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I present numerical studies of perturbed black holes and neutron stars. The be-
haviour of such compact objects is of particular interest now because the gravita-
tional wave signals which they emit may be the first to be detected by the new
generation of interferometric detectors.

A single perturbed black hole is well approximated using the linearized Einstein
equations and the problem is reduced to solving a simple wave equation with a
potential. I show how such a wave equation may be evolved numerically on Cauchy
or characteristic hypersurfaces. I present a new numerical code for evolving scalar
wave perturbations in Kerr spacetime as a characteristic (null-timelike) initial value
problem. This code suffers from an instability but this problem can be pushed to
very late times by increasing the grid resolution. The code shows second order
convergence up until the time that the instability takes over. Previous numerical
studies of perturbations in Kerr spacetime [2] were carried out using a Cauchy evo-
lution code. I use this code to contribute to a recent discussion over the late-time
behaviour of perturbations with initial form m = 0,{ = 4, finding the expected
fall-off of 3. T also use this code to lend support to the superradiance resonance
cavity interpretation of Glampedakis and Andersson [52] to explain the long-lived
quasinormal modes of Kerr spacetime. I have adapted the Cauchy code to use co-
ordinates (., #,) more suitable for a characteristic evolution and this code gives the
expected results, comparable with the original version. I have also developed a code
to evolve scalar field perturbations in Kerr spacetime in double-null coordinates but
this is not stable. The cosmological constant plays an important role in cosmology
and particle physics and will also effect the asymptotic geometry of black hole space-
times. I investigate the effect of a cosmological constant on the late-time behaviour
of a perturbed scalar field in Kerr-de Sitter spacetime and present some new results
which reveal apparently undamped oscillations in some cases. [ also investigate
superradiance in the presence of a cosmological constant. The results show super-

radiance in the expected frequency range but the superradiance seems to extend



beyond the lower frequency limit predicted by Khanal [70] at large A. Evolutions of
neutron star spacetimes are more complicated than the corresponding problem for
black holes due to the presence of matter. Not only must we consider the response
of the exterior spacetime but also the behaviour of the material that makes up the
star. There are many more factors which need to be taken into account. I present
work done in collaboration with Watts and Andersson [3] to study the effect of
differential rotation on a simple system, a rotating spherical shell. For this I have
developed a numerical time evolution code which confirms the predictions of Watts

et al. [4] for a new class of oscillations and a new instability.
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Chapter 1
Introduction.

A scientific theory must provide some explanation for our sensory experiences. It
gains further credibility by making predictions which can be verified by experience
either directly through our senses or via some reliable instrument. In these respects
general relativity has been a very successful theory. It successfully agrees with
the predictions of classical Newtonian physics in what has come to be known as
the Newtonian limit, where speeds are small compared to the speed of light, and
gravity is weak. It gives the correct description for the perihelion shift of Mercury,
which could not be explained by classical mechanics and was called 'peculiar’. In
1916 Einstein proposed an experiment to test his theory’s new prediction of the
bending of light around the Sun, and in 1919 such an experiment was carried out
during a total Solar eclipse verifying this prediction. One prediction of general
relativity yet to be verified, however, is the existence of gravitational radiation. Not
only are scientists interested in detecting gravitational waves as a test of general
relativity, but gravitational radiation could also become a very useful tool in its
own right, allowing us to probe parts of the universe which are inaccessible via the
electromagnetic spectrum.

An order of magnitude calculation shows that the amplitude of gravitational
waves arriving at earth from even the most powerful known sources will be extremely
small. In fact it will probably be smaller than the experimental noise, making it
very difficult to detect. In order to find such a small signal, the form of the signal
must be known in advance, and a technique called matched filtering used to search
the output for this signal. Coalescing compact binaries possess a characteristic
gravitational wave signal which depends on the binary object’s masses and their
separation. A recent review concludes that inspiralling binary black holes are likely
to be detected first by the initial ground based interferometers [1], yet the prediction
of the full gravitational wave signal is proving to be a great challenge.

In general relativity, information on the structure of spacetime and it’s interac-

tion with matter is encoded within differential equations which must be solved in



order to get a clear understanding of the physical situation. Unfortunately, Ein-
stein’s equations have, to date, only been solved analytically in a limited number
of special highly idealized cases. The problem is that these equations are nonlin-
ear and there is much yet to be understood in the realm of nonlinearity. In the
case of binary black holes, during the early stages of inspiral it is possible to use
post-Newtonian approximation techniques whereby Einstein’s equations become re-
duced and simplified. During merger however, these approximations are no longer
valid and the full set of Einstein’s equations must be solved by numerical meth-
ods (numerical relativity). At later times, the system can be modelled by a single
slightly distorted black hole and we can use a linearized approximation to Einstein’s
equations and perturbation methods. This last stage is the focus of this thesis.

Using perturbation methods, the equations governing the behaviour of the final
black hole are relatively simple and can be analysed in the frequency domain, or
evolved numerically to discover how the signal varies with time. Numerical evolu-
tions for nonrotating black holes carried out over the past 30 years have provided
a great deal of insight. Similar evolutions of perturbed rotating black holes, on
the other hand, have only recently been carried out [2]. An approach which has
proved to be extremely convenient and beneficial for numerical study of radiation
problems in general is characteristic evolution, in which the equations are evolved
on characteristic hypersurfaces. In the case of a single perturbed black hole, this
approach enables the evolution of the entire exterior spacetime through compact-
ification and avoids the boundary problems which plague time evolutions. In this
thesis I therefore seek to apply this method to the study of rotating black holes.

Recent advances in cosmology indicate that the universe in which we live pos-
sesses a positive cosmological constant. This will have a dramatic effect on the
asymptotic structure of a black hole spacetime. Numerical evolutions for nonrotat-
ing black holes in the presence of a cosmological constant have shown that some
interesting new features arise for some types of initial data. In this thesis I investi-
gate the effect of a cosmological constant on the late-time behaviour of perturbed
rotating black holes.

Another promising source of detectable gravitational wave signals is neutron
stars. The simulation of a perturbed neutron star is more complicated than the
corresponding case for black holes due to the presence of matter in the equations.
Whereas a general black hole can be completely described using only three param-
eters, many more features are required to fully describe a neutron star, and the
full structure is still unknown. A well known phenomenon observed in many stars,
including the Sun, is differential rotation. To model a realistic neutron star with

differential rotation would be an enormous and difficult task. In this thesis I present



work carried out in collaboration with A.L. Watts and N. Andersson [3] to investi-
gate the effect of differential rotation on a perturbed spherical shell in Newtonian
gravity. We expect that some of the features we observe in this toy problem will
carry over to the case of a real neutron star.

This thesis begins in Chapter 2 with an introduction to gravitational waves,
black holes and neutron stars. There I present the motivation for the thesis. It is
not intended to be a comprehensive review, rather I give an overview of the major
developments in these fields which relate to the problems I consider in the later
chapters.

In Chapter 3 I present the mathematical background to this thesis. I show how
the initial value problem can be formulated in three different ways, the Cauchy,
double-null, and null-time like formulations. To demonstrate this I use the simple
example of the one-dimensional wave equation in flat space.

Chapter 4 introduces the numerical techniques I use in this thesis for numerical
integration and evolution.

In the next three chapters I use the mathematical and numerical background
of the previous chapters in some toy problems which serve as progressive exam-
ples which will be extended further in later chapters. In Chapter 5 I evolve the
one-dimensional wave equation in flat space. In Chapter 6, I extend the problem to
evolve the Regge-Wheeler equation which governs perturbations on a Schwarzschild
background. This is a one-dimensional wave equation with a potential. In Chapter
7 I extend the problem further by working in two-dimensions to evolve the ax-
isymmetric wave equation in flat space. In all these toy problems, the numerical
evolutions are carried out using both Cauchy and characteristic formulations and
the results are tested by comparison with known analytic solutions.

The final three chapters are the main work of this thesis. In Chapter 8 I apply
my experience from the toy problems to study rotating black holes. I write the
scalar wave equation in Kerr spacetime in null-timelike coordinates and develop a
numerical code to evolve this equation. I also use an older time evolution code to
contribute to the recent debate over the late-time behaviour of a scalar field with
an initial perturbation of the form m = 0, [ = 4. 1 present some results which
lend support to the recent interpretation of the late-time long-lived quasinormal
modes in extreme and near extreme Kerr black holes as products of a superradiant
resonance cavity directly outside the black hole.

In Chapter 9 T evolve the scalar wave equation for a rotating black hole in
the presence of a positive cosmological constant and show some interesting new
features which emerge at late-times. I also give evidence to support some previous

superradiance calculations.



In Chapter 10 I evolve perturbations in a thin spherical shell with ditferential
rotation. The results confirm the semi-analytic predictions by A.L. Watts et al [4],
including a new kind of instability.

Finally, in Chapter 11 I discuss the main results of this thesis and describe some

possibilities for future research that have been generated by this work.



Chapter 2

Gravitational Waves, Black Holes

and Neutron Stars

2.1  Gravitational Waves

According to standard Newtonian gravitation theory, the gravitational interaction
between two separated objects is instantaneous, i.e. there is action at a distance.
According to the principles of special relativity however, the speed of light is the
limiting speed for all interactions. General relativity incorporates this limiting speed
for gravitational interaction so that changes in the shape of a particular object will
produce changes in the gravitational field which propagate outward at the speed of
light. In this way the gravitational effect on a second object located at some distance
from the first will not be felt instantaneously. Distortions in the gravitational field
which travel at the speed of light are called gravitational waves.

Einstein showed in 1916 that the equations of general relativity admit gravi-
tational waves as solutions but in the late 1940’s doubts arose as to whether or
not such waves are real, i.e. whether or not they carry energy. That gravitational
waves carry energy was finally established by Bondi in 1957 using a clever thought
experiment first presented by Richard Feynman [5]. Feynman described beads mov-
ing up and down against a stick under the influence of gravitational radiation and
heating the system by friction. The heating shows a transfer of energy which must
be carried by the gravitational waves. In 1960 Joseph Weber began the search for
these waves.

Since the 1960s there have been many technological and theoretical develop-
ments. The experimental apparatus has become much more sensitive and accurate
and we have much more information about what sources to look for, and we have
also gained indirect evidence for the existence of gravitational waves. As yet (2004)

however, the quest to detect gravitational waves has not been successful, although



with many new detectors now coming on line there is a good chance that a detection

event will occur in the next few years.

2.1.1 Weak Gravitational Fields in Flat Spacetime
The absence of gravity leaves spacetime flat, so we could consider a weak gravi-
tational field to be one in which spacetime is nearly flat, i.e. we consider nearly

Lorenzian coordinates in which the metric has components
Guv = Muw -+ huu ) Jhuul <1 (21)

where 7, is the flat space metric and £, is a small perturbation. Under a back-
ground Lorenz transformation, h,, transforms as a tensor, so we can imagine our
weak gravitational field as a tensor h,, on a flat background. The Lorenz (de

Donder) gauge is given by

R =0 (2.2)

AW = pH — %Tz‘”h (2.3)

and h is the trace, h%. In this gauge the Einstein equations reduce, to linear order

in A, to

Oh* = —167TH (2.4)

where T is the stress-energy tensor, describing any matter present, and O =
n* 0,0, is the D’Alembertian operator. These are called the linearized Einstein

equations. In vacuum we have
OR* = 0 (2.5)

which is the familiar four dimensional wave equation. Any solution to this equa-
tion is a superposition of plane wave solutions. Omne consequence of this is that

gravitational effects propagate at the speed of light.
2.1.2  Detection

Electromagnetic waves can be detected by their effect on a single test particle -
when the wave hits the particle it causes an acceleration transverse to the waves
propagation direction and proportional to e/m (charge to mass ratio of particle).
When a gravitational wave hits a free particle it also imparts transverse accelera-
tion, but the ”gravitational charge” (its response to gravitational force) is equal to

it’s inertial mass, m. This is the equivalence principle which means that all particles
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Figure 2.1: A ring of particles being stretched and squeezed by a gravitational wave
passing perpendicular to the plane of the page. (a). The “+” polarization. (b).
The“x” polarization.

have the same gravitational “e/m”, i.e. all particles at the same location experi-
ence the same transverse acceleration, so all local reference frames also undergo
the same acceleration and hence the acceleration is locally undetectable. However,
the acceleration is different at different locations and so we can use two particles
separated by a distance L and measure the acceleration and hence the change in
separation, 0L. A measure of the amplitude of the gravitational waves is given by
the dimensionless strain, A = 6L /L. The stretching and squeezing effect of gravita-
tional waves is usually illustrated by considering a ring of particles. Gravitational
waves possess two polarization states, i.e. the gravitational field has two radiation
degrees of freedom. The corresponding modes produced in the ring of particles are
shown in Fig. 2.1.

There are two types of detectors currently being used in the search for gravita-

tional waves.

o In bar detectors the gravitational forces stress the material of a solid bar and
cause it to oscillate. The oscillations can be detected if the frequency is near
the resonant frequency of the bar, typically about 1kHz.

o Laser interferometric detectors are giant L-shaped instruments. Laser beams
are bounced along the two arms, being reflected at the ends by mirrors which
are suspended by wires. The reflected beams are recombined and their in-
terference pattern is monitored by a photodetector. A passing gravitational
wave displaces the mirrors thus causing a detectable shift in the interference

pattern. These detectors operate over a broad frequency range.



Detectors currently under construction are expected to measure strains down to
h ~ 1072!, but this is still much bigger than any known Earth-based mechanism
can generate. We must look further afield to violent astrophysical events such as
supernova explosions, coalescing compact binaries (neutron stars or black holes),

individual black holes or neutron stars, or the early universe.

2.2 Black Holes
In 1783 a British natural philosopher named John Mitchell reasoned that if a star

is dense enough, the initial speed required for a particle launched from the surface
to escape (the escape velocity) could reach or exceed the speed of light. He further
reasoned that since, according to the corpuscular theory of light which was prevalent
at that time, light was also a particle, it too may be affected by gravity in the same
way. There was nothing in the physics of the day which prevented the existence of
such a dense star and Mitchell therefore concluded that there may exist dark stars
from which no light could escape. Later however, with the demise of corpuscular
theory and the rise of the wave theory of light, the reasoning of the above argument
lost it’s basis.

Over a century later, in 1915, when Einstein presented his theory of general
relativity [6], a new version of dark stars appeared. Almost immediately after the
publication of Einstein’s original paper, Karl Schwarzschild used Einstein’s field
equations to calculate the curvature of spacetime outside any spherical, nonspinning
star, now known as Schwarzschild geometry [7]. One of the consequences of his
calculations was that, for a star of fixed mass, there is a critical size at and below
which no light can escape beyond the critical radius, the Schwarzschild singularity.

The physical relevance of this conclusion was debated for the next 50 years. In
the mean-time however several developments suggested that these unusual objects
could exist in the universe. In 1931 Chandrasekhar showed that white dwarfs, dense
stars held up by degeneracy pressure, had an upper mass limit of 1.4M [8]. The
discovery of the neutron in 1932 led to the idea of Baade and Zwicky [9] that there
could be stars made entirely of these particles, which Oppenheimer and Volkoft [10]
showed in 1938 would also have an upper mass limit. In 1939 Oppenheimer and
Snyder [11] showed that, in the reference frame of the stellar surface, the gravita-
tional collapse of a highly idealized spherical, pressureless, nonspinning, nonradiat-
ing star continues past the Schwarzschild singularity. The high level of idealization
left plenty of room for doubt, but by the late fifties physicists had learned many
new tools during their war-time hydrogen bomb research and by the early sixties
Colgate, White and May [12] were able to relax some of the idealizations in their

computer simulations. These simulations retained only two idealizations, the star



must be spherical and nonrotating. In 1958 Finkelstein [13] discovered a new refer-
ence frame in which to describe Schwarzschild geometry and which reconciled some
of the main difficulties in understanding the results of gravitational collapse, show-
ing the Schwarzschild singularity not to be a real singularity at all but merely a
coordinate singularity which could be removed by a transformation of coordinates.
The Schwarzschild singularity became known as the horizon and the central object
created by the stellar implosion was given the name black hole.

The decade between the mid-sixties and mid-seventies has become famed as the
golden age of black hole research [14]. During this time great advancements were
made by many researchers in understanding the nature and properties of black
holes. Much of this advancement was based on perturbation methods outlined
in a landmark paper published in 1957 by Regge and Wheeler [15] in which they
derive their equation describing a slightly perturbed Schwarzschild black hole. Using
this equation they showed that Schwarzschild spacetime is stable, as confirmed by
Vishveshwara [16]. Black holes could now also have electric charge, as described by
the Reissner Nordstrom solution of 1918 [17] (the physical meaning of the solution
was uncovered in 1960 by Graves and Brill [18]). Kerr [19] calculated a solution to
Einstein’s equations which describes the spacetime curvature outside any spinning
black hole. Carter [20] calculated the properties of the Kerr black hole and showed
how the spinning motion can twist spacetime itself. In 1972 Teukolsky [21] presented
his equation describing perturbed Kerr black holes. More exotic processes were
theorized, such as black hole accretion disks [22] and the jets produced by the
Blandford-Znajek process [23], and black holes were used to explain observations of
quasars and radio galaxies. In 1970 Hawking and Penrose [24] redefined the black
hole horizon. Zel'dovich [25] used quantum theory to argue that a spinning black
hole radiates gravitational energy and Hawking showed that in this way black holes
evaporate [26].

The observational search for these invisible objects began in the early sixties.
Zel'dovich and Novikov [27] proposed that stellar matter falling onto a black hole
could be heated to such a high temperature that it emits X-rays. If a binary with
one optically bright source and one X-ray bright source could be detected, and
the X-ray source was sufficiently massive, then this would be a good black hole
candidate. Since X-rays cannot penetrate the Earth’s atmosphere, detection was
difficult at first but the first X-ray satellite UHURU, launched in 1970, detected
a good candidate - Cygnus X1 [28]. Since then many more candidates have been
detected by this method and others. There is now strong observational evidence

that most galaxies have a super-massive black hole at their center [29].



2.3 Neutron Stars

Baade and Zwicky proposed the idea of neutron stars in 1934 [9], and they also
suggested that such stars could be formed in supernovae. In 1939 Oppenheimer
and Volkov developed the first neutron star model. They assumed that it was made
of a high density ideal gas of neutrons. Then, for over 20 years, little attention
was given to neutron stars until the discovery of a cosmic, non-solar X-ray source
by Giacconi et al in 1962 [30]. Some researchers suggested that the source of the
X-rays could be a young, warm neutron star.

The discovery of quasi stellar objects in 1963 [31] also brought more attention to
neutron stars as it was thought that the high redshifts may be due to gravitational
redshift at the surface of such a dense object. By 1965 the quasar redshifts were
shown to be too high to be accounted for by gravitational effects from a neutron
star [32], but by then the neutron star concept had caught on and some theoretical
physicists had begun to calculate their properties, although it still remained an
abstract concept and was not taken too seriously by much of the scientific commu-
nity [33]. After the discovery of pulsars [34] in 1967 however, Gold [35] proposed
that they were rotating neutron stars and neutron stars became firmly established
in the world of astronomy. The Crab and Vela pulsars were discovered situated
in supernova remnants [36] and this gave evidence for the earlier suggestion that
neutron stars may be formed in supernova explosions. In 1971 the UHURU satel-
lite discovered X-ray pulsars [37] which are believed to be neutron stars accreting
matter from a normal binary companion star.

The usual approach to modelling neutron stars is to consider an ideal fluid
with some particular equation of state. The true equation of state for the interior
of compact stars is unknown but many different possible equations of state have
been proposed which satisfy the current observational constraints. These various
equations of state can lead to substantial differences in the bulk properties such
as maximum mass, radius and rotation rate, so there is still a lot that is unknown
about the structure and evolution of neutron stars. Some of these issues may be

resolved through gravitational wave astronomy.

2.4 Coalescing Compact Binaries

Coalescing compact binaries are among the most promising sources of gravitational
radiation for future detection. This coalescence is not only one of the most violent
events in the universe, giving off vast amounts of energy in the form of gravita-
tional waves, but the spectrum of those gravitational waves is also expected to have
a specific characteristic form. Such sources are extremely far away and therefore
the gravitational radiation we receive from them is expected to be of very low am-

plitude, and therefore buried in detector noise. The chances for detection could
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be significantly increased, however, if we can predict the signals spectrum in ad-
vance. We can then use a technique called matched filtering, whereby templates of
predicted signals are matched against the detector output.

A typical signal from coalescing compact binaries consists of three main parts.
The first part represents the inspiral phase in which the two objects are well sepa-
rated. The frequency and amplitude of this oscillating signal, called a chirp signal,
increase with time as the two objects spiral inwards. The second part represents
the merger. It is here that non-linear relativistic effects play an important role
and the form of the signal is expected to be more complex. In the later stages of
the coalescence, following merger, we are left with a single perturbed black hole or
neutron star. This stage is called the ring down. For a black hole the ring down
consists of damped oscillations of fixed frequency, called quasi-normal modes, and
a late time fall off, called the taul. If the final object is a neutron star, the third
stage will be more complicated due to various types of possible oscillations in the
matter itself.

In the inspiral phase, relativistic effects are expected to be less important as the
two black holes are well separated and do not become distorted due to interaction.
Here, an analytic approximation technique called post-Newtonian approzimation is
used to predict the form of the gravitational radiation emitted. There is already
indirect evidence for the emission of gravitational radiation in the discovery by
Hulse and Taylor [39] of the binary pulsar PSR 1913+16. Observations show that
the orbital period of this system is steadily decreasing, i.e the system is losing
energy, and this decrease is in excellent agreement [40] with the value predicted
using Einsein’s quadrupole formula. The quadrupole formula shows how the total
power emitted in gravitational waves by an isolated Newtonian source depends
quadratically on the variations of the quadrupole moment of the source. The energy
loss of a binary with circular orbit of radius a and total mass M is given by the

formula [41]:

dE  32p°M°

dt 5 ad (2:6)

where = mimqy/M is the reduced mass and m; and msy are the individual masses
of the binary components. The rate at which gravitational radiation is emitted
increases as the binaries inspiral, i.e. as a decreases, the frequency and amplitude
of the gravitational waves increase, producing the characteristic chirp waveform.
In the merger phase, when the two objects become too close for post-Newtonian
techniques to realistically describe the evolution, the full Einstein equations must be

solved. It is not possible to do this analytically, therefore numerical approximation
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techniques are used to simulate the merger. This has proved to be a very difficult
task. See [42] for a review of numerical relativity.

During the last stage when we have a single perturbed black hole, the nonlinear
effects of full general relativity are expected to be quite small and a perturba-
tion approach can be used. In this approach the evolution of a perturbing field
is calculated against a fixed background spacetime using a linearized version of
Einstein’s equations. This approach can also be used during the late part of the
merger phase when the two objects are close enough to be approximated as one
object in the close limit approximation [43]. The LAZARUS [44] project aims to
follow coalescing black holes through all three phases by combining post-Newtonian
approximation, numerical relativity and perturbation techniques in one code.

The form of the signal during ring down, obtained via a pertubation approach,
is the main focus of this thesis. I therefore devote the rest of this section to a review

of the major developments in this field and set the context for this current work.

2.5 Black Hole Perturbations

When Regge and Wheeler derived their equation governing black hole perturba-
tions in 1957, their motivation was to discover whether or not black holes are stable
to small perturbations. They found that the reaction of the black hole was gov-
erned by a fairly simple equation - a wave equation with a potential. Some time
later, Vishveshwara used numerical methods to investigate scattering of radiation In
Schwarzschild spacetime. He sent Gaussian wave packets moving towards the black
hole and studied the scattered waves. He discovered that when the initial Gaussian
was wide there was nothing particularly interesting to be seen in the scattered pulse
but for narrower initial data he discovered damped oscillations. Throughout the
seventies, others found similar results in studying this problem and also in study-
ing infalling test particles [45] and slightly nonspherical gravitational collapse [46].

They observed

e an initial waveburst

e exponentially damped ringing

o a power law fall off at late times [47]

Whereas the initial waveburst depended upon the form of perturbing field, it
was observed that the frequency and damping of the ringing and the late time
power law behaviour were characteristics of the black hole itself. The black hole
oscillations are now known as quasinormal modes and the late time fall off is called

the tail.
Today we are able to calculate quasinormal mode frequencies by working in the

frequency domain (see e.g. [48], [49]) and it can be shown in this way that the

quasinormal modes correspond to poles in the complex frequency plane and that
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the late time tail corresponds to a branch cut along the negative imaginary axis.
In physical terms, the quasinormal modes are analogous to the resonances found in
quantum scattering, and the tail has been shown to arise from back-scattering off
the long-range gravitational field. This field has been well researched, yet recent
surprising results [51], [52] and questions [50] concerning the late time behaviour of

spinning black holes show that there is still work to be done.

2.6 Neutron Star Perturbations

Modelling perturbations in a neutron star spacetime is more complicated than the
corresponding problem for black holes because we must consider oscillations in the
neutron star matter itself as well as the reaction of the exterior spacetime. We must
therefore include the equations of hydrodynamics. A more realistic model will also
include the effects of magnetic fields, superfluidity, Ekman layers (i.e. the presence
of a crust), and exotic particles, but there is much work still to be done before we
have a good understanding of these effects.

Most stars are expected to undergo some kind of oscillation during their life-
time and these oscillations are accompanied by the emission of gravitational waves.
Neutron star oscillations could generate detectable gravitational radiation which
could reveal information about the interior of the neutron star by comparison with
numerical models.

There are several types of oscillation modes which can be classified according
to the physical mechanism or the characteristics of oscillation. A description of the
various modes may be found in a review by Kokkotas and Schmidt [53] and at the
SISSA website [54].

Achieving a fully relativistic 3D numerical hydrodynamic model of neutron star
oscillations has proved to be a very difficult task. This is a non-linear problem
and requires highly advanced computational techniques to handle shocks. In gen-
eral however, the oscillations are expected to be much smaller than the radius of
the neutron star itself and can therefore be approximated by linear perturbations.
Even this task is not straightforward, especially in the case of rotating neutron
stars. One simplification is the Cowling approximation [55] in which perturbations
in the gravitational field are neglected and the oscillations are described only by
perturbations in the fluid variables. The calculations of stellar perturbations pre-
sented in this thesis are in the Newtonian limit and our model is highly simplified
but we do include the effects of differential rotation. We expect that many of the

results will carry over into the relativistic regime.
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2.7 Rotating Black Holes

Kerr black holes are the universal limit in the gravitational collapse of any rotat-
ing body and, since most stars rotate, Kerr black holes are expected to be more
physically relevant than Schwarzschild black holes. An equation analogous to the
Regge-Wheeler equation was obtained by Teukolsky [21] using the Newman-Penrose
formalism [56]. The Teukolsky equation describes the evolution of scalar, electro-
magnetic and gravitational perturbations in Kerr spacetime. It is also possible, by
studying this equation in the frequency domain and using analytic approximations,
to calculate the quasinormal mode frequencies, damping, and tail. Predictions
based on such analysis show that there should be some difference between the late
time tails of Schwarzschild and Kerr black holes, in particular that there should

exist long lived quasinormal modes for Kerr spacetime [57].

2.7.1 Superradiance
When waves of frequency w impinge on a black hole with rotational frequency (2

and these waves satisty the condition
w—m <0 (2.7)

where m is the azimuthal order (or quantum number) and the azimuthal dependence
is €"™? then the scattered waves will be amplified. A distant observer will see waves
coming out of the horizon, even though a local observer sees them going into the
black hole. This effect, called superradiance, was first predicted by Zel'dovich in
1971 [25] and Misner [58] independently made a similar prediction shortly thereafter
which he supported with analytic calculations. Superradiance is the wave analogue
of the Penrose process and the energy coming out of the black hole is compensated
for by a corresponding decrease in the hole’s angular momentum. The amplification
factor for scattered scalar waves was calculated in 1972 by Press and Teukolsky [59]
to be 0.3% and the amplification of electromagnetic and gravitational waves were
given in a later paper [60] by the same authors as 4.4% and 138% respectively. The
scalar wave superradiance was confirmed numerically by Andersson et al. [61] using
a Cauchy time evolution of the scalar wave equation in Kerr spacetime.
Andersson and Glampedakis [51] have argued that whereas the individual long
lived quasi-normal modes of Kerr spacetime will not be significantly excited, a large
number of them can combine at late times to completely dominate the late time
behaviour. They support their analytic calculations, which involve many simplifying
approximations, with results from the Cauchy evolution code of [2] but they warn
that the results of the numerical code may also not be trustworthy. They offer an
interpretation of their results based on a superradiant resonance cavity just outside

the horizon whereby, for frequencies close to the upper limit of the superradiant
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regime, there will be a peak in the effective potential (frequency dependent) just
outside the black hole. Waves which "emerge from the horizon” according to a
distant observer can become trapped near the horizon by the potential peak and
experience a kind of parametric amplification until they can leak out through the

horizon to infinity.

2.7.2 A Characteristic Approach

The numerical work of Glampedakis and Andersson was carried out using a time
evolution of the Teukolsky equation [2], but there are some late time convergence
problems with this code. We therefore seek to improve the numerical results via
a characteristic approach in which the solution is evolved on null hypersurfaces
as opposed to space-like hypersurfaces. Using such an approach, it is possible to
compactify the radial coordinate and thus include both the horizon and future
null infinity in the numerical simulation. This is an advantage because it avoids
the problems associated with artificial boundary conditions and also allows us to
more accurately compare results with analytic calculations which are obtained using
asymptotic approximations.

The characteristic approach has been successful for evolving Schwarzschild per-
turbations [62] where it has become in many ways the preferred method. It has
also shown it’s usefulness in fully relativistic simulations, using the Bondi-Sachs
formulation. See [63] for examples of this. In numerical relativity a combination
of both Cauchy and characteristic evolutions has also proved to be appropriate for
some problems [64]. The combination of Cauchy and perturbative evolution has
also been succestully applied [65]. In Chapter 8 of this thesis I describe the devel-
opment of a numerical code to evolve scalar perturbations in Kerr spacetime as a

characteristic initial value problem.

2.7.3 Cosmological Black Holes

When Einstein noticed that his equations predicted a non-static universe he was
dissatisfied with this conclusion and introduced the cosmological constant [66]. An
initially static universe would tend to collapse under the force of gravity but the
cosmological constant balanced this force in order to make the universe static. This
trick does not really work however because such a static universe is unstable and
therefore would tend to contract or expand. Later, Edwin Hubble’s observations
indicated that the universe is actually expanding [67], therefore Einstein rejected the
cosmological constant as his “biggest blunder”. Today however, the cosmological
constant continues to play an important role, not only in cosmology but also in
particle physics where it is interpreted as a measure of the vacuum energy density.
Inflation theory predicts the presence of a cosmological constant and many of the

Grand Unified Theories predict an extremely large value for it. Observations suggest
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that the real value is very small. The big problem of the difference between the
value predicted by particle physics and the observational data is yet to be resolved.
The present theories can give the observed small value for the cosmological constant
only with extremely precise fine tuning, which presents another problem in itself.

Recent observational results from supernova studies suggest that the expansion
of the universe is accelerating [68] and this has helped to re-instate the cosmological
constant as an important consideration in the current cosmological picture. The
most general metric satisfying the cosmological principles of isotropy and homogene-
ity is the Robertson-Walker metric. In a flat universe with positive cosmological
constant this metric reduces to the de-Sitter metric. Although the magnitude of the
cosmological constant is observed to be very small in today’s universe, it will influ-
ence black hole geometries which must then be taken as asymptotically de-Sitter.

Rotating black holes in asymptotically de Sitter spacetime are described by
the Kerr-de Sitter metric. Khanal [69] has presented a master equation, similar to
that of Teukolsky, for gravitational, electromagnetic and Dirac field perturbations in
Kerr-de Sitter spacetime. He has shown that this equation reduces to the Teukolsky
equation in the limit A — 0 and the Schwarzschild-de Sitter perturbation equations
in the limit @ — 0. He has also shown that superradiance can occur in Kerr-de
Sitter spacetime [70].

Numerical studies of scalar field perturbations in Schwarzschild-de Sitter space-
time have uncovered interesting and surprising late-time behaviour [71]. Since the
late time behaviour of the field is generally considered to be dependent upon the
asymptotic structure of the spacetime only we should expect similar behaviour in
for Kerr-de Sitter black holes. In Chapter 9 I present a new numerical code for the
time evolution of scalar field perturbations in Kerr-de Sitter spacetime. As far as I
am aware, this is the first time that such an evolution has been carried out in Kerr-
de Sitter spacetime. I present interesting new features in the late-time behaviour
and obtain results in the Schwarzschild-de Sitter limit similar to those found in

previous studies. I test the conditions for superradiance derived by Khanal [69].

2.8 Rotating Neutron Stars

The effect of rotation on a star is to increase its equatorial radius and also to increase
the mass that can be sustained for a given central energy density. According to
Stergioulas 73], the mass of the maximum mass rotational model is about 15 —20%
higher than in the maximum mass nonrotational model for typical realistic equations
of state. The corresponding increase in radius is 30 — 40%.

In nonrotating stars the spacetime outside the star itself is described by the
Schwarzschild metric and the perturbations of that spacetime can be described by

the Regge-Wheeler equation for odd perturbations or the Zerilli equation for even
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perturbations. For rotating stars, however, no decoupled equation corresponding
to the one discovered by Teukolsky has be found because the metric of a rotating
neutron star and a Kerr black hole are of different Petrov types (see section 8.2.3)
and therefore the analysis leading to the Teukolsky equation cannot be applied in
the case of a neutron star.

Some oscillations may become unstable in rotating stars due to the emission of
gravitational waves. This CFS instability (named after Chandrasekhar, Friedman
and Schutz [74] who discovered it) causes the stellar oscillations to increase, which
leads to greater emission of gravitational waves and even greater oscillations etc.
Such an instability could be a strong source of gravitational waves.

In rotating stars a new type of mode appears which is degenerate at zero-
frequency in the nonrotating case. These modes, called inertial modes in the New-
tonian limit, have received a lot of attention in the past few years due to the fact
that they are generically unstable to the emission of gravitational waves by the CFS
instability, as demonstrated by Andersson [75].

Even in the Newtonian limit there are effects due to rotation which still require
further investigation. One of these is the effect of differential rotation on the various
oscillation modes. In Chapter 10 I present some new results in this regard from work
carried out in collaboration with A.LL Watts for a simplified model of a differentially

rotating, axisymmetric spherical shell.
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Chapter 3

The Initial Value Problem

If a theory permits a physically reasonable specification of initial data, and this
initial data uniquely determines the future evolution of the system, then the theory
possesses an initial value formulation. For the initial value formulation to be well
posed the solution must depend continuously on the initial data without violating
causality.

Spacetime may be foliated by a set of hypersurfaces and the properties of those
hypersurfaces determine the nature of the initial value formulation. The most pop-
ular formulation is the Cauchy initial value problem in which spacetime is foliated
by space-like hypersurfaces. The initial data consists of the solution and its first

time derivative on the first hypersurface.
An alternative formulation is given by the characteristic initial value problem

in which spacetime is foliated by lightlike hypersurfaces. In the double-null initial
value problem, the initial data consists of the solution alone on initial advanced
and retarded lightlike hypersurfaces. In the null-timelike initial value problem, the
initial data consists of the solution on an initial null hypersurface and an initial

timelike hypersurface.

3.1 Example: The One-Dimensional Wave Equation

The one-dimensional wave equation in (¢,z) coordinates is

where we work in relativistic units, ¢ = 1, and ¥ = W(¢, z). A general solution is

given by the D’Alembert solution

T = f(u) +g(v) (3.2)
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Figure 3.1: The Cauchy initial value problem. Initial data, consisting of U and its
time derivative, is given on tg, a surface of constant ¢t. For initial data between z;
and zo, the solution may be calculated according to eq. (3.10) in the shaded area
4’4.

where v and v are the null coordinates

u=t—z (3.3)
v=t+zx (3.4)

and f and g are arbitrary functions.
As a simple illustrative exercise we will formulate the 1-d wave equation as three

distinct initial value problems [76].

3.1.1 The Cauchy Initial Value Problem
Using the wave eq. (3.1) we specify initial data on ¢ = 0 between z = z; and

T = To.

W(z,0) =F(z) = f(—z) + g(a) (3.5)
dt\p ZG(ZC) = ._amj<__$) + a:zg(m> (36)

Integrating eq.(3.6) with respect to x gives

t+x

—f(z) +g(z) = / G(z)dz (3.7)

adding/subtracting this equation to/from eq. (3.5) gives us equations for the func-

tions f and g in terms of our initial data
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t+x

29(z) = Flz) + / G(7)dz (3.8)
2f(—x) = F(z) — / G(7)dz (3.9)

and we can then write the solution in terms of the initial data as

-+t

Uz, t) = %[F(x —t)+ Flz+1t)] + % / G(z)dz (3.10)

which is valid in the region A of fig.(3.1). This solution is valid for an infinite string
provided we have initial data for all z.

For a string which is tied at the origin, we can no longer use the above solution
for points at = < t. This is due to a lack of initial data at z < 0. However we
can calculate the solution by using the boundary condition, W(0,¢) = 0. We would
like to know the solution at point (z,,t,) on Fig. 3.2. According to d’Alembert’s

solution, eq.(3.2)
U= f(—2p +1p) + g(zp + 1p) (3.11)

Initial data exists for g(z, + ¢,) but not for f(—z, +1,). We use the fact that the
value of f(—x+1t) is constant along the line from A at (0, 7') to our point at (z,tp),

and at A we have
U=f(T)+4(T)=0 (3.12)

as our boundary condition. The value of g(x+t) is constant along the line connecting
A to the point B at (X, 0) and therefore f(A) = —g(B). The coordinate 1" is given
by T'— 0 = ¢, — z, and the coordinate X is thus given by 0+ X =T+ 0 =1, — zp.

We can now write the solution as
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A(0,T)

B(X,0)

Figure 3.2: Cauchy initial value problem for semi-infinite initial data. Initial data
exists for positive z only. The solution at the point (xg,%y) will depend on the
boundary condition at z = 0. If there is some reflection at the boundary then the
solution at (zg,tg) will depend on the initial data at the point B. The solution
according to eq. (3.13) is valid for all positive z and t.

— JFa+ 0~ Fe -2+ 3 [ G@dr -3 [ @
0 0
= %[F(x +1t)— F(t—z)]+ % / G(z)dz (3.13)

This solution is valid for all £ > 0 and = > 0, provided we have initial data for all

x> 0.
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N>

v =1y

(u0,vo)

Figure 3.3: The double-null initial value problem. Initial data is prescribed on
u = uy and v = vy and the solution, calculated using eq. (3.21) is valid in the
shaded area A.

3.1.2  The Double-Null Initial Value Problem
Equation (3.1) can be re-written in terms of the characteristic coordinates u and v

using the transformations

oV — 0,Vou + 0,Y0v = I,V + 0,V (3.14)
¥ — 0,V0,u+ 0,¥0,v = -0,V + 0, ¥ (3.15)
BV — B, + 20,0 + O, T (3.16)
0,20 — Oy U — 28,0 + 8, (3.17)

The wave equation becomes

OV = 0 (3.18)

The initial data is
U = p(u) onv =1y (3.19)
U = X(@) on U = Ug (320)

The solution in the area A of Fig. 3.3 is [76]

U(u,v) = o(u) + x(v) - pluo) (3.21)



(uo, zo)

Figure 3.4: The null-timelike initial value problem. Initial data is prescribed on
u = up and = zg. The solution is given by eq. (3.29) in the shaded area A.

3.1.3 The Null-Timelike Initial Value Problem

The one-dimensional wave equation can be written in the null-timelike coordinates,

(u, z) using the transformations

at\ll — @U\Ifatu + ag;\llatx = OU\IJ (322)
att\ll — auu\ll (323)
oV — 0, ¥o,u+ d,Vo,z = -0,V + O, ¥ (3.24)
OpzV — OV — 204,V + 0, ¥ (3.25)
The wave equation becomes
Qaux\p - a:mqu =0 (326>
Our initial data is
U = p(u) on z = zo (3.27)
U = x(z) on u = ug (3.28)
The general solution in the area A of Figure 3.4 is [76]
‘ 1 1 :
U(u,z) = olu) + x [x + ~2~(u — uo)} D ¢ I:CL”Q -+ 5(u — uo)} (3.29)

3.1.4  Transforming Initial Data

We can use the above solutions to transform initial Cauchy data into characteristic

initial data. For example, with initial Cauchy data as in (3.5) and (3.6) we find the
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general solution from (3.10), and written in terms of u and v this gives

Mm@z%f@ﬂ%%%ﬂ+%/@@ﬂf (3.30)
which gives us our initial data on u = ug
wmwg:aﬂm+F@mﬂ+§]G@miznm (3.31)
and on v = g |
wmw@:%w@@+ﬁmﬂn+%fggm@:wm (3.32)

To show that this is indeed the same problem, we can substitute these initial data

into eq. (3.21), the double-null solution and we recover the original Cauchy solution.
1 Lo
@zjﬂ@+ﬂﬂ%+§/ﬂwm:@w (3.33)

so the two initial value formulations are equivalent except that the areas in which
the solutions are valid are different.

An analogous calculation shows that the null-timelike formulation is also equiv-
alent.

In this way we can transform our initial data from one formulation to another
when the analytic solution is known. If such a solution is known, however, we
would not require a numerical evolution, therefore we need to consider how the
initial data can be transformed for more complicated evolutions where there is no

known analytic solution. I return to this problem in section (5.4).
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Chapter 4
Numerical Techniques

The wave equation is very simple to solve analytically, however this is not the case
for all partial differential equations (PDEs), especially if they are non-linear. When
we cannot find an analytic solution, numerical techniques may be employed to find
an approximate solution. This section introduces the basic numerical techniques
for solving PDEs. These techniques will be applied throughout the later sections. I

have relied heavily on one book, Numerical Recipies [77] for much of this chapter.

4.1 Finite Differencing

Given a particular set of initial data we can evolve our equations numerically on
a numerical grid, Fig. 4.1, consisting of discrete points (zy,?") at which we find

approximated solutions p. Using a finite differencing approach, derivatives are

t s

tn+1

tn

t

f I | !

z Th—1 Tk Tkt

xT
Figure 4.1: A numerical grid. Spacetime approximated by regularly spaced discrete

points. The timestep is labelled using the superscript n and the spatial position of
each gridpoint is labelled using the subscript k.
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approximated, in terms of the solutions, py, and the grid spacing, Az, by Taylor
expansion. In order to approximate the spatial derivative of some function f at

grid point zp we expand f in a Taylor series about zy.

dfe  fre1 — Je—1 9
e Jerl Jeel 4.1
dr R G (4-1)
. ferr —2fk + :
_ . 4.2
T3 N +O0(Az?) (4.2)

Time derivatives may similarly be approximated by

d](n fn+l __ fn—l )
D — 4.3
dr oAy OB (4:3)
d? n n+l _ 2 fn + n—1
ST AT o) (4.4)

We can approximate a derivative as a linear combination of the function at any
number of its nearby points but the further these points are from the point at which
we want to calculate the derivative, the less accurate our approximation will be.
The finite difference approximations in eqs. (4.1)-(4.4) are said to be of second-
order because the corrections to the derivatives are of order Az? or A#?, i.e. the

solution itself is correct to second order, with corrections of order Az® or At

4.2 Numerical Integration.

The general problem of numerical integration is to approximate the solution to a

differential equation

= f(z,y) (4.5)

where the function f is known.

4.2.1  The Shooting Method

Given the value of y at one point, zg, we know the gradient of y at this point from
the differential equation, and we want to know the value of y at another point z;.

The simplest approach is to use linear interpolation.

y(zs) = ylzo) + /f(f,y(:z))dfﬁ
~ yo + (25 — o) f (0, Yo) (4.6)

For increased accuracy the interval 2y —zq can be divided using a sequence of points,
T, L1 = o+ h, Ty = zg+ 2h,..., where h is the spacing between consecutive points,
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and the recursive scheme
Yn+1 = Yn + hf(ajn yn) (47)

which is known as Euler’s method can be employed. This method is the cornerstone
of the numerical analysis of differential equations. Although Euler’s method is only
first order (the order of the truncation error), it serves as the basis for higher order
methods. Euler’s method advances the solution through the interval, A, but uses
derivative information from the beginning of the interval only. It clearly is more
sensible to use the value of the derivative at the center of the interval, which is
approximated as the average of the derivative at the two points. This gives us the

trapezoidal rule

Un+1 = Yn + %hU(xm yn) + f(xn+1: y<xn+l)ﬂ (48)

which is a second order method. Unfortunately this scheme is implicit due to the
fact that we require information at the point which we are trying to calculate and
this makes it a lot more complicated to use. The Euler and trapezoidal methods can
be combined in the Heun predictor-corrector scheme. Equation 4.8 is the corrector
to the predictor of equation 4.7 and this is a semi-implicit scheme which is second
order accurate.

Another option is to use Fuler’s method to take a preliminary step to the mid-
point, 0.5h, of the interval and to use the values of z and vy at that midpoint to

integrate across the whole interval,h.

1 1
Ynt1 = Yn + k2 + O(h?) (4.11)

This is called the second-order Runge-Kutta or midpoint method. We can further
develop the Runge-Kutta method up to any order by introducing more auxiliary
variables. The most popular method is the classical fourth-order Runge-Kutta



method which I will use in later sections.

ki = hf(zn, yn) (4.12)
b= hf @+ g0+ ) (413
ks = hf(zn + g Yn + %) (4.14)
ko = hf(zn + h,yn + k3) (4.15)
yn+1=yn+@+@+@+@-+0(h5) (4.16)

6 3 3 6

4.2.2  Relazation

Another type of integration problem in one dimension is the fwo point boundary
problem in which the solution to a particular ordinary differential equation (ODE)
is known at two different positions, i.e. at the boundaries. In this case, using the
method of relazation, the solution at all other points on the one-dimensional grid
can be found simultaneously. The relaxation method begins with an initial guess
for the solution and iteratively improves this guess until the corrections are below
a specified tolerance.

Any ODE may be written as a system of first order equations, so here we may
consider, without loss of generality, a system of N first order equations on M
gridpoints. The solution consists of M x N values, requiring us to solve a matrix
of size (MN) x (MN). Ordinarily this would require a great amount of time and
storage space, but fortunately it is possible to write the matrix in a special block
dragonal form that allows it to be inverted in a more economical way.

Let y, be the set of dependent variables at point z where z is the independent
variable and k labels the gridpoints, £ = 0,1,2,.., M. Each ODE may be written

in a finite difference form which couples two neighbouring points,

S=y,—Yi-1— (ﬂfk - Ik—1>F(Ika Tk~1, Yk Yk-l) =0 (40177
where
F-% (4.18)
dx

There are N equations for 2N variables at each pair of neighbouring points, & and
k—1, therefore eq. (4.17) provides a total of (M —1)N equations for M N unknowns.

The boundary conditions provide the remaining N equations.
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By expanding the equations for S in first-order Taylor series with respect to

small Ay, we get

N
oS OS,
Sk(Ye + AVe Yi-1 + Aye-1) & Splye Ye—1) + Z a—“’k—‘Ayn,lc-l +> 3 ’”k Ay s

where Si(yx, Ye—1) represents a close guess to the solution and Sg(yy + Ayg, Yi—1+
Ayy_1) represents the actual solution. We solve eq. (4.19) for Ay such that S(y +
Ay) = 0.

The quantity 0Sg/0,x can be written as a N x 2N matrix at each point k,
representing the NV equations coupling 2V corrections to the variables at points k
and k — 1. When the equations over all neighbouring pairs are considered along
with the boundary conditions, the total matrix size is (MN) x (MN) but it can
be written in a particular block diagonal form so that it can be solved more easily
by Gaussian elimination. Some element of each block may be reduced to zero,
leaving a square block of elements which can be further reduced by row operations
to diagonal form with diagonal elements of unity and off-diagonal elements of zero.
The solution is then obtained by backsubstitution.

The entire procedure may seem quite complicated, but fortunately there are
standard subroutines available (see e.g. [77] for subroutines and more detailed
explanation of methods) for which we need only supply the differential equations

themselves and the N x 2N Jacobian matrix.

4.3 Numerical Evolution

For the problems I consider in this thesis I will need to integrate forward not only in
space but also in time. In the Cauchy initial value formulation we know the solution
at all points on one time slice and must advance the solution to the next timeslice
using our finite differenced derivatives. In this way the solution is evolved on a
numerical grid. In the characteristic initial value problem, the solution is evolved

from one characteristic slice to the next.

4.3.1  Explicit and Implicit Fvolution
Numerical evolution by the finite difference approach can be carried out using either
an ezplicit or ymplicit numerical scheme.

In an explicit evolution the solution is advanced one gridpoint at a time by
using information from only a few nearby points on previous timeslices. A common
example of such a scheme is the leapfrog scheme which will be used in later chapters.

A stencil for the leapfrog scheme is shown in Fig. 4.2. The z derivatives are



calculated as in eqs. (4.1)-(4.4), and similarly for the ¢ derivatives. In this way the

difference scheme is centered at the point z}.

n+1

£y
U

c @

@

n—1 &
f

k

k-1 k+1

Figure 4.2: The leapfrog finite difference scheme. Information from the black grid-
points is required to find the solution at the gridpoint marked with an unfilled
circle.

Information from points z}_;, z7 and 27, as well as 2} " is required in order
to approximate the solution at :EZ+1. A more detailed explanation of this and other
explicit evolution schemes may be found in Chapter 5 which describes how to apply
these schemes for evolving the one-dimensional wave equation.

An implicit evolution is based upon the relaxation method described in section
4.2.2. The solution is calculated simultaneously for all gridpoints on an entire times-
lice using information from the previous timeslice and the boundary conditions. In
Chapter 10 I use a two-level evolution scheme, requiring information from the pre-
vious timeslice, to investigate the evolution of oscillations in an incompressible thin

spherical shell. Fig. 4.3 shows the stencil for such a scheme.

Figure 4.3: An implicit finite difference scheme. Information from all points on
the current timeslice (the black gridpoints) is required, along with the boundary
conditions, to calculate the solution for all points on the next timeslice (the unfilled
gridpoints).

Although implicit methods demand greater computational expense at each timestep,

this is usually compensated for by being able to take larger steps. Some caution
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must be taken however not to take steps which are too large as that may decrease
the accuracy of the solution. The timesteps must be small enough to resolve the

dynamics of the physical system, e.g. the oscillations.

4.8.2 Boundary Conditions

A numerical grid is by necessity finite in extent and therefore has boundaries. It is
important to know how the solution behaves at the boundary. Boundary conditions
are implemented in order to evolve the innermost and outermost gridpoints. In the
case of the flat space wave equation, analytic boundary conditions are known at
any point, depending on the physical situation under counsideration. However, in
the evolution of more complicated equations, where no analytic solution is known,
implementing the appropriate boundary conditions can be a difficult problem. This
problem is one of the main obstacles in numerical relativity, and it is precisely to
overcome this problem that the characteristic initial value formulation has been
taken up here. The advantage of a characteristic formulation in radiation problems
is that we can compactify along the characteristic hypersurface in order to include
future null infinity on the numerical grid. For asymptotically flat spacetimes we

can then apply an exact boundary condition.

4.3.8  Stability
An important factor to consider in the design of an evolution code is stability.
Growing numerical errors can lead to disasterous results and a useless code.

One factor determining the stability of a given finite differencing scheme is called
the Courant factor. Every PDE has a domain of dependency and every point will
depend on information from its domain. A finite differencing scheme similarly has
its own domain of dependency determined by the choice of points on one timeslice
whose values are used to determine the solution at the new point. For Courant
stability, the differencing domain of dependence must include that of the PDEs,
otherwise there will be a lack of information at the new point and this will lead to
instability. See Fig. 4.4 for an explanation.

Another way to analyse the stability of a particular scheme is the Von Neumann
stability analysis. This analysis is local in the sense that the coefficients of the
finite difference equations are considered to be constant in space and time. Then

the eigenmodes of the difference equations are of the form

O (4.20)

where A is a real spatial wave number and § = £(\) is a complex number. This

is substituted into the finite difference equation and the resulting equation can be
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Figure 4.4: Courant stability. The lighter lines indicate the PDE domain of de-
pendence, darker lines indicate the differencing domain of dependence. The finite
difference domain of dependence marks the boundaries of the space that is allowed
to communicate with the new, unknown point. If the all the PDE domain is within
it then all the information can flow freely to the new point but if any of the PDE
domain is outside then information will be restricted from reaching the new point
and the evolution will be unstable.

solved for £. Stability requires that there are no growing modes present, therefore
the Von Neumann stability condition is |£())] < 1.

The Von Neumann analysis is not a rigorous test of stability, it ignores non-local
effects and does not take boundary conditions into account, but despite this it is
generally a good test and usually gives dependable conditions for stability.

Specific examples demonstrating the application of this method can been seen

in Chapter 5 for the one-dimensional wave equation.

4.5.4  Convergence

Once we have a stable scheme and our code is producing reasonable results, we may
like to check the accuracy of the results. One way to do this is through convergence
testing. As the grid resolution is increased (i.e. the grid spacing is decreased) we
expect the accuracy of the results to increase in proportion to the order of the finite
difference scheme used and to tend towards the actual solution at a corresponding
rate.

To test convergence towards a known analytic solution we output two sets of
data, U; and ¥y, from our evolution code - using M gridpoints and using 2M
gridpoints respectively. We calculate the L2 norm on each timeslice by taking
the difference between the data and the analytic solution, ¥,, at each gridpoint,
squaring it, summing over the whole timeslice, and dividing by the number of

gridpoints. The convergence factor is given by the L2 norm for the lower resolution
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data, divided by the L2 norm of the higher resolution data.

0w
“= S .

The error in ¥ should be of the order (Az)™ where n is the order of the differencing

scheme. The converegence should therefore be given by

o= B2 o (4.22)

Az\T
(T)
This convergence factor can be plotted as a function of time. For a second order
accurate finite difference scheme, the convergence factor is expected to have a value

of about four.
When there is no analytic solution, this is replaced by data from a yet higher

resolution run of 4M gridpoints. In this case, the convergence factor should be

given by

O

For this method, a second order finite difference scheme should give a convergence

(M))n - (i)n L= )" (4.23)

factor of about five.
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Chapter 5

The One Dimensional Wave

Equation in Flat Space.

Again, we consider the simple one-dimensional wave equation. Fortunately, the
equations we would like to solve later, i.e. those governing black hole perturbations,
turn out to be fairly simple - wave equations with potentials, therefore many of the
techniques learned here will be useful in later, more complicated evolutions. In
this chapter I evolve the one dimensional wave equation numerically for the three

different initial value problems introduced in Chapter 3

5.1 Cauchy Evolution
We set up a numerical grid of spacial length L and grid spacing Az and At. As

our initial data we consider a small Gaussian pulse travelling in the direction of
decreasing .

Instead of using the usual Cauchy initial data, ¥ and d; ¥, we can use, equiva-
lently, Wy on the first timeslice and W; on the second timeslices.

The wave equation is written in finite difference form as
PR =200 — i+ (P — 20% + Do) (5.1)

This is an example of the leapfrog scheme described in section 4.3.1 where p =
At/Az is the Courant factor which determines the stability of the evolution scheme.
In eq. (5.1), the solution at z}™ is computed using information from z}_, and
Ty.q, but the information cannot propagate faster than the speed of light and
lack of information leads to instability. If At is made too large then necessary
information cannot reach z}*'. At/Azr must be smaller than 1 (speed of light,
c = 1) and therefore the wave equation requires a Courant factor of between 0 and

1 for stability.
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We can check for Von Newmann stability by substituting eq. (4.20) into eq.
(5.1)

5 -9 _ £~l + <ei/\z —9 + ewi/\:n)MZ (52>
This can be re-arranged to give

% — [2 — 4sin’ (%) plE+1=0 (5.3)

where we have substituted

e — 2 4 7 = _45in? (%) (5.4)
The solution for £ is
E=l—-a+\/(1-a)P-1 (5.5)
where
o = 2sin’ (%) 1 (5.6)
The condition for stability is
gl <1 (5.7)

If the quantity under the square root in eq. (5.5) is negative, i.e. (1 —a)® < 1 then

we have

1€l =21 —a)? -1 (5.8)

which is always less than 1 in this case. The quantity under the square root in eq.
(5.5) can never be positive because « is always positive, i.e. 1 — « can never be
greater than unity. If the quantity under the square root in eq. (5.5) is zero, i.e.

1 —a =1 then we have
gl =1 (5.9)
So we require, from eq. (5.8), |1 —a <1lie. |a| <2

sin? (%) <1 —pu<i (5.10)



where the last part follows from the fact that the inequality must hold for all z.
This gives us the Courant condition again, At < Az.
I have prescribed Gaussian initial data, travelling to the left. This is represented

on the first two timeslices as

IO = Ae-bl(kie)-At-zc)? (5.11)
Ul = Ap-bl(kdz)—zo)? (5.12)

where A determines the amplitude and b determines the width of the pulse which

is centered at z,.
I have evolved the wave equation using this scheme for two different cases. One

represents a pulse travelling on an infinite string and in the other, the string is tied
at the origin. In the first case, we must formulate boundary conditions which allow
the pulse to travel off the numerical grid. These radiation boundary conditions can
be found by an analysis of the d’Alembert solution for the one-dimensional wave
equation, eq. (3.2). At the inner boundary, zg, we must have no right travelling
waves, i.e. f(u) = const. At the outer boundary, z,, there must be no left travelling

waves, i.e. g(v) = const. This gives us the following boundary conditions

oV —0,¥ =0 at £ = zo (5.13)
O 40, ¥ =0 at © = (5.14)

In 1st order finite difference form we have

At .
Py =rh ~ (P~ pp) at T = g (5.15)
At
Pi = p - Pk —Pi)  ate =g (5.16)

In the second case, a zero boundary condition is implemented at the inner boundary
=0 (5.17)

We can calculate the analytic solution in both these cases. For an infinite string
the solution is given by eq. (3.2). Substituting our initial data of a pulse moving

in the negative z direction into this equation we find (as expected)
U(z,t) = Ae~be-zert)® (5.18)
For a semi infinite string we have from eq. (3.13)

U(z,t) = Ae towett) _ fobla—zett)? (5.19)
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The results of the numerical evolution in both these cases are shown in Figs.

5.1 and 5.2

6 13 ] T T ! I ! I
PRI =45 _]
2 ]
Yoo
2 _
4 = —
el 1 I N
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X
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4 =54 1 L[ =63 ] L[ =72 ]
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Figure 5.1: Cauchy evolution for the one-dimensional wave equation with a 1st
order radiation inner boundary condition. Most of the pulse travels off the grid,
but a small numerical reflection can be seen in the last two time slices.

We see that zero boundary conditions cause inversion and reflection at the
boundary, whereas radiation boundary conditions allow the pulse to pass through.
There is some small reflection at the boundary even with radiation boundary con-
ditions. This is due to numerical error and can be reduced by increasing the grid
resolution. The amplitude of this numerical reflection is reduced by a change to

second order radiation boundary conditions.
The second order finite difference scheme for the ingoing radiation boundary

condition is

9 1 1
nl n+l 2 nad n__ —n-l 5.20
0 ALt Ar) [At <2p1 575 )+Am (2170 570 )} (5.20)
9 1, 1
n+l _ n+l _ Lonl no_ —pn—l 5.21
P T 3(at+ Ar) (At <2pf<-1 2pf<~2> + Az <2pf< 5P )] (5.21)

The results have been tested for convergence to the analytic solution. Conver-
gence plots are shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5. From these plots we can

see that the first order boundary conditions cause the entire evolution to fall to 1st
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Figure 5.2: Cauchy evolution for the one-dimensional wave equation with zero
boundary condition. The wave is reflected and inverted at the inner boundary

z = 0.

order accuracy following the pulse’s contact with the boundary whereas convergence
remains more constant with a second order boundary condition. There is still some
noise at t = 50 — 60 in the Figs. 5.4 and 5.5, due to the pulse hitting the inner

boundary at this time.

5.2 Double-Null Evolution

The one-dimensional wave equation can also be evolved on characteristic surfaces.
We use double-null coordinates, u and v, as described in section 3.1.2. The numer-
ical grid is set up as in Fig. 4.1 with the z and ¢ axes replaced by v and u axes
respectively.

The initial Gaussian pulse is easily transformed into initial data on v and v. We
have (see eqs. (3.5) and (3.6))

F(x) = Ae~blz=x)? (5.22)
G(z) = —2b(x — z.)AetE—e)? (5.23)
/ G(z)dz = Ae™*# %) = F(z) (5.24)
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Figure 5.3: Convergence test of the Cauchy evolution of the one-dimensional wave
equation with first order boundary condition. The convergence clearly drops to 1st

order after the pulse hits the boundary.

convergence
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Figure 5.4: Convergence test of Cauchy evolution of one-dimensional wave equation
with zero boundary condition, showing second order convergence.

So our initial data on u = ug is, using eq.( 3.31),

and on v = vy we find from eq. (3.32)

T = Ae~bvo—ze)” = @ = const.

¥

U = Ae b=z’ x(v)
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Figure 5.5: Convergence test of Cauchy evolution of one-dimensional wave equation
with second order boundary condition, showing second order convergence.

i.e. Uis a function of v only. This is what we would expect because we have chosen

our pulse to be moving inward only and this was achieved by setting
U =g(v),ie. flu)=0 (5.27)

So our initial Gaussian on a timeslice is transformed to a Gaussian on uy and a

constant on vg.
The finite difference approximation to the wave equation in double-null coordi-

nates is
PRI = =P + Di + 0 (5.28)

The stencil is shown in Fig. 5.6.

5—  ntl

k k+1

Figure 5.6: Stencil for the double-null evolution of the one-dimensional wave equa-
tion. Filled circles represent points at which the solution is already known, the
unfilled circle represents the next point at which the solution is to be determined.
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The Von Neumann stability analysis shows that this scheme is unconditionally

stable:

£ = —1 4™ 4 ¢ (5.29)

ie. [¢] =1

Some results from the double-null evolution code are shown in Fig. 5.7 on
constant u slices and Fig. 5.8 on constant v slices. As expected, there is no change
on the u slices because we have set up our initial pulse moving at the speed of light
in the negative z-direction. On v slices the solution is a constant which increases
from zero as the pulse passes, reaching a maximum at the peak of the pulse, then

decreasing back down to zero.
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Figure 5.7: Results of double-null evolution of one-dimensional wave equation, dis-
played on surfaces of constant u. The initial pulse stays constant with increasing
u because it is moving in the negative z-direction at characteristic speed, i.e. the

speed of light.

In this evolution, the initial data on u = wug does not evolve, therefore it is not

possible to test convergence as the L2-norm is always zero.

5.3 Null-Timelike Evolution

In order to evolve the one-dimensional wave equation as a null-timelike initial value
problem we set up our numerical grid as in Fig. 4.1 with the ¢ axis replaced by a

u axis. We can finite difference the wave equation using the following second order
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Figure 5.8: Results of double-null evolution of one-dimensional wave equation, dis-
played on surfaces of constant u. As the pulse, travelling in the u-direction crosses
these surfaces, we see an increase in amplitude up to the peak of the pulse followed
by a decrease, returning to zero amplitude when the pulse has passed.

scheme:
1
1 . | |
OV = 57— (P87 = 20075 + PiT5 + Pl — 208 + Pl (5.31)

where derivatives are centered at position (k — 1/2,n+ 1/2). See Fig. 5.9 for the
stencil. This scheme is equivalent to the marching algorithm used in numerical

relativity [78], and it is described in [79]. The wave equation becomes

n 1—-2D n n D n+ n (0 5.:
karl = =D ,Cfll —i—pk] + 1D k_gl + pk+1] — P (5.32)
Ay
here D = ——.
where Az
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Figure 5.9: Stencil for the null-timelike evolution of the one-dimensional wave equa-
tion. Filled circles represent points at which the solution is already known, the
unfilled circle represents the next point at which the solution is to be determined.
The finite difference equation (5.32) is obtained by approximating the derivatives
at the point marked by a plus sign.

We can check for Von Neumann stability by substituting eq. (4.20) into egs.
(5.30) and (5.31)

AuAzd,, U = (£ — 71 (1 — e o) U7 (5.33)
20220, U = (14 e79%) (e — 2 4 o737 )7 (5.34)

Substituting these into the wave equation, and multiplying through by £ we find

9 i8in Az Y Au -
- _ — e = 2 35
¢ +1-—-cos/\:c4sm <2> <2Aaz §-1=0 (5.35)
Using the relation
sin® (g) = %(cos:c - 1) (5.36)

we can solve for & to find

_hu Au Q.QA o (5.37)
f—zzAmsmx AL sin” Az :

when Au < 2Az then the term under the square root is real so we find that the

magnitude of & is
£€=1 (5.38)

i.e. this scheme is unconditionally stable.

As can be seen from eq. (5.32), we can only begin to apply this scheme for
calculating the solution at the third gridpoint. The boundary point is given as
initial data for the null-timelike initial value problem, or can be calculated using

some boundary condition. For the first spatial gridpoint from the inner boundary
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we are forced to slightly modify our scheme, and finite difference as

. 3 7 D 77 by
e e e A 3(3]70 — Tpy + 5p§ — p§) (5.39)
where we calculate the double = derivative to first order only. As will be seen in
the results of convergence testing, this does not seem to affect the overall second
order convergence. Our finite difference scheme must also be slightly adjusted at
the outer boundary. Applying a second order one-sided derivative for 0.,V leads

to the finite difference equation

1-2D 1+2D 1+5D
[ K~ Pk-1+

Antl

Pk = pPe T p PR T T D

(PR + 4p% o — Ple—s)
(5.40)

D
1—-D

We again consider both the infinite and semi-infinite cases. The initial data on

u = ug 18 given by

2

/] :148~b(uo+2z—xc) (541)
The initial data at z = zq is given by ¥ = 0 for the semi-infinite case and
U = Apblut2zo-ze)” (5.42)

for the infinite case. Later, in more general cases, we may not have an analytic
expression for the initial data at z = zy so here we impose an ingoing radiation
boundary condition in preparation for evolving more complicated equations. In

null-timelike coordinates the ingoing radiation boundary condition is
20, = 9,¥ (5.43)

which can be written in second order finite difference form as

T i3 n— Au 2 n = T ' T [l
Pyt =2py —py 7t + (5@) (2p% — 5p} + 4p5 — p§) (5.44)

Results for the null-timelike evolution are shown in Fig. 5.10 for the radiation
boundary condition and Fig. 5.11 for the zero boundary condition.

I have tested the convergence for zero and radiation boundary conditions and
the results can be seen in Fig. 5.12 and Fig. 5.13. It is apparent from Fig. 5.13 that
the implementation of radiation boundary conditions has some problems when the

pulse hits the boundary. This will not be a problem in future evolutions however as
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Figure 5.10: Null-timelike evolution of the one-dimensional wave equation with
radiation boundary condition. The output is displayed on u = const. slices which
are equivalent to and we can see that the radiation travels quite cleanly off the
grid at the inner boundary. Some small reflection at the boundary can be seen at
u = 40.5 and u = 48. The reflected radiation travels at the characteristic speed in
the positive z-direction, i.e. along a surface of u = const., and therefore appears as

a straight line here.

we will avoid artificial boundaries altogether. The zero boundary condition shows

good second order convergence.

5.4 Characteristic Initial Data

In this chapter we have been able to specify equivalent initial data for all three
initial value problems because we have an analytic solution to the wave equation.
Later, when we consider more complex equations, without known analytic solutions,
we may also want to use equivalent initial data. In some cases we may have some
initial data specified on a Cauchy hypersurface and want to know how to translate
this to initial data on a characteristic hypersurface. One way to do this is to evolve
for some time on Cauchy slices, then use interpolation to find the solution on a

particular characteristic hypersurface which is within the domain of the Cauchy

evolution.
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Figure 5.11: Null-timelike evolution of the one-dimensional wave equation with zero
boundary condition. The output is displayed on u = const. slices. The reflected and
inverted pulse travels back in the negative z-direction at the characteristic speed
and therefore appears as a straight line of negative amplitude here.

The solution can be found at any position z which lies on the interpolating
polynomial though 3 points y; = f(x1), o = f(22) and y3 = f(x3) as given by the

classical Lagrange formula
(e—z)le—2) ~ (z-w)e—z) (z —a1)(z — a2)

(21— z2)(z1 —23)"" (22— 1) (@2 —23)" (23— 71) (w3 — 72)
(5.45)

P(z) =

For our spacetime grid, we first interpolate for a solution at z on three timeslices
surrounding (z,t) and then use these three values as the points for interpolation to
(z,t). This is shown in Fig. 5.14

The solution from the Cauchy evolution can be output on u slices and compared
with the solution to both the double-null and null-timelike evolutions. The areas
in which comparisons are free from boundary reflections are shown in Fig. 5.15
and Fig. 5.16. Outside these areas the interpolated data may be contaminated
by boundary reflections from the Cauchy evolution, depending on the nature of

the initial data. In the comparison with null-timelike evolutions there may still be
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Figure 5.12: Convergence test of null-timelike evolution of the one-dimensional wave
equation with zero boundary condition, showing second order convergence.

convergence

a 10 20 30 40 50 60

Figure 5.13: Convergence test of null-timelike evolution of the one-dimensional wave
equation with radiation boundary condition. There are clearly some convergence
problemis when the pulse hits the inner boundary at u &~ 35. I avoid the use of such
boundary conditions in the null-timelike evolutions of later chapters.

reflections from the inner null-timelike boundary at z = const and these could effect

the comparison.
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Figure 5.14: Interpolation using three points. First interpolate for a solution at
x on three timeslices, i.e. at the points on the timeslices marked with a cross,
surrounding (z,¢), marked by a bold cross, and then use these three values as the
points for interpolation to (z, 7).
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Figure 5.15: The comparison of Cauchy and double-null evolutions is valid in the
shaded area. Outside this area, the Cauchy data may be contaminated by spurious
reflections.
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Figure 5.16: The comparison of Cauchy and null-timelike evolutions is valid in the
shaded area. Outside this area, the Cauchy data may be contaminated by spurious
reflections. This comparison is, however, not free from boundary effects from the

null-timelike evolution itself.
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Chapter 6

Perturbed Schwarzschild Black
Holes

In 1957 Regge and Wheeler derived an equation governing small, linear pertur-
bations of a field in Schwarzschild spacetime [15]. In this section I re-derive the
Regge Wheeler equation, first for scalar perturbations, then for the more general
case, including vector and tensor perturbations. I describe the Green’s function
approach which can be used to calculate the frequencies of the quasi-normal mode
frequencies. I also evolve the scalar equation using the numerical methods outlined
for the one-dimensional wave equation in flat space for each of the three initial value
problems, Cauchy, double-null, and null-timelike. I introduce compactification in
the retarded null coordinate, and combine the evolution on compactified retarded
hypersurfaces with an evolution on compactified advanced hypersurfaces by match-
ing, and thus evolve the entire spacetime outside the black hole. I test the results
by comparing the quasi-normal mode frequencies, damping and the late time tails
to results obtained elsewhere using the Green’s function method, and I also test for

second order convergence.

6.1 The Scalar Wave Equation in Schwarzschild Geometry

Consider a massless scalar field propagating in Schwarzschild geometry. A massless

scalar field evolves according to the Klein Gordon eq.

OV = (—g)'"*8,[(—9)"*¢"0,¥] = 0 (6.1)
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The Schwarzschild metric is given by

M 0 0 0
0 (1-207" 09 o
Guv = ( " ) 9 (62)
0 0 T 0
0 0 0 r2sin4
9= 9w = —r*sin? g (6.3)

and substituting this into eq. (6.1) we find

OU = §,[r?sin#g" 0, V] = 0 (6.4)
oM\ I I
—r? <1 - —%) OV + 72 (1 — 2—W> Oy W + 21 (1 — Vj) o,
r r r
1 1
Op(sin B¢ O ¥ = 6.5
+Sm§09(sm (909\11) —+ Sin2 quﬁ(b 0 ( O)

When working with a spherically symmetric metric we can introduce the spher-

ical harmonic mode decomposition:

Uim :E;‘ln—(ra t)yflm<9/@) (67>

where the Y}, provide a complete set of basis functions, each satisfying

1

sin sin? 6

By substitution into eq. (6.5) we find

oM\ 2M M
ow,,, = [*TQ <1 _ = ) Ot Ui + r2 <1 _ 7 [) Orp Ui, + 21 <1 - 7‘) Ortiim, | Yim
r r
L o ! 6.9
-+ é“i;—()ae(sm 00sYim) + Sm—geﬁqsqsyzm U, = 0 (6.9)

Using eq. (6.8) we obtain an equation involving only r and #

) -1 y
M M
—r? <1 — ———2M> Oty -+ 12 (1 — g%) Opyp U, + 21 <1 —_ -——) Oty = 1l + 1) upm
T T

(6.10)



We transform to the tortoise coordinate r,

d <1 B 21’%) d (6.11)

dr., - r dr

.
e, r.=r+2MI (
1.e. 7 T+ o M

— 1). The tortoise coordinate goes to minus infinity at
the horizon, i.e. r, — —co asr — 2M and 7, ~ 7 as r — oo. Qur equation reduces

to
O — O + Vi (7)) Jgm = 0 (6.12)
where
Vim(r) = (1 - 2‘?) (ZU:; D, QTZ[> (6.13)

This is the Regge Wheeler equation for scalar perturbations.

6.2 The Regge-Wheeler equation

Regge and Wheeler derived their equation by introducing small perturbations, hu.,

to the background metric gfﬁ)

(B

Guw = 955 + hy (6.14)

They considered the linear perturbations to the Ricci tensor § R by calculating with
the above metric and retaining only terms linear in h,, whilst discarding higher

order terms.
The standard equation for the Christoffel symbols in terms of the metric tensor

is
a 1 ov 6 15)
rﬁ“/ - 59 (91/,6’,7 + Guy,8 9.5%1/) ( o
and using the perturbed metric we find
Fgﬁ/ = Fg"/(B) + 5F§7 <6'16>
1
or'G, = igw(haﬁ;“f + Ry = hgrsa) (6.17)

where we denote “;” the covariant derivative with respect to the background metric.



Similarly we find the perturbation to the Ricci tensor:

Ra(@ = Rg? + 5Ra,g

=17 =T

a3 af,y
5RO{B — 5]—:‘275 - 5FZ£,8§"¢

+ T8 T, — DT

Then by substituting these equations into Einstein’s equations in vaccum, 6 Fng =

0, we get a second order differential equation for h,,. These equations are decom-

posed into spherical harmonics.

Two different kinds of perturbations can be examined. In the terminology of

Regge and Wheeler, these are called odd perturbations which transform as (—1)

under space inversion, and even perturbations which transform as (—
drasekhar(1983) [80] refers to them as azial perturbations which cause dragging of

the inertial frames, and polar perturbations which are independent of the sign of ¢

{

1)L Chan-

and therefore do not induce rotation. The most general odd perturbation is given

by Regge and Wheeler as

—

h(a)

0 0 " sin®
h(a) t,r)
ho = 0 0 - sm9
s _ha(tyr)
Sym  Sym 2t Xim
Sym Sym Sym
Similarly, for even perturbations
hyu =
i (1 - 'Q‘i_w) Ho(t, T)%m H1<t7 7d)Yzm
Sym (1 - 2;;\/]_) HQ(ta T)Yzm
Sym Sym
Sym Sym
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aqﬁ}/lm

@¢ §/lm

hé)tr)ay

sin 6

h(a)(t 7)
Tsing

—~———0pYim

—ho(t, 7) Wiy, sin 8

—ho(t, 1) Xy sin 6 |

RO (7Y 0pYim
B2 (¢, 1) 8pYim

r?[K(t,r)
G(t, T)@g@}}/lm

Sym

(6.21)

e (,7)05Yim

hgp)@? T)aqﬁ%m

r2G(t, 1) Xim

r?sin? O[K(t,7)Yim
+G(t,7)(Yim = Win)]
(6.22)




where

le = 2(69¢Y2m - a¢,60t9) (623)

1
I/Vlm = 5995%1 - 60}/2m60t9 - .5 eagb(;by}m (624)

S1I11

The perturbations are simplified by the following three steps:

e Frequency analysis: Because the background metric, eq. (6.3), is time inde-
pendent, we can assume that every component of the perturbation h,, will
have a time dependence of the form e ™! and consider perturbations of a
particular frequency, w.

e Specialization to m = 0: Schwarzschild spacetime is spherically symmetric.
For all values of [, k£ and parity all values of m will lead to the same radial
equation, so Regge and Wheeler have specialized to m = 0 with the advantage
that ¢ will completely disappear from the calculations.

e Gauge transformation: By an appropriate gauge transformation it is possible
to impose additional simplifying conditions on the perturbations. Regge and
Wheeler have chosen to eliminate those terms which contain the derivatives

of highest order with respect to the angles.

The final simplified form for the odd perturbations is

0 0 0 ho(T)
0 0 0 hir) —itr O
Py, = X e (sin @ —)P(cos 6.25
e (sin0)Plcost)  (6.25)
Sym Sym 0 O
and the even perturbations are similarly written as
Ho(r) (1 — 221) Hi(r) 0 0
_amy L A
hw/ _ Hl (T) HQ(T> (1 r ) 0 0 « e—zwt})l(cos @)
0 0 K 0
Sym Sym 0 72K sin%0

(6.26)

The problem is now reduced to only two unknowns in the odd case and four un-
knowns in the even case. These expressions can be substituted into egs. (6.17) and
(6.20) to yield the desired Einstein equations. Whereas Regge and Wheeler must
have spent considerable time doing this by hand, I have used GR Tensor, a com-
puter software package for use in the computer algebra system MAPLE. The first
step is to define gffj) and h,,, then to calculate the perturbed Christoffel symbols,

then the perturbed Ricci tensor. Some simple operations such as collect, simplify,
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expand are required in order to find the most suitable form for the equations. Stan-
dard relations for the differentiation of spherical harmonics are also substituted into
the equations.

For odd perturbations only three nontrivial Einstein equations are found. For
even perturbations the Einstein equations give one algebraic condition, three first
order differential equations and three second order differential equations.

Regge and Wheeler consider odd perturbations. The three non-trivial equations

are
5R9@ =0
oM\ 20
(1 - ﬁ) iwhg + 4 <1 — l—j> hy =0 (6.27)
r dr r
JR,s =0
oM\ [ dhyg ho hy
— ¢ — — 3 R _ — _— 2
(1 ; ) u(zdr - why 2r)+(z D(I+2)—5 =0 (6.28)
(SRW — O
d oM\ 1
— | iwhy + iy + Ziw@ +(1- 2 4m@ —l(l+1)he | =0 (6.29)
dr dr T r r 2
Using the definition
M
Q=r <1 — 2T1> hy (6.30)

and eliminating hg gives us the second order wave equation with potential
attQ - ar*r*Q + V(T>Q =0 (631)

where

Vir) = (1 3 2M> (l(l+ 1) 6M> (6.32)

r r2 73

This is the potential for gravitational perturbations, but a general form of the

potential may be written as

o (1B (g ) g

7 72 r3

where s is the spin-weight of the perturbing field, with s = 2 for gravitational waves,

s = 1 for electromagnetic waves and s = 0 for scalar waves.
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6.3 Green’s Function Approach
We may solve the Regge-Wheeler equation in the frequency domain for given ini-
tial data using the Green’s function method. We must find the Green’s function

G(rs, 7., t) which satisfies the equation
(Orur. — O — Vi) Griy 7l t) = 6(€)0 (s — 7 (6.34)

where we impose the condition G(r,,r.,t) =0 for ¢ < 0.
In order to find the Green’s function we transform to the frequency domain and
thus reduce eq. (6.34) to an ordinary differential equation. We follow Andersson [81]

and use the transformation
"~ +OO .
F(G(r,,w)) = G(r.,rl,w) = / et G(r,,rl, t)dt (6.35)
0

which is well defined for Im(w) > 0. The Green’s function in the frequency do-
main can now be expressed in terms of two linearly independent solutions to the

homogeneous equation

A

PQ— +w’ - V(T)J b(r.,w) =0 (6.36)

dr?

The forms of the solutions depend upon the boundary conditions. The first

solution (at r, < r.,) corresponds to purely ingoing waves at the horizon

. e—iwm r. — —00

O (1, w) ~ , . (6.37)
Aout('u))ewm + Am(&))@mzwr* T — 00

The second solution at (r, > r.) corresponds to purely outgoing waves at infinity

Bout(w)e * 4+ Bp(w)e ™™ 1, — —0c0 (6.38)
err Ty = 00

Ot (r,,w) ~ {

Then the Green’s function may be written as

) - CNBF , ’
Glrart o) = b W)@, w) < (6.39)
W(w) | & (r,w)®t(r.,w) 7. > 7.
where
~ i + ~ i -
W(w) = o~ LA o* i = 2iwAjp(w) (6.40)
AT dr,



~

is the Wronskian of the two solutions. After finding G(r,,r.,w) we can return to

the time domain using the inverse transform

1 “+oo4ic . A
Glrar 1) = / Gt et (6.41)

2m co+ic

Finally, the solution to the Regge-Wheeler equation is given by (see e.g. [82])

o

B(r.,t) = / B.G (1, 7 )DB(r, 0) + BD(r, 0) G, £)] dr, (6.42)
-0

By direct integration we can discover how some initial perturbation evolves in

time but it does not give much insight into the physics behind the different features

of the solution at different times. It is possible, however, to investigate the behaviour

of the Greens function in different regions of the time domain using the method of

analytic continuation and using the residue theorem.

Figure 6.1: Analytic extension of the contour in the complex frequency plane.
Crosses represent the singularities which are associated with the quasinormal modes.
A branch cut, marked here by a bold line, is introduced along the negative imaginary
axis in order to avoid including the point w = 0 in the integration.

When A;,(w) = 0, the Greens function é(r*,ri,w) is singular and the two
solutions, ®* and ®~, are no longer linearly independent. From eq. (6.37) we
can see that this corresponds to a solution with purely outgoing waves at spatial
infinity and purely ingoing waves at the horizon. These are the quasinormal mode
solutions whose characteristic frequencies all lie in the lower half of the complex
w-plane. Near the quasinormal mode frequencies (w,) we can approximate A, by

dA;,
— = (w — wy) 0y (6.43)

W=y

A (w) = (w —wy)



Using eqs. (6.39), (6.40) and (6.43) we can approximate the frequency domain
Green’s function by

O~ (rc, W) (rn, w) (6.44)

G(fr* 7";7(,0) ~
’ 2w(w — wy)ay

where we have used the notation r,. for min(r,,r.) and r,s for maz(r,,r.) . We
extend our integration contour as illustrated in Fig. 6.1. There are some difficulties
involved in this step due to the fact that the transformation in eq. (6.35) is defined
only in the upper half of the w-plane (see [49] for discussion) but we assume here
that such an analytic continuation is possible. A branch cut is introduced along
the negative imaginary axis to avoid including the point w = 0 in the integration.

Using the new contour, the Green’s function may be written as three terms
Gre,r,t) = Gelro, i, t) + Golre, rh, ) + Gy(re, 7, t) (6.45)

G, is the sum of the residues at the poles of G(r,,7.,w), corresponding to the
quasi-normal ringing, (G, is the integral of G(r,,r,,w) around the branch cut, and
Gy is the integral along the large quarter circles. The branch cut contribution is
associated with the late time power law decay of the solution [57] and the large
arcs which close the contour are associated with the high-frequency response. Gy
reduces to the free-space Green’s function in the limit of zero mass for the black
hole.

It is possible to calculate the quasi-normal mode frequencies and this has been
done by several accurate methods, e.g. [48], [49]. Finding the quasinormal mode
contribution to the Green’s function is a lengthy process [? ]. Andersson has used
an asymptotic approximation to arrive at a simplified formula for the mode excita-
tions [81][49]. T will not present the full details of the Green’s function calculations
here but I will use the results of Leaver and Andersson for the quasi-normal mode
frequencies for comparison with the results of time evolutions I have carried out as
explained in the next section.

The late time decay of the solution was studied by Price [47]. He showed that

the field decays with a power law tail at late times according to the formula
T (r,t) ~ ¢~ (6.46)

where P = 1 for static initial data and P = 2 otherwise. This was confirmed by

Gundlach et al [62] using linear and non-linear evolutions.
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6.4 Numerical Evolution

It is fairly straightforward to use our basic numerical techniques from the previous
section to evolve the Regge Wheeler equation. We set up a numerical grid in the

radial coordinate ..

6.4.1 Calculating the Potential
One immediate obstacle is that the potential is a function of r which is not a simple

analytic function of 7, (eq. (6.11)), i.e. the equation

r*:r—f—Qj\/[Zn( r

_ 6.47
2M 1) ( )

is not invertible. We cannot find an analytic expression for V(r.) and therefore
must use a numerical method for calculating the potential at each gridpoint. For
an initial value we pick some value of r and calculate r, at that point using eq.(6.47).
Numerical integration is carried out using the fourth order Runge-Kutta method
described in section (4.2). The convergence of this method has been tested by out-
puting results for double, quadruple etc. grid resolutions. The order of convergence
was calculated in MAPLE using the function fit/leastsquare/ in the stats package.
The result is given as 3.939899563, very close to the expected second order value of
4,

The form of the Regge-Wheeler potential in r and r, coordinates is shown in

Figs. 6.2 and 6.3.
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Figure 6.2: The Regge-Wheeler potential for scalar waves as a function of 7 .
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Figure 6.3: The Regge-Wheeler potential for scalar waves as a function of 7.

6.4.2 Cauchy Evolution
Following the same scheme given in section 5.1, the Regge-Wheeler equation is

written in finite difference form as

n n - n n At i 4 7
P =200 =+ (PR — 298 ) (E) — V(k)ppAt? (6.48)

As initial data we again consider a Gaussian pulse which is travelling to the left.
This represents the physical situation of a small perturbation travelling inwards
towards a black hole.

The output from this evolution is shown in Fig. 6.4. The pulse becomes distorted
as it travels inward. On reaching the potential peak the majority of the pulse is
reflected, but some passes through the potential and falls inward further towards
the horizon. Fig. 6.5 shows how the log of the solution varies with time at a fixed
point (in this case r. & 30). Here we can clearly see the initial reflection, the quasi-
normal ringing and the late time tail. The modes can be seen more clearly in Fig.
6.6.

One way to test our results is to measure the frequency and damping of the
quasi normal modes and the gradient of the late time tail. These calculations can
then be compared to known analytic approximations. The results are shown for
gravitational perturbations with [ = 2 and the least damped quasi normal modes

in this case have complex frequency [49][57]

w =~ 0.376 — 0.0899; (6.49)
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thus we would expect a half-period of

D™ g35 (6.50)

2 Re(w)

By measurement from Fig. 6.6 we get the value 8.3 which compares favourably.
The gradient is measured as —0.083 which is close to the expected value of —0.09.
The time behaviour of the tail at future null infinity is given by t~(3*3) [62] so we
would expect here to find ¢77. The measured fall off is 7.7. It is possible that we
have not evolved to late enough times to get a good estimation of the power law
behaviour. Another explanation could be that we are seeing the effect of modes of

higher multipoles. The next higher multipole has fall off ¢+~°.
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Figure 6.4: Cauchy evolution of the Regge-Wheeler equation. On reaching the
potential peak the majority of the pulse is reflected, but some passes through the
potential and falls inward further towards the horizon.

The convergence for this code is shown in Fig. 6.7.

Gundlach et al [62] have poi nted out that using this kind of finite differencing
leads to a ghost potential which can affect the magnitude of the late time tail. Here
we do not concern ourselves too much about this as a precise Cauchy evolution of

the Regge-Wheeler equation is not our ultimate goal. This section is mainly an
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Figure 6.5: Log of the solution at one gridpoint, from the Cauchy evolution of
the Regge-Wheeler equation. The quasinormal modes can be seen, followed by the
power-law tail.

exercise in evolving different kinds of initial value problems for the wave equation
in Schwarzchild spacetime.

Although the Cauchy evolution gives good results, there are problems due to
boundary reflections which contaminate the solution at late times. This is shown
clearly in Fig. 6.8. This is a general disadvantage of Cauchy evolution and in an

attempt to avoid this problem we move to a characteristic formulation.

6.4.3 Double-Null Evolution
The Regge-Wheeler equation can be evolved on characteristics. We have used

double-null coordinates, u and v where

v=1=t+71, (6.52)
giving
AV, +V(r)¥ =0 (6.53)

This is finite differenced using the scheme described in section 5.2 for the one

dimensional wave equation. The Regge-Wheeler equation becomes

L g el g 95 A A 3T (6.54)
Pri1 = ~Pk T Pky1 T Pi - Pr LVl .
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Figure 6.6: The quasi normal modes in Cauchy evolution. The picture on the left
shows the behaviour of the log of the solution at one gridpoint and the picture on
the right shows the behaviour of the solution itself at the same gridpoint.

We also need to write the potential, V, on our u and v slices. For any value
of w and v we can find the corresponding r, = (v — u)/2. r is approximated by
numerical integration and substituted into eq. (6.33) to find V{(u,v).

The results for this evolution scheme, output on constant u slices, are shown in
Fig. 6.9. Surfaces of increasing u follow the part of the initial perturbation which
travels unimpeded towards the horizon along surfaces of constant v. Any reflections
from the potential travel along the positive u direction and are thus immediately
integrated off the grid. The log of the solution at constant 7, is shown as a function
of time in Fig. 6.10. The quasinormal modes are shown in Fig. 6.11 and the power
law tail can be seen in fig. 6.12

As in the case of the Cauchy evolution, we test our results by comparison with
analytic approximation. The half period of the quasi normal modes is measured
as 8.29 and the damping is measured at —0.081. The measured tail is ¢~"° which
compares quite well with the expected t7.

This scheme leads to a very clean evolution and gives good results. By extending
the domain of integration we can get better approximations for the late time tail
at null infinity, however this could be a computationally expensive procedure. One
of the benefits of characteristic coordinates is that we can compactify for solutions
at future null infinity. This would be achieved in the double-null case by compact-
ification of the v coordinate. For solutions at the horizon we could compactify in
the u coordinate. This involves a compactification in time and space. Although

it is not a problem here, in more general cases the double null formulation could
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Figure 6.7: Results of the convergence test for the Cauchy evolution of the Regge-
Wheeler equation. The sharp peak appears when data hits the boundary.
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Figure 6.8: Boundary reflections in the Cauchy evolution. This is a snapshot taken
at late times, after all the radiation should have left the grid.

lead to some difficulties in black hole spacetimes as outgoing rays may cross near
the horizon and ingoing rays may cross at large radius. This would lead to caustic
formation, which our simple numerical treatments cannot deal with.

The code is second order convergent as can be seen from Fig. 6.13.
6.4.4  Null-Timelike Evolution
The Regge-Wheeler equation can be written in retarded null-timelike coordinates,

T, U=1—1T,

2Wyr, = Vo, + V()W =0 (6.55)
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Figure 6.9: Double null evolution of Regge-Wheeler equation on constant u slices.
The reflections from the potential travel straight off the grid and a appear as straight

lines here.

The derivatives are written in finite difference form using the second order scheme

described in section 5.3, giving the second order finite difference equation

Al

Dy 1=
2(

where A =

—pp + PZ—l) +

1_14

(—2pp"

+p

n-+1
-2

+ Dy — 2Dk +Pi1)

(6.56)

(6.57)

An ingoing wave boundary condition is imposed at the inner boundary. This,
along with a description of the treatment of the first gridpoint near the inner bound-

ary, can be found in section 5.3. The outer boundary is treated using a second order

one-sided derivative.

As initial data we consider a Gaussian pulse situated outside the potential peak.
This represents a perturbation moving in the negative radial direction. The output

from this evolution is shown in Fig. 6.14 as the time variation of the solution at
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Figure 6.10: Log of the solution at one gridpoint, from the double-null evolution of
the Regge-Wheeler equation. The quasinormal modes can be seen, followed by the

power-law tail.

r. = 30. It is apparent from this figure that there are serious boundary condition
problems. There are reflections from both the inner and outer boundaries.

In order to solve the problems with the boundaries we can compactify our radial
coordinate. We choose to compactify in both directions in order to include both
future null infinity and the black hole horizon on our numerical grid. It is essential
however that we have enough gridpoints near the potential peak in order to resolve
the potential features here and we also require good resolution near the initial data.
We do not worry about the late time resolution near the horizon for now but we

will return to that problem shortly. We use the compactified radial coordinate
z = tan"'(fr.) (6.58)

The constant, f, determines the gradient of the function z. By choosing a small
value for f we can compactify far away and also very near to the horizon, whilst
leaving good resolution in the region near the initial data and potential. Fig. 6.15
plots z as a function of r, for f = 0.0017.

Written in terms of x and u the Regge-Wheeler equation is

290y — Y Wy + 27 tan W, + VU = 0 (6.59)
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Figure 6.11: The quasi normal modes in the double-null evolution of the Regge-
Wheeler equation. The picture on the left shows the behaviour of the log of the
solution at one gridpoint and the picture on the right shows the behaviour of the
solution itself at the same gridpoint.

which is written in finite difference form as

2y

1 - ;
pZ+ - m (“pk:~11 — Dk +pk‘1>
2
i " " .
+ 5agag (T2 P el — 208+ pR)
v tanz 1 1 il
- agg (AR P - GVinl (6.60)
where v = f/(l + tan? J‘) and
2y 2 v tanz

8 (6.61)

T Audz 2072 + Az

To calculate the value of the potential for very large positive values of z we
choose a nearby value of r which is approximated by r = r,, calculate the actual
value of r, at this point and then integrate to the required position. This solves
the problem of integrating over huge distances. For large negative values of r, I
integrate from r = 2.001, although it may be more accurate, and efficient, to use
some approximation for the potential near the horizon.

The results are shown on constant u surfaces in Fig. 6.16. The outgoing radi-
ation integrates cleanly off the grid and the part of the initial perturbation which
passes through the potential barrier travels inward towards the horizon. Due to
the fact that this part is so small, it cannot be seen in Fig. 6.16, but the late time

behaviour can be seen in Fig. 6.17 in which the scale is magnified. As expected,
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Figure 6.12: Log log plot of the solution at constant 7, as a function of time for
the double null evolution of the Regge-Wheeler equation. The data approaches a
straight line at late times, indicating a power-law solution.
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Figure 6.13: Second order convergence for double-null evolution

the lack of resolution near the horizon causes problems at late times and spoils the
evolution. In order to avoid this problem we would like to match to an ingoing

characteristic evolution. This is described in the next section.

6.4.5 Characteristic-Characteristic Matching (c2m)

We match two characteristic codes, one ingoing and one outgoing. This is illustrated
in Fig. 6.18. This solves the problem of having to impose boundary conditions at

the inner and outer boundaries.
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Figure 6.14: Log output from null-timelike evolution of Regge-Wheeler equation.
The boundary reflections can be seen clearly. In order to avoid these reflections we
will use a compactified radial coordinate.

Figure 6.15: The compactified radial coordinate z plotted as a function of r, for
f =10.0017, see eq. (6.58)

The Regge Wheeler equation written in ingoing null-timelike coordinates (v =

t+ 7,7y 18
W, + W, .. — VU =0 (6.62)
We compactify using the coordinate z = tan~!(fr,) giving

29U,y + ¥, — 297 tan W, — VI = 0 (6.63)
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Figure 6.16: Retarded null-timelike evolution of Regge-Wheeler equation with the
radial coordinate compactified. The initial pulse hits the potential and the reflected
radiation passes cleanly off the grid.

and, finite differencing in the same way as we have done for outgoing characteristics,

we get
K 2y n+1 n n
e VT A A Y
AT
~ \ . . o
— 5oy (2R + LT, + O, — 20 + O )
’\//2 tanx n n 1 il
oy COR - e + oV o (6.64)

where k increases in the direction of the horizon.

To update the solution at the matching boundary we use a slightly modified
version of our double null scheme described in section 5.2. This is illustrated in Fig.
6.18. We know the solution at all points on u™ and v™ and we require the solution
at point S. The intersection of 4™ and v", is marked P. We calculate the value
of z = z¥ at this point by first calculating the value of 7, here

o —

V= 6.65
=t (6.6
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Figure 6.17: Late time behaviour on a u slice for the compactified retarded null
timelike evolution of Regge-Wheeler equation. Compactification near the horizon
causes resolution problems for the ingoing quasi normal modes. This could be solved
by matching to an evolution ingoing null hypersurface before the resolution breaks
down.

z¥ is then given by
7V = tan"'(ar?) (6.66)

The solution is obtained at this point by interpolation of the solution at v} ,
vp _y, and v _, as described in section 5.4. By an analogous procedure we can
interpolate for the solution at the intersection of v®™! and u", marked Q. We now
have four points, including the previous boundary point R, of a double null cell and
we can use eq. (6.54) to update the solution at the matching boundary, point S.

The results are shown in Fig. 6.19. Fig. 6.21 shows the late time behaviour for
this evolution and we can see the field decay. Even at this scale, where we have
zoomed in from Fig. 6.19 by a factor of 107 we do not see reflections or noise. Of
course this code is not perfect and if we zoom in a few more factors of ten we will
see some problems.

The quasi normal mode output at future null infinity is shown in Fig. 6.20 and
Fig. 6.22 shows the power law behaviour of the late time tail. The half-period of
the modes is measured as 8.3 and the damping is measured as —0.089 which are
both in good agreement with the analytic approximations. The late time power law
is measured as u*® which is not in good agreement with the analytically obtained
ut law. It is possible that we have not evolved to late enough times to properly
measure the late time tail, or that we are seeing some mixing of higher order modes.

This code is second order convergent, as shown in Fig. 6.23.
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Figure 6.18: Calculating the solution at the matching bounday in the ¢2m evolution.
We require the solution at point .S. We calculate the value of z = z¥ at the point
P and calculate the solution at this point by interpolation of the solution at vy ,
vp _y, and v _,. We similarly interpolate for the solution at the point (). The
four points, S, P, @ and R, form a double-null cell and we can use eq. (6.54) to
update the solution at the matching point, S.

6.5 Chapter Summary

In this chapter I have evolved the Regge-Wheeler equation as a Cauchy, a double-
null and a null-timelike initial value problem. In the null-timelike evolution I have
compactified the radial coordinate and matched ingoing to outgoing evolutions and
this has proven to be a very effective method for a good, clean evolution with second
order convergence. The Regge-Wheeler equation has been a useful toy-problem,
introducing aspects of black hole spacetimes which will carry over to later chapters

where 1 deal with Kerr and Kerr-de Sitter spacetimes.
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Figure 6.19: Results of the compactified ¢2m evolution of the Regge-Wheeler equa-
tion displayed on u = const slices. This looks very similar to Fig. 6.16 but the
difference is seen when the solution is magnified at late times.
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Figure 6.20: The quasi normal modes at future null infinity from the compactified
c2m evolution of the Regge-Wheeler equation.
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Figure 6.21: Late time behaviour on constant u slices. Here we have magnified the
y-axis to show that the problems seen in Fig. 6.17 are no longer present.
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Figure 6.22: Log-log plot of compactified ¢2m evolution of Regge-Wheeler equation
at future null infinity, showing late time power law tail.
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Chapter 7

The Axisymmetric Wave Equation

In this chapter 1 extend the work of previous chapters to two-dimensional space. As
a toy-problem I consider the wave equation in spherical polar coordinates. Assuming
axisymmetry we can write a two-dimensional equation in (¢,7,6) or (u,r, ¢). The
resulting equations are similar to the one-dimensional equation with a potential.
Assuming a reflective boundary at 7 = a we can calculate the resulting modes which
are scattered. The analytic derivation for the frequency of these modes was carried
out in [85] and is reproduced here. T use these analytic results to test the numerical
time evolutions which are also described in this chapter. I have chosen this toy-
problem because the equations are similar to the equations governing perturbations
in Kerr spacetime, enabling me to test the numerical schemes which I will use in

the next chapter.

7.1 Calculating the Mode Frequency

The wave equation in spherical polar coordinates is

1, .
\Ijtt - 7—4—2* (T’ \Ilr)r - 2 Sind (Sll’l@ @9)0
1

In order to find a general solution we use the Fourier transform:

W(x,w) = [ T (x, et (7.2)

o0

with each Fourier component satisfying the Helmholtz eq.

(V2 4+ whHU(x,w) =0 (7.3)
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We can separate the variables using
U(r,0,0) = R(r)O(0)2(¢) (7.4)

substitute into eq. (7.3) and divide by RO®P to get
1 d [/ ,dR 1 d (. dO© 1 d*® )
L P i) T e = 7.5
R dr (T dr) T O snods (Sm@ d()) T Br2smo <d¢2> o (1)
If we multiply by r?sin? § and rearrange we find

1 [(d*® 5 . 9 , 1 d [/ .,dR 1 d /. d®e
2 E) . =) e — 7.6
) <d¢2> roe 9( Rr?dr (T dr Or2sinf db Sm@d@ (7.6)

Since the left side of this equation depends only on ¢ and the right side depends

only on r and ¢ we can equate each side to a constant

1 [(d*® 5
— [ =) = _ 7.7
@ <d¢2> " o
and
1 d ([ ,dR 1 d [ . dO 5 m?
i bl - - = 7.8
Rr2dr (T dr ) * Or?sind df <sm ¢ do ) R r2sin® 0 (7:8)
or, separating variables again in the last eq.
1d [ ,dR 9 9 1 d /. dO m? ‘
el el w?=_ — H— _ 7.9
Rdr <T dr)JrTw ©sind do (sm d(9>+sin2() (7:9)
leading to two separate eqs. for r and 6
1 d de m?
i N WL O =0 7.10
Sind do <Sm9d9) anzgO D (7.10)
1d [ ,dR 2 I+ 1)R -
—— — i —— i L {11
r2dr (T dr)jLWR r? 0 (7.11)

Eq. (7.10) is the associated Legendre equation with solutions P/*(cosé), the
associated Legendre functions. Solutions to eq. (7.7) are of the form e=™?. Com-

bining these two solutions gives the spherical harmonics

Y™(6, ) < P/"(cos 0)e™? (7.12)
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and the solution may be represented as

@(X7w) = Zflquvw) Ylm(& Cb> (713)
im

Eq. (7.11) has solutions which are spherical Bessel functions or Hankel func-

tions [86]. Substituting R(r) = r~2u,(r) we get

&2 1d ,  (1+13)?
- o frt 14
(dﬂ + o +w 3 ) w(r)=0 (7.14)

which is the Bessel eqn. with v = [ + 1. The most general solution of (7.3) in

spherical polar coordinates is given by

U(x,w) = > (A" (wr) + AW (@r)] Y6, 6) (7.15)

Im

where h; are the spherical Hankel functions. The actual solution will depend on the

initial data and boundary conditions.

To find the solution for some given initial data at ¢ = 0 we take the Laplace
transform of our wave equation but substitute s = —iw so that we are actually
using a one-sided Fourier transform. This is preferable because it enables us to

work directly in the frequency plane.
LIV — U] = L[VH] - L]V] (7.16)
where
L[] = / et
=[e™t ] — iw /0 h et

lu)tq/ — W ([ezwt\lj \Ifeiwtdt>

0
= — \If](t:@ - Zw[—\lf(tzo) — ZW\I’]
= — wg\if -+ iw@(t:()) — \i](t:()) (717}

L[V = / VAe™tdt
0

=V2L[W] = 0" (7.18)
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Therefore the wave equation becomes
VAU 4+ w2 = iwT(t = 0) + U(¢ = 0) (7.19)

We solve this inhomogeneous equation using the method of Green’s functions. The

Greens function is given by the solutions to

2 1d 1 1
<d +_i+w2_l(l+ )>gl=——~5(7”—7"/) (7.20)

dr?  rdr r2 72

The solution when r # r’ is the same as the solution to the homogeneous equation,

eq. (7.14). For r < 7'
g = Al(w’r')hl(l)(wr) + By(wr B (wr) (7.21)

where, due to zero boundary conditions on r = a

h(Q) o
Af(wr’) = —Bl(wr')w (7.22)
hy” (wa)
For r > ', using the outgoing wave boundary condition, we have
g = Cg(wfr’)hl(l}(wr) (7.23)

We use the condition that ¢; must be continuous at ' to write

h(Q) 3 v
Cy(wr' Y (wr') = —BKW')—@)(W WY (wr') + By(wr )b (wr')  (7.24)
h; ' (wa)
which leads to
(2)
() =Bufwr”) [ B2 () = (B9 0 (r<r) (129
hy(wa)
h(Q)(W“/) n h(2)(wa) (1)
gi(r, ") =Bj(wr') | t———2h (wr) — L—""h, " (wr (r>r) (7.26)
((r, 1) =Bl >(h§1)<w,> wr) = S )

which can be written in the form

h (wa)
ht (wa)

ai(r,r") = Dy(wr') (/ll(Q) (wr AN (wrs) — hgl)(wr)hl(l)(wr’)) (7.27)

where D)(wr') = Bl(wT’)hl(l)(wr’) and r.(r.) is the smallest(greatest) of r and

r’. To find an expression for D;(wr’) we use the jump condition due to the delta
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function at 7 = 7.

d d 1 .
_ , . P 2
dr [gl}'r‘ —e T dr [gl]r +€ 72 (7 8)

Atr=r"+eweuser. =7 and ry =, lLe.

d h(2>
— g e = Di(wr') | B (wr ) B (wr) — gT“"a—)h}”(wr)thm (7.29)
dr by (wa)
Atr=r —eweuser. =rand 7~ =7/, Le.
d N @ W D (wa) W
%[Ql]w_e = D[(wr ) h’l (wr)hl (wT) - mhl (w'f')hl (wT) (730)
l

Substituting into (7.28) gives

Dy (wr") (hl(g) (wr”)

dr r

(9 wr)) o = W ) S o)) ) = % (731)

The expression in brackets above is the Wronskian. We calculate this using hém (wr) =

_ LGZ’U)T‘ and hé ) — _l_e wr
wr wr

1574 :_i_e—ini _ieiwr + __i_eifwri ie—iwr
wr dr wr wr dr Lwr

. -2 . . .9 .
[ rw 4 ; T —rw T iy
— e mwr . ezwr + 26211)7" _+_ e’I,LUT e wr 26 wr
wr wr wr wr wr wr

i(—%)  i(—4%) 2

p— == 7-32
7,07'2 + 'IUT'2 w,r.? ( )

Therefore
, 1 wr?  dw s

and
N & h? (wa) ) (1) 4
ar,r') = 5 hy " (wr )by (wrs) — M Ry (wr )by (wr) (7.34)
' hy (wa)

We may now recover the time domain Green’s function by the inverse transform

oco+tic
G(r,r' 1) = / g(r, e dw (7.35)

—oo+1c
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the solution is then given by

oo
\if(r, t) = / dr' Sp (r',w)G(r, 7', ) (7.36)

o0

where

S, w) = 1w (r',0) — (7, 0) (7.37)

Figure 7.1: Integration contour in complex frequency plane. Crosses mark the
singularities which correspond to the modes

In order to calculate the complex integral we consider the contour shown in Fig.

7.1 and use the residue theorem
/ I+ / I.. = 2miS Res (7.38)

where [ is the integral we are interested in and [, is the extension in the lower
half of the frequency plane. Following Andersson [81] we argue that the high-
frequency semicircle at infinity will not contribute to the integral at most times
(but give roughly the "flat space progenitors” at early times) and thus the integral
of eq. (7.35) may be found by simply calculating the residue, i.e. by finding the
poles of g;. From eq. (7.34) we can see that the singularities of g;(r, ', w) are at

hi(wa) = 0, so the roots of h}(wa) will give us the mode frequencies.

7.2  Numerical Evolution

We begin again from eq. (7.1) and assuming axisymmetry we remove the ¢ depen-

dence

U(t,r,0,p) = W™ (7.39)
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so that the wave equation becomes

2

1 1 m
OV — =0, (r*o, ) — infOpW) + ———V =0 7.40
" r? (r 2 > r2sin (969 (5106 d50) + 72 sin’ ()\ (7.40)

7.2.1 Cauchy Evolution

We use our standard second order leapfrog finite difference scheme as described for

the one-dimensional wave equation. Here, however we must also use

P i 1 T 7
aG\Ijlc,j = Q_AQ“(PMH "Pk,j-ﬂ (7.41)
1, ., ‘
a&G\DZ,j = NP (pk,j+1 - QPZ,j +pz,j~1) (7.42)
and the finite difference version of the two-dimensional wave equation is
_ . At? t?
pﬁff :sz,j - pZ,jl + m(pg—i—l,j - sz,j ‘f“pZ—l,j) + ”A’f;(pZH,j - p2~1,j)
At? n A2 cosd) , AtPm?
+ W(PZ,;‘H - 2]72,; +pk,j~1) + m(ﬁ?,jﬂ - PZ,M) T 2 QPZ,J’
(7.43)
We evolve the area 0 < 8 < 7 and use boundary conditions
Wh, =0 (7.44)
OV ; + 0 Vg ;=0 (7.45)
Uy =0 (7.46)

We choose as initial data a Gaussian pulse which is moving inwards. For the ¢
dependence we choose a function which is consistent with our boundary conditions
and with the value of m which is used to separate the ¢ coordinate. The results
shown in this section are obtained using the function sin®6 cos#, i.e. [ = 3.

Fig. 7.2 shows the output along the direction § = 0.9 with the inner boundary
set at 7 = 10 and the outer boundary at » = 230. Fig. 7.3 shows the evolution
for 0 < @ < 7 at constant radius, r = 20. Fig. 7.4 shows the time variation of
the log of the solution at § = 0.9, r = 30. Here we see the quasi normal modes of
the system. The expected frequency can be calculated as the zero of the spherical
Hankel function of the first kind. Since we are using initial data with m =2,1=3

we must find the roots of

(wa)® + 6i(wa)? — 15(wa) + 15i = 0 (7.48)



The roots may be found quite easily using a computer algebra system such as
MAPLE. We find the following three roots

21 = 1.7544 — 1.8380; (7.49)
2 = —1.7544 — 1.8380i (7.50)
23 = 0 — 2.3222 (7.51)

We expect that wa = 1.75, i.e w = 0.175 for a = 10. This gives us a frequency and
half period for the modes of

f=2 (7.52)
2
§ =T 18 (7.53)

This half period approximately fits the measured value from Fig. 7.4 of 16.7. It
is not surprising that the fit is not very close because we see so few modes with
which to measure the frequency. The accuracy of the frequency calculation could

be improved by using a fast Fourier transform.

4 =8 =1 4 =24 4 t=41
2+ ‘ - 2 — 2—A _
Y o -4 or - 0r ~
2 ..,‘ 2 — _2_! —
v — P 3 o ] 4 |- o
[ L 1 ) | | 1 | L I t : | 1 |
0 100 200 0 100 200 0 100 200
r r r
T f ] T I I T T T T T T T T
4= =57+ 4 =73+ 4 t=90
2+ — 2 - - 2 _
-2 o el = — 2 —
-4 - - -4 - j= -4 —
| I [ ] I 1 ) | i I 1 L I L |
0 100 200 0 100 200 0 100 200
r r r

Figure 7.2: Cauchy evolution of the two-dimensional wave equation for a constant
¢ direction. The initial pulse is reflected by the hard sphere at the inner boundary.
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Figure 7.3: Cauchy evolution of the axisymmetric wave equation for a constant r
surface. The results are not so smooth in the @ direction but this is improved by

adjusting the resolution, Af.

7.2.2  Characteristic evolution
We transform eq. (7.40) to characteristic coordinates (u,r,8) where u = ¢t — 7 to
get

2

2 1 . 1 -
20,,U + “W, — —(r?T,), — 5(sin 6%y + LI (7.54)
" ;

T rZgin r2sin? 6

In order to fully exploit the characteristic formulation we compactify the radial

coordinate by transforming to a new coordinate z given by

r

= , 0<r < oo, O<z<l (7.55)
1+7

Xz

The wave eq. written in terms of this new coordinate is

1
2(1 — 2)?0y, ¥ + -2~(1 —2)0, 0 — (1 — 2)% 05, ¥ + 2(1 — z)? <1 — ;) 0, ¥
T

(1-z) . m*(1—z)°
 22sind O (sin 005 W) + r2sin’f
(7.56)
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Figure 7.4: Log of the solution from the Cauchy evolution to the axisymmetric wave

equation, showing modes

We finite difference this equation using by calculating the derivatives at position
(n+1/2,k —1/2,j). The derivatives involving v and z are finite differenced using

the same scheme we used for the one-dimensional null-timelike evolutions. Now we

also include the derivatives in ¢ as

1 74 7
OpV = AT <pkf11,j+1 - pkf%-j% + Prjt1 — Phj-1)
1 V3 i3 n
Opo¥ = m@ki,ﬁl — QPkfij +p2ﬁ_’j_1 + D1 — 2Pk T pZJ“l)

and our finite differenced evolution equation is

D3 D4 D5

D2 .

pz??l = ]_jipzfll,j + ']‘ji‘(pﬁ%,j + Pre1y) ﬁpz,j + D1 Pk-1
D6 n-+1 D7 n-1 n

+ E_l(pk:jl,j+1 + Prje1) T ﬁ(pk—l,j-1 + D j-1)
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201-2)* (1—-2) (1-—x) 1 (1—x)*
_ 1 _ 76
Dl AulAzx + AN) + Az L+ T 222 (7.60)
21—z (1-z) (1-z) 1 (1—x2)* (1-2)* m*(l-2)?
D =Ae " oaw T ar \MTZ) T TAE T Aer T ety
(7.61)
1—z)*
D3 = LQATQ (7.62)
20—z (1-2) (1-2) 1 (1—-z)* (1-2) m*(l-2)?
D4 == — =) - — —
4 Aulz * zAu Az L+ x Az? AG? 72 212 sin’ ¢
(7.63)
210—-2)? (1—-2z) (1-x)3 1 (1—x)?
D5 = — — -~ 7 7.64
g Aulg + zAu + Az L+ T * 2Ax? ( )
(1-2z)> (1—1x)%cosb
D6 = 7.65
6 20022 4Afz?sin b ( )
a2 N2
D7 (1—2x) (1 —z)%cost (7.66)

T 2A0222  4Afx’sind

and all coefficients are calculated at (n+1/2,k —1/2, 7).

A zero boundary condition is implemented at k = 0, i.e at some positive value of
z. As in the one dimensional case, we must make some adjustment to our evolution
equation in order to calculate the new value at position k& = 1, the first radially
inward point from the inner boundary. Here we cannot use point (n + 1,k — 2, )
because it does not exist. We use the same method described previously in one
dimension, i.e. the double z-derivative is calculated to first order here only. At
the outer boundary another small adjustment is made to egs. (7.59) and (7.66).
We do not have a gridpoint at (n, &k + 1,7) and so we use a second order one sided
derivative here. Zero boundary conditions are imposed at # = 0 and 6 = 7.

We choose initial data which is a pulse in the x direction and the function
sin?# cos § in the theta direction with m = 2. We therefore expect modes of [ = 3
and a frequency given by wa = 1.75.

The results are shown in Fig. 7.5 for output on a constant § = 0.54, and in Fig.
7.6 for a constant radius. We have set the inner boundary, a, at = 0.5, i.e. 7 =1
and therefore expect the quasi-normal modes to have frequency and half-period

given by
(7.67)

P="1r138 (7.68)
w



The log of the solution obtained for an angle # = 0.9 at future null infinity is
shown in Fig. 7.7 as function of u. The calculated frequency of 1.63 compares well
with the analytic result.

I have tested the characteristic code for second order convergence. The results
are shown in Fig. 7.8. The solid line is the result for a test using z-direction reso-
lutions of 2000, 4000 and 8000 gridpoints, whereas the dashed line shows the result
for a lower resolution test of 1000, 2000 and 4000 gridpoints. The convergence is
second order up to about ¢ = 5 but then increases. This could be due to instability
problems with the lower resolution runs. This is supported by the fact that the
second order convergence is extended in the higher resolution test. Low resolution
stability problems can be seen in Fig. 7.9 which shows the output at one point for

successively higher resolution runs.

One condition which is necessary for stability is the Courant condition, i.e.
that the numerical domain of dependence should include the physical domain of
dependence. In the case of the characteristic code described above, this translates

to the necessity for the three points, pi,, ;, pi ;. and py ;_; to lie outside the past

null-cone from the point ijl. The equation of the characteristics in flat space is

given by
(z = 20)” + (y — y0)” + (2 = 20)" = (t = t0)* = 0 (7.69)
so for the example above, considering the point p},, ; gives the condition

(Ar)? — (=Au+ Ar)* = (7.70)

Considering the other two points we require

(rsin® — rsin(f + A0))? + (rcosf — rcos(d + Ab))? — (—Au)* =0 (7.72)
o Au < V204 /cos(A9) — 1 (7.73)

At large r the first condition will dominate, but near the origin the second condition
becomes highly restrictive and we can see that this scheme leads to an unconditional
instability at the point 7 = 0. Fortunately, in the above example of waves reflecting
from a solid sphere we do not have to worry about this problem but we must consider

the second condition when the radius of the sphere is very small.
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Figure 7.5: Characteristic (null-timelike) evolution of the axisymmetric wave equa-
tion with reflection from a hard sphere shown on a constant # surface. The y axis

is scaled by 10°.

7.3 Chapter Summary

In this chapter I have evolved the axisymmetric wave equation as a Cauchy and

a characteristic initial value problem for the case of a pulse scattering off a hard

sphere. This toy problem has been good preparation because it has extended the

numerical techniques to two dimensions. The axisymmetric wave equation is similar

in form to the scalar wave equation in Kerr and Kerr-de Sitter spacetimes which will
be the focus of the next two chapters. I have also investigated the convergence and

stability properties of numerical schemes that I will use in the following chapters.
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Figure 7.6: Characteristic (null-timelike) evolution of the axisymmetric wave equa-

tion with reflection from hard sphere shown on a constant r surface.
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Figure 7.7: Log of the solution to the characteristic evolution of the axisymmetric
wave equation at future null infinity, showing modes
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convergence

Figure 7.8: Results of two convergence tests on the characteristic evolution of the
axisymmetric wave equation. The dashed line represents a lower resolution conver-
gence test. This figure shows that the convergence improves with higher resolution.
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Figure 7.9: Solution from axisymmetric wave characteristic evolution at one point
for three grids of different resolution. Dotted line: 1000 gridpoints, dashed line:
2000 gridpoints, solid line: 4000 gridpoints. The amplitude was shifted slightly in
order to display the results together more clearly.
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Chapter 8

A Characteristic Approach to
Perturbed Kerr Black Holes

8.1 Kerr Spacetime

As a rotating star collapses to form a black hole, its rotation increases, although
according to Thorne [87] the maximum angular velocity for a Kerr black hole is,
a/M = 0.998. Rotation has a dramatic effect on the structure of the spacetime
surrounding the black hole. As the black hole rotates it drags the spacetime with
it. This results in two photon orbits on the equatorial plane, one for co-rotating and
another for counter-rotating photons. The distance between those two photon orbits
increases with the angular velocity. Rotating black holes possess an ergosphere, a
region of spacetime in which it is impossible to stay still. The outer boundary of the
ergosphere corresponds to the static limit of the black hole but, unlike the case of
non-rotating black holes, this boundary is outside the event horizon, and therefore,
particles may return from this region.

Whereas Schwarzschild black holes have only one horizon, a Kerr black hole has
two. At the outer horizon, an observer would experience a reversal of roles for time
and space. At the inner horizon, time and space switch roles again to act as they
do outside the horizons. There is much more that could be said about the internal
structure and the singularity beyond the Kerr horizons, but the focus of this chapter
is on the exterior region.

In the previous chapters I have developed the necessary skills for evolving per-
turbations against the exterior spacetime of a Kerr black hole. Here I describe the
derivation of the Teukolsky equation governing scalar, electromagnetic, and gravi-
tational perturbations in Kerr spacetime. I then describe characteristic codes that
I have developed to evolve the scalar equation in null-timelike and double-null coor-
dinates. I also present some results using an old Cauchy code [2] which contribute
to a recent debate over the late-time fall-off for initial data of spherical harmonic
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form with m = 0,1 = 4, and some evidence to support the superradiant resonance

cavity interpretation for the late-time behaviour or rapidly rotating black holes.

8.2 The Teukolsky Equation

The derivation of the Regge-Wheeler equation in Chapter 6 involved perturbing the
metric, gff) + Ay, calculating the Ricci tensor, keeping only the terms which are
of first-order in h,,, and then substituting into the vacuum Einstein equations. In
that case spherical symmetry allowed us to decompose into spherical harmonics,
however the axial-symmetry of Kerr space-time makes the separation of the r and #
coordinates impossible by this method and we end up with a PDE in r and ¢ rather
than two separated ODEs. In Kerr spacetime an alternative method for separating
the r and 6 equations must be used, as first presented by Teukolsky [21]. This
method utilizes the Newman-Penrose formalism which I describe here following the
presentation of Chandrasekhar [80]. We will return to the derivation of the wave

equation in Kerr spacetime after reviewing the mathematical foundations.

8.2.1 Tetrad Formalism

In the tetrad formalism a suitable tetrad basis of four linearly independent vector-
fields is chosen and the equations are expressed in terms of the relevant quantities

projected onto that basis. We represent our basis of four contravariant vectors as
ely (@ =1,2,3,4) (8.1)

Note that here I use Latin indices to represent 4-dimensions whereas [ have previ-
ously used Greek indices. This is to avoid confusion later when using spin coefficients
(with Greek symbols) in the Newman-Penrose formalism The associated covariant

vectors are

E(a)i = Gik€ln) (82)
where g;, denotes the metric tensor. The inverse of (8.1) is egb) so that
i (D) (b
e(a) €Z (5(0,) 8 3
€ty =3, (8.4)
It is also assumed that
€la)€)i = Na)b) (8.5)

where 745 1S a constant symmetric matrix with inverse n(®®.
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Given any vector or tensor field, its tetrad components are obtained by projec-

tion onto the tetrad frame. In general we have

(@
Ty = e eV Tiayw = e Ty (8.7)

By considering the contravariant vectors e(,) as tangent vectors we can define

directional derivatives as

@) = e(a> 5 (8.8)
and using this definition gives
Al = €{a>Aj;ie'Zb) + v c)(a)(b)A(c) (8.9)
where
V@) ®) = E@kii€nCle) (8.10)

are called the Ricci rotation-coefficients and are antisymmetric in the first pair of
indices. If eq.(8.9) is written in the form

el Asichy = Ao + 1™ Y@ ) Aom) (8.11)

then the right-hand side of this equation is called the intrinsic derwative of A in
the direction eg), which is written as Ay ). The directional and intrinsic deriva-

tives are therefore related by
A@io) = A, + 1™ Yy @)6) Am) (8.12)

The Lie bracket, [e), es)] = (e()€(5) — (), €(a) ), can also be expanded in terms

of our tetrad basis as
leqays )] = Clo)meie) (8.13)
where the coefficients, C(( are called the structure constants. They are antisym-

metric in the indices (a) and (b) and thus there are 24 in total. The structure

constants can be written in terms of the rotation coeflicients as

(C) A (C) _ (c)
Clayn) = "ot ~ Nait) (8.14)
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When eq. (8.13) is written out explicitly with the structure constants writ-
ten in terms of the rotation coefficients, the resultant 24 equations are called the

commutation relations.
It is also possible to project the Ricci identity onto the tetrad frame. The result

is given interms of the rotation coefficients as
R = e | + _+_ ~ ~ (f) —ry (f)
(a)(b)(c)(d) V(a)(b)(c),(d) /() (b)(d),(c) 10)@)(f) | Ty (@ ay (©

~ ~, (f) PN (f> =
TVN@E V) (@~ VD@D Yy (© (8.15)

which, considering symmetries, gives 36 equations in total. The Bianchi identity

can similarly be written as

1
Royoe@i) =5 > {Rumie@.y)
() (@)($)

— " @) By e + Ymern Ramie
T V) () By my@) + Yo @) Raywyem] } (8.16)

8.2.2 Newman-Penrose Formalism

In the Newman-Penrose (NP) formalism the basis vectors are chosen as a tetrad
of null vectors, {,n, m and m*, where [ and n are real and m and m* are complex

conjugates of one another. The null vectors satisfy orthogonality conditions
I-m=0l-m*"=n-m=n-m"=0 (8.17)
and we also impose normalisation conditions
[-n=1 m-m" = -1 (8.18)

which are not necessary but lead to significant simplification. These conditions

together with the null properties
l-l=n-n=m-m=m"-m"=0 (8.19)

enable us to write the fundamental matrix 7)) (see eq.(8.5)) as

0 (8.20)

OO = O
OO O e
e}
|
o
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where we have used
er =1, €9 =1, ez = m, es =m" (8.21)
The directional derivatives are given special symbols
e; = e? =D, ey = el = A, eq = —el =4, ey = —e° = 6" (8.22)

as also are the rotation coefficients, now refered to as spin coefficients

K = 7311 P = 7314 €= %(“/211 + ¥341)
0 = 7313 H = 7243 v = %(”/212 + Y342) (8.23)
A = Yo T = 7312 o= %(7214 + V344)
V = Yo49 T = 7Yo41 B = %(”/213 + Y343)

The equation relating the Weyl, Riemann and Ricci tensors and the scalar cur-

vature 1s

Rabcd - Cabcd - _<77acRbd - nbcRad - nadec + 771)cij%ac

[l SN

+ = (Nachbd — NadMee) R (8.24)

(@]

where Rgp0q 15 the Riemann tensor, Clpqq is the Weyl tensor, Ry is the Ricci tensor,
and R is the scalar curvature. By using the trace-free property of the Weyl tensor

along with the property
Chazs + Cizan + Crazz = 0 (8.25)

we find 10 independent components of the Weyl tensor, which are represented by

the five NP complex scalars

\I/O = —01313 = ”Cpqmlpwqurms

Uy = —Chag = —CpgrslPnl™m?

Uy = —Clga9 = —CpgrslPmIm™ ™ n? (8.26)
\113 = ‘“C1242 = —C’pqrslpnqm*rns

Uy = —Czg = —Cpgrsnm™in"m™

We can therefore obtain

Clizza = U4 Couag = Vs Charg = Csazq = —(Wy + U3) Chozg = Uy — U5
(8.27)
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The ten components of the Ricci tensor are defined by the following scalars

1 1 1 1
Dgy = —*2~R11 Pyy = —5322 Ogy = —§R33 Dy = —§R44
(6] *—13 ) "—ER ) ——1R o) ——ER
o1 =—5Ms 10 =—5Mu 12 = —5hs n = —5H
1 1 1
@11 = _Z]:_<Rl2 -+ R34> A= éZR = E(RIQ - R34) (828)

The commutation relations, Ricci identities and Bianchi identities can now be
written out in terms of the symbols introduced in this formalism. This leads to a
large set of equations which we will not repeat here. They may be found in [80]
or [56]. The physical meaning of all the NP quantities and equations is not clear,
however we do not worry too much about this - the equations serve our purposes
in deriving a separable equation for perturbations in Kerr spacetime.

In order to get some feeling for working in the NP formalism we explicitly work

out some of the main equations. Consider the commutation relation

{57 D} = {63, 61] == (7013 - ’7031)66
= (7213 - n/231>D - n,/131-’/—\ — ’\/3135* - (7413 — "‘/431)(5 (829)

where we have used eq. (8.13), eq. (8.14) and eq. (8.22). By applying eqs.(8.23)

we get the NP equation
0D —-Dé=(a"+0—7")D+rA - (p*+€—€)0—0d” (8.30)

Now consider the (1313)-component of eq. (8.15), the Ricci identity. By writing
this equation out in full and using 71, eq. (8.20), for lowering tetrad indices and
also using the fact that the rotation coefficients are antisymmetric on the first two

indices, we find

Ris13 = 71313 + 71331 + Y133(7121 + 27431 — Yars + V134)
— 131 (V433 + Y123 — Yo13 + Y231 + Y132) (8.31)

Then using eq. (8.22) and eq. (8.23) we obtain the NP equation

—Vy=—Do—0k+0(p"+p+3—€)+r(—7+7"—30—a") (8.32)
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A similar operation enables us to write out the 20 linearly independent Bianchi

identities, eq. (8.16), in this formalism. Consider the identity
Rispizjq) = Rizizja + Riszapn + Rizays =0 (8.33)

This can also be written as

Cragpa + (Crzza + %Rl?))[l — %Ru;g =0 (8.34)
where
Clratga = —6" g + 40Ty — 4p, (8.35)
Chaggn = DU — 260, + 360, — 70, (8.36)
and

(R13J1 - Rn;s) == Qg ) + Do 3 — (1)00("'”/231 + 27213) — 2P117131

B |

— Qo1 (=011 — 277413 + Ya31) + 2P107313 — Pozvan
=— DPg; + 6Py + 2@01(6 -+ ,0*) + 2090 — 2011k
- (pogli* + (I)oo(’ﬂ'* — 20" — 2[3) (837)

Eq. (8.33) can now be written explicitly in NP terms by combining egs. (8.35),
(8.36) and (8.37).

8.2.3 Tetrad Rotations and the Petrov Classifications

When a Lorentz tranformation is imposed upon the basis vectors [, n, m and m”,
it can be considered as belonging to one of three kinds of rotations:

e Class [ - leaves vector [ unchanged

e Class I] - leaves vector n unchanged

e Class II] - leaves the direction of [ and n unchanged and rotates m by some

angle ¢ in the (m, m*)-plane

The corresponding transformations of the various NP quantities can be found
in Chandrasekhar [80].

We can classify the Weyl tensor into different types by subjecting the complex
scalars, Wy...W,, to Lorentz transformation and determining which of the complex
scalars can be made to vanish. This is the Petrov classification and there are 5
Petrov types.

Consider a system with W, # 0 and subject the frame to a rotation of class II.

The Weyl scalar ¥q transforms in the following manner (as given in eq. (346) of
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Chandrasekhar [80]):
W = W+ 4b0y + 6020, + 402 Wg + b, (8.38)

To make W3 vanish we must find the roots of the right hand side of this equa-
tion. In an algebraically general tensor all four roots are distinct but an algebrascally

special tensor has two or more identical roots. The new directions of [, i.e.
1) — | 4 b*m + bm* + bb*n (8.39)

are called the principal null directions of the Weyl tensor. The principal null direc-
tions are directly observable quantities of the spacetime [88], for more information
on principal null directions see section 8 of Penrose and Rindler [89].

The Kerr metric is of Petrov type D. For type D, eq.(8.38) has two distinct
double roots. In this case we can make Vg, ¥y, U3 and ¥, vanish to leave only
W,. This is done by a rotation of class II followed by a rotation of class I. See
Chandrasekhar [80] for more details about this and the other Petrov types.

8.2.4 Perturbation Equations

We may now begin the derivation of the perturbation equations. Here we follow
the method of Teukolsky [21]. Rather than perturb the metric directly as we did
in the derivation of the Regge-Wheeler equation in Chapter 6, we now perturb the
null basis vectors,] = [(B) +[(F) 5 = n(B) £ n(P) etc. where the superscript B labels
the background quantities and P labels the perturbed quantity. The NP quantities
become Wy = \Ing) + \Ilgp), D = DB 4 DF) etc.

The Kerr metric is of type D and therefore we may choose the [ and n vectors
of the unperturbed tetrad to lie along the repeated principle null directions of the
Weyl tensor. This simplifies the NP equations because several of the NP quantities
become reduced to zero. The only remaining non-zero background scalar is \I/gB)
and the background spin coefficients, x(8), o8 p(B) \B) also become zero.

Consider the following three perturbed NP equations

(6% —da+m)0Y) — (D —4p - 26)0"7) = 3P, = 0 (8.40)
(A =4y + )W — (5 — dr — 28)07) — 300, = 0 (8.41)
0 1

(D—p—px—3e+ex)o™) —(§ — 7+ 7% —ax 38" — ‘I/ép) =0 (842
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These correspond to equations (321a), (321e) and (310b) respectively in Chan-

drasekhar [80]. We also use the equations

DU, = 3p0, (8.43)
6Ty = 370, (8.44)

which correspond to equations (321b) and (321f) respectively in Chandrasekhar, to

write eq. (8.42) as

(D —3e+ex —dp — pe) W0 P — (5 + 7% —a % =38 — 4r)UysP) — 070,
(8.45)

By operating with (D — 3e+ex —4p — px) on eq. (8.41) and with (6 + 7% —a *
—30 —47) on eq. (8.40) and subtracting one equation from the other, we can use

the commutation relation

(D —(p+1e+ex+gp— px)(0 — pB +q7)
~ (0= (p+ 1B —a*+m*+qr)(D —pe+qp) =0 (8.46)

with p = 2 and ¢ = —4 to eliminate U}, Then eq. (8.45) may be used to eliminate

o) and k) in favour of \IIQ\II(%P). This gives us the decoupled equation for \I/ép)

7 — dar) — 30,07 =0

A similar equation may be found for \IIEXP) by making the transtormations [ — n

and m — m* under which the NP equations are invariant. The result is

(A + 3y —v*+4p + p*) (D + 4e — p)
(5 =T+ B 3a+4Am)(6 — T+ 48) = 3W U =0 (8.47)

The Kerr metric in Boyer-Lindquist coordinates is

z

2 M ‘
ds? = (1 - MT) dt?#“{ sin’ §dtde — %dr? — Zdo°

AT A2
— sin? 6 <7"2 +a? + QMZ(Z " sin? 9> do? (8.48)
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where

S =72 +a’cosd (8.49)
A=7r?—2Mr+d° (8.50)
Using the Kinnersley tetrad
, (r? + a?) a
=1t 1.0 — 8.51
+2) 10,2 (5.51)
: 1
n' = ~Z~['r2 +a* —A,0,a (8.52)
m' ! ['as'n@ 0,1 ! (8.53)
= 4 1 sV Ly T '
V2(r +ia cos §) sin ¢

we can now write the gravitational perturbation equations, eqgs. (8.46) and (8.47),
in terms of the usual black hole parameters. Teukolsky has presented one master

equation for the gravitational perturbations as well the electromagnetic and scalar

perturbations:
(r? + a?)? ol 4Mar a® 1 7.
[——-—A —a*sin?8| 0,V + NG O U + Y] Dpo ¥
_ . 1 : a(r — M)  icost
— AT0, (AT T) — U) —2 : A
( 0, 0) sin@ag (sin 69y W) — 25 { X + sinQGJ Op
M(r? — q?
— 25 [L{sﬁl ~ 7 —ia.cos 9} O, + (s%cot?d) — s)T =0 (8.54)

For gravitational perturbations, s = +2, U represents \I/ép) or p’4\I/§:P>. This is

the equation we would like to solve.

8.3 A Characteristic Approach to Perturbed Kerr Black Holes

We consider scalar waves in Kerr geometry. This is simpler than solving the grav-
itational problem, yet we expect the same features to be prominent in both cases
and the methods we use may be extended later to solve the gravitational equation.

The wave equation is written in Boyer-Lindquist coordinates as

CR? dMar ‘
— Tﬁtt\lf -3 Oi VU + 0, (AD, V)
L9, (sinh A ) + [ — N 9,0 = 0 (8.55)
sing P Y sinfg  A) T ‘
where
YR* = (r? +a*)? — Ad’sin*0 (8.56)
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We would like to write this as a characteristic initial value problem. Trans-
forming to coordinates (us, 75,6, ¢) where ugy = t — r, is the usual so-called retarded
Kerr time determined by drs = M, we immediately encounter a problem -
the double u, derivative doeg not vanish. This problem is due to the fact that
us = const. hypersurfaces are spacelike, i.e not lightlike. There has not been much
previous investigation of light cones in Kerr geometry. This may stem from a fear
that such hypersurfaces would develop caustics due to the twist in the metric. As
far as we are aware, Pretorius and Israel are the first to have presented such an
investigation [90]. They define quasi-spherical light cones which turn out to be free
from caustics for all positive values of the radial Kerr coordinate, 7.

We follow Pretorius & Israel [90] and define coordinates (u, ., lambda, ¢) where
r, and A are functions of the Boyer-Lindquist coordinates r and 6. The wave eq.

becomes
ERQ 9 2 2 A
—T + (897'*) + A(arT*) 5\uu\ll - Z(A(&"T*) + <69T*)“)0urq;/

+ (A7) + (09r.)2) 00 U + ((OpN)? + A(BN)2) O30 T
1
sin @

+ 2(A0, A0, + OpAOgT: ) (Op NV — O\ V) + (@T(A&J’*) + Op(sin 6’@97“*)> (0,, W

) | 4Mar 1 a®\ .
+ (BT(A@/\) -+ @@9(811’1 909/\)) @,\\I/ - A @w\ll -+ (—~ —) @¢¢\IJ =90

sin2f A
(8.57)
from which we can see that a characteristic formulation requires
. ‘ ) 9
A(B,r,): + (9r,)* = _Ai (8.58)

It is possible to obtain a particular separable solution of eq. (8.58) by adding a

separation constant, a¢’)\, on both sides.

A <(8,7“*)2 _ “23;“ azm) = ((Bpr.)? — a>(\ —sin®6)) (8.59)

Defining two new functions

P*(0,)) = a*(\ —sin?0) (8.60)
Q*(r,\) = (r* +a*)? — a*AA (8.61)

such that
Q>+ AP*=¥%R? (8.62)
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we find

(O,7,)° — % = «% ((9gr.)? — P?) (8.63)

which can be satisfied if 0,7, = %— and Ogr, = P. i.e. we can write

dr, = O.r.dr + Opr.do
= %dr + Pdb (8.64)

(for fixed A).
2

: . . a” , .
Integrating this leads to an extra constant which we call 5 fie.

4

T Q /9 CL2 N
_ il 8.65
Ty / dr + | Pdf + 5 f (8.65)
We now have a two-parameter family of solutions to eq.(8.58)

re =11, 0; N, f) (8.66)

This can be extended to a solution depending on A and an arbitrary functionf(A)

provided that

‘ daf
Or\Tw + E‘/‘\“af‘r* =0 (8.67)

as explained on p.348 of Applied PDEs by Ockendon et al [91]. We can write this

condition as

"1 o1 _
We could have written equation (8.64) as

Q a’
dr, = —dr + Pdf + — Fd\ (8.69)

A 2

Then
"1 g a?

OrT+|(r.0) :/ Z&\Q](w,e)df +/ O\P|(rpdb + ?5&]‘(/\){(7:9) (8.70)
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From egs. (8.60),(8.61) we find

NnQliro) = ~50 (8.71)
a?
nPles =55 (8.72)
i.e.
2
OArl(r0) = —/ ——md +/ ——d9 ‘@f(/\)f(r?e) (8.73)
and
P —/ridr+/91d9+&f(/\)1(r9> (8.74)
Q P ’

We can see that for A to be a function of (r,¢) and for all our equations to be
consistent we must have F' = 0, i.e. dyr, = 0 (the same condition as given by
equation (8.67)). In other words r, and A must be independent variables. We can

see immediately that if F' = 0, then when A = const., i.e. O\f(A)|(9) = 0 we have

do P
=) = 8.75
<dr>x Q < )
which defines the lines of constant A, i.e. the null rays. Since F = 0, from eq.(8.74)
we find
1 1
dF = ~‘@~d?" + ﬁd(g + a/\,\f(A){(ng)d/\ =0 (876)
i.e.
d\ = ——l—dr + —1——d9 (8.77)
pdr = =5 5 :

where we have defined
=0 f(Nlre = 1 (8.78)
combining this with eq.(8.64) leads to the two important equations

SR%dr = AQ(dr, — uP?d)) (8.79)
SR*d0 = P(Adr, + p@Q*d)) (8.80)
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Using eqs.(8.64) and (8.77) we can now work out all of the coefficients in the

wave equation, eq.(8.57). We find

‘ . . cosé‘
O, (Ad,r,) + 5@09(8111 OP) =0,0Q) + Op P sm@

2 A (-1
:é_:’"_(TQ +a?) — E’A(QT —2m) — £o (—)

P

2Q 2Q) 2Q \p@
a [ 1 a’ cos ¢/
— | — ] - = P
+2P <ALP> P51n€cosé’+smg
23 R?
= A 8.81
= (8.81)

. 12 132
A@BA? + (97)? =A (E) +<TP)
1 <AP2+Q2> S R?

i

L2 02 P2 122 P2
28 R? ‘
= 8.82
N (8.82)

A 1 sin ¢/

Op(AON) + —Smeﬁg(sm()ﬁ@/\) — 0, (NQ) Sm909 ( P )
2V R?
= 8.83
N (8.83)
AO T O\ + O Op A A<Q> <_1> +P<-—~1—> = () (884)
jue, pl

When we try to simplify eq.(8.83) further we encounter some serious problems
in our attempts to calculate the derivatives of u. The r-derivative is difficult to
calculate due to the presence of a second A partial derivative of F' (with r and ¢

held constant)

Orpt = Op il (o,0) + O- AN (r6)

QA 1
2@3 QaA,\Fl (r.0) (8.85)

The 6 derivative is more difficult. In this case we have

Optt = Ogpt|(r,2) + Og AOALL (r,6)
a’ 1
— T 8.86
opP3 MPOMF“%@) ( )

2
a
The term ——z becomes singular as a — 0, i.e. in the limit of flat space (P — 0 as

a?). At the poles and equator we also have P — 0. When we consider the second

104



term of eq.(8.83) we find
2

1 a’ a® 1
89 (M—P> = «;—Q—-ﬁz + F sinfcos 8 + M—B”P—Qa,\AF[(rﬁ) (887)

The first two terms on the right hand side become singular in the flat-space
limit and the third is unknown.

In order to avoid these problems we can rewrite D in the form:

1 1 Asinf
_ - 8.88
b=3 L,chsmeaA ( 1PQ H (8.88)

and calculate the X derivative numerically. This term is included in eq.(51) of [90]
but the problem of how to evaluate the derivative is not dealt with by the authors.

at a small angular distance of 0\ on either

. : : sin
Our method is to integrate for
pPQ

side of the gridpoint at which we want to calculate the derivative. We then take
the difference and divide by 2dA.
The wave equation can now be written as
1 A
Our, ¥V — 5@*“\@ - A0, ¥ —0,¥)
+ Bé)m,,\If — COWVW — DOV — E@@;ﬂl’ =0 (889)

where the coefficients, B and FE are given by

- 2Mar
- SR?

A 1 a’
= L 8.91
2% R? (sin2 7 A) (8.9)

8.4 Numerical evolution

B (8.90)

We would like to evolve eq.(8.89) numerically. A previously developed Cauchy code
exists [2], but has some late-time convergence problems and according to the results
of Krivan [92] it produces unexpectedly fast fall-off at late times. Here I focus on
developing a characteristic evolution with the aim of obtaining more dependable
late-time results while still retaining the simplicity of a linearized perturbation

approach.
8.4.1 ¢-dependence

In my treatment of the three-dimensional flat-space wave equation I have assumed
axisymmetry with a ¢-dependence of €. Kerr spacetime is also axisymmetric,
however the Boyer-Lindquist coordinate, ¢, is defined by asymptotic observers and

this coordinate system winds itself infinitely many times around the black hole,
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leading to problems. Initial attempts to evolve the scalar wave equation in Kerr
spacetime using an azimuthal decomposition of "™ showed problems and instabil-
ity at negative r,. This problem was pointed out in [2] which includes an appendix
showing how this problem manifests in the slow-rotation limit. Following [2] we use
the Kerr azimuthal coordinate, ¢, given by

dé = do + Ldr (8.92)

A

8.4.2 Compactification
In order to avoid problems with setting artificial boundary conditions and in order
to evolve all the way out to future null infinity we compactify the radial coordinate

by transforming to a new coordinate, z, given by
z = tan"'(fr,) (8.93)

where f is chosen to give compactification to future null infinity but also to give the
required resoluton near the potential peak and the intial data (which is of compact
support). I have chosen to use f = 0.0017 as this pushes the compactification to

sufficiently large 7 (see Fig. 6.15 in Chapter 6). The relevant transformations are

0,V — a0, ¥ (8.94)
Op.r, U — a0,V — 27“*]"@2'(733\11 (8.95)
where
7
(= 8.96
“ 1+ f2r2 ( )

8.4.3  Transforming the Angular Coordinate

We choose to work with the angular coordinate ¢, which is related to A via
A = sin?4, (8.97)

As shown by Pretorius and Israel [90], this 6, becomes the spherical polar coor-
dinate @ asymptotically, i.e. in the flat space limit. The transformations from A to

0. in our scalar wave equation are given by

1
O — — 5, T 8.08
o AN (8.98)

1 2A—1
N 3.9
¥ i /\)59*9*‘11+ I -/\»3/289*‘1/ (8.99)
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With these transformations, (u, 74, A, @) — (u, z, 6., ), the wave equation (8.89)

becomes

00y W — -;—&26)353,\11 — [(A + mmi> o — nfaZJ o,

YR?
: @ ey C
— + B U — Op,0. ¥
" {A - S R + Bim| 0 4sin?6, cos? 0, "
D C(2sin* g, — 1) . amPA P
2sinf, cosf,  4sin®6, cos? O, 2sin b, cos b, (uP)QER? 6
2
mA gy (8.100)

* 2sin’ 9L R?
8.4.4 Setting Up the Grid

We set up a numerical grid using the coordinates (z(r.), 6.). The value of r, can

be calculated at each gridpoint as

tanx

Ty = f

At each grid-point we must know the corresponding value of r, # and i in order to

(8.101)

calculate the coefficients of the wave equation. To find these values we solve coupled
differential equations along surfaces of constant A using a fourth-order Runge-Kutta
scheme, with initial values approximated for large r.

I encountered many difficulties in this section. In particular I found that it
was also necessary to integrate for A along the null generators because near the
horizon it is not possible to calculate A numerically with the required precision
from the value of 7. It was also necessary to integrate for P rather than u alone
because the derivative of 11 along the generators is not well behaved in the flat-space
limit whereas P remains finite. There were also problems in calculating P to the
required precision when the difference between A\ and sin? 8 becomes too small. I
have therefore integrated for P also.

I have chosen to integrate in 7, for simplicity. The relevant equations are

AQ
(Orr)s =552 (8.102)
AP
(0r.9)5 =57 (8.103)
_ a’A a?A ,
(Or. 1) ZQPQQ - PO R p@?sin @ cos 0 (8.104)
(Op.A), =2(r — M) (O,.7), (8.105)
(8,,P), = — a*sin 26 (9,.0), (8.106)
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When setting up our grid we make use of the condition that
O(r=00) =16 (8.107)

We can therefore approximate our initial values at large r by using asymptotic
expansions and exploiting the fact that we expect § — @, to be small for large r.

The resulting approximations are

a’sin®(6,)  4M?

Te 7T+ 2MIn(r) + (8.108)
2r r
2 .
oo, S020) (8.109)
4r?
1 (2 — sin® 0,)a?
P~ 8.110
# 2sind, cosf, 4sinb, cosb,r? ( )
A =712 —2Mr +a? (8.111)
2 CL4 a6 2 92
P? ~ — sin® 0, cos* §, -+ — (sin* 0, cos® 0, — cos* 0, sin*4,) (8.112)
72 4r4

These approximations give us starting values or r, 6, A, uP and P so that we
can shoot along the negative r, direction to find the values at other points on the
grid.

There is a slight complication in the quadrant from 6 = 7/2 to § = 7 because
P is antisymmetric. This is not a problem here because eqs.(8.108-8.112) are still
valid in this quadrant as long as we remember to take the negative square root of
P? in this quadrant.

Fig. 8.1 shows how 6 varies with 7, along lines of constant .. Over most of
the grid the null generators look like lines of 6 = const. however we can see a sharp

twisting of the null generators occurring near r, = 0.

8.4.5 Finite Difference FEquations

We write our derivatives in finite difference form using the same scheme described

for the axisymmetric wave equation in flat space. This results in the equation

clpz;” :C2P?j1%j + C3<P?j21,j + Pl ) +edpl; + edpiy

+ C6(F?j11,j+1 + ij+1) + C7(P?j1l,j~1 + ij-l) (8.113)
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Figure 8.1: A plot 6 vs r, for lines of constant 4, in an extreme Kerr black hole.
These lines are null generators for Kerr spacetime. A sharp twisting is visible near
r. = 0, the approximate position of the peak of the potential in the corresponding

Schwarzschild problem.

The coeflicients are calculated at position r.(i — 1/2, 7) and are given by

2 : , . 9
o o« _a(A+imF)  A+im(F+B) | r.fa (8.114)
dxdu  4ox? 20z 201 20z
a o a(A+imF)  A+im(F + B)
2 = - — = — -
oxdu 20z 20x 201
. 2 2
____ ¢ r-fo’  mH (8.115)
4sin?f, cos? 0,562 207 2
o 16
= 1
cs 462 (8 )
g o’ +04(A+z'mF) A+im(F + B)
C dxdu 20x2 20x 26U
2 2
¢ e om'H (8.117)
4 sin? 4, cos? 6,062 20 2
2 - ~ 2
PO ’a _aA+umF)  A+im(F+ B)  r.fa (8.118)
oxou  40x? 20 20u 20x
_ .C;(2)\ —1) _ C L D N imG (8.119)
16sin” 0, cos® 6,060,  8sin®f, cos? 0,602  8sin b, cos .06, 400,
o7 C(2A—-1) C D B imG
~ 16sin34, cos3 6,60,  Ssin? 6, cos? 0.002 8sinb.cosh.00, 460,
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where we have used the substitutions

a@
_ 8.121
S (8.121)
al
=~ 8.122
G 2003 R?sind, cos b, ( )

A

H= 2V R2sin?# (8.123)

Near the horizon, at the inner boundary point I impose a zero boundary con-
dition. This is not the physical condition, which is more closely approximated
using an ingoing radiation condition but I avoid the problem altogether by pushing
the boundary nearer the horizon, so that the pulse does not reach it even by the
end of the evolutions. Later, this problem could be fixed by using characteristic-
characteristic matching.

The first inner point and the outer boundary point are treated in a similar
manner to that described for the 2d scalar wave equation in flat space. For the first

point in we use
n%—% 1

am\lfi_%“?j = TN (313?—1,]‘ - 7]92]' + 5P?+1,j - p?+2,j) (8.124)

and at the last point we use

n+= 1 ‘ n n 7 T
am\p?";j = SAL2 (P?;l - 2p?~+11,j + pzj;,j +2p}; = 5Py + 4Pl a s — Pissy)
(8.125)

The resulting finite difference equations at these points are similar in form to
eq. (8.113) with some new terms and the coefficients slightly altered.

Another complication in moving from the flat space wave equation to the wave
equation in Kerr spacetime is that we now have to deal with complex coefficients.
This means that we have to treat the real and imaginary parts of the scalar W
separately and we end up with coupled evolution equations. In other words we
take the real part and the imaginary part of eq. (8.113) as two coupled equations.
There are many equations to calculate at each time step but the coefficients are
independent of u and need only be calculated once, before the beginning of the

evolution.

8.4.6  Initial Data

[ prescribe initial data on ug as

U(r,,A\) = G(r.) P (cosb) (8.126)
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where G(r,) is a Gaussian pulse, e b)) with width b and peak at 2, and
P™(cos®) is a particular associated Legendre function. Although we write the
initial data in this way, as we have done previously, the evolution equation does not
decouple in P,s and we therefore expect to see coupling of many multipoles in the

evolution.

8.4.7 Results

The scheme I have described above seems to have some stability problems but the
stability improves with increased resolution in the radial direction. Fig. 8.2 shows
how the results improve for radial resolutions of 2500, 5000 and 10000 gridpoints
with m = [ = 2 initial data. Fig. 8.3 shows the results of convergence testing and
we can see that the scheme is second order convergent in z. The instability does not
seem to be affected by the Courant factor but I have not been able to run the code
for a very low Courant factor due to computational limitations. The instability
seems to happen first near x = 0 and this is the position at which the Courant
condition is severe because the stepsize in r, is least there. A full stability analysis
would be complicated but, by comparison to the flat space problem of Chapter 7
where we found an instability at the origin, we might expect that there could be

problems at r, = 0.

In[¥|

=30kl .\ I ;. L {
0 200 400 600

Figure 8.2: Results of the characteristic evolution for scalar waves in Kerr spacetime
showing runs of successively higher resolution. Dotted line: 2500 gridpoints, dashed
line: 5000 gridpoints, solid line: 10000 gridpoints. It is clear that the code remains
stable for much longer with higher resolution runs.

In order to eliminate possible causes of the instability I have tested the set-up
of the (r,, 8,) grid by performing a Cauchy evolution using the new grid, i.e. using

coordinates (t,7,,6,,®). The wave equation in these coordinates, assuming e
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Figure 8.3: Convergence results for the characteristic evolution of the scalar wave
equation in Kerr spacetime. The convergence test was carried out using runs with
radial resolutions of 2500, 5000 and 10,000 gridpoints. The angular resolution is
kept constant with 15 gridpoints. The code is second order convergent up until the
time at which the instability begins in the lower resolution run.

dependence, is

C
_ : 9B - : . . 80 0 T
OV + 0, W 2Bim0, ;W + (2A +imF) (0., ¥ — 0, V) + o2 0. col b, b.6.
D 2C(2sin?*0, — 1) amPA m2A
- - + 3 - 1 Op, W + R )
sin 0, cos b, sin” 0, cos? 4, sin 6, cos 0. (uP) QX R? sin® 2R
(8.127)

I have evolved this equation by making some adjustment to the old code [2] for
the new coordinates. The results of this compare well with the old code, giving
almost identical results, with the same quasinormal mode frequency and late-time
fall-off. That the results for both coordinate sets compare well shows that we have
successfully been able to calculate the coordinate values we require in the coefficients
of the wave equation.

In Kerr spacetime, the radial coordinate goes not only through zero but ex-
tends to —oo. This does not cause a problem in a 1-dimensional code such as the
Schwarzschild example given in section 6.4.4 of this thesis, but leads to numeri-
cal difficulties in 2-dimensions. Perhaps we require an alternative finite difference
scheme but my results show that there is a good possibility that with sufficient
computing power this code could produce results into the late times that we are

interested in.
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Figure 8.4: Real part of the solution from the null-timelike Kerr code on a 6, =
const. surface on surfaces of u = const. The results are exactly as we would expect,
before the instability appears. The reflected radiation travels immediately off the
grid and the part of the pulse which passes through the potential continues to travel
inwards.

8.4.8 Characteristic-characteristic Matching

Ideally we would like to match the characteristic code in outgoing null coordinates
to a compactified ingoing characteristic code near the horizon. In this way we
could evolve the entire exterior spacetime of the black hole. If the stability issues
discussed above can be resolved, the c2m matching scheme used in chapter 6 could

easily be extended to two dimensions for an axisymmetric code.

8.4.9  Cauchy-characteristic matching (Ccm)

Although the null-timelike formulation of the scalar wave equation in Kerr spacetime
presented here may not be as useful as we had hoped for evolving over the entire
exterior spacetime, perhaps it may still be used away from the origin (r, = 0). It
may be possible to match a null-timelike segment to the outer boundary of a Cauchy
evolution. The Cauchy and characteristic sections are both already operational
and therefore only a matching is required. Both segments use identical angular
coordinates and the same quantity is being evolved. The radial coordinates of

the segments are different because we use compactification in the outer segment,
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Figure 8.5: The appearance of an instability near r, = 0 in the null-timelike Kerr
code shown for 8, = const. on surfaces of u = const.. The instability is centered

near to v, = 0 and grows very quickly.

however we know the analytic relation between the two coordinates. These features
make the matching quite straightforward compared to the difficulties of Ccm in full
numerical relativity. It should be possible to use the matching scheme described in
[93]. This matching scheme involves interpolation between timeslices to obtain the
solution at a ghost point of the null surfaces and between null surfaces and thus to
obtain the solution at the outer boundary of the Cauchy surfaces . This method
has been used successfully in spherical symmetry [94] and cylindrical symmetry [95]
but has yet to be used successfully in axisymmetry. In order to take advantage of
compactification near the horizon, the inner boundary of the Cauchy region could
also be matched to a compactified ingoing null section and thus the entire exterior

region may be evolved.

8.4.10 Double-null Evolution
The wave eq. in Kerr spacetime may also be written in double-null coordinates

(u,v,0,). Assuming an azimuthal dependence of ™% the wave equation in these

coordinates is

2ima 2ima
— 40,V + {QA + SIeE (@ — 2]\4’7")} 0,V — [QA + STE (Q + QAMT)} OV
C
2sin? 6, cos? b, P.0.V
D 2C(2 sin? 6, — . amPA m2A
— - - O U+ ———W =0
(sin 0. cos b, i 2sin? @, cos3 b, "2sin g, cos o, (uP)QZR2> o sin? LR
(8.128)
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I have calculated the derivatives in u and v using the same finite difference
scheme as for the one-dimensional wave equation and Regge-Wheeler equation, and
used the finite difference forms of the 6, derivatives as in eqs. (7.57) and (7.58) for
the axisymmetric wave equation. Unfortunately this code is unstable. The double-
null evolution has proven to be highly effective in solving 1D problems, therefore
a stable evolution in Kerr spacetime is highly desirable but at this stage no such

scheme is apparent.

8.5 Them =0, [ =4 debate
The results of [2] indicate that the late-time behaviour of a perturbed scalar field

in Kerr spacetime is determined by the lowest allowed multipole, [ > m, which fits

the symmetries of the initial data. The falloff of the dominant multipole is given

by

|| o ¢33 (8.129)

An analysis in the time domain by Barack and Ori [96] led them to present the

late-time falloff at future timelike infinity as

|| o ¢~limi=3-d (8.130)

where g = 0 if [ +m is even and ¢ = 1 otherwise, but this result applies only when
the [ = 0 mode is present in the initial data.

Hod’s analysis [97] in the frequency domain led him to the result that the late-
time behaviour is dominated by the multipole | = |m| if I* — |m| (where [* is the
multipole of the initial data) is even and [ = |m| + 1 otherwise. Hod predicts a

late-time falloff of

W o ¢ Imimpl if "> |m|+2 (8.131)
ot 33 it I"=|m|,|m|+1 (8.132)

where p = 0 if [* — |m] is even and p = 1 otherwise.

Considering, for example, initial data of the form m = 0, [* = 4, Hod’s result
predicts a falloff of |U| oc ¢75 at late times whereas Barack and Ori predict the more
intuitive | W] oc 7%, Krivan [92] used the Cauchy code of [2] to check these analytic
prediction. He showed that there is indeed a transistion to the [ = 0 mode but
that the decay is given by the power law, t~6% which does not agree with either of
the analytic predictions. He suggests that this is likely to be a numerical artifact
and confirms this by showing how the decay rate decreases with improved grid

resolution. His final result of 75 still does not agree well with either prediction
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but is closer to that of Hod. This could be due to the fact that he reads off the decay
rate between ¢ = 600 and ¢ = 800 which may be too early to properly represent to
true late-time behaviour. He concludes that “an extension of the existing analytic
and numerical studies is necessary.”

Poisson [98] provided a possible solution to this problem of contradictory predic-
tions with an extended and generalised formulation of Price’s falloff theorem [47]. He
concludes that the late-time behaviour of the scalar field is identical to what it would
be in spherically symmetric spacetime. He explains the apparent contradictions as
an artifact of the different coordinate systems used. The Kerr metric in Boyer-
Lindquist coordinates does not reduce to the Minkowski metric in spherical polar
coordinates (r, 6, ¢) in the limit as M — 0. Instead it gives the Minkowski metric in
spheroidal coordinates defined by = = /72 + €2 sin f cos ¢, y =724 e? sin 0 sin ¢
where e = J/M and J is the total angular momentum. In order to compare the
results of Hod with the results of Poisson we must transform from spherical coordi-
nates to the spheroidal coordinates (7, é, ¢). Poisson shows in this way that there
is actually no contradiction between the results of Hod and the generalised Price
theorem. This still does not explain the discrepancy between the results of Hod and
Krivan as both involve initial data written in terms of Boyer-Lindquist coordinates.

Burko and Khanna [99] later argued however that Poisson is not correct to ig-
nore the near field geometry in his analysis. They use a penetrating Teukolsky
code which evolves the Teukolsky equation for linearized perturbations in ingoing
Kerr coordinates (£, r, 6, ¢~>) In these coordinates the Teukolsky equation has no
singularity at the event horizon. They find a late-time falloff of t=2. Their explana-
tion for the discrepancy of Hod is that the excitation of dominating modes which
are not present in the initial data is nonlinear in the gravitational potentials and
is strongest at the near zone. Hod considered only leading order terms in w and
Burko and Khanna suggest that such selection will limit the excitation of the truly
dominating modes. They claim that for the contested example of m = 0,1* =4
initial data, an analysis to leading order in w could excite the [ = 1 mode but not
the | = 0 mode. They argue further that Poisson’s large-r approximation and Hod’s
small w approach are equivalent.

Burko and Khanna explain the result of Krivan as an effect due to the fact that
Krivan considers such a high angular momentum, a/M = 0.9999, in his evolutions.
Such a high spin slows down the decay rate of the quasi-normal modes, requiring
longer evolution times to obtain the true late-time behaviour. Another possible
explanation is that Krivan's initial data is purely outgoing and is positioned quite
far from the near zone. This severely limits the amplitude at which the | = 0 mode
can become excited. They predict that the true late-time behaviour will be seen at

later times than Krivan has considered. They finally conclude that a fully nonlinear
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solution will give simpler results than theirs as m will no longer be conserved and
the actual decay rate will be of the form ¢ 25143,

Scheel et al [100] contribute to the debate with a 3 + 1 spectral evolution
code. They compare results from initial data in Kerr-Schild coordinates and Boyer-
Lindquist coordinates and find that, whereas the behaviour at intermediate times
is quite different, both cases possess the same late-time power law decay. The
differences at intermediate times are due to different magnitudes of excitation of
lower-order spherical harmonics. That the falloff at late times is the same for both
sets of initial data suggests that Poisson’s result is not applicable at late times be-
cause it does not take into account the effect of mode mixing in the strong field of
the near zone.

So far there has been no conclusive explanation for Krivan’s unexpected result.
[ have carried out a similar evolution using the old Cauchy code of [2] with initial
data of the form m = 0,1 = 4 and I calculate a late time falloff of t73. I have used
initial data which is purely ingoing as well as initial data which is purely outgoing
and I have placed a broad initial pulse far from the near zone but I have been unable
to reproduce the £7>5 result of Krivan. The results are shown in Fig. 8.6. The late

time tails of the ingoing and outgoing pulse have the same ¢t~ fall off.
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Figure 8.6: Late time tails for m = 0,1 = 4 initial data. The solid line shows the
log of the solution for an ingoing pulse, and the dashed line show the same for an
outgoing pulse. The results show the same ¢ late time behaviour for both cases.

I have also used the new Cauchy code in (¢, 7,,0,) coordinates. The results are
compared with those in standard Boyer-Linquist coordinates in Fig. 8.7. It is clear
from these results that the late time tail in Kerr spacetime for m = 0, [ = 4 initial

data behaves as t~3.
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Figure 8.7: Late time tails for m = 0, = 4 initial data. The solid line shows the log
of the solution from the evolution using (r.,#,) coordinates, the dashed lineshows
the log of the solution from the evolution using the usual (rs, ) coordinates. The
results show the same =2 late time behaviour for both cases

8.6 Evidence for a Superradiance Resonance Cavity

Perturbations in Kerr spacetime are expected to generate long lived quasi-normal
modes [57]. Recently, Andersson and Glampedakis [51] have argued that unfortu-
nately (from the point of view of detection) the amplitude of each long-lived mode
should vanish in the limit « — M because longer-lived modes are more difficult to
excite. This argument is supported by their analytic calculations based on several
simplifying assumptions, and by the results of Ferrari and Mashoon [101]. Despite
the vanishing amplitude for such modes at the extreme limit, they also argue that
a large number of very small amplitude modes could interfere constructively to
give a considerable signal at late times. If this happens, as their calculations pre-
dict, the long-lived modes could completely dominate the late-time behaviour with
oscillations of decaying amplitude at the rate E

In order to achieve their analytic results, Andersson and Glampedakis use many
simplifying approximations and therefore an alternative confirmation is required.
They use the Cauchy evolution code of Krivan et al[2] for this purpose. They do
indeed find an oscillating late-time tail with a fall-off of ~ for extreme Kerr black
holes with initial data of type m # 0, but they warn that the results of the numerical
code may also not be trustworthy. They offer the physical interpretation of this
phenomenon that, for frequencies close to the upper limit of the superradiant regime,
there will be a peak in the (frequency dependent) effective potential just outside the
black hole. Waves which ”emerge from the horizon” according to a distant observer

can now become trapped near the horizon by the potential peak. Waves in such a
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superradiance resonance cavity could experience a kind of parametric amplification
and leak out through the horizon to infinity.

During the course of my research using the Cauchy code of [2] I have observed
an amplification of the solution at negative r, in some cases. This can been seen by
viewing the solution as a time-evolution on slice of constant ¢ as shown in Fig. 8.8. 1
have also observed some modes leaking out from near the horizon at late times. Fig.
8.9 shows the long-lived quasinormal modes for initial data consisting of a sharp
Gaussian of width, b = 0.13 (see eq. (8.126)). As the initial pulse becomes wider
the time at which the long-lived quasinormal modes appear becomes later. This is
shown in Fig. 8.10 for near extreme black holes-and Fig. 8.11 for black holes with
a = 0.6. These results support the superradiance resonance cavity interpretation.
The modes which appear at late times can be seen to appear first near the horizon
and then leak out through the effective potential to infinity. Whereas this behaviour
was observed only for extreme and near extreme black holes by Andersson and
Glampedakis , my results indicate that the presence of a superradiance resonance

cavity may lead to similar results for non-extreme Kerr black holes.
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Figure 8.8: Evidence for a superradiant resonance cavity. The real part of the
solution in the Cauchy evolution is shown on a surface of constant ¢ at time ¢ =
646. The growth of the solution at negative r, supports the interpretation of a
superradiant resonance cavity between the horizon and the potential peak.

8.7 Chapter Summary

In this chapter I have developed a numerical code for the characteristic evolution
of perturbations in Kerr spacetime. The characteristic approach has proven to be
very effective in the Schwarzschild case but this is the first such evolution code
for perturbations in Kerr. There were several technical difficulties involved in the

development of this code but the results show that the code can be stable for
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Figure 8.9: The long-lived quasinormal modes from narrow initial pulse in near
extreme Kerr black hole. The log of the real part of the solution in Cauchy evolution
is shown for @ = 0.999 and m = 2 initial data with Gaussian pulse of width b = 0.13.
This is similar to the figures of Andersson and Glampedakis.

some time, and that the duration of the stable solution is significant increased with
increasing grid resolution in the radial direction. During this time of stability the
code is second order convergent.

[ have also used the old Cauchy code to obtain results for the late-time behaviour
of scalar field perturbations in Kerr spacetime with initial data of the form m = 0,
[ = 4. There has been some debate in the literature recently over what form the late-
time fall off should take. I have obtained the intuitive result, ¢=3, which disagrees
with the results of Krivan but agrees with others.

Finally, I have used the old Cauchy code to support the superradiance resonance
cavity interpretation of Andersson and Glampedakis and obtained the surprising
result that even for black holes of low angular momentum (¢ = 0.6) the late-time
quasinormal modes appear in the evolutions for narrow initial data. I have shown
that the time at which these modes appear depends upon the width of the initial

pulse.
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Figure 8.10: Long-lived quasinormal modes for ¢ = 0.999 with varying width of
initial pulse. The log of the real part of the solution is shown for the Cauchy
evolution of a black hole with a = 0.999 and m = 2 initial data with an initial
Gaussian pulse of varying width. As the width is decreased, modes begin to appear
at earlier times until, for very narrow initial data the results of Andersson and
Glampedakis are reproduced.
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Figure 8.11: Long-lived quasinormal modes for a = 0.6 with varying width of initial
pulse. The log of the real part of the solution in Cauchy evolution is shown for
m = 2 initial data with Gaussian pulse of varying width. As the width is decreased,
modes begin to appear at earlier times. This result is surprising for a black hole
with such low angular momentum.
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Chapter 9

Perturbed Kerr-de Sitter Black
Holes

A rotating black hole in asymptotically de Sitter spacetime is given by the Kerr-de

Sitter metric,

2 a2 2 . ‘
ds? = Pogp2 o P ggr 4 Leasin 0 <dt - gd@) _ A (dt — asin® 0dg)”  (9.1)
a

Ac L X*p X*p
where
p=r?+a’cos’ (9.2)
A, = (r*+a?) (1 —~ %Aﬁ) —2Mr (9.3)
oc=r’+a* (9.4)
L.=1+ %Acﬁ cos? 4 (9.5)
x=1+ %Aa2 (9.6)

By including a positive cosmological constant we introduce an additional horizon,
the cosmological horizon, at finite radius. The Kerr-de Sitter spacetime therefore
possesses three horizons. Fig. 9.1 shows how the position of these horizons varies
with A for a black hole with A/ = 1 and a = 0.99. The results were generated
by solving for the roots of A, = 0. The cosmological horizon and event horizons
approach each other with increasing A and meet at a maximum value of A. The
two black hole horizons move away from each other with increasing A.

A positive cosmological constant also effects the Cauchy (innermost) horizon in
another way. An observer falling into a black hole in asymptotically flat spacetime
will be stopped by a singularity at the Cauchy horizon, but this may not be the case

in the presence of a cosmological constant. In such a case it has been shown that the
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Figure 9.1: Dependence of the position of the three horizons on A. Full line:
cosmological horizon, dashed line: event horizon, dotted line: Cauchy horizon. As
A increases, the cosmological and event horizons converge whereas the event and
Cauchy horizons diverge.

Cauchy horizon may be stable over a finite range of parameters for non-rotating [102]
and rotating [103] black holes. The necessary stability condition is that the surface
gravity at the Cauchy horizon is less than the surface gravity at the cosmological
horizon. It has been argued that this condition is “narrowly allowed, even when
the cosmological constant is very small, thus permitting an observer to pass through
the hole, viewing the naked singularity along the way.” [103]. This is a violation of
the strong cosmic censorship hypothesis. A quantum analysis has shown however
that the Cauchy horizon, although classically stable, will be quantum mechanically
unstable except in the case where the surface gravity at the Cauchy horizon is
exactly equal to the surface gravity at the cosmological horizon [104]

A comprehensive review of the literature on this subject up to 1997 has been
given by Chambers [105]. The evidence for the existence of a positive cosmological
constant has been reviewed in 2000 by Sahni and Starobinsky [108].

The study of the interior of the black hole spacetime requires knowledge of the
behaviour of the fields crossing the event horizon due to scattering in the exterior.
The late time tails are used in constructing initial data for studies of the interior.
Unfortunately an analytic study of the tails in black hole-de Sitter spacetimes is
a very difficult task and therefore this problem was first addressed numerically.
Brady et al. [71] evolved the massless minimally coupled scalar wave equation in
both Schwarzschild-de Sitter and Reissner-Nordstrom-de Sitter spacetime. The
wave equation is similar in form to the Regge Wheeler equation but with a modified
potential. For this they have used both a Cauchy and double-null code. They obtain

results for the behaviour of the field at (or near) the cosmological event horizon,
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the black hole event horizon and surfaces of constant r. They also carried out a

non-linear analysis which agreed well with the linear results, showing the same late

time behaviour of
\If ~y elﬁlt <97>

for [ > 0, where x; is the surface gravity at the cosmological horizon. For [ = 0 the

results show a slightly different behaviour
U~ Uy + e 2t (9.8)

approaching a constant at late times. Brady et al [71] suggest that this unusual
late time behaviour for [ = 0 is connected with a dip in the effective potential for
that mode.

In this chapter I extend the numerical investigation of the late time behaviour of
scalar field perturbations in the exterior of asymptotically de-Sitter black holes to
include rotation. My results span a large range of values for A, from zero to almost
extreme. One may argue that such high values of A are not physically relevant. It
is true that observations show our universe today to have a very small cosmological
constant, but inflationary cosmology postulates that the early universe underwent a
period of exponential expansion driven by the vacuum energy. The vacuum energy
density of this period may be interpreted as a large cosmological constant [107].
This may effect the geometry of primordial black holes in the early universe.

Khanal [70] has shown that superradiance can occur in Kerr-de Sitter spacetime.
In this chapter I present evidence of this superradiance but my results do not agree

with his lower limit of the range of superradiant frequencies.

9.1 Perturbations in Kerr-de Sitter spacetime

The scalar wave equation in the Kerr-de Sitter metric is

—*(0?L, — Aa’sin® 0)0, T — 2x*a(oL, — D)0 ¥ + AzLC&W\I/ + A L0, N0V

JAVER
AL 0 — B 90a25in? 0 = )3y 42 [ La® — =22 ) 0,50 =0
¢ sin @ sin® @
(9.9)
We transform to the new coordinates
1 2 2
dr, = (1 + -§Aa2> i an dr (9.10)
dqg =do+ |1+ }AaZ —a—dr (9.11)
’ 3 A,
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where 7, goes from —oo at the event horizon to +co at the cosmological horizon. In
terms of these coordinates, and assuming axisymmetry in the form e”™, the wave

equation becomes

0, — 2@;1;;2 (0Lo — A)OT + %—iam@ + ;L]% (Aot + imao?y)0,. ¥
+§é§ ol — zz:g é;%c(QAaQ sin2f — L,)8 0 — 2%22—% ~0
(9.12)
where
YR* = x*(0* L, — Aca*sin® 6) (9.13)

9.2 The Evolution Code

I have taken the old Cauchy code for Kerr spacetime [2], changed the integration
for r, changed the coefficients of the wave equation, and added the parameter A.

The code runs well and reproduces the results of the Kerr code when A is set to

Zero.

9.2.1 Setting up the grid
We work on a grid of (r,,8) but the coeflicients of the wave equation are known

only in terms of (r,60). Eq.(9.10) may be integrated to obtain an equation for r,

Aa®\ 7 +d?
T*ﬁ/(l-f—”jlg—) AC dr

=3 (1 - A_??E> {i (_%wgi Zzii)ing)ﬂr_gwﬂ (9:14)

=

given r

where 7; are the roots of A, = 0 and 7 runs from 1 to 4. There is an imaginary part
to 7, but we can ignore this as an integration constant.

It is not possible to invert eq. (9.14) to obtain a simple expression for r in
terms of r,. Instead we integrate numerically for r using a shooting method. As
a starting value we can choose any value of r (as long as it lies between the event
horizon and the cosmological horizon) because we are free to choose any value for

the integration constant.

9.2.2 Results
According to Brady et al [71] a perturbed scalar field with [ = 0 in Schwarzschild-
de Sitter spacetime will reach a constant value at late times. We expect similar

results in Kerr-de Sitter spacetime with m = [ = 0 initial data as the late time

126



behaviour is generally considered to be connected with the asymptotic structure
of the spacetime and is not dependent upon the angular momentum of the black
hole. This expectation is confirmed in Fig. 9.2. Figures (a)-(c) show how the log
of the real part of the field at one point varies with time. The solution reaches a
constant value at late times. This effect can be explained by a dip in the effective
potential for [ = 0. In [109] the authors show that this behaviour is due to a
single pole in the Green’s function at iw = 0. The final constant seems to be
dependent upon A. Abdalla et al. [106] have shown that the final constant value
in Schwarzschild-de Sitter spacetime is also dependent on the initial velocity of the
perturbation. Fig. 9.2(d) shows the final constant value obtained as a function of A.
This shows a similar behaviour to that observed by Brady et al up to A ~ 0.00037.
This behaviour is confirmed in [109] by analytic approximation for small A. Our
numerical results suggest that this may no longer be valid for larger A, or that
a small angular momentum makes a big difference to the late time behaviour. A
simpler explanation however is the effect due to the way I have set up the grid by
choosing an initial value for the radial coordinate r at a given r,. Fig. 9.3 shows

how the final constant value varies for different initial choices for r at a given r,.
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Figure 9.2: Log of the solution at one gridpoint for for m = [ = 0 initial data
and a=0.999 for varying values of A. Similarly to the corresponding problem in
Schwarzschild-de Sitter spacetime we see that the solution reaches a constant value
at late times.

Figs. 9.4-9.7 show the results for m = 1 and m = 2 initial data. Here we observe
a new effect at large values of the cosmological constant. The late time behaviour
for large A consists of apparently undamped or very slowly damped oscillations.
This phenomenon could also be due to some feature, such as a dip, in the potential.

The oscillations could be due to radiation becoming trapped within such a dip. My
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Figure 9.3: Log of output at one gridpoint for a=0.999 for different values for
the integration constant in calculating r from r,. A difference is seen in the final
constant value reached by the solution. This could help to explain the difference
between my results and those of Abdalla et al for the dependence of this constant

value upon A.

results call for further investigation along these lines, especially to investigate the

form of the potential. The amplitude and frequency of the oscillations vary with A.

9.3 Superradiance

A well known feature of rotating black holes is superradiance, in which incident
monochromatic waves with frequency in a specific range are scattered with an in-
creased amplitude, i.e. the reflection coefficient has a magnitude greater than unity.
Superradiance has been demonstrated in time-evolution of the scalar wave equation
in Kerr spacetime [110] and this method was used to confirm the range of superra-

diant frequencies:

O<w< (9.15)

ma

2Mr,

where 7 is the radius of the event horizon.
Khanal [70] has shown that superradiance also occurs in Kerr-de Sitter space-

time. He derives the superradiant frequency range

ma ma
e W< (9.16)
T+ a* T, +a

where 7 is the radius of the cosmological horizon and rg is the radius of the event
horizon. Tachizawa and Maeda [72] have numerically calculated the amplification
for several values of the cosmological constant for ¢ = M and [ = m = 1. They

show that the maximal amplification increases with increasing A. For Kerr-de Sitter
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Figure 9.4: Log of the solution at one gridpoint for for m = [ = 1 initial data
and a=0.99 for varying values of A. At late times we see apparently undamped or
very slowly damped oscillations. This is a new phenomenon which calls for further
investigation. The amplitude and frequency of these oscillations appears to depend
upon the value of A.

black holes there is a maximum value for A for the existence of both the event and
cosmological horizons. For the near extreme value of A = 0.14 (with @ = M and
[ =m = 1) they obtain a maximal amplification of about double the value for Kerr
for scalar field perturbations. While the amplification increases with A, the range
of superradiant frequencies decreases however. The combination of these two effects
means that we should not expect much more energy from Kerr-de Sitter black holes

than from Kerr black holes.

9.3.1 Calculating the energy fluz

The direct way to measure superradiance in our time-evolution is to compute the
energy flux into and out of the black hole. Following the example in [110] for Kerr
spacetime we construct a conserved energy flux for scalar fields in Kerr-de Sitter

spacetime.
For a spacetime with a Killing vector ¢* and a perturbation with a well defined

'a b
stress-energy tensor Ty, we can define a conserved energy flux vector Ty't°. The
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In [V

Figure 9.5: Log of the solution at one gridpoint for for m = [ = 2 initial data
and a=0.99 for small values of A. Full line: 0.0, dashed line: 0.00005, dotted line:
0.0001. As A is increased, the usual tail of Kerr spacetime changes and passes
through zero.

flux of energy accross a suface of constant 7 is then given by
dE = Tyt*r’dS (9.17)
where dS is the three surface element of the hypersurface given by

dS = /—g®dodeadt (9.18)

and, for a massless scalar field,

1 . - 1 -
T = 5 (V UV, U + V, 0V, 0) — §gabVC\IJVC\If (9.19)
where over-bars denote complex conjugation. Assuming that rr, = 1 we find
VA .
r* = +(0, —=,0,0). The time Killing vector is (1,0,0, 0). In Kerr-de Sitter space-
0
—sin? 6A,

time we find ¢'3 = n . We therefore obtain the result, integrated over ®,
X

A sin 6 %Cp dodt (9.20)
P X
= +7 (8, 90,9 + 9,09, V) ic sin fdfdt (9.21)

dE = +7 (0,00,9 + 0,10,T)

2
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Figure 9.6: Log of the solution at one gridpoint for for m = [ = 2 initial data and
a=0.99 for increasing values of A. Full line: 0.0002, dashed line: 0.0004, dotted line:
0.0008. The irregular oscillations at late time are of very low amplitude compared
to the initial data and are probably due to noise. The tail falls off faster with

increasing A.
Transforming to the ¢ coordinate we find

] ] i} _ A,
dE = +7(0,08,7 + 8,90, + Xii(aé\yat\p +0;00,0) 5 sinbddds (922)

/!

_ - _ AV
= +7(0,50,¥ + 0,10, + Xf—(—im\m\p +imTaE)) F sinddodt (923

Transforming to the 7, coordinate we find

o, = o - a, . =, O WAV
dE = =7 | x—0,, YO,V + x—0,, VO,V + x—(—imV o,V + zmﬁl@ﬂl’)) — sin Odedt

A, JAVS A X

(9.24)

which can be written in terms of the real and imaginary parts of the solution for
use in our numerical evolution.
dF = £ 27 (U(@r*\ﬂ(m)@\y(m) + ar*\lf(im)@tqf(im)) - ma(\If(im)at‘If(re) — \I/(re)at\lf(im)))

1
x — sinfdodt (9.25)
X

9.3.2 Setting up Superradiant Initial Data

In order to trigger superradiance we must set up the initial data in such a way that

the frequency of the pulse is within the superradiant range. In order to do this I
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Figure 9.7: Log of the solution at one gridpoint for for m = [ = 2 initial data and
a=0.99 for higher values of A. As A increases the tail falls off faster and we also see
a greater number of quasinormal modes. When the amplitude becomes very low
the evolution becomes noisy, but when A is increased further we can see regular
oscillations which are apparently undamped or at least very slowly damped. The
amplitude and oscillation of these modes varies with A.

have followed [110] again and use a modulated Gaussian of the form
U = e«b(fr*~ro+t)2~iw(r**ro+t) (9.26)

In order to ensure that there is not too much overlap into the non-superradiant

range, the width of the pulse is carefully tuned to

2y/In(1/¢) (9.27)

min(mwy — w, Mw, — W)

b=

where wy, and w, are the angular velocities of the event and cosmological horizons

respectively, given by

a
oy = 9.28
= (9.28)
- (9.29)
We = T2 + o? '
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and € Is a small number.

9.5.3 Results
Fig. 9.8 shows the energy flux near the horizon for a Kerr-de Sitter black hole

with @ = 1 and A = 0.1 using m = 1 initial data of various frequencies. The

suprerrandiant frequency range derived by Khanal is approximately 0.0595 < w <
0.3117. We see clearly that the flux is outgoing within the superradiant frequency
range. Above the upper frequency limit we do not see evidence of superradiance,
as expected, but below the lower limit superradiance still occurs in the numerical
evolution. Further investigation is required to clarify this problem.

In the case of a zero cosmological constant I found that the ingoing flux at
positive 7, balanced quite well with the outgoing flux at negative 7. For higher
values of A however, the ingoing flux at positive 7, did not return to zero and
become negative, indicating that the evolution may be losing energy between these

two points. The situation seems to improve with resolution but is still a problem.
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Figure 9.8: Energy flux at r, = —30 for @ = 0.999 and A = 0.1 for initial data of
various frequencies. A negative flux means that the ingoing radiation dominates
whereas a positive flux represents superradiance, where the outgoing radiation is
greater than the ingoing radiation. The final graph, for w = 0.35 does not show
superradiance because the initial data is outside the superradiant frequency range.
Although w = 0.02 is also outside (below) the predicted frequency range, the results
indicate that superradiance is still effective.
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9.4 Chapter Summary

In this chapter I have adapted the Cauchy code for scalar perturbations in Kerr
spacetime to include the effect of a positive cosmological constant. The results
confirm those of previous studies [71] for the late time behaviour in Schwarzschild-de
Sitter spacetime, but also introduce a new phenomenon for Kerr-de Sitter spacetime.
At late times we see regular oscillations of apparently constant amplitude. The
amplitude and frequency of these modes varies with A.

I have calculated the energy flux near the horizon using the Kerr-de Sitter code
and in this way | have been able to detect superradiance. I have investigated the
superradiant frequency range and find that the results agree with the upper limit
calculated by Khanal [70] but do not agree with the lower limit.

By developing this code to evolve scalar perturbations in Kerr-de Sitter space-
time, I have been able to make a brief investigation into the behaviour of such
perturbations. My results show that this is in an interesting direction for future

research.
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Chapter 10

Toroidal Modes in Differentially
Rotating Shells

Oscillating neutron stars are likely to be a good source of gravitational waves for
forthcoming detectors. We would like to model such systems in order to interpret
the signals we may receive. One factor which is likely to play an important role
in a realistic neutron star model is differential rotation. Studies of rotational core
collapse indicate that the remnant will be differentially rotating [111],[112]. This
differential rotation may be further driven by accretion of supernova remnant ma-
terial [113] or material from a companion [114]. Studies of r-mode oscillations in
neutron stars suggest that non-linear effects can drive a uniformly rotating star into
differential rotation [115],[116],[117]. A differentially rotating neutron star may also
be generated by binary neutron star merger.

One complication which arises in differentially rotating stars is that the dynami-
cal equations become formally singular at corotation points where the pattern speed
of a particular mode matches the local angular velocity. This leads to a continuous
spectrum and perhaps also corotating solutions. Neutron star oscillations can also
be subject to dynamical instability or secular instability to the emission of gravi-
tational waves [118]. These instabilities are of particular interest in the search for
gravitational waves. It has been pointed out [119],[120] that differential rotation
may introduce new instabilities. Little is currently understood about the effect of
differential rotation on stellar oscillations and the related instabilities, and there
are many technical challenges involved.

Here we will consider a simple system in differential rotation - a spherical, ax-
isymmetric, thin shell of incompressible ideal fluid. In this way we can understand
some of the effects of differential rotation that may be applicable to more complex,
three dimensional systems such as neutron stars. In this section I describe work

done by Watts, Andersson, Beyer and Schutz [4] and time evolutions I have carried
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out in collaboration with Watts and Andersson [3]. I present some results from our

investigations of three different rotation laws.

10.1 The Perturbation Equations

The conservation of mass for an ideal fluid is expressed by the continuity equation

The Euler equations (the equations of motion) for an inviscid fluid are

& lyp_ve (10.2)
dt P

where d/dt = 0, +v -V is the total time derivative, P is the pressure, p the density,
® the gravitational potential and v is the fluid velocity. The gravitational potential

is determined by Poisson’s equation.
V2® = 47Gp (10.3)

A change in one of the variables at a particular point in space is called an

Eulerian perturbation, denoted ¢
5@ = Q(X7 f) - QO(XJ t) <1O4>

where () is some property of the perturbed flow and @ is its corresponding equi-

librium (background) quantity.
A change in a variable for a particular fluid element moving in the flow is called

a Lagrangian perturbation, denoted A.
AQ = Q(x+£(x,t),t) — Qo(x,1) (10.5)
The two different types of perturbations are related by the equation
A=§+E-V (10.6)

where £ is the displacement of the fluid element.
The perturbed continuity and Euler equations in the inertial frame are

0pop+ (6v-V)p+ (v-V)op+dp(V-v)+ p(V-év) =0 (10.7)
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and

0:0v + (v - V)v+ (v-V)dv =6 [—%VP — V@} (10.8)

Working in spherical polar coordinates, with a background velocity of v =
Qrsin Bé,, eqs. (10.7) and (10.8) become

T

ov 1
0t5p+5vr57,p+—i—969p+§28¢35p+p [r&névr + 200, -+ Opdug + cot Hovg + M@(ﬁévq‘,} =0

(10.9)
o, —2Q0v,4 sin @
(O +Q0p) | dvg | + —2Q0v, cos
| dvg §v, sin O(rd,Q + 20) + dve(2Q2 cos B + Dpflsind) |
= ¥VP - LV6P — Vid (10.10)

If the unperturbed background is axisymmetric then we can make a Fourier
decomposition in ¢ and look for modes with dependence e™®. To solve for normal
modes we look for time dependence e~**. In this framework a perturbation will be
unstable (growing) if Im(¢) > 0. Eqgs. (10.9) and (10.10) become

v - MOV
i(mQ—0c)dp+ v, 0.p+ i?—agp+§ 70,00, + 20V, + Op0vg + cot Bdvy + Z:an@ =0
(10.11)
i(m§) — o) 0 —2Q2sin 0v,
0 i(m — o) —282 cos 0 dvg
sin@(rd,Q + 2Q) (2Qcosf + 9,Qsinb) i(m2 — o) OV
) 1
— 2£YP — ~V§P - V5D
P P
(10.12)
The gravitational potential obeys the perturbed Poisson equation
V6P = 4nGép (10.13)

Egs. (10.11), (10.12) and (10.13), together with an equation of state (relating P
and p) and appropriate boundary conditions, describe the perturbations completely.
Solving this set of equations in uniform rotation is relatively straightforward. If the

rotation is differential, however, problems may arise at points where o = m{). At
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these corotation points eq. (10.12) is singular. Note, however, that although this
may affect solution of the normal mode problem, the corresponding time dependent
equation, eq. (10.10), is not singular so it should not cause a problem for the time
evolutions.

Consider a differentially rotating spherical shell of incompressible fluid. The

continuity equation in this case is

(99(5”09 sin 9) + 8¢5’v¢ =0 (10.14)
The Euler equations are
1 -
Oydvg + (26655@'9 — 202 cos 95’U¢ -+ p—Rag(SP =0 <1013)
A A 5 1

where we have taken the shell radius to be R and we have set dv, = 0 and dp =0
Q" =2Q cosl + 0p2sind (10.17)

is the equilibrium vorticity. Combining the two Euler equations leads to the vorticity

equation

2
Op [@t&)g + Q0,009 — 282 cos Bdvy + %0954
D

- A . c?
— 09 <81119 {@5% -} Qa@(quﬁ - Q OU@ -+ ,OR 81119%54) = O (1018)

and introducing the standard toroidal stream function,U/, defined by the equations

1
= - U 10.19
o0 Rsin&a(pb ( )
1
ovg = —0pU 10.20
U¢ R@g[z ( )
(10.21)
the vorticity equation becomes
05 0p82*
OV goU + 03V U + ane U=0 (10.22)
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where

cost 1
Voo — 9, + 10.23
00 = Oy sin ¢ % sin? 4 Fos ( )

is the Laplacian on the unit sphere. Assuming a ¢ dependence of €?, eq. (10.22)

can be written

OpEY*
(8, — M) VgoU + 2" 17 = (10.24)
sin d
10.2 Modes in Uniform Rotation
In uniform rotation we have
OpfY* = —2Q2sin b (10.25)

Looking for a mode solution with time dependence e~ we substitute into eq.
(10.22) to find

(0 = mE) VU —2mQU = 0 (10.26)
If o # m&2 then
Vool = 2T 1y (10.27)
o — mf?

By expanding U in spherical harmonics and making use of Legendre’s equation, we

find

2mf
— [+ 1Cmy™ = mym 10.28
El {1+ 1)y, p——" % cry, ( )
1.e.
2mf)
m | AL | ym 10.29
El C] [a mQ+l(l+1)} : 0 ( )

Then, considering the orthogonality of the spherical harmonics, the r-mode solu-
tion is found by noting that only a single C" is non-vanishing and the corresponding

frequency is

2mf
o 10.30
o =mf) T ( )

Another possible solution is the geostrophic solution, with ¢ = mf2. From eq.
(10.26) we see that this correspond to the trivial solution, U = 0, with zero velocity
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perturbation. Note, however, that in the uniformly rotating case, when o = m{} a

zero velocity perturbation can be compatible with a non-zero displacement, &,

51/9 = z(mQ — O’)é@ (1031)

Although the geostrophic solution is trivial in uniform rotation, it will play an

important role when we consider differential rotation.

10.3 Modes in Differential Rotation

The differentially rotating case is described by eq. (10.24). Assuming a time depen-
dence e~%* and transforming to the new angular variable z = cosf, this becomes
4]

(0 = mOQ)V U —mo, QU =0 (10.33)

where

1 2

9 .
Ve = (1 —2°)0pp — 220, — ™M (10.34)

When o # m{) for all points on the shell this is a regular eigenvalue problem.
But if 0 = m{) at any point on the shell, z,, then eq. (10.33) is formally singular.
z. is called a corotation point (although this terminology is misleading because
T, represents a particular line of latitude on the shell and not only a point). At a
corotation point, the pattern speed, o, = o/m is equal to the local angular velocity,
Q).

Solutions to eq. (10.33) may be of three types:

e Discrete real-frequency modes

e Discrete complex frequency modes

e Corotating solutions (solutions with a corotation point)

Watts et al [4] investigate corotating solutions. They show, using the Frobenius

method, that a general solution to eq. (10.33) can be written as

U = Upeg + Using (10.35)
where
Upeg = (1 = 22)™2Y " an(w — 2,)""" (10.36)
n=0
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_— { 1—22)™2 5% an(z — z)"  In(z — 2,) + colz — z,)"] T >z,
o (1—22y™2 3% bp(z./z — 1) Un(ze/z — 1) + du(ze/7 — D"z < 2
(10.37)

In general U is singular at £ = z, but a purely regular solution is possible
for rotation laws with 9,02* = 0 somewhere on the shell. Another type of regular
solution is possible if, for a particular frequency, the zero of m{) — ¢ coincides with
that of 9,(0*. In this case the governing equation is non-singular.

Finding a general (singular) solution is complicated by the logarithmic term
in eq. (10.37). Watts et al deal with this by finding solutions for x > z. and
z < z, and matching at the corotation point by demanding that U be continuous
there. The derivatives of U however are singular at =z = z, and generally have
both a logarithmic singularity and a step discontiuity . The size of the step in the
derivative varies across the continuous spectrum range and for certain frequencies
it can be zero. These zero-step solutions are more regular than the other singular
solutions. For such solutions the Wronskian of the solutions to the left and right of
x. vanishes at z..

Solutions that are singular at the corotation point may seem unphysical but
the true physical time-dependent solution is obtained by integrating over the entire
frequency range for given initial data. This integral solution will not be singular and
the continuous spectrum can have physical relevance. In [4] the authors find zero-
step solutions at specific frequencies within the corotation region. They also discover
a new instability and show that a necessary (although not sufficient) condition for
instability is that dpQ2* = 0 at some point on the shell. The dynamically unstable
modes that they find all occur when modes cross the corotation boundary (i.e.
develop corotation points as the differential rotation is increased) above a certain
threshold. One test of these results is to perform a time evolution of initial data and
to see if these modes and instabilities appear. In the next section I present evidence
that the zero-step solutions can indeed be identified in a numerical time evolution
and I confirm the predicted frequency growth time for an instability which arises

in a particular case.

10.4 Numerical Evolution

We have developed a numerical time evolution code for eq. (10.24). We separate

the real and imaginary parts of U.

U = Ccos(m¢) — Ssin(me) (10.38)
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and substitute into the vorticity equation, eq. (10.22). By first substituting ¢ = 0,
ie. U =C, then ¢ = w/2m, i.e. U =S, we get two partial differential equations
for S and C.

2

2
8, (-@egc _cosba o Lc) +mh (ages L 080y g LS) — 3,"mS =0

sin # sin? 6 sin @ sin? 4
(10.39)
2 0 2 ,
8 (05 + 00,5 = ™) 4 m (8,50 + 2la0 - )~ a0mC =0
sin sin® @ sin# sin“ @
(10.40)

These equations contain triple derivatives but, for simplicity, we prefer to work with
a first order system of equations in our numerical implementation. Therefore, we
introduce the new variables

mQ

A =sin00yC + cos00,C — —C (10.41)
sin 6
m2
B =sin00ypS + cos09yS — ——S (10.42)
sin €
and substitute into the vorticity equation to find
~0 A+ QmB — (0, )mS =0 (10.43)
0B+ QmA — (9o )mC = 0 (10.44)
Then introducing two more new variables
Z = 0yC (10.45)
X = 0p5 (10.46)
egs. (10.41) and (10.42) become
sin A —sin?009,Z — sinf cos0Z +m?*C =0 (10.47)
sin@B — sin® 09, X — sinf cos X +m?S =0 (10.48)
(10.49)

Egs. (10.43)-(10.48) are 6 first order equations for six unknown variables.
The boundary conditions at the poles are (10.47),(10.48)

C=0 (10.50)
S =0 (10.51)




We use the following second-order finite difference scheme for the six equations

E(AZH - AR - Q§<Bk+l + B}) + 0,82 —2~—(5,€+1 +S5;) =10 (10.52)
1 n Y2 m n n *m TY i1
E(Bk“ — B} + Q-—2~(A,€“ + A7) — 9,0 -2—(0,;“1 +Cp) =0 (10.53)
1 n-+1 n+1 1 n+1 n+1
§<Zk +Zy5) — Z‘é(()k - L) =0 (10.54)
1 n n 1 T T
ST+ X)) - ST =St =0 (10.55)
sin?6 " sin¢ , . n
sinfcosl, " m? .
-—2——(2;l + Zp — 7(0,;"1 +Cpthy =0 (10.56)
sin? @ sin ¢

(XRH =X = ——(By™ + By

Af

m2

indcosd
sin 6 cos - (SI?H +51?j11) =0 (10.57)

SR )

If we have M gridpoints then eqs. (10.52)-(10.57) provide 6(M — 1) equations
for the 6 unknowns. Boundary conditions provide the remaining 6 equations.
We impose four boundary conditions on the inner boundary (C' = 0, S = 0, and
egs. (10.52),(10.53) with k£ = 1) and two conditions on the outer boundary (C = 0,
S =0).

We solve these equations by the implicit method described in section (4.3). In
order to use the relaxation routines, we require the Jacobian for our equations.
Call this matrix S, g where e labels the 6 equations and J labels the variables. Let
B = 1..6 label the variables S, C, A, B, Z, X respectively at grid point £ — 1, and
let § = 7..12 label the same variables respectively at grid point k. Then we find
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that S, 3 is given by

1 m

m
m
0 0 0 0 00 0 —agsz*%f 0T 5 00
1 1 1 .
il 1 1 ; L
g AY ! 0 2 (1) Ol Al 0 9 .
AY ’ 0 0 5 -3 0 0 0o 0 =
Ab , » 0 5 A7 2 y =
0 5 45— 0 e 0 0 - =Ts 0 70
"’ ) H sin ¢ m’ sin ¢
_r _sind m? g
5 0 0 5 0 € 5 0 0 5 y
(10.58)
where ~ = sin? ¢ n sin 6 cos 6 P “sinQ 0 N sinf cos
ere ¥ = — 5 and € = ——- S

10.5 Rotation Laws and Results

We consider three different rotation laws and confirm the results derived by Watts
using the semi-analytic methods of [4]. By taking a fast Fourier transform (FF'T)
of the solution at a point on the shell as a function of time we observe specific
peaks in the frequency spectrum. Peaks can be seen both outside and inside the
corotation region. The peaks outside corotation match the frequencies of the well
known modes which become the r-modes in the limit of uniform rotation. The
peaks inside corotation match the predicted frequencies for the zero-step solutions.
We also observe instabilities where they have been predicted. The results have been

verified for m = 1,2,3,1=1,2,..,5 and for varying degrees of differential rotation.

10.5.1  Wolff Law
The Wolff rotation law has its basis in observations of differential rotation in the

outer layers of the Sun.

Q = (454.8 — 60.43 cos® § — 71.43 cos b)) (10.59)
ds2 ,
—7 = (12083 cos fsin b + 285.63 cos® fsin §) (10.60)
d*Q) , , )
o= 0.88(—151 — 769 cos” # + 1428 cos™ 6) (10.61)
s ds2 d*Q
= — — 2Qsi inf—— 10.62
70 3C086d9 sin# + sin 0 ( )

The parameter 3, 0 < 3 < 1, is a measure of the differential rotation. Uniform
rotation corresponds to § = 0. The angular velocity is greatest at the equator.
Watts et al [4] find zero-step solutions within the continuous spectrum. These

are illustrated as dotted lines in Fig. 10.1 for m = 1 and m = 2. The FFTs of the
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Figure 10.1: Mode results for Wolff rotation law, taken from Watts et al [4]. The
plot on the left shows m = 1, that on the right m = 2. Solid lines: real-frequency
modes outside corotation. Dashed line: The lower boundary of the corotation
region - solutions to the right of this line are corotating. Dash-dot lines: Real part
of frequency for dynamically unstable modes. Dotted lines: real-frequency solutions
with zero step in the first derivative at the corotation point. The values of [ given
refer to the uniform rotation limit 5 = 0, in which there is one r-mode solution for
each value of [.

solution at one point, taken from the time evolutions, for initial data of [ = 2..5 are
shown in Fig. 10.2 for 8 = 0.4 and Fig. 10.3 for § = 0.5. The frequencies match
those predicted using the methods of [4], including the zero step solutions within
the corotation region. Fig. 10.4 shows how the form of the frequency spectrum
within the corotation region depends strongly upon the position at which data is
sampled on the shell. More understanding of these features is gained by the study
of a simple rotation law which is described in section 10.5.3.

Using the necessary condition for instability, L _ 0, we look for unstable
modes for § > 0.4815. In [4], the authors find instabilities for modes which cross
the corotation boundary above this threshold value of 3. These results have been
verified by the time evolutions. One particularly interesting result was the behaviour
of the m = [ = 3 mode which has a growth time that increases with 8 up to a
maximum and then decreases, i.e. the mode restabilizes for higher values of 3. The
results of the time evolutions reproduce the predicted behaviour of the growth time

in this case.

10.5.2  J-Constant Law

The j-constant law was chosen because it has been used extensively in the literature
(e.g. Hachisu [121]). This law is not physically motivated but was introduced due
to its simplicity. It is an example of a law which has greatest angular velocity at

the pole.
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Figure 10.2: Power spectrum for the Wolff rotation law with m = 2 and 8 = 0.4 with
initial data [ = 2—5. The dashed line marks the lower edge of the corotation band,
at 804.6. The [ = 2, 3, and 4 modes are outside the corotation band, at frequencies
592.1, 744.3 and 796.0 respectively. Peaks at these frequencies are clearly visible.
For [ = 5 initial data we see a peak at frequency 806.35 which is just inside the
corotation band as predicted by the mode calculations.
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Figure 10.3: Power spectrum for the Wolff rotation law with m = 2 and 3 = 0.5 with
initial data [ = 2 —5. The dashed line marks the lower edge of the corotation band,
at 777.8. The [ = 2 and 3 modes are outside the corotation band, at frequencies
588.66 and 741.08 respectively. Peaks at these frequencies are clearly visible. The
| = 4 mode is now inside the corotation band, at frequency 788.34. This is visible,
in addition to a zero-step solution excited by [ = 5 initial data at 802.50.
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Some FFT results are shown in Figs. 10.5 and 10.6 for varying values of A and
different kinds of initial data. Fig. 10.7 shows how the solution across the whole
grid, C, evolves with time. One interesting phenomenon we see here is oscillating
sharp peaks appearing near the poles. The results of the time evolutions match the
predictions made by Watts, including the zero step solutions within the corotation
region. No instabilities were predicted for this rotation law and none were found in

our time evolutions.

10.5.58 A Simple Law

We have chosen to study the simple law

1

=V 10.68
{0 1+ | cos ] ( )
df2 sin 6
— = sign(l —— 10.69
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ds2 cos 6 2sin” ¢
— = sign(1 10.70
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This law is a useful test because it can be solved analytically as an initial value

*

s

= 0 means that the only solution to the normal

problem, and the fact that
mode problem is a continuous spectrum. In [3] the solution for initial data Up(y) =

P/™ in the case [ = m (even initial data) is given by

vt = S (] “”f [+ a-gmemeoay

dm, l+z
(-0 [ 142\ F | 1\ / "
1—y)me dy
- dm 1—=x - l+z m< y)
(10.72)
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The initial value integrals can be solved numerically or analytically for given
initial data. The behaviour of the solution U is oscillatory, with the maximum
amplitude decaying as 1/t at late times for [ = m initial data and as 1/¢* at late
times for [ = m+1 initial data. Results for [ = m =1 and [ = 2, m = 1 initial data
are shown in Fig. 10.8.

The late-time fall off of U can be understood by examining the integrals. Watts
has solved the integrals analytically for m = [ = 1 initial data and finds three dif-
ferent frequencies of oscillation, €2, €2./2 and €Q./(1+ ), which interact to produce
the beating at early times (seen in Fig. 10.8). The most persistent term has an
amplitude that decays as 1/¢, which explains the observed behaviour at late times.
The beating is particularly pronounced if z is chosen such that ./(1 + z) is very
close to either of the other two frequencies. Solving the integrals for [ =2 m =1
initial data, Watts obtains the same frequencies as for the [ = m = 1 case, but the
most persistent terms decay as 1/t2.

FFT results for particular initial data are shown in Fig. 10.9. For [ = m and
[ = m + 1 initial data the analytical solution of the initial value problem shows
that we expect contributions from three different frequencies: o/§2. = m,m/2 and
m/(1 + |z|). Fig. 10.9, for which z = 0.1, shows that there are indeed peaks at
these three frequencies.

The fact that there are more than one frequency of the solutions in the con-
tinuous spectrum in this example and that the frequencies can depend upon the
position on the shell could help explain the fact that we see differences in the shape
and position of peaks inside the corotation region in the FFT results of the Wolft

law for different sampling positions as in Fig. 10.4.

10.6  Stability and Convergence

The stability and convergence of our numerical code was tested by Watts and the
results are given in her PhD thesis [122]. The numerical scheme shows good stability

and second order convergence for the stepsize we have used to obtain the results in

this chapter.

10.7  Chapter Summary

In this chapter I have developed a numerical code to evolve the equation governing
perturbations in a differentially rotating spherically symmetric thin shell. Calcu-
lations in the frequency domain were carried out by Watts et al [4] [3] and I have
confirmed those calculations in the time domain. I have shown that the zero step
solutions exist in the time domain at the predicted frequencies within the corota-

tion region, and that there exist instabilities (with the predicted growth times) for
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certain rotation laws. Using a simple rotation law we have shown that the frequen-
cies of the solutions within the corotation region will in general depend upon the
position on the shell at which we sample the data. These new features may carry

over into the more difficult problem of differentially rotating Neutron stars.
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Figure 10.4: Power spectrum for m = 2, [ = 5 initial data with 3 = 0.4 (left) and
B = 0.5 (right) for various sampling positions on the shell. We can see that the
form of the power spectrum is strongly dependent upon the sampling position. This
feature can be understood when we study the simple rotation law of section 10.5.3
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Figure 10.5: Power spectrum results of time evolution for j-constant law for m = 1
and A = 1.5 with initial data of spherical harmonic form with [ = 2 (left) and [ = 3
(right). Modes outside corotation are at frequencies of 0.44 and 0.613 respectively.
We can also see a peak appearing at frequency 0.67 which corresponds to [ = 4
modes. The peak within the corotation region at 0.69 appears as predicted by
Watts.
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Figure 10.6: Power spectrum results of time evolution for j-constant law for m = 2
and A = 1.9 with initial data of spherical harmonic form with [ = 2 (left) and { = 3
(right). Modes outside corotation are at frequencies of 1.12 and 1.37 respectively.
We can also see a peak appearing at frequency 1.49 which corresponds to [ = 4
modes. The peak within the corotation region at 1.57 appears as predicted by

Watts.
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Figure 10.7: Output of C' on constant timeslices for j-constant rotation law with
m = 2,1 = 3 initial data and 4 = 0.01. We can see some sharp oscillating peaks

appearing near the poles.
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Figure 10.8: Time evolution of |U] for [ =m = 1 and [ = 2, m = 1 initial data. At
late times, |U| falls off as 1/t for the | = m = 1 data and as 1/t* for the | =2,m =1
data. '

Figure 10.9: Fast Fourier Transform results for the rotation law Q = 1/(1 + |z|) for
I =m =1and [ =m = 2 initial data, sampled at the point z = 0.1. For m =1
initial data we expect peaks at scaled frequencies /€2, = 0.5, 0.91 and 1.0. For
m = 2 initial data we expect peaks at scaled frequencies o /€2, = 1.0, 1.82 and 2.0.
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Chapter 11

Conclusions and Discussion

This thesis represents four years of research work in the study of perturbed compact
objects. The main focus has been on developing a characteristic evolution code for
the Teukolsky equation governing scalar perturbations in Kerr spacetime, but I have
also considered some other interesting problems along the way, such as the effect of
a positive cosmological constant on perturbations in Kerr-de Sitter spacetime, and
the effect of differential rotation on the oscillation modes of a rotating spherical
shell.

In the first four chapters I have introduced the subject of my research and the
relevant major developments that have taken place in history. I have also introduced
the mathematical and computational techniques which are used in the later chapters
of the thesis. In chapters 5.6 and 7 I have considered some examples with known
solutions, i.e. the one-dimensional wave equation, the Regge-Wheeler equation and
the axisymmetric wave equation, as toy problems. I have evolved these equations
numerically as both Cauchy and characteristic initial value problems. This has
enabled me to test and further develop the techniques which carry over to the more
complicated problems of chapters 8,9 and 10 in which I have presented the main
results of my research.

In chapter 8 T have shown how to write the Teukolsky equation for scalar field
perturbations in Kerr spacetime as a characteristic initial value problem. This was
not immediately obvious as there has been some confusion caused by the use of terms
such as 'retarded Kerr coordinate’ or ’'ingoing Kerr coordinate’ in the literature.
When we try to write the scalar Teukolsky equation using these null coordinates we
do not obtain a characteristic initial value problem. Such coordinates do indeed form
a null threading of Kerr spacetime but not a null foliation. This was pointed out by
Pretorius and Israel [90] who have introduced quasi-spherical light-like hypersurfaces
of Kerr geometry for which the retarded and advanced null coordinates are functions
of both radial and angular coordiantes , 7,(r,#) and 6,(r, §), to write the retarded

characteristic Teukolsky equation and I have gone further by developing a numerical
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code to evolve this equation. Previously, the Teukolsky equation had only been
evolved as a Cauchy problem [2] but there have been some late-time problems with
the Cauchy code and, as with all Cauchy grids, it suffers with artificially imposed
boundary conditions. By evolving on characteristic hypersurfaces I have been able
to compactify the radial coordinate, r,, and avoid boundary problems altogether
by evolving all the way out to future null infinity.

[ encountered many difficulties while developing the characteristic Teukolsky
code. The grid was set up using the coordinates z(r.) and 6, but the coefficients in
the equation are written in terms of r and . It was not a simple task to calculate
the coefficients at a given gridpoint and I found it necessary to calculate the relevant
quantities by numerical integration, and some by numerical differentiation. Having
set up the grid and being able to calculate the coefficients at all gridpoints I tested
this grid by evolving the Teukolsky equation in the time domain with coordinates
(t,74,0.) and found that the results compared well with those of the old Caucy
code.

The characteristic code uses the criss-cross finite difference scheme described by
Lehner [79], which was successful in evolving the axisymmetric wave equation and
which is claimed to be equivalent to the marching algorithm used in characteristic
numerical relativity [63]. The angular discretization has been problematic however
as it appears to be the cause of numerical instability. This numerical instability can
be pushed to very late times by increasing the radial grid resolution and the solution
is second order convergent up to the point of instability. The code may therefore
still be useful given sufficient computational resources. With further investigation
it may be possible to adjust the differencing scheme to obtain a stable numerical
evolution, but even if not, the code as it stands may prove to be very useful if it is
pushed to later times by increasing the resolution. We have seen that doubling the
radial resolution leads to significantly longer evolution times.

The next step in code development would be to match a compactified ingoing
evolution reaching the horizon to a compactified outgoing evolution reaching fu-
ture null infinity as I have done for the Regge-Wheeler equation in chapter 6 with
good results. In section 8.4.10 I have written the Teukolsky equation as a double
null initial value problem but a stable numerical evolution is still required for this
equation. It may be possible to avoid the instability which appears near r, = 0
by evolving a section of the grid around r, = 0 on Cauchy slices and matching
the inner boundary to a compactified ingoing characteristic evolution and the outer
boundary to a compactified outgoing characteristic evolution. This task should be
fairly straightforward following the matching scheme T have used in section 6.4.5,
but since there is some doubt about the reliability of the Cauchy code, the same

problems may appear in a combined Cauchy-characteristic code.
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By evolving the characteristic evolution to later times, this code could be used as
a good test of some anomalous results by Krivan [92] for the late-time tail arising
from initial data of spherical harmonic form m = 0,1 = 4. Whereas Hod [97]
predicts a fall-off of ¢ and Barrack and Ori [96] predict ¢*, Krivan used the
scalar field Cauchy code [2] and found ¢725. Although I have not yet used the
characteristic code for this test, I did use the old Cauchy code. I expected to
reproduce the results of Krivan but instead I found a late time fall-off close to =3
for both ingoing and outgoing initial data, using both (r, ) and (7., #.) coordinate
grids.

In section 8.6 I have presented some results which support the superradiance res-
onance cavity interpretation of Andersson and Glampedakis [51] for explaining the
long-lived quasinormal modes of Kerr spacetime. [ obtained these results using the
original scalar field Cauchy code for the Teukolsky equation. For sufficiently nar-
row initial data I observed long-lived quasinormal modes appearing even for black
holes which were far from extreme. This was an unexpected result as Andersson
and Glampedakis had previously only reported this phenomenon for extreme and
near-extreme Kerr black holes. By examining the behaviour of the solution near the
horizon I observed amplification occurring for oscillations of particular frequency
depending on the value of the parameter a. These long-lived quasinormal modes
appear at earlier times for narrower initial data.

Perturbations in Kerr spacetime have been studied for the past 80 years but my
studies have shown that there is yet more work to be done in this field. A stable
characteristic evolution is highly desirable and would be of great value in predicting
gravitational waveforms for use as templates in the search for gravitational waves.
Such a code may be useful in a programme such as LAZARUS [44] to model the ring-
down phase following black hole merger using the close-limit [43] approximation.
Although the characteristic Kerr code I have described in this thesis is not ultimately
stable, it can be pushed to late times by increasing the grid resolution and may
therefore prove to be very useful as it stands.

I have shown that there is still some uncertainty about the late-time behaviour
of a perturbed scalar field in Kerr spacetime. This uncertainty concerns the decay
rate as well as the nature and excitation of the long-lived quasinormal modes. My
studies involved investigations of scalar field perturbations but it is expected that
the results will carry over to gravitational perturbations which are of more interest
in the quest to detect gravitational waves.

In chapter 9 I have extended the original Kerr Cauchy code to include the
presence of a positive cosmological constant. The cosmological constant plays an
important role in cosmology and particle physics. The effect on black hole space-

times is to change the asymptotic structure from flat, Minkowski spacetime to de



Sitter spacetime. This introduces an additional horizon, the cosmological horizon.
[ have shown in chapter 9 that the late-time behaviour of scalar field perturba-
tions in Kerr-de Sitter spacetime can be strongly effected by the presence of a
positive cosmological constant. Brady et al. [71] previously studied perturbations
in Schwarzschild-de Sitter spacetime and found that for [ = 0 initial data the field
reduced to a constant value at late times. I have reproduced this result using my
code for Kerr-de Sitter spacetime, and for initial data of higher order, ie. m =1, 2,
I have observed a new phenomenon in which the late time field consists of appar-
ently undamped oscillations. The amplitude and frequency of these modes depend
upon the value of the cosmological constant. Brady et al. argued that the late time
constant behaviour for [ = 0 initial data in Schwarzschild-de Sitter spacetime is due
to the presence of a dip in the potential for positive r.. The late time oscillations in
Kerr-de Sitter spacetime that I have observed may be due to a similar feature and
therefore calls for further investigation of the form of the Kerr-de Sitter (frequency
dependent) potential.

I have also observed the effects of superradiance in my numerical evolution of
perturbations of Kerr-de Sitter spacetime. The frequency range for superradiance
was derived by Khanal and my results seem to agree with his upper frequency limit
but I observe superradiance below his lower frequency limit. It may be possible
to use the techniques of chapter 8 to evolve the perturbations in Kerr-de Sitter
spacetime as a characteristic initial value problem. This would be a good way to
test the results I have derived in chapter 9.

In chapter 10 I have moved from the study of black holes to neutron stars and
from linearized relativity to the Newtonian limit. Neutron star spacetimes are com-
plicated by the presence of matter, therefore a feasible numerical model will involve
many simplifying approximations. Watts et al. [4] have considered a spherical,
axisymmetric, thin shell of incompressible ideal fluid in differential rotation. In
collaboration with them [3] I have developed a numerical code to confirm their pre-
dictions for special modes corresponding to zero-step solutions which appear within
the corotation region of the frequency spectrum. I have also confirmed predictions
of new instabilities which occur for some differential rotation laws. Using an implicit
numerical evolution I have obtained results for the frequencies of the new modes
which compare well with the predictions for three different rotation laws, the j-
constant and Wolff laws, and a simple rotation law for which the analytic solution
may be calculated and which we have used as a test problem. The frequency peaks
within the corotation region in the FFTs were shown to depend on the position on
the the shell at which the data was sampled. For the simple rotation law, for which
all frequencies are in corotation, Watts was able to predict three frequencies that

should show up as peaks in the FFTs, one of which is dependent upon the position
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of sampling. My results confirm this prediction well. Although we have used a very
simplified toy model for our studies of differential rotation, we expect that at least
some of the effects we have observed will carry over into more complex, relativistic

scenarios such as spinning neutron stars.
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