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ABSTRACT 

The dissertation is devoted to modeling with a new class of multivariate skew 

elliptical distributions. This family of distributions extends the elliptical ones 

by the addition of a vector of shape parameters. It contains the multivariate 

skew normal, skew Student's f and skew Canchy as special cases. 

Detailed exploration is conGned to the case of the univariate skew normal 

distribution. In particular, salient properties of the density are studied and 

comparisons are drawn with alternative skew normal proposals. Apphcations 

considered include linear regression, variance components and survival mod-

els. Bayesian analysis with these models are shown to be easily accomplished 

through the use of the Gibbs sampler. The latter proves very straightforward 

to specify distributionally and to implement computationally. Numerical exam-

ples show that skew normal modehng is a viable competitor to the celebrated 

normal theory methods. 
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Chapter 1 

Introduction 

1.1 Aims and motivations 

Statistical analysis on the treatment of continuous observations within a para-

metric approach is usually proceeded by assuming: 

(i) simphcity of the structure for the mean of the data, 

(ii) constancy of error variability, and 

(ill) normality of error distributions. 

The requirement of assumptions (i) and (ii) aims both to allow an eScient 

analysis and to achieve ease of understanding. A typical example of (i) is the 

assumption of additivity. Assumption (iii) is mainly driven by the formal prop-

erties of the normal distribution, in particular its analytical beauty and also 

the simplicity when dealing with fundamental operations like marginalization, 

conditioning and hnear combinations. The other reason of imposing the nor-

mality assumption is that the outcomes of the experiment are usually expected 

to obey the central limit theorem, thereby resulting in approximately normally 

distributed observations. 

In general terms, there are two ways of dealing with data which do not 

satisfy the above assumptions. The first one is to develop new methods of 

analysis with assumptions which 6t the data in its original scale. The second 

most commonly adopted approach, however, is to bend the data in order that 



1.2 Skewed distributions 

assumptions (i), (ii) and (iii) are approximately satisSed by making a mono-

tonic non-linear transformation. The customary purposes of transformation are 

threefold, but the primary motivation of transformation has tended to be on 

obtaining normality so as to exploit the unrivalled mathematical tractability of 

the normal distribution. Nevertheless, there have often been doubts, reserva-

tions and criticisms about the use of transformation for normality for two major 

reasons. Firstly, in multivariate setting, transformations are usually carried out 

on each component separately. Thus the appropriateness of the joint normahty 

assumption is highly questionable. Secondly, the requirement for variance sta-

bility or simplicity in the mean surface often demands a transformation which is 

different from that for achieving normality. Therefore it seems too demanding 

to accomphsh three goals simultaneously by means of transformation alone. 

Should there be a conEict between the requirements for normahty and for 

model simplicity (e.g. improving additivity and homoscedasticity), it is best to 

pay most attention to the latter to allow for ease of description and interpre-

tation. Hence less restrictive families of distributions that can accommodate 

asymmetry and non-normal pealcedness and allow a continuous departure &om 

normality to non-normality can be valuable in analyzing non-Gaussian data. 

The aim of this dissertation is to present an extended version of the skew-

eUiptical distribution and to assess its potential in practical implementations. 

This new class of multidimensional distributions has reasonable flexibihty in 

distributional shape. Its ability to account for practical values of skewness and 

kurtosis means that more weight can be given to the considerations of assump-

tions (i) and (ii) in real data fitting. For simphcity of exposition, detailed 

development is confined to the skew-normal case in its univariate settings. 

1.2 Skewed distributions 

Rapid advances in computing technology in conjunction with the development 

of Markov chain Monte Carlo simulation methods render data fitting using 

increasingly flexible models a real practical possibihty. This abihty naturally 

leads us to wish to posit and develop more realistic distributions for statistical 
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analysis. Modeling with what are known as skewed distributions has sparked 

considerable attention since the pnbhcation of the pioneering paper by Azzalini 

(1985). The families are useful for analyzing unimodal empirical data with pos-

sible skewness present. As a consequence, data modeling can now be performed 

without the need for ad-hoc transformations to symmetry. In other words, the 

skewed distributions oSer an appealing alternative to symmetric distributions 

(e.g the normal, ( and logistic distributions) frequently employed in linear mod-

els. 

One such class of skewed distributions was proposed by Sahu, Dey and 

Branco in 2003. They introduced asymmetry into eUiptical distributions through 

simple transformation and conditioning techniques. Their setup indicates that 

skewness in the case of univariate distributions is regulated solely by a single 

parameter. It is instructive to extend the generating mechanism. In this thesis, 

we instead employ a vector of 'skewness' parameters to control the shape of 

the resultant univariate densities. Additional flexibility in modeling kurtosis 

present in the data may be anticipated from this generalization. 

1.3 Overview of Bayesian inference 

Data analysis techniques used within this research are based on the Bayesian 

paradigm. A Bayesian approach to data analysis typically involves the following 

four steps. 

1. Specif a parametric model that more or less describes the phenomena 

underlying the coUected data. 

2. Formulate a prior distribution for the unknown model parameters. This 

density rejects our genuine beliefs about the parameters before seeing the 

data. 

3. Obtain the posterior distribution of the model parameters via Bayes the-

orem. Currently, all knowledge about the parameters available from the 

prior and the data is represented in the posterior density. 

4. Draw inferences from this updated information. 



1.4 Outline of thesis 

In essence, Bayesian inference is the science of making conclusions about a ran-

dom process using information observed from that process. Utilizing probability 

as the fundamental measure for all forms of uncertainty is one of the attractive 

features of Bayesian methods. 

The form of the posterior distribution can be rather complex. Subsequent 

technical difhculties in carrying out the requisite calculation for inference have 

long served as an impediment to the implementation of Bayesian statistics. Al-

though many techniques have been developed, this thesis provides an approx-

imate solution for such calculations through a sampling-based approach called 

the Gibbs sampler. 

1.4 Outline of thesis 

The rest of the document is set out as follows. Chapter 2 covers the relevant 

background information on the Bayesian approach to statistics. This includes 

the basic concepts, some model selection methods, and Markov chain Monte 

Carlo computational techniques. 

Chapter 3 introduces the new skew elHptical distributions, with special em-

phasis on the univariate skew normal case. SpeclGcally, mathematical expres-

sions for the moments of the skew normal density are derived, the main prop-

erties of the density are stated, and comparisons are drawn with alternative 

proposals. 

Chapters 4 - 6 focus on data modeling aspects of the skew normal distri-

bution. We consider linear regression modeling under skew normal errors in 

Chapter 4. Variance components models based on skew normal random effects 

are studied in Chapter 5. Lastly, Chapter 6 examines the potential applications 

of the univariate skew normal density in survival analysis. 

The closing chapter, Chapter 7, contains final thoughts on the completed 

work and some recommendations for future development. A short appendix 

provides some descriptions of two freely available software packages - BUGS and 

CODA. 



Chapter 2 

The Bayesian approach to 

statistical inference 

2.1 Introduction 

The main purpose of statistical inference is to make conclusions or inferences 

about a population from a sample drawn from that population. In the Bayesian 

approach, inferences are based on the conditional probability distribution of 

all unobserved quantities about which we wish to learn, given the observed 

sample. The most fundamental characteristic of Bayesian methods is that all 

unobserved quantities whether they are observable, e.g. future observations, or 

unobservable, e.g. model parameters, are treated as random variables. Thus 

Bayesian statistical conclusions about these unobserved quantities are made in 

terms of probabihty statements. The exphcit use of probabUity to quantify 

uncertainty in inferences is one of the primary motivations for using Bayesian 

methods. 

Our intention in this chapter is to provide a review of several elementary 

concepts and methods involved in the Bayesian approach to inference. These 

methods wiU be subsequently used in later chapters of this thesis. The remain-

der of this chapter is organized as follows. We begin by giving an overview of 

the fundamentals of Bayesian statistical analysis in Section 2.2. Some Bayesian 

ways of making prediction and model selection are discussed in Sections 2.3 and 

2.4, respectively. The chapter then proceeds with Section 2.5 on two common 
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approaches to the associated problem of prior selection. We shall focus on the 

issues of summarizing posterior information in Section 2.6. Section 2.7 describes 

some techniques devoted to performing Bayesian inference using Markov Chain 

Monte Carlo simulation. 

2.2 The posterior distributions 

The usual starting point of statistical inference is the assumption that data 

are modeled from a distribution which is exchangeable. The random quanti-

ties ^ are said to be exchangeable if their joint probability density 

p(2/i, ' ' ' ,2/n) is invariant under permutation of the subscripts. A special case 

of exchangeability is independently and identically distributed (iid) sequences. 

Throughout we should regard our observed data Y = (Yl, - - - , as iid given 

the unobserved model parameter. 

In its basic form, a full Bayesian model is constructed by using two ingre-

dients: a prior density and a samphng density p(y|^). The first ingredient 

teUs us what is known about the distribution of ^ before observing y. This 

information is based on previous experience and understanding about similar 

experimentation. The second ingredient determines how the probabilities of 

different values of Y are distributed conditionally on Thinking ofp(y|^) as a 

function of 6 gives the likelihood function for 6, which represents the informa-

tion about ^ coming from the observed data. Hence it is only sensible that all 

inferences are based on the updated distribution of ^ by incorporating both his-

toric and data information. This distribution is called the posterior distribution 

of ^ denoted henceforth by p(^|y). 

The Bayes theorem expresses the updated probabihty statement about the 

unobserved ^ as 

Notice that the left hand side of (2.1) is a density for ^ and any factor in the 

right hand side which does not depend on ^ can be considered as constant. 

Therefore a more compact form of the Bayes theorem is 

X^ |y) (xp(y |%(^) - (2.2) 
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In words, the posterior density is proportional to the likelihood multiplied by 

the prior density. As described above, Bayesian inference is entirely based on 

the posterior distribution which contains all current information about This 

means that the data y affect the posterior inference only through the hkeh-

hood function p(y|^). More formally, Bayesian inference procedures obey the 

so-called likelihood principle, which states that all relevant information brought 

by a given sample of data is entirely contained in the likelihood function. Fur-

thermore, the same inference should be made from two different sampling exper-

iments if their likelihood functions are proportional to each other (as functions 

of 

The Bayes theorem provides an easy mechanism by which sequential analysis 

can be performed. For example, suppose that after observing y a new set of 

independent observations y' also becomes available. For the initial data set, 

prior knowledge is modiGed via (2.2) to obtain 

p(g|y) ocp(g)p(y|g). 

This then serves as the new prior information before observing y . Thus the 

entire calculation of the posterior distribution need not be redone. In other 

words, 

p(^|y,yO ocp(^ |yMyl^,y) 

= X^|y)p(yl^) 

= p(^)p(y|^)p(yl^) 

= p (^My,y l^ ) 

which yields the same result by updating on the bagis of all the data at hand 

(y, y ) directly. By induction it can be easily shown that this algorithm allows 

information to be updated continually as more data arrive sequentially over 

time. 

Some practical problems in statistics involve a statistical model which con-

tains more than one unknown parameter. However it is often the case that only a 

subset of the model parameters are of particular interest, and other parameters, 

called nuisance parameters, are required in order to construct a realistic model. 
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In this case, the ultimate aim of a Bayesian analysis is to obtain the marginal 

posterior distribution of the parameters of interest. For example, suppose that 

the model parameters 6 can be partitioned into two parts, 6 = (^1,^2), where 

01 is the subvector of interest and 02 is the complementary subvector of 01. 

With a prior density p{G) and a likelihood function p(y|0), The Bayes theorem 

leads to the joint posterior density 

=p(^ |y ) 

oc p(y|0)p(0) 

= p(y|^i, ^2)^(^1,^2). 

The marginal posterior distribution of is simply obtained by integrating out 

82 from the joint posterior distribution. Thus, 

X^ily) = yp(^i,^2|y)((^2. 

2.3 The predictive distributions 

One important aspect for Bayesian analysis is to make prediction, which is 

often the real goal of formulating a statistical analysis. To this end, suppose 

that }new is a new independent future observation generated under similar 

experimental conditions. Before the data y are obtained, the prior predictive 

distribution of Inew is 

p(ynew) = / v{yiie'w\(^)p{&)dO = / p(ynew) d)d9. (2.3) 

Intrinsic to the idea is the fact that 9 can never be observed, but all the available 

information about 6 is summarized by the density p{0). Therefore the predictive 

distribution should be obtained as an average of conditional predictions over 

the prior distribution of 9. Having observed y, the prediction is based on the 

distribution of lnew|y, that is, 

p(2/new|y) = / p(mew|%(^|y)c(^ = / p(2/new, ^|y)(^^. (2-4) 

This is called the posterior predictive distribution of Inew- It summarizes the 

information concerning the likely values of Ynew by averaging over the values 

of ^ according to j9(^|y), which contains aU that we have learned about ^ so far. 
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There are a few other variants of predictive distributions available in the 

hteratures. One of which is developed by using the cross-validatory ('leave 

one out') approach. For notation convenience, let denotes the complete 

data y excluding the zth component ?/i. The conditional posterior predictive 

distribution of inew given y^ )̂, sometimes called the cross-validation predictive 

density, is expressible ag 

Xmew|y(i))= / p(z/newl^,yM);)(^|y(T))c;^ 
(2.5) 

= / p(z/new|^)p(^|y(i))(f^. 

Note that ŷ )̂ is dropped from p(i/new|^, y(i)) due to conditional independence. 

In words, this is distribution of future rephcate data sets acquired by eliminating 

parameter uncertainty against the 'degraded' posterior knowledge f(^|y(i)). The 

motivation for this predictive distribution is that it can be used as benchmark 

for detecting whether % supports the current model. Henceforth, the terms 

conditional predictive ordinate (CPO) will be referred to the actual values of 

p(2/i|y(i)), as is customary. 

2.4 Model choice 

2.4.1 T h e Bayes factor 

In practice, it is typically the case that more than one model is being contem-

plated as possible descriptions of the observed data. A Bayesian solution to 

model comparison, and also selection, is to consider the relative performance of 

each model via the Bayes factor (BF), defined by 

c p ^ p(y|M)) ^ /p(y|%,Mo)p(go)d% 

p(y|Mi) /p(y|^i,-^i)X^i)c^^i 

for the comparison of models and Mi. In other words, the model choice 

criterion is the ratio of the marginal likelihoods, or normalizing constant of 

the posterior distributions, under the two competing models. Therefore, by 

considering Bayes factors (see Kass and Rafttery, 1995, for a review), we give 

support to the model for which the marginal hkelihood of the data is highest. 
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BFoi logioBFoi evidence in favor of Mo 

below 1 below 0 negative 

1 to 3 0 to 0.5 poor 

3 to 10 0.5 to 1 substantial 

10 to 100 1 to 2 strong 

above 100 above 2 decisive 

Table 2.1: Calibration values of the Bayes factor. 

Proposed by Je&eys (1961), Table 2.1 provides a rough calibration for judging 

BFoi-

The use of the Bayes factor has wide advocacy within the Bayesian commu-

nity. However, there is a serious inherent problem with this criterion in that 

it cannot be calibrated in the case of improper prior speciEcation. This is be-

cause prior predictive distribution (2.3) must necessarily be improper when the 

prior is improper. For improper prior choices, as long as the resultant posterior 

distribution is proper, model comparison techniques based on posterior predic-

tive densities may be appropriate. Wis discuss some of these methods next. 

Note that a density is considered aa improper if its integral over the real hne 

is infinity, which is in conSict with the assumption prescribed by the theory of 

probability. 

2,4.2 T h e pseudo-Bayes fac tor 

Using the cross-validatory ideas (2.5), Geisser and Eddy (1979) proposed the 

pseudo-Bayes factor (PsBF) as a surrogate for the Bayes factor. The model 

selection criterion for comparing two given models Mq and MI is defined as 

p s B F o i = n 
p(2/i|y(i -Mn 

Similar to the Bayes factor, a larger than unity PsBFoi shows that there is 

positive evidence in favor of model Mq against model Mi in light of the current 
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data. JeSreys' scale of evidence in Table 2.1 can again be employed as reference 

for deciding how strong the evidence is. Notice now that the pseudo-Bayes factor 

under improper prior distributions is still meaningful provided the degraded 

posterior density is proper for each z. 

Besides the single summary meaaure PsBF, a plot of CPOs for the candi-

date models versus observation number is a useful model selection tool as weU. 

Higher value of CPO suggests more support for a model from the correspond-

ing observation. Accordingly, our best model for data is the one which yields 

the most number of bigger CPOs. Comparing individual CPOs also enables 

us to guard against any surprising observations concealing the general trend 

(indicated by the PsBF). This advantage together with the graphical Eavor 

make the cross-validatory approach even more attractive than the Bayes factor. 

More about PsBF and CPO can be found in Gelfand, Dey and Chang (1992) 

and Gelfand (1996). 

2.4.3 T h e deviance informat ion cr i te r ion 

Recently, Spiegelhalter, Best, Carhn and Linde (2002) developed an alternative 

criterion, known as the deviance information criterion (DIG), for selecting a 

suitable model from a group of plausible models. They defined the model choice 

criterion as foUows 

D I C - D { E ( g | y ) } + 2pc, 

where 

D(g) = -2Zo^{p(y|g)} + 2^o^[p{y|E(Y|g) = y}] 

Pzp = E{D(g) |y}-D{E(g |y)} . 

A model yielding the smallest DIG is chosen to be the best model for data. 

Note here that D(^) represents the 'Bayesian saturated deviance' measuring the 

precision of model fit, whilst pg is a penalty factor interpreted as the effective 

number of parameters in a model. Therefore, DIG takes model complexity into 

account and supports model parsimony. 
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2.4.4 A min imum poster ior predict ive loss approach 

Another way of choosing an appropriate parametric model is to base the decision 

on posterior predictive loss. With prediction in mind, suppose ynew is a future 

set of observations from a replicated experiment. Following Laud and Ibrahim 

(1995), see also Gelfand and Ghosh (1998), consider the Z,^-criterion 

= ^?{(Ynew — y)^(Ynew — y)} 

= y^[{-E'(}new,i) — 2/}̂  + t'(^?^(^ew,i)], 
i=l 

where the expectation is taken with respect to the posterior predictive distribu-

tion (2.4). It seems obvious that a good model should have y^ew close to what 

already observed. Hence the best model, among those under consideration, is 

the one which minimizes the model selection criterion. 

Note that modiEcation is needed when dealing with censored data since the 

actual value of some j/j's are unavailable, refer to Chapter 6 for more discussion 

about censoring. We accommodate right censored observations to (2.6) via a 

technique similar to that of Gelfand and Ghosh (1998). If the zth data point is 

right censored at q then estimate by 

f Q if ^(}new,i) < Q 
Vi = \ 

\ i?(lnew,i) if -E'(^new,i) > Q 

Thus, after replacing all censored observations with the relevant estimates, (2.6) 

can be calculated in the usual way. The criterion under logarithmic responses 

(i.e. y and y^ew substituted by their natural logarithms) wiU be illustrated 

using a survival data set in Chapter 6. 

2.5 The prior distributions 

As mentioned in the previous section, in addition to the likehhood, Bayesian 

analysis requires the specihcation of a prior distribution for all model parame-

ters. Whilst this prior density serves as the best way to summarize one's gen-

uine prior belief about the parameters, its determination will certainly influence 

the resulting inference. Therefore considerable care is required when making a 
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choice for the prior distribution. In this section, we discuss two common tech-

niques, the conjugate prior approach and the non-informative approach. 

2.5.1 Con juga t e prior d is t r ibut ions 

Prior information from past studies about similar statistical investigation or 

opinions of subject-area experts are often available. In practice, one might have 

many probability densities that are compatible with this information. Among 

these densities, it would be helpful to select a prior distribution that simplifies 

the subsequent computational burden. The implementation of the Bayes the-

orem can be computationally difBcult due to the normalizing integral in (2.1). 

One can eliminate the need to evaluate this integral by introducing the so-

called conjugate prior. A class of prior distributions 7̂  is said to be conjugate 

for a likelihood p(y|^) if the resulting posterior distribution also belongs to P. 

The property that the posterior follows the same parametric form as the prior 

is caUed conjugacy, and 9̂  is said to be a conjugate faJiiily for the posterior 

distribution. 

However, conjugacy is a rather vacuous idea in the sense that if "P is the 

class of all distributions, then it will obviously lead to a posterior belonging to 

the same distributional family as the prior, no matter what class of samphng 

distributions is used. This is, of course, useless for the choice of a prior density. 

Therefore, the main interest of conjugacy arises when 7̂  is a set of densities 

having the same functional form as the likehhood. This speciGc type of conju-

gate prior distributions can only be obtained easily for data models within the 

exponential family, which take the following form 

P(Z/|̂ ) = exp{(^(g)?/(2/)}, (2.7) 

where ^('),/2'(-),^(') and ?/(-) are suitable functions. The class might seem re-

strictive, but in fact it includes many common continuous and discrete distri-

butions such as the normal, binomial, exponential and Poisson distributions. 

Important distributions that do not belong to the exponential family include 

the uniform and Students t distributions. 

Assume that the set of independent observations Y follows the exponential 
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family (2.7). Then, with a prior density p(^), the posterior distribution of ^ is 

given by 

p(g|y) oc p(^)p(y|^) 

t=0 

oc exp{(^(g) 
i=X 

The identity of the conjugate prior distribution can be determined by regarding 

the likehhood as a function of Thus defining a prior distribution in the form 

of 

p(^) oc exp{^(^)Ko} 

leads to 

p(^|y) oc /i(^)'^+"exp 

where rj = Uq + n and /j, = uq + Therefore the chosen prior density 

has managed to retain the posterior density in the same algebraic form. In fact, 

switching 6om prior to posterior distribution is reduced to the task of updating 

the corresponding parameters. Table 2.2 presents the conjugate distributions 

for some commonly used distributions belonging to the exponential family. 

Although conjugacy can permit posterior distributions to emerge without 

numerical integration, analysis with the conjugate prior distributions must be 

used with care. The analytic tractabihty of this specification comes with a 

price due to the restrictions they impose on the form of the prior distributions. 

For instance, the conjugate prior distributions may not dehver an adequate 

representation of one's prior beliefs, or they may not even exist for complicated 

sampling models. Nonetheless, if they do exist and can provide a sufficiently 

close description of one's prior state of uncertainty, the advantages brought by 

conjugacy are still irresistible. 
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Likelihood Prior 

Normal (known variance) Normal 

Poisson Gamma 

Exponential Gamma 

Binomial Beta 

Negative Binomial Beta 

Normal (known mean) Inverse Gamma 

Table 2.2; Conjugate priors for some well known exponential families. 

2.5.2 Non- informat ive prior d i s t r ibu t ions 

When no rehable prior information about the model parameters is available, or 

when an inference based solely on the data is desirable, the imperative is then to 

minimize the influence of the prior distribution on the resulting posterior distri-

bution. Such prior distributions are sometimes called non-informative, vague, 

Eat, diffuse or reference priors, representing the states of 'prior ignorance' and 

'to let the data speak for themselves'. Different formulations lead to different 

types of non-informative prior distributions. One of the most widely accepted 

formulation was proposed by Jeffreys (1961), baaed on considering the consis-

tency of prior ignorance across one-to-one parameter transformations. Jeffreys' 

choice of non-informative prior distribution is 

p(g) oc (2.8) 

where %(^) is the Fisher information for given by 

Jeffreys' invariance under re-parametrization is justified in the following 

sense: any procedure for deriving the prior distribution should grant the same 

result if applied to the transformed parameter. To see this, suppose p(^) is the 

prior density of 6 and let (j) = h{0) be a one-to-one transformation of 9. Then 
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the prior density of is 

p(< )̂ = 

oc 

Now, evaluating %(^) at ^ yields 

log 
= - E 

-E 

%(g) 

<f log p{2/|^ = A (̂< )̂} 

Thus, 

P(< )̂ oc 

which is equivalent to the prior distribution for ^ determined directly by using 

(2.8), aa required. 

While Jeffreys' method provides an automated technique for obtaining non-

informative prior distributions, it can lead to paradoxes in multi-parameter 

models. There are two distinct ways to apply Jeffreys' principle in multi-

dimensional cases which often bring about different results. The obvious one 

is to evaluate the joint non-informative prior distribution directly by using the 

JeSreys' rule above. A simpler approach, based on the assumption of indepen-

dence, is to derive the joint prior distribution as the product of the Jeffreys' 

non-informative prior distributions for each components of the vector parame-

ter. Normally, the latter procedure is preferable as it is more mathematically 

convenient and it enjoys a specific kind of coherence in that 'ignorance' is in 

some sense parallel to 'independence'. 

In general, the Jeffreys' non-informative approach leads to prior distribu-

tions in the form oc 1 for location parameters, and p(^) oc for scale 

parameters. Notice that these densities are improper. Although there are some 

further difficulties involved, Bayesian inference using improper priors is still pos-

sible provided the resulting posterior distribution is proper. However, it is worth 
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emphasizing that veriScation of propriety in many complex models is far from 

trivial. Thus non-informative prior distributions are to be used with caution. 

Box and Tiao (1973) suggest that if the hkehhood function truly dominates the 

prior distribution then the precise form of the non-informative prior distribu-

tion does not matter. The main issue is, therefore, to 6nd a prior distribution 

which states that httle is known a priori relative to the data about the model 

parameters. 

2.6 Summarizing posterior information 

Let us assume at this point that both the sampling distribution p(y\6) and 

the prior distribution p{6) of the model parameter 6 are available. The Bayes 

theorem (2.1) can now be used to combine the experimental evidence and the 

prior knowledge to produce the posterior density p(^|y). Since this updated 

distribution represents all the current extensive information about 6, ideally 

one may report the entire distribution as a basis for all posterior inference. 

For instance, a graphical display of the corresponding density function might 

prove useful in providing the insight about the behavior of the parameter. Still, 

for many practical purposes, it is often desirable to summarize the posterior 

information through a point estimate or interval estimate. Although we only 

work with the posterior distribution in this section, most of the discussions can 

be applied equally well to other distributions such as the prior and posterior 

predictive distributions given in equations (2.3) and (2.4), respectively. 

2.6.1 Poin t es t imat ion 

To select a summary feature from the posterior distribution which in some way 

'best' reflects the parameter under study confronts us with a decision-making 

problem. The consequences of making a selection or decision can be studied 

using the concept of loss functions. A loss function is supposed to evaluate the 

penalty or loss associated with a decision, and the aim is to take the decision 

which minimizes the expected loss. Suppose that the posterior density p(^|y) of 

^ has been formally derived. Then, for any particular decision a, the posterior 
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expected loss is 

where a) is a loss function, e.g. a function of |^—a|. A Bayes point estimate 

of ^ is the value a that gives rise to the minimum value of E'{Z,(^,o)}. There 

are many diEerent choices of loss functions, and the particular choice for any 

speciGed problem will depend on the context. We study some of the most widely 

used loss functions and the associated Bayes estimators below. 

1. Quadratic loss function 

Proposed by Legendre in 1805 and also by Gauss in 1810, the loss function 

a) — is called the quadratic loss. The Bayes estimate of ^ 

with respect to this loss function is the posterior mean, i.e. the expected 

value of ^ under p(^|y). 

Proof: Since 

E{i:(g,a)|y} = E{(g-o)" |y} 

= E(g^|y) -2aE(g|y) + a^. 

The expected loss actually attains its minimum at o = E{6\y). 

• 

Quadratic loss can be extended to multi-parameter cases: 

a) = (0 - a)^H(e - a) 

where a and B are vectors and H is a positive definite matrix. As in one-

parameter cases, for the quadratic loss the Bayes estimator is the mean 

of the joint posterior distribution, assuming that it exists. 

This particular loss function is appropriate in situations where losses are 

approximately symmetric in |0 — a| and large deviations need to be pe-

nalized heavily. 

2. Absolute error loss function 

For absolute error loss, 1,(^,6) = |^ — a|, the Bayes decision rule is to 
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estimate ^ by the posterior median, which divides the parameter space 

into two equal probability parts. 

fmo/ : The posterior expected loss is 

/
OO 

-OO 

roo 
(o - + / (0 — o)p(0|y)d^. 

Differentiating, using Leibniz' rule, with respect to a and setting this equal to 

zero gives 

/
d roo 

p(^|y)c(0 — / p(0|y)d^ = 0 
OO 6 

/

d poo 

p{6\y)d6 = / p(0|y)(f0. 
-OO J d 

Adding f^^pi0\y)dO to both sides yields 
pd 

2 / p{9\y)d9 = 1 <=> Pr{6 < a|y) = 
V—00 ^ 

• 

A generalization of the absolute error loss function is the hnear loss func-

tion: 

i f ^ > a 

if ^ < a. 

In this case, the Bayes estimator is the quantile of the posterior distribu-

tion such that f < o) — ^ 
^ — / ai+02 

A linear loss function is useful when the losses are assumed to be approx-

imately linear in {9 — d). Note that it increases more slowly than the 

quadratic loss function and hence does not over-penalize large deviations. 

In addition, the constants and 02 can be chosen as a measure of the 

relative importance of underestimation and overestimation. 
3. Step function loss 

The Bayes estimator associated with the step function loss 

. 0 if - a| < (̂  
L{6, a) = 

1 otherwise. 
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is the posterior mode, i.e. the most likely value under the posterior dis-

tribution. 

Proof: Let /(•) be an indicator function (taking value one if its argument 

is true, and zero otherwise). Then the step function loss can be rewritten as 

i;(g,g) = l - 7 ( | g - g | < < 5 ) . As (^^0 , 

E{Z,(g,a)|y} = 1 - E{7(|g - a| < 6)|y} 

= 1 - / p(g|y)(f0. 

./|8-a|<6 

a)|y} is minimized when the integral is maximized. 

Thus the posterior mode is the Bayes estimate for 9 here. 

• 

A multivariate extension of the step function loss would be 

Z,(e,a) = l - / ( | e - a | < J). 

This is called the zero-one loss. The Bayes decision rule in this case is to 

choose a to be the mode of the posterior distribution. 

Although a has the interpretation of being the most likely value of 0, in 

practice, zero-one loss will rarely be a good approximation to the true loss 

because of its non-quantitative nature. 

While easy to work with, it should be made clear that these losses need 

not necessarily be appropriate for a given problem. The mean, median and 

mode of the posterior distribution are commonly used because they are often 

reasonable point estimates of ^ and, for a conjugate family of distributions, they 

are relatively easy to compute. In the case where the posterior distribution is 

unimodal and symmetric, the posterior mean, median and mode are all identical. 

In general, however, they might not coincide and the difference can be quite 

substantial. Therefore, unless there is a very clear need for a point estimate and 

a strong rational for a specific loss function, the provision of a single number to 

summarize the posterior density may be extremely misleading. 
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2.6.2 Interval es t imat ion 

Point estimates give no measure of accuracy. Accordingly, it is always important 

to report posterior micertainty by using indices such as the posterior variance, 

posterior quantiles and posterior intervals. Interval summaries are particularly 

useful in Bayesian inference in that it facihtates a common sense interpretation 

of having a certain probabihty of containing the parameter of interest. Formally, 

the Bayesian analogue of a conEdence interval in classical statistics is referred 

to as a credible set, defined as follows. 

Definition 2.1 For a posterior distribution p{0\y), a set C is said to be a 

100(1 — a)% credible set for ^ if 

f E C|y) = 1 — 0!. 

O 

In other words, 9 has a probability of (1 — a) to belong to a fixed interval C. 

One diKculty with credible sets is that, for any given a , they are not uniquely 

deSned. To tackle the problem, an additional constraint needs to be imposed. 

One way of doing this is to consider an interval that has the smallest width or, 

equivalently, an interval that includes only the most plausible values of Such 

an interval is called a highest posterior density (HPD) credible set. 

Definition 2.2 For a posterior density p(^|y), a set C is said to be a 100(1 — 

a)% HPD credible set for 9 if it can be written under the form 

C = {<9 : p(^|y) > Ac} 

where is chosen to ensure that 

f r ( ^ E C|y) = 1 — 0!. 

• 

HPD credible set are not invariant under a non-hnear parameter transformation. 

One other choice of constraint is simply to take the posterior a:/2 and 1—a:/2 

quantiles as the hmits of a 100(1 — 0;)% credible set. This central or equal tail 
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credible set will be equal to the HPD credible set if the posterior is unimodal 

and symmetric, but will be a bit wider otherwise. Moreover, it is invariant to 

one-to-one transformations of the parameter and is usually easier to compute. 

Although the idea of credible set can be extended in exactly the same way to 

parameters of higher dimension, it may not be easy to comprehend the picture 

in more than three dimensions. Occasionally, inspection of credible regions 

of some appropriate conditional and marginal distributions will greatly assist 

understanding of the posterior state of knowledge in higher dimensions. 

2.7 Bayesian computation 

Recall that, in general, the posterior density p(^|y) of ^ has no closed form 

expression as the normalizing constant 

p(y) = y 

appearing in (2.1) is often not tractable. Fortunately, the entire posterior distri-

bution can stiH be accurately approximated by means of samphng-baaed meth-

ods even if the posterior distribution is only known up to a constant of normal-

ization. In particular, the development of Markov chain Monte Carlo (MCMC) 

computing methods has ehminated many constraints on the prior distributions 

and made it practically possible to 6t models with increasing complexity. The 

idea of MCMC is very straightforward: "One is interested in simulating from a 

target distribution with density vr but cannot do this directly. Instead, one con-

structs a Markov chain with equilibrium distribution tt and runs it long enough 

until convergence has been obtained. Following a sufficiently long burn-in pe-

riod, simulated values of the chain will be dependent samples approximately 

from 7r". In this section, we briefly discuss two MCMC procedures to create a 

sample from tt, which in our case is the posterior distribution. A short account 

of estimation using MCMC output follows. 

Note that the presentation of MCMC methods in this section is far from 

comprehensive. Since the focus of this dissertation is data analysis rather than 

computation, we only provide suKcient information for these strategies to be 

implemented. There are many excellent books on a detailed treatment of the 
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subject such as the books by Gilks, Richardson, and Spiegelhalter (1996) and 

Chen, Shao, and Ibrahim (2000). 

2.7.1 Gibbs sampler 

Consider the problem of drawing a sample from a multivariate distribution 7r(6) 

where 0 = (^i, - - - , ^d)^, each of the components could be sub-vector of 0. 

Suppose also that the full conditional distributions 

7r(^i|^_i) — 7r(^i|gi, " - , ^i_i, , ^d), 2 = 1, 2, - - - , d 

are completely known and easy to sample from. The Gibbs sampler provides 

simulations from 7r(0) based on successive generations &om these fuU condi-

tional distributions. The iterative procedure can be described as follows. 

1. Initialize the chain with an arbitrary set of values = (̂ i°̂  - - -'1 , 

2. Simulate 0̂ -̂ ) = (^?\ ' " , from 

for j = 1,2, - ,t. 

That is, each component is updated conditional on the latest values of all 

other components When convergence is reached, can be regraded as 

one simulated value from the target distribution 7r(0). Thus, the requirement of 

obtaining samples from the joint distribution of 0 has come down to the ability 

to sample from the corresponding full conditional distributions. 

Note that, the availability of a sample for a multidimensional parameter 

^ = (^1,' " , ^d)^ means that the zth component of the simulations - - - , 

is a sample approximately from the marginal posterior distribution of di, i = 

1, • • • ,d. 
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2.7.2 Metropol is -Hast ings a lgor i thm 

Given a target distribution 7r(^), where ^ can be a scalar or a vector, that can be 

computed up to a multiplicative constant, the Metropolis-Hastings algorithm 

generates a Markov chain by the following steps: 

1. Start the chain with an arbitrary initial value 

2. For j = 1, 2, • • • , t 

(a) Generate from a proposal density 

(b) Compute the ratio 

7r(0')g(#k-i)|9') 

(c) Set 

j withprobabihty min(l ,r) , 

^ otherwise. 

On convergence, the values can be considered ag approximate draws from 

7r(0). Notice that the proposal distribution only defines a candidate value 6' that 

is substantiated according to the value of r. For obvious reasons, r is generally 

referred to as the test ratio. Note that the density g can take any form and 

thus provides a flexible tool for the construction of the algorithm. However, for 

computational efBciency, it is crucial to have g so that 

- for any it is easy to sample from 

- the test ratio r can be easily evaluated, 

- the proposed candidates 6' are not rejected too frequently, and 

- each candidate provides a reasonable displacement from the current state. 

We now discuss two most common choices for q known as the independent and 

the random-walk proposals. 
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Independence sampler 

In this case, the proposal distribution does not depend on the previous position 

that is 

Thus, the test ratio reduces to 

^ 7r(g')/g(0') ^ 
^ 7r(gU-i))/g(^0-i)) w(gO-i))' 

where w(^) = 7r(^)/g(^). The choice of g is very important for the practical 

implementation of the method. The general rule for the independent sampler 

to work well is to choose a proposal distribution that approximates well the 

target distribution tt but is slightly heavier tailed. However, finding a suitable 

proposal distribution may be a diSicult task and hence limit the apphcability 

of the method. 

Random walk algori thm 

The chain has proposed candidates according to 

or, to put it another way, 
g' = gU-i) + 

where is a symmetric random variable centered at the origin. For this pro-

posal, the test ratio is 

which does not depend on g. The proposal distribution can be formulated 

independently of the target distribution but care is needed in specifying the 

scale of g. Small variances will lead to high acceptance rates at the expense of 

small displacements from the current state. On the other hand, large variances 

will generate large spreads but with small acceptance rates. Both extremes 

should be avoided as the chain will mix slowly which will result in low efficiency. 

It is recommended by Gelman e( (1995) that the dispersion of g should be 

chosen in order to provide an acceptance rate in the range [0.15, 0.5]. 



2.7 Bayesian computat ion 26 

2.7.3 Output analysis 

Suppose that a post-convergence correlated sample , - - - , generated by 

using a MCMC scheme with stationary distribution p(^|y) is available. Assume 

also the more general case where these are successive values from a single long 

chain. Using these simulated values, all relevant calculations with the posterior 

distribution p(0|y) can be approximated. In particular, 

# A smoothed version of the histogram of the sampled values can be plotted 

to provide an estimate of the entire posterior density. 

# The posterior mean is estimated by the average of the simulated values. 

# A 100(1 — 0:)% central or equal tail posterior interval is approximately 

given by the [(01/2) x 7V]th and [(1 — CK/2) x # ] th ordered sample values, 

where jV is the total number of simulations and [a] denotes the integer 

part of o. 

Obviously these approximations will become more accurate as, TV, the number 

of simulations increases. 

An estimator of posterior point or interval summaries of any parametric 

transformation ^ is obtained similarly by using the transformed sample 

- - - , where SpeciScally, the posterior expectation of 

is approximated as 

j = l 

The batch means method can be used to assess the accuracy of this estimation: 

1. Batch or divide the single Markov chain into m successive batches of 

length 6. Generally, we take m E (10,30). 

2. Compute the batch averages Bi, - - , 

3. Check whether the autocorrelation between batches is negligible, say less 

than 0.05. If it is not the case, select a larger b and repeat the procedure. 
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4. Sampling variance is approximately 

1 

' 1=1 

Once simulations &om the posterior distribution are available, it is typically 

easy to draw &om the posterior predictive distribution of future data }new-

Recall that the posterior predictive distribution for Inew is given by 

p(2/new|y) = y p(2/new|l9)p(6'|y)d6'. 

In other words, p(?/new|y) is a marginal density computed from p(^|y). A sam-

ple Z/new^^^,''' , 2/neŵ *̂  from the predictive density is obtained by drawing each 

Z/neŵ "̂ ^ from f)(2/new|^^^), which is the sampling distribution with parameter 

The posterior predictive distribution plays an important role in checking 

the fit of a model to the observed data. If the model is reasonably accurate, 

the replicated data 2/new^^ ,̂' " , 2/neŵ ^̂  should look similar to the data y that 

have actually been observed. Any systematic diEerences between the poste-

rior predictive density and the observed data signal potential failings of the 

posited model. Inferences can be misleading when a probability model is far 

from reality. 



Chapter 3 

The skew-elliptical distributions 

3.1 Introduction 

Statistical distributions provide the foundation for many statistical procedures 

and data analysis. The rehability of empirical results lies on the capabihty of 

the assumed distribution to model the specific characteristics of the underlying 

data. Although a huge number of distributions have been proposed and investi-

gated, statistical techniques for continuous data analysis are based largely, both 

implicitly and exphcitly, on the celebrated normal distribution. A major reason 

for this state of aSair is certainly the mathematical implications resulting from 

the normahty assumptions. Computational simphcity is very desirable, but con-

ceptual and flexibility are not unimportant. A weH recognized limitation of the 

normal distribution is the paucity of its competency to accommodate skewness 

and kurtosis. It is evident that, in real apphcations, non-normal tail behavior 

and asymmetry are common traits in the body of data. Accordingly, there have 

always been resistance to the normal theory methods. 

Recently there has been renewed interest in the statistical literature to-

wards robust statistical methods in order to represent features of the data ag 

adequately as possible and reduce unrealistic assumptions. This remark is re-

Aected in the substantial growth in the number of distributional famihes devel-

oped, studied and used for data modeling as alternatives to the normal theory 

statistics. Some famihes of distributions which allow for skewness and contain 

the normal distribution as a proper member or as a limiting case have played 
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an important role in these developments. Among them are the skew-normal 

distribution (Azzalini, 1985, 1986), the multivariate skew-normal distribution 

(Azzalini and Dalla Valle, 1996), the two-piece normal distribution (John, 1982), 

the epsilon-skew-normal distribution (Mudholkar and Hutson, 2000), the skew-( 

distribution (Jones and Faddy, 2003, and Jones 2003), the generalized skew-^ 

distribution (Theodossiou, 1998), the two-piece t distribution (Fernandez and 

Steel, 1998), the skew-elhptical distribution (Sahu, Dey and Branco, 2003), and 

the generalized skew-eUiptical distribution (Genton and LoperGdo, 2001). 

This chapter extends the previous version of skew-elliptical (SE) distribu-

tion, introduced by Sahu a/. (2003). The extended class is distinct from the 

one obtained by Branco and Dey (2001) but contains the Sahn o/. (2003) 

family aa a special case. Branco and Dey (2001) develop their multivariate 

SE distributions by conditioning on one suitable random variable being posi-

tive while Sahu (2003) impose the non-negativity condition on the same 

number of random variables. Heuristically, we generalize their ideas by releas-

ing the dimensionality restriction on the conditioned variables. After a short 

review on various ways of generating the basic univariate skew normal distri-

bution in Section 3.2, Section 3.3 describes the derivation and density function 

of this new SE distribution. The family is then used in Section 3.4 to define a 

class of univariate skew normal distributions, which wiU be the main focus for 

the remainder of the paper. Central moments of the skew-normal distribution 

are obtained, along with a discussion of some related properties. Section 3.5 

studies an alternative skew-normal distribution that proved to be popular in 

the literature. We compare three distinct versions of univariate skew normal 

distributions in Section 3.6. Some possible generalizations of the skew-elliptical 

distribution are discussed in Section 3.7. The chapter concludes with a few 

summary remarks in Section 3.8. 

3.2 The basic univariate skew-normal model 

The term skew normal distribution was Erst introduced by Azzalini in 1985 

aa a natural extension of the normal density to accommodate asymmetry. The 
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main motivation for considering the distribution was the desirability of a class of 

densities which is mathematically tractable, strictly contains the normal density, 

and permits a wide range of degrees of skewness and kurtosis. A random variable 

Z is said to have a skew normal distribution with parameter A 6 % if it has 

probabihty density function 

/(z|A) = 2<^(,z)0(Az), z E K (3.1) 

where here and henceforth we denote the standard normal density and distri-

bution function by ^(-) and $(-) respectively. The above density is positively 

skewed when A > 0, skewed to the left when A < 0, and symmetric when A = 0 

(in which case it coincides with the standard normal distribution). Therefore it 

is reasonable to regard A as the skewness parameter. 

A salient feature of the skew normal distribution is that it can be derived in 

many different settings, i.e. it admits various characterizations. 

Scenario 1 (Proposition 1 of Azzalini et ai, 1996.) Let U and V be indepen-

dent A^(0,1) variables. DeBne Z to be equal to conditionally on AC/ > Y. 

Then Z has density (3.1). 

Scenario 2 (Proposition 2 of Azzalini et al, 1996.) Assume that (Z,V) has a 

bivariate normal distribution with A^(0,1) marginals and correlation coefBcient 

A/\ / l + A .̂ Then the conditional density of Z given V > 0 is equivalent to 

(3.1). 

Scenario 3 (Proposition 2 and 3 of Azzalini, 1986.) If V is a N{(}, 1) variate, 

then 

, y with probabhty $(A2;) 

—V with probabhty 1 — $(Af) 

\V\ with probablity #(A|w|) 

— \V\ with probablity 1 — $(A|t;|) 

have density (3.1). 
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Scenario 4 (See Azzahni, 1986, page 201.) Let be a stationary process 

satisfying 

+ for^ = 0 ,± l ,d :2 , - - -
V1 + A'' 

where 6̂  is A (̂0, l / \ / l + A^). Then the stationary distribution of is given by 

(3.1). 

ScenELTio 5 (Theorem 1 of Henze, 1986.) Suppose (7 and V are two indepen-

dent identically distributed jV(0,1) random variables. Then 

^ |[/| + , ^ y 
\ / l + \ / l + Â  

has density (3.1). 

Scenario 6 (Theorem 2.3 of Loperfido, 2002.) Consider a bivariate random 

vector ([/, y ) whose marginal distributions are A/^(0,1)'8 and whose correlation 

coefBcient is (1 — A)/(l + A). Then the density of the random variable = 

max([/, y ) is (3.1). 

AD these genesis scenarios provide a physical justiGcation for the skew-normal 

distribution that may help in understanding its intrinsic structure as well as 

reveahng new applications. For example, Arnold (1993, 2002) suggested 

thinking of Scenario 2 aa the marginahzation of a hidden truncated bivariate 

normal density; and Loperfido (2002) has regarded Scenario 6 as selective re-

porting. The distinct genesis representations may be also useful for simph^ing 

some computations such as moments calculation and random numbers gener-

ation. Another attractive implication of the results is that they can each be 

fruitfully employed for extending the basic skew normal distribution to more 

general settings. Although this opens the way to the study of particular cases, 

this chapter will only consider using a method resembling Scenario 2 for multi-

variate and non-normal extensions. 
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3.3 Derivation of the skew-elliptical distribu-

tions 

The present section utihzes a general method for introducing skewness into any 

symmetric distributions and applies it on the elliptical distributions. To this 

end, consider two independent random vectors U and V , both with unimodal 

and symmetric densities. Now a class of skew distributions can be generated 

via the following formulation 

Z = D U + V, U > 0 (3.2) 

where D is a Gxed matrix. For the univariate setting in which and y are 

chosen to be iid standard normal random variables, a simple convolution compu-

tation shows that + 1 indeed has a basic skew normal distribution (3.1) 

with A = D. Notice that, in this particular case, equation (3.2) together with 

the transformation argument is essentially equivalent to Scenario 2. Nonethe-

less, paradigm (3.2) provides a more general, yet simpler, way of generahzing 

the basic skew normal density. 

The replacement of normal variate in the development of model (3.1) by 

other statistical distributions has become quite popular. For example, Arnold 

and Beaver (2000) have substituted the normal component by a suitable heavy 

tail alternative to obtain the skew Cauchy density. A broader class of multidi-

mensional models, hinted by Azzalini and Capitanio (1999), can be ehcited if 

the normal distribution is replaced by an elhptical distribution. Some related 

results along these lines can be found in Branco and Day (2001) and Sahu et 

of. (2003). The probability distribution proposed in this section extends the 

previous version induced by Sahu ef aZ. (2003). Before presenting the new 

skew elliptical distribution, it is useful to recall the definition of the elliptical 

distribution. 

3.3.1 Elliptical d is t r ibut ions 

The elliptical distribution, originally defined by Kelker (1970), represents a nat-

ural generalization of the concept of symmetry to the multivariate setting. A 
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comprehensive review of the distribution can be found in Fang, Kotz and Ng 

(1990). A random vector X with values in has an elliptical distribution with 

location vector e and covariance matrix 2 if its density function is of the 

form 

/(x|Ai,E;gW) = tE|-:/^gW{(x - - /i)} (3.3) 

for some density generator function defined by 

where g'(u; A;) is a non-increasing function ensuring that the integral 

g'(r; A;)(fr exists. For simphcity, 2 is assumed to be positive definite. In what 

foUows the notation Z; p(^)) will be used to describe the above probabihty 

distribution. 

The choice of generator function ^(^)(') will determine the distribution of 

Its flexibility enables the elliptical class to acknowledge many well-known 

symmetrical distributions as proper members, e.g. the multivariate normal, 

uniform. Student's (, exponential power, and Pearson type II distributions. 

These densities have a wide range of tail shapes, but the general specification 

of being eUiptically distributed does not imply either light or heavy tailed 

distribution. Hence, to some extend, it is admissible to consider (3.3) as a 

universal model for summarizing kurtosis of a symmetric data. The particular 

case of normal distribution 7Vt(//,Z) is obtained by defining ^(ifiA;) = 6""/^. 

Note that the function ̂ (i^; A;) may depend on other parameters. As an example, 

taking ^(-) = [14- %; > 0, then the correspondence with the Student's 

t distribution is apparent. 

Elliptical distribution, however, imposes the restriction on symmetry, which 

does not facihtate the analysis of the effects of skewness. It is accepted that, 

in real apphcationg, kurtosis and skewness are often observed characteristics of 

empirical data. Accordingly, statistics employed by assuming ellipticity are not 

always valid and can be of httle value for summarizing the structure in a body 

of data. The ability to incorporate these pervasive features simultaneously is 

therefore an important practical consideration. Hence it seems reasonable and 

appropriate to acquire a skewed version of elliptical distribution so as to enable 
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a trustworthy analysis of non-normal data. 

3.3.2 Skew-elliptical d is t r ibut ions 

The general procedure of skewing a symmetric unimodal distribution presented 

at the beginning of this section provides a simple yet powerful way for generating 

new distributions. The following theorem apphes the previous results to develop 

a general class of skewed multivariate distributions. The proof of the theorem 

rests mainly on the properties of the elliptical distributions (Chapter 2 of Fang 

aA, 1990). 

Theorem 3.1 Let U and V be two independent random vectors distributed 

as 

U-EZ(0,I;g(P)) and 

Here 0 is the zero vector and I is the identity matrix. 

Defining Z^xi = ^mxp^pxi + V^xi, the conditional density of [Z|U > 0] will 

be of the form 

/i(z|/2, S, D; = 2P/(z|;i, E + DD^; g("'))Pr(W > 0|z), (3.4) 

where /(-) is the eUiptical density function as that in (3.3), and 

W|z - E/{D^(2 + I - D^(E + DD^)-^D; 

with 

P^ (̂̂ )̂ = (̂p)/ \ _ r(p/2) p(a + m -I- p) 

g(z*) = zy(E 4- DD^)"^z*, and 

= z — / i . 

Proof: To derive (3.4), we need the following well-known results. 

Suppose that X ~ EZ(/i, 2 ;gW) . Now partition X into X ^ = (X^^, X^^) of di-

mensions m and n — m respectively, with the corresponding partitions of fi and S 

as 

V/̂ (2)/ 1^21 S22/ 
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Lemma 3.1 (Theorem 2.16 of Fang et al., 1990.) If B is a non-singular n x m matrix 

and V is an m X 1 vector, then 

V -I- B^X (v + B^/i, B ^ 2 B ; . 

• 

Lemma 3.2 (Corollary of Fang et al., 1990: page 43.) The marginal distributions 

of and X(2) are given by: 

Lemma 3.3 (Theorem 2.18 of Fang et al., 1990.) The conditional distribution 

X(i)tX(2) is given by 

where 

:(1)|X(2) - X(2) - -BZ(//i.2,2ll.2;9g(X(a))) 

/̂ l.Z — /^(l) + ^12^22 (X(2) - /^(2)), 

Sll.2 = ^11 ~ ^12^22^^21: 

9(^(2)) = (X(2) - A (̂2))̂ ^22 (̂̂ (2) - Â (2)), 

(m)/ \ ^ r(m/2) g(o + ii;m + n) 
^m/2 ^ 

• 

An alternative and convenient expression for (3.2) is the following 

Zmxl\ /Imxm D^xp \ l^mxl\ 
Wpxl/ \Opxm Ipxp / \Upx l / 

from which the p.d.f. (3.4) can be obtained by computing the conditional density 

Z|W > 0. 

It can be easily verified from Lemma 3.1 that 

Zimxl \ TT^i J f f^mxl\ f^mxm't^^mxm | . „("^+p) i 



3.3 Derivation of the skew-elliptical dis t r ibut ions 36 

It follows easily using L e m m a 3.2 t h a t 

Symmet ry of t he elliptical d is t r ibut ion and the Bayes t h e o r e m implies t h a t 

/i(z|W > 0) = 2P/{z|/z,2 + (DD^);gW}fr(W > 0|z). 

T h e proof is completed by specifying the condit ional densi ty of W | Z using L e m m a 3.3: 

W|Z = z EZ{D^(2 + DD^)-^z*, Ipxp - D^(2 + DD^)-^D; 

where 

g(z*) = zr(2 + DD:^)-iz*, 

z* = z — and 

= r(p/2) + 

• 

Non-singularity of (2 -t- is a prerequisite for ensuring the existence 

of the resulting density (3.4). The matrix D, in a broad sense, controls the 

degree of asymmetry of the density via the probability function f r ( W > 0|z). 

Henceforth D will be interpreted as the skewness parameter and f r ( W > 

0|z) as the 'skewing function' (following Cartinhour, 1990). It is clear that 

the particular case D = 0 corresponds to the one of the elliptical distribution 

Consequently, the random vector Y = [Z > 0] can reasonably 

be regarded as having an m-dimensional For brevity, 

the symbols E, D^xp; are employed to denote the sampling density 

in (3.4). Note that, in general, the quantities and 2 are not the mean and 

the scale matrix of Y as the density may not be symmetric with respect to /x. 

The use of an elliptical model in the development of (3.4) is motivated by 

its desirable property of including thin and thick tailed distributions as special 

cases. As a result, in addition to the obvious increased flexibility in skewness, 

the family ;i9.E'(/2,2, D^x^; p^'")) should ahow for a variety of tail thickness. In 

the case where D = ^ , the proposed class closely parallels to the one given in 
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Branco and Dey (2001). Moreover, it agrees with the skew elliptical densities 

mentioned in Sahu et al. (2003) when D is diagonal of order m. Therefore 

the present class includes the earher version obtained by Sahu ef aZ. (2003) as 

a special case. Another appeahng feature of the skew elliptical in (3.4) is its 

coherence under marginalization operation, i.e. it has marginal distributions 

that still belong to the same family. This is essentially an imphcit result in. the 

genesis of the distribution. Although the skewing function Pr(W > 0|z) may 

prove to be hard to evaluate, it need not be computed for practical MCMC 

model fitting. Such details will be clear in the subsequent chapters. Summing 

up, this new skew distribution should be valuable in modeling multivariate 

random phenomena which display both skewness and kurtosis. 

3.4 Skew-normal distributions 

As pointed out in the last section, construction (3.2) is a vigorous technical 

tool for transforming a symmetric distribution into a skewed one. Clearly, joint 

consideration of asymmetry and tail behavior can now be achieved by applying 

this method to a suitable fat or thin tailed distribution. From the inferential 

viewpoint it means that the resulting skewed distribution is made up of two 

components, DU and V in the preceding notations. Skewness is driven only 

by a single vector U and its sensitivity is dependent on D. Although it is not 

obvious in the context, operation (3.2) does have an effect on other distribu-

tional characteristics. The principal purpose of the current section is to examine 

how procedure (3.2) influences the shape of the skewed density. Since normal 

distribution haa been the standard point of reference for many characteristic 

measurements, attention will be held on its skewed counterpart from this time 

onwards. After presenting the density function of the m-dimensional version, 

this section will focus on the general univariate case. Specifically, mathemati-

cal moments and some properties of the latter wiU be presented in streamhned 

form. 
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3.4.1 Mul t ivar ia te skew-normal d i s t r ibu t ions 

As an immediate use of Theorem 3.1, consider the particular case g{u;m) = 

g-"/2 since the generator function simplifies to 

and is free of g(z*), it is straightforward to verify that the joint density 

of Y = [Z|U > 0] is of the form 

h{y\^l, E, = 2 ' |S + D D ^ r ' / V „ { ( E + DD' ' ) - "^ (y - ^ ) } P r ( W > 0|y), 

(3.5) 

where is the multivariate normal density of A^(0,I) , and 

W | Y = y - 7Vp{D^(2 + DD:")-Xy - W, Ipxp - D ^ ( E + DD^)-iD}. 

It foUows that Y has a multivariate skew normal distribution, indicated hence-

forth by the notation Y E, D^xp)- As expected the original normal 

density is retrieved when D = 0. Conversely, deviation of the parameter D 

from 0 measures the departure of the distribution from normality. Therefore 

the above family nests the normal distribution as a proper member and permits 

a continuous departure from normality to non-normality. 

3.4.2 Univar ia te skew-normal d i s t r ibu t ions 

Density funct ion 

Specifying m = 1 in (3.5), the matrix D becomes a column vector 6^ = 

(^1, - " , Jp) E and 2 reduces to a scalar In this case, Y is a univari-

ate skew normal variate with density function given by 

h{y\^, §) = = 0 I = I PrCW > 0|y), 
Y -I- 4 k (5̂^ \ Y -I + / 

(3.6) 

where 

In what foUows, (3.6) wiU be referred to the general form of the univariate skew 

normal distribution. 
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Moments 

As mentioned previously computation of the skewing function P r ( W > 0|i/) 

can be obstructive. As a consequence, direct evaluation of the moments of the 

general univariate skew normal distribution will not be straightforward. A con-

venient way of proceeding is the following one. According to the representation 

(3.2), y ^ (7̂ , J) is the upshot of a hnear combination of independent 

normal and standard half normal random variables. That is 

(3.7) 

where 

y = + y u > 0, 

= 8iUi + • • • + 5pUp + V 

[/i, - - - , (Vp are iid standard half normal, 

(7 )̂, and 

(7's and y are independent. 

Using this fact as well as the properties of moment generating function, expres-

sions for the mean and the central moments of orders two through four can be 

explicitly evaluated. 

Result 1 The random variable Y has 

E (y ) — -i- (61 -I H (̂ p)" 

yo r (y ) = 0"̂  -I- (^1 -I 1-6^) 

m,{Y) = E[{Y - g(y)}=] = (Sl + -.. + S l ) j l ( - - l 
TT \ TT 

m4(y) = E[{y - E(y)}^] 

= 3(7̂  + ((̂ f -t-. . . -k 6^) j s - ^ -k l 

+ 6 ^ (^1 -I ^ 1 ^ 

Proof: The derivation of the above equations is straightforward but lengthy, the basic 

steps are presented as follows. For convenience, we provide the details for the case 

2 
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p = 2, the proof for the general case is similar. Now, as a result of (3.7), the moment 

generating function of Y can be written as 

My(() = 

Here = fiZTi, % = 1,2. In general, My (() haa no closed form expression since 

and Mz2 (t) do not lend themselves to explicit computation. Nevertheless, the above 

formulation can still be used aa an indirect tool to obtain the moments. 

Together with the fact is easy to check that the central 

moments of Y satisfy the relationships 

E(y) = E(Zi) + E(Z2) + E(y), 

yor(y) - yw(Zi) + + yar(y), 

m3(y) = m3(Zi) + m3(.Z2) + m3(y), 

m4(y) = 7714(̂ 1) + m4(.^2) + m4(y)+ 

6{yar(Zi)yor(^2) + yor(Zi)yor(y) + yor(Z2)yar(y)}, 

where mi{X) = E\{X — E{X)y]. These results essentially reduce the problem to the 

evaluation of moments of normal and standard half normal distributions. 

The r-th noncentral moments of ^ — 1,2, is 

= ! for odd r, 

^ 3 5 - (r —1) for even r. 

The r-th central moments of V is 

I fo:" 6ven r. 

The proof follows immediately by direct substitution. 

• 

In order to illustrate the influence of the parameter 6, it is necessary to adopt 

some suitable measures of skewness and kurtosis. To this end, a natural choice 

is the two classical distributional measurements stated in the next deSnition. 

Definition 3.1 The skewness and kurtosis measures of a random variable X 

are respectively deGned as the third and fourth standardized central moments 
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• 

Thus skewness and kurtosis of Y can be readily obtained from the moments 

reported in Result 1. Intuitively, symmetrical distributions have skewness mea-

sure equal zero, positive values correspond to distributions skewed to the right 

and negative values to those skewed to the left. Kurtosis, on the other hand, 

measures the degree of Eatness of a density. Intrinsically positive kurtosis indi-

cates peaked center and negative one signiSes flat center relative to the normal 

curve. 

An elementary calculation demonstrates that the skewness approaches its 

supremum (inSmum) as > oo(—oo), z = 1, - - - ,p, with 

sup{5'A;(y)} — — inf{5'A:(y)} = \/2(4 — 7r)(7r — 0.9953. 

Similarly, the bounds of the kurtosis can be shown to be 

0 < < (STr̂  - 47r - 12)(7r - 2)"^ - 3 ( - 0.8692). 

Therefore it may come to a conclusion that, with other parameters fixed, ^ 

in (3.6) can only produce more central peakedness than those in the original 

distribution. 

In addition to creating some savings in moment calculations, relation (3.7) 

leads to an eScient algorithm for computer generation of skew normal random 

samples. The method can be described as follows. First, sample ap-dimensional 

vector U from 7Vp(0,1) and a scalar y from ]V(//, <7̂ ). Then a random number 

y from density (3.6) is obtained by setting 

This construction avoids rejection of sampling. The role played by 5 will be 

further highhghted in the coming sections. 

Some simple propert ies 

Some basic properties of the general univariate skew normal distribution are 

presented as below. 
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P rope r ty 1 The density (3.6) reduces properly to the A^(/i, a^) density when 

6 = 0. 

Property 2 Reversing the sign of 6 and in (3.6) yields the density of —Y, 

i.e. the distribution 5'7V(—cr^, — J) is the reflection of the distribution of 

5'7V(/2, cr̂ , J) about ?/ = 0. 

P roper ty 3 The way in which S intervenes in the central moments imphes 

that 

- 6 ) = 6) and -<;) = ;r^/(y|(7", 6). 

P rope r ty 4 The parameter 5 regulates skewness, which is positive if A > 0 

and negative if A < 0 where A = . Clearly, symmetric distribution can 

be obtained by taking A = 0. 

P roper ty 5 The skewness Sk(Y) is an increasing function of Si while the kur-

tosis 7Cu(y) is an increasing function of |(5i|, z = 1, - - - ,p. 

P roper ty 6 Large 5 will have momentous impact on the spread on (3.6) as 

yo r (y ) grows without bound with the absolute value of z = 1, - - - ,p. 

P roper ty 7 Since is a decreasing function of y it follows that the den-

sity (3.6) is unimodal. 

Property 8 The mode of 5'JV(//, J) is at the right of // when > 0 

and vice versa. Except for the symmetric cases, it is in general not possible to 

6nd the mode analytically. 

Furthermore, the distribution function of y does not admit a closed form 

expression. 

3.4.3 Two specific cases of univar ia te skew-normal dis-

t r ibu t ions 

Generally speaking, a one-parameter distribution can model only one empirical 

characteristic while greater Sexibility is necessarily axzcompanied by increasing 
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complexity in probability distribution. Therefore, the choice of p in (3.6) should 

depend on the level of difficulty in modeling the distributional characteristics in 

a body of data. Prom a pragmatic perspective, normal distribution (f) = 0) is 

often suGicient for rejecting the structure underlying a population distribution. 

Other selections of p can be useful for analyzing data with the presence of 

possible skewness or kurtosis. For ease of exposition, only two particular cases 

of (3.6) are examined extensively for the rest of the research. 

1. The case p = 1 is of special interest, since it coincides with the univariate 

skew normal distribution obtained by Sahu oZ. (2003). After some 

straightforward computations, it follows that the density of F is of the 

form 

(3.8) 

We write y ^^sdb(/^' future reference. By way of illustration, 

Figure 3.1 depicts the shape of the probabihty density function for certain 

values of (̂ . As the diagram indicates, the effect of increasing J is to 

magni^ both the dispersion and asymmetry of the distribution. 

2. Considering p = 2, it is not difBcult to verify that 

where F stands for the cumulative density function of the bivariate normal 

#9 
a' 51 -\- 52 \<^2/ cr̂  + + ^2 I —S1S2 

Throughout the sequel of the paper, we shall denote this distribution by 

SNiiew(//, (7̂ ,̂ (gg))- Examples of the densities for different combinations of 

values for 61 and 62 are presented in Figure 3.2. Observe that the graphs 

plotted below the diagonal are duplications of those above the diagonal. 

This is a consequence of the exchangeability property of and <52. 

Besides the discrepancy in the level of algebraic complications, densities (3.8) 

and (3.9) differ in the sense that skewness of the latter is driven by differences 
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I 

Figure 3.1: Plot of the density functions of SNgjy(0,1,5); solid line is for 5 = 2, dotted line 

is for f = 4, and dashed line is for 5 = 10. 

62 = 1 62 = 2 (52 = 5 

(5i = 1 

di = 2 

Si = 5 

-5 0 5 10 15 20 -5 0 5 10 15 20 -5 0 5 10 IS 20 

Figure 3.2: Plot of the density functions of SNnew(0,1, (si)) #i,#2 = 1,2,5. 
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a 

Nor TTiof 
A ' w ( y ) = 0 .13 
K t t ( y ) = 0 .30 
K u ( y ) = 0 .43 

mSjSiJa 

-4 - 2 

Figure 3.3: Plot of the density functions of S N n e w ( 0 , (g^)) where = —62 and 

yar(y) = 1. 

in (Ji, —62), while the former by a single parameter 6. Trivially, density (3.9) 

reduces to the one in (3.8) when 61 = 0 or when (̂ 2 = 0- As it might be expected, 

the major improvement involving the presence of an additional parameter is the 

flexibility in kurtosis variation. The three-parameter density (3.8) imposes some 

restraints on the kurtosis as soon as the skewness is fixed. In contrast, a broad 

range of the kurtosis of (3.9) can be covered by appropriate choices of 61 and 2̂ 

for any degree of skewness. To gain more insight in the impact of (3.2) on the 

kurtosis, consider Figure 3.3 which provides plots of (3.9) when is set to equal 

—62 with variance of Y appointed at unity. All graphs in the diagram illustrate 

greater peakedness around the center as compared to the normal density. 

3.5 Two-piece skew-normal distributions 

Skewed distributions can be originated by differing the scale of a symmetric 

distributions on each sides of its mode, as observed by Runnenberg (1978) . 
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Obviously, a family of skew normal distributions distinct &om those discussed 

earher can be obtained by employing this method on the normal distribution. 

The resulting distribution, namely the two piece skew normal distribution, has 

been studied by many authors, including Gibbons and Mylroie (1973), John 

(1982), Kimber (1985) and Kimber and Jeynes (1987). See also Fernandez and 

Steel (1998) for a generalization. The density function of the two piece skew 

normal distribution is defined as foUows 

/i(7/|//, (7̂ , (̂ ) = -TT-f rTn % - jU > 0)+ 
a(S + 1/5) I I a5 

(3.10) 

a 
^ < 0) 

where 7 is an indicator function with 7(Q) = 1 if Q is true and equals 0 oth-

erwise. For notation eaae, we say that the random variable Y is of the class 

SN^p2^(//, (7 ,̂(5) henceforth. The parameter 6 E (0, oo) controls the allocation 

of probability mass to each side of the mode. More formally, it can be shown 

that 
Pr(Y > a) 

Pr(Y </.) 

Clearly, the normal distribution is a special case ( 6 = 1 ) and the half normal 

distribution is a limiting case. Sketches in Figure 3.4 display the effect of various 

values of 6 on the shape of the distribution. 

The mode of the distribution (3.10) is retained at for any value of J. Using 

the results Arom Fernandez and Steel (1998), the expected value, variance and 
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Figure 3.4: The density functions of SNtpn(0,1, S). The solid line is for 5 = 1.2, the dotted 

line is for S = 1.5 and the dashed line is for (5 = 2. 

central moments of orders three and four of (3.10) are respectively obtained as 

y a r ( y ) = (7̂  ^ 11 — 

m4(y) 

3 + 
48' 

TT TT̂  62 
+ 3 + 

16 72 

TT TT̂  

Expressions for the classical skewness and kurtosis measures described in DeSni-

tion 3.1 can be immediately written down by using the moments above. Simple 

algebraic manipulations reveal that skewness and kurtosis of the two piece skew 

normal distribution have the same ranges as those in the univariate skew nor-

mal distribution (3.6). This might be expected since both famihes are skew 

extension of the normal density and admit the same limiting distribution. A 

useful stochastic representation of (3.10), which provides an easy way for ran-
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dom samples simulation, is the following one. Let % be a standard normal 

random variable and define Y by 

f with probabihty + 1) 

^ with probablity 6 ^ / + 1) 

Then Y has density function (3.10). 

3.6 Graphical comparisons 

The specific aim of the current section is to compare different variants of skew 

normal distributions discussed earher by means of some graphical plots. In 

short, the distributions to be considered are 

1. the Sahu o/. (2003) distribution displayed in (3.8). 

2. SNnew(/^, (j^)): the new distribution specified by (3.9). 

3. SNtpn(/^, (7^,6): the two piece skew normal distribution with density 

(3.10). 

The disparities of these skewed models in distributional structure may be 

illustrated effectively by drawing their densities in the same diagram, in which 

they admit the same amount of skewness. Yet, in order to have a fair com-

parison, it is necessary to require common mean and variance across the dis-

tributions. Figure 3.5 pictures the densities for a selection of values of mean, 

variance and skewness. Note that, unhke and distributions, there 

is a series of SNnew densities complying with the imposition. In spite of that, 

only two of these densities are plotted in the Sgure so as to enhance visualiza-

tion. The supplementary flexibUities of SN^ew over S N g i n terms of height 

and tails controls should be apparent from the graphic display. As one can 

anticipate, the behavior of SN^p^ exhibits a manifest difference from the other 

densities. This is because SN^p^̂  has a much hghter tail and its distinct style 

of descending from the mode. SimUar figures could be constructed for other 

combinations of characteristic meaaures. 
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^ O 

SNnew(l) 
S'̂ new(2) 
SNwb 

Figure 3.5: Plots of the density functions of various skew-normal distributions. All distri-

b u t i o n G are scaled to have zero mean, u n i t variance and 5 ^ A ( y ) = 0 . 5 . 

It is of interest to acquire a visual summary of the relationship between the 

skewing parameter and the degree of asymmetry of the distributions. On this 

basis, Figures 3.6 and 3.7 delineate the level of skewness measure 5'A:(y) as 

the parameter 6 changes for representative values of cr^. Although Figure 3.7 

only copes with positive values of analogous plots for the negative domain 

can be obtained by a simple 180° rotation. It appears 6om Figure 3.6 that 

^^tpn ^Gry sensitive to variations in <5. In fact, a wide range of its skewness 

can be covered for ^ varying in (0.2,2). The rate with which SNgj^ diverges 

from symmetry as |(̂ | increases is substantially influenced by the parameter cr̂ . 

Smaller values of cr̂  will be associated with greater steeply sloped skewness 

curves and vice versa. Evidently the parameter has a similar impact on SNnew, 

as shown in Figure 3.7. It is important to note that a rise in does not 

necessarily mean a greater asymmetry, especially when SNnew is already highly 

skewed. 
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CO 

Figure 3.6: Plots of the skewness measure Sk{Y) against 5. Dashed line is for SN^p^; solid 

line is for SNgjy with = 0.01 and the dotted line is for = 1. Note that skewness of 

SN^pn does not depend on cr̂ . 

Figure 3.8 gives an additional insight into the achievable kurtosis as a 

function of skewness 6'A;(y). For SN^pn and SNgj^ distributions, greater asym-

metry will inevitably result in larger values for the kurtosis. Similarly, smaller 

magnitude of skewness will correspond to less central peakedness. Nonetheless 

the two distributions depart from normality in a quite different manner. The 

gap between the dotted and solid hnes shows the advantage of SNnew over 

SNg(̂ y in the form of kurtosis variation. It is seen that the advantage is most 

perceptible for near normal cases and gradually melted away as asymmetry 

increases. 

3.7 Further generalizations 

There are many possible ways of generalizing the skew elliptical distribution 

(3.4). Without going into details, some feasibilities are listed as follows. 

# From representation (3.2), it may be claimed that skewness is instigated 

by some unobserved additive random e&cts U which were truncated at a 
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F i g u r e 3.7: Surface and contour plots of the skewness measure Sk(Y) of SNnew against 

and S2 for two different values of 
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Figure 3.8: Plots of kurtosis Ku{Y) versus skewness Sk{Y); dashed line is for SN^̂ pn, solid 

line is for SNg^y, and dotted line is for the maximum achievable kurtosis of SNnew-

speciBc threshold. This suggests that further Sexibility should be annexed 

to the model (3.4) by adopting a more general threshold or permitting 

broader style of truncation on U. 

e The random variables U and V used in the development of elliptical 

distribution were assumed to have come from the same standard family. 

Allowing a combination of assorted distributions will result in new classes 

of skewed distributions. See Azzaliui (1985) for some related ideas. 

# A natural way of extending (3.4) is to utilize a comprehensive transfor-

mation mechanism admitting the representation: D U + BV. Obviously, 

a joint density for U and V can be used instead for the sake of releasing 

the independence assumption, which in turn will lead to extra level of 

generalization. 

If the research was to be extended, it would be interesting to perform further 

analysis on each circumstance and consequently merit our consideration. 
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3.8 Conclusion 

A new class of univariate skewed normal distributions is obtained by using sim-

ple transformation and conditioning. The family represents a mathematically 

tractable extension of the normal density, with the addition of a vector of pa-

rameters 6 to regulate distributional shape. Our focus in this chapter has been 

concentrated on the scalar and the 2 dimensional J cases. We find the latter 

case quite appealing for some of its attractive features: 

1. It contains the normal distribution by strict inclusion, thus allowing a 

smooth transition from normality to non-normality. 

2. It admits the Sahu o(. skew normal density (equivalent to the scalar <5 

case) as a proper member, but possesses an extra parameter to account 

for kurtosis. 

3. It is a flexible unimodal density that is able to reflect practical values of 

skewness and some levels of non-normal peakedness. 

4. Simulating random samples from this distribution is straightforward. 

Therefore, the proposed four-parameter distribution is potentially useful for 

data modeling, statistical analysis and robustness studies of normal theory 

methods. 



Chapter 4 

Applications to linear regression 

models 

4.1 Introduction 

The asymmetry and non-normal peakedness of many practical data sets can con-

taminate empirical results of normal theory statistics. Routine use of methods 

resulting &om more robust distributional assumptions has long been hampered 

by the corresponding technical dif&culties in hkelihood evaluation. Advances in 

readUy-available computer power and Markov Chain Monte Carlo techniques in 

recent years have diminished the computational burden and hence broadened 

the scope of probabihty models that can be Stted to real data. The work, start-

ing from this chapter, is intended to have a very practical focus, exploring the 

applications of the skew normal distribution &om the viewpoint of reliabihty 

analysis. More specifically, our objective is to examine the suitability of the 

skew normal distribution in fitting linear statistical models outside normality. 

We start our expository analysis with hnear regression models under indepen-

dent skewed error structure. 

Our plan for the chapter is the following. Section 4.2 provides a concise de-

scription of the statistical model where residual follows the S N n e w distribution 

defined in (3.9). We cast the model as a problem in Bayesian inference and 

employ the MCMC method known as the Gibbs sampler (see Section 2.7), to 

overcome the difficulties in computation. All the needed conditional posterior 
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distributions are derived in Section 4.3. In Section 4.4, we justify and demon-

strate the usefulness of the skewed model through some numerical examples. 

The last section offers some concluding remarks. To enhance readability BUGS 

routines developed for implementing the numerical procedures are deferred to 

the Appendix. 

4.2 Linear regression models 

Regression models have become an integral component of many data analyses. 

A quantity of interest is observed and its value is known to be aSected by other 

quantities, called explanatory variables or covariates. This quantity is referred 

to as the response or outcome variable and is regarded as random due to the 

sampling process and the natural variation of the population. Generally, the 

primary goal of setting up a regression study is to discover the association be-

tween the response variable and one or more explanatory variables using sample 

data. In nearly all apphcations of regression analysis, the precise relationship 

between these variables wih never be known. It is preferable and usually ap-

propriate to adopt a reasonably simple formulation so as to characterize this 

dependency. In this chapter, we restrict our attention to the simplest case where 

the inHuence of the explanatory variables is linear and additive on the mean 

of the response variable, which is assumed to be continuous. However, instead 

of considering the ordinary assumption of normality, we use the skew normal 

SNnew defined in (3.9) to model the conditional distribution of the response 

given the covariates. From now on, such a model will be known as the skew 

normal hnear regression model. 

Suppose the observed data ?/i, z = 1,-- - ,72, are an independent sample 

generated &om the regression model 

^ = (4.1) 

where E K'' are the values of A; explanatory variables for the z-th observation 

and = (/^i,-- - ,A)^ is a vector of regression parameters associated with 

these variables. The term g, is called the error or residual, representing the 
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variation of given the regressors around its expected value. The stochastic 

environment considered here is 

Si SNnew 

in which the residuals are independently, identically distributed random vari-

ables and are also independent of the regressors. An important implication of 

this assumption is that the conditional mean of l^|xj will be equal to xf/3 plus 

the average value of the error distribution. To parallel the conventional analy-

sis, the error distribution can be forced to take mean zero by suitably adjusting 

which is the intercept parameter of the regression model. 

Since the observations are assumed to be independent given x = (xi, - - - , x^)^, 

the likelihood function of the model parameters is obtained as the product of 

the individual density of the observable 7/, yielding 

^(/3, < |̂y, x) = %% A /3, (7̂ , j , 

where A(-) is stated in (3.9). Henceforth, in this section we condition on Xj 

without explicit mention. A prior distribution for the model parameters is 

needed to complete the specihcation of a Bayesian model. In our investigation, 

components of both and J are assigned independent normal prior distributions 

with large variances, and an inverse gamma distribution IG(u, u) with a small 

positive choice of is used as prior for <7̂ . More formally, the adopted joint 

prior distribution is given by 

(7̂ , 6) = X p((7^) X 

where and ^ are diagonal matrices with diagonal elements 10^°, — (^, 0, - - - ,0) 

is the sample mean), and i/ = 0.001. Thus cr̂ , 6) is chosen in such a way 

that it has little impact on the posterior analysis. 

According to the Bayes theorem (2.1), the joint posterior distribution of /3, 

cr̂  and 5 is simply proportional to the likelihood function times the joint prior 

distribution 

p(^, o-^,(^i,(^2|y)oc]J A 7/^1x^/3,0-^,^^^^^ xp(/3,(7^,6). (4.2) 
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Due to the complexity of the likelihood function, it is not possible to evaluate the 

marginal posterior distributions of the model parameters by analytical means. 

Hence, we resort to a numerical scheme known as Gibbs sampling (discussed 

in Section 2.7) to circumvent the calculational impediments. Our advocacy of 

the method rests essentially on its ease of implementation, yielding output from 

which functions of interest can be readily computed and inferences made. The 

necessary conditional distributions for use of the Gibbs sampler are obtained in 

the next section. 

4.3 Numerical implementation 

Because the skewing function of the samphng distribution (3.9) does not possess 

a closed form expression, it is not possible to obtain the required conditional 

distributions directly from (4.2). A better way to proceed is the following. 

Notice that the derivation of the samphng distribution allows us to alternatively 

express the skew normal hnear regression model in (4.1) as 

with 

Z, = I I - 1) and e - / /( / / , cr^), 

where Zj and are independent, and 6 = (<^1,̂ 2)̂ - Evidently, by treating the 

auxiliary variables Ẑ  as covariates, model (4.1) is seen to have an underlying 

normal linear regression model on the observations y = (2/1, - ' ' ,2/n)^- Thus 

casting the model in this form eliminates the need for the skewing function 

evaluations which in turn greatly facihtates the computation of the conditional 

distributions. 

Now the complete Bayesian model of all the unknowns (Z, /3, <7^, and S) 
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can be written hierarchically as 

Ar(x^/3 + 

Z,-7V2(0,I)7(z, >0) , 

T = ^ rx, r(z/,z/), 
(7'' 

6 - 7V2(0,^). 

The corresponding expression for the complete joint posterior density is then 

p(z, /3,0-^, 6|y) oc p(y|z, 6)p(z)p(^)p(o-=^)p((^). 

AU relevant conditional distributions can be easily obtained by regarding other 

observables and unobservables as constant. SpeciGcally, the conditional distri-

butions of the regression parameters take the form 

: a f AT 

For the scale and skewness parameters we obtain 

j Ij • • • ! 

r 
1 

a-" 

n 1 
1^, 6, z, y - r + I/, - ^(7/^ - x^/3 - + V 

i=l 

and 

: 5 f j } , z , y TV 
EILiiz/i - + 6j(zj)j}(z^ J/: 

• n 

Finally, Zj's have full conditional distributions defined by 

3/i -

j = 1, 2. 

Zi|/3,(7 ^ 7V2' 
+ (7̂  Ug / ' 

1 '6^ + (7' —(̂ 162 

(̂ 1 + 2̂ + (7̂  I — + (7̂  
> 0). 
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These distributions are all of standard functional forms in which sample gen-

eration is relatively straightforward. So, Gibbs sampling can be easily imple-

mented. 

Before proceeding with the examples, there is still a technical issue needing 

to be addressed. The roles played by the two skewness parameters in S N n e w 

are exchangeable, thus allowing their Gibbs realizations to travel from one's 

target distribution to the other. This sort of behavior will cause severe identi-

Gabihty problems in determining the true marginal distributions of and <̂2-

Bimodality will, not surprisingly, be a typical characteristic in the estimated 

posterior densities. As a consequence, point and interval estimations based 

upon such marginal distributions can be rather misleading about the actual 

distributional structures. To resolve this we adopt the following simple strategy 

in all examples subsequently analyzed. When the estimated marginal posterior 

distributions are bimodal with relatively neghgible probability mass in between 

the modes we recommend using the following steps: 

1. Rearrange the MCMC simulated values by setting 

# 6^^ = max((5p\(^^^) and 

* 6^^ =min(^^\62''^), 

where j = 1, • • • ,t represents j th cycle of the Gibbs sampler. 

2. Carry out all marginal calculations using the resulting samples. 

This re-estimation proposal should be exercised prudently as it can have an ad-

verse effect in other situations. For example, it is quite plausible that we might 

have skewness parameters with identical true value. Two unimodal marginal 

distributions (estimated using the original Gibbs outputs) will then be encoun-

tered. These should themselves provide a good approximation to the under-

lying distributions, thus there is no benefit in using the proposed scheme. In 

the case where there are two distinct but close modes in the original marginal 

distributions, the above approach will inevitably lead to densities with obvious 

truncations. So, neither the original nor the re-estimated marginal distribu-

tions are representative of the actual distributions. Use of a joint marginal to 
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make probability statements will be more sensible in this situation. However, 

visual inspection of the original marginal distributions is recommended before 

choosing an appropriate estimation method. 

4.4 Examples 

To illustrate the proposed methodologies, the Bayesian model described in Sec-

tion 4.2 is used for the analysis of some real data sets. It is of interest to judge the 

appropriateness of new sampling distribution SNnew in modeling non-Gaussian 

data and compare it with other existing skew-normal distributions. A total of 

four sampling models have been fitted to each of the following examples. BrieHy 

they are S N n e w in (3.9), SNg^y in (3.8), SN^pn hi (3.10) and the usual normal 

model. Legitimate comparison is ehcited by allocating /3 and (7̂  in the latter 

models the same prior distributions as those specified in Section 4.2. The re-

maining parameter S is given the 7V(0,10^°) prior under the SNg^y model whilst 

a-priori 6 A/^(0,10^°)/((5 > 0) is specified for the SN^p^^ model. The Gibbs 

sampler outlined earher has been executed by using the WinBUGS software. In-

ferences are based on 200,000 sequential version of Gibbs realizations, following 

a burn-in period of 10,000 iterations to mitigate the impact of starting points. 

4.4.1 Example 1: Non-academic scores 

Data 

Skewness of a sample distribution is often a consequence of screening operations 

in which experimental units are included in the study only if they have achieved 

certain pre-specified requirements. The particular data set that we consider here 

concerns admission to a Welsh medical institution in 1996. Non-academic scores 

for home applicants meeting the school academic criteria were recorded after 

reading the corresponding Universities &: Colleges Admissions Service (UCAS) 

application forms. (UCAS is the central organization that processes apphcations 

for fuH-time undergraduate courses at Great Britain universities and colleges.) 

Candidates who failed the non-academic standards would be screened in the 

next level of selection process. The objective of the investigation is to determine 
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the group of students that is least hkely to be successful in this stage of their 

apphcation. Accordingly, our response variable Y is the non-academic scores of 

n = 777 individuals, and the covariates of interest include: number of GCSE A 

grades 2:2, race (white or non-white) 3:3, age in years Z4, and predicted/achieved 

A Level examination points 2:5. Interaction between number of GCSE A grades 

and age a;6 = a;23;4 is also embraced in the analysis, since it is a significant 

predictor in classical normal regression. Note that GCSE, stands for General 

Certificate of Secondary Education, is a national school examination in Britain. 

A summary illustration of the data is provided by Figure 4.1. The diagram 

demonstrates significant skewness in the non-academic distributions for both 

groups of students. As a result, a normal model may not adequately fit the 

data in this occasion. 

§ % 

Whi te Non-white 

Figure 4.1; Boxplots of non-academic scores for different races. 

Convergence diagnostics 

The Gibbs sampling scheme is used to fit the skew normal linear regression 

model (4.1) to the non-academic scores data. We standardize all continuous 

covariates to help stabilize the posterior computations. It is recalled that a 
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complete implementation of the algorithm still requires the assessment of con-

vergence. In this regard, we consider the following simple graphical technique 

that, though naive and less rigorously dehned than might be desired, has proved 

successful in a considerable number of apphcations. 

1. Run several (two to five) pilot independent chains with over-dispersed 

starting points and different random-number seeds. 

2. Visually monitor these simulated sequences by overlaying their traces on 

the same graph for each parameter (or a representative subset of param-

eters). 

3. Convergence is assumed when the simulated values mix together and settle 

around common values. Increase the number of drawings if this is not the 

case. 

In the current example, the above method provides indication of satisfactory 

convergence after around 9000 cycles, which is less than the number of itera-

tions intended to be discarded. This slow convergence behavior is caused by 

the lackadaisical movement of the simulation algorithm. In other words, there 

are strong positive autocorrelations between the successive iterations. Similar 

impression can be obtained from the after convergence samples shown in Fig-

ure 4.2. Accordingly, our single Gibbs cycle needs to be run a large number of 

times so as to appropriately cover the entire parameter space. Although retain-

ing sample chain values at every A;th cycle can reduce the first order dependence 

of the Markovian sequence, we have not found it useful as no efficiency is gained 

in posterior estimations. 

Results 

Table 4.1 reports the parameter estimates for all four models under consider-

ation. Inspection of the table indicates little alteration in the estimates of 

and but Inferences on /)2, A a,re noticeably affected by allowing for 

skewness. A closer examination reveals that the posterior mean of the latter pa-

rameters are very close to zero under the skew normal models. In other words. 
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Figure 4.2: Times series plots for some model parameters in the non-academic scores ex-

ample. 
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01 A A /)4 A A 0-2 S or (5i S2 

Normal 25.1 1.51 -0.91 0.40 0.05 -0.05 9.36 - -

(0.123) (0.377) (0.278) (0.106) (0.017) (0.020) (0.478) 

SNgdb 26.2 1.07 -0.87 0.29 0.05 -0.03 3.71 -3.90 -

(0.217) (0.387) (0.260) (0.111) (0.016) (0.020) (0.550) (0.253) 

S ^ t p n 26.4 1.04 -0.94 0.29 0.05 -0.03 8.21 0.75 -

(0.260) (0.388) (0.261) (0.111) (0.016) (0.021) (0.487) (0.039) 

SNnew 26.92 0.93 -0.89 0.27 0.05 -0.03 1.16 -4.20 1.88 

(0.793) (0.403) (0.253) (0.110) (0.017) (0.021) (1.184) (0.327) (1.140) 

Table 4.1: Parameter estimates and the associated standard deviations (given in parenthe-

ses) for the non-academic scores example. 

the covariate effects are attenuated by assuming skewed models. Further insight 

into the behavior of these parameters is obtained through graphical represen-

tations of their marginal densities in Figure 4.3. As shown in the diagrams, 

the marginal posterior distributions based on and SN^pn modeling are 

remarkably cohesive. Interestingly, there seems to be evidence of association be-

tween samphng model Bexibihty and marginal locality (simpler sampling model 

possesses marginal distributions that are farther &om zero). One concern in the 

plots is the effect of the interaction variable on the analysis. The skewed sam-

pling assumptions induce to have substantial posterior mass around zero, 

thus lessening the interaction variable momentousness in predicting the non-

academic scores. Therefore, according to the skewed normal models, there is an 

improvement in regression additivity in the sense that the main covariates are 

emphasized relative to the interaction. 

On the basis of the 95% credible intervals, it appears that modeling using 

different versions of error distribution can have considerable influences on the 

posterior of This is not surprising because is not the true regression 

intercept in the skew normal cases. From the theoretical results in Chapter 3, 
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Figure 4.3; Marginal posterior densities of /?2, A and (5q for the non-academic scores 

example. 
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one can express the actual intercept parameter a as 

1 
^^ tpn -

SN new a — /3i + (^1 + ^2)\j^-

Thus a meaningful location comparison should be obtained via a instead of 

/?!. Markov chain simulations of the intercept are readily computed from the 

existing Gibbs output. The resulting a estimates for SNg^]^, SN^p^ and SNnew, 

together with their estimated standard deviations in parentheses, are given by 

25.1 (0.122), 25.0 (0.126), and 25.1 (0.122) respectively. As expected, these 

values are in good agreement and are consistent with the findings in the normal 

model. 

Consider now the inferences on the shape parameters: and J. Table 4.1 

shows notably different estimates of under the normal model as compared 

to the skewed models. This is justifiable since the parameter has dissimilar 

interpretations for all these models. Variability of the data is represented solely 

by (7̂  in the normal case, but non-zero skewness parameter(s) also share part 

of the variability in the skew normal cases. This distinction has made the 

estimated parameter values not comparable. Posterior estimates of 5 for both 

^^tpn ^^sdb reiterate the finding evident from Figure 4.1, i.e. moderate 

right skewness is present in the data. Statistical significance of the parameter 

under the two models reinforces the fact that normal family would be unsuitable 

for modeling the original non-academic scores. The reported and 2̂ estimates 

(successfully obtained using the approach described in Section 4.3) are also 

signiGcant ajid lead to similar conclusion. 

Model comparisons 

To assess model adequacy, Figure 4.4 displays the data histogram with superim-

posed posterior predictive densities under each of the four models. All skewed 

models seem to provide an adequate fit to the non-academic scores, with the 

predictive from SNnew most closely resembles the histogram. Observe that the 
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Figure 4.4; Histograms of the non-academic scores for both the races with superimposed 

posterior predictive densities under the S N n e w , S N g ^ y , S N ^ p ^ and normal models. 
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SNnew S^sdb ^^tpn Normal 

SNnew 1 4.76 5.92E3 4.87E8 

®^sdb " 1 1.24E3 1.02E8 

^^tpn " - 1 8.23E4 

Normal - - - 1 

Table 4.2: Bayes factors based on the Laplace-bridge method for non-academic scores data. 

Entry {i,j) indicates the evidence in favor of model i versus model j. (Note: KEH = Sftx 10^.) 

predictive distribution under the normal model needs to be shifted to the left 

in order to account for the skewness in the data. This has an adverse effect 

on the model ability in capturing the peak of the histogram. A formal model 

comparison can be conducted through the use of Bayes factors. We compute the 

criterion by exercising the methods advocated by Meng and Wong (1996) and 

DiCiccio, Kass, Raftery and Wasserman (1997). Table 4.2 hsts the resulting 

Bayes factors. JeSreys' scale of evidence in Table 2.1 is employed to facilitate 

the interpretation of the criterion values relative magnitudes. The upshots in-

dicates a dramatic improvement in the skew normal fits over the normal ht. In 

addition, SN^ew is substantially better than SNg^^y, which is in turn deSnitely 

preferable to SN^p^. Hence, the Bayes factor approach selects SNnew Eus the 

best model for the empirical data. 

Conclusions 

The analysis based on our best model SNnew suggests that non-academic scores 

are strongly related to number of GCSE A grades, race, age and number of pre-

dicted/achieved A Level points. Individual scores improve with GCSE results 

at approximately 0.93 credit for each A grade. Good non-academic outcomes 

are more prevalent among white students, who have 0.89 higher scores than 

non-white candidates generally. Age of the apphcants also have a positive im-

pact on the non-academic totals. The relative increment is about 0.27 unit per 

age year. As for the GSCE results, number of predicted/achieved A level points 
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is positively related to the non-academic outcome. However, the magnitude of 

inSuence is much smaller, approaching 0.05 score for each A level point gained. 

The analysis indicates no evidence of association between the response and the 

interaction efFect, contradicting the upshot under the normal regression model. 

Putting these results together, we conclude that young non-white students with 

unfavorable GCSE and A level outcomes are those most probable to achieve 

inferior non-academic scores. 

4.4.2 Example 2: Martin Marietta data 

Data 

Our second example is based on the data set reported in Table Al of Butler 

a/. (1990). It contains records of monthly excess rate of return on equity for 

the Martin Marietta company, y, as well as the excess rate of return for the 

New York market as a whole, z, in the years 1982-1986. The primary objective 

of the study is to characterize the dependence of ?/ on a;. An illustration of the 

data is provided in Figure 4.5, showing quite clearly that there is a relationship 

between the two variables. However, the plot also appears to indicate presence 

of distributional peculiarity, in which all prominent outlying points tend to 

recline above the main body of the data. As such, proceeding the analysis by 

using a normal linear regression model may prove to be inappropriate. This 

impression has motivated a comparison of the adequacy of normal model to the 

skew-normal models in the subsequent investigation. 

The simple linear model = a + -t- 6̂ , with 6* follows the S N n e w 

distribution, is used to 6t the Martin Marietta data. In order to conduct a 

comprehensive Bayesian analysis, we have employed the Gibbs sampling algo-

rithm for obtaining a simulated sample of size 200,000 from the corresponding 

joint posterior distribution. (The first 10, 000 iterations have been discarded 

ag a burn-in phase.) But much smaller MCMC drawings already lead to reh-

able results. Convergence of the Gibbs sampler has been assessed via methods 

mentioned in the previous example. There was no sign of any instability in the 

marginal density estimates, providing an indication for convergence. 
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N o r m a l 

Figure 4.5: Scatter plot and fitted lines for the Martin Marietta data. 

Results 

Table 4.3 contains parameter estimates for the skew normal SNnew linear re-

gression model. For comparisons, posterior results using the standard normal 

model and the other skew normal models are also included in the same table. 

A check on the estimated kernel density of has demonstrated evidence for 

bimodality with substantial probability mass rested between the modes. Thus, 

neither the original Gibbs estimates nor the proposed re-estimation scheme es-

timates are useful in summarizing the underlying distributional structure of 6% 

and 62 in this case, as remarked in Section 4.3. Rather than reporting their 

individual moments, we feel that a scatter plot of the simulated samples would 

provide a better picture about the distribution of these parameters. This is 

displayed in Figure 4.6. 

Apart &om revealing the strong correlation between the parameters, Fig-

ure 4.6 clearly illustrates an appreciable frequency of posterior drawings lying 

around the origin. This latter observation suggests that at least one of the 
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Model Parameter Posterior Posterior 95% 

Mean Standard Deviation credible interval 

Normal a 0.002 0.013 (-0.023,0.027) 

P L803 0.295 (1.224,2.382) 

0.0092 0.0018 (0.0064,0.0133) 

SNsdb a -0.093 0.014 (-0.120,-0.066) 

P 1.396 0.264 (0.868,1.910) 

&0017 oxmio (0.0006,0.0043) 

5 &133 0.019 (0.097,0.171) 

S^tpn a -0.070 0.024 (-0.121,-0.027) 

P L303 0.307 (0.667,1.855) 

0.0043 0IW16 (0.0008,0.0077) 

5 2.320 L181 (1.378,5.937) 

SNnew a -0.095 0.035 (-0.158,-0.028) 

P L416 0.269 (0.887,1.947) 

0.0015 0.0009 (0.0004,0.0039) 

Si NA - -

62 NA — 

Table 4.3; Parameter estimates under each competing model for the Martin Marietta ex-

ample. 
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Deltal 

Figure 4.6: Simulated values of the skewness parameters (i5i, ^2) in the Matin Marietta data 

example. 

skewness parameters is not needed to 6t the empirical data. In other words, 

it is enongh to consider a simpler model (normal or SNg^y) as the underlying 

data generating mechanism. However, from Table 4.3, the skewness parameter 

6 under the SNg j y model is estimated to be positive with 95% credible interval 

excluding the point zero. This delivers a clear indication of significant positive 

skewness in the residual distribution. Accordingly, it would be inadequate to fit 

the data using a simple normal model. Similar conclusions can also be obtained 

through examining the posterior estimate of J in the caae. 

It is of interest to check if the form of the assumed error distribution affects 

the inferences on the regression coefhcients. To this end, the estimated posterior 

densities of (3 and the true intercept a' under each of the four alternative models 

are displayed in Figure 4.7 for comparison. As seen in the diagram, SNg^y and 

SNnew lead to practically indistinguishable posterior distributions for intercept 

and slope, giving a further demonstration that the extra skewness parameter is 

not worthwhile in an overall quality-of-fit sense. While yields a similar 

finding for a ' (with mean = 0.013 and standard deviation = 0.012 across the 

three model), the kernel density estimate of the slope parameter is slightly 
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attenuated relative to those obtained from the other skewed normal models. 

Nevertheless, the most noticeable feature in the figure is the isolation of the 

posterior densities under the normal model. That is, our inference about the 

regression coefficients change greatly after allowing for skewness. 

To further quanti^ the difference between the normal and skewed specifica-

tions, regression hnes for each of the four competing models are superimposed 

on Figure 4.5. As expected, all skewed versions provide fairly similar fitted lines 

to the Martin Marietta data, especially as compared with that of the normal 

family. A closer inspection of the configuration suggests that the Stted line from 

the normal model is substantially influenced by the possibly aberrant point on 

the top right corner of the graph. Intuitively, asymmetry in the residual can 

be largely attributed to this outlying observation. Hence, because the normal 

distribution makes no aUowance for possible skewness, it needs to adjust its 

location in order to capture the observation in its upper tail. This also explains 

why the disturbance of the point seems alleviated under the skewed error as-

sumptions. It is, however, not possible to select the best fitting candidate model 

on the basis of such plots alone. 

Model comparisons 

A natural next step after model fitting is to examine issues relating to model 

adequacy and model choice. In order to investigate the former. Figure 4.8 

plots the posterior predictive densities for each candidate models, together with 

a histogram of the data. The observed data are shown as symbols on the 

horizontal axis. Notice that all skewed predictives appear to give a satisfactory 

overall representation to the underlying data. On the contrary, the normal 

model clearly induces a rightward shift and more dispersion in its predictive 

distribution, pointing to an inadequate description of the structures present in 

the data. Bayes factors are reported in Table 4.4 to facilitate model selection. 

It is interesting to observe that, despite the conclusions evident from Table 4.3, 

Figure 4.5 and Figure 4.8, this criterion actually expresses strong preference for 

the normal model. 

Although Bayes factor is a pure Bayesian tool for general model comparison, 
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N o r m a l 
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N o r m a l 

25 &0 

Figure 4.7; Kernel density estimates of the regression coefficients in the Matin Marietta 

data example. 
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Figure 4.8; Posterior predictive distributions for the models considered in the Martin Ma-

rietta data example. 

Bayes Factor <> Pseudo BF 

sdb SNnew SN, 

1 

]_57E6 1 

2.39E6 1.52 

4IWE8 256 

SN. tpn 

168 

Normal 

SNixew 

^^sdb 

SNtpn 

Normal 

SNnew 

1 

3.57 

®^sdb SNtpn Normal 

6.90 

24^ 

1 

3.63E3 

1.29E4 

526 

Table 4.4: Model choice for the Martin Marietta data. 



4.4 Examples 76 

it could be misleading in the present example. From Table 4.4, the Bayes 

factor in favor of to SNnew is calculated as 1.57 x 10^. Considering 

the similarity between these models in terms of overall fit, it seems that the 

criterion has allocated too much penalty for model complexity. As such, the 

choice of a suitable model is not immediately clear without undertaking further 

statistical investigation. Here we propose to work with the cross vahdation 

approach using pseudo-Bayes factor (PsBF) and conditional predictive ordinate 

(CPO), in aiming to identic a model that best explains the observed data with 

reasonable trade off against over-fitting. For ease of comparison, the PsBF's 

are also presented in Table 4.4. Evidence for skewness is quite emphatically 

pronounced under this criterion. Following JeSreys' scale of evidence, SNg j y is 

the best htted model, though the support for SNg j y is only marginally greater 

than SN^p^ .̂ 

Figure 4.9 graphically displays the individual CPOs to help understand bet-

ter the implications of PsBF's. Recall from Section 2.4 that larger value of CPO 

indicates more preference for a model from the corresponding observation. Thus 

it is apparent from the configuration that generally outperforms all other 

candidate models. In particular, there are 42 out of 60 observations which sup-

port SNgjy over SN^^p .̂ This conveys strong evidence in favor of the former. 

Moreover, there seems to be significant improvement in moving from the nor-

mal to SNg^y, but not in going &om SNgj]^ to SNnew- The CPOs resulting 

from using SNnew and SNĝ ŷ are very much alike, conGrming again the unwor-

thiness of the additional skewness parameter. In conclusion, according to the 

cross validation methods, SNg^y is the most appropriate model for the Martin 

Marietta data. 

Conclusions 

The New York market excess rate of return (ERR) is important in predicting 

the Martin Marietta company excess rate of return on equity. Referring to our 

best model SNg , they are associated via the following formulation: 

Expected company ERR on equity = 0.013 + 1.40 * Whole market ERR. 
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Figure 4.9; Plot of CPO versus observation number for the Mar t in Marietta data example: 

0 =Normal, 1 = S N g , 2 = SN^ew, and 3 = SN^p^. 

Nevertheless, the data contains an outher suspicious of being responsible for a 

major part of the residual skewness. More data would seem the best arbiter of 

whether this outlier corresponds to a maverick observation. If that is indeed the 

case, it might be preferable to have the observation removed from the analysis. 

This is likely to give rise to quite diSerent statistical conclusions. However, in 

the absence of such information, we do not consider there is suGicient evidence 

to cast doubt on the appropriateness of the specification. 

4.5 Closing remarks 

Our eSorts in this chapter have essentially been focused on linear regression 

modeling through the use of SNnew- Naturally in a regression problem, numer-

ous distributions are possible candidates but SN^ew is intriguing in a number 

of respects. 

e The family shows promise with its Sexibility to yield significantly bet-
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ter fits than other existing skew normal distributions. It eidapts itself 

to accommodate skewness or knrtosis whenever a data possesses these 

characteristics. 

# Model 6tting is performed on the original scale of the data. This may 

lead to a more meaningful interpretation of the quantities involved. 

# Empirical analysis based on MCMC methods is quite attractive. In par-

ticular, Gibbs sampling can be easily implemented using publicly available 

software BUGS. 

Therefore, S N n e w provides a viable alternative to the symmetric normal distri-

bution often assumed in regression analysis. 

Still it might be meaningfiil to consider re-expressing the skewed distribution 

in terms of explicit skewness and kurtosis parameters. Such approach would per-

mit all model parameters to have clearer defined modeling purposes, i.e. each of 

them are now intuitively interpretable. The approach may also grant a radical 

solution to SNnew identiSability problem in Gibbs sampling, but this requires 

thorough investigations. We should not pursue reparameterization further here 

since it is beyond the scope of the present research. We remark that SNnew 

endures no fat tails per se, which makes the distribution unsuitable for predic-

tion of extreme outcomes. Faced with this situation, data analysts are advised 

to turn to other members of the skew elliptical family (3.4). A useful choice 

in this context would be the skew-t distribution, see, for instance, Sahu et al. 

(2003). 



Chapter 5 

Applications to variance 

components models 

5.1 Introduction 

This chapter further illustrates the use of the skew-normal distribution in re-

ahstic modeling. The statistical problems of interest here are concerned with 

variance components. In particular, our main purpose is to develop skew mod-

eling of random eSects for the balanced one-way classification. All discussions 

are within the Bayesian framework, with the Gibbs samphng scheme (see Sec-

tion 2.7 for details) being adopted to obtain marginal inferences about the 

general mean and the components of variance. Bayesian approach for estimat-

ing the variance components has several practical advantages over the samphng 

theory methods. Firstly, there is no such issue as a negatively estimated vari-

ance under the Bayesian paradigm. Secondly, posterior credible intervals are 

never empty or contain negative values. Thirdly, experimenters can report the 

whole posterior distribution and, with little computational effort, make some 

measure for posterior precision. These superiorities justify the consideration of 

the Bayesian procedure. 

The remainder of the chapter is structured as follows. Section 5.2 intro-

duces the variance components model. Wis model random e%ct using SNg^y 

distribution (3.8) but exercise the customary normality assumption on the error 

term. The prior distributions are discussed in Section 5.3. Full conditional den-
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sities essential for implementing the Gibbs sampler are detailed in Section 5.4. 

Section 5.5 takes up illustrations baaed on simulated data sets generated using 

varying amount of information. The results are contrasted with those acquired 

under symmetric normal random eSects. FinaUy, in Section 5.6, major Endings 

of the chapter are summarized. The pertinent BUGS codes are placed in the 

Appendix. 

5.2 Variance components models 

Sets of observations are frequently obtained in clusters. For instance, the clus-

tering may be due to subsampling of the primary samphng units, or to repeated 

measurements on a collection of individuals. Such data require special treat-

ments for handhng the correlations which typically present among the responses 

in the same group. The customary approach for analyzing clustered responses 

is to introduce as covariates a set of classifying variables into the traditional 

regression specification. More formally, in its simplest non-trivial setup, the 

linear model holds the form 

Yij — -\- £ij, i = 1, • • • , I] j — 1, • • • , J, (5-1) 

where 3̂ ^ represents the j th observation in the ith group, // is a common lo-

cation parameter, symbolizes the eSect associated with the zth group, and 

Eij characterizes the deviation of the (%, j ) th observation from the structure of 

the model // -t- Pi. Intrinsic to the idea is that, by conditioning on the indicator 

variable pi, independence of g ĵ 's may now become a realistic assumption. 

The term Qi can be treated as either an unknown constant or a random 

variable. The former arises when the particular clusters occurring in the ex-

periment are of primary interest, i.e. our principal purpose of the analysis is 

to measure and compare their effects. In the alternative scenario, experimen-

tal concentration hes, rather, in drawing inferences about the whole population 

from which groups in the data are considered as a random sample. Nothing 

important has conditioned our choosing any one group over another, and there 

is no particular interest in specific comparisons between the selected clusters. 

It is with such random nature that this chapter is concerned. The classifying 
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variable is commonly referred to as random effect in this context. Accord-

ingly, the resultant model (5.1) is called a random effects model, or sometimes a 

variance-components model. This latter terminology emerges Arom the following 

relationship 

= yar(pi) -t-

Hence the respective dispersion measures of error terms and random e^c t s are 

'variance components' of the responses. 

Like other parametric models, model (5.1) requires assumptions about the 

observations before proceeding with any statistical analysis. In the current 

case assumptions must be placed upon the distributions of both p* and Sij. 

Most investigators specif a normally distributed random effect in their analysis. 

However, when robustness to asymmetry is a concern, use of a distribution that 

gives Sexibility to cope with possible skewness seems more appropriate. In 

what follows, attention will be directed at modeling using the skew normal 

distribution SNgj]^. We keep the conventional assumption of normality for the 

residual 6̂ .̂ It is also necessary to assume that both clusters and observations 

within clusters are randomly sampled. To summarize: 

(0,(^,(7^), and 

Ar(0,(7^), 

for which and are mutually independent. 

The likelihood function for the above model is easily written down, viz 

^ ^ ^ (5.2) 

%% /i(^i|0, (Tg, (̂ ) j (Zpi - " 

where (^(-) denotes the normal density fimction and /i(-) is the pdf of the skew 

normal distribution given in (3.8). A fuh Bayesian analysis demands the speci-

Gcation of suitable prior densities for aU model parameters. Leaving our choice 

of prior initially as p(//, cr̂ , 6), the joint posterior distribution becomes 

p(//, ( |̂y) oc z:(//, (^|y)p(//, <7̂ , (7̂ !, (̂ ). 
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Interest in this type of study often centers at variance components and overall 

mean. Here, these are defined by 

Within cluster variation = Cg 

Between cluster variation + <̂ (̂1 — 2/7r) 

[2 
General mean :a = jj + S\ 

V TT 

Wie propose to use the Gibbs sampler for obtaining the desired marginal poste-

rior distributions. 

5.3 Prior distributions 

Consider the following hierarchical interpretation of the hkehhood (5.2). 

Z j -N(0 ,1)7(2 , . > 0 ) . 

Introducing Zj into the variance component model ehminates the need for eval-

uating the skewing functions of As a consequence, conditional densities 

used in the Gibbs sampler can now be derived straightforwardly. More precisely, 

they are all proportional to the complete joint posterior given below. 

P(z,g,//, < |̂y) oc P(y|g, (;Dp(g|z,(^)p(z)p(At, C e , < ^ ) -

The choice of individual prior distributions is now discussed. We assume a 

priori that all model parameters are independently distributed, i.e. 

P(/^, 

Although a great variety of continuous densities can be specified, we embrace a 

widely used conditional conjugate prior for the unknowns, taking 

^ A (̂0, w) 

Tc = ^ - r(i/, v) 

Tg = ^ - r(K, K) 

(5 ^ jV(0, '^). 
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In eliciting the hyperparameters, our objective is to keep the prior information 

ag vagne as possible so that posterior inference is not driven by the prior. The 

values of both z/ and K are set at 0.001, thus leading to a prior spread of 1000 

for the inverse variances The specification is completed by picking the 

hyperparameters w and to be 10^°. 

5.4 Full conditional posterior distributions 

Now it is easy to veri^ that in each iteration the Gibbs sampler draws samples 

from the following full conditional distributions: 

2 ^ . AM cr, UJ 

7 Jw + cr̂  ' 7 Jw + cr̂  

^ Z, g ^ r ^ - + K, - , 

2 . (̂ |(7 ,Z W 
. E i E i ' 

E ? ( % - ;̂ ) + .2^2 

While conditional conjugacy simphfies the Gibbs sampling implementation, it 

is not an essential element in the analysis. Other form of priors could as weU 

be employed if so desired. 

5.5 Simulation study 

Data sets 

In order to assess the potential of the skewed random eEect model (5.1) in 

data analysis, we have conducted a simulation study. A total of 16 data sets 



5.5 Simulation s tudy 84 

rejecting different amount of statistical information were generated. Number 

of groups was chosen to be / = (10,50,100,200), and observation numbers per 

cluster J took the values (5,10,20,50). Thus the smallest data set comprised 

10 groups of 5 observations each; the largest one were made out of 10,000 total 

data points. Data were drawn randomly from model (5.1) using parametric 

values of = 0, = 1, <7̂  = 0.1 and = 2 respectively. This imphes a 

highly skewed group effects Pi (index of skewness equals 0.9) with true between 

clusters variation yar(^i) = 1.55 and overall mean a = 1.60. Our principal 

focus is in making inferences about the variance components [yor(6ij), yar(gi)] 

as well as the general mean a. As such, no attention wiH be paid hereafter to 

the parameters //, cr̂  and 6. 

For each simulated data set, the Gibbs sampler was run in WinBUGS for 

210,000 cycles. Allowing an initial transient phage of 10,000 realizations, poste-

rior inferences are based upon the latter 200,000 Gibbs iterations. We monitor 

the iterative process by observing the raw trace plots of [yar(6ij), yar(^i)], and 

a in a univariate fashion. Typical sets of successive drawings are graphically 

documented in Figure 5.1. As seen in the diagram, sequence of chain values 

tend to concentrate around the same patterns. This qualitative behavior gives 

an indication of convergence for the quantities involved. 

Results 

Table 5.1 presents summary values of the numerical work. Posteriors of a are 

reasonably symmetric while those of yar(6ij) and yar(^i) can be very skewed 

with extremely long right tails. To see this more clearly. Figure 5.2 depicts box-

plots of the variance component marginals. For such asymmetric distributions, 

a median appears to be a better single summary measure than a mean, since it 

is less sensitive to strong skewness. Hence, we provide values of the posterior 

median in the table instead of the posterior mean. It seems obvious from both 

Table 5.1 and Figure 5.2 that yar(pi) is harder to estimate as compared with 

yor(eij). Marginals of the former exhibits significantly greater posterior un-

certainty for all simulated data sets. The variabUity is particularly noticeable 

for small number of clusters 7. This may be expected since the information 
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Figure 5.1: Post-convergence times series plots of general mean and variance components 

for the ( / — 50, J = 10) case. 

on yor(^i) is largely determined by 7 rather than the total observations. Ac-

cordingly, the posterior distribution of yor(^i) benefitted far more from adding 

groups into the experiment than from increasing group sizes. On the contrary, 

one gains more accurate inference for yor(eij) (and a) as / or J becomes larger. 

As mentioned earlier, normality is a popular assumption for the random ef-

fect Pi. It is now of practical interest to determine whether aaymmetry causes 

systematic diSerences between the two specifications for For comparative 

purposes, the prior distributions for the parameters present in the normal ran-

dom eSect model are kept the same as those described in Section 5.3. Table 5.2 

gives the parameter estimates for the normal model fitted to the simulated data 

sets. All estimates are again based on 200,000 post-convergence Gibbs reph-

cations. The results in Tables 5.1 and 5.2 indicate fairly similar findings from 

both models, especially when f is large. However, further examination shows 

that employing SNg^y random eSect leads to greater estimated medians for a. 

Notice also the shght reductions of y(zr(6ij) estimates under the skewed ver-
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G e n e r a l M e a n (q) Error T e r m ( a f ) R a n d o m Effec t (erg) 

Posterior 95% Credible Posterior 95% Credible Posterior 95% Credible 

I J Median (s.d.) Interval Median (s.d.) Interval Median (s.d.) Interval 

10 5 1.64 (0.62) (0.66,3.16) 0.75 (0.18) (0.50,1.21) 2.35 (2.50) (0.83,9.30) 

10 1.46 (0.47) (0.70,2.60) 1.14 (0.18) (0.86,1.55) 1.22 (1.43) (0.40,5.47) 

20 1.48 (0.49) (0.66,2.67) 0.99 (0.103) (0.81,1.22) 1.55 (1.62) (0.58,6.17) 

50 1.69 (0.56) (0.73,2.95) 0.95 (0.061) (0.84,1.08) 2.14 (2.02) (0.81,7.77) 

50 5 2.00 (0.20) (1.62,2.41) 0.94 (0.095) (0.78,1.15) 1.98 (0.50) (1.26,3.19) 

10 1.57 (0.19) (1.25,1.99) 1.08 (0.072) (0.95,1.24) 1.67 (0.43) (1.07,2.74) 

20 1.76 (0.23) (1.35,2.25) 0.99 (0.046) (0.91,1.09) 2.70 (0.61) (1.83,4.19) 

50 1.72 (0.20) (1.38,2.16) 1.05 (0.030) (0.99,1.11) 1.96 (0.44) (1.30,2.97) 

100 5 1.69 (0.15) (1.40,1.99) 1.02 (0.073) (0.89,1.18) 2.02 (0.37) (1.43,2.85) 

10 1.61 (0.13) (1.38,1.87) 0.96 (0.045) (0.88,1.05) 1.77 (0.28) (1.30,2.41) 

20 1.35 (0.13) (1.11,1.62) 0.94 (0.031) (0.88,1.00) 1.54 (0.27) (1.12,2.14) 

50 1.84 (0.13) (1.60,2.11) 1.00 (0.020) (0.96,1.04) 1.96 (0.31) (1.46,2.66) 

200 5 1.68 (0.093) (1.51,1.88) 0.99 (0.049) (0.90,1.10) 1.62 0121) (1.28,2.12) 

10 1.65 (0.089) (1.49,1.83) 0.99 (0.033) (0.93,1.05) 1.73 (0.20) (1.39,2.15) 

20 1.59 (0.088) (1.42,1.76) 1.00 (0.023) (0.95,1.04) 1.63 (0.18) (1.31,2.03) 

50 1.58 (0.085) (1.42,1.76) 1.00 (0.014) (0.97,1.03) 1.51 (0.17) (1.22,1.88) 

Table 5.1: Parameter estimates for the simulated examples under random effect. 
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Figure 5.2: Boxplots for marginal posterior of variance components under various com-

binations of sample size, where random effect follows the SNg^y distribution. The broken 

horizontal lines marked on each plot represents the respective population value of the variance 

components. 
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G e n e r a l M e a n ( a ) Error T e r m (aj) R a n d o m Effect (o-g) 

Posterior 95% Credible Posterior 95% Credible Posterior 95% Credible 

I J Median (s.d.) Interval Median (s.d.) Interval Median (s.d.) Interval 

10 5 1.41 (0.54) (0.33,2.48) 0.76 (0.19) (0.51,1.23) 2.27 (1.84) (0.90,7.33) 

10 1.34 (0.38) (0.59,2.09) 1.15 (0.18) (0.87,1.56) 1.07 (0.90) (0.40,3.56) 

20 1.33 (0.43) (0.47,2.19) 0.99 (0.104) (0.82,1.22) 1.50 (1.20) (0.63,4.77) 

50 1.56 (0.49) (0.58,2.53) 0.95 (0.061) (0.84,1.08) 2.00 (1.52) (0.86,6.12) 

50 5 1.91 (0.21) (1.49,2.33) 0.94 (0.096) (0.78,1.15) 2.03 (0.48) (1.34,3.21) 

10 1.53 (0.20) (1.14,1.91) 1.09 (0.073) (0.95,1.24) 1.75 (0.40) (1.17,2.74) 

20 1.59 (0.26) (1.08,2.09) 0.99 (0.046) (0.91,1.09) 3.13 (0.69) (2.15,4.83) 

50 1.56 (0.21) (1.14,1.98) 1.05 (0.030) (0.99,1.11) 2.18 (0.48) (1.50,3.36) 

100 5 1.67 (0.15) (1.38,1.97) 1.03 (0.073) (0.90,1.19) 2.01 (0.33) (1.49,2.76) 

10 1.58 (0.14) (1.31,1.86) 0.96 (0.045) (0.88,1.06) 1.85 (0.29) (1.39,2.51) 

20 1.34 (0.12) (1.10,1.59) 0.94 (0.030) (0.88,1.00) 1.49 (0.23) (1.13,2.01) 

50 1.84 (0.14) (1.56,2.11) 1.00 (0.020) (0.96,1.04) 1.92 (0.29) (1.46,2.58) 

200 5 1.68 (0.097) (1.49,1.87) 1.00 (0.050) (0.90,1.10) 1.64 (0.19) (1.32,2.06) 

10 1.65 (0.095) (1.46,1.84) 0.99 (0.033) (0.93,1.06) 1.70 (0.18) (1.38,2.10) 

20 1.58 (0.092) (1.40,1.76) 1.00 (0.023) (0.95,1.04) 1.63 (0.17) (1.34,2.01) 

50 1.57 (0.089) (1.39,1.74) 1.00 (0.014) (0.97,1.03) 1.54 (0.16) (1.27,1.89) 

Table 5.2: Parameter estimates for the simulated examples under normal random effect. 

sion. More formal comparisons between these models are disclosed in the next 

section. 

Model comparisons 

We utilize posterior predictive distributions to check the validity and adequacy 

of the fitted models. The results are summarized in Figures 5.3 - 5.6. For num-

ber of groups 7 = 10, predictive distributions Arom the two sets of speciScations 

seem not to differ too much. This is perhaps not surprising because 7 — 10 is 

of rather small sample size for an adequate fit of a SNg^j^ random effect. Only 

when number of groups is suSiciently large do discrepancies between the models 
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become apparent. In those cases (/ > 50), predictive densities assuming the 

skewed random eSect appear to follow satisfactorily the data histograms. No-

tice that predictive distributions yielded by the customary normal model have 

failed to take account of the positive data skewness and seem at odds with the 

histograms. These graphical diagnostics point to the inadequacy of the normal 

random e&ct approach in modehng the generated data sets. 
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Figure 5.3: Histograms and predictive densities of the simulated examples for Z = 10 

clusters: dotted curves correspond to model with normal random effect; dashed curves are 

for SNgj^ random effect model. 

The models are now formally compared through the use of pseudo-Bayes 

factor (PsBF). Figure 5.7 shows a plot of PsBF against cluster size J for var-

ious number of clusters I. As would be expected, the values of PsBF under 

each combination of I and J considered are all larger than unity, thus lending 

support to the random effect model. However, it is clear from the graph 

that evidence in favor of skewness is dependent on the amount of information 
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Figure 5.4; Histograms and predictive densities of the simulated examples for / = 50 

clusters: dotted curves correspond to the model with normal random effect; dashed curves 

are for SNgj^ random effect model. 
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Figure 5.5; Histograms and predictive densities of the simulated examples for I = 100 

clusters: dotted curves correspond to the model with normal random effect; dashed curves 

are for random effect model. 
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are for random effect model. 
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Figure 5.7: The pseudo-Bayes factor for the SNgjy versus the normal random effect models 

for different sample sizes. 

contained in the simulated data. Skewed random effect obviously enjoys the 

best diagnosis when / is biggest and J is smallest. In general, its superiority 

over the normal one rises as more groups becomes available but lessens with 

increasing number of observations within group. Deviance information crite-

rion (Die) given in Table 5.3 can be employed to confirm the above results. 

A small DIG value indicates a good model, see SpiegeUialter 6̂  o/. (2002) for 

a detailed discussion. For ease of comparison. Figure 5.8 presents a graphical 

illustration of the DIC disparity between the candidate models. The overall 

findings is essentially in harmony with the PsBF calculations. 

5.6 Summary discussion 

This chapter has presented Bayesian analysis of variance components model 

where random cluster eEect arises &om a distribution. Our empirical 

investigations demonstrate that the overall fit of data can be significantly im-

proved by using the asymmetric group effect instead of the popular normal 

assumption. The proposed model provides a much more accurate description 
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I J Normal DIG SNsdb DIG 

10 5 139.632 138.357 

10 30&351 307.216 

20 577J^8 57&388 

50 1403.720 1403.510 

50 5 742138 738.411 

10 1508.200 1503.330 

20 2880.990 2877.430 

50 7267.510 72&L320 

100 5 1525.650 1516.570 

10 2896.020 2887.050 

20 5651.600 564&350 

50 14277.700 14276.400 

200 5 3013.050 2997.160 

10 5840.880 5827.420 

20 1153L600 11525.900 

50 28580.000 28577.900 

Table 5.3; The DICs of different models considered for the simulated examples. 
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Figure 5.8: Difference in DIG between the SNg^^ and normal random effect models for 

varying number of groups and group sizes. 

of the generated data sets, with predictive results very closely matching the 

underlying skewed histograms. A large number of clusters, however, is required 

to just i^ the use of S N g r a n d o m eEect. Pseudo-Bayes factor and deviance in-

formation criterion have been considered in connection to the problem of model 

selection. The degree of preference given by these model choice criteria is shown 

to be strongly related to the sample sizes. Although both criteria deliver no 

appreciable evidence in support of skewness when the number of observations 

within group is large, the new methodology may still be more appropriate owing 

to its superiority in terms of goodness of fit. 

The clear message is that the conventional normal variance components 

model does not always yield legitimate inferences for a given set of data. An-

alytical and empirical results here could provide a foundation for developing 

models which give a better approximation of reality. With group effects exhibit-

ing kurtosis and skewness beyond those permitted by the normal distribution, 

a more Gexible assumption, perhaps employing the SNnew or skew ( famihes, 

would seem necessary. Development for the SNnew random effect model should 

involve nothing new in principle, though at some computational expense. 



Chapter 6 

Applications to survival analysis 

6.1 Introduction 

Survival analysis is concerned with the modeling of time-to-event data. In 

general, the data consist of a response variable measuring the duration until 

some specified event and a set of explanatory variables thought to be associated 

with this event-time variable. It is the main purposes of a survival analysis 

to model the underlying event times distribution and to ascertain the relation-

ship between the response and the explanatory variables. This chapter employs 

methods analogous to the hnear regression approach in Chapter 4 for analyzing 

survival data. More precisely, we assess covariate effects on logarithmic trans-

formation of event times using a linear model representation with independent 

skew normal residual terms. Since it seems best to illustrate the construction 

of the statistical model in a particular example, we motivate the development 

with the laryngeal cancer data reported by Kardaun (1983). 

The outhne of the present chapter is thus the following. We start in Sec-

tion 6.2 by introducing the data set. Section 6.3 fully sets out a Bayesian model 

founded upon skew normal errors assumption in log time. We utilize a numeri-

cal procedure, namely the Gibbs sampler, so as to conduct posterior inference 

with this model. In Section 6.4, simulation results are presented and compar-

isons are made with the normal residual approach. Finally, Section 6.5 draws 

some comments concerning the proposed techniques. 
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6.2 The laryngeal cancer data 

The data set of interest here is quoted from Kardaim (1983). It comprises record 

on survival times of M = 90 male patients diagnosed with laryngeal cancer during 

the period 1970-1978 at a hospital in the Netherlands. Survival times reported 

measure the intervals (in years) between first treatment and either death or 

end of the study (January 1, 1983). The pertinent covariate information is 

contained in two variables: age at the time of diagnosis and stage of the cancer. 

The variable stage classifies the patients into four different groups according to 

the severity of the disease. More formally, it is a categorical variable taking 

four possible values: Stage 1, 2, 3 and 4 (ordered from least to most serious). 

There were 33 patients in Stage 1, 17 patients in Stage 2, 27 patients in Stage 

3 and the remaining 13 patients were in Stage 4. Interest of the study centers 

on the effects of stage and age on survival time. As preliminary analysis of 

the data, Figure 6.1 depicts the Kaplan-Meier survival function estimates for 

patients within each of the four stages. By definition, the survival function 

is simply the probability of surviving beyond time t. Thus the curves indicate 

that individuals in higher stages of the cancer tend to have a shorter hfetimes on 

average. To conErm this, we shall conduct a comprehensive Bayesian analysis 

for the laryngeal cancer data in the coming sections. 

6.3 Model specification 

This section discusses a statistical formulation for the above problem. Let Ti 

be a nonnegative continuous random variable representing the survival time of 

the 2th patient, i = 1, - - - , n. Denoting the covariate values by 

= lif the zth patient is in stage 2, 0 otherwise; 

Zis = llf the zth patient is in stage 3, 0 otherwise; 

= lif the zth patient is in stage 4, 0 otherwise; and 

= age of the zth patient, 
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Figure 6.1: Kaplan-Meier survival curves for larynx cancer patients. 
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we assume that the data set is a realization from 

yi = log(7; )=xf /3 + ei 
(6.1) 

Here ,8 is the vector of regression parameters and typiGes the discrepancy 

between a transformed observation log(ti) and xf/3. The most common distri-

butional assumptions for the random disturbance include the normal, the lo-

gistic and the extreme value families. In the present investigation, we consider 

an alternative density specification using that of a skew normal distribution. 

Formally, 

e i^SNgjy(0,J , (7 )̂, z = 

Note that the reason for modehng log(T) instead of T is to ensure a positive 

estimation on survival times. 

Model (6.1) is, iu effect, equivalent to the regression model in Chapter 4. 

However, the method of analysis is not as straightforward due to incomplete 

survival information on some individuals. For patients who were still alive at 

the termination of data collection, we know the lower bound of their survival 

time but not the actual time to death. Such partial observation of event time, 

called right censoring, has to be handled properly. Simply ignoring the censored 

measurements or treating them as if they were uncensored could lead to substan-

tial biased results. For more details on censoring, see Klein and Moeschberger 

(1997). 

Likehhood function of the model parameters 0 — (/3,cr^,6) is derived as 

follows. Suppose that the skew normal probability density function and dis-

tribution function are denoted by h{-) and H(-), respectively. When corre-

sponds to an observed death time, it contributes a term = log((i)|0} to 

the likelihood in the usual way. If represents a censoring time, then what 

can only be sure of is that 7̂  > In other words, the contribution becomes 

1 — = log(^i)|0}. Thus the overall likehhood can be written as 

i = l 

where signifies a censoring indicator taking value one if the zth patient died 

during the study and zero otherwise. 
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We adopt the Bayesian approach to make statistical inference. Hence, model 

speci6cation is completed by placing a suitable prior distribution on For 

illustrative purposes, assume that all components of 0 are independent a-priori 

taking 

= p(/3) X p((7^) X p(J). 

We continue to use normal priors with mean zero and variance 10^° for each 

regression coefficient j = 1, - " ,5. The parameter cr̂  is given the proper 

inverse gamma prior distribution /G(10~^, 10^^) as in Chapter 4. Finally, prior 

opinion about (5 is modeled through 7V(0,10^°). Notice tha t large variances are 

specified so as to represent lack of prior knowledge about the model parameters. 

This prior selection may be slightly unreahstic, but we work with them for easy 

of computations. 

Simple use of the Bayes theorem (2.1) reveals the expression 
n. 

0-̂ , (^,Xj|y) oc (7̂ , (^)} '̂{1 /3, (7 ,̂ xp(^ , (̂ ). 
i=l 

This joint posterior density is rather comphcated to allow exploration using ana-

lytical techniques, so numerical methods have to be used instead. Our approach 

to posterior inference is based upon the Gibbs sampler with data augmentation. 

The Markovian updating scheme proceeds as below. 

1. Fix j = 0 and initiate the chain with a random guess, say, 

2. If (i 0, draw 2/new,i from /i(?/new|^^'^^) such that exp(^iiew,i) > 4, 

i = 1, - • • ,n. 

3. Impute ^new,i for each of the censored i/,. Denote the new 'complete 

transformed data' by y*. 

4. Draw 6^^^ from p{0\y*) via the usual Gibbs sampling procedures. 

5. Repeat steps 2-4 for j = 1, - - , J . 

Linear regression structure on Y — log(T) means that p(^|y*) bears precisely 

the same form as the posterior distribution in Chapter 4. So, details about the 

relevant fuU conditional posterior distributions is omitted here. 
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Figure 6.2: Post-convergence sequence plots of certain model parameters for the laryngeal 

cancer example. 

6.4 Inferences 

Model (6.1) can be Gtted using general purpose Gibbs sampling software WinBUGS. 

We have checked convergence by exercising the graphical methods described in 

Section 4.4.1. The approach did not detect any problem in convergence. Some 

successive MCMC outputs are displayed in Figure 6.2. As a summary of the 

replication outcomes, Table 6.1 tabulates the estimated posterior mean, stan-

dard deviation and 95% credible interval of regression coefficients and shape 

parameters. These statistics are acquired from 200,000 simulated values after 

a burn in of 10,000 iterations. In order to find out how skewness affects the 

posterior results, we consider model under normal error assumption for com-

parison. For ease of referring to, such normal error model will be called (as is 

customary) the log-normal model, and the name log-skew-normal will be given 

to our proposed model henceforth. Prior distributions set for (3 and in the 

previous section are again employed in the log-normal model. This serves to 

keep the prior information as consistent as possible in the comparison sense. 



6.4 Inferences 102 

Log-normal Log-skew-normal 

Posterior 95% credible Posterior 95% credible 

mean (s.d.) interval mean (s.d.) interval 

(true intercept) 3.55 (1.03) (1.60,5.63) 3.43 (0.98) (1.62,5.48) 

/?! (stage 2) -0.18 (0.48) (-1.13,0.78) -0.14 (0.51) (-1.12,0.95) 

/32 (stage 3) -0.93 (0.40) (-1.72,-0.15) -0.78 (0.42) (-1.63,0.01) 

;83 (stage 4) -1.90 (0.48) (-2.88,-0.97) -1.73 (0.47) (-2.74,-0.90) 

/)4 (age) -0.02 (0.01) (-0.05,0.01) -0.02 (0.01) (-0.05,0.01) 

0-2 1.90 (0.45) (1.21,2.95) 0.70 (0.74) (0.001,2.34) 

(5 -1.07 (1.29) (-2.35,2.23) 

Table 6.1: Parameter estimates from normal error and skew normal error models in the 

larygeal cancer study. 

Sample-based estimates from the log-normal model are summarized in Ta-

ble 6.1 also. As the table indicates, both alternatives lead to reasonably cohe-

sive inference on regression coefEcients. However, a reinspection of the Endings 

shows that all Gve coeSRcients are sHghtly attenuated after accounting for skew-

ness. Figure 6.3 pictorially demonstrates this pattern for several parameters. 

Noticeably, the estimate of is smaller under the skewed model. Such reduc-

tion is anticipated since the non-zero skewness parameter also explains some 

variability of the residuals. According to the 95% credible interval of 6, the 

skewed modeling seems not worthy in improving the overall 6t to the data. Di-

rect examination of the marginal density in Figure 6.4 provides new perspective, 

however. It turns out that the posterior of S shrinks towards a negative value 

but endures an exceptionally heavy upper tail. In view of the location of the 

clear maximum, introducing skewness in data Btting could be important. 

We consider L^-criterion defined by (2.6) in connection to model determi-

nation. The L^-criterion value for the log-skew-normal model is 258.6. On the 

other hand, the log-normal case leads to = 280.0, which is 21.4 calibration 

units larger. The information suggests that model (6.1) is the more likely gen-

erating mechanism despite of the statistical insignificance of In an attempt 

to check the quality of model fit, we compare the non-parametric Kaplan-Meier 
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Figure 6.3: Estimated marginal posterior densities for /Jg (true intercept), /3i and /Js in the 

laryngeal cancer example. 



6.4 Inferences 104 

Figure 6.4: Kernel density estimate of skewness parameter for the laryngeal cancer example. 

survival function with the relevant predictive estimates. Note that it is in-

validated to use data histogram as benchmark for assessing model adequacy 

because of the censoring involved. Consequently, we have to resort to the non-

parametric outcomes as a rough guide. The survival curves are reported in 

Figures 6.5 and 6.6. Predictive survival functions under the skew normal error 

specification looks quite in line with the non-parametric ones, hinting an ap-

propriate summary for the data. The log-normal model yields almost identical 

predictive curves as those obtained from model (6.1) for the first two stages, 

but it appears to produce relatively inferior estimates for the other cases. 

Summing up, our fitted regression line under the preferred log-skew-normal 

model is expressible as 

E{log(T-)} = 3.43 - 0.14Xi - O.TSXz - 1.73X3 - 0.02%4. 

The negative values for the coefficient of Xi, X2 and X3 indicate that patients 

in stages 2 - 4 have shorter hfetimes than individuals in the reference group 

(stage 1). In addition, the chance of dying is greater for persons with higher 

stage of laryngeal cancer. These conclusions are essentially in agreement with 

the content of Figure 6.1. However, by considering the pertinent 95% credible 

intervals, it is determined that times to death only differ substantially between 
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Figure 6.5: Predictive survival curves for larynx cancer patients in Stages 1 and 2. 
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Figure 6.6; Predictive survival curves for larynx cancer patients in Stages 3 and 4. 
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stages 1 and 4 cancer patients. Specifically, the average survival time of a 

person in stage 1 is about 5.64 (% exp(1.73)) times the same for a stage 4 

disease individual. Patient's age at diagnosis also has some negative impact on 

time to death. Nevertheless, the effect seems not statistically signihcant since 

the 95% credible interval of ^4 includes the point zero 

6.5 Summary and conclusions 

In this chapter, we have proposed the use of log-skew-normal model for mod-

ehng univariate survival times. Our approach to analysis was illustrated in 

detail with the laryngeal cancer example. Although positive skewness is of-

ten an observed characteristic in time-to-event data, logarithmic responses can 

be symmetric or even negatively skewed. The new model offers flexibility to 

deal with possibly asymmetric error distribution. More importantly, it shows 

promise as a potential means of improving the overall fit to this type of data. 

Recall that attenuation on covariate effect (s) was also encountered in both the 

non-academic scores and the Martin Marietta data examples, refer to Chap-

ter 4 for details. Whether or not this phenomenon is just a coincidence remains 

pending for further investigation. Wie would postulate that the underlying right 

censoring to be a possible cause for the anomalous posterior tail behavior of 

but a full exploration in this area is necessary. 



Chapter 7 

Overall conclusions and future 

work 

7.1 Conclusions 

This thesis proposed a new class of multivariate skew elhptical distributions 

and examined its suitabihty in analyzing practical data sets. The family is a 

simple generalization of the proposal of Sahu, Dey and Branco (2003). Sahu 

et al. developed the m-variate asymmetric distributions by conditioning on m 

unobserved random variables. We have extended their results so that skewness 

is generated by p E N (not necessarily equal to latent variables. 

The primary focus of the current research is to concentrate on the particular 

cage of the univariate skew normal distribution. We provided results for general 

p, but were usually most interested in SN^ew (density with p = 2). Some 

appealing features of S N n e w are as follows. 

# It allows continuous variation &om normality to non-normality. 

* It acknowledges a wide range of indices of skewness, whilst offering flexi-

bHity to account for some non-normal peakedness. 

# It is very easy to simulate observations from the distribution. 

• Although the pertinent density function is rather intricate, empirical anal-

ysis based on MCMC methods is feasible. 
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Hence the distribution can be valuable for htting data exhibiting skewness and 

non-normal peakedness. 

There are, however, two major drawbacks to this SNnew distribution. Firstly, 

the density range of achievable kurtosis is restricted to the interval (0,0.87). 

This means that SNnew can only yield tails thinner t h a n the normal ones, 

making it not appropriate for analyzing data with extreme observations. Sec-

ondly, skewness parameters of the distribution possess the same distributional 

role, which compHcates both the issues of interpretation and estimation. Similar 

limitations and the aforesaid advantages, yet to be established formally, may 

be expected to hold for the general p setting. 

In order to illustrate the potential of the skew normal distribution for data 

analysis, we have presented applications to regression, variance components 

and survival models. The methodologies were exemplified through computer 

generated and real data examples. Note that all the empirical studies in this 

thesis were within the Bayesian framework. In addition, we treated the response 

variable in its original units and assumed a hierarchical model with conjugate 

priors, the latter being typically arbitrarily vague. The much computational 

burden in Bayesian inference was resolved through the use of Gibbs samphng. 

We saw that the simulation technique is trivial to specif distributionaily and 

to implement computationally. The calculations were greatly facihtated by the 

free software WinBUGS. 

The main conclusion from our illustrative analysis is that asymmetry and 

non-normal peakedness in practical data can be captured by the S N n e w dis-

tribution. It has the capability of producing more precise inference than other 

existing skew normal densities. In spite of the unpleasant exchangeability fea-

ture of the skewness parameters, characteristic measures such as location and 

spread are stiU identifiable from the Gibbs outputs. Relevant questions on par-

simony can be easily sorted out using Bayesian model selection criteria. Experi-

ence shows that SNnew gams no advantage over a simpler model if its skewness 

parameters joint posterior distribution has appreciable probability mass near 

zero. Example 2 in Chapter 4 provides a case in point. Moreover, the new 

distribution is more suitable for large data sets. 
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7.2 Recommendations for future research 

Our suggestions for future study fall into two categories, namely further devel-

opments and applications of the proposed distributions. 

Among the further developments, one area that deserves specific exploration 

is the direct speciScation of location, scale, skewness and kurtosis factors in the 

SNnew density formula. This re-parametrization can be beneGcial in various 

aspects. 

1. Distributional parameters now have an intuitive interpretation. 

2. Prior independence between parameters becomes a more plausible as-

sumption. 

3. It would circumvent the identifiability problem of MCMC outputs. 

4. Faster convergence may be anticipated in Gibbs sampling. 

As the number of skewness parameters increases (p > 3), theoretical considera-

tions might hint at extending the skew normal distribution in other directions. 

We would hope that the skewing proposals listed in Section 3.7 can general-

ize the class without discarding flexibility and interpretability, but this awaits 

detailed investigations. 

Besides those discussed in Chapters 4 - 6 , the skew normal family is po-

tentially apphcable to a broad range of other empirical problems. A natural 

aspect to consider is the appropriateness of the class in linear statistical meth-

ods outside normality. As an example, the density can be convenient for creating 

skewed link function in generalized linear models. The reader is referred to Al-

bert and Chib (1993) and Chen, Dipak, and Shao (1999) for some related work 

in this direction. Another possibility that is worth exploring is the relevance 

of the skew normal distribution in modeling dependent data. Applications of 

multivariate skew normal distributions to financial data can be found in Adcock 

(2004) and references therein. It may also be meaningful to consider employing 

the proposed distributions as prior densities in Bayesian analysis, see O'Hagan 

and Leonard (1976). Many issues concerning the skew normal distribution stiU 
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need to be explored, and experience has to be accumulated even further with 

the methods considered in this thesis. 



Appendix A 

BUGS and CODA Softwares 

BUGS, stands for Bayesian inference Using Gibbs Sampling, is an MCMC soft-

ware developed at the MRC Biostatistics Unit at the University of Cambridge. 

It uses a set of S-like syntax for specifying sampling models, priors and the data. 

The program then converts this syntax into an internal direct acyclic graph and 

selects the corresponding sampling method. By successively samples from the 

nodes of the graph, a Markov chain of simulated values is produced and out-

put to a file for subsequent analysis. Convergence diagnostic of a BUGS output 

can be performed through CODA, stands for Convergence Diagnosis and Output 

Analysis. It is an S-Plus package designed to investigate MCMC output that 

may but does not need to be used in conjunction with BUGS. A Windows version 

of BUGS is WinBUGS. It is more user friendly and includes many useful tools that 

are not part of BUGS. These programs are freely available over the web at 

http;//www.mrc-bsu.cam.ac.uk/bugs/ 

http://www.mrc-bsu.cam.ac.uk/bugs/


Appendix B 

BUGS code for SNnew linear 

regression model 

For the non-academic scores example: 

model 
{ 

ford in 1:N) 

{ 
y[i] ^ dnorm(mu[i] , tau) 

x5[i] <- x l [ i ] * x 3 [ i ] 

mu[i] <- betaO+betal*(xl [i]-mean(xl [] ) )+beta2*x2 [i] + 

betas* (x3 [i] -mean (x3 [] )) +beta4* (x4 [i] -mean (x4 [] ) ) + 

beta5*(x5 [i] -mean(x5 []) )+deltal*zl [i] +delta2*z2 [i] 

tempi [i] rs, dnormCO, 1) 

zl[i] <- abs (tempi [i]) 

temp2[i] ~dnorm(0,l) 

z2[i] <- abs(temp2[i]) 

} 



Appendix C 

BUGS code for SNg^^ random 

effect model 

For the simulated examples: 

model 
{ 

for(i in 1:1) 

{ 
m [ i ] ^ dnorm(theta[i] , tau.g) 

for(i in 1: J) y [ i , j ] ^ dnormCmu[i] , tan. e) 

theta[i] <- iim+delta*z [i] 

temp[i] ̂ dnorm(0,l) 

z[i] <- abs(temp2 [i] ) 

} 
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