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by Rhiannon Lowri WiUiams 

I present numerical studies of perturbed black holes and neutron stars. The be-

haviour of such compact objects is of particular interest now because the gravita-

tional wave signals which they emit may be the Erst to be detected by the new 

generation of interferometric detectors. 

A single perturbed black hole is well approximated using the hnearized Einstein 

equations and the problem is reduced to solving a simple wave equation with a 

potential. I show how such a wave equation may be evolved numerically on Cauchy 

or characteristic hypersurfaces. I present a new numerical code for evolving scalar 

wave perturbations in Kerr spacetime as a characteristic (null-timehke) initial value 

problem. This code suffers from an instability but this problem can be pushed to 

very late times by increasing the grid resolution. The code shows second order 

convergence up until the time that the instability takes over. Previous nimierical 

studies of perturbations in Kerr spacetime [2] were carried out using a Cauchy evo-

lution code. I use this code to contribute to a recent discussion over the late-time 

behaviour of perturbations with initial form m = 0, ^ = 4, Ending the expected 

faU-off of I also use this code to lend support to the superradiance resonance 

cavity interpretation of Glampedakis and Andersson [52] to explain the long-hved 

quasinormal modes of Kerr spacetime. I have adapted the Cauchy code to use co-

ordinates (r*, 6)*) more suitable for a characteristic evolution and this code gives the 

expected results, comparable with the original version. I have also developed a code 

to evolve scalar held perturbations in Kerr spacetime in double-null coordinates but 

this is not stable. The cosmological constant plays an important role in cosmology 

and particle physics and will also effect the asymptotic geometry of black hole space-

times. I investigate the effect of a cosmological constant on the late-time behaviour 

of a perturbed scalar field in Kerr-de Sitter spacetime and present some new results 

which reveal apparently undamped oscillations in some cases. I also investigate 

superradiaace in the presence of a cosmological constant. The results show super-

radiance in the expected frequency range but the superradiance seems to extend 



beyond the lower frequency hmit predicted by Khanal [70] at large A. Evolutions of 

neutron star spacetimes are more complicated than the corresponding problem for 

black holes due to the presence of matter. Not only must we consider the response 

of the exterior spacetime but also the behaviour of the material that makes up the 

star. There are many more factors which need to be taken into account. I present 

work done in collaboration with Watts and Andersson [3] to study the effect of 

differential rotation on a simple system, a rotating spherical shell. For this I have 

developed a numerical time evolution code which confirms the predictions of Watts 

aZ. [4] for a new class of oscillations and a new instabilitv. 
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C h a p t e r 1 

In t roduct ion . 

A scientific theory must provide some explanation for our sensory experiences. It 

gains further credibility by making predictions which can be verified by experience 

either directly through our senses or via some reliable instrument. In these respects 

general relativity has been a very successful theory. It successfully agrees with 

the predictions of classical Newtonian physics in what has come to be known as 

the Newtonian hmit, where speeds are small compared to the speed of hght, and 

gravity is weak. It gives the correct description for the perihelion shift of Mercury, 

which could not be explained by claasical mechanics and was called 'peculiar'. In 

1916 Einstein proposed an experiment to test his theory's new prediction of the 

bending of hght around the Sun, and in 1919 such an experiment was carried out 

during a total Solar eclipse ve r i ^ng this prediction. One prediction of general 

relativity yet to be verihed, however, is the existence of gravitational radiation. Not 

only are scientists interested in detecting gravitational waves as a test of general 

relativity, but gravitational radiation could also become a very useful tool in its 

own right, allowing us to probe parts of the universe which are inaccessible via the 

electromagnetic spectrum. 

An order of magnitude calculation shows that the amphtude of gravitational 

waves arriving at earth from even the most powerful known sources will be extremely 

smaU. In fact it will probably be smaller than the experimental noise, making it 

very difficult to detect. In order to And such a small signal, the form of the signal 

must be known in advance, and a technique called motc/ied /iZteriTig used to search 

the output for this signal. Coalescing compact binaries possess a characteristic 

gravitational wave signal which depends on the binary object's masses and their 

separation. A recent review concludes that inspirahing binary black holes are hkely 

to be detected Erst by the initial ground based interferometers [1], yet the prediction 

of the fuH gravitational wave signal is proving to be a great challenge. 

In general relativity, information on the structure of spacetime and it's interac-

tion with matter is encoded within differential equations which must be solved in 
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order to get a clear tmderstanding of the physical situation. Unfortunately, Ein-

stein's equations have, to date, only been solved analytically in a limited number 

of special highly idealized caaes. The problem is that these equations are nonlin-

ear and there is much yet to be understood in the realm of nonlinearity. In the 

case of binary black holes, during the early stages of inspiral it is possible to use 

post-Newtonian approximation techniques whereby Einatein's equations become re-

duced and simplified. During merger however, these approximations are no longer 

valid and the full set of Einstein's equations must be solved by numerical meth-

ods (numerical relativity). At later times, the system can be modelled by a single 

slightly distorted black hole and we can use a linearized approximation to Einstein's 

equations and perturbation methods. This last stage is the focus of this thesis. 

Using perturbation methods, the equations governing the behaviour of the final 

black hole are relatively simple and can be analysed in the frequency domain, or 

evolved nimiericaUy to discover how the signal varies with time. Numerical evolu-

tions for nonrotating black holes carried out over the past 30 years have provided 

a great deal of insight. Similar evolutions of perturbed rotating black holes, on 

the other hand, have only recently been carried out [2]. An approach which has 

proved to be extremely convenient and benehcial for numerical study of radiation 

problems in general is characteristic evolution, in which the equations are evolved 

on characteristic hypersurfaces. In the case of a single perturbed black hole, this 

approach enables the evolution of the entire exterior spacetime through compact-

ification and avoids the boundary problems which plague time evolutions. In this 

thesis I therefore seek to apply this method to the study of rotating black holes. 

Recent advances in cosmology indicate that the universe in which we live pos-

sesses a positive cosmological constant. This will have a dramatic effect on the 

asymptotic structure of a black hole spacetime. Numerical evolutions for nonrotat-

ing black holes in the presence of a cosmological constant have shown that some 

interesting new features arise for some types of initial data. In this thesis I investi-

gate the eSect of a cosmological constant on the late-time behaviour of perturbed 

rotating black holes. 

Another promising source of detectable gravitational wave signals is neutron 

stars. The simulation of a perturbed neutron star is more complicated than the 

corresponding cage for black holes due to the presence of matter in the equations. 

Whereas a general black hole can be completely described using only three param-

eters, many more features are required to fully describe a neutron stajr, and the 

full structure is still unknown. A well known phenomenon observed in many stars, 

including the Sun, is diEerential rotation. To model a realistic neutron star with 

diEerential rotation would be an enormous and difhcult task. In this thesis I present 



work carried out in collaboration with A.L. Watts and N. Andersson [3] to investi-

gate the effect of diEerential rotation on a perturbed spherical shell in Newtonian 

gravity. We expect that some of the features we observe in this toy problem will 

carry over to the case of a real neutron star. 

This thesis beging in Chapter 2 with an introduction to gravitational waves, 

black holes and neutron stars. There I present the motivation for the thesis. It is 

not intended to be a comprehensive review, rather I give an overview of the major 

developments in these helds which relate to the problems I consider in the later 

chapters. 

In Chapter 3 I present the mathematical background to this thesis. I show how 

the initial value problem can be formulated in three different ways, the Cauchy, 

double-null, and null-time like formulations. To demonstrate this I use the simple 

example of the one-dimensional wave equation in hat space. 

Chapter 4 introduces the numerical techniques I use in this thesis for numerical 

integration and evolution. 

In the next three chapters I use the mathematical and numerical backgrotmd 

of the previous chapters in some toy problems which serve as progressive exam-

ples which will be extended further in later chapters. In Chapter 5 I evolve the 

one-dimensional wave equation in hat space. In Chapter 6, I extend the problem to 

evolve the Regge-Wheeler equation which governs perturbations on a Schwarzschild 

background. This is a one-dimensional wave equation with a potential. In Chapter 

7 I extend the problem further by working in two-dimensions to evolve the ax-

isymmetric wave equation in hat space. In all these toy problems, the numerical 

evolutions are carried out using both Cauchy and characteristic formulations and 

the results are tested by comparison with known analytic solutions. 

The final three chapters are the main work of this thesis. In Chapter 8 I apply 

my experience from the toy problems to study rotating black holes. I write the 

scalar wave equation in Kerr spacetime in null-timelike coordinates and develop a 

numerical code to evolve this equation. I also use an older time evolution code to 

contribute to the recent debate over the late-time behaviour of a scalar field with 

an initial perturbation of the form m = 0, Z = 4. I present some results which 

lend support to the recent interpretation of the late-time long-hved quasinormal 

modes in extreme and near extreme Kerr black holes as products of a superradiant 

resonance cavity directly outside the black hole. 

In Chapter 9 I evolve the scalar wave equation for a rotating black hole in 

the presence of a positive cosmological constant and show some interesting new 

features which emerge at late-times. I also give evidence to support some previous 

superradiance calculations. 



In Chapter 10 I evolve perturbations in a thin spherical shell with differential 

rotation. The results confirm the semi-analytic predictions by A.L. Watts et al [4], 

including a new kind of instability. 

Finally, in Chapter 111 discuss the main results of this thesis and describe some 

possibilities for future research that have been generated by this work. 



C h a p t e r 2 

Gravi ta t ional Waves, Black Holes 

and N e u t r o n Stars 

2.1 Gravitational Waves 

According to standard Newtonian gravitation theory, the gravitational interaction 

between two separated objects is instantaneous, i.e. there is ach'oM o 

According to the principles of special relativity however, the speed of light is the 

hmiting speed for all interactions. General relativity incorporates this limiting speed 

for gravitational interaction so that changes in the shape of a particular object will 

produce changes in the gravitational Held which propagate outward at the speed of 

hght. In this way the gravitational effect on a second object located at some distance 

from the first will not be felt instantajieously. Distortions in the gravitational 6eld 

which travel at the speed of light are called gravitational waves. 

Einstein showed in 1916 that the equations of general relativity admit gravi-

tational waves as solutions but in the late 1940's doubts arose as to whether or 

not such waves are reoZ, i.e. whether or not they carry energy. That gravitational 

waves carry energy was finahy estabhshed by Bond! in 1957 using a clever thought 

experiment first presented by Richard Feynman [5]. Feynman described beads mov-

ing up and down against a stick under the influence of gravitational radiation and 

heating the system by friction. The heating shows a transfer of energy which must 

be carried by the gravitational waves. In 1960 Joseph Weber began the search for 

these waves. 

Since the 1960s there have been many technological and theoretical develop-

ments. The experimental apparatus has become much more sensitive and accurate 

and we have much more information about what sources to look for, and we have 

also gained indirect evidence for the existence of gravitational waves. As yet (2004) 

however, the quest to detect gravitational waves haa not been successful, although 



with many new detectors now coming on hne there is a good chance that a detection 

event will occur in the next few years. 

The absence of gravity leaves spacetime hat, so we could consider a weak gravi-

tational field to be one in which spacetime is nearly flat, i.e. we consider nearly 

Lorenzian coordinates in which the metric has components 

where 77,̂ ^ is the flat space metric and is a small perturbation. Under a back-

ground Lorenz transformation, transforms as a tensor, so we can imagine our 

weak gravitational held as a tensor on a flat background. The (de 

Donder) gauge is given by 

= 0 (2.2) 

(2.3) 

and is the trace, In this gauge the Einstein equations reduce, to linear order 

in A, to 

= _i67rT^'' (2.4) 

where is the stress-energy tensor, describing any matter present, and O = 

is the D'Alembertian operator. These are called the hnearized Einstein 

equations. In vacuiun we have 

= 0 (2.5) 

which is the famihar four dimensional wave equation. Any solution to this equa-

tion is a superposition of plane wave solutions. One consequence of this is that 

gravitational effects propagate at the speed of hght. 

Electromagnetic waves can be detected by their effect on a single test particle -

when the wave hits the particle it causes an acceleration transverse to the waves 

propagation direction and proportional to e /m (charge to mass ratio of particle). 

When a gravitational wave hits a free particle it also imparts transverse accelerar 

tion, but the "gravitational charge" (its response to gravitational force) is equal to 

it's inertial mass, m. This is the equivalence principle which means that all particles 
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Figure 2.1: A ring of particles being stretched and squeezed by a gravitational wave 
passing perpendicular to the plane of the page. (a). The "+" polarization, (b). 
The"x" polarization. 

have the same gravitational "e/m", i.e. all particles at the same location experi-

ence the same transverse acceleration, so all local reference frames also undergo 

the same acceleration and hence the acceleration is locally undetectable. However, 

the acceleration is different at different locations and so we can use two particles 

separated by a distance Z, and measure the acceleration and hence the change in 

separation, (̂ _L. A measure of the amplitude of the gravitational waves is given by 

the dimensionless strain, A — The stretching and squeezing effect of gravita-

tional waves is usually illustrated by considering a ring of particles. Gravitational 

waves possess two polarization states, i.e. the gravitational field has two radiation 

degrees of freedom. The corresponding modes produced in the ring of particles are 

shown in Fig. 2.1. 

There are two types of detectors currently being used in the search for gravita-

tional waves. 

# In bar detectors the gravitational forces stress the material of a solid bar and 

cause it to oscillate. The oscillations can be detected if the frequency is near 

the resonant frequency of the bar, typically about IkHz. 

# Laser interferometric detectors are giant L-shaped instruments. Laser beams 

are bounced along the two arms, being reflected at the ends by mirrors which 

are suspended by wires. The rejected beams are recombined and their in-

terference pattern is monitored by a photodetector. A passing gravitational 

wave displaces the mirrors thus causing a detectable shift in the interference 

pattern. These detectors operate over a broad frequency range. 



Detectors currently under construction Eire expected to measure strains down to 

but this is still much bigger than any known Earth-based mechanism 

can generate. We must look further afield to violent astrophysical events such as 

supernova explosions, coalescing compact binaries (neutron stars or black holes), 

individual black holes or neutron stars, or the early universe. 

2.2 Black Holes 

In 1783 a British natural philosopher named John Mitchell reasoned that if a star 

is dense enough, the initial speed required for a particle launched from the surface 

to escape (the escape velocity) could reach or exceed the speed of light. He further 

reasoned that since, according to the corpuscular theory of light which was prevalent 

at that time, light was also a particle, it too may be aSected by gravity in the same 

way. There was nothing in the physics of the day which prevented the existence of 

such a dense star and Mitchell therefore concluded that there may exist (farA: 

from which no hght could escape. Later however, with the demise of corpuscular 

theory and the rise of the wave theory of hght, the reasoning of the above argiunent 

lost it's basis. 

Over a century later, in 1915, when Einstein presented his theory of general 

relativity [6], a new version of dark stars appeared. Almost immediately after the 

pubhcation of Einstein's original paper, Karl Schwarzschild used Einstein's field 

equations to calculate the curvature of spacetime outside any spherical, nonspinning 

star, now known as Schwarzschild geometry [7]. One of the consequences of his 

calculations was that, for a star of fixed mass, there is a critical size at and below 

which no hght can escape beyond the critical radius, the 

The physical relevance of this conclusion was debated for the next 50 years. In 

the mean-time however several developments suggested that these unusual objects 

could exist in the universe. In 1931 Chandrasekhar showed that white dwarfs, dense 

stars held up by degeneracy pressure, had an upper mass limit of 1 . 4 ^ ^ [8]. The 

discovery of the neutron in 1932 led to the idea of Baade and Zwicky [9] that there 

could be stars made entirely of these particles, which Oppenheimer and VolkoS [10] 

showed in 1938 would also have an upper mass hmit. In 1939 Oppenheimer and 

Snyder [11] showed that, in the reference frame of the stellar surface, the gravita-

tional coHapse of a highly ideahzed spherical, pressureless, nonspinning, nonradiat-

ing star continues past the Schwarzschild singularity. The high level of ideahzation 

left plenty of room for doubt, but by the late hfties physicists had learned many 

new tools during their war-time hydrogen bomb research and by the early sixties 

Colgate, White and May [12] were able to relax some of the idealizations in their 

computer simulations. These simulations retained only two idealizations, the star 



must be spherical and nonrotating. In 1958 Finkelstein [13] discovered a new refer-

ence frame in which to describe Schwarzschild geometry and which reconciled some 

of the main difEciilties in miderstanding the results of gravitational collapse, show-

ing the Schwarzschild singularity not to be a real singularity at all but merely a 

coordinate singularity which could be removed by a transformation of coordinates. 

The Schwarzschild singularity became known as the AoTizoM and the central object 

created by the stellar implosion was given the name AoZe. 

The decade between the mid-sixties and mid-seventies haa become famed as the 

golden age of black hole research [14]. During this time great advancements were 

made by many researchers in understanding the nature and properties of black 

holes. Much of this advancement was based on perturbation methods outlined 

in a landmark paper published in 1957 by Regge and Wheeler [15] in which they 

derive their equation describing a slightly perturbed Schwarzschild black hole. Using 

this equation they showed that Schwarzschild spacetime is stable, as confirmed by 

Vishveshwara [16]. Black holes could now also have electric charge, as described by 

the Reissner Nordstrom solution of 1918 [17] (the physical meaning of the solution 

was uncovered in 1960 by Graves and Brill [18]). Kerr [19] calculated a solution to 

Einstein's equations which describes the spacetime curvature outside any spinning 

black hole. Carter [20] calculated the properties of the Kerr black hole and showed 

how the spinning motion can twist spacetime itself. In 1972 Teukolsky [21] presented 

his equation describing perturbed Kerr black holes. More exotic processes were 

theorized, such as black hole accretion disks [22] and the jets produced by the 

Blajidford-Znajek process [23], and black holes were used to explain observations of 

quasars and radio galaxies. In 1970 Hawking and Penrose [24] redefined the black 

hole horizon. Zel'dovich [25] used quantum theory to argue that a spinning black 

hole radiates gravitational energy and Hawking showed that in this way black holes 

evaporate [26]. 

The observational search for these invisible objects began in the early sixties. 

Zel'dovich and Novikov [27] proposed that stellar matter falling onto a black hole 

could be heated to such a high temperature that it emits X-rays. If a binary with 

one optically bright source and one X-ray bright source could be detected, and 

the X-ray source waa su&ciently massive, then this would be a good black hole 

candidate. Since X-rays carmot penetrate the Earth's atmosphere, detection was 

diGicult at first but the hrst X-ray satellite UHURU, launched in 1970, detected 

a good candidate - Cygnus XI [28]. Since then many more candidates have been 

detected by this method and others. There is now strong observational evidence 

that most galaxies have a super-massive black hole at their center [29]. 



2.3 Neutron Stars 

Baade and Zwicky proposed the idea of neutron stars in 1934 [9], and they also 

suggested that such stars could be formed in supernovae. In 1939 Oppenheimer 

and Volkov developed the first neutron star model. They assumed that it wag made 

of a high density ideal gaa of neutrons. Then, for over 20 years, httle attention 

wag given to neutron stars until the discovery of a cosmic, non-solar X-ray source 

by Giacconi et al in 1962 [30]. Some researchers suggested that the source of the 

X-rays could be a young, warm neutron star. 

The discovery of quasi stellar objects in 1963 [31] also brought more attention to 

neutron stars as it was thought that the high redshifts may be due to gravitational 

redshift at the siurface of such a dense object. By 1965 the quasar redshifts were 

shown to be too high to be accounted for by gravitational effects from a neutron 

star [32], but by then the neutron star concept had caught on and some theoretical 

physicists had begun to calculate their properties, although it still remained an 

abstract concept and was not taken too seriously by much of the scientlHc commu-

nity [33]. After the discovery of pulsars [34] in 1967 however. Gold [35] proposed 

that they were rotating neutron stars and neutron stars became firmly estabhshed 

in the world of astronomy. The Crab and Vela pulsars were discovered situated 

in supernova remnants [36] and this gave evidence for the earlier suggestion that 

neutron stars may be formed in supernova explosions. In 1971 the UHURU satel-

lite discovered X-ray pulsars [37] which are believed to be neutron stars accreting 

matter from a normal binary companion star. 

The usual approach to modelling neutron stars is to consider an ideal Huid 

with some particular equation of state. The true equation of state for the interior 

of compact stars is unknown but many different possible equations of state have 

been proposed which satisfy the current observational constraints. These various 

equations of state can lead to substantial differences in the bulk properties such 

as maximum mass, radius and rotation rate, so there is still a lot that is unknown 

about the structure and evolution of neutron stars. Some of these issues may be 

resolved through gravitational wave astronomy. 

2.4 Coalescing Compact Binaries 

Coalescing compact binaries are among the most promising sources of gravitational 

radiation for future detection. This coalescence is not only one of the most violent 

events in the universe, giving off vast amounts of energy in the form of gravita-

tional waves, but the spectrum of those gravitational waves is also expected to have 

a specific characteristic form. Such sources are extremely far away and therefore 

the gravitational radiation we receive from them is expected to be of very low am-

plitude, and therefore buried in detector noise. The chances for detection could 
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be signiGcantly increased, however, if we can predict the signals spectrum in ad-

vance. We can then use a technique called matched hltering, whereby templates of 

predicted signals are matched against the detector output. 

A typical signal from coalescing compact binaries consists of three main parts. 

The first part represents the inspiral phaae in which the two objects are weU sepa-

rated. The frequency and amphtude of this oscillating signal, called a signal, 

increase with time as the two objects spiral inwards. The second part represents 

the merger. It is here that non-linear relativistic effects play an important role 

and the form of the signal is expected to be more complex. In the later stages of 

the coalescence, following merger, we are left with a single perturbed black hole or 

neutron star. This stage is called the ring down. For a black hole the ring down 

consists of damped oscillations of hxed frequency, called g'uasz-MonTza/ motieg, and 

a late time fall off, called the If the final object is a neutron star, the third 

stage will be more complicated due to various types of possible oscillations in the 

matter itself. 

In the inspiral phase, relativistic effects are expected to be less important as the 

two black holes are well separated and do not become distorted due to interaction. 

Here, an analytic approximation technique called is 

used to predict the form of the gravitational radiation emitted. There is already 

indirect evidence for the emission of gravitational radiation in the discovery by 

Hulse and Taylor [39] of the binary pulsar PSR 1913-1-16. Observations show that 

the orbital period of this system is steadily decreasing, i.e the system is losing 

energy, and this decrease is in excellent agreement [40] with the value predicted 

using Einsein's quadrupole formula. The quadrupole formula shows how the total 

power emitted in gravitational waves by an isolated Newtonian source depends 

quadratically on the variations of the quadrupole moment of the source. The energy 

loss of a binary with circular orbit of radius a and total mass M is given by the 

formula [41]: 

dE 3 2 / M 3 

11 = -^^ 
where is the reduced mass and mi and mg are the individual masses 

of the binary components. The rate at which gravitational radiation is emitted 

increases as the binaries inspiral, i.e. as a decreases, the frequency and amphtude 

of the gravitational waves increase, producing the characteristic cAz'/Y) waveform. 

In the merger phase, when the two objects become too close for post-Newtonian 

techniques to realistically describe the evolution, the full Einstein equations must be 

solved. It is not possible to do this analytically, therefore numerical approximation 
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techniques are used to simulate the merger. This haa proved to be a very diihcult 

task. See [42] for a review of numerical relativity. 

Diuring the last stage when we have a single perturbed black hole, the nonlinear 

effects of full general relativity are expected to be quite small and a perturba-

tion approach can be used. In this approach the evolution of a perturbing held 

is calculated against a hxed background spacetime using a linearized version of 

Einstein's equations. This approach can also be used diu-ing the late part of the 

merger phase when the two objects are close enough to be approximated as one 

object in the cfose approximation [43]. The LAZARUS [44] project aims to 

follow coalescing black holes through all three phaaes by combining post-Newtonian 

approximation, numerical relativity and perturbation techniques in one code. 

The form of the signal during ring down, obtained via a pertubation approach, 

is the main focus of this thesis. I therefore devote the rest of this section to a review 

of the major developments in this held and set the context for this ciurrent work. 

2.5 Black Hole Perturbations 

When Regge and Wheeler derived their equation governing black hole perturba-

tions in 1957, their motivation was to discover whether or not black holes are stable 

to small perturbations. They fotmd that the reaction of the black hole was gov-

erned by a fairly simple equation - a wave equation with a potential. Some time 

later, Vishveshwara used numerical methods to investigate scattering of radiation in 

Schwarzschild spacetime. He sent Gaussian wave packets moving towards the black 

hole and studied the scattered waves. He discovered that when the initial Gaussian 

was wide there was nothing particularly interesting to be seen in the scattered pulse 

but for narrower initial data he discovered damped oscillations. Throughout the 

seventies, others foimd similar results in studying this problem and also in study-

ing infalhng test particles [45] and slightly nonspherical gravitational collapse [46]. 

They observed 

# an initial waveburst 

# exponentially damped ringing 

# a power law fall off at late times [47] 

Whereas the initial waveburst depended upon the form of perturbing held, it 

was observed that the frequency and damping of the ringing and the late time 

power law behaviour were characteristics of the black hole itself. The black hole 

oscillations are now known as giioamomiaZ mocfes and the late time fall off is called 

the 

Today we are able to calculate quasinormal mode frequencies by working in the 

frequency domain (see e.g. [48], [49]) and it can be shown in this way that the 

quasinormal modes correspond to poles in the complex frequency plane and that 
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the late time tail corresponds to a branch cut along the negative imaginary axis. 

In physical terms, the quasinormal modes are analogous to the resonances found in 

quantum scattering, and the tail hag been shown to arise from back-scattering off 

the long-range gravitational Held. This field has been well researched, yet recent 

surprising results [51], [52] and questions [50] concerning the late time behaviour of 

spinning black holes show that there is still work to be done. 

2.6 Neutron Star Perturbations 

Modelling perturbations in a neutron star spacetime is more comphcated than the 

corresponding problem for black holes because we must consider oscillations in the 

neutron star matter itself as well as the reaction of the exterior spacetime. We must 

therefore include the equations of hydrodynamics. A more realistic model will also 

include the eEects of magnetic fields, superfluidity, Ekman layers (i.e. the presence 

of a crust), and exotic particles, but there is much work still to be done before we 

have a good understanding of these eSects. 

Most stars are expected to undergo some kind of oscillation during their life-

time and these oscillations are accompanied by the emission of gravitational waves. 

Neutron star oscillations could generate detectable gravitational radiation which 

could reveal information about the interior of the neutron star by comparison with 

numerical models. 

There are several types of oscillation modes which can be classihed according 

to the physical mechanism or the characteristics of oscillation. A description of the 

various modes may be found in a review by Kokkotag and Schmidt [53] and at the 

SISSA website [54]. 

Achieving a fully relativistic 3D numerical hydrodyaamic model of neutron star 

oscillations has proved to be a very difficult task. This is a non-hnear problem 

and requires highly advanced computational techniques to handle shocks. In gen-

eral however, the oscillations are expected to be much smaller than the radius of 

the neutron star itself and can therefore be approximated by linear perturbations. 

Even this task is not straightforward, especially in the case of rotating neutron 

stars. One simphhcation is the Cowhng approximation [55] in which perturbations 

in the gravitational Geld are neglected and the oscillations are described only by 

perturbations in the fluid variables. The calculations of stellar perturbations pre-

sented in this thesis are in the Newtonian limit and our model is highly simplified 

but we do include the effects of differential rotation. We expect that many of the 

results will carry over into the relativistic regime. 

13 



2.7 Rotating Black Holes 

Kerr black holes are the universal limit in the gravitational collapse of any rotat-

ing body and, since most stars rotate, Kerr black holes aze expected to be more 

physically relevant than Schwarzschild black holes. An equation analogous to the 

Regge-Wheeler equation was obtained by Teukolsky [21] using the Newman-Penrose 

formalism [56]. The Teukolsky equation describes the evolution of scalar, electro-

magnetic and gravitational perturbations in Kerr spacetime. It is also possible, by 

studying this equation in the frequency domain and using analytic approximations, 

to calculate the quasinormal mode frequencies, damping, and tail. Predictions 

based on such analysis show that there should be some difference between the late 

time tails of Schwarzschild and Kerr black holes, in particular that there should 

exist long lived quaainormal modes for Kerr spacetime [57]. 

,2.7. ^ 

When waves of frequency w impinge on a black hole with rotational frequency Q 

and these waves satisfy the condition 

cj - TTin < 0 (2.7) 

where m is the azimuthal order (or quantum number) and the azimuthal dependence 

is then the scattered waves will be amplified. A distant observer wiU see waves 

coming out of the horizon, even though a local observer sees them going into the 

black hole. This eSect, called superradiance, was 6rst predicted by Zel'dovich in 

1971 [25] and Misner [58] independently made a similar prediction shortly thereafter 

which he supported with analytic calculations. Superradiance is the wave analogue 

of the Penrose process and the energy coming out of the black hole is compensated 

for by a corresponding decrease in the hole's angular momentum. The amplification 

factor for scattered scalar waves was calculated in 1972 by Press and Teukolsky [59] 

to be 0.3% and the amphhcation of electromagnetic and gravitational waves were 

given in a later paper [60] by the same authors as 4.4% and 138% respectively. The 

scalar wave superradiance was conhrmed numerically by Andersson et al. [61] using 

a Cauchy time evolution of the scalar wave equation in Kerr spacetime. 

Andersson and Glampedakis [51] have argued that whereas the individual long 

lived quasi-normal modes of Kerr spacetime will not be significantly excited, a large 

number of them can combine at late times to completely dominate the late time 

behaviour. They support their analytic calculations, which involve many simplifying 

approximations, with results from the Cauchy evolution code of [2] but they warn 

that the results of the numerical code may also not be trustworthy. They offer an 

interpretation of their results based on a reaoMOMce just outside 

the horizon whereby, for frequencies close to the upper limit of the superradiant 
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regime, there will be a peak in the elective potential (frequency dependent) just 

outside the black hole. Waves which "emerge from the horizon" according to a 

distant observer can become trapped near the horizon by the potential peak and 

experience a kind of parametric amplification until they can leak out through the 

horizon to inhnity. 

The numerical work of Glampedakis and Andersson was carried out using a time 

evolution of the Teukolsky equation [2], but there are some late time convergence 

problems with this code. We therefore seek to improve the numerical results via 

a characteristic approach in which the solution is evolved on null hypersurfaces 

as opposed to space-like hypersurfaces. Using such an approach, it is possible to 

compactify the radial coordinate and thus include both the horizon and future 

null inhnity in the numerical simulation. This is an advantage because it avoids 

the problems associated with artificial boundary conditions and also allows us to 

more accurately compare results with analytic caiculationa which are obtained using 

aaymptotic approximations. 

The characteristic approach has been successful for evolving Schwarzschild per-

turbations [62] where it has become in many ways the preferred method. It has 

also shown it's usefulness in fully relativistic simulations, using the Bondi-Sachs 

formulation. See [63] for examples of this. In numerical relativity a combination 

of both Cauchy and characteristic evolutions has also proved to be appropriate for 

some problems [64]. The combination of Cauchy and perturbative evolution has 

also been succesfully applied [65]. In Chapter 8 of this thesis I describe the devel-

opment of a numerical code to evolve scalar perturbations in Kerr spacetime as a 

characteristic initial value problem. 

,2.7. ,9 JYo/ea 

When Einstein noticed that his equations predicted a non-static universe he was 

dissatisfied with this conclusion and introduced the cosmological constant [66]. An 

initially static universe would tend to collapse under the force of gravity but the 

cosmological constant balanced this force in order to make the universe static. This 

trick does not really work however because such a static universe is unstable and 

therefore would tend to contract or expand. Later, Edwin Hubble's observations 

indicated that the universe is actually expanding [67], therefore Einstein rejected the 

cosmological constant as his "biggest blunder". Today however, the cosmological 

constant continues to play an important role, not only in cosmology but also in 

particle physics where it is interpreted as a measure of the vacuum energy density. 

InEation theory predicts the presence of a cosmological constant and many of the 

Grand Unified Theories predict an extremely large value for it. Observations suggest 
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that the real value is very small. The big problem of the diEerence between the 

value predicted by particle physics and the observational data is yet to be resolved. 

The present theories can give the observed small value for the cosmological constant 

only with extremely precise hne tuning, which presents another problem in itself. 

Recent observational results from supernova studies suggest that the expansion 

of the universe is accelerating [68] and this has helped to re-instate the cosmological 

constant as an important consideration in the current cosmologicai picture. The 

most general metric satisfying the cosmological principles of isotropy and homogene-

ity is the Robertson-Walker metric. In a Eat universe with positive cosmological 

constant this metric reduces to the de-Sitter metric. Although the magnitude of the 

cosmological constant is observed to be very small in today's universe, it will influ-

ence black hole geometries which must then be taken as asymptotically de-Sitter. 

Rotating black holes in asymptotically de Sitter spacetime are described by 

the Kerr-de Sitter metric. Khajial [69] has presented a master equation, similar to 

that of Teukolsky, for gravitational, electromagnetic and Dirac held perturbations in 

Kerr-de Sitter spacetime. He has shown that this equation reduces to the Teukolsky 

equation in the limit A ^ 0 and the Schwarzschild-de Sitter perturbation equations 

in the hmit o —> 0. He has also shown that superradiance can occur in Kerr-de 

Sitter spacetime [70]. 

Numerical studies of scalar held perturbations in Schwarzschild-de Sitter space-

time have uncovered interesting and surprising late-time behaviour [71]. Since the 

late time behaviour of the field is generally considered to be dependent upon the 

asymptotic structure of the spacetime only we should expect similar behaviour in 

for Kerr-de Sitter black holes. In Chapter 9 I present a new numerical code for the 

time evolution of scalar held perturbations in Kerr-de Sitter spacetime. As far as I 

am aware, this is the first time that such an evolution has been carried out in Kerr-

de Sitter spacetime. I present interesting new features in the late-time behaviour 

and obtain results in the Schwarzschild-de Sitter hmit similar to those found in 

previous studies. I test the conditions for superradiance derived by Khanal [69]. 

2.8 Rotating Neutron Stars 

The eEect of rotation on a star is to increase its equatorial radius and also to increase 

the mass that can be sustained for a given central energy density. According to 

Stergioulas [73], the mass of the maximum mass rotational model is about 15 — 20% 

higher than in the maximum mass nonrotational model for typical reahstic equations 

of state. The corresponding increase in radius is 30 — 40%. 

In nonrotating stars the spacetime outside the stajr itself is described by the 

Schwarzschild metric and the perturbations of that spacetime can be described by 

the Regge-Wheeler equation for odd perturbations or the Zerilh equation for even 
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perturbations. For rotating stars, however, no decoupled equation corresponding 

to the one discovered by Teukolsky has be found because the metric of a rotating 

neutron star and a Kerr black hole are of diSerent Petrov types (see section 8.2.3) 

and therefore the analysis leading to the Teukolsky equation cannot be applied in 

the case of a neutron star. 

Some oscillations may become unstable in rotating stars due to the emission of 

gravitational waves. This CFS instability (named after Chandrasekhar, Friedman 

and Schutz [74] who discovered it) causes the stellar oscillations to increase, which 

leads to greater emission of gravitational waves and even greater oscillations etc. 

Such an instability could be a strong source of gravitational waves. 

In rotating stars a new type of mode appears which is degenerate at zero-

frequency in the nonrotating case. These modes, called meyfmZ modes in the New-

tonian hmit, have received a lot of attention in the past few years due to the fact 

that they are generically unstable to the emission of gravitational waves by the CFS 

instability, as demonstrated by Andersson [75]. 

Even in the Newtonian limit there are effects due to rotation which still require 

further investigation. One of these is the eSect of differential rotation on the various 

oscillation modes. In Chapter 10 I present some new results in this regard from work 

carried out in collaboration with A.L Watts for a simplified model of a differentially 

rotating, axisymmetric spherical shell. 
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Chap te r 3 

The Initial Value P r o b l e m 

If a theory permits a physically reasonable speci6.cation. of initial data, and this 

initial data uniquely determines the future evolution of the system, then the theory 

possesses an initial value formulation. For the initial value formulation to be well 

posed the solution must depend continuously on the initial data without violating 

causality. 

Spacetime may be foliated by a set of hypersurfaces and the properties of those 

hypersurfaces determine the nature of the initial value formulation. The most pop-

ular formulation is the Cauchy initial value problem in which spacetime is foliated 

by space-like hypersurfaces. The initial data consists of the solution and its first 

time derivative on the hrst hypersurface. 

An alternative formulation is given by the characteristic initial value problem 

in which spacetime is foliated by lightlike hypersurfaces. In the double-null initial 

value problem, the initial data consists of the solution alone on initial advanced 

and retarded lightlike hypersiu'faces. In the null-timelike initial value problem, the 

initial data consists of the solution on an initial null hypersurface and an initial 

timelike hypersurface. 

3.1 Example: The One-Dimensional Wave Equation 

The one-dimensional wave equation in (t, z) coordinates is 

- .9, ,^ = 0 (3.1) 

where we work in relativistic units, c = 1, and ^ a;). A general solution is 

given by the D'Alembert solution 

^ = /(li) -t- ̂ (t;) (3.2) 
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X 

Figure 3.1: The Cauchy initial value problem. Initial data, consisting of ^ and its 
time derivative, is given on ^o, a surface of constant For initial data between 
and 2:2, the solution may be calculated according to eq. (3.10) in the shaded area 
A. 

where -u and f are the null coordinates 

16 — z 

f + z 

(3.3) 

^3.4) 

and / and p are arbitrary functions. 

As a simple illustrative exercise we wiH formulate the 1-d wave equation as three 

distinct initial value problems [76]. 

Using the wave eq. (3.1) we specify initial data on ^ = 0 between z = and 

z = 3:2. 

^(z;, 0) =^(a;) = / ( - z ) + ^(z) 

=G(z) = —^3;/(—2;) + i9z^(3;) 

(3.5) 

(3.6) 

Integrating eq.(3.6) with respect to a: gives 

- / ( a ; ) + ^(a;) = ^ G(z)da; 

t—I 

(3.7) 

adding/subtracting this equation to/from eq. (3.5) gives us equations for the func-

tions / and p in terms of our initial data 
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2^(2;) = (3.8) 

t—a; 

2/(-2;) = F M - y (3.9) 

t—z 

and we can then write the solution in terms of the initial data as 

^ (z , ( ) = = ^ [ F ( z - ^ ) + F ( a ; + ^)] + ^ ^ G(a;)(^2; (3.10) 

z—t 

which is valid in the region A of hg.(3.1). This solution is valid for aji infinite string 

provided we have initial data for all a;. 

For a string which is tied at the origin, we can no longer use the above solution 

for points at a; < .̂ This is due to a lack of initial data at z; < 0. However we 

can calculate the solution by using the boundary condition, ^(0, )̂ = 0. We would 

like to know the solution at point (a;^,^^) on Fig. 3.2. According to d'Alembert's 

solution, eq.(3.2) 

^ = y(—3:p + ^p)+p(2;p + ^p) (3-11) 

Initial data exists for gi(zp + ^p) but not for /(—Zp 4- ^p). We use the fact that the 

value of /(—z + )̂ is constant along the line from v4 at (0, T) to otu point at (zp, ^p), 

and at A we have 

\^ = / ( T ) + p ( T ) = 0 (3.12) 

as our boundary condition. The value of g'(z+t) is constant along the hne connecting 

to the point B at (A", 0) and therefore / ( ^ ) = —g((^). The coordinate T is given 

by T — 0 = p̂ — Zp and the coordinate % is thus given by 0 + % = T + 0 = tp — Zp. 

We can now write the solution as 
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A(0,T) 

Figure 3.2: Cauchy initial value problem for semi-infnite initial data. Initial data 
exists for positive 2 only. The solution at the point (2:0,(0) will depend on the 
boundary condition at z = 0. If there is some reflection at the boundary then the 
solution at (2:0,(0) will depend on the initial data at the point The solution 
according to eq. (3.13) is valid for all positive 2 ajid (. 

^(2:, () — —p((p — 2p) + ^(Zj, + (p 

^ [ F ( 2 + ( ) - f ( ( - 2 ) ] + ^ y G ( ^ ) d ^ - ^ y G(^)(f2 

0 0 

2 + ( ) — f ^ ( ( ^ 2)] 2 y ^(^)^^ ^3.13) 

t—z 

This solution is vahd for all ( > 0 and 2 > 0, provided we have initial data for all 

2 > 0. 
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= "Uo = 2̂0 

Figure 3.3: The double-null initial value problem. Initial data is prescribed on 
16 = 160 t; = 170 and the solution, calculated using eq. (3.21) is valid in the 
shaded area A. 

Equation (3.1) can be re-written in terms of the characteristic coordinates -u and i; 

using the transformations 

-I- = <9^^ -t-

^ -t-
-|-

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The wave equation becomes 

= 0 f3.18) 

The initial data is 

^ = 1/3(2/) on -u = fo 

^ = %('u) on "u = «o 

(3.19) 

(3.20) 

The solution in the area A of Fig. 3.3 is [76] 

^(t(, i;) = (̂ (%/) -H %('u) - (/;(2/o) r3.211 

22 



z = a;o 

W , a;o) 

Figure 3.4: The null-timehke initial value problem. Initial data is prescribed on 
= 'Uo and a; = 2;o. The solution is given by eq. (3.29) in the shaded area A. 

The one-dimensional wave equation can be written in the null-timelike coordinates, 

(2/, z) using the transformations 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

The wave equation becomes 

2 ^ ^ ^ — ^3];^ — 0 (3.26) 

Our initial data is 

^ = </;(«) on T = 2:0 

^ = x(3;) on = «o 

(3.27) 

(3.28) 

The general solution in the area A of Figure 3.4 is [76] 

^(2/, Z) = (/?(li) +% 
- % Zo + - ( n — T/o) (3.29) 

We can use the above solutions to transform initial Cauchy data into characteristic 

initial data. For example, with initial Cauchy data as in (3.5) and (3.6) we find the 
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i;o 

general solution from (3.10), and written in terms of it and this gives 

i; 

^(16,2;) = ^ y (3.30) 

— 

which gives us our initial data on it = tto 

^ (? /o ,^ ) -^ [F (? ; ) + f(-%,o)] + ^ y G(^)dz = %(^) (3.31) 

and on i; = Uo 

^(tz, fo) — ^[-^("^o) + -^("'^)] 2 ^ (9(;r)(f^ = y('u) (3.32) 

—Ti 

To show that this is indeed the same problem, we can substitute these initial data 

into eq. (3.21), the double-null solution and we recover the original Cauchy solution. 

^ = 2 -^(^'^)] 2 y — v('^) (3.33) 

—U 

so the two initial value formulations are equivalent except that the areas in which 

the solutions are vahd are diEerent. 

An analogous calculation shows that the nuU-timelike formulation is also equiv-

alent. 

In this way we can transform otu initial data from one formulation to another 

when the analytic solution is known. If such a solution is known, however, we 

would not require a numerical evolution, therefore we need to consider how the 

initial data can be transformed for more complicated evolutions where there is no 

known analytic solution. I return to this problem in section (5.4). 
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Chap te r 4 

Numer ica l Techniques 

The wave equation is very simple to solve analytically, however this is not the case 

for all partial differential equationa (PDEs), especially if they are non-linear. When 

we cannot find an analytic solution, numerical techniques may be employed to And 

an approximate solution. This section introduces the basic numerical techniques 

for solving PDEs. These techniques will be apphed throughout the later sections. I 

have relied heavily on one book, [77] for much of this chapter. 

4.1 Finite Differencing 

Given a particular set of initial data we can evolve oiu equations numerically on 

a Mi/merzmZ Fig. 4.1, consisting of discrete points S't which we find 

approximated solutions Using a /zMzte approach, derivatives are 

/\ 

& # % 

% 

D C 

D ( 

Xi 

Figure 4.1: A numerical grid. Spacetime approximated by regularly spaced discrete 
points. The timestep is labelled using the superscript and the spatial position of 
each gridpoint is labelled using the subscript A;. 
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approximated, in terms of the solutions, and the grid spacing, Az, by Taylor 

expansion. In order to approximate the spatial derivative of some function / at 

grid point we expand / in a Taylor series about 

(4.1) 
(fz 2A2; 

f'. -I- f" . ^ 
+ 0(Aa;") (4.2) 

A A+i — 2//C + 

Time derivatives may similarly be approximated by 

yn+l _ yn-l 

(ft 2At 
y7%+l _ 2̂ 71 + y"- l 

0(A^') (4.3) 

+ 0 ( A f ) (4.4) 

We can approximate a derivative as a linear combination of the function at any 

number of its nearby points but the further these points are from the point at which 

we want to calculate the derivative, the less accurate our approximation will be. 

The finite diEerence approximations in eqs. (4.1)-(4.4) are said to be of secoM f̂-

or(fer because the corrections to the derivatives are of order Aa;̂  or A^^, i.e. the 

solution itself is correct to second order, with corrections of order Az^ or At^. 

4.2 Numerical Integration. 

The general problem of numerical integration is to approximate the solution to a 

differential equation 

= (4.5) 

where the function / is known. 

Given the value of ^ at one point, 2:0, we know the gradient of ^ at this point from 

the differential equation, and we want to know the value of ?/ at another point 2;/. 

The simplest approach is to use hnear interpolation. 

Xf 

^(2;/) = ?/(a;o) + y / ( z , %/(f))(f;r 

xo 

% 2/0 + (3;/ - 2;o)/(%o, ̂ 0) (4.6) 

For increased accuracy the interval z;/—zo can be divided using a sequence of points, 

%, a?! = a;o + /t, Z2 = a:o + 2/i,..., where A is the spacing between consecutive points. 
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and the recursive scheme 

Z/T%+i = 2/7, + 2/n) (4.7) 

which is known aa Euler's method can be employed. This method is the cornerstone 

of the numerical analysis of differential equations. Although Euler's method is only 

Grst order (the order of the truncation error), it serves ag the basis for higher order 

methods. Euler's method advances the solution through the interval, /i, but uses 

derivative information from the beginning of the interval only. It clearly is more 

sensible to use the value of the derivative at the center of the interval, which is 

approximated aa the average of the derivative at the two points. This gives us the 

trapezoidal rule 

Z/TZ+I = 2/n + ?/7i) + /(2;n+i, 2/(z;i+i))] (4.8) 

which is a second order method. Unfortunately this scheme is due to the 

fact that we require information at the point which we are trying to calculate and 

this makes it a lot more complicated to use. The Euler and trapezoidal methods can 

be combined in the Heun predictor-corrector scheme. Equation 4.8 is the corrector 

to the predictor of equation 4.7 and this is a semi-implicit scheme which is second 

order accurate. 

Another option is to use Euler's method to take a preliminary step to the mid-

point, 0.5/1, of the interval and to use the values of a; and 2/ at that midpoint to 

integrate across the whole interval,/i. 

= (4.9) 

^2 — + -/ i , 2/n + -Aji) (4.10) 

&'M+i = Z/?i + ^2 + 0(/^^) (4.11) 

This is called the second-order Runge-Kutta or midpoint method. We can further 

develop the Runge-Kutta method up to any order by introducing more auxiliary 

variables. The most popular method is the classical fourth-order Runge-Kutta 
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method which I will use in later sections. 

(4.12) 

= + —,2/n + -^) (4-13) 

^3 — ( 4 14) 

^4 = /^/(3;n + /l, 2/n + ^s) (4 15) 

^7,+! = ^" + y + y + y + y + <^(/̂ ^) (^-IG) 

TZeZoazohoM 

Another type of integration problem in one dimension is the 

pro6/e??2 in which the solution to a particular ordinary differential equation (ODE) 

is known at two diSerent positions, i.e. at the boundaries. In this case, using the 

method of the solution at all other points on the one-dimensional grid 

can be found simultaneously. The relaxation method begins with an initial guess 

for the solution and iteratively improves this guess until the corrections are below 

a specified tolerance. 

Any ODE may be written as a system of hrst order equations, so here we may 

consider, without loss of generality, a system of jV first order equations on M 

gridpoints. The solution consists of M x TV values, requiring us to solve a matrix 

of size ( M # ) X (M/ / ) . Ordinarily this would require a great amount of time and 

storage space, but fortunately it is possible to write the matrix in a special WocA; 

diGgoTiaZ form that allows it to be inverted in a more economical way. 

Let be the set of dependent variables at point where a; is the independent 

variable and A; labels the gridpoints, A; = 0,1, 2,.., M. Each ODE may be written 

in a finite difference form which couples two neighbouring points, 

s = YA: - y/c-i - (% - ZA:_i)F(a;t, Yt, Yt-i) ^ 0 (4.17) 

where 

F = (4.18) 

There are TV equations for 2yV variables at each pair of neighbouring points. A; and 

A;—1, therefore eq. (4.17) provides a total of (M— 1) jV equations for MTV unknowns. 

The boundary conditions provide the remaining N equations. 
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By expanding the equations for S in hrst-order Taylor series with respect to 

small Ay/: we get 

a s . A <98, 
St(yk + Ayt, yt - i + Ay&_i) % SA(yk, yt - i ) + ^ ^ + Y ] 

(4.19) 

where Sk(yA;, y t - i ) represents a close guess to the solution and Sk(yA; + Ay,, y t - i + 

Ayt_i) represents the actual solution. We solve eq. (4.19) for Ay such that S(y + 

Ay) = 0. 

The quantity can be written as a A/" x 2 ^ matrix at each point A;, 

representing the TV equations coupling 27V corrections to the variables at points A; 

and A; — 1. When the equations over all neighbouring pairs are considered along 

with the boundary conditions, the total matrix size is (MTV) x (MA^) but it can 

be written in a particular block diagonal form so that it can be solved more eaaily 

by Gaussian ehmination. Some element of each block may be reduced to zero, 

leaving a square block of elements which can be fin-ther reduced by row operations 

to diagonal form with diagonal elements of imity and off-diagonal elements of zero. 

The solution is then obtained by backsubstitution. 

The entire procedure may seem quite complicated, but fortunately there are 

standard subroutines available (see e.g. [77] for subroutines and more detailed 

explanation of methods) for which we need only supply the diSerential equations 

themselves and the x 27V Jacobian matrix. 

4.3 Numerical Evolution 

For the problems I consider in this thesis I will need to integrate forward not only in 

space but also in time. In the Cauchy initial value formulation we know the solution 

at ah points on one time shce and must advance the solution to the next timeslice 

using our Snite diSerenced derivatives. In this way the solution is on a 

numerical grid. In the characteristic initial value problem, the solution is evolved 

from one characteristic slice to the next. 

Numerical evolution by the hnite difference approach can be carried out using either 

an or nmnerical scheme. 

In an explicit evolution the solution is advanced one gridpoint at a time by 

using information from only a few nearby points on previous timeshces. A common 

example of such a scheme is the leapfrog scheme which will be used in later chapters. 

A stencil for the leapfrog scheme is shown in Fig. 4.2. The a; derivatives are 
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calculated as in eqs. (4.1)-(4.4), and similarly for the t derivatives. In this way the 

difference scheme is centered at the point 

n+l r J 

n-1 

k-1 k k+1 

Figure 4.2: The leapfrog hnite difference scheme. Information from the black grid-
points is required to find the solution at the gridpoint marked with an imhlled 
circle. 

Information from points and as well as is required in order 

to approximate the solution at A more detailed explanation of this and other 

explicit evolution schemes may be foimd in Chapter 5 which describes how to apply 

these schemes for evolving the one-dimensional wave equation. 

An implicit evolution is based upon the relaxation method described in section 

4.2.2. The solution is calculated simultaneously for all gridpoints on an entire times-

lice using information from the previous timeshce and the boundary conditions. In 

Chapter 10 I use a two-level evolution scheme, requiring information from the pre-

vious timeslice, to investigate the evolution of oscillations in an incompressible thin 

spherical shell. Fig. 4.3 shows the stencil for such a scheme. 

—̂ J L J V A— - A n+l 

— — ^ 

0 — k - 2 k - 1 k k+1 k+2 — Kmax 

Figure 4.3: An imphcit finite difference scheme. Information from all points on 
the current timeshce (the black gridpoints) is required, along with the boundary 
conditions, to calculate the solution for ail points on the next timeshce (the unhlled 
gridpoints). 

Although implicit methods demand greater computational expense at each timestep, 

this is usually compensated for by being able to take larger steps. Some caution 
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must be taken however not to take steps which are too large as that may decrease 

the accuracy of the solution. The timesteps must be small enough to resolve the 

dynamics of the physical system, e.g. the oscillations. 

A numerical grid is by necessity Enite in extent and therefore hag boimdaries. It is 

important to know how the solution behaves at the boundary. Boundary conditions 

are implemented in order to evolve the innermost and outermost gridpoints. In the 

case of the Eat space wave equation, analytic boundary conditions are known at 

any point, depending on the physical situation under consideration. However, in 

the evolution of more comphcated equations, where no analytic solution is known, 

implementing the appropriate boimdary conditions can be a difhcult problem. This 

problem is one of the main obstacles in numerical relativity, and it is precisely to 

overcome this problem that the characteristic initial value formulation has been 

taken up here. The advantage of a characteristic formulation in radiation problems 

is that we can compactify along the characteristic hypersurface in order to include 

future null infinity on the numerical grid. For agymptotically Sat spacetimes we 

can then apply an exact boundary condition. 

An important factor to consider in the design of aa evolution code is stability. 

Growing numerical errors can lead to disagterous results and a useless code. 

One factor determining the stability of a given huite diEerencing scheme is called 

the Courant factor. Every PDE has a domain of dependency and every point will 

depend on information from its domain. A finite differencing scheme similarly has 

its own domain of dependency determined by the choice of points on one timeslice 

whose values are used to determine the solution at the new point. For Courant 

stabihty, the differencing domain of dependence must include that of the PDEs, 

otherwise there will be a lack of information at the new point and this will lead to 

instability. See Fig. 4.4 for an explanation. 

Another way to analyse the stability of a particular scheme is the Von Neumann 

stability analysis. This analysis is local in the sense tha t the coeGicients of the 

hnite difference equations are considered to be constant in space and time. Then 

the eigenmodes of the difference equations are of the form 

^^ 20) 

where A is a real spatial wave number and is a complex number. This 

is substituted into the finite difference equation and the resulting equation can be 
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y* * y \ \ 
# / # 

Figure 4.4: Courant stability. The lighter lines indicate the PDE domain of de-
pendence, darker hnes indicate the differencing domain of dependence. The finite 
difference domain of dependence marks the boimdaries of the space that is allowed 
to communicate with the new, unknown point. If the all the PDE domain is within 
it then all the information can Sow freely to the new point but if any of the PDE 
domain is outside then information will be restricted f rom reaching the new point 
and the evolution will be unstable. 

solved for Stability requires that there are no growing modes present, therefore 

the Von Neumann stability condition is |^(A)| < 1. 

The Von Neumann analysis is not a rigorous test of stabihty, it ignores non-local 

effects and does not take boundary conditions into account, but despite this it is 

generally a good test and usually gives dependable conditions for stability. 

Specific examples demonstrating the application of this method can been seen 

in Chapter 5 for the one-dimensional wave equation. 

Once we have a stable scheme and our code is producing reasonable results, we may 

hke to check the accuracy of the results. One way to do this is through convergence 

testing. As the grid resolution is increased (i.e. the grid spacing is decreased) we 

expect the accuracy of the results to increase in proportion to the order of the finite 

dlEerence scheme used and to tend towards the actual solution at a corresponding 

rate. 

To test convergence towards a known analytic solution we output two sets of 

data, and ^2, from our evolution code - using M gridpoints ajid using 2M 

gridpoints respectively. We calculate the L2 norm on each timeshce by taking 

the diEerence between the data and the analytic solution, S't each gridpoint, 

squaring it, summing over the whole timeshce, and dividing by the number of 

gridpoints. The convergence factor is given by the L2 norm for the lower resolution 
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data, divided by the L2 norm of the higher resolution data. 

E K c l i l i f ,4211 

The error in ^ should be of the order (Az)^ where M is the order of the diEerencing 

scheme. The converegence should therefore be given by 

^ = 2" (4.22) 

This convergence factor can be plotted as a function of time. For a second order 

accurate finite difference scheme, the convergence factor is expected to have a value 

of about four. 

When there is no analytic solution, this is replaced by data from a yet higher 

resolution run of 4M gridpoints. In this case, the convergence factor should be 

given by 

For this method, a second order Enite diEerence scheme should give a convergence 

factor of about Eve. 
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Chap te r 5 

The One Dimensional Wave 

Equat ion in Fla t Space. 

Again, we consider the simple one-dimensional wave equation. Fortunately, the 

equations we would like to solve later, i.e. those governing black hole perturbations, 

turn out to be fairly simple - wave equations with potentials, therefore many of the 

techniques learned here will be useful in later, more comphcated evolutions. In 

this chapter I evolve the one dimensional wave equation numerically for the three 

different initial value problems introduced in Chapter 3 

5.1 Cauchy Evolution 

We set up a numerical grid of spacial length f, and grid spacing Az and A^. As 

our initial data we consider a small Gaussian pulse travelling in the direction of 

decreasing z. 

Instead of using the usual Cauchy initial data, ^ and we can use, equiva-

lently, #o on the first timeslice and on the second timeslices. 

The wave equation is written in hnite diSerence form as 

pT' = % - vV + (piVi - (5^1) 

This is an example of the leapfrog scheme described in section 4.3.1 where = 

A t /Az is the Courant factor which determines the stability of the evolution scheme. 

In eq. (5.1), the solution at is computed using information from and 

but the information cannot propagate faster than the speed of light and 

lack of information leads to instability. If A^ is made too large then necessary 

information cannot reach At/Aa; must be smaller than 1 (speed of light, 

c = 1) and therefore the wave equation requires a Courant factor of between 0 and 

1 for stabihty. 
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We can check for Von Neumann stabihty by substituting eq. (4.20) into eq. 

(5.1) 

( = + + (5.2) 

This can be re-arranged to give 

- [2 - 4 sin' ( y ) + 1 = 0 (5.3) 

where we have substituted 

- 2 + 6-'̂ "= = - 4 sin^ f ^ ) (5.4) 

The solution for is 

(̂  = 1 — 0 : ^ ^ ( 1 — a)^ — 1 (5-5) 

where 

a = 28in^ 

The condition for stability is 

Kl < 1 (5.7) 

If the quantity under the square root in eq. (5.5) is negative, i.e. (1 — a)^ < 1 then 

we have 

I'd = \ / 2 ( l — a)^ — 1 (5-8) 

which is always less than 1 in this case. The quantity under the square root in eq. 

(5.5) can never be positive because a is always positive, i.e. 1 — a can never be 

greater than unity. If the quantity under the square root in eq. (5.5) is zero, i.e. 

1 — a = 1 then we have 

1̂ 1 = 1 (5-9) 

So we require, from eq. (5.8), |1 — al < 1 i.e. |a!| < 2 

sin^ f < 1 (5.10) 
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where the laat part follows from the fact that the inequality must hold for all z. 

This gives us the Courant condition again, At < Aa;. 

I have prescribed Gaussian initial data, travelling to the left. This is represented 

on the first two timeslices as 

21) 

(5.12) 

where A determines the amphtude and 6 determines the width of the pulse which 

is centered at 

I have evolved the wave equation uaing this scheme for two diSerent cases. One 

represents a pulse travelling on an infinite string and in the other, the string is tied 

at the origin. In the first case, we must formulate boundary conditions which allow 

the pulse to travel off the numerical grid. These can 

be found by an analysis of the d'Alembert solution for the one-dimensional wave 

equation, eq. (3.2). At the inner boundary, we must have no right travelling 

waves, i.e. /('u) — coMgt. At the outer boundary, there must be no left travelling 

waves, i.e. ^(-u) = This gives us the following boundary conditions 

= 0 at a; = zo (5.13) 

= 0 at a; = (5.14) 

In Ist order hnite diEerence form we have 

- P o + ^ ( P i - P o ) at a; = a;o (5.15) 

at a: — a;;̂  (5.16) 

Aa; 

In the second case, a zero boundary condition is implemented at the inner boundary 

- 0 (5.17) 

We can calculate the analytic solution in both these cases. For an infinite string 

the solution is given by eq. (3.2). Substituting our initial data of a pulse moving 

in the negative a; direction into this equation we find (as expected) 

(5.18) 

For a semi inhnite string we have from eq. (3.13) 

^(a;, t) = (5.19) 
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The results of the numerical evolution in both these cases are shown in Figs. 

5.1 and 5.2 

t=36 t=45 

t=72 t=54 

4 0 60 
X 

Figure 5.1: Cauchy evolution for the one-dimensional wave equation with a 1st 
order radiation inner boimdary condition. Most of the pulse travels off the grid, 
but a small numerical reflection can be seen in the last two time slices. 

We see that zero boundary conditions cause inversion and reflection at the 

boundary, whereas radiation boundary conditions allow the pulse to pass through. 

There is some small rejection at the boundary even with radiation boundary con-

ditions. This is due to numerical error and can be reduced by increasing the grid 

resolution. The amplitude of this numerical reflection is reduced by a change to 

second order radiation boundary conditions. 

The second order 6nite diEerence scheme for the ingoing radiation boundary 

condition is 

p' 
,n+l 

3 ( A ^ -t- A a : ) 

2 

3(At Az) 

At ) + Aa: ( 2pi 
1 1 

1 
+ I % - 2^^ 

?%—1 

^5.201 

r5.21) 

The results have been tested for convergence to the analytic solution. Conver-

gence plots are shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5. From these plots we can 

see that the hrst order boundary conditions cause the entire evolution to fail to 1st 
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Figure 5.2: Cauchy evolution for the one-dimensional wave equation with zero 
boundary condition. The wave is reflected and inverted at the inner boundary 
z = 0. 

order accuracy following the pulse's contact with the boundary whereas convergence 

remains more constant with a second order boundary condition. There is still some 

noise at t % 50 — 60 in the Figs. 5.4 and 5.5, due to the pulse hitting the inner 

boundary at this time. 

5.2 Double-Null Evolution 

The one-dimensional wave equation can also be evolved on characteristic surfaces. 

We use double-null coordinates, it and aa described in section 3.1.2. The numer-

ical grid is set up as in Fig. 4.1 with the z; and ( axes replaced by and axes 

respectively. 

The initial Gaussian pulse is easily transformed into initial data on -u and z;. We 

have (see eqs. (3.5) and (3.6)) 

F(a;) = 

G(z) = -26 (z -

(5.22) 

(5.23) 

(5.24) 
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Figure 5.3: Convergence test of the Cauchy evolution of the one-dimensional wave 
equation with first order boundary condition. The convergence clearly drops to 1st 
order after the pulse hits the boundary. 

Figure 5.4: Convergence test of Cauchy evolution of one-dimengional wave equation 
with zero boundary condition, showing second order convergence. 

So our initial data on u — is, using eq.( 3.31), 

(5.25) 

and on "u = fo we End from eq. (3.32) 

= Ae f5.26) 
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Figure 5.5: Convergence test of Cauchy evolution of one-dimensional wave equation 
with second order boundary condition, showing second order convergence. 

i.e. ^ is a function of f only. This is what we would expect because we have chosen 

our pulse to be moving inward only and this was achieved by setting 

^ = ^(2;), i.e. / W ^ 0 (5.27) 

So our initial Gaussian on a timeslice is transformed to a Gaussian on Ko a 

constant on -Uo. 

The finite diference approximation to the wave equation in double-null coordi-

nates is 

Pk+i - "Pk + Pk+i + (5.28) 

The stencil is shown in Fig. 5.6. 

k 

n+1 

n 

k+1 

Figure 5.6: Stencil for the double-null evolution of the one-dimensional wave equa-
tion. FiUed circles represent points at which the solution is already known, the 
unfilled circle represents the next point at which the solution is to be determined. 
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The Von Neumann stabihty analysis shows that this scheme is unconditionally 

stable: 

[5.291 

i.e. jî l : 1. 

Some results from the double-null evolution code are shown in Fig. 5.7 on 

constant slices and Fig. 5.8 on constant slices. As expected, there is no change 

on the shces because we have set up our initial pulse moving at the speed of light 

in the negative 2;-direction. On t' shces the solution is a constant which increases 

from zero a5 the pulse passes, reaching a maximum at the peak of the pulse, then 

decreasing back down to zero. 

u="jO u = - 2 0 u— 10 

V 

Figure 5.7: Results of double-null evolution of one-dimensional wave equation, dis-
played on surfaces of constant it. The initial pulse stays constant with increasing 
2̂  because it is moving in the negative z-direction at characteristic speed, i.e. the 
speed of hght. 

In this evolution, the initial data on -u = -uo does not evolve, therefore it is not 

possible to test convergence as the L2-norm is always zero. 

5.3 Null-Timelike Evolution 

In order to evolve the one-dimensional wave equation as a null-timelike initial value 

problem we set up our numerical grid as in Fig. 4.1 with the ^ axis replaced by a 

It axis. We can finite diEerence the wave equation using the following second order 
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Figure 5.8: Results of double-null evolution of one-dimensional wave equation, dis-
played on surfaces of constant As the pulse, travelling in the -a-direction crosses 
these surfaces, we see an increase in amphtude up to the peak of the pulse followed 
by a decrease, returning to zero amplitude when the pulse hag passed. 

scheme: 

1 

(5.301 

' % - l + Pt-2 + + P t - l ) (5.31) 

where derivatives are centered at position (A: — 1/2, M -t- 1/2). See Fig. 5.9 for the 

stencil. This scheme is equivalent to the used in numerical 

relativity [78], and it is described in [79]. The wave equation becomes 

_ 1 - 2 D 

where D = 

p r ' = 

4Aa; 

D 
2 _ 2) K - i + Pk] + _ 2) [Pk-2 + Pt4-i] " Pt (5.32) 
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k-2 k - 1 k+1 

Figure 5.9: Stencil for the nnll-timelike evolution of the one-dimensional wave equa-
tion. Filled circles represent points at which the solution is already known, the 
unhlled circle represents the next point at which the solution is to be determined. 
The finite difference equation (5.32) is obtained by approximating the derivatives 
at the point marked by a plus sign. 

We can check for Von Neumann stability by substituting eq. (4.20) into eqs. 

(5.30) and (5.31) 

= (( - r^)( l -

= (1 + e-'^)(e''^^ - 2 + 

Substituting these into the wave equation, and multiplying through by we 6nd 

Using the relation 

5.33) 

5.34) 

X 
s m " I - f'cosa; - (5.36) 

we can solve for ^ to hnd 

? = s m A x ± 
Atf 

2Aa; 
sin^ Aa; -k 1 f5.37) 

when Alt < 2Az then the term under the square root is real so we And that the 

magnitude of ^ is 

(5.38) 

i.e. this scheme is unconditionally stable. 

As can be seen from eq. (5.32), we caji only begin to apply this scheme for 

calculating the solution at the third gridpoint. The boundary point is given aa 

initial data for the null-timelike initial value problem, or can be calculated using 

some boundary condition. For the Erst spatial gridpoint from the inner boundary 
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we are forced to slightly modify our scheme, and hnite difference as 

Pi*' = iC+P'! - PS + f(3pS - VI + Spi - Pi) (3^39) 

where we calculate the double a: derivative to hrst order only. As will be seen in 

the results of convergence testing, this does not seem to affect the overall second 

order convergence. Our hnite difference scheme must also be shghtly adjusted at 

the outer boundary. Applying a second order one-sided derivative for leads 

to the hnite difference equation 

Px' = + *pk-2 - K - 3 ) 

(5.40) 

We again consider both the infinite and semi-inhnite cases. The initial data on 

It = Ho is given by 

^ (5.41) 

The initial data at a; = zo is given by ^ = 0 for the semi-infinite case and 

^ (5.42) 

for the inhnite case. Later, in more general cases, we may not have an ajialytic 

expression for the initial data at z = Zo so here we impose an ingoing radiation 

boundary condition in preparation for evolving more complicated equations. In 

null-timehke coordinates the ingoing radiation boundary condition is 

(5.43) 

which can be written in second order finite diEerence form as 

pr ' = 2p ; -p r '+ ( ^ ) (2pS - 5pf + 4p; - pj) (6.44) 

Results for the null-timelike evolution are shown in Fig. 5.10 for the radiation 

boundary condition and Fig. 5.11 for the zero boimdary condition. 

I have tested the convergence for zero and radiation boundary conditions and 

the results can be seen in Fig. 5.12 and Fig. 5.13. It is apparent from Fig. 5.13 that 

the implementation of radiation boundary conditions has some problems when the 

pulse hits the boundary. This will not be a problem in future evolutions however as 
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Figure 5.10: Null-timelike evolution of the one-dimensional wave equation with 
radiation boundary condition. The output is displayed on M shces which 
are equivalent to and we caji see that the radiation travels quite cleanly off the 
grid at the inner boundary. Some small reflection at the boundary can be seen at 
M = 40.5 and 'u = 48. The rejected radiation travels at the characteristic speed in 
the positive z-direction, i.e. along a surface of and therefore appears as 
a straight line here. 

we will avoid aztihcial boundaries altogether. The zero boundary condition shows 

good second order convergence. 

5.4 Characteristic Initial Data 

In this chapter we have been able to specify equivalent initial data for all three 

initial value problems because we have an analytic solution to the wave equation. 

Later, when we consider more complex equations, without known analytic solutions, 

we may also want to use equivalent initial data. In some cases we may have some 

initial data specihed on a Cauchy hypersurface and want to know how to translate 

this to initial data on a characteristic hypersurface. One way to do this is to evolve 

for some time on Cauchy shces, then use interpolation to End the solution on a 

particular characteristic hypersurface which is within the domain of the Cauchy 

evolution. 
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Figure 5.11: Null-timelike evolution of the one-dimensional wave equation with zero 
boimdary condition. The output is displayed on slices. The rejected and 
inverted pulse travels back in the negative a;-direction at the characteristic speed 
and therefore appears as a straight line of negative amplitude here. 

The solution can be found at any position a; which lies on the interpolating 

polynomial though 3 points ^2 = /(2:2) and ^3 = /(zg) as given by the 

classical Lagrange formula 

_ (Z-2 ;2 ) (Z-Z3) 

(zi - 3;2)(a;i - 2:3) 
(2; - - 2:3) 

a:2-a;i)(a;2-a:3)^^ ' (a;3-a;i)(a;3-3;2) 

(37 — — 3̂ 2) 
^3 

(5.45) 

For our spacetime grid, we first interpolate for a solution at z on three timeslices 

surrounding (3;, and then use these three values as the points for interpolation to 

(z,(). This is shown in Fig. 5.14 

The solution from the Cauchy evolution can be output on 12 slices and compared 

with the solution to both the double-null and null-timelike evolutions. The areas 

in which comparisons are free from boundary reflections are shown in Fig. 5.15 

and Fig. 5.16. Outside these areas the interpolated da ta may be contaminated 

by boundary reflections from the Cauchy evolution, depending on the nature of 

the initial data. In the comparison with null-timelike evolutions there may still be 
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Figure 5.12: Convergence test of null-timelike evolution of the one-dimensional wave 
equation with zero boundary condition, showing second order convergence. 

Figiure 5.13: Convergence test of null-timelike evolution of the one-dimensional wave 
equation with radiation boundary condition. There are clearly some convergence 
problenis when the pulse hits the inner boundary at % 35. I avoid the use of such 
boundary conditions in the null-timelike evolutions of later chapters. 

reflections from the inner null-timehke boundary at a: — and these could e&ct 

the comparison. 
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Figure 5.14: Interpolation using three points. First interpolate for a solution at 
z on three timeshces, i.e. at the points on the timeslices marked with a cross, 
surrounding (z, marked by a bold cross, and then use these three values ag the 
points for interpolation to 

L L/2 3L/4 L 

Figure 5.15: The comparison of Cauchy and double-null evolutions is valid in the 
shaded area. Outside this area, the Cauchy data may be contaminated by spurious 
reflections. 
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L L/4 L/2 L 

Figure 5.16: The comparison of Cauchy and null-timelike evolutions is valid in the 
shaded area. Outside this area, the Cauchy data may be contaminated by spiuious 
reflections. This comparison is, however, not free from boundary effects from the 
null-timelike evolution itself. 
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Chapte r 6 

P e r t u r b e d Schwarzschild Black 

Holes 

In 1957 Regge and Wheeler derived an equation governing small, linear pertur-

bations of a held in Schwarzschild spacetime [15]. In this section I re-derive the 

Regge Wheeler equation, hrst for scalar perturbations, then for the more general 

case, including vector and tensor perturbations. I describe the Green's function 

approach which can be used to calculate the frequencies of the quasi-normal mode 

frequencies. I also evolve the scalar equation using the numerical methods outlined 

for the one-dimensional wave equation in Sat space for each of the three initial value 

problems, Cauchy, double-null, and null-timehke. I introduce compactihcation in 

the retarded null coordinate, and combine the evolution on compactihed retarded 

hypersurfaces with an evolution on compactihed advanced hypersurfaces by match-

ing, and thus evolve the entire spacetime outside the black hole. I test the results 

by comparing the quasi-normal mode frequencies, damping and the late time tails 

to results obtained elsewhere using the Green's function method, and I also test for 

second order convergence. 

6.1 The Scalar Wave Equation in Schwarzschild Geometry 

Consider a massless scalar held propagating in Schwarzschild geometry. A massless 

scalar held evolves according to the Klein Gordon eq. 

- 0 (6.1) 
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The SchwEirzschild metric is given by 

/ ^ - 1 
r 

0 

0 
\ 0 

0 0 
2M^-1 Q 

0 \ 

0 

0 

0 

0 

0 sin^ ^ y 

(6.21 

= = -r^8in^6i (6.3) 

and substituting this into eq. (6.1) we And 

(6.4) 

- / 1 
2M 

+ r I 1 -
2M 

+ 2r 1 
r y \ r y 
1 _ . . 1 

, . -a8(sin6»^e^) + ^ - 2 - g * ^ ^ = 0 (6.5) 
sin 6) sm 61 

When working with a spherically symmetric metric we can introduce the spher-

ical harmonic mode decomposition: 

r, )̂}1m(<9, ^) 

(6.6) 

(6.7) 

where the provide a complete set of basis functions, each satisfying 

sm"̂  ̂  sin^ 

By substitution into eq. (6.5) we find 

= - / 1 -
2M -1 

(6.8) 

^1 ^ + 2r ^1 ^ 

1 1 
{sixi ddgYi'm") + — 

s m ^ sin ^ 
"U/m — 0 6.9) 

Using eq. (6.8) we obtain an equation involving only r and ^ 

- r 1 
2M 

+ 7 - ^ 1 
2M M 

(6.10) 
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We transform to the tortoise coordinate r* 

^ (6.11) 
ar* \ r y or 

i.e. r* = r + — 1) - The tortoise coordinate goes to minus inanity at 
\2M / 

the horizon, i.e. r* ——oo as r —+ 2M and r* r as r — o o . Our equation reduces 

to 

— 0 (6-12) 

where 

W r ) ^ ( l - ^ ) ( ^ + ^ ) (6.13) 

This is the Regge Wheeler equation for scalar perturbations. 

6.2 The Regge-Wheeler equation 

Regge and Wheeler derived their equation by introducing small perturbations, 

to the background metric ^ 

They considered the hnear perturbations to the Ricci tensor by calculating with 

the above metric and retaining only terms linear in whilst discarding higher 

order terms. 

The standard equation for the Christoffel symbols in terms of the metric tensor 

is 

^ %//,:/) (6.15) 

and using the perturbed metric we find 

= + (6.16) 

(6-17) 

where we denote the covariant derivative with respect to the background metric. 
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Similarly we End the perturbation to the Ricci tensor: 

-Ra/3 = 

rT — r'^ -t- r')' — 
ory,/) a!;8,'y a/3̂  Tfi 

(6.18) 

(6.19) 

(6.20) 

Then by substituting these equations into Einstein's equations in vaccum, = 

0, we get a second order differential equation for These equations are decom-

posed into spherical harmonics. 

Two different kinds of perturbations can be examined. In the terminology of 

Regge and Wheeler, these aje called perturbations which transform as (—1)̂  

under space inversion, and perturbations which transform as (—1)̂ "̂ .̂ Chaii-

drasekhar(1983) [80] refers to them as perturbations which cause dragging of 

the inertial frames, and poZor perturbations which are independent of the sign of 

and therefore do not induce rotation. The most general odd pertiubation is given 

by Regge and Wheeler as 

h — 

0 0 

0 0 

Similarly, for even pertiu-bations 

sine 

sine 

(t,r) y 
sin 8 -A2( ,̂r)M^Tri sin <9 

-A2(^, 7")%;^ sin 6; 

(6 ,21) 

(1 — -^0(^, HAt,r)Y,„ hf{t,r)d,Y„ 

r^[A'(^, r) 

-|-G(t, r)^gg]y;ni 

hf(t,r)d,Y,^ 

sin^6)[^(^, r)?zm 

-t-G(t, r)(yfm — ^ m ) 

(6 .22 ) 
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where 

1 

sm ^ 

(6.23) 

f6.24) 

The perturbations are simphhed by the following three steps: 

# Frequency analysis: Because the background metric, eq. (6.3), is time inde-

pendent, we can asstune that every component of the perturbation will 

have a time dependence of the form ajid consider perturbations of a 

particular frequency, w. 

# Specialization to m = 0: Schwarzschild spacetime is spherically symmetric. 

For all values of A: and parity all values of m will lead to the same radial 

equation, so Regge and Wheeler have speciahzed to m = 0 with the advantage 

that ^ will completely disappear from the calculations. 

# Gauge transformation: By an appropriate gauge transformation it is possible 

to impose additional simplifying conditions on the perturbations. Regge and 

Wheeler have chosen to eliminate those terms which contain the derivatives 

of highest order with respect to the angles. 

The hnal simplihed form for the odd perturbations is 

h^u — 

0 0 0 Ao(r 

0 0 0 Ai(r 

0 0 0 0 

0 0 

X e - - ' ( s i n ^ ^ ) f z ( c o s g ) (6.25) 

and the even perturbations are similarly written as 

h fiv 

H„(r) (1 - H,(T) 

H,(r) H,(r) (1 -

0 0 

0 

0 

0 

0 

0 

0 r^A^sin^^ 

X e ^*f2(co8^) 

(6 .26) 

The problem is now reduced to only two unknowns in the odd case and four un-

knowns in the even case. These expressions can be substituted into eqs. (6.17) and 

(6.20) to yield the desired Einstein equations. Whereas Regge and Wheeler must 

have spent considerable time doing this by hand, I have used GR Tensor, a com-

puter software package for use in the computer algebra system MAPLE. The hrst 

step is to deSne and then to calculate the perturbed Christoffel symbols, 

then the perturbed Ricci tensor. Some simple operations such as 
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aze required in order to find the most suitable form for the equations. Stan-

dard relations for the differentiation of spherical hajrmonics are also substituted into 

the equations. 

For odd perturbations only three nontrivial Einstein equations are foimd. For 

even perturbations the Einatein equations give one algebraic condition, three Erst 

order differential equations and three second order differential equations. 

Regge and Wheeler consider odd perturbations. The three non-trivial equations 

are 

= 0 

1 - — ^ ^ ^1 = 0 (6.27) 

(^7^^ = 0 

a; - wAi - 2 ^ 1 + ( Z - ! ) ( ( + 2 ) ^ = 0 (6.28) 

1̂ 
^ j + 22cj:^ + ^ j ^ 4 ^ : ^ - Z(/ + l) / ioj ^ = 0 (6.29) 

Using the definition 

Q = r 1 1 - — I (6.30) 

and eliminating Ao gives us the second order wave equation with potential 

^ ^r.r.Q + ^()^)0 — 0 (6.31) 

where 

v w = ( 1 - — ( 6 ; 3 2 ) 
y* y I 

This is the potential for gravitational perturbations, but a general form of the 

potential may be written as 

where g is the spin-weight of the perturbing held, with a = 2 for gravitational waves, 

a — 1 for electromagnetic waves and 5 = 0 for scalar waves. 
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6.3 Greenes Function Approach 

We may solve the Regge-Wheeler equation in the frequency domain for given ini-

tial data using the Green's function method. We must find the Green's function 

which satisfies the equation 

(^r.r. — t) — — r*) (6.34) 

where we impose the condition G(r*, r*, t) = 0 for ( < 0. 

In order to hnd the Green's function we transform to the frequency domain and 

thus reduce eq. (6.34) to an ordinary differential equation. We follow Andersson [81] 

and use the transformation 

y+oo 
f(G(r*,w)) = G ( n , r : , w ) = / (6.35) 

Jo 

which is well deEned for 7m(w) > 0. The Green's fimction in the frequency do-

main can now be expressed in terms of two linearly independent solutions to the 

homogeneous equation 

2 

$(r*,cu) = 0 (6.36) 

The forms of the solutions depend upon the boundary conditions. The first 

solution (at r* < r*) corresponds to purely ingoing waves at the horizon 

" _ * (6.37) 
+ An(w)e r* ^ oo 

The second solution at (r* > rQ corresponds to purely outgoing waves at infinity 

&+(r.,w) - .{ r . - - o o (g gg, 
r* —̂  oo 

Then the Green's function may be written as 

where 

TV(w) — ^ 2iwv4.2n,((̂ ) (6.40) 
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is the Wronskian of the two solutions. After Ending we can return to 

the time domain using the inverse transform 

-| f+oo+ic 

V - o o + i c 

Finally, the solution to the Regge-Wheeler equation is given by (see e.g. [82] 

f6.411 

0) + 0)G(r, , (6.42) 

By direct integration we can discover how some initial perturbation evolves in 

time but it does not give much insight into the physics behind the different features 

of the solution at different times. It is possible, however, to investigate the behaviour 

of the Greens function in diSerent regions of the time domain using the method of 

analytic continuation and using the residue theorem. 

Figure 6.1: Analytic extension of the contour in the complex frequency plane. 
Crosses represent the singularities which are associated with the quasinormal modes. 
A branch cut, marked here by a bold hne, is introduced along the negative imaginary 
axis in order to avoid including the point w = 0 in the integration. 

When = 0, the Greens function G(r*,r*,w) is singular and the two 

solutions, $+ and are no longer linearly independent. From eq. (6.37) we 

can see that this corresponds to a solution with purely outgoing waves at spatial 

infinity aad purely ingoing waves at the horizon. These are the quasinormal mode 

solutions whose characteristic frequencies all he in the lower half of the complex 

w-plane. Near the quasinormal mode frequencies (a;^) we can approximate by 

dAr 
w w (6.43) 
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Using eqs. (6.39), (6.40) and (6.43) we can approximate the frequency domain 

Green's function by 

G(r., r:, ^•) ~ (6.44) 
2w(w — Wg)a:g 

where we have used the notation r*< for mm(r*,r*) and for maa;(r*,r*) . We 

extend our integration contour as illustrated in Fig. 6.1. There are some diSiculties 

involved in this step due to the fact that the transformation in eq. (6.35) is defined 

only in the upper half of the cu-plane (see [49] for discussion) but we assume here 

that such an analytic continuation is possible. A branch cut is introduced along 

the negative imaginary axis to avoid including the point w = 0 in the integration. 

Using the new contour, the Green's function may be written as three terms 

G(r*, r*, t) = G/(r*, r;!,, ̂ ) + Gg(r*, r*, t) + (^^(r*, t) (6.45) 

G, is the sum of the residues at the poles of G(r*,r*,w), corresponding to the 

quasi-normal ringing, is the integral of (9(r*,r^,w) around the branch cut, and 

Gy is the integral along the large quarter circles. The branch cut contribution is 

associated with the late time power law decay of the solution [57] and the large 

arcs which close the contour are associated with the high-frequency response. G/ 

reduces to the free-space Green's function in the hmit of zero mass for the black 

hole. 

It is possible to calculate the quasi-normal mode frequencies and this has been 

done by several accurate methods, e.g. [48], [49]. Finding the quasinormal mode 

contribution to the Green's function is a lengthy process [? ]. Andersson has used 

an asymptotic approximation to arrive at a simphhed formula for the mode excita-

tions [81] [49]. I will not present the full details of the Green's function calculations 

here but I will use the results of Leaver and Andersson for the quasi-normal mode 

frequencies for comparison with the results of time evolutions I have carried out as 

explained in the next section. 

The late time decay of the solution was studied by Price [47]. He showed that 

the held decays with a power law tail at late times according to the formula 

#(r,()rx;r(^'+^+^) (6.46) 

where f = 1 for static initial data and f = 2 otherwise. This was conhrmed by 

Gundlach et al [62] using hnear and non-hnear evolutions. 
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6.4 Numerical Evolution 

It is fairly straightforward to use our basic numerical techniques from the previous 

section to evolve the Regge Wheeler equation. We set up a numerical grid in the 

radial coordinate r*. 

One immediate obstacle is that the potential is a function of r which is not a simple 

analytic function of r* (eq. (6.11)), i.e. the equation 

r* = r + 2MZM 
2M 

- 1 (6.47) 

is not invertible. We cannot End aji analytic expression for y(r*) and therefore 

must use a numerical method for calculating the potential at each gridpoint. For 

an initial value we pick some value of r and calculate r* at that point using eq.(6.47). 

Numerical integration is carried out using the fourth order Runge-Kutta method 

described in section (4.2). The convergence of this method has been tested by out-

puting results for double, quadruple etc. grid resolutions. The order of convergence 

was calculated in MAPLE using the function in the stats package. 

The result is given as 3.939899563, very close to the expected second order value of 

4. 

The form of the Regge-Wheeler potential in r and r* coordinates is shown in 

Figs. 6.2 and 6.3. 

Figure 6.2: The Regge-Wheeler potential for scalar waves as a function of r 
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V 

Figure 6.3: The Regge-Wheeler potential for scalar waves as a function of r* 

Following the same scheme given in section 5.1, the Regge-Wheeler equation is 

written in finite difference form as 

Pk + (f t+i ^ +Pk- i ) (6.481 

As initial data we again consider a Gaussian pulse which is travelhng to the left. 

This represents the physical situation of a small perturbation travelling inwards 

towards a black hole. 

The output from this evolution is shown in Fig. 6.4. The pulse becomes distorted 

as it travels inward. On reaching the potential peaJc the majority of the pulse is 

reflected, but some passes through the potential and falls inward further towards 

the horizon. Fig. 6.5 shows how the log of the solution varies with time at a fixed 

point (in this case r* % 30). Here we can clearly see the initial rejection, the quasi-

normal ringing and the late time tail. The modes can be seen more clearly in Fig. 

6.6. 

One way to test our results is to measure the frequency and damping of the 

quasi normal modes and the gradient of the late time tail. These calculations can 

then be compared to known analytic approximations. The results are shown for 

gravitational perturbations with / = 2 and the least damped quasi normal modes 

in this case have complex frequency [49] [57] 

Lu % 0.376 - 0.0899% (6.49) 
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thua we would expect a half-period of 

P 

"2 
TT 8.35 ^6.50) 

By measurement from Fig. 6.6 we get the value 8.3 which compares favoiuably. 

The gradient is measured as —0.083 which is close to the expected value of —0.09. 

The time behaviour of the tail at future null inhnity is given by [62] so we 

would expect here to find The measured fall oS is 7.7. It is possible that we 

have not evolved to late enough times to get a good estimation of the power law 

behaviour. Another explanation could be that we are seeing the eSect of modes of 

higher multipoles. The next higher multipole has fall o ^ 
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Figure 6.4: Cauchy evolution of the Regge-Wheeler equation. On reaching the 
potential peak the majority of the pulse is rejected, but some passes through the 
potential and falls inward further towards the horizon. 

The convergence for this code is shown in Fig. 6.7. 

Gundlach et al [62] have poi nted out that using this kind of hnite differencing 

leads to a ghost potential which can affect the magnitude of the late time tail. Here 

we do not concern ourselves too much about this as a precise Cauchy evolution of 

the Regge-Wheeler equation is not our ultimate goal. This section is mainly an 
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Figure 6.5: Log of the solution at one gridpoint, from the Cauchy evolution of 
the Regge-Wheeler equation. The quasinormal modes can be seen, followed by the 
power-law tail. 

exercise in evolving diEerent kinds of initial value problems for the wave equation 

in Schwarzchild spacetime. 

Although the Cauchy evolution gives good results, there are problems due to 

boundary reflections which contaminate the solution a t late times. This is shown 

clearly in Fig. 6.8. This is a general disadvantage of Cauchy evolution and in an 

attempt to avoid this problem we move to a characteristic formulation. 

The Regge-Wheeler equation can be evolved on chajracteristics. We have used 

double-null coordinates, -u and 2; where 

f ^ -t- r . 

(6.51) 

(6.52) 

givmg 

4^^.^ + y(r)ilr = 0 (6.53) 

This is finite differenced using the scheme described in section 5.2 for the one 

dimensional wave equation. The Regge-Wheeler equation becomes 

(6.54) 
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Figure 6.6: The qua^i normal modes in Cauchy evolution. The picture on the left 
shows the behaviour of the log of the solution at one gridpoint and the picture on 
the right shows the behaviour of the solution itself at the same gridpoint. 

We also need to write the potential, y , on our and -u shces. For any value 

of It and 11 we can 6nd the corresponding r* = (f — 'a)/2. r is approximated by 

numerical integration and substituted into eq. (6.33) to find f ) . 

The results for this evolution scheme, output on constant it slices, are shown in 

Fig. 6.9. Siurfaces of increasing -u follow the part of the initial pertm-bation which 

travels unimpeded towards the horizon along surfaces of constant i;. Any reflections 

from the potential travel along the positive ^ direction and are thus immediately 

integrated oS the grid. The log of the solution at constant r* is shown as a function 

of time in Fig. 6.10. The quasinormal modes are shown in Fig. 6.11 and the power 

law tail can be seen in hg. 6.12 

As in the case of the Cauchy evolution, we test our results by comparison with 

ajialytic approximation. The half period of the quasi normal modes is measured 

as 8.29 ajid the damping is measured at —0.081. The measured tail is which 

compares quite well with the expected 

This scheme leads to a very clean evolution and gives good results. By extending 

the domain of integration we can get better approximations for the late time tail 

at null infinity, however this could be a computationally expensive procedure. One 

of the benefits of characteristic coordinates is that we can compactify for solutions 

at future null infinity. This would be achieved in the double-null case by compact-

ihcation of the f coordinate. For solutions at the horizon we could compactify in 

the coordinate. This involves a compactihcation in time and space. Although 

it is not a problem here, in more general cases the double null formulation could 
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Figure 6.7: Results of the convergence test for the Cauchy evolution of the Regge-
Wheeler equation. The sharp peak appears when data hits the boundary. 

Y 0 

Figure 6.8: Boundary reflections in the Cauchy evolution. This is a snapshot taken 
at late times, after ail the radiation should have left the grid. 

lead to some difhculties in black hole spacetimes as outgoing rays may cross near 

the horizon and ingoing rays may cross at lazge radius. This would lead to caustic 

formation, which our simple numerical treatments cannot deal with. 

The code is second order convergent as can be seen f rom Fig. 6.13. 

The Regge-Wheeler equation can be written in retarded null-timelike coordinates, 

r*, 'U = t - r* 

2 ^ , + = 0 (6.55) 
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Figure 6.9: Double null evolution of Regge-Wheeler equation on constant u slices. 
The reflections from the potential travel straight oE the grid and a appear as straight 
lines here. 

The derivatives are written in hnite diEerence form using the second order scheme 

described in section 5.3, giving the second order hnite diEerence equation 

1 

1 - A ' 

AitAr, 

"Pk-i - Pk + Pk-i) + 
A 

1 - A 

2(1 
71+ p -r p 

1 K 

(6.56) 

(6.57) 

where ^ = 
A'U 

4Ar* 
An ingoing wave boundary condition is imposed at the inner boundary. This, 

along with a description of the treatment of the Erst gridpoint near the inner bound-

ary, can be found in section 5.3. The outer boundary is treated using a second order 

one-sided derivative. 

As initial data we consider a Gaussian pulse situated outside the potential peak. 

This represents a perturbation moving in the negative radial direction. The output 

from this evolution is shown in Fig. 6.14 as the time variation of the solution at 

65 



4000 3000 

Figure 6.10: Log of the solution at one gridpoint, from the double-null evolution of 
the Regge-Wheeler equation. The quasinormai modes can be seen, followed by the 
power-law tail. 

r* = 30. It is apparent from this figure that there are serious boundary condition 

problems. There are rejections from both the inner and outer boundaries. 

In order to solve the problems with the boundaries we can compactify our radial 

coordinate. We choose to compactify in both directions in order to include both 

future null inhnity and the black hole horizon on our numerical grid. It is essential 

however that we have enough gridpoints near the potential peak in order to resolve 

the potential features here and we also require good resolution near the initial data. 

We do not worry about the late time resolution near the horizon for now but we 

will return to that problem shortly. We use the compactiAed radial coordinate 

a; - tan (6.58) 

The constant, / , determines the gradient of the function a;. By choosing a small 

value for / we can compacti^ far away and also very near to the horizon, whilst 

leaving good resolution in the region neaf the initial da ta and potential. Fig. 6.15 

plots a; as a function of r* for / = 0.0017. 

Written in terms of a; ajid it the Regge-Wheeler equation is 

+ 2 ^ tana;^^ -|- = 0 



900 1000 1100 
t 

Figure 6.11: The quasi normal modes in the double-null evolution of the Regge-
Wheeler equation. The picture on the left shows the behaviour of the log of the 
solution at one gridpoint and the picture on the right shows the behaviour of the 
solution itself at the same gridpoint. 

which is written in finite difference form as 

27 

+ 7 

7^ tana; 

+ p^_i) 

Aa;/3 

where 7 = / / ( I + tan^ a;) and 

/3 = 

-Pt- l + Pk - P L l ) - 1 
T14-7 .601 

27 7 
A'uAz 2Aa;^ 

7" tana; 
Aa; 

(6.61) 

To calculate the value of the potential for very large positive values of a; we 

choose a nearby value of r which is approximated by r — r*, calculate the actual 

value of r* at this point and then integrate to the required position. This solves 

the problem of integrating over huge distances. For large negative values of r* I 

integrate from r = 2.001, although it may be more accurate, and efficient, to use 

some approximation for the potential near the horizon. 

The results are shown on constant it surfaces in Fig. 6.16. The outgoing radi-

ation integrates cleanly off the grid and the part of the initial perturbation which 

passes through the potential barrier travels inward towards the horizon. Due to 

the fact that this part is so small, it cannot be seen in Fig. 6.16, but the late time 

behaviour can be seen in Fig. 6.17 in which the scale is magnified. As expected. 
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log(t) 

Figure 6.12: Log log plot of the solution at constant r* as a function of time for 
the double nuU evolution of the Regge-Wheeler equation. The data approaches a 
straight line at late times, indicating a power-law solution. 

Figure 6.13: Second order convergence for double-null evolution 

the lack of resolution near the horizon causes problems at late times and spoils the 

evolution. In order to avoid this problem we would like to match to an ingoing 

characteristic evolution. This is described in the next section. 

We match two characteristic codes, one ingoing and one outgoing. This is illustrated 

in Fig. 6.18. This solves the problem of having to impose boundary conditions at 

the inner and outer boundaries. 



3000 4000 5000 6000 7000 8000 

Figure 6.14: Log output from null-timelike evolution of Regge-Wheeler equation. 
The boundary reflections can be seen clearly. In order to avoid these reflections we 
will use a compactihed radial coordinate. 

2000 

Figure 6.15: The compactified radial coordinate a; plotted as a function of r* for 
/ = 0.0017, see eq. (6.58) 

The Regge Wheeler equation written in ingoing null-timelike coordinates (f = 

^ -t- is 

2 ^ ^ . + = 0 (6.62) 

We compactify using the coordinate z = tan ^(/r*) giving 

2î ^T,z + ^ t a n z ^ z — — 0 f6.63) 

69 



I I 1 ' _ 
u=2 _ 

1 1 , 1 , 1 , 
- 2 

6 

3 

0 

-3 

- 6 

6 

3 

0 

-3 

- 6 

_ ' 1 ' 1 ' 1 ' _ 
u= 160 _ 

, 1 , 

_ ' 1 ' 1 ' 1 ' 

' , 1 , 1 1 1 1 

2 - 2 

6 

- 1 

3 

0 

-3 

- 6 

6 

3 

0 

-3 

- 6 

1 1 1 j 1 1 1 
u=316 Z 

" 1 1 1 1 
r 

1 1 1 1 1 1 1 
u=551 _ 

3 

0 

' 1 1 1 1 1 1 
u=708 Z 

-
V 

3 

0 
-

— 

, 1 < 1 

Figure 6.16: Retarded null-timelike evolution of Regge-Wheeler equation with the 
radial coordinate compactified. The initial pulse hits the potential and the reflected 
radiation passes cleanly off the grid. 

and, finite diEerencing in the same way as we have done for outgoing characteristics, 

we get 

pr* 
„2 
7 

tan a; 

Az/3 

1 

t - l 

f6.64) 

where A; increases in the direction of the horizon. 

To update the solution at the matching boundary we use a slightly modihed 

version of our double null scheme described in section 5.2. This is illustrated in Fig. 

6.18. We know the solution at all points on eind -u" and we require the solution 

at point 5'. The intersection of and is marked P . We calculate the value 

of z = at this point by &rst calculating the value of r* here 

rY = (6.65) 
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Figure 6.17: Late time behaviour on a u shce for the compactified retarded null 
timelike evolution of Regge-Wheeler equation. Compactihcation near the horizon 
causes resolution problems for the ingoing quaai normal modes. This could be solved 
by matching to an evolution ingoing null hypersurface before the resolution breaks 
down. 

is then given by 

= tan Vorl'l (6.66) 

The solution is obtained at this point by interpolation of the solution at 2;^, 

and as described in section 5.4. By an analogous procedure we can 

interpolate for the solution at the intersection of and w", marked Q. We now 

have four points, including the previous boimdary point of a double null cell and 

we can use eq. (6.54) to update the solution at the matching boundary, point 5'. 

The results are shown in Fig. 6.19. Fig. 6.21 shows the late time behaviour for 

this evolution and we can see the held decay. Even at this scale, where we have 

zoomed in from Fig. 6.19 by a factor of 10^ we do not see rejections or noise. Of 

course this code is not perfect and if we zoom in a few more factors of ten we will 

see some problems. 

The quasi normal mode output at future null infinity is shown in Fig. 6.20 and 

Fig. 6.22 shows the power law behaviom of the late time tail. The half-period of 

the modes is measured as 8.3 and the damping is measured as —0.089 which are 

both in good agreement with the analytic approximations. The late time power law 

is measured as which is not in good agreement with the analytically obtained 

16̂  law. It is possible that we have not evolved to late enough times to properly 

measure the late time tail, or that we are seeing some mixing of higher order modes. 

This code is second order convergent, as shown in Fig. 6.23. 
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Figure 6.18: Calculating the solution at the matching bounday in the c2m evolution. 
We require the solution at point 6'. We calculate the value of a; = at the point 
f and calculate the solution at this point by interpolation of the solution at 

and We similarly interpolate for the solution at the point Q. The 
four points, 6', f , Q and form a double-null cell and we can use eq. (6.54) to 
update the solution at the matching point, 5". 

6.5 Chapter Summary 

In this chapter I have evolved the Regge-Wheeler equation as a Cauchy, a double-

null and a null-timelike initial value problem. In the null-timehke evolution I have 

compactihed the radial coordinate and matched ingoing to outgoing evolutions and 

this has proven to be a very effective method for a good, clean evolution with second 

order convergence. The Regge-Wheeler equation has been a useful toy-problem, 

introducing aspects of black hole spacetimes which wUl carry over to later chapters 

where I deal with Kerr and Kerr-de Sitter spacetimes. 
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Figure 6.19: Results of the compactihed c2m evolution of the Regge-Wheeler equa-
tion displayed on it = shoes. This looks very similar to Fig. 6.16 but the 
difference is seen when the solution is magnihed at late times. 
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Figure 6.20: The quasi normal modes at future null inhnity from the compactihed 
c2m evolution of the Regge-Wheeler equation. 
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Figure 6.21: Late time behaviour on constant slices. Here we have magnified the 
^-axis to show that the problems seen in Fig. 6.17 are no longer present. 

Figure 6.22: Log-log plot of compactiGed c2m evolution of Regge-Wheeler equation 
at future nuh infinity, showing late time power law tail. 
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Figure 6.23: Second order convergence for the c2m code 
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Chap te r 7 

The Axisymmetr ic Wave Equat ion 

In this chapter I extend the work of previous chapters to two-dimensional space. As 

a toy-problem I consider the wave equation in spherical polar coordinates. Assimiing 

axisymmetry we can write a two-dimensional equation in r, or 6̂ ). The 

resulting equations are similar to the one-dimensional equation with a potential. 

Assuming a redective boundary at r = a we can calculate the resulting modes which 

are scattered. The analytic derivation for the frequency of these modes was carried 

out in [85] and is reproduced here. I use these analytic results to test the numerical 

time evolutions which are also described in this chapter. I have chosen this toy-

problem because the equations are similar to the equations governing perturbations 

in Kerr spacetime, enabhng me to test the numerical schemes which I will use in 

the next chapter. 

7.1 Calculating the Mode Frequency 

The wave equation in spherical polar coordinates is 

In order to End a general solution we use the Fourier transform: 

OO 
^ ( x , w ) = / (7.2) 

V—OO 

with each Fourier component satisfying the Helmholtz eq. 

w) = 0 (7.3) 
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We can separate the variables using 

= (7.4) 

substitute into eq. (7.3) and divide by to get 

' ' + ̂ 4 ^ ^ 4 ) + ^ (7.5) 
.Rr^ (fr \ (fr / 0r^ sin ^ \ sin^ ^ \ 

If we multiply by sin^ ^ and rearrange we End 

' I I (7.6 
$ \ dr \ (fr y 0r^ sin ^ \ 

Since the left side of this equation depends only on (/» and the right side depends 

only on r and ^ we can equate each side to a constant 

and 

1 2 —m f7.7) 

2 

^ -1- + ^ n .—7-r; sin6^-— + w = ^ (7.8 
(fr \ dr y 8r^ sin ^ \ sin^ 6/ 

or, separating variables again in the last eq. 

leading to two separate eqs. for r and ^ 

1 d / . ^(f8\ m 2 

+ (7-11) 
T"' or \ ar y r'' 

Eq. (7.10) is the associated Legendre equation with solutions ^^"^(0086/), the 

associated Legendre functions. Solutions to eq. (7.7) are of the form Qom-

bining these two solutions gives the spherical harmonics 

y;'"(g,(^) o( ^ '"(co8^)e ' '^ (7.12) 
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and the solution may be represented as 

= (7.13) 
(,?Tl 

Eq. (7.11) has solutions which are spherical Bessel functions or Hanlcel func-

tions [86]. Substituting J?(r) = r"i2/z(r) we get 

+ (7.14) 

which is the Bessel eqn. with The most general solution of (7.3) in 

spherical polar coordinates is given by 

$(x.w) = <P) (7.15) 

where A/ are the spherical Hankel functions. The actual solution will depend on the 

initial data and boundary conditions. 

To find the solution for some given initial data at ( = 0 we take the Laplace 

transform of our wave equation but substitute a = — s o that we are actually 

using a one-sided Fourier transform. This is preferable because it enables us to 

work directly in the frequency plane. 

(7.16) 

where 

roo 

Vo /o 
fOO 

Vo 

= — 4 |̂(t=0) — ^(t=0) — 

= — (7.17) 

vo 
(7.18) 
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Therefore the wave equation becomes 

— 0) + = 0) 19) 

We solve this inhomogeneous equation using the method of Green's functions. The 

Greens fimction is given by the solutions to 

= (7.20) 
ŷ.2 ^ ggy. ^2 y y.2 

The solution when r ^ r ' is the same as the solution to the homogeneous equation, 

eq. (7.14). For r < r ' 

= A;('u;/)A(^^('wr) + Bf(w/)Aj^^('u;r) (721) 

where, due to zero boundary conditions on r = a 

,(2)/ \ 
A(?^ / ) - - B z ( ! . / ) % ) ^ (7.22) 

A} 

For r > 7"% using the outgoing wave boimdary condition, we have 

?̂( = Q(w/)A}^^(wr) (7.23) 

We use the condition that must be continuous at to write 

, ( 2 ) / \ 

Q(w/)A|^^('wr') = —B((w/) | /i|^^(wr') + ^^(wr')A|^^(w/) (7.24) 
A I w a ) 

which leads to 

(r < / ) (7.25) ^((^,^0 =Bz(w/) (/ip^('wr) - A|^^(wr)^ 
\ %wa) y 

^yz(r,/) =Bz(w/) ( r > / ) (7.26) 
%wr') /i} %wa) y 

which can be written in the form 

P((/ ' ,/) = Dz(w/) I/i|^\wr<)A|^^(wr>) - ( w r ) ( w / ) j (7.27) 
\ AX(^o) / 

where D((w?-') = Bz(wr')/i2^^('u;r') and r<(r>) is the smallest (greatest) of r and 

r ' . To find an expression for D;('mr') we use the due to the delta 
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function at r = 

- — [pz]r/_e + ^ ^ (7-28) 

At r = / + e we use r< = r ' ajid r> = r, i.e. 

- X I ) ( w / ) ^ (7.29) 
\ n,} %wo) y 

At r = / — e we use r< = r and r> = r', i.e. 

( w / ) ^ (7.30) 
\ /i) %WG) y 

Substituting into (7.28) gives 

Dz(w/) ^A|^\w/)^(/l |^^(wr))r=r' - / l |^^(w/)^(/^r^(^?'))r=r'j = ^ (7-31) 

The expression in brackets above is the Wronskian. We calculate this using (wr) = 

and 

=_Lg-«wr_^ I I ^ .Lgi™-A [ j 
wr (fr \ wr y wr (fr \ w r y 

^ —iwr ( ^ ^ iwr , ^ iwr\ , ^ iwr f -iwr ^ -iwr 
——e e i -e H e e rC 

wr \ wr WT"' y wr \ wr 
+ i ( z ^ = « (7.32) 

wr^ 

Therefore 

A ( - r ' ) ^ (7.33) 

and 

^ (wr)/t{^^(w/)l (7.34) 
^ \ y 

We may now recover the time domain Green's function by the inverse transform 

/

00+2C 

^(r,/)e"^^GL' (7.35) 
oo+ic 
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the solution is then given by 

+00 
(7.36) 

where 

5'z;.(/,w) = 2 w ^ ( / , 0 ) - 4 r ( / , 0 ) (7.37) 

Figure 7.1: Integration contour in complex frequency plane. Crosses mark the 
singularities which correspond to the modes 

In order to calculate the complex integral we consider the contour shown in Fig. 

7.1 and use the residue theorem 

-̂  + / -̂ 00 = (7.38) 

where 7 is the integral we are interested in and Zoo is the extension in the lower 

half of the frequency plane. Following Andersson [81] we argue that the high-

frequency semicircle at inhnity will not contribute to the integral at most times 

(but give roughly the "Bat space progenitors" at early times) and thus the integral 

of eq. (7.35) may be found by simply calculating the residue, i.e. by Ending the 

poles of Prom eq. (7.34) we can see that the singularities of p;('r, r ' ,w) are at 

Aĵ (cua) = 0, so the roots of /i^(wa) will give us the mode frequencies. 

7.2 Numerical Evolution 

We begin again from eq. (7.1) and assuming axisymmetry we remove the ^ depen-

dence 

^((,r,g,<^) = (7.39) 
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so that the wave equation becomes 

- l a , (singa^^) + = o (7.4o) 

7"' ^ r-̂  sm 6̂  sm 0 

7.^.^ 1̂)0/1/̂ 2072 

We use our standard second order leapfrog finite diEerence scheme as described for 

the one-dimensional wave equation. Here, however we must also use 

9on, = ~(vh»~Pl,-^) (-41) 

^ ^'Pk.j +Pfe,j-i) (7-42) 

and the Enite diEerence version of the two-dimensional wave equation is 

K y - % - 2p t j + P L i j ) + - P t - i j ^ ( P k + i j - 2p t j + P L i j ) + 

[7.431 

We evolve the area 0 < ^ < 7r and use boundary conditions 

= 0 (7.44) 

+ = 0 (7.45) 

^^,0 = 0 (7.46) 

= 0 (7.47) 

We choose as initial data a Gaussian pulse which is moving inwards. For the 6̂  

dependence we choose a function which is consistent with our boundary conditions 

and with the value of m which is used to separate the coordinate. The results 

shown in this section are obtained using the fumction sin^ ^ cos i.e. / — 3. 

Fig. 7.2 shows the output along the direction ^ — 0.9 with the inner boimdary 

set at r = 10 and the outer boundary at r = 230. Fig. 7.3 shows the evolution 

for 0 < 6) < TT at constant radius, r = 20. Fig. 7.4 shows the time variation of 

the log of the solution at ^ = 0.9, r = 30. Here we see the quasi normal modes of 

the system. The expected frequency can be calculated as the zero of the spherical 

Hankel function of the first kind. Since we are using initial data with m = 2, Z = 3 

we must hnd the roots of 

(wa)^ + 6%((.ua)̂  — 15(wa) + 152 — 0 (7.48) 
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The roots may be found quite easily using a computer algebra system such as 

MAPLE. We find the following three roots 

= 1 .7544- 1.8389% 

Z2 = - 1 . 7 5 4 4 - 1.838% 

Z3 = 0 — 2.3222% 

(7.49) 

(7.50) 

(7.51) 

We expect that wo = 1.75, i.e w = 0.175 for <2 = 10. This gives us a frequency and 

half period for the modes of 

/ 

P 

w 

TT 
18 

(7.52) 

r7.53) 

This half period approximately fits the measured value from Fig. 7.4 of 16.7. It 

is not surprising that the lit is not very close because we see so few modes with 

which to measure the frequency. The accuracy of the frequency calculation could 

be improved by using a fast Fourier transform. 
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Figure 7.2: Cauchy evolution of the two-dimensional wave equation for a constant 
^ direction. The initial pulse is reflected by the hard sphere at the inner boundary. 
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t = 2 4 

[=90 

Figure 7.3: Cauchy evolution of the axisymmetric wave equation for a constant r 
surface. The results are not so smooth in the ^ direction but this is improved by 
adjusting the resolution, A^. 

We transform eq. (7.40) to characteristic coordinates ('u, r, 6̂ ) where % = ^ — r to 

get 

r " '' '' y.2 ^ 
1 

(sing^g)@+ ^ . . ^ = 0 
sin^ ^ 

(7.54) 

In order to fully exploit the characteristic formulation we compactify the radial 

coordinate by transforming to a new coordinate a; given by 

a; = 0 < r < oo, 0 < z < 1 (7.55) 

The wave eq. written in terms of this new coordinate is 

2(1 - + 2(1 _ - (1 - x)*d,,w + 2(1 - xf (l - i ) 

2;̂  sin 6) sin" ^ 
(7.56) 
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Figure 7.4: Log of the solution from the Cauchy evolution to the axisymmetric wave 
equation, showing modes 

We Suite diSerence this equation using by calculating the derivatives at position 

+ 1/2, — 1/2, j ) . The derivatives involving -u and z are finite diEerenced using 

the same scheme we used for the one-dimensional null-timelike evolutions. Now we 

also include the derivatives in ^ as 

1 r.^+1 (7.57) 

(7.58) 

and our hnite differenced evolution equation is 

= 
D2 D3 D 4 D5 

+ PA+ij) + 

D1 

D7 
+ p L + i ) + (7.59) 
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where 

D1 = 
2fl X + 

D 2 = 
2(1 X 

D3 

D4 = 

A'uAa; 

[1 - 2;) 
2Az2 

(1 - 3;) 

zAw 

(1 - 2;) 

â A-u 

Az; 
i + i 

X 

X 
Aa; 

1 + 
1 

X 

[1 - 37)"̂  

2Aa;2 

:i -

Aa:^ 

(1 - 2 ; ) ' 

2(1 X 
AiiAa; 

+ 
(1 a: 

zA« 

[1 

Aa; 
1 + 

X 

[1 — a;)^ (1 - z) 

Aa;^ A^%2 

(1 - a;) 

AwAa; a;A« Aa; 
1 + 

X 

X 
2Aa;2 

D6 = 

Z)7 = 

2Ag2^2 
(1 — a;)^ 

+ 
1 — a;)^ ^ (1 — co8^ 

4 A^a;^ sin ^ 
(1 — C08^ 

(7.60) 

m^(l — z)^ 

2a;̂  sin^ ^ 

(7.61) 

(7.62) 

?7%̂ (1 — Z)^ 

2z^ sin^ 6̂  

(7.63) 

(7.64) 

(7.65) 

(7.66) 
2 A^^a;^ 4A^a:^ sin ^ 

and ah coefhcients are calculated at (72, + 1/2, A; — 1/2, j ) . 

A zero boundary condition is implemented at A; = 0, i.e at some positive value of 

z. As in the one dimensional case, we must make some adjustment to our evolution 

equation in order to calculate the new value at position A; = 1, the hrst radially 

inward point from the inner boundary. Here we cannot use point (M + 1, A; — 2, j ) 

because it does not exist. We use the same method described previously in one 

dimension, i.e. the double a;-derivative is calculated to first order here only. At 

the outer boundary another small adjustment is made to eqs. (7.59) and (7.66). 

We do not have a gridpoint at (/%, A; + 1, j ) and so we use a second order one sided 

derivative here. Zero boundary conditions are imposed at ^ = 0 and ^ = 7r. 

We choose initial data which is a pulse in the a; direction and the function 

sin^^cos^) in the theta direction with m = 2. We therefore expect modes of / — 3 

and a frequency given by wo — 1.75. 

The results are shown in Fig. 7.5 for output on a constant ^ = 0.54, and in Fig. 

7.6 for a constant radius. We have set the inner boundary, a, at a; = 0.5, i.e. r = 1 

and therefore expect the quasi-normal modes to have frequency and half-period 

given by 

^ - 2 7 r 

f % 1.̂  
UJ 

(7.67) 



The log of the solution obtained for an angle ^ = 0.9 at future null inhnity is 

shown in Fig. 7.7 as function of 2/. The calculated frequency of 1.63 compares well 

with the analytic result. 

I have tested the characteristic code for second order convergence. The results 

are shown in Fig. 7.8. The solid hne is the result for a test using a:-direction reso-

lutions of 2000, 4000 and 8000 gridpoints, whereaa the dashed line shows the result 

for a lower resolution test of 1000, 2000 and 4000 gridpoints. The convergence is 

second order up to about t = 5 but then increases. This could be due to instabihty 

problems with the lower resolution runs. This is supported by the fact that the 

second order convergence is extended in the higher resolution test. Low resolution 

stability problems can be seen in Fig. 7.9 which shows the output at one point for 

successively higher resolution runs. 

One condition which is necessary for stability is the Courant condition, i.e. 

that the numerical domain of dependence should include the physical domain of 

dependence. In the case of the characteristic code described above, this translates 

to the necessity for the three points, Pt+i j ; P t j+ i f ' w - i to lie outside the paat 

null-cone from the point The equation of the characteristics in flat space is 

given by 

(z — + (z/2/o)^ + ^ ^ = 0 (7.69) 

so for the example above, considering the point gives the condition 

(Ar)" - (-A^/ + Ar)^ = 0 (7.70) 

A^/ < 2Ar (7.71) 

Considering the other two points we require 

(r sini9 — 'rsin(^ -|- A^))^ -t- (r cos6^ — r cos(6^ -|- A^))^ — (—Aif)^ = 0 (7.72) 

At/ < y2 r \ / cos (A^) - 1 (7.73) 

At large r the hrst condition will dominate, but near the origin the second condition 

becomes highly restrictive and we can see that this scheme leads to an unconditional 

instability at the point r = 0. Fortunately, in the above example of waves reflecting 

from a sohd sphere we do not have to worry about this problem but we must consider 

the second condition when the radius of the sphere is very small. 
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u = 0 . 3 8 

u=4 .12 u = 2 . 2 5 

Figure 7.5: Characteristic (null-timehke) evolution of the axisymmetric wave equa-
tion with rejection from a hard sphere shown on a constant ^ surface. The axis 
is scaled by 10^. 

7.3 Chapter Summary 

In this chapter I have evolved the axisymmetric wave equation as a Cauchy and 

a characteristic initial value problem for the case of a pulse scattering off a hard 

sphere. This toy problem has been good preparation because it has extended the 

numerical techniques to two dimensions. The axisymmetric wave equation is similar 

in form to the scalar wave equation in Kerr and Kerr-de Sitter spacetimes which will 

be the focus of the next two chapters. I have also investigated the convergence azid 

stability properties of numerical schemes that I will use in the following chapters. 



u = 0 . 3 8 u= 1.12 

u = 2 . 2 5 u = 4 . l 2 

Figure 7.6: Characteristic (null-timelike) evolution of the axisymmetric wave equa-
tion with rejection from hard sphere shown on a constant r surface. 

Figure 7.7: Log of the solution to the characteristic evolution of the axisymmetric 
wave equation at future null inanity, showing modes 
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Figure 7.8: Results of two convergence tests on the characteristic evolution of the 
axisymmetric wave equation. The dashed line represents a lower resolution conver-
gence test. This hgure shows that the convergence improves with higher resolution. 

Figure 7.9: Solution from axisymmetric wave characteristic evolution at one point 
for three grids of diSerent resolution. Dotted line: 1000 gridpoints, dashed line: 
2000 gridpoints, sohd line: 4000 gridpoints. The amphtude was shifted slightly in 
order to display the results together more clearly. 
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Chap te r 8 

A Character is t ic Approach to 

P e r t u r b e d Ker r Black Holes 

8.1 Kerr Spacetime 

As a rotating star collapses to form a black hole, its rotation increases, although 

according to Thome [87] the maximum angular velocity for a Kerr black hole is, 

a / M — 0.998. Rotation has a dramatic eEect on the structure of the spacetime 

surrounding the black hole. As the black hole rotates it drags the spacetime with 

it. This results in two photon orbits on the equatorial plane, one for co-rotating and 

another for counter-rotating photons. The distance between those two photon orbits 

increases with the angular velocity. Rotating black holes possess an ergospAere, a 

region of spacetime in which it is impossible to stay still. The outer boundary of the 

ergosphere corresponds to the static limit of the black hole but, unlike the case of 

non-rotating black holes, this boundary is outside the event horizon, and therefore, 

particles may return from this region. 

Whereas Schwarzschild black holes have only one horizon, a Kerr black hole has 

two. At the outer horizon, an observer would experience a reversal of roles for time 

and space. At the inner horizon, time and space switch roles again to act as they 

do outside the horizons. There is much more that could be said about the internal 

structure and the singularity beyond the Kerr horizons, but the focus of this chapter 

is on the exterior region. 

In the previous chapters I have developed the necessary skills for evolving per-

turbations against the exterior spacetime of a Kerr black hole. Here I describe the 

derivation of the Teukolsky equation governing scalar, electromagnetic, and gravi-

tational perturbations in Kerr spacetime. I then describe characteristic codes that 

I have developed to evolve the scalar equation in null-timelike and double-null coor-

dinates. I also present some results using an old Cauchy code [2] which contribute 

to a recent debate over the late-time fall-off for initial da ta of spherical harmonic 
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form with m = 0, / = 4, and some evidence to support the superradiant resonance 

cavity interpretation for the late-time behaviour or rapidly rotating black holes. 

8.2 The Teukolsky Equation 

The derivation of the Regge-Wheeler equation in Chapter 6 involved perturbing the 

metric, calculating the Ricci tensor, keeping only the terms which are 

of hrst-order in and then substituting into the vacuum Einstein equations. In 

that case spherical symmetry allowed us to decompose into spherical harmonics, 

however the axial-symmetry of Kerr space-time makes the separation of the r and ^ 

coordinates impossible by this method and we end up with a PDE in r and ^ rather 

than two separated ODEs. In Kerr spacetime an alternative method for separating 

the r and ^ equations must be used, as Erst presented by Teukolsky [21]. This 

method utilizes the Newman-Penrose formalism which I describe here following the 

presentation of Chandrasekhar [80]. We will return to the derivation of the wave 

equation in Kerr spacetime after reviewing the mathematical foundations. 

(9. ,g. ̂  Tk Fo 

In the tetrad formahsm a suitable tetrad basis of four linearly independent vector-

fields is chosen and the equations are expressed in terms of the relevant quantities 

projected onto that basis. We represent our basis of four contravariant vectors as 

G(a)(G = l ,2 ,3 ,4) (8.1) 

Note that here I use Latin indices to represent 4-dimen8ions whereas I have previ-

ously used Greek indices. This is to avoid confusion later when using spin coefhcients 

(with Greek symbols) in the Newman-Penrose formalism The associated covariant 

vectors are 

where denotes the metric tensor. The inverse of (8.1) is so that 

= c 
(8.4) 

It is also assumed that 

^ ^W(6) (8-5) 

where 7?(o)(6) is a constant symmetric matrix with inverse 
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Given any vector or tensor Eeld, its tetrad components are obtained by projec-

tion onto the tetrad frame. In general we have 

= e'laje'ijTy = (8.6) 

T„ = (8.7) 

By considering the contravaj'iant vectors e(a) as tangent vectors we can define 

directional derivatives ag 

and using this definition gives 

^(a),(6) ^ (8-9) 

where 

7(c)(a)(6) — ( 8 . 1 0 ) 

are called the Ricci rotation-coefhcients and are antisyimnetric in the Erst pair of 

indices. If eq.(8.9) is written in the form 

then the right-hand side of this equation is called the of A(a) in 

the direction which is written as v4(a)|(b). The directional and intrinsic deriva-

tives are therefore related by 

^(a)|(6) - ^(a),(6) (8-12) 

The Lie bracket, 6(6)] = (e(a)e(6) — 6(6), e(a)), can also be expanded in terms 

of our tetrad basis as 

[6(a),e(6)] = C^gĵ )̂e(c) (8.13) 

where the coefficients, C'̂ nj(b) Eure called the They are antisym-

metric in the indices (o) and (6) and thus there are 24 in total. The structure 

constants can be written in terms of the rotation coeScients as 

(̂ (o)(6) = 7(6)(a) -

93 



When eq. (8.13) is written out exphcitly with the structure constants writ-

ten in terms of the rotation coefhcients, the resultant 24 equations are called the 

It is also possible to project the Ricci identity onto the tetrad frame. The result 

is given interms of the rotation coeScients as 

^ W ( 6 ) ( c ) ( 4 - - 7(a)(6)(c) , (4 + l'(a)(b)(d),(c) + 7(6) (a) ( / ) 

")" '7( /)W(c)l ' (b)^ \ d ) ^ 7 ( / ) ( a ) ( < i ) ' 7 ( 6 ) ' \ c ) (8.15) 

which, considering symmetries, gives 36 equations in total. The Bianchi identity 

can similarly be written as 

-^W(6)[(c)(d) | ( / ) ] — ^ ^ {-R(a)(6)(c)(d),( /) 

[(c)(4(/)] 

— 7)̂  ^['7(n)(a)(y)-^(m)(6)(c)(d)+7(n)(b)(/)-R(a)(m)(c)(j) 

+ 7(M)(c)(/)-R(a)(6)(m)(d) + 7 ( n ) ( j ) ( / ) - ^ ( o ) ( 6 ) ( c ) ( m ) ] } ( 8 . 1 6 ) 

In the Newman-Penrose (NP) formalism the basis vectors are chosen as a tetrad 

of null vectors, Z, M, m and m*, where Z and M are real and m and m* are complex 

conjugates of one another. The null vectors satisfy orthogonality conditions 

Z - m = Z - m* = n - m = M - m* = 0 

and we also impose normalisation conditions 

/ - n = 1 m - m" = — 1 

(8.17) 

(8.18) 

which Eire not necessary but lead to significant simplification. These conditions 

together with the null properties 

= = = m* - m* = 0 

enable us to write the fundamental matrix 77(a)(6) (see eq.(8.5)) as 

77(a)(6) 

f8.19) 

( 0 1 0 0 

1 0 0 0 

0 0 0 - 1 

K 0 0 - 1 0 ) 

(8 .20) 
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where we have used 

6i = ,̂ 62 = M, 63 = m, 64 = (8.21] 

The directional derivatives are given special symbols 

61 — = D, 62 — 6̂  = A, 63 — —e'̂  — 64 = — ( 8 . 2 2 ) 

as also are the rotation coe&cients, now refered to as spm 

K — 7311 P — 7314 E — ^(7211 + 7341) 

cr = 7313 = 7243 7 = i ( 7 2 1 2 + 7342 y 

A = 7244 T = 7312 a = ^(7214 + 7344) 

^ — 7242 TT = 7241 — ^ ( 7 2 1 3 + 7343) 

(8.23) 

The equation relating the Weyl, Riemann and Ricci tensors and the scalar cur-

vature is 

Rabcd Cabcd ~^{j]acRbd Vbc^iad Vad^bc ~l~ Vbd^^ac 

~l~ '̂ {VacVbd VadVbc)R (8.24) 

where .Rated is the Riemann tensor, is the Weyl tensor, .Rot is the Ricci tenaor, 

and is the scalar curvature. By using the trace-free property of the Weyl tensor 

along with the property 

(̂ 1234 + (̂ 1342 + Gi423 = 0 (8.25) 

we End 10 independent components of the Weyl tensor, which are represented by 

the hve NP complex scalars 

#0 — — (71313 = 

\l/-l = — (̂ 1213 = 

#2 = — (7l342 = 

^3 = — (7i242 — 

^4 = — (72424 === 

(8.26) 

We can therefore obtain 

C1334 = (72443 = ^ 3 (71212 = (^3434 = - ( ^ 2 + ^ 2 ) (7i234 = ^ 2 " ^ 2 

(8.27) 
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The ten components of the Ricci tensor are dehned by the following scalars 

1 1 1 1 
$00 = ^ $20 = 

1 1 1 1 
$01 = —g-Ris $10 = "2^14 $12 = —2^23 ^ ^2^^^ 

$11 = —^(-Ri2 + -^34) A = — ^ = —(7^12 — ^34) (8.28) 

The commutation relations, Ricci identities and Bianchi identities can now be 

written out in terms of the symbols introduced in this formalism. This leads to a 

large set of equations which we wiU not repeat here. They may be found in [80] 

or [56]. The physical meaning of all the NP quantities and equations is not clear, 

however we do not worry too much about this - the equations serve our purposes 

in deriving a separable equation for perturbations in Kerr spacetime. 

In order to get some feeling for working in the NP formalism we exphcitly work 

out some of the main equations. Consider the commutation relation 

[̂ , D] = [eg, ei] = (^ci3 - 7c3i)e'' 

= (7213 — 7231)-^ — 'Yisi A — — (1̂ 413 — '743i)(̂  (8.29) 

where we have used eq. (8.13), eq. (8.14) and eq. (8.22). By applying eqs.(8.23) 

we get the NP equation 

m = (a* + ^ - 7r*)D + /{A - ( / + e - e*)(̂  - (8.30) 

Now consider the (1313)-component of eq. (8.15), the Ricci identity. By writing 

this equation out in full and using 77, eq. (8.20), for lowering tetrad indices and 

also using the fact that the rotation coefhcients are antisymmetric on the first two 

indices, we hnd 

-R1313 — 7131,3 + 7i33,i + 7133(7121 + — 'y4i3 + 7134) 

— 7131(7433 + 7123 — 7213 + 7231 + 7132) (8.31) 

Then using eq. (8.22) and eq. (8.23) we obtain the N P equation 

—$0 = —Dcr — + (7(p* + p + 3e — e*) + /((—T + yr* — 3/) — a*) (8.32) 
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A similar operation enables us to write out the 20 linearly independent Bianchi 

identities, eq. (8.16), in this formalism. Consider the identity 

-Rl3[13|4] = -Rl313|4 + -Rl334|l + -Rl341|3 = 0 (8.33) 

This can also be written as 

(̂ 131314 + ((̂ 1334 + %-Ri3)|i — ;;-Rii|3 = 0 (8.34) 

where 

Ci3i3|4 — —^ ^ 0 4" 4o:^o — (8.3o) 

Ci334|i = + 3/{̂ 2 — (8.36) 

and 

p(-Ri3|i — -Riijs) — — + ^00,3 — $oo(—'7231 + S'ysig) — SOii-yisi 

— $01 (—7211 — 2'y4i3 + % i ) + 2$io'y3i3 — $027411 

= — D^qi + (5$oo 4- 2$oi(^ 4- p*) + 2$ioc — 2$iiK 

- $02/(* + $oo(7r* - 2a* - 2/)) (8.37) 

Eq. (8.33) can now be written exphcitly in NP terms by combining eqs. (8.35), 

(8.36) and (8.37). 

fe^ro'U 

When a Lorentz tranformation is imposed upon the basis vectors /, M, m and m*, 

it can be considered as belonging to one of three kinds of rotations: 

# Class 7 - leaves vector Z unchanged 

# Class 77 - leaves vector n unchanged 

# Class 777 - leaves the direction of / and n, unchanged and rotates m by some 

angle ^ in the (m, m*)-plane 

The corresponding transformations of the various NP quantities can be found 

in Chandrasekhar [80]. 

We caji classify the Weyl tensor into different types by subjecting the complex 

scalars, ^0--^4, to Lorentz transformation and determining which of the complex 

scalars can be made to vanish. This is the f and there are 5 

Consider a system with # 4 ^ 0 and subject the frame to a rotation of class 77. 

The Weyl scalar ^0 transforms in the following manner (as given in eq. (346) of 
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Chandrasekhar [80]): 

^ W = ^0 + 46^1 + + 46^^3 + (838) 

To make vanish we must End the roots of the right hand side of this equa-

tion. In an peMera/ tensor all four roots Eire distinct but an oZpe6rmcon^ 

specmZ tensor has two or more identical roots. The new directions of i.e. 

^ + 66*7i (8.39) 

are called the pnnczpo/ of the Weyl tensor. The principal mill direc-

tions are directly observable quantities of the spacetime [88], for more information 

on principal null directions see section 8 of Pemose and Rindler [89]. 

The Kerr metric is of Petrov type D. For type D, eq.(8.38) has two distinct 

double roots. In this case we can make ^o, ^3 ^4 vanish to leave only 

^2- This is done by a rotation of class 77 followed by a rotation of class 7. See 

Chandrasekhar [80] for more details about this and the other Petrov types. 

We may now begin the derivation of the perturbation equations. Here we follow 

the method of Teukolsky [21]. Rather than perturb the metric directly as we did 

in the derivation of the Regge-Wheeler equation in Chapter 6, we now perturb the 

null basis vectors,/ = M etc. where the superscript ^ labels 

the background quantities and f labels the perturbed quantity. The NP quantities 

become ^2 = ^ etc. 

The Kerr metric is of type D and therefore we may choose the Z and M vectors 

of the imperturbed tetrad to lie along the repeated principle null directions of the 

Weyl tensor. This simphhes the NP equations because several of the NP quantities 

become reduced to zero. The only remaining non-zero background scalar is ^2^^ 

and the background spin coeGicients, also become zero. 

Consider the following three perturbed NP equations 

((̂  * - 4 a -t- - (D - 4p - 2 e ) ^ r - = 0 (8.40) 

(A - 41̂  + //)^(^) - - 4T - 2 ^ ) ^ r ^ - 3(7^2 = 0 (8.41) 

(D — p — p * —3e -|- e*)cr^^) — ((̂  — T + vr * —a * — = 0 (8.42) 



These correspond to equations (321a), (321e) and (310b) respectively in Chan-

drasekhar [80]. We also use the equations 

= 3p^2 (8 43) 

(^^2 = 3T^2 (8.44) 

which correspond to equations (321b) and (32If) respectively in Chandrasekhar, to 

write eq. (8.42) as 

(D — 36 + e * —4p — p*)^2cr(^) — ((̂  + TT * —a * —3/) — 4T)W2K^^^ — 

(8.45) 

By operating with (D — 3e + e * —4p — p*) on eq. (8.41) and with (^ + vr * —a * 

—3/3 — 4T) on eq. (8.40) and subtracting one equation from the other, we can use 

the commutation relation 

(D — (p 4- l)e + 6 * +gp — p*)(^ — p/3 + g?-) 

— ((̂  — (p + 1)/) — a * +7r * +g7-)(D — pe + g/̂ ) — 0 (8.46) 

with p — 2 and g = —4 to eliminate Then eq. (8.45) may be used to eliminate 

and in favour of This gives us the decoupled equation for 'iP 

+7r — 40;) — 3^2] ̂ 0^^ — 0 

A similar equation may be found for by making the transformations / —> M 

ajid m —m* under which the NP equations are invariant. The result is 

[(A + 3"/ — y + 4 ^ + //*)(D + 4e — /)) 

— (6* — T* + /?* + 3o; + 47r)(^ — T + 4/3) — 3^2]^!^^ — 0 (8-47) 

The Kerr metric in Boyer-Lindquist coordinates is 

6̂ 5̂  = (̂ 1 - sin^ 

sin^ ^ sin^ (8.48) 
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where 

E = cos^ ^ 

A — — 2Mr + 

(8.49) 

(8.50) 

Using the Kinnersley tetrad 

(r^ + r = 
A 

1,0, 
a 
A 

1 

1 
m = 

\/2(r + ta cos i9) 
msin^, 0,1, 

sin^ 

(8.51) 

(8.52) 

(8.53) 

we can now write the gravitational perturbation equations, eqs. (8.46) and (8.47), 

in terms of the usual black hole parameters. Teukolsky has presented one master 

equation for the gravitational perturbations as well the electromagnetic and scalar 

perturbations: 

(r^ + a^)^ 

A 
sin^ ^ 

4Afar _ , 
dtt'^ H ^ dtcf,^ + 

^8 (sin ^^8^) - 2s 

1 

25 
M (r^ — 

sin0 

r — m cos ^ 

A sin^ g 
G(r — M) 2 cos ̂  

A ^ sin^^ 

— a ) ^ = 0 (8.54) 

For gravitational perturbations, 5 = ±2, ^ represents or p This is 

the equation we would like to solve. 

8.3 A Characteristic Approach to Perturbed Kerr Black Holes 

We consider scalar waves in Kerr geometry. This is simpler than solving the grav-

itational problem, yet we expect the same features to be prominent in both caaes 

and the methods we use may be extended later to solve the gravitational equation. 

The wave equation is written in Boyer-Lindquist coordinates as 

A 
1 

sini9 

4Mor 

A 

^8 (sin ^^8^) 
1 

sin ^ 
G 
A 

' 0 [8.551 

where 

— Aa^ sin^ 6? (8.56) 
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We would like to write this as a characteristic initial value problem. lYans-

forming to coordinates rg, where -Ug — t — Tg is the usual so-called 
dv Q/' 

Â eTT determined by — , we immediately encounter a problem -

the double ti, derivative does not vanish. This problem is due to the fact that 

hypersurfaces are spacelike, i.e not hghtlike. There has not been much 

previous investigation of light cones in Kerr geometry. This may stem from a fear 

that such hypersurfaces would develop caustics due to the twist in the metric. As 

far as we are aware, Pretorius and Israel are the first to have presented such an 

investigation [90]. They dehne copies which turn out to be free 

from caustics for all positive values of the radial Kerr coordinate, r . 

We follow Pretorius &: Israel [90] and define coordinates (if, r*, ZamWo, where 

r* and A are functions of the Boyer-Lindquist coordinates r and The wave eq. 

becomes 
y; D2 

A 

+ + A(a^A)^)aAA^ 

+ ( d j A d A ) + -^a , ( s in«a„A)" ) rh-a - = o 
\ sm6/ y A ^ \ s m ^ A y 

(8.57) 

from which we can see that a characteristic formulation requires 

y 
A(8,r*)" + (agr*)" = — (8.58) 

It is possible to obtain a particular separable solution of eq. (8.58) by adding a 

separation constant, o^A, on both sides. 

A ^(a^r*)^ - ^ ^ ^ ((^er*)^ - a^(A - sin^ 6̂ )) (8.59) 

De6ning two new functions 

f^(g,A) = G^(A-sin^^) (8.60) 

Q^(r, A) = (r^ + a^)^ —a^AA (8.61) 

such that 

Q2 (g g2) 
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we find 

^ (8.63) 

which can be satished if ^ and ^gr* = f . i.e. we can write 

(fr* = 8rr*(^r + 

= f (̂ ,9 (8.64) 

(for hxed A). 

Integrating this leads to an extra constant which we call — / i.e. 

rr 
r* + y Pdg + y / (8.65) 

We now have a two-parameter family of solutions to eq.(8.58) 

= (8 66) 

This can be extended to a solution depending on A and an arbitrary function/(A) 

provided that 

= 0 (8.67) 

as explained on p.348 of by Ockendon et al [91]. We can write this 

condition as 

/ + / ^G (̂̂  + '9A/(A)|(r,e)=:0 

We could have written equation (8.64) as 

(fn = + y F(fA (8.69) 

Then 

aAr,|(,,g) = + yaAy(A)|(,,g) (8.70) 
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Prom eqs. (8.60),(8.61) we Snd 

(8-1) 

a' 
^ (8.72) 

I.e. 

f":- r,2 1 /-e ^2 

and 

r 1 r 1 
^Ar* | ( r ,e )=-y y yp(^'^+"^^A/(A)|(r,8) (8.73) 

+ y + 8A/(A)|(r,e) (8.74) 

We caji see that for A to be a function of (r, ^) and for ail our equations to be 

consistent we must have F = 0, i.e. — 0 (the same condition as given by 

equation (8.67)). In other words r* and A must be independent variables. We can 

see immediately that if f = 0, then when A — ccmg^., i.e. ^A/(/\)|(r,0) = 0 we have 

= :^ (8.75) 
ar A 

which defines the lines of constant A, i.e. the null rays. Since F = 0, from eq.(8.74) 

we And 

= ——(ir + + ^AAy(A)|(r,@)G(A = 0 (8.76) 

I.e. 

= + (8.77) 

where we have dehned 

— ̂ A A / ( A ) | ( r , 8 ) — ( 8 . 7 8 ) 

combining this with eq.(8.64) leads to the two important equations 

= AQ(dr* - ^dA) (8.79) 

= f (Acfr* + ^iQ^dA) (8.80) 
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Using eqs.(8.64) and (8.77) we can now work out all of the coefficients in the 

wave equation, eq.(8.57). We End 

H T 
sin^ 

2r - 2m) - — ^ ^ 

dj.Q 
cos^ 

dj.Q ' • n-' 
sm ^ 

' • n-' 
sm ^ 

S " ' 
+ a^) 

o^A 

S " ' 
+ a^) 

2 0 
a' ( ' ̂  \ a" 

/ f 
2E^2 

. A 

2Q 

cos^ 

A 

AirXXf + (dAf = A 

sin^ 

(8.811 

1 / A P ^ + Q^ \ ?2 

^2 Q2p2 y 

- C (8.82) 
A 

(8.83) 
A 

Aarr*8rA + = A f = 0 (8.84) 

When we try to simplify eq.(8.83) further we encounter some serious problems 

in our attempts to calculate the derivatives of The r-derivative is difficult to 

calculate due to the presence of a second A partial derivative of F (with r and 6̂  

held constant) 

drjJj r̂/̂ l(@,A) ~l~ A5a/-̂ |(t',6) 

The ^ derivative is more difEcult. In this case we have 

= ^ " ^<9AAF|(r,e) (8.86) 

The term becomes singular as a ^ 0, i.e. in the limit of Eat space ( f —̂  0 as 

G^). At the poles and equator we also have f 0. When we consider the second 
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term of eq.(8.83) we find 

^ ^ (8.87) 

The Erst two terms on the right hand side become singular in the flat-space 

limit and the third is unknown. 

In order to avoid these problems we can rewrite D in the form: 

1 /^Asin^ 

Q sin ^ \ ,uf Q 
f8.88) 

and calculate the A derivative numerically. This term is included in eq.(51) of [90] 

but the problem of how to evaluate the derivative is not dealt with by the authors. 
/\ 0 

Our method is to integrate for — = — at a small angular distance of on either 

side of the gridpoint at which we want to calculate the derivative. We then take 

the di&rence and divide by 2(̂ A. 

The wave equation can now be written as 

+ = 0 (8.89) 

where the coe@cient8,B and E are given by 

B (8.90) 

8.4 Numerical evolution 

We would like to evolve eq.(8.89) numerically. A previously developed Cauchy code 

exists [2], but has some late-time convergence problems and according to the results 

of Krivan [92] it produces unexpectedly fast fall-oS at late times. Here I focus on 

developing a characteristic evolution with the aim of obtaining more dependable 

late-time results while still retaining the simplicity of a linearized pertiu-bation 

approach. 

In my treatment of the three-dimensional Sat-space wave equation I have assumed 

axisymmetry with a independence of Kerr spacetime is also axisymmetric, 

however the Boyer-Lindquist coordinate, is dehned by agymptotic observers and 

this coordinate system winds itself inhnitely many times around the black hole, 
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leading to problems. Initial attempts to evolve the scalar wave equation in Kerr 

spacetime using an azimuthal decomposition of showed problems and instabil-

ity at negative r*. This problem was pointed out in [2] which includes an appendix 

showing how this problem manifests in the slow-rotation hmit. Following [2] we use 

the Kerr azimuthal coordinate, given by 

(8.92) 

In order to avoid problems with setting artificial boundary conditions and in order 

to evolve all the way out to future null inhnity we compactify the radial coordinate 

by transforming to a new coordinate, z, given by 

z = tan"^(/r*) (8.93) 

where / is chosen to give compactihcation to future null inSnity but also to give the 

required resoluton near the potential peaJc and the intial data (which is of compact 

support). I have chosen to use / — 0.0017 as this pushes the compactifcation to 

suGiciently large r (see Fig. 6.15 in Chapter 6). The relevant transformations are 

(8.94) 

^ - 2 r , / a " a , ^ (8.95) 

where 

A = . {.2 2 1 + 

We choose to work with the angular coordinate which is related to A via 

A = sin^ (8.97) 

As shown by Pretorius and Israel [90], this becomes the spherical polar coor-

dinate ^ asymptotically, i.e. in the Eat space hmit. The transformations from A to 

in our scalar wave equation are given by 

1 n\ 1 
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With these transformations, (li, r*, A, ^ (t(, z, the wave equation (8.89) 

becomes 

A + 

A + mm——r + B%m 
4 sin^ cos^ 

D C(28in^^* —1) . oTTifA \ n Tr 
2 sin cos 4 sin^ cos^ 2 sin cos (/^P) 

Til ^ Z\ 
^ = 0 (8.100) 

:sm' 

5'e^^mp [/p Âe Gnd 

We set up a numerical grid using the coordinates (2;(r*), ^*). The value of r* can 

be calculated at each gridpoint as 

r . = * ^ (8.101) 

At each grid-point we must know the corresponding value of r, ^ and in order to 

calculate the coe&cients of the wave equation. To And these values we solve coupled 

diEerential equations along surfaces of constant A using a fourth-order Runge-Kutta 

scheme, with initial values approximated for large r. 

I encountered many diihculties in this section. In particular I found that it 

wag also necessary to integrate for A along the null generators because near the 

horizon it is not possible to calculate A numerically with the required precision 

from the value of r. It was also necessary to integrate for rather than alone 

because the derivative of along the generators is not well behaved in the Eat-space 

limit whereas remains hnite. There were also problems in calculating f to the 

required precision when the diEerence between A and sin^ ^ becomes too small. I 

have therefore integrated for f also. 

I have chosen to integrate in r* for simplicity. The relevant equations are 

(A.r), = 1 1 (8.102) 

A P 
(BrJ) , (S.103) 

a ''A a'A 
i d r . t ' h = ^ , ~ p ^ ^ , f ^ Q - ' s m O c o . e (8.104) 

( K A);̂  =2(r - M) ((9r.r);, (8.105) 

(<9r.f);^ = - o^sin2^ (^r.^)A (8.106) 
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When setting up our grid we make use of the condition that 

0*('r = oo) = ^ (8.107) 

We can therefore approximate our initial values at large r by using asymptotic 

expanaions and exploiting the fact that we expect ^ to be small for large r . 

The resulting approximations are 

r* r + 2MZM(r) + (8.108) 
2r r 

g R, (g_109) 
4r'̂  

^ p ^ _ _ l (2 - sin^ ^*)o^ (8 110) 
^ 2 sin cos 4 sin cos 

A = r ^ - 2 M r + a^ (8.111) 

f ^ ^ sin^ cos^ + -^(sin"^ cos^ 6̂* - cos^ sin^ ^*) (8.112) r 4r^ 

These approximations give us starting values or r, A, and _P so that we 

can shoot along the negative r* direction to hnd the values at other points on the 

grid. 

There is a shght comphcation in the quadrant from ^ = 7 r / 2 t o ^ = 7r because 

P is antisymmetric. This is not a problem here because eqs.(8.108-8.112) are still 

valid in this quadrant aa long as we remember to take the negative square root of 

in this quadrant. 

Fig. 8.1 shows how ^ varies with r* along hnes of constant Over most of 

the grid the null generators look like lines of ^ = c<)?T,5(. however we can see a sharp 

twisting of the null generators occurring near r* = 0. 

We write our derivatives in hnite difference form using the same scheme described 

for the axisymmetric wave equation in 5at space. This results in the equation 

= c 2 p % + c 3 ( p % + p ^ i j ) + c4p^j + 

+ c6(p^j_,_i + p"j+i) + c 7 ( p ^ j _ i + p"j_i) (8.113) 
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Figure 8.1: A plot ^ V8 r* for lines of constant in an extreme Kerr black hole. 
These lines are null generators for Kerr spacetime. A sharp twisting is visible near 
r* = 0, the approximate position of the peak of the potential in the corresponding 
Schwarzschild problem. 

The coeScients are calculated at position — 1/2, j ) and are given by 

cl 

c2 

a 0!(A + imF) + im( f ' + B) 
4(̂ a;̂  2(̂ a; 2(̂ 'u 

a a(v4 + %m]̂ ) A + %m(F + B) 
2(̂ 2;̂  2(̂ z 2(̂ 'u 

C 

4sin^ 6̂* cos^ 2 

c3 

c4 

a 

a 

C 

0!(A 4- zmF) A + + B) 

2(̂ a; 2 4 sin'' cos^ 6̂ *̂ 6)2 

a a 
CO = — 

c6 

0!(v4. + z m f ) A + 
(̂37(̂16 4(̂ 2;̂  

C(2A - 1) 
2(5a; 

+ 
2<̂ 'u 

+ 
2(̂ T 

+ 
C D 

c7 = 

16sin^^*co8^^*(^^. 8sin^^*co8^^*(^^^ 8sin^*co8^*(^^* 
C(2A - 1 ) C D 

(8.114) 

(8.115) 

(8.116) 

(8.117) 

(8.118) 

4 K 
(8.119) 

16 sin^ cos^ (̂ 6̂* 8 sin^ cos^ (̂<93 8 sin 6** cos 6̂"* 4^^* 
(8.120) 
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where we have used the substitutions 

f (8.121) 

n — ^ rg 1921 
sin cos 

Near the horizon, at the inner boundary point I impose a zero boundary con-

dition. This is not the physical condition, which is more closely approximated 

using an ingoing radiation condition but I avoid the problem altogether by pushing 

the boundary nearer the horizon, so that the pulse does not reach it even by the 

end of the evolutions. Later, this problem could be Sxed by using characteristic-

characteristic matching. 

The first inner point and the outer boundary point are treated in a similar 

manner to that described for the 2d scalar wave equation in Eat space. For the Grst 

point in we use 

(8'124) 

and at the last point we use 

(8.125) 

The resulting hnite difference equations at these points are similar in form to 

eq. (8.113) with some new terms and the coeScients slightly altered. 

Another complication in moving from the flat space wave equation to the wave 

equation in Kerr spacetime is that we now have to deal with complex coefficients. 

This means that we have to treat the real and imaginary parts of the scalar ^ 

separately and we end up with coupled evolution equations. In other words we 

take the real part and the imaginary part of eq. (8.113) as two coupled equations. 

There are many equations to calculate at each time step but the coeGicients are 

independent of and need only be calculated once, before the beginning of the 

evolution. 

I prescribe initial data on -uo as 

g(r*, A) - G(r*)P^'"(cos ^) (8.126) 
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where is a Gaussian pulse, ^̂ yith width 6 ajid peak at r°, and 

is a particular associated Legendre function. Although we write the 

initial data in this way, as we have done previously, the evolution equation does not 

decouple in and we therefore expect to see coupling of many multipoles in the 

evolution. 

The scheme I have described above seems to have some stability problems but the 

stability improves with increased resolution in the radial direction. Fig. 8.2 shows 

how the results improve for radial resolutions of 2500, 5000 and 10000 gridpoints 

with m = / = 2 initial data. Fig. 8.3 shows the results of convergence testing and 

we can see that the scheme is second order convergent in a;. The instability does not 

seem to be affected by the Courant factor but I have not been able to run the code 

for a very low Courant factor due to computational limitationg. The instability 

seems to happen first near a; — 0 and this is the position at which the Courant 

condition is severe because the stepsize in r , is least there. A full stability analysis 

would be complicated but, by comparison to the flat space problem of Chapter 7 

where we found an inatabihty at the origin, we might expect that there could be 

problems at r* = 0. 

Figure 8.2: Results of the characteristic evolution for scalar waves in Kerr spacetime 
showing runs of successively higher resolution. Dotted hne: 2500 gridpoints, dashed 
line: 5000 gridpoints, solid line: 10000 gridpoints. It is clear that the code remains 
stable for much longer with higher resolution runs. 

In order to eliminate possible causes of the instability I have tested the set-up 

of the (r*, grid by performing a Cauchy evolution using the new grid, i.e. using 

coordinates ( ^ , T h e wave equation in these coordinates, assuming 

111 



Figure 8.3: Convergence results for the characteristic evolution of the scalar wave 
equation in Kerr spacetime. The convergence test wag carried out using rung with 
radial resolutions of 2500, 5000 and 10,000 gridpoints. The angular resolution is 
kept constant with 15 gridpoints. The code is second order convergent up until the 
time at which the instabihty begins in the lower resolution run. 

dependence, is 

- + (2A + + 
C 

D 2C(2sin^^* - i ; 

sin cos 6̂ , sin^ cos^ 

a m f A 

2 sin^ 6̂* cos^ 6̂* 

sin 6)* cos 
W = 0 

sin 
(8.127) 

I have evolved this equation by making some adjustment to the old code [2] for 

the new coordinates. The results of this compare well with the old code, giving 

almost identical results, with the same quasinormal mode frequency and late-time 

fall-oS. That the results for both coordinate sets compare well shows that we have 

successfully been able to calculate the coordinate values we require in the coeScients 

of the wave equation. 

In Kerr spacetime, the radial coordinate goes not only through zero but ex-

tends to —oo. This does not cause a problem in a l-dimensional code such as the 

Schwarzschild example given in section 6.4.4 of this thesis, but leads to numeri-

cal diHiculties in 2-dimensions. Perhaps we require an alternative finite difference 

scheme but my results show that there is a good possibihty that with sufficient 

computing power this code could produce results into the late times that we are 

interested in. 
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Figure 8.4: Real part of the solution from the null-timelike Kerr code on a — 
surface on surfaces of The results are exactly as we would expect, 

before the instability appears. The reflected radiation travels immediately off the 
grid and the part of the pulse which passes through the potential continues to travel 
inwards. 

Ideally we would like to match the characteristic code in outgoing null coordinates 

to a compactiBed ingoing characteristic code near the horizon. In this way we 

could evolve the entire exterior spacetime of the black hole. If the stabihty issues 

discussed above can be resolved, the c2m matching scheme used in chapter 6 could 

easily be extended to two dimensions for aji axisymmetric code. 

Although the null-timelike formulation of the scalar wave equation in Kerr spacetime 

presented here may not be as useful ag we had hoped for evolving over the entire 

exterior spacetime, perhaps it may still be used away from the origin (r* = 0). It 

may be possible to match a null-timelike segment to the outer boundary of a Cauchy 

evolution. The Cauchy and characteristic sections are both already operational 

and therefore only a matching is required. Both segments use identical angular 

coordinates and the same quantity is being evolved. The radial coordinates of 

the segments are different because we use compactihcation in the outer segment. 
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Figure 8.5: The appearance of an instabihty near r* = 0 in the null-timehke Kerr 
code shown for on surfaces of The instabihty is centered 
near to r* = 0 and grows very quickly. 

however we know the analytic relation between the two coordinates. These features 

make the matching quite straightforward compared to the difhculties of Ccm in full 

numerical relativity. It should be possible to use the matching scheme described in 

[93]. This matching scheme involves interpolation between timeshces to obtain the 

solution at a ghost point of the null surfaces and between null surfaces and thus to 

obtain the solution at the outer boundary of the Cauchy surfaces . This method 

has been uaed successfully in spherical symmetry [94] and cylindrical symmetry [95] 

but haa yet to be used successfully in axisymmetry. In order to taJte advantage of 

compactification near the horizon, the inner boundary of the Cauchy region could 

also be matched to a compactihed ingoing null section and thus the entire exterior 

region may be evolved. 

The wave eq. in Kerr spacetime may also be written in double-null coordinates 

Assuming an azimuthal dependence of the wave equation in these 

coordinates is 

C 

2-4 + ~(e - 2Mr) 

2 sin^ cos^ 
D 2 C ( 2 s i n ^ g * - l ' 

2-4 + ~ ( Q + 2Mr) 

o m f A 

sin cos ' 2 sin^ cos^ 2 sin i9* cos ^ 
^ + 

2A 
^ = 0 

sm 

(8.128) 
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I have calculated the derivatives in it and using the same finite difference 

scheme as for the one-dimensional wave equation and Regge-Wheeler equation, and 

used the hnite difference forms of the derivatives aa in eqs. (7.57) and (7.58) for 

the axisymmetric wave equation. Unfortunately this code is unstable. The double-

null evolution has proven to be highly effective in solving ID problems, therefore 

a stable evolution in Kerr spacetime is highly desirable but at this stage no such 

scheme is apparent. 

8.5 The m — 0, Z — 4 debate 

The results of [2] indicate that the late-time behaviour of a perturbed scalar field 

in Kerr spacetime is determined by the lowest allowed multipole, Z > m, which &ts 

the symmetries of the initial data. The falloff of the dominant multipole is given 

by 

1^1 oc (8.129) 

An analysis in the time domain by Barack and Ori [96] led them to present the 

late-time falloff at future timelike infinity as 

1^1 oc (8.130) 

where g = 0 if Z -H m is even and g = 1 otherwise, but this result applies only when 

the Z = 0 mode is present in the initial data. 

Hod's analysis [97] in the frequency domain led him to the result that the late-

time behaviour is dominated by the multipole / = |m| if Z* — |m| (where T is the 

multipole of the initial data) is even and Z = |m| -t- 1 otherwise. Hod predicts a 

late-time falloff of 

# oc if r > |m| + 2 (8.131) 

^ oc if Z* — |m|, |m| 4- 1 (8.132) 

where p = 0 if Z* — |m| is even and p = 1 otherwise. 

Considering, for example, initial data of the form 77t = 0, Z* = 4, Hod's result 

predicts a falloff of | ^ | oc at late times whereas Barack and Ori predict the more 

intuitive | ^ | oc Krivan [92] used the Cauchy code of [2] to check these analytic 

prediction. He showed that there is indeed a trangistion to the Z = 0 mode but 

that the decay is given by the power law, ^" .̂04 does not agree with either of 

the analytic predictions. He suggests that this is likely to be a numerical artifact 

and conhrms this by showing how the decay rate decreases with improved grid 

resolution. His hnal result of still does not agree well with either prediction 
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but is closer to that of Hod. This could be due to the fact that he reads off the decay 

rate between ^ — 600 and t = 800 which may be too early to properly represent to 

true late-time behaviour. He concludes that "em extension of the existing analytic 

and numerical studies is necessary." 

Poisson [98] provided a possible solution to this problem of contradictory predic-

tions with an extended and generahsed formulation of Price's falloS theorem [47]. He 

concludes that the late-time behaviour of the scalar field is identical to what it would 

be in spherically symmetric spacetime. He explains the apparent contradictions as 

an artifact of the different coordinate systems used. The Kerr metric in Boyer-

Lindquist coordinates does not reduce to the Minkowski metric in spherical polar 

coordinates (r, in the limit as M —» 0. Instead it gives the Minkowski metric in 

spheroidal coordinates defined by z = -\/f^"+^8iii^cos(Zli, 2/ = -t- sin ^ sin 

where e — J / M and J is the total angular momentum. In order to compare the 

results of Hod with the results of Poisson we must transform from spherical coordi-

nates to the spheroidal coordinates (f, ^). Poisson shows in this way that there 

is actually no contradiction between the results of Hod and the generalised Price 

theorem. This still does not explain the discrepancy between the results of Hod and 

Krivan as both involve initial data written in terms of Boyer-Lindquist coordinates. 

Burko and Khajina [99] later argued however that Poisson is not correct to ig-

nore the near 6eld geometry in his analysis. They use a penetrating Teukolsky 

code which evolves the Teukolsky equation for hnearized perturbations in ingoing 

Kerr coordinates (f, r, ^, ^). In these coordinates the Teukolsky equation has no 

singularity at the event horizon. They End a late-time falloff of Their explana-

tion for the discrepancy of Hod is that the excitation of dominating modes which 

are not present in the initial data is nonlinear in the gravitational potentials and 

is strongest at the near zone. Hod considered only leading order terms in w and 

Burko and Khanna suggest that such selection will limit the excitation of the truly 

dominating modes. They claim that for the contested example of m = 0, Z* = 4 

initial data, an analysis to leading order in w could excite the / = 1 mode but not 

the / = 0 mode. They argue further that Poisson's large-r approximation and Hod's 

small cj approach are equivalent. 

Burko and Khaima explain the result of Krivan as an effect due to the fact that 

Krivan considers such a high angular momentum, o / M = 0.9999, in his evolutions. 

Such a high spin slows down the decay rate of the quasi-normal modes, requiring 

longer evolution times to obtain the true late-time behaviour. Another possible 

explanation is that Krivan's initial data is purely outgoing and is positioned quite 

far from the near zone. This severely limits the amphtude at which the / = 0 mode 

can become excited. They predict that the true late-time behaviour will be seen at 

later times than Krivan has considered. They Enally conclude that a fully nonlinear 
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solution will give simpler results than theirs as m will no longer be conserved and 

the actual decay rate will be of the form ^-2|a|+3 

Scheel et al [100] contribute to the debate with a 3 + 1 spectral evolution 

code. They compare results from initial data in Kerr-Schild coordinates and Boyer-

Lindquist coordinates and End that, whereas the behaviour at intermediate times 

is quite different, both cases possess the same late-time power law decay. The 

differences at intermediate times are due to diSerent magnitudes of excitation of 

lower-order spherical harmonics. That the fallog at late times is the same for both 

sets of initial data suggests that Poisson's result is not apphcable at late times be-

cause it does not take into account the effect of mode mixing in the strong field of 

the near zone. 

So far there has been no conclusive explanation for Krivan's unexpected result. 

I have carried out a similar evolution using the old Cauchy code of [2] with initial 

data of the form m = 0, ( = 4 and I calculate a late time falloE of I have used 

initial data which is piurely ingoing as well as initial da ta which is purely outgoing 

and I have placed a broad initial pulse far from the near zone but I have been tmable 

to reproduce the ° result of Krivan. The results are shown in Fig. 8.6. The late 

time tails of the ingoing and outgoing pulse have the same fall off. 

2 0 -

Figure 8.6: Late time tails for m = 0, Z = 4 initial data. The solid hne shows the 
log of the solution for an ingoing pulse, and the dashed line show the same for an 
outgoing pulse. The results show the same late time behaviour for both cases. 

I have also used the new Cauchy code in ( ,̂ r*, coordinates. The results are 

compared with those in standard Boyer-Linquist coordinates in Fig. 8.7. It is clear 

from these results that the late time tail in Kerr spacetime for m = 0, Z = 4 initial 

data behaves as 
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1000 

Figure 8.7: Late time tails for m = 0, Z = 4 initial data. The sohd line shows the log 
of the solution from the evolution using coordinates, the dashed hneshows 
the log of the solution from the evolution using the usual (fg, coordinates. The 
results show the same late time behaviour for both cases 

8.6 Evidence for a Superradiance Resonance Cavity 

Perturbations in Kerr spacetime are expected to generate long hved quasi-normal 

modes [57]. Recently, Andersson and Glampedakis [51] have argued that unfortu-

nately (from the point of view of detection) the amplitude of each long-lived mode 

should vanish in the hmit o — M because longer-hved modes are more di&cult to 

excite. This argument is supported by their analytic calculations based on several 

simplifying assumptions, and by the results of Ferrari and Mashoon [101]. Despite 

the vanishing amplitude for such modes at the extreme limit, they also argue that 

a large number of very small amplitude modes could interfere constructively to 

give a considerable signal at late times. If this happens, as their calculations pre-

dict, the long-lived modes could completely dominate the late-time behaviour with 

oscillations of decaying amplitude at the rate - . 

In order to achieve their analytic results, Andersson and Glampedakis use many 

simphfying approximations and therefore an alternative conhrmation is required. 

They use the Cauchy evolution code of Krivan o/[2] for this purpose. They do 
1 

indeed find an oscillating late-time tail with a fall-oS of - for extreme Kerr black 

holes with initial data of type m 0, but they warn that the results of the munerical 

code may also not be trustworthy. They oSer the physical interpretation of this 

phenomenon that, for frequencies close to the upper hmit of the superradiant regime, 

there will be a peak in the (frequency dependent) effective potential just outside the 

black hole. Waves which "emerge from the horizon" according to a distant observer 

can now become trapped near the horizon by the potential peak. Waves in such a 
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resoMGMce could experience a kind of parametric amplification 

and leak out through the horizon to infinity. 

During the course of my research using the Cauchy code of [2] I have observed 

an amphfication of the solution at negative r* in some cases. This can been seen by 

viewing the solution as a time-evolution on shce of constant ^ as shown in Fig. 8.8. I 

have also observed some modes leaking out from near the horizon at late times. Fig. 

8.9 shows the long-lived quasinormal modes for initial data consisting of a sharp 

Gaussian of width, 6 = 0.13 (see eq. (8.126)). As the initial pulse becomes wider 

the time at which the long-lived quasinormal modes appeaz becomes later. This is 

shown in Fig. 8.10 for near extreme black holes^nd Fig. 8.11 for black holes with 

o = 0.6. These results support the superradiance resonance cavity interpretation. 

The modes which appear at late times can be seen to appear first near the horizon 

and then leak out through the elective potential to infinity. Whereas this behaviour 

was observed only for extreme and near extreme black holes by Andersson and 

Glampedakis , my results indicate that the presence of a superradiance resonance 

cavity may lead to similar results for non-extreme Kerr black holes. 

^ 0 

2UU 4U0 

Figure 8.8: Evidence for a superradiant resonance cavity. The real part of the 
solution in the Cauchy evolution is shown on a surface of constant 6̂  at time ( = 
646. The growth of the solution at negative r* supports the interpretation of a 
superradiant resonance cavity between the horizon and the potential peak. 

8.7 Chapter Summary 

In this chapter I have developed a numerical code for the characteristic evolution 

of perturbations in Kerr spacetime. The characteristic approach hag proven to be 

very elective in the Schwarzschild case but this is the jGrst such evolution code 

for perturbations in Kerr. There were several technical difhculties involved in the 

development of this code but the results show that the code can be stable for 
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Figure 8.9: The long-lived quasinormal modes from narrow initial pulse in near 
extreme Kerr black hole. The log of the real part of the solution in Cauchy evolution 
is shown for a = 0.999 and m = 2 initial data with Gaussian pulse of width 6 = 0.13. 
This is similar to the figures of Andersson and Glampedakis. 

some time, and that the duration of the stable solution is signihcant increased with 

increasing grid resolution in the radial direction. During this time of stability the 

code is second order convergent. 

I have also used the old Cauchy code to obtain results for the late-time behaviour 

of scalar held perturbations in Kerr spacetime with initial data of the form 777, — 0, 

^ = 4. There has been some debate in the literature recently over what form the late-

time fall off should take. I have obtained the intuitive result, which disagrees 

with the results of Krivan but agrees with others. 

Finally, I have used the old Cauchy code to support the superradiance resonance 

cavity interpretation of Andersson and Glampedakis and obtained the surprising 

result that even for black holes of low emgular momentum (o = 0.6) the late-time 

quasinormal modes appear in the evolutions for narrow initial data. I have shown 

that the time at which these modes appear depends upon the width of the initial 

pulse. 
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b=0.013 

b=0.043 

Figure 8.10: Long-lived quasinormal modes for o = 0.999 with varying width of 
initial pulse. The log of the real part of the solution is shown for the Cauchy 
evolution of a black hole with o = 0.999 and m — 2 initial data with an initial 
Gaussian pulse of varying width. As the width is decreased, modes begin to appear 
at earher times until, for very narrow initial data the results of Andersson and 
Glampedakis are reproduced. 
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Figure 8.11: Long-lived quaginormal modes for o = 0.6 with varying width of initial 
pulse. The log of the real part of the solution in Cauchy evolution is shown for 
m = 2 initial data with Gaussian pulse of varying width. As the width is decreased, 
modes begin to appear at earher times. This result is surprising for a black hole 
with such low angular momentmn. 
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Chap te r 9 

P e r t u r b e d Ker r -de S i t te r Black 

Holes 

A rotating black hole in agymptotically de Sitter spacetime is given by the Kerr-de 

Sitter metric, 

0(5̂  = ^ - - ^ ( c ( t - a 8 i n ^ ^ d ( 6 ) ^ (9.1) 
\ o / y ' o Ac Zrc \ o / 

where 

p — cos^ ^ (9.2) 

Ac = (r^ 4- a^) 1̂ 1 - " 2 M r (9.3) 

cr — + <2̂  (9.4) 

Z,c = 1 + cos^ ^ (9 5) 

% = 1 + (9.6) 

By including a positive cosmological constant we introduce an additional horizon, 

the cosmological horizon, at hnite radiua. The Kerr-de Sitter spacetime therefore 

possesses three horizons. Fig. 9.1 shows how the position of these horizons varies 

with A for a black hole with M — 1 and a = 0.99. The results were generated 

by solving for the roots of A .̂ = 0. The cosmological horizon and event horizons 

approach each other with increasing A and meet at a maximum value of A. The 

two black hole horizons move away from each other with increasing A. 

A positive cosmological constant also effects the Cauchy (innermost) horizon in 

another way. An observer falhng into a black hole in agymptotically Eat spacetime 

will be stopped by a singularity at the Cauchy horizon, but this may not be the case 

in the presence of a cosmological constant. In such a case it has been shown that the 
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Figure 9.1: Dependence of the position of the three horizons on A. Fuh hne: 
cosmological horizon, dashed line: event horizon, dotted line: Cauchy horizon. As 
A increases, the cosmological and event horizons converge whereas the event and 
Cauchy horizons diverge. 

Cauchy horizon may be stable over a hnite range of parameters for non-rotating [102] 

and rotating [103] black holes. The necessary stability condition is that the surface 

gravity at the Cauchy horizon is less than the surface gravity at the cosmological 

horizon. It has been argued that this condition is "MarrowZ?/ aZZoweff, wAeM 

AoZe, aZoM^ way.'' [103]. This is a violation of 

the strong cosmic censorship hypothesis. A quantum analysis has shown however 

that the Cauchy horizon, although classically stable, will be quantum mechanically 

unstable except in the case where the surface gravity at the Cauchy horizon is 

exactly equal to the surface gravity at the cosmological horizon [104] 

A comprehensive review of the hterature on this subject up to 1997 has been 

given by Chambers [105]. The evidence for the existence of a positive cosmological 

constant has been reviewed in 2000 by Sahni ajid Starobinsky [108]. 

The study of the interior of the black hole spacetime requires knowledge of the 

behaviour of the helds crossing the event horizon due to scattering in the exterior. 

The late time tails are used in constructing initial data for studies of the interior. 

Unfortunately an analytic study of the tails in black hole-de Sitter spacetimes is 

a very difficult task and therefore this problem was first addressed numerically. 

Brady aZ. [71] evolved the massless minimally coupled scalar wave equation in 

both Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter spacetime. The 

wave equation is similar in form to the Regge Wheeler equation but with a modihed 

potential. For this they have used both a Cauchy and double-null code. They obtain 

results for the behaviour of the held at (or near) the cosmological event horizon, 
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the black hole event horizon and surfaces of constant r . They also carried out a 

non-linear analysis which agreed well with the linear results, showing the same late 

time behaviour of 

^ ^ (9.7) 

for f > 0, where Ki is the surface gravity at the cosmological horizon. For Z = 0 the 

results show a slightly different behaviour 

^ ^0 + (9.8) 

approaching a constajit at late times. Brady et o/ [71] suggest that this unusual 

late time behaviour for Z = 0 is connected with a dip in the eSective potential for 

that mode. 

In this chapter I extend the numerical investigation of the late time behaviour of 

scalar held perturbations in the exterior of asymptotically de-Sitter black holes to 

include rotation. My results span a large range of values for A, from zero to almost 

extreme. One may argue that such high values of A are not physically relevant. It 

is true that observations show our universe today to have a very small cosmological 

constant, but inBationazy cosmology postulates that the early universe underwent a 

period of exponential expansion driven by the vacuum energy. The vacuum energy 

density of this period may be interpreted as a large cosmological constant [107]. 

This may effect the geometry of primordial black holes in the early universe. 

Khanal [70] has shown that superradiance can occur in Kerr-de Sitter spacetime. 

In this chapter I present evidence of this superradiance but my results do not agree 

with his lower limit of the range of superradiant frequencies. 

9.1 Perturbations in Kerr-de Sitter spacetime 

The scalar wave equation in the Kerr-de Sitter metric is 

+ - ^ ^ ( 2 A a ^ sin^ 6̂  - Z,c)^e^ + == 0 
sm^ \ sm 6// 

(9.9) 

We transform to the new coordinates 

(fr* = ^1 -t- ^ 2 ^ dr (9.10) 

-I- ^1 -t-
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where r* goes from —oo at the event horizon to +00 at the cosmological horizon. In 

terms of these coordinates, and assuming axisymmetry in the form the wave 

equation becomes 

— (crZ/c — Ac)^f^ -I ^ ^ 2 ^r.r. ^ 

(9.12) 

where 

EAg = sin^ (9.13) 

9.2 The Evolution Code 

I have taken the old Cauchy code for Kerr spacetime [2], changed the integration 

for r, changed the coelEcients of the wave equation, and added the parameter A. 

The code runs well and reproduces the results of the Kerr code when A is set to 

zero. 

-up 

We work on a grid of (r*,6)) but the coeGicients of the wave equation are known 

only in terms of (r, 6̂ ). Eq.(9.10) may be integrated to obtain an equation for r* 

Ao^\ 
1 + 3 y A, 

^ 1 (r^ + Q )̂ ln(r — r̂—̂  
^ 2 2r? + (o^A - 3)n + 3M 

(9.14) 

where are the roots of Ac — 0 and 2 runs from 1 to 4. There is an imaginary part 

to r* but we can ignore this as an integration constant. 

It is not possible to invert eq. (9.14) to obtain a simple expression for r in 

terms of r*. Instead we integrate numerically for r using a shooting method. As 

a starting value we can choose any value of r (as long as it hes between the event 

horizon and the cosmological horizon) because we are free to choose any value for 

the integration constant. 

According to Brady aZ [71] a perturbed scalar held with Z = 0 in Schwarzschild-

de Sitter spacetime wiU reach a constant value at late times. We expect similar 

results in Kerr-de Sitter spacetime with m — Z — 0 initial data ag the late time 
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behaviour is generally congidered to be connected with the asymptotic structure 

of the spacetime and is not dependent upon the angular momentmn of the black 

hole. This expectation is conSrmed in Fig. 9.2. Figures (a)-(c) show how the log 

of the real part of the Geld at one point varies with time. The solution reaches a 

constant value at late times. This effect can be explained by a dip in the effective 

potential for Z = 0. In [109] the authors show that this behaviour is due to a 

single pole in the Green's function at — 0. The final constant seems to be 

dependent upon A. Abdalla et al. [106] have shown tha t the final constant value 

in Schwarzschild-de Sitter spacetime is also dependent on the initial velocity of the 

perturbation. Fig. 9.2(d) shows the hnal constant value obtained as a function of A. 

This shows a similar behaviour to that observed by Brady aZ up to A % 0.00037. 

This behaviour is conGrmed in [109] by analytic approximation for smaH A. Our 

numerical results suggest that this may no longer be valid for larger A, or that 

a small angulaz momentum makes a big difference to the late time behaviour. A 

simpler explanation however is the e&ct due to the way I have set up the grid by 

choosing an initial value for the radial coordinate r a t a given r*. Fig. 9.3 shows 

how the hnal constant value varies for different initial choices for r at a given r*. 

Figure 9.2: Log of the solution at one gridpoint for for m = Z = 0 initial data 
and a=0.999 for varying values of A. Similarly to the corresponding problem in 
SchwajTZschild-de Sitter spacetime we see that the solution reaches a constant value 
at late times. 

Figs. 9.4-9.7 show the results for m = 1 and m = 2 initial data. Here we observe 

a new eEect at large values of the cosmological constant. The late time behaviour 

for large A consists of apparently undamped or very slowly damped oscillations. 

This phenomenon could also be due to some feature, such as a dip, in the potential. 

The oscillations could be due to radiation becoming trapped within such a dip. My 
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Figure 9.3: Log of output at one gridpoint for a=0.999 for diSerent values for 
the integration constant in calculating r from r*. A difference is seen in the final 
constant value reached by the solution. This could help to explain the difference 
between my results and those of AbdaUa aZ for the dependence of this constant 
value upon A. 

results call for further investigation along these hnes, especially to investigate the 

form of the potential. The amplitude and frequency of the oscillations vary with A. 

9.3 Superradiance 

A well known feature of rotating black holes is in which incident 

monochromatic waves with frequency in a specific range are scattered with an in-

creased amplitude, i.e. the reflection coefBcient has a magnitude greater than unity. 

Superradiance hag been demonstrated in time-evolution of the scalar wave equation 

in Kerr spacetime [110] and this method was used to confirm the range of superra-

diant &equencies: 

0 < w < 
ma 

2 M r j 
(9.15) 

where r_|_ is the radius of the event horizon. 

Khanal [70] has shown that superradiance also occurs in Kerr-de Sitter space-

time. He derives the superradiant frequency rajige 

ma 

-t-

< (J < 
ma 

+ 
(9.161 

where is the radius of the cosmological horizon and r is the radius of the event 

horizon. Tachizawa and Maeda [72] have numerically calculated the amphfication 

for several values of the cosmological constant for o = Af and / = m = 1. They 

show that the maximal amplihcation increases with increasing A. For Kerr-de Sitter 
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Figure 9.4: Log of the solution at one gridpoint for for m = Z = 1 initial data 
and a=0.99 for varying values of A. At late times we see apparently undamped or 
very slowly damped oscillations. This is a new phenomenon which calls for further 
investigation. The amplitude and frequency of these oscillations appears to depend 
upon the value of A. 

black holes there is a maximum value for A for the existence of both the event and 

cosmological horizons. For the near extreme value of A = 0.14 (with a = M and 

Z = m = 1) they obtain a maximal amphfication of about double the value for Kerr 

for scalar field perturbations. While the amplification increases with A, the range 

of superradiant frequencies decreases however. The combination of these two eSects 

means that we should not expect much more energy from Kerr-de Sitter black holes 

than from Kerr black holes. 

The direct way to measure superradiance in our time-evolution is to compute the 

energy Aux into and out of the black hole. FoUowing the example in [110] for Kerr 

spacetime we construct a conserved energy Eux for scalar helds in Kerr-de Sitter 

spacetime. 

For a spacetime with a Kilhng vector and a perturbation with a well defined 

stress-energy tensor 7^6, we can dehne a conserved energy Sux vector The 
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Figure 9.5: Log of the solution at one gridpoint for for m — Z = 2 initial data 
and a—0.99 for small values of A. Full line: 0.0, dashed hne: 0.00005, dotted hne: 
0.0001. As A is increased, the usual tail of Kerr spacetime changes and passes 
through zero. 

hux of energy accross a suface of constant r is then given by 

(9.171 

where dS" is the three surface element of the hypersurface given by 

= "x/— (9.18) 

and, for a massless scalaz held. 

(9.19) 

where over-bars denote complex conjugation. Assuming that = 1 we End 

= ±(0, 0, 0). The time Kilhng vector is (1, 0,0, 0). In Kerr-de Sitter space-

time we hnd therefore obtain the result, integrated over 0, 

(fE - ±7r ^ sin 
P % 

= ±7r ^ s ing^fm 

(9.20) 

(9.21) 
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Figure 9.6: Log of the solution at one gridpoint for for m = Z = 2 initial data and 
a=0.99 for increasing values of A. Full line: 0.0002, dashed hne: 0.0004, dotted hne: 
0.0008. The irregular oscillations at late time are of very low amphtude compared 
to the initial data and are probably due to noise. The tail falls oG faster with 
increasing A. 

Transforming to the coordinate we End 

A. 
+ %—(8^08^^ + sin6)dm (9.22 

% 

= s i n ^ d m (9.23) 
X 

Transforming to the r* coordinate we And 

a a 

A A Ar ^2 
sin 

(9.24) 

which can be written in terms of the real and imaginary parts of the solution for 

use in our numerical evolution. 

dE = ± 271- (o-(ar,^(re)9t^(re) + 

X — s i n (9.25) 

In order to trigger superradiance we must set up the initial data in such a way that 

the frequency of the pulse is within the superradiant range. In order to do this I 
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Figure 9.7: Log of the solution at one gridpoint for for m Z = 2 initial data and 
a=0.99 for higher values of A. As A increases the tail falls oS faster and we also see 
a greater number of quaginormal modes. When the amplitude becomes very low 
the evolution becomes noisy, but when A is increased further we can see regular 
oscillations which are apparently undamped or at least very slowly damped. The 
amphtude and oscillation of these modes varies with A. 

have followed [110] again and use a modulated Gaussian of the form 

^ _ g-6(r.-ro+t)^-^(r.-ro+f) (9.26) 

In order to ensure that there is not too much overlap into the non-superradiant 

range, the width of the pulse is carefuUy tuned to 

b 
2) /h i ( l / 

min(?7%w/i — cu, — w) 
f9.27: 

where and Wc are the angular velocities of the event and cosmological horizons 

respectively, given by 

— 

r ; + 

w, 
C 9 , 9 + O" 

(9.28) 

(9.29) 
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and e is a small number. 

Fig. 9.8 shows the energy Aux near the horizon for a Kerr-de Sitter black hole 

with o = 1 and A = 0.1 using m = 1 initial data of various frequencies. The 

suprerrandiant frequency range derived by Khanai is approximately 0.0595 < w < 

0.3117. We see clearly that the Eux is outgoing within the superradiant frequency 

range. Above the upper frequency hmit we do not see evidence of superradiance, 

as expected, but below the lower hmit superradiance still occurs in the numerical 

evolution. Further investigation is required to clarify this problem. 

In the cage of a zero cosmological constant I found that the ingoing 6ux at 

positive r* balanced quite well with the outgoing flux at negative r*. For higher 

values of A however, the ingoing flux at positive r* did not return to zero and 

become negative, indicating that the evolution may be losing energy between these 

two points. The situation seems to improve with resolution but is still a problem. 

0.4 

0.3 

io.2 

0.1 

' 1 ' 

(0=0.1 _ 

1 ^ 1 1 1 1 1 1 1 
0 200 400 600 

t 

co=0.02 

0 200 400 600 
t 

(0=0.28 

m=0.35 

Figure 9.8: Energy flux at r* — —30 for a = 0.999 and A = 0.1 for initial data of 
various frequencies. A negative flux meajis that the ingoing radiation dominates 
whereas a positive Sux represents superradiance, where the outgoing radiation is 
greater than the ingoing radiation. The final graph, for w = 0.35 does not show 
superradiance because the initial data is outside the superradiant frequency range. 
Although LJ = 0.02 is also outside (below) the predicted frequency range, the results 
indicate that superradiance is still elective. 
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9.4 Chapter Summary 

In this chapter I have adapted the Cauchy code for scalar perturbations in Kerr 

spacetime to include the effect of a positive cosmological constant. The results 

conhrm those of previous studies [71] for the late time behaviour in Schwarzschild-de 

Sitter spacetime, but also introduce a new phenomenon for Kerr-de Sitter spacetime. 

At late times we see regular oscillations of apparently constant amplitude. The 

amphtude and frequency of these modes varies with A. 

I have calculated the energy Hux near the horizon using the Kerr-de Sitter code 

and in this way I have been able to detect superradiance. I have investigated the 

superradiant frequency range and End that the results agree with the upper limit 

calculated by Khanal [70] but do not agree with the lower hmit. 

By developing this code to evolve scalar perturbations in Kerr-de Sitter space-

time, I have been able to make a brief investigation into the behaviour of such 

perturbations. My results show that this is in an interesting direction for future 

research. 
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C h a p t e r 10 

Toroidal Modes in Differential ly 

R o t a t i n g Shells 

Oscillating neutron stars are likely to be a good source of gravitational waves for 

forthcoming detectors. We would like to model such systems in order to interpret 

the signals we may receive. One factor which is likely to play an important role 

in a realistic neutron star model is differential rotation. Studies of rotational core 

coUapse indicate that the remnant will be diEerentiaUy rotating [111],[112]. This 

diEerential rotation may be further driven by accretion of supernova remnant ma-

terial [113] or material from a companion [114]. Studies of r-mode oscillations in 

neutron stars suggest that non-hnear eSects can drive a uniformly rotating star into 

differential rotation [115],[116],[117]. A dlEerentially rotating neutron star may also 

be generated by binary neutron star merger. 

One complication which arises in differentially rotating stars is that the dynami-

cal equations become formally singular at pomts where the pattern speed 

of a particular mode matches the local angular velocity. This leads to a continuous 

spectrum and perhaps also corotating solutions. Neutron star oscillations can also 

be subject to dynamical instabihty or secular instability to the emission of gravi-

tational waves [118]. These instabilities are of particular interest in the search for 

gravitational waves. It has been pointed out [119],[120] that differential rotation 

may introduce new instabilities. Little is currently understood about the effect of 

diSerential rotation on stellar oscillations and the related instabilities, and there 

are many technical challenges involved. 

Here we wiU consider a simple system in digerential rotation - a spherical, ax-

isymmetric, thin shell of incompressible ideal fluid. In this way we can understand 

some of the eSects of dlGFerential rotation that may be applicable to more complex, 

three dimensional systems such as neutron stars. In this section I describe work 

done by Watts, Andersson, Beyer and Schutz [4] and time evolutions I have carried 
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out in collaboration with Watts and Andersson [3]. I present some results from our 

investigations of three diSerent rotation laws. 

10.1 The Perturbation Equations 

The conservation of maas for an ideal fluid is expressed by the continuity equation 

^(P + V - ( p v ) = 0 (10-1) 

The Euler equations (the equations of motion) for an inviscid Huid are 

— (10.2) 
(ft p 

where d/cZt = + v - V is the total time derivative, f is the pressure, p the density, 

$ the gravitational potential and v is the fluid velocity. The gravitational potential 

is determined by Poisson's equation. 

= 47rGp (10.3) 

A change in one of the variables at a particular point in space is called an 

Eulerian perturbation, denoted 

(5Q = 0(x , t) - Qo(x, t) (10.4) 

where Q is some property of the perturbed flow and Qo is its corresponding equi-

librium (background) quantity. 

A change in a variable for a particular fluid element moving in the flow is called 

a Lagrangian perturbation, denoted A. 

AQ = Q(x + ^ ( x , t ) , t ) - Q o ( x , ^ ) (10 5) 

The two different types of perturbations are related by the equation 

A = (̂  + ^ . V (10.6) 

where is the displacement of the 8uid element. 

The perturbed continuity and Euler equations in the inertial frame are 

+ (^v . V)p + (v . V)6p + (^p(V . v) + /)(V . (^v) - 0 (10.7) 
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and 

+ (^v - V)v + (v - V)^v = 
P 

- V $ :io.8) 

Working in spherical polar coordinates, with a background velocity of v = 

Hrsin^e,^, eqs. (10.7) and (10.8) become 

r r 
+ COt ^ 

smp 
0 

:i0.9) 

—2̂ 1(̂ 1;̂  s i n^ 

+ (1 ,̂̂ ) + — 2̂ 1(̂ 170̂ 008 6̂  

_ _ 
sin ^ ( r^ r^ + 2^2) + (2r2 cos ̂  sin ^ 

^ V f - - V(^$ '10.10) 

If the unperturbed background is axisymmetric then we can make a Fourier 

decomposition in <;6 and look for modes with dependence To solve for normal 

modes we look for time dependence In this framework a perturbation will be 

unstable (growing) if Im(iT) > 0. Eqs. (10.9) and (10.10) become 

2(mQ — -
r r 

+ COt + 
sin^ 

= 0 

10.11) 

%(mr2 —cr) 0 —2r2 8in^ 

0 2(mri — cr) —2̂ 2 cos 6̂  

s in^( r^ r^ + 2^1) (2^1 cos 6)+ 9^0 sin ^) %(mn —cr) _ . 

^ - -V(^ f - V # 
P 

The gravitational potential obeys the perturbed Poisson equation 

= 47rG(5p 

:i0.12) 

'10.13) 

Eqs. (10.11), (10.12) and (10.13), together with an equation of state (relating f 

and p) and appropriate boundary conditions, describe the perturbations completely. 

Solving this set of equations in uniform rotation is relatively straightforward. If the 

rotation is differential, however, problems may arise at points where cr = At 
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these eq. (10.12) is singular. Note, however, that although this 

may aEect solution of the normal mode problem, the corresponding time dependent 

equation, eq. (10.10), is not singular so it should not cause a problem for the time 

evolutions. 

Consider a differentially rotating spherical sheh of incompressible Suid. The 

continuity equation in this caae is 

sin^) + = 0 (10.14) 

The Euler equations are 

1 
— 2 0 COS = 0 :i0.15) 

= 0 
/) A sm 6/ 

'10.16) 

where we have taken the shell radius to be ^ and we have set = 0 and = 0 

n* = 2^1 cos ^ sin ^ (10.17) 

is the equihbriiun vorticity. Combining the two Euler equations leads to the vorticity 

equation 

— 2(1 c o s -I 

— ^8 ( sin ^ = 0 (10.18) 
sin ^ 

and introducing the standard toroidal stream function,(7, dehned by the equations 

1 
fZsin6^ 

1 

(10.19) 

(10.20) 

(10.21) 

the vorticity equation becomes 

sin^ 
[/ = 0 (10. 221 
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where 

^ 1 
Vgg = age + — a g + (10.23) 

smt) sin 61 

is the Laplacian on the nnit sphere. Assuming a (6 dependence of eq. (10.22) 

can be written 

(z^t - mH) = 0 (10.24) 
smc/ 

10.2 Modes in Uniform Rotation 

In uniform rotation we have 

a e n * - - 2 f ] s i n g (10.25) 

Looking for a mode solution with time dependence we substitute into eq. 

(10.22) to hud 

((7 - mn) - 2mn[/ = 0 (10.26) 

If cr ^ then 

Off) o 
VeeC/ = --[/ (10.27) 

(7 — mil 

By expanding [/ in spherical harmonics and making use of Legendre's equation, we 

End 

- ^ /(/ + l ) c r ^ ' ^ = ^ (10-28) 

I.e. 

2mn 
E C , ' d — TflCl + 

Z(Z +1)_ 
= 0 (10.29) 

Then, considering the orthogonality of the spherical harmonics, the solu-

tion is found by noting that only a single C™ is non-vanishing eind the corresponding 

frequency is 

cr = mO — ^ ^ (10.30) 

Another possible solution is the geostrophic solution, with cr — From eq. 

(10.26) we see that this correspond to the trivial solution, (7 = 0, with zero velocity 
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perturbation. Note, however, that in the uniformly rotating caae, when <7 = a 

zero velocity perturbation can be compatible with a non-zero displacement, 

= — cr),̂ g (10.31) 

= %(mn — cr),̂ ^ (10.32) 

Although the geostrophic solution ia trivial in uniform rotation, it will play an 

important role when we consider diSerential rotation. 

10.3 Modes in Differential Rotation 

The differentially rotating case is described by eq. (10.24). Assuming a time depen-

dence and transforming to the new emgular variable a; = cos^, this becomes 

[4] 

((7 - = 0 (10.33) 

where 

= (1 ^ 3;̂ )<9a;3; — 22:̂ 3; — - 2 ^ ^ (10.34) 

When (7 for all points on the shell this is a regular eigenvalue problem. 

But if cr = mil at any point on the sheU, Zc, then eq. (10.33) is formally singular. 

Zc is called a corotation point (although this terminology is misleading because 

represents a particular line of latitude on the shell and not only a point). At a 

corotation point, the pattern speed, cr̂  = cr/m is equal to the local angular velocity, 

n(zc). 

Solutions to eq. (10.33) may be of three types: 

# Discrete real-frequency modes 

# Discrete complex frequency modes 

# Corotating solutions (solutions with a corotation point) 

Watts et al [4] investigate corotating solutions. They show, using the Frobenius 

method, that a general solution to eq. (10.33) can be written as 

(10.35) 

where 

= ( 1 - y ] a„{i - (10.36) 
n=Q 
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and 

[/- . = i ^ ln(2; - z j + 0,(3; - z j " ] a; > 

ŝ "9 ^ (1 - a;^)W2 [6^(zc/a; - 1)''+^ ln(a;c/z; - 1) + 4(Zc/a: - l)""] a: < a;̂  

(10.37) 

In general (/ is singular at a; — â c but a purely regular solution is possible 

for rotation laws with = 0 somewhere on the shell. Another type of regular 

solution is possible if, for a particular frequency, the zero of — cr coincides with 

that of In this cage the governing equation is non-singular. 

Finding a general (singular) solution is complicated by the logarithmic term 

in eq. (10.37). Watts oZ deal with this by Ending solutions for a; > a;c and 

a: < Zc and matching at the corotation point by demanding that be continuous 

there. The derivatives of [/ however are singular at a; = â c and generally have 

both a logarithmic singularity and a step discontiuity . The size of the step in the 

derivative varies across the continuous spectrum range and for certain frequencies 

it can be zero. These are more regular than the other singular 

solutions. For such solutions the Wronskian of the solutions to the left and right of 

aZc v E i n i s h e s a t a^c-

Solutions that are singular at the corotation point may seem unphysical but 

the true physical time-dependent solution is obtained by integrating over the entire 

frequency range for given initial data. This integral solution will not be singular and 

the continuous spectrum caji have physical relevance. In [4] the authors hnd zero-

step solutions at specific frequencies within the corotation region. They also discover 

a new instability and show that a necessary (although not sulhcient) condition for 

instability is that = 0 at some point on the shell. The dynamically unstable 

modes that they And all occur when modes cross the corotation boundary (i.e. 

develop corotation points as the diEerential rotation is increased) above a certain 

threshold. One test of these results is to perform a time evolution of initial data and 

to see if these modes and instabilities appear. In the next section I present evidence 

that the zero-step solutions can indeed be identified in a numerical time evolution 

and I conhrm the predicted frequency growth time for an instabihty which arises 

in a particular case. 

10.4 Numerical Evolution 

We have developed a numerical time evolution code for eq. (10.24). We separate 

the real and imaginary parts of (7. 

[/ = C cos(m^) — 5' 8in(m(;!)) (10.38) 
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and substitute into the vorticity equation, eq. (10.22). By hrst substituting ^ = 0, 

i.e. [/ = C, then = 7r/2??%, i.e. [/ = 5", we get two partial differential equations 

for 5" and C. 

= 0 
sin^ sm"'^ / \ sm^ sin''^ y 

(10.39) 

f + m n ("geeC + = o 
sini9 sin"^ y \ sin 6/ s i n ^ y 

(10.40) 

These equations contain triple derivatives but, for simplicity, we prefer to work with 

a hrst order system of equations in our numerical implementation. Therefore, we 

introduce the new variables 

0 
77? 

A ^ s i n ^ ^ e o C + c o s g a g C - ^ ^ C (10.41) 
s i n 6^ 

2 
g = sin^^eg^ + cos^gg^ - (10.42) 

s i n D 

and substitute into the vorticity equation to And 

- (agn*)m^ = 0 (10.43) 

- ( ggn^mC = 0 (10.44) 

Then introducing two more new variables 

(10.45) 

% = (10.46) 

eqs. (10.41) and (10.42) become 

sin — sin^ — sin ^ cos — 0 (10.47) 

s in^B —8in^^i9g% —sin^cos^% + ?T!,̂ 6' = 0 (10.48) 

(10.49) 

Eqs. (10.43)-(10.48) are 6 first order equations for six unknown variables. 

The boundary conditions at the poles are (10.47),(10.48) 

(7 = 0 (10.50) 

6" = 0 (10.51) 
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We uae the following second-order finite difference scheme for the six equations 

^ ( - 4 r ' - K> - + Bf) + S » S 2 - | ( 5 r ' + 5 a = 0 (10.52) 

^ { s r ' - Bi) + ny(x;+' + Ai) - s „ ( r | ( Q ' + ' + Q " ) = o { 1 0 . 5 3 ) 

l i z r ' + Ztl) - ^ ( c r ' - Citl) = 0 (10.54) 

+ x r ? ) - ^ ( 5 r ' - 5?+') = 0 (10.55) 

s i n -^ ,__ , . sin^ 
Zr'-Ztl)--^{Al»+Alt\) 

M • " 2 

+ + Zt*l) - ^ ( c r * + Cl - l ) = 0 (10.56) 

~(xr'-xti)' 5|^(sr'+sr;) 
+ + ATS) - ^ ( 5 r ' + 5,"+') = 0 (10.57) 

If we have M gridpoints then eqs. (10.52)-(10.57) provide 6(M — 1) equations 

for the 6M unknowng. Boundary conditions provide the remaining 6 equations. 

We impose four boundary conditions on the inner boundary (C = 0, 5" = 0, and 

eqs. (10.52),(10.53) with A; = 1) and two conditions on the outer boundary (C = 0, 

^ = 0). 

We solve these equations by the imphcit method described in section (4.3). In 

order to use the relaxation routines, we require the Jacobian for our equations. 

Call this matrix where e labels the 6 equations and /? labels the variables. Let 

= 1..6 label the variables 6", C, 4̂, B, Z, % respectively at grid point A; — 1, and 

let — 7.. 12 label the same variables respectively at grid point A;. Then we find 
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that is given by 

/ 777 1 77T, 
/ 0 0 0 0 0 0 0 — - n — 0 0 

0 0 0 0 0 0 0 — 0— "TT 0 0 

0 - 0 0 - 0 0 0 0 1 0 

M \ ° ° ^ ° ° ° 2 

2 

0 0 0 0 

0 0 0 0 
1 1 

0 0 0 0 
2 

0 0 0 0 

sin 6̂  
0 0 e 

2 
0 

0 
sin 6̂  

0 0 0 
2 

0 — ^ r - 0 e 0 0 — ^ ^ 0 0 
2 

773 _ _ S i n P _ m 
e — 

0 

1 

1 

0 

1 

0 

0 0 0 

sin ^ 
0 

sin 6̂  
2 

0 

2 

0 

0 

sin 6̂  
2 

0 

10.581 
/ 

. sin^ ^ sin ^ cos ^ , sin^ ^ sin ^ cos ^ 
„].ere 7 = - ^ + and E = 

10.5 Rotation Laws and Results 

We consider three diEerent rotation laws and confirm the results derived by Watts 

using the semi-analytic methods of [4]. By taking a fast Fourier transform (FFT) 

of the solution at a point on the shell as a function of time we observe specific 

peaks in the frequency spectrum. Peaks can be seen both outside and inside the 

corotation region. The peaks outside corotation match the frequencies of the well 

known modes wliich become the r-modes in the limit of uniform rotation. The 

peaks inside corotation match the predicted frequencies for the zero-step solutions. 

We alao observe instabihties where they have been predicted. The results have been 

verihed f o r m — 1,2,3, / = 1,2,. . ,5 and for varying degrees of differential rotation. 

The Wolff rotation law hag its basis in observations of differential rotation in the 

outer layers of the Sun. 

= (454.8 — 60.4/3 cos^ ^ — 71.4/) cos'̂  6̂ ) (10.59 

in 
¥ 

^ = (120.8/3 cos ̂  sin ^4- 285.6/) cos^ 6̂  sin 6̂ ) (10.60) 
dp 

,,,, -0 .8 /3 ( -151 - 769cos^6' + 1428cos^g) (10.61) 

^ ^ = 3 c o s 6 ) ^ —2r ] s in^ - t - s in^^^ (10.62) 

The parameter /3, 0 < /3 < 1, is a measure of the differential rotation. Uniform 

rotation corresponds to /? = 0. The angular velocity is greatest at the equator. 

Watts et al [4] find zero-step solutions within the continuous spectrum. These 

are illustrated as dotted hnes in Fig. 10.1 for m = 1 and m = 2. The FFTs of the 
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Figure 10.1: Mode results for Wolff rotation law, taken from Watts [4]. The 
plot on the left shows m — 1, that on the right m — 2. Solid hnes: real-frequency 
modes outside corotation. Dashed line: The lower boundary of the corotation 
region - solutions to the right of this line are corotating. Dash-dot lines: Real part 
of frequency for dynamically unstable modes. Dotted lines: real-frequency solutions 
with zero step in the first derivative at the corotation point. The values of Z given 
refer to the tmiform rotation Emit /̂  = 0, in which there is one r-mode solution for 
each value of L 

solution at one point, taken from the time evolutions, for initial data of Z = 2..5 are 

shown in Fig. 10.2 for = 0.4 and Fig. 10.3 for = 0.5. The frequencies match 

those predicted using the methods of [4], including the zero step solutions within 

the corotation region. Fig. 10.4 shows how the form of the frequency spectrum 

within the corotation region depends strongly upon the position at which data is 

sampled on the shell. More understanding of these features is gained by the study 

of a simple rotation law which is described in section 10.5.3. 

Using the necessary condition for instability, = 0, we look for unstable 

modes for > 0.4815. In [4], the authors find instabilities for modes which cross 

the corotation boundary above this threshold value of /?. These results have been 

veriEed by the time evolutions. One particularly interesting result waa the behaviour 

of the m = / = 3 mode which has a growth time tha t increases with up to a 

maximum and then decreases, i.e. the mode restabilizes for higher values of /). The 

results of the time evolutions reproduce the predicted behaviour of the growth time 

in this case. 

The j-constant law was chosen because it has been used extensively in the literature 

(e.g. Hachisu [121]). This law is not physically motivated but was introduced due 

to its simplicity. It is an example of a law which has greatest angular velocity at 

the pole. 
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Figure 10.2: Power spectrum for the Wolff rotation law with m = 2 and = 0.4 with 
initial data Z = 2 — 5. The dashed hne marks the lower edge of the corotation band, 
at 804.6. The Z = 2, 3, and 4 modes are outside the corotation band, at frequencies 
592.1, 744.3 and 796.0 respectively. Peaks at these frequencies Eire clearly visible. 
For / = 5 initial data we see a peak at frequency 806.35 which is just inside the 
corotation band as predicted by the mode calculations. 

500 600 700 800 900 1000 400 500 600 700 800 900 1000 
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f (nHz) f ( n H z ) 

Figure 10.3: Power spectrum for the Wolff rotation law with m = 2 and = 0.5 with 
initial data Z = 2 — 5. The dashed line marks the lower edge of the corotation band, 
at 777.8. The Z = 2 and 3 modes are outside the corotation band, at frequencies 
588.66 and 741.08 respectively. Peaks at these frequencies are clearly visible. The 
/ = 4 mode is now inside the corotation band, at frequency 788.34. This is visible, 
in addition to a zero-step solution excited by Z — 5 initial data at 802.50. 

146 



a 

= 

1 + 
sin ^ 

a 
2n, 

^ ^ 2n, 

cos ^ sin ^ 

a cos sin — 2 cos^ ^ + 11 

(ff]* ^ 
2n sin ^ + sin ^ 

(10.63) 

(10.64) 

(10.65) 

(10.66) 

(10.67) 

Some FFT results are shown in Figs. 10.5 and 10.6 for varying values of A and 

diEerent kinds of initial data. Fig. 10.7 shows how the solution across the whole 

grid, C, evolves with time. One interesting phenomenon we see here is oscillating 

sharp peaks appearing near the poles. The results of the time evolutions match the 

predictions made by Watts, including the zero step solutions within the corotation 

region. No instabilities were predicted for this rotation law and none were found in 

our time evolutions. 

We have chosen to study the simple law 

1 

1 + I COS^I 

sin^ 

. COŜ  

-de=''°"'Te 2n sin ^ + sin 6̂  

+ 
2 sin^ ^ 

(1 + I C O S 6̂ 1)̂  

= 0 

(10.68) 

(10.69) 

(10.70) 

(10.71) 

This law is a useful test because it can be solved analyticallv as an initial value 

problem, and the fact that = 0 means that the only solution to the normal 

mode problem is a continuous spectrum. In [3] the solution for initial data (TolZ/) — 

in the case / = m (even initial data) is given by 

[/(z, )̂ 
2 ( - l ) m+i X 

4707% 

47rm 

1 4- a: 

1 + a; 
X 

+ 

[1 + ^)"" + (1 - 2/)n 

1 -

1 + z 
(1 -

(10.72) 
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The initial value integrals can be solved numerically or analytically for given 

initial data. The behaviour of the solution is oscillatory, with the maximiun 

amphtude decaying as 1/t at late times for / = m initial data and as 1/^^ at late 

times for / = m + 1 initial data. Results for Z = m = 1 and Z := 2, m = 1 initial data 

are shown in Fig. 10.8. 

The late-time fall off of can be understood by examining the integrals. Watts 

has solved the integrals analytically for m Z = 1 initial data and finds three dif-

ferent frequencies of oscillation, Oc, Qc/2 and + 2;), which interact to produce 

the beating at early times (seen in Fig. 10.8). The most persistent term has an 

amphtude that decays as 1/^, which explains the observed behaviour at late times. 

The beating is particularly pronounced if a; is chosen such that r2c/(l + 2;) is very 

close to either of the other two frequencies. Solving the integrals for Z = 2, m = 1 

initial data. Watts obtains the same frequencies as for the Z = m = 1 case, but the 

most persistent terms decay as 1/^^. 

FFT results for particular initial data are shown in Fig. 10.9. For Z = m and 

/ = m + 1 initial data the analytical solution of the initial value problem shows 

that we expect contributions from three different frequencies: = m , m / 2 and 

m / ( l 4- |z|). Fig. 10.9, for which a; = 0.1, shows that there are indeed peaks at 

these three frequencies. 

The fact that there are more than one frequency of the solutions in the con-

tinuous spectrum in this example and that the frequencies can depend upon the 

position on the shell could help explain the fact that we see differences in the shape 

and position of peaks inside the corotation region in the FFT results of the WolS 

law for different samphng positions as in Fig. 10.4. 

10.6 Stability and Convergence 

The stability and convergence of our numerical code was tested by Watts and the 

results are given in her PhD thesis [122]. The numerical scheme shows good stabihty 

and second order convergence for the stepsize we have used to obtain the results in 

this chapter. 

10.7 Chapter Summary 

In this chapter I have developed a numerical code to evolve the equation governing 

perturbations in a differentially rotating spherically symmetric thin shell. Calcu-

lations in the frequency domain were carried out by Wat ts aZ [4] [3] and I have 

confirmed those calculations in the time domain. I have shown that the zero step 

solutions exist in the time domain at the predicted frequencies within the corota-

tion region, and that there exist instabilities (with the predicted growth times) for 
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certain rotation laws. Using a simple rotation law we have shown that the frequen-

cies of the solutions within the corotation region will in general depend upon the 

position on the shell at which we sample the data. These new features may carry 

over into the more difficult problem of diSerentially rotating Neutron stars. 
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m-2.^=0.4 P=OJ 

Figwe 10.4: Power spectrum for m = 2, Z = 5 initial da ta with /) = 0.4 (left) and 
/? = 0.5 (right) for various sampling positions on the shell. We can see that the 
form of the power spectrum is strongly dependent upon the samphng position. This 
featiue can be understood when we study the simple rotation law of section 10.5.3 
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Figure 10.5: Power spectrum results of time evolution for j-constant law for m = 1 
and A = 1.5 with initial data of spherical harmonic form with Z = 2 (left) and / = 3 
(right). Modes outside corotation are at frequencies of 0.44 and 0.613 respectively. 
We can also see a peak appearing at frequency 0.67 which corresponds to Z = 4 
modes. The peak within the corotation region at 0.69 appears as predicted by 
Watts. 
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Figure 10.6: Power spectrum results of time evolution for j-constant law for m — 2 
and — 1.9 witli initial data of spherical liajrnionic form witli / — 2 (left) ciiid I 3 
(right). Modes outside corotation are at frequencies of 1.12 and 1.37 respectively. 
We can also see a peak appearing at frequency 1.49 which corresponds to ^ — 4 
modes. The peak within the corotation region at 1.57 appears as predicted by 
Watts. 

t = 2 . 2 

[ = 4 . 4 

Figure 10.7: Output of C on constant timeslices for j-constant rotation law with 
m = 2, / = 3 initial data and A = 0.01. We can see some sharp oscillating peaks 
appearing near the poles. 
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Figure 10.8: Time evolution of |[/| for / = m = 1 and ^ = 2, m = 1 initial data. At 
late times, |[/| falls off as l / ( for the Z = m = 1 data and as 1/^^ for the Z = 2, m = 1 
data. 
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Figure 10.9: Fast Fomier Transform results for the rotation law = 1/(1 + |3;|) lor 
Z = m = 1 and Z = m = 2 initial data, sampled at the point a; = 0.1. For m = 1 
initial data we expect peaks at scaled frequencies cr/Hc = 0.5, 0.91 and 1.0. For 
m = 2 initial data we expect peaks at scaled frequencies cr/Hc = 1.0, 1.82 and 2.0. 
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Chap te r 11 

Conclusions and Discussion 

This thesis represents four years of research work in the study of perturbed compact 

objects. The main focus has been on developing a characteristic evolution code for 

the Teukolsky equation governing scalar perturbations in Kerr spacetime, but I have 

also considered some other interesting problems along the way, such as the eEect of 

a positive cosmological constant on perturbations in Kerr-de Sitter spacetime, and 

the effect of diSerential rotation on the oscillation modes of a rotating spherical 

shell. 

In the hrst four chapters I have introduced the subject of my research and the 

relevant major developments that have taken place in history. I have also introduced 

the mathematical and computational techniques which are used in the later chapters 

of the thesis. In chapters 5,6 and 7 I have considered some examples with known 

solutions, i.e. the one-dimensional wave equation, the Regge-Wheeler equation and 

the axisymmetric wave equation, as toy problems. I have evolved these equations 

numerically as both Cauchy and characteristic initial value problems. This has 

enabled me to test and fiuther develop the techniques which carry over to the more 

complicated problems of chapters 8,9 and 10 in which I have presented the main 

results of my research. 

In chapter 8 I have shown how to write the Teukolsky equation for scalar field 

perturbations in Kerr spacetime as a characteristic initial value problem. This was 

not immediately obvious as there has been some confusion caused by the use of terms 

such as 'retarded Kerr coordinate' or 'ingoing Kerr coordinate' in the literature. 

When we try to write the scalar Teukolsky equation using these null coordinates we 

do not obtain a characteristic initial value problem. Such coordinates do indeed form 

a null threading of Kerr spacetime but not a null foliation. This was pointed out by 

Pretorius and Israel [90] who have introduced 

of Kerr geometry for which the retarded and advanced null coordinates are functions 

of both radial and angular coordiantes , r*(r, and ^), to write the retarded 

characteristic Teukolsky equation and I have gone further by developing a numerical 
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code to evolve this equation. Previously, the Teukolsky equation had only been 

evolved as a Cauchy problem [2] but there have been some late-time problems with 

the Cauchy code and, as with all Cauchy grids, it suffers with artificially imposed 

boundary conditions. By evolving on characteristic hypersurfaces I have been able 

to compactify the radial coordinate, r*, and avoid boundary problems altogether 

by evolving all the way out to future null inBnity. 

I encountered many di&culties while developing the characteristic Teukolsky 

code. The grid was set up using the coordinates and but the coeScients in 

the equation are written in terms of r and It waa not a simple task to calculate 

the coefficients at a given gridpoint and I found it necessary to calculate the relevant 

quantities by numerical integration, and some by numerical differentiation. Having 

set up the grid and being able to calculate the coeScients at aU gridpoints I tested 

this grid by evolving the Teukolsky equation in the time domain with coordinates 

(t, and found that the results compared well with those of the old Caucy 

code. 

The characteristic code uses the cnaa-croag hnite diSerence scheme described by 

Lehner [79], which wag successful in evolving the axisymmetric wave equation and 

which is claimed to be equivalent to the marching algorithm used in characteristic 

numerical relativity [63]. The angular discretization has been problematic however 

as it appears to be the cause of numerical inatability. This numerical instabihty can 

be pushed to very late times by increasing the radial grid resolution and the solution 

is second order convergent up to the point of instability. The code may therefore 

still be useful given sufhcient computational resources. With further investigation 

it may be possible to adjust the di&rencing scheme to obtain a stable numerical 

evolution, but even if not, the code as it stands may prove to be very useful if it is 

pushed to later times by increasing the resolution. We have seen that doubling the 

radial resolution leads to signiScantly longer evolution times. 

The next step in code development would be to match a compactified ingoing 

evolution reaching the horizon to a compactihed outgoing evolution reaching fu-

ture null infinity as I have done for the Regge-Wheeler equation in chapter 6 with 

good results. In section 8.4.10 I have written the Teukolsky equation as a double 

null initial value problem but a stable numerical evolution is stiU required for this 

equation. It may be possible to avoid the inatability which appears near r* = 0 

by evolving a section of the grid around r* = 0 on Cauchy shces and matching 

the inner boundary to a compactiGed ingoing charax^teristic evolution and the outer 

boimdary to a compactified outgoing characteristic evolution. This task should be 

fairly straightforward following the matching scheme I have used in section 6.4.5, 

but since there is some doubt about the rehability of the Cauchy code, the same 

problems may appear in a combined Cauchy-characteristic code. 
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By evolving the characteristic evolution to later times, this code coWd be used as 

a good test of some anomalous results by Krivan [92] for the late-time tail arising 

from initial data of spherical harmonic form m — 0, Z = 4 . Whereas Hod [97] 

predicts a fall-oS of and Barrack and Ori [96] predict Krivan used the 

scalar field Cauchy code [2] and found Although I have not yet used the 

characteristic code for this test, I did use the old Cauchy code. I expected to 

reproduce the results of Krivan but instead I found a late time fall-oE close to 

for both ingoing and outgoing initial data, using both (fg, and (r*, coordinate 

grids. 

In section 8.6 I have presented some results which support the SKperracfmMce reg-

OMdMce interpretation of Andersson and Glampedakis [51] for explaining the 

long-lived quaainormal modes of Kerr spacetime. I obtained these results using the 

original scalar field Cauchy code for the Teukolsky equation. For su&ciently nar-

row initial data I observed long-lived quasinormal modes appearing even for black 

holes which were far from extreme. This wag an unexpected result as Andersson 

and Glampedakis had previously only reported this phenomenon for extreme and 

near-extreme Kerr black holes. By examining the behaviour of the solution near the 

horizon I observed amplification occurring for oscillations of particular frequency 

depending on the value of the parameter o. These long-lived quasinormal modes 

appear at earher times for narrower initial data. 

Perturbations in Kerr spacetime have been studied for the past 80 years but my 

studies have shown that there is yet more work to be done in this held. A stable 

characteristic evolution is highly desirable and would be of great value in predicting 

gravitational waveforms for use as templates in the search for gravitational waves. 

Such a code may be useful in a programme such as LAZARUS [44] to model the ring-

down phase following black hole merger using the close-limit [43] approximation. 

Although the characteristic Kerr code I have described in this thesis is not ultimately 

stable, it can be pushed to late times by increasing the grid resolution and may 

therefore prove to be very useful as it stands. 

I have shown that there is still some uncertainty about the late-time behavioiu: 

of a perturbed scalar held in Kerr spacetime. This uncertainty concerns the decay 

rate ag well ag the nature and excitation of the long-hved quasinormal modes. My 

studies involved investigations of scalar held pertiu;bations but it is expected that 

the results will carry over to gravitational perturbations which are of more interest 

in the quest to detect gravitational waves. 

In chapter 9 I have extended the original Kerr Cauchy code to include the 

presence of a positive cosmologicai constant. The cosmological constant plays an 

important role in cosmology and particle physics. The eSect on black hole space-

times is to change the asymptotic structure from Eat, Minkowski spacetime to de 
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Sitter spacetime. This introduces an additional horizon, the cosmological horizon. 

I have shown in chapter 9 that the late-time behaviour of scalar held perturba-

tions in Kerr-de Sitter spacetime can be strongly eSected by the presence of a 

positive cosmological constant. Brady of. [71] previously studied perturbations 

in Schwarzschild-de Sitter spacetime and found that for Z = 0 initial data the held 

reduced to a constant value at late times. I have reproduced this result using my 

code for Kerr-de Sitter spacetime, and for initial data of higher order, ie. m — 1, 2, 

I have observed a new phenomenon in which the late time held consists of appar-

ently undamped oscillations. The amplitude and frequency of these modes depend 

upon the value of the cosmological constant. Brady o/. argued that the late time 

constant behaviour for / = 0 initial data in Schwarzschild-de Sitter spacetime is due 

to the presence of a dip in the potential for positive r*. The late time oscillations in 

Kerr-de Sitter spacetime that I have observed may be due to a similar feature and 

therefore calls for further investigation of the form of the Kerr-de Sitter (frequency 

dependent) potential. 

I have also observed the effects of superradiance in my ntmierical evolution of 

perturbations of Kerr-de Sitter spacetime. The frequency range for superradiance 

waa derived by Khanal and my results seem to agree with his upper frequency hmit 

but I observe superradiance below his lower frequency limit. It may be possible 

to use the techniques of chapter 8 to evolve the perturbations in Kerr-de Sitter 

spacetime as a characteristic initial value problem. This would be a good way to 

test the results I have derived in chapter 9. 

In chapter 10 I have moved from the study of black holes to neutron stars and 

from hnearized relativity to the Newtonian limit. Neutron star spacetimes are com-

plicated by the presence of matter, therefore a feasible numerical model wiU involve 

many simplifying approximations. Watts oZ. [4] have considered a spherical, 

axisymmetric, thin sheU of incompressible ideal fluid in differential rotation. In 

collaboration with them [3] I have developed a numerical code to conhrm their pre-

dictions for special modes corresponding to solutions which appear within 

the corotation region of the frequency spectrum. I have also conhrmed predictions 

of new instabihties which occur for some diSerentiai rotation laws. Using an imphcit 

numerical evolution I have obtained results for the frequencies of the new modes 

which compare well with the predictions for three different rotation laws, the j-

constant and Wolff laws, and a simple rotation law for which the analytic solution 

may be calculated and which we have used as a test problem. The frequency peal(s 

within the corotation region in the FFTs were shown to depend on the position on 

the the shell at which the data was sampled. For the simple rotation law, for which 

ah frequencies are in corotation. Watts was able to predict three frequencies that 

should show up as peals in the FFTs, one of which is dependent upon the position 

156 



of sampling. My results confirm this prediction well. Although we have used a very 

simplified toy model for our studies of differential rotation, we expect that at least 

some of the effects we have observed will carry over into more complex, relativistic 

scenarios such as spinning neutron stars. 
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