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Let F be a non-archimedean local field with residue field Fq and q odd. 

Consider A the unique quaternion division algebra over F. We prove the ex-

istence of a homomorphism of the form Ff- : RO{A*/F*) — / j , 4 = {±1, ±i} 

analogous to Tj? : —> //4 given in [31]. Using and the results of D. 

Prasad and D. Ramakrishnan [22] regarding the Langlands correspondence, 

we construct T f , a map from two-dimensional symplectic Galois represen-

tations to fourth roots of unity. If a is a two-dimensional symplectic Galois 

representation, this construction, when q = l{modA), gives a formula for the 

local root number of a in terms of Tf(cr). 
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Chapter 1 

Introduction 

Let F be a non-archimedean local field with residue field Fq and q odd. 

V.P. Snaith in [31] shows how to construct a homomorphism 

where, taking F as a fixed choice of separable closure of F , the limit is taken 

over finite Galois extensions with F C ^ C F. AO(G) is the free abelian 

group on the isomorphism classes, [p], of irreducible orthogonal representa-

tions p : G —> On(R)- The map Tp is given by the composition of maps of 

the following form 

j^O(F) > Yp 

p [p-M] r_F(p) 

where M = dimp. 



Yf= Urn {IO(a{K/F))/(Ja,K/F))} 

wji 

Here, / 0 ( G ) is the augmentation ideal of AO(G) and Jg = {2; g 

This construction is important because, given p : —> On(E) a con-

tinuous orthogonal representation, rf'(p) = the local root number of 

P-

Now, given A, a quaternion algebra with centre a local field F with odd 

order residue held we will prove, by construction, the existence of a 

homomorphism of the form Ff : analogous to the one 

above. This is studied in chapter 7. 

Let be the augmentation ideal of Dehne J = 

{a; G = 0 = 

We define Pf as the composition of the following maps, 

^ —4. Yp — / / 4 

]V W — n ^ TiiyV — Ti) 

where M = dzmlV and vr is a surjective homomorphism constructed in sections 

7.2 and 7.3. 

J is an ideal of EO(A*/f*) contained in Therefore the 

elements of 70(A*/F*) /J are faithfully detected by the Erst and second 

Stiefel-Whitney classes, 5'Wi and Taking this into account, formulae 

for the first and second Stiefel-Whitney classes of orthogonal representations 



of A * / f * in terms of their character values on elements of order two are given 

in chapter 8. 

Using Fp and the results of D.Prasad and D.Ramakrishnan [21] regarding 

the Langlands correspondence, we now construct a map from two-dimensional 

symplectic Galois representations to fourth roots of unity. 

Let a = IndK/pix) be a two-dimensional symplectic representation in-

duced by % a character . <7 is mapped to n(cr), an orthogonal representation 

of v4*/F* through the Langlands correspondence. 

Define Tf^(cr) = r(n(cr)) G /U4. 

The following Theorem is proved, 

Theorem 9.4.2 Let a be a two-dimensional symplectic Galois represen-

CT = zMduced /rom o c/iomcter % : 7(7* — C * , w/zere F 

a kca/ 0/ ocfd order reaWua/ 

(7— l+2e 

Tf(cr) — (—1) G //4 

wAere e t/ie o/^Ae 

c/iomckr 0/ F* eM 6^ cZoas JzeM ^Aeon/. 

This theorem gives a relation between Ti?(o") and the value of the local 

root number of cr. 

As immediate corollaries we obtain the following results, 

Corollary 9.5.2 (q = l{modA)) Let a and a' be two two-dimensional 

GaZois repregen,tatio?ig, cr = /Wx/f (x) afid cr' = tn-

(fttced /rom cAarac^erg %,%' : A"* — C . TTigm, (Ae AoWs, 



(̂ 7̂  Tjf A7/F /(%) ^ / ( y ) ond mm(/(%), / ( y ) ) = 1 %a 

no rea^nc^zon (o ogaume /(%') = Ij ^Aen, 

Tf(o") _ / M^((7) 
Tf((7') 14^ (a') Wf(wj;r/f) 

luAere zg Âe 2/mgue g"uo(frâ %c ea;(eng%OM o?;er F. 

in an?/ ô Aer cage, 

Tf,(,7') " TV^(a') 

Corollary 9.5.3 (q = l{rnodA)) Let a be a two-dimensional symplectic 

GaZozg repreaen^o^zon, cr — (%) mdtfced yrom a c/iara;c(er % : fT* — 

C*. Cong{i(fer ^ame romz^co^ion o/cr, Â%g %a, (Ttame = wAere 

% = %i 0 %2, (/le or(fer o/ xi %a copnme ô g on(f (Ae orcfer o/ %2 « power 

o/ g. TAen^Xi w âmeZ?/ romz/zed, oncZ 

T p[a) ^ (e-iKq-i) Wf(o") Wf{wx'/f) 

wAere jiT'/F zg (Ae unzgue unram2/ze(f gt̂ odrâ ic ea;(eng%on ofer F an(i e %g (/le 

roTTii/icô zon mtfea; o/^Ae eaî engwn 7<'/f. 

The cage g = 3(mod.4) does not seem to give such a good relation as 

g = l(mod.4). However, let us note that g = l(mo(f.4) covers most cases. 

That is, if g = p^ for some odd prime p and integer d, q = l(mod.4) if 

p = l(moc(.4) or p = 3(mod.4) and d even. 

To finish with, the case q = 3(mod.4) has been introduced for complete-

ness. This is section 9.4.2. 



Chapter 2 

A very brief introduction to 

representation theory 

In this chapter, we give a brief introduction to representation theory and 

Brauer Induction. 

Here we present some basic definitions, omitting proof, that will be re-

quired in order to work with Explicit Brauer Induction. 

REPRESENTATIONS: 

Let us suppose that G is a finite group, K a field and V a finite-dimensional 

vector space over Let (7Z,(y) denote the group of J^-linear automorphisms 

of y . 

A homomorphism p : G —> GL{V) gives an action of G on "K by 5* • w = 

A finite-dimensional ^^-representation of G is the /^-isomorphism class of 



such an action. 

NOTE: We can think of p as a /sTC-module. 

Very often an isomorphism between y and A"" is chosen = zi), 

in this caae we can write: p : G — 

Usually, we will consider the case K = C. In this case, GLn{C) has a 

number of compact subgroups of special interest: 

(i) The Unitary group: [/(n) — {% E Basically, 

[/(n) is the subgroup of that preserve the semilinear product on 

C" 2/) = 37;̂ . We will mean by an Unitary representation, a [/(fi)-

conjugacy class of a homomorphism of the form p : G [/(M). 

There is a one-one correspondence between [/(M)-representations and n-

dimensional (C-representations. 

(ii) Similarly, if we consider E, we define 0{n) the orthogonal group, as 

the subgroup of matrices that preserve the inner-product (^,2/) = 

So then Q f /W-

We will mean by an orthogonal representation an 0(a)-conjugacy class 

of a homomorphism of the form p : G —> 0(M). 

As in the complex case, there is a one-one correspondence between 

representations and n-dimensional R-representations. 

(iii) Denote by IE the quaternion skew-Held, i.e., if z is a quaternion 

z = a + ib+jc+kd then z = a — ib — jc — kd. On H" we have an inner-product 

2/) = E i The subgroup of left E-automorphisms of H" that preserve 

this form is called the symplectic group, and denoted by 6'p(n). As a C-

6 



vector space E = C ,̂ so C [/(2n). A symplectic representation would 

be then, a conjngacy claas of a homomorphism of the form p : G —> 

I N D U C T I O N A N D RESTRICTION: 

p a complex representation p : G —> As a fact, we can express p 

as a sum of multiples of where pi are irreducible representations [32] (this 

is a finite set): 

P = ^ 
/rr(G) 

We can de6ne now the representation ring: A(G) = {Z]:/6/rr(G) n,, G Z}. 

So then, if we have < G, we can define induction and restriction: 

i W g : ̂ (J:f) ^ A(G) 

: 7Z(G) ^ jZ(n) 

Restriction: Given p G R{G), one can define Res%{p) = p\H E R{H). 

Induction: The definition of Ind f j is a little bit more complicated. Given 

E ^ ( ^ ) , we consider y the C.ff-module associated to /), and then 77idg(p) 

will be the (^-representations associated to the CG-module CG (g)cg y . 

B R A U E R I N D U C T I O N 

Brauer (1947) proved a theorem called "The Brauer induction theorem", 

relating p with one-dimensional representations. The theorem is announced 

as follows [32]: 

Theorem 2.0.1 G a finite group. Given p 6 R{G) there exist one-dimensional 

o/ C* antf Mi 

7 



p = ^ Uilnd 

We should speak about Explicit Brauer Induction at this point. Explicit 

just means that we would like to specif canonically what and are. 

These formulae were given by Snaith in 1986 and Boltje in 1989. We will 

speak about this later on, when we study Snaith's proof of existence of local 

root numbers. 

T H E T R A N S F E R 

Given G a group, we denote by the quotient of G by its commutator 

subgroup. Let us consider now < G of finite index, and cr : > G a 

set of representatives for the left cosets of G modulo H. 

If g E G and ^ 6 we define as: 

Definition: Let [s] G G"^. The image in H"''' of Y\t^G/H is called the 

transfer of [g] that we will denote by ([s]) or simply by yer(s). We can 

also define then a map from in Ver : -4-

Usually we will deal with Galois groups. For convenience, we use inHnite 

Galois groups. 

We will need the following result about the transfer map [20], 

Proposit ion 2.0.2 

o o/ ZocoJ o/ decree ofer Qp 



Ver 

t i t 

-> E* 

6̂̂  E/j(r 6e a e3;̂ eMg%on o/M%im6er ^eMg wẑ A /A', -& corre-

apontfm^ WeZe ^ro?/pg. T/ie /oZZowinp %g commu^a^me; 

yer 

t i t 

Ik IE 

w/iere (Ae uer̂ zcoZ AomomoTpMsma come /rom ZocoZ and Ẑo6oZ cZaaa _̂ eM (Ae-

on/ /igO/' 



Chapter 3 

Character theory, Artin 

L-Functions and Artin root 

numbers 

In this chapter, we recall the de6nition of L-Punctions and the enlarged 

L-Function [20], allowing us to dehne the local root numbers in the character 

caae, and the relationship between them and the Gauss sums. 

The local root number is an invariant of a local Galois representation 

which is to be taken very seriously. For instance, in the theory of the strue-

ture of a ring of algebraic integers as a Galois module, the local root numbers 

determine whether this projective module is free, in the case of a tame ex-

tension [31]. In the Langlajids programme, which speculates about bijections 

between Galois representations and other categories of representations, the 

local root number plays an important role as part of the detection machin-

ery in the local conjecture. The Langlands correspondences have now been 

10 



established in the local case by M. Harris and R. Taylor [11] in characteristic 

zero, by G. Laumon, M. Rapoport and U. Stuhler [19] in characteristic p > 0 

and in the global case by L. LaBForgue. 

In order to define local root nnmbers in the character case, firstly we must 

introduce all the ingredients required. 

3.1 Frobenius subs t i tu t ion 

In order to dehne the Probenius substitution, let us suppose that we have 

a hnite normal extension of number Selds with Galois group (?, and 7̂  

is a hnite prime of A'. 

Also, let us assume that E/K is unramified at V. 

For every prime f lying above 7̂ , there exists a unique element of crp E G 

such that 0-̂ (2;) = with a; any integer in and the 

absolute norm of P. This is what is known as the "Frobenius substitution". 

It can be proved that for every cyclic group C of G there exist inSnitely 

many primes P such that C —< ap >. 

3.2 Weber 

Let us take now b an ideal of K and let us define: 

/ft = {a ideal of K s.t.a is prime to b} 

fb = {a E if, o = < a > with a E A" totally positive CK = l(mod6)} 

11 



Now, we take H < Ii, such that C H. 

In this situation let's suppose that the abelian extension of is what 

Weber called a "claas field for (i.e., the prime ideals of AT that decompose 

completely in E are precisely those ones in H, and b is the smallest in some 

sense). In this case the prime divisors of b are precisely the prime ideals of 

K ramified in E. 

Now, given a character x '• Ib/H ^ C*, there is an L-Function defined for 

^6(5) > 1 by: 

Notice that the product is over the f not dividing 6, i.e.: the product is 

over the prime ideals of K unramified in E. 

Now, we are prepared to introduce Artin's first definition of L-Functions 

[20J. 

3.3 Ar t in ' s first definition of L-Funct ions 

This definition first appeared in 1922. Takagi in 1920 had established 

that "the Galois group (7 is isomorphic to 7;,/^^", but he did not give any 

canonical isomorphism. If we had one given it would be possible to define 

L-Functions for one-degree characters. 

In any case, Artin gave a definition of an L-series, for one-degree charac-

ters of G by thinking of the above formula 3.1 in the following way: 

1 
L{s,ip)= 

12 



This led Artin to think that the isomorphism that Takagi spoke about 

could be built by sending the class of an unramiSed prime ideal f of 

onto ap. This is known as "the general law of reprocity". 

We can give now Artin's first definition of L-functions; 

Definition 3.3.1 ; E/K finite normal extension of number fi,elds with Ga-

Zoia group G. y (f%mena%onoZ compJgz weĉ or apace, oMd /) : G —> 

6e G repreaeM^a ẑon. Denote % (Ae cAorac^gr o/p %(a) = T'r(p(a))/ 

For o pnme 'P m TiT, — 7V(f )) joea no( (fepead on (Ae cAoice 

0/ f a5ofe 7̂  (oAea (Ae aome /or (wo zaomo7])A%c repreaeM ô̂ zoma, 

ao tue ca?i 

L, defined in this way, verifies the following properties: 

(a) i;(a,%i + xz) = %i)Z,(s,%2). 

(b) H normal subgroup of G, p a representation of G/H and p' the lifting 

of p to G, then : Z,(g, y ) Z,(a, %) . 

(c) H subgroup of G, % a character of H that induces %* of G, then: 

NOTE: What we mean by is that they are equal up to a finite number 

of Euler-factors. 

The problem we have with this definition is that we do not get equalities 

in (b) and (c), which would be likely to occur. So now we will study the 

general definition of non-abelian L-Functions where we will get equalities in 

these properties. 

13 



3.4 Genera l definition of non-abel ian L-function 

We are going to define local factors at ramified primes, in such a way we 

can put equalities in the above formulae. 

Let us denote for Dp and the decomposition group and inertia group 

of f respectively. D p i s isomorphic to the Galois group of the residue 

extension, so we can define the Frobenius substitution ap G Dp/Ip. 

G acts on y via crz = for all a; E y and cr G G. 

Let us define as: = {z G yg.̂ .Vcr G 7p, era; = a;}. 

Now, we can define: 

With this definition we get equalities in all the above formulae (a), (b) 

and (c). We also get an extra one: 

(d) % one degree character, ^ the congruence class character, then: 

At this point the definition of an enlarged L-function A arises, and this 

function will verify a functional equation which will allow us to define the 

Artin root number. We will not go deeply into this definition, since we are 

just interested in the functional equation verified. We will just say that this 

enlarged L-Function has the following shape [20], 

14 



For the dehnition of A, some new concepts are needed, and we will discuss 

them as well since they will play an important role in the definition of local 

root numbers: 

For our f above "P, we consider G, the corresponding ramification groups 

and let us denote by the order of (?i. We deEne then: 

OO 

Artin proved that,in fact, this number (that is independent of the choice 

of f above 7̂ ) is an integer. 

We are going to define as well what is known as "the Artin conductor", 

this is just a particular ideal of K defined by: 

J(x,E/K) = f{x) = Y[V n(x,'P) 

V 

So, for example A(x) is defined as where is the dis-

criminant of K. 

As we said before, this enlarged L-Function verifies a functional equation 

in which the definition of Artin root numbers arise. The basic properties 

verified by this function are summarized in the following theorem: 

Theorem 3.4.1 [20] A possesses a meromorphic continuation in the whole 

A(l —a,%) = M (̂%)A(g, %) 

/or aome W(%) o/ 0650We modWug 1. 

This number of modulus 1 is called the "ARTIN ROOT NUMBER". 

15 



3.5 More on t h e Ar t in conductor . 

The Artin conductor can be defined for more general extensions than the 

ones we have looked at. Let us suppose that we have A a Dedekind ring with 

quotient field K, and E a finite normal extension of K with Galois group G. 

Also, let us suppose that we have p a representation of G in a finite 

dimensional vector space with character %. 

Assume that all the residue class extensions are separable. To extend the 

conductor to the inseparable residue field case was a problem of J.P. Serre 

(Annals of Mathematics 1960), solved in chapter 6 of [32] (which is based on 

a paper of Boltje-Cram-Snaith). 

Let us take V a prime ideal of K, and P a prime ideal of E lying above 

V. Then we defined n as: 

OO 
n ̂  /t n-vi'S / G i 

1 = 0 

. where C, are the ramification groups of f , and its order. 

This number is an integer. And it is obvious that in the case E/K 

unramified at P, n(%, "P) = 0, and in the case E'/.R' tamely ramified M(%, 7̂ ) = 

. 

We have defined as well the Artin conductor as: 

T 

This particular ideal of K verifies the following properties: 

(i) /(% + %') ^ /(x)y(x') 

16 



(ii) If % is lifted from a character of a quotient ^ of G then: /(%) = 

/(%') 

(iii) Let ^ be a subgroup of G. % a character of and %* the character 

of G induced by %. Then: 

f ( x ' ) = NF/K{f{x))D(F/K)^''> 

where D(P/K) is the discriminant (relative to A). 

Now, we are going to dehne the conductor for an infinite extension. Let 

Z/ be an inBnite normal extension of TiT with Galois group G. We take a 

representation p of G (a homomorphism p : G Gl{V) with open kernel, V 

a hnite dimensional vector space). Such representation factors through the 

Galois group of a finite extension, so we define /(p) to be the conductor of 

where p' is any representation of a finite Galois extension s.t. p is the 

lifting of p'. 

3.6 Local Gauss sums 

Now we are going to study the " Local Gauss sum" and the relationship 

between this and the "Local Root Numbers". For this purpose, let us suppose 

we are in the following situation: 

p is a fixed prime, K a finite extension of Qp. We will denote by Ok the 

valuation ring of K. pK is the maximal ideal of Ok- T^k is the different of the 

extension A^/Qp. % is the group of units of % . % is the subgroup of units 

of K that are congruent to l(7Tiodp^). And denotes — (TCK)-

17 



Firstly, we will deEne the non-trivial character : AT — C * as the com-

position of the following maps: 

^''"K/Qp canonical canonical 

K )• Qp )• Qp/Zp > Q/Z >• C* 

surjection injection 

We can see easily that this character verifies + ?/) = and 

a;) = 

REMARK: ^ is trivial on (the codifferent) and actually this is the 

greatest fractional ideal of A' on which is trivial. 

Now, let 6 : K* —> C* be a character with open kernel. If we denote n{0) 

by M, our conductor will be and this integer M is the least one 

such that 9 is trivial on U'^. 

We will say that 6 is unramified if n{9) = 0. 

Let us define now the Gauss sum for this character 6, 

Definition 3.6.1 The local Gauss sum T(9) is defined as: 

—' c c 

w/iere c o penem^or o/ (/le WeaZ 

R E M A R K : When 9 is unramified, this sum will be just one term: 

T(S) = e(vj/). 

Important properties about Gauss sums are the following: 

18 



Proposi t ion 3.6.2 9 a character of K*: 

(i) ir(9)i = 

(n) = 9( - l ) iV(/ (9)) 

Proof: 

(ii) Using the definition of r we get T{6) = 9{—1)T{6), and now our result 

follows easily from (i). 

(i) To prove this we can think first of the unramified case (then N{f{6)) = 

1 and r(0)r(6') = 9{'D]^^)6('Dj/) = 1) and then of the ramified one. In this 

case the proof is quite straightforward using the following Lemma and writing 

T(g)f (g) = (̂a;) ^ ( 3 / ^ ) 0 

Lemma 3.6.3 [20] n >0,dan element of T>j/N{Vk)'^'^• S a set of repre-

aenWzfeg o/OA- modu/o 7^ .̂ T'Aen A = depend on 

cAo%ce o/ 5' ond A = and A = 0 o^Aerwzge. 

Now we are prepared to deEne the LOCAL ROOT NUMBER. Let AT be 

a local field of characteristic 0 and 0 a character of K*. 

Definit ion 3.6.4 

For = R or C define 

For A!" Mon v4rc/i%medeGn, dê n̂e." 

wAere poa%(2?;e gg^ore rooi 

19 



Note that when 6 is unramified: 

R E M A R K : Using the above proposition, we can see that \ W{9)\ = 1 and 

= ^(—1) and as an immediate corollary, when ^ = 1, 

i.e, W{9) is a fourth root of unity. 

Furthermore, if we have TiT a number field and % an idele class character 

(i.e., continuous on the group 7;̂ ^ of the ideles of AT and trivial on the principal 

ideles), for every place t; of the natural embedding A!"* — d e ^ n e s a 

character on and then we have the relation (Tate 1950): 

m%) = n ^ w 
t/ 

3.7 Local Galois Gauss sums. 

Now, let us consider p a place of Q, Q an algebraic closurie of Qp. By 

a local field we will mean a finite extension of that is contained in Q^. 

Given a local field K, we consider virtual characters of Gal(Qp/K) (these 

are differences of two characters of representations of open kernel). 

Let us take 9 a virtual character of Gal(Qp/K). The local root number 

is well defined by the following properties: 

(i) W(0i+g2)=M/(gi)W(^2) 

20 



(ii) Let 0 be an irreducible character of degree one and 0' the character 

of A"* deEned by ^ in the Artin map (i.e, jiT' —> then is 

the local root number W{d') defined in the section before. 

(iii) ^ ^ a finite extension, ^ a character of Go/(E'/A') of degree 0, and 

the character induced by ^ in Then 

Now we can define the Local Galois Gauss sum using local root numbers: 

Definition 3.7.1 K non-Archimedean local field, 6 a character ofGal{Qp/K). 

We know that the conductor verifies: f{6) = f{0), so W(9) = 

Prom the properties verified by and we can see that T is 

well-defined by the same properties as 

The local Galois Gauss sums verify similar properties to the Gauss sums: 

Proposition 3.7.2 K finite extension ofQp and 9 a character of Gal[Gl^jK). 

Then: 

(') \rm = v w m 

(a) t{0)t(S) = N{f(e))deti,(-1) 

The proof of this proposition follows from the fact that T is well defined 

by the properties mentioned above. So it is enough to prove that it is true 

for 1-degree irreducible characters (as done in the section before) and that 
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both sides are invariant under induction for characters of degree 0 (which is 

true. It is enough to notice that 9* — 9*). 

As a COROLLARY of this we can see that for K a local field \ W{9)\ = 1 

and = def8(-l) . 

Also, we can see aa well from this second property verified by that 

:y(g)T(g) = & ( g ( - i ) \ / W # . 
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Chapter 4 

Existence of local constants or 

local root numbers 

In this chapter we review the literature on the existence of local root 

numbers. 

The existence of local root numbers in the non-abelian case is due to R. 

P. Langlands, but although his proof is purely local, it is extremely long and 

remains unpublished. Deligne (1973) [6] gave a very elegant existence proof 

by a global method which we will discuss below. 

However, Langlands expresses a hope for an eventual, shorter, conceptual, 

local existence proof in his long essay "On the functional equation of Artin 

L-function" . 

V. P. Snaith (1987) also gave such a proof of existence [29], but although 

his method of construction embodies many very good features, it is not the 

"type of local construction" envisioned by Langlands. Because it requires 
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a global step to get the "inductive in dimension zero" axiom- what we will 

call axiom (b). But it does give the other properties plus factorisation of 

the Artin root number into a product of local root numbers. Nevertheless, 

Snaith uses Explicit Brauer Induction for his proof, which is a novel method 

of proof and to which we will also recall. 

4.1 Deligne's proof of existence of local root 

numbers 

In this section we will have a look at Deligne's proof of existence of local 

constants. For his proof, he needs a relation between the value taken at 

and at a by the local root number l y where a and are two characters of 

K* and the ramification of P is relatively small compared to that of a. First 

of all, we will discuss this relation: 

4.1.1 Abel ian root numbers 

When we have a non-Archimedean local held of characteristic 0 and a: 

a character of A"*, we have already seen in chapter 3 what the dehnition of 

W{a) is. The important part of this section (from which the result we are 

looking for will follow) is the following proposition that gives a new formulae 

for the local root numbers: 

Proposit ion 4.1.1 [35] Let K he a non-Archimedean local field of charac-

0, a a cAaroc^er o/ .fT* o/ .A 6e QM iffeo/ 

o/ ua 
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c E A" 

< c >:= 

CK(1 + 1/) = '̂ (c"^?/) /or oZZ ^ G 5. 

tinj W(a) = 

Proof: We are not going to give the complete proof, but will see how it 

follows once one has proved (ii). We know the definition of W{a)-. 

As B//(a!) we can split the sum into a; = z(l + ?/) where z E 

and 1/ E B//(o;). Using (ii) we get that a(a:) = a(^)'^(:^) and of course 

'̂ (a;) = '^(y)i/'(^), so we get: 

iV(/(a))"=W(a) = Y : "(-)'^(-) E 

The inner sum is 0 unless i/ —> '̂ (̂ (̂ ^ )̂) is the trivial character of B//(a!), 

that is, z = 1 modyl. We get then: 

N{!(a)fl^W(a) = N(A) V a(-)i,(-) 
:Gl+^/e ^ ^ 

giving us the result we were looking for. • 

Now, we can give now the result needed by Deligne for his proof: 

Corollary 4.1.2 [35] Let (5 be a character of K* of finite order s.t. f{(5)/A. 

Then: 

^ ( ^ a ) = ;8(c«)^(o,) 
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w/iere c we a^otie deMô ed (A%a wa?/ ô 

mo/:e cZear (/lo^ z( (foea depend OM a. 

Proof: By hypothesis, either pA'y(;^)//(a!) or a and are both non-ramihed. 

Hence = /(c^). So then, by the above proposition applied to and 

taking into account that = /3(c)a(^) when a; = 1 mod^ 

the corollary follows. O 

Now we are prepared to study the proof of existence of local constants 

given by Deligne. 

4,1.2 Proof of existence. 

Throughout this section we will consider only local or global fields of 

characteristic 0. We will denote by the set of pairs (Z,, p) where A" C 

C A', Zz/A" finite and p a virtual representation of G(zZ(Zr/Z,). 

If E/K is a finite Galois extension contained in KjK, R{E/K) denotes 

all the pairs {L, p), K C L C E and p a virtual representation of Gal{E/L). 

It is obvious then in a natural way that: 

A(X) = U 

We will write Ri{K) and E.i{E/K) when we are in the character case. 

Now we are going to discover when a function defined on ZZi(Zr) is ex-

tendible: 

Definition 4.1.3 Let us suppose that we have a function F defined on Ri{K) 

t;aZ?/ea m gome ateZzoM A. tye aai/ F w ea;(eM(f%6Ze %/ f 

can 6e ez^ended on A-fo/^ed on 
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Pi + P2) = f (z,, P2) /or oZZ G 

(̂ 6̂  jy (Z,, p) E = 0; oMcf Z, D Z,' 3 A" (Aen; 

f ( L . p ) = F(LM«<:;j | ;^;i(p)) 

This deAnition would be analogous for Galois Enite and A(E/Zr). 

Now we give some baaic properties about extendible functions: 

(1) If f is extendible (or extendible in E/K) there is a unique extension 

of _F to ZZ(Zr) (or ZZ(E/Zr)). If we have two extensions and (^,/)) G 

Z^(E'/Zr), we could consider p — d%m(p)[l^] of dtm 0. Then: 

j^(Z,,p) = Z^(Z,,p-(fzm(/))[l2,] + dzm(/))[lz,]) 

= F,(Z,, p - (f%m(p)[l^])f-(Z:, 

Now using Explicit Brauer Induction, p — d%77i(p)[l2,] could be expressed 

as a sum of multiples of where (Z,i,%i) E ^i(E/Z,). 

So using (a) and (b) from the definition, and the fact that over Ri we know 

Fi = F2 = F, we can see that actually Fi = F2. 

It is obvious now that F is extendible iff it is so for E jK for all E. 

(2) Now, we will try to find a similar relation to the one given in (b) 

but without the hypothesis dim[p) = 0. From the properties verified by the 

extension of F we have: 

]^(Z,, p) = f (Z,, /) - c;%m(/)) [Iz,] + (f2m(p) 

= F{L, p - dim(p)[l^])F(L, 
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= f ( l ' , [ud-'-x-) 

So then: 

F(L', J„d=»|WJjl(p)) = X l F f M p i L , p) 

where A(F) 
fil,\u]) 

When X{F) = 1 for all L D L' D K we say that F is strongly ex-

tendible. 

It is time now to study some examples of extendible functions. In all these 

examples it is obvious that they verify (a) and (b) in the definition, and when 

we restrict ourselves to the case of one gets the original function: 

(I) When is global, (Z/, %) ̂  A(g, %) is strongly extendible by (Z,, p) ^ 

A(g, p) given by Artin theory of non-abelian L-series. 

(II) global or local non-Archimedean, (.L, %) —> A^(/(%)) is extendible 

by 

(III) -AT local and c E ZT*, .L(g,%) —%(c) is extendible by Z/(g,/)) — 

(^etp(c). 

(IV) If F{L,x) depends only on L, let us say F(L,x) = o(Z,), then this 

is extendible by F(I,,p) = a(Z,)'̂ "̂ (̂ ). 

(V) global, (Z,, %) —> VF(%) = A(l—g, %)A(g, %)"̂  is strongly extendible 

by (Zf, p) —> A(1 — g, p)A(g, p)"^ 
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At this point we are prepared to prove the existence of local constants: 

Theorem 4.1.4 (Langlands) If K is a local field of characteristic 0 (this is 

0̂ jza; Weog, (Ae zg m an?/ (Aen (Z,, %) —M (̂%) 

The proof we are going to give is not that of Deligne. It is a modified 

version. In order to prove this theorem, we are going to need the following 

result (for proof look at [35]): 

Lemma 4.1.5 There exists a finite Galois extension e/k of global fields and 

a pZace iiQ o/ A; (Aai" 

zg a wmzgite pZace wo o / e Zg/m̂  o^er and (Ae %g 

/u (oW/y comp/gz A; /(oa no reaZ ;4rcA%me(fean pZacej. 

Now, if we take A;, e, %;o and Mo as in the Lemma, we identify euo/A;̂ o and 

We have an isomorphism (7aZ(E'/A') Ga/(e/A;). Hence giving us a 

bijection between A(e/A;) and given by: 

(^,P) —(Lo,Pwo) 

where wo is the unique place of Z above kr e D Z D A; and Pu,,, is the 

restriction of p to GaZ(E/Z^o). 

Now our problem is to prove that (Z,%) —> (%«,(,) is extendible in e/A:. 

What we will try to do is to express this number (M/(%iuo)) as a product of 

things we know are extendible. To do this; 
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Let us take a place of A: and write it and w for primes of e and Z 

respectively such that w/w/i;. For each non-Archimedean ^ let X,, be 

an ideal of verifying for each (F,/)) G Ai(eu/A:^) and when u is 

non-ramified also verifying ^ 

Now, let CK be a character of the idele class group of A: such that = 1 

and 

We will construct at this moment an idele of k in the following way: 

c = (A,) 

where q, = 1 if t; is Archimedean or ?; = and = c where c is the element 

associated to and ^ in the corollary 4.1.2 for non-Archimedean 2; ̂  ?;o. 

Now, let us take (Z, %) 6 7Z(e/A) and 0;/ = o; o Using corollary 4.1.2 

we know: 

w is non-Archimedean, w ^ wo 

if w = Wo 

1 w non-Archimedean 

At this stage, if we express our global root number as local root numbers 

we get: 

w^wo 

where a(l) = JJ W({ai)yj). 
W^VJQ 

w non-Archimedean 
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So then would be extendible since (/, %) — 

a(Z), %(c), are extendible (this last just follows from example (V) 

extending by (Z,p) —̂  iy(p(gi a;)). Thus the theorem then is proved. O 

Now that we have proved the existence of local root numbers, we can give 

some corollaries that follow immediately from the uniqueness of the extension 

of T (̂%) to 

Corollary 4.1.6 Let K he a local field of characteristic 0, and {L,p) E 

(/ten, 

= 1 

/) 25 o /otfrfA roo( o/ 

Proof: (i) and (ii) come from extending (i,, %) —> = 1, = 

%(—1) and using uniqueness of the extension we get (-L, p) —|T^(p)| = 

1, = de^X-1). 

(iii) just follows from (ii), if p = p then W{py = detp( — l) = ±1 so then 

W (̂p)̂  — 1, as we wanted to prove. O 

Corollary 4.1.7 K an algebraic number field, {K,p) E R{K). For each 

pZace f (/le o/p (o a decomposition groitp o/i;. T/ieM, 

TV(p) = n M ' W 

Proof: The proof of this corollary is based on extending (Z,, %) —M (̂%) = 

n . ^ ( x . ) to (z, p) ^ ^ ( p ) = n . ^ w ) o 
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4.2 Snai th ' s proof of existence of local con-

s tan t s 

The proof we now look at, is completely different to that of Deligne. As 

stated before, in order to prove this existence, Snaith uses a novel method 

of proof, applying Explicit Brauer Induction (E.B.I) [32]. First we should 

describe briefly the E.B.I, formulae as well as their basic properties: 

4.2.1 E.B.I. 

Let us consider G a finite group and let us denote by R{G) the ring 

of isomorphism classes of 6nite-dimensional complex representations of G, 

which we can assume to be unitary: 

p : G —> [/(n) 

If NT'^ is the normaliser of the diagonal maximal torus in U (n), then we 

can let G act upon the cosets by left multiplication via p. We 

will write X = U{n)/NT'^ and M = G\X. 

If is a subgroup of G, (H) will denote the conjugacy class of H. For 

each of these we have associated a subspace of M, let us call it M(ar), which 

consists of all the orbits which are isomorphic to G/H. Let X(h) denote the 

Euler characteristic of M(g) with respect to singular rational cohomology 

with compact supports. We will not go deeper into these numbers, we just 

mention that they are integers which ultimately depend only on p. 

Throughout this section, we will call the conjugacy class of a homomor-

phism from G to TViT" and a representation of the form where y 
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is a character, a monomial homomorphism and a monomial representation 

respectively. 

The connection between these is given by the well-known Lemma, which 

proof can be found in [32]: 

Lemma 4.2.1 

d%rec( aitm 0/ moMomm/ AomomorpAzgmg 0/ /orm." 

(7(1) — wAere ae( 0/ {i/,} up pey-mttWzon ano( coM-

(̂ 6̂  CoMaeguen%, oa an 0 / % / : G —> Aaa o CGMOMzca/ 

/orm." ^ (^i) ^ -

Now, we will state the weak form of E.B.L [32]: 

Theorem 4.2.2 p : G ^ U{n) a representation of a finite group: 

r!v/«jj(G) i = E ( H , x ! „ , M g ( i ) . 

(a) In R(a) p = J2{H) X(H)-f™iS(-Resg(p)). 

//"z E ancf jH" za (Ae o /zNT" /zea m 

7VT" (̂ coMaegî GM̂ Z?/, 6?/ (Ae o6oi;e Aog a cononzcoZ 

/orm oa a aum 0/ moMommZ repreaen^a^zoMa/ 

Restriction and induction homomorphism. 

In the general case, let us suppose we have a finite group G and a compact 

Lie group tt. We will say that p is a subhomomorphism from G to tt when it 
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is a homomorphism from H < G into tt. 

p : .77 C G - 4 TT 

Let us define now, E+(G, vr) to be the free abehan group on equivalence 

classes of subhomomorphisms from G to 7r. 

In the case 7r = (i.e. the character case), 7r) will be denoted by 

^+(G). 

Definition 4.2.3 Given i : J ^ G an inclusion, we can define: 

(̂ 2̂  T/ie AomomoryAwm 7r) —> vr) 6?/.-

(p : D ^ > 7r) = ^ (p(a;Z â;) : J D J n ^ vr 

/iomomoy;pA%am / W j : vr) —> vr) 5?/.-

Indj{p : J D H ^ tt) = {p : G D H ^ tt) 

After these dehnitions, we are going to dehne two new operators that we 

will call tg and B to follow Snaith's notation. 

TG : j^+(G,ArT") 

B : A+(G,Nr") ^ A(G) 

In order to do this, we consider p : G ^ [/(n) a representation and the 

left action via p of G upon %. We will denote by {Ma} the set of connected 

components of M(g). And we will choose for each Mg and element Pa G (7(fi) 

whose orbit lies in Now, if we denote by the compactly supported 

cohomology Euler characteristic of M^ we get: 
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Definition 4.2.4 We can define now: 

("V TcW = : G D ATT") G A+(G,7Vr") 

("n; g ( p : G 3 ^ Arr") = 7Mdg(p : -> A^T" C [ / (n ) ) e ^((G) 

f ropeHzea; M̂ e ̂ we aome 6agzc propeyfzeg 0/ (Aeae o;)era(org /i?^; 

(%) TG(p) G ^+(G, %g weZZ-de/zMej, (fependmp ô Zt/ on (Ae egî z?;o-

ZeMce cJogg 0/ p aa a represen^a^wn. 

r/z; BTG(p) = p. 

: Gi — 2 = 1,2 reprege7î o(%ong, oM(f Zê  %/g denote 6?/ 

Âe opera^mn mdwcetf 6^ fAe (fzreĉ  aum 0/ motncea, ^Aen, 

T-GixG2(m @ m) = TcXm) * TG2(m) ^ -^+(^1 x G2, Arr"i+"z) 

% : J —> G OM mcZt/azon, 

^egj(T-G(/))) = 'rj(7Zeg^(p)) 

A presentation for R{G). 

This is a problem which appears, for instance, in [28] (footnote, p.71). It 

originates with Braner (c.l946). 

In this section we will study a presentation for R{G) in terms of monomial 

representations [32]. We will denote by ^*(G) = TVT"). 
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Now, if we have p : H a monomial homomorphism (H < G), the 

matrix representation of the induced representation gives: 

: G where = [G : 

We will define now relations on 7Z*(G), so we will set A the subgroup of 

jR* (G) generated by elements of the following three classes: 

(a) J C -ff C G and d = [H •. J], then, 

{(p : G D J Arr") - : G D ^ -4 e A 

(b) z/ : G —> A"T" and // : G —> nt'^ then 

© /i) — Z/ /i} E A 

(c)p : G —A/̂ T'̂  then {?"(;(/)) — p} G A. 

From its definition, it is clear that A C KerB, and in fact, by means of 

To it can be shown that B : R^{G, NT^) —> R{G) induces an isomorphism 

g : ji!XG)/(A) -> ;i!(G) 

4.2.2 Proof of existence. 

We are now ready to study Snaith's proof of existence of Local Root 

Numbers. Firstly, we will recall the properties that characterize the Local 

Root Numbers denoted by 

Given L/K a finite Galois extension of local fields and p : Gal{L/K) -4-

[/(a) an M-dimensional unitary local Galois representation, the local root 
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number is a complex number of modulus 1, verifying the following 

axioms: 

(a) If is another Galois representation the z/) = (p) -

(b) If is a hnite extension with Galois then = 

(c) M D L D K a, chain of finite Galois extensions and tt : Gal{M/K) 

the canonical isomorphism, then: TVAr(p7r) = 

(d) If /) is a character, then Wjf(p) is given by the formula given in 

chapter 3 for local root numbers. 

In other proofs of existence, the procedure was to verify all these prop-

erties, and from them to deduce that (global/local 

factorisation of the Artin root number). But Snaith's proof proceeds quite 

the other way around. His method, however, has a handicap; his construc-

tion does not ensure the verihcation of (a) and (b). We will see later how 

this point could be overcome. 

Speaking very generally, what he does in his proof is to define over 

(where G = (7oZ(Z,/^)) using the definition for local root numbers we 

know from chapter 3. Then he defines using the diagram: 

ra 

R[G) —y R^(^G) 

Note that we have already seen that &*((?)/A A(G). 

37 



Let us study the proof more deeply: 

For the case % : (7(1) = a character, we dehne as 

in 3.7.1. 

Now, we will construct now Let us suppose 

we have a subhomomorphism of the form z = {v : Gal{L/K) D Gal{L/F) —> 

jVT"). Applying Lemma 4.2.1 we get a set of characters: 

{ui : Hi = Gal{L/Ni) S ;̂ I <i <u} 

and then we dehne: 

l<i<u 

The one term that needs explanation in this formula is WAr(7Md(l)) since 

is well-defined by the Lemma 4.2.1 (a). The dehnition of ^^-(772^(1)) 

comes from the fact that /M(f(l) is an orthogonal representation and in [30] 

we can 6nd a simple, local construction of the local root number in this case. 

We are not going deeper into this deGnition, we just want to know that it is 

easily constructible. 

Next, we notice that the construction that assigns {z/i : = (7aZ(Z,/jVi) -4 

1 < % < «} to the subhomomorphism {y : Gal{L/K) D Gal{L/F) 

NT'^) defines a retraction: 

1<1<U 

So now, using Tg, if we have p : G —> (/(yi) we can define the local root 

number as: 

= WAT (re (p)) E 
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With this definition, one can check easily that (p^) (global/local 

factorisation). Firstly, one would check that wk : i?* —> verifies it, but this 

is true simply because it is true for characters and the double coset formula 

holds in A*. Then just writing %( / ) ) = ^ 

(Using property (IV) of rg) one would get M^XPr)-

At this point, we should check the rest of the axioms that the root num-

bers verify, the ones seen at the beginning of this section, (c) and (d) are 

immediate just using the properties verified by tq- The ones that cause trou-

ble are (a) and (b). What we see is that (a) and (b) will be true modulo 

roots of unity. To prove this, we can look at the definition of A in section 

4.2.1, page 38, v4 /or A(G), and notice that to state that, it 

would be enough to prove that wr annihilates A. And this is exactly what 

Snaith does. To prove this, first he needs the following proposition: 

Proposit ion 4.2.5 [29] Let E/Qp be a finite Galois extension of local fields 

G — (joZ(E'/Qp). r/iGM /̂lere a CoZozg o/n%fm6er 

^ (fenge m ^ .E C ^ (Ae t/mgue pZace ower jiT C TiT. 

GGZ(E/^) ^ G. 

E'/A' 23 pnmea o?;erp. 

REMARK: In order to get the result one also needs to arrange that there is 

only one prime above p. 

REMARK: The Explicit Brauer Induction formula [32] is a homomor-

phism, so the "Snaith method" using it, gives (a) at once but still not (b). 

With this proposition, one can show that wk annhilates A. In the tame 

case, we know that tame local root numbers exist [8], so in this case WAr 
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annhilates A. We also know that the Artin root number (as a function of 

J?*) does annhilates A. Then, by the global/local factorisation of the 

annhilation of A is true for the product of the remaining factors. 

Finally, we have Snished this novel proof of the existence of local root 

numbers. 
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Chapter 5 

Orthogonal and Symplectic 

root numbers 

This chapter concentrates on orthogonal root numbers, namely, when the 

representation considered is orthogonal, and the symplectic representation 

case. 

The aim of section 1 is to give us some machinery enabling us to work with 

orthogonal representations. In the algebraic case, usually called the global 

case from the terminology of local Belds and global Selds (that is, when we are 

working with algebraic number helds), M (̂p) is characterized by being always 

1, when p is an orthogonal Galois representation. In the local case (i.e., when 

we are working with local fields), the only information known is W{p) being 

a fourth root of unity. Nevertheless, Deligne ([5], (1976)) noticed that when 

iy(/)) is thought of in cohomological terms, there is a close relation between 

'u;(/)) and the hrst and second Stiefel-Whitney classes of such representation. 

Namely, M (̂p) = M/'((fet^)5'l^(p). Here, S'M^(p) is thought under the image 
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of h'^(g] Z/2) = {±1}. Two different proofs of such result can be found in 

the literature, including that of Snaith's ([30] and [31], (1988)), which differs 

from Deligne's original. 

In section 2, we review some results concerning symplectic representa-

tions, giving ns a characterization for such in the Quaternion case. 

5.1 Orthogonal root numbers . 

We are interested in orthogonal root numbers, i.e., when the representa-

tion p is an orthogonal one. At this stage, we can already state some results 

concerning these. 

When E/K is a finite Galois extension of global fields, we know from 

Example (V) of section 2.1.2 that the root number is characterized by: 

A(1 - 5,/)) M^(p)A(s,p) 

SO, applying this formula to p and writing ^ = 1 — g, we get: 

and then i.e.: = 1. So, when p is an orthogonal 

representation {p — p) we get W{p)'^ = 1, i.e.: W{p) = ±1 . 

When we are in the local case, i.e.: E/K a finite Galois extension of local 

fields, we know from Corollary 4.1.6 that in this case is going to be a 

fourth root of unity. 

Below, we will study orthogonal root numbers in more depth, and will 

be able to see that in the algebraic case (algebraic number fields) M (̂p) = 1, 

this result originally due to Frohlich-Queyrut [7]. 
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In order to see this, let us suppose first, as usual, that is a finite 

Galois extension of local or global fields of characteristic 0, G = 

and p a representation of G. Let us define for p the following number: 

, , W{p) 

W(detf) 

which verifies the following properties (easily checkable, some of them are 

trivial, and the rest just come from Corollary 4.1.6): 

(I) = 1 then c(p) = 1. 

(II) c(pi +,02) — c(/)i)c(p2)M^(((e^pjVF(G(e(^jM^((fe<piC(e( 
P2j 

(III) c(/) + /)) = (fe^^(-l). 

(IV) c(p) = c(/)) and |c(/))| = 1. 

(V) if p = p then c{p) = d=l 

As we said above, we are interested in the case when p is an orthogonal 

representation. We already now by (v) that in this caae c(p) = ±1. Let us 

suppose that p is an orthogonal representation, A' is local non-Archimedean 

and (7 is a dihedral group. Then E D Z, D where is cyclic, 

quadratic and each element of GoZ(Z7/A')\GoZ(E'/Z,) has order 2. 

Then we take p = some character % of GaZ(E/i^). 

The transfer map ver-ijK : Gal{E/K) Gal{E/L) is trivial, so the 

character of ZT* corresponding to % o will be also trivial. 

We could write Z, = Zr(J) for some s.t. E ZT*, then !rr%,/A'((̂ ) = 0 

and x(6) = ±1 (independent on the choice of ^). 
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In the above situation, Frohhch-Queyrut [7] proved the following theorem 

from which our results will follow: 

Theorem 5.1.1 In the above situation: c{p) = x(5). One verifies easily that 

c(/)) = FF(%). 

Now, we wish to study the global case when p is an orthogonal represen-

tation, but the global root number is invariant under induction, so due to 

the Induction Theorem for orthogonal representations [20] we know that we 

can restrict ourselves to the following caaes: 

(i) dimp = 1. 

(ii) p = ^ ^ for some representation 

(iii) p dihedral (what we mean by p dihedral is that we are in a global 

analogous situation to the one in the theorem). 

Let us study these three cases: 

(i) When dimp = 1, p is either [l/<] or the non-trivial character of 

with Zz/A!' quadratic, in both cases = 1. 

(ii) When p = g g, lV(p) = W(g)W(g) - W(g)}F(^) since we are in 

the global case. And then W{p) = \W{6)\'^ = 1. 

(iii) p dihedral. By (i) we already know that iy(c(e^^) — 1, so VF(p) = 

c(p). 

We are going to show now, that for each place of A" c(p^) = 

If V is non-Archimedean and undecomposed in L, this follows from the 

theorem. 
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If 2; is Archimedean and undecomposed in then is complex and 

= 1. On the other hand, = [1] + ggn so using properties (I) and (II) 

of c, we get c(/)^) = 1. 

So now, we just have left the case when f splits in Here, the decompo-

sition group of w/?; is in so and then, using property 

(III) of c, we get c(p ,̂) = c(%^ + ^ ) = %w(—1). On the other hand, if w' is 

another place above i;, %«,(6)xiu'(6) = %,u(-l), siiice x«,'(^) = Xu,(-'5). We 

get in this way the result we were looking for. 

So now, as c(/)^) — %u,((̂ ) we can write: 

c(p) = wc{py) = J J = YI%«;((̂ ) = X(^) = 1 
V V w/v W 

since E and x is an idele class character. 

So now, we can state the the following result [35], 

Corollary 5.1.2 If E/K is a finite Galois extension of algebraic number 

yzeZda oncf p M an offAopoMoZ o/Go/(E'/j^), W (̂p) = 1. 

To hnish this section, once we have studied the global case, we should 

study the local one. In this case there is an alternative interpretation of c(/)) 

for an orthogonal representation given by Deligne [5]. 

If we have G any finite group and p an orthogonal representation of G, 

we could consider 5'M (̂p) € ^'((^, Z/^^) the Stiefel-Whitney invariant 

of p. 

For low dimension %, S'Wt is given algebraically: 
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Z/2) ^o772(G, {±1}), and under this canonical isomorphism the 

image of is 

If is trivial (i.e. = 1), e { ± 1 } ) = z /2 ) 

is the inverse image under p : G ^ 6'0(7i) of the class of the extension: 

1 —> {±1} —> 6'pm(M) —5'0(M) —> 1 

considered as a class in Z/2). 

Now, if we take G = Gal{E/K) (in the local case) using inflation (which 

is injective) we get: 

n^(G, Z/2) -> a-^(GoZ(Q/K), Z/2) - {±1} (K # C) 

By writing cZ(6'M/2(p)) for the image of 5'M^(p) in { ± 1 } under this maps, 

Deligne saw that c(/)) = cZ(5'M^(p)). Also proved in ([30] and [31], (1988)) 

in a completely different way. 

Now, we proceed to outline the steps required to obtained Deligne's re-

sult. Deligne noticed that if we restrict ourselves to the case of orthogonal 

representations of G<2Z(A'/_L), c(p) is uniquely defined by the properties, 

(a) = 1 then c(p) = 1 and c(/) + p) = de^p(—1). 

(b) c(pi 4-p2) = c(pi)c(p2)M^(c(e(pjM^((fefpjTf 

(c) K C L' c L and p an orthogonal representation of Gal{K/L) with 

dzmp = 0 and = 1 then c(7nd^^|^y^^^(p)) = c(/)) 

So it is enough to note that cZ(5'W2(p)) verifles these properties (for details 

[5]), some of which are just re-arrangements of well-known results such as the 

Cartan formula for second Stiefel-Whitney classes. Therefore we can state 

his theorem [35], 
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Theorem 5.1.3 E/TiT 6e a Ga/oig ezfenamn 0/ ZocoZ 

ond Zê  p 6e an 07i/ioponoZ reprege^WzoM o/Go((^/A'). T/ieM, 

5.2 A brief in t roduct ion to symplect ic repre-

sentat ions 

The definition of symplectic representation has already been introduced 

in section 0.1. In this chapter we have a look at some properties of such 

representations, characterizing symplectic representations in the Quaternion 

case. 

5.2.1 Real valued characters . 

Let (3 be a hnite group and AT a subfield of the complex numbers. Let us 

consider as well, y a finite dimensional A!̂ -vector space and p : G —> 

a representation. Then, we can define p' : G —> 0^: y) . Such a 

representation is called a TiT-representation. 

We can deGne now as the set of characters of ^'-representations, 

which is a subring of the set of characters of G. 

Clearly % E takes values in however the converse is not true, 

that is why the definition of Jf-valued characters is introduced; will 

be then, the subring of jZcA(G) consisting of characters with values in A'. 
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We are interested in the case = R, i.e., real valued characters. We can 

define now THE three types of irreducible real valued characters: 

(1) % = ^ where ^ is an irreducible character of G. 

(2) % is an irreducible orthogonal character. 

(3) % is an irreducible symplectic character. 

These are the three types of irreducible real valued characters. In cases 

(2) and (3), % is also irreducible as a complex representation, but not in case 

(1), since and are complex representations. 

5.2.2 Induc t ion . 

In this section we will recall some useful induction theorems for symplectic 

characters [20]. In order to do that, we need to introduce some definitions. 

Definition 4.1: The Quaternion group of order 4n is the group on 

two generators %, Y with relations: = 1, and 

Note: Qin contains a unique element of order 2, i.e., Q4 is cyclic, 

and for M > 1, {1, is the center of Q4n, and Q4n/{1, is the dihedral 

group D2n. 

has 4 characters of degree 1, and the other irreducible characters 

are real valued characters of degree 2. Those factorising through a dihedral 

quotient are orthogonal, and the rest symplectic. For instance, in the case of 

Qg there is only a 2-dimensional irreducible symplectic representation, that 

is why it is an useful group to work with. 
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Definition 5.2.1 G a finite group. A "quaternion character" of G is an ir-

cAoroc^gr o/(ie^ree 2 o/G wAzcA Zz/tetf /rom a cAamc^er 

0/ G 0/ G. 

We are ready now to recall induction theorems for symplectic represen-

tations. The proofs of which can be found in 

Theorem 5.2.2 G a finite group and % a symplectic character of G. Then 

% M a Z-/meor 0/ cAoroc^ers 0/ /orm /or aome 

0/ G, wAere; 

eit/ier ^ z)Tg(fucz6Ze cAorac^er 0/ decree ^ 0/Jif. 

or a gua(em%on cAarac^er 0/^7. 

Theorem 5.2.3 G a guperaoZfob/e ^roup (Aere o se-

g%/eMce {e} = (?o C Gi C ... C Gt = G 0/ norma/ â Â̂ rowpg 0/ G 

G(/G(_i on(f % on %rre(fwc%6Ze â mpZeĉ zc cAorac^er o/G. TAen one 

o/ (Ae /oZ/owmp /loMa." 

= ^ + wAere zg mdwcetf 6;/ OM irrerfiicẑ Ze cAarac^er 0/ (fe^ree 1 

o/ aome at/6 r̂owp 0/ G. 

% ia mdwced 61/ o guaterMZOM c/iaracfgr o/aome a?/6̂ rowp o/G. 

Thus, when G is supersolvable, we have a characterisation for irreducible 

symplectic representations. And let us just recall that the Quaternions are 

supersolvable. 
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Chapter 6 

A construction with 

continuous, orthogonal, Galois 

representations. 

In this chapter, we study V.P. Snaith's construction [31] with continuous, 

orthogonal, Galois representations. 

In his book m TAeon/' [31], 

the construction of a map Ff- : r o { f ) —)• /i4 = {±1, it«} is given. This 

map is obtained from the composition of the following maps, 

^ ^ /̂ 4 

[ p - n ] 7 W f / ( Q p [ p - M ] r f ( p ) 

with n = dimp and Yp defined by 
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13.= lim {70(G(;r/F))/(JGW;r))} 

Here / 0 ( G ) is the Augmentation ideal of and Jg = {a; e 

0,^M^i(a;) = 0 = ^1^2(3;)}. 

This construction is important because, given a continuous orthogonal 

representation p : Of- — O n ( R ) , = rf(p). Therefore gives an 

independent construction of the orthogonal root number of p. Furthermore 

Fi? is easily shown to satisfy Deligne's formula [5] 

[31] 

Imitating this construction, we prove, in chapter 7, that a similar ho-

momorphism can be obtained in the case of orthogonal representations of 

division algebras. 

Let us start by recalling some facts about quadratic characters and some 

of their properties. 

6.1 Quadra t ic characters 

In this section, we recall some well-known facts about quadratic char-

acters [31] such as how to represent them as cohomology classes. We also 

tabulate their cup-products and local root numbers for the field Qp. 

Let 6* be a one-dimensional orthogonal Galois representation, that is, a 

homomorphism 

6 : Qp —^ {=L1} 
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where throughout this chapter, denotes a non-Archimedean local field. 

Such ^ represents a class 

Z(G) E Z/2) = 

where o G and f(o) is de6ned by /(o)(a') = 

Alternatively, by class held theory [14], /(a) may be described as a quadratic 

character Z(a) : F* — { j : ! } C C*. 

Now, via the isomorphism Z/2) = {±1} any such character may 

also be given by the formula, 

Z(o)(6) = /(a) U /(6) = (a, 6) 

where U denotes the cohomology cup-product and (o, 6) denotes the Hilbert 

symbol [20]. 

Here, using the well-known fact [25] that Qp/(Qp)^ — Z / 2 x Z / 2 < M , p > 

where « i s a unit with Legendre symbol [^] = — 1 (i.e., u is non-square mod.p) 

for p ^ 2 a prime, and Q2/(Q2)^ — Z/2 x Z/2 x Z/2 < —1,5,2 >, we have 

the following cup-products tables [31] in the case F = Q^. 

Cup-products on Qp/(Qp)^ if p ^ 2, where A = 

1 U P 

1 1 1 1 1 

u 1 1 - 1 - 1 

p 1 - 1 A - A 

MP 1 - 1 - A A 
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*\2 Cup-products on Q2/(Q2) 

1 - 1 5 - 5 2 - 2 10 - 1 0 

1 1 1 1 1 1 1 1 1 

- 1 1 - 1 1 - 1 1 - 1 1 - 1 

5 1 1 1 1 - 1 - 1 - 1 — 1 

- 5 1 - 1 1 - 1 - 1 1 - 1 1 

2 1 1 - 1 - 1 1 1 - 1 - 1 

- 2 1 - 1 - 1 1 1 - 1 - 1 1 

10 1 1 - 1 - 1 - 1 - 1 1 1 

- 1 0 1 - 1 — 1 1 - 1 1 1 - 1 

Now, as /(a) is an orthogonal representation, we may evaluate 

giving us the following tables [31], 

oGQ; / (Q; )^ 

a 1 - 1 5 - 5 2 - 2 10 - 1 0 

1 i 1 i 1 i - 1 —i 

K ' a , W a ) ) e { ± l . ± ! } - o e Q ; / ( Q ; ) ' 

a 1 11 p -up 

p = 3(mo(f.4) 

W'a. ('(«)) 

p = l(mod.4) 

I 1 - z % 

I I 1 - 1 
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6.2 The construct ion 

This section explains how Snaith's construction [31] for orthogonal Galois 

representations is obtained. Let us start, by setting down the details required. 

Given G a Rnite group, let denote the Grothendieck ring of Enite-

dimensional real representations of G. That is, the free abelian group on 

the isomorphism classes, [/)], of irreducible orthogonal representations p : 

G — 0 „ ( R ) , or alternatively, the quotient of the free abelian group on 

isomorphism classes of representations modulo the relation 

[pi © P2] = [pi] + [pz]-

This ring structure is defined via tensor product of representations. 

Consider now, the augmentation ideal of AO(G), denote it by 7 0 (G) <1 

^0((9) given by Z), and dehne 

Jc = {a; G = 0 = 

Jq is an ideal of RO{G) [31]. Therefore, 10(G)/Jq is a ring, and so too is 

lim 

kJ^ 

where, if F is a fixed choice of separable closure of F, the limit is taken over 

finite Galois extensions with F C K C F. 

As, by definition, any element a; G 7 0 ( G ) / i s detected by and 

we also see that any element z e Yp is detected by or in 

7f*(F;Z/2). 

Now, if Q E F*/(F*)^, consider the orthogonal one-dimensional rep-

resentation 1(a). Studying the definition of Yp, it follows trivially that 
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Z(a) — = /(a) — 1 lies in Yp . Hence, we can deSne 

Pf{o) = l{a) — 1 E Yp 

satisHes the following properties [31]. 

Theorem 6.2.1 Let F he a non-Archimedean local field. 

TAere on aeguence 

i TT 

("2%; 7r(f^(o)) = ^(o) /or oZ/ o E 

("wj jy o, 6 E f = ^^(a) + f^(b) + t ((a, b)) 

We define a homomorphism ^ given by 

<fr(P<iM) = M/q. ('(»)) 

This gives a homomorphism as is seen by the local root number tables given 

in section 1 of this chapter. In fact, may be extended to Yp, by using the 

induction homomorphism 

Given p : On(R) a continuous, orthogonal, Galois representation, 

we deSne 

rj?(p) = - M]) 

In order to prove that the value of this map on orthogonal representations 

is the local root number, we must understand the way this map acts, as some 

of its properties. If we denote by 
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lim { ^ 0 ( G ( ^ / F ) ) } 

7 0 ( f ) = lim {70(G(;;r/F))} 

we have the following result concerning [31]. 

Theorem 6.2.2 Let Ff : RO(F) —/14 is defined as above, 

6e o p : —>- On(R) 6e a 

lioua, ort/zoponaZ representatzoM, tAen 

(p)) = rji;r(/))rf (iWAT/f (1))" G /̂ 4 

6 G F*, (Aen 

rjr(ZM)) = Tf(/W)rf(z(6)) e //4 

For aZZ coM^muoi/g, or̂ AopoMof repreaen^o^zona, ^ —> On(R), 

Tf (p) = rf'(oge^p)5'142(p) G /̂ 4 

w/iere G 77"(F; Z/2) ^ {±1}. 

Using these properties, and the axioms for local root numbers of orthog-

onal representations, the following result is proved in [31]. 

Theorem 6.2.3 Following the notation above, on RO{F), Wf{p) = Ff (p) 

Note that Snaith's proof did not do use of Deligne's formula, which is 

therefore a corollary. 

We move on now, in chapter 7 to imitate this procedure in the caae of 

orthogonal representations of division algebras. 
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Chapter 7 

A construction with 

finite-dimensional orthogonal 

continuous representations of 

division algebras. 

Let be quaternion algebra with centre a local Eeld F of odd residue 

characteristic. The aim of this chapter is to construct a homomorphism of 

the form Fi? : RO{A*/F*) —> /i4, analogous to that of chapter 6. 

Consider the augmentation ideal of J?0(v4*/F*). DeAne J = 

{a; E _R0(A*/F*)|d2m(a;) = = 0 = 5^^2(3;)}, which is an ideal of 

RO{A*/F*) contained in IO{A*/F*). Therefore the elements of IO{A*/F*)/J 

are faithfully detected by and 5"^ .̂ 

The goal of this chapter is to construct a surjective homomorphism (sec-
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tions 7.2 and 7.3) 

TT: fO(v4*/F*)/J —^ Yp 

where Yp is aa in section 6.2. 

Once such a map is found, we can deSne as the following composition 

TT Wp 

7^0(A*/F*) - 4 - 7 0 ( A * / f * ) / J ^ yp- —> /̂ 4 

^ ^ 7r(PF —n) —7%)) 

where n = 

Due to the fact that 

Z/2[a;i,a;2,W2]/(3;2 + ];ia:2) if q s 3 (modulo 4), 

A''(A*/F*;Z/2) ^ < 

Z/2[a;i,Z2] if q = 1 (modulo 4). 

where is the residue held of F (section 7.1) we need to make different 

constructions depending on g = l(mod.4) or g = 3('mod.4), these are studied 

in section 7.2 and 7.3 respectively. 

Preliminaries 

Let E/F be a quadratic extension of p-adic local fields and let 9 : E* —^ 

C* be a continuous character of finite order. We shall assume that p is odd. 

If { l , r } = G{E/F) then we shall assume that T*{9) ^ 9 (i.e. 9 is regular in 

the terminology of [9] p. 157). 

By local class field theory ([14], [32], [33]), there are isomorphisms of the 

form 

G(E/F) ^ F*/(7VB/f'(E*)) ^ (E*)^(^/-^)/(7Vg/f(E*)) ^ ^ ^ ( G ( E M ; E * ) . 
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Therefore, the non-trivial cohomology class corresponds to any element 

X E F* — NE/F{E*). 

Suppose that is the bar-resolution [32] 

. . . ^ ^ Z —^ 0 

Therefore, since B 2 G ( E / f ) is the free Z [ G ( E / f )]-module on G(E/F) x 

G{E/F), a Z[G(i?/F)]-module homomorphism of the form / : B2G{E / F) —^ 

E'* satisfying 0 = corresponds to a 2-cycle / : (?(E'/^) x ( ? ( ^ / F ) — E ' * . 

L e m m a 7.0.4 

T/ie ^enera^or o / E ' * ) repregenW 6^ 2-coc^cZe / gifeM 

/(r ,T) = 3;, 1 ^ / ( I , r) = / ( r , 1) = / ( 1 , 1 ) 

wAere a; G F* — Tyg/f (E'*). 

Proof 

The most economical resolution is 

. . . Z[G(E/F)] Z [G(E/ f ) ] ^ Z[G'(E/F)] ^ Z ^ 0 

and one may easily verify that the formulae below define hi ; BiG{E/F) —^ 

Z[G{E/F)] for i = 0,1,2 which are part of a chain m a p from the bar-

resolution to the more economical one: 

Ao = 1 : B o G ( E / f ) ^ Z[G'(E/F)], 

Ai(l) = 0,/ii(T) = 1, 

/i2(T, r) = 1,0 = ^2(1, r) = ^2(7-, 1) = /i2(l, 1). 
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The result follows since the generator of is given by the 

Z[G'(ii'/F)]-module homomorphism from Z[G{E/F)] to E* sending 1 to x. 

• 

Next we recall the well-known association of a group extension to a nor-

malised 2-cocycle of the form 

/ : G x G — 

where G is a group and A is an abelian group, written additively, on which 

(9 acts. 

Given / as above, deSne a 'product' map 

(G X A) X (G X A) —> (G X A) 

by the formula (g, E G, a, ai 6 A) 

(^,a)' ^ + + 

Theorem 7.0.5 (i) With this multiplication G x A is a group. 

TAe {(1, o) E G x A} a normoZ zaomorpMc (o A. 

(^,G) . = (l,p(Gi)). 

Proof 

Recall that the cocycle condition states that 

0 = — /(ppi,^2) + /(p, Pi^2) — 
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Therefore, 

W,o) ' ((^i,ai) ' ^2,02)) 

= ' (pig2,(ii + 9i(a'2) 4- /(gi,P2)) 

= W l̂p2,G + ^(ai) +^^1(02) +^(/(^l,^2)) + y(^,^1^2)) 

= (̂ Pi5'2, G + ^(di) + ^^i(a2) + /W, g'l) + ^2))-

On the other hand, 

((9,0)' (91, oi)) ' (g2,a2) 

= + /W, ^1)) ' (^2,02) 

= (̂ l̂g'2,G + p(Oi) +^^1(02) + / ( p , ^1) +/(^8'l,6'2))-

Hence the multiphcation is associative. 

The identity element is given by (1,0) since 

(1,0) - (p, a) = (p, 0 + 1(a) + / ( I , ^)) = (gi, a) 

and 

(^, a)' (1,0) = (^, o + ^(0) + /(^, 1)) = (^, a) 

since / is a normalised 2-cocycle (i.e. / ( l , p ) = y(^, 1) = 0 for all p E G). 

The inverse of (p, a) is given by 

((/, = (^"\ (7"^))) 

since 

(p, a) - ( ^ - \ -^-^(o) - ^"^))) 

= (1, a - ^(^-^o) + p-^(y(^, ^-^))) 4- /(^, ^-^)) 

= (1,0) 
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and 

' W, a) 

= (1, 

= (1,0) . 

This proves part (i). For part (11) we have 

(^, a) - (1, oi) . ( ^ - \ P"^))) 

= (g, G + 9(ai)) - ( 9 ' \ - 9"^(/(9, P"^))) 

= (1, G + p(ai) - G - /(p, ^-^) + /(^, ^-1)) 

= (l,^^(«i)) 

as required. 

Example 7.0.6 From the 2-cocycle of Lemma 7.0.1 we obtain a group struc-

on { 1 , T } X 7̂* pztien 6?/ 

( l ,e)(l ,e') = (l,ee'), 

(1, €)(?-, e') = (r.ee'), 

(T,e)(l,e') = (T,er(e')), 

(7-,e)(T,e') = (l,eT(e')a;). 

This group Is denoted by WE/F and sits In an extension of the form 

^ PFg/j, —> G ( E / f ) 

([9] p.158). 

Let us recall now some facts from ([32], chapter 7). If / is the 2-cocycle 

of Lemma 7.0.2, then, the associated quaternion algebra, which is a division 
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algebra with centre Aeld F, is given by the left E-vector space on basis Wi 

and where Wgeiig ̂  = ^(e) for all e E E* and WgW/i = / ( ^ , Hence, iti 

is the identity of A and = a: and = a;T(e). 

The subset 

= {e, I e, e' G F * } C 

is a subgroup of A*. In fact, the map 

A : W —> VFe/F 

given by A(e) = (1, e), A(e''UT) = (r, e') yields a group isomorphism since 

A(e)A(e') = ( l ,e ) ( l ,e ' ) = (l,ee') ^ A(ee'), 

A(e)A(e'MT-) = (l,e)(T, e') = (r, ee') = A(ee'MT-), 

A(etti-)A(e') — (r, e)(l,e') — (T, e'r(e')) = A(eT(e')̂ ^T) — A(eMT-e'), 

A(e'WT-)A(e'ifT-) = (-r, e)(T, e') = (l,e'r(e')a:) = A(e7'(e')a;) = A(eiiT-e'MT)-

7.1 H*{A*/F*-,ZI2) 

Let E/F be a quadratic extension of p-adic local fields and we shall as-

sume that p is odd. Let Of denote the ring of integers of f , TTf a uniformiser 

of F. Hence, the residue field 0^/(7:^) is a Enite held with g elements F , 

for g = for some integer (f. 

By descent theory, quaternion algebras over f are classihed by the non-

trivial elements of E*) = Z/2 [31], so that, there is only one such 

quaternion algebra v4, up to isomorphism. Also [24] any quadratic extension 

L/F is embeddable into A/F and the image of L is a maximal subfield of A. 
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An explicit description for A [31] is 

^ y]/(%^ - 0, y" - 6, + r x ) 

where a, 6 E F*/((^*)^) are non-trivial and the cohomology classes Z(a), Z(6) G 

i7^(F;Z /2) have a non-trivial cup-product in Z /2) = Z/2. This 

means that we may choose a, b to suit our purposes. That is, let us make the 

convention that F{X)/F is the unique unramified quadratic extension and 

that b = ttf so that (6) <3 Op is the maximal ideal. 

7.1.1 The reduced norm 

The reduced norm is a homomorphism of the form 

: A"- ^ F* 

which is defined in the following manner. Let L = F[^/a), then we have an 

isomorphism of left Z^algebraa 

L iSip A = M2{L) 

z gi 11-> 

^ z 

V " V 

if z e L, 

/ 0 ^ 

1 (El ^ I—y 

0 —A/o 

and 

1 (g) y i-> 

/ 0 6 ^ 

Oy 
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where denotes the 2 x 2 matrices with entries in iv. 

The reduced norm of a E A is given by the determinant of the image of 

1 (g) a in M2(Z,). That is, if E F, 

Nredi^jQ + 0,lX + (12^ + O^^XY) 

= det 

ciQ + Gi-y/a Qgb + 036^/0 

^ a2 — Go — al^/a, J 

= GQ — — 2̂̂  + G3G6. 

The reduced norm is surjective. To see this observe that 

which has index two in F* and similarly [F* : Nred{F{\/b)*)] = 2. However, 

[31] ((a) U Z(6) is non-trivial if and only if 6 is not a norm from F(\/G) so that 

Now, we recall a few facts from ([2] §1.1). If u;? : i^* —> Z is the 

valuation, normalised so that (TTf) = 1, then 

= 'Uf - Â red : Z 

gives a surjective valuation which extends 2̂ ;̂  on f* . Setting = cxa 

then 

Oyi {a; 6 A I 'Uy4(a;) > 0} 

is a subring, which is the unique maximal order in A whose unique maximal 

ideal is where 

= {z e A I > %}. 
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and we can deSne 

In fact, is a 2-8ided ideal and the quotient ring is the Held F^z. 

Setting % = l + f ^ C v4* for % > 1 we have a chain of compact, open normal 

subgroups of A* 

Each quotient is an elementary abelian p-group and is a 

pro-p-group 

- lim 

Now we are going to calculate the mod 2 cohomology of the topological 

group A*/F*. This is continuous cohomology in the sense of ([26] Ch I, §2). 

This means that there is an isomorphism of the form 

The Serre spectral sequence for the extension 

takes the form 

Z/2) = > Z/2). 

Since is a hnite p-group and p ^ 2 we have = 0 when ( 0. 

Therefore 

Z/2) ^ lim Z/2) ^ Z/2) 

for each z. 
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Prom the previous discussion the homomorphism induces a surjection 

of the form 

—> Z/2 

whose kernel contains the pro-p-group so that we obtain a surjection 

^ Z/2. 

By ([2] (1.2.5)/(1.2.6)) the kernel of i; is isomorphic to = F*2/F*. 

Hence we have an extension of the form 

F ^ / P ; Z/2. 

If we can show that this extension is the dihedral group D2((/+i) = Z /2 oc 

(Pgg/P*), where A oc B denotes the semi-direct product and Z/2 acts on 

F*2/F* as the Galois group ^(Fgz/Fg), then we may read off the mod 2 

cohomology from ([31] p.24). To see this let L/F be the unique unramified 

quadratic extension. Then, from the preliminaries, we have an extension 

where the normaliser of Z,* in A*, (see [32] §7.1.25) and we 

have an inclusion WL/F/UIF* C A*/F*U\. Since L/F is unramified 

^ o 2 / [ / 2 o ; -

and, by construction, the resulting extension 

F^^/F; ^ ^ G(Z,/F) 

is the required dihedral extension. It is straightforward to verify that the 

canonical homomorphism 
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is an isomorphism. 

Note that the 2-Sylow subgroup of -D2(g+i) is isomorphic to Z/2 x Z/2 if 

and only if g = 1 (modulo 4) and is otherwise a non-abelian dihedral group. 

Now we may describe the cohomology ring H*(A*/F*; Z/2). Firstly we 

know that = ffomconfa(^*/f*;Z/2), the group of continu-

ous homomorphisms. However, every continuous homomorphism from A* to 

Z/2 factorises through 

Since f * modulo squares is isomorphic to Z /2xZ/2 we have *; Z/2) = 

Z/2 X Z/2. 

Let XI : A* —> Z/2 be the non-trivial continuous homomorphism which 

annihilates the subgroup L* = F{X)*, where F{X)/F is the unique unram-

ified quadratic extension. Let a;2 : A* —> Z/2 be one of the other two 

non-trivial continuous homomorphisms. If g = 3 (modulo 4) WL/F/U\F* = 

is a non-abelian dihedral quotient of A*, we have a faithful two-

dimensional complex representation, which is the complexihcation of an or-

thogonal representation p given by (A). Set W2 = 'S'M (̂p) 

Z/2), the second Stiefel-Whitney class of 

Theorem 7.1.2 ([31] p.24 Theorem 4-6) 

Z/2[a;i,Z2,'u;2]/(a:2 + 3;ia;2) if q = 3 (modulo 4), 

Z/2[2;i,a;2] if q = 1 (modulo 4). 
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7.2 T h e construct ion on or thogonal represen-

ta t ions of when q = l{modA) 

In the previous chapter, we introduced a construction with orthogonal 

Galois representations. In this section, we will imitate the procedure, obtain-

ing a similar map, but in this case on orthogonal representations of 

in the case g = l(mod.4). The case g = 3(mod.4) is studied in section 7.3. 

Let denote the representation ring of finite-dimensional, or-

thogonal continuous representations p : A*/F* — 0 „ ( R ) . Then 

J = {a; E | dim(a;) = 0, = 0 = 

is an ideal of RO{A*/F*) contained in the augmentation ideal IO{A*/F*). 

By construction, the elements of the ring IO{A*/F*)/ J are faithfully de-

tected by S'Wi and 

Suppose that a, 6 € then we have /(a),Z(6) E fr^(f;Z/2) = 

{±1}) defined by /(a)(p) — p ( Y ^ / \ / a and Z(6)(^) = p('\/b)/\/b. 

If we consider Z(a),Z(6),/(o6) as one-dimensional orthogonal representations 

then/(o)Z(6) = Z(a6). Setp(a) = Z(a) —lE7C)(A*/F*)/J. If5'Wi(Z(a))=a;i 

and 5'Wi(/(6)) = we can write the total Stiefel-Whitney class of the 

following elements 

5'M^(p(a)+p(6)-p(a6)) = ( H - 2 ; i f ) ( l + a;2t) (1+ (a;i+Z2)^)"^ = 

= 1 + XiX2t̂  + . . . , 

Siy (p (a ) + p(a6) - p(6)) = 1 4- (z^ -I- + .. - , 
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+p(o6) - p(a)) = 1 + + . . . , 

gVy(2p(a)) = l + i ^ f , 

(2p(6)) = 1 + 

gV^(2p(a6)) = l + (3;2 + a:E)t̂ . 

This shows that p(a),p(6), andp(a6) generate 70(A*/ f '* ) /J . Let ns recall 

that the elements of 7 0 ( A * / f * ) / J are detected by 5"^! and 

The additive group 70(A*/F*) /J sits in a short exact sequence 

0 ^ y —> J —> —> 0 

where V is the F2 vector space with basis 

In order to construct a homomorphism tti : IO{A*/F*)/J —> Yp we 

want to map each ^(z) to the class denoted by p(z) G Yp in section 6.2. 

We must show this is well-defined. Hence, if we map p(a), and p(o6) 

into themselves via vri, then and must be mapped trivially (as g = 1 

(modulo 4), —1 is a square in F and so Z(z) U Z(z) = Z(z) U Z(—1) = 0 for all 

z E F*. Therefore 7ri(a;̂ ) = 7ri(2p(o)) = Z(a) U Z(o) = /(a) U /(—I) = 0, and 

— 7ri(2p(6)) = /(6)U/(—1) = 0), and a;ia;2 must be mapped not trivially 

(as from the first total Stiefel-Whitney class, 7ri(a;ia;2) = ^(a) U Z(6) and that 

is non-trivial by choice in chapter 7.1). Therefore, mapping p(a,),j)(6), and 

p(o6) into themselves and mapping and trivially into Z/2 and 3:13:2 

non-trivially gives a well-de6ned surjective homomorphism 

TTi : ^ 
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where Yp is as in section 6.2 and sits in a short exact sequence of the form 

0 ^ Z/2 —> Yp ^ ^ 0. 

As explained in section 6.2, sending p(z) to the local root number (quadratic 

Gauss sum) 14^(^(2)) yields a homomorphism of the form 

iPp Yp > /i4 

from Yp to fourth roots of unity. 

Now, let VF be an orthogonal representation of *, we may send it to 

W—dimW ^ IO{A*/F*)/J. Then, this can be sent via tti : I0{A*/F*)/J— 

Yp to Yp, where we can apply and send it to /̂ 4. That is, we can define 

for an orthogonal representation of 

f f (M/) = ^ /̂ 4. 

7.3 T h e construct ion on or thogonal represen-

ta t ions of A*/F* when q = ?>{modA) 

We proceed now to study the case g = 3(mod.4) in a similar way, in order 

to obtain rf'(7r((7)). 

For g = 3 (mod.4) we have a short exact sequence of the form 

0 ^ ^ 7 0 ( A * / F ' ) / J —^ F * / ( f —> 0 

where is the Fg vector space with basis 3:13:2,̂ 2 because — 3;ia;2 

(see Theorem 7.1.2) . 
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We have in terms of the preceding notation and so we see 

p{p) = p — 2 sits in IO{A*/F*)/J. Then the calculations of total Stiefel-

Whitney classes for the following elements 

SW[p[p) — P{CL)) = (1 + Xit + W2t^ + . . . ) ( ! + Xi£) ^ = 1 + W2t^ + . . . , 

5'W(p(o) 4- - p(o6)) = 1 + + . . . , 

+p(a6) — p(6)) = 1 + + . - -, 

- p(a)) = 1 + (3:2 + + . . . , 

^:y(2p(o)) = 1 + , 

^VK(2p(6)) = 1 + , 

= 1 + 

show that p(p),p(a),p(6) generate 70(v4*/F*)/J and give the relations be-

tween these elements. Note that p(6) +^(06) = p(a) because + 3;ia;2 = 0. 

Since g = 3 (modulo 4), —1 is not a square in Fg and so is not a square 

in F. Therefore L = F(\/^) is the unramified quadratic extension and we 

may take a;i = /(—I) and a = —1 in the preceding formulae. 

This case is more complicated than g = l(?7iod.4), since now we also have 

to deal with the 2-dimensional representation p, but with a bit of care we 

define a surj active homomorphism of the form 

TTa : 7 0 ( A Y F * ) / J — Y p . 
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As in the previous section, when constructing this homomorphism, we 

must be careful with whichever choice we make for the image of p(—1), p(6), 

and p(p). We shall map each of p ( — 6 ) to the elements of Yp 

denoted by 6) respectively. Therefore 3:1,3:2, a;ia;2 must map 

to Z(—1) U Z(—1), /(—I) U /(6), Z(—1) U /(6) respectively. Now, we have to hnd 

a sensible choice for the image of p(p), keeping in mind that such choice 

will have to verify 7r3(p(p) — p(a)) = 7r3(w2), from the hrst total Stiefel-

Whitney class listed above. Send p(p) to the class of the Galois representation 

— 2 which is dehned in the following manner. By definition p is 

induced from a faithful character 

A: ^ o i / c / i c p ; = F;2/F; — c * 

which yields a character A : L* — C * . Since the restriction of A to F* is 

trivial, the induced Galois representation 

IndL/p(X) : Q.p —y GL2C 

is dihedral [7]. 

In addition we send 'u;2 to 

Since L = F(\/^) we have 

(A));yp(z(-1)) = (A)) 

= W2,(A)Wf (1)) 

= Wz(A)M^f.(/(-l)). 

Therefore 

(A) ) = Wz, (A) e { ± 1 } = Z / 2 ) . 
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Choose TTs to satisfy the following formulae 

7r3(p(p)) = (A) - 2, 

7^3(p(z)) = p(z) for z = a, 6, 

TTsM) = Z(-l) U/(-l), 

TTsM) = 7l'3(3;iZ2) = Z(-l) U /(6), 

7r3('u;2) = (A)), 

there can only be at most one homomorphism satisfying these formulae. 

These formulae give a well-deHned surjective homomorphism TTa : 70(A*/F*)/ J 

Yp, provided that 

- P W ) = 7r3(w2). 

However, 

7''3(̂ (p) - p ( a ) ) = 7Wi,/f(A) - 2 - Z(o) + 1 = 5'M^(7W_L/F(A) - Z(a)) 

since det(7W^/f'(A)) = det(/(a)) = /(—I). However (A) — /(a)) 

is the coefficient of in 5'l^(7M(f2/f'(A) — Z(o)), 

(1 + / ( - ! ) ( + )(1 + + . . . ) 

which is 
5'M/2(-/'Mc;i,/f (A) ) = 7r3(w2), 

as required. 

So now, as in the previous section, sending p(z) to the local root number 

for z — o, 6, (z6, and sending p(/)) to the local root number 

yields a homomorphism of the form 

: Yp — / ^ 4 
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from Yp to fourth roots of unity. Now, aa in the caae g = l(mod.4), we 

consider W an orthogonal representation of and dehne 

r^(W) = y'̂ (7r3(W - (iimVK)). 
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Chapter 8 

First and second 

Stiefel-Whitney classes for 

orthogonal representations of 

A* IF* 

The aim of this chapter is to obtain formulae which allow us to calculate 

the Erst and second Stiefel-Whitney classes of orthogonal representations 

of v4*/f * in terms of its character values on elements of order two. This 

will reduce obtaining Stiefel-Whitney classes to an easy algebra exercise. 

These formulae will be used in Chapter 9 to allow us to calculate the first 

and second Stiefel-Whitney classes of a special orthogonal representation of 

A*/F* constructed via the Langlands correspondence using the results of 

[21]. This calculation falls into two cases depending on ^*(v4*/f'*;Z/2) (see 

Theorem 7.1.2) according to the values of g(mod.4), where is the residue 
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Seld of F and g is odd. 

8.1 Formulae for the first and second Stiefel-

W h i t n e y classes, when q = l{modA) 

In this section, we obtain a formula for the first and second Stiefel-

Whitney classes for representations of A*/F* in the case g = 1(7710(̂ .4). 

Recall from Theorem 7.1.2 which gives us that 

Z/2[3;i,a;2,W2]/(a;2 if q = 3 (modulo 4), 

j7*(v4*/F*;Z/2) 

Z/2[xi,X2] if q = 1 (modulo 4). 

When g = l(mod.4) the Sylow 2-subgroiip of is y = {1, X, Y, XY}, 

an elementary abelian group of order four, where F, and X Y will be el-

ements of order two . Since restriction 

: 77* (^V^*; Z/2) ^ Z/2) 

is an isomorphism we may compute the Stiefel-Whitney classes of an orthog-

onal representation W by the formula 

E Z/2[a;i,a;2]. 

Suppose that 

a;i(y) = 1, 3:1 (X) = 0, 2:2 (y) = 0, Z2(X) = 1 (modulo 2) 
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where is unramihed and = a E F. DeEne : yl*/F* —^ {±1} 

by %i(̂ ) = (—1)̂ '̂ )̂. With this notation the orthogonal representation ty 

restricts to Co + Ci%i + + CgXiXs where q 6 Z satisfies 

[rroce(M/')(l) = Co + Ci + C2 + cg = 

Trace{W){X) = Cq + Ci — C2 — C3, 

[rrGce(M^)(y) = Co - ci + C2 - C3, 

TrcLceiyV^i^XY^ = Cq — Ci — Cg 4- C3. 

Now, write the total Stiefel-Whitney class, = 1 4- + 

5'W2(W)t^4-..a formal series which satisfies = 5'W(Wi)5'TV(W2) 

We obtain 

— 5^W(co + CiXi + C2%2 + CsXiXz) 

= (1 + (1 + 3:2̂ )̂ ^ (1 + (a;i + 3:2)̂ )'̂ ^ 

— 1 + (Ci-Ti + C2X2 + 03(0:1 + X2))t 

/ 

2 
V / 

371 + 
^ 3 ^ 
2 

V / 
3̂ 2 + 

C3 
(a;i + 3:2)" 

V 
-\-C1C2X1X2 + CiC-iXi{xi + X2) + Cg032:2(a; 1 + • • • 

therefore, comparing this to the dehnition of yields the following 

result: 

Proposition 8.1.1 Let A be a quaternion algebra with centre a local field 

F -Pgo/ o(f(f orcfer g = l(mod.4), o 

or̂ Aô onoZ o/v4*/f*. iTAe oMd aecoMd 

cZogaea 0/ are 6?/ (/te /orm«Zae, 
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— (ci + 03)2:1 + (c2 + 03)^2 

^ Ci + C3 ^ 
= 

^1 
. C2 + C3 

2 
\ 

^2 "I" [(̂ 1̂ 2 + C1C3 + C2C3]a;ia;2. 

Q OM(f ag a6o%;e ond (Ae coê ĉzen^g Zze m /̂le m^e^era modt̂ Zo 2. 

8.2 Formulae for the first and second Stiefel-

W h i t n e y classes, when q = 3(moti.4) 

In this section we calculate the formulae for the hrst and second Stiefel-

Whitney classes in the case g = 3(mod.4). This case is more complicated 

than the caae when g = l(mod.4). This is because the 2-Sylow subgroup 

of A*/F*U\ is no longer an elementary abelian group of order 4. When 

g = 3(moc(.4) the Sylow 2-subgroup of is non-abelian dihedral: 

that is, it is isomorphic to 

= {2:,^ I = 1,1/3:1/ 

for some n > 2. In terms of X and Y in A with a = X"^, b = Y"^ and F(^/a)/F 

unramihed we may take Y to represent ?/ and X to represent .̂ 

The three non-conjugate elements of order two in this case will therefore 

be %, y , and a;y, and then we have two non-conjugate copies of Z/2 x Z/2 

m 

= (a;^"-\2/> and % = (x^^'.xy). 
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We shall evaluate the restriction homomorphism 

Z/2) Z/2) @ Z/2) 

with particular interest in dimensions one and two. Define homomorphisms 

ui,u2 : Hi —> Z/2 and Vi,V2 : % —> Z/2 by the formulae 

'Ui(y) = 1, Ui[x^ ) = 0, U2{y) = 0, U2{x'̂  ) = 1 (modulo 2) 

and 

= 1, = 0, f2(a:2/) = 0, 2̂(3;̂ " ') = 1 (modulo 2). 

Therefore, we have n*(7fi; Z/2) = Z/2['Ui, 112] and n * ( Z / 2 ) = Z/2['Ui, -ug]. 

Consider the composition a;i%i which sends 3;̂ " ^ to % and then to zero 

(modulo 2) while sending 1/ to Y and then to 1 (modulo 2). Therefore 

2*(a;i) = til- Similarly, a;2%i sends ^ to % to zero and ^ to F to zero 

(modulo 2) which yields %i(a;2) = 0. If %, : ^ {:bl} given by %i = (—1)"* 

then the composition 

D2»+i C 02(R) 

is %2(1 + Xi) so that %*(w2) = <5'M (̂%2(1 + %i)) is the degree two term in 

5'M/̂ (%2 4- %i%2) = (1 + «2^)(1 + (% + '(̂ 2)̂ ). Hence = '̂ 2 + ^1^2. 

Similarly, the composition a;iZ2 which sends to % and then to zero 

(modulo 2) while sending to a;i(zy) = 3;i(y) = 1 (modulo 2). Therefore 

^2(̂ 1) = 1̂- Similarly, a;2%2 sends 3;̂ " ^ to X to zero and a:?/ to 32(3;}^) — 

3:2(3;) ^ 1 (modulo 2) which yields ^2(̂ 2) = If %i : % — g i v e n by 

%i = (—1)̂ ' then the composition 

jf2 Dgn+l C 02(R) 

is again equal to %2(1 + %i) so that ^2(^2) = '(̂ 2 + ''̂ 1̂ 2. 
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Proposit ion 8.2.1 

in (Ae coae g = 3(mod.4), = 1,2 (Ae reaMc^ion 

Z/2) Z/2) @ ^"(^2; Z/2) 

25 mjgctwe. 

Proof 

By Theorem 7.1.2 we have only to verify injectivity on H*{D2n+i;Z/2). 

In dimension one 

implies that a = /? = 0 (modulo 2), as required. In dimension two 

0 = (**,̂ 2)(():: î+/̂ :^2 + 7'^2) = (a!/i+?(«2 + «iM2), (a! + /))'Ui) + 7(i;2+^i'(^2) 

implies that a = /? = 7 = 0 (modulo 2), as required. • 

Corollary 8.2.2 

7m 8.2.1, 

Z/2) ^ ^'((2;""''); Z/2) @ ^"((^>; Z/2) e Z/2) 

Proof 

Prom the formulae of the restriction of owg + to Z/2) @ 

ff^(.ff2;Z/2), that is, Zi(w2) = ^2 + 1̂ 17/2, = iti, %*(a;2) = 0, 22(^2) = 
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"̂2 + 'Uif2, — '(̂ 1, = ^1, GWg + 6a;i + ca;̂  is sent to (^(^2 + 

«iit2) + <̂ ('̂ 2 + ^1^2) + + cu^). Therefore, we will prove that, under the 

three restriction maps to the subgroups of order two generated by 

and a;?/, aw2 + + ccg maps to (a, 6,6 + c). Thus, it is injective. 

(i) Restriction to )̂; Z/2). In this case, we have the two possible 

choices of restriction, but let us note that in both of them, we should get the 

same answer. 

Z/2) Z/2) ^ Z/2) 

given by 

0,11)2 ~l~ bx^ + CX2 I—̂  0,(1(2 + '̂ 1̂ 2) "f" bv^ I—V (o(ti2 ~l~ U\U2^ + bu^lx^ ) = cz. 

or 

Z/2) z /2) ^ Z/2) 

given by 

aw2+()3;i+c3;2 o('U2+^;i'U2)+6t;i+c^;i n-i (a(f2+(;i^2)+6fi+c?;i)(a;^" )̂ = a 

(ii) Restriction to (<? />; Z/2). 

77^(yl*/f *; Z/2) Z/2) —^ ^ >; Z/2) 

given by 

0AD2 4- bx^ + cTg I—} 0(1(2 1/1^2) 4" buf I—y (0.(142 ~l~ ^1^2) ~l~ bu'i)(^y) = b 

(iii) And finally, restriction to H^{< xy >; Z/2). 

n^(A*/F*; z /2 ) ;:f^(n2; z /2 ) — ; 7 ^ ( < a;?/ >; z / 2 ) 
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given by 

ClW2-\-bx'^^CX2 I—y (l(^V2~\'ViV2)-\~bvf-\-Cvf I—y {ci{'U2~^ViV2)'i'bv'^-\-CVi){xy) = b-\-c 

q.e.d 

Remark 8.2.3 When q = 3 (modulo A) then X is a square in A*/F* because 

2̂  o agitare m oW ^Aere/ore _F(%y) = -F(y). 

We can study now the formulae for the Stiefel-Whitney classes. 

Suppose that vr is a representation of the cyclic group of order two gener-

ated by ^ and that the character values of 7r are TrGce7r(l) = do = c(%mc(7r) 

and T'race7r(p) = di. If vr = (cfo — a) - 1 + ^ where Z, is the non-trivial 

one-dimensional representation then do ~ 2a = di and the Stiefel-Whitney 

classes satis^ 

^ o = ( 4 - (fi)/2 e z / 2 ^ z /2 ) , 

^ ^ ^ {d,Q — di)/2 

From this observation we can obtain the following result. 

Proposition 8.2.4 Let the three conjugacy classes of elements of order two 

m X*/F* 6e % = \ Y = i/ zY = 5'uppoae zg o com^m-

uoua, o/ A*/F* ag m 8.1 c/iorocfer 

fa/uea 
T'rH:(l) = 4 , = di, 

= (̂ 3 
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do = 4 / 

SWi{W) — ((do — d2)/2)xi + ((dg — d3)/2)x2 

ancf 

^ (do — di)/2 ^ ^ (ĉ o — ((2)/2 ^ 
W2 

/ 
Xt 

+( 
^ {do — dz)/2 ^ 

V / 
^ {do — d^) l2 ^ 

Proof 

Prom the formulae of Corollary 8.2.2 (proof) the restriction maps 

^XD2»+i; Z/2) ^ Z/2) @ Z/2) @ ^X(a;y); Z/2) 

are given by 

and 

otX\ + Px2 I—y {cxui, {cx + f5^v\^ I—y (0, Q;, q; + /5) 

gw2 ~I~ ~l~ cx"^ I—y (ft, 6,6 + c). 

Therefore, the required formulae follows by considering W on the < X > 

, < y > and < a;y >, calculating 5'Wi and on each ^^(< ^ >; Z/2) (z = 

1,2, p = %, y, a;y) by the formulae given above when vr is a representation of 

a cyclic group of order two, and hnding the inverse image in j7'(D2«-i; Z/2) 

(z - 1,2). 

q.e.d. 
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Chapter 9 

A construction with 

two-dimensional symplectic, 

Galois representations 

The goal of this chapter is to construct a map from two-dimensional 

symplectic Galois representations to fourth roots of unity. This map will be 

constructed by combining Ff- defined in chapter 7 and the results of D. Prasad 

and D. Ramakrishnan [22] about the Langlands correspondence when the 

representation considered is two-dimensional symplectic and Galois. That 

is, let cr = (%) be a two-dimensional symplectic Galois representation 

induced by a character %, is mapped to 7r(cr) an orthogonal representation 

of * through the Langlands correspondence. 

Let us deEne = rf'(7r((7)). The information obtained about Ff in 

chapter 7 and the results of D. Praaad-D. Ramakrishnan [22] about 7r(cr) will 

allow us to prove the following relation between the value of the local root 

85 



number of a and the value of Tpic), 

Theorem 9.4.2 cr 6e a s^mpZectzc GoZota represen-

tation, (7 = 7nd;^/f(x) md^iced/rom a c/iorocter % : AT* —> C*, luAere F %s 

o mon-v4rcMme(fean /ocaZ /leZd residue l̂eZd 0/ odd order g = l(mod.4) 

and jiT/F Z5 a guadratzc ea;teng%on. T̂Aen 

Tp(o') — (—1) ^ E /i4 

wAere e %.s tAe rami^catzon mdea; o/(/ie ea;tena%on ondw^/f' %a t/ie giiodrotic 

cAorocter 0/ F* ^wen 6?/ cZoss _̂ eM (Aeorg/. 

As immediate corollaries of this, we obtain the following results. 

Corollary 9.5.2 (q = l(mod.4)j Let a and a' he two two-dimensional 

a?/mpZect%c GaZois repreaentotiona, o" = (%) and cr' — /WAr/f (%') %n-

d!/ced /rom c/iaroctera —> C. 7/ien, t/ie /oZZowm^ /toZda, 

^ ^('/F %s rami^ed wztA /(%) ^ /(%') ond mm(/ (x) , / (Y) ) = 1 ("it is 

no reatrzction to aaaume /(x') = Ij tAen, 

Tj?(o') _ , 2^ Wpja) WF{wk'/F) 

w/iere j^'/F za tAe unzgite unromz^ed g?/adrat%c extension otier F. 

(77̂  in on?/ otAer coae, 

Tf(a') 

Corollary 9.5.3 (q = l{modA)) Let a be a two-dimensional symplectic 

GaZoza repreaentatzon, <7 = induced ^rom o cAarocter % : TiT* —> 

C*. Conaider = 7ndjir/f'(%i) wAere % = %i (Si%2, order o/%i ia 



copvime g order o/%2 a power o /g . zg (omeZi/ rami/ied, 

and 
Tf (cr) ^ (e-iKg-i) TVp((7) Wp{wi(iip^ 

^pi^tame) ^F{(^tame) ^F{'I-IJK/F) 

wAere %a (/le UMromẑ ed g«adrô %c ear̂ enazon otier F and e %a (Ae 

ramẑ ca ẑom mdea; o/ Âe e%(eng%OM j^/F. 

The case g = 3(mod.4) will be studied in section 9.4. The information 

obtained about Tf (a) in this case does not seem to give much information 

about the value of the local root number of <7. However, it has been intro-

duced for completeness. 

Let us note that although only the case g = l(mod.4) gives us valuable 

information, this covers most cases. This is, if g = for some odd prime p 

and an integer d, g = l(mod.4) if p = l(mod.4) or p = 3(7Tiod.4) and d even. 

9.1 T h e Langlands correspondence 

This section recalls the correspondence between two-dimensional, irre-

ducible representations of the Weil group Wf of a local held f and irreducible 

representations of yl*. 

Let F be a local field of residue characteristic p ^ 2. We are interested 

in two-dimensional, continuous Galois representations 

(J : —y GL2C. 

Such a cr is a special case of a IVp-representation so that the bijection, es-

tablished by combining the results of [15] and [18] and reiterated in ([22] 
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Theorem 1.5), yields an injective map, cr 7r(cr), 

vr : 

2rreG(wcz6/e, 

/zm^e — ô zmenâ onoZ compZea; 

rê regeM^o ẑoMg oi;er C represenW^OMS o / A* 

where A is the unique quaternion algebra with centre F. 

The map vr is characterised by the following properties. 

Via class field theory, if is the absolute Galois group of F, 

def((7) : ^ ^ C* 

corresponds to a continuous character of finite order 

(fe(((7) : F ' ^ C*. 

The central character of 7r(a) is the continuous character of finite order such 

that 7r(cr)(z) is multiplication by the scalar W;r((r)(;2:) for all z E F* C A* and 

(1) 

Let /(cr) and y(7r((T)) denote the conductors of a and 7r((7) as introduced 

in Chapter 3, then 

/ ( c r ) ^ / ( 7 r ( o - ) ) . (2) 

If = Hom{V, C) denotes the contragredient of a representation V 

then 

7r((7 )̂ = 7r(o-)̂ . (3) 



The epsilon factors deBned in [15] and [34] satisfy 

G((7 ® /̂ , V', g) = (̂7r(o-) (g) (/i - A/red), V', a) (4) 

for all characters on F* of 6nite order. The local root numbers are defined 

to be the value of the associated e-factor at g = 1/2 so that 

(g) //) — M (̂7r((7) (g) (/2 - A/red)) 

for all characters on F* of finite order. 

Also each cr is writeable as an induced representation cr = for 

some quadratic extension jiT/F and character % : F* — C * . We have 

= (% I F*) ' (5) 

where ^ = {±1} C C* is non-trivial. 

[22] observe that, when cr is symplectic, 7r(cr) is an orthogonal represen-

tation of v4* which is trivial on F*. 

Let us restrict then, to the case when cr = is a symplectic, 

irreducible two-dimensional representation. This implies (see [7] or use a 

simple transfer argument using the formula of ([31] Proposition 2.50 p.14)) 

that % : K* —> C* restricts on F* to a non-trivial character of order two. 

In fact, by (1) and (5), the fact that de((cr) is trivial for symplectic represen-

tations implies that 1 = = (% I f ) ' so that 

(% I f - (6) 

Now, by ([22] Lemma 1.4), if is a ramihed quadratic extension and 

% on jiT* satisfies (6) then the Artin conductor of % satisfies either /(%) = 

2m > 0 or /(%) = 1 and (% | O^) is given by the composition 
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This means that, when is ramihed the conductor /(7r((7)) is odd unless 

% is tamely ramified (% cannot be unramihed). 

In [22], a table giving the dimension, conductor and trace values of 7r((7) 

on elements of order two in v4*/_F* is given (such an element of order two is 

associated uniquely to a quadratic extension of F and viceversa). 

Proposit ion 9.1.1 Let F be a non-Archimedean local field with residue field 

amd g odd, jiT/F a and 7r = 6e (Ae 

0̂ % o c/iamc(er o / T A e M we /laue (Ae/oZ/owmp 

/(%) / M 

itMromz/Zed / 2g/-i 2 / 

rom%/ied 2 / (g + 2 / + 1 

Z,e( 6e OM!/ g?/adra(%c o /F , oMdz urngz/e eZemen^ o/Z,*/f* 

o/ order ^wo. T/ieM we /latie; 

JiT, r r ^ M = o 

7/Z, = A" and unrom%/ied, T'rT(3;) = (— 

and K / f za ramz/zed, TrT(3;) = —2Gp(.tu(2)w(— 

wAere 

^ xe(OFlwp)* 

^ere, m /̂le no(ô %on o/ (Ae unzgue gwodra^zc cAoroc^er o/ Fg, 

and Wf, WA- denote cAogen ttnz/ormzzerg /or F, regpeĉ %i;eZ2/. 

Proposit ion 9.1.2 All cases are covered in the proposition above. 
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Proof: 

The cases when is unramihed are clearly all covered by the table. 

When is ramified the conductor of a character % satis^ing (6) is either 

2m > 0 (covered in the table) or 1, by [22], Lemma 1.4. However, if /(%) = 1 

then a = Indx/Fix) may be written as cr = IndE/pi^) with E/F unramified 

and f{9) = 1, which is included in the table. To see this observe that, if 

'y is the non-trivial F-automorphism of 7̂ " and % is tame, the characters % 

and 'y(%) must agree on units. Therefore 'y(%) = 0!% for some unramihed 

character a on 7(7*. By Hilbert 90, we may write a = for some 

unramified, non-trivial character (}) on F*. Hence, a = 4> a which implies, 

by the classification of admissible pairs (F/F, given in ([2], pages 54 — 55) 

that (7 has the required form. O 

The following result is ([22],Lemma 4.6), 

Lemma 9.1.3 We have the following table, 

lMr(7r) 

(-l)/%(a;) 

w(2)w(-l)^+^G'x%(3;) 

(foeg we 'u;(—1)-̂ "̂ ^ or w(—1)-^ amce w 

values in ±1. 

Corollary 9.1.4 In the situation above, we have the following table: 

/(%) 

/ 2g/-i 2/ 

2/ (g + l)g/-i 2/ + 1 
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2} 6e an?/ o/F, onda; /̂le umgz/e eZemen̂  o/Z,*/F* 

0/ order (wo. TAen we Aâ ;e.' 

rr^W = o 

jy Z, = Zr, Tr^(3;) = —2PK(7r) 

By Chapter 8, we know that the hrst and second Stiefel-Whitney classes 

of an orthogonal representation of .4*/F* can be obtained from its character 

values on elements of order two, and explicit formulae for them have been 

given. Therefore, using the information given by Corollary 9.1.4, the Stiefel-

Whitney classes of 7r(<7) can be calculated. This will be discussed in section 

9.2 and 9.3 depending on whether g = l(mo(:f.4) or not . 

9.2 First and second St iefe l -Whitney classes 

of Ti{(j) when q = l{modA) 

In this section we calculate the hrst and second Stiefel-Whitney classes 

of 7r(cr) when q = l{modA). We know from Proposition 8.1.1 that in this 

case, only the character values of 7r((7) on the elements 1, %, Y, and are 

needed, and these are given by Corollary 9.1.4. 

There are three quadratic extensions over F, in terms of %, Y and %y. 

These are f (X), jiT = F(y) , and ZT = F ( X y ) , where F(%)/F is the 

unramihed extension. Therefore we are going to divide our study into three 

different cases depending on the extension we are dealing with. 
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To start with, let us remember the formulae given by Proposition 8.1.1, 

these are, 

= (c i + 4- (c2 4- 03)2:2 

\ 

S'W2(7r((T)) = 

where. 

^ Ci + C3 ^ 

/ 

C2 + C3 

2 
^2 + [ciC2 + C1C3 + C2C3]a;ia;2. 

/ 

Co + Ci + C2 + C3 

Co + Ci — C2 — C3 

Co — Ci + C2 — C3 

Co — Ci — C2 + C3 

dzm7r(cr) 

riv(„)(A') 

Tr,^,^(XY) 

Therefore, we can write 

C2 4- C3 

Ci + C3 

c(2m7r((7) — 

2 
(f%m7r(cr) -

Ci = 

C2 = 

C3 = 

(fzm7r(a) 4-

(f2m7r(cr) 
4 

- T r , w ( X y ) 

og2m7r(cr) 
4 

Let us start now our discussion 
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The case of x • k* = f{x)* — C * 

In this case, is nnramified, and using Corollary 9.1.4 we can write: 

c(im7r(cr) = 

= - 2 : y ( 7 r M ) 

= T r , w ( x y ) = o 

Thus, in this case: 

Cl 

C2 = C3 

2 
g/ - i 

We can see that cg + cg — 2c2 = 0(mo(f.2) and Ci + cg = As g is an 

odd integer, = l(mod.2). And we can conclude: 

5'Wi(7r((7)) = 

Let us start now the calculations for 5'T42(7r(cr)). 

By using the fact that C2 = C3 we can write 

^W2(7rM) = 
^ Cl + C2 ^ 

+ 

Now, as we are working modulo 2, 

^ 2C2 ^ 

2 
\ / 

3;̂  + [2C1C2 + ĉ ]3;ia;2. 

^W2(7rM) = 
Cl + C2 

4- 02(3:2 + 3;ia;2) . 

and 
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<;/-• + W{7r{a)) q'-'- 1 , W(-,(a)) + l _ W(7r{a)) + 1, 
C2 = 2 = + 2 = 2 (""rf-S) 

since as g = l(mo(f.4), then so too is = l(mo(^.4). Therefore, = 

0(mo&2). 

Here, 

^ Ci + Cg ^ 

V J 

/ g / - l \ 

V / 

- = 

= Q = Q{mod.2) 

Therefore we can write, 

^W2(7r((7)) 

The case of x'• K* = F{Y)* —)• C* 

As above, using Corollary 7.4.3, we have 

d^m7r((7) = (g + 

T r , w ( y ) =-2M'(7rM) 

=TrM.(%y) = 0 

where /(%) = 2/ . 

Therefore, in this case. 

C2 = 

Cl = C3 

(g + l)g^ ^ — 2M (̂7r((7)) 
4 

( g + l ) g / - i + 2iy(7rM) 

We can see that Ci + C3 = 2ci = 0(moo?.2) and 02 + 03 = —. An 

g = l(77io(f.4), ^ = l(mod.2) and ĝ "̂  = l(7nod.2), we can conclude: 

6'M î(7r((7)) = 3:2 

as 
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Let us concentrate now on the calculations of 5'T42(7r(cr)). 

As ci = Cg, we can write 

2ci 

2 
V / 

+ 
Ci + Cg 

3:2 + [2ciC2 + Ci]a;ia;2-

V 

As in the unramified case, as we are working module 2 

5'142(7r(cr)) = ci(2;i + a;ia;2) + 
Cx + Cg 

Now 

Cl 
(g + 1)0'-̂  ^ + 2W(7r((7)) (g + l)g-^ ^ — 2 W(7r((7)) + 1 

And we know that g = l(moc(.4), and then so too is Therefore, 

we can write q = 1 + 4f and = 1 + 4/ for some positive integers /. 

Obtaining, 

(g + 1)0''̂  ^ — 2 = 4i + 8/ + 16t/ = 4:t(fnod.8^ 

which implies. 

Thus, 

Cl = 

4 4 

_ g — 1 M (̂7r(o-)) + 1 
+ (mo(f.2) 

Here, 

/ 

v 

Cl + C2 

2 

2 

v 
(g+i).f-i (9+1)9 -̂̂ -2 

2 " 4 ^(mo(f .2) 

/ 
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since ^ = 1 = ^(mod.2) as g = 

Therefore, we can write 

SWMo)) = ( ^ ) 4 + ( ^ + + (4 + -i-a) 

The case of x • K* = F{XY)* —;• C* 

This case is trivial once we have dealt with the case A' = ^(^)- We can 

just replace Y by X y in the definition of our quaternion algebra, obtaining 

X - % and y = 

Now, notice that 2:1 and 2:2 have to be rearranged too. We can choose 

= cci and ^2 = a:i4-Z2. These playing the role of 2:1 and 3:2 since (see section 

1.2) ^i(X) = a;i(%) = 0(mo&2), ^i(y) = a;i(%y) a;i(%) +a; i (y ) = 

l(mod.2), Z^2(̂ ) = (3:1 + 2;2)('^) = 3;i('^) +];2(-^) = l(ynoc(.2) and ^2(^) = 

(371 + 3;2)(xy) = Z i ( x y ) + ]72(%y) = 3:1 (%) + 3;i(y) + 3;2(%) + a;2(y) = 

1 + 1 = 0(77ioo(.2) 

Therefore, using the previous cage 

5'W l̂('7r((7)) = I2 = 3=1 + 3=2 

and 

SW,i.(a)) = ( Y ) ^ + ( Y + ^ ' ) 

We may now summarize all the information obtained, in the following 

Theorem, 
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Theorem 9.2.1 = l(mod.4)^ Âe 5'i/Zow ;g-gM6̂ roup o/ 

A*/F* 25 y = {1,X, y , X y } eZemem ân/ o6ê mM ^rowp 0/ order/our. 

TTzere are î Aree gt/odrô %c ea;̂ eMg*OMa ofer ond Âoae ore -F(%)/F, -F'(y)/f" 

and F ( % y ) / f , uv/iere /̂le /zrs^ M ̂ /le unzgue unram%/ied gt/adro(%c er^engion 

o/F. zi, zg m (Ae %gomorpAMm^*(A*/F*; Z/2) = Z/2[a;i,a;2] 

werz/̂ .' 

a;i(y) = 1, 3;i(A') = 0, a;2(y) = 0, 3:2(X) = 1 (modulo 2) 

TAen cr = we can u;n^e (Ae /oJ^owmg (a6^e /or /̂le _̂ r5( and 

second .̂ ẑe/eZ-IVTî n̂e;/ c/agseg o/7r(cr).' 

SW2(7r(a)) 

F(%)/F Zl (.x= + x,x,) 

F ( y ) / F 3:2 ( f ) : r | + ( Y + 22IM2±1) (:J2 + 

F ( % y ) / F Xi + X2 ( t l ) (x; + + ( Y + J M ± 1 ) 

9.3 First and second St iefe l -Whi tney classes 

of 7r(a) when q = 3(mod.4) 

As it was done in the case g = l(mod.4), we use the information given 

in Corollary 9.1.4 which gives the required character values . In order to 



obtain the Erst and second Stiefel-Whitney classes, let us recall the formulae 

obtained in Proposition 8.2.4. That is, 

= c(o, = di, 

then 

6'lVi(7r((T)) = (((fo — <^2)/2)a;i + ((0(2 — d3)/2)3;2 

and 

^;^2(7rW) = 
^ {do — di)/2 ^ 

W2 + 

/ 

(do — (i2)/2 

+( 
^ (do — d^)/2 ^ 

V / 

/ 

v 

(do — d2)/2 

As it was done in the previous section, we split this study into three 

diEerent cases, depending on the extension considered. Recall that the three 

quadratic extension over f in this case are F ( X ) / F , F ( y ) / F and F ( a ; y ) / f , 

where F{X)/F is the unramihed one. 

Before starting the calculations of the first and second Stiefel-Whitney 

classes, we record some congruences modulo two which we shall need later. 

(i) = l(mod.2), since q is an odd integer and therefore so too is 

(ii) M (̂7r((7)) = ±1 s l(mod.2). 

(iii) ^ = 0(mod.2), since g -|-1 = o(mod.4) as g = 3(mod.4). 
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(iv) ^ = / — 1 = —-{mod.2). This equivalence comes from 

the fact that when / — 1 is even, ag g = 3(mo(f.4), then = l(77io(f.4) 

and therefore ^ 
/ - i _ i = 0 = / - 1 = 

/ - I g-" " = 3(77z,W.4) and therefore, ^ ^ = 1 = / — 1 = ^ " Xmod.2). 

(mod.2). When / — 1 is odd. 

The case of % : ^ C* 

In this case, K / F is unramified, / = /(%), and using Corollary 9.1.4 we 

can write. 

Thus, in this case; 

(f7m7r(cr) = 2̂ -̂  ^ 

=-2W(7r(a)) 

(^) = = 0 

ĉ i = —2W(7r(cr)) 

d2 = ds = 0 

Therefore, ^ = l(moc(.2) and = 0, and we can write. 

5'Wi(7r((7)) = 371 

For we have. 

5':y2(7rW) = ^2 

-1 \ 7/-I 

/ 
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Now, 

9 + ^ ^ + iy(7r((7)) _ 1) 

\ 

/ g / - l \ 

2 
V / 

= 9^2 ^ = / — l(7710(f.2) 

and we can conclude. 

SW,(n(a)) = EMz)lpz}}!l,„^ + ( / - l ) z ; 

The case of % : fC* = F(y)* —> C* 

In this case, k / f is ramified, /(%) = 2/ , and using Corollary 9.1.4 we 

can write, 

d%m7r((7) = (g + 

Tr^M(y) = -2I^(7rM) 

(^) = (3;y) = 0 

Thus, in this case: 

1̂2 = —2W(7r((T)) 

di = ds = 0 
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Therefore, = l(mod.2), and = -W(7r((7)) = 

l(mo(f.2). Thus, 

5'Wi(7r(lT)) =371+^2 

For 5'W2 we have, 

/ ((g + l )g / - i ) /2 ^ 
W2 + 

^ Hi + 1)̂ '̂  ^ + 2Wf'(cr))/2 ^ 

y 

2̂ 
Xi 

( 
+ ( 

((g + l ) g /M) /2 

2 

V J 

^ ((g + l)9^-^ + 2:VF(cr))/2 ^ 

Now, 

2 ^ 

2 
V / 

9 + 1 + 1 
^ — 1) = ^ ^ ^ {mod.2) 

and 

^ + Wf'(7r(cr)) 
= (4^9^-' + M:(7rW))(2±lg/-i + 

Therefore, we can conclude, 

- 9 + ^.., , + I 2 , /l-W^(7r(o-)) 
;9M^2(7rW) = ^ ? ^ 2 + + X. 
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The case of x • K* = F{xY)* —)• C* 

In this case, is ramified, /(%) = 2/ , and using Corollary 9.1.4 we 

can write, 

c(%?7i7r((7) = (g + 1)9-̂ "̂  

=-2M^(7rM) 

= r r ^ M ( y ) = 0 

4 = (g + l)g^'^ 

3̂ = -21/F(7r((7)) 

di = d2 = 0 

Thus, in this case: 

Therefore 0̂ = l(mod.2), and = W(7r((7)) = l(mod.2). 

Thus, 

5'tyi(7r((7)) = ra 

Now, for 5'M ,̂ 

^1^2 (vrW) 

( ((9 + l)g/W-^)/2 
W2 + 

( 

\ 

((g + l )g / (xM)/2 

+ ( 
^ ((g + l)g/(^)-')/2 + M ) ^ /"((? + l )g /W-: ) /2 

V y v 

\ 

y 
3=9 

and let us notice that all these combinatorial numbers have already been 

obtained in the case AT = F (y ) . Therefore we can conclude, 

sw^[^{o)) = + 2i) + 
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Now, once the three caaes have been solved, we conclude by giving a 

table of 6rst and second Stiefel-Whitney classes as it was done in the case 

g = l(mod.4), that is 

Theorem 9.3.1 = 3(mod.4)j in 6'2/Zow 0/ 

v4*/_F* za and D2»+i = = 

1,2/372/ — /or aome M > 2, wAere F za âAen ô repreaen^ ?/ and % %a 

(aA;eM (0 repreaen^ .̂ 

[TAere ore Âree gt/odro îc ea;(ena%ona otier f , and (Aoae are, 

F ( y ) / F and F ( z y ) / F , wAere (Ae ^ra( %a Âe ?/nigue ?/Mram%/zed ĝ /adrô zc 

ea;̂ ena2on ofer F. v4nd Âe /o/Zowmgi ^a6k /or (Ae /(ra( ond aecond 5'̂ %e/e/-

PF/izYne?/ cZaaaea o/7r(<7) can 6e wn^en 

'9;f2(7rM) 

F ( X ) / F Xi + 1)3;̂  

F ( y ) / F 3̂ 1 + 372 ( ? ) ^2 + ( T + 

X2 (4^) (^2 + :rn+ 

wAere/ = /(%) andj7*(v4*/F*;Z/2) = Z/2[3;i,a;2,t(;2]/(3:i+a;i3;2)(?'/^eorem7.1.2) 
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9.4 The construct ion with two-dimensional sym-

plectic, Galois representa t ions 

The aim of this section is to obtain a chapter 6-type map, but this time 

with symplectic representations, and see how the value of this map is re-

lated to the value of the local root number of the symplectic representation 

considered. 

In order to construct such map, we combine the construction with or-

thogonal representations of with the Langlands correspondence in the 

following way. 

Definition 9.4.1 Let a be a two-dimensional symplectic, Galois representa-

cr = (%) mcfwcecf yrom a C , w/iere F M 

o /oco/ /leM 0/ regzcfi/aZ za o 

TAe mop za oa, 

Tf (cr) = f f (7r((7)) 

,wAere Ff woa de/zne(f m 7.2 7.3. 

As it was said in chapter 7, once the values of the first and second Stiefel-

Whitney classes of W are obtained, the value of TpiyV) is easily calculated. 

These haven been calculated in the last two sections for 7r(cr). 

We will demonstrate that in the case q = l(moo?.4), accurate information 

about the value of the local root number of a is given in terms of Tpia) and 

the value of the local root number of a quadratic character only depending 

on the quadratic extension considered over F. 

105 



Due to the different values for the hrst and second Stiefel-Whitney classes 

obtained, depending on whether g = l(mod.4), we will divide again our 

discussion into two different cases. 

9.4.1 T h e value of when q = l{modA) 

Let us recall that rp(W) = — dimVF)) where and where 

introduced in section 7.2 

Let us start our discussion by obtaining the value of Ff (/(z)) for z E 

where here Z(z) means 

v4* ^ F* ^ {±1} 

Now, we know that 7ri(Z(z)—1) = 7ri(p(z)) = p(z) and therefore rf'(/(z)) = 

E //4. 

At this point, as done in previous chapters, we divide our study into three 

diSFerent cases depending on the quadratic extension over ^ considered, i.e., 

depending on if %, the character that induces cr, is defined on F(%)*, F(y)* 

or 

The case of % : F{X)* —> C* 

In this case (fet(7r(cr)) = S'Wi(7r(cr)) = by Theorem 9.2.1. And let 

us note that 5'Wi(/(a)) = Therefore, if we consider 7r((7) @ Z(a) and use 

Cartan's formula for 5'Wi (additive version), we obtain 

5'M/i(7r((T) @ /(o)) = + a;i = 2a;i = 0(mo<i.2) 
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Therefore, the class of 7r(o')@Z((z) in Yp is determined by 5'W2(7r(o-)@/(a)). 

Using Cartan's formula for 5'T42, 

5'W2(7r(o-) @ Z(a)) = 5'W2(7r(o-)) + 3:1= ^2 

by Theorem 9.2.1. 

Now, we know that 7ri(2;i) = 7ri(a;2) = 1 and 7ri(2;ia;2) = —1 (writ-

ten multiplicatively instead of additively). Hence, the coefEcient of 2;i2;2 is 

the only one that provides information. When this coefficient is 0(mo(f.2), 

Ff (7r((7)@Z(o)) = 1 and when this is l(mo(f.2), rf'(7r((7)@Z(a)) = —1, namely, 

rf-(7r(cr) @ /(«)) = (—1) ^ 2̂ ^ = -lV(7r(cr)) 

as Ty(7r(cr)) E {±1}. And hence, as rf(Z(a)) — typ(Z(o)), we can write 

Ff (7r(o-)) = -iy(7r(o-))lffi(Z(o))"^ G //4 

Here, if we note that the extension considered is K/F = F{X)/F, the 

quadratic character of F* given by class field theory is none other than 

/(a), and we can conlude 

ff^(7r(<7)) = E /̂ 4 

The case of % : F{Y)* — C * 

In this case det{7r{a)) = SWi{7r{a)) = X2 — SWi{l{b)) by Theorem 9.2.1. 

Therefore 

5'Wi(7r(cr) @ Z(6)) = 2a;2 = 0(mo(f.2) 

So now, as in the case above, the class of 7r(cr) @ Z(6) in Yp is detected 

by 5"^ .̂ The only coe@cient that provides information is the coefhcient of 

3:1372- This is, by Theorem 9.2.1 

g — 1 iy(7r(cr)) 4- 1 
4 2 
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Hence, 

r^(7rM @ /(6)) = = ( - 1 ) 4 : I f (^(^)) 

And as (Z(6)) = M^(Z(6)), we obtain 

Tf (7r(o-)) = (-l)^VF(7r(o-))M^(wA'/f')"^ E //4 

since = Z(6) as the extension considered is f ( y ) / f . 

The cage of % : F(Xy)* ^ C* 

Here, (fef(7r(o-)) = 5'lVi(7r((7)) = 3;i +3=2 = 5'TVi(/(a6)) by Theorem 9.2.1, 

and therefore 5'M/i(7r((7) @Z(a6)) = 0(mod.2). Now, as in previous cases, the 

coe&cient of Zia;2 in 5'W2(7r(cr) @ Z(o6)) is the only one giving information, 

this is, 
g — 1 Ty(7r((7)) + 1 

2 

and therefore 

rf̂ (7r(o-) @ Z(a6)) = (—l)^M/(7r((7)) 

We can conclude then, 

r_p(7r(cr)) = (-l)^M/(7r(o-))WF(wA'/j?)'"^ E //4 

Now that all the caaes have been considered and taking into account that 

M (̂7r(cr)) = ^{^((7), we can state the main Theorem of this chapter. 

Theorem 9.4.2 Let a be a two-dimensional syrnplectic Galois representa-

(zoM, cr = mdt(ce(i/rom a cAarac^er % : —> C*, luAere f zs o 

Mon-v4rcA%me<ieoM ZocaZyzeZtf 0/ otfcf cAarac^eng^zc g = l(mo(f.4) 

15 0 ea;̂ e72a%on, 

Tp[a) = (—1) 2e WF{(T)WF{wkif) ^ E /̂ 4 
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w/iere e za mcfea; 0/ (Ae er^engzon antf %a Âe gi/adro^zc 

cAamc^er 0/ f * gî uem 6^ cfoas yzeZ(f (Aeor .̂ 

Let us study now, the caae g = 3(mo(f.4). 

9.4.2 T h e value of Tp when q = 3{modA) 

Let us recall that in this case (W )̂ = y)^(7r3(iy — where 

and TTg were defined in section 7.3 

As for g = l(mo(f.4),we divide our discussion in three diEerent cases 

depending on the quadratic extension over F considered, i.e., depending on 

if %, the character that induces a, is dehned on F(X)*, f (y)* or F(3;y)*. 

The case of % ; F{X)* —> C* 

In this case (fet(7r(iT)) = 5'Wi(7r(cr)) = Zi by Theorem 9.3.1. And we 

know that 1)) = a;i. Therefore, if we consider 7r(<7) @ ((—1) we 

obtain for 5'Wi 

SWi(^7t(^(t̂  ffi —1)) — Xi + Xi = Ix i = 0(?TiO(i.2) 

Hence, the class of 7r((7) @ ((—1) in Yp is detected by 

5'M:̂ (7r(cr) @ Z(-l)) = 5'M (̂7r(cr)) + = ^M (̂7r(o-)) + ( 1) ^ ^ 

by Theorem 9.3.1, where / = /(%). 

Now, as g = 3(moc(.4), we know that 7r3(a;̂ ) = /(—1)UZ(—1) = 1,7r3(a;2) = 

/(—I) U l{h) = —1. Furthermore, TTg(wg) = SW2{IndL/F{^)) = Wl{\) G 

{±1}. Therefore, 

Vp{Ti{a) ® / ( — I ) ) — Wi,{X) 
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and we can conclude 

-1 

The case of % : F{Y)* — C * 

Here, de;t(7r(a)) = 5'Wi(7r((7)) = a;i + Z2 = 5'Wi(Z(—6)) using Theorem 

9.3.1. Therefore, if we consider 7r((7)@/(—6), 5'Wi(7r(Gr)@Z(—6)) = 0(mo(f.2), 

and the class of 7r(cr) @ Z(—6) in Yp is detected by 

From Theorem 9.3.1, one can see that 

sw,M-m-b)) = + « l ± i ) 

and therefore 

rf,(7rM @Z(-6)) = 

and we can conclude 

Tf (vrM) = 

The case of % : F(xY)* —>- C* 

To reach our aim, we study now the case of = f (a^Y). In this case, 

from Theorem 9.3.1, (fê (7r(<T)) = 5'lVi(7r(<7)) = 3=2 = 5'M/i(Z(6)). Therefore, 

^W î(7r((7) @ Z(6)) = 0(mo(f.2). 

Now, using Theorem 9.3.1 again, 

sw,{„(a) e m = ^ ( 1 0 2 + 1 ? ) + -2 

and hence, 

rf̂ (7r((r) @ /(6)) = -:^(%4^^(7r(o-)) 
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and we can conclude 

9 + 1 / \ \ T T r / , / T \ \ . 2 

In this case, (cr) does not provide much information about Wf ((7)(=ty(7r(i7))) 

as it would be desired. For instance, in the unramihed case, if 14^ (A) = 1, 

= IVF(Z(—1))" ,̂ where #^((7) does not appear. Although this case 

may lack of signihcance for the current study, it has been introduced for 

completeness. 

9.5 Some easy applications of T h e o r e m 9.4.2 

In this section we concentrate on some easy applications of Theorem 9.4.2, 

this is when q = l{modA) 

To begin with, Tf'(cr) can be used to obtain where % is the char-

acter (7 is induced from, i.e., o" = 

Then, we will use Theorem 9.4.2 to give relations between T f (cr) and 

Tf'(cr'). 

When (7 is a two-dimensional symplectic representation, cr = 7n,dA-/27(x), 

Number theorists consider what is called the tame ramification of a and 

denoted by where (Tfame is induced from a tamely ramihed character. 

Due to the difhculty of calculating it is helpful to have a way of 

obtaining this local root number in terms of This will be our 

third application. 

The value of Wk (%) 
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Let us consider cr = (%) a two-dimensional symplectic representa-

tion induced from a character % : K* —>- C* Using inductivity in dimension 

zero for the local root number of <7 we obtain, 

and now using Theorem 9.4.2 

Tf (<%) = Tf.(cr) = 

namely 

Corollary 9.5.1 (q = l{modA)) In the situation above, 

%(%) = 

Note that when E/F is ramified and o = IndE/F{0) with /(0) = 1, x in 

this corollary will be the one such that a = IndK/pix) with K/F unramified 

following Proposition 9.1.2 (Proof). 

Relations between Tf (a) and Tp(a') 

Corollary 9.5.2 (q = l{modA)) Let a and a' he two two-dimensional sym-

cr = cr' = (%') 

/rom c/iarac(erg : A!"* — C . T/ien, AoZda, 

^ jiT/F M /(%) ^ /(%') ond /(%')) = 1 

no /(%') = 1,) (Aen, 

Tf(cr) _ W^(cr) 
T i ? ( c j ' ) Wf{(7') Wf{wkIf) 

wAere jPT'/F (Ae ttnzgue e2;(ema%on ofer F. 
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7̂7̂  in an?/ cage, 

Proof: 

(I) As stated above, we will assume /(% )̂ — 1. Then, following Proposi-

tion 9.1.2 (Proof) a' may be written as o' = IndK'/F{0) with K'/F unrami-

fied and f{9) = 1. And the above equality follows from Theorem 9.4.2. 

(II) Follows trivially from Theorem 9.4.2 O 

The tame ramification of a 

As in the above case, we consider cr = Now, % can be written 

as tensor product 

% = %i IB) %2 

where %i is of order w and %2 is of order p" with (%, p) = 1, where the residual 

characteristic of is g = for some positive integer (f. 

Therefore, is tamely ramified, and we can consider 

^tame — (Xl) 

Now using Corollary 9.5.2 we have the following result. 

Corollary 9.5.3 (q = l{modA)) In the situation above, 

Tf-(cr) _ (e-lXg-l) Wf((7) Wf 

w/̂ ere (Ae wnzgue wnram%/ze(f gua(fra(%c of er F and e 
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Note that, although g = l(77io(f.4) is the case dealt with, and this could 

seem rather restrictive, most g's will be in this case. Just recall that if 

g = for some positive integer cf, then g = l(mod.4) if p = l(mod.4) or 

p = 3(mo(f.4) and d even. 
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(1973) 125-138. 

[8] A. Frohlich and M.J. Taylor; The arithmetic theory of local Galois 

(ja?/gg gi/mg /or c/iorGc(erg; Trans. Royal Soc. A298 (1980) 141-181 

115 



[9] P. Gerardin: CitspWoZ unromz/zecf aenea /or centra/ azmpZe oZpebraa ot/er 

local fields; Proc. Symp. Pure Math. 33 part 1 (1979) 157-169. 

[10] P. Gerardin and J.P. Labesse: TAe goZu(%oM o/ a Aoae cAonpe prob-

lem /or GZ,(2); Proceeding of Symposia in Pure Mathematics, Vol. 33 

(1979), Part 2, 115-133 

[11] M. Harris and R. Taylor: The Geometry and Cohomology of some 

simple Shimura varities] Annals of Math. 151 (2001). 

[12] J. Hooper, V.P. Snaith and M.V. Tran: The Second Chinburg con-

jac^wre /or Qua^emzon f zeZtfg; American Mathematical Society (2000) 

Vol. 148, No. 704 

[13] Ireland and Rosen: .A c/aggzcoZ /Tî roduĉ ioM ô modem number (Aeor?/; 
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