 

Our ultimate aim will be to take a sample of the grid cells from which we can 

make inference about the total number of members within the population. 

The sample is taken in the same way as in the design-based methodology of 

Thompson (1990). 
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6.2 A Spat ia l M o d e l 

Clustered data has an intrinsic spatial component, so constructing a model 

which exphcitly uses this spatial aspect of the data would seem to be an 

obvious step. We would hope that by modelhng the spatial component as 

well ag the size of the clusters we can obtain more information for the sample. 

For instance there is knowledge about the size of a cluster contained in its 

distance &om its nearest neighbour. If two cluster are close together they 

are more hkely to be small. 

In fact we will learn that the real elegance of the final model proposed is 

that it will finesse the spatial component of the model enabhng many of the 

diGculties discussed in this section to be avoided, while still enabhng us to 

capture enough information &om the sample to make inference about the 

population total. 

To reSect the structure of the thesis we present this model in a Bayesian 

framework, although much of the original work was attempted using fre-

quentist methods whicli quickly proved analytically intractable. 

We start with a grid of an arbitrary size in which there is some clustered 

population. 
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a 

Figure 6.1: Illustration of a clustered population, dark grey cells indicate 
cluster centres, light grey indicate cluster cells. 

Consider a region containing a sparse, clustered population and super-impose 

a regular grid of N cells over this region The following variables are defined: 

the total number of grid cells N, the width of the grid c, the height of the 

grid r and the number of cluster centers W. Then we let S i , S w be the 

coordinates of the cluster centers, Xi,...,Xw be the number of cells con-

tained in each cluster, Yi, ...,Yw be the population counts in each cluster, 

and finally di, ...,dw denote the distances between each cluster centre and 

the nearest centre to it. 

We generate the number of cluster centers using a Poisson distribution de-

pendent on the grid size and then generate coordinates for these centers 

using a uniform distribution, although neighbouring centres will necessarily 

be rejected. We can then generate Xi, ...,Xw and Yi,..., Yw from Poisson 

distributions dependent on the distances between clusters and the size of 

the clusters respectively. The distances between clusters are not random, 

but are a function of S and W. 
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We can construct the following likelihood, 

[ :y ,S ,X,Y,d |a , /3 ,7] 

= [W][S|Ty][X|P7,S][Y|X,W,S] 

x f r H 
A. 1. r n W![l - e-"^] f j ^ r c 

n ^ )̂)}] 
w 

X 
n y.![i _ J 2 f = i e x p i — y x i + j l o g { j X i ) - l o g { j \ ) } ] 

This model seems initially attractive, it has many of the same features as 

the models used later in this thesis and after the sampling stage has been 

added the likelihood can be analysed using a Gibbs sampler in a similar way 

to the previous chapter. However, there are several problems underlying 

this likelihood which need to be explored in more detail. 

The first problem is how to determine the position of a centre within a 

cluster from the sample data. This is illustrated by the following examples. 

1) 2) 3) 

Figure 6.2: An illustration of some cluster shapes which pose difficulties 
when trying to determine a centre 

In the first example there could conceivably be dispute over which cell is the 

'true' cluster centre. While most people could probably agree on a center 'by 

eye', it is not clear what the 'true' center would be, yet this is exactly what is 

required as sample data in the model. This problem is not insurmountable, 
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there are several possible (although ad hoc) methods for Ending a cluster 

centre. 

One possible (although computationally expensive) method could be to de-

fine the centre as the cell which minimises the following sum, 

6)^ . 
b 

Here a and 6 are cells within a particular cluster. This method could be seen 

ag similar to minimising the sum of squares in regression analysis. We are 

minimising the distance between a given ceU and the remaining cells in the 

cluster. The cell a which minimises this sum will be defined as the centre 

of the cluster. In the event of multiple cells minimising this sum the centre 

will be randomly chosen from these cells. 

This method requires the summation to be performed for each cell in the 

cluster; in large clusters this will become time consuming. A second possible 

method which could be carried out quickly by hand is as follows: 

# Find the longest row of horizontal squares and the longest column of 

vertical cells. 

# Extend the row and column (outside of the cluster if necessary) to find 

the intersection of row and column. 

e Count the number of cells within the cluster along both diagonals 

through the intersection. 

« Take the largest of these values and find the mid-cell along this diago-

nal (in the case of multiple possibihties the center is chosen at random 

from these possibihties). 

e The cell chosen will act as the cluster center. 

This method fails if we have a pmicture or 'hole' in the shape as in example 

2. To overcome this we would have to use other conditions, for instance if 
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the center hes in the puncture take the cell contained in the cluster with 

the closest Euclidean distance to it. Otherwise, we could take all of the 

surrounding cells contained in the cluster and have the cluster center as the 

cell with the largest population count. 

This leaves the third example, if we have a cluster on the edge of our area, 

the center could be a cell on the boundary of the area, yet most algorithms 

would put the center away &om this boundary. 

It is not clear whether these problems would cause enough error in the 

predictions to be of concern, however, it is important to acknowledge their 

existence. 

We now move on the function /(Wj 5"). the distance between a cluster centre 

and it's nearest neighbour. This distance is necessary as we would like to 

model the size of clusters dependent upon it. We would expect that if two 

cluster centers are close together the clusters will be smaller so that they do 

not overlap, if they are 'far apart' we would expect they could be larger. We 

End the distance between centers by defining it as the Euclidean distance 

between the middle of the cluster centers ceUs. 

Problems arise modelling the size of cluster in this way if we allow two 

clusters to be very close together, the cells would need to be arranged within 

the cluster so as to ensure that the two clusters did not overlap. This can 

be achieved in two ways: 

# CoUapse the clusters down to the cluster centres and do not worry 

about their spatial shape, in which case we are dealing with a point 

process; 

# Allow the clusters to overlap in the hope that this does not aEect the 

overall estimations. 

It may well be possible to produce a good spatial model using these methods, 

although it is clearly not aa straight forward as we initially conceived. This 
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is why the main model presented in this thesis is so appealing, it allows 

us to model the data spatially, while not forcing us to work with all of the 

problems that spatially clustered data can pose. 

6.3 T h e M o d e l 

Wis now propose a model which Gnesses the difEculties described above. 

Consider again a region containing a sparse, clustered population and super-

impose a regular grid of N cells over this region. We let A" be the number 

of nonempty grid cells, where a cell is dehned to be nonempty if it con-

tains at least one member of the population. Let f represent the number of 

nonempty networks where a network is deSned in the same way as in Thomp-

son (1990). Then let Y = ....Yp) denote the number of nonempty grid 

cells within each nonempty network so that % — The number of 

sampled units is denoted by where a sampled unit is either one whole 

network or one 'empty' cell. Therefore the total number of units which can 

be sampled is (TV — A" -I- P). 

At this first stage we assume that each cell contained within a nonempty 

network contains a member of the population. However, we will not actually 

model the number of members of the population within each cell mitil the 

next cliapter. 

We let be a truncated binomial % a). % ^ 0 and f ^ 

/)); p ^ 0 to ensure that P < Then the size of each 

network Y = (}%,..., Yp) will be a partition of the % cells over the f cluster 

centers. 

Modelling the population in this way enables us to finesse the problem in 

such a way that it is no longer necessary to know where the networks are 

in space, we simply need to know the size of each network. This crucial 

insight reduces the problem, yet because in the end we are only interested 

in the population total not the precise physical location of the units of the 
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population, we are not losing any information. Although we would obviously 

obtain less information in this case, this loss of information is not enough 

to warrant the added comphcations. 

6.4 T h e mode l w i t h a fixed n u m b e r of gr id cells 
con ta ined w i th in c lus te rs 

6.4.1 Introduct ion 

We let the total number of grid squares be jV. As in West (1996) we first 

assume that the number of cells contained within networks, % = %o, is 

known. Wis then have a binomial distribution over %o determinmg the value 

of f and a multinomial distribution to create the Y values. We multiply 

these two distributions together to form the likelihood for this initial model. 

The likelihood function of the initial model taking into account the fact that 

f > 0 is, 

6.4.2 The Notat ion within t he Observation process 

The networks will be split into the unobserved and observed networks using 

the subscript 0 for the observed values %o, ̂  and Yo and the subscript 1 

for the unobserved values are then %!, and Yi . 

The observed and unobserved data is then denoted by D and U. So D = 

{ X o , f b , Y o } a n d U = { % i , f i , Y i } . 

In order to construct samphng probabilities we introduce the further nota-

tion Z = (Zi, a vector of the sizes of all possible units which 

can be sampled, both empty and nonempty. An empty unit is dehned to be 

of size 1. 
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We sample using the informative samphng strategy of Thompson (1990). 

This proposes that if one cell within a network is sampled the entire network 

is sampled and therefore the probabihty of samphng a particular network is 

weighted according to its size. As we have seen a similar sampHng scheme has 

been modelled in Nair and Wang (1989) by introducing a weight function. 

We now construct a parallel weight function for the discrete case using the 

same principles. The discrete case, however, is complicated by the possibihty 

of samphng two units of the same size. 

The sample is ordered and any unit once sampled is not replaced. Wis define 

61 = 1̂ + ... + Zn ^((7) = ™ ^ similar way to Nair and 

Wang (1989). 

Consider the probabihty of sampling the Erst unit zi. If there is only one unit 

of size zi in the population, the probability of samphng it will be . If 

there are multiple units of size the probabUlty of samphng this particular 

unit becomes . We dehne g; to be the number of networks of size ẑ  

remaining after (z — 1) previous units have been sampled. 

We now see that the probabihty of taking a particular sample of size in 

the discrete case is 

H i -

This is simply and clearly illustrated in the following example. 

Consider a population consisting of eight units of the following sizes, 

5 ,5 ,3 ,6 ,1 ,2 ,2 ,7 

from whicli the following sample is taken 

5,3,5,2. 

The probabihty of taking this sample is then 
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If we introduce this sainphng probabihty to our model in the same way as 

Nair and Wang (1989) we have the following hkelihood, 

[ Y , m ^ 

6.4.3 Outl ine of the Gibbs Sampler 

The model outhned above is too comphcated to be Atted analytically, so 

we will use a Gibbs sampler to find estimates of the underlying parameter 

/). The accuracy of the parameter estimates will be tested by generating 30 

populations using the same known value of /) and then taking 5 samples of 

size 15 &om these populations. Each sample will then be used to initiahse 

the Gibbs sampler and the parameter estimate can be compared to the 

original parameter value. This method is equivalent to that used to test the 

Gibbs samplers in section (5.2). In this section all Gibbs sampler are run for 

40000 iterations with a burn-in of 2000. This burn-in size is precautionary as 

all chains were shown to converge within 500 iterations using the techniques 

described at the end of the chapter. 

We present a brief overview of the steps in the Gibbs sampler before going 

on to hnd the full conditionals and describing how these will be sampled. 

1) Initialize. We will need to provide the initial values for the unsampled 

components, and Yi . 
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2) Generate from the conditional (7] 

3) Generate and Y i from the conditional 

Repeat from 2). 

6.4.4 Conditional Posterior Distributions and Sampling 
Strategies 

Posterior distribution for (5 

The posterior distribution for ,8 is proportional to the product of all of the 

terms in which appears in the likehhood multiplied by the prior distribu-

tion for /3, 

oc pr2or(;8) x 
1 - ( 1 -

Sampling Strategy for (3 

The posterior distribution for is not simply a beta distribution due to the 

truncation, so a Metropolis-Hastings accept-reject step is used to sample for 

Due to the close resemblance of the likehhood to the beta distribution, 

a f , %o — P + C) be used as the proposal distribution. The 

prior for will be a distribution. 

Wis will make 7̂  = 1 and = 1 so there is a uniform prior distribution for /3. 

It is necessary to ensure that the sampler is moving well over the sample 

space. To do this we look at a series of plots of the values of generated at 

each iteration of the Gibbs samplers. The following is a very small section 

of one of these plots, all of whicli show that the sampler is moving well over 

the parameter space. It gives a clear indication that the Markov chain is 

mixing well. 
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teration 

Figure 6.3: Plot showing the movement of f3 over the parameter space when 
the actual value oi j3 = 0.15. 

Conditional Posterior Distribution for Unobserved Clusters and 
Cluster Sizes 

It is clear that Y is highly dependent on the values of X and P . In these 

circumstances it is usual to generate these parameters together in one step 

of the Gibbs sampler (Seewald, 1992; Liu et ah, 1994; Sahu and Roberts, 

1999). Obviously the conditional distribution for these parameters will not 

be easily sampled from so we will use a second Metropolis-Hastings step. 

The conditional posterior distribution is formed from all of the terms in the 

likelihood which depend on either P i or Y y . 
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6i + (((7) \P0 + Piy 1 - (1 - /;)^o 
i=l 

/-V \PO+Pl 
x(Xo - p o - p i ) ! 

n 
oc O t -

(m - 1 ) ! " - (%0+pi - 1 ) ! 

+ (Po+Pi)! 

1 ^ 1 
x n 

po + p i / t r ( m - i ) ! ' 

Sampling Strategy for Unobserved Clusters 

We Grst construct a proposal distribution from which it is straightforward 

to sample ( f i , Yi) jointly and accept or reject these values using the above 

distribution as the target. 

It is convenient to generate f i using a discrete random walk; given the 

past value of f i , f * . we generate the new value of f i from the discrete 

distribution centered at with support j: A; : 6 = 1}. Then given 

generate &om the distribution of %o, f ] , which is a 

lp^+multinomial((%o — — f i ) , distribution. 

The proposal distribution is therefore 

= 

By construction it is now simple to generate &om the proposal distribution. 

Letting C denote the constant of proportionality, the logged ratio of the 

target distribution over the proposal distribution is given by 
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- log((fb + fi)!(%0 - - f i ) ) +P1 log 

- ^ ( 2 / i - 1) log(po + Pi) + ^ ( 2 / i - 1) k 

' 1 - / 3 

Pi 

If we define f { and to be the new proposed variables, the A'letropohs-

Hastings test criterion is 

Note that must be recalculated at each step. 

6 .4 .5 R e s u l t s 

The model was tested using two different values for the total number of 

non-empty cells, forty and eighty. These values seem appropriate given the 

number of cells in the region and the fact that we are trying to model sparse 

clusters. 

We will show results for the parameter estimates as these will form the basis 

from which the rest of the model is constructed. 

Several diEerent prior distributions for were used to measure prior sensi-

tivity the results of which can be found in Appendix B. The estimates do 

seem somewhat sensitive to the prior chosen but the eEect is shght. The 

best estimates were obtained with a uniform prior, suggesting that at this 

stage there is a lot of data in our sample and that the model is performing 

well. 
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We present parameter estimates which are a median over thirty populations, 

eacli of which has been sampled Sve times thereby giving us one hundred 

and fifty estimates for each level of the parameter We have taken the 

median of the estimates as this is the measure we will use further on in the 

thesis as there can be large outliers in the distribution of estimates. At this 

stage, however, mean and median produce very similar plots. 

Ng=40, n(p)=Beta(1,1) N q = 8 0 , N ( P ) = B e t a ( 1 , 1 ) 

Actual Value of p Actual Value of p 

Figure 6.4: Plots of the actual underlying parameter values against the 
median of those predicted by the Gibbs sampler, here the intervals bars 
represent the entire range of values generates by the gibbs sampler for /3. 

The results are extremely promising at this stage allowing us to add further 

complexity to the model and begin to model the non-empty cells. 
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6.5 T h e M o d e l wi th an U n k n o w n N u m b e r of gr id 
cells con ta ined w i th in c lus te r s 

6.5.1 Int roduct ion 

The previous section only models the situation where there are a known 

number of grid cells contained within networks. Wis wish ultimately to be 

able to model the number of grid ceUa contained within networks and make 

inference about this, so we include the number of grid cells contained within 

networks as another variable within the Gibbs sampler. 

The new variable will determine the number of 'non-empty' cells contained 

within the networks. We place a distribution on this variable so both the 

underlying parameter value and the actual value of the variable must now 

be sampled. We caU the new parameter a and model the number of cells in 

networks using a binomial distribution over the actual number of grid cells. 

6.5.2 The Likelihood Function 

The likelihood function, remembering that we are assuming that % > 0 and 

f > 0, is 

x f x - f 

We sample from the population as before and construct the weight function 

in the same way so the sampled likelihood fimction becomes, 
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a ^ ( l - a ) ^ 

i=l 
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X 

/)^(1 -

6.5.3 Outline of t he Gibbs sampler 

As before we present a brief overview of the steps in the Gibbs sampler before 

proceeding to Snd the new conditional posterior distributions and describing 

how these will be sampled. The conditional posterior distribution for /) 

remains unchanged as does the samphng method. In this new model we may 

End it necessary to change the parameter values of the prior distribution. 

This will be discussed in the results section of this chapter. 

1) Initiahze. We will need to provide the initial values for the unsampled 

components, f ] , and Yi . 

2) Generate a &om the conditional D, (7] 

3) Generate from the conditional D, (7] 

4) Generate A"! from a random walk 

5) Generate |D, A"!. ^ (^ i . /3) 

6) Generate [Yi|D, A"!, f i ] (A":, f i ) 

7) Accept or reject using a Metropolis-Hastings step within 

the Gibbs sampler. 

Repeat from 2). 

79 



Condit ional Posterior distribution for a 

The conditional posterior distribution for a. is very similar to that for (3 and 

is again formed from the product of the prior distribution and all of the 

terms in the likelihood containing a; 

[(y.\D, U , X, Pq, P i ] oc p r i o r { a ) x 
a (1 — a) 

1 - (1 - a ) ^ 

Sampl ing Strategy for a 

For the same reason we used a Beta prior distribution while sampling for 

P we take a B e t a { 5 , e ) prior distribution and use this within a Metropolis 

Hastings algorithm. We will take the B e t a { 5 + X ^ N — X + e ) distribution 

as the proposal. We vary 5 and 7 within the prior distribution and discuss 

the effects of this in the results section. 

We demonstrate that the sample estimates are moving around the parameter 

space in the plot below. 

SO 300 550 800 1050 1300 1550 
Iteration 

Figure 6.5: Series of generated values of a for one of the populations gener-
ated when the actual value of a = 0.15. 
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As in the previous case it is clear that the sampler is mixing weU even over 

such a small subset of the iterations. 

Remaining Conditional Posterior Distributions 

We will sample f i and Yi in the same step because the variables are 

all very highly correlated and it therefore makes sense to generate them 

together as discussed in the previous model. 

The conditional distribution for these parameters is, 

' " " - " " - ' I = 

;)o + p i / 

x(3;o + :ci - P o - P i ) ! 

/ ^ y i / i - i ) / ^ Y^/po+pi-i) 
/ \P0+P1 / 

c I I . X = " ( ! - » ) -

(l/i — 1)! " - (i/po+pi - 1)! 

n 6. + ^([/) ( A r - a ; o - z i ) ! 

P o + P i / 

Sampling Strategy 

We generate using a discrete random walk; given the past value of A"!, 

we generate the new value of &om the discrete distribution centered 
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at with support {%* ± A; : A: = 1}. Then given and /3 we generate 

f i from the truncated binomiai(%i./3) distribution. Given and f i we 

generate from the distribution of [yiiyoiA", f ] which is a 

lp^+multinomial((A'i —-Pi), distribution. We sample for %i, and 

using a Metropolis Hastings accept-reject step. 

The proposal distribution is 

" 0 5 ^ 

By construction it is simple to generate from these proposal distributions. If 

B is now the constant of proportionality, the new logged ratio of the target 

distribution divided by the proposal distribution is given by 

Pi! 

+ I l log I ; I + lor l - a / (1-/3)^0+^1 

- l)log(po + P i ) 
lEs 

"',?« + Pi 

If we define and to be the new proposed variables, the Metropolis-

Hastings test criterion is 

Note that again mtist be recalculated at each step 
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6 . 5 . 4 R e s u l t s 

We generate thirty diEerent populations from several diEerent combinations 

of underlying parameters and take Gve samples from these populations using 

the samphng scheme described in Thompson (1990). We use these sample 

values within the Gibbs sampler and generate parameter estimates which 

are as close ag possible to the original values. We again run the sampler for 

40000 iterations with a burn-in of 2000. 

We have very httle sample information and are not expecting our estimates 

to be very accurate. However, with a choice of prior which is suGciently 

robust to changes in underlying parameter values we can in fact get very 

good estimates at all of our chosen parameter values. The next four charts 

show the best prior combmation for each initial value of the parameter a. 

The confidence interval increases as the priors change due to the shape of the 

prior for a. The Beta(l, 25) has a much narrower peak that the Beta(2.5,9) 

and so the conhdence interval will also be narrower. A full set of plots for 

each prior is given in appendix C. 
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n(a)~ Beta(1,25), Ji{(})= Beta(2,9) 
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n(a)~Beta{3,20), 7t(P)=Beta(2,9) 
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K(a)~ Beta(3,15), 7t(P)= Beta(1,9) 
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Figure 6.6: Plot showing the median predicted values of the parameter a. 
The first row under each graph gives the initial value of and the second 
gives the initial value of a. Interval width is three standard deviations 
(calculated over the diEerent population values) in each direction so negative 
values should be read as zero. 
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Interestingly, to obtain the best estimates of the parameter shghtly diSer-

ent prior parameter values are needed. For the best ht of a it seems that 

must be a very shght underestimate. However, this diSerence is neghgible 

aa can be seen in the following plots. 

Tt(a)-Beta(3,15), rt(P)=Beta(1,9) jt(a)~Beta(3,15), ii(P)= Beta{2,9) 

T /O & 
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 

Figure 6.7: Plot showing the median predicted values of the parameter 
The 6rst row under each graph gives the initial value of and the second 
gives the initial value of a. Interval width is three standard deviations 
(calculated over the diSerent population values) in each direction so negative 
values should be read as zero. 

Plots averaging the medians over the initial parameters a and can also be 

found in appendix C. These reafhrm the conclusions already drawn but do 

not shed any new insight so we have not included them here. 

In our sampler we are generating the value of f from % so when we add 

in the population total it is more important to have a good fit for A". For 

this reason we conclude that the 7r(a) =Beta(3.15) and 7r(/3) =Beta(l ,9) 

should be used in all situations where no further information is available 

because these priors are most robust to changes of underlying parameter 

values and they predict reasonably well for all of the initial values of a and 

,9 explored, which is our main aim. However, when applying the model, much 

better results can be obtained by using some of the other prior combinations 

provided we have some knowledge of the structure of the population, for 

instance if we know that o: is likely to be very small we recommend that a 

25) prior is used for a and a 9) prior for /3. 
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6.6 Convergence 

It is convenient at this point to discuss the convergence of the Gibbs sam-

pler. We will not examine convergence again in the following chapter as the 

likelihood functions will not change. 

As discussed in chapter 4 we now assess convergence using CUSUM plots (Yu 

and Mykland, 1998). We use this method because it can be run using the 

outputs from the sample runs, therefore keeping additional calculations to a 

minimum and limiting computational expense. A more detailed discussion 

of which method to use to assess convergence in any particular case can be 

found in Brooks and Roberts (1998). 

The 'burn-in' length was taken to be 2000, however, in all cases convergence 

was obtained in less than 500 iterations. As an example of when convergence 

occurs we present in figure 6.8 the following trace plot showing the initial 

convergence of one of the plots. 

800 1300 
Iteration 

Figure 6.8: A trace plot showing how the paramter estimates for alpha 
converge. 
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The initial value was set to be deliberately high to accentuate the bnrn-in 

and as we can see convergence occurs in a few hundred iterations. 

To construct a CUSUM path plot, we Erst discard the hrst Tio iterations of 

the sample runs or the 'burn-in'. Wis assume {xi , ...,x"} is the output from 

a single run of the sampler. Let ^ be the parameter we wish to monitor, so 

in this case either a or We then calculate 

1 ^ 

The CUSUM is then calculated as follows, 

T 
^ —/i] for + -

i=no+l 

We then plot against T for T = Mo + 1, If the plot produced is 

smooth then it indicates that the chain is mixing slowly in a "hairy" plot 

indicates fast mixing in To gain an indication of the smoothness the plot 

it is compared to a benchmark plot of random normal variates with a 

mean and variance of the estimated mean and variance of 0. 

We present an example of two of the plots obtained, one for a and one for 

in figures 6.9 and 6.10. We show plots only 20000 iterations after the 

burn-in period for clarity, although the plots remain similar if extended. 
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Figure 6.9: An example of a CUSUM plot for a compared with a plot 
generated from nii normal variates with the mean and variance estimated 
from a 
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Iteration 

Figure 6.10: An example of a CUSUM plot for compared with a plot 
generated from iid normal variates with the mean and variance estimated 
from a 



It is clear &om figures 6.9 and 6.10 that the chains have converged, as the 

comparison between the normal variate and the ^ variate is favourable. How-

ever, Brooks (1996) argues that this is subjective and suggests a quantitative 

measure. He deGnes 

1 if S'j'—1 > Sr < 
or < <9̂  &iid 5'%' > 5'T+i 

0 else 

Then as a measure of 'hairiness' 

D. 

71—1 

I ] 

In this measure if = 0 we have maximum smoothness, if = 1 we ao,n 
have maximum hairiness. The 'perfect score' then would be = 0.5. In 

our example = 0.501 for a and = 0.536 for /). This again shows 

that our Gibbs sampler is converging as we would hope. 
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Chapter 7 

Modell ing Popula t ion to ta l s 
in clustered popula t ions 

7.1 I n t r o d u c t i o n 

We are now in a situation where it is a relatively simple extra step to 

model the actual population total. We do this by deSning a distribution 

for the number of members of the population found in each network. Let 

]VI = be the population totals in each network and condition-

ally model .... Mf to be truncated Poisson distributed with parameters 

3/17; - 3/P?- Here are the network sizes as in the previous chapter. 

The truncation takes into account the fact that each grid cell within the 

network is nonempty and so must contain at least one member of the pop-

ulation, i.e. for 2 = 1, The posterior conditional distribution 

for M is then. 

-t- j log(i'2/i) - Zog(;!)}] ' 

It is interesting to note that this model does not reject the loglinear model 

which frequentists might expect to see used at this point. It requires more 
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numeric approximation to work with a loghnear model where the mean 

would be taken to be as opposed to the mean of 'yi/i above. We would 

need to adopt numerical techniques to generate 'y as it would no longer 

resemble a gamma distribution. While techniques have been constructed to 

6t these models (see Wild and Gilks (1992, 1993)), they are computationally 

comphcated. 

We initially fitted a logHnear model using basic numerical techniques but 

in a structure such as this adding in a further fairly inaccurate numerical 

step simply made the estimates unacceptable. While we could theoretically 

have used the tecliniques in WUd and Gilks (1993) rather than our crude 

numerical ones the length of time needed to run this simulation proved 

prohibitive (taking run times from weeks to months on a behemoth cluster of 

Pentium fours). This seemed unnecessary when a simple Poisson distribution 

could be used much more simply and with less numerical error. 

7.2 The Model 

The complete density function for our full model of population counts now 

becomes. 

l - ( l - a ) ^ 1 - ( 1 - / ) ) ^ 

- ex - M ' - W L i W 
( ^ i _ i ) ! . . . ( 2 / p _ l ) ! 

n ^ " ^^=1 Gzpi-Ti/i + j log(''y2/i) - Zog(;!)}] 

We sample from the population and construct the weights in the same way 

so. 
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n 
Zi X g i 

']V\ (1 - a) 

i=l 
ÂAT-X 

n 

%y l - ( l - a ) ^ 

x f X -

m*![l - + j log('yi/i) - Zog(;!)}] 

7.3 T h e G i b b s s a m p l e r 

The steps in the Gibbs sampler remain the same as in the previous chapter, 

we simply add a further step to sample for The value of will be sampled 

with and Y . 

7 .3 .1 C o n d i t i o n a l Pos t er ior D i s t r i b u t i o n for 7 

The conditional distribution for "y is formed as foUows 

| D , (7, M ] 3C PR2OR( F) X R ^ . , [ 1 _ J LOG('Y3/J -
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Sampling Strategy for 7 

The numerator in the likelihood for is proportional to a gamma density, 

so to make the posterior distribution tractable we have the prior distribution 

Ga,?THT!,a((, T) and the proposal distribution for "y a GaTTiina, mi + 

distribution. 

We will then sample using a Metropolis-Hastings accept-reject step in the 

same way as previously. 

7.3.2 Remaining Conditional Distr ibution 

We will sample Mi . and together. This is again necessary because 

of the dependence between M and Y. 

An interesting point to note at this stage is that we envisaged adding the 

population total to the model as a simple addition which would not affect 

the underlying structure of the model. Clearly this is impossible due to the 

dependence on Y. However, in some senses it can still be separated and this 

is rejected in the target distribution given below. To illustrate these points 

we note that the sampHng design satisGes the condition 

[{21,..., % Y, M] = [{%i,..., f , Y], 

so we can factorise the model as follows, 

[{,1,..., 2 J , f , Y, M|a , /), 7] = [ { 4 , f , Y , M][X, Y, M|a, ,6,7] 

= [{21,..., Y][X, f , Y , M|a , /), 7] 

= [ {2 i , . . . , 2^} |X ,RY][X, f ,Y |a , /3 ] [M|X, f ,Y ,7 ] 

= [{2i,. . . ,2^}%,P,Y|a,,9][M|P,Y,7]. 

Thus the model can be factorised into two terms, at the population level 

(a, and 7 are orthogonal and the model can be interpreted as a spatial 

version of the count data models in Mullahy (1986); Heilbron (1994); Welsh 
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et al. (1996). However, at the sample level the hkelihood is obtained as we 

have seen in chapter 2 by summing over the unknown variables, so even if 

there is no dependence between IVI and Y the factors are still hnked by the 

common unobserved f i . 

The full conditional distribution for the remaining unknown parameters is 

now, 

oc n 

U o + p J ' ' l i ( 3 / , - l ) ! 

- Z L i + ; l o g ( w ) -i = l 

Sampling Strategy 

We wiU perform a Metropohs Hastings accept-reject step in exactly the same 

way as in the previous chapter, generating M i as independent truncated 

Poisson(ea;p{'y^i}) random variables. The proposal is therefore, 

n 6 
- Z jL i ; log(i'i/i) - Zog(;!)}] 

Constructing the proposal in this way means that all of the terms depending 

on IVE cancel with the target as noted above, so the logged ratio of the target 

to the proposal remains identical to the previous chapter, 
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- l o g 

1 = 1 

(TV - zp - a;i)!(po + pi)!a;i! 

Pi! 

a \ , / 1 - ( 1 - ^ ) 
+Zl log + lo: 

a;i 

l - a / 

' l ) l og (po+Pi ) 

zGa 

+ ^ ( 3 / : -
Pi 

PO + P l 

7.4 Results 

The choice of prior for "-y has little affect so we will summarise the results ob-

tained for 7r("y) =Gamma(2, 7) only. The results for 7r(g') =Gamma(2, 5) and 

7r('y) =Gamma(5. 5) are very similar and a full set of plots for these priors 

can be found in Appendix D. We note that all interval bars in the appendix 

are for the inter-quartile range as this gives a much cleaier indication of the 

fit for each different prior. In the following graph, however, the interval bars 

represent the 95% conGdence interval. The setting for the Gibbs sampler 

remain as before we generate thirty populations which we sample five times 

and run a Gibbs sampler of 40000 iterations with a burn-in of 2000. 

As expected, the best overall results were obtained when '7r(o!) =Beta(3,15) 

and 7r(/)) =Gamma(l,9) as we see overleaf. 
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The difference between actual and 
predicted population totals 

0 0 0 ° 

Medians of the differences between actual 
and predicted population totals 
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Figure 7.1: Plots showing the best overall fit generated from a single set of 
priors (7r(o:) =Beta(3,15), 7r(/3) =Gamma(l, 9)). Interval bars represent the 
95% confidence interval. 

The positive gradient in these plots is not a cause for concern because the 

initial values of a and are increasing from left to right and the fit is depen-

dent on these parameters. We could change the ordering of the underlying 

variables and the positive gradient would no longer be apparent in the plots. 

This trend does emphasise the fact that how well the estimator does is 

highly dependent on the underlying parameter values. The larger a and 

/), the more the population total is underestimated. This makes intuitive 

sense; we are assuming that we are modelling sparse clustered data and if a 

and are large then we have many small clusters which does not hold with 

this assumption. In some senses in this case we have a much more evenly 

distributed population; with larger grid cells the same population could be 

thought of as randomly scattered single units rather than clusters as the 

clusters will be of a similar size. 

In general, the model seems to be working well. If we have an idea of the 

size and structure of the population which we can incorporate into our prior 

behefs then we can predict very well. If we do not have this information 

then we can seriously underestimate the population total. Even in this worst 

cage our estimates are still as good as those used previously to estimate 

population totals from this kind of data. 
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7.5 A c o m p a r i s o n w i t h t h e e s t i m a t o r in Thomp-
son (1990) 

We will compare our estimator to the design-based estimator suggested in 

Thompson (1990) to aasess how well it performs in comparison. Two estimar 

tors are applied in this paper, we concern ourselves with the estimator which 

produced the most accurate estimates, the modihed Horvitz-Thompson type 

estimator. 

The Horvitz-Thompson estimator, in which each sampled unit is divided by 

its inclusion probability, is an unbiased estimator in sampling designs where 

the probability that a unit is included in the sample is known for every unit. 

The Horvitz-Thompson estimator is modiGed in Thompson (1990) so that 

it only makes use of the inclusion probabilities if the unit is included in the 

initial sample, it can therefore be apphed in this case. 

We Hrst look at the comparison when we use the combination of priors which 

which are most robust to parameter changes and would therefore be used in 

general. The Gibbs sampler is run as before, however, in these comparisons 

only three samples are taken from each population due to the similarity of 

the sample generated. 

%(«) =Beta(3,15), 7r(/)) =Beta(l ,9) 

Sample 
Size 

? ^ ( ( g ) (r^T*) (rg) me(f(rg) far(r_ffr*) for(rg) 

10 16884.48 8617.66 -86.53 44.79 35.00 40510.35 7801.35 

15 13750.54 7264.52 -47.39 29.86 17.50 21442.58 8231.73 

Table 7.1: Table showing a comparison between the design-based and model-based 
estimates. ^ denotes the Bayesian estimator, r denotes the average diSerence be-
tween the true and predicted population totals (the bias), (yfT* is the modihed 
Horvitz-Thompson estimator. 



We clearly see that the model-based method produces estimates with smaller 

actual variances than the design-based method of Thompson (1990). The 

estimator is also on average closer to the true values in these particular cases. 

We have not presented the efEciency statistic given in Thompson (1990) as 

clearly this is not appropriate, the variances are too large for comparison 

with the very small variance of the simple random sampling method. The 

simple random sampling method may give small variances in all cases but 

the population estimates are so biased as to make the method useless in this 

case. The average mean square error of the population total obtained using 

simple random sampling is 48866. while the average variance is 1.458 for a 

sample size of 15. 

We also present below a comparison of our estimator to the Horvitz-Thompson 

estimator when a prior which is not robust to parameter changes is used. 

In other words a prior which gives poor results for some parameter combi-

nations. 

7r(o;) =Beta(1.25). 7r(,̂ ) =Beta(l ,9) 

Sample 
Size 

(rg) med(rg) far(r/fT*) %;ar(rg) 

15 21480.4 1314.2 -44.58 89.61 77.50 14080.44 8257.69 

Table 7.2: Table showing a comparison between the design-based and model-based 
estimates when an inappropriate prior is used. B denotes the Bayesian estimator, 
r denotes the average difference between the true and predicted population totals 
(the bias), (ffT* is the modified Horvitz-Thompson estimator. 

We see that while the Horvitz-Thompson estimator on average produces 

slightly better estimates of the population it still has a larger variance. 

If we look at a breakdown of the different starting values of the parameters 

generating the population we see the following results. 
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77(0:) =Beta(3,15), 7r(/3) =Beta(l ,9) , sample size of 15. 

Value 
a (r/fT*) W ) 'uar(rg) 

0.05 14320.6 7901.73 -71.16 -62.10 2304.06 1393.84 

0.1 19736.42 7332.59 -60.05 4.425 9654.03 1920.51 

0.15 23436.47 8398.16 -33.64 57.17 16700.88 3057.24 

0.2 28276.79 9294.46 -24.70 120.0 24193.69 4718.04 

Table 7.3: Table showing a comparison between the design-based and model-based 
estimates when the estimates are broken down over the initial parameter values. B 
denotes the Bayesian estimator, r denotes the average diEerence between the true 
and predicted population totals (the bias), is the modiGed Horvitz-Thompson 
estimator. 

Interestingly the Horvitz-Thonipson estimator improves if used with pop-

ulations in which there are more small networks. This makes sense as it 

is based on simple random sampling so the closer the population comes to 

being randomly spaced rather than clustered the better it will do. This is in 

contract to our model which assumes few large networks and so does better 

in the clustered cases. 

In conclusion our estimator out-performs the Horvitz-Thompson estimator 

when the prior is appropriate, but does not perform as well in comparison 

when the prior is not appropriate. However, our variances are always much 

smaller irrespective of the prior choice. 
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Chapter 8 

A Spatial Model and Possible 
Extensions of this Work 

8.1 A p p l y i n g t h e M o d e l t o t h e C o n t i n u o u s C a s e 

The model constructed in this thesis has some of its origins in the model 

for oil pools discussed in Nair and Wang (1989) and Wisst (1996). It seems 

a logical step to attempt to extend our model to the case where we are no 

longer dealing with discrete populations but with continuous pools. 

Our model enables us to consider more data than the model of Nair and 

Wang (1989) because we use the information about where clusters, or pools 

in this case, have not been discovered as well as information about pools we 

have seen. In this section we will consider some of the added complexities 

and look at how we can adapt our model to this situation. 

8.1.1 Construct ing a f ramework 

The Erst step in looking at this new situation is to realise that working 

with grid cells is no longer appropriate. If we work with cells we will have 

the situation where a pool covers only part of a cell. To overcome this we 
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propose changing from grid cells to sampling points, where the sampling 

points will form a lattice over the area. This allows us to remain in the case 

of finite sampling units, while still modelling continuous pools. 

Our area would then be constructed as follows. 

Figure 8.1: Illustration of a continuous population. Here grey shapes repre-
sent pools and crosses are possible sampling points 

We can initially sample any of the crosses. Then, upon finding a pool, we 

sample all neighbouring crosses lying within the pool. Thus our sampled 

units would consist of 'empty' crosses and groups of crosses within a pool. 

The next step would depend on the inference we wished to make about the 

pools. Clearly, if we wished to make inference on the total volume of the 

lakes from the sample it would be possible to replace the Poisson distribution 

of our earlier model and model the Y values using a lognormal distribution. 

We could run the Gibbs sampler in a similar way. 

This would be in keeping with the work done by West (1996) who modelled 

the logs of the volume, depth, net pay and area as a multivariate normal 

distribution. 
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If we wished to make inference on surface area this would cause more diffi-

culty. To see this we present the following diagram, 

Figure 8.2: Examples of irregular continuous clusters. Here grey shapes 
represent pools and crosses are possible sampling points 

As we can see in the first picture, the surface area is not easy to estimate 

simply from the number of crosses within the cluster. One could imagine 

cases where the surface area could be considerably bigger than expected, or 

conversely, cases where the surface area is considerably smaller. It would still 

seem intuitive that the number of crosses should lay some sort of restriction 

on the surface area. 

The second problem, illustrated by the second diagram, is that the method 

of sampling nearest neighbour units may not give a clear indication of the 

size of pools. In this case it could be assumed that this pool was in fact two 

disjoint pools, or in a worse case scenario if both sets of crosses were not 

sampled we would only see half of a pool. 

In order to avoid this difficulty we could adapt the sampling scheme pre-

sented by Thompson (1990) slightly. In this case if a point is found to lie 

within a pool, we would simply sample all of the points lying in the pool. 

This would be more difficult in the case of oil pools, as these tend to lie 

below ground and the surface area is not clearly visible. 

Alternatively, we could think of approximating the surface area by making 

the log of the surface area follow a normal distribution with the 90% confi-

dence interval being defined as lying between the area within the points and 

the area made up of the next set of points out from this, ie. 
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++++++ 
Figure 8.3: Illustration of a possible surface area approximation. Here the 
light grey area will form the 90% quantile and the dark grey area will form 
the 10% quantile 

This distribution would have to be truncated at zero. 

By modelling the surface are in this way we could simply exchange the 

Poisson for this truncated normal distribution and proceed as before. 

It would be possible to model the oil pool data using this 'add on' method, 

exchanging the Poisson distribution in chapter 7 for the multivariate normal 

distribution and modelling the logged values in the same way as West (1996). 

The proposal distribution should always be chosen carefully, however, so as 

not to affect the ratio in the Metropolis-Hastings step. 
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8.2 A p p l y i n g t h e M o d e l t o T h e Snowy M o u n t a i n 
Rese rvo i r Sys t em 

We cannot obtain the spatial data necessary to apply the model to the 

Rimbey-Meadowbrook Reef chain due to the sensitive nature of the oil pool 

data. We will therefore examine a series of reservoirs located in New South 

Wales, Australia. The data is similar, but a map of the locations is available 

which enables us to analyse the spatial aspect of the data. 

We present a map of the system below. 

UK ^ 
Tijmr! 1 

F 

M .(ton; 

Figure 8.4: Snowy Moutain System of Reservoirs 

It is an interesting aspect of this particular region that the reservoirs are 

very narrow, due to their location in the valleys of a mountain range. This 
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narrowness means that the point sampling method described above is in-

appropriate. It is clear that we would have to make the grid very Gne to 

have a point within a reservoir. In this particular case we will revert to 

a grid sampling scheme. We assume that a grid cell satishes the adaptive 

sampling condition if any part of the reservoir lies within it. This change is 

irrelevant as far as the implementation of the model is concerned. It could 

be considered as a design choice to be made at the time of samphng. 

We will model the total volume of water contained in the system because 

this data is readily available. In this model the Trie's represent the log of 

the volume of water contained in reservoir i We construct the likelihood 

function including the sampling distributions as follows, 

Zi X g; 

X 
a (1 — a) 

liV 

X 

- m i - W L l W 

P , 9 

' 8 ^ 
e 2'̂ '' 

We allow the volume of water in each reservoir to depend on the size of the 

particular reservoir in the same way as for the discrete case. 

8.3 T h e G i b b s sample r 

The steps in the Gibbs sampler remain the same as in the previous chapters. 

The value of M wiU again be sampled with %i, and Y . 
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8 .3 .1 Cond i t i ona l P o s t e r i o r D i s t r i b u t i o n for 7 

The conditional distribution for "y is formed as follows 

["xlD, [/, M] (X prior(7) x 
1 

e 2(7 

oc pr%or('y) x —z=l 

Sampling Strategy for 7 

We can sample 7 and from known distributions without the use of a 

Metropohs-Hastings step due to the form of the posterior. 

As the prior for M did not affect the posterior m the previous example, we 

will assume a flat prior for 7 and 

We can therefore sample 7 from a Normal f , p ^ | and ^ from 

a G a m m a ^ — 73/i)^) distribution . 

8 . 3 . 2 R e m a i n i n g C o n d i t i o n a l D i s t r i b u t i o n 

We will again sample Mi , %i, and Yi together. This is necessary because 

of the dependence between M and Y. 

The full conditional distribution for the remaining unknown parameters is 
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now. 

71 
c x T T — X 

+ (TV —ZQ —zi)! 

(1 - (1 - /3)^o+^i)(po + P i ) ! 

1 PI 

P o + P i / ( % - ! ) ! 
zgs 
n 

2 = 1 

Sampling Strategy 

We will perform a Metropolis-Hastings accept-reject step in exactly the same 

way as in the previous chapter, generating Mi as independent Normal(y?^, (7'̂ ) 

random variables. The proposal is therefore, 

" n ^ 

1 2 

Constructing the proposal in this way means that all of the terms depending 

on M cancel with the target as noted above, so the logged ratio of the target 

to the proposal remains identical to the previous chapter. 
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l06 log(2g) + ^ l o g 
z=l 

(TV - a;o - a;i)!(po +Pi)!a;i!\ 

- ' ¥ ^ . J 

+ . . log I + lor f ' "'>" 
l - a / '= ' \ l - ( l - /3)^o+:"i 

- ^ ( 3 / ^ - l ) log(po+Pi) 
iGs 

109 



8.4 R e s u l t s 

We ran a Gibbs sampler for 40000 iterations with a bnrn-in of 2000. We 

sample as described earlier Grom the population of reservoirs in the snowy 

mountain reservoir system. The following data and the earher map are taken 

from the Snowy Hydro website (Snowy-Hydro, 2005). 

Reservoir 
Size 

(Grid cells) 
Volume 
(lO^m^) 

Talbingo 4 920600 
Eucumbene 13 4798400 

Geehi 1 21100 
Tumut Pond 1 52800 

Jindabyne 4 689900 
Tooma 1 28100 

Tumut 2 1 2700 
Tantangara 4 254100 

Jounama 1 43500 
Murray 2 1 1760 
Guthega 1 1550 

Khancoban 1 21500 

Table 8.1: Table giving the sizes and volumes of the reservoirs in the snowy mountain 
chain. Note the Blowering reservoir is not included due to it's location outside of 
the square grid. 

The gross volume of the reservoirs is 6836000 lO^m'̂ . We took three sepa-

rate samples of size 25 from the population of grid cells. In the Erst sample 

we sampled Eucumbene, Jindabyne and Tooma , in the second we sampled 

Eucumbene, Jindabyne and Murray 2 and in the third we sampled Eucum-

bene and Tantangara. The results were as follows. The Hrst predicted total 

was 5084049 with a interquartile range of (4685468,73612846), the second 

5011639 with a interquartile range of (54657482.41034987) and the third 

66335674 with a interquaitile range of (5565467,76606300788). We note 

that the distributions are heavily skewed, as we might expect from a log-

normal distribution. 
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It is encouraging that we obtain an estimate of the right order of magnitude 

considering the data we have. If we look at the data we see that there are 

a large number of lakes in the area. In this example we have an % value of 

33 which lies well within the advised range. However, there are 12 separate 

lakes in this chain, giving us a value for of 0.36, which is well outside of the 

advised range. We would not therefore expect an accurate prediction. As in 

the previous example the risk is that we over estimate the total volume. This 

happens in the cage where we have the least data, when we only sample two 

lakes and both of these contaia a much higher volume of water than most of 

the other lakes. In this case the effect is exacerbated due to the fact that any 

one lake can contain a very large volume of water. Therefore overestimating 

the number of lakes by just 1 can raise the estimated total signiGcantly. This 

effect is also exaggerated by the fact that a small overestimate on the log 

scale can create a marked difference on the true scale. In the cases where we 

have more data, however, the true answer is contained in the interquartile 

range and the estimate is of the right order of magnitude showing that 

the model is working well even in this case which is slightly outside of the 

recommended range. 

The estimate we receive in this case while not accurate is of the correct 

magnitude and given that we are working slightly outside of the advised 

parameter range the model is behaving as we well as we would hope. 
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Chapter 9 

Discussion and fu r the r work 

We have successfully produced a model-based approach for modelling sparse 

clustered data which is more efEcient than the design-based approach adopted 

in Thompson (1990). 

The model can always produces results equivalent in accuracy and eGciency 

to the design-based methods. However, with a good choice of prior we can 

produce results which are closer to the true value and more efEcient. 

Due to the assumptions made in constructing the model, it performs better 

when there are a small number of cells containing members of the population. 

This is in contrast to the design-based estimator. 

The beauty of the model developed in this thesis is its flexibihty. It could 

feasibly be applied in any situation where adaptive cluster samphng is used 

and we have a known value for TV, the number of units with a possibihty of 

containing a member of the population. 

It would be interesting to extend this work by implementing a Markov Chain 

Monte Carlo algorithm where all components are proposed simultaneously 

instead of the Gibbs sampler we use currently. Due to the very high depen-

dence between the variables, the Gibbs sampler steps must be performed in 

groups. It would be interesting to see if sampling from the full distribution 
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in one step produced more accurate results, as the chain may move more 

freely. 

Another extension could be to adapt this model for use in an epidemiological 

problem. Here we would not specif a grid; our sampling units would become 

the population members. A network would be formed from links between 

the population members, for instance by using family ties. In this case it 

would be conceivable that we would want to examine the case where TV is 

not known. A distribution could be placed on TV and could be sampled 

relatively simply within the Gibbs sampler. However, this adding this step 

would create more uncertainty within the model aiid it is unclear whether 

there would be enough data contained within the sample to make clear 

inference. 
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Appendix A 

Bayesian Analysis of 
extension of Breckling et al. 
(1994) 

A . l Full set of G r a p h s for Bernou l l i M o d e l w i t h 
k n o w n sampl ing p robab i t i t i e s 

These graphs are created from values at twenty Eve points shown below. 

Figure A.l: Plot of the positions for which we have values. Each position is 
denoted by a Glled circle. 
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Figure A.2: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

0.3 

n{0) 0. 

Figure A.3: Plot of the positive actual differences between the true values 
0.5. of a and the generated values of a for a 
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Figure A.4: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

m o 

Figure A.5: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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CD o 

Figure A.6: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

A.2 Discuss ion of t h e P r i o r s 

In general we hope that a conjugate prior will not affect the parameter 

estimates for a model. We want only our sample data to determine the 

parameter estimates. 

We therefore need to check that the parameter estimates remain relatively 

unchanged if the hyperparameters within the prior distribution are changed. 

To determine this for the Bernoulli model with known sampling probabilities 

we put in several different hyperparameter values and compare the estimates 

returned for a . 

The least informative prior is a uniform prior. This is achieved in a Beta 

prior by using the values 7 = 1 , ^ = 1 . To see what estimates were produced 

we plot them against the value for a . 
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I 

Figure A.7: Plot of the generated values of a against 6 for uniform prior. 

It is clear that the uniform prior is producing good estimates for a. We will 

compare this to two other possible priors. 

Figure A.8: Plot of generated values of a against 6 for Beta(2, 5). 

AH three priors give similar results. Although the second two are slightly 

aSected by the prior values it is not a signiGcant enough eSect to cause 

concern. As we would expect, the non-uniform priors produce slightly more 
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Figure A.9: Plot of the generated values of a against 6 for uniform prior for 
Beta(4, 5). 

accurate estimates where their mean value is similar to that of 6 because 

the data does not have to 'move' the mean of the prior. 

It is clear that the model is well defined and that the priors do not swamp 

the data. However, a choice of prior must still be made. To do this we will 

compare the parameter estimates to their true values (the values of 6 are 

biased). If we sum the positive diSerences between the actual value of alpha 

and the estimated values of alpha we can obtain an idea of how well each set 

of estimates fits the real data. As we might expect, when the mean of the 

prior is high the sum is highest (at 8.2). The uniform prior gives a sum of 

7.8 which slightly better. The prior which allows the data to best fit the true 

values, however, is the Beta(2, 5) prior distribution, with a summed value of 

7.3. This can be explained if we consider that the mean of this data is lower 

than the higher values of a we are trying to estimate. So it is not surprising 

that it will pull down the parameter estimates for the higher values slightly. 

This means that the model will fit the true data better because the value of 

6 is slightly too large for higher values of a. 
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A . 2 . 1 C o n c l u s i o n 

The choice of prior for this model is arbitrary, changing the prior does not 

make a substantial difference to the fit of the model. We know the actual 

population values so it would make sense to use the prior which best 6ts 

these values. However, it should be noted that exactly the same conclusions 

can be drawn if either of the other priors were used. To show this the full 

set of graphs for the uniform and Beta(4,5) priors have been included in the 

next two sections for comparison. 
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A.3 U n i f o r m pr ior 

Figure A. 10: Plot the of positive actual differences between the true values 
of a and the generated values of a for a — 0.5. 
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Figure A.11: Plot the of positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

(D o 

Figure A. 12: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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Figure A. 13: Plot of the positive actual differences between the true values 
0.5. of a and the generated values of a for a 

0.3 

Figure A. 14: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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A . 4 Beta(4 , 5) p r io r 

Figure A. 15: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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Figure A. 16; Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

Figure A.17: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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Figure A. 18: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 

n(0) 0.2 

Figure A.19: Plot of the positive actual differences between the true values 
of a and the generated values of a for a = 0.5. 
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Appendix B 

Bayesian Analysis of model 
wi th Fixed number of 
nonempty cells 

We present the full set of plots of actual parameter values against the medi-

ans of those generated from the Gibbs sampler for all priors. It is clear that 

this model is fairly robust to changes in prior. 
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N„=40, ii(P)=Beta(1,1) No=80,7t(P)=Beta(1,1) 
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Appendix C 

Full set of Graphs for model 
wi th a r andom number of 
non-empty cells 
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Figure C.l: Plot showing the median predicted values of the parameter a. 
The Erst row under each graph gives the initial value of and the second 
gives the initial value of a. Interval width is three standard deviations in 
each direction so negative values should be read as zero. 
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7r{a)-Beta{3,20), it(p)= Beta(1,9) i t (a)- Beta(3,20), 7t(|3)= Beta(2,9) 
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Figure C.2: Plot showing the median predicted values of the parameter 
The first row under each graph gives the initial value of and the second 
gives the initial value of a. Interval width is three standard deviations in 
each direction so negative values should be read as zero. 
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Figure C.3: Plot of the median predicted value of the parameter a against 
the initial parameter values of a. 
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Figure C.4: Plot of the median predicted value of the parameter ^ against 
the initial parameter values of /3. 
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Appendix D 

Full set of Graphs wi th an 
unknown popula t ion to ta l 

D.0 .1 71(7) =Gamma(2 , 7) 
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The difference between actual and 
predicted population totals 

The difference between actual and 
predicted population totals 

500 1000 1500 2000 

n(a)- B8ta(1,25), 7r(P)= Beta(1,9) 

500 1000 1500 2000 

jcfa)~Beta(1,25), J[(p)= Beta(2,9) 

The difference between actual and 
predicted population totals 

The difference between actual and 
predicted population totals 

500 1000 1500 2000 

K(a)-Beta(1,25), n(P)=Bela(2,5) 
500 1000 1500 2000 

7t(a)-Beta(3,15), 7r(P)= Beta(1,9) 

The difference between actual and 
predicted population totals 

0 500 1000 1500 2000 

n(a)-Beta(3,15), n(P)=Beta(2,9) 

The difference between actual and 
predicted population totals 

500 1000 1500 2000 

7r(a)-Beta(3,15), ;:(P)=Beta(2,5) 

137 



The difference between actual and 
predicted population totals 
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Figure D . l : Plot of the difference between the actual values of M and the 
generated values of M over the different initial values of a . In the first 
section of each plot a = 0.05, the second a = 0.1, the third a = 0.15 and 
the fourth a = 0.2. In each section increases over the same intervals from 
left to right. 138 
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Beta(3,20), K(P)= Beta{1,9) 7r(a)- Beta(3,20), 7i(P)= Beta(2,9) 
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Figure D.12: Plot of the the median values of the difference between M and 
the predicted value of M over the initial parameter values of 8̂. 
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