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by Barry Alan Welch

In this thesis we present the development of semiclassical techniques and
apply these techniques with the aim of investigating elastic plate systems.
For the circular plate the eigenvalues and numerical error in comparison to
established results are calculated by an altered version of Gutzwiller’'s Trace
Formula. In addition this formula is applied to the square plate to find that
the free edge boundary condition produces less accurate results than other
cases.

The transfer matrix method of Bogomolny to calculate semiclassical phase
correction terms is followed for the free edge boundary condition and a phase
correction is found that improves in accuracy on the previously thought value
and includes contributions from lower order wavenumber and boundary cur-
vature terms.

A system with a diffractive centre is looked at by applying a quantum
scattering technique and we find that in the case of the elastic plate that a
diffraction coefficient cannot be determined without neglecting lower order
terms and so the effects of these terms are still in question. By looking at the
diffractive problems as a star graph model we found that the statistical prop-
erties follow those of the quantum billiard and that the model is applicable
to plate systems.
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Chapter 1

Introduction

It can be seen that it is possible for classical systems to exhibit chaotic be-
havior where there is a sensitive dependence on initial conditions, such that a
small discrepancy can develop into a large difference. Even the slightest error
in initial conditions can then greatly effect the result of the calculation. These
systems, difficult to describe in a classical framework, can instead be linked
to a probabilistic quantum description by using quantum chaos, the study of
the quantum wave-like behavior of classically chaotic systems. Describing the
eigenvalue spectrum of a vibroacoustic system can be approached in several
different ways, but it is the approach based upon semiclassical approximation
that we are interested in.

It is the aim of this thesis to investigate the application of semiclassical
methods to elastic plate problems. In doing so we hope to develop alter-
ations to these methods that would allow them to be used for chaotic as
well as integrable systems. By using these techniques to study numerical er-
rors of semiclassical approximations we hope to identify relevant factors that
when considered in greater detail will provide an improvement on current

techniques. In order to do this, presenting the development of such tech-



niques becomes necessary, so that we understand their application to elastic
systems.
In investigating these systems, it would seem that the semiclassical limait,

where i — 0 would reduce the Schrodinger equation
———ar =tV (2)¥ (1.1)

to a classical form. However, setting Planck’s constant to zero will result
in a singular perturbation due to the divergence of this formula, and the
quantum formulae will not match their classical counterparts. Instead, the
semiclassical region is investigated with asymptotic approximations which
have been developed in order to deal with this limit.

A billiard is defined as a dynamical system given by the motion of a par-
ticle with constant speed inside a compact domain with elastic reflections at
the boundary. The boundary is assumed to consist of 7 smooth components,
the geometrical and reflective properties of these components will determine
the behavior of the billiard. Given certain boundary interactions periodic
orbits can arise, where the particle returns to its initial position and momen-
tum after a finite time. These orbits will play a large role in determining
the physical behavior of the billiard. The analysis of billiards and the nu-
merical accuracy involved has been looked at using a variety of methods [1]
2], and it is generally considered that semiclassical methods provide a good
approximation to exact billiard spectra [3]. In this thesis we shall investigate
the use of a variety of these methods in approximating eigenvalue spectra
and their statistical behavior when applied to elastic plates, which can be
approximated to billiards in simple cases.

Billiards are highly useful in the study of quantum chaos, their periodic
orbits are an integral part of the trace formula which acts as a bridge between

quantum chaos and classical dynamics due to the fact that the trace formula
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itself arises from quantum mechanical path integral representations. By rep-
resenting the level density of a system in terms of a Fourier decomposition of
the oscillating density, solutions can be extracted. This oscillating density is
dependent on several ‘easily’ measured properties of the system being stud-
ied, specifically the periodic orbits and associated factors. We shall also need
to consider the effects of diffraction on systems we study, as this will allow
us to observe how obstacles in the plate interact with the periodic orbits to
affect the eigenvalues.

In our consideration of semiclassical methods the effects of boundaries
will also become important, we hope to isolate elements of these boundary
interactions that would then allow us to focus our attention on changes af-
fecting the semiclassical methods we are looking at. To do this we shall look
at the origin of the conditions studied in the hope of complementing our orig-
inal aims. Having looked at the effects of boundaries we aim to include any
vital factors into established semiclassical methods with the goal of increas-
ing their accuracy in both simple cases and in those with more complicated
boundaries.

It is also an aim to explore additional effects that are introduced into
elastic systems by diffraction. Would it be possible to modify the solution
methods we are investigating to take these effects into account and would
these effects be restricted to the local area surrounding the diffractive center?
We hope to look at this problem as part of our ongoing goal to model elastic
plates using semiclassical techniques.

The problem of diffraction itself is very closely linked to the study of
optics, where Keller’s geometrical approach [4],[5] points us toward a solution.
This has been extended to the context of the semiclassical trace formula

[6] with the problem being approached by considering the quantum effects
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produced in the region of any singularities, and combining this with the
classical behavior away from the effects. In doing so, important semiclassical
quantities such as the trace formula can be found. Much work has been
done in this area of study, looking at many variations such as considering
the diffractive effects of a wedge [7], point scatterer [§] [9] or magnetic flux
line [9] [10] being just a few examples of what is a well studied problem
in semiclassical analysis. Why is this? Well problems such as these are
some of the most relevant due to the fact that the investigation of diffractive
corrections can help explain important effects with reasonable accuracy.

As part of our our investigation into diffractive effects we also shall look
at an alternative model for diffraction in star graphs, could we then utilise
this to model the elastic plate? We aim to consider the statistical properties
of such a model in order to determine its relevancy to such a case. The extra
avenues of investigation that such a model could cover are widespread, and
its application of quantum technology to the theory of frames and structures
grants credence to our investigation of its use in elastic plate problems.

Looking at the wider picture, much work has been conducted in applying
periodic orbit theory to acoustics. Séndergaard [11] uses the WKB-expansion
to formulate an isotropic acoustic determinant formula which links well with
the work of Gutzwiller. Quantum chaos can also be applied to find details
on the fluctuations of eigenvalue spectra by studying the framework of ran-
dom matrix theory. The experimental comparisons can found in the work of
Bertlesen [12] and Schaadt [13] Such investigation is important, because the
application of these ideas and others such as Vergini [14] allows for the eigen-
modes of physical systems to ’easily’ be approximated. These approximations
are accurate enough to be able to be used in such ways as the placement of

actuators on flat panel speakers and other vibroacoustic devices. This can
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then be extended to high frequency analysis, which is more difficult when
using more conventional methods. Practical work in the area has been un-
dertaken with some success, Schaadt et al [15] look at the results of plates
vibrated by ultrasound resonances. These experiments explore the validity
of random matrix theory and the effect of mode mixing on such systems.

The outline of this thesis is as follows. In chapter 2 we look at the
basic models of integrable systems, the principles of torus quantization and
then relate this to the EBK solution methods. We then introduce the plate
equation and the background to solution methods that we will be using in
later chapters.

In chapter 3 we consider the use of the semiclassical trace formula in
determining the eigenvalues of systems modeled using quantum billiards,
verifying current results and then going on to use Poisson summation to
investigate the same quantum billiards. We then investigate the calculation
of a transfer matrix in chapter 4 in order to model the interactions with a free
edge boundary and consider the accuracy of such an approach given various
assumptions.

In chapter 5 we look at adding diffractive terms to quantum billiards and
the effects that axisymmetric orbits have in comparison to EBK solution
methods. We calculate an additional term for the semiclassical trace formula
as looked at in chapter 3 that calculates eigenvalues introduced by an extra
diffractive term. We then attempt to model this problem by calculating a
diffraction coefhicient to add into the trace formula by modeling the billiard
as an annulus.

In chapter 6 we again look at diffractive systems, this time by means
of star graphs. We compare models for a diffractive system governed by

Schrédinger to one governed by the plate equation, investigating the vibra-
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tions of a plate as introduced in chapter 2. The statistical properties of these
two models are then calculated and contrasted. We then finish in chapter 7 by

summarising the work of previous chapters and presenting our conclusions.

XV



Chapter 2

Background

In this chapter we shall be covering a range of quantum chaos methods
that can be applied to some basic elastic systems at a later point. These
approaches will all modified or used for a more complicated problem in later
chapters, so the development of these approaches will be presented here in
order to put any changes to the basic problem, that of applying such methods
to elastic systems, in context. Firstly, in order to establish the viability
of using quantum mechanics to investigate classical problems, we need to
establish the correspondence between the quantum and classical approaches
to a similar problem [16]. First let us consider the Hamilton Jacobi equation

for classical motion under the action S(z,t)

9% | H(z,V8) = 0 (2.1)
ot
reR3teR.
Where
p? o
H(z,p) = o + U(z), (2.2)

with p being the classical momentum under the displacement z, leading

H{z,p) to be equivalent to the sum of energies for the system. The solution



to this equation can then be linked to the classical trajectories as follows; let
Sp =S at t =0 and py = V.Sy(z0), where zg € R®. The classical trajectory

that starts at zg, po is z(¢), p(t), so by considering VH,

(2.3)

§ p
r = =
m

p = —VU. (2.4)
Then V.S(t,z(t)) = p(t), so the “waves of action” that are defined by constant
action will then sweep out the classical trajectories. If we consider a classical
statistical state represented by an initial probability function p, on R? this

would then evolve by flowing along the trajectories. This is described by the

equation of continuity

%’;ﬁ + V. (pc%g) = 0. (2.5)
Hence (2.1) and (2.5) can be thought of as a way to describe the propaga-
tion of a probability density p via classical trajectories with initial momenta
VSy. Now to examine the quantum case, consider a solution, V(¢ z) of

Schrédinger’s equation

ROT R,
o = 2.
- = o VU Ua) ¥ (2.6)

If we write ¥ =, /p  exp (z%) with p a probability measure on R3, from (2.6)

we can write

R _, o8 1 . :
i . — 2.
2mv VPq+ 5 +2m(VS) +U=0 (2.7)
0p, )
L N pe—| = 0. 2.8
5 Y {Pq m} 0 (2.8)

As i — 0 it appears that (2.7) and (2.8) tend to (2.1) and (2.5), however
equation (2.7) is non-linear and involves A in the highest order terms, so such
a conclusion cannot be immediately drawn. However, given such a similar-

ity of structure between the Hamilton-Jacobi and Schrodinger equations it

2



certainly strongly suggests a link as i — 0, and in the next section we shall

briefly examine this and see how it leads to the WKB approximation.

2.1 Integrable Systems

An integrable system is defined as one with N constants of motion which are
all independent of each other and in involution, allowing an exact solution
to be found. In these cases the solutions are positioned on an N-dimensional
torus which is determined by the system. In this section the development
of semiclassical quantum mechanics is presented in order to understand the

methods utilized later in this work.

2.1.1 The WKB Approximation

We have just seen that there was a strong suggestion of a link between
the classical physics approach of Hamilton-Jacobi to that of Schrédinger’s
quantum mechanical approach. Considering that Schrédinger was influenced
by the HJ equation in the development of his work [17] this is of little surprise.

Take the one-dimensional Schréodinger equation
—o— = + V(ey = By (2.9)

where the potential energy function V' (z) has the condition V(0) = 0, with
z = 0 a global minimum value of V. A classical particle moving with energy
FE will move with periodic motion between two turning points which can be
obtained [18] by solving the case where V(z) = E. Using the wave number
k

mwzw(E—vm> (2.10)



allows (2.9) to be written as

d2/Z/J 2 !
Froi k“{(x)y = 0. (2.11)

Solving this gives a solution for ¢

0(z) = Alz) exp (%S(x}) (2.12)

where A and S are real functions of z. Substituting (2.12) into (2.9) and
separating the real and imaginary parts gives us two equations which are

equivalent to the original Scrodinger equation,

ds\* d?A
Al = = ApP LR 2.1
(dz) PR dz? (2.13)
d>S dS dA
——A —— = 0, 1
dz? + dz dz 0, (2.14)

using the value for momentum p(z) = Ak(z). Up until now this has just been
standard manipulation of (2.9), to proceed to the semiclassical approximation
for 1 we neglect the term hﬂ%in this approximation, it is small enough to

not be considered. From there, (2.13) and (2.14) are integrated,

S(z) = /zp(x)d:c (2.15)

Alz) = _ Yo .16
@) = @ (210

with S(z) corresponding to the classical action and 1y being the constant of

integration for that case. Inserting these values into (2.12) gives

W(z) = %exp (% /z:cp(:c)dm). (2.17)

This is the WKB approximation for ¢ in one dimension, valid for most cases,
except in particular for p(z) = 0 which corresponds to the original classical

turning points. From the information derived in the one dimensional case,
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Figure 2.1: Phase branches of momentum meeting at turning points a and b

the classical action S (2.15) which is increasing both with increasing and
decreasing z, is hence doubled valued, with the values equal at the classical
turning points a and b. This is also true of the derivative of 5, allowing the

WKB approximation to be written in the form

o) = e (4o |1 [ ot o'
+Bexp [—% / @) d:cD | (2.18)

This multi-valued nature can be thought of by considering two branches of

momentum p;(z) and py(z) as shown in figure 2.1. These branches corre-
spond to two functions, both of action, which vary with z. The points a and
b denote the positions at which these branches are equal, creating a closed
curve in phase space; these points mark the turning points of the system and
hence the points at which any phase changes will occur. At these turning

points the wavefunction has to remain single valued and hence also single



valued after a complete cycle, we can describe the semiclassical wavefunction

over this closed curve as

Wz, B) = Aexp (%5@,@)

1 0°S(x,E)|? ;
- . 2.
o ‘ F0n exp <RS<$’ E)> (2.19)

Over one cycle, the action S will have changed by an amount given by AS,,

meaning that a phase change of % will have been introduced. There will
be additional phase changes introduced at the turning points a and b, where
the momentum changes sign. Due to this sign change, and the fact that
exp(im) = —1, we can then consider each turning point as introducing an
extra —7 phase change. Collecting these factors and keeping in mind the
fact that the wavefunction has to remain single valued after a cycle give us,

for a value n related to the number of cycles,

m
— - 2= = 7T 2.2
= 5 2nm (2.20)

he total phase change over the full cycle is
b
AS = 2/ p(z)dz, (2.21)

which taking (2.20) in consideration, can be written as

j{pd:c = <n + 221-) 27 h. (2.22)

Generalizing this case to one without a specified number of turning points,
replace the factor of two inside the brackets with an integer constant p to

give in general

jl(pd:c = (n + %) 27h. (2.23)

For a given energy E the action S can be written as

S = j)(pd:c = QWE (2.24)
w
6



Equating (2.23) and (2.24) gives the energy quantization condition

E, = hw <n+%>. (2.25)

For the corresponding 3D problem this will have a slightly altered value
because of the change in angular momentum conditions, this is gone into in
greater detail in [19]. While we shall not be considering that case we shall

progress to systems with more degrees of freedom.

2.1.2 Torus Quantization and the EBK Method

So far only the one-dimensional case has been considered, in reality systems
with more degrees of freedom are investigated and the method is extended as
follows. Instead of the trajectories existing in two dimensional phase space
as in figure 2.1, when an integrable system with d degrees of freedom is
investigated, its trajectories will exist on the surface of a d-dimensional torus
that exists in 2d-dimensional phase space. This is seen in the one dimensional
case where the trajectories lie on a d = 1 dimensional path within a 2d = 2
dimensional phase space and in the d = 2 case by the phase torus in figure
2.2. Asin (2.23) for the one dimensional case, for d dimensions, every possible

orbit will give a quantization condition
_ Hq :
fpdac _ <n¢+—4—> ok,  i=1,....d. (2.26)

It is now convenient to transform to the “action-angle” variables I and ¢.

This is done by defining, for a given £

j{.rams = o] = j(l{pda? (2.27)

such that

== / C B =V @) ds. (2.28)

7



Figure 2.2: Torus quantization in terms of variables I} and [,

Generalisation of this equation for M independent conditions can be seen in
[20] and allows more complicated topologies to be studied. We are considering
the one dimensional wavefunction (2.19) and transform to the action-angle

variables, generalizing to N dimensions. This is done by considering

1
(27h) T

925(x,1) |2

W(x,T) = 2| exp (%S(X,I)) . (2.29)
7 M)

In a similar fashion to the one-dimensional case, in order to preserve the
single valued nature of the wavefunction at the turning points, there must

exist N quantization conditions, these are given by
1—1% d—( +“7‘>h i =1,...,N (2.30)
i=o_Ppprdx={m+ )0, 1=1,...,N. .

By manipulating these conditions, we could then use them to determine the
eigenvalues of the given system. These eigenvalues will be affected by changes
in conditions at the boundary of the system, which shall be considered in a
later section. The EBK quantization [21] was an important factor in the
development of the trace formula of Berry and Tabor [22], showing that if

the system could have its eigenvalues described by this quantization, then a



trace formula could be derived that depended on the classical period orbits.
Will shall examine and use a similar approach in a later section.

While the systems looked at so far have all been completely integrable, it
must be noted that these are by no means the only class of billiards. Systems
such as the Sinai and stadium billiards do not have trajectories that can have
their phase space constrained by invariant tori. As such, EBK quantization
is not applicable to such systems and there are not enough constants of
motion present in order to determine a quantization solution as in the case
of integrable systems. We shall not be investigating these systems, but it
should be noted that the processes studied that will be applied to integrable
systems could in theory also be applied to chaotic systems given appropriate
simplifications.

When the transition to chaotic systems is made we need take in account
the exponential increase in the number of periodic orbits that need to be
considered as the lengths taken increase. To analyse a quantum spectrum
with respect to its period orbits was a relatively simple procedure, however
the reverse is not the case. These extra orbits now affecting the chaotic
system have meant additional techniques needed to be developed as the torus
model will collapse. Using the Gutzwiller trace formula as a substitute for
the EBK formula in calculating energy levels from periodic orbits is hence
then only valid in integrable cases. From here we shall go on to look at the
semiclassical trace formula and its uses in such cases and it is the additional
solution methods available to integrable systems that we shall be using to

verify the accuracy of the alternative approaches tackled.



2.2 Background to Quantum Mechanical So-
lution Approaches

In the process on looking at the behavior of the circular plate, there are a few
main techniques that will be used in chapter 3 to invesfigate the spectra of
the relevant systems. All three of these methods share a similar background
in terms of the development of the underlying principles, though each has it’s
own emphasis on a particular section of this background. The trace formula
has long been an important tool of semiclassical analysis, and while there
are several alternatives, we shall be looking at and using the Gutzwiller trace
formula; its applicability to simple systems makes it perfect for the modifi-
cations that we shall attempt to make. The development of this method is
presented in section 2.2.1, an alternative route to a trace formula comes from
the Poisson summation of the spectral density written in terms of the EBK

quantization, a brief coverage of which is included in section 2.2.2.

2.2.1 Trace Formula

With non-integrable systems unable to be confined to multidimensional tori,
semiclassical quantization is no longer possible and an alternative route to de-
scribing their behavior needed to be derived. In this section we shall present
Gutzwiller’'s approach to a trace formula that is applicable to integrable and
non-integrable systems.

Starting with the quantum mechanical propagator [23] we can now re-
derive the relations which comprise the trace formula. In the situations we
study we shall not be considering the effects of caustics, areas of singular be-

havior, in this thesis but their effects would need to be included in alternative
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cases. The propagator K

e%RO(r,r’,t) (2.31>

1 B 0% R,
2mih oror’

K(r,r't) = <

where Ro(r,r’,t) is Hamilton’s principal function, is Fourier transformed to

obtain a Green function representation.

G(r,r' E) = —%/ dtK(r,r’,t)e(%Et) (2.32)
0

The next step was to use path integrals to calculate the propagator. In
doing this, the right hand side of (2.32) will become dependent solely on
classical terms, barring a factor of Ai. The reasoning behind this is based
on the fact that in the course of calculating the propagator, the stationary
phase method is used, which only permits the survival of classically permit-
ted paths. This fact is one of the most important tenets of semiclassical
mechanics, that the quantum behavior can be related so closely to its clas-
sical counterpart. Armed with this knowledge we now have a semiclassical
approximation for the Green function which can then also be evaluated using

the stationary phase method to give

d—1
) 1 2 i ’ ;U T
Grr\E) = - (mh) S /18]S B (2.33)
i

where Agy . is a matrix that depends on derivatives of the action S with
respect to energy and path trajectories.

Recall that we are looking to find a representation of the single particle
level density, which measures the number of eigenvalues per unit interval and
hence contains information about the quantum irregularities of the system’s

quantum spectrum. This can be thought of as a smooth function which
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represents the average behavior, and an additional function which oscillates

about this average. This can be written as
p(E) = H(E) + 6p(E). (2.34)

The functions g(£) and §p(F) can then be determined separately. Often it
is convenient to work in terms of the wavefunction instead of the energy, this

is enabled by the relation

ko= . (2.35)

The smooth function p(E) is determined by the Thomas-Fermi level den-
sity. This is taken from the leading terms of a semiclassical expansion for
the smooth part of the quantum density of states in powers of . As in
the semiclassical limit # — 0 , in simple cases only the first term need be
considered. For more complicated cases or where more accuracy is required,
this expansion can be taken to several terms to provide a more detailed es-
timate. For non-integrable cases however, quantization is not apparent and
the technique cannot currently be applied. In these cases the smooth part of
the level density can be derived from the Weyl Expansion. In billiards with
smooth boundaries that are simply connected and smooth, such as those we
shall consider, this is given by

p = % (i—?) A+ %L, (2.36)

where A is the area of the billiard and £ the perimeter length.

Expressing the density of states in terms of the Green function as

o(E) = —<Im(Tr(@)) (2.37)

T
requires that to calculate the oscillating part of the level density §p(E) which

is a sub-component of p(E), we first need to calculate 2.37 by taking the trace
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of the semiclassical approximation to the Green function
tr(G) = /G(r, v’ E)dr. (2.38)

If we substitute the semiclassical form into the equation and manipulate
the matrix Apa, by expanding its individual terms [24] we obtain for this

trace,

; (T icipins

In this equation, M, is the mondronomy matriz, which relates the de-
viations between trajectory sets under a small change of initial conditions.
The trace of this matrix will determine the stability of the system. In bil-
liard systems the overall matrix is found by multiplying the matrices for each
boundary interaction, this will mean that a typical billiard is well suited to
this approach because of the fact that its trajectories are composed of straight
lines and reflections.

To study the eigenvalues we then consider the density of states (2.37)
expressed in terms of the semiclassical Green function. As the stationary
phase method was used to derive the trace formula, this will be restricted to
the classical paths as stated earlier. In billiard systems this will mean that

the eigenvalue behavior can be extracted from the periodic orbits to give

- 1 Toro 1 T
ép(E) = — Z Pf} cos (}—ispo — 0p0§> . (2.40)
wo|det (35, — 1)

which is Gutzwiller’s trace formula for a billiard system of isolated orbits
25], [26]. This equation can then be altered to take into account the specific

billiard that it is applied to by altering the conditions imposed by the various
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terms of the equation. For the cases that involved billiards with additional
symmetries this will then include an extra factor to account for this, but

otherwise the solution will remain the same.

2.2.2 Poisson Summation

For integrable systems, there is another route to obtaining a trace formula.
Berry and Tabor [22], [27] have shown that this will always be a valid ap-
proach due to the integrability. This approach begins with the EBK quan-
tization condition, which in the case of the free plate is reached by starting
from the exact equation to describe the behavior of the free plate, we substi-

tute the asymptotic expansions for the Bessel functions and take the leading

order contributions as z — co to give

o (x_mw_z> ($_mﬂ 7‘) _ 0
sin 5 )~ Cos 5 1) =
tan (a: _mr f) = 1 (2.41)
2 4
and hence
r = (n + %) . (2.42)

Taking the eigenvalues of the circular disk from previous calculation as

[ (m + %) (2.43)

We know that the spectral density can be written as a sum over delta func-

tions where

1 2
0k — Enyny) =1 (k=7 (kn1ms)) 2.44
( 1m) = lim o ——e (2.44)

and so we can write

p(k) = i lim Q%e(kf(nﬁ”%))z. (2.45)

n1=0ns=0
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From this we are looking to obtain the semiclassical form of the spectral
density. In order to achieve this we must first of all apply Poisson summation
in order to convert to a double integral. The rule of Poisson summation for

a single sum is written as

Yoftn) = > /Ooof(n)e2”M”dn+%f(0). (2.46)

In the case we are considering we have to deal with a double sum and hence

are required to apply this rule twice to give

o0 oo

p(E) = Z >

Mi=—o0 Ma=—00

1 & o0 |
+§ Z ./o dnld(E—E(nl,O))ezm(Mml)

Mi=—0c0
1 S [™ .
> / dnad (B = B(0, ny)) 2mi¥er)
2=—00

+%5(E). (2.47)

/ dnq / dnsd (E — E(n17 nQ)) 627”(M1n1+M2nz)
0 0

It is this form of the density of states we we can then use in conjunction
with the appropriate EBK quantization condition to derive a trace formula.
This will vary depending on the condition used; the system we are going to
investigate in a later chapter will pick up from where (2.47) stops. These
approaches to solving billiard problems are what we shall be attempting to
apply to plate problems by looking at elastic systems. Poisson summation is
not restricted to just periodic orbit theory; it has also been used in the study
of magnetic properties in metals [28] and this approach returns the same trace
formula, highlighting the versatility of such an approach and supporting our
attempt to apply this to elastic problems and as such will now outline the

properties of the main problem we shall be considering.



2.3 Boundary Effects and the Elastic Plate

As we wrote in the introduction, it is our aim to examine the behavior of an
elastic plate. By following a free energy minimisation method an equation of

equilibrium for bending by external forces [29] can be derived
DV* - P =0, (2.48)

where D is the flexural rigidity of the plate, P is the external forcing term
and £ is a function of the displacement of the plate surface. To describe free
oscillations in this plate the above equation can be manipulated to give a
simplified version [30] and hence be used in modeling the transverse deflec-
tions arising in two dimensional plates under vibration. We are aware that
in this situation that there is also the possibility of wave coupling at the free
boundary that could have additional effects but shall not be investigating
this. So consider a plate with the shear and rotation effects neglected. If a
force is then applied to this plate [31], [32], the transverse displacement is
given by
2

DV = p%, (2.49)
with w a arbitrary wave solution of this equation and D denoting the flexural
rigidity

Eh3
D= —v-—_. 2.50
12(1 — v?) (2:50)

This is composed of several physical constants, E is Young’s modulus, A
is the thickness of the plate and v is Poisson’s ratio. On the assumption
that we are only considering free vibrations of this plate, we can express the

transverse motion as
w = 1) cos(wt). (2.51)
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In this representation, w is the frequency of vibration, and 2 a function that
depends only on position within the plate. Now substitute (2.51) into (2.49)
to yield a function in which the displacements can be modeled by the plate

equation,
V4(r) — k*y(r) = 0. (2.52)
This equation can be factorized into
(VE+ED(VE—E)y =0 (2.53)
Which can then be written in terms of two separate equations

Vi(r) + k*y(r) = 0 (2.54)
V3(r) — k*(r) = 0, (2.55)

producing waves that are both exponentially increasing and decreasing, and
so any solution to (2.52) can then be written as a superposition of solutions
to these two equations. This allows us to consider wavefunction solutions

written as this superposition of terms and hence simplifying calculations.

2.3.1 Semiclassical Treatment of Boundary Conditions

A main issue in our investigation will be how we can include and verify the
effects that interactions with the boundary of the elastic plate will have on
the eigenvalues of the system and how we could incorporate this into any
solution approaches that we use.

There are three sets of boundary conditions that will be considered for
the problems investigated in this thesis. In order to define the solutions of
the cases that will be studied, these conditions will be written [33] as follows.

In each case, n denotes wave motion normal to the disk, and [ motion along
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the edge. For a clamped edge, all wave motion at the boundary is restricted

to zero, giving the conditions

w, = 0, (2.56)
Own,
= 0. (2.57)

A supported edge has incident wave motion reduced to zero, with an ex-
tra condition placed on the on the surface waves that is dependent on the

curvature of the plate and the Poisson ratio o,

w, = 0, (2.58)
2 2
*w, Ly (1 Own @_wn) _ (2.59)

or? a Or a?

In the free case, motion, both incident and along the boundary, is restricted

by a pair of conditions dependent on all factors of the system

o [(0*w, 10w, n? ow, 3—0c

o < 52 + . ) = ((Z—U)E—— - wn) = 0, (2.60)
2 , 2

T |, (1 Oun _ ”—wn> = 0. (2.61)

These conditions can then be used in further calculations to determine so-

lutions to the relevant problems. However, by considering ray dynamics of
these systems, impacts with the boundary will have an effect upon the wave.
This will add an additional phase to the wave which will vary depending on
the condition at the boundary. In the high frequency limit, these boundary
interactions can be thought of as behaving the same way as an interaction
with a straight boundary. The only permitted solutions for this disk with a
wave vector component along the boundary which will be written as p and
a component ¢ normal to the disk boundary are written as follows (taking
the case when the wavenumber is greater than the modulus of the boundary

wave as will be this case in systems studied in this chapter)
Y(z,y) = P (e7W + A’ 4 Be‘Qy) , (2.62)
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Figure 2.3: Boundary interactions with a curved edge approximated to a

straight line.

using

p = kcos, (2.63)
g = ksind, (2.64)

Q = VkE+p (2.65)

By solving this equation using the appropriate boundary conditions, the
values of A and B can be found and the phase angle terms used previously
can be calculated. In the clamped case use the boundary conditions (2.56)

and (2.57) to obtain

Y(0) = 1+4A-B=0,

Z—Z(o) = —ig+ Aig— BQ =0. (2.66)

Solving for A and B gives

A = Z;g (2.67)
= —(A+1) (2.68)
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By letting A = —e<(®) and substituting the values of ¢ and Q it can then

be seen that

1+e¥% /1 +cos?d

— = 2.69
1 — et¢e 7sin 8 ( )
and so
carth <i¢c> isind (2.70)
—tan = i
2 v/1 4+ cos? 8
with
6(8) 2 arct { sin 0 } (2.71)
. = —2arctan | ——| . )
V1 +cos?f
(2.72)

Solving in the same fashion for the simply supported and free boundary

conditions give the relevant phases

bes = 0, (2.73)
sin 6 1+ (1-v)cos®d
= =2 . 2.
by arctan [ Tty <1—(1—I/)COSQQ>} (2.74)

Boundary effects detailed in this section can also be thought of in terms of
a boundary integral approach. By studying the effect on the plate equation on
the boundary we can extract a transfer matrix from which a phase term that
can be found. The method is demonstrated for the damped edge boundary
condition in the following section so that we can apply this to a more complex
case in a later chapter.

These additional terms give us phase factors can be inserted into the
semiclassical trace formula to model the extra effects contributed by the
boundary, we shall be looking at these in a later chapter as a comparison
to alternative results. The phases are an important factor in the difference

between the quantum mechanical and elastic plate problems and so utilising
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them is an essential step in our investigation into the link between these two
areas. In order to be able to do this including additional terms we will look

at deriving these terms from an alternative method.

2.3.2 Boundary Integrals

In this section we shall begin by establishing the coordinate system that the
boundary conditions are defined in and verifying the accuracy of the free
edge boundary condition as in Love [32] before moving on to calculations
that involve it. After that we shall study the process that determines the
clamped edge phase term by means of investigating the transfer matrix using
the boundary integral equation method, hereafter referred to as BIEM.

We begin by presenting the method used in [30] to calculate the transfer
matrix and subsequently extract a value for the phase angle on interaction
with the boundary for these specific conditions. For a membrane system the

Helmholtz equation can be solved using
9 .
u(z) = 5 Ho(k|lz — y|)v(y) doy, (2.75)
5 Oy

giving the quantization condition [34]

6‘G+>
Oppr — 2| ——
pp <8ng o

To determine the equivalent condition for the plate equation we consider this

det =0. (2.76)

equation in the case of a clamped edge disk.
(V= kT =0 (2.77)

with the boundary conditions on S

ov

= 0. 2.78
5, (2.78)

U|g,
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Figure 2.4: Arbitrary smooth boundary with o and # dependent points

Following the calculation in [30], any solution W(r) of this equation can be

decomposed into two elements W7 (r) and W~ (r) obtained from
W(r)=WT(r)+ W (r) (2.79)
Where these elements individually solve the equations
(V2+EOYWT(r) = 0 (2.80)
(V2—EH W= (r) = 0. (2.81)

To construct the boundary integral equations for this problem, let us first

consider the corresponding free problem
(V£ E)GE(r,v';k) = 6(r — 1) (2.82)

Which has the solutions of G*. On the boundary C we introduce the fol-
lowing notation The two variables o and  denote the distance along the

boundary C from a fixed point to a function r(e) or r(3), with the general
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function r representing an arbitrary point within the boundary. We can then
write the solutions to (2.80) and (2.81) as single layer potentials dependent

on an arbitrary distribution function
Wt(r) = / G*(r,r(a))ula) da (2.83)
c
W=(r) = / G~ (r,r(a))v(a) da. (2.84)
c
The Green functions can be expressed via the Bessel functions as
1
Gt(r,r';k) = 4—H§(k\r —r'|) (2.85)
i
1
“(r,r’; k) = —Ko(klr — 1’ 2.
G (0,1 k) = o -Ko(klr = v') (2.86)
which have a logarithmic singularity as r approaches r’
Gﬂnﬂyv%ﬂnr—ﬂ. (2.87)

Due to this singularity, there is a discontinuity on the boundary for the
limit of the normal derivative as the point r(5) approaches r(«) from the
interior of the domain. This can be dealt with by considering the effect at
the singularity as the following. Using the Cartesian form of the normal

derivative and of the Green function we have, on the boundary,

oa oG oG
- N.— - 2.
an = Negg TNy, (2.88)
1
G ~ o-ln Vie =)+ (y —v)? (2.89)

Applying this normal derivative to the approximate form of the Green func-

tion near the singularity gives
0G _ 1 [Nelo—2)+ Nyfy o)
on 2r | (z—2)?+ (y—vy')?

However, we know from the properties of the coordinate system that

IN| = /N2+N2=1 (2.91)
=N, = /I- N2 (2.92)
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This allow as to write the normal derivative as

o6 1 Nelr =)+ (VIZFE) (r-v)

—_— — 2.93
on 2 (z—2)+ (y—vy) 299
Considering the form of the delta function
1. €
) = Climma (2.94)

It can be seen as § — «, since z — 7’ and y — ¢/, the numerator of % will
tend to zero. This allows g—g— to be written in the form of the delta function

where
e = N(z—a)+ (VI-NZ) (w—v) (2.95)
X = - NBe w2, (VIR (e )y )+ N2l )

(2.96)

By inspection it can be seen condition (2.96) is equivalent to the assumption

that z = 2’ and y — ¢/, hence
(X)) = 80— ). (2.97)

This allows us to write

/ Mf(a)da N %/5(ﬁ—a)f(a)da+ wf(@)da
. c

on I} 3ng
1 5G(6,0)
> 30+ [ 0 payda (299

Now that we are able to include the behavior at the singularity, we can write

the boundary conditions (2.78) in the boundary integral form

0 = /(j(ﬁ(ﬂ,a)u(a) da+‘/CG‘ (8, a) v(a)da (2.99)
1

1 0G* (B, a))
L

0 = sul8)+3v(8) + Brig (o)

oG~ (4, @)
-i—/c———énﬂ—u(a) do (2.100)
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We can consider the approximation that the boundary C can be separated
into two parts, one a straight line at the point of interaction, and the other

comprising the rest of the boundary
C ~ Siine + Ca. (2.101)

It should be noted that this calculation is performed under the assumption
that any boundary considered is smooth and hence allows such a split. In
this case, the normal derivatives over the straight line are equal to zero, and

leave us with the following system of equations

0 = /SlineGJr(/ﬁ’,a)u(a)da-l—/ G~ (8,a)v(a)da

Stine

—|—/CA G* (8,0) pula) da + /CA G~ (B,a)v(a)da  (2.102)

0 = FuB)+ 30+ [ )

G~ (B, «
—I—/ Mu(a) do. (2.103)
Ca 8n5
As we are only considering cases in which the boundary is smooth and peri-

odic, the solutions will themselves be periodic and the components of (2.83)

and (2.84) can be described by the following Fourier representations

ua) = [ e, (2.104)
via) = / ey, dp, (2.105)
+ _ + ipB—ipa /
& = [ [ 106
and the following leading order semiclassical approximations

8G+(/6> CY) - + ipB—ip'a

8—n5 = —z//qu'?p,e PR i dp’ (2.107)
aG_(:‘Ba a) — _ipB—ip’a

_—W = //QGp,p/ep P dpdp/ (2108)
(2.109)




With the values p, ¢ and ) defined in (2.63-2.65), the Fourier components
up and v, have to satisfy the system of equations (2.102)-(2.106) that can be
defined by

ILL /
(Moby + M) | 7 | =0 (2.110)
Vy
where the integration over the straight line and the remainder of the curve

are determined by My and M, » respectively. These matrices can be written

as
-t L
M, = 2q 2Q
1 1
2 2
1 - —1L
- = ¢ @ (2.111)
2\ 1 1
+ —
M G G
w (@) (m_—)
Ons ) pp \ M8 ) pp
GT, G
= i PP (2.112)
—1qGp, QG
By then writing T,y = —M; ' M,y this can now be written as
oy 0
Gow —To) | 7 | = (2.113)
Up’ 0
where
_9Q-ig (@) tig (66;)
Tpp/ _ Q+ig \ Ong o Q+ig \ Ong o (2.114>

_4Q (a9G* _9Q—ig (5G*
Q+ig \ Ong o Q+ig \ Ong pp
It can be seen that G~ « K| is exponentially small as & — oo, and so the

assumption made is that its derivative is also exponentially small

(aG—) ~0, (2.115)

8Tlﬁ
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Meaning that 7,, can now, in this limit, be written as

_9Q@—ig (@)
Q+ig \ Ong o' 0

Ty = A1
PP 4 <£> 0 (2.116)
Q+iq anﬁ 0’
Now the quantization condition
det |0ppy — Tpp| =0 (2.117)
reduces to
—ia [ 6GT
- oY Z,q< ) ~0. (2.118)
Q+ig \Ong /

Referring back to the quantization condition for the membrane case (2.76),

the two equations can be seen to only differ by the factor

Q —ig 1
— = ' 2.119
0 i (2.119)

that multiples the normal derivative of the Green function. This can then be
equated to the exponential of 1®., where @, is the phase angle for reflection at
the boundary. This interaction then determines the introduction of a phase
term for the clamped boundary condition. The phase term produced is the
same as found by studying the problem using the approach as seen in 2.3.1,
although it is not known if for other boundary conditions this is still the case
as no calculations for these cases are presented, this shall be looked at in a
later chapter.

We have seen in this chapter the background and development of solution
approaches that link the billiard and plate problems. Having presented this
we can now approach the elastic problem and hope to show which of these
approaches provide accurate results and where those that do not could be

improved.
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Chapter 3

Semiclassical Analysis of

Elastic Plates

The quantum billiard has long been used, in a wide variety of shapes and
with many boundary conditions, as a model to look into the behavior of
chaotic systems. While this work often introduces and develops new theories,
because of the relative youth of the topic of quantum chaos, many of the more
complicated cases of the simplest models have been left to one side. The disk
billiard, modeling a circular elastic plate is one such model. However, if we
consider the case of the plate described by the plate equation with a free
boundary condition, while this has been approached many times before, the
accuracy of the results at a low wave-number still leaves a lot to be desired.

It is the aim of this chapter to look at the use of quantum techniques to
study the numerical errors that are associated with semiclassical approxima-
tions for plates in order to see where such results could be improved. By
doing this for both circular and rectangular plates it is hoped that obvious

factors will emerge to facilitate further investigation.
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Figure 3.1: Periodic orbits with a) v = 4,w = 0, b) v = 5,w = 0 and ¢)

v=>5,w=1

3.1 Trace Formula Eigenvalues

We shall look at alternative methods for determining the eigenvalues of this
plate system, starting with some results from established methods to provide
a comparison to the alternatives presented later in the thesis. Here we alter
the trace formula solution in its application to elastic plates by means of the
inclusion of a boundary phase term so that we can observe the effectiveness

of this approach.

3.1.1 Circular Plate

The periodic orbits for the disk can be labeled by the use of two variables v
and w, where these are constants which define the orbit, v giving the number
of boundary interactions and w the ‘crossovers’ of the orbit as shown in figure
3.1.1.

Using these variables, two values, the length of the periodic orbit and the

angle of incidence with the boundary can be written

Ly = QURSiIl’%w, (31)
2f/)vw = W—w (3.2)
v
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The Jacobian J,, for this system becomes

20(r? — R? cos® ¥y

Jow = (3.3)

PRSIN Yy,
Substituting (3.3) in (2.33) gives the trace formula representation of dp(E)

for the simply supported disk plate

5a(E) = WPRZZ o’ ) (s, (3.9

w=1v=2w
where f,., Y and &, all depend on the orbit parameters v and w. The
phase change due to a boundary impact on a simply supported boundary is
zero, as stated in section 2.3.1, however with alternative boundary conditions,
the non-zero phases will alter the behavior of the relevant trace function. The
phase accumulated by the periodic orbit must then be summed and added

to the argument of the sine function in (3.4)
Y = P+ Py, (3.5)

where 1. corresponds to either the phase value for the simply supported,
clamped or free case.

The major benefit of investigating simple models is that there exists fairly
reliable data with which to compare any new results. Once the new approach
has been verified to be accurate for this simple case, it could then be extended
to more complicated cases safe in the knowledge that the underlying reason-
ing behind the process is sound. We shall here compare the results from the
trace formula approach as detailed in section 2.2.1 with the exact solutions
taken from [35], this will allow us to notice which areas merit further inves-
tigation should their results be less accurate than others. Here we look at
the results from the disk plate under the clamped, simply supported and free

boundary conditions. In all cases following, the trace formula eigenvalues
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Figure 3.2: Clamped disk error distribution up to & = 500
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Figure 3.3: Simply supported disk error distribution up to k& = 500
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Figure 3.4: Free disk error distribution up to £ = 500

were computed using a numerical program written especially to extract this
data from the given formulae. We can see that when compared to the ex-
act results up to k = 500 (figures 3.1.1, 3.1.1 and 3.1.1), all three boundary
conditions produce accurate error distributions, showing that the standard
approach is accurate as k — oo, this was to be expected. As stated, we are
interested in the behavior at low k, and the first thirty eigenvalues for the
clamped, simply supported and free boundary conditions are presented in
figure A.1 in appendix A, the error due to the first eigenvalue in the free case
omitted from the histogram for the purposes of clarity. Both the clamped
and simply supported results are accurate in this region, while the free results
are not as much so. We will now, as a confirmation of this fact, look at the
effect of adding the phase term to the trace formula in the case of another
model, the rectangular plate. According to [30], an extra condition due to
the existence of boundary nodes should be included when studying the free

plate. It is this extra factor, not included in these calculation for simplicity,
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as

Figure 3.5: Boundary interaction angle of arbitrary periodic orbit for rectan-

gular plate with length ¢y and height a,.

which could be needed to be added in order to give more accurate results

when using this method for the free edge plate.

3.1.2 Rectangular Plate

While for the smooth circular plate the results corresponded to what we
expected, this is a special case in its simplicity. We shall now look at another
system, the two dimensional rectangular plate as this will allow us to study
the effects of adding non smooth boundaries with varying conditions. The
period orbits for this system exist within a rectangular plate of size aias.
Studying this problem will allow us to directly observe any of the more subtle
effects produced by changing the boundary condition. These orbits can be
classified in terms of the values M; and M,. M, denotes the number of passes
along the x-axis and similarly M, the number of passes along the y-axis. This

system is time reversible, and will introduce degeneracies that will be dealt
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Figure 3.6: Sample periodic orbits for rectangular plate

with by including a factor of two. For an orbit (M, Ms)

b = tan*1<a2m2>, (3.6)

a;ma

Loyme = 24/a2m3 + admi. (3.7)

The Jacobian for this case can then be written as

3

L
Joo— _mma 3.8

Due to the symmetries of this plate, its trace formula is taken from

bpsa(E) = ‘hl ! 7 TroVro —cosd. (3.9)
7 ] - i
) ‘det (¥ — il
where
Spo T fr
— _ s 3.10
® ( Oy~ ) , (3.10)

the value V,, is the unit cell volume of the relevant phase subspace, Spo = pLpo
being the classical action and T}, = % the period for one orbit. In the case
of the rectangular plate, the determinant of (f\;[po — I) is equal to unity
giving the oscillating level density for this system as

5pscl( WLCLIQZ\/*Z Z

hima P

cos ( LSPO — %) . (3.11)
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Figure 3.7: Boundary conditions for the examples studied - All simply sup-
ported in case A , two sides simply supported two sides clamped for case B

and three sides simply supported with one free in case C

When considering the rectangular plate, a slightly altered trace formula

is used,

5p(E) = ma1&2\/_zz \/n_;cos —5r — —) (3.12)

The phase alterations are then added in the cosine term to compensate for
the interactions at each boundary segment. For the all-boundary simply
supported case (plate A) the results calculated using the trace formula match
the exact results almost exactly as shown in figure A.2 (Appendix A). This
is to be expected if we remember that for the circular plate the two sets
of results were identical due to using the same method of solution. The
similarities in the method used for the rectangular plate are similar, although
not identical. Given the fact that both methods are derived from the same
principles as the disk case, we can then consider the errors produced here
to be those generated by rounding errors in the numerical calculations. The
results for case B where two edges are simply supported and the other two are
clamped are also shown in figure A.2 (Appendix A). These results, although

less accurate than for case A, are still well within expected limits for this case.
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It is when we begin to consider edges that are governed by the free boundary
condition (also see figure A.2 in Appendix A)that errors in the k — 0 region
begin to creep in. Simply making one edge freely supported introduces larger
errors, and while the results are still reasonably accurate, there is a definite
trend toward this accuracy dissolving should we alter other edges to the
free condition. Although further results are not shown for brevity’s sake,
this trend continues as we increase the number of sides with the free edge
boundary condition. Why would this be?

Looking at these results it is clear to see that there is clearly something
amiss with the free edge boundary condition. The results obtained from its
use are much less accurate than for the other boundary conditions when we
are considering small k, this leads us to believe that there may well be terms
in this boundary condition that could be improved upon with additional
focus on lower order terms. When the phase term (3.10) is calculated, the
clamped and simply supported cases involve at most a single derivative in
the boundary conditions, meaning that no terms have to be neglected in the
calculated. However, the free case involves up to third order derivatives, and
lower order terms are neglected. While this assumption allows for a simpler
calculation that is valid as k — oo, in the region where k¥ — 0 these neglected
terms could possibly effect the term. This addition term will be investigated
at a later point in this thesis. We shall firstly look at a different approach to

a trace formula via Poisson summation.

3.2 Poisson Summation Approach

In section 2.2.2 we detailed the Poisson summation process as used to for-

mulate a trace formula for a general system. In [36], this process is applied

3
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to the basic rectangular membrane in order to determine the effectiveness of
the approach. It is our aim here to extended this approach to the free edge
case so that we can determine if the suggestion of the previous section that
the free edge boundary condition provides less accurate results would also be
true for alternative cases. If this is indeed the case then such a conclusion
would provide us with an avenue for further study.

Assuming a rectangular domain with M; and M, denoting horizontal and
vertical reflections respectively, the trace formula can then be calculated from

the eigenvalue equation

2 A2
vt 2
iy 22 (3.13)

knine = T 2"
a3 2

a

After some manipulation this provides a semiclassical approximation for the

density of states

aay |k & > _1 i
p(k) = - \/2; > > Lif g cos (kLMl,MZ — Z)
Mi=—oc MQ:—OO
i o(k
+ Z ;—7(_ Zcos (2kMa;) + —€4—> (3.14)

i=1,2

If the cumulative density function is then plotted against the mode count
from (3.13), the trace formula found is a good approximation even when
computed using small numbers of reflections. Extending this problem to thin
plates leads us to the plate equation detailed in section 2.3, where plates that
have simply supported and clamped edges give a trace formula that behaves
as expected, the mode-counts for such a comparison provide another good
approximation. Experimental verification of results such as this along with
additional developments can be seen in [[15], [37]-[41]]. We will now use the
same approach to study the behavior of the free edge circular plate and then

compare the eigenvalues with results obtained from alternative approaches.
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3.2.1 Initial Structure

Taking the formula for the density of states from (2.47) and the EBK form

of the eigenvalue equation in section 2.1.2 and inserting the known forms of

the delta function and the spectral density, the density of states can now be

written as
p(k) == F1 +F2+ F3

where

(3.15)

0 o0 0o o 1 , NV
o= Z Z /O dnl/o dn lim (k—ﬂ(n1+—22)) e2m(M1n1+M2n2)’

e
t—0 24/7t

M1:—OO M2:'—‘OO

1 o0 fo'e) 1 ) '
e — E 1 I (k’*nl) 27”(M1n1)
& 2 Mi= /o i }il—r'% 2\”6 ‘ ’

g
—
j— & 1 na\\? o s
Fy = +- / dng lim e(k_WTD g2rilianz),
i 2 Z 0 10 24/t

My=—cc

(3.16)

(3.17)

(3.18)

At this stage the final delta function term from (2.47) is neglected due to its

minimal contribution, but can be reinserted at a later point if so required. In

order to convert p into its semiclassical form we can now solve each integral

independently.

If we have an integral of the form
L
0
then its solution is given by

1 T t2—dac b
I = — — a 4 —_— .
2 \/;e = oerfe <2\/a>

Where er fc is the complementary error function defined by

erfe(a) = —\% /OO e du.

38

(3.19)

(3.20)

(3.21)



In the case we are considering this gives us

1 = 2ik M ‘
Bpo= - d e (3.22)
]\/flz—OO
- .
F, = —Z ATk M2 3.23
3 - Z € ( )
M2=—oc

which with a little manipulation can be written as

1 1S
F = —_= 2k M 394
) o ;cos( kM) (3.24)
F L Qic (4K M) (3.25)
= - - — 0OS v . .
3 - = — 1

However, when considering F} it must be noted that due to the double inte-
gral things become a little more complicated and a slightly different approach

must be followed in order to retrieve an accurate solution.

3.2.2 Calculation of I component

When considering F} it is useful to affect a change of variables. First of all,
in order to remove the k factor inside the first exponential we write ny = kP
and ny = kP,, this then allows us to use the change of variables to a radial

coordinate system

R

P = “cos?f (3.26)
s
2

P, = 2 nzo (3.27)
i

The integral F) can now be written as

> o0 /2 1 2
= 3 —T(IARJE ,4(M1,1M2,9)
A > i /O dR /O A0J(R,0) fim ——e™ e

M1, Mo=— wt
(3.28)
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Where A(M,, My, 0) = 2ikR(M; cos® §+2M, sin” §) and the Jacobian J(R, )

can be found to be

4
J(R,0) = —stinécos 6. (3.29)

=
Now we rearrange F) in order to separate as far as possible the variables R

and g

2 — 17 " 3 30)
1 iQ Mlvi’\/fszoct 0 \/7/0 ( ) /O ( ) ) (

Where the integrands are given by
F(R) = Re*%“—R‘)zeMR(Ml*Wﬂ, (3.31)

G(6,R) = sinfcosfe*fMi=2Ma)cos20 (3.32)

Solve the integral involving G(0, R) to give
_Sil’l(k(Ml — 2M2)R}

I 3.33
¢ 2%(M, — 2M)R (3.33)
then write the remaining integral as
1 o 2 :
= TROh - o) / dR ¢~ (R GRROA2M) iy (£ (M — 2Mp) R).
' 0
(3.34)

We can then place these back into the full equation for F; and separate
the equation into parts depending on positive and negative values of the

summation variables. Using the following substitutions

F(My, My) = FROAEM) (3.35)
_g—f(l*R)z SlIl (k‘(z\il —_ 2]\42)R)

My My) =
9L, M) = e k(M — 2Ms,)

(3.36)

we can then write F}] in the form

2 1 [
Fro= =3 Y lim—/ AR [(F(My, My) + f*(My, My))g( My, Ma)] .
m o0 M0 L vt Jo

(3.37)
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Due to the properties of f(M;, My) and f*(M;, My) this can then be written

as

4
F1 — ——2R

7
i

1 & ,
Z lim —— / dRe*RMF2M2) o (A1 M)
Manse P VTt Jo

(3.38)

If we then return the function g(M;, Ms), we can perform the integration

within F. Taking the real part of this result leave us with

2 1 o N
F = = Z (M, = 1) (sin(2i M k) + sin(4iMsk))
M1>0,Mo>0
(3.39)
and so we can write the calculated value for p(k)
2 1 o o
p(k) = = Z EOn =) (sin(2i M k) + sin(4iMok))
M1>0,M2>0
315 2k M 2N kM 3.40
Tor  x cos(2 1)‘;2005( M), (3.40)
M M,

giving us a trace formula that will allow us to calculate the eigenvalues of
a circular plate with the edge behavior governed by the free edge boundary

condition.

3.2.3 Results and Comparisons

So does the trace formula retrieved through the Poisson summation methods
improve at all upon that previously used? Overall the spread of mean errors
when compared to results calculated from the exact solution gives us the
error distribution shown in figure 3.8 which is very similar to that seen for
the comparison made with the original approach. We now know that both

approaches give accurate results once applied to the region where k£ — oo,
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Figure 3.8: Error distribution for Poisson summation approach trace formula

up to k£ =500

however, this was to be expected, and we are also interested in the accuracy
specifically in the region of low k, where we know that the free boundary
condition produces less accurate results than hoped. The histograms for
the error distribution at low k are shown in figure 3.9 for the original trace
formula and in figure 3.10 for the new trace formula. Both distributions
have a central peak showing that the results are basically accurate, with
there being less spread in the new trace formula and hence more accurate for
the eigenvalues it calculates. Compared the results from the EBK eigenvalue
~ equation the new trace formula will be much more accurate as the eigenvalue
equation itself is used in the calculation this is to be expected. However, this
approach is limited by the fact that its dependence on the EBK eigenvalue
equation will mean that it will be unable to calculate eigenvalues at low
k which depend on the lower order contributions neglected to reach this

equation.
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Figure 3.10: Poisson summation approach error distribution under k = 50
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From this we see that calculating the eigenvalues with the Poisson summed
method for the free edge boundary condition provides some improved accu-
racy over the original trace formula with phase modification term, although
for the low k terms there is still much room for improvement due to the lower
order contributions that have been neglected. All this leads us to the con-
clusion that the phase corrections of Bogomolny are not accurate for small k&
when considering the free edge and that considering any neglected terms in
this region may provide an improvement to the numerical results.

While the use of the trace formula in this chapter is accurate for appro-
priate systems, it relies upon the use of classical paths as the periodic orbits
to derive its form. Introducing diffractive elements into a system that pre-
viously only contained orbits that could be defined by classical paths alone
means that the semiclassical propagator will no longer be able to sum over
all paths; it will neglect the quantum mechanical effects that are due to the
non specular nature of the diffractive point.

So why do the results for the rectangle work at all if they included such
diffractive effects? In the simple case studied in this chapter the symmetry
of the plate cancels out additional effects, but this will break down once the
angle moves away from 7/2 at the corners. This can start to be seem when
we have different boundaries on the edges either side of the corner, this initial
break in symmetry produces a reduction in apparent accuracy.

We have seen that the for the circle, in both the billiard and plate, results
are accurate. However when we move to the rectangular plate this correspon-
dence is not present and the effects of diffraction produced by the corners is
thought to be an important factor in this breakdown and so this leads us to
study the effects of diffraction in a later chapter. To examine this properly

we need to look at the analytic behavior of this system and see if the phase
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terms normally utilised are completely accurate for such cases. By rederiv-
ing these terms taking lower order terms and curvature into effects we can

examine the results and see if improvement is possible.



Chapter 4

Lower Order Phase Corrections

In the previous chapter we looked at the effects of calculating the eigenvalues
of a disk under various boundary conditions. The main approach was to
consider the Gutzwiller trace formula with an additional phase term added
in order to compensate for the change from simply supported to clamped
and free. It was seen that while for the clamped and simply supported
conditions this provided satisfactory results at both high and low frequencies,
the addition of the free edge phase term was not quite as effective. At higher
frequencies the results were accurate, but at a lower frequency the eigenvalues
were not as accurate as for the alternative conditions and appeared to be more
erratic. While the trace formula obtained through the Poisson summation
method was an improvement, in this section we shall look at an alternative
approach. In Bogomolny and Hughes [30] the boundary integral equation
method is used to calculate a phase term for the clamped edge boundary
condition. This term, when compared to the result found via the half plane
solutions of the wave equation can be seen to match the expected result.
However, the same calculation is not performed for the free edge condition

and such a conclusion cannot immediately be drawn for this phase term.

46



The main aim of this chapter is to perform this calculation to verify whether
or not the resulting phase term agrees with that which has been previously
used. It is hoped that by performing this calculation an alternative phase
term may be found that could then be used to produce a more accurate set
of eigenvalues at a lower frequency in the free case.

Once this has been covered we shall move onto the free edge calculation, in
the process of which we shall have to consider additional analysis not covered
by the original clamped calculation. Once the results from the leading order
approximations have been determined, we shall compare this to the result

[30] and go on to investigate the effect of lower order terms on the result.

4.1 Coordinate Systems

The following section will establish the alternative coordinate system used,
which allows a general boundary to be studied. We shall consider the curve
7, defined as a function of the arc-length s, with the tangent vector defined

by T(s) = £(s).
r(s) = =z(s)i+y(s)j. (4.1)

As T(s) is the tangent vector we can assume the following properties
T =1,  T(s)T(s) =1 (42)

— (T(s).T(s)) = 2T(s).T(s) = 0. (4.3)

Hence T(s) is perpendicular to T(s) and can be seen to be proportional to

the normal vector N(s),



Figure 4.1: Arbitrary smooth boundary with coordinate elements

The constant « is introduced to maintain proportionality between the tangent
and normal vectors, and is determined by the local curvature of v. We can

now introduce coordinates in the neighborhood of ~y
z*(s,n) = rs)+nNS), a=1,2. (4.6)

Here n denotes the distance from the boundary of the point r%(s), by taking
the derivative of this function where N = —xT" we receive
dz® = 7%(s)ds +nN%s)ds + N%(s)dn
= T%s)ds+n (T“(s)) ds + N%(s) dn

= (1—nk)T%(s)ds + Ns)ds a=1,2. (4.7)

From this we can extract the following derivatives

Azl
;; = (1 - nr)T%(s), 7% = (N,, —N,) (4.8)
axa 7a ra 7
= N%(s), N® = (N,, N,). (4.9)
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This then gives us

= (1—nk)N,
= N,

= —(1—nK)N,
= N,

Using these relations and the fact that

oLy
Js
oY
on

0u0s , dvdy
dr ds Oy Js
oY oxr oYy
8z on | By on

(4.10)
(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

we can now write the general tangential and normal derivatives of a function

¥ in terms of Cartesian coordinates.

0s Yor I@
oy Y L OY

% = (1 —nk) <N % N, %

> (4.16)

(4.17)

To consider these derivatives on the boundary it is a case of simply taking

n=20.

We shall now briefly examine the free edge boundary conditions, re-

deriving them from physical equilibrium principles. This is in order to verify

the accuracy of the condition used and the ensure that any additional terms,

either of lower order or dependent on the curvature of the boundary, are not

neglected at too early a stage. By transforming (4.16) and (4.17) we receive

ow
oz
Ow
dy

N, Ow N ow

(1-m{)£+ “on

—N, Ow _Ow

(1 —nk) ds TNy
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with the additional conditions

ON, ON,
T 17\/71“ v _— _ _g?\r’rz 4.20
Js Yy Js " ( )

ON, ON,
on  On

0, (4.21)

r

For a free plate, the components G and H of the stress couple [32] are given

2 2, ., 2 2,
—g = C0829<8 w—|— 8u>—|—sinz§<a w+ailﬁ>

D Era gﬁ—y‘z oy? ox?
2,0
+(1 — o) sin 26 igy (4.22)
H _ Pw  O*w 5 o OPw
Di=o) sin ¢ cos § (8—@/2 - w) + (cos” — sin 9)8$8y'
(4.23)

Where G is a representation of the flexural couple, H a representation of
the torsional couple and D is a constant based on the elastic properties of
the plate, called the flexural rigidity. Using the change of boundary variables
presented in (4.18) and (4.19) and appropriate N, and NN, substitutions, these

equations can be converted to

O*w o%w ow
- _p|Z¥ 0% _ 4.94
G D{8n2+0852 anan} (4.24)
ow? ow \
_ ow 4.2
H D(1—-o0) L%ﬁn Rasil (4.25)

Both of these are calculated for the case where n = 0, i.e. the behavior on
the boundary. While G corresponds to the result in the original text, the
result for A is slightly different and in the text [32] is given by

H = D(1—a)§—n (%). (4.26)



By inspection it is seen that in this case the additional factor that is de-
pendent on the curvature s has been either missed or neglected. Stating
that this result is valid for all boundaries is hence incorrect, only being valid
for boundaries with zero curvature, i.e. straight edges. Either way, for the
equations to be valid for any boundary whether straight or curved, this term
cannot immediately be discarded and shall be included in future calcula-
tions. For a free plate, the conditions under which the physical forces are in

equilibrium are fulfilled when

G =0 (4.27)

OH
2= = 0. 4.8
N -5 0 (4.28)

In this case, N is representing the shearing force normal to the plane of the
plate and is given by

N = —Daanv%u (4.29)
PPw 3w 0w
= —D 5525m + o3 — /{anz . ’ (4.30)

By calculating the full results from (4.27) and (4.28), taking care not to

specify the boundary case n = 0 until the end, we find that
0w 0%w ow

it ~ = 4.31
on? “ g2 ar on 0 (4.31)
APw APw Ok Ow d*w ow
I ) B thutnd —— — 2 = 0
on3 (20 (852871 - Js 83) - am (L+0)x on ’

0s?
: (4.32)
noticing that these correspond exactly to the conditions (2.60). With the
method presented in section 2.3.2, we will now proceed to apply the same
process using the free edge boundary conditions instead. To begin with we
will have to deal with some of the higher order terms presented by these

conditions.



4.2 Higher order integrals

Having seen that the transfer matrix for the clamped edge condition presents
us with a phase angle that agrees with results calculated in an alternative
manner. It is the intention of this section to calculate the transfer matrix
for the free edge boundary condition. From this point, the resultant phase
angle, if available, will then be compared with the phase angle derived from

an alternative approach.

0% 0% 8@
-~ = N . .33
on Ny * S + Ny v ay (4.33)

It has also been stated (4.21) that the derivatives of N, and N,, with respect

to n are equal to zero, hence the derivative of (4.33) with respect to n becomes

o0 _ 0 08\ 0 (00
on?2 " %on \ oz Yon \ Oy

0%® ) H2P
= NZ—— + 2NN N2 . 4.34
2oz T v gray T v gy (4.84)
Similarly the third derivative is
R ,0°D FoR 93P 90
-— = N NN, | N, N, ——— N3Z_— (4.35
A =5 TP Ay( “ a2y y8z82y> v g (435

To evaluate the behavior of these functions on the boundary, we look at the
effect of a singularity at the point where r(a) = r(3). This is accomplished
by considering the boundary in the region of this point as a semicircle with
radius tending to zero (figure 4.2), as this limit is reached the behavior will
be the same without having to directly evaluate the result at the singularity.

Using the notation defined earlier, we write

i = (N, N,) (4.36)
§ = (N, —N,) (4.37)



Figure 4.2: Boundary deformation at singularity point

and define the position of the point r(«) on the boundary around the semi-

circle as

R(e) = (z—2',y—v)
= (Rcosf, Rsin®). (4.38)

We can then write (4.33) for the case of the Green function around the semi-

circle as
0G 1 Ne(z—2)+N,(y—y)
on 2t (z—2)+(y—v)?
~1n-R
- 21 R?
1
= ) 4.39
2rR ( )
As we are looking at the case of the semi-circle we use
R = ((z-2),(y-v)) (4.40)
N, = cosf (4.41)
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N, = sinf (4.42)

but this calculation would be valid for alternative deformations as long as
the correct forms for N, and N, are used. We can now calculate the effect
on the boundary integral equation around this singularity by performing the

integral at the limit of r(4) — r(a),

oG _ ! T R Of 9
“Zf(s)ds = 1 — R
/—>oz an(é) 5 Lim (/o 2ﬁRf<0)Rd9+/o 27i_RaS(O)RdGJrO( ))
1
- [ i
0 2w
= @ (4.43)
2
This allows the boundary integral equations in this case to be written
OG(r,r(a)) 1 0G(8, @)
Skl S o — = (] R 4.44
L5 eyda — 3r0)+ [ e pa)do, (444
as shown earlier. We can also write the higher order derivatives as
0°G - -
- oG
-y (795)
1
= —— 4.45
2 R? (4.45)
and
PG _ 5?G
s Y <5n—>
1
= — 4.46
27 R3 (4.46)

Proceeding with the calculation in the same manner will mean the appearance
of a singularity that cannot be dealt with using this process, and so the
problem needs to be approached in an alternative manner. Recall the fact

that

B£
on

= $(rs—ra), (4.47)
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S0 we can write

&*G

on?

e /n Vg (0(rs —ra)) fla) ds
= /f(a)vﬁ(é(rﬁ_ra))'ndg
- /f(a)vﬁ (6(rs —ra)) - dsn. (4.48)

If we then consider the identity
AVB = —BVA+V (AB)
= / (VgB)A-ds, = /(Vg (AB) — BVgA) - ds,
= —/BV[;A --dsp, + / Vs (AB) - ds, (4.49)
taking
A= flo) B =6(rs—ra), (4.50)

(4.48) then becomes

/f Vs (b(rg—ra))-ds, = /5 rs — 7o) Va(fla)) - ds,

+/V3 T‘ﬁ‘T‘Q))-dSn.
(4.51)
Over the loop we can take
[ s G@s0s-ra) dsn = o, (452)
leaving us with
5*G
el P 8(rs—1a) Vs(f(a)) - dsn
- LY ' (4.53)
2 0n|g \




The boundary integral representation incorporating the singularity as 8 — «
can now be written in the form

&G(r,r(a)) / 19f(8) 0°G(8, o) ,
LTf(a>do’ T T2 on +/C——8—7i§——f(a>dg'

For the higher order normal derivative we write

G
N = /n- <W> fla)ds

- /f(a)Vg (%Zn—f) - dsy,. (4.55)

PG

on?

Using (4.49) and taking

9*G
_ _ oG 4.56
A= f(o) = (4,56
allows us to write
G oG
o, T Wvﬂ(f(@) ~ds,
9°G
oG
= [ 5. Ve (Vs(f(a)) - ds,
= /5(7"5 —74) Vi f(a) - dsn
2
- Lo (4.57)
2 On? 8

The boundary integral form of the third order normal derivative of the Green
function becomes

/Mf(a)da - }agf(5>+/w]f(a)da.
o c

on3 2 On? 877%
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It is also necessary to determine the behavior of the derivatives with respect
to s.

oG (1 —nk) Ny(z —z") = No(y —¢')

Os 2m (o= H Y-y
~ (I-mnk)8-R
B 27 R?
~ 0 (4.59)

This could be calculated by replacing the specific values of N, and N, for the
semicircular deformation, but it can instead be seen from figure 4.1 that the
arc terms is perpendicular to the radial distance R and so s.R is obviously

equal to zero. For the second order derivative

92G 092G 02°G  ,0°C
—— = (1—nk) | N? — 2N, N?
( k) <7\y 522 N, Y900y + N ay2>
8¢ 8G\ Ok (. 8G 4G
k(1 —n) [N, N, E) T (N, N
& ”’”)( 18I+Ay8y> "Bs ( = “”ay>
(4.60)

As we are considering a point on the boundary, we can now set n = 0 to give

e, G 26 ,00C
A N A 2
552 ( va ~ alvga T N )
¢ oG
—K (]\/m B + Ny—— 3y ) (4.61)

Taking the derivatives of the Green function and inserting the values of N,
and NV, gives
9°G
0s?

1 K
S —— 4.62
2rR?2 27 R ( )

If we consider the fact that we have taken s from (4.4) to be defined as
K = J% then this derivative disappears at the point where § — «, and so we

can write

Qirr 2 o
/CaG(,gs()) daﬁfaGiﬁ Flo)do.  (4.63)
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The remaining mixed derivative can be found in the following fashion. Start-
ing from (4.47) and following the same procedure as (4.47-4.54) we write

0*G
Onds

o S Vg (6(rg —ra)) fla)ds

= /f(a)Vg (5 (TB—T’Q)) - ds,
_ _/5(rﬁ_ra)vﬁf(a)-dss

4 / Vs (F(0)6 (g — 7)) - ds,

10f A
_9r 64
2 0s (464)

This allows us to then calculate

o0*G
- <8n85> fla)ds

0*G
= @)Vs (g ) . (4.69)

0*G

= 7 onps o @) o

o0*G
+/Vﬁ (f(a)anas) - dss
0*G

= — [ 5=-Vs(f(a)) - ds,

= /5(7‘5 —74) Vaf(a) - ds,

10
2 052

PG
Onos?

B—a

(4.66)

bl

8

with the remaining boundary integral form for this derivative given by

ya (r, r(a ) 1 9%F(6) PG* (8, o
| e =52y [ ZE B o) aa.
(4.67)

Considering this information it is now our alm to we can then find the
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matrices to satisfy

Hy .
(Moo + M) | 7 | =0 (4.68)

Vp/

as in the clamped case. Additional calculations to this effect to determine the
straight line integrals and leading order derivatives are presented in Appendix

B.

4.3 Calculation of Transfer Matrix

We can now establish from (4.31,4.32) the following equations

10 oK o,

— 3+ v10) - T+ o)+ 7 (5 - %)

—(Q —ig) +/CA (62G+(.ﬁ, o) PGB M(?_ng@,_ag) () do

on? 0s? on

0*G=(8, 0*G~(, 0G=(8,
+/CA ( 8752 @) +0o &52 o) — Ok 8(71 a)) v(a) do

(4.69)

where we can take only the terms that will give the highest order contribu-

tions to leave

N = —%8%(#(5) +v(B)) + %Pz <é - %) —(Q —iq)
+/CA <8ZG;§5’Q> +082G;§2ﬁ,a)) o
+ /C A (62%5’,@) +082G(;§/23,a)> V(o) do -

Similarly for the second condition, neglecting all but the terms that will

provide the highest order contributions gives

M= 2 (w() +v(8))
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+(2—0) /CA (%M(@ + %W&)) do

+/CA (wﬂ(@ 4 wy(a)) do. (A71)

on? on3

Substituting the previous calculations into these equation gives us

+/ (Q* = op*) G~ (B, @)v(a) da (4.72)
Ca
and

M o= 2 (4 (2= o)) () + 3 (@~ (2= o)) U(6)

/C (i + (2 — 0)ip’q) GT(B, ) () dex
_/c (@ +(2— U>p2Q) G~ (6, a)v(a) do. (4.73)

We know that both (4.70) and (4.71) are equal to zero and so we can then

write the matrices My and M, from (4.68) as

MED ar(12)
My = = 0 ° (4.74)
9 Mém) ]WO(Q,Q,
(11 o+ (1.2) ~v—
M., — (JMp,p’ Gp;p’ Mp,p’ Gp»,p/ (4.75)
RE T (2.1) 4+ (22) ~— '
Mp,p’ Gp,p’ Mp,p’ Gp,p”
Where
\ 1
MY = () (476)
1
Mo(m) — -5 (Q2_p2) (4.77)
M0<2>1) — __q2 _ (2 _ O—)pQ (478)
MED = @ —(2-o)p’ (4.79)



and

‘Mzilp’,l) = —q¢*—op?
M;}p’?) = @Q*-op’
My = ~(ig) (¢ + (2 - o))
MEP = —Q(Q'+(2-0)p).

As in the clamped calculation, we can now find
_ —1
Tp:p' = —My M 4
which can be written as
1) [ ect (1.2) (8G-
7 (—) T2 (o=
PP \Ong oy PP\ 008 )

T,y =
’ T(Q,l) <6G+> T(272) <8G_>
7 /
D,p a'n,ﬁ P;P/ y2yy 677,5 p)p,

It can be seen that

ap _ 11 ( 22) (L1 g r(12) <2,1>>
Top' = iq det(Mo) Mo M(pm/) Mo M(P,p’)
o 2Q Ty
N Qquet(Mo)’

we take the elements of this equation as

20T = Q(Q - (2—a)?) (¢ + ov?)
+ig (Q% — ap®) (¢ + (2 — 0)p?)
2iqQdet(My) = Q(¢* + op*)(Q* — (2 — 0)p?)

—ig(@* — op*)(¢* + (2 — o)p?).

These values can then be reorganized to a form

1+1A
(1,1)
7D _

P 1—4A
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o0
—_

=
o0
[\

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)



with

Q L(®+0op?)(Q* = (2—0o)p?)

The other elements of 7}, » can also been calculated for the sake of com-

4~ 4@ —0p’)(¢+(2-0)p’) (4.90)

pleteness, although as in the clamped case, if we consider that G- — 0
as k — oo then these additional coefficients can be neglected in the final
analysis.

Recalling that

det |1 — 26" (ai) J =0 (4.91)
5715
and using
1+4A
1 = 4.92
Og(l—iA) arctan A (4.92)

we can extract the desired phase angle for the free edge boundary condition

solution of the plate equation, found using the boundary integral method,

(@ — o) + (2 — a)Pﬂ
@+ o) (@ - (2- o))

This can then be converted into a form dependent on the angle of interaction

q
d, = —2arctan =
d Q [

(4.93)

with the boundary

®; = —2arctan

sin 4 1+ (1—0)cos? 8\ (4.04)
V1+cos?8 \1—-(1—0)cos?f ' '

Here we have seen that this alternative approach has not resulted in a new

phase term for the free edge boundary condition, but instead the outcome

agrees with [30]

4.4 Lower Order Contributions

In the previous section we assumed that G~ — 0 in order to retrieve the

phase term. While this may be the case in the first approximation, we will
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now consider the effects of the lower order terms on the result in order to
verify that this assumption is valid. First we look at the possibility of a
correction term in the determinant of T}, ,», putting aside the behavior of the

Green functions at high frequency.
det |0y — Tpp| =0 (4.95)

can also be written

| _ 7D (@i) T (TOATED _ pOnpe) (@) (@;)
ong o ong o ong -

_T<232) <—8G—> — O
8715 p,p’

(4.96)

This is valid for both the clamped and the free boundary conditions; if we

take the matrix entries from the clamped case, we find that

. N
TA2AEL _ A2 g 1qQ 4 (Q - ZC])
(@Q +iq)? Q +1g

(4.97)

By rearranging (4.97) it becomes clear that the denominator and numerator
cancel, leaving only a factor of order one. In fact, by recalling (2.63-2.65) it

is obvious that all of the wave-number terms will cancel, leaving
TOATEY _ AT~ O(1), (4.98)

Similarly for the second term

T22) _ _2Q —1q
Q +iq
~ O(1). (4.99)

We know from previous investigations that these terms have little to no

effect on the low frequency eigenvalues in the clamped case, and when you

63



do consider the Green function’s behavior this is of little surprise. Is this also
the case for the free boundary conditions? Are there factors of k not present
in the clamped case that could make one of the additional terms contribute
to the final behavior? The elements of the the transfer matrix for the free

case have been calculated to be

Q(¢* + op*)(Q* — (2 — 0)p*) +1g(Q* — op*)(¢* + (2 — o)p*)

T(Ll) —
| Mol
(4.100)
On2(2 — 2 2
T2 — 21Qp°( J)I(q +op°) (4.101)
| Mo
. 2qp*(2 — 0)(Q? — op?)
7@ 4.102
T@2) —q(Q* — ap*)(¢® + (2 = 0)p*) +iQ(¢* + 0p*)(Q* + (2 — 0)p*)
(4.103)
with

Mol = Q&+ 0p*)(Q* — (2 - 0)p*) —ig(Q* — 0p°) (¢* + (2 — o [#7104)

Purely by inspection it can be seen that since in all cases any k terms will
cancel, all of these values will be of order one, meaning that the correction
terms will also be of order one. As in the clamped case, the behavior of the
Green functions will mean that the phase term obtained via this method is
as valid as that for the clamped case. Of course, this has all neglected the
lower order terms that were neglected during the calculation, could these
have any effect? The clamped case has no such terms, but the free case will
not be so clearly defined. While there are not orders of k present that could
influence the ’correction terms’, there may be an effect in the initial value of
7@ To investigate this, we shall recalculate the transfer matrix to include

the possibility of O(%) terms, lower order terms than this will be neglected.
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The elements of My and M, ,» will now be taken as

1
]\/IO“’D = B (q2 +op® — z'cmq) (4.105)

1 ,
M'éLQ) = -0 (QQ —op® + ch) (4.106)

. 2
MPD = = (2-0)p? + 3m2% (4.107)
2,2) p2
M®? = Q- (2-ao)p?+ 3in2§ (4.108)
and

MED = —¢* —op? —iokg (4.109)
MEP = Q- op® + okQ (4.110)
AMZS;’}) = —(ig) (q2 +(2- cr)pz) — 3kp? (4.111)
MED = —Q(Q*+ (2 - o)?)) — 3kp”. (4.112)

As used in previous calculations, (4.86) is still valid, with the elements now

defined as

20T = A4 iB (4.113)
2igQ)det(My) = A—iB, (4.114)
using

2

A= Q [(Q2 —2—-0)p))(¢* +0p®) - 3&%(@2 — crpQ)} (4.115)
N

B =g [(Cf —op*)(g® + (2 — o)p?) + 2/@%((12 +op?) + oxQ(Q* + QQ)} .
(4.116)

Following the same steps as before gives us a phase term of

¢; = —2arctan (%) (4.117)
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which can also be written in terms of the angle of interaction with the bound-

ary as
sin @ C
¢y = —2Zarctan | ——m——m—— |, 4.118
o <\/1+COSQQD) ( )
where

C = (14 (1-o0)cos®§)*k*

3cos? 6
+k —S%{l — (1 —0)cos® ) +ovV1+cos? G(1 + 2cos” 9)} k®
sin
(4.119)
D = (1—(1-0)cos?§)2ki— |20 0 cos” (1+(1 )COSQQ)} Kk
= — (1= - —0 ¢
V14 cos?d
(4.120)

For these terms are there regions of § in which a high curvature will dominate
the small wavenumber and produce additional effects that were neglected in
the original approach? For an arbitrary value of ¢ if there is any point where
C < D then all specular reflection in that region would be suspect. In the
case of circle where k = 1 this produces the graph in figure 4.3. Here we see
that C' > 0,D < 0 for the entire range of reflections and so this situation
produces valid results, however this may not be the case for all values of o,
k and k so caution is still needed. What we can see is that at certain angles
this ratio will have more of an effect than others and so investigating the
effects of curvature while including lower order terms is a significant area for
further study.

This corresponds to our earlier stated aims in that we have determined the
existence of factors that are important to consider in the process of applying
quantum mechanical methods to elastic systems. Including additional orders
into account for this calculation would then include in the correction term a

factor dependent upon the derivative of the curvature. In the model we are
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Figure 4.3: Ratio of phase calculation terms (4.119, 4.120) plotted against

diffraction angle € from 0 to 2.

studying, this term is equal to zero and hence has no effect, however for a
more complicated boundary this may have an effect and if needed can then
be calculated for further accuracy.

In our verification of the derivation of the free edge boundary condition
we found that the results produced in ([32]), while correct for the specific
examples quoted, are not correct in the general case as stated. Instead, the
conditions for the circular disk as stated in ([65]) have been shown to be
correct and were used in all subsequent calculations. It was the aim to do
that rederivation so that we could study the effects of curvature with accurate
boundary conditions dependent on the curvature and effects of lower order k.
We found here that by including terms of order 1/k there are more parts of
the boundary condition that need to be included in the phase term calculation
if we are to extract more than just the first order results, but how much of
an impact do these extra parts have? As k& — oo we wouldn’t expect there
to be much effect at all, this term will only affect the system at low values of

k and so for large numbers of eigenvalues the error distribution histograms
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Figure 4.4: Original phase term error distribution up to k& = 500

should be similar. Looking at figures 4.4 and 4.5 shows the distributions for
the original term and the corrected term respectively for eigenvalues up to
= 500. The corrected term can be seen to be slightly more accurate, but
not by a huge margin, as would be expected for a large number of eigenvalues.
However, we already knew that the original was acceptable for k — oo, what
about at low values of k7
The eigenvalues generated by the two phase terms are compared against
exact solutions in figure A (Appendix A), with the errors for eigenvalues
where k < 50 plotted in the histograms shown in figure 4.6 for the original
term and figure 4.7 for the corrected term. Both graphs have had the initial
outlier removed for clarity of presentation, but it can be seen that at the lower
values of k the corrected term produces slightly more accurate. The peak
in figure 4.6 appears to be more well defined than in figure 4.7, suggesting
that even as k — 50 the effect of the term is becoming negligible. While it
is an improvement, it has to be said that there is still a fair amount of error

remaining and this new term does not give us the improvement we hoped for

68



icl S

(34
)
-
&

Figure 4.5: Corrected phase term error distribution up k& = 500

in terms of determining the placement of eigenvalues.

We here find that by comparing the two graphs produced by the trace
formula for the elastic system, it can be seen that in the cumulative distrib-
ution function (figure 4.9) generated by including the improved phase terms
the steps are noticeably flattened. This shows us that the extra terms in-
cluded in the phase factor using lower order corrections provide a significant
improvement on previous results. This has little effect on the accuracy of the
eigenvalues themselves, but it does show that the new term is an improve-
ment over the original in terms of overall accuracy. While we have shown
this only in the case of the simple circular disk, it is realistic to think that
applying this to further cases would provide similar results.

Our initial goal was to apply quantum mechanical techniques to elastic
plates and here we have shown that not only can this be done, but that cur-
rent methods can be improved upon for cases such as the free edge boundary
condition where lower order terms become important. The difference in the

graphs (fig 4.8, 4.9) show that neglecting the lower order terms means losing
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Figure 4.7: Corrected phase term under k£ = 50 error distribution
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Figure 4.9: Corrected phase term cumulative frequency up to £ = 20
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vital information and hence they should be included even in simple cases
such as this. This will be even more appropriate given study of cases where

the curvature of the boundary is more complicated.



Chapter 5

Diffractive Effects in the

Circular Plate

We saw in the previous chapter that in certain cases, such as those of extreme
curvature, the phase terms calculated by Bogomolny were not correct. It is
the aim of this chapter to consider such cases, and examine the feasibility of
modeling semiclassical effects on plates where diffractive effects are present,
this will be looked at for both the pinched and the annulus scattering cases.
We begin by presenting the quantum mechanical approach to solving a simple
billiard diffraction problem, which will be considered later in the chapter for

the plate case.

5.1 Quantum Mechanical Diffraction

In the case of a disk C' in two dimensions under Dirichlet boundary conditions,
the system can considered as a quantum billiard with an associated Green

function that is a solution of
(V24 E)G(r, v k) = d(r—1), r,r' e C (5.1)
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(V2 + EHG(r, T k) = 0, r,r' € oC. (5.2)

In the region away from the discontinuity and boundary, the G(r,r’; k) will

behave as the free Green function G(r,r'; k), where
Gyt k) = - HP (k') (5.3)

If wave decompositions of both the free Green function and the delta func-
tion are performed and then substituted back into (5.1), after performing an
integration to remove the delta function we can then rewrite the free Green

function in the form

Ge(r, v’ k) = i [A(kr") J (k) 4 B(kr") Ny (k)] €007, (5.4)

m=-—00
Where A and B are constants and § and 6’ define the angle of interaction
with the diffracting point. To model diffractive effects we now consider a
disk of radius a as the scattering center, writing the solution of (5.1) as the

sum of the free Green Function and a diffractive correction.

Clrrsk) = Gilr,t'ik)+Golr,sk), 27 (55)
where
. oo (+)
Lp o= Y im(6—0) 17 (4 1oy [ 7 (=) gy _ Hm (KA) sy
Gd(ryril“) - 4 2 € Hm (kT) <Hm (AT) H’r(n_f.)(ka Hm (kT)

This is taken for the disk case from the more general formula

Ga(r,v'; k) = i(Sm(k)—1)H;(kr')H;(kr)eim<9*9’> (5.7)

m=—00

NS

that includes the term S, (k), the matrix ([42], [43]) that determines the

scattering behavior of the wave m. Investigation of this scattering matrix
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Figure 5.1: Scattering at angle 8 from an annulus

would allow a wide variety of physical properties to be modeled, however
in the case studied here we restrict the effects to simple behavior as we are
looking at the general applicability and not specific cases. Now (5.5) can be

rearranged and written [44] in a form
G(r,v'sk) = Ge(r,r'; k) + Gs(r, ¢ k)d(@)G £ (¢, X' k). (5.8)

The diffraction coefficient d(¢) is dependent on the angle ¢ that separates
two points r and r’ from the scattering center ¢ as seen in figure 5.1.

[n this assumption the system has been simplified to considering the prob-
lem as a the case of two semi-infinite line meeting at the scattering point,
hence effects from the external boundary are assumed to not have an influ-
ence in the locality of the discontinuity introduced. This gives us in the case

of the disk billiard

dl¢) = —di Z e%’mwﬂjj”jﬁ?) (5.9)



suggesting that the the Green function structure composed of the free Green
function plus a correction term is valid for a disk as well as for a wedge.
Problems such as these can be extended [45] to include potentials V(z) act-
ing as scatterers, in the case studied here it assumed that any potential is
essentially constant in the region of influence and as such does not alter the
wavelength. It is our aim to apply this method to the elastic disk and deter-

mine validity of such an application, which means that we must first describe

the system to which it shall be applied.

5.2 Pinched Circular Plate

With the later use of the diffraction coefficient method in mind, we shall
first examine simple systems that such a process could be applied to. This
will enable us to look at diffractive effects in plate scenarios and determine if

there is a link between the quantum methods and the elastic plate solutions.

5.2.1 Pinched Model

For the pinched disk, a solution can be found by adding the extra condition

that the Green function and its derivative are also equal to zero at the center

point, treated as an inner boundary with radius that tends to zero. A physical

example of this is a cymbal with the edge held in place as is the center

clamped support. In the case of the pinched disk, the solution to the plate

equation is given by:

Grr) = > {#Hm(kr)Jm(kr’) - Z#Km(mfm(kr’)
+ Zo (k1) + Y Y (k1) + i Lo (k) + v K g (Ker) b EmE =01

(5.10)

m
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with Z,., Ym, Um and v, being defined as ratios of determinants of matrices
that are composed of various combinations of Bessel functions. For the unit

disk

r—Tg

27 1
Ap(k) = / / drdf im AG(r,r; k), (5.11)
o Jo

the numerical computations for the eigenvalue solutions of this system can be
then be investigated by applying this variation of the oscillating semiclassical
level density. This will be expanded upon in a later section, first we need to

establish in which cases the periodic orbits alter the level eigenvalues.

5.2.2 Non-Pinched Correspondence

We will now examine the Green function solution to the plate equation, and
in comparison to the solution to the membrane case, determine which orbits
will have an effect on the eigenvalues and need to be taken into account for
the modifications. The Green function solutions for the plate equation can

be written as

Grr') = Golr,r) +Gilrr), 512
I oy . o
Go(r,r") = SkQHm(kT)Jm(AT) 47rk2Km(Ar)Im(A,r), (5.13)

Gi(r,r") = zpdn(kr) + ymYm(kr) + wn Lo (kr) + 0 Ko (kr). (5.14)

For the clamped case, the boundary conditions are as follows. These describe

the system clamped at the exterior (r = R) and pinched at the center (r = a)

oG
Gl.—g =0, an =0, (5.15)
r=R
0
Gl _. =0, aTCj —0. (5.16)
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By imposing clamped boundary conditions on the above Green function, the

following coefficients can be determined;

(5.17)

where

£ =) = = ~

— — XN ~ N

i : : : o)
= - T %88
S2EEEE2 EEEEwuyy g
¢ E .E § FE E .E E _E B E

ol e N )
— —~ o e o TSI T TS
M%%M%WWAAAA NN N
- B E L& g g g _¢
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S 9 o§ SF 28 S S S ETx s Ex
SENCIN T T U JEOgE o FOSE o
G o T
>>>%\%%\%\kw%%\wwk(%\mwmm
Jg g g N m/m/u\Mu\m/m/u\Mu\,/ (/n\/u\”n\
AAAVJmmJ VJmmJVJVJmeVJm mVJm/vamm
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with

Hy (ER) T (k7'

i
8k?

(5.23)

K (kR) Ly (kr') —

1
4 k?

Srlb)

78



y 1 i
Ak?‘) = / I n__ Y o, - 5 o4
" Tz Ko (BB I (kr”) = g Ho (RAR) o (), (5.24)
! i
_4(3) — I Y ! [ L, v , . r.
1 j
(4) = ! [/ v -, , . _
A oz Km (k) Ly (ka) = o5 Hon (k') T (Ra). (5.26)

As the case where a tends to zero is being studied, the asymptotics for small
arguments can be substituted for the Bessel functions with a terms in the

argument [46],

Jaka) ~ — (%)m 7 (ka) ~ 5——1—— <@>m_1, (5.27)

ml (m—1) \ 2
Vi(ka) ~ _%”ﬁ Y (ka) ~ - (g)mﬂ, (5.28)
(k) ~ n% (%)m I' (ka) ~ 2(771_1—)' (k;)m_l, (5.29)
K, (ka) %1@% K (ka) ~ _# (5.30)

In the case where a — 0 and m # 0, it can be seen that J,(ka) — 0,
I,(ka) — 0 and also the derivatives tend to zero With these values tending to
zero it becomes obvious that A% — 0 and A* — 0 also. Without evaluating

the other matrix entries, this gives us

AS Vo (kR) In(kR) Kn(kR)
ba A Y!(kR) I'(kR) K. (kR) (5.31)
0  Yu(ka) 0 K (ka)
0 Y (ka) 0 K! (ka)
Jm(kR) A I.(kR) K,(kR)
!l (2) r /(1.
b _ | TulkR) A LL(kR) K(kR) (5.32)
" 0 0 0 Kp(ka)
0 0 0 K'[(ka)
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JnlkR) Yo (kR) AY K.(kR)
\ J(kR) Y'(kR) A% K' (kR
DT{? — m( ) m( ) m( ) ’ (533)
0 Yilka) 0 Ky(ka)
0 Yy (ka) 0 K (ka)
Ju(kR) Y (kR) I.(kR) AL
J (kR) Y'(kR) I'(kR) A%
pw | JlR) Vi(E) LR | _
0 V.(ka) 0 0
0 V' (ka) 0 0

Here it can be seen that DY and DS are equal to zero meaning that only z,
and u,, have non-zero values. This corresponds to the unpinched case, where
only the equivalent coefficients are non-zero. When m = 0 however, this
behavior alters, and the coefficients are different from those of the unpinched
case. These calculations can be performed in a more rigorous fashion by
expanding about ¢ = 0 and then letting a — 0 whilst removing the tail of
the expansion, in which case we find that the coefficients correspond exactly
to the unpinched case except when m = 0. This is as we would expect for
the case where diffractive orbits contribute in the m = 0 case due to the
point scattering about the pinched center of the disk. We shall use this fact
to alter the trace formula solution investigated in 3) and include diffractive

effects in its results.

5.3 Trace Formula Modifications

Having established the fact that only the orbits that pass through the center
of a pinched plate, i.e. the m = 0 terms will effect solutions in the pinched
case, we can now construct a modification term to apply to the trace formula

in order to now produce eigenvalues for the pinched case so that we can verify
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Figure 5.2: In periodic orbits which do not come in contact with the center
point there is no diffraction and hence will produce the same results for both
pinched and unpinched cases. When an axisymmetric orbit is considered,

there will an interaction that will distinguish the two cases.

the applicability of this method to a an elastic case involving diffractive terms.

5.3.1 Diffractive Correction Term

We have already stated that for the unit disk

2 1
Ap(k) = /o /o drdf lim AG(r,r; k). (5.35)

r—rg
By only considering the periodic orbits that would interact with the center
diffractive point, we are able to isolate the contributions of the axisymmetric

case

, Ji(k + ie)
§p (k) = lim [ o\ETre) 5.36
ppink) = lmS (kjo(lw'rie)) (5.36)

Now substitute the Bessel functions with their associated asymptotic expan-

sions and convert to hyperbolic form to obtain

. . eik—e _ e—ik+6
0ppin(k) = ll_r,% ~ <z’ [eilkic +€—i(k+iej}> (5.37)

= lim$ <—3i1_——€2%f@> (5.38)

e—0 i (1 4 e2ik=2¢)

= lim$ (i(l — gtk ‘(—e%’C—ZC)T) (5.39)

e—0
r=0
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— 1 n er — 2 5
11_{% (1 ZZ " cos(2kr cr)) (5.40)
= 1+2 Z " cos(2kr). (5.41)

This gives the n = 0 correction term for the pinched disk

Oppin(k) = 1+ QZ "cos(2kr) =1+ QZCOS 7r) cos(2kr),
r=1

(5.42)

compare this to the n = 0 term for the unpinched disk

Opunp(k) = 1+2 i cos(2kr). (5.43)

r=1
The original trace formula solution can now be modified to take these cor-

rections into account,

5pco7‘(k) = 5p(k) + 5ppin<k) - 5punp<k)

= Sp(k)+2 Z cos(2kr) [cos(nr) — 1] . (5.44)

r=1
This equation can now be looked at to determine if it produces useful re-
sults for modeling diffractive effects in a pinched plate. We shall do this by
comparing numerical results computed from this formula with other results

available from alternative methods.

5.3.2 Results and Comparisons

In figures 5.3 and 5.4, the peaks above the g = 0 axis represent the eigenval-
ues found by using the trace formula method and its associated correction
terms. The peaks below the axis, if present, are the solutions found by the

EBK method, along with solutions for n > 1. By comparing the simply
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supported case with and without the additional center condition, the extra
eigenvalues produced by the pinch can be identified. For the clamped and
simply supported cases, it can be seen that the two methods agree particu-
larly well, the free case is a little less accurate, however the m = 0 peaks are
presents, thus verifying the earlier calculations that showed the m = 0 case
will be altered in the pinched case.

In these cases the boundary is still smooth, but internally the orbits are
bouncing off of an internal scatterer, so what have we learnt from studying
the pinched disk? There is a clash of limits affecting the results, but we have
seen that further investigation is warranted into the effects of a scatterer on
the eigenvalues of a plate as the study of the trace formula method has shown
that it can be be used to identity eigenvalues of certain billiards and plates,

indicating that including semiclassical diffractive effects is possible for plates.

5.4 Scattering From An Annulus Plate

While the pinched disk model provides us with a glimpse into the application
of diffractive effects in semiclassical systems, it is only a simple case in that
it avoids certain important limit considerations by having a well determined
zero radius center scatterer. In real systems this will not be the case and so
we look to extended this to the annulus disk scatterer.

Depending on the value of ka these systems will behave differently, as
would be expected. If ka > 1 then the orbits tend toward acting as in a
general geometrically scattered structure, whereas in the case of ka — 0
the effect of the scatterer will become increasingly small, but still producing
a noticeable effect. This can be seen by looking at the s-wave limit. In

this limit, only the orbits that would otherwise pass directly through the
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scatterer have any effect upon the system. For the problem looked at in
the beginning of this chapter, the use of the quantum mechanical approach

returns a diffraction coefficient [44] of

27
d =~ — (5.45)
o ()~ e+ %

where v, ~ 0.577 is Euler’s constant. This form of d is valid for small ka and
can be seen to be independent of the scattering angle ¢. We shall examine
a similar case for the plate later in this chapter with the goal of finding a

similar diffraction condition.

5.4.1 EBK Comparison

How do diffractive effects change the semiclassical behavior when modeled
on the plate? We shall now investigate this plate problem by looking at the
comparison to the EBK results in order to question the assumption that it
is only the m = 0 orbits that interact directly with a pinched center. The
system being studied is a circular disk of radius a with a clamped point at
r = 0. In order to transfer this to a more general case this point is assumed
to be an annulus of radius b, where b — 0. Due to the discontinuity at the

clamp, the general solution can be written as a sum of Bessel functions
Wy, = AJp{kr) + BY,(kr) + Cl(kr) + DK (kr), (5.46)

the conditions on the outer edge at r = a are determined by (2.56-2.61). At
first the n = 0 cases will be calculated to determine if these results match with
those obtained from the EBK calculations. As an extra check, the general
n case will then be studied to ensure the validity of the n = 0 calculations
and that the method is not limited to one case. As the center clamp will be

in place for all variations of this system, its effects can be considered here.
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Figure 5.5: Annulus plate with outer radius a and inner radius b.

The condition for the clamp is the same as a standard clamped boundary

condition
Wr|, = 0, (5.47)
Ow,,
-1 = 0. A4
ar |, 0 (5.48)
For the n = 0 case this gives
AJdo(kb) + BYy(kb) + Clo(kb) + DKq(kb) = 0, (5.49)
AJy(kb) + BY1(kb) — CL(kb) + DK, (kb) = 0. (5.50)

By examining the behavior of these equations under I’Hopital’s rule

Yio(z) = % <1n (g) +fy> Im(z) — Fi(z,m) (5.51)
K(z) = (—1)™* <1n (g) +“/> Lin(z) + Folz,m) (5.52)

where v = 0.5772... is Euler’s constant and Fi(z,m) and Fy(z,m) are cor-

rection sums, it can be seen that
2B
A+C—D(y—In2)+ —(y—-1n2) = 0. (5.53)
T
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Hence

C = -4 (5.54)
p - 28 (5.55)
s

Similar constants are assumed for the general n case. Inserting these con-
stants into the boundary conditions will now be looked at to see what effect

if any varying these may have.

5.4.2 Axisymmetric Solution
Clamped
The external boundary conditions for this case give:
Ady(ka) + BYy(ka) + Clo(ka) + DKo(ka) = 0 (5.56)
AJy(ka) + BY1(ka) — CI(ka) + DK (ka) = 0. (5.57)
Substitute (5.54),(5.55) and rearrange to obtain
Alo(ka) — I(ka)) = —B (YO(ka) + ;Ko(ka)> (5.58)
A(Jy(ka) + L(ka)) = —B <Y1(ka) . ;Kl(ka)) . (5.50)

Divide (5.58) by (5.59) to give

Jo(ka) — Ip(ka)  Yo(ka)+ 2Ko(ka)

Ji(ka) — I1(ka) — Yi(ka) + 2K (ka)’ (5.60)

By only taking the highest order terms and replacing the Bessel functions

with their associated asymptotic expansions for large k

2 T mT
Jn(z) ~ \/ECOS <1 —7 7) , (5.61)

2 13 13
Yo(z) ~ 4/—sin (l - g - %) , (5.62)



eiL‘

e _
Kp(z) ~ Nor=t (5.64)
in each part of the equation, (5.60) can be reduced to
_Io(ka) _ Yo(ka)
L(ka) — Yi(ka)
-1 = tan (lca — g) . (5.65)
With this case taken using a = 1
ko= Wm=%g. (5.66)

Free
For the n = 0 case, the boundary conditions (2.60) and (2.61) reduce to
o /10 Owyg -
0 [Owy o -
—8_’[“ <—0 + E?Uo) = 0. (DGS)

Things are simplified if derivatives of order 2 or higher are written in terms

of lower orders. The formulae for this are given by

95 J. 16°, [ 1 .\ o .
A A CED (5.69)
i (A b ) o (5.70)
5%J, 10J, ,
o _——— 7 = — B 1
or? r or <A 7“2> I (5.71)
8°I, 101, ,
= - < — . e 2
or? T8T+<A+T‘2)In (5.72)

The functions Y, and K, behave similarly to J, and I, respectively. Using

(5.69)-(5.72), (5.67) and (5.68) can be rewritten as

AlJy(ka) = Lka)] = —B {Yl(zca) +§Kl(ka)} (5.73)
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and

A {Jo(ka) + Ip(ka) — —Z (Jy(ka) + Il(/faw

e

(Yl(ka) + %Kl(mﬂ (574)

1—0o

= —B {Yb(/ﬁa) — ;Ko(ka) -

(~

Rearranging to remove A and B gives us

Yo(ka) l1—0o Io(ka)
Yl(k(l) - 2< ka )_Il(k'(l). (575)

As we are considering the case where k — oo, the 1;7" term is negligible and

we are left, by following a similar method as for the clamped case, with

ko= mw+g. (5.76)

Simply Supported

As we are considering the n = 0 case, the boundary conditions now reduce

to
82?1/'0 ano
2= = 5.77
or? - a Or ’ ( )

Substituting (5.46) gives

k? ko k2 ko
A[ Lo+ L) ——LH——(Jo— J2) — Jl}
a 2 a

2
k? 2k k? k
=B [—— (Ko+ Ko) + Ky + = (Yo — Ya) + "Yl} (5.79)
T am 2 a
and
2
A (Jolka) — Ip(ka)) = —B (YO(ka) + —Ko(ka)) . (5.80)
7T
From here (5.79) can be written as
o oo 2k 20 o .
A {—kfo —Zh— ko~ 20| = B|-ZKo+ Ky + kYo + 2Y; | . (5.81)
a a 7r am a
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Using (5.80) and (5.81) and the same method as the previous cases gives

cos(ka) = sin(ka) (5.82)
and hence
k = mm + % (5.83)

These problems can also be considered in a more general case by solving
with additional terms, the solutions being consistent with the simple cases.
What we see is that the addition of the clamped conditions at the center
of the disk will only affect the m = 0 solutions in the case of the pinched
disk, as these are the only orbits that will interact with this diffractive point.
However, although the clamped and free cases both give the same result for
m = 0 as expected, the simply supported case is different. It was originally
thought that due to the local nature of the problem involving the addition of
a point at the center of the digk, the axisymmetric orbits would interact with
this point only and that external boundary conditions would not be relevant.
It has been seen from this work that either the method used is incomplete,
or that the boundary conditions do indeed have an effect on the m = 0
eigenvalues. The m = 0 solutions for all these cases match with published
results [31], leading to the conclusion that the addition of the center clamp is
not necessarily as local a problem as originally thought and that by extending
it to include scattering by an annulus we can now investigate the use of the
quantum mechanical techniques presented at the beginning of the chapter on

this system.

5.4.3 Elastic Plate Scattering Model

In the light of earlier work suggesting that effects due to diffraction may not

be as local a problem as originally conceived, another approach is attempted
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here in order to try and find a reason for this. For this case we need to solve
(VH+ kMU =68(r — 7). (5.84)

It is known that U = G(r,7’; k) is a solution for this system, in order to find
the find the construction of G we need to consider that it will be the sum of
two elements, Gy and Gg
Glr,r'sk) = Gs(r,r'ik)+ Gs(r,r'; k) (5.85)
As developed by Keller [4], G is said to have the structure
h2
Gs(r,v';k) = 2—Gf(r, r';k)d(0)Gs(r, 1’ k) (5.86)
m
with 4 being the scattering angle at the point of interaction with the scatterer.
The free Green function for this system, G is

Gy = AH; (kr)+ BKy(kr). (5.87)

The scattering Green function Gg is what needs to be determined for this
problem in order to complete the structure of G. We first expand the com-

ponents in (5.84) to give

+0o
G, r'sk) = Y gm(rr)e™", (5.88)
) o
N im(6—0
(r—r") = %5(7“—7"/) )¢ 6=6), (5.89)

We can then use the radial form of V* in order to rewrite (5.84)

2 1 1 2 . 4 1
VY = 0428 — 502+ =0, + 5020, + 0] + 0 (5.90)
T T T T T T

=
= 9 ; .
> {094 209 = A0 + 2l + fulr)g | o
S 5(r—1") EOO im(e=8" (5.91)
2mr — ’
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where g™ = 87g, and fi, fo and f; are functions of r giving the relevant
coeflicients. In order to contain all possible elements of the waves, we can

write

Gm1(r,v") = AHI(kr)+ BH_(kr)+ CL,(kr) + DK,,(kr) (5.92)

fora<r <7

Gma(r, ') = EHI(kr) + FK,(kr) (5.93)

for ' <r < o

There are several conditions for this system that need to be defined if we are

to investigate further.
1. The inner radius is clamped, giving
gl e = 0
and O0,gn,(r,r")| _, = 0.
2. The two expansions for g,, need to be continuous as r =/, hence
1 (1, 7") = gpa(r,7’) at r =1
3. In order to maintain continuity,

g<2) — g(l) =g=0.

3

4. The remaining ¢ and g terms must fulfill equation (5.91).

Condition (4) can be written as follows

2

4) L 2,0 Slr — ¢!

g rg 27T (r=r)
1

= O (rg® +¢®) = —8(r—r")
27

= rg® @ = i, (5.94)

- 27
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but from condition (3), ¢ =0, so

g7l 1
O = o (5.95)

Now the six conditions imposed upon the system can be written as follows

AH?(ka) + BH(ka) + CI(ka) + DKy (ka) = 0

(5.96)

AH*'(ka) + BH; (ka) + CI' (ka) + DK! (ka) = 0
(5.97)

(A—EYH (kr')+ BH_ (kr") + CL,(kr') + (D — F)K (k') = 0
(5.98)

(A— EYH} (kr') + BH, (kr') + CI' (k') + (D — F)K! (kr') = 0
(5.99)

(A— EYH!"(kr") + BH"(kr') + CI" (kr') + (D — F)K! (kr') = 0
(5.100)
(A—EB)H"(kr') + BH," (k') + CIl(kr') + (D — F)K ]\ (kr') = — 27(‘237"
(5.101)

By considering the conditions only at r = r’ we can extract the values for
A —E, B, C, and D — F. For convenience, the m subscripts and (kr’) are
omitted from the presentation of the Bessel and Hankel functions and are to

be assumed. From equation (5.98)
(A— EYH* (k') ~ BH (k') + CI(kr') + (D — F)K (kr') = 0. (5.102)

The values of the constants in this equation are calculated in appendix C,
we then use these values to construct the Green Function that we will use to

look at the diffractive problem in the next section.
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5.4.4 Formulation of the Green Function

The coefficients determined in appendix C can now be placed in (5.92) and

(5.93). For a < r < r' this gives

1 WK H) o 1 W, (K, )

) = s NH* (kr) + — 2 K (k') H (k
9mi(r ) = e e T FrOH )+ g e ey K H (k)
1 Wl(H HY)
161 Wo(K, H")

1 W, (I,H") - )
! er) — — H Y (kr! 3 5.103
PTATS H*)K(Mﬂ VK (kr) 162,H (kr'YH™ (kr), ( )

— K (k)T (kr) + H* (') K (k)

whereas for v’ < r < oo this gives

Gma(r, 1) = 6 WW EK H+§H+(kr’)H+(kT) + %———————MZ/&IE{{{’}}?)K(M’)HWM)
1 Wo(H-, H")

__aigf((kr)f(kT’)%— H (k') K (kr)

160 W,(K,H)

1 Wo(I,H™) , ’ N
EWKUW)K(M)—EH (kr"YH ™ (kr). (5.104)

By inspection this is very similar in structure to (5.103), so by representing r
and 7’ as either incoming or outgoing depending on the domain, both (5.104)

and (5.103) can be written as

, 1 We(K,J)
) = SWL(K H)
1 1

T ke Wo(K, B [

1 W,(I,H?)

47 W, (K, H+)

1 1
gJ(kT<)H+(kT>) + 4—I(kr<)K(kr>) : (5.105)
s

H(kr )H" (krs)

K(kr YH* (krs) + H+(kT<)K(kT<)}

K(kro)K(krs)

By using [46]

Hi(z) ~ e 5 Hi(2) (5.106)
H-(2) ~ % Hy(z) (5.107)



Kn(z) = Ko(z) (5.108)

In(2) ~ I(z), (5.109)

the equation (5.105) can be written as

1 WK, J)
8 W, (K, H*)
1 " . i
R W T LKo(kr Y Hg (krs) + H (kr ) Ko(hr <))
1 W,(I,H™)

4 W, (K, H+)

_ (é](lﬂ'<)ﬂ+(k7‘>> +4i17i_](kT<>K(k-r>>) (5.110>

gm(T, TI) = eimWHJ(kT<>H0+(kT>>

Ko(kr<)Ko(krs)

Looking at this, it can be seem that g J(kr<)H (krs) + =1(kro)K(krs)
is the free Green function for this system. By subtracting this from (5.110)
we are hence left with terms which appear to correspond to G;dGy in the
hypothesis that for a scattering system, G = G + Gsd(r<,r>)Gy. Looking
back at the start of this chapter, this is what what we were hoping to extract
in order to investigate the applicability of this method to elastic problems.
The terms we receive are

1 WK, J)
8 WL(K,H*)
1 eiwzm
_+_
drka Wy (K, HY)
1 We(l,HY)
dr W, (K, HT)

Gg e H (kr ) H (krs)

[Ko(kr<)Hy (krs) + Hy (kr<)Ko(kr<)]
Ko(kr ) Ko(krs). (5.111)

A wvital point that we need to verify in the process of determining the use-
fulness of this approach for this system is to ensure that the solutions match
established frameworks for limiting behavior. So if (5.111) is to match with

the structure of Gyd(r<,75)Gy it needs to be of the form

d(T<7 T>)

Cs (32

Hg(kr<>H()+(kT>)
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d(re,rs) 1

+T§ [Ko(kT<>HJ(kT>> + Hg—(kT<>Ko(kT<\)]
d(re,m>)
TWKO(JCQ)KO(my (5.112)

Although this is very similar on first inspection to (5.111), for it to be correct
it would require

imar

d(re,rs) = 87?%%6
8 e
ka W,(K,H+)

Wao(l, H™)

Wo(K,HT)

4 (5.113)

Due to the differing exponential factors in these terms, there is no diffraction
coeflicient that will balance for first order limits and if we hope to obtain them
an additional step must be considered. We shall now look at what changes to
this approach may be necessary to receive a workable diffraction coefficient

that matches that of the quantum mechanical method we are following.

5.4.5 Calculation of Diffraction Coefficient

We have assumed that a < r.~. When we compare the coefficients in the

asymptotic limit

%——-——g((éfé ?> Kokr ) Ko(krs) ~ ie%a-kw-% (5.114)
this assumption will mean that this term is exponentially small. Similarly
for

1 1

(Ko(kr ) Hy (krs) + Hy (kro)Ko(kre)] ~ ef® [e <>
(5.115)

drka W, (K, HT)

With these two terms contributing only exponentially small terms to the

system, they can be neglected in this assumption leaving only the terms
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including H*(kr<)H " (ks) to give a non-exponentially small contribution.

Having made these assumptions we have

1 Wo(K,J)
8i Wo (K, H+)
e W, (K, J)
8l W,(K,H*)

Im — Gfree H;(kT<>H7:(k7">>

Hi (kr)HG (krs). (5.116)

This will not be the exact Gg for the plate, but it will be for the corresponding
membrane and it is assumed that the cases are similar enough to use the same
value. With the inclusion of the sum over m terms from the original G we

can write

_ g Z cimie=n) (g{}ﬁ) (5.117)

m=—00
By expanding this as a power series about ka = 0 and neglecting the terms
of O(ka?) we find that for all values of m # 0,41 the diffraction coefficient

is equal to zero. This leaves

_ im(p—mn (K‘]>
d = —8zze ( W

m=—1

s . .
— 841 i(¢—) —i(é—7)
Z{ +4iﬁ/+7r+4iln (—k;) <6 te )}

) T Cos @
= —8i{1l— ——r . . 5.118)
{ 2 m(%)w—ﬂ} |

From what we have seen here, the original thought that the quantum me-

chanical diffraction coefficient approach could be applied to plates has been
shown to not be as immediately successful as would have been hoped. We
could only retrieve a valid form of diffraction coefficient in this later case
by discarding a large number of terms in order to have matching limiting

behavior. What of the diffraction coefficient we do receive? Well this one

includes dependency on the angle of impact, something that is not present
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in the simplified version of the billiard case. The variable dependency on the
two limits @ — 0 and & — oo also causes concern when trying to determine
the accuracy of this result as taking the limits in different orders could well
produce inconsistent results.

The discarding of lower order terms is something that should also be of
concern. While not an exact parallel, in chapter 4 we saw that the addi-
tional of lower terms had a visible effect on the results and so immediately
discarding them just to match limits suggests that there are issues with this
api)roach which would still need to resolved, it would be the aim to include
the same order terms across all calculations for consistency purposes and this
is not the case here. One of the aims of this chapter was to see if using the
quantum scattering approach would produce a simple extension of diffraction
to elastic plates, and from the problems that we have encountered here this
does not seem to be the case. We did produce a correction term for the semi-
classical trace formula in the case of the pinched plate, which was another of
our aims. This suggests that there is some validity in the approach.

It could well be the case that this approach would be valid in the full three
dimensional elastic problem, taking coupling of longitudinal and transverse
waves into account. However this is beyond the scope of this thesis, and so
instead we look for another approach to the diffractive problem by considering

star graphs.
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Chapter 6

Statistical Properties of the
Plate Equation Governed Star
Graph

Having seen in the previous chapters a variety of models for the quantum bil-
liard based on diffraction with questionable results we hope that by looking
at an alternative approach we can verify the use of an alternative meth-
ods. In this chapter we continue the investigation into various semiclassical
methods by looking at studying similar problems by using star graphs. Star
graphs provide an interesting avenue into the problem of diffraction, not only
allowing us to model systems such as the elastic plate we are studying, but
frames and structures also. While we shall not be looking at those problems
it is worth noting that through investigation of this method the application
of quantum processes to fields such as structural engineering could provide

unique insight into vibrational effects.
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6.1 Seba Billiards

A graph is defined as a collection of vertices numbering v + 1, where the

length of an edge on the graph is given by
L(U,L, Uj) S [O, L}, (61)

with L chosen to determine maximum edge length. In order to make this a
star graph as opposed to a graph in general , we impose the condition that
the vertex denoted by vy has a valency V' = 0 and all other vertices v; have
valency V = 1. This gives us a graph of j edges connected by vertex vy, an
example of which is shown in figure 6.1. We shall be using this in order to
model the behavior of a plate with added center condition as in the previous
chapters. Diffractive models such as this are interesting to study due to the
radical changes introduced by the introduction of a scatterer on an integrable
system [8] and the destruction of the phase tori constructed to model these
systems by this chaotic behavior. This will leave us with a system that
is neither integrable and follows Poissonian statistics [47] or totally chaotic
and follow Random Matrix Theory (RMT) predictions [48], [49]; this is also
considered in [50] where the two point correlation form factor K is calculated
for the rectangular billiard. In this chapter we shall be considering similar
effects on the disk billiard, studied here using the approach developed for
star graphs in [51].

In most cases diffractive systems such as those studied in this chapter,
all classically non-chaotic, include measure zero objects that influence the
behavior at the quantum level. For example, we took the annulus billiard,
and shrunk the internal radius until the inner ring could be considered as a
point scatterer. This scatterer is of measure zero, and as such is irrelevant

in the classical calculations as it has no effect of the behavior. This scatterer
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does effect the quantum system however, causing a wave chaos to develop,
contributing significantly to any effects on the energy level distribution. This
kind of behavior, as in the example above, where a system displays quantum
chaotic behavior despite being classically dynamic, is referred to as a Seba
Billiard. This idea introduced by Seba [8] was developed by articles applying
the concept to further scattering systems, [52], [53] and corresponds directly
to star graphs, which we shall now consider with the aim of investigating

their statistical properties when applied to the elastic plate problem

6.2 Quantum Graphs

Quantum graphs are models created in order to investigate the connections
between the statistical properties of a system and its periodic orbits [54], [55],
[52]. These graphs are networks of wires restricted to one dimension, con-
nected at nodes and modeled with various boundary conditions. The graphs
are generally applicable to physical systems, being used in many areas such
as condensed matter physics and chemical modeling [56], [57]. The devel-
opment of quantum graphs is based on modeling the problems as systems
of thin wires, where the thickness is much smaller than any other length
scale in the problem and hence the wires can be treated as one dimensional,
reducing the problem to include only transverse waves and simplifying the
corresponding operator considered on the wire. A quantum graph is purely
a model for a more mathematically complicated system, in our case used to
explore the connection between the behavior of a systems quantum energy
level statistics in relation to its classical periodic orbits. The connection to
the periodic orbits is useful in this case due to the fact that for graphs, the

trace formula can be solved exactly, and as such the result can be easily
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classified rather than using a semiclassical approximation. This links to the
classical dynamics of the system in a similar way to how the Gutzwiller trace
formula links to Hamiltonian behavior. The fact that the trace formula is ex-
act makes quantum graphs very useful tools in the study of many aspects of
quantum chaos. However at this time there are few conclusive results in the
investigation of the subject, as although some graphs can be shown to display
RMT behavior, in order to extract useful information from them, larger and
larger graphs need to be studied, needing combinatorial techniques in order
to recover useful results. It is our aim to study a system that will fall into
an intermediate ensemble due to the introduction of a chaotic scatterer to an

integrable system [8], and hope to show that its statistical properties agree

1

with previously studied cases [58], [55].

6.3 The Hydra

6.3.1 Quantum Model

Each graph is composed of a series of bonds, the structure of the graph being
determined by the connectivity matrix C;, this is a square matrix with the

elements defined by

1 if 7 and 4§ are connected
Cij:Cﬁ: / i, J = 17"'7V (62)

0 otherwise

For each bond a coordinate z;; is assigned, this is zero at the vertex ¢ and
Li; (= Ly;) at j. Along each bond we define the wavefunction ¥;;(z;;) as the
component of ¥ along the bond b = (7, ). This wavefunction must satisfy
any boundary conditions applied at the vertices to ensure continuity and

‘current’ conservation. By continuity, at each vertex 7, ¥ must approach a
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value ®; regardless of which vertex ¢ is approached from. The conservation
condition places a restraint on the derivatives of W. This particular graph is

named the hydra.
e Continuity

V()]

=0

o, Ui (2)],ep,, = P, Vi< j,C; #0  (6.3)

e Conservation

ZC.. iA-—i U(z)|
Lo " dr I w=Li;
1<

, d
‘f‘zcij <‘2Az‘j + d_z> Vilz) g = NPi (6.4)

i>i
In the case of modeling the general quantum graph,that represents the basic

diffractive billiard system WV is given by

(%—Ab) Uy(z) = K h(z),  b=(,7) (6.5)

with Ay representing the effect of forces such as a magnetic vector potential.
When A\ — oo, the bonds do not interact and act as a model for the particles
bouncing independently within their bonds, leading to a similar torus phase
space as in the EBK method. Quantum star graphs that can be used to
model Seba billiards are composed of bonds of various lengths, connected by
a central vertex as in figure 6.1. The external force term is dropped, giving
the Schrédinger equation for ¥
&2
—@\Dij(z) = k*U,;(x), z € [0, Ly]. (6.6)
The continuity and conservations are given as in (6.3) and (6.4). Assuming
the eigenvalues can then be found, the spectral density is defined by
p(k) = 8k — k) (6.7)

=1
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Figure 6.1: The hydra, a star graph composed of a central vertex from which

all other bonds emanate.

and hence we can study the eigenvalue statistics of the system by using the
two point correlation factor [58]

Rale) = (ks (k+2) ) - 0@ (6.5)

where the mean density d =< p(k) >, which defines average spacing of the

eigenvalues of the system.

6.3.2 Plate Equation Governed Graph

While the quantum star graph described the behavior under Schrédinger’s
equation, in the case presented here we are studying the effects of modeling
a star graph where the governing factor on the bonds is the plate equation
and shall extend the method as necessary, which shall be referred to as the
elastic star graph. This allows the effects of both flexural and rotational
motion within the beams to be studied. We will now outline the model that
we shall be applying this technique to in order to further investigate the
effects of using the star graph to extract statistical properties. Assume a

wavefunction along the beams of
\I]ij = Aij sin(k:cij) + Bij sinh(k:cij) + Cij COS(k‘.’E@‘) -+ Dij COSh(kCEij)

104



(6.9)

that is a solution of

d ; _
—CZJ;—4\I[U<$> = k4\pij<ﬂ?>, T € [OLWJ (610)

The clamped boundary conditions at the center vertex and all external ver-

tices are given by

Ui(0) = oi,  U,(0) =4

q’i]’(LJ') = @5, \I’;](Lj) = @; (6.11)

By considering these boundary conditions, (6.9) can then be expressed in
terms of the boundary variables rather than the original coefficients. In the
case of of forced vibrations, the shear force F' is related to the third derivative

of the wavefunction

>y
F=—-EI-—. 6.12
T (6.12)

The fact that due to forced vibration, this force across the beam is discon-

tinuous can be written in the quantum graph terminology as the condition
> Cy (- Wh(ay)] R ED e (W(@i)l,_y) = Now (613)
Jj<i i>i

This states that the graph can be modeled by denoting the connecting vertex

as %, then all bonds where 7 < ¢ are separated from all bonds where j > % by

a discontinuity of size \;¢;, with A an arbitrary constant to be determined

at a later point.
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Figure 6.2: Star graph points modeled as 7 < j on the left and ¢ > j on the

right, with the the central vertex i.

6.4 Quantization

6.4.1 Quantum Star Graph

In order to understand later comparisons to the quantum star graph case,

we shall present a method used to calculate its quantization condition [53].

From (6.5) we apply the conservation conditions (6.4) to obtain a solution

for @

1

= SaRLL (¢isin(k(Ly; — z)) + ¢ysin(kx)) Cy;

V()

Now substitute this into the continuity condition (6.3), using the fact that

C.;j = Cji == (Cij)z to obtain

ok
E —C'L' PR A 1.k iy
i<t ]< sin(kLi;) e COt(kLJ)>

ko
S [ —dicot(kLy) + —2—) = Ay
+ (¢CO( '])+Sin(kLij)> Q@

>
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where ); is a constant determining the strength of the discontinuity. We can
write (6.15) as
i Cii0;
éi C’Lm t kL'Lm -2 — = 0. 616
(Bt 3) -2l o
Using the conditions established in (6.2) and that fact we are only considering
a system of one singularity we get
Ao 1
o | — t(kLy) — — , =0 6.17
%o ( 2 cotlhli) =7+ Cos(ij)sm(ij)) (6.17)

m#0 770

which leads to

1 cos(kLm)\ Ao
Z (cos(ij)sin(ij) a sin(kLm)) Tk

m#0
Z 1— COSZ(k‘Lm> . —0
o’ cos(kL;)sin(kL;) k
A
> tan(kLn,) = TO (6.18)

m70

giving the quantization condition for the quantum star graph system. This
gives us an explicit condition that defines when k can be considered an eigen-
value for this problem. With this in mind we can then calculate the same

condition for the graph governed by the plate equation.

6.4.2 Elastic Star Graph

We shall now apply the presented method to the elastic star graph model.
From this will then be able to determine the appropriate quantization condi-
tion and use this for further analysis of the system. By calculating the third
derivative of (6.9) and applying the boundary conditions (6.11) we can write

the relevant terms in (6.13) as
‘P%(fﬂiﬂ = @iy — OB — ¢77 — 95;5 (6.19)
Ui(zy) = ¢y + 618 — o7+ ¢35 (6.20)
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using the terms

Y = sin(kL;) cosh(kL;) — cos(kL;) Sth‘CLJ‘)k’ (6.21)
1 —cos(kLj) cosh(kL;)
sinh(kL;) — sin(kL;)
1 —cos(kL;) cosh(kL;)
5 - sin(kL;) sinh(kL;) K2 (6.23)
1 —cos(kL;) cosh(kL;)
- cosh(kL;) — cos(kL;) 12
/ 1 —cos(k;L) cosh(kL;)
__ sin(kLy) cosh(kL;) + cos(kL;)sinh(kL;) K, (6.25)
Y = 1 — Cos(ij) COSh(ij) ) '
sinh(kL,) +sin(kLy) ;5 (6.26)
1 — cos(kL;) cosh(kL;)

and a =
Hence we can write (6.13) as

2_ G (6y = 66 ~ 877 = 9if)
Jj<i
+Z Cij (ff’ﬂ’ + 8 — &7 + éﬁ) = N (6.27)

J>i

Now consider the case when i = 0, this gives

> (d0v — 68 — 677 — ¢5)

7<0
+3 " (Sov+ 48— &7+ #8) = lod, (6.28)
7>0
this gives us
| _ Aoé
S by —am) = 22 (6.29)
Jj#0

Then due to the fact that the external vertices are clamped, the boundary

conditions can be set with ¢; = 0 and hence

Dy =X (6.30)

70
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where the factor of two has been absorbed into Ag. By substituting the

original equation for ~y this gives
Z sin(kL;) cosh(kL;) + cos(kLy) sinh(kL;) Ao
1 — cos(kL;) cosh(kL;) =

(6.31)
70
as the quantization condition for this example. Taking this quantization

condition, k£ is an eigenvalue of the unclamped system if and only if this

condition is equal to zero, hence
Z sin(kL;) cosh(kL;) + cos(kL;)sinh(kL;)
1 —cos(kL;) cosh(kL;)

=0 (6.32)

i#0
This will be the case when sin(kL;)cosh(kL;) + cos(kL;)sinh(kL;) = 0,
except when 1 — cos(kL;) cosh(kL;) = 0, that is the case when kL = 0 and
can be neglected due to the fact that kL; = 0 only in the case of bond

lengths L; = 0 which we shall not be considering. By rearranging the terms,

the special case of (6.32) can be written as

F(k) = Xv:n(kL) =0, (6.33)
where
n(kL;) = tan(kL;) + tanh(kL;) (6.34)

allows the density d(k) to be written as

1 N
dk) = 5 \F'(k)| e*F® gz, (6.35)

With these elastic variations defined, the quantum calculation in [53] can be

followed for this case.

6.5 Statistical Properties

The statistical properties of star graphs governed by Schrédinger were inves-

tigated in [58)], relating the eigenvalues on a star graph via an exact trace
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formula. In deriving a formula for the form factor K(7), it was demonstrated

that this model is not Poissonian nor governed by RMT, fitting into an inter-

mediate ensemble. This strongly suggests that using a similar approach to a

graph governed by the plate equation and hence graph edges with behavior

determined by a different operator will give similar results. Returning to

previously calculated properties, in a star graph consisting of v bonds with

a length distribution of independent uniform random variables in the range

[L;,L; + AL], the mean density d is defined as

I N
AL—>1(JI:%—>OO <d(k>/Lj H

with the averaging calculated using

- /L(H—AL /LO+ALJ' CZLl dLU
> = . _
This gives
@k, = 5 | P
with
Lo+AL; _
foy = [ et
Lo AL;
Lo+ALjy ] dL.
g(z — / FI k ezzn(ij) J .
)= | Fmee
By changing the integration variable
AL;j d(kL;) dk AL
_ L; dn d(kLy)
k d(kL;) AL,
L
= waL
we can then write g(z) as
~ Lo /n(k(Lo+ALj)) (B
9(z) = "ML dy
) kAL; Jotkro)
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(6.42)
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Figure 6.3: Discrepancy between tan(z) + tanh(z) (full line) and tan(z) + 1
(dashed line).

In this case L; can be approximated by Ly since it is slowly varying in
comparison to n(kL;). We shall now consider this while approaching the

expanded model.

6.5.1 Near Zero Behavior

It is known that tan(kL;) is a periodic function with period 7. Since the func-
tion n(kL;) = tan(kL;) + tanh(kL;) is also periodic, although containing a
tanh(kL;) component, we shall investigate its behavior in order to determine
if the periodic behavior of tan{kL;) will also be applicable in the case being
studied. It is this periodicity that is vital to the calculation and hence what
we shall focus on in this section. The function tanh(z) can be written in
terms of exponential functions

tanh(z) = e—;—e (6.45)
er +e™®
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Figure 6.4: Discrepancy between tan(z) + tanh(z) (full line) and tan(z) + 1

(dashed line) in the region of z = 0.
This can then be expressed as
tanh(z) = 1—2e 2 4 O(e™*) (6.46)
and the value of 77 can then be written as
n(kL;) = tan(kL;)+1-— 2e~2kLi 4 O(e'4k). (6.47)

We have already assumed that & is tending toward infinity, so the behavior

of n(kL) can now be approximated as
n(kL;) = tan(kL;) + 1. (6.48)

This will only be invalid in the region kL; ~ 0. As k — oo, this is only true
in the case where Ly = 0 (see figure 6.4). However this is the case of a non-
connected beam and is not included in this case, allowing the approximation
n(kL;) = tan(kL;) + 1 to be used in this case. As stated earlier, neglecting

the cases where bond length is equal to zero allows us to note that the period
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of the two arguments for both the quantum star graph and for the elastic
star graph are identical. It is this fact that means we can approximate the
behavior of (6.34) to (6.48) and use this in subsequent calculations.

While we have shown that the in both the original quantum star graph
and in the elastic star graph the periodic behavior is the same when terms
past O(%) are neglected, it is still possible that such terms could affect the
system. In previous chapters we have shown that lower order terms are vital
in calculating corrections to quantum techniques so why are we neglecting
the lower order terms in this calculation?

The terms that we have neglected in the periodicity argument were O{e~2*)
and as we stated above, it is only when k = O(%) that this will produce any
effect as the terms neglected are of lower order even than those considered
in previous chapters. It is thought that inclusion of this term in subsequent

calculations would produce an extra integral term from the use of
n(kL;) = tan(kL;)+1— 22 (6.49)
as opposed to
n(kL;) = tan(kL;) + 1. (6.50)

The effects of including such a term however would be exponentially small
and its contribution will be neglected at this stage in order to first establish
if there is a first order correspondence between the two studied models. Tak-
ing the periodicity argument into consideration in order to simplify further
calculations we will now derive the statistical properties of the elastic star

graph in parallel to those in [53].
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6.5.2 Mean Density

In the calculation of the quantum star graph, the fact that tankL; was
periodic over ¥ was used in the calculation of the mean density for the graph.
In this case, we determined that in the quantization condition, instead of
tan kL; we use (6.34). Although this is an alternative function, its periodic
behavior is still the same, meaning that the assumption of altering the domain
of integration (6.48) is still valid in this case. With this assumption, 7 is
then taken to be a periodic function with period 7. The integration in
G(z) is performed over the interval [n(kLg),n(k(Lo+ A))]. This contains

approximately A—iﬁ periods, and so the integral (6.44) can now be written

as

~ N LO kALJ‘ = 1zm
i) = oy |28 [T ey o)

Lo [kAL [> .. .
— iz(tan(kLj;)+1) . 1 1
Yy { = /_of d(tan(kL;) + 1)+ O()

2Lo6(z). (6.51)

2

In order to calculate f (z) we can use this alternative approach, giving

LO /ta.n(k(Lo-}—ALj)) 6’iz tan(ij)
t

—————d(tan(kL;)). 6.52
KAL; Jiangiro) 1+ tan?(kL) d(san(kLs)) ( )

flz) =

Using similar periodicity arguments yields

_ 1 [e'e] eiza
~ 6.53
o) = - S (6:53)
— 6—13\7 (6.54)
so we have obtained
f(z) ~ eI (6.55)
G(z) =~ 2Lg8(z). (6.56)
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Substituting these back into (6.38) gives

27
L )

e (6.57)
™

d = —2L0/ eWDES(2) dz

Comparing this to the quantum star graph calculation shows that even with
the additional factor from the more complicated quantization condition, ap-
propriate approximations due to £ — oo behavior show that the mean density
of the two systems are the same under the assumption of the two functions
have quantization conditions with similar periodicity. This is to be expected,
the Fourier transform performed in this calculation will yield the same result

independent of z and so we retrieve the above value.

6.5.3 Two Point Correlation Function

In order to proceed to calculating a form factor, we would first need to cal-
culate the two point correlation function of the system. In this section we
perform this calculation for the elastic star graph model. A similar calcula-
tion for the quantum star graph can be found in [53], the results of which
we are hoping to duplicate in order to display a correspondence between the
two cases. The two point correlation function Ro(z) is given by

Ro(z) = lm =R <kk + %) , (6.58)

AL;—0k—o0 d

Again we take the limit such that kAL; — oo and use

R(kl,kg) = <d(k1)/d(k2)>L

_ / S dm (k1 Ly) dna (ki Ly) Gz Fi(m )+ 2P (22)) 42
dk1 dko 472
L

0 ps=1 ;

(6.59)
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Analogous to the mean density calculation, this can be written as

Rk, k) = #/jo {vg(2) f*71(z) + v(v — 1)®1(2) P2 (2) f77(2) } dz

(6.60)
Where
o) = /L0+A dn d772 pilzim+zm) 4L dL; (6.61)
L dk: dkz AL
f(z) = /L o “Z”Wz””% (6.62)
0:(2) = /L UUMLJ 221 “21”1“2”2>ZLL]_ (6.63)
N -
Noting the form of (6.58), we set ky =k, ky = k + % =k + % So for f(2)
1) = g [ el o

J

"/(21,22> /L0+AL e (zltan(kL Y+ 22 tan(kL +1LJ-)) dL
ALJ’ L

0

_ "/(ZI;Z2> /5 ei(zltan(@b)—}—zgtan(w—}—%)) d'l,/) (665)

v

w3

where we have used the fact that % ~ 1. So in the elastic star graph there
is an extra factor to be considered in the calculation of R,. This factor is the

result of the addition of the tanh(kL;) terms, and written in full, is given by

e <21 tanh(kL; )+2213nh<1“L +1Ll)) . (666)

However, as we are considering the case of large k, keeping in mind behavior

of tanh(kL), this can be reduced to
Yz, 22) = ¢le ), (6.67)
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As this is assuming & — oo we have also been able to approximate f by the

integral over one period. By manipulating the properties of tan and taking

o - (@)

x — as v — 00 (6.68)
T
a = tany —f (6.69)

we can now write f as

e * J—————  (6.70)

f(Z) = ’Y(zlv'z?) (a+5)2+1'

: 2
ezﬁ(zl—zg) oo iz1—i22<'6 +1> dov
v

—0o0

Differentiate this with respect to z; and 2 to get

5 : if(z1—z2) o) } ' d
ﬂ — _f — ’Y(Zl,Zg)Ze - / (2ﬁ+a+ A) eﬂ,zl—mzz)\ o

0z Oz - (a+B)?+1
jeiBz1—22)  poo o .d
= W(z1,22)—"ze / gina—izr 12
T . o
= —(z, Zz)eiﬁ(zl—zz)@(Zh ), (6.71)
with
i = izpa—1z Ada
O(z1,2) = —— ehaTimA_— (6.72)
T J o o'
and
: 2
O (6.73)
o'

By applying the method of characteristics to (6.71), we obtain the solution

o
Fz) = (=, 2) (e"zlw —/ ePv=m1-2)Q(y 21 + 25 — y) dy) -
0

(6.74)
Applying a similar methods for the other functions in (6.60) yields
9 9 iB3(z1—=
g(Z) = W(zla ZZ)L%</62 + 1) (a—Zl - 8—22> (61’3( 1 2)®<Zl, ZQ)) (675)
; 0
®1(2) ~ v(z1,2) Lo —O(z1, 2), (6.76)
821
; 0
o(2) = (21, 22) Loe? T 021, 2). (6.77)
2
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These can now be substituted back into (6.60), begin with just using g(z)

and manipulating to give

B v(v — 1)[% dz v—2_ 2 2i8(z1 ~22) 2 2 _ @?9
Ry(z) = EQ /@f v (21, z2)e€ (87 +1)© 82, 029
(6.78)

Taking the case as v — oo, write fU72(z) = e 2™/ and rescale f(z) to
f(3). By taking v — oo (8 — o0), ’y(%) — ™% 1 and hence is
removed. The calculation then proceeds as in [53], yielding the same result,
an exact formula for the two point correlation function for star graphs when
the number of bonds tends to infinity. This result is the same as obtained in
53] for Seba billiards, with the additional factor involved in the calculation

not affecting the final result.

Ry(z) =1 —|—/ oM (W) 2iuy +uz) [J§ (2y/urug) + JF (24/trup)] du, (6.79)
D

with

)" (fug ) (r + s — 2)!
( 7"!?9!((7“ —)1()!(5 -1 (6.80)

M(u) = |ur|+ |ua| — 2isign (u1) Z

rs=1
As this calculation has yielded the same two point correlation function as in
our comparison model, we can assume that further calculations would also
retrieve the same form factor K(7). Hence it is noted that calculation of
statistical properties for the elastic star graph displays very close links to its

quantum star graph counterpart as was expected.

6.6 Comparison and Conclusions

Having shown the correspondence with the quantum star graph, what does

this tell us about the eigenvalue statistics of the model we have been study-
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Figure 6.5: T'wo point correlation function predicted from [58] for the hydra

compared to elastic star graph eigenvalue statistics

ing? In the cases of large and small z, Ry(z) can be respectively approxi-

mated [58] for the quantum star graph by

Ra(z) ~ 142%|——+ 2 L o(L (6.81)
2 + 2202 | p3p3 pAnS 5 ! e
Ra(z) ~ 7L@HO(:UZ). (6.82)

2

It was an initial goal of this chapter that we would be attempting to
model the elastic plate using an alternative approach based on the star graph
model which used beam behavior. How do the results we that we have
found compare with those taken from the previous model which looked at a
similar plate? By taking a small star graph composed of five bonds (v = 5)
where bond lengths are given by a uniform random distribution over [0,1]
and determining an array of eigenvalues we can plot the spectral statistics
for the elastic plate. A comparison of the predicted behavior of Ry(X) to
those of the quantum star graph is shown in figure 6.5. Here we see that
despite few results the overall trend of the calculated results is toward that
of the predicted behavior. While for complete results a large number of
graphs averaged over a variety of bond lengths would be required, here we
looked at one case in order to show the emergent behavior of the system. An

important facet of this work is showing that despite a low number of bonds
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and a relatively small number of eigenvalues, a reasonably accurate set of
results can be produced, in this case the distribution has been calculated
using only the first 150 eigenvalues. By considering an ensemble of graphs
with such a random distribution of bond lengths a set of results with greatly
increased accuracy could be retrieved. It is not necessary to do this however,
as the exact correspondence between (6.79) and published results will mean
that this elastic star graph will have the same statistical distribution and
hence be part of the same intermediate ensemble. We conclude that in both
cases, both the elastic and quantum star graph, the statistical behavior 1s
the same under this approach. This tells us that at first approximation there
are no additional terms introduced by considering the elastic plate and that
further study into lower contributions would be necessary to see any such

contributions.
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Chapter 7

Summary and Conclusions

We began this thesis by outlining the semiclassical methods we would be
using to apply to elastic plates. It was our aim to apply these methods and
establish in which cases such uses would be viable in describing the behavior
of these plates. In chapter 2 we saw that there are several approaches to
solving the basic problems presented by looking at integrable systems. The
EBK quantization method, useful while investigating integrable systems, is
no longer of use when any such system is extended into a chaotic case. We
didn’t look further at such cases as the aim of this thesis was to develop exist-
ing approaches to be more accurate in cases of more complicated boundaries,
and so looking at the chaotic directly is not necessary for use of the trace
formula. It is important to note however that the methods we were devel-
oping can be applied to chaotic systems with relevant alterations, and any
accuracy improvements would then be carried through. It is the comparison
with EBK and other existing methods on which initial results were based;
the integrability of the problems we tackled allowed us to have a sound basis

on which to compare any changes and determine their usefulness.
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7.1 Elastic Plates

It was our intention to determine the important factors that should be consid-
ered when applying the semiclassical methods to elastic plates and in doing
so we found that there was an important factor to be be investigated. This
factor was the effect of the boundary of the plate and led us to study the
behavior of the plate under various boundary conditions in order to deter-
mine which cases provided a suitable model and which would need changing

in the transition.

7.1.1 Semiclassical Analysis of Elastic Plates

Looking back to the boundary conditions quoted in [32], if we were to have
used these conditions instead in the trace formula what would the effect have
been? Ultimately, since in determining the phase term we have neglected all
but the highest order terms in the first approximation, using these bound-
ary conditions would produce the same result. It would however neglect any
additional contributions dependent on the curvature, and for a more compli-
cated boundary this could have an effect that we have not seen in the case
studied in this chapter due to its simplistic structure.

Adding the phase terms to the trace formula provided accurate eigenval-
ues in the small k region, although deviations emerged with use of the free
edge boundary condition. When this analysis was extended to the rectan-
gular plate we noticed the same behavior, leading us to conclude that there
was some element of this boundary condition that made obtaining results at
low k difficult. By also retrieving eigenvalues through the Poisson summa-
tion approach this view was reinforced. Calculating the eigenvalues with this

method was found to be ultimately of the same level of accuracy as that of
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the trace formula with the additional phase terms. This did confirm that the
application of quantum processes was valid for elastic plate problems though
improvement would be necessary to describe all but the simplest of systems

with an increase in accuracy.

7.1.2 Lower Order Phase Contributions

Having determined that investigation of the free edge boundary condition was
necessary we rederived this condition in a general coordinate system, finding
that the general conditions were in fact incorrect as stated and neglecting ad-
ditional lower order terms and care must be taken in its application to include
these additional curvature terms that could affect results. The curvature was
also a factor in our derivation of the trace formula phase correction, these
corrections are vital in applying semiclassical techniques to elastic systems
and we found that previous derivations had neglected order 1/k and curva-
ture terms. This previously went unnoticed as at higher & the terms have
a negligible effect, but this could not immediately be assumed where k was

small. For the phase term

sin O)

= —2arctan | ————
& (\/1+00529D

we state that

C = (1+(1-0)cos?0)%k*

3cos? 0
e [ 2900 (1 o) cos?0) 4+ oI+ cos?B(1 + 260529)} e
sin
2 cos? 0
D = (1-(1—-0)ecos®))?k* -k | ———(1+ (1 — 0o 00529}193.
( ( ) ) \/1+c0529( + ) )

Although in the case studied there are no angular regions where specular

reflection is suspect, this cannot be obviously stated for all curvatures, with
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effects at low & in boundaries of variable curvature being possible cases where
these phase terms would need to include terms of lower order than in simple
cases for obvious reasons. Generating eigenvalues for the elastic plate using
this new phase correction term for the circular plate allowed us to improve
upon the original result, producing a flattened cumulative frequency distri-
bution. Our goal of applying quantum processes to elastic systems was here
shown to be valid one, and with calculated corrections we were able to use
this for a simple case, with the expectation that further work would be able
to extend this to more complicated boundaries.

Why have these methods still not been able to increase the accuracy of
the free edged disk eigenvalues at low k7 Even after taking all orders into
consideration in section 4.4 we were still left with eigenvalues that were only
a fraction better than the original trace formula. The answer appears to lie
in the original assumption made in the process of obtaining the phase term.
It is asOsumed that where the periodic orbits intersect with the boundary of
the disk, and because k — o0, the interaction can be thought of as happen-
ing with a straight line. As k£ — 0 this assumption clearly becomes less and
less valid, with the results becoming more and more inaccurate. In order
to fully explore the behavior in this region, it is thought that a lower order
correction term would need to be added to the terms taken from this inter-
action. While this would not be completely correct, it would provide another
improvement in accuracy, just as the inclusion of the lower order term made
a slight improvement to the original phase term.

An alternative case for consideration would have been that of the bound-
ary described by z?? +14% = 1. This boundary in the limit of p — oo provides
a smooth transition between the circular and rectangular plates and hence

would allow the introduction of diffractive effects from corners to be observed
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as a limiting process. Although this was not investigated in this thesis it 1s
thought that such a problem would provide additional insight into diffractive

behavior.

7.2 Diffractive Effects

After looking at the effects of the free edge boundary condition we turned
our attention to looking at the effects of diffraction on the elastic plate, we
tackled this in two ways; looking at the diffraction directly applied to the

elastic plate and also by studying how we could use star graphs as a model.

7.2.1 Diffractive Effects in the Circular Billiard

In comparing the behavior of the pinched plate Green function solution under
several boundary condition with that of the EBK solution, we found that
both methods ultimately yielded the same results, showing us that for the
case of the pinched circular billiard that we were studying these methods were
both equally valid. In doing so it was noted that there existed a disparity
between the results expected and those found in that the calculation of the
eigenvalues under the plate equation which suggested that the problem was
not confined to only affecting axisymmetric orbits. This suggestion that
the problem is not as local as originally thought and that the addition of a
center diffractive point has a wide reaching effect is similar to the idea in [8]
that adding a diffractive point to an integrable system will convert it into
a system intermediate between fully integrable and fully chaotic, this was
further studied in the subsequent chapter.

We then proceeded to calculate an addition to the semiclassical trace




formula that gave the corrected trace formula

8peor(K) = 6p(k)+2)  cos(2kr) [cos(nr) — 1]

r=1
and allowed us to extract the eigenvalues generated from the addition of
the diffractive point, noting that pre-existing eigenvalues were not affected.
These extra eigenvalues corresponded to results calculated using alternative
methods and suggest that such a method is valid in its aim of modeling a
diffractive point in a circular billiard and that it could be extended to include
additional diffractive points given further investigation.

One thing that needs to be considered in the diffractive problem is that
the behavior of ka is very much dependent on which order the limits k£ — oo
and a — 0 are taken, the approach detailed in section 5.1 considers the
case of & — oo first while keeping the internal radius a small but fixed. In
chapter 5 this was also the order in which we took the limits in order to allow
comparison to this problem. In that chapter we took the plate equation as
the defining equation rather than the Helmholtz equation in order to expand
the problem to include thin plates rather than just two dimensional billiards.

The investigation of a diffraction coefficient for an annulus billiard scat-

tering system gave us

d=—8id1— meosg L
{ 2i[In (%) +v — F]

This coefficient was calculated by having to include an unsatisfactory number

of assumptions and neglections to reach a workable form. From this we saw
that such a system governed by the plate equation is more complicated than
simply adding an additional condition as in the trace formula case. This does
in turn though correspond with our observation in the first section of the

chapter that further work would be needed in modeling this system in order
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to take into account the extra effects brought into being by the diffractive

conditions.

7.2.2 Star Graphs

In this chapter we saw that the statistical properties of the elastic star graph
correspond to the those of the elastic star graph. From this we noted that the
elastic star graph also displays the properties of an intermediate ensemble.
In terms of modeling vibrational systems using this method means that the
addition of the center point via the star graph model confirms the disruption
of the phase tori of the integrable system without being fully chaotic and
being described by RMT. This suggests as thought that the star graph is a
valid model for describing the behavior of the plate in this case. Considering
the statistical properties, the mean level spacing, similar to the mean density
we have used in this chapter, is known to decrease as i?, while semiclassical
approximations are believed to only provide accuracy to an order of 2. This
could restrict models such as the star graph to two dimensions, and bearing
this in mind, investigations into the accuracy measures involved in higher di-
mensional calculations have been undertaken in more detail [59], attempting
to show that the semiclassical methods can be used in these cases.

The data found from the statistical properties show that under the plate
equation, there is no significant change from the star graph under Schrédinger,
marked only by a constant term that becomes irrelevant once the two point
correlation factor and form factor are calculated. While this is not a sur-
prise as such a pattern has been seen throughout the thesis, it does leave
us with the question of why we did not observe the influence of additional
lower order terms as in the cases looked at in chapters 3 and 5. One reason

for this is likely to be that our studies of this method contained a number
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of assumptions that neglected some lower order terms in order to establish
a basic correspondence to the followed model. While this did confirm the
validity of using such a model, further work would focus on possible lower
order effects.

The use of star graphs to describe plates is hence reinforced as they can
be shown to reproduce the behavior of quantum systems as studied using
other methods, and while we have only considered one case here, such a
method could be extended to more complicated such as plates with additional
scattering centers or diffractive effects. Similar work on the statistical energy
analysis [60] has found that such models can provide a direct comparison to
physical systems [61] and as looking toward the application of graphs to more
complicated systems was part of our initial motivation in studying them, it

is reasonable to helieve that such application would be viable.

7.3 Overall Conclusions

The original aim of this study was to investigate the use of semiclassical meth-
ods in order to model vibroacoustic systems. We found that the semiclassical
trace formula provided an accurate means to derive eigenvalues from simple
billiard systems, but that altering boundary conditions to include higher or-
der terms such as in the free edge case leads to inaccuracies resulting from
neglecting terms in order to simplify the calculation. By modeling boundary
interactions with the free edge using Bogomolny’s transfer matrix method
we deduced that including extra terms that we previously neglected past the
original assumption of a locally straight boundary gave a small improvement
in overall accuracy.

Looking at diffractive effects yielded mixed results. The addition of an
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extra term to the semiclassical trace formula provided accurate eigenvalues
and the use of an elastic star graph model provided statistical properties
that corresponded to those of the quantum star graph as thought. However
calculating a useful diffraction coefficient for a similar system was not possible
within the bounds of this thesis due to a large number of assumptions and
extra terms that were introduced by looking at the system governed by the
plate equation. This diffraction coefficient model is however more suited to
complex systems as it includes angular dependent terms which means it could
be adapted to model more general boundaries.

In accordance with our initial aim to investigate the application of semi-
classical methods to elastic plate problems we looked at several methods of
doing this. In the process of these investigations we noted that the free edge
boundary condition produced numerical errors that we then further studied
and found that the additional lower order terms from this condition could be
included in the semiclassical methods and improve upon them. Our study
of diffraction that also presented itself as a relevant factor in applying such
methods did not produce such useful results, instead showing that further
study would be needed to obtain any significant results. In both situations
however we showed that existing quantum mechanical methods could be
applied to elastic plate problems in simple cases with extensions of these

methods noted as areas of viable further study.
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Appendix A

Trace Formula Results Tables

Results tables from earlier chapters are presented in this appendix as refer-

ence to earlier calculations.
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ke | ks | A%) |
1.031 | 1.691 | -63.96
2284 | 1.947 | 14.76
3.101 | 2.661 | 14.18
3.485 | 3.149 | 9.63
4.575 | 3.839 | 16.08
4.6741 | 4.639 | 0.76
5.858 | 4.980 | 14.99
5922 | 5.481 7.45
6.263 | 6.097 | 2.65
7.040 | 6.366 | 9.58
7.212 | 7.355 | -1.98
7.773 | 7.806 | -0.43
8469 | 8.270 | 2.35
9.193 | 8.636 | 6.05
9.411 | 9.241 1.81
9.706 | 9.576 | 1.33
10.556 | 9.888 | 6.33
10.929 | 10.632 | 2.72
10.938 | 10.962 | -0.22
11.880 | 11.475 | 3.41
12.394 | 11.981 | 3.33
12.556 | 12.427 | 1.03
13.178 | 12.695 | 3.66
13.801 | 13.531 | 1.95
14.093 | 13.849 | 1.73
14.454 | 14.111 | 2.37
15.170 | 14.594 | 3.80
15.571 | 14.880 | 4.44
15.700 | 15.234 | 2.97
16.512 | 15.863 | 3.93
17.006 | 16.595 | 2.41
17.242 | 17.041 | 1.17
17.830 | 17.926 | -0.54
18.407 | 18.451 | -0.24
18.736 | 18.762 | -0.14
18.843 | 19.238 | -2.10
19.780 | 19.836 | -0.29
20.191 | 20.215 | -0.12
20.390 | 20.477 | -0.43
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T ke:c ktf A% kfez k‘tf —‘ A%

3.1961 | 3.1445 | 1.62 2.2317 | 2.3584 | -5.68
4.6109 | 4.5752 | 0.77 3.7330 | 3.7964 | -1.70
5.4563 | 5.0977 | 6.57 5.0645 | 5.1025 | -0.75
5.9059 | 5.8716 | 0.58 5.4548 | 5.5005 | -0.84
6.3064 | 6.2866 | 0.31 6.3239 | 6.3477 | -0.38
7.1442 | 7.1094 | 0.49 6.9651 | 6.9995 | -0.49
7.7987 | 7.7808 | 0.23 7.5416 | 7.5537 | -0.16
8.3467 | 8.3105 | 0.43 8.3756 | 7.9395 | 5.21
9.1967 | 9.1798 | 0.19 8.6133 | 84009 | 2.47
9.4395 | 9.4946 | -0.58 8.7313 | 8.7354 | -0.05
10.5361 | 10.5225 | 0.13 9.7253 | 9.7461 | -0.21
10.6870 | 10.6010 | 0.80 10.1393 | 10.1023 | 0.36
10.9581 | 10.9448 | 0.12 11.0333 | 11.0498 | -0.15
11.8367 | 11.2061 | 5.33 11.7622 | 11.6089 | 1.30
12,4020 | 11.8140 | 4.74 12.3106 | 12.3218 | -0.09
12.5771 | 12.3901 | 1.49 12.9887 | 13.0054 | -0.13
13.1074 | 13.0933 | 0.11 13.2979 | 13.3154 | -0.13
13.7949 | 13.7842 | 0.08 14.0100 | 13.5767 | 3.09
14.0982 | 14.0942 | 0.03 14.3486 | 14.3579 | -0.06
14.1089 | 14.3457 | -1.68 14.9079 | 14.7949 | 0.76
14.3552 | 14.6216 | -1.86 15.6783 | 15.6909 | -0.08
15.1499 | 15.1465 | 0.02 16.2783 | 16.0205 | 1.58
15.5792 | 15.5688 | 0.07 16.4498 | 16.4648 | -0.09
15.7164 | 15.7611 | -0.28 16.7836 | 16.9922 | -1.24
16.4751 | 16.4673 | 0.05 17.2019 | 17.2437 | -0.24
17.0050 | 16.9995 | 0.03 17.5966 | 17.6099 | -0.08
17.2560 | 17.2510 | 0.03 17.9411 | 17.9517 | -0.06
17.7764 | 17.7661 | 0.06 18.0522 | 18.2739 | -1.23
18.0001 | 18.0176 | -0.10 18.9621 | 18.9722 | -0.05
18.3960 | 18.3887 | 0.04 19.6000 | 19.6094 | -0.05

Figure A.1: Eigenvalue results comparison for known exact solution and
the trace formula method for a disk plate with free, simply supported and
clamped edges respectively, with difference expressed as a percentage of the
mean density A.
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kez

s

A%

3.1416
4.4429
6.2832
7.0248
8.8858
9.4248
9.9346
11.3272
12.5664
12.9531
13.3286
14.0496
15.7080
16.0190
16.9180
18.3185
18.8496
19.1096
19.8691
20.1160

3.1434
4.4431
6.2855
7.0249
8.8860
9.4265
9.9349
11.3280
15.666
12.9540
13.3230
14.0501
15.7077
16.0198
16.9170
18.3184
18.8511
19.1088
19.8695
20.1166

0.05
0.01
0.07
0.00
0.01
0.05
0.01
0.02
0.01
0.03
-0.16
0.01
-0.01
0.02
0.03
0.00
0.05
-0.02
0.01
0.02 |
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ke | ky | A%
1779 | 1571 | 11.7
3793 | 3512 | 74
4914 | 4712 | 41
5.218 | 5.664 | -8.54
6.434 | 6.47 | -0.66
7.669 | 7.854 | -2.41
8.22 | 8.459 |-2.91
9.455 | 9.555 | -1.06
10.139 | 10.058 | 0.80
10.614 | 10.537 | 0.73
11.013 | 10.996 | 0.15
11.374 | 11.436 | -0.55
12.172 | 12.268 | -0.79
12.609 | 12.664 | -0.44
13.350 | 13.421 | -0.53
13.863 | 14.137 | -1.98
14.547 | 14.482 | 0.45
15.117 | 14.819 | 1.97
15.535 | 15.471 | 0.41
15.744 | 15.786 | -0.27
16.371 | 16.400 | -0.18

Fes k| A%
31416 | 3.1456 | 0.2
5.3759 | 5.4201 | 2.21
6.2832 | 6.2500 | -1.66
7.4027 | 7.4402 | 1.87
8.3187 | 83510  1.62
0.4248 | 9.4386 | 0.69
0.7263 | 9.7627 | 1.82
10.1094 | 10.1245 | 0.75
11.3622 | 11.3757 | 0.67
11.8406 | 11.8701 | 1.47
12.4419 | 12.4585 | 0.83
12.5664 | 12.5854 | 0.95
13.0499 | 13.0591 | 0.46
14.1385 | 14.1577 | 0.96
14.3736 | 14.4067 | 1.66
14.4430 | 14.4580 | 0.75
15.3134 | 15.3309 | 0.87
15.7080 | 15.7190 | 0.55
16.0780 | 16.0901 | 0.61
16.2849 | 16.3062 | 1.06

Figure A.2: Eigenvalue results comparison for known exact solutions and the
trace formula method of the rectangular plate in cases A and B and C (figure
3.1.2), with difference expressed as a percentage of the mean density A.
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kew | kef(1) | A% | keg(+cor) | A% (cor)
1.031 | 1.691 | -63.96 1.599 -55.08
2.284 | 1.947 | 14.76 2.362 -3.41
3.101 | 2.661 | 14.18 2.808 9.46
3.485 | 3.149 9.63 3.064 12.09
4.575 | 3.839 | 16.08 3.802 16.88
4.6741 | 4.639 0.76 4.193 10.29
5.858 | 4.980 | 14.99 5.103 12.90
5.922 | 5481 7.45 5.505 7.04
6.263 | 6.097 2.65 6.348 -1.35
7.040 | 6.366 9.58 7.001 0.56
7.212 | 7.355 | -1.98 7.556 -4.77
7.773 | 7.806 | -0.43 7.941 -2.15
8.469 | 8.270 2.35 8.405 0.76
9.193 | 8.636 6.05 8.740 4.92
9411 | 9.241 1.81 9.210 2.14
9.706 | 9.576 1.33 9.747 -0.43
10.556 | 9.888 6.33 10.162 3.7 3
10.929 | 10.632 | 2.72 10.702 2.08
10.938 | 10.962 | -0.22 11.053 -1.05
11.880 | 11.475 | 3.41 11.615 2.23
12.394 | 11.681 | 3.33 12.323 0.58
12.556 | 12.427 | 1.03 13.007 -3.59
13.178 | 12.695 | 13.318 3.66 -1.06
13.801 | 13.531 | 1.95 13.580 1.60
14.093 | 13.849 | 1.73 14.362 -1.91
14.454 | 14.111 | 2.37 14.801 -2.40
15.170 | 14.594 | 3.80 15.692 -3.44
15.571 | 14.880 | 4.44 16.022 -2.89
15.700 | 15.234 | 2.97 16.467 -4.89
16.512 | 15.863 | 3.93 16.998 -2.95
17.006 | 16.595 | 2.41 17.255 -1.46
17.242 | 17.041 | 1.17 17.615 -2.16
17.830 | 17.926 | -0.54 17.957 -0.71
18.407 | 18.451 | -0.24 18.280 0.69
18.736 | 18.762 | -0.14 18.976 -1.28
18.843 | 19.238 | -2.10 19.611 -4.07
19.780 | 19.836 | -0.29 19.958 -0.90 |

Figure A.3: Eigenvalues and errors for original phase term and phase term
including lower order correction under the Boundary Integral Method
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Appendix B

Straight Line Integrals and
Derivatives at Leading Order

With the boundary integral representations for the components of the bound-
ary conditions found, we need to consider the integrals over the straight line.
However, if indeed we are considering a straight line case then it is evident
that curvature of the line will be equal to zero, as will the derivative with
respect to s. This removes several elements leaving us with the equivalent

boundary conditions for the straight line

e e
~ - _ B.
R b wy-m (B.1)
2 /vt 2 Y+
oGT oG (B.2)

oz 708
Of the remaining terms, the derivatives on the straight line that are present
in (B.1), using the near-boundary function for the Green function (2.87) and

taking s — z and n — y, are given by

&#G= 5 (vy—v) 4 (v — )
on® |g; 27 (- w2+ (y—y)  T(w— )+ (y-y)?)
(B.3)
reEl 1 (y—v) LA @y
0s20n 5, (- + -y T(@-2)+ y-y)?)
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('y=0) x

Y

Figure B.1: Straight line approximation to boundary interaction

Since on the straight line y — v then

oG* 5 0 4 0
= = = =0 B.5
on® |, 27 (x—x’)4+7r(x—x’)6 (B.5)
>*G* 1 0 4 0
0s%0n | ¢, (e —a)*  w(z—a)
This leaves us with only the non-zero derivatives
aZGi- aQGi-
= B.7
on? te 0s? 0 (B.7)

to be calculated over the straight line for (B.2). We can then use the reduction

of the two dimensional Green functions

ipz o1q|yl
Gt = /e ¢ dp (B.8)
47 1q
eipze_Qy
G- = — d B.9
/ PP (B.9)

to evaluate the straight line factors in the same manner as in the clamped

case. Doing so we receive to first order in the semiclassical expansion

*G* dp . .. .
'—('9—7—12— ~ i/qﬁeme“]ml, (BlO)
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>’a ~ ’L/ p dp qu: 1q\yJ

0s? q 4

02G— N / p pirs —Qy
on?

8*G~ p dp g o~ Qlul
0s? Q

(B.11)
(B.12)

(B.13)

We also note in addition to (2.107),(2.108), at leading order of the semiclas-

sical approximation the values of

aGi(ﬁ>a) ~ ’L//pGi leip,ﬁ—ip’a dpdp/
p.p ?

Jsg
% . / / PGP dp dp,
g%%@i) ~ - / / Q*G, e® " dpdy,

golba) | [ avcserreapay.
i b,p

83%8715

(B.14)
(B.15)
(B.16)
(B.17)
(B.18)
(B.19)
(B.20)

(B.21)

By considering the originally assumed values for u (2.104) and v (2.105) the

derivatives of the distribution functions are given by

a . ipox

5@ = Zp/”pep i
o2 .
8—;;#(&) = —p / ppe ™ dp
81/ . ipex
Bgu(a) = zp/z/pep dp
o ,
a—sgl/(a) = —p2/1/pe”"a dp.
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In the clamped case it the functions p(a) and v(a) were defined solely on
the boundary and as such did not deal with the dependency on the normal
derivative that has now been introduced with the new boundary condition
other than to suggest that they were equal to zero. Instead of accepting
this, we assume an analytic continuation away from the boundary that will

introduce an additional factor dependent on the distance from the boundary.

pla) = / ey, dp (B.26)
v(ia) = / e'Pee=C@naly, dp. (B.27)

The value n, is taken to be the same as used in (4.6) and so on the boundary
the added factor will disappear to leave us with the original values. As all
of the term used in this calculated are taken on the boundary, this term will
only be visible in the case where the normal derivative of u or v is taken.

The functions (B.22-B.25) are unchanged, with the normal derivatives now

taken as
%(a) = —ig / ppe dp (B.28)
Thiw) =~ [ e (5.29)
%U(a) = Q/upeipadp (B.30)
g%y(a) — —Q2/ypeimdp. (B.31)
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Appendix C

Calculation of Green Function
Coefhicients

In order to satisfy equation (5.102), the following values are chosen

(A-E) = aH" (C.1)
B = —aH* (C.2)
C = BK (C.3)
(D-F) = -g4I. (C.4)

Equations (5.99) and (5.100) can be seen to be equivalent which gives

(A— EYHS (k'Y + BH"(kr') + CI! (kr') + (D — F)K" (kr') = 0

(C.5)
Using the substitutions [46]
2
g = il (z& - %) H=, (C.6)
T T
" 1 ! 2 7712 ird
K' = ——K'+ [k +— | K, (C.7)
T r
2
I// — __];I/_%_ <k‘2 + %) I) (CS)
T T
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in (5.100), this will then reduce to equation (5.99). We now introduce the
values (C.1-C.4) into equation (C.5)

oHYH —qHYH™ + 8I'K — BIK' = 0
= a (H“H*' - H—’H+) Y B(KT —K'T) = o0, (C.9)

Noting the Wronskians

W(HTH)=H H'-H'H* = — ot (C.10)
wkr
1
W(I,K)=KI'-K'Il = e (C.11)
o
we can write
aW(H™,H") = —-pW(K,I)
W(K, I)
~e T wEEy
_ 3 <—k_lr)
ST
wkr
o = —6. (C.12)
47
This value can now be used in (5.101). Note that
1" i 2 ’ 2 2
g = g (L (e MO g 2 g o
r kr2 2 73
1 1 2 2m?
K/// _ ——K//+ — k2+_m_ K/_ m K (C14)
7 kr2 72 r3
1 1 m? 2m®
"= -Ir e IV =y C.15
- +(W+(A+T2>) 3 (C.15)
gives
1 1 m? 2m®
g —-Hg" — kK ——) | H" ot
a3 (- (¥ )T
1 1 m? 2m? ]
o H+ ——Hgﬂ e 2_— H_/_ H,
ot | (g (-5 )T ]
1., 1 o m? , o 2m? ]
+68K {-——I/ + <W+ <]€ +—2>>I — 3 I

1 1 m?\ 2m? ] 1 e
I|—=K" — 4+ — |k - K|=-——— (C16
b { T +<7" +< +72)) J 2rrk? )



‘ , l 2k l
ok (" - HYH™) + L e Y we e
T r2 r2
21.

k 1 5 mk -1
/ "o__ogn = K. I _
+3[ (K J.Ky+<f2+k T3 )Md ,)} -

T

(C.17)

Using the fact that oW (H~, H*') = —W(K, I) we can now write

1 1 s mPk 1 s mk

_ - - LALRATR T N 3 B

27rk? P, K) {(7“2 B 72 ) <7“2 TRt
— oEBW(I, K). (C.18)

This gives us
b= — (€19
4wk '
1

= — C.20
160k (C20)

so that we can now write

1

(A=B) = ™, (C.21)
B =~ HY, (C22)
C =~k (C.23)
(D—F) = 4ﬂlk41. (C.24)

Now use conditions (5.96) and (5.97) at r = a to determine the values of A,
D, E and F,
AH" (ka) - éw(m’)ﬂ—(ka) - ﬁK(kr’)I(ka) + DK(ka) = 0
(C.25)
AHY (ka) — %&HWM’)H—’W) — %K(kr’)]’(ka) + DK'(ka) = 0
(C.26)
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Rearrange (C.25) to give

1 H*(kr)H (ka) 1 K(kr')I(ka)  H"(ka)

= — , C.27
16i K(ka) | dn K(ka) S
substitute this into (C.26) in order to extract a value for A
1 Wo(K,H™ 1 Wu(K,I) .
(£, >H+(kr’) “+ (7, 1) K (kr"). (C.28)

T 160 Wo(K, H) ar Wo (K, HY)
With W (K, H™) = W(K(ka), H (ka)) and other W, segments accordingly.
Similarly for D
1 W,(H-, H*) 1 W, (I, H)
D= """k’ + — T —=K (k). C.29
TR A R TA S R R

This means that we can obtain values for all six coeflicients.

1 Wo(K, H™) 1 Wo(K,I)

A = smwie g 6O s gy C.30
TRUATA: ool e T o s (C.30)

— 1 + /10!
B o= —fggatt (k) (C.31)
1 /

e PR G (C.32)
1 Wo(H™, H7) 1 W,(I, HY)

D = = gF ! et J / .
160 W, (K, H™) H™(kr') + 47 Wo(K, H+)K(k7"): (C.33)
1 Wo(K, H™) 1 W (K,I) 1

E = 8\ttt / L Walh, L) SN )
6 W,(K, 57 (kr>+4wWQ(K,H+)K(M) TR

(C.34)

1 Wo(H-,HT (I, H+ /

F = MH+(}CT/)+—1—MK(ZCT), (C.35)

160 W, (K, H+)
We can now use these constants in the initially investigated equation in an

effort to determine the diffraction coefficient of the plate with scattering from

an annulus.
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