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In this thesis we will investigate two issues on relatively hyperbolic groups which 

will be treated independently in two parts. 

In the first part of this thesis we characterise relatively hyperbolic groups as geo-

metrically finite convergence groups. More precisely, we show the following. Suppose 

M is a non-empty perfect compact metrisable space, and suppose that a group, F, 

acts as a convergence group on M such that M consists only conical limit points and 

bounded parabolic points. Suppose also that the stabiliser of each bounded parabolic 

point is finitely generated. Then F is relatively hyperbolic, and M is equivariantly 

homeomorphic to the boundary of F. We also give another aspect of this character-

isation by showing under the above assumptions that F acts also as a cusp uniform 

group on the space of triples of M. 

In the second part, we describe a condition on the minimal compactifications of 

maximal parabolic subgroups of a relatively hyperbolic group, F. We prove that the 

dynamical system of F on its boundary is finitely presented if we assume that this 

conditions is satisfied by maximal parabolic subgroups of F. We also give examples 

of groups where this condition is satisfied. 
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PREFACE 

In this thesis we investigate two problems relating relatively hyperbolic groups, 

their boundaries and the dynamics arising from the action of relatively hyperbolic 

groups on their boundaries. These two problems are treated separately in two dif-

ferent parts. Neither of the parts refers directly to the other and each can be read 

independently. Since both problems are fairly distinct we give one introduction for 

each part rather than a global introduction, and we repeat in each part some key 

definitions, like the definition of a relatively hyperbolic group and its boundary. 

I visited for the period 10 March - 18 June 2001 the Institut de Recheche Avancee 

de Mathematique at the University of Strasbourg. The essential work of the second 

part of this thesis was carried out in the form of discussions between myself and the 

coauthor, F. Dahmani during this visit. The backbone of the work, as well as the 

ingredients and their applications in the proof, were formulated at these discussions. 

Later independently each author wrote his part of the work deriving from this foun-

dation. Sections 2, 4, 5, 6 represent primarily my part of the work, while Sections 1, 

3 and 7 were written by the coauthor. I give in Sections 4, 5 and 6 very detailed proof 

of the main result which enables algorithmic computations and which represent my 

own approach to the proof. Later the coauthor subsequently produced a condensed 

version of the proof in the form of a joint preprint. 
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Part 1 

A TOPOLOGICAL CHARACTERISATION OF 

RELATIVELY HYPERBOLIC GROUPS 

by Ash Yaman 

0. INTRODUCTION 

The main objective of this paper is to describe which dynamical, topological 

properties characterise relatively hyperbolic groups in terms of their boundaries. More 

precisely we prove the following theorem: 

Theorem 0.1. Suppose that M is a non-empty, perfect and metrisable com-

pactum, and F is a convergence group acting on M such that M consists only of 

conical limit points and bounded parabolic points. Suppose also that the quotient of 

the set of bounded parabolic points by F is finite and the stabiliser of each bounded 

parabolic point is finitely generated. Then F is hyperbolic relative to the set of its 

maximal parabolic subgroups and M is equivariantly homeomorphic to the boundary 

o f r . 

Theorem 0.1 has been shown by Bowditch in [Bo4] in the absence of bounded 

parabolic points. Therefore to simplify the presentation we will only explicitly give 

the proof in the presence of bounded parabolic points. However we mention that 

this proof can be adapted with more technicality to the general case. Henceforth, we 

assume that M contains parabolic points. 

The hypothesis that the stabiliser of each bounded parabolic point is finitely 

generated does not play any role in the proof of the theorem, but it is there merely to 

satisfy hypothesis (4) of Definition 2 of relative hyperbolicity as given below. Moreover 

1 



A topological characterisation of relatively hijperbolic groups 

the hypothesis that the quotient of the set of bounded parabolic points by F is finite 

can also be omitted since we can see by Theorem IB of [Tu2] that if F is a convergence 

group acting on M such that the action is geometrically finite then there are only 

finitely many F-orbits of bounded parabolic points. On the other hand we note that, 

if we assume that the quotient of the set of bounded parabolic points by F is finite, 

Theorem 0.1 gives as a consequence the result of Tukia, as we shall explain later after 

giving the definition of relative hyperbolicity. 

Before we give an outline of this paper, we will give the definitions necessary to 

understand Theorem 0.1. Given a group, F, acting on a locally compact topological 

space we say that the action is properly discontinuous if each compact subset of the 

space meets only finitely many translates of itself under F. Let F be a group acting 

by homeomorphisms on a perfect metrisable compactum, M. We denote by 63 (M) 

the set of ordered distinct triples of M. We say that F is a convergence group if 

the induced action on 83(M) is properly discontinuous. Suppose, now, that F is a 

convergence group. A parabolic pointy x, is a fixed point of a parabolic subgroup of 

F (see Section 5). We say that a parabolic point, x, is a bounded parabolic point if 

{M\{x})/Stabr(x) is compact. A conical limit point x G M is a point such that there 

is a sequence {gi}i C F and two distinct points a,b in M such that gi{x) converges to 

a and gi{y) converges to b for all y G M\{x}. We say that F is geometrically finite if 

every point of M is either conical limit point or bounded parabolic point. 

The study of convergence groups was introduced by Gehring and Martin [GeM] 

in order to describe the dynamical properties of a Kleinian group acting on a unit 

sphere S"' of (Here, a Kleinian group is a subgroup of Isom(H"') acting properly 

discontinuously on H" with boundary SH".) The notion of convergence group was, 

later on, generalised to compact Hausdorff spaces by several people, such as Tukia, 

Freden and Bowditch [Tul, F, Bo5]. One can see that the notion of conical limit point 

has an important role in theory of Kleinian groups. They were originally introduced 

by Hedlund [He] and used by several authors, for example [BeaM, Tu2 ,Bo5, Bo4, 

Su, N]. They are also known as "points of approximation" [BeaM] or " radial limit 

points". One can also see that the definition of geometrical finiteness for convergence 

group is a natural generalisation of the definition of Beardon-Maskit given in the case 

of Kleinian groups acting on the unit sphere of in [BeaM]. In fact, it can also be 

understood as a generalisation of the classical formulation of geometrical finiteness in 

the case of 3-dimensional Kleinian groups, which are Kleinian groups acting on H^. 

To see this we will briefly outline diff'erent definitions of geometrical finiteness for a 

3-dimensional Kleinian group, F. 



A topological characterisation of relatively hyperbolic groups 

The most intuitive and original definition of geometrical finiteness for a 3- di-

mensional Kleinian group, F, demands that F should possess a finite sided convex 

fundamental polyhedron. Ahlfors and Greenberg were among the first people using 

this definition to study the theory of 3-dimensional Kleinian groups. Ahlfors intro-

duced the notion to prove that if F is geometrically finite then the measure of limit set, 

A, of F is either full or zero [Ah]. At the same time it has been shown by Greenberg 

in [Gre] that there are 3-dimensional Kleinian groups which are finitely generated but 

not geometrically finite. To show this Greenberg used the examples of finitely gener-

ated groups due originally to Bers, [Ber], and proved that they are not geometrically 

finite. 

Marden's geometrical finiteness definition involves the quotient of the disconti-

nuity domain, f2(F), under F. Thus F is geometrically finite if (H^ U f2(F))/F has 

finitely many topological ends and if each topological end can be identified with an 

end of (H^ U Q(G))/G where G is a maximal parabolic subgroup of F, [Mar]. 

Thurston gives a decomposition of a hyperbolic orbifold into the "thin part" and 

the "thick part". We denote by hull(A(F)) the convex hull of the limit set A(F), 

which is the minimal convex subset of whose closure contains A(F). From its 

definition, hull A(F) is F-invariant and we can consider the convex core of iV = H^/F, 

cove{N) = hull A(F)/F. Now F is geometrically finite if the thick part of core TV is 

compact, or, alternatively, if the r-neighbour hood of core(iV) has finite volume for 

every r > 0, [Th]. 

The equivalence of these definitions for 3-dimensional Kleinian groups can be 

found, for example, in [Th, MatT]. The generalisation of these definitions was given, 

and their equivalence was proved, by Bowditch for Kleinian groups in all dimensions 

[Bo2] and for groups acting on a complete simply connected Riemanian manifold of 

pinched negative curvature [Bo3]. In dimension two (unlike dimension three), geo-

metrically finite Kleinian groups are precisely the finitely generated Kleinian groups, 

(which are also called Fuchsian groups). This result, which emphasises the importance 

of geometrically finite groups, seems to be proved for different degrees of generality by 

Fenchel, Nielsen , Heins and Greenberg, and later on, several other alternative proofs 

were given (see for example [Bea]). 

The notion of a relatively hyperbolic group was introduced by Gromov in [Gro2] 

and has been elaborated on in various papers, for example [Farb, Sz, Bo7]. In this 

work, we refer especially to the paper, [Bo7], of Bowditch, where relative hyperbolicity 

is formulated by giving two equivalent definitions. We will consider the second one of 

these definitions to characterise Relatively Hyperbolic groups in the proofs given in 
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both parts of this work. 

Let r be a group and ^ be a collection of subgroups. 

Definition 1. We say that T hyperbolic relative to Q, if F admits a properly dis-

continuous isometric action on a path-metric space, S, with the following properties: 

(1) S is proper (i.e. complete and locally compact) and hyperbolic, 

(2) every point of the boundary of E is either a conical limit point or a bounded 

parabolic point, 

(3) the elements of G are precisely the maximal parabolic subgroups of F, 

(4) every element of Q is finitely generated. 

We refer the elements of the set S as peripheral subgroups. 

It follows from this definition that relative hyperbolicity can be understood as 

a generalisation of Gromov hyperbolic groups and of geometrically finite Kleinian 

groups. In fact, in former case, there are no peripheral subgroups and we obtain 

exactly the definition of a hyperbolic group. In the latter case the space, E, in 

question can be taken as hull (A (F)), and so every point of the boundary of S is either 

a conical limit point or a bounded parabolic point. Thus in this case the peripheral 

subgroups are the maximal parabolic subgroups. 

Definition 2. We say that F is hyperbolic relative to Q, if F admits an action on a 

connected graph, JC, with the following properties: 

(1) /C is hyperbolic and each edge of /C is contained in only finitely many circuits of 

length n for any given integer n, 

(2) there are finitely many F-orbits of edges, and each edge stabiliser is finite, 

(3) the elements of Q are precisely the vertex stabilisers of infinite valence of K, 

(4) every element of G is finitely generated. 

The first definition is a modified formulation of the original definition introduced 

by Gromov. It gives a dynamical characterisation of relatively hyperbolic groups 

in terms of a group action on a hyperbolic space. The content of Theorem 0.1 is 

that one can reconstruct a space, E, given only an action of a relatively hyperbolic 

group F on its boundary. (Note that the space E is not necessarily quasi-isometric 

to any other one given by Definition 1.) The second definition characterises relative 

hyperbolicity in terms of a group action on a "hyperbolic F-set" (for the definition see 

Section 7 of Part 1). This latter notion was introduced by Bowditch in order to prove 

the equivalence of Definition 1 and Definition 2 and to analyse further the theory of 

relatively hyperbolic groups. 
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Tukia has shown in [Tu2] the following theorem (Theorem IB of [Tu2]): 

Theorem 0.2. Given a convergence group, F, acting on a compact metric space, 

M, M consists of only conical limit points and bounded parabolic points if and only 

if @3(M)/r is the union of a compact set and a finite number of F-quotients of cusp 

neighbourhoods of bounded parabolic points. 

In other words the action is geometrically finite if and only if F is "cusp uniform" 

in the terminology of Tukia introduced in [Tu2]. Cusp uniformity for F means that 

©3(M)/F is the union of a compact set and a finite number of F-quotients of cusp 

neighbourhoods of bounded parabolic points. Thus this result, together with Theorem 

0.1, gives a condition for relative hyperbolicity. The proof of the direction "only if" of 

Theorem 0.2, namely if M consists of only conical limit points and bounded parabolic 

points then ©3 (M)/F is the union of a compact set and finite number of F-quotients 

of cusp neighbourhoods of bounded parabolic points, is more complicated than the 

other direction. However as we already mentioned, in the case where the quotient of 

the set of bounded parabolic points by F is finite. Theorem 0.1 gives another proof of 

this direction (see Section 9, Proposition 9.1). 

The main idea of the proof of Theorem 0.1 is the following. As we already 

mentioned Theorem 0.1 is proved in the absence of parabolic points in M by Bowditch 

([Bo4]). In this work he construct a "system of annuli" on M which gives rise to a 

hyperbolic path quasimetric p, on the set of distinct triples, 03 (M), of M and proves 

that the orbit T9 of any point 6 of 83(M) is quasidense in (03(M), p). From this 

he shows that the Cay ley Graph of F is hyperbolic. Moreover he shows that points 

of M, namely conical limit points, can naturally be identified with points of 563(M) 

and hence with points of dV where dQ denotes the Gromov boundary of a hyperbolic 

space Q. To prove Theorem 0.1 we mimic some of these ideas and we construct 

a "system of annuli" on M which gives rise to a hyperbolic path quasimetric p, 

on the set of distinct triples of M union the set of bounded parabolic points. We 

see that, in our case, differently from the case of [Bo4] we push parabolic points 

to a bounded distance of the points of Q3M. To achieve this, we generalise, for a 

geometrically finite actions, the annulus system given in [Bo4]. Moreover we note 

that the restriction of the quasimetric thus obtained, to the set of bounded parabolic 

points is also path hyperbolic. Using this hyperbolic path quasimetric on the set of 

bounded parabolic points and the geometrically finite action, we construct a graph 

satisfying all properties required by Definition 2 of relative hyperbolicity. 

The structure of this paper, in outline, is as follows. In Section 1, we introduce 
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some basic notation and terminology and define the notion of "hyperbolic crossratio". 

In Section 2, we show which conditions for an annulus system defined on M give 

a hyperbolic crossratio on M and ensure a "dichotomy" between the points of M, 

in other words give rise to a partition of M into the set of "conical points" and its 

complement. In Section 3, we discuss how a finite subset of M can be approximated 

by trees in the case where we have an appropriate annulus system. In Section 4, 

we show how a suitable annulus system gives rise to a hyperbolic path quasimetric 

on the set of distinct triples union of the non conical points of M. In Section 5, 

we introduce convergence actions and relate the annulus systems of previous sections 

to convergence groups acting geometrically finitely on M, and we obtain the set of 

bounded parabolic points as a hyperbolic path quasimetric space. In Section 6, we 

give a construction of an annulus system, which has all the properties required to 

enable us to obtain the previous results. In Section 7, we construct a graph, /C, 

satisfying all the properties demanded by definition 2 of relative hyperbolicity. We 

prove Theorem 7.1, which tell us that F is a relatively hyperbolic group. In section 

8 we describe the boundary, 5r, of a relatively hyperbolic group, F, and prove that 

in our situation dV is homeomorphic to M (Theorem 8.2). In Section 9, we give a 

correspondence between 03 (M) U M and the space, S U (defined from Definition 

1 of relative hyperbolicity), and using this we prove one direction of Theorem 0.2. 

1. CROSSRATIOS 

The aim of this section is to describe the notion of a "hyperbolic crossratio". In 

fact, the notion of a crossratio, which is a map defined symmetrically on 4-tuples of 

a set, has been introduced and used by several authors in different contexts [0,P]. 

For example it is known that the boundary of a hyperbolic group admits a crossratio, 

where the crossratio of four points x^y,z,w of the boundary could be interpreted 

as the distance, up to an additive constant, between two bi-infinite geodesies, one 

connecting x and y and the other z and w. 

For this work we will use specifically the definition of hyperbolic crossratio given 

by Bowditch in his paper [Bo4]. But before giving this definition we need to introduce 

some notation and conventions, which could appear rather formal to the reader but 

which will be used throughout the rest of this work. 

For p,q,k E R we will write p —k Q, P Q and p <^k Q to mean respectively 
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\p -- q\ < k, p < q + k and p < q — k. We notice that if p g and g r then 

p r. This is true also for :<k and Thus, since it is possible to find the final 

constant after a finite number of manipulations, we will frequently drop the subscripts 

indicating the additive constant, and we will simply use the notation 

Let M he a set. Let 0„(M) be the set of distinct n-tuples (ordered), in other 

words M" minus the large diagonal. Consider a map ; 04(M) —> [0, 00) writ-

ten [{x^y^z^w) (->• (xy\zw)] satisfying the symmetry condition {xy\zw) = {yx\zw) = 

(zw\xy). Such a map will be called a crossratio on M. 

Definition. We will say on M is k-hyperbolic if it satisfies: 

(Bl) Given any subset {x, y, z,'w} C M of four distinct elements we can find 

a permutation of x, y, z, w so that 

(a;z|?/w) 0 and (a;w|2/z) 0. 

(B2) For all distinct x, y, z,w,u ^ M we can find a permutation of x, y, z, w, u 

so that 
(a;z|2/!/) (a;2/|w2f), 

(a;%/|zw) (r^jzif) + (zi/jzw), 

and {ah\cd) 0 for all other possibilities where a, b,c,d^ {x, y, z, w, u} are 

distinct. 

We will say that (..|..) is hyperbolic if it is fc-hyperbolic for some k. 

In the case where M is a tree the properties Bl and B2 can be illustrated respec-

tively by Figure 1.1.1 and Figure 1.1.2. 

>-<; 
Figure 1.1.1 Figure 1.1.2 

Notation. Given x, y, z,'w,u ^ M and & E R we write 

(zi/: zw)ĵ  <=> (zzji/w) 0 and (a;w|2/z) 0, 

(z2/: tz: zw);̂  <=> (a;iz: zw),,, (a:̂  : zw)^, (it?/: -zw);;;, (a;?/: (a;?/: 

(a .̂i/.z.w),;. 4^ (a; |̂zw) 0, (azzji/w) 0 and (a;w|?/z) 0-
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Normally the additive constant k will be taken to be equal to the constant of 
hyperbolicity of the crossratio. Thus we will frequently omit the subscript indicating k 

and we will use for z, i/, z, w, w E M the notation (a;?/: zw), (a;?/: 2/: zw) and 
Otherwise the constant k will be indicated in the notation. 

Given x,y,z,w,u e M it is easy to see that {x.y.z.w)j, is satisfied if and only 

if (z.z.T/.w);;. or (r.tu.i/.z),!. is satisEed. Moreover, is also equivalent to 

(a;;/: and (a;w : 2/;%);̂ , all together. If w satisEes 
then either or is satisfied. Evidently by (Bl) if 
then we have {xy : 

Definition. A hyperbolic crossratio is a path crossratio, if for any distinct 

z, 2/, z, tu E M and for any 0 < p < (a;?/|zw), there exists u E M such that (zi/: if: zw) 
and (z2/|zt/) p. 

This last definition is relative to some implicit additive constant which can be 

assumed equal to the constant of hyperbolicity by increasing the latter if necessary. 

2. SYSTEMS OF ANNULI 

In this section we will see how to obtain a hyperbolic path crossratio on a com-

pactum (compact hausdorff topological space), M, relative to a "system of annuli", 

which is a set of pairs of disjoint closed subsets of M and which satisfies certain ax-

ioms which will be given later in this section. Actually the main work in defining the 

axioms necessary to obtain such a system has been done by Bowditch in his article 

[Bo4]. We will be content with stating his results, with some explanation, and leave 

to reader to look up the details. 

So, in this section, our main objective is to modify and to develop the original 

axioms so as to define a system of annuli on M which give rise a dichotomy on the 

points of M, and to give some reformulations of these axioms. We will also give some 

technical results about such systems of annuli under some conditions. [These will be 

used in the following sections.] 

Firstly we need some definitions. We will use the notation and definitions of 

Bowditch given in [Bo4] for systems of annuli. Let M be a compactum. 
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DeBnition. An is an ordered pair, (A", A+), of disjoint closed 
subsets of M such that M\{A'' U A+) ^ 0. 

A system of annuli ^ is a set of such annuli. 
Let A = (A~, A+) be an annulus. We write -A = (A+, A~), and say the system 

of annuli A is symmetric if —A E A for every A e A. 

Let be a closed subset in M. We write K < A if K 'Z int A", and K > A if 
K C int A+. Given two annuli A,B, we write A < B if M = int A+ U in tS" . We 

note that A < B implies -B < —A and that A < B < C implies A < C. 

Definition. Let ^ be a system of annuli and K, L, be closed subsets of M. We 

define {K\L) G N U {00} to be the maximal number n such that we can find nested 

annuli, Ai,..A„, in A that separate K and L, i.e K < Ai < • • • < An < L. If the 

maximum is not attained we adopt the convention that (K\L) = 00. Note also that 

by our definition 0 is in N. 

We introduce the following property, which, when satisfied by a particular system 

of annuli, gives rise to a dichotomy between the points of M. We say that A satisfies 

A if: 

(A) for every x £ M and for every closed subset K of M satisfying {x\K) = 00 

there exists an infinite set of nested annuli in A that separates x and K. 

Let ^ be a symmetric system of annuli defined on M. For any K,L C M and 

any K' C K closed subsets of M we have {K\L) — {L\K) and {K'\L) > {K\L). If 

K = {xi,...,Xn} we abbreviate {{xi,..., Xn } \L) as (%i , . . . ,Xn \L) . In part icular we 

define ({%, w}) = for any z, ?/, z, w E M. 
We also note that the map : 64(M) —)• [0,oo), {{x^y^z^w) {xy\zw)] 

defines a crossratio on M. 
Let ^ be a system of annuli on M satisfying: 

(Al) there is no set of four distinct points x,y, z,w G M such that {xz\yw) > 

0 a n d {xw\yz) > 0, a n d 

(A2) if X ^ y and z w in M then (xy\zw) < 00. 

Firstly we note that the axiom (Al) is a recapitulation of the axiom (Bl) of 

Section 1 with the constant k = 0. Secondly by Proposition 6.5 of [Bo4] [p. 659] we 

see that the axioms (Al) and (A2) are, indeed, sufficient to obtain a hyperbolic path 

crossratio on M: 

9 
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Proposition 2.1. Let M a compactum and A a symmetric annulus system 

deSned on M satisfying (Al) and (A2). Then the map : 84(M) -> [0,oo), 

[(z, y, z, w) {xy\zw)] defines a hyperbolic path crossratio on M. 

For future reference we need to add that, in the proposition above, the constant 

of hyperbohcity and the constant involved in the path crossratio are equal. Note 

that it can be shown, following the proof of the above proposition in [Bo4], that the 

implicit constant is equal to 2. However, for the rest of the work the precise value of 

this constant is completely irrelevant. Note also that the constant, thus determined, 

is universally fixed. We will denote it throughout by k. 

We will give, in addition to Proposition 2.1, a series of technical results, which 

are satisfied by such an annulus system but which are not relevant for this section. We 

shall need these results as a reference for the proofs in the following sections, which 

involve some arguments using annuli. The following lemmas correspond respectively 

to Lemmas 6.1, 6.2 and 6.3 of [Bo4](pp. 658-659). (Recall that we have set A; = 0 in 

the notation of [Bo4]). 

Lemma 2.2. Given any closed subsets, K,L C M and any a E M, we have 

(jTiz;) < (jiTii: u W ) + (ATu + 1 . 

Lemma 2.3. Given any closed nonempty subsets, K,L C M and any a G M, 

we have 

u {a}) + ( K u + 2. 

As a consequence we obtain: 

Lemma 2.4. Given any closed subsets, K,L C M and any a e M, we have 

(jiClZ,) - 2 (ATli: U M ) + (jiT U {a}|i;). 

Let M be a metrisable compactum and let 6 be any metric on M inducing the 

topology. Let ^ be a symmetric annulus system defined on M satisfying (Al), (A2). 

Suppose that A also satisfies the following property: 

(A3) for every x,y,z G M where x ^ {y,z} there exists a neighbourhood 

of X such that for every w 6 we have {xy\zw) = 0 and {xz\wy) = 0. 

10 
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Our main objective in this section is to obtain an annulus system which gives 

rise to a hyperbolic path crossratio on @4(M) and which satisfies, at the same time, 

the property (A). Aa we already see by Proposition 2.1, the system above gives a 
K-hyperbolic path crossratio on M for some k > 0. We thus need to show that such 

a system also satisfies (A). 

We will firstly show that the axioms (A3) and (A2), together, give rise to the 

property: 

(A4) There exists { such that for every a ^ b,c ^ d and for every sequence 

C M tending to a, we have ( (a6|cd) < oo for all su@cient large 

Lemma 2.5. (A2) and (A3) imply (A4) with ^ = 2. 

Proof. Suppose we have a ^ b,c ^ d, and a sequence G M such that 

a/5 a. We put {akb\cd) = Uk- By (A2) we know that m = (ab\cd) < oo. So there 

exists a sequence of annuli with {c, d} < < - - < < {a, 6}. 
Clearly for k large enough e (-5^) + . Thus we obtain = {bak\cd) > {abak\cd) > 

m = {ab\cd). 

Now we will show that Uk < m +1. For that, we argue by contradiction. Suppose 

that Uk > m + 2 for infinitely many k. In addition we can find, for every such k, a 

sequence of annuli with {c, cf} < 4̂̂  < - - < Let 
ik E Uk} be the maximal index such that < {a}. But, since m < oo, ik 

cannot be more than m. As a result Uk — ik > "^k — rn > 1 and we have {a} < 

So (at6|ac) > Mk — 4 - 1 > 0. 

On the other hand we know by (A3) that for k large enough G where 

is defined as in (A3). Thus {akb\ac) = 0. This gives a contradiction with (akb\ac) > 0. 

As a consequence, for all sufiiciently large k we have rik < m + 1. 

We showed that rik >m and Uk < m + 1. This means we have {akb\cd) ~2 {ab\cd) 

and we can choose ^ = 2 in (A4). 

0 

In the next section, it will also be shown, using the properties of a hyperbolic 

crossratio on M, that an annulus system satisfying (Al), (A2) and (A3) must satisfy, 

as a consequence, the property: 

(A5) There exists ^ such that for every a ^ b,c ^ d and for every sequence 

{ui}, {bj}, {c&}, {di} e M satisfying > a, hj b,Ck ̂  c and di d we have for 

A:,Z large enough (abjcd) < oo. (See Lemma 3.7) 

11 
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We note that the additive constants of properties (A4) and (A5) need not be the 

same. However they could be chosen identical by increasing one of them if necessary. 

We give the following theorem which will achieve the aim of this section and show 

that an annulus system satis^ing (Al), (A2), (A3) satisfies alao (A). 

Theorem 2.6. Let {M,5) be a metrisable compactum and A a symmetric 

annulus system defined on M satisfying (Al), (A2) and (A3). For any distinct x,a,b E 

M satisfying (x\ab) = oo there exists an infinite set of nested annuli that separate x 

and {a, b}. 

Proof. Since {x\ab) = oo there exist infinitely many sequences of nested annuli 

which separate a, b and x such that the cardinality of these sequences tends to infinity. 

That means there are annuli .,nk}}teN where ^ oo as A; ^ oo such that 
{a,b} < Al < • • • < A^^ < {x} for every k EN. 

To simplify the notation we will denote by We will show firstly that 

diamP^ —> 0 when k ^ oo. Suppose to the contrary that there is a constant e > 0, 

such that, for every A; G N, diamP^ > e. As a consequence, for every k there exists 

a point Uk G P^, such that 5{yk,x) > e/2. Since M is compact, by passing to a 

subsequence, we can suppose that Uk y ^ M. Moreover since 5{yk, x) > e/2 we see 

X y. On the other hand since y^ G we have {ykx\ah) = n^. But a^b and x ^ y, 

so by property (A4) we see that {ykx\ab) is bounded. This give us a contradiction 

with Uk oo. 

We have shown that diam P^ —> 0 when k ^ oo. Now we will construct an 

infinite sequence of nested annuli which separate {z} and {a, b}. 

We will also denote by R^. Evidently, by the same argument which 

showed that diam P^ —)• 0 when k oo, we can show that diamP^ —>• 0 when 

k oo. Now, fix any index ko G N. We have {a, b} < 4̂̂ ° < {x}. Since x G int P^°, 

S(x, M\P'^o) = C > 0. Moreover diam -4 0. So there exists ki > ko such that 

diamP^i < C/2. As a consequence C int P^o and we obtain that {a, b} < < 

< {%}-

Now, with applying same argument to ki we can find an index k2 such that 

(a,&} < < A^^^ < {%}. Thus, an inductive argument gives us an 

infinite sequence of nested annuli which separate {x} and {a, b} as required. 

0 

Lemma 2.7. Given x G M, if there exist distinct a, 6 G M\{x} such that 

{x\ab) — oo then for any K compact in M\{x} we have {K\x) = oo. 
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Proof. This result is a consequence of the last proof. In fact we observed that 

if {x\ab) = oo then there exists an infinite sequence of nested annuli (Ai)jgN which 

separate {x} and {a,b} such that {a, 6} < < ^2 < ^3 < • • • < {%}. Therefore 

diam(A;)+ -> 0 when i —)• 00. As a consequence for every K C M\{a;} there is an 

index to such that < 7 ,̂ i.e. jiT < < Aig+g < - < {z}. Thus 
= 0 0 . 

0 

Deflnition. We shall call a point x a conical point if it satisfies {x\ab) = 00 for 

any two distincts points a, h in M. We denote the set of conical points by S. 

The choice of this terminology will be justified later in Section 5. 

As a direct result of the Lemma 2.7 we note that li x £ M satisfies {L\x) < 00 

for some compact set, L, of M\{x} then for any compact non singleton K G M\{x} 

we have {K\x) < 00. We will denote iVf\S by IT. We note by Lemma 2.4 that if x 

and y are in H then x, y satisfy (x\y) < 00. 

Lemma 2.8. Given a; 6 11 we can End a compact set K in M\{a;} such that 

= 0. 

Proof. We notice that any point z E fl satisfies n = {K'\x) < 00 for a compact 

set K' in M\{x}. So we consider a nested annuli system of maximal 

cardinality which separates K' from x such that {x} < Ai < < < K'. Thus it 

is easy to see by the maximality of n that K = M\int(A^) satisfies {K\x) = 0. 

0 

3. APPROXIMATING TREES 

In this section we will explain how one can approximate by trees the structure of 

a finite set on which a hyperbolic crossratio is defined. Many of the following results 

will be proved by using these tree approximations. So we begin by introducing some 

notation and terminology related to trees. 

Let T be a simphcial tree. We denote by V{T) and E{T) respectively the vertex 

set and the edge set of T. By a terminal vertex we mean a vertex of degree 1 and 

an internal vertex, a vertex of degree at least 3. For the rest of this paper we shall 
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assmne that 7" has no vertex of degree 2. ^^(73 be the set of terminal vertices 

and Vi{T) will be the set of internal vertices. We say an edge is terminal if one of its 

end points is terminal; otherwise it is internal. 

Given x,y e V{T) we denote by [x, y] the unique arc connecting x and y. If 

a;, 2/, -2̂  G we write med(a;, ?/, z) to mean the medmn of a;, ?/, z, which is the unique 
intersection of the arcs [rc, y], [y, z] and [z,x]. 

A metric tree (T, a) is a simplicial tree associated to a metric cr, which is defined 

by assigning to each edge a value in (0, oo). We note that a metric tree (T, o") satisfies 
cr(a;,?/) + cr(z, w) < max{cr(a;,z) + cr(2/, w),(7(a;,w)4-o-(2/,z)} for all distinct a;,?/,z,w e 
F(T), i.e. T is 0-hyperbolic in the sense of Gromov. (In fact any finite 0-hyperbolic 

space can be embedded isometrically in a metric tree [Gro2]) . 

We can define on a metric tree (T, cr) a 0-hyperbolic path crossratio such 

that (z2/|zw)^ = ^max{0, z) + (7(2/,w) — cr(a;,2/) — (7(z, w)}, i.e. the distance 
between the segments [x, y], [z, w]. Thus we notice that a hyperbolic crossratio defined 

on a set of 5 elements is, in fact, derived from some metric tree up to an additive 

constant. Moreover by Theorem 3.1, which is shown by Bowditch (Theorem 2.1 of 

[Bo4]), we see this is true for any finite set on which we have defined a hyperbolic 

crossratio. 

A generalisation of the notion of hyperbolicity for a "quasi-metric" space has 

been given, with the equality above satisfied up to an additive constant, by Bowditch 

in [Bo4] Section 3. We will also use his generalisation by adapting it to our case. 

[Section 4]. 

Theorem 3.1. For all n eN, there exists a constant VQ{n), which depends only 

on n, such that if (..|..) is a n-hyperbolic crossratio dehned on a set F of cardinality n 

then we can embed F in a metric tree, (7~, cr), such that for all distinct x,y, z,w E F 

we have \ {xy\zw) — {xy\z'w)^\ < KVQ[n). 

We refer to the tree, T, obtained by Theorem 3.1 as an approximating tree for 

the set F. By the construction of T, we can assume that F is precisely the set VriT) 

and only the lengths of the internal edges of T are relevant. Later in this section, 

a general version of this theorem will be given by Corollary 3.5, where we will also 

determine by definition the lengths of some final edges. 

Defilnition. T is called efficient with respect to k if for all distinct x,y,z,w E F 

satisfying (x.y.z.w)^ the segments [x, y] and [z, w] intersect in a single internal vertex 

of T, i.e. [re, y] fl [z, w] = {«} where u G Vj('T). Such a quadruple will be called a star 

inT. 
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Corollary 3.2. For aii n G N there exists a constant which depends only 

on n, such that if is a n-hyperbolic crossratio defined on a set F of cardinaUty 

n then we can embed F in an efEcient metric tree (with respect to k), [T', a'), such 

tiiat /or a77 distinct a;, %/, z, w 6 F we iiave |(a;i/|zw) — (z2/|zw).y., | < 

Proof. We know by Theorem 3.1 that there is a constant !/o(n,) such that F can 

be embedded in a metric tree (T, cr) satisfying \{xy\zw) — (xy\zw)j-\ < K.VQ{n) for all 

X, y, z, w in T. 

Let a;, y, z, w be 4 points of F satisfying We notice that 2/], [/Z, w]) 

< (xy\zw)+KVo(n). So, since implies {xy\zw) 0, we obtain (7([a;, y], [z, w]) 

K.i^oiri). For the same reason, a{[x, z],[y,w]) and a{[x,w],[y, z]) are at most 

+ 1). 

We define T' as the simplicial metric tree constructed by collapsing each internal 

edge of length at most K{iyo(n) + 1) in E{T) to an internal vertex. In particular we 

notice that the number of edges which have this property cannot be more than n — 3, 

which is the maximal number of internal edges of T. We denote by £ the set of such 

edges in T. 

The metric a' is defined on T' so that for each e G E(T) \ £ we put lengthy, (e) = 

lengthy (e). That means the metric a is conserved for all edges not collapsed. 

By the above remark, we notice also that if x, y, z, w are distinct points of VT{T') 

satisfying {x.y.z.w)^ then x^y,z,w are in a star in T', i.e T' is efficient. 

It remains to verify that \{xy\zw) — (xy\zw)j-,\ < KVQ{n). Let x,y,z,w be 4 

distinct points of VT{T'). And let A be the arc which joins [x^y] and [z^w] in T'• 

Evidently lengthy, (a) < a{[x,y], [z, w]) = {xy\zw)j-. On the other hand {xy\zw)j- < 

length^/(a!) + (^ — 3)K(z/o(n) + 1). Together these give |(a;2/|zw).y- — < 

(n — 3)K(i/oW + !)• Hence we obtain \{xy\zw) — {xy\zw)^,\ < in — 3)K(uo(n) + 1) + 

Kf/Q W = W where = (n — 2)f/o(M) + M — 3. 

• 

Convention. Each time that we consider an approximating tree T for a set 

F on which a K-hyperbolic crossratio defined, we will choose it to be efficient with 

respect to k. That ensures that if x,y^z,w G F satisfy {x.y.z.w)^ then {xy\zw)j- = 

0, (a;z|i/w)y- = 0 and (a;w|2/z)j- = 0. 

Let M a metrisable compactum. Suppose that we have a symmetric annulus 

system A satisfying properties (Al), (A2) and (A3) defined on M. As explained in 

Section 2, A gives rise a K-hyperbolic path crossratio on M and satisfies (A). So we 

can introduce the sets E = {conical points} and 11 = M\E. 
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Lemma 3.3. Fix k eN. Ifx&U and y,z,w G M\{x} are distinct points of M 

0 ajid (zw|?/z) 0, (i.e. (a;?/: t6en we have 

(a;|2/z) (zji/zw) and (a;|?/w) 

Inpart jcujar(a; |2/z)-t- l < (a;|?/y2;w) < (3;|2/w) < (2;|2/zw)+A; + l < (z|2/z)4-&+l. 

So (a;|2/z) (a;|2/w). 

Proof. Put M = (a;|2/.z). Choose a sequence of annul! such that 
{a;} < < ' " < < {;/, .z}- We remark that {z} < 4̂̂  < - < ^&+2 < {w}. 
Because, otherwise, w ^ {Ak+2)'^ and since (^^+2)+ U {Ak+x)~ = M, we obtain 

{w} < ^k+i, i-G. {a;, w} < ^k+i < " < < {?/, z}. That imphes (a;w|2/z) > & + 1, 
which is not possible since ixw\yz) 0. 

So we obtain n = {x\yz) > {xlyzw) > n — k — 1. Therefore {x\yz) ~/c+i {x\yzw). 

By interchanging z and w we can obtain likewise (x\yw) ^^+1 {x\yzw). 
< > 

Lemma 3.4. Fix k £N. IfxeU. and y, z,w,u e M\{x} are distinct points of 

M satisfying {yz : x : uw)^ then all the following assertions are true 

:̂ &+i (a:|2/w), 

:^k+i 

-&+1 (a;|zw), 

In addition, for any b,d e {u, w) (possibly b = d) and for any a, c G {y, z} (possibly 

a = cj we obtain (a;|a6)—A —1 < (â ji/zww) < (a;|cd) < (a;|?/zwt/)+A:+l < (2;|o6)+A:+l, 
i.e. (z|o6) (a;|c<i). 

Proof. Put n = (x\yw). Choose a sequence of annul! such that 

{r} < An < - < Ai < Then, z satisEes {z} < < - - < < {̂ z}. 
Because, otherwise, z ^ {Ak+2)^ and since U (Ak+i)^ = M, we obtain 

{z} < At+i, i.e. {a;,z} < < {;/, w}. That implies (a;z|i/w) > A + 1, 

which is not possible since {xz\yw) 0. By exchanging z and u we can obtain 

likewise {a;} < < {u}-
So we obtain n = (x\yw) > {x\yzwu) > n — k ~ 1. Therefore (x\yw) 

{x\yzwu). We can argue similarly for {x\yu), {x\zu), {x\zw) and {x\yw) to obtain the 

required relations by interchanging (w and m), etc. 

0 
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We will give a more general version of Corollary 3.2, in the case of a metrisable 

compactum M on which a K-hyperbolic path crossratio is defined and where a di-

chotomy between its points is achieved, i.e M = H U 11. But before setting out this 

result, we give a bit more notation and make some remarks. 

Let T be a tree. For every K C V{T) we denote by uk the sub-tree spanned by 

K in T, which is the intersection of connected subsets of T whose vertex set contains 

K. Given K,L C T we write {K : L)j- to mean contains at most one vertex. 

If two subsets K,L oiT satisfy {K : L)r then we shall denote by a{K, L) the unique 

minimal path which joins ujk and in T. 

Let rc, y, z, w be distinct points of M and T be the approximating tree of {x, y, z, w}. 

We notice that (xy : zw)^ is satisfied only if {{x, y} : {z, w})j- holds and ({z, y} : {z, w})j-

implies {xy : Therefore, we will use {xy : zw)j- and {x ; yz)j- to mean re-

spectively {{x,y} : {z, w})y- and {{x} : {yz})'J-. We note also that every x G VT{T) 

satisfies ({#} : VT{T)\{x})r- Let K,L and K' C K he subsets of T. If we have 

{K : L)j- then we have also {K' : L)j-. 

Corollary 3.5. Let (..|..) be a K-byperbolic crossratio defined on M. For all 

n G N there exists a constant v{n), which depends only n, such that any subset 

F <Z M of cardinality n can be embedded in an efficient metric tree (T, a) such that 

for all a ^ b, c ^ d E F and x,y eUDF we have 

|(a6|cd) — (a6|cd).^| < Kz/(n), 

l(a;|2/) - (a;|!/)T| < /cf/W-

Proof. Consider the approximating tree (T, A) of F. We have VT{F) = F, and 

\{ab\cd) — {ab\cd)j-\ < Kz/Q(n) for all distinct a,b,c,d 6 F, where Vo{n) is given by 

Corollary 3.2. 

Given z E I l n F , let t; E Vi{F) be the internal vertex adjacent to x. So [x, ?;] is a 

terminal edge. We choose 2 points a, 6 G F\{x} such that a and b belong to different 

components of ir\[x, v]. We will assign a length to [a;, v] by putting a{x, v) = {x\ab). 

To prove the corollary we need to verify that \{x\cd) — {x\cd)-f \ < nv{n) for any 

c,dE F\{a;} and \{x\y) — {x\y)-]-\ < Ki'{n) for any y e 11 fl F\{z}. Since these 

assertions can be verified using similar arguments, here we will only make explicit the 

former, i.e we verify \{x\cd) — {x\cd)']-\ < Kv{n) for any c, d e F\{x}. For this, we will 

proceed in two different cases, v e [c, d] and v ^ [c, d]. 
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Suppose that v € [c,d]. It could happen that c € {a, 6} or d G {a, 6}. In this 

case, without loss of generality, we can suppose that c = a. So {bd : xc)r holds. 

This implies {bd : and by applying Lemma 3.3 we obtain \{x\ab) - {x\cd)\ = 

|(a;|6c) - (a;|c(f)| < WgW + 1- Now, suppose that (c,li} n {a,6} = 0. So either 

(ac : X : or (ad : x : holds. But, in each possibility, by Lemma 3.4 

we obtain l(a;|afe) — {x\cd)\ < KVQ{n) + 1. (Figure 1.3.1 illustrates two possibilities for 

r). 

Figure 1.3.1 

Moreover, whether {c, d} is different from {a, h] or not, we have {x\ab) = {x\ab)'Y — 

{xlcd)^-. So we obtain \{x\cd) — {x\cd)-Y\ < Kz/g(n) + 1. 

Now, suppose that v ^ [c,d]. So [c,d\ lies in one component of Without 

loss of generality, we can say that [c, d\ does not belong to the component which 

contains a, otherwise we exchange a and b and apply the same reasoning. Hence, we 

have {{x,a} : {b,c,d})T where b could be equal to c or d. As a consequence, we see 

{x\cd)j- — a{x, v) + cr(u, [c, d]) = {x\ab)j- + {xa\cd)j-. (One of the possible forms for 

T is as Figure 1.3.2). 

b 

a 

Figure 1.3.2 

Suppose that b G (c, d}. In this case without loss of generality we can suppose 

b = c, and so (xa : bd)j- holds. Thus we have (xa : bd)^^i^(^n) and by Lemma 3.3 we 

obtain \{x\ab) — {x\abd)\ = |(z|a6) — {x\acd)\ < KZ/g(n) + 1. Now if we suppose that 

b ^ {c, d} then ({%, a) : {b, c, d})j- implies {xa ; bc)^, which gives {xa : and 

so by Lemma 3.3 {x\ab) —Kiy^(n)+i {x\ac). Likewise we have {xa : cd)^, which implies 

{xa : and so by Lemma 3.3 {x\ac) —K:/^(n)+i {x\acd). Thus, together, these 

give (%|a6) —2Kf̂ (M)+2 So, in both cases, we obtain (a;|a6) — ( a ; | ( i c d ) . 

In addition we have {xa\cd)^ —{xa\cd). Thus, if we put together the 

relations {x\ab) —2K;i/^(n)+2 {x\acd) and {xa\cd)j- {xa\cd) with {x\cd)-j- = 

(a;|a6) + (a;a|c(f).y-, we obtain (a;|cd)T —3K:,̂ (n)+2 (a;|acG() + (a;a|c(f). 
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Moreover, by Lemma 2.4, we know that 2:̂ 2 (a;|acc() + (zojcii). As a result 

we have shown (zjcff)-;- —3Ki,̂ (n)+4 (azjccf). 

As a summary we see that if « > 0 we can choose nviji) > 3KUQ{n) + 4, and 

we obtain, for any c,(f E that |(a;|cd) - Now, as any 0-

hyperboUc space can be embedded in a metric tree [Gro2], if k = 0 then we have 

immediately the required result with u{n) = 0, which completes the proof. 

0 

Definition. In following sections, we will refer to the approximating tree intro-

duced by Corollary 3.5 as "a (-approximating tree" where the constant ( is equal to 

To finish this section, we prove a result (Lemma 3.7) that we already stated in 

Section 2 and which shows us that property (A5) could be obtained as a consequence 

of properties (Al), (A2) and (A3). we begin with a preliminary lemma. 

Lemma 3,6. Let K,L be subsets ofT with {K ; L)j- and x be an element of 

y(T). if tizere exists 2/ E 2, satisj^ing (jiT : {z, i/})?' tiien : Z, U also iojds. 

Proof. We argue by contradiction. Suppose that {K : LU {x})j- does not hold. 

So UJK n W2u{r} contains an edge e. 

On the other hand we can write £ î,u{k} = U [x, y]. Thus either e C LOR H w%, 

or e C cok (1 [x, y\. But both are impossible since we have {K : L)-j- and {K : {x, y})T-

0 

Lemma 3.7. There exists ^ which depends only on K such that for alia ^ b,c ^ d 

and for all sequences {a*}, {bj}, {ck}, {di} C M with -4̂  a,bj b,Ck c and 

di d we have for all i,j, k, I large enough {aibj\ckdi) {ab\cd) < 00. 

Proof. Here there are three 3 possibilities to study. The first possibility is when 

a, b, c, d are all distinct, the second case is when precisely two of the points {a, b, c, d} 

are identical and the last case is when either a = c and b = d 01 a = d and 6 = c. All 

these cases can be treated by similar arguments and methods so we will deal explicitly 

only with the first. 

Suppose that a, b, c, d are all distinct. We define Na = n where 

and are given by property (A3). So, for large enough i, we have a, G Na and 

so {aai : be), (aai : cd) hold. Likewise we define n Nc — n 

Nd = and observe that for large enough j, k, I we have (bbj : ac), (bbj : cd), 

(cck : a6), (cc& : 6(i), ((ZcZf : oc) and (jcf; : c6). 
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We consider an e&cient approximating tree (T, cr) of {a, 6, c, d, a*, c*, So, 
by efficiency, the relations (aa^ : be), (oo* : cd) imply that (aa% : bc)^, (aa, : cd)j- hold 

in T. Therefore by applying Lemma 3.6 we obtain ({a, a*} : {b, c, d})r- In the same 

way, we obtain also ({6,6^} : {a, c, (f))-;-, ({c, c&} : (a, 6, d})T and ({c(, (Zf} : {o, 6, c})-;-. 
(See Figure 1.3.3 for an illustration). 

Figure 1.3.3 

In addition, without loss of generality, we can suppose {ab : cd)^. Thus let {v, v'} 

be the endpoints of the arc, a{[a, b], [c, d]), that joins [a, b] and [c, d] in T so that v E 

[a, b] and v' G [c, d]. Moreover, by using the relations ({a, a,} ; {b, c, d})T and ({b, bj} : 

{a, c, d})j- it is easy to see that v € [o,, bj]. Likewise, we can also see that v' € [c&, di]. 

Consequently we obtain, for large enough %,j, k, I, a{[a, b], [c, d]) = cr([a%, bj], [ck, di]). 

But, since (abjccf) 2̂ K:,(8) and we 

have :::;2Kv(8) (a6|cd); and by property (A2) we obtain (ai6j|ckd|) ::̂ 2Ky(8) 
{ab\cd) < oo. Hence clearly if we choose ^ > 2ku{8) the lemma is verified. 

0 

4. QUASIMETRICS 

We will see how a system of annuli defined on a metrisable compactum M and 

satisfying properties (Al), (A2) and (A3) gives rise to a "hyperbolic quasimetric" on 

the set of distinct triples union the set of non-conical points. 

A quasimetric fulfills the same axioms as a metric does, except that the triangle 

inequality holds only up to an additive constant and we allow the existence of two 

distinct points of zero distance apart. We will see that on the large scale a quasimetric 

behaves as a metric. Therefore in the case of a quasimetric space, we get the standard 

results about quasi-isometry, hyperbolicity, etc. 
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Definition. A k-quasimetric p on a set Q is a map p : [0, oo) such that 

z) = 0, i/) = z) and p(a;, z) < p(j;, ?/) + p(^, z) + A: for all a;, i/, z E Q. 
We will say that p is a quasimetric if it is a fe-quasimetric for some k. 

We will refer to k as the quasimetric constant. Given x e Q and r > 0 we write 

r) = {2/ G Q|p(3;, 2/) < r}. Also given f , a subset of Q, we write 7Vp(f,r) = 
Ua;6P )")- We will say that P is r-quasidense if Q = Np{P, r). 

Definition. A k-pseudogeodesic segment is a finite sequence of points {â OiG{o,...,Ti} 

satisfying p{xi, Xj) \i — j\ for all i,jE {0,. . . , n}. 

We note that a pseudogeodesic is a quasigeodesic with the multiplicative constant 

equal 1. We will say that a t-pseudogeodesic segment connects a and 

b ii xq = a and Xn = b. We can similarly define pseudogeodesic rays and bi-infinite 

pseudogeodesics. 

Actually the notions above, such as quasigeodesic segments and quasigeodesic 

rays have been used by, for example, Bowditch in [Bo4] and Ghys and de la Harpe in 

[GhH], so also has the notion of "quasi-isometry" between two quasimetric spaces. A 

quasi-isometry between two quasimetric spaces {Q, p) and (Q', p') is defined exactly 

as for metric spaces. It is a map ip : [Q, p) -4- (Q% p') which changes distances at most 

by a linearly bounded amount, i.e there exist constants K and A satisfying, for every 

a;,?/ e Q, that ^ /)(a;,2/) - A < /(y(r),y)(2/)) < + A, and such that y(Q) 
is a quasidense set in Q'. We notice that if P is a quasidense subset of Q then the 

inclusion of (P, p) in {Q,p) is a quasi-isometry. 

Suppose (Q, p) is a fc-quasimetric space, then as we mentioned in the previous 

section we can define a crossratio on the set (Q, p) by {xy\zw)p = ^{max{p(x,y) -t-

w), /)(z, z) w), p(a;, w) +p(2/, z)} - {p(a;, 2/) + p(z, w)}} for any z, %/, z, w E Q. 
Evidently is symmetric and its restriction to 84(0) defines a crossratio. 

We will refer to this crossratio as "the crossratio induced from p" or simply the 

"induced crossratio". 

Definition. We say that a quasimetric space is hyperbolic if there exists r] such 

that the induced crossratio satisfies (Bl) for the constant 77. 

We will refer to the constant involved as the "constant of hyperbolicity" and 

denote it by 77. This constant is not a-priori equal to the constant of quasimetric but 

it can always be taken to be equal to it. 
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We notice that if p is a metric then the fact that the induced crossratio satisfies 

property (Bl) is equivalent to say that p satisfies the four points characterisation of 

hyperbolicity in the sense of Gromov [Gro2]. In other words in the case of a metric 

space the hyperbolicity gives the four points characterisation. This latter notion 

was introduced by Gromov and the generalisation to the quasimetric case has been 

described without any essential change by, for instance, Bowditch [Bo4]. Now, we will 

give a proposition which is stated in one of the references [Gro2], [Bol], [GhH] for the 

metric space case. This proposition helps to understand the connection between the 

hyperbolicity of a quasimetric and the hyperbolicity of the crossratio induced from 

it and which is in fact an analogue of Theorem 3.1. Here we allow us to state it for 

quasimetric case without given a proof as one can generalise the metric space case 

without any essential changes to the quasimetric space case. 

Proposition 4.1. For ail n e N there exist some constant, iy(n), depending only 

on n, such that if {F, p) is a rj-hyperboUc rj-quasimetric space of cardinality n, then 

we can embed F in a metric tree {T, a), such that \p{x, y) — a{x^ y)\ < r]u(n) for all 

z,2/ E F. 

As a result, if (Q,p) is an r^-hyperbolic ?7-quasimetric space, i.e satisfies 

(Bl) for the constant 77, then by applying Proposition 4.1 to a set of five elements we 

see that satisfies (B2) for the constant %y(5). So (..|..) is a r/zv(5)-hyperbolic 

crossratio defined on Q. 

Definition. A quasimetric is a path quasimetric if there is a fe > 0 such that 

every two points can be connected by a ^-pseudogeodesic segment. 

The constant involved by this definition is, in fact, independent from the constant 

of the quasimetric. But, for simplicity, it can always be taken to be equal to the 

constant of quasimetric. Also in the case of a hyperbolic path quasimetric space, we 

adopt the convention that all constants in question (i.e the constant of quasimetricity, 

hyperbolicity and the path quasimetricity), will be chosen to be equal. We will work 

generally in the case of a quasimetric hyperbolic space, so we give in this case an 

alternative formulation of the property of having the path property. A quasimetric 

hyperbolic space, {Q,p), is a path quasimetric space if and only if there is a A: > 0 

such that for any a;, 1/ E Q and p < p(a;, ?/) there is z e Q such that p(a;, z) P 
and p{x,z) + p{z,y) p{x,y). We note that since a quasi-isometry distorts the 

distance at most by a linearly bounded amount, the property of being a hyperbolic 
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path quasimetric space is also a quasi-isometry invariant. The proof of this result can 

be found for instance in [Bol]. 

Let M be a metrisable compactum. Suppose that we have a symmetric system 

of annul! A on M which satisfies (Al), (A2) and (A3). So we know that it defines 

a K-hyperbolic path crossratio on M and satisfies (A). Now, we will see how we can 

define a hyperbolic path quasimetric on, 63 (M) U H, the set of distinct triples union 

the set of non-conical points. Bowditch gave the construction of a hyperbolic path 

quasimetric on 63(M) when a hyperbolic crossratio is defined on M ([Bo4],Section 4). 

In our case in order to obtain such a quasimetric we will use his work as a background. 

The main argument will be to use tree approximations of the quasimetric which will 

be defined on 83 (M) U 11. 

We define the quasimetric on 63 (M) U H by 

p(a,6) = (o|6), 

= /)(%, a) = max{(a|zizj) where 2 ^ j}, 

y ) = where i ^ j and & ^ Z}. 

where % = (zi, 2:2,23), F = (1/1,7/2,2/3) G 63(M) and a, 6 E H. 

Thus, we have p{x, x) = 0 and p(x, y) = p{y, x) for every x,y G 63(M) U 11. We 

need also to verify the triangle inequality, up to an additive constant. To do this, 

we will use approximating tree to find a geometric interpretation of this quasimetric. 

Let F be finite subset of M of cardinality n so that {a, 6, a;i, 3:2,3:3, ^1,1/2,2/3} ^ F 

We consider a C-approximating tree (T, a) of F defined as in Corollary 3.5 (so that 

and we denote a; = med(a;i,2:2,3:3) and ?/ = med(?/i, 2/2,2/3)- Then, 

Lemma 4.2. p(a, h) ~ a{a, b), 

p((i, %) c:! cr(a, a;), 

Proof. By the construction of (T, cr) we know that cr(a, b) ~ (a|6). So we have 

(7(11,6) p(a, 6). 

Now, we will show a{x,y) ~ p(X,Y). For every i ^ j and k ^ I in {1,2,3} 

we have a; 6 [a;*,a;;] and %/ E [?/*:,2/;]- So (a;ia;j|2/A:2/z) ^ As a 

consequence we obtain p(J ,̂ Y) :< (7(3;, 1/). On the other hand we can find to 9̂  jo &iid 

to ^ Zo in {1,2,3} such that (;(a;,2/) = (T([a;̂ o,a;jJ, = (a;ioa;jo|2/&o2/fo)T-

we have (a;ioa;jJi/&o2/!o)'r - So we obtain o-(a;,^) (a;ioa;jo|2/ko2/(o) ^ 
p(%,y). 
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Finally we can see, by a similar argument to the one above, that a{a, x) ~ p(a, JY") 
which completes the proof. 

0 

Here the approximating constants depend only on K and the cardinality n of the 

set F. In the application below, ( = Ku{n) will depend only on k since all the entries 

of any triple or quadruple of 83 (M) U H belong to a subset of M of cardinality at 
most 16 and hence we can fix n to be 16. 

Proposition 4 .3 . (63 (M) U H, p) is a hyperbolic quasimetric space. 

Proof. To see that p is a quasimetric, we need the verify the triangle inequality. 

Let X,Y and Z be three points in 83(M) U LI. We will verify the triangle inequality 

only in the case where % = (zi,2:2,2:3), ^ = (2/1,2/2,2/3) arid = ('Zi,Z2,'Z3) are in 

83 (M). Other cases can be verified in similar manner. Consider an approximat-

ing tree (T, cr) of {xi,x2,x3,yi,y2,y3, zi, Z2, z^} defined as in Corollary 3.5 (so that 

= KZ/(9)) and we denote z, 1/ and z respectively med(3;i, 373), med(2/i, 1/2,1 /3) and 

med(zi, Z2, ;2̂ 3)- Then, by Lemma 4.2, we obtain p(A', F) (T(z, %/), Z) ^ (7(2/, z) 

and p(%, 2:̂  cr(a;,z). We know (7(3;,?/) < (^(z, z) + o-(z,?/), and so we obtain 

Now, we will prove that p is hyperbolic. Let W be another point in 83(M) U 11. 

We will again give a proof only in the case where X, Y, Z and W = (wi, W2, wz) are 

in 83(M). So, we consider an approximating tree (T, cr) of {zi, X2, xz, yi, 2/2, 2/3, 

zi, Z2, Z3, Wi, W2, Wz} defined as in Corollary 3.5. (so that C — ku{12)). We know, 

by a remark we mentioned in the previous section, that (T, a) is 0-hyperbolic and 

following this we obtain the result required. 

0 

We have shown that (83 (M) U 11, p) is quasimetric hyperbolic space. In fact, 

the restriction on 83 (M) of the quasimetric p is exactly the quasimetric defined by 

Bowditch in Section 4 of [Bo4]. Therefore, by Lemma 4.3 of [Bo4], we can also say 

that the restriction of p on 83 (M) is path quasimetric. The proof of this result uses 

basically approximating trees and the path property of the crossratio induced from A. 

We will use this result to show that (83(M) Ull, p) is, in addition to its hyperbolicity, 

a path quasimetric space. 

Lemma 4 .4 . p on 83 (M) U 11 is a path quasimetric. 
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Proof. We already know that the restriction of of p on 83 (M) is path quasimet-

ric, so we need to take into account the set 11. We will prove that for any x ^ y Eli 
and p < {x\y) there exists an element W of 83(M) U 11 satisfying p{x, W) ~ p and 

p{x, W)+p{W, y) ~ p{x, y). We need a similar result for any a in 11, X = (xi, X2, xz) in 

83(M) and p < (o|%) there exists an element of 83(M) UII satis^ing p(a, M/) 2̂  p 
and p(a, W) + p{W, X) ~ p(a, X). But the latter case is an analogue of the first one, 

so we will only demonstrate the assertion for the former. 

Let X ^ y E li and p < {x\y) = n. So there exists a finite sequence of an-

nuli such that {a;} < yli < - < < {?/}. We choose a point 
z G M\{{Ap)~U(Ap)'^} and denote by W the triple (x, z, y). We note that p{x, W) = 

{x\zy) and p{y,W) = {xz\y). In addition, by Lemma 2.4, we have that {x\y) ~2 

(z|z2/) + (a;z|?/). In other words 1/) —2 p(a;, W) + VF). On the other hand we 
can also notice that since Ap^i < { z } we have (x\yz) > p ~ l , as well as {xz\y) >n—p 

since { z } < As a consequence we obtain {x\yz) < n + 2 — (xz\y) < p + 2 and 

so p{x^ W) ~2 Pi which completes the demonstration. 

0 

Lemma 4.5. If 11 is quasi-dense in 83(M) U H then we have (11, is a path 

quasimetric hyperboUc space. 

Proof. As we mentioned in the beginning of the section, if 11 is a quasidense 

subset of 83 (M) U n, the inclusion of (H, p) in (83 (M) U 11, p) is a quasi-isometry. 

Also we noted that the property of being hyperbolic path quasimetric is a quasimetric 

invariant. Now if 11 is quasi-dense in 83(M) U 11, since we already proved that 

(83(M) U n, p) is a hyperbolic path quasimetric space, we see that (11, p|jj) is also a 

hyperbolic path quasimetric space, which gives the result needed. 

0 

5. CONVERGENCE GROUPS 

In this section we will link systems of annuli defined on a compactum and con-

vergence groups acting on a compactum. We will then describe which hypotheses 

for systems of annuli allow us to obtain the set of bounded parabolic points as a 

hyperbolic path quasimetric space. 
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The study of convergence groups was introduced by Gehring and Martin [GeMl] 
in order to describe the dynamical properties of a Kleinian group acting on a standard 

sphere of R". The notion has been generalised to compact Hausdorff spaces by Tukia 

and Freden [Tul, Fr]. Their motivation came by observing that the action of an 

isometry group of a Gromov hyperbolic metric space can be extended as the action 
of a convergence group to its Gromov boundary. There are mainly two equivalent 

de&nitiong of convergence groups. Let M be a metrisable compactum and F be a 
group which acts by homeomorphisms on M. 

Definition 1. F is a convergence group if, for any sequence {gi}i of distinct 

elements of F, there are two points a, 6 E M and a subsequence such that 
converges to 6 locally uniformly on M\{a} as M tends to oo. 

Definition 2. F is a convergence group if its action on the space of distinct 

triples, 63 (M), is properly discontinuous (i.e for any compact subset K C 63 (M) the 

set E F I gK n iiC ̂  0} is finite). 

The equivalence of these definitions is proved for group actions on spheres in 

[GeM2] and for the general case (actions on compacta) in [Bo5]. We note that the 

first definition gives a dynamical characterisation of convergence groups, while the 

second one is more natural topologically given that 63 (M) can be compactified by 

adding a copy of M. This compactification can be described by presenting 03(M) UM 
as a quotient of M x M x M where the quotient map is the identity on 83 (Af) and 

sends a triple (x, y,z) to a E M if at least two of x, y, z are equal to a. We will refer 

to the topology thus defined on 83 (M) U M as the topology of compactification. In 

this topology we can see that if {xi,yi,Zi)i is a sequence in 63(M) with Xi and yi 

tending to a then {xi, yi, Zi) converge to a in 83(M) Li M. The converse is also true 

up to permuting Xi,yi,Zi. Therefore the action of a convergence group F on M can 

be extended to 83(M) with {x,y,z) i-)- {gx,gy,gz) for every g eT. 

In this paper we need the dynamical properties of "bounded parabolic points" 

and a geometrical characterisation of "conical limit points". Before giving an explicit 

definition of these, we will briefly outline the basic elements of the theory of conver-

gence groups acting on a compactum. Suppose F is a convergence group acting on a 

compactum M. We write AF for the limit set of F. The limit set can be described 

as the set of accumulation points of any F-orbit. So, AF is a closed subset of M. In 

fact, unless F is finite or virtually cyclic, it is the unique, minimal, non-empty, closed 
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r-invariant subset of M. We say that the action of F is if AT = M, which 
will be the caae in this paper from our dehnition of "geometrically Biiite" convergence 
groups. 

Definition. A convergence group, T, is geometrically finite if every point of M 
is either a conical limit point or a bounded parabolic point. 

The notion of geometrical finiteness has been described by various authors for 

Mobius groups [Bea,Bo2,] and for Riemannian spaces in [Bo3] and its extension to 

convergence groups has been done by Tukia in [Tu2]. We say that a subgroup G < P 
is parabolic if it is infinite, fixes some point of M and contains no loxodromic. (A 

loxodromic element g' of F is an element with infinite order and with card (fix (gf)) = 2.) 

In this case the fixed point, z, of G is unique and called a parabolic point. Moreover G 

acts on M\{x} properly discontinueusly. We note that a parabolic group can be an 

infinite torsion group, so by our definition a parabolic point does not need to be fixed 

by a parabolic element of G. It can be shown that Stabr(a^) is necessarily a parabolic 

group for any parabolic point x. Therefore, there is a bijection between maximal 

parabolic subgroups of F and parabolic points of M. We will say that a parabolic 

group G with fixed point x is bounded if the quotient {M\{x})/G is compact. Now 

we can give the definitions of bounded parabolic points and conical limit points. 

Definition. A parabolic point z is a bounded parabolic point if and only if 

Stabr(a;) is bounded, i.e., Stabr(a;) is compact. 

In fact this definition arises from the extension, to convergence groups, of the 
notion introduced in the case of Kleinian groups, called "standard parabolic region" 
by Bowditch or "cusp neighbourhood" by Tukia. For a deeper study of bounded 
parabolic points see [Tu2, Bo2]. The definition of conical limit points for convergence 
groups agrees with one for the Kleinian groups. 

Definition. A point x E M is a conical limit point if there exist a sequence 
{9i}i G F and distinct points a,b e M such that giX a and Qiy —)• b for all 
y ^ X E M. 

In this definition the convergence of Qi on M\{x} can assumed locally uniform. 

In this section we will need an equivalent and more geometric definition of conical 

limit points given by Tukia in [Tu2]. We define a line L{a, 6), with endpoints a and 
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h ^ a, oi 83(M) as a set {(a, 6, z) : z E M\{a, 6}}. This definition respects the 
orientation and we refer to a as the initial point. 

Definition. A point x e M is a. conical limit point if and only if any line L{x, y) 

of 83(M) with initial point z contains a sequence C Z,(a;,7/) such 

that Xi converges to 2; in M and {x, y, Xi) G TK for some compact set K in 63 (M). 

The following result is a standard result due to Beardon and Maskit in the case 

of Kleinian groups. This has been proved for the case of convergence groups by Tukia 

[Tu2]. 

Proposition 5.1. A conical limit point cannot be a parabolic point 

Let r be a convergence group acting on a metrisable compactum M. Suppose 

that M contains only conical limit points and bounded parabolic points and that the 

quotient by F of the set of bounded parabolic points is finite. Let >4 be a F-invariant 

symmetric annulus system constructed on M, satisfying (Al), (A2), (A3) such that 
the set of conical points, E, is exactly the set of conical limit points. This justifies 

the choice of the terminology for "conical points" in Section 2. Thus 11 = M\E = 

{bounded parabolic points}. Suppose also that there exists % > 0 such that every 

pair of distinct points x,y E U. satisfies {x\y) > %. We saw in Section 2 that the 

constant of path hyperbolicity, k, of the induced crossratio, is universally defined and 

fixed for such a system of annuli (Proposition 2.1). Here, we assume that % can be 

chosen independently from k. Later in Proposition 6.5, the system of annuli, A, will 

be constructed to enable us to choose % large enough to obtain the results required. 

Moreover, by Lemma 3.7, A satisfies (A5), i.e. there exists ^ which depends only o 

K, and thus which is also universally defined, such that for every b,c^ d and for 

all sequences {oj}, {bj}, {c&}, {di} C M satisfying a, a, bj b,Ck ̂  c and di ^ d 

we have for all i,j,k,l sufficient large {aibj\ckdi) {ab\cd) < 00. In Section 4 we 

constructed, by Lemmas 4.3 and 4.4, a hyperbolic path quasimetric, p, on 03(M) Ull 

with the property that if (11, p) is quasidense in (63 (M) U 11, p), then (E, p) is also a 

?7-hyperbolic path quasimetric space (Lemma 4.5), where 77 depends on the constant 

of quasidensity. From the definition of p we note that since A is F-invariant, p is also 

F-invariant. 

Lemma 5.2. Given a sequence, {Xi}i, and an element, X, of 83(M) U 11, if 

p{X,Xi) tends to 00 then, after passing to a subsequence of {Xi}i, we can find an 

element x of M such that {Xi}i converges to x in the topology of compactification. 
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Proof. We can suppose without loss of generality that C 63 (M) or 

{Xi}i C n . We will prove this lemma in the case that X = {a,b,c) and Xi = 

(ai,bi,Ci), for all i, are in 8 3 ( M ) . In fact there are three more possible cases, which 

are X,Xi e U, X e 8 3 ( M ) while Xi eU and, the last one, X G 11 while Xi e 8 3 ( M ) . 

These other possible cases can be proved similarly. We can suppose without loss of 

generality that p{X,Xi) = {ab\aibi). Because, if not, we can exchange a ox b with 

c, as well as ai or bi with Q and change notation. Thus {ab\aibi) 00. Since M 

is a compactum we can also suppose, by passing to a subsequence, that —> x 

and 6; 2/ ill if a; ^ 1/, ^ & consequence of property (A5), we obtain 

{ab\aibi) ~ {ab\xy) < 00, which gives a contradiction with (ab\aibi) —>00. So x = y 

and Xi converges to x in 83 (M) U M in the topology of compactification. 

0 

Lemma 5.3. Any compact subset of 8 3 ( M ) , in the topology of compactification, 

is bounded m (83 (M) U M, p). 

Proof. We argue by contradiction. Let K he a compact subset of 83 (M) such 

that K is not bounded in ( 8 3 ( M ) UM, p), i.e., there exist a sequence C K and 

an element X e K such that p(X, Xi) —> 00. Thus by Lemma 5.2, after passing to a 

subsequence we can assume that there exists x in M such that Xi converges to x in 

the topology of compactification. So, this gives us a contradiction with the fact that 

M and K are disjoint compact sets of 83 (M)UM in the topology of compactification. 

0 

The following two lemmas will be used several times in our proofs of this section, 

(specifically to prove the principal result, namely the quasidensity of 11 in 83(M)), 

as well as in section 7. 

Lemma 5.4. Let x be a bounded parabolic point. If Xi and yi are two se-

quences tending respectively to x and y E M\{x}, then for all large enough i we have 

(x\xiyi) < C + 1 where ^ is the constant defined by property (A5). 

Proof. We choose a sequence of nested annuli of maximal cardi-

nality such that f j = {x\xiyi) and {xi,yi} < B\ < • • • < B^.. < {x} and we consider 

the compact set K in M\{x} given by Lemma 2.8 such that {x\K) = 0. Figure 1.5.1 

gives an illustration for the compact K and the annuli Bj, where any annulus B 

corresponds to a grey domain which represents M \ 5+ U B~. 
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Figure 1.5.1 

We note that there is no i and j 6 {1,. . . , r^} such that K < Bj < {%}. Because 

if there were, we would obtain {K\x) > 1, which is not possible by the choice of K. So, 

there exists a sequence {zi]i such that for all i, Zi £ (M\ int(i3®J'") n K . Moreover 

we notice that for every j - 1 we have z* E iiit(By)+, i.e. {a;*, 2/*} < < - - < 
< {z, Zi}. This implies n - 1 < 

On the other hand for % large enough we have For, suppose that 
^ for infinitely many i. By passing to a subsequence we can suppose that 

Zi converges to z E M and z ^ a; since Zi G ^ C So, by property (A5) we 
obtain {xiyi\xzi) {xy\xz) = 0, which gives a contradiction with {xiyi\xzi) > 

Consequently there exists io such that for all i > io, {xiyi\xzi) < ^ and so {x\xiyi) = 

n < (a îZ/ikzi) 4- 1 < ^ + 1. 

0 

For the next two lemmas, let x, y be two distinct bounded parabolic points and let 

n = (x\y). Choose a sequence of nested annuli {^A;}A:e{i,...,ra} and {x} < Ai < • • • < 

An < {y}- Let yi be a sequence of elements of H tending to y. Then {y\yi) is finite 

and we can suppose that yi G (An)'^- For all i, we choose a sequence of nested annuli 

of maximal cardinality such that {yi} < Bl < • • • < B^. < {y} (so 

that Ti = {y\yi)). We denote by Sj the maximal index such that {Bl.)~ C int(An)"'"-

(Figure 1.5.2). 

L e m m a 5.5. For i sufficiently large we have (y\yi) < g, + ^ + 1 and {x\yi) > 

n + Si — 1, where ^ is the constant de&ned by property (A5). 

Proof. We will prove r, —s, < ^ + 1. We can suppose Si < Vi since r, == Si implies 

the inequality required. We know that for all j > Si + 1, H (M\ int(^„)+) ^ 0 

and so there exists a sequence {wi}i such that for all i, Wi e {Bl._^i)~n{M\ int(^ji)+). 

We notice that {?/i, Wi} < < - < B*. < {?/}, i.e. n - gi < (z/iWi|2/). By passing 
to a subsequence we can suppose that Wi converges to w, where w 6 M\{y} since 

Wi e M\ int(j4n)+. Thus, by Lemma 5.4 applied to y, yi and Wi ^ w e M\{y} 
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in place of respectively z, a;* and -4 1/ G for large enough z we obtain 
< ^ + 1, that is to say (?/|i/;) = n < (i/iWij?/) + 8% < ^ + 1 + Si-

Figure 1.5.2 

Now, we will show that {x\yi) > n + Si — 1. In fact, since C int(v4m)^, 

for all j < Si — 1, we have M\int(5j)+ C int(ylyj) + . So {yi} < B\ < 

Aji < • • • < Ai < {x}, which implies n + s, — 1 < {x\yi). 
< % - i < 

0 

Given yi, Zi two sequences tending to y let ... be a sequence of nested 

annuli of maximal cardinality such that = {y\yiZi) and {yi, Zi} < Bl < • • • < Bl. < 

{y}. We denote by s* the maximal index such that {BlJ~~ C int(v4m)+. By the same 

argument of Lemma 5.5 we can see: 

Lemma 5.6. For i sufEciently large we have {y\yiZi) < + ^ + 1 and {x\yiZi) > 

n + Si — 1, where ^ is the constant defined by property (A5). 

Proposition 5.7. Let A be a V-invariant symmetric annulus system constructed 

on M ~ E U n, satisfying (Al), (A2), (A3) such that the set of conical points, H, is 

exactly the set of conical limit points. Assume that 11 ^ 0 and there are only finitely 

many T-orbit in 11. Then H is quasidense in 83(M) U11 provided that (x\y) > % for 

all distinct x,y eU and % > ^ + 3. 

We will see that taking the constant % (as in A5) greater than ^ + 3 will be 

sufficient for the proof of Proposition 5.7. This also will be enough to prove Theorem 

7.1. Later, it will be shown that we need to take it greater than 2^ + 6 to prove 

Theorem 8.2. 

31 



A topological characterisation of relatively hyperbolic groups 

Proof. We suppose to the contrary that 11 is not quasidense in 83 (M) U 11, i.e, 

there exists a sequence in 83(M) such that 11) ^ 00. Set = (o*, 6̂ , c*). 
Since p is F-invariant and there are only finite many F-orbit of bounded parabolic 

points, without loss of generality we can suppose that p{Xi, H) = p{Xi, x) where x G H 

is fixed. Again without loss of generality we can suppose that H) = {aibi\x). 

(If not we can change notation for Xi = (a,, 6%, c,).) Now, a; is a bounded parabolic 

point, so there exist gi G Stabr(x) such that the sequence giai stays in a compact 

set, jiT, of Thus after passing to a subsequence we can suppose that -4̂  
a € K C M\{x} and gibi —> 6 G M. In fact a = b because otherwise, {ab\x) being 

finite, we would obtain ({giO-i, gibi}\x) bounded, which would give a contradiction. 

(To see this we can use an efficient approximating tree T of {a, b, giUi, gibi,x}. For i 

large enough we will have and ({6,̂ *̂6*} : i.e. 
(o6|a;) Thus we set a = 6 = 1/ suppose pid: and converge 
to y. Since gix = x and g^II = 11 we can simplify notation by replacing giai^gihi by 

ttj, bi respectively. Thus Oj and 6, converge to y. 

From here, we have two possibilities, either ?/ is a conical limit point or it is a 

bounded parabolic point. 

We suppose first that y is a conical limit point. We consider the line L{y,x) — 

in 83 (M). 

Firstly using the definition of conical limit point given by Tukia [Tu2] , we can 

find a sequence {Yj — {y,x, yj)}j in L{y, x) with yj y and 7̂ - G F such that for all 

j, stays a compact set K of 83(M). So by Lemma 5.3 there is some ( > 0 

such that for all j, p{'yjX,Yj) = p{x,'yJ^Yj) < (. (The equality is satisfied since p is 

F-invariant.) 

Secondly, since y is a conical point, we know (y|rcyo) = 00, i-e. there exists 

an infinite sequence of nested annuli which separate y and {z, yg}. Thus since yi 

converges to y, we can choose jo large enough to obtain p{x, Yj^) — {yyj^\x) 3> C- To 

simplify notation we suppose JO = 0 and write z = 70a;. So we obtain p{x, YQ) 3> ( > 

X7oa;,Y6)=X^,}o). 
We aim to show that p{x, Xi) 3> p{z, Xi) in order to obtain a contradiction with 

the fact that for all i p(%;,II) = p(Xi,x) and therefore to prove that y cannot be a 

conical limit point. 

Since a* and bi converge to y, by property (A3) we have (ya, : xyo), (yui : xz), 

{ybi : xyo) and {ybi : xz) for i large enough. We consider an efficient approximating 

tree (T, a) of {a*, bi, Ci,x, y, z, yo}. Therefore by applying a few times Lemma 3.6 and 

using the efiiciency of T we obtain {{y,ai,bi} : {yo,x,z})T-- (Figure 1.5.3 illustrates 
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two of the possibilities for T). 

£ r r V 
r V ' 
Yo 

Figure 1.5.3 

We write i;* = nied(o*,6i,Q), M = med(2;,2/,-%) and w = med(2/o,a;, i/). Using 

Lemma 4.2 we see that p{x, Xi) ~ cr(a;, Vi) and p{z, Xi) ~ cr(z, Vi). (This also clarifies 

why the position of q in Figure 5.3 is of no importance and only the positions of 

z, z, u, w and Vi relative to each other are relevant to compare p{x, Xi) and p{z, Xi)) 

But Vi e [ai,bi] and a*, 6* satisfies ({y,ai,bi} : {yo,x,z})r in (T, cr). So we obtain 

cr(a;, = cr(a;, w) + (7(w, and (T(z, %;*) = o-(z, u j . 

On the other hand p{z,YO) < (, which implies p{(x,y, z),YO) < (. In fact, 

/)((3;,^,z),}o) = max{(a;z|?/o2/), (%/z|a;i/o)} < max{(z|?/o2/), (z|a;i/o)} < (. Therefore we 

obtain p{{x, y, z), YQ) ~ cr{u, w) ^ (. 

But, by the choice of Yo we have /)(z, }o) p(z,yo), i.e., (7(3;, w) cr(z, w) 

and, since a{u,w) is bounded we have also a{z,w) ~ a{z,u) and a{w,Vi) ~ a{u,Vi). 

Consequently we obtain p(z, XI) ~ a{x, VI) = a{x, •w)+a{w, VI) cr(z, w)+a{w^ VI) ~ 

(7(z, + cr(%, = (7(z, r*) /o(z, %*). This concludes the proof for the case where 1/ 

is a conical limit point, since we found z = 'JQX ^ X EH such that p(z, XI) )$> p(z, XI) 

and this gives the required contradiction. 

Now, we suppose ^ is a bounded parabolic point. We will compare p{Xi,x) and 

p{Xi,y). So we are interested in the quantities {aibi\y),{aiCi\y) and {biCi\y). We have 

two cases to deal with Ci y and Ci y 

Since x and y are bounded parabolic points we have {x\y) < 00. We choose a 

sequence of nested annul! {Ak}k£{i,...,n} such that n = {x\y) and {z} < Ax < • • • < 

An < {?/}• 

Firstly we suppose that c* —)• y. Now, p{Xi,y) = {yiZi\y) where ^ z* G 

{ai, bi, Ci}. Since yi, Zi converge to y, for large enough i, we can suppose that and 

Zi G (An)'^- For all such i, we choose a sequence of nested annuli _ r j of 

maximal cardinality such that r* = < - - < B*. < {{/}. 

We denote by Si the maximal index such that {Bl.)~ C int(^ri,) + . Thus by applying 

Lemma 5.6 we see that for large enough i we obtain {y\yiZi) < s^+C+l and {yiZi\x) > 

Tl Si — 1. 
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On the other hand n = (zji/) > % > ^+3. Thus (2/%Zi|a;) > ^+2 + ŝ  > ^+1 + 8* > 

(2/̂ ẑ |2/) and p(%i,z) > (2/*Zi|a;) > = p(A:i,2/). Since y G H this contradicts 
the fact that p{Xi,I[) = p{Xi,x). 

The second case is when Ci c ^ y. In this case by Lemma 5.4 appUed to y, 

1/ and Q —c ^ 2/ in place of respectively, z, a; and ^ ^ a;, we obtain 
(oiC Î;/) < ^ + 1 for 8u@ciently large i Likewise again by applying Lemma 5.4 we 
obtain {biCi\y) < ^ + 1. So there remains only the quantity {aibi\y) to consider. But 

this is the same situation as in the first case since a, and bi converge to y. Thus we 

can apply the same argument of first case for yi = a, and Zi = bi. As a result we 

obtain (ai6:|3;) > and also ^ + 1. Therefore, > 
max{^ + l,{aibi\y)} > p{Xi,y). This again gives a contradiction to the fact that 

=p(%^,a;). 

0 

6. THE CONSTRUCTION OF A SYSTEM OF ANNULI 

In this section we describe a construction of a system of annuli on a metrisable 

compactum, M, using the action of a convergence group, F, on M. We use the 

notation of Section 5, namely H = {conical points} and IT = M\S. This system will 

satisfy all the properties required in Section 5 to enable us to obtain 11 as a quasidense 

subset of ©3 (M) U n. Let (M, S) be a compact metric space and F be a convergence 

group acting on M such that M consists of only conical limit points and bounded 

parabolic points. Suppose that the quotient by F of the set of bounded parabolic 

points is finite. Let {xi , . . . , Xp] be a set of orbit representatives of the set of bounded 

parabolic points. 

Lemma 6.1. If A is a F-invariant, symmetric system of annuli defined on M 

such that A/T is finite, then there are only finitely many annuli which separate any 

parabolic point x from any compact subset, K, of M\{x} of cardinality at least 2. 

Proof. Suppose to the contrary that there exists a parabolic point x, a compact 

set, K, of M\{x} and an infinite sequence of distinct annuli Ai E A such that for 

all i, K < Ai < {a;}. Since A/T is finite we can find an annulus A and p, E F such 

that, after passing to a subsequence of {A*}, we have Ai = A. In other words 

QiK < A < {gix} for all i. On the other hand since F is a convergence group, on 
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paasing to a subsequence, we can suppose that there are two points a, 6 € M such 
that Qi converges to b locally uniformly on M\{a} when i tends to oo. 

As the cardinality of K is more than two without loss of generality we can choose 

an element y of K such that y ^ a. Therefore giy converges to b, which belongs to 

A~ since giy G A~. Now, we distinguish two possible cases, either a = x ov a ^ x. If 

a ^ X then we have giX converges to b, which belongs to A+ since giX E A+. Thus 

we obtain b G A+ A A~ which is impossible. So the only possible case is when a = x. 

Now since M is compact we can also suppose that converges to z where z € A+ as 
giX belongs A'^. Thus z ^ b because b E A~ and z E In summary we see that gi 

converges to b locally uniformly on M\{x = a} and giX z ^ b. But this is exactly 

the property that a; is a conical limit point, and by Proposition 5.1 we know that a 

conical limit point can not be a parabolic point, which gives us the contradiction. 

0 

The next lemma is a corollary of Lemma 7.2 given in [Bo4]. 

Lemma 6.2. If A is a T-invariant, symmetric system of annuli defined on M 

such that A/T Enite then there are only finitely many annuli which separate x, y from 

z, w where x y, z ^ w are four points of M. 

Lemma 6.3. There exists a compact set Kq of M\{xi,..., Xp} of cardinality at 

least 2 such that Stabr(a:i)ii'o — M\{xi} for all i. 

Proof. Since xi is bounded parabolic point we can find a compact set Li C 

M\{xi} such that = Stabr(a:i)ii. Moreover we know that Stabr(zi) 
acts on M\{xi} properly discontinuously. We consider the compact set L'^ = LiU 

{x2, • • • ,Xp} C M\{xi}. We can find age StabrO%i) such that gL'i D L[ = 0. 

Hence we find a compact subset, Ki — gL{, of M\{xi,..., Xp} such that M\{xi} = 

Stabr(a;i)^i. Likewise, we perform the same construction for all i G {2, . . . ,p} to 

obtain the compact sets Ki G M\{xi,..., Xp} such that M\{xi} = Stabr(a;i)iCi. 

Consequently the compact set Kq = Ki of M\{xi,..., Xp] satisfies Stabr(a:i)-^o = 

M\{xi} for all i. 

0 

Let A = (A", A+) be an annulus. We write X{A) = min{diam(^~),diam(vl+)} 

and IJ,{A) = S{A'' ,A'^). Now, 02 (M) is the set of distinct pairs of M, i.e minus 

the diagonal. We denote by 62(M,n) the set {(x,y) G 83(M) | S{x,y) > l/n}. We 

note that 82(M) = 82(M,»). Thus {82(M, gives a exhaustion of 82 (M) 

by compact sets. 
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Lemma 6.4. If A is a F-invariant system of annul! defined on M such that A/T 

is finite, then for all e > 0 the set {v4 E yl | A (A) > e} is finite. 

Proof. Suppose to the contrary that there exist an infinite sequence of distinct 

annuU {AI}I such that A(^i) > e. Since A/T is finite after passing to a subsequence 

we can suppose that Ai = giA where {gi}i is a sequence of distinct element of T 

and v4 is a fixed annulus of A. Moreover, after passing to a subsequence of {gi}i, 

we can find a,b e M such that gi converges to b uniformly on M\{a} as i tends to 

oo. Without loss of generality we can suppose that a ^ A" . Thus giA~ —>• b, which 

implies that for i sufficiently large, dmmgiA~ < e. This gives a contradiction with 

0 

The following gives an annulus sytem of the type requierd in Section 5. 

Proposition 6.5. Suppose a group F acts as a convergence group on a metrisable 

compactum M such that the action is geometrically finite. Suppose that the quotient 

of the set of bounded parabolic points under F is finite. We fix a x> 0. Then there 

exists a symmetric, F-invariant annulus system defined on M such that A satisfies 

(Al), (A2), (A3) with H = {conical limit points}, 11 = {bounded parabolic points} 

and such that {x\y) > % for every distinct x,y G 11. 

Proof. The construction is in three steps. The first step is the construction 

of an annulus system with finite quotient which will ensure that any two distinct 

bounded parabolic points are separated at least by % annuli. The second step will 

be the construction, using an inductive argument, of another annulus system. This 

system will ensure that any two points of M are separated at least by one annulus. In 

addition, for K a fixed compact set of M of cardinality at least 2, no annuli separate 

K from any point in some fixed orbit transversal. In the last step we put together the 

systems constructed in first and second steps and the annulus system thus obtained 

has the properties required. 

Step 1: 

Let {xi , . . . ,Xp} be a fixed set of orbit representatives of the set of bounded 

parabolic points. Let KQ be a compact set defined as in Lemma 6.3. We choose 

an annulus A\ such that Kq < A\ < {xi} and Al satisfies X{gAl) < for all 

^ G F. The choice of A\ can be justified by using Lemma 6.4. In fact if p € F 

satisfies X(gAl) > n{Al), then we can choose an open neighbourhood S oi gxi such 

that S C g{A\)'^ and diam(S') < / /(A}). Thus, replacing A\ with {{A\)~, g"^S) and 
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denoting it by 4̂̂  we obtain A(gAi) < Note that can only increase in 
this process. Moreover, since by Lemma 6.4 the set G F | X{gA\) > IJ.{A\)} is 

finite, we need to do the same construction only finitely many times to obtain A\ as 

required. 

Now we choose another annulus A\ such that KQ < A\ < A\ < {zi} and Ag 

satisfies X{gA2) < min{/:(Ai), //(Ag)} for all g eV. In fact the same argument of the 

previous construction gives the annulus A\, where M\mt({Al)'^) plays the role of KQ 

(Noting that we only required that XI ^ KQ). 

We can continue to construct such annuli until we have JiTo < 4̂% < - < < 

{21} with X(gAj) < mm{n{Al) \ k < j} for all j E {1, . . . , %} and all c/ G F. 

We perform the same construction, inductively, for all x, e {xi , . . . ,Xp}. In 

other words, for all i, we construct a sequence of annuli with Kq < 

A\< •• • < {xi} such that for all p E F, 

A(pAj) < min({/̂ (A%) | & < j } U | 1 < A; < %, Z < %}). (V) 

We write C = | i e e {!,...,%},(/ 6 F}. Clearly C is 
F-invariant, symmetric and C/T is finite. We will write, for P and R compact subsets 

of M, {P\R)c to mean (P|i?) defined with respect to C. 

Step 2: 

We write n = min{/^(A^) | i G G %}} and fix a compact 

subset K of . . . , Xp}, which need not be equal to KQ for this construction but 

can be chosen to be equal. 

We will use a recursive argument on n G N to construct a sequence of F-invariant, 

symmetric annulus systems, B{n), with B(n)/F finite. For n > 1 let jj,'^ be the minimal 

value of {msLXii{gB) | p E F} as B varies in IJm=i B{m). We set ji^ = 1. Note that 

since Um=i ;G(m,)/F is finite fj,'̂  is strictly greater than 0 for all n. 

For all n > 1, we will assume, inductively, that B{;n) satisfies 

(*) there exists a finite set, of F-orbit representative of B{n) 

such that (Vi) /u(5") > l/{n + l). 

(**) V B E B W A(B)<min{/i,/i^_i, 1/(^4-1)}. 

(* * *) G { 1 , . . . ,p} there is no element of B{n) which separates Xi and K. 

(* * **) if {x, y) G 8 2 (M, n) then some element of B{n) separates x and y. 

We suppose that we have achieved this up to a fixed n. We describe the con-

struction for -h 1). 
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Given an element u) = {x,y) of O2(M,n + 1) we can choose an annulus 5(a;) 

with X < B{<JO) < y such that satisfies; 

(а) XB(w))>l/(M + 2), 

(б) Vp 6 r A(pB(w)) < l/(n + 2)}, 

(c) V2 e (1,.. . ,p} there is no ^ e F such that separates 27; and TiT. 

The choice of B{uj) can be justified by the similar arguments as used in the 

first step. Clearly, uj being an element of 82 (M, n + 1), B{uj) can be chosen to 

satisfy ^(B(w)) > l/(n + 2). Moreover, noting by Lemma 6.4 that the set {g e 

r I X{gB(u)) > e} for e > 0 is finite, we can choose B{u) satisfying (b) in the 

same manner described for the construction of AL in the first step. We still need 

to verify (c). To do this we use Lemma 6.1. Let g be an element of F such that 

gB{uj) separates Xi and K. Thus we have either K U {gx} < gB{uj) < {xi^gy} or 

{xi^gx} < gB{uj) < KU {gy}. Without loss of generality we can suppose the former 

holds. We choose an open neighbourhood S of gx such that S C g{B{u)))~ and 

K ^ S. Now, replacing B(uj) with (g~^S, B{u})'^) and denoting it by B(u}) we see 

that gB{u) does not separate Xi and K. On the other hand, for all i G {1 , . . . ,p}, by 

Lemma 6.1, the set {c? G F | gB{uj) separates Xi and K} is finite. So considering only 

finitely many i G {1, . . . ,p} and {g 6 F | gB{uj) separates Xi and K} we can obtain 

jB(cj) as required. Evidently, after these corrections, B[U)) still satisfies (a) and (6). 

We can write 82(^,72+ 1) = Uw€ea(M,n+i)(^tB(w)" x intB(w)+). Therefore 
since 82 (M, n + 1) is compact, there is a finite set {wi, . . . , C 62 (M, n + 1), 

so that 82(M, M + 1) = (int B(uji)~ x intB(wJ+). We write for 

all z G "l^l,..., . 

Let + 1) = I 2 G {1, . . . , p G F}. Clearly + 1) 
is F-invariant, symmetric and B{n + 1)/F is finite. Also as a direct consequence of 

the properties (a), (6), (c) and the construction, B{n + 1) satisfies all the properties 

(*)-(* * **) demanded. 

So, after setting B(0) = 0 this inductive construction proceeds for all n. We 

write B = (J^ 5(M). If F and E are compact sets of M, denote (_P|_R) defined with 

respect to B by {P\R)B • We note that if {x,y) G 82 (M) then there is an annulus 

of B (specifically an annulus of B{n) where n > l/5{x,y)) which separates x and y. 

Also we note that for alH G {1,... ,p} there is no annulus of B which separates Xi 

and K. 

Step 3: 

We consider the system of annuli A = CUB which is F-invariant and symmetric. 
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We write (P|-R) = {P\R)A where P and R are compact sets of M. We will verify 

respectively that every pair of distinct bounded parabolic points a;, ?/ satisfy (z|i/) > %, 

n = {bounded parabolic points}, E = (conical limit points} and that A satisfies 

(Al), (A2) and (A3). 

1. {x\y) > X ^01 dl\ X ̂  y ^ {bounded parabolic points}. 

Let X, y be two distinct bounded parabolic points. There are p E F and Xi in the 

Gxed orbit transversal, {z i , . . . , such that a; = Since M\{a;t} = Stabr(a;*)^o, 

there is A E Stabp(a;,) such that H~^G~^Y e Kq. But by the construction of C we 

have KQ < A\ < • • • < < {XI}. As a consequence (XI\H~^G~^Y) > % which 

imphes > % and so (̂ a?*!?/) = (a;|?/) > %, (noting that ^ is 

F-invariant). 

2. A satisfies (Al), i.e., there do not exist four distinct points x,y, ZjW ^ M such 

that (xy\zw) > 0 and {xz\yw) > 0. 

Suppose to the contrary that there are four distinct points x,y,z,w G M such 

that {xy\zw) > 0 and {xz\yw) > 0, i.e, there are two annul! A^ B oi A such that 

{x, y} < A < {z, w} and {x, z} < B < {y, w}. There are three possible cases to deal 

with. 

The first case is when A,B are both in C. Hence, since C/T — {A'j,—Aj | 

i e {1,.. .,p},3 E {1,...,%}} we can find j,k G {!,..., %}, i,l G {1,.. .,p} and 

p G F such that after translating A by an element of F we can assume A = A®- or 

A = —Aj and B = ov B = — N o w , either i = I and in this case we 

can suppose without loss of generality that j < k, or i I and in this case we can 

suppose without loss of generality that« < Z. In both case the reasoning will be same. 

By (V) we know that A(AA )̂ = A(-/iA[) < /i(A^) = / i ( -Aj) . Now, if B — AÂ  

without loss of generality we can suppose that A(/iA^) = diam(/i(A^)~) and similarly 

if B = —/lA^ we can suppose that X{—hA[) = diam(—/i(A^)~). In both cases we 

obtain (̂ (a;, z) < A(B) < /^(A) < (̂ (a;, z), which gives a contradiction. 

The second case is when A, B are both in B. Thus there is n, m G N such that 

A G B(n) and B G B{m). Without loss of generality we can suppose that m < n. Also 

after translating B by an element of F we can suppose, depending on whether m < n 

or m = n, that either /x(-B) = max{fi(gB) \ g & T} or B e {B^}1^i. In the former 

case we have fJ,{B) > In the latter case, by (*), iJi{B) > l / (n + 1). It 

follows that / i ( i ? ) > min{/i|^_i, l / (n + 1 )} . Moreover since A G B{n) we have also, by 

(**), that A(A) < min{/^, l / (n + 1)}. Without loss of generality we can suppose 
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that A(A) = diam(v4"). We obtain ^(2;,«/) < A(^) < Tnin{//, 1 / (^+1)} < ^(B) < 
d{x,y), which gives a contradiction. 

The third case is either A e C and B E 5 or else A E C and B £ B. Without loss 
of generality we can assume that ^ is in C and B is in B. Thus after translating A by 
an element of F we can suppose that there are i e {1,.. .,p}, j G A} such that 

A = Aj or A = —A'j and also there is n G N such that B G B(n). Moreover without 
loss of generality, we can suppose that X{B) = diam(i?"). Therefore S(x, z) < X(B) < 

fj. < fJ-{A) < 5{x, z), which gives a contradiction. 

3. A satisfies (A2), i.e.. If x ^ y and z ^ w in M then (xy\zw) < 00. 

We are interested only the case when x, y, z, w are distinct. Let e be the minimum 

of 5(x,y) and 5{z,w). We choose an M 6 N such that n > 1/e. We notice that if 

E ^ satisfies {z, ?/} < A < {z, w) then A(^) > 0 l / ^ and so A E Um=i UC. 

But (Um=i UC)/r is finite and so by Lemma 6.2 we can find only finitely many 

annuli separating and {z,w}. i.e (zi/lztu) < 00. 

4. A satisfies (A3), i.e. for every x,y,z G M where x ^ {?/, z} there exists 

a neighbourhood of x such that for every w G we have {xy\wz) — 0 and 

{xz\wy) = 0. 

Suppose to the contrary that there is a sequence, Wi, in M\{x,y, z} converging 

to X such that for all i either (xy\wiz) ^ 0 or {xz\wiy) ^ 0. Thus without loss of 

generality after passing to a subsequence we can assume that for all i, {xy\wiz) ^ 0. 

In other words there is an infinite sequence of annuli {Ai}i such that {x,y} < Ai < 

{z, Wi) for all i. Let e be the minimum of 5(x, y) and 5{x, z). We choose an n G N such 

that n > 2/e. We notice that for large enough z, 5{x,Wi) < e/2 thus 5{z,Wi) > e/2 

and so A(j4*) > e/2 > 1/n. This implies by Property (**) that for all large enough 

Ai G U C. Now, since (Um=i UC)/ r is finite, we can find an 

annulus A and gi E T such that, again after passing to a subsequence of {-Aj}, we 

have Ai = gi~^A. In other words {giX,giy} < A < {giWi,giz} for all i. But we can 

also suppose that there are two points a,b e M such that gi converges to b locally 

uniformly on M\{a} when i tends to 00. Thus if x = a then giy —)• b and QiZ —> b. 

As a result since giy G A~ and giZ G A+, we see that b belongs to A" n A+, which is 

impossible. So, x ^ a and then giX b. Since Wi —> x, we have giWi —)• b. Again we 

obtain a contradiction, because giX G A" and giWi G v4+, which implies b belongs to 

A+ nv4-. 

5. {bounded parabolic points} C n 
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Let a; be a bounded parabolic point. We will show that x cannot be a conical point 

with respect to the annulus system A. Firstly since {bounded parabolic points}/P 
is finite there exist g and Xi in the fixed orbit transversal, , Xp], such that 

X = g~^Xi. Suppose, for contradiction, that there is a compact set L of cardinality at 

least 2 of M such that {x\L) = oo. Since A is P-invariant, this implies {xi\gL) = oo. 

In addition, since A = C U B, either {xi\gL)c = oo or {xi\gL)i3 = oo. But C/T is 

finite and by Lemma 6.1 we see that {xi\gL)c < oo. Thus {xilgL)^ = oo holds, and 

using Lemma 2.7 we see that every compact V of M\{x} satisfies {xi\L')B = oo. In 

particular (xi\K)B — oo where K is the compact fixed in the construction of B in 

Step 2. This gives a contradiction with the fact that for alH G {1,... ,p} there is no 

annulus of B which separates x, and K. 

6. {conical limit points} C S 

Let 2 be a conical limit point. We will show that for any compact set L of 

M\{x} we have {x\L) > 0. In fact by the definition of conical limit points there are 

two distinct points, a,b, in M and a sequence, {gi}i C P such that gix converges to 

a and gi converges locally uniformly to b on M\{x}. Also we know that there is an 

annulus Aof B such that a < A < b, (namely, an annulus of B{n) where n > l/5{a, b)). 

Hence for large enough i we obtain giX < A < giL and so x < g^^A < L. In other 

words, for all L compact subsets of M\{x} we have ix\L) > 0. Thus, as a direct 

result of Lemma 2.8, we obtain x EE, i.e., x is conical point. 

As a consequence of the last two verifications, we note that since M = EU 

n = {conical limit points} U {bounded parabolic points} we have in fact {conical 

limit points} = H and {bounded parabolic points} = 11. 

0 

7. RELATIVELY HYPERBOLIC GROUPS 

The notion of "a relatively hyperbolic group" was defined by Gromov [Gro2]. 

This is a group which is word hyperbolic relative to some infinite subgroups, namely 

"peripheral subgroups" in the terminology of Bowditch in [Bo7]. We gave in the 

Preface two equivalent definitions of relative hyperbolicity. The equivalence of these 

definitions has been proved by Bowditch [Bo7]. The first definition is a modified 

formulation of the original definition introduced by Gromov. It gives a dynamical 
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characterisation of relatively hyperbolic groups in terms of a group action on a hyper-

bolic space, while the second definition characterises relative hyperbolicity in terms 

of a group action on a "6ne hyperbolic (r,y)-graph". We mean by a (F, 
a connected T-invariant graph with vertex set V and with 6nite quotient under the 
action of F. We say that a graph is fine if there are only finitely many circuits of a 

given length containing any given edge. Thus, the second definition of relative hy-

perbolicity can be alternatively formulated in terms of an action on a fine hyperbolic 

(r, y)-graph with finite edge stabilisers and finitely generated vertex stabilisers. For 

further discussion of these notions, such as fineness and a hyperbolic F-set, see [Bo7]. 

These notions were introduced by Bowditch in order to prove the equivalence of Def-

inition 1 and Definition 2 and to analyse further the theory of relatively hyperbolic 

groups. 

The main aim of this section is to prove the following theorem. 

Theorem 7.1. Suppose that M is a metrisable compactum, and F is a conver-

gence group acting on M such that the action is geometrically finite. Suppose also 

that the quotient of the set of bounded parabolic points under F is finite and the 

stabiliser of each bounded parabolic point is finitely generated. Then F is hyperbolic 

relative to the set of its maximal parabolic subgroups. 

In the rest of this section we give a construction of a connected graph K, such that 

F acts on K. satisfying all the properties required in definition 2. In other words we 

will obtain the set of bounded parabolic points as a hyperbolic F-set. The hypothesis 

that the stabiliser of each bounded parabolic point is finitely generated does not play 

any role in the construction of the graph, it is there merely to satisfy hypothesis (4). 

Before we start the construction of IC, we recapitulate the results and the con-

stants under discussion in the preceding sections, in order to make clear the choice 

of the constants in the following arguments. In section 6, under the hypotheses of 

Theorem 7.1, we constructed, for any given % > 0, a F-invariant symmetric an-

nulus system A satisfying (Al), (A2), (A3) with S = {conical limit points} and 

n — {bounded parabolic points} such that each distinct pair x, y of 11 are separated 

by at least % nested annuli. Thus, by Lemma 3.7, A satisfies property (A5) for the 

constant We saw by Proposition 2.1 that the constant of path hyperbolicity, K, 

of the induced crossratio, is universally defined and fixed for such a system of an-

nuli. The same applies to the constant ^ of property (A5) since it depends only K, 

(Lemma 3.7). In other words k, ^ are universal constants. We note that we have no 

reason to suppose that the neighbourhood given in property (A3) (for any x E M 
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and 2/ ^ z 6 M{z,2/}) is uniformly de&ned, so it may depend on the constant %. 

However this will not effect the reasoning since the constant ^ is universal, and by 

construction we can set % sufficiently large, namely (> C + 3), to obtain (H, p) as a 

quasidense subset of (83(M) U 11,p) (see Lemma 5 .7) . Thus, by Lemma 4.5, (11,p) 

is ?7-hyperbolic path quasimetric space, where 77 depends, a priori, on the constant of 

quasidensity and hence %. The constant -q is only used in Lemma 7.2, Lemma 7.5 

and case 2 of Lemma 7.6 where in each case its size relative to % (or to any other 

constant) is not important. 

We define }C equipped with a combinatorial metric, dist, as follows. Let V(JC) = 

n and let x,y E V(}C) be the endpoints of an edge in E(]C) if and only if there is no 

z G n\{a;, 1/} such that z) < ?/) and /)(?/, z) < p(a;, %/). 

Lemma 7.2. There exists a constant C > 0 such that if x, y are adjacent in E{JC) 

t6en ?/) < (. 

(Here C depends on 77 and hence may depend on %.) 

Proof. Given two distinct points x,y eH with p{x, y) = p > 2r] + 1, we choose 

r such that rj < r < p — i]. Since (H, p) is an ry-hyperbolic path quasimetric space, 

there exists z E 11 such that /o(a;, z) = (a;|z) r and /)(%/, z) = (i/jz) p — r. So 

1 < r — 77 < (a;|z), which implies x 7̂  z, and 1 < p — r — 77 < {y\z), which implies 

y 7^ z. Moreover p{x, z) < r + rj < p and p{y, z)<p--r + r]<p. Hence we find an 

element, namely z, of H satisfying z) < p(a;, 1/) and p(i/, z) < p(a;, ?/). As a result 

X, y are not adjacent in K. and we can set ( = 277 + 1. 

0 

Given an edge e of a graph K. we will denote by end(e) the extremities of e. Given 

x,y Eli, [x, y] refers to a geodesic connecting x, y in K,. 

Lemma 7.3. For all r > 0 if p{x,y) < r where a;,y G H, then dist{x,y) < 2^. 

Proof. We will proceed by induction. Suppose that p{x, y) < r. Then either 

a;, 2/ E end(e) where e 6 or there exists zi E n\{2;, 1/} such that p(a;, zi) < /9(a;, 1/) 

and p(i/, zi) < p(a;, 3/), which implies in particular p(a;, zi) < r — 1 and /)(?/, zi) < r — 1. 

In the second case we argue similarly for {x,zi] and {y,zi\ . Thus either z,Zi G 

end(e) where e E or there exists Z2 E n\{a;, zi} such that p(a;, zg) < zi) 

and p(zi,z2) < zi), which implies that /)(a;,Z2) < r — 2 and p(zi,Z2) < r — 2. 

Likewise either y,zi E end(e) where e E E{1C) or there exists Z3 G n \{y ,z i} such 
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that /)(;/, zg) < zi) and zg) < /)(?/, zi). Again we note in the latter case that 
P(2/, Z3) < r - 2 and /)(zi, Z3) < r - 2. 

We can continue this inductive process, decreasing the distance in each step. In 

fact this process ends when two points are adjacent or equal. Thus, we can have at 

most 2̂ " steps, and x, y are connected in K by an arc of length at most 2*". In other 

words 2/) < 2̂ ". 

0 

As a direct result of the previous lemma we obtain; 

Lemma 7.4. K is connected. 

Lemma 7.5, The inclusion (11, p) •=-)• (/C, dist) is a quasi-isometry. 

Proof. Since (11, p) is an 77-path quasimetric, for every pair of distinct points x, y 

of n , we can find a finite sequence {-2i}i€{o,...,n} where n = {x\y) such that ZQ = x, 

ZN = y and for all % G {1,. . . , n}, p{zi-i,zi) 1. In particular p(z*_i, z j < 1 + 77-
But by Lemma 7.3, we know that there is an arc, a,, in /C of length at most 2^+^ which 

connects Zi_i and z*. As a result x, y are connected in K by the arc, aia2 • • • cun, of 

length less than In other words, dist(x,y) < 2'̂ +^/?(x, y). 

On the other hand, for all x,y E V{)C) we consider a finite sequence {zi}ig{o,...,n} = 

y (AZ) n [z, 2/] where M ?/) such that zo = a;, z* and z^+i are adja-

cent in K, for all i . Now by Lemma 7.2, for all z, we have p{zi, z^+i) < (. Thus since p 

is a 77-quasimetric, we obtain that p{x, y) < Pi^i^ Zi+i) + in- — l)r] < nC+(n — l)r]. 

Thus /)(z, 2/) < ?/)(( + 77). 
We denote by K the maximum of the quantities ( + ?? and 2^+^. We obtain 

(1/K)p{x,y) < dist{x,y) < Kp(x,y). In addition 11 is a quasidense subset of AC. 

Consequently these two last assertions together give that (II, p) ^ (JC, dist) is a 

quasi-isometry. 

0 

Corollary 7.6. {JC,dist) is hyperbolic 

Lemma 7.7. fC/T is Unite. 

Proof. By hypotheses of the Theorem 7.1, we have li/T = V{1C)/T finite. So 

we need to prove only E{1C)/V is finite. Suppose, to the contrary, that E{K)/V is not 

finite. Thus there exists an infinite sequence of edges, {e*};, of K such that for all 

distinct %, j E N, e, and Cj belong to different F-orbits of E{K.). We write (a;%, 7/%) for 
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the end points of e,. Then since H / r is finite, after translating by an element of F 

we can suppose for all i that = z, where a; e H. Moreover since a; is a bounded 
parabolic point we can also suppose that by replacing i/i by a suitable 

Stabr(a;)-image and passing to a subsequence. From here, there are two possible 
cases: either y is a bounded parabolic point or y is a conical limit point. 

Case 1; 

Firstly we suppose that y is a bounded parabolic point. Thus, % < {x\y) = n < 

CX3. We choose a sequence of nested annuh such that n = (a;]?/) and 
{z} < < {?/}. 

Since yi converge to y, for large enough i, we have % 6 For all such i, we 

choose a sequence of nested annuli of maximal cardinality such that 

n = (z/lz/i) 8Jid {?/*} < < - < B*. < {?/}. We denote by the maximal index 
such that (BlJ" C int(^n)+. Thus by applying Lemma 5.5 we see that for large 

enough z we obtain < a* + ^ + 1 and (zji/i) > n + — 1 where ^ is the constant 
defined by property (A5). 

On the other hand, since G 11 for all z, we have {y\yi) > %. Thus if % is 

big enough (> ^ + 3) then Si > 2 and so {x\yi) > 7i + Si — 1 > n — {x\y). Moreover 

(a;|%/%) > n + 8 : - l > % + a i - l > (%/|2/:) since M > %. 

As a result if we fix an i big enough we see that y G n \ {x , satisfies p{x, y) < 

p(x, yi) and p(y, yi) < p{x, yi). This gives a contradiction with the fact that r , yi are 

adjacent in K. 

Case 2: 

Now, we suppose that y is conical limit point. Thus since yi y we obtain 

{x\yi) —> oo. But since x and yi are adjacent in K, by Lemma 7.2, there exists a 

constant ( > 0 such that p(z, yi) < (, which gives a contradiction. 

0 

The following lemma is not directly related to the construction of JC. It is a more 

general result using only dynamical properties of a convergence group which acts on 

a connected graph with finite quotient. It has been proved as Lemma 4.2 in [Bo8]. 

L e m m a 7.8. Suppose that F acts on a compactum M as a convergence group, 

and that 11 C M is a T-invariant subset. Suppose that no point of 11 is a conical limit 

point. IfU can be F-equivariantly embedded in a (connected) graph, JC, with vertex 

set n , and with Gnite quotient under the action of F, then K, is fine. 
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As a summary we see that the graph /C thus constructed is comiected by Lemma 
7.4. Also we obtain that (/C, is hyperbolic since it is quasi-isometric to (n,p). 
In addition, since fC/V is finite, by Lemma 7.7 there are only finitely many F-orbits of 

edges and K, is fine by Lemma 7.8. We denote by Q the set of infinite vertex stabilisers 

of /C, which is exactly the set of maximal parabolic subgroups of JC. The intersection 

of any two distinct maximal parabolic subgroups is finite, and so each edge stabiliser 

is finite. Finally by the inert hypothesis, namely that every element of G is finitely 

generated, we have that the elements of Q are finitely generated. These remarks prove 

Theorem 7.1. 

8. THE BOUNDARY OF T 

This section can be viewed as the continuation of Section 7. The main objective 

in this section is to identify homeomorphically "the boundary of F" with M under 

the hypotheses of Theorem 7.1. 

The boundary of a relatively hyperbolic group, F, will be defined in the same 

way as by Bowditch in his paper [Bo7]. Given a fine hyperbolic graph ()C,dist) we 

write A/C — Voo (JC) U d)C, where dJC is the Gromov boundary of IC and Vqo (/C) is the 

vertex set of infinite valence of JC. Given a function / : N —>• N we say that / is 

bounded above by a linear function if there exists a linear function gr : N N such 

that /(n) < g{n) for all n. Let / be a function bounded above by a linear function 

with f{n)>n for all n. An "/-quasigeodesic arc" in (/C, dist) is an arc /3 such that 

length(a) < f{dist{x,y)) for any subarc, a, of /3 where x,y are the endpoints of a. 

Similarly we can define an "/-quasigeodesic ray" in {JC,dist). Clearly a geodesic is 

iN-quasigeodesic where In is the identity function. It has been shown in [Bo7] that 

one can define a topology on AJC as follows. Given a function, / , as above, an element, 

a, of A/C and a subset. A, of Voo(/C), let My (a. A) be the set of points b G A/C such 

that any /-quasigeodesic from 6 to a meets A, if at all, only in the point a. Hence a set 

O C A/C is open if for all a € O there is a finite set A C A/C such that Mf{a, A) C O. 

It has been shown in Section 8 of [Bo7] that the topology thus defined does not depend 

to the choice of the function / and hence it is well defined. Alternative formulations 

of this topology can be found in the same paper. Bowditch proved also, in his paper, 

that AJC with its topology is hausdorff and compact. (For details see Section 8 of 

[Bo7]). Moreover he showed that given two fine hyperbolic graphs JC and £, with 
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same vertex set V such that the identity on V extends to a quasi-isometry, there is 

a natural homeomorphism from A/C to A£, which is the identity on V. In other 

words A/C is canonically defined for fine hyperbolic graphs with same vertex set up 

to quasi-isometry. From this, there follows a natural definition of the boundary of a 

relatively hyperbolic group: 

Definition. Given a relatively hyperbolic group (F, 0) and the graph /C, featur-

ing in the second definition of relative hyperbolicity, the boundary 9(F, Q) of (F, Q) is 

defined as AJC with its topology defined as above. (We abbreviate this to dV when 

the peripheral structure Q is assumed) 

For further discussion concerning this definition see Sections 8 and 9 of [Bo7]. 

Given a hyperbolic path quasimetric space, {Q, p), we will say two pseudogeodesic 

rays in Q are parallel if they remain a bounded distance apart. Note that this defines 

an equivalence relation on the set of pseudogeodesic rays. We note also that two 

parallel pseudogeodesics are eventually uniformly parallel. Following on from this, we 

define the boundary, dQ, of Q as the set of parallel classes of pseudogeodesic rays. 

We will refer to dQ as the Gromov boundary of Q since this definition was introduced 

for hyperbolic spaces by Gromov in [Gro2]. We fix some r much greater than the 

constant of path hyperbolicity of p. For x G dQ we choose {xi}i a pseudogeodesic 

ray in the parallel class of x. For all n G N we define S{n) as the set of y e Q U dQ 

such that some pseudogeodesic (ray or segment depending, respectively, on whether 

y G dQ ov y e Q) connecting xq and y intersects Np{xn, r). The topology on Q U dQ 

is defined such that it is discrete on Q and for any x G dQ the set {S{n)}n is a base 

of neighbourhoods of z in Q U dQ. We note that this topology is well defined and 

does not depend on the choice of the pseudogeodesic ray in the parallel class of 

X. In the rest of this paper, we will refer to the topology, thus defined on Q U dQ as 

the usual boundary topology. 

The usual boundary topology on /C U dK is clearly different than the topology 

given on A/C. However we see from the following proposition, which is given as 

Proposition 8.5 in [Bo7] that a sequence {xn}n in A/C converges to a point x of dK, if 

and only if it converges to x in the usual boundary topology on A/C. 

Proposition 8.1. The subspace topology on dK. induced from AK agrees with 

the usual boundary topology of dK. 

Now, we impose the same hypotheses and notation of Section 7, i.e that M 

is a metrisable compactum, and that F is a convergence group acting on M such 
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that the action is geometrically Enite. Suppose also that the quotient of the set of 
bounded parabolic points by F is finite and the stabiliser of each bounded parabolic 

point is finitely generated. By Theorem 7.1, F is hyperbolic relative to the set, of 

its maximal paraboHc subgroups. Let (/C, dist) be the graph constructed in Section 

7. This satisfies all the properties required by definition 2 of relative hyperbolicity 

(Theorem 7.1). Thus A AC defines the boundary d{T, Q) of F. Note that we have also 

VooiK.) = V(/C), therefore AJC = V{JC) U dlC. The main objective of this section is to 

prove; 

Proposition 8.2. There is an equivariant homeomorphism, from A/C to M 

where M is considered with its given topology. 

Consider the F-invariant system of annuli. A, as constructed in Section 6, under 

the same hypotheses of Theorem 7.1. Thus A satisfies (Al), (A2), (A3) and hence 

(A5) with E = {conical limit points}, EE = {bounded parabolic points}. Also any two 

distinct points x,y of U are separated at least by % annuli, where the constant % can be 

chosen, by the construction of A, independently from the constant, of property (A5). 

The latter is universally defined for such an annulus system. Moreover (II, p), where 

p the quasimetric introduced in Section 4, is an ry-hyperbolic path quasimetric space. 

We already observed that r] may depend to the constant %. But this dependence is not 

relevant for the following results, as it will be explained later. To prove Proposition 

8.2 we will firstly find a bijection between the "Gromov boundary" of (11, p) and the 

set H. 

Proposition 8.3. There is a bijective map $ : 911 —> E such that given X G dH 

and {xi}i a pseudogeodesic ray in the parallel class of X, if $(%) = x then Xi 

converges to x for the given topology on M. 

Before we start to prove this proposition we need some preliminary lemmas. 

Lemma 8.4. Given X G 511 and {xi}i a pseudogeodesic ray in the parallel class 

of X, there exists x e M such that Xi converges to x in the given topology of M. 

Proof. Firstly we note that after passing to a subsequence, Xi converges to some 

point a; in M by the compactness of M. Thus, we need to prove that the point x E M 

does not depend to the choice of subsequence. 

Suppose to the contrary that we can find two subsequences Xî  and Xî  such 

that Xî  converges to x e M and Xî  converges to y ^ x e M in the topology of M. 

Note that x ^ y implies that {xo\xy) < oo 
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By property (A3) for large enough M and we have : zoy) and = 

XQX). We consider an efficient approximating tree (T, cr) for {XQ,X,Y,XI^,XI^}. We 

write u = med(rz;o, Xi^,Xi^). Therefore, by efficiency, {xxi^ : xoy)j- and {yxi^ : XQX)^-

hold. Thus u = med(zo,a;,2/) and we obtain (xo\xy)'j- — a{xo,u). Moreover we 

note that Xa;o,a;i^) (7(2;o,Zî ) = cr(a;o,%i) + ( % ( ? / , - (7(:Ko,a;î ) = 

aiidp(zi^,zi^) -(7(3:^^,3;^^) = cr(?/,2;^^)+(%(?/,(SeeFigure 

1 .8 .1 ) . 

Figure 1.8.1 

On the other hand, since {xi} is a pseudogeodesic ray in (H, p) we have {xQ\xi^) en 

iyt —00. Similarly (a:o|a:̂ )̂ —cx). Thus we can choose and such that 

(2;o|3;2/)- Now, using the pseudogeodesic property of {a;*}, we 

see that p{xQ,Xi^) ~ p{xQ,Xi^) + p{xi^,Xi^). Therefore, putting together this last 

equality with the earlier ones, we obtain 2a{u,Xi^) ~ 0. This give a contradiction 

since <7(11,3;̂ )̂ = a(zo,a;i^) - cr(a;o,%i) - (zola;̂ /) » 0. 

0 

Lemma 8.5. Given X 6 911 and {xi]i a pseudogeodesic ray in the parallel class 

of X there exists x eE such that Xi converges to x for the given topology of M. 

Proof. We saw by Lemma 8.4 that there exists x e M such that Xi converges to 

X for the given topology of M. We will see that there exist sequences of nested annuli, 

with arbitrarily large cardinality, which separate XQ and x. It follows by Theorem 2.6 

that there exists, in fact, an infinite sequence of nested annuli which separate x and 

XQ. In other words, a; is a conical point, hence, a conical limit point. 

Suppose to the contrary that the maximal number of nested annuli which separate 

XQ and X is finite. Denote it by p. We fix an Xj in {xi}i. Since Xi converge to x by 

property (A3) {xQXj : xxi) is satisfied for i large enough. 

We consider an efficient approximating tree {T,cr) of {xo,x,Xj,Xi}. So we have 

{xQXj : xxi)r- We write u = med{xo, Xj,Xi). Thus p = a{xo,x) > {xo\xiXj)r = 

(7(a;o, If). Moreover, we note that (7(a;o, a;̂ ) = (7(a;o, a;̂ ), p(a;o, 2:! 
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cr(a;o,a;*) = (T(a;o,t/) + and (7(a;j,a;J = o-(%f,a;j) + (7(11, Zi). (See 
Figure 1.8.2 for an illustration of T). 

Xr 

X, 

Figure 1.8.2 

Moreover since {xi} is a pseudogeodesic ray in (H, p) we have (zo|z;) ~ z -> 00. 

So we can choose j and % j such that /!)(zo,Zj) 2̂  j 3> p = (T(a;o,a;) > (7(a;o,tf). 

Thus, using the pseudogeodesic property of {xi}, we see that p{xQ,Xi) c± p{xo,Xj) + 

p(xj,xi). Therefore, putting together this last equation with earlier ones, we obtain 

2a{u,Xj) ~ 0. This give a contradiction since a(u,Xj) = a{xo,Xj) — cr{xo,u) ~ 

0 

Lemma 8.6. Given X £ dli, let {xi}i and {yj]j be two pseudogeodesic rays in 

the parallel class of X. Then {xi}i and { y j j j converge to the same conical point x 

for the given topology of M. 

Proof. This result can be proved by exactly the same argument as in the proof 

of Lemma 8.4. In fact let {xi}i and {yj}j be two pseudogeodesic rays in the parallel 

class of X. Without loss of generality, we can suppose that p(xo, yo) ~ 0 since {xi}i 

and {yj}j are uniformly parallel for i,j large enough. Also since {xi}i and {yj}j 

remain a bounded distance from each other, after passing to a subsequence of {yj}j, 

we can suppose that if m > n then /)(a;o,a;n) + Thus, by 

replacing {xi^}n and {xi^}m in the proof of Lemma 8.4 respectively by {xi}i and 

{yj}j and by supposing that Xi converges to x e M and yj converges to y ^ x E M 

for the topology of M, we arrive at the same contradiction. 

0 

Proof, (of Proposition 8.3) From the previous lemmas, the construction of 

the identification map $ : 511 —>• H is fairly obvious. Given X G dli, we set $(%) = x 

where a; e H is the point defined by Lemmas 8.5 and 8.6. We need to verify that $ 

thus constructed is bijective. 

Firstly we show that # is injective. Let X, Y be two distinct points of 511. 
Consider x = $(%) and y = $ (y ) in S. We will prove that x ^ y. Suppose 
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for contradiction that x = y. Since (H, p) is hyperbolic there exists a bi-infinite 

pseudogeodesic, {xi}i^z, such that the pseudogeodesic rays, and 

lie respectively in the parallel class of X and Y. By the definition of $ we know that 

Xi X and X-i y = x in M (Lemma 8.4). Without loss of generality we suppose 

that XQ ^ X. 

We consider an efficient approximating tree (T, cr) of {x0,x,xi,x^i}. We write 

= med(zo, 2;-*)- Thus we have (a;o|3;ia;_i)T — o'(a;o, %/i). We note that p(a;o, 2;̂ ) c::; 
(7(zo,a;i) = cr(zo,t(:) + <7(K:,a;J, p(zo,r_^) + and ^ 
a(ui,Xi) + a{ui,x^i). Using the bi-infinite pseudogeodesic property of {xiji^z, we 

see that xq, Xi and X-i satisfy p{x-i,xi) ~ p{xo,x^i) + p(xo,Xi). Therefore, putting 

together this last equation with the earlier ones, we obtain 2cr{xo, Ui) ~ 0. 

Moreover, since a; is a conical point and Xi and x^i converge to x we have 

(a;o|a;*a;_J 00. So we can choose an % e N such that cr(2;o, 0 
. This give a contradiction with 2a{xq, Ui) ~ 0. Thus we conclude that x ^ y and 

hence $ is injective. 

Now, we prove that $ is surjective. In other words we will show that for all z € S 
there is a pseudogeodesic ray, {yiji, such that yi ^ x in M. 

Let z be a conical point, and {%*}* C M be a sequence converging to x in M. 

Without loss of generality on passing to a subsequence we can suppose that xq ^ x 

and {XQXI\XIX) <C {XQXI\XJX) whenever i < j as {XQ\X) -4- 00. It follows easily that 

for all i < j we have {xQXi\xjx) >> 0. We know that the crossratio induced from the 

annulus system, ^ is a hyperbolic path crossratio. So we can use the path property 

to interpolate between {XQ^XI} and {xj,x} with i < j , so as to find in 83(M) a 

pseudogeodesic ray, {Z*}* = {(zg, with converging to a;. Moreover, since 
(n,p) is quasidense in (63(M) Ull, p) (Proposition 5.7), we can find a sequence 

such that {yi}i is a pseudogeodesic ray in (11, p). Now using similar arguments as 

before one can easily check that yi converges to x in M, which completes the proof. 

0 

Thus, we have proved Proposition 8.3. We note that we can extend $, constructed 

as in Proposition 8.3, to $ : 11 U dH M by setting <I>(a;) = a; G M for all re G 11. 

Here 11 U 511 is considered with its usual boundary topology. Therefore the map 

$, as extended above, still satisfies the property that given X G dli and {xi}i a 

pseudogeodesic ray in parallel class of X then Xi converges to $(%) for the given 

topology on M. In the remainder of this section, each time we will use the map, $, 

we will mean the extended map. 
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We know by Lemma 7.5 that (AT, dist) is quasi-isometric to (11, p). So the Gromov 

boundary, dJC, of K. is homeomorphic to the Gromov boundary, 911, of 11. Therefore 

the usual boundary topology oilCudK, restricted to V{IC) UdK agrees with the usual 

boundary topology of 11U 511. Thus for the remainder of the section, we will identify 

dJC and 511, and we will say that a sequence {xi}i c V{JC) U dJC converges to X G dJC 

for the usual boundary topology of /C U dK if and only if it converges to X e 511 for 

the usual boundary topology of 11U 511. We define a bijective map ^ $ from A/C 

on M. Note that the only reason for using a different notation for $ and 0 is to make 

clear the use of different topologies on F(/C) U5/C. We will prove in what follows that 

the bijection thus defined, is in fact an homeomorphism between A/C and M. 

Lemma 8.7. Let X be a point of 511 and {zn}n be a sequence in H U 511 
converging to X for the usual boundary topology ofUUdU. Then -4- $(%) € S 

in the given topology of M. 

Note that the sequence, Zn, does not necessarily remain within a bounded distance 

of a pseudogeodesic. This therefore strengthens Proposition 8.3. 

Proof. Let x = $(%). Suppose for contradiction that does not converge 

to X in M. Thus after passing to a subsequence we assume that $(zn) z ^ x'm. 

M. Let {xn}n be a pseudogeodesic ray in the parallel class of X and set xq = w. 

We know that Zn converges to X for the usual boundary topology of 11 U 511. Thus, 

for all n there exist C H a pseudogeodesic connecting w = UQ and and 

an index such that G Np(xn,r) fl In particular yf„ remains within a 

bounded distance of Xn for all n. But {xn}n and are pseudogeodesic in H, and 

so p(yf„,w) ~ p{xn, w) ~ n. Thus we can suppose = n. We write = an- Since 

an remains within a bounded distance of for all n, {an}n defines a pseudogeodesic 

ray in the parallel class of X. (See Figure 1.8.3). It follows that —> 0(%) = a; in 

M by the construction of $. (See Lemma 8.6) 

.X 
/n 

• W—XQ 

Figure 1.8.3 
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We note that since a; is a conical point, there exists an infinite sequence of nested 

annuli which separate {x} and {z,w}. Thus, since an —> x, we have that (a„|zw) 

oo. We choose with m > n such that 2/̂  - if E H and (2/̂ |a;w) 0 

if .Zn e 9n. The latter is possible since, in this case, is a pseudogeodesic in the 
parallel class of Zn E 911, and, by construction of $, ^ { y f ) = yf converge, as i -> cx), 

to E H, which is a conical point. Moreover $(zn) z ^ x in M. Thus there 

exists an infinite sequence of nested annuli which separate and {x,w}. In 

particular we can choose G {yf]i as required. We denote by hn. 

Now, by property (A3), for large enough n, {a^x : zw) holds since an x. 

Also for n large enough with Zn E 11, {bnZ : xw) since $(zn) = Zn ~ bn z. We 

consider an efficient approximating tree (T, cr) of {w,x,z,an,bn}. Thus, we obtain 

by efficiency (a„a; : zw)j- for large enough n and {bnZ : xw)j- for all n large enough 

with Zn E n . Moreover, since {bn\xw) 3> 0 for all n with Zn E 911, we obtain in T, 

{{bnx} : {xw})j- for such n. (For an illustration of T, see Figure 1.8.4). 

w=y^ 

m n 

Figure 1.8.4 

Thus u = med(w, an, bn) = med(w, z, z). These relations, together, imply {an\zw) 

(oyilzw)?- = i.e, 00. We note also p(^o,2/n) — + 
2/m) - 6n) and 2/̂ ) (7(w, ti) + (7(7/, 6n). In addition, since 

n < m and an = yn, bn — y^ are the elements of the pseudogeodesic {y'^ji, we 
have + - P(z/o,2/m)- It follows that 2(7(an,%/) 0, which gives a 

contradiction with a {an, m) —)• 00. 

0 

Lemma 8.8. Suppose that {xi}i, {yi}i are two sequences of points of 11 with the 

properties that Xi, yi are adjacent in JC for all i and yi ^ yj for all i ^ j. If Xi x 

and yi ^ y in M then x = y. 

Proof. Since E{K,)/F is finite and Xi and yi are adjacent in JC with yi ^ % for all 

i ^ j, we can find, after passing to a subsequence, two distinct points, XQ, yo, of 11 and 

an infinite sequence, {gi}i, such that Xi = giXQ and y, = Qiyo for all i. We know there 

exist two points a, b of M such that gi converges to b locally uniformly on M\{a}. 

53 



A topological characterisation of relatively hyperbolic groups 

Thus either Xq and yo are both different from a or one of them is equal to a. In the 

former case QIXq = Xi and giUQ = yi both converge to b. As a result x = y = b, which 

gives the required result. In the latter case we can suppose without loss of generality 

that xq — a. Thus giyo converges to b. Now if QiXq also converges to b, we have again 

the required result. If not, after passing to a subsequence, giXQ converges to c ^ b, i.e. 

Qi converges to b locally uniformly on M\{a;o} and QiXo converges to c ^ b. But, this 

says exactly that XQ is a conical limit point. Thus, we obtain a contradiction, since 

XQ is a bounded parabolic point and we know, by Proposition 5.1, that a conical limit 

point cannot be a parabolic point. 

0 

Lemma 8.9, Suppose x € V{)C) = 11 and suppose that {xn]n is a sequence in 

V(JC) = n converging to x in AJC. Then {xn}n cannot converge to a conical hmit 

point in M. 

Proof. Suppose to the contrary that Xn converges to a conical limit point y in 

M in the given topology of M. We denote by Y the element of 911 with $(y) = y. 

We consider a pseudogeodesic ray, {yi}i, connecting x = yo and Y in (11, p). By the 

construction of $, we know that yi converges to y in M with its given topology. For 

each M, we denote by an element of satisfying {z/i}*) = 

Firstly we prove that > oo as n —> oo. To show this, we argue by contradiction. 

Thus we suppose that in < s for all n. 

First we note that since {yi}i is a pseudogeodesic connecting x and Y in (IT, p) 

for all i, {xy\yi) is bounded. This can be proved by similar arguments used in proof 

of Proposition 8.3. In other words using property (A3) and efficient approximating 

trees in an argument by contradiction. 

We know that there exists an infinite sequence of nested annuli which separate y 

and the set {yo = 2;, ?/i, • • •, 2/s}- So, since yi converges to y, we can choose ym € {yi}i 

with {{yo = X,... ,ys}\ymy) > 0. In particular this implies {yoyj : ymV) for all 

j < s. We define Ny = HjXs where and are defined by 

property (AS). Now since —> y in M, for large enough n, we have Xn ^ Ny, and 

so the relations {xym : yXn) and {xyj : yxn) hold for all j < s. We consider an 

efficient approximating tree (T,cr) of {yo = x , . . . ,ys,y,ym,Xn}- Then by efficiency 

we obtain (xy^ : yXn)Tj i^Vj '• yXn)T and {xyj : ymy)T for all j < s. This implies 

that for all j < g. We write = med(a;, for all 1 < j < a 
and we set UQ = x. Also we write w = med(a;, ym)- (For a possible form of T, see 

Figure 1.8.5) 
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y 

Figure 1.8.5 

We note that for all large enough M, and 

since 6 {0, In addition ({a;%} : 

where ; < s, and together give that (7(3;̂ , = o-(a;n, w)+ 

cr(w,2ii^). Thu8cr(a;n,2/:^) = cr(a;n,w)+cr(w,Mi^)+cr(tii^,^^^). Moreover the same re-

lations imply (a;2/l2/m)T = (a;?/!?/;)?- = and 

for all j < s. Therefore since for all i, {xy\yi) is bounded we have a{xn-,ym) = 

o-(z^,w) + (7(w,2/m) 2̂  (7(zn,w) + (zi/ji/m) and <7(3;̂ , 2/̂ )̂ = (T(a;n,w) + 
- (^(a:n,w) + 

So, since (a;̂ ;|3/m2/) — w) 3> 0 for all j < g, we have cr(zTi,i/m) c:; 

cr(z^,w)+(T(w,u^^) :::!(7(z;„?/^^),i.e.,^(a;n,^^) cr(z»,2/̂ )̂ 
This gives a contradiction with the fact that p(xn, yi„) = p{xn, {Viji), and so 00 
as n —>• 00 as required. 

Now, we consider the geodesic, {z,},, connecting x = yo and Y in {]C,dist). We 

denote by Zj^ an element of satisfying dist{xn, {zi}i) = dist(xn, Zj^). We will 

show that 00 as n —> 00, using the fact that > 00 as n 00. In fact this 

follows some basic results of theory of hyperbolic spaces. 

Given a hyperbolic path quasi-metric space one can define the notion of centre 

for a triple of distinct points and develop the theory considering pseudogeodesics in 

place of geodesies. Moreover the notion of center can be extended to the boundary 

of a hyperbolic path quasimetric space using the usual boundary topology. (For a 

complete explanation see for example [Bo4]). It follows that in our case, is a 

centre for x,Xn,Y in (11, p) since it is the nearest point of Xn on a pseudogeodesic 

connecting x and Y and so does Zj^ in {K,,dist). Now, since (11, p) and K, are quasi-

isometric, yi^ define also a centre for x,Xn,Y in (/G, dist). Therefore since , Zj^ are 

both centers for x, Xn, Y in {K, dist), we obtain dist{yi^, Zj^) ~ 0. This, together with 

the fact that in 00 and {zi}i is a geodesic in (AC, dist), gives that also tends to 

0 0 . 

We denote by the segment with vertex set connecting x = yo and zj^ 

in {K,dist). Thus since —> 00, for enough large n we have [yQ = x,zi] C a". We 

consider a geodesic connecting Zĵ  and Xn in {JC,dist). Since zj^ is the nearest 
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point to Xn on a", we see that a" U /J" is a uniform quasigeodesic in JC. (For a 

proof of this fact see Section 8 of [Bo7].) In other words we can find a function, /q, 

bounded above by a linear function, with fo{n) > n for all n, such that a" U /3" is 

a /o-quasigeodesic in Now consider the neighbourhood Mf^{x,yi) of z in 

A/C. For large enough [1/0 = a;, 2/1] C a" U and so 0 M/g (a;, 2/1). This gives a 
contradiction with the fact that Xn converges to x in A AC. 

0 

Proof, (of Theorem 8.2) We have already given a bijection between AJC 

and M, which is identity on V{1C) — 11 and with #(%) = $(%) E H for any given 

X G dJC. Both AJC and M being compact hausdorff, it will be enough to prove the 

continuity of W only in one direction to obtain that AJC and M are homeomorphic. 

Step 1 

We will prove that # is continuous at a boundary point X. Let {xn}n a sequence 

of V{JC) UdJC converging to X G dJC in AJC. In fact we know, as a result of Proposition 

8.1, that {xn}n converges to X for the usual boundary topology of JCUdJC and hence 

it converges to X for the usual boundary topology of 11 U dli. Thus it is sufiicient to 

prove that if {xn}n C 11U 911 converges to X G 911 then converges to 

X = W(X) = $(X) in M. But this is exactly what Lemma 8.7 says, and we obtain 

the continuity of W at X. 

Step 2 

We will prove that ^ is continuous at a bounded parabolic point x. Let {xn}n be a 

sequence in V{JC)UdJC converging to a; G V{JC) in AJC. Let q;„ be a geodesic connecting 

x and Xn in JC. Without loss of generality we can assume that an fl am — {x} for all 

n ^ m. Suppose for contradiction that does not converge to W(z) = x in M. 

We can suppose after passing to a subsequence that converges to y 7̂  a; in M. 

Now, n is countable. So, there exist two closed subsets, L, P, of M such that 

X G int(L), y G int(P), M = LU P and jL D P C S. To see this we note that the set 

{r|r = S(x,p) where p G 11} is countable and the interval {0,5{x,y)) is uncountable. 

(Here 6 is the given metric on M.) So N = (0, 5{x, y)) \ {r\r = 5{x,p) where p G 11} ̂  

0. It follows that for any r G # taking L = {z\S{x, z) < r} and P = M\L we obtain 

the closed subsets, L, P, as required. Now for n large enough we have G P. 

Denote by {'wf}i the vertex set of where Wq = x and wf, are adjacent in 

JC. Let in be an index such that #(w^) = G L and \l/(w^_|_i) = G P. We 

write = yn and — Zn. Evidently yn and are adjacent in JC. Moreover 

they converge to x in AJC. To see this, suppose for contradiction does not converge 
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to z in A/C. We can End a Bnite set, of y(/C) and a neigbonrhood A) of 
a; in A/C such that ?/n ^ It follows that ^ A) since E 
which is not possible. Now, there is two possible cases: 

The first case is when there exists an UQ such that for all n > no we have either 

{z/n} = {z/no} or = {z^o}- Suppose without without loss of generality, that for 
all M > Mo, we have = {zno}. But this is not possible since it holds we obtain 
kno] E y(cK") for all n > Mg. It foUows that for all n > Mg, ^ -A îN(̂ ){'Zno}); 
which gives a contradiction with converge to x in A/C. 

The second case is when for all no G N there exist n,m> no such that Un ^ Vm 

and Zn Zm- Thus after passing to a subsequence, we can suppose, without loss of 

generality, that for all n ^ m, we have ^ i/m and Zn 7̂  In addition again after 

passing to a subsequence, we can suppose that z^ a and -> h. Then applying 

Lemma 8.8, for Zn a, ^ b (in place of, respectively, > re, —>• y) we obtain 

that a — h. But for all n, y^ e L and G P, and so a € L n P C S. In other words 

a is a conical limit point. Now we use Lemma 8.9 to obtain a contradiction since we 

have found a sequence C Kx)(/C) = 11 converging to a; E Kx:(/C) = II in AAZ 

and converging to a conical limit point, a, in M. This concludes the proof. 

0 

9. CUSP UNIFORM GROUPS 

In this section we will give the main ideas of the proof of the proposition 9.1, 

which shows that, under the hypotheses of Theorem 0.1, we obtain also the result of 

Tukia, namely the "only if direction of Theorem 0.2. Tukia in his paper [Tu2] goes 

further than this result and proves that the quotient of the set of bounded parabolic 

points by F is finite. 

Proposition 9.1. Suppose that F is a convergence group acting on a metris-

able compactum, M, such that M consists of only conical limit points and bounded 

parabolic points. Suppose also that the quotient of the set of bounded parabolic points 

by F is Gnite and the stabiliser of each bounded parabolic point is Enitely generated. 

Then @3(M)/F is "cusp uniform". 

We saw in Section 5 that 83 (Af) can be compactified by adding a copy of M, and 

we called this topology "the topology of compactification". In this section, @3(M)UM 
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is always considered with its topology of compacti&cation. Given a bounded parabolic 
point, p, let be a compact subset of M \ {p} such that Stabr(p)K = M \ {p}. 
Consider a compact neighbourhood, IV, of jiT in 83 (M) U M not containing p. 

Definition 1. A cusp neighbourhood oi p is an open subset of 63 (M) which has 

the form 83 (M) \ Stabr(p)(W) for some such W. 

Definition. We say that F is cusp uniform if 83 (M)/F is the union of a compact 

set and a finite number of F-quotients of cusp neighbourhood of bounded parabolic 

points. 

The notions of cusp neighbourhood and of cusp uniformity were introduced by 

Tukia in [Tu2] in order to prove Theorem 0.2. We will later adapt the definition of 

cusp neighbourhood in the metric case to prove Proposition 9.1. 

Now, we place ourselves under the hypotheses of Proposition 9.1. Hence, suppose 

that (M, 6) is a metrisable compactum, and that F is a convergence group acting on 

M such that M consists of only conical limit points and bounded parabolic points. 

As in previous sections we denote by 11 the set of bounded parabolic points. Suppose 

also that the quotient of H by F is finite and the stabiliser of each bounded parabolic 

point is finitely generated. Then, Theorem 0.1 says that F is hyperbolic relative to 

the set of its maximal parabolic subgroups. Also, M and the boundary of F are 

equivariantly homeomorphic. Thus, using the first definition of relative hyperbolicity 

we see that there is a proper hyperbolic path-metric space (S, m) on which F admits 

a properly discontinuous isometric action. This hyperbolic path-metric space (E, m) 

satisfies the property that every point in E is (close to) a centre of a triple of 5E. 

Moreover, the boundary of F can be defined as the Gromov boundary, 5E, of S. In 

fact, Bowditch proved that the boundary of F, thus defined, is homeomorphic to the 

one defined in Section 8. (For details see Proposition 9.1 of [Bo7]). Hence it follows 

that 9E is equivariantly homeomorphic to M. For the rest of this section, by abuse 

of notation, we will identify 0E and M. 

Bowditch gives a method of construction of a F-invariant system of "horoball" 

indexed by H in the space (E,m). (Section 6 of [Bo7]). This construction is based 

essentially on defining a system of "horofunctions" for H. Let p be an element of 

5E. A horofunction about p is a function : E —> R such that given x,y and a 

geodesic, a, connecting a; and p, if m(2/, a) 0 then A(i/) A(a;) 4- m(a;, 1/). A closed 
subset, B, of E is a horohall about p if there exists a horofunction about p such that 
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B = oo). Given a horoball B, we denote by int(5) the interior of B and by 

FT(B) the set B \ int(5). The following lemma has been shown by Bowditch. (For 

the proof see Lemma 6.3 of [Bo7]). 

Lemma 9.2. Given a bounded parabolic point, p, the quotient of the boundary 

of a horoball about p by Stabr(p) is compact. 

We want to show that if p i s a bounded parabolic point then the interior of a 

horoball about p is a "cusp neighbourhood" in the sense of the definition below. In 

fact this is an adaptation to the metric case, of Definition 1 given by Tukia in [Tu2]. 

Given a bounded parabolic point, p, let be a compact subset of 9E \ {p} such that 

Sta.hr{p)K = dE \ {p} and let W be the compact neighbourhood of in E U not 

containing p. 

Definition 2. A cusp neighbourhood of p in S is an open subset of E at the form 

E \ Stabr(p)(W^) for some such W. 

Lemma 9.3. Given a bounded parabolic point, p, and a horoball, B, about p, 

mt{B) is a cusp neighbourhood of p in the sense of Definition 2. 

Proof. Since p is a bounded parabolic point there is a compact set AT of ^ E \ {p} 

such that Stabr(p)-K' = 5E \ {p}. Consider a compact set, K', of 9E \ {p} such that 

K C mtK'. (Finding such a compact neighbourhood of K is possible since dT, \ {p} 

is locally compact). 

We note that for large enough r, every point of E is within an r-neighbourhood 

of a geodesic with one endpoint p. We fix r and consider the set 5 = {a; G E \ int(5) 

such that X hes within an r-neighbourhood of a geodesic connecting p and a for some 

a e K'}. One can easily check that given an element a; of E \ int(5) there exists a 
g G Stabr (p) with gx G S. In other words E \ int(B) = Stabr(p)'S'. 

We denote by W the closure of 5 in E U 0E. It is easy to see that K' \J S CW. 

Moreover one can show using the definition of S and the hyperbolicity of E that W 

is a compact neighbourhood of iC in E U dT, and that W does not contain p. 

In summary we find, for the compact set K satisfying Stabr(p)^ — 9E \ {p}, a 

compact neighbourhood, W, in E u 5 E \ i n t 5 , such that W satisfies E\Stabr(p)W = 

int(B) and it does not contain p. All these facts together give the result required. 

0 

Definition. Let p be a bounded parabolic point. A cusp region is a set of the 

form B/ Stabr(p) where B is a Stabr (p)-invariant horoball about p in E. 
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Bowditch proved in [Bo7] that the space E/F can be expressed as a union of a com-

pact set together with a Suite number of pairwise disjoint cusp regions (see section 6 of 
[Bo7]). In other words, there is a finite set I such that S /F = Co U (Jig/ B*/Stabr(pi) 
where Co is a compact set and are horoballs about some bounded parabolic point 
p*. We know, by Lemma 9.2, that Pr(Bi)/Stabr(pi) is compact. Thus by replacing 
Bi by Fr (Bj U int(Bi) and by rearranging we obtain S = FC U F int(Bi) where 

C is compact subset of E. 

Now we can give the main idea of the proof of Proposition 9.1. 

Proof, (of Proposition 9.1) There is a natural correspondence between E 
and 83 (M) determined by the set Q = {(2;, (o, 6, c)) e E x 83 (M) | a; is a centre of 
a, 6, c } U {(r, z) E ^E X M}. We can prove that Q is a compact subset of (E U ĉ E) x 

{QZ{M)UM) and the projection maps tti ; Q —)• EU9E and 7r2 : Q @3(M)UM are 

continuous (hence proper, since Q is compact), surjective, F-equivariant. Moreover 

7r2(7r^^E) = 8 3 ( M ) , 7ri(7r^^93(M)) = E, and 7r2(7r]̂ â) = a = 7ri(7r^^a) for all 

a e = M. 
Note that since tti is proper and 7r2 is continuous, compact subsets of EU5E are 

sent by onto compacts subset of 83 (M) U M. The key idea is to use this fact 

to show that a cusp neighbourhood of a parabolic point in E (in sense of Definition 2) 

is sent by 7r27r]~̂  to a cusp neighbourhood of a parabolic point in 83(M) (in sense of 

Definition 1). Therefore for all i, 2̂(71]"̂  int(i?i)) is a cusp neighbourhood in 63 (M) 

as well as TTg (Trĵ Ĉ) is compact. This gives that ©3(M)/F is a union of a compact 

set together with a finite number of F-quotients of cusp neighbourhoods (in the sense 

of Definition 1), which is the result required. 

0 
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Part 2 

SYMBOLIC DYNAMICS AND 

RELATIVELY HYPERBOLIC GROUPS 

by AsbYaman, Frangois Dahmani 

O.INTRODUCTION 

The main objective of this work is to prove the following theorem: 

Theorem 0.1. Let (F, Q) be a relatively hyperbolic group, and dT be its bound-

ary. If for each G £ Q, the action of G on its one-point compactiGcation G U {00} is 

finitely presented with special character, then the action of F on its boundary dV is 

Gnitely presented. 

The notion of relatively hyperbolic groups was first introduced by Gromov in 

[Gro2]. Later on several authors like B.Bowditch [Bo7] and B.Farb [Farb] developed 

the theory. One can see relatively hyperbolic groups as a generalization of geomet-

rically finite Kleinian groups (See [B06]). We will use for this work the definition of 

relatively hyperbolic groups given by Bowditch in [Bo7]. A group (F, Q) is hyperbolic 

relative to the family, Q, of finitely generated subgroups of F if it acts on an hyper-

bolic "fine graph" JC, with finite stabilizers of edges, finitely many orbits of edges, and 

such that the stabilizers of infinite valence vertices are exactly the elements of Q (see 

Section 3). If one replaces the property of fineness by the property of locally finiteness 

in the above definition, then the family Q is empty and the group is hyperbolic. In 

[Bo7] Bowditch also describes a boundary for a relatively hyperbolic group. This is a 

compact hausdorff space on which the group acts so that the elements of the family 

Q are exactly "parabolic subgroups". 
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Let r be a group acting on a compact hausdorff space, K. The dynamical 

system ariging from this action is 0/ (ype if there exists a Snite alphabet X, and 
a "subshift of finite type" $ C together with a continuous equivariant, surjective 

map 0 ^r, which codes the action of F on AT. We say that the dynamical system ia 
finitely presented if it is of finite type and if the action of F on -ft' is "expansive". One 

can describe expansivity for compact metric spaces as follows. The action of a group 

F on a compact metric space, K is expansive if there exists a > 0 such that any pair of 

distinct points in A" can be taken at distance at leaat 6 from each other by an element 
of F. We give in Section 1 the definition of expansivity for general case, i.e compact 

hausdorE spaces. Here we also give a variation of finitely presented dynamical system 

for the action of groups on their minimal compactifications. We say that the action of 

a group G on its one-point compactification G U {00} is finitely presented with special 

character if there exists an alphabet, and a subshift, $, through which the left action 

of G on Gu{oo} can be factorised with the map 11 : $ ^ (Gu{oo}) so that 11 satisfies 

the additional condition that there exists a special character $ in the alphabet such 

that cr G $ maps by 11 on p E G if and only if a{g) = $. 

In this paper we also try to understand this property described above (See Section 

7). We prove the following theorem in order to give a restriction on groups satisfying 

this property and give some examples of such groups. 

Theorem 0.2. If a group has its one point compactification finitely presented 

with special character, then it is finitely generated. 

Finitely generated virtually polycyclic groups have their one-point compactifica-

tion finitely presented with special character. (This includes abelian, and virtually 

nilpotent groups). 

The notion of a finitely presented dynamical system was first introduced as a 

hyperbolic system by Gromov in [Grol] and in [Gro2] the notion appears in a more 

general context. In [Gro2] Gromov describes consequences of such a presentation, 

like the rationality of some counting functions. An interesting dynamical system is 

the one arising from the action of a hyperbolic group F on its Gromov boundary 5F. 

Already in [Gro2], Gromov uses methods of symbolic dynamics for the study of this 

action, and in [CP], Coornaert, and Papadopoulos explain a way to factorise such a 

dynamical system through a subshift of finite type. It is also well known that the 

action of an hyperbolic group F on 5F is expansive. This property, together with the 

existence of the coding given in [CP], makes the action of a hyperbolic group, F, on 

its boundary, dT, finitely presented (see [Gro2], [CP]). 
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In this work we generalise the result given in [CP] for relatively hyperbolic groups. 
Coornaert, and Papadopoulos capture the local properties of busemann functions on 

balls with fixed radius (say i? > 0) in the Cayley graph of a hyperbolic group F. They 

define the alphabet A whose character are the maps from the ball, BR, of radius R 

centered at Idr onto Z satisfying these local properties of busemann functions. As 

the Cayley graph is locally finite there are only finitely many such maps and hence the 

alphabet is finite. The existence of a Rips complex for hyperbolic groups allow them 

to extend these local properties defined on the balls of radius R onto the whole Cayley 

graph, and therefore obtain a family of "cocycle" and "geodesic flows" associated to 

each cocycle. They define the subshift $ C to be the family of maps sending 

each 7 G r to the restriction of a cocycle on and they show using the local 

properties that the geodesic flows associated to a cocycle necessarily converge to a 

unique point on ^F. Hence they obtain a natural coding of the action of F on its 

boundary by a subshift of finite type. To prove Theorem 0.1 we prove that, despite 

the parabolic subgroups, the action of a relatively hyperbolic group on its boundary 

is expansive (Proposition 6.12), and we try to realise the same construction for the 

"graph /C" (see Section 3) associated to a relatively hyperbolic group F. Although the 

construction of the subshift of finite type given by Coornaert and Papadopoulos will 

not work properly for the case of relatively hyperbolic groups (either one would need 

an infinite alphabet, or the map $ —>• 5F would not be well defined) the property of 

special character for the maximal parabolic subgroups allows us to make successful 

modifications. In fact in our case K is not locally finite, hence balls of radius i? > 0 are 

not finite. Therefore we use "cones" in K, as the analogue of balls in the Cayley graph 

of a hyperbolic group. Moreover as the boundary of F is dK U Voo(Â ) we consider 

distance functions as well as busemann functions which induce the same properties on 

cones as on balls in a Cayley graph. So similarly using a "relative Rips complex" we 

obtain a family of cocycle and geodesic flows associated to each cocycle. Unfortunately 

the local properties given on cones are not enough to control the geodesic flows around 

vertices of infinite valences, and geodesic flows associated to a cocycle can converge 

to more than one point in dT. Thus we use the property of special character for the 

maximal parabolic subgroups as an indicator showing where geodesic flows associated 

to a cocycle should escape from a vertex of infinite valence. 

The structure of this paper, in outline, is as follows. We give in section 1 defini-

tions on symbolic dynamics. In section 2 we introduce a notion called "angle", and 

gives some interesting results using this notion about Gromov hyperbolic graphs. We 

also introduce an interesting tool called "cones". In Section 3, we give the definition 
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of a relatively hyperbolic group (F, and its boundary, = 9/C U Voo(/C). In the 
same section we also introduce the Relative Rips Complex. In Section 4 we define 

a subshift of finite type, which will be the main ingredient of the proof of Theorem 

0.1. The subshift that we construct will produce "cocyles" which have the same local 

properties as "Busemann functions" or "distance functions" on a, K, associated to a 

relatively hyperbolic group, F. In order to associate a point in the boundary to an 

element of the subshift, we will consider the "gradient lines" associated to these co-

cyles. In Section 5 we will prove that "gradient lines" associated to a cocyle converge 

to a unique point at dK. or to a unique vertex of infinite valence of fC. For this we 

use the property of special character for each stabilizer of infinite valence vertex. In 

Section 6 we will finish the proof of the theorem 0.1, defining the surjection of the 

subshift of finite type constructed in Section 4 on the boundary of F and showing 

that the action of F on its boundary its expansive. In the last section we study the 

property of special character, and in particular, prove Theorem 0.2. 

1. DYNAMICAL SYSTEMS AND F ACTIONS 

In this section we give definitions related to finite presentations of dynamics 

arising from group actions. In other words we define the basic vocabulary which will 

be used throughout of this paper. 

Definition. (Shift, subshift, cylinder, subshift of finite type) 

If ^ is a finite alphabet and F is a group, , with the product topology, is the 

total shift of F on A. It admits a natural left F-action given by {'ya){g) — (7{'y~^g) 

for all ^ E F and a G yl^. 

A closed F-invariant subset of AF is called a subshift. 

A cylinder C in the total shift is a subset of the total shift such that there exists 

a finite set F C F, and a family of maps M C A^ with 

C = {a ^ A^ s.t. a\p G M} 

A subshift $ is of finite type if there exists a cylinder C such that $ = Q gp 

Note that the finite set F C F introduced in the definition of a subshift of finite 

type can be chosen so that Idr E F. Note also that subshifts of finite type are 

subshifts, but in general, cylinders are not F invariant. 
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The purpose of this machinery is to study dynamical systems. 

Definition. (Dynamical systems of finite type) 

Let r act on a com p̂act set K. The dynamical system is o/ yzMzte if there 
exists a finite alphabet, A, a subshift of finite type, $ C JF, and a continuous, 

surjective, F-equivariant map tt : $ if . 

We next illustrate the definitions with a simple example. 

Consider F = Z, and the alphabet A = {a, b, $}. Consider the cylinder C defined 

by the finite subset F of Z, F = {0,1}, and let M be the set of maps so that 

mi(0) = o, mi(l) = a, m2(0) = o, 7713(1) = $, ^3(0) = $, 7713(1) = 6 and 7714(0) = 6, 

7714(1) = 6 } . 

The elements of C are all the bi-infinite words that agree with one of the rrii on 

the subset F. According to the action of Z, the elements of n + C are all the bi-infinite 

words a such that a(x — n) agrees with one of the rrii on F. Let $ be the subshift of 

finite type defined by C : $ = Hnez + C). 

One can check that the elements of $ are all the bi-infinite words in the alphabet 

A satisfying : 

• after an a is either an a or a $, 

• after a $ comes a b, 

• after a b comes a b. 

Therefore, the elements of $ are (...aaaa...), the constant word on a, (...bbbb...), 

the constant word on b and all the words (...aaa$bbb...) beginning by a, until there is 

a $ on the letter (rt G Z) and then b. 

Now consider the one point compactification Z u { o o } of Z with the obvious order 

topology. There is a natural action of Z on it, fixing the infinity. Consider the map 

TT : $ -4- Z U {00} that sends the constant words on 00 and (...aaa$bbb...) on n G Z 
where n is the index of the letter $. The map tt is onto, continuous and equi variant, 

and therefore proves that the action of Z on its one point compactiication is of finite 

type. 

Similarly we can factorise the action of Z on its two point compactification K = 

Z U {+00, -co} with the order topology. Here the natural action of Z on fixes the 

two additional points. We consider the map tt : $ —> iT that sends (...aaaa...) on 

—00, {...bbbb...) on -t-00, and {...aaa%bbb...) on n G Z where n is the index of the letter 

$. The map tt is onto, continuous and equi variant, and this therefore proves that the 

action of Z on TT is of finite type. 
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One can reEne the property of being a dynamical system of Enite type with the 
following definition. 

Definition. (Expansivity) 

The action of a group F on a compact space K is expansive if there exists an open 

subset U C K X K containing the diagonal A of K x K such that A = 

The following proposition gives an equivalent formulation of expansivity in the 

case of compact metric spaces, (see for example [CP] Chapter 2 Proposition 2.3). 

Proposition 1.2. Let K be a compact metric space with metric d and F be a 

group acting on K. The action ofVonK is expansive if there exists e > 0 such that 

for all distinct xi,x2 E K there exists 7 G P satisfying d(jxi, JX2) > e. 

Now we can define a finitely presented dynamical system. 

Definition. (Finitely presented dynamical systems) 

Let P act on a compact space K. The dynamical system is finitely presented if it 

is both of finite type and expansive. 

If one has a subshift of finite type $ C and a surjective continuous equivariant 

map TT; # -> , the expansivity of the action of P on iT turns out to be equivalent to 

the fact that the subshift C (yl x ^)^ defined by [(^1 x erg) G W] <#- — 7r((72)], 

is of finite type (see [CP]). 

If F is an infinite discrete group, it acts on its minimal Alexandrov compactifica-

tion, P U {00} so that the action is by translations on P and fixes 00. If P is finite, its 

minimal compactification is itself. 

Definition. (Finite presentation with special character) 

A minimal compactification of a discrete group P is said to be finitely presented 

with special character if the F-action is finitely presented by a subshift $ C AF and if 

there exists a map tt : $ —)• P U {00} with the following property (condition of special 

character): 

(3$ E ̂ ) s.(. (V'Y € r)(Vo' € $) (7r((T) = "/)<=> (o'('y) = $) 

By the following lemma we note that in this case the property of expansivity is 

always satisfied. 
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Lemma 1.3. The action of a discrete group F on its minimal compactification 
F U {00} is expansive. 

Proof. Denote if = F U {00} and consider the open set O = i r \{Jdr} and the 

subset U = {(/dr, Idr)} UOxOofKxK. 

We first show that U is an open neighbourhood ofKxK containing the diagonal. 

This is to say that an infinite sequence (2;̂ , %/:) E (AT x Ar)\Z7 cannot converge to an 
element of U. Note that if {xi,yi) E (K x K)\U then either Xi = Idr or yi = Idv 

for all i. Therefore if {xi,yi) converges to an element of U then this element can 

only be {Id-p, Idr). On the other hand by discreteness of F there is no sequence in K 

converging to Idr, which completes the argument. 

We can also easily see that the diagonal is the intersection of F-translates of U. 

Let x, y be two distinct elements of K. We can assume without loss of generality that 

X ^ 00. Thus re = 7 G F and ^~^{x,y) = {Idr,z) where z E O and {x,y) does not 

belong to jU. 

0 

Note also that finite groups which are already compact admit a trivial finite 

presentation with special character. Let F be a finite group. Consider the alphabet 

>4 = {$, 0} and the elements of the cylinder which is also the subshift in this case is 

defined by the finite set F and the set M of maps from F onto A which satisfies that 

there exists a unique 7 £ F with a{-y) = 

The example of dynamical system of finite type described previously is a finite 

presentation with special character of Z. We give in Section 7 several examples of 

groups with a compactification finitely presented with special character, as well as the 

basic fact that these groups have to be finitely generated. 

2. ANGLES 

In this section we prepare the graph theoretical background of this work. We 

introduce the notion of "angle" between two adjacent paths in a graph and we give 

some general results related to this notion. We also define the notion of "cone" in 

a graph and prove that cones are quasi-convex (Lemma 2.7). Moreover we give a 

criterion on the geodesicity of a path in a hyperbolic graph as well as a criterion 
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on the intersection of two geodesic paths with the same end points (Lemma 2.8 and 
Lemma 2.9). 

A grapA is a pair of two sets (V, 6̂ ) where the set V of vertices, and the set 6! 

of edges. For the rest of this work we will follow the convention that there are no 

edge loops or multiple edges in any given graph. So one can associate to a graph 
its geometrical realisation, as a l-dimensional simphcial complex. We will not make 
any distinction between them. Hence, a graph has a natural structure of a metric 

space so that each edge has unit length. For the remaining of this work we adopt the 

convention that 0 is an element of N. 

Definition. A geodesic path in a graph is an injective simplicial path which has 

the shortest length among all the other path connecting its end points. 

A circuit in a graph is an injective simplicial loop. Its length is the number of 

edges it contains. 

Given two adjacent point a and b in a graph we denote by [a, b) the edge con-

necting these two points. 

Given a path a in a graph and two points a,b on a we denote by [a, b]a the 

subpath of a connecting a and b. 

The valence of a vertex is the number (in N U {oo}) of edges containing this 

vertex. 

If /C is a graph (respectively oriented graph), we denote by V(X )̂ its set of vertices, 

and by S{1C) its set of edges. We will denote by Voo(Â ) the set of vertices having 

infinite valence. But we will often omit K, in these notation when there is no ambiguity. 

For any graph, one can define a notion of angle as follow. 

Definition. (Angles) 

Let K,{V,8) be a graph, and let ei = (o, 6) and 62 = (a, c) be two edges in /C. 

The angle between ei and 62 at vertex a, Angg(ei, 62) is the length of a shortest path 

from 6 to c in /C \ {a} (+00 if there is none). We will frequently omit the subscript a 

since there is no ambiguity about which point the angle is defined. 

Similarly one can define the angle between two paths. Let cti and a2 two paths 

in K, connecting the vertices a, 6 and a, c. We chose the orientation of a i and otg so 
that q ; i(0) = 0:2(0) — a, q:i(1) — b and 0 : 2 ( 1 ) = c. Then the angle between ai and 0 2 

at the point a, Ang^(o!i, 0:2) is the angle Ang„(61,62) where ei, 62 are the first edges 

of Qi and 0=2 adjacent to a. 
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Given a path a connecting 6, c in /C and a vertex a on a, the angle at the vertex 
a, Angg(a!) is Ang^([6,a]a, 

Let a a path in K. The maximal angle in a, Maxang(cK), is the maximum of the 

angles between two consecutive edges of a. 
Given a path a connecting 6, c in /C we say that a is if Maxang(a!) < 

and 9-bent at a if Ang (̂[&, a]a, [a, c]a) > 0. Similarly we say that a is r-short if its 

length is less than r. 

The following remarks will be useful 

Proposition 2.1, Given three edges ci, 62 and 63 with the same end point a in 

a graph K one has 

# Ang^(ei, 62) = Ang^(e2, ei), 

* Anga(ei,63) < Ang^(ei, 62) + Ang^(e2,63). 

Proposition 2.2, Given r] >2, any circuit of length 77 has a maximal angle less 

than 7] — 2. 

Proof. Indeed, if 6% and eg are two consecutive edges in the circuit, the circuit 

itself gives a path of length rj — 2 from b to c. 

0 

Given a constant p > 0. If a is a circuit of length at most 8p, then a is (8p — 2)-

straight. We choose a constant 9 > 8p, as in next sections we will need the results 

which follows only for the paths of length less than Sp. In fact the following arguments 

can be done independently of the choice of 8p by considering the paths of different 

length. 

Given three geodesic paths, a i = [og, 03], 012 = [a ,̂ ai] and 0:3 = [ai, 02] so that 

the concatenation 6 = a 1 . a 2 . a 3 is 8p-short, denote % = Ang^^ (ai, 012). 

Lemma 2.3. Ifris>6 then 0,3 E as. 

Proof, Since % = Ang^^ (ai, 0:2) > 9 and S is 8p-short, 5 cannot be a circuit in 

K. by the choice of 9. So 5 passes through 03 at least twice. But, since ai and a2 are 

geodesies, they cannot pass through 03 more than once. Therefore E a^. 

0 

When ai and 0:2 have the same end points, i.e a^ is an empty path in the above 

lemma, we obtain as an immediate consequence the following result replacing ai = 02 

, G3 of the lemma by ai and 02: 
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Corollary 2.4. Given two distinct elements ai, og of V at distance at naost 4p 

in /C, if a;i,a!2 are two geodesic paths connecting di and a2 tAen Angg^(a!i,a!2) < ^ 
and Angg^(a!i,a2) < 

We assume the same notations and hypothesis as in Lemma 2.3 and we also set 

771 = Ang^^(a2,a3). 

Lemma 2.5. 1) If is sz-straight then 773 < ss + 26. Moreover 

2) if0(2 8̂ 82-5traigM tien Maxang(a!i) < Max{a3+82+3^, 7;i+2g}. 

Proof. First we prove that if 03 is ss-straight then % < 33 + 28. If % < 

9 < S3 + 29 then the assertion is trivial. So we suppose that rjs > 9 and show that 

% < ^3 + 29. In this case, by Lemma 2.3, <23 G as. Moreover, since as is a geodesic 

path, we notice that as can pass through as only once.(See Figure 2.2.1). Now, 

by Corollary 2.4 we have Ang(^g(ai,[a3,(Z2]a3) ^ ^ Ang^g([a3,ai]a,a,o!2) < 0. 
Therefore % < Anĝ ^ (ai, [03,02]a3) + Ang([a3, , 0:2) + Anĝ ^ (0:3) < 2i9 + S3. 

>8 Oa b=a 

Figure 2.2.1 Figure 2.2.2 Figure 2.2.3 Figure 2.2.4 

Now we will show that Maxang(ai) < Max{s3 + S2 + 30, rji + 29}. If Maxang(ai) 

< 9 there is nothing to prove. Suppose that a i is ^-bent at b, i.e, there exists 

6 E CKi so that Ang(,(o!i) > (See Figure 2.2.2). Now, since is 8p-short, 
passes through b at least twice. But, since a i is geodesic, it cannot pass through 

b twice. Therefore b € ag.as and again since 0:2 and as are geodesies they cannot 

pass through b twice. Now there are two possibilities. If & = ai as in Figure 2.2.4 

then by Corollary 2.4 we have Angb([6,a2]ai,a:3) < ^ Emd Angb([6,a3]ai,()!2) < 
Therefore Ang^(ai) < Ang(,([6,a2]ai,a'3) + % + Angb([6, a3]ai,a2) < % + 2g. If 
b ^ ai then without loss of generality we can suppose that b E as (if not 6 G a2 and 

the argument works similarly)(See Figure 2.2.3). Therefore we obtain Angj,(ai) < 

Aiig(,([6,a2]ai, [6,a2]a3) + Ang(,(Q!3) + Angb([6,oi]a3, [6,a3]«i). Now by applying the 
first part of Lemma 2.5 to the geodesic paths ag, [6, aijog and [6, asjai instead of 

respectively ag, cxi and 0=2 we obtain A n g ( , ( [ 6 , a , i ] a g , [ b , < Maxang(o!2) +20. 
Also by Corollary 2.4 we have Ang(,([6,02]ai, (̂ zjog) < 9. This implies Ang^(ai) < 

0 + Maxang(a:3) + Maxang(a2) + 20 < 33 + 2̂ + 20. So in aU the possible cases we 
have Ang(,(ai) < Max{s3 + 82 + 30, % + 20}. 
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By repeating the above argument for all 6 E ai with Angb(ai) > we obtain 
Maxang(ai) < Max{s3 + S2 + 39, rji + 29}, which is the result required. 

0 

Suppose we have three geodesic paths ai = [02,(13], 0:2 = [^3,01] and 0:3 = 

[01,02]. Suppose that a2 and are 2p-short. 

Lemma 2.6. Let b eV be a vertex of az so that 03 ^ b, and let P be a geodesic 

patii connecting <13 and 6. Then either Anggg(a!i,^) < ^ or Anggg(a!2, 

Proof. Suppose that both angles are strictly bigger than 6 as in Figure 2.2.5. We 

note that is 4p-short and we can assume without loss of generality that Dist(fe, og) < 

2p. Thus D i s t ( a 3 , b) < Ap. Therefore the path ai.f5.[a2, bjag is 8/?-short. 

Figure 2.2.5 

By applying Lemma 2.3 to the angle Angag(a;i,;8) > ^ we obtain 03 E [o2,(']a3-
This implies that Dist(6,03) + Dist(a3,02) = Dist(6, og) < 2p. So Dist(a3,6) < 2p, 

and Dist(ai,fe) < 4p. Therefore the path Q!2.[&, is 8/9-short, and by applying 

again Lemma 2.6 we have 03 E [b, ai]^, since Ang^^ (̂ 0, 0:2) >9. As a conclusion we 

obtain 03 € [b, a2]a3 H [b, ai]^^, which gives a contradiction since 0:3 is a geodesic path. 

0 

Let us give another definition. 

Deflnition. (Cones) 

Let IC = (V, £) be a graph, and let > 0 and B > 0. For each edge e = {x, y) the 

cone of radius A and angle B, ConeA,B{G,x) is the set of vertices v such that there 

exists an yl-short, S-straight geodesic from x to v meeting e at an angle at most B. 

ConeA,B{^ix) ={%; € V | 3 o; a ^-short, ^-straight geodesic path from x to v 

80 that Angg,(e, a) < B} 

The following lemma will be used later. 

Let /C(V, <5) be a graph. Given an edge e = (03, v) in <£" and constants A > 4p, 

B > 79, consider two points ai,a2 of the cone 03). Let a2,ai be two 
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geodesic paths connecting respectively ai,a3 and 02,03. Fix an 77 > 0 such that 

3r] < B — 69. Suppose that the following properties are satisfied: 

1) Aiig^^(a!i,a!2)<77. 

2) (ai, e) < B - g and Ang^^ (a2, e) < B - g. 

3) a i and a2 are 2p-short. 

4) a i and ag are T^-straight. 

Lemma 2.7. (lemma of quasi-convexity of cones) 

Under the above hypotheses if b E V is an element of a geodesic path as, con-

necting ai and og, then b G ConeA,Bie, 03). 

Proof. First since Dist(ai, ag) < 4p we note that Dist(a3, b) < 4p. 

First we need to check that if ^ is a geodesic path connecting b and 03 then /9 is B-

straight. But ai and are 77-straight and Ang^^ (ai, 02) <r}. So by applying Lemma 

2.5.(2) we obtain Maxang(a3) < Max{27y + Z6,-q + 29} = 2r] + 39. Also, by 2.5.(1) 

we obtain Ang^^(0:2,0:3) < 7; + 2^. Therefore we have Maxang([6,oijag) < 2;/ + 3^, 

Maxang(Q;2) < V and Ang^^ (0:2, [ai, 6]03) < r] + 29. So again by Lemma 2.5.(2) 

applied to ag, [ai,&]a3 and (3 instead of ag, o-z and ai we obtain Maxang(;5) < 

Max{377 + 60, ?7 + 49} — 3r] + 69. But BTJ < B — 69. Thus /3 is S-straight. 

It remains to prove that Ang^^{e, P) < B. But this is an immediate conse-

quence of Lemma 2.6 since either Ang^^ (ai,/3) < 9 or Anĝ ^̂  (y3, cvg) < 9. Without 

loss of generality we suppose that Ang^^ (0:1,̂ 8) < This implies Anggg(e,,8) < 

Angg,(«!,^) + Ang(a!i,e) < B. 

0 

The next two results accentuate the importance of the notion of angle as a useful 

tool in 5-hyperbolic graphs. We will need them for the appropriate choice of the 

constants in next sections. So suppose TC is a 6-hyperbolic graph. 

Lemma 2.8. There exists a constant p depending only the constant of hy-

perbolicity 5 of IC, so that given two geodesic paths (possibly geodesic rays) a and ^ 

connecting a and b in IC (or with an end point a and converging to the same boundary 

point in dlC), if a is /i-bent at a vertex x then (3 passes through x. 

Proof. Denote by {a,}* and {bi}i the consecutive vertices of a and /3 so that 

ttQ — bo = a. We know by hyperbolicity of K that a and /? are a uniformly bounded 

distance from each other. In other words there exists a constant K which depends only 

the constant of hyperbolicity 5 so that Dist(ai, hi) < k for all i . Suppose that x — ai^. 
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Denote %o + K + 1 = and conaider a path connecting <1;̂  and 6̂ .̂ Now is K-

short. Moreover note that cannot pass through x = since if it did we will have 

K + 1 = Dist(«*(,,O;J < Dist(aij, < /c, which is a contradiction. Similarly denote 

zo — K — 1 = 22 and consider a path ujî  connecting aî  and bî . Then the previous 

argument works to prove that does not pass through x. Note that it is possible 

that ajj do not exist. In this case we replace and bî  by h and consider as an 

empty path. Similarly if does not exist we replace ai^ and bi^ by a and consider 

as an empty path. Therefore the concatenation is (6^ + 4)-

short. So if a is (6K + 4)-bent at a vertex x then the concatenation cannot be a circuit 

in K by Proposition 2.2. So it passes through x at least twice. But, since and oji^ 

do not pass through x, x £ [6;̂ , Hence any > 6k + 4 gives the result required. 

0 

In the next lemma the constant involved is not the same as the lemma above but 

certainly can be taken to be equal. So from now on we will suppose that they are the 

same. 

Lemma 2.9. There exist a constant fj. depending only the constant of hyperbol-

icity ^ of /C 80 that given two geodesic paths ('or geodesic raysj a and connecting 

respectively x,y and x,z (or with an end point x) in K. if A.ng^{a,j3) > // then the 

concatenation a.^ is a geodesic path. 

Proof. Suppose that a.p is not a geodesic. So in particular A.ng^{a,^) < oo 

by definition. Denote by a the vertex adjacent to z in a and b the vertex adjacent 

to x in Thus Ang((a;,o), {x,b)) < oo. Moreover by hyperbolicity of JC there exists 

a constant k which depends only the constant of hyperbolicity of JC and two vertices 

ai, bi respectively on a and (3 so that [x, ai]a and [x, bi]^ remain uniformly K-distant 

from each other. In particular Ang((a;, a), (x, 5)) < K, which ends the proof choosing 

jJj th. 

3. RELATIVELY HYPERBOLIC GROUPS 

In this section we will define "relative hyperbolicity" and introduce the "boundary 

of a relatively hyperbolic group" as well as the "relative Rips complex" associated to 

a relatively hyperbolic group. We will also see cones in a fine graph are finite. 
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The notion of "a relatively hyperbolic group" was de&ned by Gromov [Gro2]. 
This is a group which is word hyperbolic relative to some infinite subgroups, namely 

"peripheral subgroups" in the terminology of Bowditch in [Bo7]. We gave in the 

introduction in Part 1 two equivalent definitions of relative hyperbolicity. The equiv-

alence of these definitions has been proved by Bowditch [Bo7]. The first definition 

is a modified formulation of the original definition introduced by Gromov. It gives a 

dynamical characterisation of relatively hyperbolic groups in terms of a group action 

on a hyperbolic space, while the second definition characterises relative hyperbolicity 

in terms of a group action on a "fine hyperbolic (F, y)-graph". For this work we will 

use the second definition that we state below. First we have to define fineness. For 

further discussion of these notions, such as fineness and a hyperbolic F-set, see [Bo7]. 

Definition. (Fineness) 

A graph K, is fine if for all r > 0, for all e E 6!(/G), the set of all the circuits of 

length less than r and containing e is finite. 

Definition. (Relatively Hyperbolic Groups) 

Let F be a finitely generated group, and let ^ be a collection of finitely generated 

subgroups. F is hyperbolic relative to Q if it acts on a graph /C, such that 

® for all e G £, the stabiliser of e is finite and there are only 

finitely many orbits of edges 

• /C is hyperbolic 

• /C is fine 

• the stabilisers of the vertices of infinite valence are exactly 

the elements of Q 

We will say that such a graph is associated to the relatively hyperbolic group F. 

It follows from this definition that relative hyperbolictity can be understood 

as a generalisation of Gromov hyperbolic groups. In fact in the case of absence of 

peripheral subgroups we obtain exactly the definition of a hyperbolic group. In fact 

if one replaces the third point by "AZ is locally finite", which is obviously a stronger 

condition, one obtains the definition of a hyperbolic group. 

We say that a graph K, is 2-vertex connected if for every vertex v the graph Ki\{v) 

is connected. Recall that for a graph /G, V(/C) and £{1C) denote respectively the set 

of vertices and the set of edges. Given x G V(/C) we denote by V{)C)(x) and £{)C){x) 

respectively the set of adjacent vertices to x and the set of adjacent edges to x in JC. 
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We will also denote by and respectively the set of vertices in V(/C) with 
non-trivial stabiliser and the set of vertices in V(/C) with trivial stabiliser in T. 

Lemma 3.1. Let F a relatively hyperbolic group, relative to a family of sub-

groups. Then the associated graph /C can be chosen 2-vertex connected and so that 
the action of T is A-ee on the get of edges and aii vertex a; e y/v(W) the stabihser 
Stab (a;) acts on V{%){x) transitively. 

Proof. First up to replacing each edge by several edges joining the same two 

vertices, one can change the graph K, into another graph % for which the action is free 

on edges. As the stabilizer of each edge of is finite, each edge is split into only finitely 

many new ones. Now after taking the barycentric subdivision, we can still assume 

that the graph has no multiple edges. Moreover we can assume that there are not 

two adjacent vertices x,y in % with non-trivial stabilisers by taking the barycentric 

subdivision of the edge connecting x and y. Note that the only vertices added to K, 

are the ones which come from barycentric subdivision and that the stabilisers of such 

vertices are trivial. 

Now we will modify % in order to ensure that for all x E 8tab(z) acts 

on £(%){x) transitively. Given an a; e Vs^{V.) we take the barycentric subdivision 

of the edges in E{T-L){x). We denote the new graph by . We index the edges in 

£{T-L'){x) Stab(a;)-equivariantly by the elements of Stab(a;) and we collapse the edges 

indexed by a same element of Stab(a;) to a unique edge. Note that since there are 

only finitely many orbits of vertices one can perform this construction F-equvariantly 

for all X G The graph thus obtained satisfies the above property and the only 

vertices added to % are ones with trivial stabilisers. We continue to denote the final 

graph by W. 

For all vertices x 6 the stabiliser Stab(z) acts on V('H){x) freely and 

transitively by construction of %. Since for all vertices x in Stab (a;) is finitely 

generated (by definition of JC) we can find a connected graph, JC{X) on which Stab (a;) 

acts freely with vertex set V(^) (x) and with £{C(x))/ Stab(z) finite. Now let T be the 

graph with vertex set V(H) and the edge set £{T) = £{1-1) U We 
see that Vu{T-i) = Vm{T). Hence no vertex in Vj^{T) can be a cut point. Moreover 

F acts on £{T) freely and for each x G VV(T), Stab(x) acts transitively on V{T){x) 

and £{T){x). Note that in order to obtain T from % no new vertices and only finitely 

many orbit of edges have been added. 

We want to modify T in order to obtain a 2-vertex connected graph. Let x G 
Vg(T). Given y G V{T){x), ay denotes the vertex yifye Vs{T) and denotes the mid-
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vertex that we add to 7" by taking the barycentric subdivision of the edge e = (z, ?/) 

if 2/ E 1^(71. Now for all pairs of vertices i/, z e we connect to by an 

edge. Note that for all vertices x in Vs{T) the set V{T){x) is finite and so there are 

only Enitely many pairs of vertices in V(T](a;). Therefore only finitely many orbits 

of edges have been added and they have all trivial stabilisers. Moreover none of the 

added edges is adjacent to an element of Vj^{T)- Hence the final graph still satisfies 

the properties that for all vertices z E the stabiliser Stab(a;) acts on V(%)(z) 

transitively and F acts on the set of edges freely. Note also the graph thus obtained 

is 2-vertex connected. 

Finally we note that throughout the modifications of the initial graph JC only 

finitely many orbits of vertices and edges have been added and all of them have 

trivial stabilisers. Therefore, the final graph remains hyperbolic and fine. 

0 

Henceforth we will assume that each graph associated to a relatively hyperbolic 

group fulfills the hypothesis of Lemma 3.1. 

We can see that the third point of the definition of a relatively hyperbolic group 

can be easily expressed in terms of angles : 

Proposition 3.2. Let JC be a fine graph. Given e — {x,y) ^ £ and 9 > 0, there 

exists only many edges e' = (a;, z) sucJi that Anga.(e, eQ < 

Proof. There exists only finitely many circuits of length 9 containing e. 

0 
The following is a direct corollary of the previous proposition. 

Corollary 3.3. Let T be a relatively hyperbolic group. In a graph associated to 

a relatively hyperbolic group, the cones are finite subsets ofV. 

Therefore, in a graph associated to a relatively hyperbolic group, we see cones as 

analogue of the balls in a locally finite hyperbolic graph. 

Definition. (Boundary of Relatively Hyperbolic groups) 

Given a relatively hyperbolic group, F, let /C be a graph associated to F. Then 

the boundary dV of F is dKuVoo where dK is the Gromov boundary of the hyperbolic 

graph KL, and Voô ^ is the set of vertices of infinite valence in K.. 

This definition of the boundary for relatively hyperbolic groups is given by 

Bowditch in [Bo7]. He shows in this paper that this boundary admits a natural 
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topology as a metrisable compactum as it shall be described below. Later different 
authors use this boundary in order to develop the theory (see [Y], and also [D2]). 

Given a 6ne hyperbolic graph (/C, we write A/G = where 9/C is 
the Gromov boundary of K. and Foo (AZ) is the vertex set of infinite valence of K. Given 

a function / : N -> N we say that / is bounded above by a linear function if there 

exists a linear function : N -)• N such that f{n) < g{n) for all n. Let / be a function 

bounded above by a linear function with f{n) > n for all n. An "/-quasigeodesic arc" 

in (/C, (fiat) is an arc such that length(a) < ?/)) for any subarc, a, of ^ 

where x, y are the endpoints of a. Similarly we can define an "/-quasigeodesic ray" 

in (/C, dist). Clearly a geodesic is iN-quasigeodesic where In is the identity function. 

It has been shown in [Bo7] that one can define a topology on A/C as follows. Given a 

function, / , as above, an element, a, of A/C and a subset. A, of let Mf{a,A) 

be the set of points b e A/C such that any /-quasigeodesic from b to a meets A, if 

at all, only in the point a. Hence a set O C AiC is open if for all a G O there is 

a finite set A C AJC such that Mf{a,A) CO. It has been shown in Section 8 of 

[Bo7] that the topology thus defined does not depend to the choice of the function / 

and hence it is well defined. Alternative formulations of this topology can be found 

in the same paper. Bowditch proved also, in his paper, that AJC with its topology 

is hausdorfi" and compact. (For details see Section 8 of [Bo7]). Moreover he showed 

that given two fine hyperbolic graphs K. and £, with same vertex set V such that the 

identity on V extend to a quasi-isometry, there is a natural homeomorphism from AJC 

to AC, which is the identity on V. In other words AJC is canonically defined for fine 

hyperbolic graphs with same vertex set up to quasi-isometry. For further discussion 

concerning this definition see Sections 8 and 9 of [Bo7]. 

We will use the following theorem in section 4. This is a reformulation of a 

result in [Dl], which ensures the existence of a "relative Rips complex" for relatively 

hyperbolic groups. 

Theorem 3.4. Let F be a relatively hyperbolic group and K be an associated 

graph, which is 5-hyperbolic. There exists an aspherical simplicial complex such that 

its vertex set is the one of JC, and such that for each simplex there exists cone of JC, 

of radius 10(5-1-10, and angle 100(5 -f- 30 so that the simplex has all its vertices in this 

cone. 

In [Dl], the first author defines the relative Rips complex Pa,r(JC) for a relatively 

hyperbolic group. It is the maximal complex on the set of vertices of JC such that an 

edge is between two vertices if a geodesic of length less than d and maximal angle 
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less than r joins them in /G. Although in [Dl], the notion of angle is replaced by 
"length of traveling in cosets", the proof of Theorem 6.2 remains the same, and gives 
the asphericity of Pd,r{)Oj for large d and r. 

4. A SUBSHIFT OF FINITE T Y P E 

In this section, in order to construct a subshift of finite type we will introduce a 

family of cocycles, T, defining their local properties (Part 4.1). Under the hypotheses 

of Theorem 0.1 we will then give in Part 4.3 a subshift, #, of finite type coding the 

action of F on its boundary ^F. 

Let F be a group hyperbolic relative to the family Q. We fix Gi, as an 

orbit transversal of conjugacy classes in Q and we consider /C(V, £), a fine J-hyperbolic 

graph introduced by definition of relatively hyperbolic groups with its metric "Dist". 

For all i we denote by pi e Voo the fixed point of Cj. For each i, we choose an 

arbitrary edge e, adjacent to pj. 

4.1 Local Properties of a Cocycle System 

We choose the constants p > 645 + 3 and 0 > 8p where S is the constant of 

hyperbolicity of K. The choice of p will be justified later in section 5. We also assume 

that no pair of edges at a vertex of finite valence have an angle more than 6. This 

is possible as /C is 2-vertex connected (see Lemma 3.1). We fix an orbit transversal 

{rj}j of V under the action of F so that {pi}i C {rj}j, and for each j we choose an 

arbitrary edge {ej}j adjacent to r j such that {e,}, C 

We fix a vertex vq and an edge eo = (%, v). For k > 1000, we choose R and 8 

such that ConeR^e{eo,vo) contains Cone&g,&g(ê , for all j , and so that if r j is a 

vertex of finite valence then V(rj) is contained in CONER^Q{EO, VQ) where V{x) denotes 

the set of adjacent vertices to a vertex x in K-. We denote Cone_R_0(eo, wo) by N. Note 

that by Corollary 3.3, N is finite and V C (J-yer 

We define ^ to be the family of maps ijj : N x N ^ Z satisfying the properties 

below: 

(Al) The property of integer valuation: 

y) G {—1,0,1} Vx, y e N that are adjacent in TC. 
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(A2) The property of cocycle: 

%/) + ^(i/, z) + ^(z, %) = 0 V z , z e AT. 

(A3) The exit property : 

If a; has Enite valence and if V(a;) contained in AT then there exists at least one 

y E N, adjacent to z in AC so that ij){x,y) — 1. 

(A4) The property of quasi-convexity: 

All vertices z e lying on a geodesic path connecting two vertices a;,?/ € 

satisfy i/) + (1 — z) — 4i5 < 0 where t = Di8t(a;, z)/Di8t(z,i/). 

Remark , (inclusion in a cone) Given x,y E Con&ko,ke{e.'j,Tj) for some j, consider 

the geodesic paths a connecting y to rj, (3 connecting x to vj and to connecting x to 

y. Denote 6i = {kO — 60)/3 and 02 = kd — 9. Suppose the following properties hold; 

- Ang(a!,;8) < 

- Ang(a!, e.) < ^2 and Ang(;9, e j < ^2-

• a and /3 are 2p-short. 

• a and /3 are -straight. 

Then by Lemma 2.7, replacing ai, 02, 03 and b respectively by x, y, Vj and z and 

the constants ^ ( > 4p),B{> 79),r]{> 0) by k6, k6,9i = {k9 — 69)/3{> 0), we obtain 

that if z G V lies on 00 then it is also in ConckQ^keWj, ' f j ) and therefore is in N. 

Moreover note that if ?/) + (1 — — 46 < 0 then also ^(r_;,z) > 

til){rj, y) + {1 — t)ip{rj, x) — 4S by the Property of cocycle (A2). 

4.2 Globalisation of local propert ies 

In this section we will give a system of maps T from V x V on Z which satisfies 

properties (Al) , . . . , (A4) on 7(iV x N) for all 7 G F. Moreover we will show that we 

can extend some of local properties of such a map on /C, in other words we will show 

that this map arises from a global cocycle on JC. 

We consider a contractible simplicial complex V{K,) given by Theorem 3.4 on K. 

In /C there are only finitely many F-orbits of CoMeioa+io,iooj+3o(e^-, Moreover 

note that k9 > 106 + 10 and k9 > 1005 + 30, hence each orbit representative lies in 

Conei-e^kdi^'j, f j ) for some e'j. Therefore by Theorem 3.4 each simplex of V{]C) lies in 

j N for some 7 e F. 

For all -0 £ ^ and for all 7 6 F we define the map 7*^ : 'y{N x N) Z 

so that 7*^(73;, 72/) = il){x,y) for all {x,y) E N x N. Set T to be the set of maps 

y : U gp j(NxN) -4- Z so that for all 7 there exists tp e satisfying < |̂̂ (ivxJV) = 1*4'-
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Proposi t ion 4.1. Given cp E T there exists a map Tp deGned on the vertex set 

V of P(/C) go that A)r ajJ 'y if a;, 2/ m x jV) tZiec ?/) = — ^(2/)- Moreover 

y is unique up to an additive constant. 

Proof . Given € T for all 7 it gives rise to a unique l-cochain on the set of 

edges of ^{N x N). In fact if x,y are two points of V, adjacent in j{N x N), we 

know that ip{x,y) = for some ijj e '9. But since ijj satisfies property 

(Al), ip{x,y) can take only the values 1, —1 or 0. Thus if (p(x,y) — 1 (respectively 

= — 1 or = 0) one can set f{x,z) = Dist(z, z) (respectively = — Dist(z, z) or = 0) 

for all z lying on the edge connecting x and y in IC. So in fact y is a simphcial 1-

cochain in V^IC). Moreover it is closed by property (A2) of-0. As V{1C) is contractible 

(simply connected is enough) and each simplex of V{1C) lies in for some 7 G F 

this cochain is indeed a coboundary. Thus we define Tp to be the 0-cochain of which y? 

is the coboundary. The uniqueness comes from the fact that two 0-cochains of which 

y is the coboundary differ by a constant. 

Given G T we will refer to ^ as a primitive of </?, which is well defined up to an 

additive constant. As a result of the following proposition, from now on we assume 

that each y G T is defined on V x V entirely. 

Proposi t ion 4.2. If ip is an element of T then it admits a unique extension, that 

we still continue to denote by (p, and (p : V x V ^ Z satisfies the following properties: 

(CI) 1/) + z) + y(z, a;) = 0 Va;, ?/, z 6 V. 

(C2) y(a;,?/) = -< (̂2/, 2;) Va;,?/ e V. 

(C3) |y(a;,2/)| < Dist(a;,?/) Va;,^ € V. 

Proof. The globalisation of on V x V follows Proposition 4.1 and it is easy 

to see that the first two properties are the direct result of the globalisation. Let us 

prove property (C3). For this we consider a sequence {ai}i6{o,...,r} G a n V so that 

r — Dist(z,y), ao = x, ttr = y and for all z G {0,. . . , r — 1}, (a^, aj+i) are the distinct 

end points of an edge in JC. By the first property, we have ip{x, y) = YI'IZq <̂ (0%, Oi+i)-

But since < 1 we obtain |y(a;,2/)t < r = Di8t(a;, ?/)-

0 

Definition. (Gradient Line) 

Given an element y in T, a gradient line for is a path Z : / C [0, 00) -4- /C, 

parameterized by arc length in /C, satisfying for all /(t), l{t') G V, (p{l(t), = t'~t. 
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Note that a local gradient line is also a global one since y; satis6es the cocycle 
property (A2). We say that a gradient line Z is zgauecf from z if y(a;,2/) = Dist(a;, ?/) 
for all ^ e L Given a gradient line I issued from x and joining x and y we say that it 

is actemjab/e if there exists z 6 V adjacent to 1/ so that y(7/,z) = 1. Hence 

the concatenation Z.(2/,z) is a gradient line. Similarly we say that it is eifendobfe 
backwards if there exists z e V adjacent to x so that ip(z, x) = 1 and hence the 

concatenation {z,x).l is also a gradient line. We say that a gradient line I is maximal 

if it is not extendable forwards. A vertex a; is a landing point if there does not exist 

y with (f{x, y) = 1. Therefore the final vertex of a maximal gradient line is a landing 

point. We say that two gradient lines are parallel if they remain a bounded distance 

apart (always) from each other, and they are coterminal if they are parallel gradient 

lines or maximal gradient lines landing at the same point. 

Lemma 4.3, If I is a gradient line for cp E T then I is a geodesic path in K,. 

Proof. Since y satisfies property (C3) for all € V we have t' — t = 

(p(l{t),l{t')) < Dist{l{t),l(t')). But I is a path parametrised by arc length. So length 

of the subpath of I laying between l{t) and l{t') = t' — t > Dist(Z(t), 
Therefore for all l(t), l{t') G V we obtain that the length of the subpath of I lying 

between l(t) and l(t') is equal to Dist(/(i), which is to say that I is a geodesic 

path. 

• 

As a result of Lemma 4.3 the gradient lines associated to a given global cocycle 

can be understood as a geodesic flow defined on JC. 

4.3 Construction of a Subshift 

Our main purpose in the next two sections is to construct a subshift of finite type 

which will induce a family of "gradient lines" and therefore a system of "geodesic flow" 

on K so that each geodesic flow converges to a unique point of dK or sinks at a vertex 

of infinite valence. In fact, in Section 4.1 and Section 4.2 we gave the definition of a 

cocycle system, T, on IC defining their local properties on each translate of N. Each 

element of this cocycle system will give rise to a "geodesic flow" on K, as we will 

examine in the next section. A priori we can also construct a subshift of finite type 

so that an element of this subshift maps each 7 G F to the restriction on j N of the 

geodesic flow obtained from an element of T. But, as the link of a vertex of infinite 

valence can only be covered by infinitely many of the translates of iV, two "gradient 
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lines" obtained from elements of T may diverge at the vertices of inGnite valence. 
In other words we will not be able to include enough information in local coding of 

T, in order to have control over the gradient lines. So in this part we will correct 

these errors around infinite vertex set using the another hypothesis which are given 

by Theorem 0.1. 

As in Theorem 0.1, we assume that for each % e { l , . . . , n}, the minimal compact-

ification of Gi is finitely presented with special character (see Section 1 for definition). 

In other words, for all i there exists a cylinder C,, defined by a finite alphabet Ai con-

taining a special character $%, a finite subset Fi containing the identity element l^. of 

Gi and a family of maps Mi C Ap. For all i, the cylinder Q gives a subshift of finite 

type, which surjects onto Gi U {oo} and satisfies the condition of special charac-

ter. Note that from now on we will not make a distinction between different special 

characters and denote all special characters by $. In this section we adapt also the 

notations of the preceding section. So recall that for all i we denote by pi G Voo the 

fixed point of Gi and by e* the arbitrary edge adjacent to pi chosen at the beginning 

of the section. Recall also that p > 645 + 3 and 6 > 8p. Here, in addition, we suppose 

that 0/2 to be strictly greater than Maxggf. {Ang(ei, ̂ e^)} for all % G {1,. . . , n}. This 

is possible, since Fi is finite for all i and K, is 2-vertex connected. Moreover we assume 

that 9 > where n is the constant introduced by Lemma 2.8 and Lemma 2.9. 

Let F be the set of elements 7 of F such that 'jN n N contains two distinct 

element of V. 

Lemma 4.4, The set F is finite. 

Proof. Suppose not. Then without loss of generality we can suppose that there 

exists an infinite sequence of F so that for all m, 7miV n N contains two distinct 

points ttm, bm- Since N is finite, without loss of generality we can suppose that for 

all m, am ~ a and bm = b in ^m.N Pi N and = x, 7^^5 — y m N. It follows that 

there exists an infinite sequence, 7^, with 7^2; = x and 7^1/ = y. Moreover, since JC 

is fine, there are only finitely many geodesic paths connecting x and y. So without 

loss of generality we can suppose that there is a geodesic path, a, connecting x and y 

and fixed by 7^ for all m. But this gives a contradiction since the edge stabilisers of 

K, are finite. 

0 

Let A be the alphabet given by UlLi(^ x Ai). 

Define the cylinder C to be the set of <7 € so that a^p £ M where M is the 

set of maps, / : F 7 i-> (/i(7), fiil)) satisfying the following properties: 
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(Bl ) V'Y e F, /("y) = (/i('y), /2(7)) E ^ x ^ for some % 

(B2) V̂y e if a;, ?/ e 7 ^ n AT then = /i(lr)(a;, 2/) 

(B3) Vi e {1,. . . , n} the map A , P /2(p) Ls in Af*. 

(B4) 6 Va;, ^ € V(/C), with = (p^,2;) and so that there exists a 

^-straight, k^-short geodesic path, containing z, one has /i(g)(Pi,2/) > 1 — 

Dist(p;, ?/) only if there exists p' E G* satisfying Ang(^'ei, e j < ^/2 and /2(^y) = $. 

(B5) Vi e { l , . . . , n} if there exists & qq E Fi satisfying f2{go) = $ then 

yi(lGj(p*, a;) = 1 where a; is such that goe* = (pi, a;). 

Remark. The above conditions concern only finitely many elements of F. In fact 

in Property B4) there are only finitely many y € V such that a ^-straight, A^-short 

geodesic path, \pi,y] contains pe* as g varies in the finite set Fi. 

They are also well defined. Let g £ Fi. Then the vertices of pe, are in Coneke,kei^i: Pi) 

and so they are in iV n gN. Thus property (B3) is well defined because ii g E Fi then 

g E F. Similarly let g E Fi and g' e Gi so that Ang{g'ei, e%) < 9/2. Then gg' is in F 

since Ang{gg'ei,ei) < 9. Hence property (B4) is well defined. 

We define $ C A^, the subshift given with alphabet A, as the intersection $ = 

H-yEr and denote an element of # by cr = (cri, <%2) where fJi : F -4 ^ and 

o"2 : F Ai. 

The following lemma proves that for each cr G $ one can associate a global co cycle 

cp E T defined on V x V. 

Lemma 4.5. Given a <% E $ there exists a (pfj E T so that o"i(7) = ^a\^(^NxN) 

for alii E n} and 7 G F. 

Proof. We define the map ipa- '• U7gr7(^ x iV) Z associated to a as follows: 

Given two distinct points x, y of V, so that {x, y) E j{N x N) for some 7 G F, 

we define ;/) = 7"^^). We also set y)o (̂a;,a;) = 0 for all a; E V. 

The definition of cpo- does not depend on the choice of 7 . In fact given two 

distinct points x,y of V, if {x,y) E 7(TV x N) and (x,y) E j'iN x N) for 7 , 7 ' G F 

then x,y E jN n 7 ' i V " . Thus 7~^7' E F. Moreover 17(7) = 7"~^cr(lr) for all i and 7 

and 7^ (̂T G C, so it satisfies property (B2). Therefore 

<^i(7)(7"^a;,7-^2/) = 7"^o'i(lr)(7"^a;,7-^?/) 

= 7"^(7i(7"^73((7"V)"^7"^:K, (7"V)"^7"\ ) 
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Finally since 7~'^cr(7~^7') = cr(7') we obtain 

We also know now that for all 7 e T, (71(7) = i/; where i/; E So it satisSes 

properties (A1),...,(A4). Thus y7(̂ (7z,7%/) = (7i('y)(a;,2/) = V'(a;,2/) for all (z,?/) G 

X # . In other words for all 7, y'(T|̂ (jvxN) = 7*^- Thus € T, and as we 
remarked after Proposition 4.1 we can consider as defined globally on V x V. 

0 

By Lemma 4.5 we associated to any given cr a global cocycle Note that 

although we use only ai in order to obtain from a, p̂a depends on the properties 

of 0-3. So we are interested in understanding the behaviour of this cocycle y in relation 

to (72. The following lemmas help to make explicit some of these relations. 

Lemma 4.6 shows that given a vertex, v, of infinite valence in the graph K there 

is at most one edge with initial point v which takes the special character $ under erg. 

Lemma 4 . 6 , Given a € for all i G { 1 , . . . , n } and for all 7 E T, there is at 

most one g e Gi so that (J2{ig) — $• 

Note that if there is such g £ Gi then g depends the choice of 7. 

Proof. Fix i G {1,. . . , n} and 7 G F. Now, cr G $ implies that for all g ^ Gi, 

G $. Thus satisfies property (B3). Therefore the map Fi -> Ai 

defined by i-> g~^J~^cr2(h) is in Mi, and is in the cylinder C*. It follows 

that, for all g G Gi, 7"^o'2jG^ ^ pQ, and so 'y~^cr2\Gi 6 Hggg. gCi = Hence since 

0 ; is a subshift of finite type surjecting onto G* U 00 with a special character $, by 

definition there exists at most one g E Gi with 7^^0-2(g') = $. This gives the result 

since 7"^(72(^) = (12(75') = $ for at most one g E Gi. 

0 

The next lemma play a key role in the main proof of section 5. It shows that 

one can extends a gradient line backwards by a /s^-short geodesic path, if the angle 

between the path and the gradient line is greater than 9. Similarly Corollary 4.8 

shows that if a; is a landing point then any t^-short geodesic path ending at x will be 

a gradient line with landing point x. 

We justify the choice of the name for the following lemma, noting that since 

d > 4fj,, where n is the constant given by Lemma 2.9, if two geodesic path meets at 

an angle at least 6 then their concatenation is a geodesic. 
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Lemma 4.7, (Geodesic Extension) Let a be a gradient line issued from x and 

be a geodegjc patA coDnecticg z and a;, if Aug,, (a, /3) > ^ then the 
concatenation ^.a is a gradient line issued from z. 

Proof. We will use property (B4) of the subshift which is given on translates 

of N. Therefore we will split j3 into subpaths whose end points belong to a translate 

of N and apply the property recursively for each subpath. 

Note that as we have an angle greater than 0 at x, x is not a vertex of finite 

valence by the choice of So there exist z and 'y so that "yei = (z, y) is the edge 

of a adjacent to x. Now as -ye, G it satisfies property (B4). In other words as 

by hypothesis 7̂,7(3;,2/) = 1 > 0 there exists ^0 € 

with Ang(c?oei, Cj) < 9/2 and (72(750) = $. Moreover by Lemma 4.6, QQ G Gi with 

(''2(7^0) = $ is unique. 

Now denote by {ai}ie{o,...,m} the consecutive vertices where j3 is 0-bent and 

suppose ao = x. As Gi acts transitively on V{pi) (See Lemma 3.1) there exists 

a g ^ Gi so that -jgei is the edge of [ai^x]p adjacent to x (See Figure 2.4.1). 

We see that as Ang^(/^, a) > 0, no g' e Gi with Ang(p^e;, e«) < 9/2 satisfies 

o'2(78'y) = $- If not we would have = po and Ang(7pe:,7ei) < Aiig(pe^,^ye<) + 

Ang(po6;, Ci) < 9. This is a contradiction with Ang^(/9, a) > 9. Now as the ^-straight, 

t^-short path [ai,x]p lies in 7 ^ C O N E T G ^ T E ( ^ I , P I ) C ^gN, it satisfies property (B4). 

Thus y^(a:,ai) = ya(79Pi,ai) = o-i(7(/)(pi,g-^7-^ai) < l - D i s t ( p i , g - y - ^ a i ) , 
i.e ipa{x,ai) < — Dist(a;,ai). This together with \^Pfy{x,ai)\ < Dist(a;,ai) implies 

iPa{ai,x) — Dlst(ai,a;). 

'ygoG, 

Yge, x>8 

Figure 2.4.1 

Now applying the above argument recursively but only finitely many times for 

each Vi where P is 0-bent we obtain that cpa{cLii Qi-i) = Dist(ai, aj_i). This ends the 

proof as Lpa(z,x) = ^ ^ 0 Dist(oi,a*_i) = Dist(z,a;). 

0 

The following result is in fact a corollary of the proof of Lemma 4.7. 

Corollary 4,8. (Geodesic Extension) Given a k9-short geodesic path a connect-

ing z and X suppose that x is a landing point for IPA- then a is a gradient line issued 

from z. 

85 



Symbolic Dynamics and Relatively Hyperbolic Groups 

Corollary 4.9. Given a geodesic path a coDcectrng z ajid ?/ so that %/) = 0, 
suppose A)r some a; 6 a, that [z, i/ja is a gradient line issued A-om a; and [z, r]a is 
kd-short. Then a cannot be 9-bent at x. 

Proof. Suppose that a is ^-bent at x. As we have y) — Dist(a:, y), Lemma 

4.7 applied to and [z, inatead of a and /3 gives a;) = Di8t(z,z). But 
this together with 2/) = Dist(a;, ?/) give the contradiction since 2/) = 0-

0 

The next lemma shows that a cocycle associated to a gives a dichotomy on the 

vertices in /C, and it assures that the geodesic flow obtained by (/?•- does not sink at a 

vertex of finite valence. 

Lemma 4.10. For every vertex x in K either there exists a gradient Une issued 

from x or X is a landing point. Moreover if x is a vertex of finite valence then there 

is always a gradient line issued from x. 

Proof. The result follows from properties (B5) and (B4) of a. 

First suppose x is of infinite valence, i.e x = jpi for some i G {1,. . . , n}. Denote 

e, = {Pi,qi). Suppose there is p € G* so that cr2{jg) = $• Since 7~^cr E $ it satisfies 

property (B5). Thus ^^^cri(lGi){Pi, gqi) — 1. Hence if we take y = ^ygqi we obtain 

^a{x,y) = cri{'j){pi,gqi) — 1 by definition of Now suppose there is no g E Gi 

so that (T2{jg) = $. Hence this time, by property (B4) and by the fact that Gi acts 

transitively on V{pi), ^~^ai{lQ.){pi,y) — —1 for every vertex y adjacent to x. 

Now suppose x is of finite valence. As no pair of edges at a vertex of finite valence 

have angle more than all the edges with initial point x belongs in the same translate 

of N. Therefore as satisfies the exit property (A4) on this translate of N, there 

exists a vertex adjacent y so that (p„{x, y) = 1. 

0 

5. COTERMINAL GRADIENT LINES 

In the preceding section under hypothesis of Theorem 7.1 we constructed a sub-

shift of finite type, $ with alphabet A. We denoted an element of $ by a. In this 

section we will see that given a a G $ and its associated map, ^Pa- G T, defined by 

Lemma 4.7, one can associate to (pa, and therefore to cr via '.fa, a unique point of 
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9/C U Voo where 9/C is the hyperbolic boundary of /C and Voo is the set of vertices of 
infinite valence. 

We adopt the notation of the previous section. T is a hyperbohc group relative 

to the family of subgroups is a ^hyperbolic graph given by the dehnition 
of r with its metric "Dist", and Gi,Gn is a set of representatives of the conjugacy 

classes in Q. We assume that for each i G {1,. . . , n}, the minimal compactification 

of Gi is finitely presented with special character. For all % E {1,. . . , n} we denote by 

Pi E Vex, the fixed point of Gi and by = (Pi,?*) the arbitrary edge adjacent to 
chosen at the beginning of Section 4. 

Recall that p > 645 + 3 and 9 > 8p, no pair of edges at a vertex of finite valence 

have an angle more than ^ and ^/2 is strictly greater then MaXgef.{Ang(ei,^ei)} for 
all 2 E {1, . . . , n}. As before we choose 9 to be greater than 4//, where p is the constant 

given by Lemma 2.8 and Lemma 2.9. Recall also that {rj}j is an orbit transversal of 

V under the action of F so that {pi}i C {rj]j, and for each j we have an arbitrary 

edge such that it has an end point Vj and {e,}, C {e'j}j. We fix a vertex vq and 

an edge CQ = (uo, v) and we choose for k > 1000 the constants R and 8 such that for 

all J, CoMeA,e(eo,i;o) contains r^). We denote Cone;z,e(eo,i;o) by 

One can ask whether a geodesic flow obtained by a global cocycle converges 

to a unique boundary point or possibly to a unique vertex of infinite valence. If 

we can answer positively this question we will obtain a natural map from $ into 

die U Voo = 9r . Hence for the remainder of this section we fix an element a of $ and 

denote by (p its associated cocycle cpa E T. The main objective of this section is to 

prove the following lemma, 

Lemma 5.1. Given two vertices a and b consider two gradient lines la and h for 

(f issued respectively from a and b. Then la and li, parallel and coterminal. 

Before proving this lemma we will need a theorem and some preliminary lemmas. 

Using these results we will try to understand the behaviour of the geodesic flow 

associated to a global cocycle in specific cases. 

The following theorem is a particular case of a well known theorem about hyper-

bolic space (see for example [GhH], Theorem 2.1). We will need it later for one of the 

lemmas used to prove the main result. 

Theorem 5.2. (of approximating trees) Let K. he a (Gromov) hyperbolic space. 

Given a geodesic path a and two points x,y in IC there exists a real tree r so that 
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a U {z, 1/} can be embedded in r go that b̂r a27 z, z' E a U {a:, ?/} we izave Dist(z, z') — 
6^ < Di8tr(z, z') < Di8t(z,z'). 

The next lemma proves that given two gradient lines issued from two close enough 

vertices if one of them is 40-bent at a vertex then they intersect at this vertex. 

Recall that p > QA5 + 3 and 6 > 8p. We fix a constant s = 325 + 1 < p/2. Given 

two vertices x, y suppose that y) = 0 and that there exists a ^-straight s-short 

geodesic path ai connecting x and y. Note that we allow the possibility x = y since 

in this case the hypotheses are satisfied and we can consider cvi as the empty path 

for the following arguments. Let a2 and 014 be two gradient lines issued respectively 

from X and y and connecting x, x' and y, y'. Suppose that a2 and 0:4 are p-short and 

(p{x', y') = 0. Consider also a geodesic path as connecting x' and y'. 

Lemma 5,3. If there exists z ^ y' ^ so that is 49-bent at z then z E ag. 

Proof. To prove the lemma we will show that we have control over the angles 

of CKg. This, together with Corollary 2.4 and the hypotheses on a i will give the result 

required. 

Since = a!i.a2 CK4 is S^short (s < /)/2), by the choice of ^ passes through 

z at least twice. So either z £ a2 or z E as or z £ ai. 

If z € (32 then we have the result required. 

Suppose z e Q!3 as in Figure 2.5.1. Since z £ 04 we have (p{z,y') — Dist(z,y'). 

Now as [x'^ zjag is A^-short, by Corollary 4.9 (replacing a, a:, y and z respectively 

by [z',z]a3.[z,2/%4, z, / and a;'), we see that Ang^([z%z]a3.[z,2/%J < So we 

have Aiig^([%%z]a3,[z,2/]a4) > since 46" < Ang^(a4) < Ang^([a;%z]a3.[z,?/%J + 

Ang^([z,%%3,[z,^]aJ < Ang^([a;%z]ag,[z,2/]a4) + 

Figure 2.5.1 Figure 2.5.2 

Now again since (̂ 1 = ai.a!2.[z%z]a3.[z, is 8/)-short and Ang^([z\z]a3, [z,^]^^) 
> 0, 5i passes through z twice. In other words either z 6 ori or z G ag- But if z € Og 
we again obtain the result required. So suppose z E ai (See Figure 2.5.2). Then by 
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Corollary 2.4 we have Ang^([z,?/]a ,̂ [z,2/]a4) < 6", moreover by hypothesis we have ai 
is <9-straight. Thus 3g < Aiig^([y, [z, + AngXai) 
+ Ang^([z,2/]cki, < Ang (̂[a;%z]a3, i-e Ang^([z%z]«3, k,a;]aj > 
9. This implies by Lemma 2.3 that z e a2. 

It remains the case where z E ai but this case can be treated as the case above 
using exactly same arguments in different order in order to obtain z E ag. 

0 

Lemma 5.4 says that given two vertices close enough and two gradient lines issued 
from these vertices if we have a control over the angles of these gradients lines then 
they stay in a bounded distance. 

As in the previous lemma fix s = 32(5 + 1 < p/2 where p > 645 + 3 and 0 > 8p. 

Denote 9i = (k9 — 69)/3, 92 = k9 — 9, which are the constants used in the remark 

following the quasi convexity property (A4) at section 4.1. Note that since k > 1000 

these constants are positive. Given two vertices x, y suppose that ip{x, y) = 0. Denote 

by ai a geodesic path connecting x and y. Let Og and be two gradient lines issued 

respectively from x and y. Suppose that ag and 04 connect respectively x, x' and 

y, y' where Dist(a;, x') = Dist(^, y') = p. Let az be a geodesic path connecting x' and 

y'-

Lemma 5.4. If ai is 9-straight s-short and if ofg and a4 are 49-straight then 

(1) Q!3 is s-short 

(2) as is 9-straight 

Note that for application it is important that the same constant s and 9 appear 

in hypotheses and conclusion. Lemma 5.4 is applied in an induction argument in 

Lemma 5.5 and Lemma 5.6. 

Proof. As in the previous proof here the proof is given in two cases where x ^ y 
and X = y. But in both cases the steps and subcases which are treated are the same 

and the arguments are similar except that the case a; = y is simpler. So here to 

simplify the prove we will only make explicit the case where x ^ y. 

So we suppose that x ^ y. We divide the proof into three steps. 

Step 1 
In step 1 we prove that x, x', y' and the vertices of CK3 stay in a same translate 

of N and satisfy the property of quasi-convexity. Similarly we prove this statement 

for 2/, z', and the vertices of 0:3. (see Figure 2.5.3). In other words we will prove 
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that for every vertex z; of ag we have z) > + (1 - zQ - 4(̂  and 

v)(2/, ;z) > ^y(2/, 2/0 + (1 - a;') - 4(̂  where ( = Di8t(y, z) / Dist(a;% t/'). In fact it 
will be enough to prove this only for x, x' and y' since x and y have symmetric roles 

and so the same reasoning will give us the result required for y, x', y'. Hence we prove 

the statement only for x, x' and y'. 

Consider a geodesic path /3 connecting x and y'. Denote by e the edge of /3 

adjacent to x and consider Conete,A:g(e,z). (See Figure 2.5.3). We will prove that x, 

x', y' and the vertices of as stay in Conek8,&@(e, x). For this, it is enough to show that 

the hypothesis of the remark (inclusion in a cone) which follows the cocycle property 

(A4) in section 4.1 holds under our assumptions, i.e: 

• ^ and a2 are ^i-straight 

- < 1̂. 
- Anga.(e,;9) < <92 and Ang^(e,a!2) < 2̂-

• P and a2 are 2p-short. 

Figure 2.5.3 

To check the above four assertions first note that if y has infinite valence then 

Angy(o!i, 014) < 0. Because if not by the lemma of geodesic extension (Lemma 4.7) 

applied to 014 and ai instead of a and {3 we obtain (p(x,y) = Dist(z, y), which is a 

contradiction with (p{x,y) = 0. Also if y has finite valence then again Ang^(ai,a4) < 

9 since no pair of edges at a vertex of finite valence have an angle more than 9. Hence 

in both case Ang^(ai, CK4) < 9. We also note using the same arguments applied to x, 

ai and a2 instead of respectively y, ai and 0:4, that Angg. (ai, ag) < 9. 

Note that ai.a4./3 is 3p-short and hence by Lemma 2.5.(2) (replacing a i , 0:2, in 

the lemma respectively by /3, a i and 04) we obtain Maxang(/3) < Max(Maxang(Q!4) 4-

Maxang(Q!i) + 39, Ang^(ai, 0:4) + 29). Thus P is 86'-straight, hence ^i-straight. That 

gives the first assertion since 012 also is -straight by hypothesis. Note that the last 

assertion is also direct from the hypotheses. So it remains to prove the second and 

the third assertions. 

Now we have Ang^(ai, as) < 9. Moreover replacing a i , 012, as of Lemma 2.5.(1) 

respectively by a i , /5 and 0:4 we obtain Ang^.(q;i,/3) < Maxang(a4) -h20 < Q9. There-
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fore 0:2) < ai) + Aiigg.(a!i, 0:2) < 76/ < 6»i, <93. This gives the second 
and third assertions since e is an edge of 13. 

Hence we showed that x, x', y' and the vertices of 03 are lying in Coneke^keie, x) C 

"/./V for some 'y € F. Since for all 'y, = 7*(V') where ^ G y satisSes property 

(A4) of quasi convexity on Conet8,A:e(e,a;). Therefore for all vertices z of 0:3 we have 

(<p(z, y ) + (1 - z') - 46 < 0 where f = Di8t(a;% z)/ Di8t(a;% %/'). 

Step 2 

In this step we will prove that z' and 2/̂  stay a bounded distance from each other. 
Note that ip{x, x') = Dist(z, x') = p, ip{y, y') = Dist(y, y') = p since a2 and 014 are 

gradient lines. So in particular, since (p(x,y) = 0, (p{x,y') = (p(y,x') = p. Moreover 

from Step 1 we obtain that if z is a vertex of 0:3 with t = Dist(a;', z)/ Dist(a;', y') then 

z) > %/') + (1 — a;') — 45 and 
2/0 4- (1 - ()̂ (%/, a;') - 45. 

Thus for all z G a^, (p{x, z) > p — 4S and (p{y, z) > p — 45. This together with 

Property C3) we obtain Dist(z, z) > (f{x, z) > p — 46 and Dist(t/, z) > p — 45. 

Now we consider the approximating tree r given by Theorem 5.2 where «$, x and 

y play respectively the role of a, x and y. Now, the tree r has one of the combinatorial 

forms below: 

X Y 
1 2 3 

Figure 2.5.4 

Suppose that r has the form 1 or 2 of Figure 2.5.4 and denote by z and v 

respectively the projection of x and y onto as in r . T h u s D i s t r ( z , i ; ) > 0 . So s > 

Dist(z, y) > Disti- (z, y) — DistT(z, z) + Dist^ (z, v) + Dist^(t;, y) > Dist(a;, z) — 65 + 

Dist(y, v) — 65. Now as z and v are vertices of as we obtain s > p — 45+p — 45 —125 — 

2p—205. But s — 325+1 so we obtain 325+1 > 2p—205, which gives the contradiction 

since p > 645 + 3. 

It follows that we have the combinatorial form 3 for the tree r . Denote by 

z the projection of x and y onto in r . We have Dist(x',z) < Disti-(a;% z) + 
65 = Distr(a;', x) — Di8ti-(z, z) + 65 < Dist(a;', x) — Dist(a;, z) + 125 < 165. Similarly 

Dist(?/', z) < 165. So Dist(a;', y') < 325 + 1 = s, i.e as is s-short. This ends the proof 

of point (1) of Lemma 5.4.1. 

Step 3 

In this step we will prove that 013 is ^-straight. 
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We argue by contradiction and we suppose that 0:3 is 0-bent at vertex z. Now 

since 5 = CK1.a2.a3 Ck4 is 8p-short, by the choice oi 6, 5 passes at least twice through 

z. So either z E a i or z 6 as or z E 

Suppose z e ai . Then Dist(a;, z) < Dist(a;, 2/) < g by hypothesis and Dist(a;', z) < 

Digt(a;% yQ < s by Step 2. Thus = Dist(a;, a;') < Dist(3;, z) + Dist(z, a;') < 28, which 

gives a contradiction since p > 646 + 3 and s = 325 + 1. Thus the only possibilities 

remaining are either z e 04 or z E a2. 

Now suppose that z E 0:4, then as 0:4 is a gradient line we have = 

Dist(z, y'). Therefore by Corollary 4.9 as cannot be 6'-bent at z. (Considering 013, x', 

and z instead of a, 1/, z and a; of Corollary 4.9). So Ang^(a3) < 

Similarly one can prove that if z E ag then Ang^ (0:3) < 0. That gives that as is 

^-straight. 

• 

We consider the same constant s, p and 6 and k as in previous lemma. Given two 

vertices rr, y suppose that ^p{x, y) = Q and there exists a ^-straight s-short geodesic 

path a connecting x and y. Let Ix and ly be two gradient lines issued respectively 

from X and y. 

Lemma 5.5. Ix and ly are parallel and coternainal. 

Proof. Consider maximal sequences {xi}i C Ix and {yi}i C ly so that xq — x, 
yo = y and for all % > 1 

* = 0 

* Di8t(a;*,a;) > Dist(a;i_i,a;) and Dist(2/̂ ,a7) > Di8t(2/:_i,a;) 

* either Dist(a;i,3;i_i) = p,Di8t(%/;,^i_i) = p and are 

46'-straight, 

or D i s t ( z ; , < p,Dist(^;, < P and either Ix is 4^-bent at Xi or ly 

is 40-bent at yi. 

For all i let ai be a geodesic path connecting Xi and yi so that aQ = a. We will 

apply a recursive argument on the indices of sequences to prove that for all i, a, is 

s-short and ^-straight. Hence we will obtain that Ix and ly are parallel and that if 

they are maximal then they are also coterminal. 

Thus for XQ = X and yo = y the hypotheses of recursion is satisfied by hypotheses 

of the lemma. Suppose now that otj-i is s-short and ^-straight. Now there are two 

possibilities. Either there is no Xi and yi with the above properties (in this case one 

of the gradient lines Ix, ly is maximal), or there are such Xi and yi. 
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In first case we can suppose without loss of generality that lands to a vertex 

a where < p and if ly also lands to a vertex b' then Dist(a;*_i,a) < 

(If we exchange a: and 1/ and apply the same argument). So 

consider the vertex b of ly so that ip{a, b) = 0. Suppose that b ^ a and consider a 

geodesic path (3 connecting a and b. Since (3 is t^-short and a is a landing point by 

Corollary 4.8 applied to /3, a and b instead of a, x and z we obtain <̂ (6, a) = Dist(a, h). 

But this is impossible since ^(a, b) = 0. Therefore 0 = 6 and it follows that ly lands 

also at d. So and stay (p 4- a)- distant from each other, hence they are parallel 

and coterminal. 

In second case there are Xi and yi satisfying the properties required above. 

Then again there are two possible cases. First case is when Dist(Zt,a;*_i) = p, 

Dist(yj, = p and [xi^i,xi]i^, [i/i-i, are 40-straight and second case is when 

Dist(rcj, Xi_i) < p, Dist(yi, yi_i) < p and either Ix is 40-bent at Xi or ly is 40-bent a t 

Vi-

First suppose the former holds for Xi and %. Thus we are under the hypothesis 

of Lemma 5.4 replacing 3;, ?/, a;', o i , 0:2, 0:3, CK4 by respectively Zi_i, i / i-i , a;,, 

a i_ i , and So a . is g-short and ^-straight. 

Now suppose that the second case holds. Denote by x'^ the vertex adjacent 

to Xi in Ix with Dist(z^,a;o) > Di8t(a;*, zo). Similarly we define y'- and consider a 

geodesic path connecting x'^ and y[. Note that [xi^i.x'^i^ and [ i / i - i , a r e p-

short, cp(x[,y[) = 0 and D i s t ( ? / j _ i , < Di8t(?/i_i,Z/D- Now we can suppose without 

loss of generality that ly is 4^-bent at yi. (In fact if not we exchange the roles of 

x and y). Hence we are under the hypothesis of Lemma 5.3 considering Xi-i, yi-i, 
x\, y[ and yi instead of z, y, x', y' and z. Thus yi G l^ which implies yi = Xi since 

yi) — 0, and so ai is an empty path and satisfies the inductive hypotheses. 

0 

Now we have all the necessary tools to prove the main result Lemma 5.1. 

Proof, (of Lemma 5.1.) Let a be a geodesic path connecting a and b. Con-

sider the vertex set of a so that xq = a, Xn = b and Xi and Xi-^i are 

adjacent in a. For all i consider a gradient line li issued from Xi so that Iq = la 

and In = h- To prove that la and lb are parallel and coterminal we will prove 

that li and Zj+i are parallel and coterminal. For each i, we have three possibilities, 

ip(xi,xi+i) = 0, (p{xi,xi+i) < 0 and (fi{xi,xi^i) > 0. Now note that by the choice of 

Xi, {xi,xij^i) is s-short and ^-straight. Therefore in the first case we are under the 

assumptions of Lemma 5.5. Note also that considering {xi+i,xi).li in the second case 
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(or in the third case) we brought the problem to the question whether 

(xi+i, Xi).li and U+i (or respectively (xj, and Z%) are parallel and coterminal 
as in figure Figure 2.5.5. 

4(, \+i '̂ 1+1 
(P(V|+1>1 

(p()(|,X|+i)=0 1̂+1 

î+i Xi 

At; 

q)Kxi+iXi 

4(1̂  

'S+l 

Figure 2.5.5 

But these last two cases also satisfy the assumptions of Lemma 5.5, replacing 

(z(+i,a;i).Zi, and (or respectively and ) by Zz, and 
y = X oi Lemma 5.5. 

0 

6. A FINITE PRESENTATION FOR RELATIVELY 
HYPERBOLIC GROUPS 

Let r be a hyperbolic group relative to the family of subgroups K(y,S) be a 

(^-hyperbolic graph given by the definition of F with its metric "Dist", and Gi,..., 

be a set of representatives of the conjugacy classes in Q. As in Theorem 0.1, for the 

rest of this section we assume that for each i the minimal compactification of Gi is 

finitely presented with special character $. 

For all z G E Voo denotes the fixed point of Gi and e* = (PiiQi) 

the arbitrary edge adjacent to pi chosen at the beginning of Section 4. Recall that 

p > 645+3 and 9 > 8p, no pair of edges at a vertex of finite valence have an angle more 

than 9 and 9/2 is strictly greater than MaXg^f. {Ang(ei, ̂ 6%)} for all i G {1,.. . ,n}. 

As before we choose 9 to be greater than 4/x, where fi is the constant given by Lemma 

2.8 and Lemma 2.9. Recall also that {rj}j is an orbit transversal of V under the 

action of F so that {pi}i C {rj}j, and for each j we have an arbitrary edge {ej}j 

such that it has an end point RJ and C {E'JJJ. We fix a vertex VQ and an edge 

Go — (wo, v) and we choose for k > 1000 the constants R and G such that for all j, 

C(mej%_e(eo,%;o) contains CoMeke,A:o(e^,rj). We denote Cone;z,0(eo,%) by 
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6.1 Busemann Functions and Distance Functions 

Definition. (Busemann Function) 

Given a geodesic ray a in /C, denote by its vertex set. Recall that the 
busemann function associated to a is 

ha '.V Z, ha{x) = lim {i — Dist(a:, a,)). 
i—foo 

Note that the sequence i — Dist(a;, a%) is an non decreasing sequence in Z. More-

over it is bounded above by Dist(ao,a;). Therefore it converges. 

Definition. (Distance Function) 

Given a vertex a in IC recall that the distance function associated to a is 

(fa : V —> Z, <ia(a;) = Dist(a, z). 

We will often omit the subscript a. of the busemann function ha and the subscript 

a of the distance function da since there is no ambiguity once the geodesic ray a or 

the vertex a is fixed. 

The next two lemmas that we mention without giving a proof will be used in the 

main result of this part. A detailed proof can be found for example in [GhH,CP]. 

Lemma 6.1. Given a vertex a, the distance function associated to a is 1-lispchitz. 

Similarly given a geodesic ray a, the busemann function associated to a is 1-lipschitz. 

Let X be a geodesic space with metric Dist%. We say that a function / : X —)• R 

is e-convex if it satisfies the following property: 

If z lies on a geodesic path connecting two points x and y then f{z) < tf{y) + 

(1 — t)f{x) + e where t = Dist%(z, x)/ Dis\,x{x, y). 

Lemma 6.2. For all a in V{JC), the distance function da is 45-convex. Similarly 

for aZZ geodesjc rays a, the Amcdon — is 4(^-convex, where /ig is the bugemazm 

function. 

Given a geodesic ray a we define a map cp : VxV ^ Z associated to the busemann 

function ha so that (p{x,y) = ha{y) — ha{x). Similarly given a vertex a we define a 

map ip associated to the distance function da by (p{x,y) = da{x) — da{y). 
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Lemma 6.3. ip associated to the busemann function ha or to a distance function 

da satisfies the properties below: 

1) if a;, 2/ are two adjacent vertices in /C then ?/) E ( -1 ,0 ,1} . 

2) jpbr ajj z, t/, z € i/) + z) + z) = 0 

3) If z belongs to a geodesic path connecting x and y then t(p{z,y) + (1 — 
t)(p{Zj x) — 4S <0 where t = Dist(z, z)/Dist(a;, y). 

4) For all vertices x in JC, except the vertex a in the case of the distance 

function da, there exists an adjacent vertex y to x so that (f{x, y) = 1. 

Proof. The property 2) is immediate by definition of ha and da-

The property 1) follows from Lemma 6.1 since \i^{x,y) \ < Dist(x, y) for all x, y G 

K and so when x, y are adjacent vertices we obtain \^{x, y)\ < 1. Moreover y)(z, y) E Z 

for all X, y. Hence <̂ (rr, y) E { — 1, 0,1}. 

To prove Property 3) we use lemma 6.2. We give the proof only for h = ha since 

the case of da can be done similarly. Suppose z belongs to a geodesic path connecting 

two vertices x and y. Thenty)(z, y)+{l—t)(f>{z, a;)—4J = th{y)-\-{l—t)h{x)—A8—h{z) < 

/i(z) — = 0. 

In the case of the distance function property 4) is immediate since we can take 

as y the vertex adjacent to x in the geodesic connecting a and z, while the case of 

busemann function is a bit more complicate. This time we have the geodesic ray a 

with vertex set Denote by /5j a geodesic path connecting x and and denote 

also the vertex adjacent to x in by %/*.(See Figure below). 

3n Oi 

Figure 2.6.1 

Since JC is hyperbolic there exists a constant k depending only the constant of 

hyperbolicity S and an index n so that Dist(aji,/9j) < K for all i. Suppose that 

Dist(a„,/5i) = Dist(a„,6i) where bi G Now note that Dist(6*,a;) is bounded by 

K + n + Dist(a:, cq) = A and so Ang^(/3o, [x, 6%]̂ .) is bounded by 2A — 2 by Proposition 

2.2. Therefore for all i, % belongs to the cone Coneî 2A(e, x) = C where e is the edge 

adjacent to xin^Q. Thus by Corollary 3.3, C is finite and after passing to subsequence 

we have yi = y for all i. Thus 1 = (p{x, yi) = (^{x, y). 

0 
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We see that y; deEned as above is in fact a global cocycle since it satisSes Property 
2 of Lemma 6.3. We will refer to y associated to a busemann function as a busemann 

cocycle and associated to a distance function as a radial cocycle. Moreover we see by 

the properties 4) of Lemma 6.3 for every vertex of JC, except the vertex a in the case 

of a distance function da, there exists a gradient line issued from this vertex. 

We note that if is a busemann cocycle associated to ha then by definition, 

a itself is a gradient line. The next lemma shows that in fact all the gradient lines 

associated to y are asymptotic to a. 

Lemma 6.4. If y is a busemann cocycle associated to ha then gradient lines 

associated to (p remains a bounded distance from each other, hence define the same 

point of the boundary. 

Proof. To prove the lemma we use the property of convexity of ip{x,y). Let 

ly be two gradient lines issued from x and y. Suppose that Ix and ly do not converge to 

the same boundary point of a. Without loss of generality suppose that (p{x, y) — 0. In 

fact if not either we can change xhy x' ^ or y by some y' G ly and argue similarly. 

Let {xiji and {yi}i be vertex sets of l^ and ly so that (p{xi, yi) = 0 for all i. For all i 

we consider a geodesic path connecting Xi and yi and a geodesic path w* connecting 

X and yi. We know by hyperbolicity of K that there exists a constant fj, depending 

only the constant of hyperbolicity so that for all i there exists a vertex Zi G Pi which 

stays //-distant from [x,xi]i^ and w*. Moreover as i tends to oo Zi stays in a bounded 

distant from x in )C since Xi and yi converges to distinct points of boundary. But 

by the property 3) of Lemma 6.3 we have (fi{x,Zi) > (1 — t)(f{x,xi) + t(p(x,yi) — 43 

where t = Dist(xi, Zi)/Dist{xi,yi). We also know that if(x,xi) = i and (p{x,yi) = 

(p{x, y) + (p{y, yi) = i since (p{x, y) = 0. In other words (^(x, Zi) > i~ 45 But this gives 

a contradiction for i large enough since i — 46 < (p(x, Zi) < Dist(a:, Zi) and Dist(a;, Zi) 

is bounded. 

0 

Similarly we see that if yi is a radial cocycle associated to da then every geodesic 

path connecting the vertex a and a vertex z of AC is a maximal gradient line issued 

from X landing at a. The next lemma assures that all the gradient lines of cp are 

maximal and landing at a. 

Lemma 6.5. If (p is the radial cocycle associated to the distance function da 

then all the gradient lines associated to (p are the maximal gradient lines landing at a 
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Proof. Let Z be a gradient line issued from a vertex a;. Consider a geodesic path a 

connecting x and a. This is a maximal gradient line landing at a. For all y G / consider 

the geodesic path connecting o and ?/ again this is a maximal gradient line landing 

at o. Hence we have Dist(a;, a) = 1̂(2;, a) = {/) + y(!/, a) = Dist(2;, ?/) + Di8t(2/, a)-

But this is exactly to say that for all 1/ € Z the concatenation [a;, is a geodesic 

path. But there are only finitely many such geodesic paths. Therefore I is a maximal 

gradient line landing at a. 

0 

The next lemma is one of the key points of this piece of work as it gives the 

motivation. We will use it in order to associate to a busemann cocycle or a radial 

cocycle an element of the subshift $ constructed in the previous sections. Recall that 

H is the constant given in Lemma 2.9. 

Lemma 6.6. Given a busemann cocycle or radial cocyle, if P is a gradient line 

issued from x and uj is a geodesic line connecting x and z so that Ang^ (/3, w) > 2/2 

then the concatenation oj.p is a gradient line issued from z. 

Proof. As Angg.()9, w) > 2// where n is the constant given by Lemma 2.9, the 

concatenation uj.j5 is a geodesic line. 

If if is the radial cocycle associated to the distance function, da-, then (p{z,x) = 

Dist(z, a) — Dist(rr, a). But as co.p is a geodesic line Dist(z, a) = Dist(z, x) +Dist(a;, a), 

which implies ip(z, x) — Dist(-z, x). 

Now suppose that ip is the busemann cocycle associated to the busemann function 

ha- Denote the vertex set of a by and the geodesic paths connecting x to 

an by an- By lemma 6.4 we know that (3 and a converge to the same boundary 

point. Thus, converge to the boundary point of P and Dist(a„,/3) is bounded by 

a constant. Now by Lemma 2.9, we see that Ang^(/5,Q;„) < /i for large n, since the 

concatenation an-P cannot be a geodesic line. Therefore for all large n, we have 2/z < 

Ang,(w, < Angg(w, an)+Ang^(^,«») < Ang^(w, 0;^)+//, and so Ang^(w, 

Then again by Lemma 2.9 we see that the concatenation u.an is a geodesic path and 

therefore Dist(^, a„) = Dist(z, z) + Dist(a;,a„). Hence by the definition of ha we 

obtain ip{z, x) = Dist(z, x). 

0 

Recall that pi is the fixed point of Gi in )C and e, = {pi, %) is the arbitrary edge 

adjacent to pi-
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Lemma 6.7. Given y associated to a busemann function or a distance function 

landing at a vertex a of infinite valence there exists a a e ^ so that cp is the global 

cocycle associated to a by Lemma 4.5. 

Proof. We know by property 4) of Lemma 6.3 that for all vertices a; in /C, except 
the vertex a in the case of the distance function, da, there exists at least one vertex 

y so that (p{x,y) = 1. For each vertex of infinite valence, x, we fix such a vertex and 
denote it by y^- Moreover since the action of F is free on the edge set of JC (by Lemma 

3.1), there exists a unique G Gi so that ^y^ei = {x,yx). 

Now we define the map cr : F ^ so that 

9 For all 7 G F and for all x,y E N x N, ai{'y){x, y) = ^(72;, yy). 

® For all i e {1,. . . , n}, for all 7 G F, the map Gi —> 4̂%, p 1-4 (72(7^) is an element 

of satisfying: 

if 7Pi = a where y is associated to a distance function landing at a then 

0-2(7^) f $ for all ^ e Gi 
otherwise <72 (7a;) = $ where x = 7p*. 

Note that cp satisfies properties (Al),. . . , (A4) on every -jN by Lemma 6.3. In 

other words (p is an element of T. Therefore a satisfies properties (Bl), (B2), (B3) 

and (B5) of subshift $ by definition. 

To prove that cr is in $ it remains to check that a satisfies property (B4). Note 

that if 7Pi is the landing point a of the distance function da then 0*2(75') 7^ $ for all 

g E Gihy definition of cr, and every geodesic path connecting any given vertex y to a is 

a gradient line issued from y. Therefore o"i(7)(pi, 7~^y) = y(7Pi, %/) = — Dist(a, y) < 

1 — Dist(a, y). So suppose that 7Pi = a; is not a landing point. Thus 0-2(71;) = $• 

Now let a be a geodesic path connecting x and y so that cp(x,y) > 1 — Dist(a;, y). 

Consider 7' G Gi so that 7^6, is the edge adjacent to x in a. We will show that 

Ang(7a;e*,7^e*) < ^/2. In fact if not Ang(7zei,Yei) > 2/̂ , moreover by dejELnition 
(x,yx) is a gradient line issued from x. So by Lemma 6.6 applied to a, {x,yx) we 

see that the concatenation a.{x,yx) is a gradient line issued from y. Hence (fi{x,y) = 

— Dist(2/, x), which is a contradiction with cp{x,y) > 1 — Dist(x, y). 

0 

6.2 End of the proof of Theorem 0.1 

In this section we will define a map 11 from $ on ^F and prove that 11 is surjective, 

continuous and F-equivariant. 
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We saw in the section 4 that given an element cr of $ we can associate a unique 

element of T (Lemma 4.5). Moreover in section 5 by Lemma 5.1 we prove that any 

two gradient lines associated to a given are coterminal and parallel. This together 

with Lemma 4.10 implies that either the gradient lines associated to (fa converge to 

a unique point of dJC or land at a point of Voo- Therefore we can define a function 

n : $ dK U Voo = dV so that 

11(a) = X e dJC if the gradient lines of cpa- converge to x 

n(cr) = a; G Voo if the gradient lines of ipa- sink at x. 

We will prove that 11 thus defined is surjective continuous and F-equivariant. The 

next result is given for fine hyperbolic graphs in [Bol] (Proposition 8.9). The proof 

uses strongly fineness of the graphs which is satisfies in our case as IC is fine. 

Lemma 6.8. For every quasigeodesic ray a issued from a point a in K, there 

exists a geodesic ray issued from a remaining in a bounded distance of a. 

Lemma 6.9. H is surjective 

Proof. By Lemma 6.8 we see that for every point X of dK, we have a geodesic 

ray a converging to X. So we can consider the busemann function associated to 

this geodesic ray. By lemma 6.4 we know that every gradient line of the cocycle ip 

associated to ha converges to X. Moreover by Lemma 6.7 there exists a cr € # so 

that tp is the global cocycle associated to a by Lemma 4.5. Thus n(c7) = X. Similarly 

given X G Voo the distance function dx gives rise to a cocycle G T so that all gradient 

lines associated to (p land at x. Again considering cr G $ given by Lemma 6.7 so that 

y is the global cocycle associated to a we obtain n(y) = a: G Voo-

0 

Lemma 6.10. 11 is continuous 

Proof. We will prove that if <7; G $ converges to a G then converges to 

n((r) in a/C. 
First we note that if cr, G $ converges to cr G $ then (pa- will coincide on the 

large finite sets of K. with the ones associated to ipa- Therefore the gradient lines 

associated to will coincide with the ones associated to on the large finite sets 

of*: 

Now assume that (7j G # converges to a G and Il(cri) = a* converges to 

a^h — n(cr) in dT. We will treat two possible cases. 
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First case is when a e Voo. Consider a gradient line associated to issued from 
a (the existence is justified by Lemma 4.10). Denote it by a. Hence a either lands at 

b or converges to b depending on whether b G Vqo or 6 G dfC. We choose c € V{JC) so 

that if 6 6 die then cE a with Dist(c, a) > 1 and if not c = b. As cr, 6 $ converges to 

(7 € $ we see by the above note that for all large %, [a, c]a is a gradient line associated 
to ifai • We consider for all i a gradient line associated to issued from c. Hence 

either lands at a, or converges to a* depending on a* G V(/C) or o, E In 
either case for all large i the concatenation [a, is a gradient line associated to 

Therefore it is a geodesic line connecting a to a .̂ Now denote by x the vertex 

adjacent to o in a and consider the neighbourhood {a;}) of a in dV. We see 

that the geodesies [a,c]a-Pi connecting a and are not in Mi^{a, {x}) for all large 

i, but this gives a contradiction with a* converges to a in QF. 

Now suppose that a G dlC. Consider a geodesic line a connecting a and b. We 

know that there exists a constant K depending only the constant of hyperbolicity of 

/C so that any two geodesic rays with the same end point and converging to the same 
boundary point stay uniformly K-distant from each other. Choose a vertex a; on a so 

that Dist(a;,&) > k if 6 G Vqo- There exists a gradient line (3 associated to issued 

from X. Hence j3 either lands at b or converges to b depending on 6 G Vqo or 6 G dIC. 

Choose a vertex c G /? so that if 6 G dfC then c e P with Dist(c, x) > k and if not 

c — b. As Gi converges to cr, for all large [x, c]p is a gradient line associated to yg-. 

issued from x. For all i we consider a gradient line ^ associated to cpat issued from 

c. Thus for all large i the concatenation [x, c]p.j3i is a gradient line associated to 

issued from z, and hence a geodesic line connecting x to a^. Denote the components 

of a remaining between x and a, and between x and b respectively by aa and ab-

As tti converges to a we see that and [x, c]^.^ stay uniformly K-distant from each 

other. In other words for y E aa with Dist(x, y) = Dist(.'r, c) we have Dist(y, c) < k. 

Moreover similarly as and are uniformly ^-distant we see that for z G with 

Dist(z, z) = Dist(c, a;) we have Dist(z, c) < K. Therefore Dist(y,z) < K. But z,x,y 

are in A and Dist(a;,c) = Dist(a;, z) = Dist(a;,y) > K. Thus Dist(y, z) > 2K, which 

gives a contradiction. 

0 

Lemma 6,11. H is F-equivariant 

Proof. We first note that given a cr G $ and 7 G F the gradient lines as-

sociated to ( f j a are exactly 7 - t r a n s l a t i o n s of the gradient lines associated to (fa-

in fact given x,y e 7oiV for some 70 we have ipaix,y) = cri(7o)(7o~^^)7o~^Z/) = 
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for all-y e T. Hence if y7̂ (:r,2/) = 
1 then 72/) = 1. Then the F-equivariance follows from the definition of 11. 

0 

Lemma 6.12. The action ofT on its boundary is expansive. 

Proof. If A is the diagonal of (9r) x (5r), then we have to find a neighborhood 

U of A such that A = jU. 

Recall that e'^,..., is a set of orbit representatives of the edges in K. Let X 

be the set of pairs of points (zi,a;2) E such that there is a bi-in&nite geodesic 
between xi and X2 passing through one of the e'j. Now as p i , . . . are bounded 

parabolic points, for all z, the stabilizer Gi of pi acts on dV \ [pi] with compact 

quotient. We can assume without loss of generality that there exists compact subset 

A" C 9 r \ {pi, . . . ,pn} so that 9 r \ { p j = for all * € yi} (See 
Lemma 6.3 Parti). Let then Y be the set of pairs of points {pi,K). We choose 
[/ = (gr X ar) \ ( x u y) . 

First we show that A = Q p jU. 

Clearly if there exists 7 so that 7(2:1,2:2) is not in U then {xi,X2) is not in A. 
Hence we have the direct inclusion. Now let xi and X2 two distinct points of SF, and 

so (xi,x2) is not in A. We will show that it is not in all translates of U. We consider 

two cases, either they are both in 5/C, or one them, say xi, is a vertex of K of infinite 

valence. In the first case, there is a bi-infinite geodesic from one point to another, 

and it can be translated so that its image passes by one of the e'j. Therefore, there 

is 7 such that 7(2:1,0:2) is in X, hence not in U. In the second case, there is 7 G F 

such that 7Z1 is one of the pi. Now there is 7' G Gi such that 7'7(a7i, 3:2) is in F, 
hence not in U. This proves that the intersection of the translates of U is equal to 

the diagonal set. 

Now we have to show that 17 is a neighborhood of A. That is to say that a 

sequence of elements in % U Y cannot converge to a point of A. 
Let (Xji — (xi,X2))n be a convergent sequence of elements of X. After passing 

to a subsequence, one can assume that, for all n, there is a bi-infinite geodesic between 

Xi and passing through the same edge ê -. If x^ converges to ai and Zg converges 

to (32, we see that ai and og are linked by a geodesic passing through e'j, hence 

non-trivial. Therefore ai ^ a2. 

Let now (F„ = {x'^,x2))n be a convergent sequence of elements of Y. After 

passing to a subsequence, and without loss of generality, one can assume that x^ = Pi, 

for all n, and for some i. Then, Zg is in the compact set iT, and therefore does not 
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converge to Pi. This finally proves that U is a neighborhood of A, and ends the proof 
of Proposition 6.12. 

0 

7. GROUPS ADMITTING A COMPACTIFICATION 
FINITELY PRESENTED WITH SPECIAL CHARACTER 

In this section we give examples of groups admitting a compactification finitely 

presented with special character, and we give a condition for this. We will concentrate 

mostly on the case of the minimal compactification, by which we mean the trivial one 

for finite groups or the one-point compactification otherwise. 

Let us begin with a necessary condition. 

Proposition 7.1. If F has a compactification finitely presented with special 

character, then F is finitely generated. 

Proof. Let tt : $ —> F U {oo} be a finite presentation with special character. Let 

A be the alphabet. Let C be a cylinder defining and itself defined by a finite subset, 

F, of F and a set M of maps from F to A. The set of translates of F is a covering of 

F, Let F be the nerve of the covering. As F is finite, P is a finite dimensional, locally 

finite polyhedron on which F acts properly discontinuously and cocompactly. The set 

of vertices of P is naturally identified with F. The claim is that P is connected. If it 

was not, there would be distinct connected components, Cj. Let -y* € Q , and consider 

CT; E $ such that n{ai) = 7 .̂ Let a G A^ such that a\ci = (Ti\ci- Now, a has several 

special characters (one in each Q). On the other hand all the cylinder conditions 

defining $ are satisfied, as, by definition, they are read on the connected components 

of P. This is a contradiction, and it proves the claim. Therefore, F is generated by 

F which is a finite set. 

0 

We state the next proposition, which in fact is a slight variation of a theorem of 

Gromov. A detailed proof of this theorem can be found in [CP]. 

Proposition 7.2. If F is a hyperbolic group, then F action on FU {00} is finitely 

presented with special character. Its minimal compactification is finitely presented 

with special character. 
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We give a idea of the proof. Consider the proof of Theorem 0.1, considering 
r relatively hyperbolic relative to the trivial subgroup {!}. A Cay ley graph plays 

the role of JC, and we consider the same cocycles. They can define either a point 

in the hyperbolic boundary and hence oo, or a vertex of the graph. We obtain our 

presentation choosing the special character to be the restriction of a radial cocycle. 

In fact as we will elaborate in Appendix A), we can in fact define the notion of 

finite presentation with a special character for the action of a group on a compactifica-

tion r U M. We also prove in Appendix A) that this property passes to the quotients 

of r U M which have the property of expansivity. This gives us another proof of the 

above proposition. 

0 

Although it could be seen as a consequence of the proposition above, the example 

in part 1 already gave the basic examples of Z and of finite groups. Most of our 

remaining examples come from the following remark. 

Proposition 7.3. If a group F splits in a short exact sequence {1} -> iV —>• 

r H ^ {1}, and if both N and H have their minimal compactification finitely 

presented with special character, then the minimal compactification of F is hnitely 

presented with special character. 

Proposition 7.4. Let G be a subgroup of finite index of a group F. The group 

G has its minimal compactification finitely presented with special character i f , and 

only i f , the minimal compactification of F is finitely presented with special character. 

Before giving the proofs, we give some consequences. A group said to be poly-
hyperbolic if there is a sequence of subgroups {1} = Nq < Ni < < Nk-i < — T 
with all the quotients Ni+i/Ni are hyperbolic. 

Corollary 7.5. Any polyhyperbolic group has its one point compactification 

finitely presented with special character. 

In particular this includes virtually poly cyclic (hence vitually nilpotent) groups 

Proof. If F is polyhyperbolic , there is a sequence of subgroups {1} = iVo <iiVi <l 

. . . o Nk-i <Nk = F, with all the quotients Ni^i/Ni hyperbolic. Using Proposition 

7.3, and the fact that hyperbolic groups have their one-point compactification finitely 

presented with special character, we see by induction on i that all Ni have their 

minimal compactification finitely presented with special character. 

0 
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Corollary 7.6. Any free-by-cyclic, or free-by-finite group has its one-point com-

pactification finitely presented with special character. 

Proof. If r = F K iV, where F is free, finitely generated, and N is cyclic or finite, 

then from Proposition 7.2, F has its one-point compactification finitely presented with 

special character, and Proposition 7.3 ends the proof. 

0 

Proof, (of Prop 7,3.) Let us denote by AN, AH, $iv, $n, CN, CH, $iv, 

the alphabets, special characters, cylinders, and subshifts of finite type for the 

presentations of iV U {oo} and H U {oo}. Let FN, FH, Mjv and MH be the finite 

subsets of N and H, and the sets of maps defining the two given cylinders. From 

Proposition 7.1, jV is finitely generated, then up to enlarging FM, we can assume that 

Fn generates N (in fact, in the proof of Proposition 7.1, it is proved that necessarly, 

Fn generates N). 

Let A = Ah x Since we have the surjection from -k -.V ^ H choose one 

element of 7r~^(/i) for each h E H and denote it by h. Let FI be the set of h, and let 

F be the finite subset of T defined by F — {h.n \h e H,h E FH, n 6 F^}. 

Let M be the following set of maps. M = {m : F —̂  A\3mH E Mh s.t. Vn G 

FN,m{-.n)i = niH ; V/i E FH,m(h.-)2 6 Mn}, where the subscripts 1 and 2 denote 

the coordinates in the product A = Ah x AN- Consider the cylinder defined by F 

and M, and the associated subshift of finite type, $. We need the following lemma. 

We claim that for any cr e <&, there is at most one element 7 G F such that 

< (̂7) = ($g, $jv)- We first prove that for any cr g $, there is at most one left coset of 

iV", hN, such that Vn G N, a(h.n)i = $h- By definition of M, if n G FN, no G N, 

then a(h.no.n)I, the first coordinate of A{h.no.n) only depends on h and HQ. But FN 

was chosen generating N, hence a(h.no.n)i only depends on a(h). But, by definition 

of M, the map h £ Ff cr{h)i is in and therefore, by the special character 

property, there is at most one value of h where it takes the value $h , this proves the 

subclaim. Now we need to prove that if h is such that a(h.n)i = $h then there is at 

most one n E N such that a (h.n)2 = Sat- This is because of the definition of M, as 

the map n E a(h.n)2 is in ^N- This proves the claim. 

Now, the map n so that it sends an element cr G $ on the point at infinity, if a 

does not contain the character ($H$iv), and on 7 G F if (7(7) = {$H^N)- This is well 

defined, and gives a finite presentation with special character of F U {00}. 

0 

Proof, (of Prop. 7.4) Assume that F has its one point compactification finitely 
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presented with special character and let us denote by Av^ $r, Cr, $ r , the alphabet, 

special character, cylinder, and subshift of finite type for the presentation of Gu{oo}. 

Let f r C r and Mr C be the finite subset of G , and the set of maps defining 

the given cylinder. We choose {pi, a set of orbit transversal of left cosets of 

G in r and denote F = (UlLi n G a finite subset of G. We set A — ( ^ r ) " 

and M C A^ be the set of maps m from F to (^Ir)" such that there exists mp G 

whose translates in g^^m-p coincide with the 2-th coordinate of an element a on the 

coset QiG. Those three choices define a finite subshift of finite type $ C A'^. By 

definition of M one sees that there is natural map from to $ r which consists of 

pushing the t-th coordinate of an element a on the coset giO. This map is continuous 

G-equivariant, and it is a bijection, its inverse being the map that associates to € $ r 

the element cr E $ whose i-th coordinate coincide with Therefore, one has a 

map $ —> r U {00} —>• G U {00}, the second map being identity on G and sending 

each 7i to 1. At this point we do not have a special symbol, but, by property of 

$ r , an element of $ can take a value in A which has $r among its coordinates, only 

once. Hence, by renaming each of those symbol by a single one $, we get the expected 

presentation with special symbol. 

Conversely, it suffices to see that the intersection of all the conjugates of G is 

of finite index in G, hence it has its one point compactification finitely presented 

with special character by the first part of the proof. Moreover it is normal and of 

finite index in F, and we can apply the Proposition 7.3 to the intersection of all the 

conjugates of G, F and F/G. 

o 
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Appendix A 

A GENERALISATION FOR SECOND PART 

The main result (Theorem 0.1) of Part 2 can be given for a more general case. 
In fact we will see below that for a relatively hyperbolic group T, one can associate a 
class of boundaries, and moreover we claim that a generalisation of Theorem 0.1 given 

in Part 2 gives a condition for its action on a boundary in this class to be Snitely 
presented. 

We will introduce this class of boundaries for a relatively hyperbolic group. But 

&rst we wiU need the following dehnition, used by many authors [FarrH], [FeW], [Bes]. 

Definition, (finite sets fade at infinity) 

If G is a discrete group, and G U AT is a compactification, we say that /zmfe 
if for all Enite subset f of G and for any open cover ZY of G U AT, all 

but finitely many translates of F are contained in some element of U. 

This condition is obviously satisfied for the one-point compactification of any 
infinite discrete group. It is required for Bestvina's Z-structures (see for example 
[Bes], [Dl]). 

Let r be a hyperbohc group relative to the family of subgroups and let /C 
be an associated graph. Choose Gi,..., a set of orbit representatives of conjugacy 
classes in Q. Assume that there is a metrisable compactification Gi U in which 

"finite sets fade at infinity" holds for each %. Let be a set of orbit representatives 
of the action of Gi in F. Denote by CZ the set of all the translates of each i.e 

= U (7^' 17 G f /S : } . 
2 = 1. .7% 

Definition. The boundary of F associated to the set of boundaries of the ele-

ments of Q is 

a^F = a/G u n 

where denote the Gromov boundary of the hyperbolic graph /C. 
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In the case where all are singletons, O is exactly the set of vertices of in&nite 
valence in /C, and in this case, % r is the usual boundary defined by Bowditch in 

[Bo7] (See definition Part 1 Section 8 or Part 2 Section 3). If each A"* gives a ^ 
stmctnre in the sense of Bestvina (an aspherical, equivariant compactification of a 
finite dimensional ET, cf [Bes]), then % r is the boundary described in [Dl], where 

it is proved that it gives a Z structure to F. Note also that the boundary dV defined 

by Bowditch is always an equivariant quotient of any boundary, % r . The following 

result is proved in [Dl]. 

Theorem Let F be a hyperbolic group relative to the family of subgroups Q. 

Assume that for all i "finite sets fade at infinity" in Gi U Ki. Then there exists a 

topology on F U % F so that with this topology it is compact and metrisable. 

Before we announce the main result of Appendix A we need to introduce a general 

formulation of the property of special character for a compactification of group G. 

Definition. Let G be a discrete group and GU K he & compactification which 

induces the discrete topology on G, and on which G acts. We say that the action of 

G on G U ^ is finitely presented with special character if the action of G on G D K 

is expansive and there exists a subshift of finite type $ C and a continuous g-

equivariant surjective map tt : # —>• G U with the following property (condition of 

special character): 

(3$ E (V^ 6 G)(V(T 6 $) (;r(cr) = g) (cr(̂ ) = $) 

As we already observed (Section 9 Part 2) the basic examples of such presentation 

occurs when we consider the one-point compactification of G, i.e when K — {oo}. One 

can actually see that the special character property defined as above is stable under 

continuous surjections of K, hence the case of = {oo} is of special interest, in which 

case, as we explained in Lemma 1.3 the property of expansivity is always satisfied. 

Lemma A.l , Let GU Ki and GU K2 be two compactifications of a discrete 

group G which induce the discrete topology on G, and on which G acts. Assume that 

G U K2 is a G-eqnivariant continuous quotient of GUKi. If the action of G on G U Ki 

admits a finite presentation with special character and the action of G on G U ̂ 2̂ 

is expansive then the action of G on G U jRTg is also finitely presented with special 

character. 
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The proof of the above is direct. In fact let $ be the finite subshift and 7r : 

^ G U K2 is the map given by finite presentation of G U i f 1. By considering the 

composition of tt and the quotient map we have the result. 

Now we will announce the result of Appendix A. 

Theorem A.2. Let (F, be a relatively hyperbolic group, and Gi, ...,Gn be 

a set of orbit representatives of conjugacy classes in Q. Suppose that for all i, Gi 
admits a compactification Gi U Ki where finite sets fade at infinity. If for each i, the 

action of Gi on Gi U Ki is finitely presented with special character, then the action of 

r on the boundary % r is finitely presented. 

We will not give a proof for this result as it is mainly the same as that of Theorem 

0.1 of Part 2. In fact the construction of subshift remains exactly the same, but one 

has to modify the definition of the map 11 given in Section 6.2. Note that if the 

gradients lines associated to an element a, of the subshift $, sink at a vertex of 

infinite valence, x = ^pi, then as <J2\'yGi is in where is the subshift given by the 

finite presentation of the action of Gi on Gi U Ki, it surjects by onto an element 

k, of Ki- Thus in such case one can define n(cr) to be ^k. It is easy to check the 

surjectivity of 11 with this definition, but for continuity and expansivity one has to 

use the topology of GiU Ki. 

Appendix B 

COMPACTIFICATION OF DISCRETE GROUPS 

We will give a condition on discrete groups to admit a compactification where 

finite sets fade at infinity (see Appendix A for the definition). In fact we will see 

that if we have a compactification, F U i f , of a discrete group F where finite sets fade 

at infinity then every F-set S on which 7 admits a "finite action" can be naturally 

compactified by adding a copy of K. Moreover we will show that this compactification 

does not depend to choice of the F-set and that in 5 U i f finite sets fade also at infinity. 

Definition. (F-sets, finite actions on F-sets) 

A F-set is a set on which F acts. We say that the action of F on a set S is finite 

if there are only finitely many F-orbits in S and the stabiliser of an element of 5 in F 

is finite. 
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Our main objective in this section is to prove the following proposition. 

P r o p o s i t i o n B . l . If F is a discrete group w i th a hausdorff compactification 

F U if w h e r e finite sets fade at infinity then every F-set, S, on which F has a finite 

ac t ion , a d m i t s a n a t u r a l h a u s d o r E compac t i f i ca t ion , 6" U A" w h e r e finite se ts f ade a t 

infinity. 

Here the m a i n work will be to introduce a topology on 5 U and show that 

5 U iif is a compact hausdorfi' space where finite sets fade at infinity. 

Let F a discrete group. Assume that F admits a hausdorff compactification 

F U where finite sets fade at infinity. Fix an n G N and consider the space X = 

\_^-i F' U K'^ where each F̂  U is a copy of F U iT. For each subset U of T Li K we 

will denote by W its copy in F' U AT*. In particular for all 7 G F, for all k E K and for 

all i G {1, . . . , n} we denote the copy of 7 by 7* and the copy of k by A' in F* \J K'^. 

For the rest of this section, by abuse of notation, for each i and for each subset F of 

X we will not make a difference between F n (F® Uif^) and its representative in FUiT. 

Now X has a natural topology induced from the topology of FUi^, where a subset 

0 is open in X if and only if O n (F® UK'^) is o p e n in FUif for all % G {1, . . . , n}. Note 

that this topology restricted to U ^ i is discrete. Note also that with this topology 

X is compact and hausdorff but finite sets do not fade at infinity in X. We will give 

next some preliminary lemmas for a better understanding of this topology, which will 

also be used later in the section. But first, in order to facilitate the notations in 

following arguments, we introduce the quotient map : X T U K. Therefore for 

each subset U of F U if , 'K~^{U) denotes UlLi 

L e m m a B.2. Let O be an open set in X and k E K. If O contains A' for all 

1 then there exists an open set in F U iiT so that C O and G for 

all i. 

Proof. For all i, O fl (F* U K'^) is an open set containing A:', hence it is an open 

set in F U if containing k. Denote U = nr=i O H (F* U if*). Thus is an open 

set in X containing A;' for all i and contained in O. 

0 

L e m m a B . 3 . Let O = be an open cover of X so that for each I G L, 

Oi = TX~ {̂Ui) for some open in F U K. For all finite sets in X all but finitely 

many translates of F lies in elements of O. 
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Proof. Denote Fr = 'K~^{F). Note that C = is an open cover of 

In other words O* is an open cover of ru iT. But since in FUTT finite sets fade 

at infinity all but finitely many translates of lies in elements of Note also that 

F C 7r~^(Fr). Hence for all but finitely many 7 e F, 7 F C 7r~^(7Fr) C •k~'^{Ui) = Oi 

for some I E L. 

0 

Let 5' be a F-set with a finite action of F. Assume that |-S/r| = n. Denote by 

an orbit transversal of S. We consider the map li : X SUK given by: 

n(A:*) = & for aU A e r 

11(7*) = 7Si for all 7 € F. 

Note that F[|(^stab(si))< = 7^1- Moreover 75, = 7'sj if and only if 7Stab(si) = 

7'Stab(sj). So {(7Stab(s*))*}^_* as i varies in {1, . . . ,n} and 7 varies in F forms a 

partition of [JiLi So we can see 5 U iiT as a quotient of X equipped with the 

quotient topology. Our objective will be to prove that S U K equipped with this 

quotient topology is a hausdorff compact space where finite sets fade at infinity. The 

next two lemmas are immediate since % is a compact space and its topology restricted 

to UlLi r* is discrete. 

Lemma B.4. 5 U -K" is compact. 

Lemma B,5. The topology of 5 U if restricted to S is discrete. 

Before we prove that S Li K is hausdorff and in 5* U iiT finite sets fade at infinity, 

we will give some preliminary lemmas. 

Lemma B.6. If O is an open set in X satisfying the following property: 

(A) If F G O for some k E K and « G {1, . . . , n} then for all j G {1, . . . , n}, e O 

Then 11(0) is open in 5 U if . 

P r o o f . We have N ( 0 ) = {73* G UiLzi r ' | 7 * G 0 } U { A ; € K \ y e O for some j G 

n}}. Since O has the property (A) we obtain n~^(n((9)) = {(7^)* | g G 
Stab(sj) and 7* G 0 } U (O n K). Note also that O C 11^^(11(0)). Therefore 

n~^(n(0)) = {(7^)* I g G Stab(si) and 7* G 0 } U O, which is an open set in X 

since it is union of open sets. 

0 

Lemma B.7. 5 U if is hausdorff. 
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Proof. By discreteness it is immediate that for every 7,7' and for every i,j e 

n.}, jSi and -ysj can be separated by two disjoint open sets. 

Fix k E K and •ysi G S. Since X is compact hausdorff, hence normal, we know 

that there exists an open set O in X so that for all i, k'^ e O and for all g G Stab(sj), 

{jgY ^ O. Thus by Lemma B.2 there exists an open set U in TUK so that Tr~^{U) C O 

and e 'K~^{U) for all i. Note that Tr~^(U) satisfies the property (A), therefore by 

Lemma B.6, n(7r~^(C/)) is an open set in 5 U containing k. Moreover it does not 

contain 75^ since for all g E Stab(si), •yg ^ 

Now 6.x kij k2 E K. As F U is hausdorff we can find two disjoint open sets Ui 

and U2 of r U if so that for j G {1, 2} and for all % 6 { 1 , , n}, {kjY G Tr^^{Uj). We 

can also assume without loss of generality that D (72 — 0-

Note that if there exists k G n(7r~^(i7i)) H {U2)) then ¥ G 'K~^{UI) fl 

for all i, which is impossible since 7r''^(C/i) n = 0. So n(7r~^(C/i)) D 

n(7r~^(?72)) C S. Denote F = UILi Stab(si). Suppose that there exists 7 G F so 

that 7S; G n(7r~^(C/i)) n n(7r~^(?72)) for some i, then 77r~^(F) n ^ 0 for 

j G {1,2}. We will show that there are in fact only finitely many such 7 in F. 

Since F U if is a normal space and n f/g = 0 we can find two open set U{ and 

(72 in F u i f so that Ujn{{TuK)\Uj) C Uj for j G {1,2}, U{nU2 = 0 and U^nUi = 0 . 

Denote O = (F U K)\{Ui U 1/2)- Now consider the set {Uj,&j|}je{^2} U {O}. This 

is an open cover of F U if . So the set O — {7r"^([/j), 7r~^(?7j)}jg{i^2} U {7r~^(0)} is 

an open cover of X satisfying the hypotheses of Lemma B.3. Now as 7r~^(F) is a 

finite set in X all but finitely many translate of lies in an element of O. But since 

there is no open in O intersecting both 7r^^{Ui) and there are only finitely 

many 7 G F so that fl ir^^{Uj) ^ 0 where j G {1,2}. Denote this finite 

set in F by Q and consider the set V = 7r~^(?7i)\ We see that V 

and 7r~ (̂C/'2) are open sets in X satisfying the property (A), hence by Lemma B.6, 

n ( y ) and n(7r~^(?72)) are open sets in 5Ui f containing respectively ki and A;2, since 

kj G Tr~^(Uj) for all i and for j G {1,2}. Moreover by the construction of V we have 

n (F) nn(7r~^(C/2)) = 0. That completes the proof as we found two disjoint open sets 

in 6' U if separating ki and k2 • 

0 

Lemma B.8. In in 5 U i f , finite sets fade at infinity. 

Proof, Let be an open cover of 5 U if and f be a finite set in 5 U if . 

Consider the set which is an open cover of X where each 

satisfies the property (A). Thus for each A G if we can find an open set Uk in F U if 
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80 that A* e 7r"^(%) for all % and for some Z € I, (See Lemma 

B . 2 ) . N o t e t h a t U j k e A T % a n o p e n s e t i n F U i T , c o n t a i n i n g K . I n o t h e r w o r d s 

i t s c o m p l e m e n t i s a c l o s e d s e t i n F U K n o t i n t e r s e c t i n g K . A s K i s a l s o a c l o s e d 

s e t i n F U i f a n d F U i s n o r m a l w e a n find t w o o p e n s e t s W i a n d W 2 s o t h a t 

c o n t a i n s t h e c o m p l e m e n t o f [JkeK^k, W2 c o n t a i n s K a n d I f ^ n W g — 0 . W i t h o u t 

l o s s o f g e n e r a l i t y w e c a n a l s o a s s u m e t h a t W 2 C s i n c e i f n o t w e c a n t a k e a s 

W2 t h e i r i n t e r s e c t i o n . 

The set {Uk}k U {Wi} is an open cover of F U K. Moreover we can easily see that 

Wi is finite by discreteness of the topology on F and by compactness of F U TT. Now 

consider O = {7r"^(Wi)} U {T '̂~^{Uk)}keK- By Lemma B.3, as F["^(F) is finite, we 

see that all but finitely many translate of n~^(F) lies in elements of O. But since Wi 

is finite only finitely many translate of n~^(F) can intersect to •K~^{WI). Thus all 

but finitely many translate of lies in for some k e K, and therefore 

in for some I e L hy the choice of Tr~^(Uk)- That completes the proof as if 

7n'~^(F) C for some I E L then n(7n~^(F)) = 7(-F') C Vi for some I E L. 

0 

We will now show that the compactification given on a F-set is natural. In other 

words we will introduce a topology on F U if induced from the topology of 5 U if , and 

then we will show that in fact this topology coincides with the initial one. Suppose 

that F admits an hausdorff compactification F U if where finite sets fade at infinity. 

We will denote the topology initial on F U if by ti . Fix a F-set S on which F admits 

a finite action. Let |5'/F| = n and be an orbit representative of S. Consider 

the quotient topology defined on 5 U if at the beginning of section. 

We introduce a topology that we will denote by rg, on F U if by giving a basis, 

B. So U is an element of B if: 

either, U = = {7} for some 7 G F, 

or, there exists an open set O of 5 U if so that U = UQ = { 7 G F | G 
{1,. . . , n} with 7Sj G O}. 

Clearly the elements of B cover F U if. Note that if Oi C O2 in 5 U if then 

Uoi C U02 and note also that C/oinOa ^ Uqx H Uo2- It follows that B is a topology 

basis. We also see that the topology thus defined on F U if is discrete on F. 

Lemma B.9. Let U be an open set in (F U if, ri). Denote F = ljr=i Stab (a J , 

and let WU = Z7\{7 | 7F ^ (7} = {7 | GU}U (U R\ i f ) . Then WU is an open set 

in ( ru i f ,T i ) . 
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Proof. We will show that for all x e Wu there exists open in (F U K, n ) 

containing % and contained in V. The result follows for every 'y 6 M/gy by discreteness 

of Ti on r . So let k G KnWu- Then k E U. Since U is open in t i and since (FUjT, r i ) 

is normal there exist two open U' so that keUkCU,Un{TlJ K\U) C U' and 

U' DUK = 0 . 

Now we see that U = {[/, [/', F U K\U} is an open cover of F U Moreover 

since finite sets fade at infinity in (F Ui^, ri) all but finitely many translate of F lie in 

a open set of ZY. Note that for all "y E (7̂ , 7 does not belong to or the complement 

of U. Thus for all but finitely many in UK, C U. Denote this finite subset of F 

by Q and consider — U k \ i F - Since Q is finite is an open in ri. Moreover 

by the construction C Wu- Thus we have found an open set, of ri, contained 

in Wu and containing k. 

0 

Lemma B.IO. The topologies n and T2 OTLT UK coincide. 

Proof. We will show that B is also a topology basis for ri. Thus we will show 

that every [/ G B is a open set in (F U K, ti) and every open in (F U K, ti) is an union 

of elements of B. 

By discreteness of ri the first assertion is satisfies for all = j in B. Fix 

an element Uo ^ B where O is an open set in 5 U iiT. We will show that for every 

X E Uo there exists an open set in (F {J K,ri) containing x and contained in Uo-

Again by discreteness that is satisfied for all a; = 7 G Uo- So let x — k & K D Uo-

So k e O by definition of Uo- Since O is an open set in 5 U i f , n~^(0) is an 

open set in X containing k^ for all i. Now, by lemma B.2, there exists an open set 

Uk in r U A" so that G Tx~^{Uk) and 7r~ (̂?7fe) C n~^(0) . Moreover as TT~^(Uk) 

satisfies the property (A) we see that n(7r~^([4)) is an open set in S U K contained 

in O. Therefore Un{Tv-^{Uk)) — ̂ o- We will in fact show that Uk C ?7n(ir-i([/&))• 

Let 7, (respectively k E K) he an element of Uk- Then for all i, 7* (resp. A;*) is in 

G 7r~^{Uk), which implies 7a* (resp. k) is in n(7r"^([/&)) and so 7 G t/n(7r-i(t/fc)) (resp. 

k G t̂ n(7r-i(i7fc)))- So we have found an open set Uk of t i , containing k and contained 

in Uu(Tr-̂ (Uk)) ^ Uo-

It remains to show that each open set U in the topology n can be written as union 

of the elements of B. For this it is enough to show that for each k in Kr\U there exists 

an open set O in SuK so that k G Uo and Uo C U. Consider Wu as defined in Lemma 

B.9 and note that 'K^^{WU) is an open set in (F U K^TI) (See Lemma B.9). Recall 

that F = U l L i Stab(8j. Then n(7r-i(Ty[/)) = {75^ G F | 7]^ C U ( [ / (1 jiT). Since 
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satiaEes (A) by Lemma 1.6, is open in containing A;. Now 
note that [/n(%-i(W[/)) = {? E T | € {1, . . . , n} so that 6 n(y)} U ([/ H TiT) = 
{7 G r I <Z U} \J {U n K) = Wu- Thus C/n(7r-i(M ĉ/)) = Wu Q U and it is an 
element of B containing k. 

0 

Appendix C 

SYMBOLIC DYNAMICS FOR T-SETS 

In this section we will try to understand dynamical systems of finite type and to 

bring some new approach to the theory by some remarks and questions. 

We have already given definitions of subshift, cylinder, subshift of finite type and 

dynamical system of finite type in Part 2 Section 1. Here we will give a generalisa-

tion of these notions using F-sets, and try to question in order to obtain equivalent 

definitions. 

Definition. (Subshifts through F-sets) 

Let F be a group acting on a set S and let ^ be a finite alphabet. The set 

with the product topology, is the total shift of F on .4 through S. It admits a natural 

left action of F. 

A c l o s e d i n v a r i a n t s e t # C i s a subshift through S. 

A set C is a cylinder through S if there exists F a finite subset of S and M a 

subset of with C — {a ^ A^ such that € M}. 

A subshift of finite type through S is the intersection of all the translates of a 

cylinder. 

We now see that we can reformulate a dynamical system of finite type in term of 

F-sets. 

Definition. (Dynamical systems of finite type through a F-set) 

Let F be a group acting on a compact space K. We say that the dynamical system 

is of finite type through a F-set, S if there exists a finite alphabet, A, a subshift of 

finite type through 5, C yl'^, and a continuous, surjective, F-equivariant map 

TT : $5 —)• -K". 
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Appendix 

My coauthor, Dahmani, and I have noticed the following result while working 

for the proof of Theorem 0.1 of in Part 2. This result is in fact the motivation of the 

above definitions. 

Proposition C.l . If the action of F on a compact space Q is of finite type 

through S then the action of F on Q is of finite type. 

Proof. The action is of finite type through S. So there exists a cylinder Cs 

defined by a finite alphabet ^5, a finite set Fs C S together with a subset Ms C 

so that the subshift $5 = 'y~^Cs surjects by the map TTS onto Q, F-equivariantly 

and continuously. 

Let A = (As)'^- Let F = U s e F s Stab(s). By hypothesis, F is a finite subset of 

F. Let M = {m : F —)• >4,7 G Ms}- Now let C be 

the cylinder defined by A, F, M, and let $ = Q gp 

Now we map $ into by (f as follows. If <7 G #, let [W(cr)](7Sj) be the 

coordinate of (7(7). This is well defined because it does not depend of the choice of 7 . 

In fact, if 7'si = 7Si, then 7 " ^ / G Stab(si), hence, by definition of M, coordinate 

of o-(Y) is the same as coordinate of a(7). We also see by definition of M that 

$(cr) is in $s-

Note also that y? is surjective. In fact for y G $5, let ( 7 ( 7 ) = ( ^ ( 7 8 1 ) , . . . , y ( 7 S n ) ) . 

By its definition cr is in $ and '^{a) = (p. Moreover, W is continuous and F-equivariant. 

Hence, n = tts o shows that the dynamical system is of finite type. 

0 

There are natural questions that follows from the above result. 

Question C.l . Let F be a discrete group with a hausdorff compactification 

F U if where finite sets fade at infinity, and let S" be a set on which F has a finite 

action. Can we say that the following are equivalent: 

• The action of F on F U if is of finite type. 

« The action of F on S' U if is of finite type through S. 

Proposition C.l gives one way of the question. Unfortunately I was not able to 

provide a satisfactory result for the other way. I also try to strengthen the hypothesis 

in order to obtain a partial result for a particular case. So here the second question. 

Question C.2. If the action of F on a compact space Q is of finite type then 

the action of F on Q/iJ is of finite type through S where H = flsgs Stab(s). 
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