UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

School of Mathematics

Aircraft Arrival Management
by

Adam Robert Brentnall

Thesis for the Degree of Doctor of Philosophy

January 2006



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
SCHOOL OF MATHEMATICS

Doctor of Philosophy

AIRCRAFT ARRIVAL MANAGEMENT

by Adam Robert Brentnall

This Thesis is based around the Air Traffic Control Arrival Management
problem of scheduling the landing of aircraft on runways, where aircraft must
respect minimum separation distances based on wake-vortex criteria. Existing
scheduling approaches and methods of assessing their effects on Air Traffic
Control are reviewed. Several polynomial-time dynamic programming algorithms
are proposed for determining optimal landing sequences. Six sequencing
algorithms and four delay-sharing strategies are linked into a discrete-event
simulation model of Stockholm Arlanda arrival airspace. The procedures for
generating traffic samples, and important output performance indicators, are
validated against 16 recorded traffic samples of arrivals from autumn 2003
through hypothesis tests, confidence intervals and tests of dynamic behaviour.
Several statistical methods are used to analyse experiment output from the
Stockholm Arlanda model. These include graphical methods, EDFIT analysis,
regression metamodels, variance metamodels and logit models. A series of
detailed experiments on the model do not find tremendous benefits to Air Traffic
Control airport runway capacity from advanced sequencing, above the benefits
that occur from using first-come first-serve sequences. However, changes to the
Air Traffic Control system are found in holding time, time in approach sectors and

stability of the advice generated.
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Chapter 1
Introduction

Air Traffic Control (ATC) Arrival Manager (AMAN) computer-driven decision
support tools have been demonstrated to increase airport runway capacity at a
number of locations (Eurocontrol 20004). They work by advising controllers on
landing sequences and relevant control actions, for aircraft arrivals up to a certain
distance away from an airport. Some landing sequences may produce less delay,
or land more aircraft per unit time than First-Come First Serve (FCFS) because
separation distances between aircraft depend on aircraft wake-vortex categories.
Arrival aircraft sequencing based on these minimum separations has been little
tested, and Eurocontrol (2000a) (recommendation R-2) recommends that further
work be undertaken to study the benefits and feasibility of sequencing algorithms
that attempt to optimize the minimum separations between aircraft. The
Eurocontrol Experimental Centre (EEC), established in 1963 to conduct research
and development in Air Traffic Control, has a project underway to investigate use
of an AMAN with this functionality. Their investigation is being made through
real-time simulation experiments with air traffic controllers on an experimental
AMAN system with one sequencing algorithm. This Thesis investigates the effects
of alternative sequencing algorithms and related delay-sharing strategies. A
caveat applies to all findings presented: they are based on data used in the
modelling process, not on a detailed operational study.

A list of the abbreviations used in this work may be found in the section
preceding this introduction. The Aircraft Arrival Management problem is
reviewed and motivated in Chapter 2. Formal definitions are made of the
sequencing and delay-sharing problems based on the aircraft arrivals situation.
Some systems that have already been developed in Europe and USA are described.
Sequencing techniques that have not been used in operational AMAN systems are
also reviewed. Some of these algorithms have been tested using models of the
aircraft arrival process, in the Terminal Area (TMA) surrounding an airport.
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Advanced sequencing techniques have been found to increase airport capacity
dramatically in a number of the models. However, it is the contention of this
Thesis that these models have not paid enough heed to validation or variation,
and so some doubt is cast on their conclusions. Specific issues with some
published work are highlighted.

Chapter 3 considers the problem of scheduling the landing of aircraft on
runways, where aircraft must respect minimum separation distances based on
their weight. Several polynomial-time dynamic programming algorithms are
proposed for determining optimal landing sequences. Three different machine job
models are made. In the first, dynamic programs are developed to sequence
aircraft out of holds onto several runways for any regular objective function. In the
second, dynamic programs are developed to sequence aircraft onto a single
runway based on their release dates, to minimize makespan and total tardiness
(assuming each job’s release and due date are the same). In the final model,
dynamic programs are developed to sequence aircraft based on their approach
stream FCFS order and release dates onto several runways for any regular
objective function. In all the models deadline constraints may be incorporated, but
the second approach requires that deadline constraints vary linearly with
corresponding release dates. The chapter concludes by describing how the
Constrained Position Shifting (CPS) constraints of Psaraftis (1980), where aircraft
may not be moved more than M positions either side of their FCFS position, may
be incorporated into all the dynamic programs.

A Visual Basic, discrete-event, terminating simulation model was developed
and is described in Chapter 4. This model of pre-TMA airspace is used to
investigate scheduling and delay-sharing strategies when landing aircraft at
airports. Analysis is undertaken on Stockholm airport but may also be carried out
in future on alternative airspace. The conceptual model sub-systems, assumptions,
inputs and outputs are all described. Six sequencing algorithms are implemented
in the model; three dynamic programs from Chapter 3, two FCFS rules and a
heuristic that represents a potential algorithm for an operational AMAN system.
Four delay-share strategies are implemented; all delay in hold, delay as late as
possible, delay as early as possible and delay evenly throughout the route. Not all
the strategies are compatible with all sequencing algorithms, a total of 18
combinations may be run. Five implemented re-sequence strategies are listed.

Statistical validation procedures are used in Chapter 5 to lend credibility to the
simulation’s results. The simulation model is set up using data to represent
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Stockholm Arlanda from a database with 28 different days of Eurocontrol Central
Flow Management Unit (CFMU) historical flight plans, for arrivals into Stockholm
Arlanda in 2001. The simulation model is compared to 16 traffic samples, recorded
on aircraft arriving at Stockholm Arlanda airport in autumn 2003. Hypothesis tests
are carried out to compare the statistical models that generate aircraft arrivals,
with the real data. Hypotheses of no difference cannot be rejected (individually) at
the 0.05 level. Model outputs delay and landing rate are also examined. Mean
positive delay from the real data, and the model are compared using
goodness-of-fit tests. No significant differences are found at the 0.05 level. A 95%
bootstrap confidence interval on the mean difference (Davison & Hinkley 1997)
between the two mean positive delays also covers zero, at [-0.159, 0.319] minutes.
Landing rate is a time-dependent performance indicator, so a slightly unusual
hypothesis test is used to validate, based on graphical analysis. This test can not be
rejected at the 0.05 level. A sensitivity analysis of landing rate is carried out by
fitting an Ordinary Least Squares (OLS) regression model (Kleijnen 1995) to
predict actual landing rate, using the simulation landing rate. The model landing
rate coefficient returns significant with a 95% confidence interval covering 1.
Dynamic behaviour of landing rate is investigated using some subjective graphical
time series methods. No difference is noticeable. Overall validation of the
simulation model is based on Fishers composite test (D’ Agostino &

Stephens 1986). This can not be rejected at the 0.05 level. The chapter concludes by
summing up the strengths and weaknesses of the analysis.

Chapter 6 reviews the statistical methodology used in the experiments of
Chapters 7 and 8. Three main factors are investigated in this terminating
simulation model: sequencing algorithm, delay-sharing strategy and traffic
description. Run time is largely determined by the sequencing algorithm, butis
short, often less than a minute. Analysis methods that make use of a large number
of replicates at each design point are thus applicable, and some are reviewed.
Ideas underlying the application of Design of Experiment methodology to a
computer simulation model of this sort are outlined. The Empirical Distribution
Integral Test (EDFIT) method (Cheng & Jones 2004) is used to analyse trends in
output distribution revealed by graphical analysis. Significance levels of factors
are found through Monte-Carlo simulation, in the form of EDFIT tables. These
tables are developed for the general case of an unbalanced design, in a similar
manner to Analysis of Variance (ANOVA) tables. Statistical models are used to
better understand the impact of input factors on distribution summaries. Linear
regression models for means may be fitted by a number of methods, but a large
number of repeats per design point makes Weighted Least Squares (WLS) with
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weights estimated from the output more attractive than is traditional. Similarly,
variance models may be fitted using design point sample means, as the relative
loss in efficiency from this approach is small. Models for skewness, or any other
distribution summary, are also proposed. All the models may use resampling
routines, based on the large number of design point repeats, to test for significance
when standard asymptotic result assumptions do not hold. Finally, logit and beta
models are outlined to further examine a single observation per simulation run, by
recording the proportion of data points that miss thresholds or targets.

The series of experiments reported in Chapter 7 are run to see what effect
change to sequencing algorithms and delay-share strategies may have on arrivals
to Stockholm Arlanda airport. The experiments become progressively more
complex, as new factors are introduced. Under the range of traffic conditions
simulated, nothing is gained through improved sequencing algorithms for delay
and landing rate performance indicators: sequencing FCFS at runway performs as
well as any other. However, system behaviour is found to vary by sequencing
algorithm and delay-sharing strategy. Holding time and its variability is reduced
by delaying aircraft before the TMA. As traffic intensity increases, the gain in
reducing the mean time holding increases, but the gain in reduction in variability
of hold time decreases. Delaying aircraft pre-hold results in more traffic for
controllers in sectors further back from the airport, even when delaying as late as
possible without holding. This may have implications on other Air Traffic Control
issues, such as slot allocation for aircraft departing at different airports that need
to fly in the sectors affected. Delay-to-lose advice through time is found to be more
stable when delaying aircraft in holds, than earlier in airspace. The CPS constraint
is shown to be a good method to limit the variability of advice from advanced
sequencing algorithms, to that found from a FCFS at runway algorithm. Three
general conclusions are drawn from the experimental results. First, improved
sequencing techniques should not be regarded as a panacea to reduce delay and
increase landing rate because the ability to realize these benefits depends on
arrival airspace and traffic characteristics. Second, different sequencing algorithm
and delay-share strategies in an AMAN system may cause different system
behaviour. Last, choice of sequencing algorithm and delay-share strategy will
affect stability of advice to controllers, and quality of information to other users.

Chapter 8 investigates the effect an Arrival Manager might have on airport
runway capacity, by looking at delay and landing rate performance indicators. The
wake-vortex category traffic mix range examined in Chapter 7 is not too large
because only small, realistic changes to the validated mix are made. This chapter



Introduction

investigates a much wider range to look for benefits to airport capacity when the
wake-vortex mix is more varied. No clear reduction in mean delay is found when
sequencing aircraft FCFS in comparison with alternative methods, under the traffic
conditions simulated. However, the distribution of aircraft delay is found to
change using the statistical methods based on proportions. One algorithm delays a
greater proportion of aircraft above a threshold of 15 minutes, two others delay
more aircraft between 13 and 15 minutes. Landing rate is found to be affected only
when traffic is saturated with sufficient wake-vortex mix, to a point where
algorithms have enough choice of sequence position to make a difference. This
does not happen in the simulation model when arrival rates are around airport
runway capacity. The dynamic nature of sequence updating is shown to produce
situations where an optimal deterministic algorithm may produce sub-optimal
sequences, and be bettered by a heuristic. In situations when it is possible to
increase landing rate over FCFS, the addition of a CPS constraint, that aircraft may
only be sequenced a maximum of 3 positions either side of their FCFS position, is
found to make increase in landing rate impossible at some wake-vortex mix levels.
In this case, aircraft are shown to bunch together locally as a difference is found in
maximum landing rate. Overall, no obvious increase in the airport runway
capacity of the simulation model airspace surrounding Stockholm Arlanda is
found. System behaviour changes when landing sequence is altered, but there is
not enough evidence to support a claim that the simulation airspace model may
better cope with more arrivals than it would when sequencing aircraft FCFS.



Chapter 2

The Air Traffic Control Arrival
Management problem

Question Which aircraft should land next?

The Air Traffic Control (ATC) Arrival Management problem is summed up by
this question. Section 2.1 describes why the question is of particular importance
today and introduces the problem in more detail. The rest of the chapter is geared
towards understanding the utility that modelling and analysis of the problem may
bring. The aircraft arrivals situation is described in Section 2.2 and models of the
arrival sequencing and delay sharing sub-problems are defined in Sections 2.3 and
2.4. Some real Air Traffic Control Arrival Manager (AMAN) systems have already
been developed. Section 2.5 reports how they have worked and reasons why they
were built. The theoretical sequencing problem is well studied and many
approaches are reported in Section 2.6. Assessment of how well these algorithms
may perform in the dynamic Air Traffic Control environment has been less well
studied, but some of the findings from various approaches to this are discussed in
Section 2.7. The chapter concludes in Section 2.8 by stating how this work will fit

into preexisting work.

2.1 Introduction

The primary purpose of Air Traffic Control is to ensure that aircraft fly to their
destination in a safe, orderly and expeditious manner. In 2003, European aircraft
traffic increased 2.8% over the previous year (Performance Review Unit 2004) and
it is forecast to increase between 2% and 5% in 2004 (STATFOR 2004). Air Traffic
Control must make the most use of its existing facilities, while maintaining very
high safety levels, in order to prepare for increases in demand. Gilbo (1993) and
Gilbo (1997) develop mathematical models of airport runway capacity because
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they see it as the bottleneck in Air Traffic Control capacity. Many others hold this
view, including most of the authors referenced in Section 2.6 such as Fahle & Wong
(2003). Methods of utilizing existing airport capacity are especially important
because airport capacity is a politically and environmentally sensitive issue (BBC

News 2004).

Air Traffic Control has always adapted in order to maintain a safe and efficient
service. One way it has coped with the increase in demand has been through the
use of new technology. Technologies such as the Radio Telephone (RT), Radar,
Distance Measuring Equipment (DME) and Instrument Landing Systems (ILS)
that are used today enable more aircraft to fly safely than was once thought
possible (Graves 1998). Arrival Manager tools are also thought to have the
potential to aid ATC with increased demands. These computer-driven support
tools advise controllers on a landing sequence and consequent control actions for
aircraft up to a certain distance away from an airport (Eurocontrol 20002). One aim
of such a tool is to improve use of system capacity at the airport. Others include
potential improvements in aircraft delay and punctuality, reducing fuel
consumption, helping controller workload and providing information to other

users of the system.

Generating sequence and control advice might work towards these aims for a
number of reasons. Traditionally controllers have sequenced arrivals First-Come
First-Serve (FCFS), and this is how the majority of controllers still work
(Graves 1998, Bianco, Dell’Olmo & Giordani 1999, Carr, Erzberger &

Neuman 2000). An AMAN might be set up to mimic this sequence process. In
displaying the FCFS sequence and the recommended control actions needed to
maintain minimum separations between aircraft, the amount of information
available to a controller increases. This could lead to improvements
(Barco-Orthogon 2002). Additionally, improvements may be found if the advised
landing sequence is optimized. Sequence dependent minimum separations based
on aircraft wake-vortex category mean that some landing sequences may produce
less delay, or land more aircraft per unit time than FCFS (see Section 2.2).

The Eurocontrol Experimental Centre (EEC) investigates potential methods of
increasing capacity. They currently have a project underway examining the effects
of using an AMAN tool on ATC. The interest is in exploring use of such a tool with
controllers, to see if some of the aims described have a basis in reality. The project
is being carried using an experimental AMAN system, OSYRIS
(Barco-Orthogon 2002). This work fits into the broad scheme of the EEC project.
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A high-level goal is to examine whether the aims of an AMAN are achievable and
to quantify any improvements or side-effects that may result from such a system.

2.2 Arrivals situation

When a pilot arrives in the Terminal Area (TMA) of an airport they have taken
their aircraft from their destination over a sequence of navigating beacons,
communicated with air traffic controllers about their route as they passed through
ATC sectors and now they want to land (Graves 1998). A schematic of this process
may be found in Figure 4.3. An immediate question for the controllers in the TMA
is what order aircraft should land. Factors influencing this decision may include
safety considerations based on knowledge of the current traffic situation in the
TMA, runway configuration, weather conditions, not wishing to bias decisions by
aircraft operator and the Wake-Vortex (WV) category of aircraft (Venkatakrishnan,
Barnett & Odoni 1993, Carr, Erzberger & Neuman 1999). After a sequence decision
has been made the pilot will receive their instructions and follow ATC through a
final standard approach route before touchdown (Graves 1998).

The landing order of aircraft can make a difference to efficiency measures such
as delay. This is due to the wake vortices that follow aircraft as they fly. Aircraft
are placed in wake vortex categories by the ATC authority responsible for control
of landing aircraft at the airport. Different ATC authorities have similar categories,
but there may be slight variations in the number of categories, or classifications of
aircraft in those categories. Based on the wake vortex characteristics of each class,
a matrix is generated to advise controllers on the minimum separation distance
that must be applied between aircraft categories. Much of the work done on
sequencing aircraft reported in Section 2.6 has focused around optimizing the
minimum separations between aircraft. The main reason that people have focused
on this is that it is believed to be a major factor in determining runway capacity
(Dear & Sherif 1991, Venkatakrishnan et al. 1993). Optimize minimum separations
and more aircraft may be able to use the runway.

Ultimate control of the landing sequence rests with controllers in the TMA. Most
of the authors that have assessed different sequences have focused on the effect
they may have on aircraft in the TMA (Section 2.7). However, use of AMAN
technology permits controllers in approach sectors before the TMA to be involved
because landing sequences can be produced before aircraft enter the TMA. If good
communication exists between controllers and all receive the same landing
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sequence advice then aircraft may be controlled towards the landing sequence

further away from the airport.

2.3 The scheduling problem

The arrival aircraft scheduling problem is to determine the landing sequence of
aircraft onto single or multiple runways, then assign the aircraft landing times.
Previous work has designed algorithms to schedule aircraft on to single and
multiple runways to optimize objective functions. The objective functions of these
algorithms have been to minimize: sequence makespan Cj;4x, sum of weighted
tardiness Y w,T;, sum of completion times }_ C;, general non-decreasing linear
functions, general non-linear functions and functions based on priority of
individual aircraft. Constraints on the sequences have included
sequence-dependent times between aircraft S; ;, time-windows of earliest and
latest land time [r;, d;] and Constrained Position Shifting (CPS). This section
presents the general problem in natural language and machine job formulations.

2.3.1 Natural language formulation

Objective The Arrival Management scheduling problem is to determine the order
aircraft land on single or multiple runways so that they optimize an objective
function. Objective functions of interest may include delay (e.g. sum of weighted
tardiness) or use of the runway (e.g. sequence makespan).

Constraints
1. Aircraft type. Each aircraft belongs to one of X wake-vortex categories.

2. Wake vortex matrix. The minimum time between landing two aircraft of type
i and type j on a runway is given by a matrix 5; ;, i.e. there are sequence
dependent minimum time separations between landing aircraft on the same
runway. Some of the operational systems such as RATE-PC or MAESTRO do
not consider sequence dependent separations when generating their
sequence land times (Eurocontrol 2000b). However, all of the algorithms
described in Section 2.6 explicitly consider this constraint.

3. Preferred land time. Each aircraft j has a preferred landing time d;.
Algorithms with objectives that are based on delay implicitly include a
preferred land time concept. Some authors such as Psaraftis (1980) have
considered the preferred land time to be the same as the earliest land time.
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For others, including Beasley, Sonander & Havelock (2001), preferred time
may be later than earliest land time.

4. Deadline. Each aircraft j has a deadline d; on the time it must land by. Not all
of the algorithms in Section 2.6 include this constraint, e.g. Bianco et al.
(1999). However, all aircraft have a limited amount of time they may spend in
the air. Eventually they will run out of fuel.

5. Earliest land time. Each aircraft 7 has an earliest possible land time, or release
date 7; which may be later or equal to the preferred land time. The
algorithms in Psaraftis (1980) did not include earliest possible land times. In
this case all aircraft sequenced are available to be sequenced now. This
constraint is necessary if an AMAN tool is to provide sequence advice before
aircraft enter the TMA.

6. Precedence constraints. If aircraft are placed in holding patterns, then they
must not be sequenced out of their hold before aircraft that preceded them
(Graves 1998). This gives rise to precedence constraints. Also, aircraft that
use the same Intermediate Approach Fix (IAF) point tend to follow similar
arrival routes. If overtaking aircraft with similar routes is forbidden then
precedence constraints on the order of arrival to IAF points may be used.
None of the authors who have proposed algorithms for sequencing aircraft
arrivals have explicitly included precedence constraints in their models of the

scheduling problem.

7. Constrained Position Shifting (CPS). These constraints do not allow aircraft to
be switched more than A positions from their FCFS position. They are
developed by Psaraftis (1980). Dear & Sherif (1991) believe that they are a
good way to ensure that the sequence is stable as it is updated over time.

8. Aircraft weighting. Some aircraft may be more important to schedule than
others. This preference may be absolute or quantitative.

2.3.2 Machine job formulation

The problem above may be described in machine job parlance if we take aircraft
to be called jobs and runways machines. Other authors such as Psaraftis (1980),
Venkatakrishnan et al. (1993) and Bianco et al. (1999) also believe that the machine
job form is appropriate to sequencing arrival aircraft. The following objectives and
constraints are taken from the natural language formulation above.

10
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Objective The objective is to find a sequence that minimizes }_ ¢;(C;)or
max{g;(C;)}, where g; is an arbitrary non-decreasing function of the completion
time C; of job j. This type of objective function includes makespan Ci;4x, sSum of
weighted tardiness > w;T}, sum of completion times ) . C;, maximum tardiness

Lyrax and number of tardy jobs > U,.

Constraints and definitions
1. Each job belongs to one of X types.

2. The processing time of a job of type 7 followed by job type j on each machine
is given by S; ;.

3. Each job j has a time by which it is due to be processed. For job i this is
denoted d;.

4. Jobs have a deadline d;, the latest time they may complete.

5. Jobs have a release date 7, the earliest job completion time. This is slightly
different to the usual release date definition of earliest job start time.

6. Jobs in the same stream may be subject to precedence constraints.
7. Jobs must not be switched more than M positions from their FCES position.

8. Each job has a weight w; indicating its importance if this importance may be

quantified.

The classification of scheduling problems used by Pinedo (1995) defines
machine scheduling problems with notation of [machine description] | [problem
constraints] | [objective function]. In this notation the machine scheduling problem
described above is represented as a m|CPS, prec, d;, 71, S; ;1 Y g;(C;) problem,
where m is the number of parallel machines.

2.3.3 Alternatives

The scheduling problem definition above does not share all the features of those
previously studied. The first difference is that the formulation assumes sequence
dependent separations where the triangle inequality holds. Some papers
published also make the same assumption, e.g. Bianco et al. (1999). Algorithms
developed with this assumption will in general only be applicable for sequencing
arrival traffic, not a mix of arrival and departures. For airports such as
London-Heathrow with a designated runway for arrivals, these algorithms are

11
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appropriate. However, for others such as London-Gatwick where the runway
operates in a mixed-mode of departures and arrivals these algorithms could not be

run to consider departures in conjunction with arrivals.

The machine job form of the scheduling problem works with non-decreasing
linear objective functions. Beasley et al. (2001) work towards more complicated
non-linear objectives. Indeed, this is a central reason as to why they develop their
population-heuristic. However, all other papers in Section 2.6 choose
non-decreasing linear objectives, and the most advanced sequencing algorithms in
operational AMAN systems (in COMPAS and OSYRIS) use linear objectives
related to delay. One may argue that non-decreasing objective functions are more
appropriate to the real world problem from a human-factors point of view.
Hopkins (1995) believes that for decision-support tools such as an AMAN to
benefit air traffic control, controllers must be able to interrogate the system about
its decisions and so understand why the solutions have been chosen. So even if
non-linear objective functions produce better schedules for controllers, they may
not be accepted by controllers because they don’t understand how they were
formed. In any case, the issue of whether non-linear or linear objective functions
are best is not clear and perhaps each is as justifiable as the other.

A final difference is that precedence constraints are not used in the algorithms
found in the literature. This is surprising since they are based on a physical aspect
of landing aircraft. Venkatakrishnan et al. (1993) even examine the performance of
their algorithm with respect to the overtakes it generates for the precedence order
because:

”...they [the controllers] are worried about having to handle too many

overtakes, deviations from the first-come, first-serve (FCFS) sequence

for aircraft within the same stream (the same entry fix).”
Some authors, such as Fahle & Wong (2003), have distanced control actions from
the sequence decision process claiming that the two are independent. This work
will consider sequencing with and without the control related precedence

constraints.

2.4 The delay-share problem

2.41 Background

The delay-share problem is to determine how best to implement sequences that
have been generated. For instance, suppose an aircraft is one hour away from

12
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landing at an airport and its position in the landing sequence dictates that it must
land 10 minutes later than it would flying its normal flight path. How should the

aircraft lose the 10 minutes?

The experimental OSYRIS system developed for the EEC (Barco-Orthogon 2002)
uses a letter of agreement approach where each ATC sector i inside the AMAN
boundary agrees to absorb a maximum delay d(i). If the total delay D,,; needed to
be absorbed for an aircraft is greater than the sum of maximum delays SO L d(4)
for the k ordered approach sectors of the aircraft, then maximum delay is absorbed
in all the sectors up to sector k (the last) which is assigned its maximum plus the
residual D,.gyq. i.e. the revised exit times rt(i) of each sector i depend on the

original forecast exit time ot(i) in the following way:

() = [ ot(j) + >0, d(s) O<j<k
V= ot) + S d6) + Dresa G = .

If Dyesia = 0 then two strategies have been designed for use in OSYRIS. The first

spreads delay evenly through the route of the aircraft:

rt(j) = ot(i) + Tl 5 g D 0S5 <k

The second absorbs delay as late as possible:

rt(j) = ot(7) ) . Doy - Zf:j+1 CE(Z) <0
Ot(]) + Dtot - Z?:]Jrl d(Z) Dtot - Z?:j+1 d(Z) > O

The RATE-PC delay-share strategy may be seen as a mix of the late as possible
and even-spread strategies in OSYRIS. It tries to keep the TMA full with around 10
- 11 aircraft. If aircraft cannot be taken any more by the TMA then controllers in
sectors feeding the TMA (the ACC) are given a delay to absorb. This can be done
linearly up to a maximum capacity point when aircraft will use a holding pattern
(Eurocontrol 2000b).

The MAESTRO system at Copenhagen assigns delays to aircraft over the sectors
in a similar manner to the OSYRIS even-spread strategy. If total delay is greater
than may be absorbed with linear absorption through sectors then orbital holding

patterns are used (Eurocontrol 2000b).

The CTAS system does not work in the same way as these AMAN systems -
landing sequences are formed when the FAST component takes over around 35nm

13
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from the airport. Any delays here are absorbed in upper sectors through vectoring
or orbital holding. Aircraft enter the lower sectors in the TMA at times appropriate

to the landing sequence (Eurocontrol 2000b).

2.4.2 Problem formulation

The AMAN systems described in Section 2.4.1 use strategies to share delay. All
the strategies implicitly or explicitly satisfy the following constraints on how
aircraft may be delayed, given a landing sequence.

1. Sector definitions. The layout of the sector will have an impact on how much
delay is feasible to apportion to an aircraft. For instance, the sector may have
departure flights, enroute flights or other complicating factors that make it
unlikely delay may be absorbed.

2. Flight paths. The route of the aircraft through a sector may have an impact on
delay sharing. Specifically, the amount of time the aircraft may normally
spend flying through the sector, and how feasible it is for delay to be
absorbed through vectoring or speed control.

3. Aircraft. Aircraft may have special characteristics which affect the amount of
delay that may be absorbed in a sector. For instance, aircraft cannot be

slowed down beyond a certain point.

4. Controller workload. Air Traffic controllers have a maximum amount of time
they may absorb for a plane flying through their sector which is a function of
time. Controllers may be able to absorb a lot of delay if they are not busy, or

none if they are.

If an objective function were added to the constraints an optimization problem
would result. For instance, delay could be shared to minimize a function of
amount of orbital near-airport holding, a controller workload measure or
uneconomic flight profiles. However, the main delay sharing objective described

in Eurocontrol (20004) is to:

”..improve optimal flow of traffic towards airport, prevent holes in the

sequence and overloading”.

There is no evidence to suggest that simple strategies will not help achieve this
aim. This work therefore sees strategies rather than optimization as a means to the

delay sharing aims.

14
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2.5 Developed AMAN systems

Several AMAN systems have already been developed and tested. Some have
been, or are operational today, others were developed but never integrated into a
real control system. There follow descriptions of the major AMAN tools
developed. Each description includes the aims of the system and how the AMAN

works towards them.

At Stockholm Arlanda, software called RATE-PC was developed in Visual Basic
by the Swedish CAA to run on a desk-top computer
(Eurocontrol 2000a, Eurocontrol 2000b). It was based on an earlier paper-based
RATE method. The RATE method was introduced to increase runway capacity,
improve working position for controllers and provide information to users (e.g.
how much delay to expect). It worked using Estimated Times of Arrival (ETAs) at
the runway; calculated using a trajectory prediction program. The estimated FCFS
sequence that resulted was used as the landing sequence. A maximum landing
rate was estimated using a spreadsheet that took into consideration weather,
runway configuration and traffic mix. Using the landing rate, aircraft were
assigned slots to land, so planned times between successive aircraft were not
based on minimum separations. Controllers were advised on the delays that

aircraft needed to absorb in order to land in their slot time.

The Swedish CAA plan to move to a new control centre in 2004. At this centre
they will stop using the RATE-PC method and switch to the MAESTRO (Means to
Air Expedition and Sequencing of Traffic with Research of Optimization) AMAN.
The MAESTRO system is in use at a number of places in Europe; at
Copenhagen-Kastrup, Malmo-ACC, Paris-Orly and its birthplace Paris-Charles de
Gaulle (Eurocontrol 20004, Eurocontrol 2000b). Copenhagen installed MAESTRO
in order to improve controller workload, make better use of airspace, reduce fuel
consumption, split delays between Swedish and Danish sectors and provide data
for users. The AMAN works by advising controllers on control actions for landing
aircraft in a FCTS sequence, based on maximum arrival rates (not separation
criteria). This advice is made further away from the runway than in RATE-PC, in
enroute sectors. Delay is absorbed evenly through all the sectors to the runway.
MAESTRO has a series of states for aircraft from where the aircraft’s sequence
position may change, to where its position is frozen, to where the controller may

no longer change the landing position.
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The Traffic Management Advisor (TMA) tested at Dallas Ft. Worth is a
sub-component of the Centre TRACON (Terminal Radar Approach Control)
Automation System (CTAS). The CTAS system was built to reduce stress and
workload in controllers, reduce delays and increase safety
(Eurocontrol 20004, Eurocontrol 2000b). The TMA system is used for aircraft
arrivals 35nm to 200nm back from the airport. It does not use a landing sequence
to advise control actions, rather it uses estimated sequence times over navigating
beacons. The sequence advised over these points is FCFS , unless controllers add
constraints in which case the algorithm in Wong (2000) works to make sure
constraints are obeyed. Delays that aircraft need to lose in order to arrive in the
generated sequences are then advised to controllers. The component of CTAS that
aids controllers merging sequences of arriving traffic close to an airport in the
terminal area is called FAST. The component of FAST that generates sequence and
runway advisories is termed pFAST. The landing sequences it forms are based on
fuzzy-logic, with parameters set after real-time simulations with controllers
(Davis, Isaacson, Robinson 111, den Braven, Lee & Sanford 1997).

The first version of the COMPAS (Computer Oriented Metering Planning and
Advisory Program) system in use at Frankfurt went operational in 1989. The
general goal of COMPAS is to optimize use of available runway capacity
(Eurocontrol 2000b). The sequencing algorithm tries to do this by minimizing total
delay time. Initially a FCFS sequence is generated, then time conflicts are sought
out. If a time conflict between aircraft is found, a branch-and-bound algorithm
runs on a “serve the earliest conflict first” principle to order the aircraft so that
total delay time is minimized. Controllers are then advised on the sequence,
schedule and control information. Delay is tried to be absorbed as far back from
the airport as possible. The system is not dynamic as aircraft are added to the
landing sequence as they enter the system’s airspace - no updating of landing

sequence is performed on aircraft after this point.

Another system named FAST (Final Approach Spacing Tool) was being
developed by National Air Traffic Services (NATS) for London-Heathrow
(Eurocontrol 20004, Eurocontrol 2000b) but the project was discontinued for a
number of reasons that included problems with wind parameters. Its aim was to
assist controllers in achieving minimum separation spacing on descent into the
airport. It did this by using a landing sequence defined by a controller and then
gave advisories on two turning points between holding stacks and runway based
on conditions at the moment in time using information about wind, weather and

runway configuration.
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The AMAN that the EEC is experimenting with has been bought from
Barco-Orthogon. It is called OSYRIS (Orthogon System for Real-time Inbound
Sequencing). The philosophy underlying it is similar to MAESTRO and COMPAS,
and it shares the general efficiency and controller oriented aims. One difference
between this system and the others is its sequencing algorithm. This is a modified
form of constrained position shifting (Barco-Orthogon 2002), an idea found in
Psaraftis (1980). The idea is that aircraft have a maximum number of places they
may switch from their FCFS, and by enumerating all possibilities the experimental
OSYRIS algorithm chooses the solution that minimizes the objective. The objective
may be to minimize total delay or deviation from schedule (i.e. landing early has
the same cost as landing late). Two strategies are available for sharing any delay
that may result in the experimental system - delay absorption as late as possible
and delay absorption evenly spread.

2.6 Sequencing algorithms literature review

The algorithms used in developed AMAN systems have all been quite basic,
most based on FCFS slot allocation rather than wake-vortex separations. Different
approaches and algorithms have been developed to sequence landing aircraft in

various journals. These are described here.

Some authors have taken a deterministic machine job scheduling view of the
arrival aircraft sequencing problem, where aircraft are regarded as jobs. The
special characteristics of jobs in a machine environment enabling use of this model
with aircraft are sequence-dependent processing times (or set-up times) S ;,
release dates r;, due dates d; and deadlines d;. The sequence-dependent
separation matrix .5; ; corresponds to the minimum wake vortex separations
between aircraft. Release dates r; and deadlines d; mean that each aircraft j has a
time window [r;, d;] in which it may land. The due date d; is the time that the
aircraft would prefer to land. In this model of sequencing aircraft, runways are
machine resources - only one job may be processed on each machine at any
moment in time. The tractability of a machine job approach arises from the
relatively small number of aircraft wake-vortex classifications - typically there are

between 3 and 5 categories depending on the ATC authority.

Psaraftis (1980) presented a Dynamic Program (DP) to minimize »_ g;(C}),
where g; is a general non decreasing cost function of job completion time (', for
the single-machine problem where all jobs have identical release and due dates.
Using the notation for machine job scheduling problems from Pinedo (1995), he

17
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tackled a 1|5, ;] >~ g;(C;) problem. The algorithm sequences aircraft that are all
ready to land now, are due to land now, have no constraint on the maximum time
they may wait to land and will all land on the same runway. The dynamic
program had complexity N2 [T, (1 + k"**) where N is the total number of job
types and k;"** the number of jobs of type i. Psaraftis (1980) also gave a dynamic
program for the same problem but with priority constraints. The author termed
this problem as one of Contrained Position Shifting (CPS), where a job may not be
shifted more than a Maximal Position Shift (MPS) of Af places from its original
FCFS position. The CPS dynamic program had complexity no worse than that of
the 1|.5; ;] >° 9;(C;) DP. The two approaches were applied to an example of 15
aircraft of three types waiting to land onto a single runway. Comparisons were
made between the MPS used and the optimum without CPS. Finally, Psaraftis
suggested modifications to the DP formulations that would allow the problem
mlS; ;| >~ 9;(C;) of m machines to be tackled. Venkatakrishnan et al. (1993)
described a revised version of the non-CPS DP in Psaraftis (1980) that introduced a
heuristic element, adding aircraft in the dynamic program based on lower bounds
of time windows on aircraft land time. i.e. this heuristic tackled the

Ur;, d;, Si;l S g;(C;) problem.

Bianco, Ricciardelli, Rinaldi & Sassano (1988) worked on the 1|r;,.S; ;|Carax
problem. This single-machine problem caters for the situation when not all jobs
may start immediately - there exist release dates r;, and there are sequencing
dependent separations between jobs. Its objective is to minimize makespan Chsx,
i.e. the time the last job will finish. One may note that the problem is equivalent to
the traveling salesman problem with additional time constraints. It also
corresponds to the problem of maximizing use of the runway in the aircraft
sequencing problem, where aircraft have earliest land times but no latest. A mixed
integer program was formulated with upper bounds, lower bounds and
dominance criteria for use in a branch and bound algorithm. Computational
results of this algorithm were presented for 10, 15 and 20 job problems. Bianco
et al. (1999) modelled jobs with the same characteristics as Bianco et al. (1988) on a
single machine. The objective function changed to one of minimizing the sum of
completion times > C;, i.e. the 1|r;, 5, ;| >_ C; problem. This problem is equivalent
to the cumulative traveling salesman problem with additional time constraints.
An exact dynamic program, three lower bounds and two heuristic algorithms
were formulated. Computational results for the heuristics and lower bounds were
presented for 10, 20, 30, 40 and 50 job problems. Computational results were also
assessed for the aircraft sequencing problem. The heuristic algorithms were
compared to FCFS for two traffic samples of 30 and 44 aircraft of 4 types
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approaching the TMA. In these samples the heuristics generated significant
reductions in mean aircraft delay over FCFS.

A number of papers written on general machine job scheduling with sequence
dependent setups have not specifically proposed algorithms for the AMAN
scheduling problem but could be used in such a framework. Ovacik & Uzsoy
(1994) produced decomposition heuristics to tackle the 1|r;, S; ;|Larax problem.
The idea behind the heuristics was termed Rolling Horizon Procedure (RHP). Here
the scheduling problem was decomposed into a series of smaller sub-problems.
The limited size of these sub-problems allowed exact procedures to be used to
solve them. The overall solution was then found by gluing together the
sub-problem solution segments. The authors developed an exact
branch-and-bound algorithm to solve the sub-problems and examined the tradeoff
between computation time and solution quality for different size sub-problem.
They also compared the solution quality of the RHP heuristic with the Earliest Due
Date (EDD) rule and a modified EDD rule with a local search procedure. Their
experimentation found the RHP procedure always produced better results than
the other methods. Ovacik & Uzsoy (1995) applied the RHP procedure for the
multiple parallel machine equivalent m|r;, S; j| L ax problem. Three heuristics
were developed. The first assigned jobs to machines based on the EDD rule, then
applied the same RHP procedure with the branch-and-bound algorithm described
earlier. The second heuristic assigned jobs to machines by moving through time
and machines. The set of jobs available to be scheduled at each time point is
ordered using the optimal branch-and-bound algorithm. A number of these, based
on an input parameter are then be added to machine 7. The process continues to
the next time point, a new set of jobs considered, the optimal order made and a
number added to machine i + 1 and so on, until all the jobs have been assigned to
machines. The third heuristic followed the same pattern as this except that as it
moved through time it checked if by sequencing the jobs on any other machine,
the first job (and therefore all jobs) would complete earlier. If it would, the jobs are
added to the job list for that machine. All the heuristics were compared to the EDD
rule and another EDD augmented with local search procedures. They
outperformed these benchmarks, with the second and third heuristic procedures
performing the best in general for the experiments run. If applied to arrival
aircraft scheduling these RHP algorithms work to minimize the maximum lateness
of aircraft, where aircraft may have an earliest land time but no deadline
constraint. The parallel machine case corresponds to multiple runways, the single

machine a single runway.
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Uzsoy, Martinvega, Lee & Leonard (1991) worked on a job shop problem where
jobs must be processed at different workcentres. They split up this problem by
sequencing jobs at each workcentre. This lead to development of an optimal
branch-and-bound algorithm and a local search heuristic to tackle the
|prec, S; ;| Lyrax problem. These algorithms worked on the 1|pree, g;, S; ;|1Crrax
problem where delivery times g; are needed after job j is processed. By setting
q; = K — d; where K = max;(d;) the authors noted that this problem is equivalent
to 1|prec, S; ;| Larax. However, Ovacik & Uzsoy (1994) found that the branch and
bound algorithm for this problem did not perform well for more than 15 jobs.
Applied to sequencing aircraft these algorithms produce a sequence to minimize
maximum delay to an aircraft assuming that all aircraft are ready to land now, and
there exist precedence constraints on the order they may land. Uzsoy, Lee &
Martinvega (1992) formulated a heuristic algorithm for the 1|prec,r;,5; ;|Crrax
problem. This would seek to land aircraft in as short a time as possible, based on
variable earliest land times, precedence constraints between aircraft and landings
on a single runway. Another heuristic was developed for the 1|prec, S; ;| >~ U;
problem. Here all aircraft sequenced are ready to land now, subject to precedence
contraints and the objective is to minimize the total number of aircraft with delay.
Exact dynamic programs were given for 1|prec, S; ;| L ax (the same problem as
Uzsoy et al. (1991)) and 1|prec, S; ;| >_ U;. The DP for 1|prec, S; j|Lasax had
computational complexity O(m?(N + 1)™T) where N is the maximum number of
jobs in any lot (each lot is ordered by precedence), m the number of lots and 7 is
an upper bound on the completion time. The DP for 1|prec, S; ;| >~ U; had
computational complexity O(m?(N + 1)™n”) where S the number of distinct setup
time values. Asano & Ohta (1996) looked at the 1|d;, r;, S; ;| 5 E; problem, where
E; is the earliness of job j, and formulated an optimal branch-and-bound
algorithm. Applied to aircraft the objective function is to minimize the amount of
time aircraft land early, subject to aircraft having and earliest land time and a
deadline. Computational efficiency of the algorithm was improved through a
dominance relation and a lower bound.

The aircraft sequencing problem where the triangle inequality between
minimum separations breaks down has also been considered. Discussions with
Air Traffic controllers at Eurocontrol have indicated that for arrival aircraft this is
rarely, if ever, a problem. However, it may become relevant when departures are
considered in conjunction with arrivals. For example, a departure may fit in
between two arrivals, but the minimum separation between the two arrivals may
be greater than the sum of minimum separations between the first arrival -
departure - second arrival (see Figure 2.1). Algorithms that have the feature of
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Land-Land > Land-Takeoff + Takeoff-Land

Minimum separation between landing circraft
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Figure 2.1: Triangle inequality violation example

working when the triangle inequality breaks down may thus be used for
sequencing arrival aircraft, departing aircraft or a mixture of both.

Ernst, Krishnamoorthy & Storer (1999), Beasley, Krishnamoorthy, Sharaiha &
Abramson (2000), Beasley et al. (2001), Fahle & Wong (2003) and Beasley,
Krishnamoorthy, Sharaiha & Abramson (2004) all considered the general problem
where separations are enforced between all aircraft, not only successive. A Mixed
Integer Program (MIP) model of this problem was first formulated by Beasley et al.
(2000) with a general linear objective function. Some computational results were
presented. Ernst et al. (1999) developed a lower-bounding method for this
formulation with a linear objective measuring weighted differences between target
time and sequenced time. This method was employed in an exact
branch-and-bound algorithm and a meta-heuristic that used a genetic algorithm.
Computational results were assessed. Another genetic algorithm heuristic tackling
the same formulation as in Beasley et al. (2000) but for a non-linear or linear
objective function was presented by Beasley et al. (2001) with more results
comparing quality of solution and speed. Fahle & Wong (2003) presented further
heuristic constraint programming and local search methods to tackle a similar MIP
formulation to Beasley et al. (2000) with a linear objective measuring weighted
differences between target time and sequenced time. The computational results
from these techniques were compared with exact methods.

The branch-and-bound algorithms developed in Trivizas (1998) were based on
the same idea of Constrained Position Shifting (CPS) as Psaraftis (1980), but
referred to as Maximal Position Shifting. Different versions may be used in cases
where the triangle inequality is, or is not, violated. If the triangle inequality is
violated the sequencer deals with this by keeping track of the number of
departures that left after the last arrival - this approach does not check all the
separations, but a smaller subset. The algorithms worked towards objectives of
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either sequence makespan Cj;4x or sum of weighted tardiness > w;T}.

All of the sequencing methods discussed so far have had as their objective
functions some measure of efficiency - they are interested in minimizing some
measurement of delay and /or maximizing the landing rate. While this may be
good for the system as a whole it may not necessarily be what the airlines want.
The possibility of allowing airlines to express relative arrival priorities to ATC was
investigated in Carr et al. (2000). Carr et al. (1999) explored the problem of how to
do this in a fair way - some aircraft may be delayed when other aircraft from the
same operator have greater priority. Delay-exchange algorithms were presented.
Milan (1997) also described two priority rules for sequencing aircraft. The first
prioritized aircraft by passengers. Data such as the number of passengers, the cost
of passenger delay and the number of seats on each aircraft were taken into
account. The second priority rule prioritized aircraft based on their expected delay.

Authors have commented on differences between the static scheduling problem
at one particular moment in time, and the dynamic scheduling problem as time
evolves. The branch-and-bound algorithm described by Trivizas (1998) was
updated dynamically through a simple dynamic program which ran periodically
when a number of new aircraft enter the system. Dear & Sherif (1991) promoted
constrained position shifting as a generic methodology applicable to any
sequencing technique in order to limit the changes to sequence when
re-sequencing occurs. In some sense Beasley et al. (2004) used a constrained
position shifting idea. They modelled change to sequences as having a cost, and
proposed to include these costs in any run of an algorithm. This was demonstrated
on the genetic algorithm from Beasley et al. (2001). Venkatakrishnan et al. (1993)
implemented their sequencing algorithm dynamically in two ways. Their first
approach was to run the algorithm on those aircraft more than 5 minutes from
touchdown aircraft every time a new aircraft entered the terminal area. The
second approach re-sequenced when new aircraft entered the system, but shrank
the time-windows on when the aircraft may land linearly as aircraft approached
the runway. Dynamic use of algorithms is not a problem limited to sequencing
aircraft. The Rolling Horizon Procedures in Ovacik & Uzsoy (1994) and Ovacik &
Uzsoy (1995) were developed to be used in a dynamic environment. They worked
by splitting up the problem into sub-problems; those jobs available to be
sequenced now, and those jobs forecast to be sequenced at points in the future.
Only the decisions related to the current decision point are implemented, the other
decisions may be revised at the next decision point.
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2.7 Assessment of sequencing algorithms

The algorithms developed in Section 2.6 are all based on models of the arrival
process. The optimization models make a number of simplifying assumptions that
may produce unexpected results when applied to the real problem.

Most algorithms have been developed to run given a set of aircraft waiting to land.
This has been termed the static problem. A number of authors have evaluated
their algorithms on the static problem only. These include Psaraftis (1980), Ernst
etal. (1999), Bianco et al. (1999) and Fahle & Wong (2003). The real problem facing
controllers is more dynamic, as aircraft arrive sequences need to be updated. This
has been termed the dynamic problem (Venkatakrishnan et al. 1993). This section
describes the methods taken to assess how the different sequences and their
modelling assumptions may affect the ATC system. That is, how the algorithms
assumption of perfect information affects its performance in a dynamic
environment. The published work only considers the effects of implementing
sequences on aircraft in the TMA around an airport. Very little work has been
done to investigate effects of sequencing further back from the TMA.

Simulation A discrete-event simulation model of Rome airport was developed
and validated by Andreussi, Bianco & Ricciardelli (1981). Its purpose was to be
used to evaluate different scheduling strategies, but little experimentation of
different strategies appears to have been carried out on it. Trivizas (1994) used the
MPS algorithm from Trivizas (1998) to compare runway capacity against different
maximum position shifts in the algorithm. This was done by using a detailed 4D
simulation model, TMSIM, developed by Massachusetts Institute of Technology,
USA. This simulation flies each aircraft from departure to destination modelling
routing processes, communication and conflict detection and resolution. The
model was validated by air traffic controllers visually and also checked for errors
on minimum separation between landings. Results from experiments on one
traffic sample of take-offs and landings at Frankfurt and another at Chicago
O’Hare indicated that substantial improvements in capacity and delay may be
achieved with increasing values of maximum shift. Unfortunately, there was no
indication of what might happen with other traffic samples. Both traffic samples
used were dominated by medium type aircraft, so it may be that the
improvements found were due to improvements in sequencing departure aircraft.

Dear & Sherif (1991) evaluated FCFS and their CPS algorithm methodology

using a fast-time simulation model of a TMA, but model validation was not
reported. It seems unlikely the simulation was used to model a real airport.
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The arrival process of aircraft at the system boundary was modeled as a Poisson
process with constant rate. Three types of traffic sample were generated and
multiple runs each with 500 aircraft were made on the model. Mean delay results
from FCFS and the CPS algorithm were compared. The differences were
sometimes quite impressive, there was a 76% reduction in delay for a particular
aircraft class, and the CPS algorithm always reduced delay. However, the authors
did not include any tests for statistically significant differences. Beasley et al.
(2004) used a similar approach to test out their dynamic updating procedure using
the algorithms developed by Beasley et al. (2000) and Beasley et al. (2001).
Thirteen traffic samples were investigated with the number of possible runways
between 1 and 5. The traffic samples were generated from a Poisson process with
constant rate where aircraft appeared 10 minutes before the time they were due to
land. The algorithms were compared to FCFS rules by their objective function
‘values. The smart algorithms always did at least as well as FCFS: in a dynamic
environment between 36% and 55% improvement in objective function values was
found. However, it is difficult to interpret the significance of the results for a real
airport since the process of generating arrival traffic seems sensible, but was not

validated for any airspace.

Beasley et al. (2001) compared the landing sequence from a real traffic sample of
20 aircraft arrivals into London-Heathrow, with a sequence from their algorithm.
The methodology used to make the comparison is philosophically debatable. The
authors set recorded land times in the traffic sample to be target land times. A
delay indicator was calculated using the difference between these targets, and the
times aircraft would have landed if they were separated by the deterministic
separation matrix. It may be argued that this delay measure is meaningless, since
by definition delay in the real landing sequence is now zero. The traffic sample
delay indicator was compared to a landing sequence, with deterministic
separations, formed by the algorithm. The comparison is made in this way in an
attempt to make it fair, by removing differences between real-life separation
distances and the deterministic separation matrix used for the algorithm.
However, the procedure also limits interpretation of its results. Consider a
comparison between one traffic sample of n aircraft with landing times
Cc = {Cfd) : Céd) NN } and an alternative sequencing algorithm’s landing
times C' = {C{* (", ... C{”}. The purpose of the analysis is to compare
g(C'P) to g(C'¥), where g is an arbitrary function of the aircraft landing times,
such as total delay. The authors comparison problem is that the process driving
C'¥ is not the same as that for C'*. The authors do not choose to model the
separation between aircraft in real life to make a direct comparison fair.
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Rather they compare g(t(C'?)) to g(C'), where t(z) is a transformation of

landing times x. The transformation used for j = 1,...,nis:
Tp(1) if j =1
(o)) = . Ay . .
max{t(z,;_1)) + S —1),p(4)), 7p;y} otherwise

where S5(7, k) is a deterministic separation matrix of the minimum time between
aircraft 7 and k, p(j) is the position in x of the aircraft with sequence position j and
7, is the earliest land time possible for aircraft j. The comparison of g(t(C @) to
g(C'?) is only meaningful if conclusions may still be drawn on the real-world
measure g(C(d)). However, this is not the case because the transformation used is
not invertable. That is, it is not possible to perform the operation

7 (t(zp))) = Tp() for j = 2,...,n because z,(;) is not part of the transformation’s
definition. It follows that no inference may be made on g(C'?) from g(t(CDY).
This result may also be explained in more general terms. The procedure is
debatable because the general philosophy of modelling has been reversed. Models
are generally built, based on a series of assumptions, so that inferences may be
made on real world data. In the comparison procedure, the real world data has
been constructed in a way that inferences may be made on a model of landing

sequences.

The smart algorithm is reported to fare better than various objectives calculated
from the new actual sequence, which led the authors to deduce (Beasley
et al. 2001):

“Were this to be repeated across time such a saving would have the
potential for Heathrow to cope with (approximately) one extra landing
per h. This would be a significant improvement.”

It was stated that other data sets were considered but not presented for reasons of
brevity, so this conclusion was not drawn from only the single, 20 aircraft traffic
sample analysis that was actually presented. But the analysis procedure casts a

serious doubt on the conclusions.

Perhaps the most rigorous examination of a sequencing algorithm has been
made by Venkatakrishnan et al. (1993). They got around the problem of comparing
simulation results with real traffic sample landing sequences, by using an
empirical statistical model of landing time intervals to form algorithm sequence
landing times. Target land times were set as the earliest possible land time once an
aircraft had entered the TMA. Data analysis was carried out on a traffic sample of
18 days traffic at heavy traffic periods for 3 to 4 hours at Logan airport. It found
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that landing time intervals was influenced by two factors - wake vortex category
of landing aircraft pairs and runway configuration. The model was calibrated
using half of the data so that given a pair of landing aircraft a lookup table existed
with the expected mean, standard deviation and 25th percentile of landing times
between these aircraft. The model was validated using the remaining half of the
data. New estimates were found and appropriate tests for simultaneous
comparison of estimates of the two sets of parameters led to the conclusion that the
null hypothesis of no difference could not be rejected at the 5% level. Comparison
between algorithms and real-life data was based on the assumption that since the
separation between aircraft in real life was explained by the statistical model, using
its mean value separation matrix with the new algorithm would result in a like
with like comparison. i.e. any difference in performance would be attributable to
sequencing algorithm only. This was a good idea, but some information may have
been lost by using the mean of the statistical model. Their modified CPS aigorithm
was run for the static case with perfect information, and in a dynamic fashion, as
aircraft arrived in six real traffic samples. The algorithm performed best in the
static case. Performance of the algorithm in the most realistic dynamic case was
also reported to compare favorably with what happened on the day. In three data
sets there were reductions in delay of about 30% compared to actual sequences,
but in another there was an increase by about 18%. From a statistical viewpoint the
significance of a reduction in delay is dubious - the data set is size six. Consider
the results found in Table XIV of the paper detailing the minimum cumulative
delay for all algorithms. The DASP-2 column represents the implementation of the
algorithm in a dynamic environment, with limited choice of sequence switch made
by reducing the time windows on which aircraft may land as they approach the
runway. The mean difference between DASP-2 and actual results is -9.83 minutes.
So the mean difference is in DASP-2’s favour. However, a bootstrap experiment
(Efron & Tibshirani 1998) resampling 6 observations from the 6 pairs and recording
the mean difference 10,000 times returned a 90% empirical confidence interval of
[-22.5,3.66] minutes. Or putting it another way, from another bootstrap experiment
(B=10,000) on the percentage difference, a 90% confidence interval returned
[-29.37,0.2148] percent. That is, both intervals cover zero and the hypothesis that
there is no improvement cannot be rejected. The paper does go into some detail
explaining why the unexpected results happened, but still leaves the impression
that improved sequencing reduces delays. The very last line of the paper reads:

”Ideally, the combination of improved sequencing knowledge will result
in improved capacity, diminished delay, less need for new airports, and

no reduction in air safety.”
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The major limiting factor with the paper is that only six traffic samples were

compared and it thus hard to consider randomness. This means that the question
Sty LU DU PULULIULL LLIED LIULLE LIC CLpinicdl WSsWIDuLoLts. 11us wollda iiave

enabled a more rigorous understanding of the difference. Another disappointment
is that the results were not compared to a FCFS algorithm. There remains the
possibility that there is no difference between FCFS and their algorithm, or FCFS

and the controllers.

Carr et al. (2000) and Carr et al. (1999) applied the airline-priority based
algorithms inside a simulation model of airspace around an airport. Validation of
the model was not commented on. The analysis in Carr et al. (1999) paid close
attention to the time advances given by the airline priority algorithms. These gave
a measure how successful each scheme could be - the algorithm with the most
time advances was better as airlines would be more happy with the resulting
schedule. Carr et al. (2000) used a similar simulation model to compare other
performance measures from a delay-exchange algorithm with FCFS. Again,
validation of the model was not commented on. The authors claimed that
compared to FCFS, the delay-exchange algorithm produced a schedule closer to
airlines preferences while maintaining levels of delay.

Queuing theory Bolender & Slater (2000) used queuing theory from an M|D|n
queue and validated the analytical results from this model against a A/ | |n
simulation. They found that the transient analysis from a A |D|n queue can give
reasonable results in predicting average delays when capacity is known. Results
from different sequencing rules on these models indicated that as traffic intensity
increased, delays decreased if heavy and light aircraft were sequenced on different
runways. Milan (1997) gave a more complicated analytic queuing model to model
flight delays. The queuing process in the air traffic network was analyzed in time
cycles, where a batch of aircraft would be served at the airport in each cycle. From
this, expressions for expected delays were found. The model was built to calculate
delay when the different priority sequencing methods previously discussed were
used, but no validation appears to have been done to see if it gave reasonable
results. The model was fed with input parameters derived from a variety of
sources. Based on model outputs from these inputs the author recommended that
sequencing priority rules were chosen with caution as they will have different
effects on objectives such as equitable distribution of delay or minimize flight
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delay. The priority algorithms reduced total delays, whereas FCFS was more
equitable in its distribution of delay.

Other methods for TMA sequencing In Wong, Li & Gillingwater (2002), an
optimization model was developed to predict air and ground delays of arrivals
and departures given a flight timetable. Predictions from the model were
validated against a simulation model of flights arriving and taking off at an airport
under two sequencing rules - FCFS and arrival-first (i.e. arrivals had priority over
departures). The authors concluded that this validation process meant that the
model could be used to assess appropriateness of scheduled time tables. Mohleji
(1996) hypothesized that a more structured method of controlling aircraft from an
approach fix to the runway is needed to improve landing sequences. The author
believed predefined paths would make it is easier to form sequences, minimize
separations and increase runway capacity through a Route-Oriented Planning
And Control (ROPAQC) concept. Analytic expressions to estimate flying times were
developed to evaluate this concept and current setups. The current setup at an
airport was compared to the ROPAC concept using one traffic sample. This sample

gave good results for the ROPAC concept.

Pre-TMA delay evaluation An alternative concept of delay-share strategy as a
means to shift aircraft delay back from orbit holding near the airport to enroute
holding, rather than absorbing all delay in the TMA has been around for a number
of years. Indeed, the MAESTRO system shifts delay back from the TMA
(Eurocontrol 20004, Eurocontrol 2000b). In 1996 Eurocontrol produced a
Monte-Carlo simulation model to test the effect of simple delay-share rules when
uncertainty exists on the time aircraft fly over points. Results from an initial study

based on thousands of repeat runs suggested that:

”Simple rules can be constructed that markedly reduce airport holding
whilst having little impact on landing capacity.”!

Outside of internal work such as this, nothing appears to have been published on
the consequences of aircraft sequencing with delay-sharing strategy in enroute

sectors.

Tnternal email between Eurocontrol employees Mike Moore and Peter Martin, Thursday, April 24, 2003

28



2.8. What this work will contribute

2.8 What this work will contribute

Much has been already done on means to advise controllers landing sequences
and the control actions necessary to implement them for aircraft up to a certain
distance away from an airport. Operational systems have been developed, smart
algorithms based on mathematical models of the sequencing problem have been
formulated and some assessed using other models. However, much remains to be

done.

¢ Models of the sequencing problem have not incorporated some constraints,
so new algorithms may be developed.

o All the work published in journals has looked at the problem of sequencing
once aircraft are close to the runway, in the TMA. Some real world systems
work further back and so delay sharing strategies to implement generated

sequence advice may be developed.

e The success of real systems has been mixed. The CTAS system has had
operational problems, whereas the MAESTRO system is being used at more
and more airports. What are potential benefits for ATC in implementing
improved landing sequences? How confident can one be in these potential

improvements?

o Work done to assess the dynamic implementation of smart sequences in the
TMA has been undertaken by several authors. However, the issue on whether
the use of such algorithms will improve airport capacity is not as clear cut as
has been presented. The models developed all have flaws that may impact on
drawing meaningful conclusions. Some have been generic models without
application to a specific airspace, others have not taken enough account of
variability and in most cases the validity of the model has been questionable.

¢ Some interesting remarks by authors may be further investigated.
Venkatakrishnan et al. (1993) describe the reason why their algorithm was
beaten by an actual landing sequence from controllers:

"This is apparently a situation where the experience of the
controllers may overcome a disadvantage the algorithm has because

it does not look ahead.”

A related remark in Beasley et al. (2004) explains how the dynamic problem
(termed displacement problem) may produce unexpected results for

sequencing algorithms:

29



2.8. What this work will contribute

"It can happen, as here, that solving a displacement problem
heuristically leads to decisions that are better (in terms of aircraft yet
to appear - which are unknown) than decisions made by solving the

same displacement optimally.”

This work will address some of the gaps in arrival management research.
Consequences of smart sequencing techniques on Air Traffic Control are
investigated using a computer simulation model of real airspace. A caveat applies
to any conclusions drawn from the model: they are based on data used in the
modelling process, not on a detailed operational study. However, statistical
validation methods lend credibility to the model output. Design of experiment
ideas are used to take variation into account when looking for significant
differences due to algorithms, algorithmic constraints delay-share strategies and
traffic conditions on pre-TMA airspace. The package of algorithms, simulation,
validation, design of experiments and output analysis is made to investigate how
the ATC system reacts to changes in sequencing algorithms, optimization criteria
and delay-sharing strategy. It is hoped that output from this work will be of use to
decision makers at the Eurocontrol Experimental Centre and beyond.
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Chapter 3
New algorithms

The Arrival Management sequencing problem described in the previous chapter
has been well studied. However, there are some gaps in the arrival sequencing
research. This chapter attempts to fill some of them. New dynamic programming
algorithms are developed for general machine scheduling problems, but with the
sequencing of aircraft arrivals in mind. Section 3.1 describes the modelling
assumptions made for three different approaches and sets up the notation used in
the subsequent dynamic programs. Mathematical formulations of the three sets of
dynamic programs and their computational complexities are given in Sections 3.2
to 3.4. The algorithms work on a variety of single and multiple machine
scheduling problems with sequence dependent processing times and other
assumptions on precedence order, deadlines and release dates. The chapter
finishes with Section 3.5 on how all the dynamic programs presented may
incorporate the Constrained Position Shifting (CPS) constraints of Psaraftis (1980).

3.1 Description of algorithms

The dynamic programs presented in this chapter are polynomial-time dynamic
programs working on deterministic machine job scheduling problems. The ideas
underlying the dynamic programs are not new, for instance Potts & Kovalyov
(2000) review similar dynamic programs for scheduling with batching, but the
algorithms are believed to be novel. Three machine scheduling models of the
sequencing problem are made. These have been developed to land aircraft based

on the problem definition in Section 2.3.

3.1.1 K-Stacks model

Model When aircraft are placed into orbital holding patterns the aircraft leave
their hold First-In-First-Out (FIFO) (Graves 1998), so there exist precedence
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constraints on the sequencing problem. If sequencing decisions are only made on
aircraft stacked in holding patterns, then all aircraft may be seen to be available to
land now, and so the earliest completion times, or release dates 7;, are all zero.
There exist deadlines d; on the last time an aircraft may land, or a job may
complete. Using the notation in Pinedo (1995) this is a m|prec, d;, S; ;|obj problem,
where there are m identical parallel machines and the objective function obj may
be based on max{g;(C;)} or }_ g;(C;), where g; is an arbitrary non-decreasing
function of the completion time C; of job j. Two important objective functions of
this form related to sequencing aircraft are sequence makespan Cax (i-e.
maximize utilization of runway) and sum of weighted tardiness > w,7T; (i.e.
minimize sum of weighted delays). Dynamic programs will be presented for
single and multiple machine problems with these objective functions and the more
general objective function ) g,(C;). This model tackles an important sub-problem
of Arrival Management machine job sequencing problem described in Section

2.3.2, where constraints 5 and 7 are relaxed.

Definitions The set of n jobs to be sequenced is divided into K ordered sets, with
N; (i =1,..., K)in each set. The jobs in each set are ordered by precedence, i.e. job
J must be sequenced in advance of job j + 1. Each job belongs to one of X types.
Let g(7, ) denote the job type of job j in job list i, where jobs are ordered by
precedence. The processing time of a job of type j followed by job type k is given
by S, . Each job j in set 7 has a time by which it is due to be processed d; ;, a
deadline d; ; and a weight w;, ; indicating its importance with respect to the

tardiness 7; ;.

3.1.2 The global approach

Model The second sequencing model ignores holding and subsequent
precedence constraints. Knowledge available to the scheduler is earliest 7;,
preferred d; and latest d; landing times. This is a m|d;, #;, S; ;|obj problem where
there are m identical parallel machines and the objective function obj may be based
on max{g;(C;)} or > g;(C;), where g; is an arbitrary non-decreasing function of
the completion time C of job j. Dynamic programs will be presented for the single
machine problem with objectives minimize makespan Cjs4x, and if earliest land
time and preferred land time are equivalent, minimize sum of tardiness »_ 7;. This
model is a sub-problem of the more general Arrival Management machine job
sequencing problem described in Section 2.3.2, relaxing constraints 6 and 7.



3.1. Description of algorithms

Definijtions Each job in the set of  jobs to be sequenced belongs to one of X
types. There are IV; type i jobs. The processing time of ajob type j following a job
type i is given by S, ;. The X job type sets are ordered by earliest release time so
the release time for job j in ordered set ¢ is 7; ;. Each job j in set ¢ also has a
deadline d; ; and a time that it is due to be processed d; ;.

Lemma Jobsi, j of the same job type a have the property:
7 < T (3.1)

If C(«) is the evaluation of objective function Cy 4x or > T; (Where 7; = d;) for a

job sequence a then C(oivjo') < C(ojvyic’).

Proof Makespan Let a; and o denote the job type for the last and first jobs in a
sequence a. Let 7, and 7, , denote the release time for these jobs. Now,

C(gzi) = max(f‘i, C(U) + Sm,a)
C(oj) = max(r;,C(c) + Sy.a)-

Since condition (3.1) holds it follows that
C(oi) < C(oyj).

C(oivy) is determined by the earliest time the first job in v may complete:
max(7,,, C(ci) + San,).

Similarly, the earliest time the first job in C'(0j~) may complete is:
max(7y,, C(07) + San,)-

And so:
Cloi) < Cloj) = Cloin) < Cloj).

Consider sequence C'(cj41). As condition (3.1) holds and job j is already

sequenced
Clojyi) = C(ojv) + Sya-
Now,

Cloivj) = max(r;,C(oiy) +55.4)-
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As7; < Clojy) and C(oiy) < Coj7y)
Cloiy) + Sya < Clojy) + Sya = Cloiyg) < Clojyi).

C(oiyjo') is determined in a similar manner to C(giv) by the earliest time the first
job in ¢’ may complete. Applying the same arguments as before
Cloiyjo') < Clojvyic').

Proof Sum of Tardiness Let D(o) be the makespan of a sequence o. From the proof

of Cyrax above we know that
D(ojvi) > D(oivj).

From this we can say that the sum of tardiness of jobs in the ¢’ sequence of givyjo’
is less than or equal to the sum of tardiness of jobs in in the ¢’ sequence of ojvyio’.

Similarly,
D(ojv) > D(oiv),

and the sum of tardiness for jobs in the  part of sequence in o7 is less than or
equal the sum of tardiness for the ~ part of the o sequence.
The decrease in the tardiness of job j found by choosing sequence o jv 7 instead of

iy 18

max(D(oiy) + 54,0, 7)) — max(D(o) + S,,4,75). (3.2)
The increase in tardiness for job 7 in sequence oj~ i over oivy j is

D(ojy)+ S0 — max(D(o) + Sy 0. i) (3.3)

Now, Equation (3.2) - Equation (3.3) < 0 so it follows that switching ¢ and j can
only have the effect that

Cloivjo') < Clojrio’).

3.1.3 Approach stream model

Approach Streams  The final sequencing model does not allow change to be made
to the FCFS sequence aircraft fly into IAF points through precedence constraints.
One benefit of this is that aircraft that fly to the same TAF generally fly similar
routes into the airport and so problematic overtakes between aircraft with similar
routes are avoided. Each aircraft j has an earliest land time #; and a latest d;. This
is a m|prec, d;, #;, S; ;|obj problem where there are m identical parallel machines
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3.2. Dynamic program formulations for the K-Stacks problem

and the objective function obj may be based on max{g;(C;)} or }_ g;(C;), where g;
is an arbitrary non-decreasing function of the completion time C; of job j.
Dynamic programs will be presented for single and multiple machines for two
important objective functions related to sequencing aircraft - sequence makespan
Curax and sum of weighted tardiness ) w;T;, and a general non-decreasing
objective function. This model tackles a sub-problem of the more general Arrival
Management machine job sequencing problem described in Section 2.3.2, relaxing

constraint 7.

Definitions The set of n jobs to be sequenced is divided into K ordered sets, with
N; (i=1,...,K)in each set. The jobs in each set are ordered by precedence, i.e. job
j must be sequenced in advance of job j + 1. Each job belongs to one of X types.
The processing time of a job of type j followed by job type k is given by S; ;. Each
job j in set ¢ has a time that it is due to be processed d; ;, an earliest completion
time 7, ;, a deadline d; ; and a weight w; ; indicating its importance with respect to

the tardiness 7; ;.

3.2 Dynamic program formulations for the K-Stacks problem

The dynamic programs in this section use the precedence order of jobs to find
optimal solutions. Feasible sequences must have jobs in precedence list order, so
jobs are added to the dynamic programs in their list order. By enumerating all the
possibilities the dynamic programs are able to find optimal sequences.

3.2.1 Dynamic program for 1|prec, 5; ;|Crrax

State variables h; are used to keep track of the number of jobs added from each
precedence list 7. Basic definitions are found in Section 3.1.1. Define

f(hi,ha, ... hg,l) to be the minimum makespan of a schedule with the first A, jobs
from list ¢ already scheduled and [ the last job’s list number fori =1, ..., K.
Initialization
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3.2. Dynamic program formulations for the K-Stacks problem

Optimum

min f(NleQ,...,NK,Z).

1=1,2,..K

3.2.2 Dynamic program for 1|prec, d;, S; ;|Cayax

The dynamic program in Section 3.2.1 can be modified for deadlines, by setting
the function value to infinity for the states where the job will be processed after its

deadline. The recursion equation becomes:

f(h], /lg, Cey /l](, Z) =
min {f(hll, hé, AN h/K’ l/) + Sq(l’.h;,),g(l,h[)} lf S a].h,

Ur=12...K '
o0 otherwise.

3.2.3 Dynamic program for 1|prec, S, ;| > w;T;

This dynamic program uses state variables y; » to record the number of type &
jobs following type j. These variables permit calculation of the makespan of each
state, and thus calculation of the contribution to weighted tardiness from the job
added. Basic definitions are found in Section 3.1.1. Define
flhihoy oo hx yi1, Y12, - - -, Ux x, 1) as the minimum weighted tardiness for a
schedule with £; jobs sequenced from list ¢, y; x job type k following job type j,
with [ the last list a job was sequenced from. Let all the variables in a state denoted

(h},....l") have a prime on them.
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3.2. Dynamic program formulations for the K-Stacks problem

Recursion For hi=0,..., N 1=1,..., , K i=1,2,...,X
k=1,2,...,X [=1,2 Ksuchthathl/>0andygl,h)g,hl)>0

fhihoy oo he i, Y, - Uxx, 1) =

X X
L Jnin {f(h.’l,... I+ wyp, (maX{ZZU]AS]k dipy, 0 })}

yeeny !

. {hi—l ifi—=1

h; if1 #1
—_— Yip— 1 ifj=g{l',h,)and k = g(l, hy)
Yik = Yik otherwise.

Optimum

Inin f<N17N27" N](7J117y12w--°7yX,X7Z)

Vi ml

whereforj=1,..., X, k=1,.... X;y;p=1,...,. Xand [ =1,... . K.

3.2.4 Dynamic program for 1|prec, S; ;| > ¢;(C;)

The formulation of the dynamic program for 1|prec, S; ;| >~ w;T; may be
generalized for any objective function »_ g;(C};), where g; is an arbitrary
non-decreasing function of the completion time C; of job j. Job index j may be
deduced from [ and #;. The recursion equation becomes:

X X
flhy, oo ) = ’;mivnk{f<h/1:~-* + gin (ZZ ]AS]/{>}

j=1 k=1

3.2.5 Dynamic program for 1|prec,d;, S; ;| 3 g;(Cj)

Deadline constraints can be included in the formulation by setting the function
/ to infinity for this case. That is, the recursion equation for state

(h1,h2,’ Shi, Y12, -0 0 »UX. X, l) lfz Z;L y]A ik > Ez,h, is:

flhiha, o hie g, vio. - yxx. 1) = 0.
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3.2. Dynamic program formulations for the K-Stacks problem

3.2.6 Dynamic program for m|prec, S; ;| >~ w; T}

A dynamic program for the multiple machine problem may also be developed,
building on ideas from Section 3.2.3. Suppose there are m machines. A state
variable y. ; » is used to store number of type k jobs following type j jobs on
machine z. A further m variables v, are used to record the last job type on each
machine z; this information cannot be deduced from the last list [ sequenced when
there is more than 1 runway. Basic definitions are found in Section 3.1.1. Let
Sha, hoy oo P Y101, Y1120 s YL X X Y2005 - - -y Ym XX s ULy U2y« - -, U, U, 1) DE the
minimum weighted tardiness for a schedule with &; jobs sequenced from list ,
Y.,;,x the number of job type & following job type j on machine z, v, the lastjob
type sequenced on machine z, with [ the last list a job was sequenced from and u
the last machine added to. Define v, = 0 when no job is scheduled on machine z.
Set v, = g(I, ly). Then a dynamic program may be formulated as follows.

Initialization Fori=1,....Kandj=1,... K

1 ifi=j5
hj — .
0 otherwise

andforu=1,....mandz=1,....m
g(i,1) ifu=z
v, =
- 0 otherwise

f(hfla ]7‘27 sy h]\'a yl,l,l; Y1,1,2y -+ - y’m,X‘Xa Vi, v oy U,y U, ]) -
X X
. / /
i fORY . U) +wpp, | max E § YujkSik — dipy, 0
Yy G=1 k=1

where!'=1,... K,v,=0,..., X, v =1,...,mand
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3.2. Dynamic program formulations for the K-Stacks problem

B {yz,],k—1 ifv/ #0 andz=wandj = v, and k = v,

7
” Yz ik otherwise
U; - Vs if z 74 u .
Optimum

min f(NhN?a"'JNKayl,l,layl,l,Zv"'7ym,X,X7U13"'7Umausl)
Yz ,j,krVz Ul
whereforz=1,....m,j=1,.... X, k=1,...,. X;y.,.=1,....X,v.=0,..., X,
u=1,...,mandl=1,... K.

3.2.7 Dynamic program for m|prec, S; ;| >_ 9;(C;)

The DP formulation for the m|prec, S; ;| >~ w;T; problem may be generalized for
any objective function )" g,(C;), where g; is an arbitrary non-decreasing function
of the completion time C; of job j. The recursion equation becomes:

X X
flhi.osul) = min {f(h'l . )+ 9, (Z Ju,j,ij,k) }

/
Ul u

wherel!! =1,...  K,v,=0,....Xanduv =1,....m

[

3.2.8 Dynamic program for m|prec, d;, S; ;| 3 9;(C5)

Deadline constraints can also be included in the problem. That is, for
u = 1,...,m the recursion equation for state
(h17 hg, BRI hK: Y111, 011,25 -« s U, X, X Vly - - oy y Um, U, l) if Z ZA Yu j, ij k> dl Jy is:

f(hh ho,..., Ry, Y112, Ym XX, V1, - -, Uy U, l) = Q.

3.2.9 Computational complexity

Assume that the number of machines m, and the number of ordered sets K are
fixed. The dynamic programs for 1|prec, S; ;|Caax and 1|prec, d;, S; j|Chrax have at
most n stages. Each stage has at most n® ~! states (since the state variables h; have
K-1 degrees of freedom). Therefore computational complexity is at most O(n*).
The dynamic programs for 1|prec, S; ;| > g;(C;) and 1|prec, d;, S; ;| > 9;(C;) have
at most n stages. Again, each stage has at most n”*~! combinations of the A;
variables. There are at most n*¥” combinations of the y,, variables. So
computational complexity is at most O(n*+*"). The dynamic programs for
miprec,d;. Si ;| > g;(C;) and m|prec, S; ;| 37 g;(C;) have at most n stages. Each
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3.3. Dynamic program formulations for the global approach

stage has at most n/* ! combinations of the h; variables, and X" of the y. ; 1
variables, so has total complexity bounded by O(n/f+7mX%),

3.3 Dynamic program formulations for the global approach

The lemma in Section 3.1.2 shows that optimal sequences, for the problems in
this section, must have jobs of the same type ordered by earliest release date.
Dynamic programs are developed to make use of this property. By enumerating all
the possible sequences with this property, optimal sequences are found.

3.3.1 Dynamic program for 1|7;,.5; ;|Chrrax

The lemma in Section 3.1.2 shows that an optimal sequence for this problem will
have jobs of the same type ordered by release date. Jobs are added to the dynamic
program in job-type Earliest Release Date (ERD) order. State variables v, for
i=1,...,X are used to record the number of type i jobs sequenced. Basic
definitions are found in Section 3.1.2. Let f(v;, vo, ..., vx,[) be the minimum
makespan for a schedule with v; type i jobs in place, and [ the last job type.

Initialization

F0.0,....1,X) = fix.

Recursion For v, =0,1,...,N; 1=1,2,...,.X [=1,2,....X

flor,vg, ..o ux, ) = :1112111 N {max { f(v], vy, ... V%, ')+ Sva, Tt}
where
; v, — 1 ifi=
vl =
U; ifi #£1
Optimum

min _ f(Ny, No, ..., Nx,1).

=1.2....X

40



3.3. Dynamic program formulations for the global approach

3.3.2 Dynamic program for special case of 1|d;,7;, S; ;|Crrax

Lemma If#; <#; = d; < d;Vi,j then an optimal sequence for makespan Cysx
and sum of tardiness ) 7; when d; = 7; has jobs of the same type sequenced by
Earliest Release Date (ERD).

Proof Denote C(«) as the objective value (either > 77 or Ciax) of a sequence c.
Switching the two jobs i and j of the same type in a sequence C(cicjo’) cannot
produce a better sequence (see Section 3.1.2). If siajo’ is not feasible because job ¢
fails to meet its deadline d, then ojaic’ is not feasible either since job i will be
scheduled later in this sequence. If oicvjo’ is not feasible because job j does not
meet its deadline d; then the sequence ¢jic’ will not be feasible either, since

d; < d;. Therefore, the ERD ordering within job class holds.

Using this result the recursion equations from the dynamic program in Section
3.3.1 are altered to:

flo,ve,. . ux, ) =
min (max {f(Ui, Ué, s >U,/Xa ]/) =+ Sl’,l; f‘l,v[}) if S 8I,vl
I'=12,..X | o0 otherwise.

3.3.3 Dynamic program for 1|d; = 7;, .5, ;| >. 1}

The lemma in Section 3.1.2 shows that an optimal sequence for this problem has
jobs of the same type ordered by release date, so jobs of the same type are added to
the dynamic program in release date order. To calculate the tardiness of the last job
added to a partial sequence, the makespan of the sequence at that point must be
known. Makespan is calculated in the dynamic program using a state variable
(a,D) to record the release date of the last job b of type a that came after an idle time
period, and preceded a sequence of y; ; number of type j jobs following type i.
Basic definitions for the dynamic program are found in Section 3.1.2. Denote
flor, .. vx y11.- .., Yx.x, (a,b),1) as the minimum sum of tardiness for a schedule
with v; type 7 jobs sequenced, the last job in the sequence of type /. Assuming that
7;; = d; ; and that jobs are ordered by release date in the job type sets we can

tormulate a dynamic program as follows.
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3.3. Dynamic program formulations for the global approach

Initialization Fori=12,....X,j=1,2,....X

1 ifj=i
Vj = P .
0 Vj#i

f(?}l,UQ,...,'UX,0,0,-.-,O,(Z.,l),i) = 0

Recursion

For v=0,....V, i=12..X j=12....X (ab=1..n =1, .X

yi’j:O,...,X

157>y = 0then:

f(U1> s Ux, Y1 - - YX XS (aab)u l) -

{ f(vi7 R l/) (aﬂ b) = (]~ Ul) and 720:/@’ + Z] Zk y;kS]-k S 721,’7][

min .
00 otherwise

(@)

where ' =1,.... X, (V) =1,...,n,y,,=0,..., X and

1)/ . Uihl ifi=1{
L ifi 1

Else:
f(vh" SUXS Y, - YX XS ((L, b)’]’) -
i f(Uil, Cey ]/) + max {fa.b + Zl Z]‘ yi.jSi:j — dl"w, 0} (a)
e | oo (b)

Condition (a):

X X
Tap + Z Z YiiSij > Tiw

i=1 j=1

Condition (b):

X X
Tap + Z Z Yiidii < Try

i=1 j=1
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3.3. Dynamic program formulations for the global approach

where ! =1,..., X, (d/,0/) =1,... ,nand

/ v, — 1 ifi=1
/U’L = . .
v ifi 1
, Jw -1 ifi=landj=1
Yi g Ui otherwise.

Optimum

min f(‘/h%a"'7VX7.y1,1a"‘7yX,X7(a‘ub)vl)
Yi, g ,(a,b),l
where fori=1,....X,j=1,..., X;y,;,=1,...,X,(a,b)=1,...,nand
I=1,.... X.

3.3.4 Dynamic program for special case of 1|d; = 7;,d;, S; ;| > 1}

If 7; < 7; = d; < d; ¥4, then in an optimal sequence jobs of the same type are
ordered ERD by the lemma in Section 3.3.2. We alter the recursion equation as

follows:

f(Uh'";’UX7y1,17"‘7yX,X1(aab)al):
{ F, ... ) + max <7ﬁa,b + 2200 Y5 — diw,s O) (a)

min

I (a! 1) o0 otherwise

Condition (a):
~ ~ X X r 3
T, S Tab + Zizl Zj:l yi‘jsi.j S dl.v[

where ! =1,..., X and (¢/,V/) =1,..., X.

3.3.5 Computational complexity

Assume that the number of machines m, and the number of job types X are
fixed. The dynamic programs for 1|7; = d;. S; ;|Chax and the special case of
1|7; = d;, d;, Si ;|Carax have n stages. Each stage is generated by at most n*~*
combinations of state variables. The computational complexity is therefore at most
O(n*). The dynamic programs for 1|#; = d;. S;;| > T; and the special case of
1f; = dj, d;, S; ;| > T; have X2 number of y, ; variables, X v; variables and a single
variable (a, b), so complexity is O(n¥***+1), and is thus polynomial in the number

of jobs.
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3.4. Dynamic programs for the approach stream approach

3.4 Dynamic programs for the approach stream approach

The following dynamic programs are based on priority constraints into IAF
points. Feasible sequences must have jobs in precedence list order, so jobs are
added to the dynamic programs in their list order. By enumerating all the
possibilities the dynamic programs are able find optimal sequences.

3.41 Dynamic program for 1|prec,7;, 5, ;|Chrax

Jobs are ordered by precedence constraints. The same DP as for 1|7;,5; ;|Crrax
will work for this problem if we define the v; in the formulation in Section 3.3.1 to
have the same meaning as the 4; from the formulation in Section 3.2.1.

3.4.2 Dynamic program for 1|prec, d;, 7;,S; ;| Carax

The dynamic program for special case of 1|d;, 7, S; ;|Casax in Section 3.3.2 will
apply to this problem, if the v; variables in the formulation are defined to have the
same meaning as the &, from the formulation in Section 3.2.1, and a suitable g(, 7)
function to get the type of job j in list ¢ is used. The DP will work for any set of
deadlines since jobs are added by precedence, not by the ERD rule.

3.4.3 Dynamic program for 1{prec,7;, 5, ;| > w1}

Basic definitions are found in Section 3.1.3. Let
f(ha, .. hi 11, .-, yx.x, (a,b),1)) denote the minimum weighted tardiness for a
sequence with 7, jobs from list ¢ sequenced, the last job in the sequence from list [.
Let g(¢, j) denote the job type of job j in job list i, where jobs are ordered by their
release date. The ideas from Section 3.3.3 are used in this dynamic program; the
sequence length may be found from (a,b), the last job b from precedence list a that
precedes a sequence of y; , number of type & jobs following type j.

Initialization For:=12,... K,7=1,....K
1 ifj=1
/l]' = e .
0 ifj#14

f(h/l, ]12' Cee h«](, O, O ceey O'1 (7,, 1), 2) = 0.

Recursion For h, =0,..., N i=1,.... K 7=1,....X
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3.4. Dynamic programs for the approach stream approach

If Zj > 1 Yk = 0 then:

f(hlz" ';h/f(7y1,17 . '7yX,X1 (a)b)7l) =
{ Fh 1) (a,b) = (I k) and Fuy + 30, 5 Sk < P,

min )
Vi W)y, | oo otherwise
where ' =1,..., X, (d,¥') =1,...,n,4;, =0,..., X and
‘ h; ifi #£1
Else:

f(hla'"JhKuyl,h‘"7yX,X7(a7b)7l) =

. Js ) 4 masc L (Fas + X S viaSin — i) :0) (@)
v | so (b)

Condition (a):

X X
Tapb T Z Z YirSik = Tun
j=1 k=1
Condition (b):
X X
Tap + Z Z Yirdik < Tip,
=1 k=1

wherel’ =1,..., X, (a,b')=1,...,nand

o {yg,k—l if j = g(I' hyy) and k = (1. hy)
Y5 —

Yk otherwise.
Optimum
min f(N17N25"'JNKryl,lp"'va.Xa(CL:b)vl)
yj,lcs(a'vb)vl
wherefor j=1,.... X, k=1,.... X y,=1.....X,(a.b)=1....,nand
[=1,..., K.
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3.4. Dynamic programs for the approach stream approach

3.44 Dynamic program for 1|prec,7;,S; ;| > g;(C))

The above DP can be generalized to find an optimal sequence for any objective
function ) g;(C;), where g, is an arbitrary non-decreasing function of the
completion time C; of job j. The first recursion condition remains unchanged. The

second recursion condition is set up:

f(hlv"'ah]{ayl,la- . '7yX,X: ((I, b)al) =
~ N X ~
min { Sy U+ g (Ta,b +>2 0 yj,ij,k> Tap + Zj—il D k1 YikSik = Tun,

U {alb) 0O otherwise

where!'=1,..., X, (b)) =1,...,n.

3.4.5 Dynamic program for 1|prec,d;, 75,5 ;1 3" g;(C;)

The recursion equation above is altered to include an extra condition that sets to
infinity states that are generated with last job completion time after its deadline.
That iS, if TA'l)}” -+ Zj zk yj’ijJg > El,hl for state (}7/1, RN hK, M- YX X ((I, b), Z)
then:

3.4.6 Dynamic program for m|prec, 7, S; j|Crrax

The following dynamic programs for multiple machine problems make use of
ideas introduced in Section 3.3.3 and Section 3.2.6. Basic definitions for the
dynamic program are found in Section 3.1.3. Let
Flha, o shwe,tiaa, o Ymx xs (@1, 01), ooy (@ b))y 014 - -+, U, w. 1) be the minimum
makespan for a partial sequence with h; jobs scheduled from precedence list 7, [ the
last list sequenced from, u the last machine added to, (a., b,) the last job b, from
precedence list a, to precede a sequence of y. ; type k jobs following type j jobs
on machine z without a gap in the minimum separations, and v, be the last job
type processed on machine z. Let ¢(7. j) denote the job type of job j in job list 4,
where jobs are ordered by their release date. Let indices (a.,b,) = (0,0) and v, = 0
denote no job scheduled on machine z and define 7y = 0. Set v, = g(l, ;). Then a

dynamic program may be formulated as follows.

Initialization Fori=1,....Kandj=1,.... K

1 ifi=j
h; = )
‘ 0 otherwise
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3.4. Dynamic programs for the approach stream approach

andforu=1,....mandz=1,...,m

v, = {g(z,l) ifu==z

0 otherwise

(a.,b,) = {(Ln ﬁu:%

(0,0) otherwise
f(hl,hg,...,hK,O,O,...,0,(al,bl),...,(am,bm),vl,...,vm,u,i) = T

Recursion For hi =0,...,V; i

k=1,...,X z=1,...,m (ay,by)=10,...,n u=1,...,m

]:1,,K ym’k:O,...,X

I£ 525 >k Yujke = 0 then:
f(h]s"'uhf(ayl,l,la"'aym,X,Xs(alabl)a"'a(aﬂubm)avla'"J’Umuusl)

b)) = (L. h d
max {f(h}, ..., U), Faubu (Aau’ u) = () a/n .
Far b, T 225 2k YugwDike < Ty

mm )
' . o, (al,,bl) )
Vs oo otherwise
wherel' =1,... K, v, =0,....X, v =1,...,m, (a,,t),) =0,...,nand
N R ifi A1
, {QHWX'ﬁz:u
yz,j E T .
Yz ik otherwise
v, = w, ifzAu
(alz’b,/z) - (azabz) 1fZ?éU

Else:

f(hlv s h](;yl,l,lw < Ym X X (alabl)a e (a'm,a bm)* Viyeony Un, Uy ]) =

max {f(h’1 o ) Pab, 2250k yuj‘]i;Sj‘k} (a)
00 (b)

min
vy’ (ag, by,

Condition (a):

X X
Tay.by T+ E E Yu, ik S5k = Tk,
: k=1
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3.4. Dynamic programs for the approach stream approach

Condition (b):

X X
Taube T § E Yui kS < Tin

=1 k=1

wherel’ =1,...,K,v,=0,..., X, ' =1,...,m,(a,b),) =0,...,nand

v {hi—l ifi=1

hi ifi#1
, Yojk— 1 if v, #£0and z=wand j =v, and k = v,
yz,j,k = .
Yz ik otherwise
v, = w, ifz#u
(al, b)) = (a,,b,) ifz#u.
Optimum

min f(Nl,...,NK,ym‘l,...,(a],bl),...,vl,...,u, l)

yz,j,k"(a2~b2)tvz ,’LL,[

whereforz=1,...,m,j=1,...,. X, k=1,... . X;y.,.=1,..., X,
(a,,0,)=1,....n,v,=1,.... X, u=1,...,mandl=1,..., K.

3.4.7 Dynamic program for m|prec, 7;, 5; ;| > w;1;

Basic definitions are found in Section 3.1.3. Let
fha, oo hk s viaas - YUmx.xs (a1,01), oo o (@, D), 01, - -+, U, 1) be the minimum
weighted tardiness for a partial sequence with definitions of state variables h;, u,
(a:,b), y: ;. and v, as the previous DP in Section 3.4.6. Then a dynamic program

may be formulated as follows.

Initialization Fori=1,... Kandj=1,..., K

1 ifi=j
0 otherwise

andforu=1,...,mandz=1,...,m
g(i,1) ifu==x
v, =
) 0 otherwise

(0b) = {(m T

) (0,0) otherwise
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3.4. Dynamic programs for the approach stream approach

f(h’lahQJ"'ahKuOvO/"':Oa (a’labl)!"'J(Gmab'm)?vla"';Um7u7i) = 0

Recursion For h;=0,...,N; 1=1,.... K j=1,...,X
k=1,...,X z=1,....m (A, b)) =0,...,n u=1,...,m
I=1,..,K Yoy =0,..., X

I£ 3755 % Yugre = 0 then:

f(h]; ceey h]\’ayl,l,la ey Ym X X (ala bl); Sy (am, bm):vh - U, U, l) =
min { f(h/1’ ey l/) (a’lu bu) == (l7 hl) and ’[Za:ﬂb; + Z] Zk y;’jyk-sj,k S f’l,hl
)

(ST RN s o0 otherwise
wherel!=1,..., K, v, =0,..., X, v'=1,...,m, (a,b,) =0,...,nand
h, = o
h¢ le F/ {
, 0,....,X ifz=u
yz,j,k = .
Yz ik otherwise
v, = w, ifz#u
(a,0)) = (a.,b.) ifz#u
Else:
f(h'la IR hK: Y111 - Ymx. X, (ah bl)a AR (a7n7 b’m): Uiy ooy Umy Uy Z) =
SRy, )+ .
: . a
min max {wl‘h, (Tau.bu F D> Yu ke Sk — dm,) ,O}
U v, (el b)) i 1 5T : Ty
o0 (b)

Condition (a):

X X
Tay by + E § YujkSik = Tih,

=1 k=1

Condition (b):

X X
Tayby T § § Yu kS < Triy

=1 k=1
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wherel'=1,... K,v, =0,...,. X, v =1,...,m,(a,b,) =0,...,nand

h, - hi -1 ifi=1
) if 7 # 1
o Y. — 1 ifv, #0and z =vand j = v/ and k = v,
Yk Yz ik otherwise
U; = Uz lf <z 7£ U
(al, b)) = (as,b,) ifz#4u .

Optimum

min f(Nl,...,NK,yLLl,...,(al,bl),‘..,’l}l,...,U,l)
Yz,5.k(Qz,b2) 0z 1,1
whereforz=1,....m,j=1,.... X, k=1,..., X;y.;.=1,..., X,
(a,,0,)=1,....n,v,=1,.... X, u=1,...,mandl=1,..., K.

3.4.8 Dynamic program for m|prec, 75,5 ;> 9;(C;)

The previous dynamic program can be generalized for any objective function
> g;(C;), where g, is an arbitrary non-decreasing function of the completion time
C; of job j. The first recursion condition remains unchanged. The second recursion

condition is set up:

f(hlv s h](:yl.l,ls s Ymo XX (ala bl); RS (am7 bm)avlv <oy Um, U,y Z) =
/ !l 3/ ~
f(hlﬁ"‘ﬁuﬁl)_i_ Tau,bu+
. . X X A
min Gin, (rau,bu +D 0 yu,j,ksj,k) D1 et Yuik Ok = Tl
U wj ' (a7,.b,) I
o0 otherwise
wherel’ =1,... . K, v, =0,..., X, v =1,...,m,and (a,, b)) =0,...,n.

3.4.9 Dynamic program for m|prec, d;, 75, S ;| 3 9;(C})

General deadline constraints may be incorporated with the introduction of a
further condition in the recursion equation. That is, if job [ is the last job added to

. o X X =
machine u, then if 7o, 5, + > 571 >0 YujkSin > din:

f(hlw s ,-/'LI\":'yl.lAlw s Ym XX (ala bl); tees ((lm, bm)a Uiy ooy Um, U, ]) = oC.
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3.4.10 Computational complexity

Assume that the number of machines m, the number of job types X and the
number of ordered sets K are fixed. The 1|prec, 7;, S; ;|Crrax and
1|prec, Ejj 7,59, j|Caax dynamic programs have the same form as the dynamic
program in Section 3.3.1. Their complexity is thus O(n*). The dynamic programs
for the 1|prec, 7,5, ;1 3" 9;(C;) and 1|prec, d;, 75, S; ;] 3> ¢;(C;) problems have the
same basic form as the dynamic program in Section 3.3.2. Their complexity is
O(nX+X*+1). Finally the dynamic programs for the m|prec, d;, #;, Si ;| 32 9;(C;)
problem (including objectives Cy4x and > w;T;) have K h; variables, mX Yk
variables and m (a;, b;) variables. Therefore complexity is O(n/+m(X*+1)),

3.5 Adding CPS constraints to dynamic programs

The CPS constraints of Psaraftis (1980) may be incorporated into any dynamic
program presented in this chapter. If these constraints are used, constraint 7 in the
machine job scheduling problem definition of Section 2.3.2 becomes active. Let the
FCFS position of job i be 7, and maximum position shift of this job be M;. Then
CPS constraints resultinaset C; = {I — M;,...,I,..., I + M} of feasible sequence
positions for each job . Let job ¢ be added to the sequence at stage k. The stage
number £ is also the sequence position of job :. If an extra condition is added to the
relevant recursion equation setting state f() to infinity when the stage & is not
contained in C;, sequence positions outside the CPS range will be ruled out. That
is, if k > I + M, or k < I — M; then f() = co. This condition does not affect the Big
O computational complexity of the dynamic programs.

51



Chapter 4

The simulation model

This chapter describes the computer simulation model used to investigate a part
of the Arrival Management problem. By the end of it, the reader should appreciate
why the simulation has been built, what it can do and how it has been
implemented. Section 4.1 specifies the simulation model in general terms. The case
is made for a simulation model of airspace, the conceptual model is described and
the assumptions underlying it are justified. Experimentation on a simulation
model is conceived with the idea to uncover input-output relationships. Inputs
and outputs that have been implemented in the simulation model are listed in
Section 4.2. A significant amount of time has been spent coding up the simulation
in Visual Basic. The core ideas behind this implementation are found in Section 4.3.
The chapter finishes with a summary of the simulation model.

4.1 Specification of model

4.1.1 Purpose of model

The development of the simulation model has followed the pattern
recommended by Law & Kelton (2000), Chapter 5. At the start of the process the
goal and specific issues to be addressed by the model were discussed with Mr.
Alan Drew of the Eurocontrol Experimental Centre (EEC). These are reproduced

here.

Goal of this work The overall goal of the project is to develop an analysis tool to
investigate scheduling and delay-sharing strategies when landing aircraft at

airports.

Specific Issues to be addressed The analysis is to be undertaken on data from
Stockholm airport and airspace as well as other generic airport and airspace

52



4.1. Specification of model

set-ups to be defined. Following the definition of the airspace the issues of interest
will be how the system reacts to changes in the sequencing algorithms, the
optimisation criteria within these algorithms and changes to the delay sharing

strategies.

In order to assess the effects of scheduling and delay-sharing strategies
performance indicators need to be estimable from the model. Those chosen were:

Landing rate: Number of aircraft that land in a time period.

Delay: Various delays may be of interest such as average delay to all planes,
delay to all heavy or light aircraft, maximum delay of all planes, distribution
of delay and delay over routes and sectors.

Air Traffic Control system risk indicators: Time in and around holding points, or

time spent in approach sectors.

Air Traffic controller workload risk: The stability of advice generated.

4.1.2 Choice of model

An airspace computer simulation model was chosen to investigate the goal and
specific issues to be addressed, through analysis on the performance indicators.
Previous, related work has made use of analytic models and computer simulation
models. Two types of simulation model have been developed. The first has
modelled the dynamic updating process of aircraft sequencing to assess
computational performance of different algorithms (Beasley et al. 2004), and to
compare new sequencing methods with current (Venkatakrishnan et al. 1993). The
second has used a model of real airspace to assess the performance of the
algorithms on system behaviour (Carr et al. 2000). The second type of simulation
model was chosen for this work for a variety of reasons, made with consideration

to the overall modelling goal.

Effects on real airspace Interest is in what happens on a particular airspace, so a
generic model of the dynamic sequencing algorithm process is insufficient.

Generic model The model needs to provide insight into effects of AMAN
technology on real airspace, yet not be limited to a single set-up. This isnot a
problem for simulation modelling because of the flexibility that arises from
the modular nature of the methodology. Different sequencer or delay-share
modules may be developed and incorporated into the simulation. Once a
model has been built it may be setup for different airports and airspace.
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i , Delay-share;  Airspace |
’— Sequencer " procedure ~, simuiation T

Figure 4.1: Information flows in the simulation model

Comparison of AMAN setups The model needs to be used to compare a wide
variety of Arrival Manager setups, ranging from simple rules to complicated

optimization routines, limiting use of analytic models.

Area of interest is pre-TMA The scope of the investigation here is wider than all
published work; previously the effect of different sequences on the TMA has
been examined. This work is concerned with how the system reacts to
changes in the delay sharing strategies and so effects of sequence change
further back from the TMA are of interest. As the scope is larger so the size of
the problem for analytical methods, such as queuing theory, is greater.
Simulation models of the algorithm updating process fail to model effects of
delay share strategies. A simulation model of real airspace permits both the
effects of landing sequences and delay-share strategies to be estimated.

Performance indicators All the performance indicators are estimable if a suitably
designed and validated simulation model of airspace is used.

Experimentation Experiments on the simulation model may help to work
towards the goal and specific issues to be addressed. A further benefit of
simulation is the opportunity to ask “what-if?”” questions that may not have
been specific issues to address at the start.

4.1.3 Simulation sub-systems

The simulation of airspace used is split into 3 subsystems; the sequencer, the
delay-share procedure and the airspace simulation. These interact with each other
as in Figure 4.1. The arrows in the diagram indicate flows of information. The
sequencer is fed using real-time information from the airspace simulation model.
A landing sequence is calculated and using this, and the airspace information, the
delay sharing procedure is run. Its output is fed back to the airspace simulation
model and the process repeats. The following sections define in detail each

subsystem.
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4.1. Specification of model

Figure 4.2: Air Traffic Control map of airspace around Stockholm
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Figure 4.3: Schematic of the arrivals airspace
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4.1. Specification of model

Model of airspace

Airspace is made up of a series of airways, navigating beacons and control
sectors. Figure 4.2 shows a map of upper airspace over and around Sweden. Every
aircraft flying through the sky has a flight plan that informs ATC on the expected
time aircraft will fly over each navigating beacon on its route, the altitude at these
points and the time the aircraft crosses a sector boundary. The simulation model of
airspace is based on a 2-dimensional view of ATC flight plans. Altitude is ignored
and aircraft fly across a map of longitude - latitude coordinates. The layout of this

model airspace is shown in Figure 4.3.

The model does not map the entire world. Aircraft enter the model ata
boundary and likewise leave at another boundary. The areas aircraft fly through in
the model corresponds to the ATC sectors of interest in assessing the issues to be
addressed. Aircraft leave the model the moment they are scheduled to leave the
Intermediate Approach Fix (IAF) and begin approach and descent to the runway
(note that the model therefore does not model the TMA). This model of pre-TMA
airspace is generally quite valid. It describes the situation at Stockholm Arlanda
where there are four IAF points, and London Heathrow where there are four
holding points. It will also describe other airspace environments surrounding an
airport where there is a concept of k points that aircraft fly through before they

begin descent onto the runway.

Aircraft fly through the model based on their flight plans. The flight plans for a
simulation run may either be a historical sample, or a statistical sample of
historical samples. Traffic samples are generated using three pieces of information;
overall arrival rates at the exit points (IAF’s), probability that aircraft fly through
each arrival point and the wake-vortex category probability of aircraft at different
exit points. For example, a day’s traffic might be generated for Stockholm Arlanda
with different arrival rates for each hour of the day, probability that aircraft fly
through four IAF points and the probability that the aircraft wake vortex
classifications through each IAF point is heavy, medium or light. Generating a

traffic sample from this information is a five-part process.
1. A non-stationary Poisson process generates an arrival sequence at the IAFs.

2. Each of these times is assigned a IAF based on their probability (a
multinomial model).

3. Each of the times and their IAF is assigned a plane type based on this
probability (a multinomial model).
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4.1. Specification of model

4. The database of flight plans is randomly sampled to get the right number of
planes from each category.

5. The flight plan for each of the sampled aircraft is changed so that the exit
time is now the same as an exit time generated.

The way that a sample of aircraft fly through the model of airspace is described
following the path of one aircraft through the system. The same events occur for

each aircraft.

1. Aircraft arrives in the tool visible area at a time given by either a prepared
traffic sample, or according to a statistical distribution. At any moment from
this point on the flight may receive advice from the delay-share strategy on
new target times it ought to pass over navigating beacons. If it receives no
advice from the delay-sharing procedure the target times are as the flight

plan data.

2. Aircraft arrives at each navigating beacon and sector boundary at the target

time.
3. Plane arrives at the planned IAF at the planned time.

4. Aircraft exits IAF at a time based on aircraft type and IAF position to land in
its sequencing position with the required separation to follow the previous

landing.

Sequencer

Any sequencing algorithm may be used to sequence landings from those
surveyed in Section 2.6 to the novel dynamic programs in Chapter 3. The sequence
algorithm takes any information it may need such as earliest land time, preferred
land time or latest land time from the airspace simulation. Using this information
it forms a landing sequence. The sequencer may be run at a number of points in
the model. For instance landing sequences may be (re)calculated each time a new

aircraft enters an TAF.

Delay-share strategy

The delay-share strategy turns the landing sequence into a schedule. That s, it
assigns landing times to the aircraft based on their sequence. Further, it assigns
times over navigating beacons, IAF’s and sector boundaries based on its strategy.
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4.1.4 Model assumptions

The simulation model makes a number of assumptions. Descriptions of these

with justifications follow.

1. Airport and landing procedure not modelled.

Once the plane has left the hold it leaves the model. The model does not
consider the system beyond the hold or indeed after landing. This would
involve modeling the TMA of each airport the model is set-up for. The TMA
is a very airport-specific and complicated area of airspace. To go to this level
of detail would require significant effort every time a new airspace were
set-up. For example, the simulation model in Andreussi et al. (1981) may be
validated for Rome TMA, but the landing procedures at another airport may
be so different that a completely new model is needed. This is undesirable.
The main justification for this assumption comes from the specific issues of
the problem to be addressed. These are focused on the ATC system, not the
TMA surrounding an airport. The performance indicators from airspace
pre-TMA should be sufficient for this purpose.

2. Planned landing rate can and will be achieved by approach controllers.

Validation of the simulation model should test whether confidence in the
landing rate planned by the model is comparable to that of Air Traffic
controllers. This assumption is also justifiable if the model landing rate does
not validate against real life, provided no inference is made on differences
between current data operations and new algorithms. That is, only
differences between new algorithms or delay-share strategies are compared.
In this case (assuming that there would be no difference in controller
separation behaviour across the combinations) all results are based on the
same assumption of landing rate, so the comparison is fair. If interest is in
assessing real landing rate with model landing rates and the validation
process results in rejection of this assumption, then a statistical model of
landing times, similar to that used by Venkatakrishnan et al. (1993), could be

used in the simulation model.

3. Interactions between aircraft ignored.

Some delay-sharing strategies may cause interactions between aircraft that
generate extra delay to the system. These interactions will not be modelled.
For instance, there is nothing in the model to stop two aircraft flying over the
same point in airspace at the same time. No conflict detection or resolution
measures are taken. This assumption is made for three reasons. First, if
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interactions are an issue then indicators such as maximum number of aircraft
in a sector per unit time should highlight that there could be a potential
interaction problem that may need further investigation. Second, validation
of the model ought also to help justify this. If there is confidence in the model
behaving like reality then there may not be the need to go to such the level of
detail of picking up interactions and generating appropriate control actions.
Third, the focus of this work is not on avoiding conflicts and so another
sub-system within the model that works to do this may be a waste of
resources. Despite these reasons this assumption is a significant
simplification of the ATC system. Safety is paramount in ATC and so
indicators for interaction ought to be examined carefully to double check that
unreasonable control actions are not commonplace.

. Other flights in airspace (planes flying to alternative destinations) are not

considered.

Since interactions between aircraft are ignored for landing aircraft, there is no
need to include other flights in airspace. The main effect they may have on
flights directly affected by sequencing would be through interactions.
Removing these aircraft will reduce the complexity of the model.

. Aircraft taking off from the airport are not included.

Sequencing may have a direct effect on these aircraft. However, the focus of
this work is on the effects of AMAN systems on arrival aircraft. If aircraft
take-off and land on separate runways, then the main effect that may be
noticeable for the arrival aircraft is through interactions. For reasons
previously discussed these are not considered. Since arrivals are of primary
interest and aircraft departures are not within the scope of this work, they are
removed. However, the flexibility of simulation means that future work
could be done to incorporate them into the model without great expense.

. All aircraft have the same priority.

It is assumed that no bias exists in the current ATC system and so this is

repeated in the model.

. Sequencer and delay-sharing strategy are automatically followed by
controllers.

This is unlikely to be the case with an operational AMAN where the
controller will issue all the instructions to aircraft. It is assumed to be true in
the model because interest is in determining how the different systems
perform relative to one another, if the system were actually put in place and
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10.

11.

12.

used. The interest is in efficiency indicators, not questions about operational

viability.

. Instructions to aircraft are not subject to error.

Controllers are assumed to automatically follow the algorithm instructions,
and so are aircraft. This may be justified for similar reasons to the controller
issue. In ATC aircraft generally follow the advice given them, and interest in

the model is not in the times when they do not.

Human factors, in particular communication issues are not modelled.

Time for controllers to communicate changes to the plans, or guide aircraft is
not considered. It is assumed that once a plan has been made the information
is available and comprehended by aircraft and controllers. It is not
considered necessary to model the delay in information processing in order
to assess sequencing strategies because the interest in this model is efficiency
of sequencing, not questions about operational viability and human factors.
The design of the computer model here is inappropriate for such concerns.

Only landing airport modelled.

Although an AMAN may have some influence on aircraft pre-AMAN
boundary this is likely through aircraft interactions. Since these are ignored
and the focus of the model is on the direct effect that an AMAN may have on
the ATC system, aircraft are not modelled outside the area in which an
AMAN may function. Most departure airports will be outside this range.
Some will be included inside the range (i.e. short-range flights). However, the
takeoff procedure will follow no special routine. Aircraft will appear at a
certain point in the AMAN and pass over other beacons towards landing, just
as other aircraft who did not takeoff in the AMAN area.

No explicit calculation of environmental constraints.

Noise levels and emissions are not actively included in the model. It should
be possible to estimate these quantities using the time spent in the air by each
aircraft and the number of aircraft in the air at certain positions over a period
of time. Environmental constraints are not a specific issue to be addressed by
the model so more precise indicators are not included.

Aircraft cannot speed up.

Some algorithms developed by authors such as Beasley et al. (2001) include
the concept of aircraft speeding up over their planned flight plan. Although
there is scope to increase the speed of aircraft during their flight this should
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be a very unusual case. Indeed, a technical group advising at Eurocontrol has
felt that an operational AMAN should not issue speed up advisories. The
simulation model takes this viewpoint and the information on earliest land
time it sends to its sequencer is the time that the aircraft would land if it were
to fly its flight plan.

13. Wake vortex of an aircraft landing will only affect the aircraft landing after it.

This assumption is abandoned by some authors such as Fahle & Wong (2003).
However, for arrival traffic, consultation with Air Traffic controllers at
Eurocontrol has assured the author that this assumption is valid.

4.2 Input and output

4.2.1 Input

Several types of input may be given to the model, ranging from simple choice of
algorithm to providing a database of flight plan data. Descriptions follow.

Setting up model

To set up the model, information is needed on aircraft’s time over navigating
beacons and sector boundaries. All this information is available in Flight Plan
data. Eurocontrol have a source of this data for flights in Europe stored in the
Eurocontol Central Flow Management Unit (CFMU) database. Flight plans are
calculated using 4D-trajectory algorithms, so the expected speed over points,
altitude levels and other important variables are used to calculate the times over
points. Consequently, no knowledge of where the beacons are or the speed of
aircraft is needed for the model to calculate positions of aircraft since this
information is implicitly contained within the CFMU data. To set up a model of
new airspace it is necessary to use CFMU data for that airspace. The CFMU data is
modified so that aircraft do not arrive before the model boundary, and leave after
the IAF exit points. The model can then be run using either statistical samples of
the data or an actual day’s CFMU data.

Algorithms

Any sequencing algorithm could be incorporated into the simulation model. Six

algorithms have been implemented. These are:
1. First-Come First-Serve at IAF points.

2. The 1|3]-, 7;.5:;/Carax dynamic program described in Section 3.3.2.
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3. First-Come First-Serve at runway.

4. A heuristic algorithm minimizing total delay described below.
5. The 1|prec, d;, 7;, i ;|Carax dynamic program of Section 3.4.2.
6. The 1|prec. S; ;| >~ w;T; dynamic program from Section 3.2.3.

It is not possible to compare all possible sequencing algorithms, so the algorithms
implemented have been carefully chosen to permit investigation of a range of
techniques, constraints and optimization criteria. The broad range of algorithms
increases the probability that important experimental effects are identified. The
only algorithm not previously defined is algorithm 4. This is a simple heuristic
chosen as a result of discussions at the Eurocontrol Experimental Centre. It
represents a potential algorithm for use in an operational AMAN system.

Heuristic algorithm 4  This algorithm runs every time a new aircraft 7 arrives. If the
FCFS position of i in the current recommend sequence is F;, and 7 has a Maximum
Position Shift (MPS) M, it may make from its FCFS position, then it may be placed
in any sequence position from F; — M; to F; + M;. The algorithm chooses the
position with the minimum total sequence delay that ensure i is not sequenced
before its the earliest possible time. In the event of a tie the order of preference is
FCFS position, increasing shift backwards and increasing shift forwards.

Delay share strategies

Four delay-sharing strategies are incorporated in the model. These are:
1. All delay at IAF points in holding patterns.

2. Delay apportioned evenly through route.

3. Delay in flight path segments as late as possible.

4. Delay in flight path segments as early as possible.

Strategies 2 - 4 delay aircraft before the IAF point if possible. The maximum
amount of delay an aircraft may lose before IAF holding points is determined by a
parameter of maximum proportion of delay they may lose along each flight path
segment. If the subsequent maximum pre-IAF amount of delay is exceeded then
the remainder goes into holding patterns at IAF points.
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Re-sequence strategies

Re-sequencing strategy may have an effect on the results from an experiment,
and the computational performance of the simulation. The events that may be

used to trigger the sequencing algorithms are:
1. A new aircraft enters an IAF.
2. A new aircraft enters the system.
3. A batch of a aircraft has entered the system since the last batch of a aircraft.

4. A batch of a, aircraft enters the system since the last batch of a, aircraft, where

a; depends on the current time ¢.

5. New aircraft enters the system and time since the last re-sequence > .

The results of re-sequencing aircraft do not affect the current aircraft flight
segment, unless the aircraft is in a hold. For example, if the delay-share strategy is
as late as possible, and an aircraft has been given a delay as a result of another
aircraft triggering the re-sequence, then the delay advised only begins from the
next navigating beacon in its route, if the aircraft is not in a hold.

When running model

Experiments on simulation models are set-up to examine input-output
relationships. The sequencing algorithms have been coded for an airport with 4
IAF points, 3 different wake vortex categories and 1 runway. Inputs to the
simulation model are listed in Table 4.1 and the number of parameters listed. The
inputs listed can be split into three categories based on how they could be used in

experimentation.

Variables Traffic levels and control options are variables. That is, they may be
altered to different values or settings when experimenting with the model. In
real life ATC would have complete control over the control option inputs of
sequencing algorithm and delay-share strategy and so these are real-life
variables as well as simulation variables. At a tactical level ATC does not
have control over traffic levels. However, traffic level is a variable in the
simulation because it may take different values over time. Traffic conditions
on a Monday in January will be quite different from a Sunday in July.

Assumptions that make model close to reality The time it takes an aircraft to
move from the IAF to the runway, landing separations and landing speed are
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Table 4.1: Summary of simulation inputs

Input Description Number
Traffic Description Arrival Rate by hour 24
WYV Category at IAF probability 12

IAF probability 4

Random seed 1

Algorithms Implemented 6
Delay-Share Strategy Implemented 4
Re-sequence Strategy Implemented 5
Landing speed Parameter converts distance to time 1
Time from IAF to runway Dependent on aircraft and IAF 12
Separation matrix Deterministic 9
TOTAL 78

assumptions that need to take a certain form in order to make the model
valid. These inputs may be altered in the model, but it is likely that their
validated range is small due to their nature.

Parameters These are inputs that the real system has no control over. However,
the simulation model has control over them and the model may remain valid
if they are altered. These parameters in the model include the separation
matrix used in the sequencing algorithms and random number seeds.

4.2.2 Output
There are several types of output generated by the simulation:

Point to point segments and ATC sectors: Total, maximum, minimum, mean,
standard deviation for number of aircraft, and aircraft flight time.

Sector delays: The aircraft ID and delay it had to lose in a sector at time ¢.

Aircraft delay: The delay each aircraft had to lose over each point in its flight
plan.

Land times: Land time and aircraft ID.

Advised delays: The maximum, minimum, mean and standard deviation of

delay advice given to each aircraft ID.

The level of detail in output is high, and so output can be manipulated to produce
all the performance indicators in Section 4.1.1 and many others.
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4.3 Implementation

4.3.1 Airspace simulation

The computer simulation model was built in Microsoft Visual Basic 6.0. It has a
form-based interface designed to be used at Eurocontrol. The user may define new
airspace by importing traffic samples from CFMU data, generate new traffic
samples, set up experimental AMAN systems and run experiments. The
simulation code is defined by three features; it is a discrete-event simulation,
programmed in an objected-oriented fashion and input and output is controlled
through databases. Descriptions of why these approaches were taken follow.

Discrete event simulation

Discrete Event Simulation (DES) is a modelling approach where a system is
modelled over a countable number of points in time. At each point an event occurs
that may change the state of the system (Banks 1998, Law & Kelton 2000). Discrete
Event Simulation is particularly appropriate to the airspace simulation model
because times aircraft fly over points naturally form the basis of events. The main
property of a DES simulation is its ordered event list. In the airspace simulation
this stores the times each aircraft in the traffic sample will next fly over a point in
airspace. The simulation performs the actions that are associated with the first
event in this list and then updates, first removing the current event. If the aircraft
has left the system nothing further is done to the event list. If the aircraft will pass
over another point in the future the next point in the flight path event is added to
the list. This process continues until all aircraft have left the system.

Object-Oriented approach

The model has been programmed in Visual Basic using an Object-Oriented
approach. This is a convenient approach to the airspace simulation because
information and methods of accessing or manipulating the information are
grouped together. This style of programming helped when debugging the model,
and means that additional features may be more easily added to the simulation.
Classes are used to represent aircraft, flight segments and output statistics. The
aircraft class stores all information about the aircraft needed in the simulation -
from inputs such as its planned route to outputs such as the delay over points in
the route, in addition to methods that, for example, output the information.
Similarly the route class has various methods and properties relating to the time
aircraft pass over points. Objects in the output class for point to point segments
and ATC sectors are updated as the simulation progresses, until the simulation

65



4.4, Summary

end when all output is saved in a database before being destroyed from memory.
A special object in the code is the doubly-linked Event List class. A binary search
method is used to add items to this.

DAOQO link to Access database

A quick and easy way to deal with large sets of input and output data is to use a
database. A major benefit of such an approach is that efficient algorithms for
searching and manipulating the data are part of the database. The DAQO protocol
was used in the simulation model to input and output data from two Microsoft

Access databases:

AMAN Input This is used when producing new traffic samples, and running the
simulation. It contains a table with the flight plan data, populated with
CFMU data from the airspace under consideration. A number of queries are
run on the table to sample the aircraft for the simulation. The database stores

the traffic samples generated.

AMAN Output Output from each run is stored in this database. Each simulation
run outputs a large amount of data into this database. Queries may then be
made to obtain required performance indicators. A schematic of the
relationships in this database is found in the Appendix.

43.2 Algorithms

The algorithms were also coded in Visual Basic. The dynamic programs chosen
are not too computationally expensive, so the speed of Visual Basic in relation to
other languages is not as important as it might have been.

4.4 Summary

A discrete-event simulation model of airspace surrounding Stockholm Arlanda
airport has been built in Visual Basic. The design of the simulation model involves
sequencing, delay-sharing and airspace components. The model is generic enough
to permit further work to be undertaken on new airspace environments. The
simulation model has been built as an analysis tool to investigate scheduling and
delay-sharing strategies when landing aircraft at airports. There are differences
between this model and previous work. First, the area of airspace considered is
two sectors back from the TMA, whereas previous work has focused on the effects
in the TMA area. Second, the effect of sequencing algorithm and delay-sharing
strategies on a real airspace may be extracted. Previous work has not considered
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4.4. Summary

the delay-sharing problem. Lastly, credibility of the model is greater than some
previous work on sequencing algorithms because a real system is simulated. The
simulation is built to enough level of detail to enable some performance indicators
on delay, landing rate, efficiency and controller workload to be extracted for

investigation through experimentation.
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Chapter 5
Validation of simulation model

“Two things are identical if one
can be substituted for the other
without affecting the truth”

Wilhelm Gottfried Leibniz
{(Loemker 1969)

This chapter reports some quantitative and qualitative methods used to validate
the computer simulation model. The methods are not used to test that the model
and reality are identical - they are not, rather they are used to gain confidence that
similar conclusions are drawn from the model as would be found in the real
world. A validated AMAN simulation model may then be used for insight into the
effects on the real ATC system of different sequencing techniques and delay-share

strategies.

The comparison between model and real world is based on data recorded by
Eurocontrol on aircraft flying into Stockholm Arlanda in Autumn 2003. Specific
reference to the traffic samples used, dates of traffic samples or IAF point names
are not made for reasons of confidentiality. Section 5.1 describes how this data has
been extracted to be of use in validation. Section 5.2 reports validation of the
sampling procedure used to generate traffic. Sargent (2001) describes a variety of
methods that may be used to validate the model output. Three are used in Section
5.3: confidence ranges for difference in output, sensitivity analysis and
investigation of dynamic behaviour. Section 5.4 reports the significance of the tests
for overall model validation, the strengths and weaknesses of the techniques used

and summarizes the findings.
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5.1. Validation data

5.1 Validation data

The data used in the validation of the model was recorded on the Eurocontrol
PROVE platform over a number of days. The times of the traffic samples are
shown in Table 5.1. Three data sources were recorded: Radar Track (Track),
Estimate (EST) and Flight Plan (FPL) data. This section describes how these
sources were linked for use in validation.

Linking data sources Information from International Civil Aviation Organization
(ICAO) that describes EST and FPL messages is found in the Appendix. FPL data
provides information known prior to take-off about a flight, such as the aircraft
wake-vortex category. The EST messages estimate the time flights will pass over
navigating beacons. They are sent automatically on the AFTN network and are
calculated by the ATC system that covers the corresponding area. The Track data
file contains a large number of data fields (listed in the Appendix) such as the 4-D
position of an aircraft. However, not all the data fields were present in the Track
data recorded. In particular the operational flight plan ID and callsign were
missing. These would be useful fields to identify aircraft and link them to FPL and
EST data. The way to distinguish aircraft was based on the SSR code field. This 4 J
octal digits code is sent from the transponder of every aircraft and detected by
radar. The SSR code is present in Track messages and in EST messages. Callsign is
present in FPL and EST messages. The FPL and Track data can therefore be
correlated via the EST message. However, linking on SSR code is not foolproof and
a number of issues were dealt with to produce sensible validation data.

SSR code is not unique It was possible to find, for example, an instance when 4
aircraft with different coordinate positions had the same SSR code at the
same moment in time. This was not necessarily a database error because it is
common to reuse the SSR codes during the day. If linking SSR code to FPL
data produced a number of flight plans for a particular Track data flight, the
choice of link was made by choosing the FPL with EST land time closest to

estimated Track land time.

Aircraft change SSR code mid-flight In this case there is no way of linking the
Track data aircraft with its old SSR code in FPL and EST data. As a result an
incorrect FPL may be linked to a flight in the Track data. One sure symptom
of this is an aircraft with an enormous delay. Therefore, these errors were
guarded against by removing links where aircraft have delay in excess of 30

minutes.
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5.1. Validation data

Time over beacons not explicit The actual time an aircraft passes over a beacon
(such as an IAF) was chosen as the point with closest Euclidean distance to

the beacons longitude-latitude position.

When has an aircraft landed? There is an altitude field in the Track data. If land
times were based on when this is zero problems would occur because there
are some flights where this field is zero throughout. Land time may be
estimated by looking at the last time the aircraft SSR code is found in the
Track data. The SSR code will stop being received by radar once the pilot has
turned off the transponder. This approach may not be accurate for the last
minutes in the Track data sample so a combination of the altitude level and
last received track point was used: if altitude was less that 50 feet and the last
radar track time recorded was not equal to the last time in the sample, then

the aircraft was deemed to have landed.

Aircraft delay at a point in its flight plan was based on the difference between
estimated radar track time at the point, and the first recorded estimate time of
arrival in the EST data. In particular, the time an aircraft passed over its IAF point
was calculated as the time the aircraft was closest to the IAF point it was due to
pass in its EST message. Landing rate performance indicators were based on the

landing time, as calculated above.

FPL Data Summary The FPL data describes the underlying expected situation,
and it is available for the entire day radar track data was recorded. Analysis of the
FPL data is presented graphically in Figures 5.1 to 5.3. Figure 5.1 shows how the
number of aircraft landing in the FPL data at Arlanda varies with each sample.
Each line corresponds to a different day in which a sample of Track data exists.
Some radar track samples were taken on the same day, so there are fewer days
than radar track samples. Each line in Figures 5.2 and 5.3 similarly corresponds to
a day with a Track data sample. These graphs show the proportion of aircraft
flying to different IAF points (or holds). Each sample is from Monday to Friday,
within a month apart. The charts suggest that the different traffic samples belong

to a homogeneous set.
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5.1. Validation data

Number of arrivals

Table 5.1: Recorded Track data time periods

Sample Time Start Time End

1 16:10:33 18:09:10
2 09:08:35 10:19:48
3 13:49:15 15:12:08
4 09:37:29 11:00:23
5 09:19:22 12:57.52
6 13:20:51 16:17:12
7 08:25:36 11:12:46
8 06:10:22 08:42:21
9 08:06:24 09:45:15
10 13:31:03 15:51:33
11 08:59:26 12:11:10
12 14.:07:08 15:29:48
13 06:54:34 08:09:02
14 09:53:52 11:28:27
15 08:13:34 09:16:53
16 09:45:45 10:49:31

Flight Plan hourly arrival rates

45

6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
Time period

Figure 5.1: FPL Landing rates for each day Track data recorded
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Validation data
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Figure 5.3: Daily aircraft type proportions by IAF for Track data recorded
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5.2. Model inputs

5.2 Model inputs

Question Given the data sources described in Section 5.1, is there enough
evidence to reject the sampling procedure as a sufficiently accurate model of

reality?

The process to generate traffic sample described in Section 4.1.3 follows five
steps. This section will focus on validating the first three components of the

process.

5.2.1 Arrival rate model

Question Does a non-stationary Poisson process with rates that may change
hourly accurately represent the arrival process of aircraft to the four IAF points
(combined) at Stockholm Arlanda?

HypothesisI In any time period of 1 hour during any day at Stockholm Arlanda
arrivals to IAF points follow a Poisson process.

Law & Kelton (2000) point out that if a process is Poisson between times [0,T]
then the arrival times are distributed uniformly between [0,T]. So Hypothesis I

reduces to:

Hypothesis II In any time period of 1 hour during any day at Stockholm Arlanda
the arrival times X are distributed Uniformly [0, 1 hour], i.e. X ~ U[0, 1].

Test1 If there are K samples from the Track data of arrivals at the four IAF
points, then testing simultaneously that all K samples are U[0, 1] may be done
using K-Sample Empirical Distribution Function (EDF) Goodness-of-fit (GOF)
statistics. Alternatively, since observations in the samples are independent we
could pool them together into a single sample, and test if this sample is distributed
U[0,1]. Again, GOF statistics may be used.

Result Table 5.2 shows the test scores for the K-Sample Cramer Von Mises W2
(Kiefer 1959), K-Sample Anderson Darling A? (Scholz & Stephens 1987) test
statistics, and for the pooled data the Anderson Darling (A?),
Kolmogorov-Smirnov (K) and Chi-Square (?) tests (see D’Agostino & Stephens
(1986)). They show that there is not enough evidence to reject the null hypothesis.

73



5.2. Model inputs

Table 5.2: Results for Hypothesis 1lI, Test 1

Statistic Value p-value
W2 2.461 0.716*
A2 15.099 0.723*
A? (Pooled)  2.196 0.076*
x? (Pooled) 17.757 (df=22) 0.603
K (Pooled)  0.057 0.111

*2000 Bootstraps

5.2.2 Arrival route model

Question Does the probability that aircraft fly to different IAFs during a day
follow a multinomial distribution?

Hypothesis III The number of aircraft (X, Xy, X5, X4) arriving at each IAF is
distributed with a multinomial distribution with parameters n, p1, ps, ps, D

Test1 Estimate p, from FPL data from half of the data set using the maximum
likelihood estimates. Test with the remaining half to see if it fits the estimated

multinomial model using y? test statistic.

Result Using the Chi-square goodness-of-fit finds y? = 21.854 on 30 degrees of
freedom. A reference distribution formed from 2000 bootstraps results in a p-value
of 0.901. Thus, there is not enough evidence to reject the null hypothesis.

5.2.3 Wake-vortex category model

Question Does aircraft wake-vortex category probability at each IAF follow a
multinomial distribution throughout a day?

Hypothesis IV The number of aircraft (X;, Xy, X3) split by wake-vortex category
to a particular IAF is distributed with a multinomial distribution with parameters

n,pP1,P2,P3-

Test1 Estimate p; from FPL data from half the data set provided by Eurocontrol
using the maximum likelihood estimates. Test the remaining data set to see if it fits

the estimated multinomial model using x? test statistic.

Result Table 5.3 shows the test scores. There is not enough evidence to reject any
of the null hypotheses individually.
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5.3. Model outputs

Table 5.3: Results for Hypothesis IV, Test 1

IAF Statistic ~ Value df p-value

IAF 1 x> 2808 10  0.985*
IAF 2 x? 13.056 10  0.169*
IAF3 x? 22101 20  0.325*
IAF 4 x? 7728 10 0.654*

*2000 Bootstraps

5.3 Model outputs

The main outputs from the model are landing time and delay of aircraft. This
section focuses on validating that the delay and landing rate outputs from the
model are an accurate representation of reality. Three types of analysis are used;
confidence, sensitivity analysis and dynamic behaviour. Since the traffic samples
from the Track data may be seen as all having the same underlying type of traffic
sample, the scope for sensitivity analysis is reduced. The range of confidence in the
model is also limited to the single set of parameters used in the validation. The
validation methods that follow are based on comparisons with output from 500
runs of the simulation, with the model inputs setup as Table 5.4. The parameters
for generating traffic samples were set based on maximum likelihood estimates
using half of the data set provided by Eurocontrol.

5.3.1 Delay

Question Is there a difference between delay output from the model and delay

output in real life?

Confidence

Hypothesis V. There is no difference between delay in the model set with
maximum likelihood estimates of inputs, and landing delay from Track data
(landing delay = difference between first EST land time and actual Track data land

time).

Test1 In order to get a reference distribution function of delay from the model,
the delay from a single simulation run must be aggregated, and then all the
aggregates pooled together. Mean delay is used as the aggregate function. Itis a
useful measure since the real-life sample lengths are variable (see Table 5.1), and it
scales for length. However, since the Track data is taken from different times of
day, comparisons may not be fair unless it is possible to reject the hypothesis that
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5.3. Model outputs

Table 5.4: Summary of inputs to simulation model validation setup

Parameter Value(s)

Arrival Rate by hour 0.5,1,0.75,21,21.75, 28.75,
22.25,21.75,17.75, 15, 14.75, 17.25,

20.25,31.5, 21, 31.75, 22.75, 25.5,

18.75,19, 14.5, 6.75, 3.75, 0

Heavy at IAFs probability 0.0310, 0, 0.0244, 0.0475
Medium at IAFs probability 0.969, 0.997, 0.963, 0.956
Light at IAFs probability 0, 0.003, 0.012, 0
IAF probability 0.266, 0.190, 0.408, 0.136
Random seed 1-500
Sequencing Algorithm FCFS at Hold
Delay-Share Strategy All delay at IAF in Hold
Runway 1
Separation matrix Eurocontrol data
H M L
. . : . H 4 5 6
(Distance in Nautical miles) M 3 3 5
L 3 3 3
Landing speed 296.32 km/h
Minutes from IAF to runway Eurocontrol data
H M L

IAF1 13.82 1382 15.05
IAF2 18.42 1842 2207
IAF3 18.16 1816 22.69
IAF4 16.50 16.50 17.19
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Empirical Distribution Function comparison

Probability

— Model average delay
"""" Actual average Landtime delay

1 2 3 4

Delay (minutes)

Figure 5.4: Empirical Distribution Function plots of model mean delay and actual mean
landing delay

delay is dependent on time of day. The hypothesis is rejected for the data setin a
dynamic behaviour test later in this section. The first test for a difference in delay
is a graphical comparison of the Empirical Distribution Functions (EDFs) of mean
delay distribution from the model, with the distribution of mean delay from the

traffic samples.

Result Figure 5.4 shows the comparison. Visual inspection rejects the hypothesis
that the two distributions are the same, so there is no need for more formal

statistical tests.

Delay at IAF is different to delay on runway. Running a paired-t test (Law &
Kelton 2000) on the mean IAF delay and runway delay on all traffic samples
(Shapiro-Wilks test for normality (D’Agostino & Stephens 1986) of both data series
non-significant at 10% level) produces a 95% confidence interval on the difference
of [-2.611,-0.753], i.e. mean IAF delay is greater than mean runway delay. Perhaps
the pilots do not all turn the transponder off at the same moment they land,
affecting the delay indicator. Or maybe the control actions that take place in reality
are not as deterministic as those assumed in the simulation. Whatever the reason,
the simulation effectively ends at the IAF point and no modelling is done on the
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5.3. Model outputs

airspace between the IAF and runway. The model assumes that aircraft take a
fixed time (dependent on their type and IAF) to fly from IAF to touchdown. Some
analysis showed quite a variation in the time between TAF and runway, as might
be expected given the difference in IAF and runway delay values. If land time
delay were the purpose of the simulation this result might suggest further work in
the model on the time between IAF and runway. However, it is not necessarily
appropriate to compare the delay outputs from the model to the land time delay.
The simulation model has been created to investigate scheduling and
delay-sharing strategies when landing aircraft at airports. Interest is in how the
system reacts to change in sequencing algorithms, the optimization criteria within
the algorithms and change to delay sharing strategy. By system it is meant the area
contained inside the model boundaries, i.e. up to and including the IAF points. A
more appropriate comparison between model and reality would be to compare
delays at IAFs from the Track data, with delay from the model. This leads to the

next hypothesis.

Hypothesis VI There is no difference between delay in the model set with
maximum likelihood estimates of inputs, and IAF delay from Track data.

Test1 Compare EDFs.

Result An EDF showing this comparison is presented in Figure 5.5. Hypothesis
Vlis rejected based on visual inspection.

Figure 5.5 suggests why there might be a difference. The shapes of EDFs are
similar except the model delay seems shifted to the right: the simulation model is
overestimating delay. Difference in EDFs seems arise because Track IAF delay may
be negative, but the delay given to aircraft in the model is by definition always
positive. When the model is experimented on the interest is in how the system
reacts to change and what effect the change has on delay. Since delay in the model
is always positive, perhaps the wrong question was originally asked.

Question revisited Is there a difference between positive delay output from the

model, and positive delay output in real life?
Hypothesis VII There is no difference between mean positive delay in the model

set with maximum likelihood estimates of inputs, and mean positive IAF delay

from Track data.
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Empirical Distribution Function comparison
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Figure 5.5: Empirical Distribution Function plots of model mean delay and actual mean IAF
delay

Test1 Compare the EDF plots.

Results Comparison of EDF functions for mean IAF delay greater than zero from
the model, and Track data is shown in Figure 5.6. It is difficult to know whether to
accept or reject the hypothesis that they are the same based on visual inspection.

Test2 Test for differences between the distributions with 2-sample EDF test
statistics Cramer Von Mises W (Kiefer 1959) and Anderson Darling A3 (Scholz &
Stephens 1987). The W statistic may be further broken down into components
testing for difference in mean C , variance Cy, skewness C3 and a remainder Cg

(Cheng & Jones 2004).

Results Table 5.5 shows the scores and bootstrapped p-values for these statistics.
None may be rejected at the 95% level. The decomposition of W into tests for
mean C, variance C and skewness C5 suggests that there is no significant
difference in these distribution summaries. Difference between means is further

examined in the next hypothesis.
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Empirical Distribution Function comparison
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Figure 5.6: Empirical Distribution Function plots of model and actual mean positive delay
at IAFs

Table 5.5: Results for Hypothesis VII, Test 2

Statistic Value p-value

w2 0.0687  0.7665*
Ci 0.0315  0.595*
Cy 0.0201  0.364*
C3 0.000593  0.806*
Cr 0.00064  0.903*
A2 0.421 0.8175*
*2000 Bootstraps
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Hypothesis VIII  There is no difference between mean positive delay from the
Track data, and the simulation model set with maximum likelihood estimates of

inputs.

Test 1 The hypothesis that model mean delay follows a normal distribution is
rejected at the 95% level by the Shapiro-Wilks test for normality. The test used to
test for difference in mean delay therefore needs to not be based on this
assumption. The non-parametric Mann-Whitney test statistic Z (Rice 1995) is

suited to the purpose.

Results A Mann-Whitney test statistic Z = 0.900 results with p-value of 0.368. The
null hypothesis cannot be rejected.

Test2 Bootstrap difference in distribution means to obtain a confidence interval
(Efron & Tibshirani 1998).

Result The difference in mean delay is 0.0806 and [2.5, 5, 95, 97.5]% empirical
percentiles found from 5000 bootstraps are [-0.159, -0.124, 0.282, 0.319]. Both the
90% and 95% intervals cover 0. So, Hypothesis VIII cannot be rejected with 95%
confidence that the true difference in mean positive delay lies between [-0.159,

0.319].

Dynamic behaviour

The tests above made use of pooling comparisons based on delay obtained at
different times of the day. This section justifies the procedure.

Question Is time of day significant in determining mean delay?

Hypothesis IX Time of day is not statistically significant in determining mean
positive delay at IAF points in the time periods for which Track data is available.

Test1 Aggregate the Track delay at IAF samples by hour. Test that the true
location parameter for mean delay is the same in each of the time periods against
the alternative that it is different in at least one of the groups. A parametric test for
this is one-way Analysis of Variance (ANOVA). A non-parametric equivalent is the
Kruskal-Wallis test (Rice 1995).
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Result ANOVA is invalid as a Q-Q plot of the model residuals showed they were
not normally distributed. The two-sided Kruskal-Wallis y? = 7.895 with 11 degrees
of freedom yields a p-value = 0.723. This suggests that the hypothesis that the true
location parameter for mean delay is the same, for all groupings of delay by hour,

cannot be rejected. In other words, there is not enough evidence to suggest time of
day is statistically significant in determining mean delay for the days Track data

was recorded.

5.3.2 Landing rate

Question Is there a difference between landing rate output from the model and

landing rate in real life?

Confidence

Analysis of the FPL data in Figure 5.1 showed that landing rate will be a
function of time. This makes checking if the distribution of landing rate from the
model matches Track data more difficult since, in effect, there is a different

distribution of landing rate at each moment in time.

Hypothesis X There is no difference in landing rate distribution between the
model and Track data samples.

Test 1 Define landing rate I(¢) at time in minutes ¢ to be the number of aircraft
that landed since /(¢ — 60). Then compare a plot of landing rates from Track data
with a 95% empirical range of landing rates and the mean landing rate from 500

runs of the simulation model.

Result Visual inspection of Figure 5.7 suggests that the model configured to FPL
data follows the behaviour of the Track data landing rate quite well.

Test2 At each time point in Figure 5.7 the model forms a reference distribution of
landing rate from its independent runs. If the distribution of landing rate was not
time dependent then independent landing rates could be pooled together and
goodness-of-fit tests carried out to compare this distribution with the model
distribution. In this case let Y represent the set of observed landing rates and X
the set of model landing rates. One way to test if the two distributions are the same
would be to test if the set {Pr(y < X) : Yy € Y} is distributed uniformly on [0,1].
The same idea may be applied to test whether there is no difference between the
time dependent model distributions and the actual situation. Change the
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Landing rate Model range Vs Track samples
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Figure 5.7: Simulation empirical 95% percentile range and mean land rate comparison with
moving average Track data landing rates

Table 5.6: Results for Hypothesis X, Test 2

Statistic Value p-value
K* 0.129 0.815
A? 0.256 0.967*
x2 3.455 (df=6)0.750
*2000 Bootstraps

distribution of X based on the time period ¢ at which the observation y € Y was
made and test if {Pr(y, < X;):Vy: € Y;,t € T} ~ UJ0, 1]. Testing U|0, 1| may be
done using goodness-of-fit tests such as Anderson-Darling A%, Cramer-Von Mises
W? or x? statistics.

Result It was possible to form 22 independent samples of landing rates, each of
length 1 hour from the Track data. These were compared to the 22 different
reference distributions at the corresponding time points. The test statistics of the
test {Pr(y, < X3) : Yy, € Y,,¢t € T} ~ U[0, 1] are reproduced in Table 5.6. Based on
these, we do not reject the hypothesis that there is no difference in landing rate
distribution between the model and landing rate contained in the Track data

samples, at the 95% level.
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Table 5.7: Linear model fit for Hypothesis X, Test 1

Coefficient Value Std.Error tvalue Pr(> |t])
U 4.406 3.874 1.137 0.269
Vi 0.765 0.188 4.068 0.001

Sensitivity analysis

Question Does change in input arrival rate have the same effect on landing rate

in model as in real life?

Hypothesis XI There is a positive correlation between model and actual landing

rates in different time periods.

Test 1 Fit a regression line to points (v;, w;) paired by time where v; is mean
landing rate in the model and w; landing rate sample 7 from Track data
(Kleijnen 1995).

Result The points used were the 22 independent sample landing rates paired
with mean landing rate from model. A fit of the one-way linear model

E [w;] = u + v; where u is a constant yields the results in Table 5.7. This model fits
returns residual standard error is 4.017 on 20 degrees of freedom, a multiple * of
0.453 and overall F-statistic test equal to 16.55 on 1 and 20 degrees of freedom with
p-value 0.001. Diagnostics on the fitted model are satisfactory: a Shapiro-Wilks
normality test of residuals yields W = 0.972 with a p-value = 0.784.

The results show that the model mean and actual landing rate samples are
positively correlated. The t-test rejects the hypothesis that model mean has no
effect on the least squares estimated linear model at the 99% level, i.e. Hypothesis

XI cannot be rejected.

Dynamic behaviour

Question Is the time series of landing rate in the model the same as in real life?

Test1 Compare the time series plot of landing rate of a single run from the model

with a single sample.
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Time series plot Model Vs Sample Landing rate
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Figure 5.8: Landing rate time series plots of model run 1 and Track data sample 1

Result A traffic sample with a number of landing rate observations (i.e. one of the
longer samples) is compared to a series at the same time of day from the
simulation run with random seed set to 1 in Figure 5.8. Visually the two samples

seem similar.

Test2 The autocorrelation function is a device often employed in time series
analysis to summarize how reliant observations are on previous observations in
the series (Chatfield 1980). If the model time series output is the same as actual
time series we would expect this summary to be similar for both time series.

Result Figures 5.9 and 5.10 show the two autocorrelation functions. It is difficult
to see clear evidence here that the two series have different characteristics.
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Figure 5.10: Autocorrelation plot landing rate; sample
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5.4 Model evaluation

5.4.1 Confidence in input and output

A number of hypotheses for confidence in different input/output components
of the model have been tested individually. However, the validation procedure is
really concerned with confidence in the model as a whole.

Hypothesis XII There is no difference between model and reality.

Test1 Hypothesis tests have been carried out to validate different components of
the model against radar track data sources. Each hypothesis has a test with a
p-value, or probability that the amount of variation between the simulation model
and track data would be expected if the hypothesis was correct. In total there were
9 distinct tests made of null hypotheses H,1, ..., Hy. If H, is the composite
hypothesis that all //,;, are true (if one is not true H, should be rejected) then
Fishers test (D’Agostino & Stephens 1986) may be used. When H, is true we
should find that the p-values p; of the 9 hypotheses are independent, identically
distributed U0, 1] variables. This can be tested using any goodness-of-fit test
statistic. Some of the hypotheses have different test statistics. In this case only one
test score may be used else independence is lost. The Anderson-Darling test
statistic is chosen whenever there is a choice. This is for consistency and this
statistic is known to be more powerful than some others (D’Agostino &

Stephens 1986).

Result An Anderson-Darling test statistic A = 1.657. Running a Monte-Carlo
simulation to find the distribution of A? under the null with 5,000 samples found a
corresponding p-value of 0.135, so there is not enough evidence to reject the
hypothesis that all H,; are true.

5.4.2 Validation strengths and weaknesses

Strengths

Quantitative Because the validation is carried out on numerical comparisons
between model and observed Track data it is possible to use objective

methods to validate.
Statistical hypothesis tests The testing for differences follows a scientific process.

Confidence In some instances it was possible to give a confidence intervals on

differences.
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Weaknesses

Hypothesis tests: Data Vs Accuracy A flaw with hypothesis testing a model is
that the less data that is available the more likely the hypothesis is not
rejected, and the more data available the more likely to reject. This is because
the hypothesis that there is no difference between model and reality should
not be accepted in the long-run because by definition the model is not reality
(Law & Kelton 2000).

Data Confidence in validation is limited by amount of data available. Dynamic

tests and sensitivity analysis were limited by data.

Dynamic tests These were based on subjective evaluation of charts.

5.4.3 Conclusions

Sixteen Track data samples have been used to help validate a computer
simulation model built to aid investigation of change to scheduling and
delay-share strategy on airspace. The data was organised into databases and
queries run on it to give indicators of delay and landing rate.

Validation on the sampling procedure lead to a number of conclusions.

e Tests for the hypothesis that a non-stationary Poisson process generates
arrival times at IAF points all had probabilities greater than 0.05 that the
variation in the test score would be seen if the model is correct.

e The probability that aircraft fly to IAF points with a multinomial distribution
could not be rejected with a p-value of 0.90.

o The probability of aircraft wake vortex category at each IAF follows a
multinomial model. This hypothesis was tested and all test scores had

p-values greater than 0.15.

Validation on the outputs was carried out by fitting maximum likelihood
estimates to sampling inputs from half of the data set provided by Eurocontrol.
When comparing the results from these runs with the Track data the following

conclusions were reached.

e There is not enough evidence to support the hypothesis of difference in
positive mean delay from model with positive mean IAF delay from Track
data. Test scores on the difference in distributions could not be rejected at the
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95% level. Tests for difference of mean of mean positive delay distributions
could not be rejected at the 95% level using the Mann-Whitney test, or a
decomposition of the Cramer Von Mises test statistic. A 95% confidence
interval of the true difference is [-0.159, 0.319].

e The hypothesis that there is no difference in landing rate could not be rejected
at the 95% level.

e Landing rate in the model and the Track data follow the same trend in time.
A fitted regression model for the relationship between model mean landing
rate and independent track landing rates was significant at the 0.001 level
with a least-squares point estimate of model mean coefficient at 0.765.

e Landing rates have similar time series characteristics. Confidence in this is

based on qualitative assessment.

The overall evaluation of confidence in model output is based on a test that all
the hypotheses made in this chapter are correct. This test could not be rejected at
the 95% level. A summary of the conclusions in tabular form may be found in the

Appendix.
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Chapter 6

Simulation experiment methodology

This chapter reviews the statistical methodology used in the experiments that
follow. The methodology is well known, but application to computer simulation
models like the AMAN simulation requires care. Section 6.1 shows how traditional
Design of Experiment methodology may be applied, and improved, in application
to computer simulation models of this sort. Section 6.2 reports a variety of methods
to investigate the distribution of simulation output when a single observation 1s
taken per run. Many of the methods have been developed for smaller data sets and
so their use on simulation experiment output allows certain changes to be made in
their application. Taking only one observation per simulation run in terminating
simulation experiments preserves independence in data observations, but some
information on the underlying in-run distributions may be lost. Section 6.3
presents some methods to further investigate in-run distributions.

6.1 Setting up computer simulation experiments

Techniques employed by the classical Design of Experiment (DoE) literature
have in the main been developed for physical experiments, such as agricultural or
pharmaceutical trials. The experimenter has a question or hypothesis they wish to
investigate by estimating how input variables affect output indicators. Efficient
experimental designs are built to allow the important input effects to be estimated
simultaneously. Three principles underpin design of these experiments (Box,
Hunter & Hunter 1978):

Randomization Effects that are not interesting or not known may be present.
Randomization guards against their potential bias by balancing them out.

Blocking Blocks of homogeneous experimental material receive identical input
stimuli. The block effects may be estimated to allow interesting effects to be

free of their bias.
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Replication Experiment repeats increase the precision of output and the power (in
the Neyman-Pearson sense (Rice 1995)) to detect significant effects.

Many simulation models may be experimented on in a similar manner to
physical experiments. However, computer simulation experiments present two
opportunities for gain over traditional DoE. Firstly, randomness is controllable
through deterministic random-number streams. Variance reduction methods have
been developed to make use of this property (Law & Kelton 2000). Secondly, the
time of a simulation run may be short and so computer simulation experiments
have the potential to replicate to numbers in great excess of traditional DoE. This
aids precision, power to detect effects and opens doors to alternative types of
analysis. The second property is of particular relevance to this work - the AMAN
simulation run time is largely determined by the speed of the sequencing
algorithm and may complete in as little as half a minute. This enables many

repeats to be made per experimental design point.

Experimental designs are chosen with an underlying Analysis of Variance
(ANOVA) model in mind (Wu & Hamada 2000):

Y = 3X +e with E[Y]=8X (6.1)

where the (n x 1) response vector Y is dependent on (n x p) design matrix X of
known form, the (p x 1) estimated coefficient vector 3 and a (n x 1) vector of errors
€. A common problem with ANOVA type models is over-parameterization: there
are more parameters to estimate than there can be independent normal equations
to solve. This means that there will be an infinite number of solutions unless extra
restrictions are added (Searle 1971). Careful thought on the form of restriction is
needed to make sure estimates are useful and understandable with respect to the
objectives of experiment. Let 3;; represent level j of coefficient type 7. The usual
restrictions put on the model would be to set ) f;; = 0. This form of constraint is
readily interpretable for balanced, complete designs. A general alternative to this
is to set base settings of parameters to zero, e.g. 3;) = 0 Vi. In this case each
coefficient estimate of type ¢ compares to its level 1. This makes good sense for
interpretation of an experiment run to compare new treatment combinations with
a base. This is especially true for simulation experiments where the interest is in
comparing the validated base design point to different treatment combinations.

Given a set of experimental constraints a number of competing designs may be
formulated. Choice of the design may be made on the relative importance of
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6.2. Analysis of simulation run aggregate statistic distributions

coefficient estimates. For instance, some designs may not estimate all important
coefficients, others may do so but have a poor underlying coefficient correlation
structure rendering interpretation of results problematic. Designs are chosen to

ensure that output modelling is made from as good a starting point as possible.

Once the experimental design has been run output analysis may begin. Methods
used on simulation models range from observing animation, plotting dynamic
behaviour to more rigorous statistical methods (Law & Kelton 2000). In each
simulation run j at design point ¢ for k = 1 ..., n;; there may be several
observations z;;;. of interest, correlated in some way by k. Many statistical analysis
methods assume independent data observations, so a common method to analyse
2k is to aggregate the observations by £ into a single statistic y;;. Many repeat
runs per design point result in empirical distributions Y; = {y15, ..., yn;} of the
statistic for each design point j. Methods used to analyze these distributions are
described in Section 6.2. A problem with using a single statistic y;; to represent
2,k is loss of information: everything that happens in a run is reduced to just
one statistic, usually without knowledge of its sufficiency (in the statistical sense
(Davison 2003)). Statistical methods based on proportions may be used to further
analyze the original observations z;;; to gain more simulation information. Some
relevant models of proportions are reviewed in Section 6.3.

6.2 Analysis of simulation run aggregate statistic distributions

This section considers analysis of a terminating simulation experiment. The data
to be analyzed is a set of independent observations
Y ={y;;i=1,...,¢9,7 =1,...,n;} where j is the repeat made at design point 1.
The question to investigate is how the (M x ¢) experimental design matrix X of M
input factors at ¢ design points affects output data. Section 6.2.1 runs through
some graphical techniques. Section 6.2.2 presents an overview of a relatively new
methodology, EDFIT, that permits investigation of the significance of X on Y’
distributions. Alternative methods follow based on a summary of the distribution
of Y. Estimation routines, significance tests and bootstrap recipes used in this
work are given. Sections 6.2.3 and 6.2.4 look to analysis on E [Y'], Section 6.2.5 on
Var (Y') and Section 6.2.6 gives some general-purpose methods to investigate other

distribution summaries such as skewness.
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6.2.1 Graphical distribution analysis

The scatter diagram is a basic graphical technique often used to visualize
experiment output. When many replicates are made per design point it is more
useful to summarize information from scatter diagrams in design point Empirical
Distribution Functions (EDFs). Analysis may then be made to see if one design
point stochastically dominates another, or if differences exist in distribution
summaries such as mean. An alternative to EDF inspection is to further compact
the distributions using design point boxplots or histograms (Rice 1995).
Histograms are more applicable to discrete data and boxplots to continuous. It is
perhaps easier to see differences in location, variance and shape of distribution
using boxplots and histograms than EDFs.

6.2.2 The EDFIT method of distribution analysis

Overview

The EDF may be used as a graphical technique, but is further put to use in the
Empirical Distribution Integral Test (EDFIT) methodology developed by Cheng &
Jones (2000) and Cheng & Jones (2004). This statistical method aims to find
differences between design point EDFs in a similarly structured way to Analysis of
Variance. If a difference is found, the methodology provides an indication as to
whether the difference is in location, variance or shape. Let an independent set of

n; runs be made at each experimental design pointi = 1, ..., g, then define
standardized EDFs:

Yi(u) = Vni(57(w) = 57(w)) i=1,2,....q (6.2)
where

S (u) = 2t 29.1,,](573-)7 O<u<l (6.3)
and

T () 1 f0<z<u
U ‘/E = .
[0 0 otherwise.

Since EDFIT uses standardized EDFs it is distribution free. A linear model
analogue for standardized EDFs is made in Cheng & Jones (2004). Let F;(y) be the
discrete cumulative distribution function (CDF) of scaled ranks of observations at
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the 7" design point and:
Flu) = (F(u), Fy(u), ..., Fyu).

Then the EDF linear model is:

F(u) = Abu)
where
A = [1q|A1]

where b(u) is a column vector of unknown functions. Cheng & Jones (2004) derive
an estimator for b, (u) and a test for the null hypothesis Hy : b1 (u) = 0. Cheng has
also developed tests for significance of individual components b;(u) and uses a
Fourier analysis to break this test down into tests correlated to mean, variance and
skewness. Since this is not published at the time of writing his work is presented

next for completeness.

Cheng decomposition of b

First, define matricies as Cheng & Jones (2004). Denote r = n;/n, J = 1,
D = /r1, where I is the g x ¢ identity matrix and p = r1,. Set
B=D(I,-1,p")A, and G = (BT B)~!. The estimate of b;(u),
bi(u) = (1/y/n)GBTY*(u). Denote S(u) = Bb, (u). Then the EDFIT test statistic
T? = ST(u)S(u) is used to test the hypothesis b, (u) = 0.

Assuming that b; (u) is not null the individual components of b, (u) can be
considered. If the experiment is unbalanced or incomplete then B” B is not
diagonal. In this case we cannot, strictly speaking, test for each component
independently. Thus if we are testing if some particular b;(u) = 0, this should be
conditional on the others also being fitted. However we might consider the fitting
of each b;(u) as if it had been fitted on its own using the expressions for Bl(u) All

the b;(u) are of the form

q
bi(u) = Zb”Yj*(u)
j=1

94



6.2. Analysis of simulation run aggregate statistic distributions

(where "7 | b; = 0). We can therefore replace each Y*(u) by its Fourier
decomposition using 1//rnY; (k/n) = (Si(k/n) — k/n) = 3" &;sin(lrk/n), say.
We have that (Cheng & Jones 2004)

1

n
. 2
c; = — E
J mn P AT

Y (k/n)sin(lrk/n).
Thus
) = Zbinj*(k/n)

- Z bis[Vrn Y éysin(lrk/n)]

n 18
= > Vrn> byéysin(ink/n)
=1

J=1

= Z Ciisin(lrk/n)
I=1
where
q
Cn = \/ﬁz Crjbij
j=1

Suppose the function f(k/n) has Fourier expansion: f(k/n) = 3_7_, B, sin(jmk/n).
(Note that we must have 3, = 0.) From Parseval’s Theorem

1 n 2 k‘ 1 n ,\2

EZf (;)—52@-
k=1 =1

In our case

1~ k 1 &

=N P =2 C?

TLZ z(n) QZ i
k=1 =1

We can therefore examine the distribution of each of the C'2 | = 1,2, 3 which
effectively and respectively measure the mean, variance and skewness of b;(k /n),

and look at
RQ —_ l i{}?(é) . CVQ. - CVQ. . CQ.
) n - 1 7 1z 21 31

for the remainder of the function, b,(k/n).
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EDFIT Tables

The Cheng decomposition of b permits similar summary tables to be made to
those produced by statistical packages for linear model results. Individual
coefficients are tested for overall significance in distribution with 7" statistics, and
for difference in mean, variance and skewness with Fourier component test scores

C;.

A first step in linear model fitting is often to test coefficient types with an
ANOVA table. Similar EDFIT one-way and two-way classification tests are shown
in both Cheng & Jones (2000) and Cheng & Jones (2004). A more general method of
building EDFIT tables when the experimental design may be unbalanced or
incomplete is described here. In this situation the covariance matrix of coefficients
b is non-orthogonal. It is therefore not possible to decompose ANOVA sums of
squares, or EDFIT Test statistics into separate components for each factor.
Differencing is used in ANOVA tables for this problem (Searle 1971). The EDFIT
test statistic, 77 is non-decreasing as the number of coefficients in the EDF linear
model increases. It is therefore reasonable to apply the same idea.

Let (3;; denote coefficient j of variable type i. Denote the increase in test statistic
T? due to type i coefficients be R[3;|5; 1, ..., 1] and the test statistic when all
coefficient types to 3; are included be R[f;, 5;_1, ..., f1]. Then:

R[ﬁi|ﬁi—ly s 3:61] = R[,ﬁiwﬁi—la - -a/ﬁl] - R[/ﬁi—la s 7/61]

is a test statistic for fitting g; type coefficients conditional on f;_1, ..., being
fitted. As noted in Searle (1971), the order of testing significance of §; may affect
the significance of effect detection.

To obtain a reduced EDFIT table with test scores broken down into components
requires a method to aggregate the individual component scores. Now, the
individual components of S(u), S;(u) say, have the same form as the b;(u) above.
That is, all the S;(u) are of the form

Si(u) = s ¥y (u)

where Y °/_, s, = 0. Following along the lines of the Cheng decomposition of bi(u):
N N R~

-y SH=-)== o

n J (n) 2 r; C””

=1
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Table 6.1: Generic EDFIT table layout example

Coefficient T? C1 Cy Cs Cr
B1 e11(p11) ei2(pi2) e13(p13) e14(p14) e15(p1s)
B emi(pa1)  eara(pa2)  ems(pas)  enalpma)  ems(pus)

The distribution of various C? . may therefore test difference components

mj

correlated to mean, variance and skewness of each S ]2 (u). The overall test

T? =379, Si(u) and s0 a test statistic for each Fourier decomposition term of 7" is
Cz =31 (1/2)C% .. This may test for difference in mean, variance and skewness

of T?. The C?, statistics are also non-decreasing as number of coefficients increases.
They may be used in an EDFIT table in the same manner as 7" statistics.

Presentation of EDFIT tables

Two types of EDFIT table may be formed: a reduced EDFIT table testing
significance of coefficient types, and a full EDFIT table testing significance of
individual coefficients. Both types are presented in this work with the basic layout
of Table 6.1. In a reduced EDFIT table the order of significance tests is the
descending order of the table. So in Table 6.1 coefficient type ; is added first. In a
full EDFIT Table the order is not important. In both tables column labels refer to
the EDFIT statistics for overall test statistic 7%, the Fourier decompositions C; - C
and the remainder Cr. Actual statistics are given as e;; and corresponding
p-values p;; in brackets. If a term is significant at the 0.02 level it is highlighted in
bold type. For example, if Table 6.1 is a reduced EDFIT table then coefficient type
1 is significant in overall distribution and a difference is found in component 1,

correlated to mean of the distribution.

Calculation of EDFIT significance levels

The EDFIT procedure is distribution-free so test statistic distributions under the
null may be calculated using Monte-Carlo simulation. For any particular EDF
linear model (i.e. A matrix) the distribution of 7?2 and individual j;; terms may be
calculated to arbitrary accuracy with a total of B, say, simulations. More simulation
work is required for a reduced EDFIT table because reference distributions for
each coefficient type ¢ need to be estimated. Each R[3;|5; 1. ..., ] test statistic is
compared to a Monte-Carlo distribution formed using an A matrix with only the
B (j =1,...,k;) columns active. If ¢ is the maximum number of coefficient types
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to be included in an EDFIT table and B Monte-Carlo replicates are made for each
coefficient type then the total number of Monte-Carlo simulations run is c5.

6.2.3 Metamodelling mean from a continuous distribution

If difference in distribution is found using graphical techniques or EDFIT, it may
be interesting and informative to fit models to distributional summaries such as
the mean. Such a model is used in regression analysis, where the linear model is of
the form of Equation (6.1). There follow some methods of estimation and
significance testing when some of the following three assumptions are made.

1. E (€) = 0. This is implicit in model (6.1).
2. Var (e) = Io?, or independent errors with constant variance.

3. €; ~~ N(OO‘?)

Ordinary Least Squares estimation

The estimator that arises from minimizing error sum of squares €’e is
B = (X'X)"1X'Y. 3 has the following properties when the above assumptions
hold (Draper & Smith 1998).

1 only §is an unbiased estimator of 3.
1and 2 3 is the minimum variance unbiased estimator of 3.

1,2and 3 3 is the maximum likelihood estimator. Decisions on significance of
regression and individual coefficients may be made based on the standard

asymptotic theory.

Generalized and Weighted Least Squares estimation

Suppose that Var (e€) = V. Then the generalized least square estimator
B=(X'V1X)l1X'V-Y. Assuming Var (¢) = V is known then B is the
minimum variance linear unbiased estimator of 8 (Draper & Smith 1998). If V is a
diagonal matrix, observations are independent with different variance, and B isa
Weighted Least Squares (WLS) estimate. With computer simulation experiments
the form of V' may be non-diagonal. For example, if variance-reduction techniques
such as common random number streams between runs at different design points
are used then independence between observations is compromised (Banks 1998).
However, it may be reasonable to ignore these correlations if model errors appear
to be random. Variance might be expected to vary by design point and so the
Weighted Least Squares estimation may be more appropriate than OLS.
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Generalized least square procedures for WLS problems are well developed.
Models for the mean are fitted with the weights in V' based on a model of variance
with estimated parameters . If the variance model is dependent on the model for
mean (e.g. variance proportional to a power 6 of the mean response) then the
algorithm becomes recursive with estimates of 3 used to update those of § and
visa versa, until some kind of convergence criteria is satisfied (Carroll &

Ruppert 1988).

Carroll & Ruppert (1988) do not advocate estimating a diagonal V' using the
inverse of design point sample variance as weights. This is because in the
traditional design of experiment world few repeats are made at individual design
points, so sample variance’s have very small degrees of freedom, making them
unstable. However, in simulation experiments when large numbers of repeats are
made at each design point it is often safe to estimate V" using the inverse of design
point sample variance. This has the added benefit of removing concerns about the

form of variance model.

Transformations

Transformations of the response aim to rescale the original data so that
assumptions 1 to 3 may hold and standard results used. A class of transformation
often used is the Box-Cox family (Draper & Smith 1998).

Resampling routines to test significance

Resampling routines may be used to find confidence intervals on parameters 3
(or test for significance) when assumption 3 does not hold. One method in use for
ANOVA-type models is to resample the residuals € to form new values of Y~
(Davison & Hinkley 1997). This process makes assumptions 1 and 2. An
alternative approach applicable to experiments with a large number of repeats at
each design point is to resample observations by their design point EDFE. Let Y;;
denote observation j at design point 7, where j =1,...,n;and i = 1,...,q. Since
OLS only requires assumption 1 to be unbiased the following bootstrap algorithm
could be used whatever the form of V.

Resampling OLS Forr=1,..., B

1. Fori=1,... ,gsample by, ....b;, randomly with replacement from
{1,2,...,n;}
2. Fori=1,....qandj =1,....n;set Y} :Yib;j then
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3. Fit OLS regression coefficients 8 = (X’X) ' X'Y™*.

This bootstrap also has the advantage that original observations are resampled,
rather than residuals. If residuals are independent but do not have constant
variance then an equivalent WLS bootstrap can be used. This will produce tighter
confidence intervals of 3 than the previous bootstrap. Let S*(Y') denote the (n x n)
matrix with diagonal entries equal to the inverse design point sample standard

deviation of the corresponding design points.

Resampling WLS Forr=1,..., B

1. Fori=1,...,gsample b}, ..., b}, randomly with replacement from
{]_,27 .. 7711}

2. Fori:1,...,qandj:1,...7n,-setYi;:Y;b;j and V* = S2(Y*) then

3. Fit WLS regression coefficients 8 = (X/V*~1X) "1 X/V*~1Y ™.

6.2.4 Metamodelling mean for count data

Models and fitting routines in Section 6.2.3 may be used with count data if the
assumption is made that the data is reasonably approximated by a continuous
response. However, it is preferable to use a model that suits the count data. One

such model is a log-linear model.

Log-linear models

Log-linear models where In(E (Y;)) = B8X; with Var (Y;) = ¢?E (Y;) for
i =1,...,n may be built and estimated using Generalized Linear model routines
(Davison 2003). The model assumes a constant coefficient of variation, i.e. variance
proportional to mean. Also assumed is that known maximum count values do not
exist - they are not specifically included in the model. If it is further assumed that
o? = 1 then the log-linear model may be thought of as a Poisson model for counts
with mean y; = exp(8X;). This assumption may be checked using analysis of
deviance: if % = 1 the residual deviance should be approximately equal to the
degrees of freedom in the model (Myers, Montgomery & Vining 2002). Otherwise,
the more general model still holds and an estimate of ¢ is used in the 3

covariance matrix to test significance.
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6.2.5 Metamodelling variance

A metamodel of variance details how regressors X affect variance of output
Var (Y;). Generalized least squares routines may be used to estimate variance
models of this form, fitting to residuals from the mean model (Carroll &
Ruppert 1988). Alternatively, models could be fitted to (Y;; — Y;), where Y,
represents sample mean at design point ¢ (Goos, Tack & Vandebroek 2001). This
approach allows the variance model to be estimated independent to a model for
mean. Many forms of variance model exist. In this work the Box & Meyer (1986)

form is used:
Var (V;) = o’exp(0X;) (6.4)

fori=1,...,n, where ¢* is a scale parameter, § an unknown (n x 1) parameter
vector and Xj; the i'" column of X, a (p x n) design matrix. This form of model is
chosen because it guarantees that Var (Y;) is a positive quantity, while explaining
the variation of output in terms of the regressors X. Carroll & Ruppert (1988)
present methods to estimate the parameters 6 in this and other forms of variance
model. A number of competing techniques exist. For instance, a log transformation

on both sides yields:
In(Var (Y;)) = 6X;+In(c?) (6.5)

and a bias-corrected WLS estimiation procedure may be used. An alternative is to
assume normality of mean model residuals, or (Y;; — Y,), and then apply
maximum likelihood directly to model (6.4). These estimates may be calculated
using a non-linear least squares routine. It has been shown that maximum
likelihood estimates are asymptotically equivalent to bias-corrected WLS
estimates, and other pseudolikelihood and Restricted Maximum Likelihood
(REML) estimates, even when the normality assumption does not hold (Davidian
& Carroll 1987). If the model for variance does not depend on the mean, as in
model (6.4), then the estimates 8 are asymptotically normal with mean . Their
covariance matrix depends on whether residuals from a model for mean or

(Y;; — Y,) are used. Denote v as a vector of length ¢, where v = 0.X + In(c?),

vy = 6v/56 and £(0) as the covariance matrix of v,. Then, assuming the model for
mean is correct and squared residuals from the model (with kurtosis «) are used to
fit, 6 has covariance (2 + x){4n&(0)} . If the model is fitted to (Y;; — ;) (with
kurtosis x) and m repeats are made per design point then 8 has covariance

{2+ k) +2/(m —1)}{4n&(0)} ! (Carroll & Ruppert 1988).
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Note from the two forms of covariance that using the residuals from a model for
the mean is more efficient than using sample means. However, as i — oo the
relative loss in efficiency — 0. So, if m is large enough there is more concern about
the selected model for mean than there is about efficiency. In a simulation context

when m is large, fitting to (Y;; — Y';) is thus preferable, unlike traditional use of

such models.

6.2.6 Metamodelling of further distribution summaries

Covariates may have no effect on mean or variance of a distribution yet still
account for difference in other distribution summaries such as skewness or
kurtosis. The analysis of distribution methods in Section 6.2.2 may point to such
systematic differences. If so, a model may be built to explain the distribution

summaries in terms of X.

Consider skewness ~. An attempt to make use of all the data might fit a linear
model to Z;; = ((Vi; — Y;)3)/(S?)%? where S? is the sample variance at design
pointi =1,...,¢,and j = 1,...,n;. This model would have E [Z;] = v, = 8X.
However, if Y;; ~ N(u;,0?) then Z;; is not normal and so standard theory
revolving around this assumption fails. Also, it is difficult to know what form V'
might take for data transformed in such a way. The OLS bootstrap algorithm
could, in principle, be used anyway since the OLS estimates are unbiased.
However, the estimates returned are likely to be quite variable, reducing power to
detect. A linear model fit to sample skewness at each design point overcomes these
problems at the expense of collapsing the number of observations from n to ¢. The
Central Limit Theorem shows that the distribution of sample skewness is
approximately normal, so standard theory may well be applicable. If the normality
assumption fails, resample routines may be used to test for significance. The
following use skewness but other summaries such as kurtosis could similarly be

used.

Resampling skewness v with OLS Forr =1,..., B

1. Fori=1,...,gsample by, ..., b, randomly with replacement from

i

2. Fori=1,....qset V] = 1/n; 3%, Yy and 572 = 1/(n, = 1) 3251, (Yay, = V5)?
and 47 = (1/(n; = 1) 3702, (Yar, — V,)?)/(57%)¥? then

3. Fit OLS regression coefficients B;f = (X' X)) 1 X'~*
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6.3. Some methods to examine in-run distributions

This routine may run into problems if correlation exists between individual
observations at different design points. Variance and mean models may be quite
robust to ignoring such pairs, but higher moments such as skewness or kurtosis
are heavily dependent on the extreme values of a distribution. If the observed
extreme values are correlated through random number stream then confidence
intervals based on the routine above will not be symmetric about the original point
estimate, affecting power. Assuming that the same number of observations n{ are
run per paired design point, and all observations in the paired design points are

paired, then the following bootstrap may be used.

Resampling skewness v with OLS, accounting for correlation between design points
Forj =1,...,dlet D; define the j*" set of design points with correlated
observations and f(i) give the set index j of D that design point i belongs to. Let
n{ observations belong to each correlated group. Then forr =1,..., B

1. Forj =1,...,dsample b}, ..., b;n? randomly with replacement from

2. Fori=1,....,qsetY, =1/n, >0ty Yy and

HO¥
S22 =1/(ni = 1) X%, (Ya,, — V/)? and
3= 1= ) S0 (Vi — V1P/(S5%)%/2 then

I

3. Fit OLS regression coefficients 8 = (X’ X )~ 1 X '~y*.

6.3 Some methods to examine in-run distributions

6.3.1 Examining tails by setting thresholds

The methods above use a single statistic y;; to represent the potentially
correlated in-run output z;;;Vk. This is done to make sure the data analysed is
independent. However, if in-run outputs are only aggregated by a single statistic,
such as an average, some information may be lost. For example, underlying
output distributions Z; and Z, for two treatments may not be different in means z;
and z,, yet Z; still have a longer tail than Z,. This may be important. One way to
look at the tail behaviour of the Z; regardless of their distribution and still take a
single observation per design point is to set a threshold 7" and record the
proportion of data points D that exceed T in each run. Failure C' might then be

defined as a binary variable where

o 1 D>0
0 D=0.
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6.3. Some methods to examine in-run distributions

Tail behaviour may be analyzed by estimating how covariates X affect Pr(D > 0)
by building logit models. The rational behind logit models and some problems
associated with them are next discussed.

Logit models

Let Y;; follow a Bernoulli distribution taking values 1 or 0 with probability 7;
and 1 — 7; at design point i for j = 1,...,n;. Then Y} is binomially distributed with
index n; and parameter ;. The usual linear model assumptions for ¥; = 8X; + ¢;
do not hold for this response distribution (McCulloch & Searle 2001). However, a
link function may transform the non-linear Y; to a linear scale. One such link
function is the logistic transformation In[r; /(1 — m;)], or equivalently
m; = 1/(1 +exp(—BX;)). This is interpreted as the log of the odds of success.

Logit models fall into the class of Generalized Linear models (McCullagh &
Nelder 1983). A Weighted Least Squares algorithm may be used for these models
to obtain maximum likelihood estimates 3. It is known that asymptotically Bis
normally distributed (as n — oo each element n, — oo in constant proportion,
number of distinct binomial observations N and number of parameters p is fixed).
Walds test for significance of A is made assuming its asymptotic form. Asymptotic
confidence intervals of 4 may similarly be constructed. Alternative confidence
intervals may be formed by the likelihood ratio statistic or score statistic
(Azzalinin 1996). These are more complicated to compute (Cox & Hinkley 1974).
Some problems are known to occur with logit models, in particular results based
on the asymptotic theory may be misleading for a number of cases. For example, if
m; = 1 or 0 whenever coefficient BJ is active then the estimated lﬁj| — 5050 3
cannot be reliably estimated and maximum likelihood estimates do not exist
(Santner & Duffy 1989). Other problems are discussed in Hauck & Donner (1977),
Azzalinin (1996) and Myers et al. (2002). A simulation experiment with many
repeat runs per design point presents an opportunity to use resampling to check
the asymptotic results, and perhaps better understand them.

Resampling logit regression model Forr =1,..., B
1. Fori=1,...,¢gsample b},...., b}, randomly with replacement from
{1j 2, e ,TL,L}

2. Fori=1,....,qandj=1,...,n;setY;: =Y, then

3. Fit logit regression coefficients 3 using a weighted least squares routine.
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6.3. Some methods to examine in-run distributions

6.3.2 Thresholds with sensitivity limits

Other definitions of success and failure may also be formed. Here the idea of a
sensitivity .S in the proportion of data points allowed to exceed the threshold is
introduced. If the threshold 7' is set and the proportion of data points D that
exceed T recorded, then failure C is redefined as:

C— 1 D>S8
0 D<S.

6.3.3 Targets

The sensitivity idea may be taken one step further if 7' viewed as a target that
one seeks to make most of the time. It is expected that 7" will be exceeded and
interest is in how covariates X; affect the distribution 8, of the proportion of data
that exceed T at design point i. A parametric model is developed to analyze this.
The proportion of data that exceeds T at design point i is modeled as a Bernouilli
variable with probability 1 - m;, as above. A beta distribution with shape
parameters s;; and s;, is used to model ¢;, the proportion of data that exceed T at
design point i. Three potential methods to investigate how covariates X affect the

distribution §; follow.

Approach 1 Generalized linear models. A link function makes the response linear,
and permits prediction of the beta expected value E [0;]. A disadvantage of
this approach is that it is limited to detecting difference in expected value of

the beta distribution.

Approach 2 Maximum likelihood estimates §;, are §;, are asymptotically normally
distributed. Weighted least squares with variance estimated from the
standard error of maximum likelihood estimates may be used to regress

design matrix X against §; and 8. That is,

51 = X +ea
83 = [2X + e

The parameter maximum likelihood estimates of the beta distribution are
sufficient statistics that explain everything about the distribution. A way to
test for change in distribution is therefore the t-test for significant covariates.
This test does not explain what part of the distribution they change. But
mean, variance and skewness regression models may also be estimated using

5, and $§,, and similar t-tests be made.
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6.3. Some methods to examine in-run distributions

Approach 3 A final alternative is to somehow directly estimate §; and 8, based on
/BlX and /BZX

Use of these methods to investigate 8 results in a clearer understanding of the
proportion of data above threshold 7", when there are data above the threshold.
This is useful to determine whether once a threshold is broken, it is broken by a
large proportion of the data, or only by a small proportion.

6.3.4 Comment

No method based on threshold setting is completely satisfactory. Unless the the
choice of threshold is already made, for instance as a result of target setting, results
will be based on subjective choice of 7" or S. A disadvantage from the use of
proportions is that information on size of difference between data and the

threshold is lost.
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Chapter 7

Experiments on model of arrivals to
Stockholm Arlanda airport

Question What are the effects of change to landing sequence algorithm and
delay-share strategy on the validated computer simulation model of aircraft
arrivals into Stockholm Arlanda airport?

Brentnall, Cheng, Drew & Potts (2003) report a preliminary experiment made to
investigate this question. This chapter continues the analysis in more detail.
Section 7.1 explains the choice of five performance measures used and sets up the
basic simulation input parameters. Sections 7.2 to 7.5 report a sequence of
experiments made on the simulation model. In each case an experimental design is
formulated to help answer a specific question, statistical analysis is made on
output and the findings are summarized. Section 7.6 brings together the
experimental work to provide an answer to the above question, and draws some
general conclusions that may be applicable to aircraft arrivals into any airport.

7.1 Experiment setup

7.1.1 Performance indicators

Change to the system is examined through five performance indicators
representing potential benefits and risks. Two benefit performance indicators
chosen are delay and landing rate. These relate to the efficiency of Air Traffic
Control because if more aircraft land, or aircraft have less delay then the Air Traffic
Control system is thought of as more efficient. The precise definitions used are:

Delay Mean positive delay for all aircraft in simulation landed in time period
[240,540) minutes.
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7.1. Experiment setup

Table 7.1: Summary of algorithm inputs to model

i Algorithm Deadline CPS Other

1 FCFSIAF - - -

2 Global makespan  15min 3 If Deadline fails ignore constraint
3 FCFSR/W - - -

4 MPS Heuristic - - MPS=3

5 Approach Stream Makespan 15min 3 If Deadline fails ignore constraint
6 Tardiness IAF  15min 3 If Deadline fails ignore constraint

Landing rate Number of aircraft landing in an hour during the am arrival peak
hour 6, i.e. [360,420] minutes.

The risks examined are from the change to control methods that may result from
different landing sequences or delay-share strategies. The first risk indicator
chosen is time spent in the approach sectors. Its change may have effects on
system behaviour and controller workload. Another risk to controllers’ behaviour
is the stability of the delay-to-lose advice generated by an AMAN: if controllers do
not receive stable sequence advice they may be tempted to ignore it. Finally,
holding time is used to examine effects of moving delay away from the airport.
The precise definitions of these performance indicators are:

Holding Mean time aircraft spend in all holding areas in time period [240,540)

minutes.

Time in approach sectors Mean time aircraft spend in Stockholm Arlanda
approach "ESOS” sectors in time period [240,540) minutes.

Stability Mean Standard deviation of the delay advised to aircraft by the AMAN
in time period [240,540) minutes.

7.1.2 Input factors

There are a number of input factors that may be varied in experimentation. The
following experiments concentrate on the major factors: sequencing algorithm,
delay-share strategy, wake-vortex mix and arrival rate profile. Input parameters
used to validate the simulation model found in Table 5.4 are used as the simulation
base set-up. Settings for AMAN sequencing algorithms, delay-share and
resequence strategies are shown in Tables 7.1 to 7.3. These are described in Section
4.2.1. Input parameters are set to these values in the following experiments unless

otherwise specified.

108



7.2. Experiment |

Table 7.2: Summary of delay-share strategy inputs to model

j Delay-share Strategy  Route delay proportion
1 All in Hold -
2 Even 0.2
3 Late 0.2
4 Early 0.2

Table 7.3: Resequence strategies used

Delay-share Algorithm ¢

Strategyj 1 2 3 4 5 6
1 1 11
2 2 22 32
3 2 2 2 3 2
4 2 22 3 2

Resequence strategy 1 Upon arrival to IAF
Resequence strateqy 2 Every batch size 2 aircraft arrivals to system, or at IAF if not already

sequenced
Reseguence strategy 3 Every arrival to the system

7.1.3 Output analysis

The analysis techniques described in Section 6.2 are used to analyze the effects
of input factors on performance indicators. That is, models are built to test for
differences in distribution, and the distribution summaries mean, variance and
skewness. Charts are used to display point estimates and confidence intervals for
estimated coefficients in a number of cases. In these charts the x-axis Latin letters
are used to represent Greek coefficients used in the text, wherea=a,b=4,d =4, f
=k and g = \. The material presented is a selection from the total experimental
analysis. It has been chosen in order to provide detailed statistical evidence for the

conclusions drawn.

7.2 Experiment I

7.2.1 Question

The computer simulation has been validated with a set of input parameters
against data from arrivals to Stockholm Arlanda in autumn 2003. What would be
the effect of changing only algorithm and delay-share strategy?
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7.2.2 Design

There are 18 possible algorithm and delay-share strategy combinations. As not
all algorithm - delay-share combinations are possible, we have to use an
incomplete two-way design. The design is shown in Table 7.3, where combinations
that may be run in the simulation have a re-sequence strategy. This design is
feasible since the time of a single simulation run is at most around two minutes on
the computer used, a 2.4Ghz Pentium 4 with 512MB of DDR RAM. If 50 runs are
made at each design point and performance indicator Y, recorded, then for
i=1,...,6,5=1,...,4and k = 1, ..., 50 the experimental output linear model is:

Yijp = p+ o + 0; + (af)ij + cije (7.1)

where p is an overall mean, «; the effect of algorithm 7, g3, the effect of delay-share
strategy j, (af3);; their interaction and ¢;;; a random error. Only 18 of the
coefficients are estimable in total, but this includes all the main effects «; and ;.
The analysis of this experiment is geared towards seeing if «; and j; effects are
significant, and if so, how. This information feeds back to an idea of how change to
sequencing algorithm and delay-share strategy affect the system as-is.

7.2.3 Analysis

Delay

Analysis of distribution Figure 7.1 shows boxplots of mean delay split by
algorithm and delay-share strategy. This visualization shows a clear difference in
distribution between algorithms operating with a delay-share strategy in hold, and

those not in hold.

Analysis of mean Setting a factor p;; € {0, 1} of two levels to represent the
difference identified above, the reduced model:

Yie =+ pij + €5k (7.2)
may be fitted using OLS, since variance is approximately constant. Residuals from
the fit are not normally distributed so the asymptotic theory for significance of
estimates is compromised. However, Jacknife one-at-a-time deletion of
observations (Davison & Hinkley 1997) may be used to find these. The result is an
estimate of the second level of p;; (with the first set to 0) at -1.492 and 95%
confidence interval of [-1.493, -1.490]. This difference is backed up by an empirical
95% confidence interval of [-1.537,-1.451], from a bootstrap experiment with 2000
repeats, on the difference in mean between these two groups.
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Figure 7.1: Experiment |: Mean positive delay boxplots

Landing rate

Analysis of distribution An EDFIT analysis of the distribution of landing rate at
design points did not return any significant coefficients. This confirmed visual

inspection of boxplots.

Analysis of mean Analysis of distribution using EDFIT or charts assumes that a
traffic sample effect ; is bound up in error ¢; ;. This is a reasonable assumption to
make if, regardless of correlation between traffic samples, the final distribution of
the response at each design point is representative of the true distribution.
However, use of common traffic samples is a simulation trick to reduce variance
and find important coefficients. If algorithm and delay-share combination effect is
denoted r; and blocking effect of traffic sample v, then investigation of AMAN
effects may be carried out using the statistical model:

Yie=pu+m+y+ea (7.3)

fori=1,...,18, k =1,...,50. Friedmans nonparametric test (Rice 1995) is suitable
to test the null hypothesis that 7, = 0 for i = 1,..., 18. The statistic for no
difference due to factor = is 45.991, with df = 17 and a p-value = 0.0002.
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This suggests that there may be a difference in landing rate between the algorithm

and delay-share strategy combinations.

Linear model (7.3) was estimated using OLS since variance appeared constant.
The linear model assumes discrete data with range [15,36] may be approximated
by a continuous distribution. Of the 18 estimates, only two significantly different
groups were found. Group 1 contained algorithm 1 and other algorithms with
delay-share strategy 1 (in hold), group 2 the remaining combinations. A simpler
model to (7.3) was made, replacing m; with a factor p; € {0, 1} of two levels based
on the split. Residuals were not normally distributed, and a transformation to
normality was not found. Significance tests were carried out using Jacknife
one-at-a-time deletion of observations. Setting group 1 as a base with value 0 the
estimate coefficient for group 2 is -0.220, with a Jacknife 95% confidence interval of
[-0.223,-0.216]. However, the multiple R? for Yz = p + p; + i + € 0of 0.9928
compares to a multiple R? of 0.9923 for Yi; = p1 + i + €4, bringing into question
the amount of information contained in the confidence internal.

Holding

Analysis of distribution The boxplots in Figure 7.2 show little difference between
time in hold for algorithms at delay-share strategy 1, i.e. in hold. However, the
pre-hold strategies (2 - 4) reveal differences. Algorithms 1 and 5 seem to require
more holding than 2 - 4. There is also some evidence of a difference between the
three pre-hold delay-share strategies. All strategies use holding only as a last
resort, but delaying aircraft as late as possible (strategy 3) perhaps requires more
holding time than delaying aircraft earlier on. These apparent trends are analyzed
below. An EDFIT analysis finds «;, 3; and (af3),; all significant. However, in this
case the significant individual EDFIT coefficient are hard interpret without an

estimation procedure.

Analysis of mean Figure 7.2 shows that a fitted model to means would not satisfy
a constant variance assumption, and no Box-Cox transformation of the response
was found to achieve this. Coefficient WLS estimates and bootstrap (B=1000)
confidence intervals are shown in Table 7.4. The main points from the boxplots
come through in these estimates: a significant difference is found between
delay-share strategy 1 and other strategies, and between algorithms 1 and other
algorithms. However, the other effects looked for are not statistically significant.
Although the j3; coefficient point estimates are different, their confidence intervals
overlap so the possibility that they are all the same cannot be rejected.
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Figure 7.2: Experiment I: Mean holding time boxplots

Table 7.4: Experiment |: Holding time, WLS linear model coefficients

Coefficient Estimate 95% C.1.
Lower Upper
L 1.29 1.26 1.33
as -0.09  -0.10 -0.08
as 0.09  -0.10 -0.08
Qu -0.09  -0.10 -0.09
as 0.01 -0.05 0.06
ag 0.01 -0.04 0.07
B2 -1.19 -1.23 -1.15
O3 -1.16  -1.20 -1.12
B4 -1.20 -1.24 -1.16
(a3)a2 0.00 -0.01 0.02
(a3)32 0.00  -0.01 0.02
(aB)42 0.00 -0.02 0.01
(af)s2 -0.08 -0.14 -0.03
(a3)23 0.01 0.00 0.03
(a)33 0.01 -0.01 0.03
(a3)a3 -0.02 -0.03 0.00
(@B)s3 -0.09  -0.15 -0.04
(a3)s54 -0.08 -0.14 -0.03
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Table 7.5: Experiment |: Holding time, variance model coefficients

Coefficient Point 95% C.1I.
Estimate Lower Upper
o? 0.0199 - -
Group 2 -1.36 -1.95 -0.77
Group 3 -1.90 -2.47 -1.33
Group 4 -2.89 -3.44 -2.35

Likewise, the confidence intervals on the (a)s; coefficients suggest there is not
enough evidence to say that algorithm 5 produces a higher mean hold time with
delay-share strategies 2 - 4 than do algorithms 2 - 4.

Variance analysis  Figure 7.2 shows a difference in variance between the design
points. Here the difference is quantified with a variance model. The fit of a model
to all 18 design points returned 4 groupings. These groups may be seen by viewing
Figure 7.2. The groups (descending by size of variance) are:

Group 1 All holding algorithms.

Group 2 Algorithm 1 not in hold and algorithm 5 with delay-share strategy as-late
as possible (strategy 3).

Group 3 Algorithms 2-4 with delay-share strategy as late as possible, algorithm 5
with delay-share strategy as early as possible (strategy 4) and even-spread
(strategy 2).

Group 4 Algorithms 2-4 with delay-share strategy as early as possible and

even-spread.

A bootstrap experiment for multiple comparison confidence intervals between
these groups was carried out by resampling 6,000 observations from the design
point EDFs and recording difference in sample standard deviation between the 4
groups. Bonferroni 95% multiple confidence intervals (Rice 1995) are shown in
Table 7.6. All groups are significantly different at the 0.05 level. A fit of a variance
model where the effect of group 1 is set to zero produced similar predictions of
variance at each design point to the full model. The maximum likelihood estimates
and their approximate 95% confidence intervals are shown in Table 7.5.
Correlation between model predictions and design point sample variance is 0.997.
From the model and use of the Bonferroni inequality there is 90% confidence on
difference in coefficients for groups 1 with all others, and group 2 with 4.
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Table 7.6: Experiment |: Holding time, simultaneous 95% confidence intervals on difference
between group standard deviation

Difference Multiple 95% C.I1.*
Lower Upper

Group 1-2 0.075 0.112
Group 1-3 0.098 0.133
Group1-4 0.114 0.149
Group 2-3 0.016 0.028
Group 2-4 0.033 0.044
Group 3-4 0.013 0.020
*6000 Bootstraps

Approach sectors

Analysis of distribution  Figure 7.3 shows boxplots of the distributions. It appears
that there is the same split as delay between holding algorithms with algorithm 1
and the rest. There is also a shift in location according to delay-share strategy.
EDFIT analysis finds similar coefficients significant to those for holding time.
However, it is again difficult to interpret their significance without fitting models.

Analysis of mean Fit of the full model using OLS appears to have constant
variance of residuals. Differences were picked up between the delay-share
strategies. Interactions were significant, seemingly adjusting for the difference
between algorithm 5 at delay-share strategy 1 and other strategies. An alternative
model was fitted representing algorithm 5 at delay-share strategy 1 as a different
algorithm 7, and ignoring the interaction terms. That is:

Yig = p+toi+ 85+ (7.4)

where: =1,...,7,7=1,....4,and k = 1,...,50. Plots of residuals were not very
different from those of the full model, so this alternative seems just as valid. It is
also more interpretable. Residuals were clearly not normally distributed and so the
bootstrap was used for significance tests. The estimated coefficients and confidence
intervals of the alternative model (7.4) are presented in Table 7.7. Similar results to
the model for mean holding time are found. They suggest that moving delay back
from the TAF area shifts the mean delay out of approach sectors, even when
delaying aircraft as late as possible before the TAFs. The algorithms have different
point estimates for their effect on this, but confidence intervals overlap so there is
not enough evidence to suggest that they have different effects.
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Figure 7.3: Experiment I: Mean time in approach sectors boxplots

Table 7.7: Experiment |: Time in approach sectors, linear model coefficients

Coefficient ~ Estimate 95% C.L*

Lower Upper
1 10.064 10.002 10.124
as -0.337 -0.383 -0.286
a3 -0.336  -0.385 -0.286
ay -0.348  -0.395 -0.294
as -0.324 -0372 -0.274
o 0.007 -0.084  0.097
a7 0.001 -0.090 0.084
B2 -0.264 -0.339 -0.191
33 -0.147  -0220 -0.073
Ba -0.369 -0.444 -0.29

*1000 Bootstraps
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Figure 7.4: Experiment |: Mean standard deviation of delay advised boxplots

Stability of AMAN advice

The analysis of this indicator is slightly different to others. By definition the
current set-up does not have a stability of advice concept, since nothing generates
advice. This is reflected in the simulation indicator for the base combination: once
an aircraft arrives at an IAF point it is placed at the end of the sequence and no
change is made to the preceding aircraft sequence. As the indicator for the base
combination is zero by definition it does not make sense to include it in the

following analysis.

Analysis of distribution Figure 7.4 shows the distribution boxplots. There is a
difference between algorithms across delay-share strategies 2-4 and a difference
between delay-share strategy 1 and the other strategies. EDFIT analysis finds
algorithm and delay-share coefficients significant in mean and variance.

Analysis of mean There is a difference in variance between delay-share strategy 1
and other strategies so WLS was used to fit a model with ¢; and g; terms only. The
results are shown in Table 7.8. They show that algorithm 4 has a higher value
coefficient than other algorithms (significant pair-wise at 90%). Also, shifting delay
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Table 7.8: Experiment I; Stability, WLS linear model coefficients

Coefficient  Estimate 95% C.I1.*
Lower Upper
m 0.1040 0.0966  0.1119
1% -0.0626 -0.0691 -0.0563
o3 -0.0636 -0.0704 -0.0573
%) -0.0421  -0.0490 -0.0355
as -0.0686 -0.0747 -0.0619
oG -0.0658 -0.0746 -0.0569
O 0.0680 0.0615  0.0748
O3 0.0675 0.0608 0.0736
04 0.0719 0.0654 0.0784

*1000 Bootstraps

back from the hold is significant and increases the indicator. There is no significant

difference between the delay-share coefficients 2 - 4.

7.2.4 Findings

Processes causing difference in output

Delay The reason for the significant difference in delay between algorithm and
delay share strategies is the inefficiency caused by sequencing aircraft based on
their order to IAF points. This happens in algorithm 1 and may occur in other
holding algorithms. For instance, suppose there are 3 medium type aircraft A, B
and C. Aircraft B enters IAF 1 and is assigned as next to land behind aircraft A
who is already in the TMA. The time aircraft B lands is not the minimum
separation of A — B because B cannot make this time. A few minutes later another
aircraft C arrives at a different IAF 2 but could have been placed with minimum
separation behind A since IAF 2 is closer to the runway. Instead C' is placed (with
minimum separation) behind aircraft B. There is more delay overall than would
be found from sequence A — C' — B. This scenario is avoided if aircraft are placed
in a sequence other than FCFS at TAF or if a sequence is made further back than
the IAF points. This inefficiency need not be the actual mechanism that occurs in
real life. However, since the base combination has been validated against real
traffic samples, there may be a real process that causes the difference. A point to
note is that the difference is not very large, mean delays are reduced in a 95%
confidence range of [1.451, 1.537] minutes.

Landing rate The 95% confidence interval of [0.216,0.223] aircraft an hour increase
in landing rate by sequencing at holds seems odd, especially given the higher
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delays from this type of sequencing. Looking at the individual landing rates by
algorithm and traffic sample shows that there is a difference in landing rate
recorded split by pre and at-IAF delay-share strategies. On some occasions
pre-IAF lands an extra aircraft in the recorded hour than does at TAF, but the
at-IAF strategy lands an extra aircraft more often. The amount of information this
result contains is minimal in terms of predictive power and though significant,
could be a result of the arbitrary choice of hour.

Risks Stability results for algorithm 3, FCFS at runway, highlight how delay
advice will be unstable even when FCEFS position in landing sequence is known.
Algorithm 1, FCFS at IAF, increases the variability in delay advice over FCFS at
runway as a result of the inefficiencies described for delay. Larger delays given to
aircraft result in greater variability in delay-to-lose advice. The stability of
algorithm 4, the heuristic, is worse than other algorithms for a different reason. It
includes a maximum position shift based on aircrafts FCFS position in the landing
sequence when it arrives in the AMAN. The shift is set to three, as in the other
smart algorithms with CPS constraints. But the algorithm does not bind the
maximum shift an aircraft makes from FCFS position to be three. For example,
consider a system sequence M — A, and a new heavy type aircraft / arrives.
Suppose maximum shift is set to 1. Now the H FCFS position is M — H — M but
M — M — H minimizes total delay so is chosen by the heuristic. Another medium
aircraft M arrives with FCFS position M — M — M — H which minimizes delay
and so is chosen. Aircraft H has now been shifted two positions from its original
FCFS position. This process causes algorithm 4 to be significantly more unstable
than other algorithms where movement from FCFS is limited by CPS constraints.

Conclusions

The following conclusions are drawn based on analysis of this experiment. The
results might be applicable to an airport with similar arrival traffic characteristics

to the model of Stockholm Arlanda.

Delay and landing rate Current methods of sequencing are very efficient in
comparison with systems that allow minimum separations to be achieved
where possible. If the minimum separations were achieved where possible
then a 95% confidence interval on the decrease in mean positive delay in the
morning peak hour is [1.451, 1.537]. New sequencing methods and
delay-share strategies are not found to increase in landing rate.

Time holding Three results were found when delay as moved back at most two
sectors from the IAF points. First, the amount of delay lost around the IAF
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points was reduced. Second, landing aircraft FCFS at IAF required a larger
mean holding time that other algorithms. Third, the variation around the
time aircraft had to hold was reduced. A final point, if route restrictions were
removed and aircraft did not have to arrive at each IAF point FCFS then the
variability of holding could also be reduced by operating with delay-share
strategies as early as possible and even-spread through route.

Time in approach sectors Shifting delay back from the TAF points reduced mean
time in approach sectors dependent on the strategy. Thus sectors further back
from approach would be required to absorb a significant amount of aircraft
delay, even if aircraft are delayed as close to IAF points as possible without
holding.

Stability of AMAN advice Risk due to stability of advice is increased by

definition. The least risk from the mean of the indicator occurred when

delaying in holds. The largest risk came from marrying the FCFS at IAF
algorithm with pre-IAF delay-share strategies. Algorithm 4 has a statistically
significant greater risk than algorithms 2, 3 and 5. This arose because
algorithm 4 does not incorporate an absolute CPS strategy, and allows greater

change to sequence position.
7.3 Experiment II
7.3.1 Question

What would be the effect of increasing traffic level intensity?

7.3.2 Design

Three criteria are used to choose the design.

Estimation Let k, be the number of arrival traffic intensity levels. Then the linear

model under investigation fori = 1,...,6,7 =1,2,3,k=1,...,k, and
[=1,...,501s
}/ijkl = u + oy + ,3]‘ + 51{ + (aﬂ)ij + (Oz(S)ik + (55)111” + €ijkl (75)

where 4, is the effect of traffic level k and («d); and (/56);; are interaction
effects of traffic level with algorithm and delay-share strategy. Other terms
are defined as Experiment I. A good design will separate the interesting
(ad);r and (56) 1, interactions as much as possible from other effects.
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Reuse Observations from Experiment I are to be reused in this experiment.
Observations from this experiment are planned to be used in further
experiments analyzing wake-vortex category and arrival route factors.

Run time As traffic level increases there are more aircraft in the model and so the
basic airspace simulation will take more time. The dynamic programs will
also take longer to run since their complexity depends on the number of

aircraft to sequence.

A full factorial design with 18 algorithm /delay-share strategy combinations and
three additional traffic levels was chosen. The correlation structure of the output
model is as good as it can be because the design is full-factorial. Three further
traffic levels were chosen for reuse reasons: new fractional factorial runs are made
in Experiments 111 and 1V, on top of this experiment, and choosing to run an
additional three traffic levels facilitated balancing new factors in these
experiments. The three traffic intensities increase at regular intervals from the
validated base level, to an intensity corresponding to approximately the maximum
arrival capacity of a single runway if only medium type aircraft arrive. Only the
morning peak is run on the model to reduce the total run time. The values chosen

are shown in Figure 7.5.

7.3.3 Analysis

As the number of design points increases it becomes more difficult to spot
trends through graphical analysis. The following analyses describe any observable
chart trends, and look for further patterns by fitting statistical models. The analysis
focuses on finding new effects for traffic level and the more important algorithm

and delay-share strategy interactions with traffic level.

Delay

Variance is seen to increase with arrival rate in output boxplots. This
observation is backed up by a fitted model of variance Var (Y;;.) = o exp(éy),
predicting design point sample variance with correlation coefficient 0.999. The
coefficient estimates in Table 7.9 show that as arrival traffic intensity increased,
variance in mean positive delay also increased. As a result, WLS was used to
estimate a model for mean. Inference based on the bootstrap found dy, v; and
(a3)s; coefficients significant, but other no other interactions. Correlation between
predictions from E [Y;,] = u + o + 3, + 6 + (a3);; and design point sample mean
is 0.999. The (ad);x and (39) . effects did not return significant in models for other
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Figure 7.5: Experiment II: Arrival rate levels

distribution summaries. Modelling skewness only returned significant positive dy
using the bootstrap. This model correlates with design point sample skewness at
0.911. The coefficients and confidence ranges from this model in Table 7.10 show
how the skewness of mean positive delay increased as traffic level increased,
suggesting that on some runs aircraft experienced greater delays than the majority
of others, and this was only due to the quantity of arrival aircraft.

Landing rate

Landing rate boxplots show a clear shift in location as arrival rate increased, and
other changes in variance and Shape. An EDFIT analysis suggested that the

Table 7.9: Experiment II: Delay, variance model coefficients

Coefficient Point 95% C.I.
Estimate Lower Upper
o2 0.0751 - -
& 0.517 0.235 0.799
03 1.342 1.060 1.624
0 2474 2.192 2.756
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Table 7.10: Experiment II: Delay, skewness model coefficients

Coefficient Point 95% C.I1.*

Estimate Lower Upper
1 1.30 0.87 1.37
0 0.56 0.04 0.81
03 0.48 0.24 0.86
04 0.82 0.56 1.20
*1000 Bootstraps

difference in location, variance and skewness is only due to arrival rate. In
building models of variance a fitted model Var (Y;;x) = o2 exp(dx) correlates with
design point sample variance at 0.994. Table 7.12 shows the estimated coefficients
and approximate confidence ranges. Variance increases up to traffic level 4, where
there is not enough evidence to say that variance is not the same as low levels of
arrival rate. Since variance differs with arrival rate level, WLS was used to fit linear
models of the mean. Only traffic level §, returned significant using the bootstrap.
Coefficients and confidence ranges for a model E [Y;;;,] = §; are shown in Table
7.11. The model correlation coefficient with design point sample mean is 0.994.

The model E [Y;;.] = . is based on an assumption that traffic sample 7, is
bound up with ¢;;,,. However, the previous experiment (Section 7.2.3) found a
difference between algorithms (p;) when traffic sample effects were incorporated,
but the effect did not add much information to the model. The additional runs
made in this experiment allowed further tests on whether p; is important.
Inference was made using a log-linear model In(E [Y;;1]) = pi + v, where p;
represents the split in sequencing technique as defined in Section 7 .2.3. The p; level
2 (when level 1 is set to 0) point estimate returned -0.00233 with SE 0.000665 and
dispersion parameter 0.00762. That is, p; is again found significant and landing
rate decreases when sequencing pre-IAF. However, the size of effect is very small
indeed, and though significant does not contribute much to the predictive power
of the model. Correlation between predicted and observed values from the model
(E [Yi;u]) = pi + . is 0.9858772. Correlation between predicted and observed
values from In(E [Y;;11]) = 7 is 0.9858728. This suggests that p; adds so little

information as to be redundant.

Holding

Boxplots appeared to show a shift in location, variance and shape as traffic level
increased. In particular the tail of holding time at traffic level 4 is pronounced.
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Table 7.11: Experiment Il: Landing rate, WLS linear model coefficients

Coefficient Point 95% C.1.*
Estimate Lower Upper
7 24.53 24.23 24.82
do 4.62 4.11 5.12
d3 13.00 12.48 13.53
d4 21.76 21.32 22.23

*1000 Bootstraps

Table 7.12: Experiment Il: Landing rate, variance model coefficients

Coefficient Point 95% C.1.
Estimate Lower Upper
o? 22.752 - -
9o 0.249 0.051 0.447
03 0.339 0.140 0.537
04 0.139  -0.059 0.337

This tail is statistically significant: a fit of a linear model to skewness at design
points, shown in Table 7.14, found that the distribution of holding time becomes
more positively skewed as traffic level increased. Linear model assumptions
checked: analysis of residuals showed approximately constant variance and a
Shapiro-Wilks test for normality of the residuals returned W = 0.9876 and a
p-value of 0.7025. One may conclude that there were some occasions when more
aircraft than usual needed to hold, regardless of delay-share strategy or algorithm.

Analysis of distribution through EDFIT is summarized in Table 7.13. This shows
that all terms had significant effects on the output distributions. The Fourier
components of the statistics suggest that the difference due to (@) is in variance
rather than location. As variance is non-constant WLS was used to fit to
E[Yi1] = i+ ci + B + 0, + (86) . This model predicts design point sample mean
with correlation coefficient 0.996. The size and direction of the coefficient estimates
are shown in Figure 7.6. In particular, the (35);;, coefficient is seen to decrease as
the k index increased. In other words, as traffic level intensity increased,
delay-share strategy had a greater effect on reducing the mean of the distribution

of mean holding time.
Fitting a model to variance found the (a§);, term significant, as suggested by

EDFIT. The model Var (Y1) = 0% exp(c; + 3; + 0 + (ad)ix + (86) 1) , with
o? = 0.0302, correlates to design point sample variance with coefficient 0.999.
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Table 7.13: Experiment II: Holding time, full EDFIT table

272.72 (.000)

Coefficient 77 Cy Ch Cs Cr
a9 659.93 (.000) 252.59 (.000) 321.94 (.000) 73.4 (.000)  11.99 (.000)
a3 764.92 (.000)  285.14 (.000) 374 (.000) 95.1 (.000)  10.67 (.000)
Qg 924.91 (.000) 290.09 (.000) 451.11 (.000) 167.11 (.000) 16.6 (.000)
as 83.16 (000) 154 (116) 41.54 (000) 18.92 (.000) 7.3 (.000)
a 211(337)  341(6l1) 11.55(044)  4.08(076)  2.06(888)
o 1294.21 (.000) 1117.53 (.000) 32.73 (.000) 66.28 (.000) 77.67 (.000)
O3 1227.7 (.000) 966.9 (.000) 76.87 (.000) 125.91 (.000)  58.02 (.000)
G4 1239.9 (.000) 1062.44 (.000)  33.56 (.000) 50.92 (.000)  92.98 (.000)
8 151.79 (.000) 6.27 (.396)  60.42 (.000) 6.52 (.009)  78.58 (.000)
d3 434.16 (.000) 8.35 (.322) 209.95 (.000) 49.26 (.000) 166.6 (.000)
84 624.95 (.000) 4.06 (.503) 269.74 (.000) 108.68 (.000) 242.46 (.000)
(8)22 2005(124)  9.17(246)  775(034)  1.7(158)  3.44(0.08)
(a3)a 2033(058)  1245(184) 11.04(012)  238(089)  3.47(0.08)
(B2 1335 (284) 408 (045)  383(135)  1.11(229)  433(028)
()52 81.36 (.000) 42.37 (.008)  33.66 (.000) 0.83 (.324) 4.51 (.021)
(@3)23 121.99 (000)  51.04 (006)  54.47 (.000) 1157 (0) 491 (.011)
()33 166.86 (000)  67.18 (.003)  76.23 (.000)  18.08 (000)  5.38 (.005)
(af)as 78.45 (.001) 13.35 (.175) 31.58 (.000) 18.35 (.000) 15.18 (.000)
(af)ss 6573 (004)  44.09 (011) 14.02 (006)  1.52(192)  6.1(.004)
(af3)s54 109.13 (.000) 56.63 (.002)  47.54 (.000) 3.07 (.052) 1.9 (.492)
(d)22 121.79 (0) 0.16 (.901) 28.79 (0) 67.15 (.000) 25.7 (.000)
(ad)s2 120.65 (.000) 1.89 (.635) 21.07 (.004) 71.15 (.000) 26.53 (.000)
(8) 2 113.48 (0) 1017 (308) 849 (046)  66.47 (000)  28.35 (.000)
(0d)52 69.28 (003) 228 (596) 25.13 (.000)  30.16 (.000)  11.71 (.000)
()62 1825 (722)  058(883)  6.06(328)  819(077)  3.41(938)
(a8)a3 345.19 (.000) 0.26 (.872) 159.16 (.000) 153.78 (.000) 31.98 (.000)
(a6)33 350.87 (.000) 3.03 (562) 148.44 (.000) 176.26 (.000)  23.14 (.000)
()13 517.43 (000) 228 (0.63) 196.77 (.000) 287.08 (.000) 313 (.000)
(ad)s3 198.41 (000)  27. 58 (0.06) 106.26 (000)  45.63 (.000)  18.94 (.000)
(a8)s3 50.79 (.246) 7(605) 26.85(0.03) 1176 (044)  5.47 (601)
(@d)24 420.23 (.000) 33. 21 (.064) 322.51 (.000) 49.08 (.000) 15.44 (.000)
(d)34 464.56 (.000) 32.99 (.066)  358.3 (.000) 62.84 (.000) 10.43 (.000)
(d)aa 688.68 (.000) 66.32 (.009) 485.31 (.000) 132.71 (.000) 4.33 (.075)
(ad)s4 231.23 (.000) 79.45 (.001) 110.1 (.000) 26.25 (.000) 15.43 (.000)
tHe 58.60 (0.19)  19.15(375) 2868 (026)  627(123)  46(752)
(6)22 248.1 (.000) 28.44 (.111)  123.7 (.000) 34.92 (.000) 61.04 (.000)
(B6)32 304.38 (.000) 48.6 (.037) 107.35 (.000) 92.68 (.000) 55.75 (.000)
(30) a2 208.5 (.000) 11.7 (314)  92.16 (.000) 33.92 (.000) 70.72 (.000)
(B6)23 956.64 (.000) 291.98 (.000) 303.2 (.000) 242.32 (.000) 119.14 (.000)
(B6)33 1192.19 (.000) 386.55 (.000) 164.85 (.000) 570.23 (.000) 70.56 (.000)
(86)a3 767.29 (.000) 164.93 (.000) 258.03 (.000) 183.87 (.000) 160.45 (.000)
(66)24 1547.32 (.000) 872.26 (.000) 86.79 (.000) 341.07 (.000) 247.2 (.000)
(86)34 1574.24 (.000) 795.63 (.000) 0.47 (.686) 557.46 (.000) 220.68 (.000)
(99)

1377.6 (.000)

709.95 (.000)

154.75 (.000)

240.18 (.000)
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95% Bootstrap confidence interval of effect

Table 7.14: Experiment II: Holding time, skewness model coefficients

Estimate SE t-value p-val
I 0.911 0.101 9.052  0.000
&2 1.936 0.142 13.,595 0.000
d3 1.400 0.142 9.830 0.000
04 1.877 0.142 13.185 0.000
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Figure 7.6: Experiment Il: Holding time, WLS model coefficients
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Figure 7.7: Experiment II: Holding time, variance model coefficients

A plot of the maximum likelihood estimates of the coefficients and approximate
95% confidence intervals is shown in Figure 7.7. Their size and direction show
relative effects on variance. The ¢, coefficients are significant, positive and increase
with %, so variance in holding time increased with traffic level k. Coefficients
(6)as, ()44, (@0)24 and (ad)sq are significant and positive, so as traffic level
increased, the reduction in variance attributable to these algorithms decreased.
Algorithm 4 is more affected because it is significant at traffic level 3. Similar
interpretation may be made for the significant and positive (36)24 and (/36 )44
effects. Notice how the signs of the (3§),,. coefficients are opposite to the model of
mean. That is, as traffic level increased delay-share strategy had more effect on

reducing mean, but less effect on reducing variance.

Approach sectors

Visual inspection of output boxplots showed a shift in location as arrival
intensity increased. The model E [Y;;x] = a; + 3; + 0k + (a3)i; + (56) 1 was fitted by
WLS and predicts design point sample mean with correlation coefficient 0.999.
Plots of the coefficient estimates and their 95% confidence intervals are shown in
Figure 7.8. The size of the effects are not very large in comparison to the overall
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Figure 7.8: Experiment Il: Time in approach sectors, WLS estimated coefficients

mean 4. However, the ((30);; estimates show that the pre-hold delay-share
strategies have a larger effect on reducing the time in approach sectors as traffic
level increases. Or, as traffic level increases more delay is shifted back to

pre-approach sectors.

The correlation coefficient between predictions from Var (Y1) = o2 exp(x) and
design point sample variance is 0.993. Traffic level §; was the only term to return
significant when trying alternative models. Fitted values in Table 7.15 show that
the variance of time in approach sectors increased with arrival traffic intensity.
This occured because the variability in time aircraft spend around IAF points
(inside the approach sectors) also increases with traffic intensity.

Stability of AMAN advice

Boxplots showed an increase in location, variance and skewness of this indicator
as traffic intensity increased. The fit of a model
E Y] = a; + 0; + 0 + (ad)u + (39) ;s by WLS predicts sample mean with
correlation coefficient 1. Bootstrap inference found the same terms significant as
EDFIT analysis. The estimated coefficients and their confidence intervals are
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Table 7.15: Experiment Il: Time in approach sectors, variance model coefficients

Coefficient Point 95% C.1.
Estimate Lower Upper

o2 0.0465 - -
bo 0.605  0.355  0.855
53 0.796 0547  1.046
84 1972 1722 2222

Table 7.16: Experiment II: Stability, variance model coefficients

Coefficient Point 95% C.I.
Estimate Lower Upper

o? 0.000726 - -
92 1.175 0902  1.448
dg 2.097 1824 2370
da 3.005 2732 3.278

shown in Figure 7.9. In Experiment I algorithm 4 was found to be different to other
algorithms. In this experiment the interaction («d)44 is significantly different to
(d)24 and (ad)g4 pairwise at 90%, suggesting that as traffic level increases the
variation in advice given by algorithm 4 also increases more than algorithms 2 and
3. This is more evidence of the consequence of allowing greater choice in landing
sequence. Modelling variance only found traffic intensity significant. The
estimated coefficients in Table 7.16 show how variance of the variability of AMAN
advice increased as traffic intensity increased. The model correlates to sample

variance with coefficient 0.932.

7.3.4 Findings

The following conclusions are drawn based on analysis of this experiment. The
results might be applicable to an airport with similar arrival traffic characteristics
to that of Stockholm Arlanda.

Delay and landing rate Sequencing algorithms and delay-share strategies did not
affect delay and landing rate differently as levels of arrival intensity
increased. A change in distribution of arrival rate or delay was attributable to
traffic intensity. A result from Experiment I indicated that sequencing at IAF
points produced significantly higher landing rates than sequencing pre-IAF.
Further analysis with output from this experiment rejected this finding
because little difference was found in the predictive power of a statistical

model with or without the algorithm split.
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Figure 7.9: Experiment II: Stability, WLS model coefficients

Holding time Holding time was reduced with greater effect by pre-hold
delay-share strategies as traffic level increased. Experiment I found that new
algorithms and pre-hold delay-share strategies reduced the variability of
holding time. This experiment showed that as traffic level increased, the size

of these reductions decreased.

Time in approach sectors If pre-hold delay-share strategies were used, aircraft
were shown to spend proportionally more time in pre-approach sectors as
traffic intensity increased. This occurred because the system had more delay
as arrival intensity increased, so aircraft were more likely to delay further out
with a greater delay. As a consequence, when demand is high, controllers in
pre-approach Sectors would be asked to do relatively more work than at low
arrival demand periods. Variability in holding time was also found to change.
However, it was not affected by AMAN choice, rather it increased with traffic

intensity as a result of the increase in holding time variability.

Stability When there are more aircraft to sequence, and an Arrival Manager might
be most useful, the stability of advice indicator is highest. Individual
algorithms had effects on stability and their behaviour was found to change
according to arrival intensities. This was especially true of the heuristic
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algorithm 4, strengthening the conclusion drawn in Experiment 1. That is,
CPS constraints are necessary to ensure stability of advice when changing the
sequence from FCFS. A more general algorithm trend was also picked up: as
traffic level increased, the algorithms delaying before the IAF points became
more stable relative to those holding, but remained more unstable overall.

The results from this experiment were not dramatic. Algorithm and delay-share
strategy choice was shown to affect the Air Traffic Control system in different,
important ways as traffic intensity increased. But no further benefits to delay or
landing rate were found over and above those in Experiment L.

7.4 Experiment III

7.4.1 Question

What would be the effect of changing the traffic intensity and the type of aircraft

arrivals?

7.4.2 Design

Type of arrivals  The IAF points at which aircraft exit the simulation model are
quite informative on the arrival aircraft type. The IAF points are roughly situated
north, south, east and west of the Arlanda runways, and aircraft departing from
similar locations enter the TMA through the same IAF point. Country of departure
percentages, split by wake-vortex category and IAF point, are shown in Table 7.17.
The table is based on Flight Plan data of arrivals to Arlanda between 14th June and
11th July 2001. One way to define type of arrival using the information in this table
is classify arrivals as Local or International traffic. An arrival route/wake-vortex
category combination is defined as “Local” when the majority of its traffic is from
the Nordic countries Sweden, Norway, Denmark, or Finland. A combination is
classified “International” if the majority departs elsewhere. The results of this
classification are shown in Table 7.18. Three criteria are used to choose an

experimental design to investigate change in these arrival types.

Estimation The purpose of this experiment is to ask whether algorithm i and
delay-share strategy j behave differently according to aircraft arrival type /.
The full linear model under investigation is:

Y = p+oi+ 05, +0+m (7.6)
() + (@d)a + (B)jx + (an)a + (B1)1 + €ijhim
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Table 7.17: Experiment lll: Country of departure split by aircraft type and IAF

IAF Country Wake Vortex Percentage

Category (%)
1 Belgium M 8.66
1 England M 21.63
1 France M 10.36
1 Ireland M 4.43
1 Netherlands M 9.92
1 Norway M 18.82
1 Spain M 4.55
1 Sweden M 17.00
1 Other M 4.63
1 Norway L 54.55
1 Sweden L 42.42
1 Other L 3.03
1 England H 14.47
1 USA H 71.70
1 Other H 13.84
2 Finland M 15.16
2 Sweden M 84.77
2 Other M 0.06
2 Sweden L 100.00
3 Denmark M 14.42
3 Germany M 12.73
3 Greece M 3.09
3 Italy M 4.27
3 Sweden M 41.41
3 Switzerland M 7.85
3 Other M 16.23
3 Sweden L 92.31
3 Other L 7.69
3 Belgium H 5.78
3 Cyprus H 6.67
3 Denmark H 17.33
3 Germany H 15.11
3 Greece H 22.67
3 Spain H 12.44
3 Turkey H 10.67
3 Other H 9.33
4 Estonia M 10.77
4 Finland M 78.38
4 Russia M 10.41
4 Other M 0.44
4 Finland H 30.51
4 Thailand H 27.12
4 United Arab Emirates H 22.03
4 Other H 20.34
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Table 7.18: Experiment II: Classification of traffic as local or international

IAF Wake-Vortex category
Heavy Medium Light
1 International International T.ocal
2 - Local Local
3 International Local Local
4 International International -

fori=1,...,6,j=1,...,4, k=1,...,4,1=1,...,l,and m=1,...,50, where
l, is the number of arrival type levels chosen. The important effects to
estimate are (an); and (f7n);; interactions. A good design will separate these
as much as possible from the others.

Reuse The analysis will reuse observations taken in Experiment II.

Run time A similar number of runs as made in Experiment I would be

acceptable.

Choice of design One way to proceed would be to repeat the full factorial design
of Experiment II at different levels of arrival type. However, this is
computationally prohibitive. If total number of runs is to be the same as
Experiment II this only permits one further level of arrival type. To use the same
number of runs as Experiment Il and have more than one extra arrival type level
therefore requires further runs to be fractional factorial. The unbalanced situation
means standard fractional factorial designs are not applicable.

The runs could be split up to ensure each combination (7, ) has each traffic level
k and new arrival route level I run exactly once. If all three traffic levels in
Experiment II are used with three further levels of arrival route the total number of
additional runs is the number made in Experiment II, and every (an); interaction
is estimable. This part of the design is shown in the right three columns of Table
7.19. To make this design as good as possible careful choice of how traffic level and
arrival route pairs (, [) are assigned to algorithm pairs (7, j) is needed. Several
arrangements ensure each combination (4, j) has each traffic level k and new
arrival route level [ run exactly once, but a good design also balances traffic level
and arrival type counts as much as possible by delay-share strategy. The algorithm
and delay-share strategy columns in Table 7.19 show the choice of algorithm and
delay-share strategies to run over the basic (k, [) design. The six (¢, j) pairs pairs
run at the same (k, [) levels are identified within the same block A; or B;.
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7.4. Experiment lll

Table 7.19: Experiment |ll: Fractional factorial part of experimental design

Pairing  Algorithm Delay-share Arrival type
block i Strategy j  for traffic level &
k=2 k=3 k=4

Ay 3 2 2 3 4
Ag 3 3 3 4 2
Aj 3 4 4 2 3
B 2 3 2 4 3
By 2 4 3 2 4
Bs 2 2 4 3 2
Ay 4 4 2 3 4
As 4 2 3 4 2
Aj 4 3 4 2 3
B 1 2 2 4 3
By 1 3 3 2 4
Bs 1 4 4 3 2
Ay 5 3 2 3 4
Ao 5 4 3 4 2
Aj 5 2 4 2 3
By 5 1 2 4 3
By 1 1 3 2 4
Bs 6 1 4 3 2

Table 7.20 visualizes this choice, and show counts of combinations run across

algorithm and delay-share strategies.

In this design all the (¢,5,1) and (i,5,k) combinations are run, all interaction effects
are estimable and the balance in each (j,£,1) combination is as good as possible.
However, to achieve this, some (i,7) combinations are run at the same design
points. Unfortunately the effect of these pairs cannot be estimated as they are
confounded with other effects in the output model. The correlation matrix from an
OLS fit to data from this design is helpful, though large. To quantify how separable
important estimates are (mean, standard deviation) pairs of the absolute value of
correlation coefficients are presented. Separation between (an) . interaction and
main effect v is (0.007,0.008), and between (an). and 7. is (0.119,0.135). Separation
between (3n). and 3. is (0.006,0.004), and between (/317) . with 7. is (0.278,0.276).

Choice of arrival typelevels The three further levels of arrival type chosen were to

increase international traffic, relative to local traffic, by -10%, 10% and 20%. The
actual numbers used are found in the Appendix.
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7.4. Experiment lil

Table 7.20: Experiment llI: Visualization of fractional factorial part of experimental design

Traffic Algorithm Combinations run marked X Count

Level Those not possible are shaded out
6 1
5 4
4 3

2 3 3
2 3
1 4
6 1
5 4
4 3

3 3 3
2 3
1 4
6 1
5 4
4 3

§ 3 3
2 3
1 4

Delay-sharestrategy | 1 2 3 4 1 2 3 4|1 2 3 4

Arrival type 2 3 4

Count 3 55 5/3 5 5 53 5 5 5 54
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7.4. Experiment Il

Table 7.21: Experiment Ill: Delay, reduced EDFIT Table

Coefficient T2 Ch Cs Cs Cr
« 124.45 (.000) 117.05 (.000)  5.75 (.000) 1.16 (.000) 0.5 (.000)
8 14.11 (.000)  13.19 (.000)  0.68 (.000) 0.12 (.071) 0.13 (.714)
B 343.81 (.000) 316.45 (.000) 17.98 (.000) 3.64 (.000) 5.73 (.000)
n 1.89 (.001) 1.15(.007)  0.35(.004) 0.11(.019) 0.28 (.000)
(af) 13.97 (.000)  13.12 (.000)  0.54 (.013) 0.1 (.449) 0.21 (.904)
() 64.46 (.000)  17.83 (.000) 36.92 (.000) 8 (.000) 1.71 (.000)
(am) 2.42 (.398) 1.07 (.736)  0.56 (.068) 0.34 (.006) 0.46 (.113)
(30) 7.21 (.000) 2.01 (.014) 4.3 (.000) 0.57 (.000) 0.33 (.037)
(Bn) 1.53 (.414) 0.33(.949)  0.86 (.000) 0.1 (.478) 0.24 (.691)

7.4.3 Analysis

The analysis in this section is focused on arrival type 7, effects and their
interactions with algorithm (an); and delay-share strategy (/47),,. Unless
otherwise stated similar results as Experiment II are found for other main effects

and interactions.

Delay

It is not clear from examination of boxplots whether the interaction effects (o)
and (fin); are significant. A reduced EDFIT table shown in Table 7.21 suggests
difference in distribution is not attributable to these interactions. Variance in
distribution by design point is not constant so WLS was used to fit models for the
mean. The model fitting process lead to reduction of model (7.6) to only include
main effects and the («f3);; interaction. An effect for arrival type is picked up, but it
is very small: 77, is not significant, ns has point estimate 0.07 and 95% bootstrap
empirical confidence interval [0.012,0.144] and 7, point estimate 0.16 with a
empirical bootstrap 95% interval [0.090,0.240]. In other words, increasing
international traffic is found to increase mean delay by around 10 seconds.
Correlation between sample means at each design point and predictions from the
linear model is 0.997 with n terms, and 0.995 without.

Landing rate

EDFIT analysis suggested that landing rate depends on arrival type of traffic
and arrival intensity. A fitted WLS model E [Y};] = dx + nm, returned with the
coefficient bootstrap confidence intervals shown in Table 7.22, where 7, and 74
return significant. Predictions from this model follow design point sample mean
with correlation coefficient 0.999. EDFIT analysis was further borne out in fitting a
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7.4. Experiment IlI

Table 7.22: Experiment lll: Landing rate, linear model coefficients

Coefficient Point 95% C.1.*

Estimate Lower Upper
L 24532 24248 24.862
Oy 4772 4294  5.208
03 12.754 12.277 13.224
04 21.823 21.417 22.255
72 0477  0.049  0.850
73 0279 -0.130  0.715
M4 0.605 0.167 0.994
*1000 Bootstraps

Table 7.23: Experiment Ill: Landing rate, variance model coefficients

variance model. Table 7.23 shows fitted coefficient values for

Coefficient Point 95% C.1.
Estimate Lower Upper
o? 22.752 - -
09 0.262  0.088 0.435
03 0.312  0.139 0.485
04 0.154 -0.019 0.327
M2 -0.209  -0.364 -0.054
73 -0.133  -0.288 0.022
i -0.102  -0.257 0.052

Var (Yin) = o? exp(6; + m). Arrival type effect n, is negative and significant at the
0.05 level suggesting that as more local aircraft make up arrivals the variability in
landing rate decreases. This model has correlation coefficient of 0.8678 between
predicted standard deviation and observed sample standard deviation at each

design point.

Holding

The models reported in Experiment III explain the output.

Approach sectors

Analysis from EDFIT suggested that arrival type of traffic does not affect the
time aircraft spend in Stockholm approach sectors. This was borne out with

further model fitting.
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7.5. Experiment IV

Stability of AMAN advice

Analysis of distribution through EDFIT showed some evidence that arrival type
of traffic will affect the distribution of stability of AMAN advice. The simplest fit
for a model of mean was to add 7 to the Experiment II model, resulting in output
model E [Y,u] = a; + 8; + o + m + (@) + (ad)ix + (36) jx- Only 1y is significant
with a bootstrap 95% confidence intervals on its point estimate 0.0281 of [0.0144,
0.0424]. This model explains design point sample means extremely well, the

correlation coefficient is 0.999.

7.4.4 Findings

Delay and landing rate Algorithms and delay-share strategies did not affect these
indicators differently as type of arrival traffic changed. Increasing
international traffic increased mean delay and landing rate. Increase in local
traffic increased mean of landing rate and decreased its variability.

Holding time and approach sectors Results were identical to Experiment II.

Stability of AMAN advice Change in arrival types increased mean variability of
advice given by the AMAN, but the effect was dwarfed by others found in

Experiment II.

The outcome from this experiment is largely negative. Changing traffic by the
local or international categories involved changing arrival route directions much
more than wake-vortex traffic mix. A general conclusion to draw is that the
sequencing techniques are fairly stable to change in arrival route, when overall
wake-vortex mix does not stray much from current levels.

7.5 Experiment IV

7.5.1 Question

What would be the effect of varying the wake-vortex traffic mix and traffic

intensity?

7.5.2 Design

Experiment III looked at changes to arrival route and wake-vortex mix, so any
effect solely due to change in wake-vortex mix of traffic was bound up in estimates
for arrival type. Given that the aircraft landing sequence problem depends on
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7.5. Experiment IV
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Figure 7.10: Experiment IV: Representation of wake-vortex space and design points

wake-vortex traffic mix, it is interesting to see what might happen if this is
changed. Also, the differences found between sequencing algorithms so far have
been quite subtle. This may be due to the relatively large proportion of medium
type aircraft in the traffic mix. This experiment is run to examine any trends that
occur as wake-vortex mix moves away from current-day high proportion of
medium type aircraft arrivals in the simulation model of Stockholm Arlanda.
Three criteria are used to choose the design.

Estimation Tests on whether algorithm 7 and delay-share strategy j behave
differently when aircraft wake-vortex mix [ changes are made on estimates of
wake-vortex mix ¢; and (a¢); and (8¢); interactions. The interactions should

be as separable from other effects as possible.
Reuse Analysis will reuse observations taken in Experiment II.

Run time The additional runs in Experiment II took about 2 days to run.

Wake-vortex mix is abstracted to an overall proportion, rather than the
proportion through particular IAF routes. Proportions of aircraft types sum to
unity, so the wake-vortex design space simplex is a triangle. Figure 7.10 shows a
representation of this. In this diagram, as the proportion of aircraft moves away
from the bottom corner of the triangle, the proportion of heavy and light type
aircraft increases. The problem is to decide which design points to run in the

triangle.
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7.5. Experiment IV

Table 7.24: Experiment IV, Repeat of Experiment Il 5 levels r1, g, 3

x effect \ effect

2 1 3
2 ™ T9 T3
3 T9 T3 T1
4 T3 ™ )

A repeat of the Experiment III design would allow estimation of three levels of
wake-vortex mix effects. For instance, the three evenly spaced points on the
vertical centre line in Figure 7.10 might be chosen. In this case estimated
coefficients would represent the effect of increasing proportion of heavy and light
type aircraft equally. Another design might choose points along a horizontal line
in the diagram. Here coefficients would relate the effect of decreasing proportion
of medium aircraft, and shifting this towards heavy or light aircraft. Both these
designs and coefficient interpretations would be useful - so useful that a third
design is preferred where the two coefficients types may be estimated. Nine design
points are chosen, as in Figure 7.10. These nine design points allow estimation of
both coefficient types.

A full factorial experiment with nine further wake-vortex mix design points run
on top of Experiment II output would be computationally prohibitive, so a
fractional factorial experiment is preferable. If interpretation of wake-vortex
coefficients is ignored then to estimate the interesting interactions each algorithm
and delay-share strategy pair (¢, j) needs to be run at least once at each of the nine
wake-vortex levels [. It follows that each traffic level & will then be run three times
for each pair (i, j). Looking at the problem this way it is possible to avoid pairing
algorithms as in the Experiment III design. However, analysis is focused on
estimation of a four level effect x,, of the shift away from medium type flights, and
a three level effect \,, of the bias towards heavy or light aircraft. It is important
estimates of «,, and )\, are not biased towards particular «;, 3; or d, i.e. the same
number of (¢, j, k) combinations should be run at each level of m and n. One
design that balances m, n and j levels as well as possible is a three fold repetition
of Experiment III. Represent the runs made at the three 7, levels in this experiment
1, T2, T3. Then rearranging these levels as in Table 7.24 ensures that each m and n
has all (z, j) pairs. In this design the six sets of (i, j) pairs are still present and
confounded with k,, and \,,, so cannot be estimated.
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7.5. Experiment IV

Choice of Wake-vortex mix levels Proportion of medium aircraft is decreased by
3%, 7% and 10 % evenly across arrival routes. Heavy and light proportions are
increased with the ratio 1:1, 2:1 and 1:2. This is pictured in Figure 7.10, with the
maximum shift away from medium set to 10%. The actual numbers used are found
in the Appendix. The levels run represent significant change in traffic mix but are
deliberately not too different from current operations so that the solution space
represents a range of traffic scenarios that might occur (Robinson 2004).

7.5.3 Analysis

Since the data analyzed is built on top of Experiment Il only significant £, A,
effects and their interactions with «; or 3; are commented on here. Unless
otherwise stated, the same trends for «;, 3;, d; and their interactions found in
Experiment Il are again seen. Statistical output from this experiment is copious
due to the number of effects, so most is not included in the text. Some is found in

the Appendix for reference.

Delay

Analysis by EDFIT found «,, and some («k);, significant, but not A, or other
interactions with «; or ;. A linear model fit to
E [Yijkmn] = a; + 05 + 0k + km + (@f8)i; + (@k)im by WLS found all terms significant
from 1000 bootstraps. The «,, point estimates are 1.15, 2.12 and 3.51. Interactions
(ak)im Were significant for for all algorithms against the base with m = 4, and all
algorithms except (ar)g2 and (ak)gs. There was no significant difference between
the significant terms. Mean of the significant point estimates were (k)2 = —0.22,
(ak)s = —0.43 and (ak) 4 = —0.56. Correlation coefficient between the sample
mean at each design point and the prediction from the linear model was 0.9730. A
variance model Var (Yjkmn) = 02 exp (0x + k,,) correlated with observed design
point sample variance at 0.958. Table 7.25 shows how variance increased
significantly as both 6, and &, levels increased, with d, having a larger effect.

Landing rate

Analysis of distribution through EDFIT only found J,, significant, and a linear
model also reduced to E [Y;;kmn]| = d&.

Holding

Use of EDFIT found £,,, and some (vk);, and (8k)im significant. A model fit by
WLSto E D/ijkw'm] = ; + f[))j + (Sk + Ky T (O(f[)))z'j + (Q(S)z‘k + (Olli)im + (B(S)JA + (6’%)]’”1
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7.5. Experiment IV

Table 7.25: Experiment |V: Delay, variance model

Coefficient Point 95% C.I.
Estimate Lower Upper

o? 0.075 - -
) 0.508 0.248  0.769
d3 1283  1.023  1.544
04 2550 2290  2.810
K9 0.125 -0.048  0.299
K3 0205 0.031 0.378
Fid 0.201  0.028  0.375

yielded point estimates for the k,, increasing from 0.41 to 1.21 as m increased and
traffic moved to fewer medium aircraft. The size of these effects compared to
traffic level effects §, that ranged from 0.30 to 5.59 as k increased. The (0k);jm
interactions decreased from -0.31 to -0.87 with no significant difference between
(Bk); fori=1,...,3 given a value j. The (ak);,, interactions also decreased as «.,
increased to -0.56. A fitted model for variance

Var (Yijkmn) = 02 exp(ei + B + 0 + £ + (86) 1) correlated to observed variance
with coefficient 0.933. All terms were significant with the «,, estimates negative.

Approach sectors

The EDFIT methodology found «,, significant. A fitted variance model
Var (Yjkmn) = 02 exp(d + #,n) had correlation at 0.947 with design point sample
variance. The «,, coefficients were positive but small in comparison to 6

coefficients.

Stability of AMAN advice

Looking for difference in distribution with EDFIT found (ax);; and (ak )4 for
i =1,...,5significant at the 95% level with Fourier components significant in
mean. This indicated that the stability of delay advice of algorithms, in comparison
to algorithm 1, might change as wake-vortex traffic mix moved away from
medium type aircraft domination. Fitting a linear model
E [Yijkmn] = i + B; + 6k + km + Ay + ()i + (k)i + (B89) 1 returned all coefficients
significant with ANOVA. Errors were not normal so the WLS bootstrap was used
to test for significance of individual coefficients. The (cvk);, were negative and all
significant at m = 2, 3. Coefficients values and their confidence ranges are shown
in Figure 7.11. As traffic mix became more complicated, the new algorithms

stability increased more than the FCFS at IAF sequencing algorithm.
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Figure 7.11: Experiment IV: Stability, linear model coefficient estimates with empirical 95%
confidence intervals from 1000 bootstraps

143



7.6. Findings and general conclusions

7.5.4 Findings

The following findings are based on the range of traffic samples simulated. The
conclusions may be applicable to an airport with similar aircraft arrival

characteristics.

Delay There is some evidence to suggest that the proportion of medium type
aircraft in the traffic mix affects delay, and sequencing algorithms reduce
mean delay more in comparison with FCFS at IAF when traffic mix contains a

lesser proportion of medium type aircraft.
Landing rate The only factor affecting landing rate was traffic intensity.

Holding time As aircraft traffic mix moved away from medium type aircraft, the
mean amount of holding increased while its variability decreased. Use of a
non holding delay-share strategy was found to have a greater sized effect in
reducing amount of holding, as traffic-mix moved away from medium type

aircraft domination.

Time in approach sectors There was no evidence to suggest that choice of
sequencing algorithm or delay-share strategy affected the time in the
approach sectors, as wake-vortex level changed across the experimental
range, in different ways to those found in Experiment IL.

Stability of AMAN advice As traffic mix became more complicated, moving
away from medium type aircraft domination, the new algorithms stability
increased more that the FCFS at IAF sequencing algorithm.

7.6 Findings and general conclusions

The computer simulation experiment work reported in this chapter was made to
help answer the question posed at its start. Some benefits and risks from change to
landing sequence and delay-share strategy were analyzed on a validated
simulation model of arrival traffic into airspace around Stockholm Arlanda
airport. These changes were looked at in conjunction with potential movements in
arrival rates, local and international mix of the traffic, and wake-vortex category
mix of arrival traffic. The results depend on the data used and are particular to the
model, but may also be applicable to other arrival airspace with similar
characteristics. From the experimental results some general conclusions of interest
to policy makers in Air Traffic Control may be drawn. Here the specific results are

summarized and some of these general conclusions formed.
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7.6. Findings and general conclusions

Under the range of traffic conditions simulated no benefit to landing rate or
delay was found using a different sequencing algorithm to FCFS at runway. Delay
to aircraft was significantly greater when sequencing arrivals FCFS at IAF points
than from use of other methods. However, nothing was gained through improved
sequencing algorithms: sequencing FCFS at runway performed as well as any
other. The effect for FCFS at IAF became more pronounced as wake-vortex mix
shifted up to 10% away from the validated models medium aircraft-type
domination. Landing rate was not found to be affected by any sequencing
algorithm or delay-share strategy.

System behaviour was found to vary by simulation AMAN setup. Sequencing
algorithm affected time spent in holds: sequencing FCFS at IAF increased time in
holds relative to other algorithms because it also increased delay. Delay-share
strategy also affected holding time. As traffic intensity increased, or traffic became
less predominantly dominated by medium type aircraft, delaying aircraft before
IAF points had greater effect in reducing time holding. Variability of the time
holding was reduced by delaying pre-IAF, but the relative difference decreased as
traffic intensity increased. Time in approach sectors was affected by delay-share
strategy only. Analysis found that pre-IAF delay-share strategies increased the
amount of time aircraft would spend in pre-approach sectors and, as traffic
intensity increased, the proportion of time in pre-approach sectors also increased.

Different AMAN systems advise different landing sequences and update the
sequence with new aircraft as time progresses. A risk to implementation of the
sequencing algorithms is the stability of the advice they form. Choice of
sequencing algorithm had an effect on the stability of delay-to-lose advice. First,
algorithms sequencing at IAF points were more stable that those at the system
boundary. This included a FCFS at runway algorithm run at the system boundary,
where predicted time at runway was not subject to error. That is, even a FCFS
algorithm was not as stable as others operating later on in airspace. Secondly, for
those algorithms operating pre-IAF, significant differences were found between
FCFS at IAF, a heuristic algorithm and another group that included FCFS at
runway. The FCFS at IAF algorithm was the most unstable as a result of generating
larger delay than other algorithms. The heuristic suffered from lack of CPS
constraints on the maximum shift an aircraft may make from its FCFS position.
This constraint was used by the other smart algorithms where there was no
difference in stability advice to FCFS at runway. Finally, the variability in advice
given by all algorithms increased as traffic intensity increased, and the heuristic
and FCFS at IAF became even more unstable relative to others.
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7.6. Findings and general conclusions

The findings are now summarized in more general terms.

Conclusion 1 Improved sequencing techniques should not be regarded as a
panacea to reduce delay and increase land rate. The ability to realize these
benefits depends on arrival airspace and traffic characteristics.

The arrival aircraft sequencing problem has been studied in order that real
systems be developed where advised landing sequences reduce delays and
increase landing rate. However, results from the series of experiments in this
chapter have not found these expected benefits.

Conclusion 2 Different sequencing algorithm and delay-share strategies in an
AMAN system may cause different system behaviour.

If sequence advice is to be made then methods of implementing landing
sequences and assigning delay become important, and may cause system
behaviour to change. For example, moving delay back from holding points
necessitated delay in pre-approach sectors in the model. This might have knock-on
effects elsewhere such as for Eurocontrol CFMU slot allocation for aircraft taking

off at other airports.

Conclusion 3 Choice of sequencing algorithm and delay-share strategy will affect
stability of advice to controllers, and quality of information to other users.

Improvements to landing rate or delay indicators are not the only reasons for
bringing in AMAN technology. Other users in the ATC system such as airlines or
baggage handlers may benefit from accurate forecast landing times. Sequencing
further back from the airport with an AMAN tool could provide this information.
However, the further back from the airport the AMAN system begins, the more
variable the information will be. This was found in the model even when
sequencing FCFS. Also, as more aircraft used the runway, the advice from all the
experimental AMAN systems became more unstable. Choice of sequencing
algorithm affected the variability in delay advice: smart algorithms with CPS
constraints were shown to produce more stable advice than otherwise.
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Chapter 8

Airport runway capacity experiments

Question What is the capacity of the simulation model of Stockholm Arlanda

runway to service arrivals?

This question is investigated through experimentation on the computer
simulation model. The experiments are based on the Eurocontrol Performance
Review unit (PRC) view of airport capacity. This unit is responsible for choosing
performance indicators for various parts of the ATC system. Their report on an
ATM Performance measurement system (Performance Review Unit 1999) defines:

"Declared airport capacity is the maximum sustainable capacity during
periods of normal weather, taking into account all the various limiting
parameters. There is a trade-off between declared airport capacity and
delay, and the declared capacity should be set at a level which does not
lead to unacceptable delay in any component parts of the capacity chain
... Unconstrained runway capacity is defined as the maximum
movements per hour attainable from the configuration of runways.”

Airport runway capacity is thus linked with delay. The first experiment reported
in Section 8.1 looks at airport capacity through aircraft delay attributable to
runway sequencing. Airport capacity also relates to the maximum landing rate
possible. That is, if improved sequencing results in more aircraft landing per hour
with acceptable levels of delay than FCFS, then airport capacity is seen to increase.
The possibility of increasing airport capacity through increase in landing rate is
examined in the second experiment of Section 8.2. Section 8.3 completes the
chapter by describing the overall results of the experimentation in relation to the
above question. It concludes with some remarks on what significance the results
may have for AMAN technology at other airports.
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8.1. Airport runway capacity experiment: Delay

8.1 Airport runway capacity experiment: Delay

8.1.1 Design

Analysis of delay has already been made on a number of detailed experiments
in the previous chapter. This experiment is run to add more data to previous
output. Specifically, the experiment is run to investigate how sequencing
algorithm i, delay-share strategy j, traffic intensity & and wake-vortex traffic mix !
affect delay Y;;x;. Extra traffic levels are run between the top two levels from
Experiment IV in Section 7.5. The analysis of Section 7.5.3 did not find the
wake-vortex level effect of increasing mix towards heavy or light significant, so
these effects are not built into this experiment, and a total of four wake-vortex
levels are run. Three basic criteria are used to decide the design.

Estimation The interest is in algorithm «; and delay-share strategy /; main effects
and their interactions with traffic level §,, and wake-vortex mix «; effects. A
good design will separate estimates as much as possible.

Reuse Use observations from the top two traffic levels in Experiment IV and

corresponding levels of x;.

Run time The experiment in Section 7.5 took about a week to complete.

A fractional factorial design allows more traffic levels to be run, so no further
runs were made at Experiment [V (in Section 7.5) design points. Experiment IV
was a mixed fractional /full factorial design where all algorithm and delay-share
strategy combinations were run for the base wake-vortex level, but only certain
combinations for new wake-vortex levels. This design continues the idea. To
balance the fractional part of the design all traffic levels k require the same number
of (i, j, 1) combinations. This constraint coupled with reuse of Experiment IV levels
means the total number of traffic intensity levels must be a multiple of three. Six in
total is a reasonable number for run time. Given this, a new problem is to choose
combinations of (i, j) to run at traffic k and wake-vortex [ levels. The goals of

combination choice are:

1. Each (j, k) combination in the fractional part of the design sees every possible

algorithm 7 once.

2. Delay-share strategies j = 2, 3,4 have the same number of runs with
algorithms ¢ = 1, 2,3, 4, 5.

3. Each wake-vortex level I has the same number of runs made by each

algorithm i.
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8.1. Airport runway capacity experiment: Delay

Table 8.1: Airport runway capacity experiment: Delay, fractional factorial design with new
design points in bold type

Traffic |2 2 2 23 3 3 3|4 4 4 4 W-Vlievel
intensity |1 2 3 41 2 3 41 2 3 4 D-Sstrategy
6(1 2 15 346 34 2 155 15 34 2
5/5 23 5 14|1 14 23 5|6 5 14 23
416 45 1,2 3|5 3 45 1,2|1 1,2 3 45
3/1 1 34 25/6 25 1 34[5 34 25 1
2/6 35 4 125 12 35 4|1 4 12 35
15 14 23 5|1 5 14 23 |/6 23 5 14

4. Pairs of algorithms run at (j,k) combinations are randomized. This is a
problem for delay-share strategies 2 to 4: two sequencing algorithms need be
run for these at some (j,k,0) levels. For delay-share strategy 1 there are three
algorithms and three wake-vortex levels so no pairs are needed.

For delay-share strategies 2 to 4, 18 algorithm pairs need be run at each
wake-vortex level, with 15 possible. A good randomization might run all pairs at
least once with no pair more than twice. A computer program was written to loop
through an upper bound of 155,520 possible algorithm pair designs. This found 4
designs where all pairs were run at least once and none more than twice. However,
none were satisfactory because the arrangement of algorithms across two traffic
levels was repeated, introducing a potential traffic level effect bias. Table 8.1 shows
the design points chosen for the fractional-factorial part of the design. Algorithm
pairs (1,3) and (2,4) are not run, pairs (1,2), (2,3), (3,4) and (5) are run twice, all
others once. This design does not balance pairs of algorithms as well as technically
feasible, but does not repeat combinations across traffic levels, randomizes the
algorithms well and satisfies the first three design goals.

8.1.2 Analysis

Mean positive delay

Similar results to those in Experiment IV are found using the analysis
methodology of Section 6.2, since only new factor levels are introduced. The final
fitted linear model is E (Yi;11) = a; + 3 + 6k + m + (a3)i;. A Box-Cox transformation
(-0.25) that stabilizes variance and normalizes the output finds the same
coefficients significant as results from the bootstrap. These are presented in Table
8.2, based on 1000 bootstraps. The model predicts the simulation mean of mean
positive delay at each design point well with a correlation coefficient at 0.9724.
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8.1. Airport runway capacity experiment. Delay

Table 8.2: Airport runway capacity experiment: Delay, mean positive delay linear model
significant coefficients

Coefficient  Value 95% C.I.*
Lower Upper

1 3.604 3.426 3.743
a2 1514 -1.727 -1.315
a3 -1.578  -1.797  -1.341
aa -1.643  -1.859  -1.444
83 0.736  0.636  0.800
04 1226  1.064  1.287
Js 2001 1.845 2.087
86 2,653 2490 2.762
&7 2.805 2580 2.926
Ko 0.162  0.081 0.274
K3 0399 0312  0.510
K 0977 0.850  1.102
(a3)s52 1746 -2.057 -1.414
(a3)s3 -1.603  -1.918 -1.291
(a)s4 1730 2.048 -1.416
*1000 bootstraps

Interpretation Runway capacity as measured by mean of mean positive delay is
not seen to increase through choice of sequencing algorithm or delay-share
strategy under the conditions simulated. The difference attributable to algorithm is
due to a technical inefficiency in the system as-is described in Section 7.2.4. That is,
if it were possible to achieve minimum separations between all aircraft then
capacity would increase regardless of the sequence method chosen from those in

the simulation.

Threshold

No difference was found using the analysis methodology of Section 6.2.
However, the methods in Section 6.3 to further analyse in-run outputs did reveal
differences. Charts are used to display point estimates and confidence intervals for
estimated coefficients in a number of cases. In these charts the x-axis Latin letters
are used to represent Greek coefficients used in the text, wherea=a,b=/3,d =4
and e = x. Choice of logit model was made based on Aitken’s information criteria,
step-wise removing terms from the complete model (Venables & Ripley 1999). The
models chosen are shown in Table 8.3. Diagnostics on these model fits based on
Pearson residuals and comparison to bootstrap coefficient confidence intervals
were satisfactory, so the asymptotic theory results are presented. The models have
no interaction terms between «; or /3; and 4. or , so sequencing algorithms and
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8.1. Airport runway capacity experiment. Delay

Table 8.3: Airport runway capacity experiment: Delay, logit model summaries

oy g Model df Residual deviance
13 0 o+ 085+ 0k +r1+ (af)i; 190 122.44
13 005 o+ 85+ 0k + 1+ (a8)y; 190 160.94
15 0 o+ 05+ 0 +r+ (a8)i; 190 129.02
15 0.05 o+ B+ 0+ 199 172.05
17 0 i+ p;+ 0k +r+(af8)i; 190 163.72
17 0.05 o + 35+ 0 +r 199 188.73

delay-share strategies do not appear to affect the probability of exceeding a
threshold delay differently as traffic level or wake-vortex mix change.

Sensitivity .S did not cause the relative difference in coefficient estimates to
change as it increased from 0 to 10%. The effect of increasing S towards 10% was to
reduce the differences between coefficients. Figure 8.1 shows estimated coefficient
values for 7" = 13 minutes and S = 0.05. It shows that as traffic level and
wake-vortex mix increased, the probability that greater than 5% of aircraft were
delayed above 13 minutes increased. Algorithms 5 and 6 also increased this
probability over the base. A different trend is shown in Figure 8.2 for 7' = 15 and
S = 0. Here algorithm 4 increased the probability of failure, but algorithms 5 and 6
actually decreased the probability. The same pattern occurred at threshold 7' = 17.
This suggests that algorithms 5 and 6 delay a large proportion of aircraft between
13 and 15 minutes. Table 8.4 shows 95% simultaneous confidence intervals on the
difference in proportion of aircraft delayed between 13 and 15 minutes by
algorithm. These confidence intervals are based on pairing delay proportion by
traffic sample and running 9,000 bootstraps per pair. The Bonferroni inequality is
used to get 95% simultaneous limits. There is a significant difference between
algorithms 5 and 6 and others. Thus, algorithms 5 and 6 delay a greater proportion
of aircraft between 13 and 15 minutes than do the other algorithms in the
simulation, while algorithm 4 delays more aircraft greater than 15 minutes than do
the other simulation sequencing algorithms.

Interpretation The analysis above has shown that there is a difference in the
number of aircraft delayed above a threshold. Algorithms 2, 5 and 6 have
deadlines set to 15 minutes. Algorithms 5 and 6 also have a constraint on the order
of aircraft (FCFS at IAF), a feature that appears to make them delay more aircraft
close to their deadline than algorithm 2 and other sequencing algorithms.
Algorithm 4 has no algorithmic constraint on deadline or order at IAF points. Lack
of the deadline constraint seems to cause this heuristic (minimizing total delay) to
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8.1. Airport runway capacity experiment: Delay

Approximate 95% confidence interval of effects

Figure 8.1: Airport runway capacity experiment: Delay, logit model, 7' = 13, S = 0.05
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8.1. Airport runway capacity experiment: Delay

Table 8.4: Airport runway capacity experiment: Delay, 95% bootstrap* simultaneous confi-

dence intervals on difference in mean percentage(%) delayed in [13min, 15min]

Algorithm 2 3 4 5 6
1 (0.744,0.922) (0.822,0.997) (0.940,1.159) (-2.811,-2.497) (-5.259, -4.615)
2 (0.031,0.124) (0.099, 0.332) (-3.732,-3.334) (-6.195, -5.394)
3 (0.014, 0.261) (-3.814, -3.400) (-6.267, -5.454)
4 (-3.919, -3.584) (-6.349, -5.618)
5 (-2.596, -2.077)

*9000 Bootstraps per pair

delay aircraft above an arbitrary threshold more often than FCFS algorithms and
other smart sequencing algorithms with deadline constraints.

Target

The proportion of aircraft delayed above a target, given the target is not met is
investigated here. The methodology used is described in Section 6.3. Results are
presented for the interesting case where algorithm 4 is found to delay more aircraft
with delay greater than 15 minutes than other algorithms. The target must have a
probability of being exceeded for a beta distributed model to make sense, so only
output from the highest traffic level is used in fitting models with covariates «;, /3;

and Ki.

Analysis Maximum likelihood beta distribution fits to the proportion of aircraft
delayed greater than 15 minutes at each design point were tested by comparing
plots of empirical and fitted cumulative distribution functions and using
Kolmogorov-Smirnov goodness-of-fit statistics. The p-values from each test are not
independent so Fisher’s composite hypothesis test (D’ Agostino & Stephens 1986)
cannot be used. However, visual inspection of the fits and Kolmogorov-Smirnov
statistics do not lead to a rejection of the validity of the beta models: p-values are
all contained in the range [0.2,0.97]. Fits of linear models to the parameters find
algorithm 4 and 5 main effects significant. This general test is borne out with a
linear model for the mean shown in Table 8.5, where the multiple R? value is
0.8478. The assumption that residuals are normal cannot be rejected with a
Shapiro-Wilks test 17 = 0.949 and p-value 0.0971. An important result from this
analysis is the a4 coefficient: it is significant and negative. That is, if aircraft delay
greater than a target of 15 minutes, then a significantly lower proportion will delay
greater than 15 minutes when sequenced by algorithm 4 than the other sequencing

algorithms.
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8.1. Airport runway capacity experiment: Delay

Table 8.5: Airport runway capacity experiment: Delay, linear mode! of mean proportion
above 15 min target, given target missed

Coefficient Value SE tscore p-value
I 0.164 0.013 12.661 0.000
oD 0.004 0.012 0.291 0.773
a3 0.019 0.012 1.590 0.125
4 -0.059 0.012 -4.831 0.000
as -0.031 0.011 -2.822 0.009
o -0.010 0.021 -0.511 0.614
K9 0.051 0.010 4.856 0.000
K3 0.061 0.010 5.849 0.000
K4 0.077 0.011 7.305 0.000
Ba -0.007 0.014 -0.473 0.640
O3 -0.001 0.014 -0.048 0.962
B4 -0.014 0.014 -0.972 0.341

Interpretation  Given the target that all aircraft delayed less than 15 minutes has a |
positive probability of being exceeded, and the target is exceeded, a lower

proportion of aircraft are delayed greater than 15 minutes using the heuristic than

the other sequencing algorithms. In the simulation when a dynamic program

could not make a sequence with deadline 15 minutes it ignored the constraint.

Thus, it seems sequencing FCFS or with CPS constraints without a deadline

constraint results in a higher proportion of aircraft delayed greater than 15

minutes, when this happens, in comparison to the heuristic.

8.1.3 Findings

Under the range of traffic conditions investigated on a simulation model of
arrivals into Stockholm Arlanda the following general delay-related capacity

conclusions may be drawn:
 No significant reduction in mean positive delay was found through clever
sequencing,.

o Adding deadlines resulted in significantly more aircraft delayed 2 minutes
under the deadline for two dynamic programs with FCFS at IAF constraints.

o The heuristic failed to meet a threshold used as a deadline in dynamic
programs a significantly greater proportion of times than FCFS and the

dynamic programs.

o If a target is set such that there is a positive probability it is exceeded then,
given it has been exceeded, the heuristic delays a lower proportion of aircraft
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8.2. Airport runway capacity experiment: Landing rate

greater than the target than the dynamic programs or FCFS.

These results could be applicable on arrival traffic into a similar airspace.

8.2 Airport runway capacity experiment: Landing rate

Despite changing the arrival traffic mix significantly from current mix at
Stockholm Arlanda, both in arrival rates and wake-vortex mix, the only difference
in landing rate has been attributable to achieving minimum separations where
possible. A priori it is known that the algorithms should produce different
sequences with different characteristics. As a result, it becomes interesting to ask:

Question Under what conditions would an AMAN sequencing algorithm

increase runway landing rate over FCFS?

8.2.1 Basic design

The design chosen has the following characteristics.

Algorithms To cut down on run time the only computationally expensive
algorithm run is the dynamic program minimizing makespan Cjyrax- The
FCFS rules and heuristic are also run.

Delay-share strategies Use “In hold” for FCFS at IAF and "“Early as possible” for
the other sequencing algorithms.

Constrained position shifting Set to three for the heuristic. Dynamic program

CPS constraints are specified in the experiments that follow.

Deadlines Set to cc.
Update criteria Every aircraft.

Wake Vortex mix Validated mix and three further levels. The further levels have
equal percentage of heavy and light type aircraft where medium percentages
are 75%, 50% and 25%. The exact parameters used are found in the Appendix.

Arrival route The validated proportions in Table 5.4 are used.

Runs 50 repeats per design point.



8.2. Airport runway capacity experiment: Landing rate

Landing rate is calculated using the landings in the second hour. The basic
output model is of the form:

Y;jk = + Kj + (Oéf{)ij + €ijk (81)

fori=1,...,8,7=1,...,4and k = 1,...,50 where q; is the effect of algorithm
combination ¢, x; the effect of wake-vortex mix j and ¢,;;, a random error. This
ensures a complete, balanced design that covers a wide range of the wake-vortex
space. It was chosen to find a difference in landing rate, if it exists. Special
attention is paid to set-up parameters of the dynamic program minimizing
makespan Cy4x because this algorithm should produce the highest possible
landing rate: if it is possible to increase landing rate this algorithm should do so.

8.2.2 Analysis methods

The analysis methods of Section 6.2 are used to investigate simulation output.

8.2.3 Question A

If aircraft arrival rate is fixed around the runway capacity of 100% medium type
aircraft, does wake-vortex mix cause algorithms to have different landing rates?

Experiment parameters Two hour period with arrival rate set to 50 in both hours.
The CPS constraint is set to co in the dynamic program.

Analysis Output histograms, split by algorithm and wake-vortex level, are
presented in Figure 8.3. From left to right in the plot the wake-vortex levels run
from 1 to 4. Going from bottom to top the algorithms also run from 1 to 4, i.e. FCFS
at IAF - dynamic program minimizing Cjs4x - FCFS at runway - heuristic.
Inspection of the output histograms appears to show a difference in landing rate
distribution due to wake-vortex level and algorithm. It appears that the difference
in landing rate occurs more with the heuristic than the dynamic program. Testing
for an overall difference with Friedmans test (Rice 1995) by blocking on traffic
sample yields a x* = 136.1091 on 3 degrees of freedom with p-value = 0. That is,
the test rejects the hypothesis that there is not a difference. An EDFIT table formed
from 1000 bootstraps is shown in Table 8.6. This finds that the differences in
landing rate distributions are attributable to the wake-vortex level k,, the heuristic

sequencing algorithm a4 and its interactions with &;.
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Figure 8.3: Airport runway capacity experiment: Landing rate, Question A, Histogram of

Table 8.6: Airport runway capacity experiment: Landing rate, Question A, full EDFIT table,

Coefficient T? C Cs Cs Cr
a 867 (159)  5.03(202) 3.15(053) 0.25(416) 0.24(.987)
as 0.22(1)  0.03(926) 005(817) 0.02(799) 0.11(.999)
Qy 81.52 (.000) 39.42 (.002) 35.51 (.000) 2.74 (.005) 3.85 (.000)
K9 298.59 (.000) 294.35 (.000) 0.05 (.804) 0.98 (.106) 3.22(.002)
K3 200.65 (.000) 184.49 (.000) 8.65 (.000) 3.35(.005) 4.17 (.000)
K4 47.76 (.000) 18.78 (.015) 21.21 (.000) 5.94 (.000) 1.82 (.047)
(k)22 9.51(369)  5.66(324) 339(132)  0.1(0.73) 0.36(.997)
(k)32 0.84(998)  0.02(949) 0.06(0.84) 0.05(0.79) 0.71(.945)
(ak)a2 86.11 (.000) 43.28 (0.01) 35.6 (.000) 2.55(.069) 4.69 (.014)
(ka3 6.06 (605  0.11(0.87) 499 (083)  0.2(614) 0.76 (.935)
(k)33 25(917)  083(0.73)  07(503) 0.3 (.804) 0.94 (.833)
(k)a3 73.51(003)  13.6(.144) 50.16 (000) 2.84 (047) 6.9 (.001)
(@ )as 6.85(534) 142 (602) 054(057) 331(032) 1.58(.542)
(k)34 032(1)  0.02(948) 0.07(818) 0(965  0.22(1)
(aK)4q 43.99 (.011) 0.24 (.848) 11.3 (.007) 24.36 (.000) 8.09 (.000)
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8.2. Airport runway capacity experiment: Landing rate

Table 8.7: Airport runway capacity experiment: Landing rate, Question A, simultaneous
95% confidence interval of coefficient of variation from 9600 bootstraps

Algorithm Wake-vortex Point 95% C.L
level Estimate Lower Upper
1 1 0.09 0.0634 0.1110
1 2 0.09 0.0477 0.1320
1 3 0.03 0.0184 0.0464
1 4 0.04 0.0231 0.0587
2 1 0.09 0.0619 0.1154
2 2 0.08 0.0351 0.1160
2 3 0.04 0.0277 0.0521
2 4 0.05 0.0276  0.0685
3 1 0.09 0.0668 0.1131
3 2 0.08 0.0366 0.1083
3 3 0.03 0.0191 0.0406
3 4 0.04 0.0213 0.0520
4 1 0.09 0.0634 0.1114
4 2 0.08 0.0340 0.1118
4 3 0.03 0.0188 0.0425
4 4 0.04 0.0207 0.0598

Some difficulties arise in building parametric models to estimate the size of the
effects on location. Log-linear models where In(E (Y;;)) = 8X,; with
Var (Y;;) = 0?E (Y;;) may be built to consider the discrete data. The assumption
constant coefficient of variation is questionable for landing rate. Bootstrap
experiment confidence intervals on the coefficient of variation split by design
point shown in Table 8.7 find some significant differences. However, they are not
very large in size. Another potential flaw is that known cut-off maximum landing
rate is not included in the model. Bearing these flaws in mind, Generalized Linear
model estimation routines found the full model In(E (Y};)) = a; + 1 + (ak)q to
have residual deviance of 166.56 on 784 degrees of freedom. The relatively small
residual deviance means that a Poisson model of variance is not appropriate.
However, a more general model with 6 = 0.2059 may be considered. Table 8.8
shows estimates and standard errors for this model. The main effects «; do not
return significant, but the interactions (ax)4; also picked up by EDFIT do.

Findings The dynamic program is an optimal algorithm - given a list of aircraft
waiting to land it will always minimize the makespan of that sequence. However,
the experiment results shows how in a real implementation it does not necessarily
produce an optimal global sequence, and more surprising, it may be beaten by a
heuristic minimizing delay. Further analysis on the data shows this is not due to
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8.2. Airport runway capacity experiment: Landing rate

Table 8.8: Airport runway capacity experiment: Landing rate, Question A, log-linear model
coefficients with ¢ = 0.2059

Coefficient Point Std.

Estimate  Error
Iy 3.8762  0.0092
e -0.0004 0.0131
o3 -0.0004 0.0131
o7 -0.0017 0.0131
Ko -0.0726 0.0133
K3 -0.1253 0.0135
K4 -0.1685 0.0137
(ak)oo 0.0216 0.0188
(k)30 0.0097 0.0188
(C!H)42 0.0294 0.0188
(C!H)Qg 0.0227 0.0190
(k)33 -0.0001 0.0191
(ks )as 0.0435 0.0190
(k)4 0.0213 0.0193
(ak)as 0.0004 0.0193
(k)44 0.0524 0.0192

choosing an odd performance indicator: in a number of instances the makespan of
the landing sequence (i.e. the land time of the last aircraft) is also less for the
heurisitic. The reason for this is to do with choice of aircraft and imperfect

information.

Consider an example where there are 3 aircraft ready to land with the same
release dates, after an aircraft type M, with FCFS order M/ — H — L. Then the
minimum makespan based on the separation matrix in Table 5.4 is 11, and the
dynamic program may choose sequence A: (M) — L — M — H with makespan of
5+ 3+ 3 = 11. Suppose that with the heuristic the maximum shift is 1. Then
sequence B with minimum total delay output by the heurisitic is
(M) — M — L — H, also with makespan 3+ 5 + 3 = 11. Time passes and the first
two aircraft in the sequence land. From sequence A an aircraft type M is the last
aircraft to land and type H is waiting. Sequence B has aircraft type L as the last to
land and type H waiting to land. A new aircraft type L arrives. Then the dynamic
program would choose final sequence (M) — L — M — L — H with makespan
5+ 3+ 5+ 3 = 16 but the heuristic final sequence is (M) — M — L — L — H with
makespan 3 + 5 + 3 + 3 = 14. That is, it is possible to beat the exact deterministic
algorithm with a heuristic when an updating process is present.
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8.2. Airport runway capacity experiment: Landing rate

In the example above the heuristic betters the dynamic program because of
imperfect information. If the algorithms had both known the full arrival sequence
before it had occurred then the dynamic program would have minimized the final
sequence makespan. The problem is related to choice of aircraft. In the example
there are only a limited number of aircraft available to land. This is the case with
the experiment just run as arrival rates are round about the runway capacity.
Consequently the choice of aircraft to land is often limited to FCFS in order to
ensure there are no gaps in the landing sequence. This is also the reason why there
is no great difference between the dynamic program and FCFS algorithms.
However, if many aircraft are waiting to land then there is a greater choice for the
sequencing algorithm, and the kinds of situations where a heurisitic might do
better than the dynamic program or other deterministic optimal algorithms will be
more rare. This is illustrated in the next experiment, where arrival rate is such that

there is a great choice of aircraft.

There was some evidence from this experiment that sequencing algorithms may
increase runway capacity with the right wake-vortex traffic conditions. However,
this did not occur systematically for arrivals with rates around the runway
capacity - a dynamic program that maximizes runway throughput did not have a
significant effect on landing number above FCFS at IAF points. The mean positive
delays in this experiment ordered by wake-vortex level were 5.46, 8.34, 13.50 and
14.10 minutes. These are already high. How much higher do they need to be before
there is enough choice of aircraft for sequencing algorithms to increase runway

capacity?

8.2.4 Question B

If airspace is saturated with aircraft then will smart sequencing algorithms make

a difference?

Experiment parameters Two hour period with arrival rate set to (100, 50). The CPS

constraints are set to oo in the dynamic program.

Analysis Doubling arrival rate in the first hour lead the second hour landing
aircraft to have mean delays of 32.54, 33.91, 36.41 and 36.36 minutes ordered by
wake-vortex level. Figure 8.4 shows output histograms of the land number in the
second hour. Notice how there are definite differences in location, and the
dynamic program minimizing makespan has the highest landing rate. This shows
how if the sequencing algorithm has sufficient choice of aircraft it is possible to
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Figure 8.4: Airport runway capacity experiment: Landing rate, Question B, histogram of
landing rate, arrival rate hour 1 = 100
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8.2. Airport runway capacity experiment: Landing rate

1000 bootstraps

Table 8.9: Airport runway capacity experiment: Landing rate, Question B, full EDFIT table,

Coefficient 77 Ci Co Cy Cr
a9 236.15 (.000) 127.28 (.000)  95.06 (.000)  9.73 (.000)  4.08 (.000)
o3 0.23 (1) 0.02 (.951) 0.05(.817)  0.05(.719) 0.1 (1)
au 54.69 (.000) 6.56 (.154)  16.57 (.000) 17 (.000) 14.56 (.000)
K2 574.69 (.000) 549.57 (.000) 2.57 (.075) 14.84 (.000)  7.71(.000)
K3 268.43 (.000) 148.66 (.000)  107.9 (.000)  8.13 (.000)  3.75 (.000)
K4 69.35 (.000) 9.2 (.091)  22.66 (.000) 21.87 (.000) 15.63 (.000)
(K)o 242.1 (.000) 113.51(.000) 116.84 (.000)  3.74 (.024) 8 (.000)
(k)30 0.53 (1) 0 (1) 0.2 (.739) 0(.972)  0.33(.998)
(k)42 56.48 (.005) 8.14 (.244)  12.63 (.007) 22.55(.000) 13.16 (.000)
(ak)o3 2455 (.000)  13.58 (.152) 180.37 (.000) 37.95 (.000)  13.6 (.000)
(k)33 0.46 (1) 0 (.986) 0(0.98) 0.08(773) 0.38(.997)
(k)43 61.88 (.001) 0.09 (.923)  16.65 (.001) 31.64 (.000)  13.5 (.000)
(k) o4 93.28 (.000) 1.99 (.577)  20.31(.001) 55.82(.000) 15.17 (.000)
(k)34 1.49 (.983) 0 (.984) 0.05(0.88)  0.23 (.586) 1.2 (.719)
(k)44 36.92 (.024) 0.26 (.837) 0.5 (.541)  8.52 (.000) 27.64 (.000)

increase landing rates. An EDFIT test for overall significance returns 7' = 96.41 and
a bootstrapped (1000 boots) p-value = 0. The full EDFIT Table 8.9 finds all the
(ak)q; and (ak)4; interactions significant at the 0.05 level for j = 1,...,4, as well as
az and ay. A log-linear model fit returns with residual deviance 26.45 on 784
degrees of freedom and an estimate § = 0.0337. Table 8.10 shows the point
estimates and their standard errors. The o; main effects are not significant so this
fitted model rejects a hypothesis that sequencing algorithm may increase runway
capacity whatever the wake-vortex traffic mix. However, the significant (c)q; and
(ar)4; interactions for j = 2, ..., 4 point to significant improvements through use
of the two smart algorithms that vary in size according to the traffic mix.

Findings The possibility of choice has a large effect on how well a sequencing
algorithm may perform. In this experiment there was sufficient choice to enable
increase in runway capacity. However, this came at a price. The delay the AMAN
system gave to aircraft averaged at 34.8 minutes. This is very large when
considering Figure 8.5, the distribution of time aircraft spend in the simulated
AMAN airspace if there is no delay. This experiment showed that any increase in
runway capacity depends on the wake-vortex characteristics of arrival traffic. Even
with airspace completely saturated, no statistically significant improvements in
location of landing number were found when the wake-vortex mix was set as
autumn 2003 at Stockholm Arlanda.
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8.2. Airport runway capacity experiment: Landing rate

Table 8.10: Airport runway capacity experiment: Landing rate, Question B, log-linear model
coefficients with & = 0.033715

Coefficient Point Std.
Estimate  Error

1 3.9616 0.0036
%) 0.0068 0.0051
o3 0.0011 0.0051
o4 -0.0046 0.0051
K2 -0.1110  0.0052
K3 -0.2004 0.0053
K4 -0.2544 0.0054
(aK)as 0.0626 0.0073
(k)32 -0.0007  0.0074
(k)49 0.0231 0.0074
(ks )a3 0.1102 0.0074
(k)33 -0.0002 0.0075
(k)43 0.0393 0.0075
(O.’K/)Qzl 0.1276  0.0075
(075)34 0.0003 0.0077
(k) aa 0.0525 0.0076
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Figure 8.5: Histogram of flight plan time in simulation airspace
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Figure 8.6: Airport runway capacity experiment: Landing rate, Question C, histogram of
land number

8.2.5 Question C

What difference will CPS constraints make to potential increases in runway

landing capacity?

Experiment parameters Add an additional run to the last experiment with the
dynamic program with CPS set to 3 for all aircraft types.

Analysis Visual inspection of output histograms in Figure 8.6 does not show a
clear difference between FCFS at runway and the dynamic program with CPS
constraints. This conclusion is also drawn from EDFIT tests and log-linear model
building: when FCFS at runway is set as a base, algorithm and wake-vortex
interactions involving the dynamic program with CPS return insignificant. Table
8.11 illustrates the non-significant difference in overall mean landing rates. This
table shows the results from a bootstrap experiment with 10,000 repeats. Landing
rates were resampled by traffic sample and algorithm. Although the landing rate is
different in means, the difference is not statistically significant pairwise at 90%
(using the Bonferroni inequality). However, another bootstrap experiment
resampling by traffic sample from wake-vortex categories does find significant
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8.2. Airport runway capacity experiment: Landing rate

Table 8.11: Airport capacity experiment: Landing rate, Question C, mean landing rate, em-
pirical bootstrap confidence intervals

Algorithm Mean  Bootstrap empirical C.I.*
2.5% 5%  95% 97.5%

FCFS 4587 4524 4534 4641 4652

Heuristic 46.87 4634 4642 4732 4741

DP with CPS=3 46.66 46.11 4620 47.14 47.24
*10,000 Bootstraps

Table 8.12: Airport runway capacity experiment: Landing rate, Question C, mean landing
rate by wake vortex level, empirical bootstrap confidence intervals

Algorithm WV Level Mean 95% C.I.* Multiple 95% C.L.*

Lower Upper Lower Upper
FCFS 2 47.04 46.64 4744 4644 47.62
Heuristic 2 4790 4752 4830 47.36 48.48
DP with CPS=3 2 4750 4710 4792 4690 48.10
FCFS 3 43.04 4266 4342 4250 43.60
Heuristic 3 4452 4416 4490 44.00 45.08
DP with CPS=3 3 44.68 4430 45.08 4412 45.24
FCFS 4 40.80  40.50 41.10 4036 41.24
Heuristic 4 4274 4240 43.06 42.26 43.22
DP with CPS=3 4 42.04 4172 4236  41.56 42.52
*14,400 bootstraps

differences in mean landing rate at wake-vortex levels 3 and 4. The differences are
shown in Table 8.12. Notice how the improvement found at wake-vortex level 2,
when using the dynamic program without CPS constraints, is no longer significant

with CPS constraints set to three.

Findings When airspace is saturated with aircraft and there exists choice of
aircraft it is theoretically possible to increase runway capacity over FCFS at
runway through a deterministic optimal dynamic program. However, when a CPS
constraint is added to this algorithm with a view to make the generated sequence
implementable, the limited sequence choice may result in no significant difference
in landing rate. Improvements in landing rate depend on the wake-vortex mix of

arrival traffic.

8.2.6 Question D

The landing sequences produced by the sequencers are different. Are there any

other observable differences in landing rate?
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8.2. Airport runway capacity experiment: Landing rate
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Figure 8.7: Airport runway capacity experiment: Landing rate, Question D, histogram of
maximum land rate

Experiment parameters Analyze the previous experiment looking at maximum
moving average landing rate. A significant difference for this indicator would
show improvement in localized landing rate is possible.

Analysis  Figure 8.7 shows histograms of the maximum moving average landing
rate. The dynamic program with CPS constraints increases the maximum landing
rate over FCFS at runway, depending on the wake-vortex mix. The full EDFIT
Table 8.13 shows how this depends on wake-vortex mix: algorithm wake-vortex
interactions are significant, not main effects. However, algorithm 5 and
wake-vortex interactions are statistically significant.

Findings There is some evidence of the expected gains in clever sequencing over

FCFS. Locally, at certain periods of time, clever sequencing produces tighter
landing sequences than FCFS.
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8.2. Airport runway capacity experiment: Landing rate

Table 8.13: Airport runway capacity experiment: Landing rate, Question D, maximum land-
ing rate, full EDFIT table, 1000 bootstraps

T Cs Cs Cs Cr
s 876 (239)  0.58 (.694) 1.7 (221)  2.22(026) 4.25(.000)
3 0(1) 0 (1) 0(1) 0(1) 0(1)
a4 0 (1) 0(1) 0 (1) 0 (1) 0(1)
as 022(1)  0.02(946)  0.05(.825)  0.06 (.675) 0.09 (1)
K2 269.26 (.000) 138.46 (.000) 111.54 (.000)  4.03 (.004) 15.23 (.000)
K3 584.41 (.000) 553.81(.000)  9.68 (.000)  0.25(.435) 20.66 (.000)
Ka 757.28 (.000) 708 (.000) 4(.054)  25.7(.000) 19.58 (.000)
ar)ys 14316 (000)  52.95(.003)  12.51(.014) 22.32(.000) 55.39 (.000)
k) 0.69(1)  0.07(928)  0.04(897) 0.05(791) 0.54(.983)

ar)p  14.38 (.301) 71(328)  0.52(.609) 3.78(.039) 2.99 (.187)
753 (616)  3.06 (.548)  0.07(.842)  2.56 (.105)  1.84 (.535)
Jas  296.36 (.000) 184.69 (.000)  64.25 (.000) 34.56 (.000) 12.87 (.000)
Jss 1.05(998)  0.07(0.93)  0.08 (.816) 0(961)  0.9(916)
s5 57.25(015) 16.07 (173) 2275 (.001)  4.54 (0.02) 13.89 (.000)
5 65.92(.012)  19.91(0.11)  29.17 (.001)  2.54 (.068)  14.3 (.000)
343.47 (.000) 153.87 (000) 167.43 (.000)  7.29 (.005) 14.88 (.000)
k)3 058(1)  0.04(947)  0.11(818)  0.15 (.655) 0.29 (1)
ak)u 97.69 (000)  9.41(302) 25.04 (.000)  28.5(.000) 34.75 (.000)
ar)ss  40.31(.022)  2.66(536) 10.16 (.024)  9.18 (.000) 18.31 (.000)
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8.2.7 General conclusions

The following conclusions are drawn based on the simulation model of aircraft
flying into Stockholm Arlanda. They could be applicable for airports with similar
arrival airspace characteristics.

e No statistically significant increase in landing rate is found from improved
sequencing when arrival levels are around maximum runway capacity for a
wide range of wake-vortex traffic mix conditions.

e Airspace needs to be saturated with a sufficient wake-vortex mix of aircraft
so there exists enough choice of aircraft for sequencing algorithms before
increase in landing rate in peak periods is possible.

e Algorithmic CPS constraints to make the landing sequence workable may
make any increase in runway landing rate over FCFS impossible.

e The dynamic environment may lead “optimal” algorithms to make
sub-optimal landing sequences.

e Locally, at certain periods of time, using CPS constraints may produce tighter
landing sequences than FCFS. Difference in hourly rates is not as marked.
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8.3. Conclusions

8.3 Conclusions

This chapter has investigated how Arrival Manager tools might impact on
airport runway capacity through experiments on a computer simulation model of
airspace around Stockholm Arlanda airport. Conclusions are based on data used
to run experiments on the model. The effect of an Arrival Manager on airport
capacity was examined by looking at delay and landing rate indicators.

No clear difference in mean delay was found between sequencing aircraft FCFS
and using the alternative methods under the traffic conditions simulated.
However, the distribution of individual aircraft delay was found to change. The
heuristic algorithm increased the probability that aircraft are delayed above a
threshold of 15 minutes over all other sequencing methods, where the threshold
was used in other algorithms as a deadline constraint. It was also found that if the
threshold is broken, a smaller proportion of aircraft will miss it when sequenced
by the heuristic than other algorithms. Further, dynamic programs with
constraints on the FCFS order to IAF points delayed a higher proportion of aircraft
2 minutes under a 15 minutes threshold than all other algorithms.

No significant improvement in landing rate was found throughout the
experiments in the previous chapter. Work here found that this is not only due to
wake-vortex traffic mix. Traffic needs to be saturated with sufficient wake-vortex
mix to a point where algorithms have enough choice of sequence position to make
a difference. This did not happen when arrival rates were around airport runway
capacity. The dynamic nature of sequence updating was shown to produce
situations where an optimal deterministic algorithm may produce sub-optimal
sequences, and be bettered by a heuristic. In situations when it is possible to
increase landing rate over FCFS, the addition of the CPS constraint that an aircraft
may only be sequenced a maximum of 3 positions either side of its FCFS position,
resulted in no improvement at certain wake-vortex levels. This was again due to
lack of choice. However, running with the CPS constraint bunched aircraft

together locally and so increased maximum landing rate over FCFS.

Overall, no clear increase in the airport runway capacity of the simulation model
airspace surrounding Stockholm Arlanda was found. System behaviour would
change if landing sequence is altered, but there was not enough evidence to
support a claim that the simulation airspace model may better cope with more
arrivals than it would when sequencing aircraft FCFS. These results may be

applicable to airports with a similar arrival airspace.
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8.3. Conclusjons

Capacity is not the only factor considered by Air Traffic Control bodies when
investigating change to controller work patterns. Indeed, hypothesized capacity
increases are not the only reason for using AMAN technology. This chapter has
demonstrated that it may be more advisable to focus on other aspects than airport
runway capacity when deciding upon an AMAN strategy. For instance, human
factors texts such as Hopkins (1995) argue that for new decision support
technologies to be successful, controllers must be able to interrogate the system to
better understand why the advice has been made. Sequencing FCFS is an easy to
understand rule, complicated objective function based optimization routines may
be less so. Other considerations may include some of the system behaviour
characteristics investigated in the previous chapter, or the difference in individual
aircraft delays found in this chapter. In any case, the behaviour of the system will
depend on the particular airspace and so investigation needs to be tailored to the

airspace in question.
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Chapter 9

Conclusion

9.1 Summary

Landing aircraft must respect minimum separation distances based on their
weight, so some landing sequences produce more delay than others. This arrival
aircraft sequencing problem gives rise to a related problem, termed the
delay-sharing problem, of how to assign delay that results from the landing
sequence to individual aircraft. The scheduling problem has been well studied,
and several optimization sequencing algorithms have been developed. These
algorithms contrast with the majority of developed ATC systems, where arrivals
are sequenced using a projected FCFS arrival sequence. Very little rigorous work
has been carried out to assess how advanced sequencing algorithms might
perform, in conjunction with different delay-sharing strategies, in the real, variable
and dynamic world. This work has investigated the performance of different
sequencing algorithms and delay-sharing strategies in such an environment,
through use of a simulation model of arrival airspace. The effects on Air Traffic
Control performance indicators delay, landing rate, holding time, time in approach
sectors and the stability of the delay-to-lose advice have been investigated. A
caveat applies to all the findings presented: they are based on data used in the
modelling process, not on a detailed operational study.

The process of formulating and reviewing the sequencing and delay-sharing
problems identified a number of algorithms and problem constraints that had not
been previously made. These gaps were exploited in several polynomial-time
dynamic programming algorithms, proposed for determining optimal landing
sequences for three different machine job scheduling models. In the first, aircraft
were assumed to be sequenced out of holds onto several runways for any regular
objective function. In the second, aircraft were sequenced onto a single runway
based on their release date, to minimize makespan and total tardiness (assuming
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each job’s release and due date were the same). In the final model, aircraft were
sequenced based on their approach stream FCFS order and release dates onto
several runways for any regular objective function. Modifications to the
formulations to allow deadline and Constrained Position Shifting (CPS)

constraints were also presented.

On the basis of discussions with Eurocontrol personnel a discrete-event
simulation model of airspace surrounding Stockholm Arlanda airport was built in
Visual Basic. The simulation model is viewed as an analysis tool to investigate
scheduling and delay-sharing strategies when landing aircraft at airports. Previous
work has focused on the effects in the TMA area, but the area of airspace
considered by the simulation model is two sectors back from the TMA. The
simulation has been built to enough level of detail to enable some performance
indicators on delay, landing rate, efficiency and controller workload to be
extracted for investigation through experimentation.

Statistical validation procedures have been used to lend credibility to the model
results. Statistical input routines, and delay and landing rate output performance
indicators from the model were validated against real radar track data, recorded in
autumn 2003, using hypothesis tests, confidence intervals and tests for dynamic
behaviour. None of the tests lead to the conclusion that inference on the real world
cannot be made from experimentation on the model for the specific issues to be
addressed.

Experiment analysis methods that make use of a large number of replicates at
each design point were reviewed and used. These included (1) the Empirical
Distribution Integral Test (EDFIT) method (Cheng & Jones 2004), (2) Monte-Carlo
simulation, (3) linear regression models for mean, (4) estimation through weighted
least squares with weights estimated from simulation output, (5) variance models
fitted using design point sample means, (6) models for skewness, (7) resampling
routines based on the large number of design point repeats to test for significance
when standard asymptotic result assumptions did not hold, and (8) logit and beta
models for the proportion of data points that miss thresholds or targets.

The first series of computer simulation experiments were made to investigate
the effects of change to landing sequence algorithm and delay-share strategy on
the simulation model of aircraft arrivals into Stockholm Arlanda airport. These
changes were looked at in conjunction with potential movements in arrival rates,
local and international mix of the traffic, and wake-vortex category mix of arrival
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traffic. The results were particular to the model, but may also be applicable to
other arrival airspace with similar characteristics. Very little benefit from improved
sequencing algorithms was found; sequencing FCFS at runway performed as well
as any other. However, system behaviour was found to vary by sequencing
algorithm and delay-sharing strategy. Holding time and its variability reduced by
delaying aircraft before the TMA. As traffic intensity increased the gain in
reducing the mean time holding increased, but the gain in reduction in variability
of hold time decreased. Delaying aircraft pre-hold resulted in more traffic for
controllers in sectors further back from the airport, even when delaying as late as
possible without holding. This may have implications on other Air Traffic Control
issues, such as slot allocation for aircraft departing at different airports that need to
fly in the sectors affected. Delay-to-lose advice through time was found to be more
stable when delaying aircraft in holds, than earlier in airspace. The CPS constraint
was shown to be a good method to limit the variability of advice from advanced
sequencing algorithms, to that found from a FCFS at runway algorithm. Three
general conclusions were drawn from the experiment results. First, improved
sequencing techniques should not be regarded as a panacea to reduce delay and
increase landing rate because the ability to realise these benefits depends on
arrival airspace and traffic characteristics. Second, different sequencing algorithm
and delay-share strategies in an AMAN system may cause different system
behaviour. Last, choice of sequencing algorithm and delay-share strategy will
affect stability of advice to controllers, and quality of information to other users.

The second series of experiments were run to investigate how Arrival Manager
tools might impact on airport runway capacity. The effect of an Arrival Manager
on airport capacity was examined by looking at delay and landing rate indicators.
No clear difference in mean delay was found between sequencing aircraft FCFS
and using the alternative methods under the traffic conditions simulated.
However, the distribution of individual aircraft delay was found to change. Traffic
needed to be saturated with sufficient wake-vortex mix to a point where
algorithms had enough choice of sequence position to make a difference. This did
not happen when mean arrival rates were around airport runway capacity. The
dynamic nature of sequence updating was shown to produce situations where an
optimal deterministic algorithm may produce sub-optimal sequences, and be
bettered by a heuristic. In situations when it was possible to increase landing rate
over FCFS, the addition of the CPS constraint that an aircraft may only be
sequenced a maximum of 3 positions either side of its FCFS position, made
improvement impossible for some wake-vortex traffic mix levels. However,
running with the CPS constraint bunched aircraft together locally and so increased
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maximum landing rate over FCFS. Overall, no clear increase in the airport capacity
of the simulation model airspace surrounding Stockholm Arlanda was found.
System behaviour would change if landing sequence is altered, but there was not
enough evidence to support a claim that the simulation airspace model may better
cope with more arrivals than it would when sequencing aircraft FCFS.

9.2 Main contributions of thesis

This thesis has made a number of contributions to the literature on the Aircraft

Arrival Management problem.

Sequencing New dynamic program sequencing algorithms have been developed
for differing models of the sequencing problem.

Scope Previous work has looked at the problem of Sequencing aircraft close to the
runway, in the TMA. This thesis has examined the problem for real-world
operational AMAN systems such as MAESTRO, where advice is made to
controllers much further back from the TMA.

Simulation model A computer simulation model has been developed and used to
examine the dynamic implementation of different sequencing techniques.
The model has been applied to a specific airspace, taking account of the
variability in aircraft arrivals. The validity of the model has been tested.

Experimentation Interactions between sequencing algorithm, delay-share
strategies and arrival traffic mix have been examined through

experimentation.

Statistical methodology A number of statistical methods have been used to
analyse output from the simulation model. These have been developed, or
selected, for output with high design point replication.

Conclusions The thesis has argued that improved sequencing techniques should
not be regarded as a panacea to reduce delay and increase landing rate
because the ability to realise these benefits depends on arrival airspace and
traffic characteristics. Different sequencing algorithm and delay-share
strategies in an AMAN system may cause different system behaviour, and
choice of sequencing algorithm and delay-share strategy will affect stability
of advice for controllers, and quality of information for other users.

Interpretation The conclusions drawn from experimentation on the simulation
model differ from many previously presented. This highlights a need to test
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optimization algorithms back on the problem, where algorithmic

assumptions are dropped.

9.3 Strengths and Weaknesses

The approach taken to investigate how the ATC system reacts to changes in
sequencing algorithms, optimization criteria and delay-sharing strategy has a
number of strengths.

Effects on real airspace The results presented are based on analysis of arrivals to a

real airspace.

Type of airspace / airport The model of pre-TMA airspace, where there is a
concept of k points that aircraft fly through before they begin descent onto
the runway, is generally quite valid. It describes the situation at Stockholm
Arlanda where there are four IAF points, and London Heathrow where there

are four holding points.

Credibility Statistical validation methods have lent credibility to the model
output.
Wide range of sequencing methods A variety of different sequencing algorithms

have been examined. This increases the probability that effects due to

sequencing algorithms have been detected.

Confidence in results Appropriate design of experiment ideas have been used to
take variation into account when looking for significant differences due to
algorithms, algorithmic constraints delay-share strategies and traffic
conditions on pre-TMA airspace. Conclusions are drawn based on analysis
using a number of statistical methods.

Some important caveats apply to the work.

Not an operational study Conclusions drawn from the model are based on data
used in the modelling process, not on a detailed operational study.

Airspace Only a single arrival airspace was considered.
Airport Only asingle arrivals-only runway was considered.

Arrival Traffic Since the purpose of the work was to look at Arrival Management,
departures were not considered. So results do not hold for sequencing onto

mixed-mode runways.

Algorithms Although a wide-range of sequencing algorithm and delay-share
strategies were compared, it may be that other algorithms perform differently.
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9.4 Further work

Two avenues of research might take this thesis forward. Firstly, the developed
tool might be used to address some of the weaknesses identified above, or for
related ATC problems such as departure management. This may involve data
collection and additional code development. Secondly, the findings presented
might be used to inform on additional analysis to compare AMAN systems.

Address weaknesses Arrival Management is an environment-specific problem,
and the effects of different systems may depend on the traffic mix, arrival profiles
and airspace. The developed simulation model may be used to examine how
different airports and airspace reacts to changes in sequencing algorithms,
optimization criteria and delay-sharing strategy. To carry out further analysis on
different airports and airspace, the model would need to be set-up with data from
the Eurocontrol Central Flow Management Unit (CFMU), and a further data
source used for validation. The effect of additional sequencing algorithms or
delay-share strategies may be examined by coding them into the model. The tool
might also be used to look at problems related to the Arrival Management
problem, such as the departure management problem of sequencing aircraft
take-offs. This would require change to the structure of the simulation code.

Alternative analysis Little benefit to delay or landing rate was found from
improved sequencing of arrivals into Stockholm Arlanda airport. However,
changes were found in system behaviour performance indicators. Further analysis
might take the thesis forward by looking for other differences in system behaviour
between arrival sequencing methods. For example, airline operators may hope for
accurate forecast land times to help plan operations. What system might ensure
forecast land times be made more accurate? Controllers might have preferences on
how aircraft move through their sectors. What system ensures that aircraft arrive
in a steady stream? Questions might relate to the assumptions made in Section
4.1.4. For instance, what happens if there is a time lag between controllers being
given advice and when they take action? What happens if aircraft do not follow the
advice they are given exactly - how accurate do they need to be? The simulation
model may be used to examine these questions, and others about the ATC system.

The package of work to address weaknesses should help increase confidence in
the general conclusions drawn in this thesis. The second type of further work
would require experts to ask the questions, but could, potentially, provide

powerful guidance.
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Appendix A: Chapter 4
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Appendix B: Chapter 5

ICAQ FPL data
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ICAO EST data description
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Track data fields

TRK data content (simple radar tracks) : 1. Time (hours : minutes : seconds :
milliseconds) 2. Area ID (integer) 3. Station ID (integer) 4. Track number (integer)
5. Latitude (float in degrees) 6. Longitude (float in degrees) 7. Altitude (float in
feet) 8. Valid mode C (0—1) 9. Flight level (integer) 10. Track angle (float in
degrees) 11. Ground speed (float in knots : NM — hour) 12. Rate Of Climb (float in
feet per minute) 13. Attitude indicator : 0 (Levelled off) — 1 (Descending) — 2
(Climbing) — 3 (Unknown) 14. Valid SSR code (0—1) 15. SSR code (4 digits) 16.
Track status - Simulated flag (0—1) 17. Track status - Manoeuvring flag (0—1) 18.
Track status - End of track (0—1) 19. Track status - Special Position Indicator flag
(0—1) 20. Track status - Update kind : 0 (Extrapolated) — 1 (Only PSR) — 2 (Only
SSR) — 3 (PSR And SSR) — 4 (ADS-B) 21. Track origin : 0 (Undefined) — 1 (Radar)
— 2 (ADS) — 3 (Combined) — 4 (Fpl Interpolation) 22. Operational Flight Plan ID
(integer) 23. Callsign (8 characters or empty)

Additional ADS data (ADS-B information) :

24. Barometric altitude (float in feet) 25. FOM : position accuracy (0 to 10) 26. FOM
: ACAS Operational flag (0—1) 27. FOM : Multiple Navigation Aids Operating flag
(0—1) 28. FOM : Differential Correction flag (0—1) 29. Velocity accuracy (0 to 10)
30. Number of points in the projected profile (0 to 4) 31. Top of Descent position in
the projected profile (0 to 4) 32. 1st projected point : altitude (float in feet) 33. Tst
projected point : latitude (float in degrees) 34. 1st projected point : longitude (float
in degrees) 35. 1st projected point : time to go (float in seconds) 36. 2nd projected
point : altitude (float in feet) 37. 2nd projected point : latitude (float in degrees) 38.
2nd projected point : longitude (float in degrees) 39. 2nd projected point : time to
go (float in seconds) 40. 3rd projected point : altitude (float in feet) 41. 3rd
projected point : latitude (float in degrees) 42. 3rd projected point : longitude (float
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in degrees) 43. 3rd projected point : time to go (float in seconds) 44. 4th projected
point : altitude (float in feet) 45. 4th projected point : latitude (float in degrees) 46.
4th projected point : longitude (float in degrees) 47. 4th projected point : time to go
(float in seconds) 48. Link technology : 0 (Other) — 1 (Mode S) — 2 (UAT) —3
(VDL) 49. ADS-B latitude (float in degrees) 50. ADS-B longitude (float in degrees)
51. ADS-B altitude (float in feet) 52. ADS-B flight level (long) 53. ADS-B heading
(float in degrees) 54. ADS-B ground speed (float in knots) 55. ADS-B rate of climb
(float in feet per minute) 56. Emitter category : 0 (unkonwn) — 1 (light aircraft) —
3 (medium aircraft) — 5 (heavy aircraft) — 10 (rotocraft) — 20 (surface emergency
vehicle) — 21 (surface service vehicle) — 22 (fixed ground) 57. Event report reason
: 0 (lateral deviation) — 1 (vertical rate change) — 2 (altitude threshold) — 3 (way
point change) — 4 (air speed change) — 5 ground speed change) — 6 (heading
change) — 7 (projected profile change) — 8 (FOM change) — 9 (track angle
change) — 10 (altitude change) — 11 (unknown) 58. Selected flight level (long) 59.
Turn indicator : 0 (Left) — 1 (Right) — 2 (Straight) — 3 (unknown) 60. Rate of turn
(float in degrees per second) 61. Air Vector : heading (float in degrees) 62. Air
Vector : speed (float in knots) 63. Air Vector : rate of climb (float in feet per min) 64.
Aircraft type (char [4]) 65. Target status : 0 (no emergency) — 1 (general
emergency) — 2 (lifeguard or medical) — 3 (minimum fuel) — 4 (no
communications) — 5 (unlawful interference) 66. Aicraft Address (Hexadecimal
value as 6 characters) 67. Age of the last SSR plot (float in seconds) 68. Age of the
last ADS-B report (float in seconds)

Technical report validation summary

Quantitative methods to validate.

Strengths Statistical tests
Confidence intervals on the differences.

Hypothesis tests: Data Vs Accuracy Lot of data = reject, Little data = accept.
Weaknesses Data Confidence in validation is limited by amount of data available.
Dynamic tests Subjective.

Overall conclusion Justification Confidence

AMAN simulation model is valid | Quantitative testing on differences Probability we would see the hypothesis
between model and track data for test scores in this report if
a set of actual data could not there is no difference between model
find significant differences for and reality is greater than 0.05.

model mputs or important outputs.
Some sensitivity and dynamic tests were
passed.
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Category

Techniques

Justification

Reference | Conclusions Confidence
Inputs i. Hypothesis To see if there is enough Chapter 5 | 1. A non-stationary Poisson 0. Data: 16 traffic samples of
o Arrival testing Track data to suggest that Section 5.2 | process generates an arrival variable length (1hr 5m - 3h 37m)
rates ii. Goodness- the sampling procedure sequence at JAF's 1. Test scores using the data
o IAF of-fit tests is invalid. 2. The probability of aircraft each had probabilities > 0.05
o Wake- iii. Bootstrapping = Testing hypothesis that flying to IAF points during that the the variation in
-vortex procedures in place are valid a day follows a test score would be seen
category using GOF and bootstrapping. multinomial distribution if the model is correct.
3. The probability of aircraft 2. Test score using the data
of different wake vortex had a probability = 0.90
category flying to an IAF that the the variation in
follows a multinomial model. | test score would be seen
if the model is correct.
3. Test scores using the data
each had probabilities > 0.15
that the the variation in
test score would be seen
if the model is correct.
Outputs i. Hypothesis Used techniques to Chapter 5 | 1. Not enough evidence 1a. Test scores using the data
o Delay testing investigate: Section 5.3

o Landrate

ii. Goodness-

of-fit tests

ili. Bootstrapping
iv. EDF charts

v. Boxplots

V1. t-tests

vii. Regression

viil. Autocorrelation
ix. Time series

> Confidence in output
o> Sensitivity analysis
> Dynamic behaviour

to support hypothesis of
difference in c}ljelay

2. Not enough evidence
to support hypothesis of
difference in landing rate.
3. Landing rate in model
and the Track data follow
the same trend in time

4. Landing rate in model
and track have similar
time series characteristics.

each have a probability > 0.0845
that the the variation in

test scores would be seen

if delays are equivalent.

1b. Test for difference in mean
delay has a probability = 0.368
that the the variation in

test scores would be seen

if mean delays are equivalent.
1c. 95% Confidence interval on
difference in means is

[-0.159, 0.319].

2. Test scores using the data
are not rejected at the

95% level.

3. Model mean and Track landing
rates are positively correlated.
A linear regression estimate

of coefficient of model mean
to predict actual landing rate
is 0.765 with p-val 0.001.
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Appendix C: Chapter 7

Experiment lll: Parameters used for wake-vortex levels and IAF routes

[ Category IAF1 IAF2 IAF3 IAF4

() (%) () (%)
2 Route 20.11 2226 4733 1031
2 H 310 000 159 475
2 M 96.90 99.68 97.16 95.25
2 L 0.00 032 125 0.00
3 Route 33.01 1579 3428 1692
3 H 3.10  0.00 361 475
3 M 9690 99.68 95.17 9525
3 L 0.00 032 1.22 0.00
4 Route 39.46 1256 27.75 20.23
4 H 310 000 533 475
4 M 96.90 99.68 93.47 9525
4 L 0.00 032 1.20 0.00

Experiment IV:

Parameters used for wake-vortex levels

m o n Increase WV TAF1 1AF2 IAF3 IAF4

Percentage category (%) (%) (%) (%)
2 3 3 H 610 000 544 875
2 3 -4 M 9290 9568 9233 91.25
2 3 1 L 100 432 224 000
2 1 2 H 510 0.00 444 875
2 1 -4 M 9290 9568 9233 91.25
2 1 2 L 200 432 324 0.00
2 2 1 H 410 000 344 875
2 2 -4 M 9290 95.68 9233 91.25
2 2 3 L 300 432 424 0.00
3 3 5.25 H 835 000 769 1175
3 3 -7 M 8990 92.68 8933 88.25
3 3 1.75 L 175 732 299 0.00
3 1 3.5 H 660 000 594 11.75
3 1 -7 M 8990 9268 89.33 8825
3 1 3.5 L 350 732 474 0.00
3 2 1.75 H 48 000 4.19 1175
3 2 -7 M 8990 92.68 89.33 88.25
3 2 5.25 L 525 732 649 0.00
3 3 7.5 H 1060 000 994 1475
4 3 -10 M 8690 89.68 86.33 85.25
4 3 2.5 L 250 1032 374 0.00
4 1 5 H 810 000 744 1475
4 1 -10 M 8690 89.68 86.33 85.25
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Experiment IV: Parameters used for wake-vortex levels (continued)

m o n Increase WV TAF1 ITAF2 IAF3 IAF4

Percentage category (%) (%) (%) (%)
4 1 5 L 500 1032 624 0.00
4 2 2.5 H 560 000 494 14.75
4 2 -10 M 8690 89.68 86.33 85.25
4 2 7.5 L 750 1032 874 0.00

Experiment IV: Delay, mean model coefficients, 1000 bootstraps

Coefficient Point Percentile point
Estimate 0.25 0.5 095 0.975
1 2556 2475 2484 2615 2.630
o -1.410 -1.512 -1.496 -1.319 -1.305
Qs -1.435 -1541 -1.521 -1.347 -1.330
(g -1.420 -1.520 -1.506 -1.331 -1.318
as 0.168 0.062 0.077 0.256 0.266
ag 0.062 -0.048 -0.032 0.171 0.186
Ba -0.006 -0.104 -0.086 0.075 0.098
s -0.019 -0.117 -0.104 0.066 0.085
By -0.053 -0.158 -0.141 0.033 0.052
92 0.104 0.020 0.028 0.173 0.185
3 1274 1155 1171 1.362 1.378
04 4987 4595 4.646 5189 5229
Ko 0.412 0297 0.317 0.515 0.533
K3 0.867 0.735 0.755 0.975 0.998
K4 1.052 0935 0951 1.157 1.173
(f3)an -0.046 -0.175 -0.156 0.064 0.088
()32 -0.070 -0.202 -0.181 0.048 0.062
(/)2 -0.097 -0.221 -0.204 0.012 0.032
()52 -1.667 -1.788 -1.771 -1.560 -1.542
(af)as -0.092 -0.221 -0.202 0.022 0.044
(af)s3 -0.015 -0.150 -0.125 0.098 0.118
(af)as -0.048 -0.182 -0.148 0.062 0.091
()53 -1.639 -1.770 -1.750 -1.519 -1.503
()54 -1.648 -1.779 -1.754 -1.526 -1.496
(k)22 -0.252 -0.426 -0.390 -0.112 -0.091
(k)32 -0.259 -0.421 -0.399 -0.116 -0.089
(k) a2 -0.290 -0.460 -0.428 -0.152 -0.132
(k)52 -0.220 -0.380 -0.348 -0.089 -0.055
(k)62 -0.039 -0.317 -0.271 0.185 0.228
(K)o -0.447 -0.619 -0.595 -0.295 -0.264
(k)33 -0.439 -0.619 -0.592 -0.286 -0.260
(k)43 -0.519 -0.702 -0.661 -0.359 -0.328
(k)53 -0.424 -0.601 -0.567 -0.277 -0.247
(k)63 -0.060 -0.361 -0.308 0.202 0.258
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Experiment IV: Delay, mean model coefficients, 1000 bootstraps (continued)

Coefficient Point Percentile point
Estimate 0.25 0.5 095 0.975
(ak)ag -0.652 -0.821 -0.783 -0.510 -0.487
(k)34 -0.641 -0.809 -0.775 -0.492 -0.473
(k) a4 -0.768 -0.933 -0.902 -0.625 -0.599
(ak)sa -0.644 -0.785 -0.761 -0.505 -0.485
(avk)ga -0.390 -0.631 -0.593 -0.176 -0.130
(vd)92 0.155 0.026 0.043 0.252 0.271
(@d)30 0.150 0.024 0.040 0.247 0.262
(d) 40 0.165 0.046 0.061 0.260 0.276
(@d)s0 0.133 0.012 0.029 0.224 0.244
(ad)g2 0.023 -0.167 -0.134 0.199 0.219
(@d)as 0.070 -0.104 -0.080 0.201 0.225
(vd)33 0.063 -0.103 -0.082 0.199 0.219
(ad)s3 0.031 -0.125 -0.098 0.168 0.191
(@d)s3 0.006 -0.158 -0.129 0.125 0.147
(@d)es 0.139 -0.126 -0.081 0.372 0.413
(@d)aq 0.016 -0.499 -0415 0.418 0.488
(@d)sq 0.047 -0415 -0361 0427 0473
(d)y -0.157 -0.622 -0.556 0.233 0.325
(d)s4 -0.265 -0.677 -0.609 0.074 0.142
(ad)ey -0.434 -1.009 -0.928 0.129 0.217

Experiment IV: Landing rate, skewness model

Coefficient Value SE t-value p-value
1 0.087 0.042  2.057 0.041
(66) 15 0074 0029 2526  0.013
(¢0)13 -0.197 0.029 -6.708 0.000
(66) 14 -0.543 0.029 -18515  0.000
(60)02 -0.290 0.095 -3.044 0.003
(0)os -0.266 0.085 -3.141 0.002
(66) 04 1244 0095 -13.080  0.000
(68)2 0398 0.095 4187  0.000
(66)2 0.595 0.095 6252  0.000
($6)2s 1119 0085 -13204  0.000
(66)39 0.636 0.095 6684  0.000
(66)33 0490 0085 5784  0.000
(¢0)34 -1.097 0.095 -11.526 0.000
(¢0) a2 -0.335 0.085 -3.953 0.000
(99)a3 -0.456 0.095 -4.795 0.000
(66) s 1.092 0095 -11475  0.000
(66)50 -0.130 0.095 -1364  0.175
(66)53 0.108 0085 -1270  0.206
(68)51 1768 0.095 -18.587  0.000
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Experiment IV: Landing rate, skewness model (continued)

Coefficient Value SE t-value p-value
($0) 62 0584 0.085 6.891  0.000
(66)63 0373 0.095 3.926  0.000
(66)64 -0.886 0.095 -9.312  0.000
(66)72 -0.007 0.095 -0.079  0.937
(66)73 -0.024 0.095 -0.250  0.803
(66)74 -1.443 0.085 -17.026  0.000
(¢6)s2 0322 0.085 -3.804  0.000
(¢6)s3 0489 0.095 -5.145  0.000
(¢6)s4 -1.090 0.095 -11.459  0.000
(66)g2 0313 0.095 3.295  0.001
(¢6)os 0412 0.095 -4.332  0.000
(¢6) 04 -1.579 0.085 -18.625  0.000
(v -0.006 0.047 -0.130  0.897
(3 0.036 0.048 0747  0.456
o4 0.077 0.047 1.653  0.100
o -0.029 0.045 -0.646 0519
o -0.032 0.058 -0.548  0.585
Ba 0.014 0050 -0286  0.775
B3 0.036 0.048 0757 0451
B4 -0.043 0.049 -0.874  0.383
(0322 0.025 0.053 0470  0.639
(af)3 0.035 0.055 -0.635  0.526
()2 -0.103 0.053 -1.936  0.055
(a3)s2 0.021 0.054 0393  0.695
()3 -0.085 0.053 -1.604 0.111
(af)33 -0.08 0.055 -1.564  0.120
(@B)as -0.161 0.053 -3.038 0.003
()53 0.018 0.050  0.348 0.728
()4 0.055 0.052  1.052 0.294
(k)12 0.110 0.108 -1.025  0.307
(k)2 -0.073 0.118 -0.615  0.539
(cvk) 32 20.090 0.118 -0.760  0.448
(k) a2 0.066 0118 -0556  0.579
(k)52 0.107 0.108 -0.989  0.324
(k)13 0126 0108 -1.167  0.245
(cvr) o3 -0.153 0.118 -1.294  0.198
(0)s3 -0.155 0.118 -1.316  0.190
(ovk) a3 0135 0.118 -1.145  0.254
(00k) 53 -0.123 0.108 -1.145  0.254
(oK) 14 0.065 0.108 0.600  0.549
(0K ) 0.004 0118 -0.034 0973
(k)34 -0.008 0.118 -0.067  0.947
(v )aa 0.008 0.118 0.068  0.946
(0) s 0.042 0.108 0394  0.6%

184



Experiment IV: Landing rate, skewness model (continued)

Coefficient Value SE t-value p-value
(aA)12 0.113 0.100 1.127 0.262
(aX)22 0.087 0.109 0.794 0.428
(aX)32 0.077 0.109 0.709 0.480
()42 0.074 0.109 0.676 0.500
(aN)s2 0.076 0.100 0.758 0.450
(aX)13 0.274 0.100 2.732 0.007
(aX)2s 0.388 0.109 3.546 0.001
()33 0.354 0.109 3.241 0.001
(aN)a3 0.346 0.109 3.163 0.002
(aM)s3 0.341 0.100 3.400 0.001
(Bk)22 -0.001 0.072 -0.018 0.986
(k)32 0.014 0.071 0.204 0.839
(BK)a2 0.025 0.072 0.341 0.734
(8K )2 0.013 0072 -0175  0.861
(BK)33 -0.061 0.071 -0.865 0.388
(BK)43 0.011 0.072 0.154 0.878
(k)24 -0.058 0.072 -0.801 0.425
(BK)a4 -0.057 0.071 -0.808 0.420
(OK)aa -0.087 0.072 -1.205 0.230
(BA)22 -0.063 0.066 -0.951 0.343
(BA)32 -0.011 0.065 -0.163 0.871
(BN) a2 -0.044 0.066 -0.666 0.506
(BN)23 -0.040 0.066 -0.607 0.545
(BN)33 -0.025 0.065 -0.394 0.694
(BN)a3 -0.116 0.066  -1.750 0.082

Appendix

Experiment IV: Holding time, mean model coefficients, 1000 bootstraps

Coefficient Point Percentile point
Estimate  0.25 05 095 0975
[ 1.264 1218 1.225 1301 1.307
a2 -0.083 -0.101 -0.098 -0.069 -0.067
g -0.087 -0.105 -0.102 -0.073 -0.071
Qg -0.085 -0.101 -0.099 -0.071 -0.069
o % 0.069 -0.001 0.011 0.129 0.140
ag 0.045 -0.014 -0.003 0.098 0.106
55 -1.155 -1.206 -1.195 -1.112 -1.104
3 -1.119 -1.167 -1.159 -1.078 -1.072
B -1.173 -1.220 -1.211 -1.130 -1.123
do 0.302 0.209 0.227 0.379 0.394
03 1.701 1557 1572 1.804 1.831
04 5594 5022 5108 5939 6.011
K2 0.499 0345 0376 0.623 0.643
K3 0937 0.772 0805 1.075 1.107
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Experiment IV: Holding time, mean model coefficients, 1000 bootstraps (continued)

Coefficient Point Percentile point
Estimate  0.25 05 095 0975
K4 1217 1.054 1.075 1.347 1.377
()22 -0.006 -0.035 -0.030 0.019 0.025
()32 -0.010 -0.038 -0.033 0.015 0.018
(o) a2 -0.019 -0.050 -0.042 0.005 0.007
()52 0146 -0.226 -0211 -0.080 -0.066
(af)as3 -0.015 -0.050 -0.044 0.014 0.020
(ar)33 0.003 -0.029 -0.022 0.031 0.036
(a3 -0.044 -0.073 -0.069 -0.018 -0.010
(aB)sa -0.175 -0.256 -0.244 -0.111 -0.096
(af)sa -0.143 -0.221 -0.210 -0.080 -0.065
()22 0.006 -0.033 -0.028 0.034 0.042
(d) 32 0.002 -0.037 -0.032 0.031 0.039
(ad) a2 0.000 -0.036 -0.032 0.029 0.034
(ad) 52 0.022 -0.022 -0.014 0.056 0.063
(aed) o 0.093 -0.072 -0.051 0217 0.243
(ad)as 0222 -0291 -0279 -0.170 -0.158
(0rd) a3 0252 -0319 -0.306 -0.198 -0.185
(ad)as 0245 -0.318 -0.304 -0.189 -0.179
(ad)s3 -0.062 -0.134 -0.124 0.000 0.010
(ad)gs 0139 -0.094 -0.050 0361 0.392
(ad)as -0.693 -1.082 -1.017 -0.369 -0.331
(ed) sy -0.708 -1.087 -1.036 -0.383 -0.348
(d)aa 0.669 -1.052 -1.007 -0.357 -0.288
(ad)s4 0160 -0.515 -0.452 0.149 0.198
(ad) s 0531 -1.167 -1.051 0.092 0.212
(36)22 029 -0390 -0.373 -0219 -0.200
(36)32 0283 -0.380 -0.363 -0.208 -0.192
(30) 42 -0.300 -0.394 -0.377 -0.224 -0.205
(36)as -1.198 -1.332 -1.310 -1.082 -1.066
(36)33 -1.095 -1.229 -1207 -0.975 -0.958
(86)4s 1290 -1.423 -1.402 -1.170 -1.152
(86)2s 2803 -3.327 -3234 -2367 -2.274
(86)s4 2468 -2.981 -2.894 -2.052 -1.962
(36) 44 3.002 -3.534 -3.435 -2572 -2.495
(k)2 -0.128 -0.186 -0.179 -0.066 -0.058
(k) 0.136 -0.194 -0.185 -0.081 -0.068
(k) a2 -0.146 -0.203 -0.195 -0.091 -0.084
(a0 )s2 0.089 -0.168 -0.152 -0.025 -0.015
(o )en 0104 -0.353 -0.317 0.128 0.181
(k)3 0245 -0.315 -0.303 -0.180 -0.166
(ar)ss 0262 -0331 -0.320 -0.199 -0.190
(oK) s 0289 -0356 -0344 -0.221 -0.213
(k)53 0196 -0275 -0.265 -0.128 -0.118
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Experiment IV: Holding time, mean model coefficients, 1000 bootstraps (continued)

Coefficient Point Percentile point
Estimate  0.25 05 095 0975
(ak)es -0.117 -0416 -0.361 0.111 0.173
(k)24 -0.277 -0.335 -0.326 -0.217 -0.207
(k)34 -0.304 -0.361 -0.348 -0.247 -0.237
(k) ga -0.339 -0.394 -0.385 -0.284 -0.275
(k)5 -0.271 -0.340 -0.327 -0.206 -0.196
(k)64 -0.561 -0.783 -0.744 -0.361 -0.319
(OK )22 -0.323  -0.473 -0.451 -0.197 -0.175
(BK)s2 -0.310 -0.460 -0.437 -0.186 -0.162
(BK)az -0.344 -0.495 -0471 -0.221 -0.193
(BK)23 -0.578 -0.749 -0.725 -0.446 -0.417
(BK)s3 -0.541 -0.713 -0.683 -0.406 -0.381
(BF)as -0.609 -0.780 -0.755 -0.476 -0.451
(BK)24 -0.840 -1.011 -0976 -0.702 -0.675
(BK)34 -0.784 -0.954 -0.920 -0.647 -0.621
(BK)4a -0.867 -1.038 -1.004 -0.732 -0.709

Experiment IV: Holding time, variance model

Coefficient Point 95% C.I.
Estimate Lower Upper
B -0.467 -0.764 -0.169
o3 -0.499  -0.797 -0.202
Qq -0.491 -0.788 -0.193
a5 -0.153 -0419 0.113
g -0.092 -0572  0.388
Ba -1.882  -2.892  -0.872
s -1.457  -2.467 -0.447
B4 -2.038 -3.049 -1.028
) 0974 0.083  1.865
03 1.738  0.847  2.629
04 2962 2071 3.853
Ko 0383 0122 0.644
K3 0.446 0185 0.707
Ky 0.420 0.158  0.681
(6)22 0.809 -0.299 1.917
(80)32 0.567 -0.542  1.675
(30)a2 0.731 -0.377  1.840
(86)23 1.330 0222 2.438
(30)33 0.963 -0.145 2.071
(6)a3 1.299 0191  2.407
(/36)24 1.897 0.788  3.005
(/36)34 1.525 0417 2634
(36)as 2102 0994 3.211
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Experiment IV: Holding time, variance model (continued)

Coefficient Point 95% C.I.
Estimate Lower Upper
o? 0.024 - -

Experiment IV: Approach sectors, variance model

Coefficient Point 95% C.1.
Estimate Lower Upper

02 0476 0.244  0.707
03 0.820 0589 1.051
04 2115 1.884 2.346
Ko 0.150 -0.004 0.305
K3 0.206  0.052  0.360
K 0.264 0.110 0.418
o? 0.046 - -

Experiment IV: Stability, mean model coefficients, 1000 bootstraps

Coefficient Point 95% C.L
Estimate Lower Upper

7 0.104 0.097 0.112
Qs 0.063 -0.069 -0.056
as 0.064 -0.070 -0.057
a 0.042 -0.049 -0.035
s 0.069 -0.075 -0.062
a6 0.066 -0.075 -0.057
B 0068 0061 0.074
s 0068 0061 0.074
B 0.072 0.065 0.078
8 0052 0.034 0.071
53 0231 0.183 0.273
54 0751 0576 0.916
o 0100 0078 0.122
K 0171 0.148 0.197
K 0206 0.182  0.230
A 0.023 -0.034 -0.012
A3 -0.009 -0.020  0.002
(cd)2s 0.026 -0.046 -0.005
()3 -0.023 -0.043 -0.005
(ad) 12 -0.027 -0.049 -0.006
()5 0.023  -0.042 -0.004
(ad)ez 0.002 -0.030 0.026
(6)as 0.021 -0011  0.051
(ad)33 0.018 -0.013  0.048
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Experiment 1V: Stability, mean model coefficients, 1000 bootstraps (continued)

Coefficient Point 95% C.1.
Estimate Lower Upper

(@d) 13 0.052 0014 0085
()53 0.018 -0.016 0.051
(ad)e3 0.009 -0.039 0.061
(ad)24 0247 0.182  0.307
()34 0227 0.169  0.284
() s 0520 0432  0.5%
()54 0348 0274 0414
()64 0.098 -0271  0.085
(k)22 0.026 -0.058  0.007
(k)3 -0.029 -0.058  0.003
(ak) s -0.035 -0.069 0.001
(cvr)s2 -0.029 -0.060  0.001
(koo 0.056 -0.092 -0.018
(a)os 0.041 -0.075 -0.006
(k)33 -0.050 -0.086 -0.015
(ak)as 0.056 -0.094 -0.018
(k)53 0.054 -0.086 -0.022
(ks 0.099 -0.137 -0.060
(k)2 0.069 -0.105 -0.035
(ak)sa 20.076 -0.107 -0.043
(k)aa 0.108 -0.144 -0.072
(k)5 0.096 -0.127 -0.065
(ak)es 0153 -0.188 -0.118
(3622 0.044 0.028  0.059
(66)32 0.044 0.029  0.059
(86)2 0.047 0.032 0.063
(86)2 0124 0.081 0.165
(86)33 0.122 0.083 0.164
(86)43 0142 0.101  0.182
(86)24 0114 -0.049 0.284
(86)34 0115 -0.049 0288
(86) a4 0.153 -0.005 0.324
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Appendix

Appendix D: Chapter 8

Wake-vortex parameters(%) for experiments on landing rate

IAF Wake-vortex

category

Wake-vortex level

1

2

3

4

LE = SN GO RGO R GO RN NG I NG I NG I S Gy

CFEIFZICrZIrL T

3.10
96.90
0.00
0.00
99.68
0.32
2.44
96.33
1.24
4.75
95.25
0.00

14.10
74.90
11.00

0.00
77.68
22.32
13.44
74.33
12.24
26.75
73.25

0.00

26.60
49.90
23.50

0.00
52.68
47.32
25.94
49.33
24.74
51.75
48.25

0.00

39.10
24.90
36.00

0.00
27.68
72.32
38.44
24.33
37.24
76.75
23.25

0.00
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