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Let F' be a non-archimedean local field with residue field F, and ¢ odd.
Consider A the unique quaternion division algebra over F'. We prove the ex-
istence of a homomorphism of the form T'y : RO(A*/F*) — py = {1, 44}
analogous to I'x : RO(F) —» p4 given in [31]. Using I'p and the results of D.
Prasad and D. Ramakrishnan [22] regarding the Langlands correspondence,
we construct T, a map from two-dimensional symplectic Galois represen-
tations to fourth roots of unity. If ¢ is a two-dimensional symplectic Galois
representation, this construction, when ¢ = 1(mod.4), gives a formula for the

local root number of ¢ in terms of T (o).
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Chapter 1

Introduction

Let F' be a non-archimedean local field with residue field F, and ¢ odd.
V.P. Snaith in [31] shows how to construct a homomorphism

Tp:RO(F) = lim {RO(G(K/F))} — py = {1, 44}
9l

where, taking F as a fixed choice of separable closure of F', the limit is taken
over finite Galois extensions with I C K C F. RO(G) is the free abelian
group on the isomorphism classes, [p], of irreducible orthogonal representa-
tions p : G — O, (R). The map I'r is given by the composition of maps of

the following form

IndF/Qp
RO(F) — Yrp —_ Yo — i

44

p ~ [p=n]  ~  Indplp—n] ~ Tr(p)

where n = dimp.



Yp= lim {IO(G(K/F))/(Jowm)}
KJF
Here, 10(G) is the augmentation ideal of RO(G) and Jg = {z € I0(G)/dim(z) =
0, SWi(z) = 0= SWy(x)}.

This construction is important because, given p : Qp — O, (R) a con-

tinuous orthogonal representation, I'r(p) = Wr(p), the local root number of

p.

Now, given A, a quaternion algebra with centre a local field F' with odd
order residue field F,, we will prove, by construction, the existence of a
homomorphism of the form T'p : RO(A*/F*) — 4 analogous to the one

above. This is studied in chapter 7.

Let TO(A*/F*) be the augmentation ideal of RO(A*/F™*). Define J =
{z € RO(A*/F*)/dim(z) = 0,SW;(z) = 0= SWy(z)}.

We define ' as the composition of the following maps,

RO(A*/F*) — TO(A*/F*)]J —> Yr — g
w s W —n ~ (W =n) ~ Tp(W)

where n = dimW and 7 is a surjective homomorphism constructed in sections

7.2 and 7.3.

J is an ideal of RO(A*/F*) contained in JO(A*/F*). Therefore the
elements of TO(A*/F*)/J are faithfully detected by the first and second
Stiefel-Whitney classes, SW; and SW,. Taking this into account, formulae

for the first and second Stiefel-Whitney classes of orthogonal representations



of A*/F™* in terms of their character values on elements of order two are given

in chapter 8.

Using I'r and the results of D.Prasad and D.Ramakrishnan [21] regarding
the Langlands correspondence, we now construct a map from two-dimensional

symplectic Galois representations to fourth roots of unity.

Let 0 = Indg/r(x) be a two-dimensional symplectic representation in-
duced by x a character . o is mapped to II(¢), an orthogonal representation

of A*/F* through the Langlands correspondence.
Define Yr (o) = T(I(0)) € pa.
The following Theorem is proved,

Theorem 9.4.2 Lel o be a two-dimensional symplectic Galois represen-
tation, 0 = Indg/r(x) induced from a character x : K* — C*, where F
is a non-Archimedean local field of odd order residual characteristic field F,

g = 1(mod.4) and K/F is a quadratic extension, then

g—1+42e

Tr(o) = (=1)"% Wr(o)Wr(wr/r)™ € pa

where e 1s the ramification index of the extension and wi/r s the non-trivial

quadratic character of F* given by class field theory.

This theorem gives a relation between Yp(o) and the value of the local

root number of o.
As immediate corollaries we obtain the following results,

Corollary 9.5.2 (¢ = 1(mod.4)) Let o and o' be two two-dimensional
symplectic Galois representations, 0 = Indg/r(x) and o' = Indg/r(x') in-

duced from characters x,x' : K* — C. Then, the following holds,

3



(1) If K/F is ramafied with f(x) # f(x') and min(f(x), f(xX')) =1 (it is
no restriction to assume f(x') = 1) then,

Yr(o) _ (—1) Wr (o) Wr(wkyr)
Tr(o!) Wr(o') Wp(wg/r)

where K'/F is the unique unramified quadratic extension over I

(II) In any other case,

Corollary 9.5.3 (¢ = 1(mod.4)) Let o be a two-dimensional symplectic
Galois representation, o = Indg/r(x) induced from a character x : K* —
C*. Consider the tame ramification of o, this is, Ome = Indg/r(x1) where
X = X1 ® X2, the order of x1 is coprime to q and the order of xo is a power
of q. Then,xy s tamely ramified, and

_zlf_(fz_:<_1)@%fiﬂ Wr(o) Wrlwgyr)
TF(Otame) WF(Utame) WF(wI{/F)

where K'[F is the unique unramified quadratic extension over F' and e is the

ramification index of the extension K/F.

The case ¢ = 3(mod.4) does not seem to give such a good relation as
q = 1(mod.4). However, let us note that ¢ = 1(mod.4) covers most cases.
That is, if ¢ = p? for some odd prime p and integer d, ¢ = 1(mod.4) if
p = 1(mod.4) or p = 3(mod.4) and d even.

To finish with, the case ¢ = 3(mod.4) has been introduced for complete-

ness. This is section 9.4.2.



Chapter 2

A very brief introduction to

representation theory

In this chapter, we give a brief introduction to representation theory and

Brauer Induction.

Here we present some basic definitions, omitting proof, that will be re-

quired in order to work with Explicit Brauer Induction.

REPRESENTATIONS:

Let us suppose that G is a finite group, K a field and V' a finite-dimensional
vector space over K. Let GL(V) denote the group of K-linear automorphisms

of V.

A homomorphism p : G — GL(V) gives an action of G on V by ¢g-v =
p(g)(v).

A finite-dimensional K-representation of G is the K-isomorphism class of



such an action.
NOTE: We can think of p as a KG-module.

Very often an isomorphism between V' and K™ is chosen (dimy (V) = n),

in this case we can write: p: G — GL(K") = GL,(K).

Usually, we will consider the case K = C. In this case, GL,(C) has a

number of compact subgroups of special interest:

(i) The Unitary group: U(n) = {X € GL,(C)/XX* = I,}. Basically,
U(n) is the subgroup of GL,(C) that preserve the semilinear product on
C* (z,y) = >, z%. We will mean by an Unitary representation, a U(n)-

conjugacy class of a homomorphism of the form p: G — U(n).

There is a one-one correspondence between U(n)-representations and n-

dimensional C-representations.

(ii) Similarly, if we consider R, we define O(n) the orthogonal group, as
the subgroup of matrices that preserve the inner-product (z,y) = >, z:¥:.

So then O(n) = GL,(R) " U(n).

We will mean by an orthogonal representation an O(n)-conjugacy class

of a homomorphism of the form p: G — O(n).

As in the complex case, there is a one-one correspondence between O(n)-

representations and n-dimensional R-representations.

(iii) Denote by H the quaternion skew-field, i.e., if z is a quaternion
z = a+ib+jc+kd then Z = a—ib—jc—kd. On H" we have an inner-product
(z,y) = >, :%. The subgroup of left H-automorphisms of H" that preserve
this form is called the symplectic group, and denoted by Sp(n). As a C-



vector space H = C?, so Sp(n) C U(2n). A symplectic representation would

be then, a conjugacy class of a homomorphism of the form p: G — Sp(n).
INDUCTION AND RESTRICTION:

p a complex representation p: G — GL,(C). As a fact, we can express p
as a sum of multiples of p;, where p; are irreducible representations [32](this

is a finite set):

p= Z 404
Irr(G)

We can define now the representation ring: R(G) = {3_, ¢ ¥, " € Z}.

So then, if we have I < G, we can define induction and restriction:
Ind$ : R(H) — R(G)

ResS : R(G) — R(H)

Restriction: Given p € R(G), one can define Res§(p) = pjg € R(H).

Induction: The definition of Ind$ is a little bit more complicated. Given
p € R(H), we consider V the CH-module associated to p, and then Ind$(p)
will be the G-representations associated to the CG-module CG ®cgy V.

BRAUER INDUCTION

Brauer (1947) proved a theorem called “The Brauer induction theorem”,

relating p with one-dimensional representations. The theorem is announced

as follows [32]:

Theorem 2.0.1 G a finite group. Given p € R(G) there exist one-dimensional

representations of elementary subgroups H;, ¢; : H; — C* and integers n;



such that:
P= Z nz']ndf{i (¢:)

We should speak about Explicit Brauer Induction at this point. Explicit
just means that we would like to specify canonically what n;, H; and ¢; are.
These formulae were given by Snaith in 1986 and Boltje in 1989. We will
speak about this later on, when we study Snaith’s proof of existence of local

root numbers.

THE TRANSFER

Given G a group, we denote by G® the quotient of G by its commutator
subgroup. Let us consider now H < G of finite index, and ¢ : G/H — G a

set of representatives for the left cosets of G modulo H.
If s € G and t € G/H we define q,, as:
so(t) = o(st)as,

Definition: Let [s] € G®. The image in H* of [],.;/y s is called the
transfer of [s] that we will denote by VerZ([s]) or simply by Ver(s). We can

also define then a map from G* in H®, Ver : G* — H.

Usually we will deal with Galois groups. For convenience, we use infinite

Galois groups.

We will need the following result about the transfer map [20],

Proposition 2.0.2

(a) Let E/K be a finite extension of local fields of finite degree over Q,

contained in an algebraic closure @p. The following diagram is commutative:

8



Ver
Gal(Q,/K)* — Gal(Q,/E)®
T i T
K* — B

(b) Let E/K be a finite extension of number fields with I, Ig the corre-

sponding idele groups. The following diagram is commutative:

Ver
Gal(Q/K)® — Gal(Q/E)®
T i T
Iy — Ip

where the vertical homomorphisms come from local and global class field the-

ory [20].



Chapter 3

Character theory, Artin

L-Functions and Artin root

numbers

In this chapter, we recall the definition of L-Functions and the enlarged
L-Function [20], allowing us to define the local root numbers in the character

case, and the relationship between them and the Gauss sums.

The local root number is an invariant of a local Galois representation
which is to be taken very seriously. For instance, in the theory of the struc-
ture of a ring of algebraic integers as a Galois module, the local root numbers
determine whether this projective module is free, in the case of a tame ex-
tension [31]. In the Langlands programme, which speculates about bijections
between Galois representations and other categories of representations, the
local root number plays an important role as part of the detection machin-

ery in the local conjecture. The Langlands correspondences have now been

10



established in the local case by M. Harris and R. Taylor [11] in characteristic
zero, by G. Laumon, M. Rapoport and U. Stuhler [19] in characteristic p > 0
and in the global case by L. Lafforgue.

In order to define local root numbers in the character case, firstly we must

introduce all the ingredients required.

3.1 Frobenius substitution

In order to define the Frobenius substitution, let us suppose that we have
E/K a finite normal extension of number fields with Galois group G, and P

is a finite prime of K.
Also, let us assume that £/K is unramified at P.

For every prime P lying above P, there exists a unique element of op € G
such that op(z) = V) (modP) with z any integer in £, and N(P) the
absolute norm of P. This is what is known as the “Frobenius substitution”.
It can be proved that for every cyclic group C of G there exist infinitely

many primes P such that C =< op >.

3.2 Weber

Let us take now b an ideal of K and let us define:
Iy = {a ideal of K s.t.a is prime to b}

Py={a€l, st.a=<a> with o € K totally positive o = 1(modb)}

11



Now, we take H < [, such that P, C H.

In this situation let’s suppose that the abelian extension E of K is what
Weber called a “class field for H” (i.e., the prime ideals of K that decompose
completely in E are precisely those ones in H, and b is the smallest in some
sense). In this case the prime divisors of b are precisely the prime ideals of

K ramified in F.

Now, given a character y : I,/ H — C*, there is an L-Function defined for

Re(s) > 1 by: 1
Lis,) =117 PN (3.1)

P

Notice that the product is over the P not dividing b, i.e.: the product is

over the prime ideals of K unramified in E.

Now, we are prepared to introduce Artin’s first definition of L-Functions

[20].

3.3 Artin’s first definition of L-Functions

This definition first appeared in 1922. Takagi in 1920 had established
that “the Galois group G is isomorphic to I,/H”, but he did not give any
canonical isomorphism. If we had one given it would be possible to define

L-Functions for one-degree characters.

In any case, Artin gave a definition of an L-series, for one-degree charac-

ters of G by thinking of the above formula 3.1 in the following way:

1
A VO e e R

P unramified

12



This led Artin to think that the isomorphism that Takagi spoke about
could be built by sending the class of an unramified prime ideal P of I,/H

onto op. This is known as “the general law of reprocity”.

We can give now Artin’s first definition of L-functions:

Definition 3.3.1 : E/K finite normal extension of number fields with Ga-
lois group G. V finite dimensional complex vector space, and let p : G —
GI(V) be a representation. Denote x the character of p (i-e., x(s) = Tr(p(s))).
For a prime P in K, det(1 — N(P) *p(cop)) does not depend on the choice
of P above P and takes the same value for two isomorphic representations,

so we can define:

1
L(s,x) = H el = N ()= p(or)) for Re(s) > 1.

P unramified

L, defined in this way, verifies the following properties:

(a) L(s, x1 + x2) = L(s, x1)L(s, x2).
(b) H normal subgroup of G, p a representation of G/H and p' the lifting

of pto G, then : L(s,x") ~ L(s,x) -

(c) H subgroup of G, x a character of H that induces x* of G, then:
L{(s,x*) ~ L(s, ).

NOTE: What we mean by '~ is that they are equal up to a finite number

of Euler-factors.

The problem we have with this definition is that we do not get equalities
in (b) and (c), which would be likely to occur. So now we will study the
general definition of non-abelian L-Functions where we will get equalities in

these properties.

13



3.4 General definition of non-abelian L-function

We are going to define local factors at ramified primes, in such a way we

can put equalities in the above formulae.

Let us denote for Dp and Ip the decomposition group and inertia group
of P respectively. Dp/Ip is isomorphic to the Galois group of the residue

extension, so we can define the Frobenius substitution op € Dp/Ip.
G acts on V via oz = p,(z) for allz € V and 0 € G.
Let us define V1P as: VI* = {2 € Vs.t.Vo € Ip,02 = z}.

Now, we can define:

1
for 1
H detyip (1 — N(p)~sop) or Re(s) >

P finite

With this definition we get equalities in all the above formulae (a), (b)

and (c). We also get an extra one:

(d) x one degree character, 1 the congruence class character, then:

L(s,x) = L(s, ).

At this point the definition of an enlarged L-function A arises, and this
function will verify a functional equation which will allow us to define the
Artin root number. We will not go deeply into this definition, since we are
just interested in the functional equation verified. We will just say that this

enlarged L-Function has the following shape [20],

A(s,x) = A(x)**y,(s)L(s, x) for Re(s) > 1

14



For the definition of A, some new concepts are needed, and we will discuss

them as well since they will play an important role in the definition of local

root numbers:

For our P above P, we consider G; the corresponding ramification groups

and let us denote by g¢; the order of GG;. We define then:

o
gi . leh
n(x,P) =Y =codimV"
Artin proved that,in fact, this number (that is independent of the choice

of P above P) is an integer.

We are going to define as well what is known as “the Artin conductor”,

this is just a particular ideal of K defined by:
106 B/K) = [0 = [ PP
P
So, for example A(x) is defined as |dx|Ngo(f(X)) where di is the dis-
criminant of K.

As we said before, this enlarged L-Function verifies a functional equation
in which the definition of Artin root numbers arise. The basic properties

verified by this function are summarized in the following theorem:
Theorem 3.4.1 [20] A possesses a meromorphic continuation in the whole
complez plane and satisfies the functional equation A(1—s, x) = W(x)A(s,X)

for some constant W (x) of absolute modulus 1.

This number of modulus 1 is called the “ARTIN ROOT NUMBER”.

15



3.5 More on the Artin conductor.

The Artin conductor can be defined for more general extensions than the
ones we have looked at. Let us suppose that we have A a Dedekind ring with

quotient field K, and E a finite normal extension of K with Galois group G.

Also, let us suppose that we have p a representation of G in a finite

dimensional vector space with character y.

Assume that all the residue class extensions are separable. To extend the
conductor to the inseparable residue field case was a problem of J.P. Serre
(Annals of Mathematics 1960), solved in chapter 6 of [32] (which is based on
a paper of Boltje-Cram-Snaith).

Let us take P a prime ideal of K, and P a prime ideal of F lying above
P. Then we defined n as:

o9}

n(x,P) = Leodimv

im0 90

. where (G; are the ramification groups of P, and g; its order.

This number is an integer. And it is obvious that in the case E/K
unramified at P, n(x, P) = 0, and in the case F /K tamely ramified n(x, P) =

codimV .

We have defined as well the Artin conductor as:
06 B/K) = f(60) = [ [ PP
P
This particular ideal of K verifies the following properties:
@) fx+x) = f0dfX)

16



(ii) If x is lifted from a character x’ of a quotient A of G then: f(x) =
FX')

(iii) Let H be a subgroup of G. x a character of H and x* the character
of G induced by x. Then:

F(x*) = Nrye(f(0) D(E/ K
where D(F/K) is the discriminant (relative to A).

Now, we are going to define the conductor for an infinite extension. Let
L be an infinite normal extension of K with Galois group G. We take a
representation p of G (a homomorphism p : G — GI(V') with open kernel, V
a finite dimensional vector space). Such representation factors through the
Galois group of a finite extension, so we define f(p) to be the conductor of

o', where p/ is any representation of a finite Galois extension s.t. p is the

lifting of p'.

3.6 Local Gauss sums

Now we are going to study the “ Local Gauss sum” and the relationship
between this and the “Local Root Numbers”. For this purpose, let us suppose

we are in the following situation:

p is a fixed prime, K a finite extension of Q,. We will denote by Ok the
valuation ring of K. py is the maximal ideal of Ok. Dk is the different of the
extension K/Q,. Uy is the group of units of O. U} is the subgroup of units

of K that are congruent to 1(modgp?). And mx denotes px = 7xOx = (7k).

17



Firstly, we will define the non-trivial character ¢ : K — C* as the com-

position of the following maps:

Tr/qp canonical canonical o2mi_
K — Q — Q/Z, — Q/Z2 — C
surjection injection

We can see easily that this character verifies ¥(z + y) = ¥(z)¥(y) and
(=) = ().

REMARK: 9 is trivial on D' (the codifferent) and actually this is the

greatest fractional ideal of K on which 1 is trivial.

Now, let § : K* — C* be a character with open kernel. If we denote n(6)
by n, our conductor will be f(0) = %, and this integer n is the least one

such that @ is trivial on Ug.
We will say that 8 is unramified if n(6) = 0.

Let us define now the Gauss sum for this character 6,

Definition 3.6.1 The local Gauss sum 7(0) is defined as:

zeUk /Us

where ¢ is a generator of the ideal D(0) = f(§)Dk.

REMARK : When 6 is unramified, this sum will be just one term:
7(0) = 0(Dy).

Important properties about Gauss sums are the following:

18



Proposition 3.6.2 0 a character of K*:
(1) |T(0)] = /N(f(6))
(i1) 7(0)7(8) = O(—=1)N(f(9))

Proof:

(ii) Using the definition of 7 we get 7(6) = 6(—1)7(6), and now our result

follows easily from (i).

(i) To prove this we can think first of the unramified case (then N(f(0)) =
1 and 7(0)7(0) = 0(Dx")0(Dx') = 1) and then of the ramified one. In this

case the proof is quite straightforward using the following Lemma and writing

T(0)7(0) = 32, (=) 22, b (y*)0

Lemma 3.6.3 [20/ n >0, d an element of D' N(Px)™. S a set of repre-
sentatives of Ok modulo Pi. Then A=} s1(yd) does not depend on the
choice of S and A = N(Pg)" if d € D' and A = 0 otherwise.

Now we are prepared to define the LOCAL ROOT NUMBER. Let K be

a local field of characteristic 0 and € a character of K*.

Definition 3.6.4
For K =R or C define W(0) = i),

For K non Archimedean, define:

— T\ N(F(e) Y2 a5y (E
NGO (f(6) IGU%;U}} v()

where \/N(f(0)) is the positive square root.

19



Note that when 0 is unramified:

REMARK: Using the above proposition, we can see that (W ()| = 1 and
W (6)W () = §(—1) and as an immediate corollary, when 6 = 8, W (0)* = 1,
i.e, W(0) is a fourth root of unity.

Furthermore, if we have K a number field and y an idele class character
(i.e., continuous on the group I of the ideles of K and trivial on the principal
ideles), for every place v of K, the natural embedding K — Ik defines a

character x, on K, and then we have the relation (Tate 1950):
wx) =W ()

3.7 Local Galois Gauss sums.

Now, let us consider p a place of Q, Qp an algebraic closure of Q,. By
a local field we will mean a finite extension of Q, that is contained in Qp.
Given a local field K, we consider virtual characters of Gal(Q,/K) (these

are differences of two characters of representations of open kernel).

Let us take 6 a virtual character of Gal(ﬁp/l( ). The local root number

is well defined by the following properties:

(1) W (01 + 6y) = W (8,)W (8,)

20



(ii) Let ¢ be an irreducible character of degree one and €’ the character
of K* defined by 6 in the Artin map (i.e, K* — Gal(Q,/K)), then W (0) is

the local root number W (') defined in the section before.

(iii) £ : K a finite extension, # a character of Gal(E/K) of degree 0, and
6" the character induced by 6 in Gal(Q,/K). Then W(6*) = W (9).

Now we can define the Local Galois Gauss sum using local root numbers:

Definition 3.7.1 K non-Archimedean local field, 6 a character ofGal(Qp/K).
We define:

We know that the conductor verifies: f(8) = f(), so W (0) = ——16%)(—5)3.

From the properties verified by f(f) and W (0), we can see that 7 is

well-defined by the same properties as W.

The local Galois Gauss sums verify similar properties to the Gauss sums:

Proposition 3.7.2 K finite extension of Q, and 6 a character ofGal(Qp/I{).
Then:

(i) IT(0)] = /N (f(0))
(i) T(0)7(0) = N(f(0))dety(~1)
The proof of this proposition follows from the fact that 7 is well defined

by the properties mentioned above. So it is enough to prove that it is true

for 1-degree irreducible characters (as done in the section before) and that
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both sides are invariant under induction for characters of degree 0 (which is

true. It is enough to notice that * = 8").

As a COROLLARY of this we can see that for K a local field |W(0)| =1

and W(0YW(0) = detp(—1).

Also, we can see as well from this second property verified by W that

W (8)7(8) = dety(—1)\/N(F(0)).
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Chapter 4

Existence of local constants or

local root numbers

In this chapter we review the literature on the existence of local root

numbers.

The existence of local root numbers in the non-abelian case is due to R.
P. Langlands, but although his proof is purely local, it is extremely long and
remains unpublished. Deligne (1973) [6] gave a very elegant existence proof

by a global method which we will discuss below.

However, Langlands expresses a hope for an eventual, shorter, conceptual,

local existence proof in his long essay “On the functional equation of Artin

L-function” .

V. P. Snaith (1987) also gave such a proof of existence [29], but although
his method of construction embodies many very good features, it is not the

“type of local construction” envisioned by Langlands. Because it requires
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a global step to get the “inductive in dimension zero” axiom- what we will
call axiom (b). But it does give the other properties plus factorisation of
the Artin root number into a product of local root numbers. Nevertheless,
Snaith uses Explicit Brauer Induction for his proof , which is a novel method

of proof and to which we will also recall.

4.1 Deligne’s proof of existence of local root

numbers

In this section we will have a look at Deligne’s proof of existence of local
constants. For his proof, he needs a relation between the value taken at o
and at « by the local root number W where o and § are two characters of
K* and the ramification of  is relatively small compared to that of a. First

of all, we will discuss this relation:

4.1.1 Abelian root numbers

When we have K a non-Archimedean local field of characteristic 0 and «
a character of K*, we have already seen in chapter 3 what the definition of
W {(a) is. The important part of this section (from which the result we are
looking for will follow) is the following proposition that gives a new formulae

for the local root numbers:

Proposition 4.1.1 [35] Let K be a non-Archimedean local field of charac-
teristic 0, and let « be a character of K* of finite order. Let A be an ideal
of Ok such that A%/ f(a), and let us take B = A~ f(«). Then there exists
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c € K verifying:

(i) < ¢ >=D(a).
(ii) a(1+vy) = (c y) for all y € B.
(iii) W (o) = N(A'B)~ /2 Zm€1+A/B a(2)y(%).

Proof: We are not going to give the complete proof, but will see how it
follows once one has proved (ii). We know the definition of W («):
W)= N(f@) > @)
€0}/ f(a)

As B/f(a) we can split the sum into z = z(1 + y) where z € 0% /B
and y € B/f(a). Using (ii) we get that @(z) = @(2)y(=2) and of course
$(2) = B(2)P(Z), 50 we get;

NG = Y ) Y sl

2€0%, /B(a) ¢ yeB/ f(a) ¢

The inner sum is 0 unless y — 2/1(3/(%1—1) is the trivial character of B/ f(«),

that is, z = 1 mod.4. We get then:

N(f(@)W (@) = N(A) Y @(C)u(5)

2€1+A/B

giving us the result we were looking for. [J

Now, we can give now the result needed by Deligne for his proof:

Corollary 4.1.2 [35] Let B be a character of K* of finite order s.t. f(5)/A.
Then:



where ¢, 15 the ¢ we get in the above proposition, just denoted this way to

make clear that it does depend on «.

Proof: By hypothesis, either pk f(5)/f(c) or @ and 3 are both non-ramified.
Hence f(fa) = f(a). So then, by the above proposition applied to S« and
taking into account that Bo (%) = f(c™H)@(Z) = B(c)a(%) when z = 1 modA

the corollary follows. [

Now we are prepared to study the proof of existence of local constants

given by Deligne.

4.1.2 Proof of existence.

Throughout this section we will consider only local or global fields of
characteristic 0. We will denote by R(K) the set of pairs (L, p) where K C
L C K, L/K finite and p a virtual representation of Gal(K /L).

If E/K is a finite Galois extension contained in K /K, R(E/K) denotes
all the pairs (L, p), K C L C E and p a virtual representation of Gal(E/L).
It is obvious then in a natural way that:

R(K) = | R(E/K)

E/K

We will write Ry (K) and R;(E/K) when we are in the character case.

Now we are going to discover when a function defined on R;(K) is ex-

tendible:

Definition 4.1.3 Let us suppose that we have a function F' defined on R1(K)
taking values in some abelian group A. We say that F is extendible if F

can be extended to an A-valued function on R(K) satisfying:
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(a) F(L, p1 + p2) = F(L, p1)F (L, p2) for all (L, p;) € R(K).
(b) If (L, p) € R(K) and dim(p) =0, and L D L' D K then:

F(L,p) = F(L', IndJa5) ()

This definition would be analogous for E/K Galois finite and R(E/K).
Now we give some basic properties about extendible functions:

(1) If F is extendible (or extendible in £/K) there is a unique extension
of F to R(K) (or R(E/K)). If we have two extensions Fy, Fy and (L, p) €
R(E/K), we could consider p — dim(p)[1] of dim 0. Then:

Fi(L,p) = F(L,p—dim(p)[lr] + dim(p)[1L])

= F(L,p— dim(p)[12])) Fi(L, [1])

Now using Explicit Brauer Induction, p — dim(p)[1;] could be expressed
as a sum of multiples of [ndgg(gﬁ))( — [11,]) where (L;,x:) € Ri(E/L).
So using (a) and (b) from the definition, and the fact that over R; we know

Fy = F, = F, we can see that actually F; = F5.
It is obvious now that F' is extendible iff it is so for £/ K for all E.

(2) Now, we will try to find a similar relation to the one given in (b)
but without the hypothesis dim(p) = 0. From the properties verified by the

extension of F' we have:

F(L,p) = F(L,p—dim(p)[1z] + dim(p)[1.])
= F(L,p— dim(p)[1L])F(L, [1.])#™)
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= F(L' In dGal(K/L)(p—-dim( )[1L])F(L [1L])dim(p)

Gal(K/L)
i Gal(K /L") Gal(K/L —~dim im
= F(L,IndS ngjL)( ))F(L', Indo: ijL))uL]) dimo) (I, [1,]) @)

So then:

Gal(K /L' im
F(L, Indgul () = ME)" O (L, p)

Gal(K/L")
F(L', In nd., W® /L) 1))

where A(F) = FT. L))

When A(F) = 1 for all L D L' D K we say that F' is strongly ex-
tendible.

It is time now to study some examples of extendible functions. In all these
examples it is obvious that they verify (a) and (b) in the definition, and when

we restrict ourselves to the case of R; one gets the original function:

(I) When K is global, (L, x) — A(s, x) is strongly extendible by (L, p) —
A(s, p) given by Artin theory of non-abelian L-series.

(II) K global or local non-Archimedean, (L, x) — N(f(x)) is extendible
by (L, p) = N(f(p))-

(IIT) K local and ¢ € K*, L(s,x) — x(c) is extendible by L(s,p) —
det,(c).

(IV) If F(L, x) depends only on L, let us say F'(L,x) = a(L), then this
is extendible by F(L, p) = a(L)%m().

(V) K global, (L, x) = W(x) = A(1—s,x)A(s,Xx) " is strongly extendible
by (L, p) = A(L = s, p)A(s,p) ™"
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At this point we are prepared to prove the existence of local constants:

Theorem 4.1.4 (Langlands) If K is a local field of characteristic 0 (this is
just to fix ideas, the result is true in any characteristic), then (L, x) — W (x)

18 extendible.

The proof we are going to give is not that of Deligne. It is a modified
version. In order to prove this theorem, we are going to need the following

result (for proof look at [35]):

Lemma 4.1.5 There exists a finite Galois extension e/k of global fields and

a place vy of k such that:

(1) There is a unique place uy of e lying over vy and the extension ey, /ky, is

isomorphic to E/K.
(1) k is totally complex (i.e., k has no real Archimedean place).

Now, if we take k, e, vy and ug as in the Lemma, we identify e, /k,, and
E/K. We have an isomorphism Gal(E/K) ~ Gal(e/k). Hence giving us a
bijection between R(e/k) and R(E/K) given by:

(1, 0) = (lwo» Puwo)

where wg is the unique place of [ above vy for e D I D k and py, is the

restriction of p to Gal(E/ly,)-

Now our problem is to prove that (I,x) — W(xu,) is extendible in e/k.
What we will try to do is to express this number (W (x.,)) as a product of

things we know are extendible. To do this:
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Let us take v a place of £ and write v and w for primes of e and {
respectively such that u/w/v. For each non-Archimedean v # vy, let A, be
an ideal of O, verifying f(53)/A, for each (F, () € Ri(e,/k,) and when v is

non-ramified also verifying A, = O,.

Now, let o be a character of the idele class group of & such that a,, =1

and A2D., /i, / f (o).

We will construct at this moment an idele of £ in the following way:

¢ = (c)

where ¢, = 1 if v is Archimedean or v = vy, and ¢, = ¢ where c is the element

associated to «, and A, in the corollary 4.1.2 for non-Archimedean v # vy.

Now, let us take (I, x) € R(e/k) and a; = @ o Ny, Using corollary 4.1.2
we know:
Xw(e)W((ey)w) w is non-Archimedean, w # wy
W (xw(a)w) = ¢ W (Xuws) if w = wy
1 w non-Archimedean
At this stage, if we express our global root number as local root numbers

we get:

Wixar) = 1, Wlw(@)w) = Wixw) [T xw(c)W((@)w)

wH#wo

— W (Xu)o ) X(C) a(l) w non-Archimedean

where a(l) = [ W((er)w).

wH#wo

w non-Archimedean
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So then W (xu,) = W(xa;)x(c) *a(l)~! would be extendible since (I, x) —
a(l), x(c), W(xe;) are extendible (this last just follows from example (V)
extending by (I, p) = W(p ® oy)). Thus the theorem then is proved. OJ

Now that we have proved the existence of local root numbers, we can give
some corollaries that follow immediately from the uniqueness of the extension

of W (x) to W(p).

Corollary 4.1.6 Let K be a local field of characteristic 0, and (L,p) €
R(K), then,

(i) W (p)) = 1
(i)W ()W (B) = det,(~1)

(111) if p = (i.e., p is orthogonal) then W (p) is a fourth root of unity.

Proof: (i) and (ii) come from extending (L, x) = [W(x)| =1, W)W (X) =

I

x(—1) and using uniqueness of the extension we get (L, p) — |W(p)]
1 W)W (p) = det,(~1).

iii) just follows from (ii), if p = p then W (p)? = det,(—1) = +1 so then
p

W(p)* =1, as we wanted to prove. O

Corollary 4.1.7 K an algebraic number field, (K,p) € R(K). For each
place v of K, p, 1s the restriction of p to a decomposition group of v. Then,
(Ky, py) € R(K,) and:

W(p) =W (p)

Proof: The proof of this corollary is based on extending (L, x) — W (x) =
[1, W(xw) to (L, p) = W(p) =1, W(pw) O
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4.2 Snaith’s proof of existence of local con-

stants

The proof we now look at, is completely different to that of Deligne. As
stated before, in order to prove this existence, Snaith uses a novel method
of proof, applying Explicit Brauer Induction (E.B.I) [32]. First we should

describe briefly the E.B.I. formulae as well as their basic properties:

4.2.1 E.B.L

Let us consider G a finite group and let us denote by R(G) the ring
of isomorphism classes of finite-dimensional complex representations of G,

which we can assume to be unitary:

p:G—U(n)

If NT™ is the normaliser of the diagonal maximal torus in U(n), then we
can let G act upon the cosets U(n)/NT"™ by left multiplication via p. We
will write X = U(n)/NT" and M = G\ X.

If H is a subgroup of G, (H) will denote the conjugacy class of H. For
each of these we have associated a subspace of M, let us call it Mg, which
consists of all the orbits which are isomorphic to G/H. Let Xt(j e denote the
Buler characteristic of M) with respect to singular rational cohomology
with compact supports. We will not go deeper into these numbers, we just

mention that they are integers which ultimately depend only on p.

Throughout this section, we will call the conjugacy class of a homomor-

phism from G to NT" and a representation of the form Ind%(p) where ¢
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is a character, a monomial homomorphism and a monomial representation

respectively.

The connection between these is given by the well-known Lemma, which
proof can be found in [32]:
Lemma 4.2.1

(a) Up to equivalence of monomial homomorphisms, v : G — NT™ is
the direct sum of monomial homomorphisms of the form: Indfli(z/i H, —
U(1) = SY) where the set of {v;} is well-defined up to permutation and con-

Jgugation within G
(b) Consequently, as an element of R(G), v : G — NT™ has a canonical
Jorm: v =73",Ind () € R(G).

Now, we will state the weak form of E.B.I. [32]:

Theorem 4.2.2 p: G — U(n) a representation of a finite group:
(i) Tn RG) 1= ) Xy T (1),
(i) In R(G) p = Z(H) X%H)[”d?{(Resg(P))v

(1it) If z € NT™ and H is the stabiliser of zNT™ then z~'p(H)z lies in
NT™ (consequently, by the above Lemma, Ind$(Res$%(p)) has a canonical

form as a sum of monomial representations).

Restriction and induction homomorphism.

In the general casé, let us suppose we have a finite group GG and a compact

Lie group w. We will say that p is a subhomomorphism from G to m when it
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is a homomorphism from H < @ into 7.
pHCG—m

Let us define now, R, (G, ) to be the free abelian group on equivalence

classes of subhomomorphisms from G to 7.

In the case 7 = S! (i.e. the character case), Ry (G, ) will be denoted by
R (G).
Definition 4.2.3 Given i : J — G an inclusion, we can define:

(1) The restriction homomorphism ResS : Ry (G, n) — R, (J, ) by:

ResS(p:GDH —7) = Z (p(x”'z): T D JIN (zHz™") = 7
zeJ\G/H

(ii) the Induction homomorphism Ind® : R, (J,7) — R, (G, m) by:

Ind5(p:JDH—=7)=(0:GDH—7)

After these definitions, we are going to define two new operators that we

will call 7 and B to follow Snaith’s notation.
76 R(G) = R, (G,NT™)

B:R,(G,NT") — R(G)

In order to do this, we consider p : G — U(n) a representation and the
left action via p of G upon X. We will denote by {M,} the set of connected
components of Mgy. And we will choose for each M, and element g, € U(n)
whose orbit lies in M,. Now, if we denote by X%, the compactly supported

cohomology Fuler characteristic of M, we get: X? 0= > X
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Definition 4.2.4 We can define now:
(i) Ta(p) = 3 u Xa(92' 090 : G D p~ (gNT"g™') = NT™) € R, (G, NT™)

(i) B(p: G D H — NT") = Ind§(p: H— NT" C U(n)) € R(G)

Properties: We give some basic properties of these operators [32]:

(I) 17¢(p) € Re(G,NT") is well-defined, depending only on the equiva-

lence class of p as a representation.

(1I) Bra(p) = p.

(III) p; - Gy = U(n;) i = 1,2 representations, and let us denote by “¢”

the operation induced by the direct sum of matrices, then,

TaxGy (M1 @ p2) = 76, (1) * g, (p2) € Ry (Gr x G, NT™ ™)

(IV)i:J — G an inclusion,

Res§ (a(p)) = 75(ResS (p))

A presentation for R(G).

This is a problem which appears, for instance, in [28] (footnote, p.71). It

originates with Brauer (c.1946).

In this section we will study a presentation for R(G) in terms of monomial

representations [32]. We will denote by R.(G) = @,>1 R4+ (G, NT™).
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Now, if we have p : H = NT™ a monomial homomorphism (H < G), the

matrix representation of the induced representation gives:
Ind$(p) : G — NT™ where d = [G : H]
We will define now relations on R, (G), so we will set A the subgroup of
R.(G) generated by elements of the following three classes:
(a)J C H C G and d = [H : J], then,

{(p:G>DJ— NT") — (Ind(p): GO H— NT™)} e A

(b) v: G — NT" and p: G — NT™ then

{vep) —v—pleA

(c)p: G — NT™ then {1¢(p) — p} € A.

From its definition, it is clear that A C KerB, and in fact, by means of
7¢ it can be shown that B : Ry (G, NT") — R(G) induces an isomorphism
B: R.(G)/(A) = R(G)

4.2.2 Proof of existence.

We are now ready to study Snaith’s proof of existence of Local Root
Numbers. Firstly, we will recall the properties that characterize the Local

Root Numbers denoted by Wik (p).

Given L/K a finite Galois extension of local fields and p : Gal(L/K) —

U(n) an n-dimensional unitary local Galois representation, the local root
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number Wy (p) is a complex number of modulus 1, verifying the following

axioms:
(a) If v is another Galois representation the Wy (p® v) = Wi (p)Wxk (v).

(b) If K/N is a finite extension with Z/N Galois then Wiy (Indgeyy/i6)(0)) =
Cal(L/N) (1 \\n
Wk (P)WN(I”dGazEL;K)) (1))
(c) M D L D K achain of finite Galois extensions and 7 : Gal(M/K) —
Gal(L/K) the canonical isomorphism, then: Wi (pm) = Wx(p).

(d) If p is a character, then Wxk(p) is given by the formula given in

chapter 3 for local root numbers.

In other proofs of existence, the procedure was to verify all these prop-
erties, and from them to deduce that Wk (p) = [], Wk, (p,) (global/local
factorisation of the Artin root number). But Snaith’s proof proceeds quite
the other way around. His method, however, has a handicap: his construc-
tion does not ensure the verification of (a) and (b). We will see later how

this point could be overcome.

Speaking very generally, what he does in his proof is to define over R, (G)
(where G = Gal(L/K)) wg using the definition for local root numbers we

know from chapter 3. Then he defines Wy using the diagram:
TG
R(G) — R.(G)

Wk N\ lwg
Sl

Note that we have already seen that R.(G)/A ~ R(G).
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Let us study the proof more deeply:

For the case x : Gal(L/K) — U(1) = S' a character, we define wg(x) as
in 3.7.1.

Now, we will construct now wy : R.(Gal(L/K)) — S'. Let us suppose
we have a subhomomorphism of the form z = (v : Gal(L/K) D Gal(L/F) —
NT™). Applying Lemma 4.2.1 we get a set of characters:

{v; : H; = Gal(L/N;) — S'; 1 <i <u}
and then we define:

wi(2) = [ wn )W IndSaS ) ng = [N; - K]

1<i<u

The one term that needs explanation in this formula is Wy (Ind(1)) since
wy, is well-defined by the Lemma 4.2.1 (a). The definition of Wk (Ind(1))
comes from the fact that Jnd(1) is an orthogonal representation and in [30]
we can find a simple, local construction of the local root number in this case.
We are not going deeper into this definition, we just want to know that it is

easily constructible.
Next, we notice that the construction that assigns {v; : H; = Gal(L/N;) —
S'; 1 <@ < u} to the subhomomorphism (v : Gal(L/K) D Gal(L/F) —
NT™) defines a retraction:
R, (Gal(L/K),NT") — R.(Gal(L/K),S")

z ~ E v;

1<i<u

So now, using 7¢, if we have p : G — U(n) we can define the local root

number as:

Wi (p) = wi (16(p)) € S*
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With this definition, one can check easily that Wk (p) = [ [, Wk, (p») (global/local
factorisation). Firstly, one would check that wg : R, — S! verifies it, but this

is true simply because it is true for characters and the double coset formula
holds in R,. Then just writing Wi (p) = wk (1a(p)) = 11, Wk, (Tcai(zw/x.) (Pv))
(Using property (IV) of 7¢) one would get [[, Wk, (ps)-

At this point, we should check the rest of the axioms that the root num-
bers verify, the ones seen at the beginning of this section. (c¢) and (d) are
immediate just using the properties verified by 7. The ones that cause trou-
ble are (a) and (b). What we see is that (a) and (b) will be true modulo
roots of unity. To prove this, we can look at the definition of A in section
4.2.1, page 38, A presentation for R(G), and notice that to state that, it
would be enough to prove that wy annihilates A. And this is exactly what

Snaith does. To prove this, first he needs the following proposition:

Proposition 4.2.5 [29] Let E/Q, be a finite Galois extension of local fields
with G = Gal(E/Q,). Then there exists a Galois extension of number fields

E’/]? such that:

(i) E is dense in E and E C E is the unique place lying over KCK.
(ii) Gal(E/K) = G.

(111) E\/I? is tamely ramified at all finite primes not lying over p.

REMARK: In order to get the result one also needs to arrange that there is
only one prime above p.

REMARK: The Explicit Brauer Induction formula [32] is a homomor-
phism, so the “Snaith method” using it, gives (a) at once but still not (b).

With this proposition, one can show that wg annhilates A. In the tame

case, we know that tame local root numbers exist [8], so in this case wg
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annhilates A. We also know that the Artin root number (as a function of
R,) does annhilates A. Then, by the global/local factorisation of wg, the

annhilation of A is true for the product of the remaining factors.

Finally, we have finished this novel proof of the existence of local root

numbers.
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Chapter 5

Orthogonal and Symplectic

root numbers

This chapter concentrates on orthogonal root numbers, namely, when the

representation considered is orthogonal, and the symplectic representation

case.

The aim of section 1 is to give us some machinery enabling us to work with
orthogonal representations. In the algebraic case, usually called the global
case from the terminology of local fields and global fields (that is, when we are
working with algebraic number fields), W (p) is characterized by being always
1, when p is an orthogonal Galois representation. In the local case (i.e., when
we are working with local fields), the only information known is W (p) being
a fourth root of unity. Nevertheless, Deligne ([5], (1976)) noticed that when
W (p) is thought of in cohomological terms, there is a close relation between
w(p) and the first and second Stiefel-Whitney classes of such representation.

Namely, W(p) = W(det,)SWa(p). Here, SW(p) is thought under the image
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of H*(G;Z/2) = {£1}. Two different proofs of such result can be found in
the literature, including that of Snaith’s ([30] and [31], (1988)), which differs

from Deligne’s original.

In section 2, we review some results concerning symplectic representa-

tions, giving us a characterization for such in the Quaternion case.

5.1 Orthogonal root numbers.

We are interested in orthogonal root numbers, i.e., when the representa-

tion p is an orthogonal one. At this stage, we can already state some results

concerning these.

When F/K is a finite Galois extension of global fields, we know from

Example (V) of section 2.1.2 that the root number is characterized by:
AL =s,p) = W(p)A(s, p)
so, applying this formula to p and writing t =1 — s, we get:
A1 —t,p) =W(D)"'A D)
and then W (p) = W(p)~!, i.e.. W(p)W (p) = 1. So, when p is an orthogonal
representation (p = p) we get W(p)? =1, i.e.: W(p) = +1.

When we are in the local case, i.e.: E/K a finite Galois extension of local
fields, we know from Corollary 4.1.6 that in this case W (p) is going to be a

fourth root of unity.

Below, we will study orthogonal root numbers in more depth, and will
be able to see that in the algebraic case (algebraic number fields) W(p) = 1,
this result originally due to Frohlich-Queyrut [7].
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In order to see this, let us suppose first, as usual, that F/K is a finite
Galois extension of local or global fields of characteristic 0, G = Gal(E/K)

and p a representation of G. Let us define for p the following number:

_ Wip)
lr) = W (det,)

which verifies the following properties (easily checkable, some of them are

trivial, and the rest just come from Corollary 4.1.6):
(I) dimp = 1 then ¢(p) = 1.
(IT) c(p1 + p2) = c(p1)c(p2)W (det,, )W (det,, )W (det, det,,) ™
(IIT) ¢(p + p) = det,(—1).
(IV) ¢(p) = c(p) and c(p)] = 1.
(V) if p =P then ¢(p) = £1

As we said above, we are interested in the case when p is an orthogonal
representation. We already now by (v) that in this case ¢(p) = £1. Let us
suppose that p is an orthogonal representation, K is local non-Archimedean
and G is a dihedral group. Then F D L D K, where E/L is cyclic, L/K
quadratic and each element of Gal(E/K)\Gal(E/L) has order 2.

Then we take p =1 ndggﬁgfg) (x) for some character x of Gal(E/L).

The transfer map verp/x : Gal(E/K) — Gal(E/L) is trivial, so the

character g~ of K™ corresponding to x o very,x will be also trivial.

We could write L = K(d) for some § s.t. 6% € K*, then Try/x(6) =0
and x(6) = +1 (independent on the choice of ).
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In the above situation, Frohlich-Queyrut [7] proved the following theorem

from which our results will follow:

Theorem 5.1.1 In the above situation: c¢(p) = x(6). One verifies easily that
c(p) = W(x)-

Now, we wish to study the global case when p is an orthogonal represen-
tation, but the global root number is invariant under induction, so due to
the Induction Theorem for orthogonal representations [20] we know that we

can restrict ourselves to the following cases:
(i) dimp = 1.
(ii) p = @ + @ for some representation 6.

(iii) p dihedral (what we mean by p dihedral is that we are in a global

analogous situation to the one in the theorem).
Let us study these three cases:

(i) When dimp = 1, p is either [1x] or the non-trivial character of

Gal(L/K) with L/K quadratic, in both cases W (p) = 1.

(ii) When p = 0 + 0, W(p) = W(O)W () = W (H)W () since we are in
the global case. And then W(p) = |W(0)|? = 1.

(iii) p dihedral. By (i) we already know that W (det,) = 1, so W(p) =
c(p)-
We are going to show now, that for each place v of K ¢(p,) = Hw/v Xw(0):

If v is non-Archimedean and undecomposed in L, this follows from the

theorem.
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If v is Archimedean and undecomposed in L, then L, is complex and
xw = 1. On the other hand, p, = [1] + sgn so using properties (I) and (II)

of ¢, we get ¢(p,) = 1.

So now, we just have left the case when v splits in L. Here, the decompo-
sition group of w/v is in Gal(E/L), so p, = Xw~+Xw and then, using property
(IT1) of ¢, we get c(py) = c(Xw + Xw) = Xw(—1). On the other hand, if w' is
another place above v, Xu(6)Xw (§) = Xw(—1), since Xu (6) = xu(—0). We

get in this way the result we were looking for.

So now, as ¢(py) = [, Xw(d) we can write:

c(p) = [ elon) = [T T xw(® =[] xw(®) = x(8) =1

v ow/fvy

since 6 € K* and x is an idéle class character.

So now, we can state the the following result [35],

Corollary 5.1.2 If E/K is a finite Galois extension of algebraic number
fields and p is an orthogonal representation of Gal(E/K), then W(p) = 1.

To finish this section, once we have studied the global case, we should
study the local one. In this case there is an alternative interpretation of ¢(p)

for an orthogonal representation given by Deligne [5].

If we have G any finite group and p an orthogonal representation of G,

we could consider SW;(p) € H'(G,Z/2Z) the ith Stiefel-Whitney invariant

of p.

For low dimension 4, SW; is given algebraically:

45



HYG;Z/2) ~ Hom(G, {£1}), and under this canonical isomorphism the
image of SWi(p) is det,.

If SWi(p) is trivial (i.e. det, = 1), SWy(p) € H*(G;{£1}) = H*(G;Z/2)
is the inverse image under p : G — SO(n) of the class of the extension:
1 = {£1} = Spin(n) — SO(n) — 1

considered as a class in H*(SO(n); Z/2).

Now, if we take G = Gal(E/K) (in the local case) using inflation (which

is injective) we get:

H(G,Z/2) — H(Gal(Q/K),Z/2) ~ {£1} (K # C)

By writing cl(SW5(p)) for the image of SW5(p) in {1} under this maps,
Deligne saw that c¢(p) = cl(SWa(p)). Also proved in ([30] and [31], (1988))

in a completely different way.

Now, we proceed to outline the steps required to obtained Deligne’s re-
sult. Deligne noticed that if we restrict ourselves to the case of orthogonal

representations of Gal(K /L), c(p) is uniquely defined by the properties,
(a) dimp =1 then ¢(p) =1 and c(p + p) = det,(—1).
(b) clp1 + p2) = c(p1)c(p2) W (det,, )W (det,, )W (det,y, detp,) ™

(¢) K C I’ C L and p an orthogonal representation of Gal(K/L) with

) Gal(K /L'
dimp = 0 and det, =1 then c(]ndGalg?jL)) (p) = c(p)

So it is enough to note that c/(SWy(p)) verifies these properties (for details
[5]), some of which are just re-arrangements of well-known results such as the
Cartan formula for second Stiefel-Whitney classes. Therefore we can state

his theorem [35],
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Theorem 5.1.3 (Deligne) Let E/K be a finite Galois extension of local
fields, and let p be an orthogonal representation of Gal(E/K). Then,

Wk (p) = Wi (det,)cl(SWa(p))

5.2 A brief introduction to symplectic repre-

sentations

The definition of symplectic representation has already been introduced
in section 0.1. In this chapter we have a look at some properties of such
representations, characterizing symplectic representations in the Quaternion

case.

5.2.1 Real valued characters.

Let G be a finite group and K a subfield of the complex numbers. Let us
consider as well, V' a finite dimensional K-vector space and p: G — GL(V)
a representation. Then, we can define p/ : G — GL(C ®x V). Such a

representation is called a K-representation.

We can define now RX (G) as the set of characters of K-representations,

which is a subring of R.,(G), the set of characters of G.

Clearly x € RE (@) takes values in K, however the converse is not true,
that is why the definition of K-valued characters is introduced: —Eﬁ(G) will

be then, the subring of R.,(G) consisting of characters with values in K.
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We are interested in the case K = R, i.e., real valued characters. We can

define now THE three types of irreducible real valued characters:
(1) x = ¢ + ¢, where ¢ is an irreducible character of G.
(2) x is an irreducible orthogonal character.
(3) x is an irreducible symplectic character.

These are the three types of irreducible real valued characters. In cases
(2) and (3), x is also irreducible as a complex representation, but not in case

(1), since ¢ and ¢ are complex representations.

5.2.2 Induction.

In this section we will recall some useful induction theorems for symplectic

characters [20]. In order to do that, we need to introduce some definitions.

Definition 4.1: The Quaternion group 4, of order 4n is the group on
two generators X, Y with relations: X” =Y? V4 =1, and YXYV 1 = XL

Note: 4, contains a unique element of order 2, i.e., Y2. Q, is cyclic,

and for n > 1, {1,Y?} is the center of Qu4,, and Q4,/{1, Y?} is the dihedral

group Dy,.

(Q4n has 4 characters of degree 1, and the other irreducible characters
are real valued characters of degree 2. Those factorising through a dihedral
quotient are orthogonal, and the rest symplectic. For instance, in the case of
(Js there is only a 2-dimensional irreducible symplectic representation, that

is why it is an useful group to work with.
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Definition 5.2.1 G a finite group. A “quaternion character” of G is an ir-
reducible character of degree 2 of G which is lifted from a symplectic character

of a quaternion quotient of G.

We are ready now to recall induction theorems for symplectic represen-

tations. The proofs of which can be found in [20],

Theorem 5.2.2 G a finite group and x a symplectic character of G. Then
X is a Z-linear combination of characters of the form Ind$(4) for some

subgroup H of G, where:
(1) either ¢ = v + ¢, ¢ irreducible character of degree 1 of H.

(2) or ¢ is a quaternion character of H.

Theorem 5.2.3 G a finite supersolvable group (namely, there exists a se-
quence {e} = Gy C Gy C ... C G, = G of normal subgroups of G such that
G; /G- is cyclic), and x an irreducible symplectic character of G. Then one

of the following holds:

(1) x = ¢ + ¢, where ¢ is induced by an irreducible character of degree 1

of some subgroup of G.

(2) x is induced by a quaternion character of some subgroup of G.
Thus, when G is supersolvable, we have a characterisation for irreducible

symplectic representations. And let us just recall that the QQuaternions are

supersolvable.
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Chapter 6

A construction with

continuous, orthogonal, Galois

representations.

In this chapter, we study V.P. Snaith’s construction [31] with continuous,

orthogonal, Galois representations.

In his book “Topological methods in Galois Representation Theory” [31],

the construction of a map 'y : RO(F) — ug = {%1, +i} is given. This

map is obtained from the composition of the following maps,

IndF/Qp
RO(F) — Y e Y@p
p ~ [p=n] ~  Indpg,[p—n]

with n = dimp and Yy defined by

o0

— M4

~ Tr(p)



Yp= lim {IO(G(K/F))/(Jousr))}
K7E
Here IO(G) is the Augmentation ideal of RO(G) and Jo = {x € TIO(G)/dim(z) =
0, SWi(z) = 0= SWs(z)}.

This construction is important because, given a continuous orthogonal
representation p : Qp —> O,(R), Wr(p) = I'r(p). Therefore I'y gives an
independent construction of the orthogonal root number of p. Furthermore

['r is easily shown to satisfy Deligne’s formula [5]

Wr(p) = SWa(p)Wr(det(p))  [31]

Imitating this construction, we prove, in chapter 7, that a similar ho-
momorphism can be obtained in the case of orthogonal representations of

division algebras.

Let us start by recalling some facts about quadratic characters and some

of their properties.

6.1 Quadratic characters

In this section, we recall some well-known facts about quadratic char-
acters [31] such as how to represent them as cohomology classes. We also

tabulate their cup-products and local root numbers for the field Q.

Let 8 be a one-dimensional orthogonal Galois representation, that is, a

homomorphism

HZQF——é{:lzl}
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where throughout this chapter, ' denotes a non-Archimedean local field.

Such 6 represents a class
I(a) € H'(F;2/2) = Homu(Qp, {£1})

where a € F*/(F*)?, and l(a) is defined by l(a)(g) = g(v/a)//a.

Alternatively, by class field theory [14], [(a) may be described as a quadratic
character [(a) : F* — {+1} C C*.

Now, via the isomorphism H?(F,Z/2) = {£1} any such character may

also be given by the formula,
1(a)(b) = U(a) UI(b) = (a,0)

where U denotes the cohomology cup-product and (a,b) denotes the Hilbert
symbol [20].

Here, using the well-known fact [25] that Q/(Q})* = Z/2XZ/2 < u,p >
where v is a unit with Legendre symbol [] = —1 (i.e., u is non-square mod.p)
for p # 2 a prime, and Q3/(Q5)? X Z/2 x Z/2 x Z./2 < —1,5,2 >, we have
the following cup-products tables [31] in the case F' = Q.

Cup-products on Q;/(Q;)? if p # 2, where A = l%]

r 1 U P up
1 1 1 1 1
U 1 1 -1 -1
P 1 -1 A —A
up 1 -1 —A A
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Cup-products on Q3/(Q%)?

1 -1 5 -9 2 -2 10 -10
1 1 1 1 1 1 1 1
-1 1 -1 1 ~1 1 —1 1
5 1 1 1 1 -1 -1 -1
-5 1 -1 1 -1 -1 1 -1
2 1 1 -1 -1 1 1 —1
-2 1 -1 -1 1 1 -1 -1
10 1 1 —1 -1 -1 —1 1
—-10 1 -1 -1 1 -1 1 1

Now, as [(a) is an orthogonal representation, we may evaluate

Wie(l(a)) € {£1,+i}

giving us the following tables [31],

Wo,(l(a)) € {£1,+1}. 0 € Q3/(Q5)*

Wo,(l(a) | 1 i1 i1 i -1

Wo,(I(a)) € {£1,£i}. a € Q;/(Q})?

a 1 U D uUp
Wo,(l(a))

p = 3(mod.4) 1 1 —1 7
Wo, (I(a))

p = 1(mod.4) 1 1 1 -1
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6.2 The construction

This section explains how Snaith’s construction [31] for orthogonal Galois

representations is obtained. Let us start, by setting down the details required.

Given G a finite group, let RO(G) denote the Grothendieck ring of finite-
dimensional real representations of G. That is, the free abelian group on
the isomorphism classes, [p], of irreducible orthogonal representations p :
G — O,(R), or alternatively, the quotient of the free abelian group on

isomorphism classes of representations modulo the relation

[p1 @ p2] = [p1] + [p2]-
This ring structure is defined via tensor product of representations.

Consider now, the augmentation ideal of RO(G), denote it by IO(G) <
RO(G) given by Ker(dim : RO(G) — Z), and define
Jo ={z € IO(G)/SWi(z) = 0= SWy(z)}
Je is an ideal of RO(G) [31]. Therefore, IO(G)/Jg is a ring, and so too is

Yr = lim {IOG(K/F))/(Jaur)}
7l

where, if F is a fixed choice of separable closure of F, the limit is taken over

finite Galois extensions with FF C K C F.

As, by definition, any element z € IO(G)/Jg is detected by SW; and
SW,, we also see that any element x € Yy is detected by SW; or SWy in

H*(F;7,/2).

Now, if a € F*/(F*)?, consider the orthogonal one-dimensional rep-

resentation [(a). Studying the definition of Y, it follows trivially that
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l(a) — dim(l(a)) = 1(a) — 1 lies in Y . Hence, we can define
PF((Z) = l((L) —1eYr

Pr satisfies the following properties [31].

Theorem 6.2.1 Let F' be a non-Archimedean local field.

(i) There is an ezact sequence

i s

HYAFyZ)2) 2 {+1} < Yp — F*J(F9)? H(F;Z/2)

(i) m(Pp(a)) = l(a) for all a € F*/(F*)?

(iii) If a, b € F*/(F*)?, then Pp(ab) = Pp(a) + Pr(b) +i((a, b))

We define a homomorphism ¢, : Yq, — p4 given by
p(Pa,(a)) = Waq,(I(a))

This gives a homomorphism as is seen by the local root number tables given
in section 1 of this chapter. In fact, ¢, may be extended to Y, by using the

induction homomorphism
I?’LdF/Qp : YF —_ YQp

Given p: Qp — O,(R) a continuous, orthogonal, Galois representation,
we define
I'r(p) = @p(Indpq,[p — 1))

In order to prove that the value of this map on orthogonal representations
is the local root number, we must understand the way this map acts, as some

of its properties. If we denote by
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RO(F)= lim {RO(G(K/F))}
K/P

I0(F) = lim {IO(G(K/F))}
KJE

we have the following result concerning I'r [31].

Theorem 6.2.2 Let I'y : RO(F) — p4 is defined as above,

(i) Let K/F be a finite extension, and let p: Qx — O,(R) be a contin-

uous, orthogonal representation, then

Tr(Indi/r(p)) = Tk (p)Tr(Indg/p(1))" € pia

(12) If a,b € F*, then

Pp(l(ab)) = Tr(U(a))Tr(U() € pa

(111) For all continuous, orthogonal representations, p : Qr — O,(R),
Lr(p) = Tr(detp)SWa(p) € pa
where SWa(p) € H*(F;Z/2) = {£1}.

Using these properties, and the axioms for local root numbers of orthog-

onal representations, the following result is proved in [31].
Theorem 6.2.3 Following the notation above, on RO(F), Wr(p) = T'r(p)
Note that Snaith’s proof did not do use of Deligne’s formula, which is

therefore a corollary.

We move on now, in chapter 7 to imitate this procedure in the case of

orthogonal representations of division algebras.
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Chapter 7

A construction with
finite-dimensional orthogonal
continuous representations of

division algebras.

Let A be quaternion algebra with centre a local field F' of odd residue
characteristic. The aim of this chapter is to construct a homomorphism of

the form T'p : RO(A*/F*) — 14, analogous to that of chapter 6.

Consider TO(A*/F*) the augmentation ideal of RO(A*/F*). Define J =
{z € RO(A*/F*)|dim(z) = 0,SWi(z) = 0 = SW(x)}, which is an ideal of
RO(A*/F*) contained in IO(A*/F*). Therefore the elements of IO(A*/F*)/J
are faithfully detected by SW; and SW;.

The goal of this chapter is to construct a surjective homomorphism (sec-
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tions 7.2 and 7.3)
7:1O(A*/F*)]J] — Yp

where Y7 is as in section 6.2.

Once such a map is found, we can define fp as the following composition

RO(A*/F*) — IO(A*/F%))J — Yr — I
W ~ W —n ~ o m(W=n) ~s We(r(W —n))

where n = dimW.

Due to the fact that
Z/2[zy, o, wo) /(23 + 2129) if @ = 3 (modulo 4),
H*(A*/F*Z]2) =
Z/2[x1, z] if ¢ =1 (modulo 4).
where Fj, is the residue field of F' (section 7.1) we need to make different
constructions depending on ¢ = 1(mod.4) or ¢ = 3(mod.4), these are studied

in section 7.2 and 7.3 respectively.

Preliminaries

Let F/F be a quadratic extension of p-adic local fields and let 6 : E* —
C* be a continuous character of finite order. We shall assume that p is odd.
If {1,7} = G(E/F) then we shall assume that 7*(0) # 6 (i.e. 0 is regular in
the terminology of [9] p.157).

By local class field theory ([14], [32], [33]), there are isomorphisms of the

form
G(B/F) = F*/(Niyp(E°)) 2 (B)E) | (Nyyo(BY) = HYG(B/F); E).
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Therefore, the non-trivial cohomology class corresponds to any element

Suppose that B,G(E/F) is the bar-resolution [32]
.. -5 BIG(E/F) -5 ByG(E/F) -5 Z — 0

Therefore, since BoG(E/F) is the free Z[G(E/F)]-module on G(E/F) x
G(E/F), a Z|G(E/F)]-module homomorphism of the form f : ByG(E/F) —
E* satisfying 0 = f-d corresponds to a 2-cycle f : G(E/F)xG(E/F) — E*.

Lemma 7.0.4

The generator of H*(G(E/F); E*) is represented by the 2-cocycle f given

by
f(T,T):m,lzf(l,T):f(T,l):f(l,l)

where v € F* — Ng,p(E*).

Proof
The most economical resolution is
I Z[G(E/F)) 5 Z[G(E/F)) =5 ZIG(E/F)] = Z — 0

and one may easily verify that the formulae below define h; : B,G(E/F) —
Z|G(E/F)] for i = 0,1,2 which are part of a chain map from the bar-

resolution to the more economical one:
ho =1: ByG(E/F) — Z|G(E/F)],
hi(1) =0,(r) =1,
ho(r,7) = 1,0 = ho(1,7) = ho(7,1) = ho(1, 1).
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The result follows since the generator of H*(G(E/F'); E*) is given by the
Z|G(E/F)]-module homomorphism from Z[G(E/F)] to E* sending 1 to z.
0

Next we recall the well-known association of a group extension to a nor-

malised 2-cocycle of the form
f:GxGE— A

where G is a group and A is an abelian group, written additively, on which

G acts.

Given [ as above, define a ‘product’ map
(G x A) x (GxA) — (GxA)
by the formula (g,9: € G, a,ay € A)

(g,a) - (g1,01) = (991, a + g(ar) + f(g,91))-

Theorem 7.0.5 (i) With this multiplication G x A is a group.

(i) The subset {(1,a) € G x A} is a normal subgroup isomorphic to A.

The conjugalion action is given by

(9,0) - (1,01) - (g,0)™" = (1, g(ax)).

Proof

Recall that the cocycle condition states that

0=g(f(91,92)) — fl991,92) + f(9,9192) — f(g,91)-
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Therefore,

(9,a) - (91, 01) - (92, a2))
= (9,a) - (9192, a1 + g1(az) + f (91, 92))
= (99192, 0 + g(a1) + 991(a2) + 9(f (91, 92)) + (9, 9192))
= (99192, a + g(a1) + gg1(az2) + (9, 91) + f(991, 92)).
On the other hand,
((g,a) - (91, a1)) - (g2, a2)
= (991, 0+ g(a1) + £(9,91)) - (92, a2)
= (99192, 0 + g(a1) + 991(a2) + f(9, 1) + f (991, g2))-

Hence the multiplication is associative.
The identity element is given by (1,0) since

(1,0) - (9,a) = (9,0 + 1(a) + f(1,9)) = (9, a)
and
(9,a)-(1,0) = (g9,a+ g(0) + f(g,1)) = (9, a)

since f is a normalised 2-cocycle (i.e. f(1,9) = f(g,1) =0 for all g € G).

The inverse of (g, a) is given by

(g,0)" = (97" =g (@) — 97" (f(g,97")))

(g,a) - (97" =97 (a) =g (f(g,97)))
=(La—glg~"(a) + 97 (flg, g ))) + flg,97"))
= (1,0)
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and
(97" ~g7(a) = g7 (f(9:971))) - (9,0)

=(1,—g Y a) = g7 (flg, 7))+ 97 (a) + f (g7, 9))

= (1,0).

This proves part (i). For part (i) we have
(9,a) (1,a1) - (¢7", —97"(a) =97 ' (f(g,97 "))
= (g,a+g(a))- (g7 —g7(a) — 97" (f(g,97")))
=L, a+gla) —a—fg,97") + flg.97"))

= (1,9(a1))

as required.

Example 7.0.6 From the 2-cocycle of Lemma 7.0.1 we obtain a group struc-

ture on {1,7} x E* given by
(1,e)(1,¢) = (1,ee),
(1,e)(r,¢') = (7, ee’),
(r,e)(1,¢) = (r,er(€),

(r,e)(r,€) = (1, er(e)x).
This group is denoted by Wg/r and sits in an extension of the form
E* — Wgip — G(E/F)

([9] p.158).

Let us recall now some facts from ([32], chapter 7). If f is the 2-cocycle

of Lemma 7.0.2, then, the associated quaternion algebra, which is a division
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algebra with centre field F', is given by the left E-vector space on basis u;
and u, where ugeu;' = g(e) for all e € E* and uyu, = f(g, h)ug,. Hence, uy

is the identity of A and u? = z and u,eu, = z7(e).

The subset
W ={eeu, | ee € B*} C A*
is a subgroup of A*. In fact, the map
AW — WE/F
given by Ae) = (1,¢€), A(e'u;) = (7,¢€') yields a group isomorphism since
Ae)A(e) = (1,e)(1,€) = (1,ee’) = Ae€'),
Ae)Meu,) = (1,e)(r,€e) = (1,e€') = Aee'u,),
Meu)A(e) = (r,e)(1,¢) = (1,er(e)) = Mer(e)u,) = Aeu,e'),

Meu)A(e'uy) = (1,e)(r,€) = (1,er(e)z) = Aer(€)x) = Aeu,e'u,).

7.1 H*(A*)F*Z)2)

Let E/F be a quadratic extension of p-adic local fields and we shall as-
sume that p is odd. Let Op denote the ring of integers of F', 7 a uniformiser
of F'. Hence, the residue field Op/(nF) is a finite field with ¢ elements F,

for ¢ = p?, for some integer d.

By descent theory, quaternion algebras over F' are classified by the non-
trivial elements of H?(G(E/F); E*) = Z/2 [31], so that, there is only one such
quaternion algebra A, up to isomorphism. Also [24] any quadratic extension

L/F is embeddable into A/F and the image of L is a maximal subfield of A.
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An explicit description for A [31] is
A=FX,Y]/(X?-0a,Y* =), XY +Y X)

where a,b € F*/((F*)?) are non-trivial and the cohomology classes I(a), (b) €
HY(F;Z/2) have a non-trivial cup-product in H*(F;Z/2) = Z/2. This
means that we may choose a, b to suit our purposes. That is, let us make the
convention that F'(X)/F is the unique unramified quadratic extension and

that b = 7p so that (b) < Op is the maximal ideal.

7.1.1 The reduced norm

The reduced norm is a homomorphism of the form
Nyeg : A¥ — F*

which is defined in the following manner. Let L = F(y/a), then we have an

isomorphism of left L-algebras

L®p A My(L)

z 0
Z2®1— if z € L,

1@ X — and

I®Y —
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where M, (L) denotes the 2 x 2 matrices with entries in L.

The reduced norm of o € A is given by the determinant of the image of

1 ®ain My(L). That is, if a; € F,

Nred(a() 4+ a1 X +aY + (ngY)

ag + a1v/a asb+ azb\/a
= det

ag — ag\/a ag — al\/a

= a} — ala — alb+ a3ab.

The reduced norm is surjective. To see this observe that

Nrea(F(V0)*) = Np(yayp(F(Va)*)
which has index two in F* and similarly [F* : Nyoq(F(v/b)*)] = 2. However,

[31] I(a) UL(D) is non-trivial if and only if b is not a norm from F'(y/a) so that

Nreal F (/@) Nyea(F(VB)") = P

Now, we recall a few facts from ([2] §1.1). If vp : F* — Z is the

valuation, normalised so that vp(mp) = 1, then

’UA:UF'NredZA*—)Z

gives a surjective valuation which extends 2vp on F*. Setting v4(0) = oo
then

Os={z € A|va(z) >0}
is a subring, which is the unique maximal order in A whose unique maximal
ideal is P} where

Pi={z € A|valz) >i}.
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and we can define

Uy=1+P,.

In fact, P} is a 2-sided ideal and the quotient ring O/ P} is the field F ..

Setting U, = 1+ P4 C A* for i > 1 we have a chain of compact, open normal

subgroups of A*

Each quotient U%/U4t! is an elementary abelian p-group and U} is a

pro-p-group

Uj = lim Uy /UL

Now we are going to calculate the mod 2 cohomology of the topological
group A*/F*. This is continuous cohomology in the sense of ([26] Ch I, §2).

This means that there is an isomorphism of the form
lim H'(A*/F*U}; Z/2) — H'(A*/F*;Z/2).
The Serre spectral sequence for the extension
Ul JUy — A*JF*UY — A*/F*U}
takes the form
Eyt = H¥(A*)F*UL; H (UL U Z/2) = HYA*JFUS; Z)2).

Since U} /U% is a finite p-group and p # 2 we have E* = 0 when ¢ # 0.
Therefore

HY(A*/F*Z/2) = lim H'(A*/F*U};Z/2) = H*(A*/F*U,; Z/2)

for each 1.
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From the previous discussion the homomorphism v4 induces a surjection

of the form
0: A —7Z)2

whose kernel contains the pro-p-group U} so that we obtain a surjection
v: AYF*ULY — Z/2.

By ([2] (1.2.5)/(1.2.6)) the kernel of v is isomorphic to O% /F*U, = F, /F;.

Hence we have an extension of the form
F’, [Fy — A*/F*U; — Z)2.
If we can show that this extension is the dihedral group Dy(g41) = Z/2
(F;./F;), where A oc B denotes the semi-direct product and Z/2 acts on
F:,/F, as the Galois group G(F/F,), then we may read off the mod 2

cohomology from ([31] p.24). To see this let L/F be the unique unramified

quadratic extension. Then, from the preliminaries, we have an extension

where Wy, p = Na-L*, the normaliser of L* in A*, (see [32] §7.1.25) and we
have an inclusion Wy, p/ULF* C A*/F*U}. Since L/F is unramified

L*JU F* = O; JU O = Fp /F;
and, by construction, the resulting extension

is the required dihedral extension. It is straightforward to verify that the

canonical homomorphism
WL/F/UEF* — A*/F*U;
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is an isomorphism.

Note that the 2-Sylow subgroup of Dy(411) is isomorphic to Z/2 x Z/2 if

and only if ¢ = 1 (modulo 4) and is otherwise a non-abelian dihedral group.

Now we may describe the cohomology ring H*(A*/F*;Z/2). Firstly we
know that H'(A*/F*;Z/2) = Homeens(A*/F*;Z/2), the group of continu-
ous homomorphisms. However, every continuous homomorphism from A* to

Z /2 factorises through
A" B pe ()2,

Since F* modulo squares is isomorphic to Z/2xZ/2 we have H'(A*/F*; Z/2) =
Z/2 xZ]2.

Let 21 : A* — Z/2 be the non-trivial continuous homomorphism which
annihilates the subgroup L* = F(X)*, where F(X)/F is the unique unram-
ified quadratic extension. Let xy : A* — Z/2 be one of the other two
non-trivial continuous homomorphisms. If ¢ = 3 (modulo 4) Wy, /p /UL F* =
A*/F*U} is a non-abelian dihedral quotient of A*, we have a faithful two-
dimensional complex representation, which is the complexification of an or-
thogonal representation p given by Ind?iz//%/;ﬁ*()\). Set wy = SWy(p) €
H?(A*/F*U};Z/2), the second Stiefel-W}qlitney class of p.

Theorem 7.1.2 (/31] p.24 Theorem 4.6)
Z/2[x1, T2, w]/ (23 + z122) if @ = 3 (modulo 4),

H* (A F*;Z)2) =
Z/2[x1, x2) if ¢ =1 (modulo 4).
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7.2 The construction on orthogonal represen-

tations of A*/F* when ¢ = 1(mod.4)

In the previous chapter, we introduced a construction with orthogonal
Galois representations. In this section, we will imitate the procedure, obtain-
ing a similar map, but in this case on orthogonal representations of A*/F*

in the case ¢ = 1(mod.4). The case ¢ = 3(mod.4) is studied in section 7.3.

Let RO(A*/F*) denote the representation ring of finite-dimensional, or-

thogonal continuous representations p : A*/F* — O,(R). Then
J={z € RO(A*/F") | dim(z) =0, SWi(z) = 0 = SWy(x)}

is an ideal of RO(A*/F*) contained in the augmentation ideal TO(A*/F™*).
By construction, the elements of the ring IO(A*/F*)/J are faithfully de-
tected by SW; and SW5s.

Suppose that a,b € F*/(F*)? then we have [(a),l(b) € H'(F;Z/2) =
Homes(Qr, {£1}) defined by U(a)(g) = g(v/a)//a and (b)(g) = 9(v)/Vb.
If we consider I(a), (D), [(ab) as one-dimensional orthogonal representations
then [(a)l(b) = l(ab). Set p(a) =l(a)—1 € TO(A*/F*)/J. If SWi(l(a)) = 21
and SWi(l(b)) = z,, we can write the total Stiefel-Whitney class of the

following elements

SW(p(a) +p(b) —p(ab)) = (1 +wt)(L+z9t) (I+ (21 +32)8) 7" =
= 1—|—£C1£C2252+...,
SW(p(a) +plab) — p(b)) =1+ (a1 +zz2)t® +...,
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SW(p() +p(ab) — p(a)) =1 + (25 + z122)8% +. ..,
SW(2p(a)) = 1 + 22t
SW(2p(b)) = 1 + 23t2,

SW(2p(ab)) = 1+ (22 + 23)t%.

This shows that p(a), p(b), and p(ab) generate IO(A*/F*)/J. Let us recall
that the elements of JO(A*/F*)/J are detected by SW; and SW.

The additive group TO(A*/F*)/J sits in a short exact sequence
00—V — TIO(A*/F*))J — F*/(F*)* — 0
where V is the Fy vector space with basis 22, 3, z17».

In order to construct a homomorphism m : JO(A*/F*)/J — Yr we
want to map each p(z) to the class denoted by p(z) € YF in section 6.2.
We must show this is well-defined. Hence, if we map p(a), p(b), and p(ab)
into themselves via 7, then 2? and z2 must be mapped trivially (as ¢ = 1
(modulo 4), —1 is a square in F' and so I(z) Ul(z) =1(z) Ul(—1) = 0 for all
z € F*. Therefore m (2%) = m(2p(a)) = I(a) Ul(a) = l(a) UI(-1) = 0, and
m(z3) = 71 (2p(b)) = I(b)UI(—1) = 0), and z12, must be mapped not trivially
(as from the first total Stiefel-Whitney class, 71 (z122) = [(a) U1(b) and that
is non-trivial by choice in chapter 7.1). Therefore, mapping p(a),p(b), and
p(ab) into themselves and mapping z? and z2 trivially into Z/2 and z;z

non-trivially gives a well-defined surjective homomorphism
m  JO(A*JF*) )] — YF
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where Y is as in section 6.2 and sits in a short exact sequence of the form
0 — Z/2 —Yp — F*/(F*)? — 0.
As explained in section 6.2, sending p(z) to the local root number (quadratic
Gauss sum) Wg({(z)) yields a homomorphism of the form
Op: Yp — i
from Y7 to fourth roots of unity.

Now, let W be an orthogonal representation of A*/F* we may send it to
W—dimW € IO(A*/F*)/J. Then, this can be sent viam; : IO(A*/F*)/J —
Ve to Y, where we can apply ¢k and send it to us. That is, we can define

for an orthogonal representation of A*/F*

o~

FF(W) = QD}:w(?Tl(W - dsz)) € MUa.

7.3 The construction on orthogonal represen-

tations of A*/I™ when ¢ = 3(mod.4)

We proceed now to study the case ¢ = 3(mod.4) in a similar way, in order

to obtain L'p(7(0)).
For ¢ = 3(mod.4) we have a short exact sequence of the form
0 — W — IO(A*/F*)/J — F*/(F*)* — 0

where W is the F, vector space with basis z%, z,1,, w, because T3 = T1Ty

(see Theorem 7.1.2) .
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We have det(p) = zi, in terms of the preceding notation and so we see
p(p) = p — 2 sits in TO(A*/F*)/J. Then the calculations of total Stiefel-

Whitney classes for the following elements

SW(p(p) — pla)) = (1 + 1t +wat? + .. Y1+ 28)"" = 1 +wat? + ...,
SW (p(a) + p(b) — p(ad)) =1+ z1z98* + ...,

SW (p(a) + p(ab) — p(0)) = 1 + (22 + 21222 + . ..,

SW (p(b) + p(ab) — p(a)) =1 + (22 + z12)82 + .. .,

SW(2p(a)) = 1 + 222,

SW(2p(b)) = 1 + 222,

SW(2p(ab)) = 1 + (22 + z2)t?
show that p(p),p(a), p(b) generate IO(A*/F*)/J and give the relations be-
tween these elements. Note that p(b) + p(ab) = p(a) because 2 + z122 = 0.

Since ¢ = 3 (modulo 4), —1 is not a square in F, and so is not a square
in F'. Therefore L = F(y/—1) is the unramified quadratic extension and we

may take z; = [(—1) and @ = —1 in the preceding formulae.

This case is more complicated than ¢ = 1(mod.4), since now we also have
to deal with the 2-dimensional representation p, but with a bit of care we

define a surjective homomorphism of the form
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As in the previous section, when constructing this homomorphism, we
must be careful with whichever choice we make for the image of p(—1), p(b),
and p(p). We shall map each of p(—1),p(b),p(—b) to the elements of Yr
denoted by p(—1),p(b), p(—b) respectively. Therefore z%, 22, ;7 must map
to [(—=1)Ul(—=1),i(—=1) Ul(b),l(—1) UI(b) respectively. Now, we have to find
a sensible choice for the image of p(p), keeping in mind that such choice
will have to verify m3(p(p) — p(a)) = m3(wq), from the first total Stiefel-
Whitney class listed above. Send p(p) to the class of the Galois representation
Indp p(A) — 2 which is defined in the following manner. By definition p is

induced from a faithful character
A L*/UiF* o (’)Z/Ui@; o F,’;?/F; — C*

which yields a character A : L* — C*. Since the restriction of A to F* is

trivial, the induced Galois representation
Indpe(N) : Qp — GL,C

is dihedral [7].

In addition we send wy to SWa(Indy/r(A))

Since L = F'(v/—1) we have

= Wi (MNWr(Ind/r(1))

= Wy ()W ((—1)).
Therefore

SWy(Indrr(N) = Wi (N) € {£1} = H*(F; Z/2).
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Choose m3 to satisfy the following formulae

m5(p(p)) = Indyyw(3) - 2,
73(p(2)) = p(z) for z = a, b, ab,
my(27) = 1(=1) U l(-1),

m3(23) = m3(z122) = 1(=1) U I(D),

7('3(’11}2) = SWQ(]’I’LdL/F()\)),
there can only be at most one homomorphism satisfying these formulae.

These formulae give a well-defined surjective homomorphism 73 : IO(A*/F*)/J —
"r, provided that
ms(p(p) — pla)) = m3(w2).

However,

m3(p(p) — pla)) = Indr/r(X) =2 —l(a) + 1 = SWa(Indyr(X) — l(a))

since det(Indr r(X)) = det(l(a)) = I(-1). However SWy(Indy/r()) — (a))
is the coefficient of #2 in SW (Indy,»()\) — i(a)),

(L+1(=1)t + SWo(Indp/p W) (1 + 1(=1)t + 1(—1)% +...)

which is

SWa(Indr p(N)) = m3(ws),
as required.

So now, as in the previous section, sending p(z) to the local root number
Wg(l(2)) for z = a,b, ab, and sending p(p) to the local root number Wr(p),

yields a homomorphism of the form
Oh Y — g
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from Yr to fourth roots of unity. Now, as in the case ¢ = 1(mod.4), we

consider W an orthogonal representation of A*/F*, and define

Tp(W) = @h(ms(W — dimW)).
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Chapter 8

First and second
Stiefel-Whitney classes for

orthogonal representations of

A* | F*

The aim of this chapter is to obtain formulae which allow us to calculate
the first and second Stiefel-Whitney classes of orthogonal representations
of A*/F* in terms of its character values on elements of order two. This
will reduce obtaining Stiefel-Whitney classes to an easy algebra exercise.
These formulae will be used in Chapter 9 to allow us to calculate the first
and second Stiefel-Whitney classes of a special orthogonal representation of
A*/F* constructed via the Langlands correspondence using the results of
[21]. This calculation falls into two cases depending on H*(A*/F*;Z/2) (see

Theorem 7.1.2) according to the values of g(mod.4), where F, is the residue
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field of F' and ¢ is odd.

8.1 Formulae for the first and second Stiefel-
Whitney classes, when ¢ = 1(mod.4)
In this section, we obtain a formula for the first and second Stiefel-
Whitney classes for representations of A*/F* in the case ¢ = 1(mod.4).
Recall from Theorem 7.1.2 which gives us that
Z/2[x1, T2, ws]/ (22 + z175) if @ = 3 (modulo 4),

H*(A*/F*,Z/2) =
Z/2]xy, 5] if ¢ =1 (modulo 4).

When ¢ = 1(mod.4) the Sylow 2-subgroup of A*/F*UL is V = {1, X, Y, XY},
an elementary abelian group of order four, where X, Y, and XY will be el-

ements of order two . Since restriction
Rest '™« HY(A*JF* Z)2) — H*(V;Z/2)

is an isomorphism we may compute the Stiefel-Whitney classes of an orthog-

onal representation W by the formula

Rest /™ (SWi(W)) = SWi(Ress '™ (W) € Z,/2[zy, 22)

Suppose that

21(Y)=1, 2,(X) =0, 22(Y) =0, 22(X) =1 (modulo 2)
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where F(y/a)/F is unramified and X? = a € F. Define x; : A*/F* — {+1}
by xi(z) = (—1)%(=) With this notation the orthogonal representation W

restricts to co + ¢1x1 + CaX2 + c3x1x2 Where ¢; € Z satisfies

Trace(W)(1) = co+ ¢1 + ¢ + ¢3 = dim (W),
Trace(W)(X) =c¢y+c¢1 — 2 — c3,
Trace(W)(Y) =cy—c1 + ¢ — c3,
Trace(W)(XY)=cy—c1 — 2 + 3.

Now, write the total Stiefel-Whitney class, SW(W) = 1 + SW (W)t +
SWy(W)t2+. . ., a formal series which satisfies SW (W1@Ws) = SW (W) SW (Wy).
We obtain

SW (Resy /7" (W)

= SWi(co + crx1 + caxa + eaxiX2)

= (14 x16) (1 + z2t)2 (1 + (z1 + x9)t)®
=1+ (121 + coxo + c3(x1 + 22))1

Cy Cy Cs
“}“[ l‘% -+ fl’f% + 9 <$1 + .732)2

2 2
\
+e169T1To + 13T (T + Xa) + cocama(T1 + X2)]EE ..
therefore, comparing this to the definition of SW (W), yields the following

result:

Proposition 8.1.1 Let A be a quaternion algebra with centre a local field
F with residue field Fyof odd order ¢ = 1(mod.4), and W a continuous
orthogonal representation of A*/F*. The first and second Stiefel- Whitney

classes of W are given by the formulae,
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SWl (W) = (Cl + C3>.’171 + (CQ -+ C3).’L‘2

c1+ ¢3 Co + C3

SWy(W) = ) z? + ) T2+ [e1¢o + cre3 + cocs]zyTo.

with ¢; and z; as above and the coefficients lie in the integers modulo 2.

8.2 Formulae for the first and second Stiefel-

Whitney classes, when ¢ = 3(mod.4)

In this section we calculate the formulae for the first and second Stiefel-
Whitney classes in the case ¢ = 3(mod.4). This case is more complicated
than the case when ¢ = 1(mod.4). This is because the 2-Sylow subgroup
of A*/F*U} is no longer an elementary abelian group of order 4. When
q = 3(mod.4) the Sylow 2-subgroup of A*/F*U} is non-abelian dihedral:

that is, it is isomorphic to
Donwir = {z,y | 2" =y* = Liyzy =371}

for somen > 2. In terms of X and Y in A witha = X2, b = Y? and F(y/a)/F

unramified we may take Y to represent y and X to represent z2"

The three non-conjugate elements of order two in this case will therefore
be X, Y, and zY, and then we have two non-conjugate copies of Z/2 x Z/2

in D2n+1

Hy = (2", y) and Hy = <>, xy).
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We shall evaluate the restriction homomorphism
H* (Danin; 2/2) % 1 (H,,2/2) @ H*(Ha; Z)2)

with particular interest in dimensions one and two. Define homomorphisms

w1, ug : Hi — Z/2 and vy, vy : Hy — Z/2 by the formulae
u () =1, w(z¥ ) =0, ua(y) =0, us(@® ) =1 (modulo 2)

and

‘271,——1

vi(zy) =1, v,(2% ) =0, va(zy) =0, v(z> ) = 1 (modulo 2).
Therefore, we have H*(Hy;Z/2) 2 Z/2[uy, us) and H*(Hy; Z/2) = Z/2[vy, ve).

Consider the composition 2,4, which sends z2"' to X and then to zero
(modulo 2) while sending y to ¥ and then to 1 (modulo 2). Therefore
#(z1) = uy. Similarly, 9%, sends 22" to X to zero and y to Y to zero
(modulo 2) which yields i}(z2) = 0. If x; : Hy — {£1} given by x; = (—1)™
then the composition

Hy -2 Dyurr C O5(R)
is x2(1 + x1) so that j(ws) = SWa(x2(1 + x1)) is the degree two term in

SW(x2 + x1x2) = (1 + ugt)(1 + (ug + uz)t). Hence if(we) = ui + ujus.

Similarly, the composition i which sends 22"~ to X and then to zero
(modulo 2) while sending zy to z;(2Y) = z1(Y) = 1 (modulo 2). Therefore
i3(z1) = vy. Similarly, T4, sends 22" to X to zero and zy to z5(zY) =
z(z) =1 (modulo 2) which yields i5(z2) = vy. If x; : Hy — {%1} given by

xi = (—1)% then the composition
Hy 25 Dyuir C Oo(R)
is again equal to x5 (1 + x1) so that i}(wq) = v2 + vyva.
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Proposition 8.2.1

In the case ¢ = 3(mod.4), if n = 1,2 the restriction homomorphism
A P 2)2) B By Z)2) @ 1Y (H: 7)2)

18 1njeclive.

Proof

By Theorem 7.1.2 we have only to verify injectivity on H*(Dgn+1;7Z/2).

In dimension one
0 = (i,15) (ax; + Pxs) = (auq, (o + B)vy)
implies that o = § = 0 (modulo 2), as required. In dimension two
0 = (if, i3) (ax? + Bl +yws) = (oui +y(uj +uruz), (a+ B)v) +7(v] +v102)

implies that & = § = v = 0 (modulo 2), as required. [

Corollary 8.2.2

In the situation of Proposition 8.2.1,
HY(A P 22) — H2((2?'); 2/2) @ HA((y); 2/2) @ H2((ay); Z/2)

18 1njective.

Proof

From the formulae of the restriction of aws +bz? + cz3 to H*(H1;Z/2) @
H2(Hy;Z/2), that is, if(wg) = ud + ugug, it (z1) = w1, if(x2) = 0, i5(we) =
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V2 + 01U, 15(T1) = vy, and (x2) = vi, awg + ba? + cx? is sent to (a(ul +
uyug) +bul, a(vs +vi1vq) +bv? + cv?). Therefore, we will prove that, under the
three restriction maps to the subgroups of order two generated by 2" ',y

and zy, aws + bx? + cx3 maps to (a,b, b+ c). Thus, it is injective.

(i) Restriction to H?((z2"™'); Z/2). In this case, we have the two possible
choices of restriction, but let us note that in both of them, we should get the

same answer.
H2(A*)F* 7)2) -5 H2(Hy; 2)2) — H2((22"7); Z/2)
given by
aws + bz? + ca? — a(u? + uug) + bud = (a(ud + vug) + d)(z ) = a

or

H2(A*)F* Z)2) 25 H2(Hy Z)2) — H2((a%"'); Z/2)
given by
271.—1)

awy+bri+czs — a(va+v1ve)+bvi+cvi = (a(vi+vve)+bvi+ev?)(z =aq

(ii) Restriction to H*(< y >;Z/2).
H2(A*)F* 7)2) 5 HY(Hy;2)2) — HY(< y >:Z/2)
given by

awy + br? + cxl v a(ul + uyug) + bud = (a(ul + uyug) + bui)(y) = b

(iii) And finally, restriction to H?(< zy >;Z/2).
H2(A* [ F* Z)2) 25 H2(Hy Z)2) — HX(< vy >; Z/2)
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given by

awo+bai+czsy — a(vy+v1va) +bvi+evy = (a(vy+uivs) +bvi4cv?) (zy) = btc
q.e.d

Remark 8.2.3 When q = 3 (modulo 4) then X is a square in A*/F* because
it is a square in A*/F*U} and therefore F(XY) = F(Y).

We can study now the formulae for the Stiefel-Whitney classes.

Suppose that 7 is a representation of the cyclic group of order two gener-
ated by ¢ and that the character values of 7 are Tracen (1) = dy = dimc(n)
and T'racen(g) = d;. f m# = (dy — a) -1+ a - L where L is the non-trivial
one-dimensional representation then dq — 2a¢ = d; and the Stiefel-Whitney

classes satisfy

SWi(r)=a=(dy—d1)/2 € Z/2 = H'({9); Z/2),

a (d0~d1)/2
SWy(m) = . | = ) €7Z/2> H?*((g9);Z/2).

From this observation we can obtain the following result.

Proposition 8.2.4 Let the three conjugacy classes of elements of order two
in A*JF* be X = 2" 7")Y =y and 2Y = zy. Suppose that W is a contin-
uous, orthogonal representation of A*/F* as in section 8.1 with character

values

T?"V[/(l) = do, Trw(X) == dl,

TTw(Y) = dg, T?"m/(CEY) = dg
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then dy = dy (modulo 4). Furthermore
SWL(W) = ((do — da)/2)1 + ((d2 — d3)/2) s

and

(do — dy)/2 (do — d2)/2
SWo(W) = ) wy + ) 22

(do — d3)/2 (do — d2)/2
+( ) — ) )z3.

Proof
From the formulae of Corollary 8.2.2 (proof) the restriction maps
H'(Dywi1; 2/2) — H'((X); Z/2) © H'((Y); 2/2) & H'((2Y ); Z/2)
are given by
azy + frg = (auy, (@ + fu) = (0, e, a + )

and

awy + bt + cxy > (a,b,b+ c).

Therefore, the required formulae follows by considering W on the < X >
, <Y >and < zY >, calculating SW; and SW, on each H*(< g >;Z/2) (1 =
1,2, g = X,Y,zY) by the formulae given above when 7 is a representation of
a cyclic group of order two, and finding the inverse image in H*(Dgn-1;Z/2)

(1=1,2).
q-e.d.
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Chapter 9

A construction with
two-dimensional symplectic,

(Galois representations

The goal of this chapter is to construct a map from two-dimensional
symplectic Galois representations to fourth roots of unity. This map will be
constructed by combining T r defined in chapter 7 and the results of D. Prasad
and D. Ramakrishnan [22] about the Langlands correspondence when the
representation considered is two-dimensional symplectic and Galois. That
is, let 0 = Indk/r(x) be a two-dimensional symplectic Galois representation
induced by a character x, o is mapped to 7(o) an orthogonal representation

of A*/F* through the Langlands correspondence.

Let us define Yp(o) = ['p(n(0)). The information obtained about [pin
chapter 7 and the results of D. Prasad-D. Ramakrishnan [22] about 7 (o) will

allow us to prove the following relation between the value of the local root
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number of o and the value of Yr(0),

Theorem 9.4.2 Let o be a two-dimensional symplectic Galois represen-
tation, 0 = Indg;p(x) induced from a character x : K* — C*, where F is
a non-Archimedean local field with residue field Fy, of odd order ¢ = 1(mod.4)

and K/F is a quadratic extension. Then

g—1+2e

TF(O') = (“I)TWF(O‘)VVF('LUK/F)_l S

where e 18 the ramification index of the extension and wy p is the quadratic

character of F* given by class field theory.
As immediate corollaries of this, we obtain the following results.

Corollary 9.5.2 (¢ = 1(mod.4)) Let 0 and o’ be two two-dimensional
symplectic Galois representations, o = Indg/r(x) and o' = Indgp(X') in-

duced from characters x,x' : K* — C. Then, the following holds,

(I) If K/F is ramified with f(x) # f(x") and min(f(x), f(x')) =1 (it is
no restriction to assume f(x') = 1) then,

Tr(o) _ (—1)%" Wr(o) Wr(wkyr)
Y r(o") We(o') Wr(wgk/r)

where K'/F is the unique unramified quadratic extension over F.

(1I) In any other case,

Corollary 9.5.3 (¢ = 1(mod.4)) Let ¢ be a two-dimensional symplectic
Galois representation, o = Indg/r(x) induced from a character x : K* —

C*. Consider opme = IndK/F(Xl) where x = x1 ® X2, the order of x1 is
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coprime to q and the order of xa2 is a power of q. Then,x1 is tamely ramified,

and

TF(O') _ (_1)(6—1¥q—1) WF(O") WF(’LUK//F)
TF(Utame) WF(Utame) WF(QUK/F)

where K'/F is the unique unramified quadratic extension over F and e is the

ramification index of the extension K/F'.

The case ¢ = 3(mod.4) will be studied in section 9.4. The information
obtained about Tg(¢) in this case does not seem to give much information

about the value of the local root number of 0. However, it has been intro-

duced for completeness.

Let us note that although only the case ¢ = 1(mod.4) gives us valuable
information, this covers most cases. This is, if ¢ = p? for some odd prime p

and an integer d, ¢ = 1(mod.4) if p = 1(mod.4) or p = 3(mod.4) and d even.

9.1 The Langlands correspondence

This section recalls the correspondence between two-dimensional, irre-
ducible representations of the Weil group Wr of a local field F' and irreducible

representations of A*.

Let F' be a local field of residue characteristic p # 2. We are interested

in two-dimensional, continuous Galois representations
o QF — GLQC

Such a o is a special case of a Wpr-representation so that the bijection, es-

tablished by combining the results of [15] and [18] and reiterated in ([22]
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Theorem 1.5), yields an injective map, o — 7(0),

4 3\ {
irreducible, 2 — dimensional wrreducible, continuous
T continuous Galois — & finite — dimensional complex
representations over C ) representations of A*
\ \

where A is the unique quaternion algebra with centre F'.
The map = is characterised by the following properties.
Via class field theory, if g is the absolute Galois group of F,
det(o) : Qp —Z3 GL,C 2% C*
corresponds to a continuous character of finite order

det(o) : F* —s C*.

The central character of 7(¢) is the continuous character of finite order such

that 7(o)(z) is multiplication by the scalar wy () (z) for all z € F* C A* and

det(o) = Wr (o) (1)

Let f(o) and f(w (o)) denote the conductors of o and 7 (o) as introduced

in Chapter 3, then

flo) = f(m(0)). (2)

If V¥V = Hom(V,C) denotes the contragredient of a representation V'

then
m(c¥) = 7(o)". (3)
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The epsilon factors defined in [15] and [34] satisfy

(o @ p, 1, 8) = e(m(0) @ (b Nyea), ¥, s)  (4)

for all characters p on F* of finite order. The local root numbers are defined

to be the value of the associated e-factor at s = 1/2 so that
We(o®p) = W(r(o) ® (4 - Nrea))
for all characters p on F™ of finite order.

Also each o is writeable as an induced representation o = Indg” (x) for

some quadratic extension K/F and character y : F* — C*. We have

Wrio) = (X | p+) - wi/F (5)

where wg/p : Qp — G(K/F) =2 {£1} C C* is non-trivial.

[22] observe that, when o is symplectic, 7(o) is an orthogonal represen-

tation of A* which is trivial on F™.

Let us restrict then, to the case when ¢ = Indgi, (x) is a symplectic,
irreducible two-dimensional representation. This implies (see [7] or use a
simple transfer argument using the formula of ([31] Proposition 2.50 p.14))
that y : K* — C* restricts on F™* to a non-trivial character of order two.
In fact, by (1) and (5), the fact that det(o) is trivial for symplectic represen-

tations implies that 1 = wy() = (x | #+) - wk/F so that

(x| p+) = wiyp. (6)

Now, by ([22] Lemma 1.4), if K/F is a ramified quadratic extension and
x on K* satisfies (6) then the Artin conductor of y satisfies either f(x) =
2m > 0or f(x) =1 and (x | OF) is given by the composition

07( O;} WK/F
¥ = — {1} Cc C".
o Sop Y

Ok —
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This means that, when K/F is ramified the conductor f (7 (o)) is odd unless

X is tamely ramified (x cannot be unramified).

In [22], a table giving the dimension, conductor and trace values of 7(o)
on elements of order two in A*/F* is given (such an element of order two is

associated uniquely to a quadratic extension K/F of F' and viceversa).

Proposition 9.1.1 Let F' be a non-Archimedean local field with residue field
Fy, and q odd, K/F a quadratic extension and m = m, be the representation

of A*/F* attached to x a character of K*. Then we have the following table,

K/F | f(x)| dim(r) | f(m)
unramified | f 2¢/ 1 2f
ramified | 2f | (q+ )¢/ | 2f +1

Let L be any quadratic extension of F', and x the unique element of L* | F'*

of order two. Then we have:
(1) IfL# K, Try(z) =0
(2) If L = K and K/F is unramified, Tr(z) = (=1)/+12x(x)

(3) If L = K and K/F is ramified, Tr,(z) = —2G, w(2)w(—1)"" x(z),

where

Go=— Y x1+wd @)

\/g .’L‘E(OF/ZIIF)*

Here, in the notation of [22], w is the unique quadratic character of F,

and wr, wg denote chosen uniformizers for F', K respectively.

Proposition 9.1.2 All cases are covered in the proposition above.
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Proof:

The cases when K/F' is unramified are clearly all covered by the table.
When K/F is ramified the conductor of a character x satisfying (6) is either
2m > 0 (covered in the table) or 1, by [22], Lemma 1.4. However, if f(x) =1
then 0 = Indg/r(x) may be written as 0 = Indg/r(0) with E/F unramified
and f(0) = 1, which is included in the table. To see this observe that, if
v is the non-trivial F-automorphism of K and y is tame, the characters y
and y(x) must agree on units. Therefore y(x) = ax for some unramified
character o on K*. By Hilbert 90, we may write o = ¢Ng/p for some
unramified, non-trivial character ¢ on F*. Hence, 0 = ¢ ® ¢ which implies,
by the classification of admissible pairs (E/F,0) given in ([2], pages 54 — 55)
that o has the required form. U

The following result is ([22],Lemma 4.6),

Lemma 9.1.3 We have the following table,

K/F W (r)
unramified (1) x(z)
ramified | w(2)w(—1)1G,x(z)

Note: It does not matter if we write w(—1)/" or w(—1)/71, since w takes

values in 1.

Corollary 9.1.4 In the situation above, we have the following table:

K/F | fx)| dim(@) | [f(r)
unramified | f 2¢7 71 2f
ramified | 2f |(g+1)¢/7t | 2f+1
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Let L be any quadratic extension of F', and © the unique element of L*/ F™*

of order two. Then we have:
(1) IfL+#K, Tr.(z) =0

(2)If L =K, Try(z) = —2W(n)

By Chapter 8, we know that the first and second Stiefel-Whitney classes
of an orthogonal representation of A*/F* can be obtained from its character
values on elements of order two, and explicit formulae for them have been
given. Therefore, using the information given by Corollary 9.1.4, the Stiefel-
Whitney classes of w(o) can be calculated. This will be discussed in section

9.2 and 9.3 depending on whether ¢ = 1(mod.4) or not .

9.2 First and second Stiefel-Whitney classes

of m(c) when ¢ = 1(mod.4)

In this section we calculate the first and second Stiefel-Whitney classes
of (o) when ¢ = 1(mod.4). We know from Proposition 8.1.1 that in this
case, only the character values of 7(o) on the elements 1, X, Y, and XY are

needed, and these are given by Corollary 9.1.4.

There are three quadratic extensions over F, in terms of X, ¥ and XY
These are K = F(X), K = F(Y), and K = F(XY), where F(X)/F is the
unramified extension. Therefore we are going to divide our study into three

different cases depending on the extension we are dealing with.
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To start with, let us remember the formulae given by Proposition 8.1.1,

these are,
SWi(m(0)) = (e1 + ¢3)z1 + (o + 3) 22
1+ ¢3 Co + C3
SWoy(m(o)) = ) T+ ) T3+ [e19 + crc3 + cocs|T T
where,
cot+ci+c+ceg = dimn(o)

Co+Cl—C —C3 = T’I“W(U)(X)
c—c+c—cg = Tryn(Y)

Cop—C —C+cyg = TTW(U) (XY)

Therefore, we can write

dimm (0) — T?‘W(U) (X)
2

dimm (o) = Trae)(Y)
2

CQ+63:

c1+c3 =

(ii?ﬂ’ﬂ'(d) + TTW(G) (X) - TTﬂ'(O’) (Y) - TTW(U) (XY)

(=
4
dimw(a) - Trw(g) (X) + TTW(U) (Y) — TTW(U) (XY)
Cy =
4
dimm (o) — Ty (X) = T7a)(Y) + T7r(0) (XY)
C3 =
4

Let us start now our discussion
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The case of x : K* = F(X)* — C*

In this case, K/F' is unramified, and using Corollary 9.1.4 we can write:

dimm(o) =2¢/7!
Tre@e)(X) = —2W(n(0))
TTW(U)(Y) = TTW(U) (XY) =0

Thus, in this case:

g+ W(n(o))
2

Cy = C3
We can see that ¢y + ¢3 = 2¢9 = 0(mod.2) and ¢; +c3 = ¢/ 7L, As ¢ is an
odd integer, ¢/~* = 1(mod.2). And we can conclude:

SWi(n(o)) = =y

Let us start now the calculations for SWy (7 (0)).
By using the fact that ¢o = c¢3 we can write

c1 + Co 2¢y
SWy(n(0)) = 5 z? + ) 72 + [2¢1 05 + 2]z 3o

Now, as we are working modulo 2,

Cq -+ Co
SWy(r(a)) = ) T2 + o (73 + 7122).

and
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g+ Wr(o) =1 Wr(e)+1 _ Wn(o) +1
= = -+ =
2 2 2 2
since as ¢ = 1(mod.4), then so too is ¢/t = 1(mod.4). Therefore, ¢
0(mod.2).

o (mod.2)

f-1_1

3 =

Here,

¢ + ¢ g/t B
) = ) —g/-? g/ 21._—1 = 0(mod.2)

Therefore we can write,

SWa(r (o)) = <—-—2-—) (a2 + 2125)

The case of x : K* = F(Y)* — C*

As above, using Corollary 7.4.3, we have
dimm(o) = (g+1)¢/™!
Tra)(Y) = =2W(n(0))
Tree)(X) =Trw(XY)=0

where f(x) = 2f.

Therefore, in this case,
(¢ +1)g/ ! = 2W(n(0))

Cy = 4
(¢ +1)g/ ! +2W(n(0))
Cl = CS - 4

We can see that ¢; + ¢z = 2¢; = 0(mod.2) and ¢y + c3 = (iﬂ;qf—_l An as

g = 1(mod.4), @ = 1(mod.2) and ¢/~! = 1(mod.2), we can conclude:
2
SWi(m(o)) = xy
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Let us concentrate now on the calculations of SWy(m(0)).

As ¢y = ¢3, we can write
SWy(r (o)) = z? + T3+ [2c105 + 2z 20
As in the unramified case, as we are working module 2

1+ Cy
SWy(r(o)) = ci(z? + z122) + ) x3.

Now

oo DI+ 2W (o)) (e + Ve =2 Wi(n(o)) +1
' 4 4 2

And we know that ¢ = 1(mod.4), and then so too is ¢/~*. Therefore,

we can write ¢ = 1 + 4t and ¢/~! = 1 + 4[ for some positive integers ¢, [.

Obtaining,
(g +1)g/ ™ — 2 = 4t + 8] + 16t = 4¢(mod.8)

which implies,

g/t -2 -1
g+ )i =t= q—4—(mod.2)
Thus,
-1 W 1
e =1 + (r(o)) + (mod.2)
4 2
Here,
(g+1)g/*
1+ ¢ 3 o1 _
) = ) = (et or-1letle 22 = 9=l (1moq.2)
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since 2 =1 = ¢/~!(mod.2) as ¢ = 1(mod.4)

Therefore, we can write

SWi(r (o)) = (%) 2+ (q ;1 . W(W(?) * 1) (22 + 7135)

The case of x : K* = F(XY)* — C*

This case is trivial once we have dealt with the case K = F(Y). We can
just replace Y by XY in the definition of our quaternion algebra, obtaining

X =XandY = XV.

Now, notice that z; and z2 have to be rearranged too. We can choose
Z7 = z7 and T, = x1-+25. These playing the role of 27 and x4 since (see section
1.2) 71 (X) = z1(X) = 0(mod.2), T (V) = 2,(XY) = 5,(X) + 2,(Y) =
1(mod.2), Z3(X) = (z1 + 22)(X) = 21(X) + 22(X) = 1(mod.2) and T,(Y) =
(71 + 22)(XY) = 21(XY) 4 22(XY) = 21(X) + 21(Y) + 22(X) + 22(Y) =
141 = 0(mod.2)

Therefore, using the previous case

SWl(’/T<O')) =29 = T1 + To

and
SW)(r (o)) = (q—}) 2 4 (q . Ly WW;’)) * 1) (3 + 515s)
— (2;—1) (z? + 22) + (q ; Ly W(W(;)) i 1) T2 %y

We may now summarize all the information obtained, in the following

Theorem,
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Theorem 9.2.1 (¢ = 1(mod.4)) In this situation the Sylow 2-subgroup of

A*JF* s V = {1, XY, XY} an elementary abelian group of order four.

There are three quadratic extensions over F, and those are F'(X)/F, F(Y)/F

and F(XY)/F, where the first is the unique unramified quadratic extension

of F. Assuming that x1, x5 in the isomorphism H*(A*/F*; Z/2) 2 Z/2[z1, x2)

verify:

n(Y)=1, 21(X) =0, 29(Y) =0, 22(X) =1 (modulo 2)

Then if o = Indgf{(x), we can write the following table for the first and

second Stiefel-Whitney classes of w(o):

K/F SWy(n (o)) SWo(n(0))
F(X)/F = (M”—(;—”ﬂ) (42 + 2122)
FY)/F 2 (F7) @3 + (‘q‘% + ‘W——(W(;))H) (2% + z122)
FXY)/F | =z + 22 (Z2) (2% + 22) + (%l -+ ZV—(lr%q—)—)—Jr—l) Z1%2

9.3 First and second Stiefel-Whitney classes

of 7m(c) when ¢ = 3(mod.4)

As it was done in the case ¢ = 1(mod.4), we use the information given

in Corollary 9.1.4 which gives the required character values .
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obtain the first and second Stiefel-Whitney classes, let us recall the formulae

obtained in Proposition 8.2.4. That is,

TTW(‘T)(l) - d07 TTW(G‘)(X) = dl;

TTW(U)(Y) = dg, T’I“W((,) (:EY) = dg

then
SWi(m(o)) = ((do — d2)/2)x1 + ((d2 — d3)/2) 22
and
(do — dy)/2 (do — d2)/2
SWy(m(o)) = ) wy + ) z?
(do — da)/2 (do — d2)/2
+ — )z3.
2 2

As it was done in the previous section, we split this study into three
different cases, depending on the extension considered. Recall that the three
quadratic extension over F in this case are F'(X)/F, F(Y)/F and F(2Y)/F,
where F'(X)/F is the unramified one.

Before starting the calculations of the first and second Stiefel-Whitney

classes, we record some congruences modulo two which we shall need later.
(i) ¢/~! = 1(mod.2), since q is an odd integer and therefore so too is ¢/~
(ii) W(n (o)) = £1 = 1(mod.2).

(i) £ = 0(mod.2), since ¢ + 1 = o(mod.4) as ¢ = 3(mod.4).
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(iv) 5’/——21_—1 =f-1= L_1Lf2_—1;1-(moal.2). This equivalence comes from
the fact that when f — 1 is even, as ¢ = 3(mod.4), then ¢/~! = 1(mod.4)

and therefore qf_;_l =0=f-1= (—il)%—lil(mod.Q). When f —1 is odd,

¢/~! = 3(mod.4) and therefore, qf';_l =l=f-1= (—"L)fz;l“—l(mod.Q).

The case of x : K* = F(X)* — C*
In this case, K/F is unramified, f = f(x), and using Corollary 9.1.4 we
can write,

dimm (o) = 2¢'71
Trro(X) = —2W(n(0))
T’/‘W(U)(Y) = T’I“ﬂ(a) (fEY) =0

Thus, in this case:

do = 2qf—1
d1 = —QW(W(O'))
dz - d3 =0

Therefore, 2% = ¢/~ = 1(mod.2) and ©25% = 0, and we can write,

SWi(r(0)) =z

For SW,, we have,

SWy(r (o))

I
§
+
2



Now,

q' + [%(0) f 1+ 0
— Q_VY.(_(J(QJ 1+W(7l(0)) )

WO 10q.2)

¢/~
) = ﬁéﬂqf‘l = f— 1(mod.2)

and we can conclude,

The case of x: K* = F(Y)* — C*
In this case, K/F is ramified, f(x) = 2f, and using Corollary 9.1.4 we
can write,

dimm(o) = (g+1)g'™*
TTﬂ(U) (Y) = —ZW(W(O))
TTW(U)(X) = T?“ﬂa) (IEY) =0

Thus, in this case:

do = (g + 1)qf_1
de = —2W (7 (0))



Therefore, @3% = “2¢/=14W(n(0)) = 1(mod.2), and L5% = —W (n(a))
1(mod.2). Thus,
SWi(n(o)) = 21 + x4

For SW, we have,

((g+1)¢g'71)/2 ((g+ Vg7t + 2Wp(0))/2
SWa(m(o)) = ) wy + 5 z?
((a+1)g"1)/2 (g + 1! +2Wn(0))/2 | 2
- 2 - 2 ))372
Now,
g+l _f—
2 g+1 s, q+1 ; _q+1
) = =Y 5 I=1 1) —(mod.2)
and

= (&g + W(W(J)))(gj;_qu—l + W(ﬂ(;))—l)

=4 M(;))—11(771061.2)

Therefore, we can conclude,

SWy(n(0) = q:le N <q1~1 N W(W(g)) - 1) . (1 - W2(7r(0))) .
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The case of x : K* = F(zY)* — C*

In this case, K/F is ramified, f(x) = 2f, and using Corollary 9.1.4 we
can write,
dimm(c) = (qg+1)¢'™!
Tree)(@Y) = -=2W(n(0))
Tree)(X) =Tryn(Y)=0

Thus, in this case:

Therefore &2 = £H4f~10 = 1(mod.2), and 5% = W (r(0)) = 1(mod.2).
Thus,
SWl(W(O')> = T2

Now, for SWj,

((g +1)g/071) /2 ((g+ D™ /2 )

SWy(m(o)) = 5 Wy + 9 x7
((g + )¢’ /2 + Wi (o)) ((g+ 1)g/™=1) /2 )
+( 9 — 9 )25

and let us notice that all these combinatorial numbers have already been

obtained in the case K = F(Y'). Therefore we can conclude,

g+l 2 W(r(o) =1\ »
SWy(n(o)) = T(U}? +a1) + <"*‘—2——‘> )
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Now, once the three cases have been solved, we conclude by giving a
table of first and second Stiefel-Whitney classes as it was done in the case

g = 1(mod.4), that is

Theorem 9.3.1 (q = 3(mod.4)) In this situation the Sylow 2-subgroup of
A*/F* is non-abelian dihedral and isomorphic to Dowr = {z,y|lz¥" = y* =
L,yzy = =} for some n > 2, where Y is taken to represent y and X is

n—1
taken to represent x*

There are three quadratic extensions over F, and those are, FI(X)/F,
F(Y)/F and F(zY)/F, where the first is the unique unramified quadratic
extension over F. And the following table for the first and second Stiefel-

Whitney classes of m(o) can be written

 K/F | SWin(o)) SWi(r (o))

it —1)/
FX)F | (MDY 4 4 (f = 1)a2

FY)/F i+ xo | (H)w, + (%l 4+ YY_(%) 22 (1-—V[/£7r(a))) 22

F(zY)/F 25 (22 (wy +23) + (1) 53

where f = f(x) and H*(A*/F*;Z/2) = Z/2[z1, 29, wa]/(x?+2122) (T heoremT.1.2)
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9.4 The construction with two-dimensional sym-

plectic, Galois representations

The aim of this section is to obtain a chapter 6-type map, but this time
with symplectic representations, and see how the value of this map is re-
lated to the value of the local root number of the symplectic representation

considered.

In order to construct such map, we combine the construction with or-
thogonal representations of A*/F™* with the Langlands correspondence in the

following way,

Definition 9.4.1 Let o be a two-dimensional symplectic, Galois representa-
tion, o = Indg/r(x) induced from a character x : K* — C*, where F is
a non-Archimedean local field of odd residual characteristic, and K/F is a

quadratic extension. The map Y p is defined as,

,where fp was defined in sections 7.2 and 7.3.

As it was said in chapter 7, once the values of the first and second Stiefel-
Whitney classes of W are obtained, the value of fF(W) is easily calculated.

These haven been calculated in the last two sections for 7 (o).

We will demonstrate that in the case ¢ = 1(mod.4), accurate information
about the value of the local root number of ¢ is given in terms of Yp(c) and
the value of the local root number of a quadratic character only depending

on the quadratic extension considered over F'.
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Due to the different values for the first and second Stiefel-Whitney classes
obtained, depending on whether ¢ = 1(mod.4), we will divide again our

discussion into two different cases.

9.4.1 The value of Tp when ¢ = 1(mod.4)

Let us recall that Tp(W) = ¢k (m, (W — dimW)) where oL and m where

introduced in section 7.2

Let us start our discussion by obtaining the value of Tp(l(2)) for z €

F*/(F*)?, where here [(z) means

N’l’ed l(Z)

A* — F* — {£1}

Now, we know that m (I(z)—1) = m1(p(2)) = p(z) and therefore Tp(1(z)) =
We(l(z)) € ua.

At this point, as done in previous chapters, we divide our study into three
different cases depending on the quadratic extension over F' considered, i.e.,
depending on if , the character that induces o, is defined on F/(X)*, F(Y)*
or F(XY)*.

The case of x : F(X)* — C*

In this case det(nw(o)) = SWi(w(0o)) = x1 by Theorem 9.2.1. And let
us note that SWi(l(a)) = z;. Therefore, if we consider 7(o) @ I(a) and use

Cartan’s formula for ST, (additive version), we obtain

SWi(r(o) ®(a)) = 21 + z1 = 221 = 0(mod.2)
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Therefore, the class of 7(0)®l(a) in Y is determined by SW,(7(o)®l(a)).
Using Cartan’s formula for SWj,

Wi(n(o))+1
SWy(n (o) & l(a)) = SWy(r(0)) + 2} = (—(—(22)———> (22 + 7139) + 22
by Theorem 9.2.1.
Now, we know that 7;(z%) = m(22) = 1 and 7 (z12s) = —1 (writ-

ten multiplicatively instead of additively). Hence, the coefficient of zyz5 is
the only one that provides information. When this coefficient is 0(mod.2),
[ w(7(0)®l(a)) = 1 and when this is 1(mod.2), Tr(n(0)®l(a)) = —1, namely,

W(r(a))+1
2

Dr(n(0) @ U(a)) = (~1) — —W(n(o))

as W(n(0)) € {£1}. And hence, as Tr(I(a)) = Wr(I(a)), we can write
Lp(n(0)) = =W (n(0))Wr(l(a) ™" € 114

Here, if we note that the extension considered is K/F = F(X)/F, the
quadratic character of F'™* given by class field theory wg,r, is none other than

[(a), and we can conlude

Lp(m(0)) = =W(n(0))Wr(wi/r) ™ € jus

The case of x : F(Y)* — C*

In this case det(n(0)) = SWi(n (o)) = zo = SW1(l(b)) by Theorem 9.2.1.
Therefore
SWi(m(o) ® (b)) = 229 = 0(mod.2)
So now, as in the case above, the class of w(o) @ I(b) in YF is detected
by SW,. The only coefficient that provides information is the coefficient of

21Zo. This is, by Theorem 9.2.1

g—1 W(n(o))+1
4 * 2
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Hence,

W(W(G))-H)
2 =

Tp(r(o) ®1(0) = ()T +

And as Tp(l(b)) = Wp(l(b)), we obtain

= g+3

Lp(n(0)) = (=1)« W(n(0))Wr(wi/r) ™" € pa
since wg,r = I(b) as the extension considered is K/F = F(Y)/F.
The case of x : F(XY)* — C*

Here, det(m (o)) = SWy(m(0)) = x1 + x5 = SWi(l(ab)) by Theorem 9.2.1,
and therefore SW; (7 (o) @ (ab)) = 0(mod.2). Now, as in previous cases, the
coefficient, of 2,29 in SWy(m(o) @ l(ab)) is the only one giving information,

this is,

g—1 N W(r(o))+1

and therefore

Now that all the cases have been considered and taking into account that

W(n(o)) = Wg(0o), we can state the main Theorem of this chapter.

Theorem 9.4.2 Let 0 be a two-dimensional symplectic Galois representa-
tion, 0 = Indg,r(x) induced from a character x : K* — C*, where F is a
non-Archimedean local field of odd residual characteristic ¢ = 1(mod.4) and
K/F is a quadratic extension, then

g—1+42e

Tr(o)=(-1) = Wr(o)Wr(wg/r)™" € pa
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where e is the ramification index of the extension and wg p is the quadratic

character of F* given by class field theory.

Let us study now, the case ¢ = 3(mod.4).

9.4.2 The value of Tr when ¢ = 3(mod.4)

Let us recall that in this case Tp(W) = @3 (ms(W — dimW)), where ¢,

and 75 were defined in section 7.3

As for ¢ = 1(mod.4),we divide our discussion in three different cases
depending on the quadratic extension over F' considered, i.e., depending on

if x, the character that induces o, is defined on F(X)*, F(Y)* or F(zY)*.
The case of x : F(X)* — C*

In this case det(n(o)) = SWi(n(0)) = z1 by Theorem 9.3.1. And we
know that SW;(I(—1)) = x;. Therefore, if we consider 7(o) @ I(—1) we
obtain for SW;

SWi(n(o) & (-1)) = 21 + 21 = 221 = 0(mod.2)
Hence, the class of (o) @ I(—1) in Yy is detected by SWj.

"(m{o —1)/-1
SWy(n(o) & 1(~1)) = SWa(r(0)) + 2% = (W (r( ));_ (=1) ) wy + fai

by Theorem 9.3.1, where f = f(x).

Now, as g = 3(mod.4), we know that m3(2?) = I(-1)Ul(—1) =1, m3(23) =

I(-1) U () = —1. Furthermore, m3(wy) = SWa(Indr,r(\)) = Wi(A) €
{£1}. Therefore,

~ Win(eN+(=»f 1
2

Tr(r(o) @i(~1)) = Wi())
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and we can conclude

~ Win(e)+(=1)f !
2

Tr(r(o) = Wi (N) We(l(=1))7"

The case of x: F(YV)* — C*

Here, det(m(o)) = SWi(n(0)) = x1 + x3 = SWi(I(—b)) using Theorem
9.3.1. Therefore, if we consider 7 (o) @ {(—b), SWi(n(c) ®I(—b)) = 0(mod.2),
and the class of w(0) @ {(—b) in Yr is detected by SWs.

From Theorem 9.3.1, one can see that

_ q:1w2+(qz1 ) VV(W(;)) + 1) x%+<1 + W2(7r(a))>

SWy(m(o)®l(—0b))

and therefore

Tr(r(o) @ U(=b)) = W) (=1) " = W, () W (n(0))
and we can conclude
~ ~. g+l

Lp(m(0)) = =Wi(A) « W(r(0))Wr(l(=0)) ™

The case of x : F(zY)* — C*

To reach our aim, we study now the case of K = F'(zY). In this case,
from Theorem 9.3.1, det(n(0)) = SWi(n (o)) = 2o = SW1(l(b)). Therefore,
SWi(m(o) & 1(b)) = 0(mod.2).

Now, using Theorem 9.3.1 again,

SWa(m(o) ® (1) = L5 (w, +07) + (

4

W(w(g)) + 1> 2

and hence,
Ty 4L

Lr(m(o) @U(b)) = ~Wr(N)T W(n(0))

110



and we can conclude

—~ ~. g+1

Lr(r(0)) = =Wi(A) ™ W(r (o)) Wr(i(0))™

In this case, Tp (o) does not provide much information about Wr(c)(=W (7 (0)))
as it would be desired. For instance, in the unramified case, if W, L(X) =1,
Yr(o) = Wr(l(—1))", where Wr (o) does not appear. Although this case
may lack of significance for the current study, it has been introduced for

completeness.

9.5 Some easy applications of Theorem 9.4.2

In this section we concentrate on some easy applications of Theorem 9.4.2,

this is when ¢ = 1(mod.4)

To begin with, Tp(o) can be used to obtain Wx(x) where x is the char-

acter ¢ is induced from, i.e., o = Indg;r(x).

Then, we will use Theorem 9.4.2 to give relations between Yp(c) and

TF(O‘,).

When o is a two-dimensional symplectic representation, o = Indg/r(x),
Number theorists consider what is called the tame ramification of o and
denoted by igme, where oygme is induced from a tamely ramified character.
Due to the difficulty of calculating Wr(o), it is helpful to have a way of
obtaining this local root number in terms of Wg(oyme). This will be our

third application.

The value of Wi(x)

111



Let us consider o = Indg/r(x) a two-dimensional symplectic representa-
tion induced from a character x : K* — C*. Using inductivity in dimension

zero for the local root number of o we obtain,
We(o) = Wk (x)Wr(Undg/r(1)) = Wk (x)Wr(1+wg/r) = Wi (x)Wr(wk/r)

and now using Theorem 9.4.2

g—1+2e g=1+2e

Tr(o) =Tr(o) = (1) 7% Wr(o)Wr(wgr) ™ = (=1)"2 Wg(x)

namely

Corollary 9.5.1 (¢ = 1(mod.4)) In the situation above,
g—1+42¢

Wk(x) = (-1) = Trp(o)

Note that when E/F is ramified and 0 = Indg,p() with f(6) =1, x in
this corollary will be the one such that o = Indk/r(x) with K/F unramified

following Proposition 9.1.2 (Proof).

Relations between Tp(o) and Yr(o')

Corollary 9.5.2 (q = 1(mod.4)) Let o and o' be two two-dimensional sym-
plectic Galois representations, 0 = Indg/p(x) and o' = Indg/r(x') induced

from characters x,x' : K* — C. Then, the following holds,

(I) If K/ F is ramified with f(x) # f(x') and min(f(x), f(x)) =1 (it is

no restriction to assume f(x') = 1) then,

Tr(o) _ (_1)%1 Wr(o) Wr(wgyr)
TF(U') WF(O") WF(UJK/F)

where K'/F' is the unique unramified quadratic extension over F'.
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(1) In any other case,

Proof:

(I) As stated above, we will assume f(x’) = 1. Then, following Proposi-
tion 9.1.2 (Proof) ¢’ may be written as ¢’ = Indg/p(0) with K'/F unrami-
fied and f(0) = 1. And the above equality follows from Theorem 9.4.2.

(IT) Follows trivially from Theorem 9.4.2 [J
The tame ramification of o

As in the above case, we consider o = Indg/r(x). Now, x can be written
as tensor product

X =X1® X2

where x; is of order u and x» is of order p¥ with (u,p) = 1, where the residual

characteristic of F' is ¢ = p? for some positive integer d.

Therefore, x; is tamely ramified, and we can consider

Otame = IndK/F(Xl)

Now using Corollary 9.5.2 we have the following result,

Corollary 9.5.3 (¢ = 1(mod.4)) In the situation above,

L@: _ )%‘l—‘ﬁ Wep(o) Wr(wgyr)
TF(Utame) WF(Jtame) WF(wK/F)

where K'/F is the unique unramified quadratic extension over F and e is the

ramification index of the extension K/F.
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Note that, although ¢ = 1(mod.4) is the case dealt with, and this could
seem rather restrictive, most ¢’s will be in this case. Just recall that if
g = p? for some positive integer d, then ¢ = 1(mod.4) if p = 1(mod.4) or
p = 3(mod.4) and d even.
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