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Chapter 1 

Introduction and Basic 

Definitions 

1.1 In t roduc t ion 

Every compact Riemann Surface can be nniformised by a Schottky group, 

so to study the space of Riemann Surfaces we can study Schottky space, see 

Bers [Ber61]. They are also an extremely nice example of a geometrically 

hnite Kleinian groups. 

Schottky groups are naturally classified aa to when their deSning curves 

can be circles or not. If a Schottky group has dehning curves which are circles 

then it is classical, otherwise we say it is non-classical. Marden [Mar74] 

was the 6rst to show that non-classical Schottky groups do in fact exist. 

Yamamoto [Yam91] gave an explicit example of a family of non-classical 

Schottky groups, in Chapter 4 we generalise this family to give a family of 

non-classical Schottky groups that leaves f 5'Z,2(C). 
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The HausdorG' dimension of the limit set of a Kleinian group has been 

of interest for many years. It was studied by Ahlfors and his conjecture 

that the limit set of a hnitely generated Kleinian group is either C or has 0 

2-dimensionaI HausdorS" measure is still open. 

Patterson [Pat76a], [Pat76b] in the Fuchsian case and Sullivan [8ul79], 

[8ul84] in the Kleinian case studied the connection between the exponent of 

convergence of the Poincare series and the Hausdorff dimension of the limit 

set. We use these results in an essential way when finding bounds on the 

Hausdorff dimension of the limit set of a Schottky group. 

Bowen [Bow79] characterised the HausdorE dimension of the limit set of a 

Fuchsion or Schottky group in terms of the Pressure function. Ruelle [Rue82] 

used this fact and his analysis of the dynamical zeta function to show that 

the HausdorE dimension of the limit set is a real analytic function over the 

appropriate deformation space. 

An old question (&om Schottky) that was answered by Doyle [Doy88] 

states that there is a universal upper bound on the Hausdorff dimension of 

the limit set of a classical Schottky group. 

We provide a partial complement to this result and prove that there is a 

universal positive lower bound on the Hausdorff dimension of the limit set of 

a non-classical genus two Schottky group. 

We prove the above result by contradiction. We show that if a sequence 

of Schottky groups has Hausdorff dimension tending to 0 then given any set 

of generators at least one of the sequence of generators must converge. So 

to study sequences of Schottky groups that might have Hausdorff dimension 

— 0 we study divergent sequence of genus two Schottky groups. We classify 

what can happen to such a sequence in terms of its generators. In each case 



we show that either the sequence is eventually classical or there is a lower 

bound on the Hausdorff dimension in the limit. 

Key to showing that the groups are eventually classical is the result that 

we can take the centres of the isometric circles of the groups "close" relative 

to the multiplier of the other generator, see Lemma 6.1.3. From this result 

it is a case of checking that the groups are indeed classical. 

Finding lower bounds on the Hausdorff dimension of the limit sets is more 

sophisticated. 

The main result is a rehnement of the Poincare Series, see Lemma 5.4.20, 

that allows us to sum over a set that reflects the "density" of the generators 

in the limit set. The technical result, Lemma 5.4.11, allows us to control 

the growth rate of this set. This result allows us to bound the exponent of 

convergence of the Poincare series. 

This thesis is split into six chapters. 

The 6rst, this one, is composed of two parts; an overview of the thesis 

and a section on the basic notation we will use. 

In the second chapter we introduce standard results on Mobius transfor-

mations and Kleinian groups. The main theme we shall concentrate on is 

the relationship between the ball model and the upper half space model of 

hyperbolic space There are three results we use repeatedly. Namely, 

that stereographic projection restricted to a closed subset of j is a 

bi-Lipshitz map and that it induces a homomorphism from Mob(BiO) to 

Mob(.Zir^) via conjugation. We will often use the useful equality that given a 

Mobius transformation 'y then 

l'y(z) — ^ "̂ 1 



for z, w E C. Lastly we study what can happen to a sequence of loxodromics, 

in particular the manner in which they can diverge. This will be useful when 

we study divergent sequences of Schottky groups in Chapter 6. 

Chapter three is composed of the definition of a Schottky group F, the 

notation we will use and the main known results. It is worth noting that 

n ^ / r is a handlebody, that r2 ( r ) / r is a Riemann Surface and that every 

Riemann Surface is uniformised by a Schottky group. The main results we 

use are that the limit set of a Schottky group is a cantor set homeomorphic 

to its shift space. We also discuss Schottky space and its boundary. 

In Chapter four we look at the diEerent types of Schottky groups and give 

a family of non-classical Schottky groups for which a subsequence diverges. 

This family is an example of a sequence of Schottky groups which diverge 

but that the Hausdorff dimension of their limit sets does not vanish. 

In Chapter Sve we introduce the two main measures, Hausdorff measure 

and Patterson-Sullivan measure, on the limit set of a Kleinian group. We 

state the important result that for a convex cocompact group they are the 

same up to multiplication by a constant. In fact for a geometrically Snite 

group the HausdorS dimension and exponent of convergence of the group 

coincide. We use this to show that if the Hausdorff dimension of the limit sets 

of a sequence of Schottky groups vanishes then the groups diverge. Chapter 6 

will be spent showing to what extent the converse of this statement holds. In 

the second part of this chapter we show that when calculating the exponent of 

convergence of the Poincare series you only need to sum over a certain subset 

of r and not the whole group. This result will allow us to give estimates for 

the limits of the Hausdorff dimension of various sequences of Schottky groups. 

Chapter six contains the bulk of the calculations. We consider a divergent 

sequence of Schottky groups < >, where ^(72) diverges. We then 



split the problem into various cases depending on what converges to and 

how p(n,) diverges. For each case we discuss on what conditions the sequence 

is eventually classical and whether the Hausdorff dimension of the limit sets 

vanish. We use this claasihcation to show that there is a lower bound on the 

Hausdorff dimension of a non-classical Schottky group although we do not 

End an explicit bound. 

1.2 Basic Definitions 

In this Section we introduce the basic topological and notational conven-

tions we will use. 

Defini t ion 1.2.1 For any n > 1 we denote the one p o i n t compac t idea-

t ion of R" by R". 

Defini t ion 1.2.2 The Riemann Sphere C U {oo} is denoted by C. 

In this thesis we will often use a generahsed metric, this is a very natural 

notion when considering path metric spaces. In a generalised metric we allow 

the distance between any two points to be inhnite. We immediately see that 

and C are examples of spaces with generalised metrics. We will keep the 

normal norm notation | - | and allow it to take values in [0,oo]. As usual, 

to allow arithmetical operations we dehne |oo — oo[ to be 0. It still makes 

sense to talk about divergence in a generalised metric, for instance in C it 

just means convergence to oo. We restrict the use of divergence to spaces 

such as jP5'i^2(C)^ where divergence cannot include convergence (to inhnity). 

In spaces such as and C we will talk about convergence to oo. 

We will need to discuss the distances between sets, to do this we make 

the following dehnition. 



Defini t ion 1.2.3 Given sets X,Y C Z we let 

distsup(%,y)= sup 
zex,!/ey 

and 

di8tinf(%, = inf 13; — 2/1 
^ iEX,!/ey' 

We should note that except in very special circumstance neither of these 

is a metric on the space of all subsets of Z. 

Defini t ion 1.2.4 Let Br{x) = {y e E^||a; — y| < r} denote an open ball. 

Defini t ion 1.2.5 Given any set E in a topological space, let E denote its 

closure and its interior. 

Definition 1.2.6 We let j E be the point (0,0,1). 

Defini t ion 1.2.7 We let 0 denote the points (0,0) and (0,0,0). 



Chapter 2 

Hyperbolic space and Kleinian 

groups 

In this chapter we look at the relationship between the ball model and the 

upper-half space model of Hyperbolic space In both cases the isometries 

Isom(]H[^) of are restrictions of Mobius transformations of to Bi(0) in 

the ball model and = {(x, y, z)\z > 0} in the upper half space model. A 

homomorphism from Mob(jBi(0)) to Mob(77^) is induced by conjugation by 

stereographic projection so it makes sense to study this map. We show that 

stereographic projection is bi-Lipshitz away from and oo. The sphere at 

inanity 6"°° of is 6'i(0) in the ball model and C in the upper-half space 

model. One of the reasons the ball model is useful is that the metric on 

5'i(0) is compact while C has a generalised metric. However the action of 

Isom"'"(]B[̂ ) extends to 5"°° in a particularly nice way in the upper-half space 

model; the set of orientation preserving Mdbius transformations that preserve 



± a ±b 

± c ±d 

is homomorphic to f and acts on C by 

GZ + 6 

cz + (f 

which is obviously well defined. 

In this Chapter we essentially follow the above discussion. Firstly we in-

troduce Mobius transformations and a useful Lemma concerning them. Then 

we define the two models. We next give an explicit formula for stereographic 

projection that allows us to show that it is bi-Lipshitz when restricted to 

compact sets not containing j . The next step is to analyse the action of 

on C. 

We then classify types of orientation preserving isometries of in terms 

of their fixed points. We introduce the convex hull of a subset of U C. We 

then look at types of Kleinian groups and the objects associated to them. 

Lastly we look at sequences of loxodromics that converge pointwise to 

some function. 

2.1 Mobius Transformat ions 

In this Section we give the definition of a Mobius Transformations and 

state a useful Lemma relating the Jacobian of a Mdbius Transformations to 

the distance it moves points. 

Def in i t ion 2.1.1 A general ised sphere of is either a sphere Sr{x) = 

{?/ E R^||z — 2/1 = r } or a plane union infinity = {i/ € E^|i/ - a; = 

r} U {oo}. 

We see that a generalized sphere is a topological sphere. 



Defini t ion 2.1.2 A reflect ion in a generalized sphere S is the map 

1̂ 11 + 2(r — if 6" = 

which is the normal plane rejection if 5' = If 5" = then oo is 

fixed and if 5' = then oo i-> it and i-4 oo. 

Defini t ion 2.1.3 A Mobius t r ans fo rma t ion 7 ; is a composition 

of reflections in finitely many generalised spheres. We let Mob(E^) denote 

the group of all such transformations. 

The Jacobian of a Mobins Transformations is orthogonal up to multipli-

cation by a constant see [Rat94] so we make the following definition. 

Definition 2.1.4 Given a Mobius transformation 7 then we define the 

confbrmal dilation at (a;, z) to be the number |y( (z , ?/, z))| such that 

M i a " ' " " - ' - ' " 

is orthogonal where 7' is the Jacobian of 7. 

The conformal dilation is related to the distance that 7 moves points in 

the following nice way. 

Lemma 2.1.5 Gwea a 7 we Aotie 

|7(it) — 7(i')| = — "ul 

/or It, E R. 

For a proof of this see [Nic89]. 

Mobius transformations are difierentiable conformal homeomorphisms. 

A Mobius transformation is orientation preserving if it is a composition of 
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reflections in an even number of distinct spheres. We let Mob'''(R^) be the 

group of all orientation preserving Mdbius transformations. 

In a similar manner we make the following dehnition. 

Def ini t ion 2.1.6 Given E cM.^ let Mob(£') be the set of Mobius transfor-

mations that preserve so Mob(^) = { 7 6 Mob(E^)|'y(^) — ̂ } . DeEne 

Mob"''(jB) similarly. 

We now look at the set on which 7 acts as an Euclidean isometry. 

Def in i t ion 2.1.7 Given 7 G Mob(R^) that does not fix infinity then the iso-

m e t r i c sphere 5"̂  of 7 is the unique sphere on which 7 acts as an Euclidean 

isometry. For existence see p.117 - 120 [Rat94]. 

It is worth pointing out that the image, under 7, of the isometric sphere 

of 7 is the isometric sphere of 7"^. 

DeAnition 2.1.8 Given 7 6 Mob(Bi((0,0,0))) that does not fix inanity then 

the intersection of the isometric sphere with 0,0)) is the isometric 

circle I j of 7. 

2.2 T h e models of hyperbolic Space 

We 6rst define 3—dimensional hyperbolic space. 

Def ini t ion 2.2.1 Hype rbo l i c 3—space is the unique simply connected 

complete Riemannian manifold of constant curvature —1. 

10 



2.2.1 T h e models 

Defini t ion 2.2.2 We define the uni t ball mode l of to be Bi{0) with 

the metric de6ned by 

« A 1 - |3:r 

where p, g E -8i(0) and the inSmum is taken over all differentiable paths a 

in Bi (0) from p to g. 

Defini t ion 2.2.3 We define the upper-hal f space m o d e l of to be 

— {(a;, z)|z > 0} with the metric dedned by 

= inf / -|o(r| 

where p, g E -Bi(O) and the inSmum is taken over all diEerentiable paths a 

in from p to g. 

That these are equivalent spaces and that Isom(]H[^), Mob(Bi(0)) and 

Mob(^^) are all isomorphic can be found in [Rat94]. 

2.2.2 T h e boundar ies of the models 

The boundary of is sometimes called the sphere a t inf in i ty or visual 

b o u n d a r y S°°. 

The boundary of Bi(0) is 5'i(0) and the action of Mob(Bi(0)) extends 

naturally. This model is useful as it is conformal and the metric on the 

boundary of (0) is not a generalised metric. 

The boundary of is C and the action of Mob"'"(^^) can be deGned in 

the following nice way as Mob''"(^^) is isomorphic to f 6'Z^2(C) as topological 

groups see [Rat94]. 

11 



Dednit ion 2.2.4 We de6ne an action of f6'Z,2(C) on C by, given 7 E 

f 5'Z,2(C) snch that 
± a ±6 

T 
ibc i d 

and z 6 C then 

7(z) = .{ 
- ^ = 00 
C 

this is obviously well defined. 

We can restrict Lemma 2.1.5 to C in the following way. 

L e m m a 2.2.5 Given 7 G PSL2{C) and z,w gC then 

|7(z) - 7(w)| = - 'Û l-

Proof : We know 

7(z) = ^ ^ with od — 6c = 1 so 7'(z) 
cz 4- (Z (cz + 

and 
. az + 6 a w + 6 z — w 

^ ^ cz + d cw + cf (cz + d)(c'u; + c() 
So when we take norms and get the result. O 

We can extend the above result to z, w € C if we allow | | to take 

values in E and dehne |oo — oo| to be zero. 

DeAnition 2.2.6 Given 7 6 f5'Z/2(C) that does not Ex 00 then the iso-

m e t r i c circle of 7 is the circle in C on which 7 acts as a Euclidean 

isometry. 

12 



The following Lemma gives an algebraic formula for the isometric circle. 

Lemma 2.2.7 'y E does /za; oo 

I j = {z G C\\cz + (i| = 1} 

wAere Zy za Âe czrcZe o/'y. 

Proof : By Lemma 2.2.5 we see 

l'y(z) — 'y(w)| = — iu| 

so 'y acts on the set {z | |y(z) | — 1} as a Euclidean isometry. But |7'(z)| = 1 

ig 

which is a circle and therefore the isometric circle. O 

2.2.3 Stereographic projec t ion 

Defini t ion 2.2.8 S te reographic p ro j ec t ion is the map (j) from the unit 

ball (0) to upper half space deEned by 

+ (z — 1)^' + (z — 1)^' + ?/̂  + (z — 1)^ y 

and has inverse defined by 

,-1/ s / 2^ 2y 2(—1 — z) \ 

where w = ( a ; , a ; ) . 

Stereographic projection is a Mobius transformation of see [Rat94]. 

13 



Lemma 2.2.9 TAe 0/ pro_;ectzoM reâ nĉ ê f (0 a 

6oKM(fe(f gt/6ae( ^ C U C ta 6%-Ẑ%paA%(z coMâ am ĝ 

jiT = max om(f ji"' = min 
ij^exliu + j P i«6x|tu + j |^ 

wAgre A" za Âg cong^aM^ correapon^fm^ Âe tf^pgr towMd and ji!"' /̂le Zowgr 

Proof: The Jacobian of ^ ^ at (3;, 1/, z) is 

f 2 x^-y'^-z'^-'iz-l xy 
(î +^^4-ẑ 4-2z+l)̂  (a;̂ +^̂ +ẑ +2z+l)̂  

xy Q g^-y^+z^+Sz+l 
(î +^^+z^+Sz+l)^ (z^+!/̂ +z^+2z+l)̂  

X {z+Vj y (̂ +1) 
\ (z^4-y^+z^+2z+l)̂  (z^+]/̂ +z^+2z+l)̂  

SO we can calculate |(<^"^)'((3;,^,/z))| to get 

- 4 X (z+1) 
[x2+j/2_|_22_j_22 + l)2 

y (̂ +1) 
(zZ+%/̂ +ẑ +2z+l)̂  

-9 x'̂ +y'̂ —z'̂ —2 2-1 
(r^4-y^+z^+2z+l)^ / 

4- 2z + 1) 

So given w, ti E % C 77^ U C then 

"Vit) - (6 

by Lemma 2.1.5 so deEne 

2 2 
.K" = max 1 -rr and jT' = min 

uex |w + j ,-|2 ue% |iu 4- J ,'|2 

both of which are 6nite and non zero so we have that 

— I'l < I9) — 9) ^(f)! < jK'I'U — i/l 

as required. • 

14 



2.3 Types of isometries of 

We classify elements of 'y G Isom"""!!^ by their Exed points (they have at 

least one by the Brouwer Exed point theorem aa they are homeomorphisms 

of the closed unit ball, see p. 14 [Mil65] for em elegant proof of this. 

Given 'y E Isom"'"(B[^) then we say that 

® 7 is ell iptic if it fixes at least one point of 

# 7 is loxodromic if it fixes 2 points of S°° and no points of 

o 7 is pa rabo l i c in any other case. 

This classiEcation is possible because of the fact tha t if 7 E Isom"''(]BI^) 

hxes 3 or more points of 5"°° then 7 is the identity see [And99]. 

If we work in the upper-half space model we can make the following 

algebraic classification. 

Let 7 E f 5'f/2(C) then 

# If 7 is elliptic then it is conjugate in jP5'Z^2(C) to the map z Az 

where |A| = 1. So an elliptic element is characterised by its 2 hxed 

points and the amount by which it rotates C. 

# If 7 is loxodromic then it is conjugate to the map z 1—Az where |A| > 1. 

So a loxodromic element is characterised by its 2 Sxed points and its 

multiplier A. 

# If 7 is parabolic then it is conjugate to the map z 1—z + 1. In fact 

a parabolic element is characterised by its 6xed point and a constant 

related to the action of 7 on 

15 



We can express ^ in terms of these constcints, if 'y if loxodromic or elliptic 

with 6xed points z, ^ oo and multiplier A then 

f ) — ~ 2/^)^ + ~ 1) 
^ ^ (1 — + a;A — ^ 

if 'y is parabolic with fixed point z 0, oo then 

, , 2z — Ta; 
7 ( 4 = 1 

where r G C. 

2.4 Convex hulls 

We will work in upper half space model for although the following 

deAnitions and results can be made intrinsically. 

Defini t ion 2.4.1 Given any set E C then the convex hull C(F) of B 

is the intersection of all closed convex sets in containing Now suppose 

that .B C U C then C(jE') is the intersection of all closed convex sets in 

whose Euclidean closure contains E'. 

Example: If E then lu}) is the geodesic in whose end 

points in are z and w. 

The following lemma is well known but we give its proof for completeness. 

L e m m a 2.4.2 Let E C U C and j G Isom(H^) then j(C(B)) = C(j(B)). 

Proof : Closure is taken in W. 

16 



By definition 

'y(C(E')) = where % convex and Ei' C % 

= 7(-^) where % convex and C A" 

since 'y is a bijection. 

= where convex and ^ C 

where we let — 7(-^) aJid î iote that 'y preserves convexity 

= 1 ^ % ' where convex and 'y(E) C '/('y ^ (^ ' ) ) 

= 1 ^ % ' where convex and 'y(^) C %' = C('y(^7)) 

since 'y is a homeomorphism. O 

2.5 Kleinian groups 

Defini t ion 2.5.1 A Kleinian g roup is a discrete subgroup of Isom"^(H^), 

where l8om''"(n^) is given the topology of pointwise convergence. 

It is worth noting that the following result, Selberg's Lemma [Sel60], 

applies to any subgroup of l8om(E^). 

Lemma 2.5.2 Cz'fen CMy o/Isom(]H[^) Aoa 

<3 /ree MonrioZ o/ /zmte mdez. 

We will wish to exclude the most basic type of Kleinian group so we make 

the following dehnition. 

17 



DeGnition 2.5.3 A subgroup of f 6'Z,2(C) is e lementary if every two ele-

ments of in6nite order in the group share a Gxed point in common. Equivalent 

de6nitions for a Kleinian group are that its limit set is Gnite or that it is a 

virtually abelian group. 

We now give a necessaiy conditions for discreteness. 

L e m m a 2.5.4 A non-elementary Kleinian group T =< g,h > satisfies 

j0rgensen's inequality 

— 4| + |tr([^, A]) — 2| > 1 

%i/iere tr('y) ta trace o/ a E f5'Z,2(C) to 5'Z,2(C) oncZ za (Ae 

commutator o/ g and A. 

This was proved by J0rgensen [J0r76]. 

2.6 Fundamenta l domains 

Fundamental domains are essential to understand the action of a Kleinian 

group on 

Def ini t ion 2.6.1 A f u n d a m e n t a l domain for a Kleinian group T acting 

on is an open set D C with the following properties, 

. r D = 

• jD D D = $ V7 E r — {id}. 

# The hyperbolic volume measure of = 0. 

18 



A fundamental region "tiles" under F. 

Defini t ion 2.6.2 A fundamental domain D is locally f in i te if every com-

pact set intersects only a finite number of translates of D. 

We now give an example of a fundamental domain for any Kleinian group. 

Defini t ion 2.6.3 Given a Kleinian group F and a point p G not fixed 

by any element of F then the Dirichlet domain with centre p is 

'D(p) = {g E E^|dn(p, g) < dE(7P, ?) V'y G F - W}. 

The Dirichlet domain is a locally finite convex fundamental domain 

bounded by hyperbolic planes meeting along geodesies see p.233-245 [Rat94]. 

Lemma 2.6.4 F o TiTZeimon o focoZZi//zMzte 

dommm D m (/le WZ mocZeZ/or C F 25 o segueMce 

eZeme?it5 t/ieM A /̂pertoZic "yn(-D) to 0 teyida (o oo. 

Proof: We prove this by contradiction. Suppose there is a A" > 0 and 

Pn G D such that 0) < ^ for an infinite number of 'yn- So an infinite 

number of YnPn lis in the compact ball ^^-(0), so some subsequence converges 

to a point ^ E But then an infinite number of lie in the hyperbolic 

ball so an infinite number of images of D lie in a compact set which 

violates the fact the collection FD is locally finite. O 

Lemma 2.6.5 F 6e o proMj) wztA o ZocoZZi/yiMite 

conuea: /nMtfomentaZ region D m (Ae 6aZZ modeZ /or (Aen {--yn} C F w 
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aeguence 0/ Âe EucZ%(feon (f*ome^er diam('yn(-D)) 

o/7n(Z)) (o 0. 

P roof : 

We prove this by contradiction. Suppose that the Euclidean diameter of 

is greater than for an inSnite number of M. So there are Pn, ^ 

such that ["/nPn — )T" 

So a subsequence of converges to p E 5'i(0) and a subsequence of 

converges to g G 5'i(0), such that |p — g| > 

Since D is convex and is an isometry then is convex for all n. By 

the convexity of D the geodesic segment from to is contained in D. 

So a subsequence of 'YnCKn converges (in the Euclidean Hausdorff topology) 

to a the geodesic from p to g. 

But this contradicts Lemma 2.6.4 as the hyperbolic distance from 0 to 

goes to 00 but for large n the hyperbolic distance from 0 to is 

close to distinf (0, a) which is hnite. O 

2.7 Spaces associated to a Kleinian group 

Associated to a Kleinian group there are lots of topological objects with 

interesting properties; we introduce the most well known of them. 

Defini t ion 2.7.1 The limit set A(r) of a Kleinian group T is the closure 

of the set of accumulation points in of Pp for any p E 
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A(r) is independent of the p chosen and is contained in C [Ra,t94]. 

Lemma 2.7.2 T/ie set 0/ a can 6e 

c/iarocterisec^ m t/ie /oZ^otumg' ways; 

# tAe c/oswe 0/ (Ae yZied pomts 0/ aZZ tAe Zoa;odrom%c eZememta 0/ F, 

# condoms o j)oro6o^%c eZemen^ A(r) w Âe c/ostfre o/oZZ (Ae 

pomk 0/ oZZ tAe paro6oZ%c eZements, 

# tAe set 0/ occ%/m?/Zot%oM pomts Tz /or a/iy z G C, 

# A(r) zs (/le smafZest Mon-empty c/osecf s%6set o / C mt;onaMt WMder P. 

A proof of this and that A(r) is perfect can be found in [Rat94]. 

Defini t ion 2.7.3 The o rd ina ry set fi(r) of a Kleinian group F is C — 

A(r). 

Defini t ion 2.7.4 Given any group F acting on a topological space X then 

we say that the action is p roper ly d iscont inuous if given any compact set 

K then {7 G V\^K n ^ ^ 0} is finite. 

The largest subset of lE^ U C on which a Kleinian group F acts properly 

discontinuously is IĤ  U ̂ ^(r) see p.579-580 [Rat94]. 

Defini t ion 2.7.5 A f u n d a m e n t a l region for a Kleinian group F acting on 

[1(F) is an open set D C ^(F) with the following properties: 

. r D - n ( F ) , 

• 7!) n D = 0 V7 E F, 
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# The spherical meagure of = 0. 

Def ini t ion 2.7.6 The hyperbol ic manifold associated to a torsion-free 

Kleinian group P is the space n ^ / P with the quotient topology. 

This is an "extrinsic" deBnition for an intrinsic definition see p23-25 

[MT98] and a general discussion see [Rat94]. 

Def ini t ion 2.7.7 The possibly disconnected R i e m a n n su r face associated 

to a torsion-free Kleinian group T is the space n ( r ) / r . 

Def ini t ion 2.7.8 The closed topological man i fo ld associated to a 

torsion-free Kleinian group P is the space U ̂ ^(P))/r. 

We can extend the above dehnitions to Kleinian groups with torsion how-

ever the resulting manifolds are no longer smooth and are called orbifolds 

see chap. 13 [Rat94] or [ThuSO]. 

2.8 Types of Kleinian groups 

We have already defined a non-elementary Kleinian group. 

Def ini t ion 2.8.1 A Kleinian group P is analyt ical ly f in i te if Q(P) / r is 

of finite analytic type, in other words f 2 ( r ) / r consists of a finite number 

of surfaces each of which is of finite genus with only a Snite number of 

punctures. 

Ahlfors [Ahl64] showed that every 6nitely generated Kleinian group is 

analytically Enite. 
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Defini t ion 2.8.2 A Kleinian group F is geomet r i ca l ly finite if it has a 

convex fundamental domain which is a polyhedron which is bounded by a 

hnite number of planes. 

There are many other equivalent dehnitions of geometrically hnite, see 

[Bow93]. Not every hnitely generated group is geometrically hnite see 

[Gre66]. 

Defini t ion 2.8.3 A Kleinian group F is convex c o c o m p a c t if the quotient 

of the convex hull of the limit set of F, the convex core, is compact in 

E 3 / r . 

The above definition is well defined since A(r) is invariant under F so 

C(A(r)) is also invariant. An alternative definition is t ha t the intersection 

of C(A(r)) with any locally finite fundamental region for F is compact. A 

non-elementary convex cocompact group contains no parabolic elements see 

p.57-59 [MT98]. 

2.9 The Loxodromic 

In this Section we collect a selection of formula involving loxodromics 

which we will use throughout this thesis and classify the limits of loxodromics. 

L e m m a 2.9.1 Given 7 a loxodromic such that 

1 
± a ±6 

±c 

, I x-y\ I xy{X-l) 

I 1~A I xX—y 
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wAere ^ /izes z 1/ not 00 Aoa mt(Ẑ%pZ%er A. l^e Tiea;̂  /ooA o( (/le 

ZsoTTieMc Mrc^e o/'y 

\/P4l^ ~ ^\ 

GMO( 

radZy = , 
|A — 11 

Aa; — ^ ^ 2/̂  — 
ceni-Y = — ana cenl^-i = — . 

^ A - 1 ^ A - 1 
jy 'y (foeg 00 

I —iu(A+l) I (wX+z)(w+zX) 
_ , \/X(z-iu) \/A(A+l)(z-u;) 

I -(A+1) (A+l)z 
\/A(z—ui) \/A(z—u;) 

wAere z = cenZy ayitf lu = cen/^-i. 

Proof: The hrst equation is seen by conjugating 'y so that its repulsive 

hxed point is 0 and its attractive Axed point is 00 then the image of 1 is its 

multiplier. In fact it is the map z i-4- Az and on conjugating back we have 

the above form. 

The description of the isometric circles comes from the above formula and 

Lemma 2.2.7. 

The last formula comes from solving for the Sxed points in terms of the 

centres of the isometric circles and substituting this into the hrst formula. O 

We next give a Lemma relating the multiplier of a loxodromic to its 

isometric circles. 

Lemma 2.9.2 ^ 'y Aoa zsome^nc MrcZea !i/|A| > 3 + 2-\/2 

wAere A — mult('y). 
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Proof: Let 'y fix a; and ;/ then 

- 2/1 radZy = 
II — A| 

by Lemma 2.9.1 and 

- 2/ 3; - 2/A 
cexilry = — — and ceni^-i = — — 

1 — A 1 — A 

also by Lemma 2.9.1. We need that 

IcenJ, - cen/,- . | = > 2rad7, = 
11 — A| 11 — A| 

which is true if 

1 > 
2\/]A 

| 1 - A | 

which is always satisGed for |A| > 3 + 2\/2. • 

We claasify what can happen to a sequence of loxodromics. 

Lemma 2.9.3 o segueMce o/ /ozoc(ro)7z%cg aitc/i (/le 

yziecf poWg (̂7%) coMferpe (0 2; amcf 1/ ancf A(M) 

converges (o A. com comt̂ er^e coZ/ec^cfi m 

/oZZoiump 

Figure 2.1: Limits of Loxodromics 

A = 00 A ^ 00,1 A = 1 

a; ^ 2/ Diverges Loxodromic Identity or elliptic 

2; = 1/ Diverges Diverges Diverges or parabolic 
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Proof: Recall that a sequence ^(a) diverges if any of its entries when 

lifted to a matrix in 5'Z/2(C) diverges, i.e if 

= J ' w 
y c(n) 

diverges then at least one of (z(M),6(n),c(M) or diverges. 

We shall work through the cases from left to right and top to bottom. 

In the Srst case we look at c(n) which is equal to 

1 — A(n) 

which converges to oo unless ^ oo. However if 137(71) —2/(71) | —> 

00 we look at &(n) which is 

3;(M)l/()2)(A(M) - 1) 

yA(M)(a;(n) - ^(/i)) 

which diverges as limn-^oo > 1 . So in either case we have that at 

least one of the matrix entries of ^ diverges. 

In Case 2 we see that g'(M) converges to some element of f 5'Z,2(C) since 

all the matrix entries converge. It can be seen to be loxodromic as it hxes 

distinct points z and ^ so it cannot be parabohc. On conjugating so that it 

hxes 0 and 00 we see that it has multiplier A which has absolute value greater 

that 1 so it cannot be elliptic or the identity. 

Case 3 is seen in a similar way to Case 2 we see tha t the matrix entries 

converge and so (̂77,) converges in jP6'Z,2(C). It can be seen to be either 

elliptic or the identity by conjugating it so that it Exes 0 and 00. 

The bottom left hand case. Case 4 is seen to diverge by considering 0(72) 

which clearly diverges. 
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Case 5 is also seen to diverge by considering 0(72). 

We shall now look at Case 6. If A = exp(%^) where ^ ^ 0 then c(M) clearly 

diverges. However if A = 1 the rate of convergence conies into play. We can 

express this by looking at the isometric circles of For convenience we 

shall look at the case that a; = 1/ 00 the case that a; = ^ = 00 is similar. 

Since z = ^ 00 we have that for large yi does not hx 00 so we can 

lift it to 
/ -w(n)(A(n) + l) {w{n)X{n)+z{n)){w{n)+z{n)\{n)) 

— (A(n)4-1) ( A ( n ) + l ) z ( n ) 

\ iyA(n)(z(n)-w(n)) 

where = cen7g(n) and w(n) — cenZg^^^-i. We shall show that if |z(n,) — 

0 then converges in f6'I/2(C) but this meajis that it has to 

converge to a parabolic aa it only 6xes one point. We have that A(M) 1 so 

that 
/ -•w{n)2 (w(n)+z(n))(w(n)+z(n)) 

l im^(M)=lim 
\ (z(n)-u;(n)) (z(n)—iu(n)) 

if |z(M) — w(M)| — 0 then c(M) diverges so p(n) diverges. However if |z(n) — 

7^ 0 then a(n),c(?i) and (f(M) obviously do not diverge. So we will 

concentrate on 6(n). 

however we have assumed that |2(?T,) — ^4 0 and + /(n.) = + 

(̂7%) by the expressions for the centres of the isometric circles in terms of the 

6xed points. But we are in the case that 27(71), {/(n,) —a; ^ 00. This means 

that 6(72) converges and so ^(72) converges to a parabolic. 

To summarise we see that g(7i) converges to a parabolic if its multiplier 

converges to 1, its Exed points converge to each other but the centres of its 
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isometric circles do not converge to each other. O 
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Chapter 3 

Schottky groups 

In this chapter we define Schottky groups and the various topological 

objects associated to them. We also give the some known results concerning 

them. 

3.1 Definit ion and basic resul ts 

DeGnition 3.1.1 Given a finitely generated group F with generating 

set {gi,...,gn} we define its symmet r i c gene ra t i ng set G(r ) to be 

• • • J 9ni 9l ) • • • ) 9n }• 

Defini t ion 3.1.2 Given a finitely generated group F with generating set 

{^1,. -, then . . . is a reduced word if OO+i ^ ^ 

and 

Defini t ion 3.1.3 Given any finitely generated group F with generating set 

{^1, - - ,^n} we define the length Z('y) of 'y 6 F to be the minimal M such 
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that 7 — Ci • • • C?i- Ci ^ G(r) . 

A free group is one with no relations. Given a generating set of a free 

group then every reduced word is unique. 

Defini t ion 3.1.4 A non-elementary sub-group F = < gi,...,gn > of 

PSL2{C) is a Scho t tky group if there are 2n analytic• Jordan curves L^, 

^ E G(r) that bound an open 2M connected region D with the property that 

= C — G G(r ) 

where 72̂  is the closed component of C — D that contains We say that 

the curves are def ining curves for the group F. 

Figure 3.1: Schottky group 

The condition that the deAning curves are analytic is not too strong, 

since if we are given Jordan curves paired up by (?(?), we can find analytic 

curves su&ciently close to the Jordan curves so that these are also paired 

up by G(r) . We use this fact in Chapter 4 when we construct a family of 

non-classical Schottky groups. 

Chuckrow [Chu68] showed that every set of generators for a Schottky 

group has associated deSning curves. 
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The lemmas in the rest of this section are well known probably going back 

to Schottky. 

L e m m a 3.1.5 CtneM o P mt/i JO ag (i6ot;e omd 'y E 

r — icZ 'y(D) C luAere . . . (^ a reduced word /or 

Proof : We prove this by induction on the length of 'y. 

Base case: = 1. 

So 'y E G(r ) so 7(-Ry) = C—mt(Ay-i) and 'y(D) C Ay-i since DnAy = 0. 

Inductive step: Assume the result is true for all 'y E F — W such that 

^(7) < 

Let Z('y) = n + 1 then 'y = (1 . . . (t+i with (1 . . . a reduced word. 

Then - - Ct+i) = n- so we can apply the inductive hypothesis to say 

Since (̂ 1(̂ 2 7̂  then n = 0 so that C and 

therefore ( i . . . C O 

L e m m a 3.1.6 Gwen a prot/p F and 'y E F — t/ieM attroc^me 

yi2:ed r 0/ 'y m wAere Ci . . . o redi/cecf word /or 'y. 

P r o o f : T h e a t t r ac t i ve fixed po in t a is defined by l im 7 " (z) = a for z any 

point in C not the repulsive Axed point of 7. By Lemma 3.1.5 we know that 

'y'^(D) C for all 771 > 0. So choose z E D not the repulsive point of 7 

then 

a = lim'y'"(z) E 
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as required. O 

Lemma 3.1.7 o F 'y 6 T 'y oo 

t/ien ceM(7'y) Zzes m m/iere 5̂ a recfî cecf word /o r 'y. 

Proof : Let 
. , oz + 6 

then 06^(7^) = —d/c but ''y(cen(Zy)) = 'y(—d/c) = ex: so cen,(f^) = '^"^(oo) E 

and by Lemma 3.1.5, we are done. O 

In the next four Lemmas we show that a Schottky group is discrete, free, 

purely loxodromic and n ( r ) ^ 0. Maskit [Mas67] proved tha t if a subgroup 

of f SiLgfC) satisfies these conditions then it is a Schottky group. 

Lemma 3.1.8 ^ prô /p o d^cre^e proup 

Proof: We will prove this by contradiction. Given a Schottky group 

r imagine that there is a sequence of distinct elements I'm E F such that 

'Yn — P i c k E D then 7n(z) -4 / but for large 7% this means that 

'yn(-D) n D ^ 0 which contradicts Lemma 3.1.5. O 

L e m m a 3.1.9 A Schottky group F is a free group. 

Proof : We will prove this by contradiction. Imagine there is a word 

Ci " Ck G F with (i 6 G(F) and (iCi+i ^ W but Ci - - Ct — the 
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proof of Lemma 3.1.5 we only used the fact that CiO+i 7^ so that for any 

sequence ( i . . . G such that OCt+i ^ we have . . . (^(-0) C but then 

(i - - - Ct(-D) n D = 0 so . . . ( t 7̂  O 

In a free group reduced words are unique so from now on we will talk 

about the reduced word Ci - - Ct for "y. 

Recall that a loxodromic or parabolic element 'y has 2 hxed points o,r , 

an attractive one a such that "-/"z —̂  a for all z E C — { r } and a repulsive 

one r such that —> r for all z G C — {o}, for a loxodromic these points 

are distinct and for a parabolic they coincide. 

L e m m a 3.1.10 A Schottky group T is purely loxodromic, in other words 

Proof: Since F is free we know it is torsion free so any elliptic elements 

are of inEnite order but this violates discreteness. 

We need to show that there are no parabolic elements of T, it is sufhcient 

to prove that every element 'y G P haa distinct Sxed points. 

Given 'y G T where 'y ^ write 'y as where / i / t ^ W and 

Z(yi) = 1-

As C is a bijection we have that ^ has two Exed points iif does. 

But (C"^7C)'^(-D) C Ay-i for all m by Lemma 3.1.5 so we have that 

the attractive Sxed point of is in and by the same argument the 

repulsive hxed point is in and since these are disjoint the two fixed points 

must be distinct. O 
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Lemma 3.1.11 TAe orcfmar?/ 0/ a group P %g noM-emp% m 

/oc( D C f]( r ) 

Proof : The limit set of F is the closure of all the fixed points of all the 

elements of P. But by Lemma 3.1.5 we see that all the hxed points he outside 

D so D C 0 ( r ) . In fact by changing the denning curves for a Schottky group 

a little at each point we see that D C f2(r). O 

A Schottky group is convex co-compact so is geometrically hnite see p. 118 

[MT98]. 

Defini t ion 3.1.12 Given a Schottky group F = < 5-1,. . . , > and 7 € F 

we write 7 = as a reduced word and dehne D('y) = = 

Ci • • • Ck—iR -̂̂  • 

So for E G(r ) we see that D(C) = we can think of D(< )̂ to be 

what maps D into and to be what ( maps over D. 

Figure 3.2: Domains of generators 

We collect the basic facts about ^ ( 7 ) in the following two Lemmas. 
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Lemma 3.1.13 Gwem a F o?ic( Ci, G G(r) aucA (̂ 1(̂ 2 7̂  

2d (/ten Ci(D((2)) C D((i) . 

Proof : We have that 

cr'-D(Ci) = Du u D(c) 
(EG(r)-{(i} 

and since C1C2 we see that ^((^2) C U(6G(r)-{(i} - ^ ( 0 required. O 

L e m m a 3.1.14 Given a Schottky group F then: 

1 7(Z)) C D M , 

;2. i /00 G D 7(00) = cenZy-i G D('y) oMcf 

g. yia;ed o/'-y /tea m /or oZZ wAere 'y = C/C"^ 

ond y w c2/cZ%can?/ redticed, i e = 2Z(/) 

for all 7 G F. 

Proof : 

1. Write 7 as the reduced word Ci - - Ct then 7(D) = Ci - - - Ck(-D) and 

D(7) = 0 . . . G - i ^ ( a ) . So 7(D) C D(7) ig C D ( a ) = % i which is 

true by Lemma 3.1.5. 

2. If cx) E D then 7(00) E 7(D) C ^ ( 7 ) by 1. 

3. Write 7 as where Z(yi) = 1 and 7̂  These two 

conditions are equivalent to / = / i . . . / t where Z(/^) = 2Z(/). 
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Let o.y be the attractive 6xed point of 7 and oy be the attractive fixed 

point of / . Then = Coy. 

We shall show that a/ C D ( / ) which will prove the Lemma. 

If we can show that C -D(/) then C D ( / ) for all M and so 

0/ C D ( / ) as required. 

Now y D ( / ) C D(y) i f f C A . . . A - i ^ ( A ) by de6nition. 

This is true if C -D(y'k)- By the deSnition of a Schottky group this 

holds if D ( / ) C C - However D ( / ) C D( / i ) and A f so 

n -D(/i) = 0 so D(y) is indeed in C — which proves the 

Lemma. • 

It is worth noting that given 7 6 ? then, although converges to 

the attractive Exed point a of 7, it is not necessarily true that a E ^(7" ' ) . 

It is this obstruction that means that we cannot include the multiplier of 7 

in the various bi-Lipshitz inequalities in Section 3.8. 

Defini t ion 3.1.15 Given a Schottky group F and 7 G F then define f (7) 

to be the set 

f (7)n^ — — ^(7) ) ) . 

Lemma 3.1.16 0 6'cAo^^y F 0Mi^7 E F f (7) M wmon 

0/ aH cZoaed AaZ/ gpocea wAoae w 5"°° is consumed m 

Din)-

Proof : Recall that the convex hull of X is 

xcag 
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where is a closed half space. 

For convenience we will work in the upper half space model and will 

assume that oo E D, we can conjugate so this is true as conjugation will not 

affect the statement of the Lemma. 

Then 

= Q U E 3 - ^ . 

We now let the complements cancel each other out, so the above is equal to 

U o 
aocDM 

where O is an open half space. 

We shall show that 

U 0 = u ^ 

where O and 77 are open and closed half spaces respectively. 

Let p E UaocDM ^̂ ^̂ n there are E UaocDM that p. 

Now each E On where 90^ C D('y). 

Since D('y) is closed then 77^ — C D('y). This means that G C 

^ ^ ^ can show that 

this set is closed. 

Let 6 U8â cD('Y) g E E^. There are ^ such that G 

and C D('y), let the radius of be denoted and its centre c^. 
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Since oo E D and g E we have that 0, oo. Since -D('y) is com-

pact we can choose a subsequence such that both and converge. 

This means that converges to where jifoo is a closed half space. 

However C D('y) as D('y) is closed. So g E c ^ ^ 

required. 

We now do the other direction. Let g E U8gcD('Y) then g E ^ where 

is a closed half space and C D('y). Let have radius r and centre c. 

Consider the open half space with centres c and radius — r-

Then there are G such that 9 C IJaocD('y) ^ are done. O 

Lemma 3.1.17 o 6'cAô Â;̂  F a/idp E tAe/i '/(p) E f ('y) /or 

enen/ 7 E F Zzgs OM o %per6o/2c pZoMe mAoge 6ou»(fan/ coMtomec( m 

D. 

Proof: Let p E Q where Q is a hyperbolic plane such that C D. 

Then 

v W G "/(Q) = 

and as D('y) is simply connected one of the hyperbolic half spaces which has 

'y(Q) as its h^^perbolic boundary must have its boundary at inanity contained 

in D(''y) so we are done by Lemma 3.1.16. 

Now suppose that 'y(p) E f (7) for every 'y E F. Then < (̂p) E f (C) foi' 

every C E G(F). 

So there are discs C D(C) such that (^(p) E for every 

( E (7(F) by Lemma 3.1.16. 
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So that 

p e n n n r ' u ^ 

CeG(r) (6G(r) (6G(r) agcf»(() 

by Lemma 3.1.16. 

Now 

r' U U 
8.FfCD(C) 8gCD(() 

- u ^ 

as ( is a bijection. 
However = -D so that 

P £ n c ' u \ j H 
(6G(r) a^cD(() 

as required. O 

L e m m a 3.1.18 Given a Schottky group F with oo E D and p G H where H 

o Ag/perbo/ic pZofie ai/cA tAot C D t/ien (Ae rertzcoZ j)ro_7ec(%on 0/ 'y(p) 

ẑo C coni(omg(f m -D(')') /or et/er^ 'y E F. 

Proof : This is obvious by Lemma 3.1.17 and Lemma 3.1.16. • 

3.2 Types of Schot tky groups 

In this section we classify Schottky groups in terms of their geometry. 
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Example : Let p i , . . . , be loxodromic with isometric circles , . . . , 

. . . , ^ - 1 , disjoint and boiinding a 2M connected region of C. Then < 

g i , . . . > is a Schottky group as = 7^-1 and = oo for all 

J-

Defini t ion 3.2.1 A Schottky group F is an isometr ic Schottky group if it 

has some generating set . . . , such that the isometric circles of all the 

g E G(r) are disjoint and bound a 2/% connected region. 

Def ini t ion 3.2.2 A Schottky group F is a classical Schottky group if it 

has a generating set whose defining curves are circles. 

So any isometric Schottky group is classical. 

Def ini t ion 3.2.3 A Schottky group F is a non-classical Schottky group if 

it is not classical. 

Marden in [Mar74] proved the existence of non-classical Schottky groups 

and Yamamoto [Yam91] gave an explicit example of one. 

Lemma 3.2.4 TAe property/ o/ Aemgi c/aaaicaZ o/ 

6?/ o/f5'Z/2(C). 

Proof : Let F = < g i , . . . , pn, > be a classical Schottky group with defining 

circles Z, i , . . . , I,2n and E f 5'^2((C) then = < . . . , > 

and has generating curves . . . , which are circles since elements of 

f6'jL2(C) are conformal. O 
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3.3 Schot tky manifolds 

The manifolds associated to a Schottky group are topologically very sim-

ple. 

Lemma 3.3.1 GtfeM a 6'cAô A;?/ proi/p F o geĝ ênce gZemen(5 

'Yk E r diam(''yt-D) — 0 luAere m 6aZ/ mocZeZ. 

Proof : By Lemma 3.1.11 we have that dD C ^ ( r ) . Let P be a convex 

locally Snite fundamental region for the action of F on r2(r) U Since F 

acts properly discontinuously on r2(F) U and co)T,./iitZZ(Z)) U D is compact 

we have that con.A'uZZ(D) UD is contained in the union of a Snite number of 

images of f , ( i f , . . . , 

Let O! be a geodesic with endpoints in D then a C coM.A'uZZ(D). By 

Lemma 2.6.4 we know that 

distinf (0, Yt I J O f ) ^ 0 

where distance is Euclidean and taken in the ball model. But this means 

that 'yt(cK) converges to a point and so diam('yk^) —> 0 as required. O 

L e m m a 3.3.2 If T =< gi,...,gn > is a Schottky group then n(F)/F is a 

Proof: We shall prove this by showing that D is a fundamental region for 

the action of F on r2(F). For this we need three conditions to be satisfied: 

1. the Lebesgue measure of is 0, 
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2. -/(D) n D = 0 for all -y E r - {id}, 

3. r D = o ( r ) . 

The 6rst comes from the fact that 9D is a collection of analytic curves, 

the second from Lemma 3.1.5. We will now prove the third statement. 

We will work in the ball model so we can apply Lemma 3.3.1. 

As D C 0 ( r ) and ^^(r) is F invariant we have that FD C We shall 

now prove the reverse incInsion. 

Let Zo 6 D be 6xed and choose any z E ^ ( r ) then there are two options 

either the number of simple curves in F^D that separate zo and z is hnite or 

inhnite. 

Suppose that the number of curves is finite. We shall prove the result by 

induction on the number of curves M. 

Base Case: M = 0 then z E D along with zo. 

Inductive step: Suppose the result is true for w separated by n curves 

from ZQ. 

Let the number of curves in F^D separating Zo and z be M + 1. Suppose 

the curves are C i , . . . , Cn+i ordered so that the component of C — Q contains 

Zo and Q_i . Then there are such that C D. If I'm+iz E D we are 

done. If not then there is some ^ E G(r) such that ( z is only separated by M 

curves from ZQ. We can take C so that it interchanges the two components of 

r)(r) — F9D that bound C^+i. Then (̂ z E FD by the inductive hypothesis. 

Since FD is invariant under F we see that z E FD as required. 

We shall now show that if there are an infinite number of curves separating 

z and Zo then z E A(F). Let the curves be {C^}. By Lemma 3.3.1 we know 
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that diamCfi -4̂  0. Let be the component of C — that contains zo 

then diamDn ^4 0 as it contained D so that -4̂  z. There are such that 

(/n C 'Yn-D this means that z as n D = 0 by Lemma 3.1.5. But 

this means that z 6 A(r) as required. 

• 

The following proof is a consequence of [Ber61] and the fact that a quasi-

conformal map extends to a homeomorphic quasi-isometry of see [ThuSO]. 

Lemma 3.3.3 o o/ n (Aem Bl^/r za genua n 

3.4 The limit set of a Schot tky g r o u p 

We will reprove the following lemmas later in this section with a more 

dynamical Savour. We give the following elementary proofs for completeness. 

L e m m a 3.4.1 The limit set of a Schottky group is totally disconnected. 

Proof: We recall that a set is totally disconnected iE for any two distinct 

points there are two disjoint open sets with one point in each set and whose 

union is the original set. 

Conjugate F to the ball model of hyperbolic space, since elements of 

Mo6(R^) are homeomorphisms they preserve total disconnectedness. 

Let z, w 6 A(r) . Note that A(r) has the subspace topology so that a set 

is open in A(r) if it is the intersection of an open set in (C with A(r) . 
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If z, w are in diSerent D('y) then without loss of generality suppose that 

z 6 -D('y) and w ^ 'D('y). Then D('y) n A(r) and (C — D('y)) n A(r) are both 

open sets as A(r) n = 0 so that D('y) n A(r) = n A(r). For 

the same reason the union of the two is A(r). 

Now assume that they lie in the same D(''yt) for some sequence of distinct 

elements 'yt such that z, tu E D('yk) for all ^ but by Lemma 3.3.1 we have 

that 2 = w as required. O 

Lemma 3.4.2 T/ie o/ o a Cozitor get. 

Proof: Recall that a Cantor set is a metrisable, compact, perfect and 

totally disconnected set. The Erst and second conditions come from the fact 

it is a closed set subset of C, the third &om Section 2.7 and the fourth from 

the above lemma. O 

3.5 Schot tky space 

We now investigate the collection of all Schottky groups. 

Defini t ion 3.5.1 Fix a genus n > 1 then m a r k e d S c h o t t k y space MSn 

is the subspace of f 5'Z,2(C)" such that (g i , . . . , pn) G generates a genus 

n Schottky group. 

Defini t ion 3.5.2 Fix a genus n > 1 then Schot tky space Sn is the quotient 

of by conjugation by elements of f 
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Chuckrow and Marden proved that and 5"̂  are path connected and 

open see [Chn68] and [Mar74]. 

Note that different points of or 5"̂  do not necessarily generate dif-

ferent Kleinian groups. 

Defini t ion 3.5.3 M a r k e d Classical Scho t tky space MCSn is the col-

lection of elements of that generate a classical Schottky group. 

Defini t ion 3.5.4 Classical Schot tky space CSn is the collection of el-

ements of 6"̂  whose lift to MS'n is a classical Schottky group. Classical 

Schottky space is well de6ned as conjugation by F6'jL2(C) preserves classi-

calness see Lemma 3.2.4. 

Lemma 3.5.5 CZaaaicoZ 6'cAoWÂ  spoce operi m 5"̂ ,. 

Proof: Let [F] E 5"̂  then T = (p i , . . . ,gn) E [F] is uniquely dehned by 

requiring that hxes 0 and oo and the attractive hxed point of is 1. 

Now let [F(A:)] —> [F] then r(/c) ^ F where the F(A;) = (^i(A;),..., 

are uniquely dehned by letting pi (A;) fix 0 and oo and the attractive hxed 

point of p2(^) he 1. So we have that for all %. 

Now suppose that F haa generators { / i i , . . . , on which it is classical. 

Each Ai can be expressed as a word in {p i , . . . De6ne to be the 

same word with replaced by Then E F(A;) and r(A;) is generated 

by An(A;)}. 

As gi(A) —> pi we see Then for large A: the circles paired up 

by A, are almost paired up by A; (A;) and by the openness of the fundamental 

domain of F we see that F(A;) is a classical Schottky group for large A; and so 
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[r(A;)] E for large A:. O 

There is a nice discussion of Schottky space in [Mar74]. 

3.6 T h e bounda ry of Schot tky space 

Given a sequence {(gi(A;),..., pn(/:))} of M5'n, we ask the question "what 

can this sequence converge to?". 

We first note that it is possible that one of the leaves f 5'iL2(C). 

If this happens then the objects associated to the groups degenerate fairly 

severely. We investigate this for genus 2 Schottky groups in Chapter 6. 

We now look at what can occur if all the converge in f 5'Z,2(C). 

They can of course converge to a Schottky group. 

They cannot converge to a non-discrete group, in other words leave the 

space of all Kleinian groups by a theorem of J0ergensen [JK82]. 

Chuckrow [Chu68] showed that if lim is a Kleinian group then it must 

be free and of the same genus thus torsion free. 

lim Pm can contain parabolics and the subset of for which lim 

has a parabohc element is of at most codimension 1 [Chu68] although it is 

a dense set see [RCS03] where they attribute the statement in the case of 

Schottky groups to Sullivan. 

So the following case must occur. 
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They converge to a free, purely loxodromic Kleinian group that is not a 

Schottky group. By Maskit's classihcation of Schottky groups [Mas67] we 

see that A(r) = C. This means that limPm is geometrically in6nite. 

3.7 Dynamics and Schottky g roups 

In this section we introduce the shift space of a free group P which is 

the set of sequences ((;) where G G(r) and OC+i 9̂  This set can be 

viewed as the boundary at infinity of the Cayley graph of the group or for 

a Schottky group its limit set. We then project the left shift acting on the 

shift space to the limit set. 

The statement of the following proofs can be found in [Bow79] where he 

proves it in the case of quasi-Puchsian groups. The quasi-Puchsian case is 

more complicated aa the shift space is no longer in one to one correspondence 

with the limit set. 

Defini t ion 3.7.1 Given a Schottky group F let the sh i f t space of 

r be the subset of n r ^ ( r ) such that for all (ar,) E 2^ , ^ We 

give Zn the topology generated by setting a basis to be the cylinder sets 

= {(2/1,^/2,...) E = a:i}. 

With this topology 2^ is a Cantor set. 

DeSnltlon 3.7.2 Given a Schottky group T = < . . . , > define the map 

TT from to closed sets of C by 

i>l 
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L e m m a 3.7.3 n is a bijection from 2^ to A(r) . 

Proof: We will Srst of all prove that 7r maps into A( r ) . 

Let (%;) E En then C as ^ zd. 

Because the intersection of an inAnite number of nested compact sets is 

non-empty and Lemma 3.3.1 we have that D ( z i . . . is a single point. 

Let w E D then by dehnition E for ail % so that 

-0(371... is an accumulation point of Pw so is in the limit set. 

We now prove injectivity. Let (ari), (^i) E 2^ such t h a t (a:*) ^ then 

there is some minimum A; such that 2;̂  ^ We shall show that 7r(%,) 

7r(^i). We have that 

7r(2;i) = n iD(2; i . . . z j and 7r(i/;) = n i D ( ^ i . . . ?/,). 

However Z i . . . 37̂  f !/i - Z/t so that D(3; i . . . 2;̂ ) and ^ ( ^ / i . . . are disjoint 

but by the dehnition of vr this means that 7r(3:t) and 7r(7/i) are distinct as 

required. 

We now prove surjectivity. Let z E A(r) then for each n there is some 

'Yn such that z E D(%) and Z('yn) = Now = 1 otherwise 

(Z! D('yn). This means that ^ so 7r(('y-^'yn+i)) = 

as required. • 

To show that vr is a homeomorphism we will need the following topological 

Lemma. 

L e m m a 3.7.4 Two are /lomeoyrtorpMc z/^Aere zg a b '̂eĉ ioM between tAe 

56(5 mcftices o 6i;'ec(%on 6e(ween opezi 6oae3 /or (/le (wo ae(a. 
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P r o o f : Suppose that % -4 y is a bijection tha t induces a bijection 

—> C where B and C are bases for % and F respectively. 

Given em open set C % we shall show that (^((7) is open. 

As B is an open basis there are 6̂  E B such that bj where the 

union is over arbitrarily many elements while the intersection is over a finite 

number. 

Now 

rij Ui&j = Hj U; ^6^ 

as ^ is a bijection. This means that < (̂(7) is open aa it is the union and finite 

intersection of open sets, the 

The reverse direction is done by considering ^ instead of and we are 

done. • 

Lemma 3.7.5 The map tt is a homeomorphism. 

Proof : 

We will use Lemma 3.7.4 so we only need to consider the cylinder sets. 

TT induces a bijection between the cylinder sets and the open sets A(r) n 

So we need to show that the sets A(r) n form a basis 

for A(r). 

Let be an open subset of A(r) and z E then z = . . . T,) 

for some (a:;) G by Lemma 3.7.3. By Lemma 3.3.1 we have that 

diam(D(a;i.. .a;;)) 0 so that for some A; C (7 as required. 
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• 

DeGnition 3.7.6 We deSne z {^y^} to mean that the sequence {'yn} 

satishes z E D('yn), = 71 and Z('y^ '̂yn+i) = 1 for Lemma 3.7.3 

shows that such a sequence exists and is unique. 

Defini t ion 3.7.7 Define the left shift r : by 

r((3;i,Z2,a;3, - - )) = (3:2,3:3, - - J-

We now project the left shift T to A(r). 

Defini t ion 3.7.8 Given a Schottky group F = < gi, • • •, Qn > define the map 

/ : C C by 

{ ( - ' M v C E G ( r ) 
= z . E C . 

L e m m a 3.7.9 T/ie dmpram commu^ea 

A(r) A(r) 

Proof : Let (2;̂ ) E 2^ then /(7r((a;i))) 

/ f Q D(2; i . . . 3;̂ ) j = Q = Q / z i . . . 
\i>l / i>l i>l 
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= Q Z2 . . . = Q D(z2 . . . = 7r(T((a;i))) 
i>l i>2 

as required. O 

3.8 Es t ima tes for Schot tky g roups 

In this section we give various inequalities that are specific to a particular 

Schottky group. All of the results in this section Eire well known. 

The following Lemma is proved by Bowen [Bow79]. 

Lemma 3.8.1 Giuem o F oo G D are con-

jRT, 7^' > 0 p, <% G (0,1) g«cA 

< diamD(^) < 

/or eiien/ 'y E F. 

Defini t ion 3.8.2 Given a Schottky group T and 7 G F, we define the 

cont rac t ing set 000(7) of 7 to be the set 

con(7) = U D(() 

where 7 = g ' l . . . as a, reduced word. 

For an isometric Schottky group the set con (7) contains the subset of 

A(F) on which 7 acts as a contraction, in the general case, given a Schottky 

group there is an N such that 7 acts as a contraction on con (7) as long as 

((7) > TV, this can be seen by Lemma 3.8.1 and the following inequalities. 

51 



Lemina 3.8.3 a T luitA oo G D afid yz3;e(f tu E D not 

oo tAeTi t/^ere are po5zt%t;e coMstonk ai/c/i tAot 

^ ( l Y W I < lYWl < - ^ i lYWI 

/or aZZ 'y G r ond z E coii('y). 

Proof : Fix w e D and let 7 E F and z E con(7) be given. Then 

. . az + 6 
TW = ̂  

SO that 
lYWI _ k 

d | 2 
C I 

|Y(w)| | z + ^ | 2 

where — ̂  = cenZ^ = 7"^ (00). 

Now deAne 

= distiaf(^D, cenZy) 
7er 

this is positive as the set of accumulation points of (J-yer cenZy is the limit set 

of F see Lemma 2.7.2, 9D and A(F) are closed and disjoint and cenZ^ E D(''y) 

for all 7 E F by Lemma 3.1.14. 

We have that 

|w — cenJ^p distaup(w, 

|z - cen/^l^ min(,^eG(r) distinf(D((), 

as z and cenZy lie in different components C — D by the definition of con (7) 

and we dedne 
distsup(w, ) 

K, 
min(,(eG(r) distinf(D((), D( ( ) ) ' 

The lower bound is 

|w — cenZvl^ '71 > 

|z — cenZyp diani(^D)^ 
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and we let O 

Lemma 3.8.4 G2i;eM o proi/p F oo E D ancf yZiecf lu E D (Aem 

^Aere are po52^2iie coMĝ am â ^"2 an(f ^2 (Ao( 

-K'2lY('u;)| < diam(D('-y)) < jir2|7'WI 

/or oZZ 'y € r . 

Proof : Fix w ^ D. 

Given 'y E T write 'y as the reduced word Ci - Ct-

By definition 

D{j) = (,^^^Cl:-lD{Ck) 

SO 

diam(D('y)) = diam ((1. . . 

= max | ( i . . . ( t - i ( ^ i ) - C i - . . C t - i ( ^ 2 ) | 
zi,z2eD((t) 

= max .221 (3.8.1) 

by Lemma 2.2.5. 

We first do the upper bound 

diam(D('y))< max |((i . . .(A:-i) 'W|diamZ)((t) 

by taking the maximum of each term of equation 3.8.1 and since z E C 

con((^i... Ct-i) we can apply Lemma 3.8.3 to find the constant TiT such that 

diam(D(3/)) < KdiamD((t)|(Ci - - -
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< j^diam(^D)|(Ci. . . 

for some w E D. 

Now we have that 

KCi... I KCi... a - i ) ' ( w ) I 

KCi... W W I KCi... M l 

by the chain rule. Since G con(( i . . . ( t - i ) we can apply Lemma 3.8.3 

to get 
l(Ci...Ct-0'M| ^ K ^ K 
| ( ( i . . .&) ' (« ' ) KKw) min(eG(r) 1C'(«')I 

and note that this is hnite as G(r ) is a Snite set and w E D. 

So putting it together we have 

so de6ne 
j^^diam(8D) 

K. 
min^EGM 

which does not depend on the particular 'y G F but does depend on tu and 

the dehning curves. 

We now do the lower bound. 

Let wi,W2 G be such that |wi — wg] = diamD((^t) then 

diam(D('y)) = max - ^ z l 
zi,z2eZ)(Ct) 

> KCi... . . . a_i)'(w2)|^^^diamD((t) 

and by Lemma 3.8.3 twice this is 

> . . . ( t - i ) ' > ^ 1 ( 0 - - - C t - i ) ' W | diamD(() 
\(EG(T) 

54 



for the fixed w G D. 

In the same way as for the upper bound we have 

X' y A" 

l (Ci ' - -Ct ) 'HI ICiHI mm<eo(r) IC'(«-')r 

So putting it all together we have 

and we deBne 

^ (min^eG(^) diamD(()) 
^ min(gG(r)|CWI 

which does not depend on the particular 'y 6 P but does depend on the hxed 

w e D. O 
We need the following Lemma to relate distances in to distances in C. 

L e m m a 3.8.5 Given two vertical geodesies H and H' in BP whose non-

ore 6?/ a d a /u/f/tgr 

^eodeaic CK o/ ZeMptA Z w/ioae Zze OM tAe (wo 

geocfgaica (Aeyi (/le ome o/ (Ae o/ a coM 

Proof : Without loss of generality let p E be the lowest possible 

endpoint of A. 

We shall prove by contradiction that a is perpendicular to Assume 

not then there is some g' G such that the geodesic a ' from p to g' realises 

the shortest path from p to Tif'. So we have that d(p, < Z and so there is 

some point g below p such that cf(g, g') = Z and we have the contradiction. 
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Trazislatioii parallel to R is both a Euclidean and a hyperbolic isometry so 

preserves the setup, the same is true of a reSectiou in any line perpendicular 

to R. So we can give coordinates to BP such that p = (cf, 2/) for d > 0 and 

y = (0, but as CK is perpendicular to we have that 1/'̂  = so that 

by the formula in [And99]. We can solve this for ^ to get 

d 
y = 

sinh(Z) 

as required. • 

Lemma 3.8.6 Given a Schottky group F with 00 E D and fixed w E D then 

(/lere ore 

^ 3 i y ( ^ ) l < < ^3 |Y(w) | 

/or "y G r , w/ierg (/le Euc/WeoM /lezpM o/ 'y(j) . 

P roo f : We shall prove the existence of a lower bound Erst by showing 

that there is a lower bound for the height of '/(p) for a particular p G 

then extending this bound to any g E 

Let C be a circle such that the disc bounded by C is contained in Z) 

then let p be the point that lies on the top of f , the hyperbolic plane whose 

boundary is C. We see that p satisGes the conditions of Lemma 3.1.17. Note 

that there are many choices for C. 

Now choose another circle C" such that C and C have the same centres 

and the annulus bounded by C and C contains in its interior. Again 

there are meiny choices for C". 
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Define f to be the hyperbolic plane that bounds C and f " to be the 

hyperbolic plane which bounds C". Let a be the geodesic segment from f 

to f . Dehne p and p' to be the endpoints of a which are in f and P ' 

respectively. Note that a is a vertical line segment. 

Figure 3.3: Setup for height derivative equivalence 

Given 'y G F we shall apply it to this setup, then hnd a lower bound on 

the height of 'y(p). 

Project '-/(a) vertically to C; then this is a Euclidean line f that intersects 

'y(C) and in z and z' say. Let jif be the unique hyperbolic plane which 

contains oo and whose boundary is tangent to 7(0) and intersects at right 

angles, dehne similarly except let its boundary be tangent to ^ ( C ) . 

Now consider the hyperbolic sphere 5' of radius Z(a) centred at ^(p) and 

the points g and which are the unique points vertically below 7(13;) such 

that q & S D H and q' E S (1 H'. 

We shall bound the height of g and then the height of 'y(p). 

We have the following estimates 

<^(9,9') ^ 2Z(a) so that distinf(g,^') < 2/(0:) 
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Figure 3.4: Setup under 'y 

Figure 3.5: Lower bound on the distance 

and 

di8tinf(l'(C),'y(C")) = min |Y(wi)|^/^|Y(iD2)|^/^|wi - wzl 

>A'i |Ywl min Iz —ml 
- '̂ ' zec,u,ec" 

for some lu E D by Lemma 2.2.5 and then Lemma 3.8.3. We deSne 

minzec,tu6c' jz — and note that it is independent of Y. 
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By Lemma 3.8.5 we have that the height of g is greater than 

distM(7(g),7(C')) > , , , 
sinh(d(g, g')) ^ 8inh(2Z(cK)) ^ 

where we note that ((a) is a constant independent of 'y. 

We have that g) = ^(0:) so that the lowest that '^(p) can be below 

g is the hyperbolic distance 2(0;) bnt this corresponds to 'y(p) being at the 

height of g divided by exp(Z(o;)). 

Similarly if we let T p) then can be at most times the 

height of 'y(p) so in conclusion we have 

^ j 
^ " exp(Z') exp(Z(o!)) 8inh(2Z(a!)) ^ 

so de6ne 
jT' = 1 ^2 

^ exp(Z') exp(((o!)) sinh(2Z(a:)) 

The other side of the proof is simpler. Let p be the same p as in the 

Erst half of the proof then 'y(p) E f ("Y) for every ^ G T by Lemma 3.1.17. 

Since f (7) C we have that the height of "y(p) is less than 

diam(Z)('y)) and so by Lemma 3.8.4 this is less than Jir |y(w)| for some jiT > 0 

and fixed w E D. 

As above if we let Z' = p) then we have that 

< exp(r)K|y(z)| 

so deiine 

TiTg = exp(Z')A' 

as required, note that the constant depends on lu. O 
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L e m m a 3.8.7 Ginen a groitp F oo E D t/ien ^Aere ore poat^we 

conatoM^s ofid sitc/i 

j<:4exp(-(^(;,'y;)) < < K4exp(-d( j , 'y ; ) ) 

/or oZZ 'Y E F. 

P roof : We 6rst do the upper bound. 

Given 'y E F let A be the geodesic ray from j through ^(^') with endpoint 

z and let (f = |z — 7( j ) | then d > 

Pull everything back to the ball model by the inverse of stereographic 

projection then = 0. 

Let r = we can then calculate to get that 

t a n h ^ = l - r 

which means that 

exp(d(;,'y;)) + 1' 

We can apply Lemma 2.2.9 since oo E n(F) to get a constant Z,' such 

that 
, , r 2 2exp(-c;( j , 'y;)) 

Z,' Z,'exp(d(j,''y;)) + 1 Z,' 

so deEne 

We now do the lower bound. 

Given E F then the lowest that can be is directly below j at hyper-

bolic distance 'yj') and we can calculate this explicitly as 

1 , . 2 1 
= log 

t/ h-y y 



so that the lowest that can be is exp(-cZ(;,'y;)) and we have the lower 

bound with Kl = 1 . ^ 
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Chapter 4 

Types and Examples of 

Schottky Groups 

In this chapter we give various examples of Schottky groups. For simplic-

ity we shall consider only two generator groups. 

4.1 Isometr ic Schot tky groups 

Defini t ion 4.1.1 Perhaps the simplest example of a Schottky group is an 

i sometr ic Schottky group. A group F is isometric if it has generators {g, /i} 

such that and are all disjoint and not nested. The isometric 

circles then form a set of de6ning curves for P. 

Example : Given four distinct points 2:2,2/i, 1/2 in C then for A, E C 

sufhciently large, < A > is an isometric Schottky group where gi Exes 2:1,3:2 

with multiplier A and A hxes 2/1,1/2 with multiplier 
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Figure 4.1: Isometric Schottky group 

The proof is essentially Lemma 2.9.1 and the expression for the radius of 

the isometric circle. 

Since the isometric circle of a Mobius transformation is not preserved 

by conjugation the property of being an isometric Schottky group is not 

invariant under conjugation. It is easy to see this if one of the Exed points is 

sent to oo. A non-isometric Schottky group is a Schottky group that is not 

an isometric Schottky group. 

4.2 Classical Schottky groups 

DeGnition 4.2.1 A Schottky group is classical if it has deSning curves 

which are circles for a set of generators. 

It is worth noting that classicalness is invariant by conjugation by Mobius 

transformations. 

Example : The obvious example of a classical non-isometric Schottky 
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group on a set of generators is 

where |/^| > max{7, |A|^} and p Bxes ± 1 with multiplier A. 

Figure 4.2; Classical non-isometric 

Example : A slightly more interesting example of a classical Schottky 

group is < > where cen/^ = 

then 

cen/g-i = i and p haa multiplier —2 

-i7071067810z + 2.121320338 

-.7071067810Z - ^7071067810 

so that ^ has 6xed points 21.732050806 ajid —21.732050806. The cir-

cles 5'6.74i665(—^7.591665) and ^(5'6.74i665(—%7.591665)) are disjoint and as 

cen/g € jB6.74i66s(—^7.591665) we have that < > is classical as long as 

the isometric circles of A do not intersect each other and 56.74i665(—'^7.591665) 

and (̂.86.741665 (""^7.591665)). 

Note that < ^, > is non-isometric on these generators. 
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Figure 4.3: Non-isometric with bounded Limit set 

y 

-i 7.591665 

Q i h 

All Puchsian Schottky groups are classical see [Mar74] although he at-

tributes it to J0rgensen. 

We can de&ue [F] in Schottky space to be isometric if there is some P 6 [F] 

such that F is isometric. I believe it is an open question whether the isometric 

subset of Schottky space is equal to the classical subset. I conjecture that 

this is not the case, i.e that there are classical Schottky groups that are not 

isometric up to conjugation. 

4.3 Non-classical Schot tky groups 

Defini t ion 4.3.1 A non-classical Schottky group is a Schottky group for 

which no set of generators is classical. Non-classicalness is invariant by con-

jugation under Mobius transformations for the same reason that classicalness 

is. 

Mardem [Mar74] proved the existence of Non-classical Schottky groups 

by showing that if the limit of a sequence of classical Schottky groups is a 
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Kleinian group then it has non-empty domain of discontinuity. We know by 

a result of Chuckrow [Chu68] that there are limits of Schottky groups for 

which this does not happen. 

Yamamoto [Yam91] gave the hrst explicit example of a non-classical 

Schottky group. In the following section we generalize this example to a 

family which contains a sequence of non-classical Schottky groups which do 

not converge to a subgroup of f5'Z'2(C). Our proof follows very closely his 

proof except that we allow the multiplier of /i; to vary. 

4.4 An Example of a sequence of Non-

classical Schot tky groups 

We shaU show that the following group is Schottky and non-claasical for 

^ E (1, V^) and e small depending on Z. 

Def ini t ion 4.4.1 We let = < hi > where 

and 

. . az + c 

such that <3 = -I- e and c = — — 1. We assume that Z 6 (1, \/2) and 

e G (0,1), this means that o > 1. 

L e m m a 4.4.2 o grot/p. 

P roof : Consider 7 ,̂̂  and 7 ,̂ then we have 

c e n ( 4 , J = g 
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and rad(7g 
1 1 

|c| 

since Z > 1 and € > 0. Note that o ^ oo as Z — 1 so tha t cen(fg; ^±i) — ± 1 

and rad(7g; J ^ 0. 

Given f, > 0 then de6ne to be the boundary of a rectangle such 

that n (EU tE) = — (̂ , — ( ^ — 

We shall show that and do not intersect and 

form deEning curves for for small. 

Figure 4.4: Non-classical Schottky group 

( ) f 4 j 

By symmetry we only need to check that: 

1- W " cen(/g; J - rad(7g; J , 

2. + (^0) > cen(7^, J +rad(7^, J , 

— (̂ ) > irad(7g; J , 

4. A z ( ^ - ( ^ ) > 2 Z ( a i ^ - a ' ) . 

1- cen(ig; J - rad(Ip, J a 1_ 
|cl |cl 

which is greater than 0 for all J > 0. 
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Figure 4.5: Distances to check 

2. + ( '̂)) > ceii(7g; J + rad(7g; J iE - 1) + /^6'|c| > a 4-1 if 

> 0 which is true for all > 0. 

3. — ^) > 2rad(7g; J iS + e — 1 — ( |̂c| > y since — 1 > j for 

/ 6 (1,1 + y z ) we need to check e > 6|c| and for all small this is true. 

4. — 6) > — 6') iff 6 < (5' but we are allowed to choose this 

since the previous cases only needed ^ less than some Exed small value. 

• 

Defini t ion 4.4.3 Let —< hi ,gi,e >• 

Lemma 4.4.4 w a cZasazca/ 7n/oct it'a eartended Fuc/i-

. f . c ; ince Z > 1 and e > 0 we have that a, c 6 R. The generators of 

have real entries in their matrix forms so preserves R and since it is 

a subgroup of a Schottky group it is also a Schottky group [Chu68]. 
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In fact we can give it explicit defining curves. 

We have 

since 

^^(|cen7g, J - rad/g, J > |cen7g; J + rad/g,^ 

2 P + 1 + (e + l) — 1) a + 1 
V > 

Z2 + l + ( e - l ) ( Z 2 - l ) G - 1 

for all Z > 1 and c > 0. 

So we can hnd a (̂  > 0 such that the curves 7 ,̂ . ^ ( 0 ) and 

are all disjoint which proves that the group is classical. 

Figure 4.6: Subgroup is Classical 

• 

It is useful to give a short overview of the proof. In the first part of 

the proof we provide an upper bound on the length of the components of 

Q(Gl^e) n M. 

We then, for contradiction, assume that is classical. We use this and 

the bounds on n R to bound n (R U iR). Once we have this 



bound we show that there is some image of a deSning circle under that 

intersects another image of a deGning circle. 

4.4.1 Invest igate t he lengths of c o m p o n e n t s 

Defini t ion 4.4.5 Define to be the interval in R bounded by the fixed 

points of Define 9!'2, and 9̂4 by (62 == <63 = /̂ r^(<A2) 

and <̂4 = 

By the dehnition we see that so = 

which means ẑ,g((?!)4) = fiis. 

Figure 4.7: The order of the 

We will now show that the longest component of U ^)) ri 

is shorter than majq 

L e m m a 4.4.6 7/ 7 ia 0 compoMGMt 0/ U H 

7 C 7(^:) /or aome % and aome 'y 6 G;,;. 

P roof : All components of H E are equivalent under and each 
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i;6i contains at least one component as it has its endpoints in A(r). O 

t/ien > 0 or = 0 a?i(f > 0 

(̂ 2 > 0 or = 0 < 0 

^3 < 0 or mt = 0 Qfid > 0 

, <̂4 t/ien < 0 or = 0 (ZMcf < 0 

Lemma 4.4.7 f os obone ancf 'y 0/ mWmaZ gucA (Aat 7 C 

wAere 'y = aucA (Aat m i , . . . , ^ 0. 

Proof: If = i;!'! and < 0 then we can reduce the length of 'y by 

considering '7A'!̂ 9!»4 and if = 0 and < 0 we can reduce the length of 'y 

by considering 'yg!,6^2. 

The other cases follow by the same argument on noting that p;,6(1^4) = <̂ 3-

• 

Lemma 4.4.8 7 amd mzmma/ "y sttcA 7 C 

G u 

/or oZZ t < /c. 

Proof: We prove this by induction on A; — 

Base Case: t = A: then consider and by the table in Lemma 

4.4.7 we have the result. 
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Inductive step: Assume the result is true for t + 1 < A; then 

but aa the group is claasical on the defining curves in Lemma 4.4.4 we have 

that U is disjoint from U as f 0. 

If ^ ^ 1 then 0 80 that U C U 

as required. 

If t = 1 then yit might be 0 but we have just shown tha t 

/ i r ' . . . 0 u D(gz,r') 

so that (̂'2 )̂ 0 U but this contradicts that I C U 

• 

L e m m a 4.4.9 ni 7̂  0 

Proof : This is the last part of Lemma 4.4.8. O 

We now prove a technical Lemma. 

L e m m a 4.4.10 We have 

|cjt mm diSbinf (0, cj)i) —-— 1 ^ 0 
i = l , 2 t 

/or Z > 1 E gmoH. 
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Proof : By calculation we have 

min distinf (0, Z 
i = l , 2 

as E —0. 

We will show that 

lim \c\l min distmf (0, (pi) — - — 1 > 0 
€=0 1=1,2 L 

then for small e we will have the result. Expressing this in terms of / we have 

that this inequality is satisfied if 

, I ( V - l U + 1 " 

and by calculation we see that this is true for Z > 1. O 

L e m m a 4.4.11 (Pmeyi 7 o/id mmzmaZ 'y auc/i 7 C |Y(z)| < 1 

/or z G 6 

Proof : Write "y as such that m i , . . . , 7̂  0-

We shall prove that < 1 for every ^ by in-

duction on A; — f. 

Base case: A: — t = 0. 

We split this into 3 cases depending on the value of m t . 

Case 1. = 0, then lies outside ig, by the table in Lemma 4.4.7 

we have < 1. 
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Case 2. < 0, then 

i{g,,"'hrY{z)\ = liA/^nhr-mhr-Mi = 

which is less than 1 as is outside U because = (̂ 3 

or 1̂ 4 by the table in Lemma 4.4.7. 

Case 3. > 0, then = (̂ 1 or (̂ 2 then 

now < 1 aa the isometric circles of are disjoint so we 

will look at the last two terms. They are 

mk 1 

which is less than or equal to 1 iH" 

+ > 1. 

Using the triangle inequality we get that this is true is 

| c | / ^ | z | - > 1 

but |z| is greater than min^ distinf (0, (̂ i) so the above inequality is satisAed if 

|c|Z2 mindistinf(0, —0/ 2 > 1 . 
i=l,2 

. But 

|c |Z^ min distinf (0, > |c|Z min distinf (0, <;6i) — 
j = l , 2 1=1,2 

as |c| mini=i_2 distinf(0, o > 0 so by Lemma 4.4.10 we are done. 

The inductive step is done in exactly the same way. O 
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L e m m a 4.4.12 The length of I is less than L = maxj diam(0i) . 

Proof : Find minimal 'y such that 7 C then by Lemma 2.2.5 

diam(Z) < diam('y((;6i)) < max — w] < diam(^i) 

by Lemma 4.4.11. • 

4.4.2 Using bounds on Q{Gie) to get b o u n d s on Q(ri 

For contradiction assume that Ff,; is classical and let C be a set of dehning 

curves which are circles. Note that the circles PC are pairwise disjoint. 

Defini t ion 4.4.13 Let {Cj}i=i..,n be the complete collection of circles in 

rC that separate 0 and oo and cut E inside jR(pz,€)- We give the collection 

{Q}t=i...n the order such that C, separates 0 and Q+i . Let Co be the unique 

circle in FC that separates 0 and oo with the property Co intersects (0, 

and Co n (0, is greater than C n (0, for any other circle C that 

separates 0 and oo. We deSne C^+i to be the unique circle in FC that 

separates 0 and oo and intersects oo) at the lowest point out of all 

circles in FC that separate 0 and oo. 

L e m m a 4.4.14 TAe coHectzoM {Q}i=o...n+i oZiuot/s /east two e/-

emeritg and we /et oo) H Q (Aem 

|c| - - |c| 

/or o/Z A XZso Mote tAot 

rWC, < 2 ^ ^ ^ ^ 
" kl 

/or a/Z J. 
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Figure 4.8: The Images of the DeSning Circles that separate 0 and oo 

n+I 

Proof : By Lemma 4.1 of [Mar74] we know that there is a fundamental 

domain D for bounded by circles in such that Z) separates 0 and oo 

so there are at leaat two circles in that separate 0 and oo and we have 

that Co and must exist. 

Since the circles are disjoint, for the upper bound, we only need to check 

the assertion for % = + 1. 

If then is in C and contradicts the deEnition of 

C'n+l SO 

Since the circles are disjoint, preserved by F/_E and in particular /if 

we have 

4+^ < 

and 
a + 1 

and 

2^+^ < a + 1 
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by the same argument. 

The lower bound works in exaxztly the same way. 

The bound on the radius is obvious. • 

Def in i t ion 4.4.15 As Q and are adjacent in we have that they 

bound a fundamental region which we denote D*. 

Lemma 4.4.16 The lengths of at least two components of Di fl (RUiK) are 

P r o o f : Let the boundary circles of be Q , Q+i , C and C" say, then C 

and C" intersect at most two half axes. The other two half axis intersect 

in cki and 0:2 say. 

We will consider a i and the same argument will work for ag. 

Let the furthest point on a i from 0 be denoted . 

By Lemma 4.4.14 the distance from 0 to azi is less than ^ so we can 

End A; > —7 such that |0 — 6 - There may be more than 

one possible value of A; as smaller than the increase in Z, 

otherwise the group would obviously be classical. 

If is in R then CKi it intersects U and by Lemma 

4.4.12 we have that 

/^diam(ai) = diam(/z;^a;i) < maxdiam(^i) ' 
% 

so that diELm(o!i) < TZ/. 
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If is in 2% then lies on R. Consider then 

either lies inside -D(̂ z,e) U or outside it away from 0. This means 

that either a i intersects or is contained in one of the (^/s. 

In either case we have the bound. O 

Lemma 4.4.17 G%iien o poW z m o drc/e C OMcf two c/iords CKi,CK2 tAot 

meet at n^At oMpZes oMcf tAe recton^Ze A mtA tAe j)rope7"t^ t/iat eac/i side o/ ^ 

meets am emoi!pomt o/ one o/ tAe cAorcfs ot n'^At an^Zes tAeM tAe czrcum/erezzce 

o/ A M preoter tAafi twice tAe (fmmeter o/ C. 

Proof : 

Figure 4.9: Setup for big rectangle and small circle 

Let a;i be an endpoint of cKi and ê  the edge of 72 that contains a î. 

Consider the segment Si of ei that is contained in C, let be the other 

endpoint of this segment. 

Now Si and CKg meet at right angles and are both chords so the hypotenuse 

of this triangle is a diameter. 
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Figure 4.10: Proof that the rectangle is larger than the circle 

So the diameter of the circle is less than the diameter of the rectangle 

which is less than the length of two incident sides of A. O 

Lemma 4.4.18 Given circles Cj and let Xk = Cj n oo) and 

= Q + i n oo) — 2/m,| |3:n — 2/n| /or m ^ n are 

Zeaa 7; 6̂7% 

- 2/t| < 778282555 

/or oH A: auc/i / E (1, 2) e > 0. 

P roo f : Let p, be the centre of Q and r̂  the radius and let — 

Q+i-

This proof works by bounding |a7& — iri terms of — p,+i|. First we 

bound — pi+i I in terms of an angle and then bound this angle in terms of 

I. 

Construct a new circle C with centre p, and radius |pi+i — then C 

touches Q+i at a point z, let y be the antipode of z then Pi+i, p, and z 

all lie on a line. Let = C' H 00). 
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Figure 4.11: Initial Setup 

DeEne to be the angle Eind to be the angle Zz'piZm-

We split the problem into two cases. 

Case 1. > §-

We now prove a series of inequalities relating these constants. 

Let CKn and <3!̂  be the angles Zpi /zn and Zpiz'zm respectively then 

sin(^n) +8in(^m) > sin(cKn) + 8in(o!^) (4,4.1) 

by the sine rule aa we are in Case 1. 

We let r be the radius of C then 

" iPi — Pi+11 (4.4.2) 

since |pi+i — z| = Ti+i = |pi+i - pi| + r as all 4 points lie on a straight line. 

We have 
. / \ .Zn — .Z J - r 

sm(a„j — — and sin(a'mj 2r 2r 
(4.4.3) 
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Figure 4.12: Construct the intermediate circle 

since and z to z' is a diameter so the angle Zzzn-::' is a right 

angle, the same is true for 

We now And a lower bound for sin(^n) + sin(^m) using 4.4.1 to 4.4.3 

I , I ^ + > (4.4.4) 
2r ' 2r E t k & l 

as |zn — z| + |Zm — > |zn — z^l > |zn| Or |zm| AS is a right angled 

triangle. We have 2r < |zt| by Lemma 4.4.17. 

As the circles Q aad Q+i are part of the boundary of a fundamental 

domain for the action of on we must have tha t n = 0 

so that 

/jztl > I'̂ A+il (4.4.5) 

for all A. 

We have that 8in(^n) + sin(^m) ^ by 4.4.1 to 4.4.4. Without loss 

of generality we assume that then 

1 
2 sin(gn) > 8in(0n) + sin(gm) > 

1 + Z + 
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Figure 4.13: Bound the angles 

by 4.4.5. We can use this to get that 

1 

1 + cos(«„) 1 _ 

by Pythagorases Theorem and as ^ have that cos(0n) is negative. 

Case 2. Assume that at least one of ^n, without loss of generality 

assume that ^ then 

1 < i < 
l + c o s ( g ^ ) -

4(1+Z+Z:+Z3)2 

which is the same equation as 4.4.6. 

Consider the triangle pi+ipizn then 

|Pi+i — = |Pi — Pi+i|^ + — 2|p; — cos(^n) 

by the cosine rule which imphes 

(n+i - - 2/̂ 1)̂  < - 2|pi - p^+i|r cos(gn) (4.4.7) 



as |pi+i - Zn| > n+1 - - 2/n,| by the triangle inequality 

applied to &nd the fact the C lies between Q and Q+i . 

Applying 4.4.2 to 4.4.7 we have 

(̂ 2+1 — \^n — UAY 

< + (n+i - -p i+ i | )^ - 2|pi - p i + i | ( n + i - co8(gn) 

so 

( '̂i+l — < |Pi — Pi+lT + (^i+1 ^ |Pi ^ Pi+l|)^ 

—2|pi — Pi+i|(ri+i — |pt — Pi_|_i|) cos(0n) (4.4.8) 

since - 2/n| <77-

From 4.4.8 we get that 

^ 1̂ : "Pi+l l (4.4.9) 
(1 + cos(^n)) 2|c| 

using the fact that fi+i — | = r > r, > ^ since Q contains 0 

and Q (1 (0, oo) > ^ b y Lemma 4.4.14. 

We apply 4.4.6 to 4.4.9 to get that 

\ / 2 % ^ 
77 

1 - J l 4(l+Z+Z2+(3)2y 2|c 

n-, 2 \ / 2 ! " ( a + l ) ^ - m + i I (4.4JO) 

1 - \ / l - 4(1+W5+Z3)5 j (G - 1) 

35 n+i < by Lemma 4.4.14. This is our bound on jp. - P i + i | . 

We prove the following for A: — 3 so that G (—oo,0) although the 

proof works for any A;. We have that 

(:C3 - re(pi))^ + (2m(pi))^ = 
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and 

(2/3 - re(pi+i))^ + 

so that 

373 = re(pi) - y r ? -

and 

2/3 = re(pi+i) - - (2m(pi+i)) 

as a;3 < re(pi) and 2/3 < )-e(pi+i). 

So we have that 

k3 - 2/31 re(%+i) - - (im(pi+i))2 - ?-e(%) + 

< |re(pi+i) - re(pi)| + \ / i + i - (^''"(P^+i))^ - y?-; - (%m(pi))^ 

< |pi+i - p i l + - r- + 

< |Pi+i - P i | + In+i - niki+i + n | + Mm(Pi+i) - 2ni(pi)||zm(pi+i) + 

< |pi+i - P i l + |n+i - + |2m(pi+i) -

< |pi+i - P i l + [r^+i - n | | n+ i + n | + |%m(pi+i) - zm,(pi)||277i(pi+i) 

, , 2\/2Z^(a + l ) , , , 2^/2^(0 + 1), 

5 \Pi+l — P:| -I — ki+l — Tij H \Pi+l "Pi] 

by Lemma 4.4.14. Using the fact that |ri+i — nl < |pi+i — Pi| + 77 we get that 

I I I I 4 \ / 2 f ^ ( a + 1) 1 I 2^/22^ (o + 1) 
F3 — ysl < \pi+i — Pi\ H n \Pi+i " Pi\ H n ^ 

|c| |c| 
, , / 4A/2r(a + l ) \ 2v^Z7(o + l) 

= |pi+i - Pil 1 + n — ^ n — 
\ I"! J 

On applying 4.4.10 we get that 
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2 V 2 n a + l ) / ^ ^ 4V2r(« + 1) I 

( l - y i - 4(i+w^TMTj (a - 1) \ 1̂1 

which is a linear bound in rj. 

However for Z E (1, -\/2) and 6 > 0 we get that 

2\/2V[a + 1) ^ ^ygii 

\c\ 

a + 1 

o - 1 

and 

< 2 

i(i + i + P + PY -

by calculation, plugging these all in to 4.4.11 we get 

1̂ 3 — 2/31 ^ Q QQg ( y ^ + 1^ < ?78282555 

as required. O 

DeSni t ion 4.4.19 Let C be the unique image of C^+i under < > that 

intersects 

L e m m a 4.4.20 F/̂ e is non-classical for fixed / G (1, \ /2) and e > 0 suffi-

Proof : The contradiction we shall derive is that ^z,6(C) must intersect at 

least one of the C,, which contradicts the fact that they are all disjoint. 

Let C n R = {z, %/} where i/ < 0 < z then 

, a + 1 
> |^z,6(oo) -

|c| 1̂ 4(2 + 6) +2/2 + 1 - 6 | 
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35 the component of C — C that contains oo does not contain cen/g, .̂ 

By Lemma 4.4.16 we can apply Lemma 4.4.18 with 77 = to get that 

< rz,8282555 

where = C, D (0,00). 

We have 
^ \ J (2/(3 + c + c/^) (—21(1 + c + c/^) 

a 

by calculation and —> 0 as e 0, which was the point of setting up e in 

the hrst place. 

To get a contradiction we need 

1 

|c||/'^(2 + e) + 21̂  + 1 — e 

since C is outside so is contained in 

But 

> Z^i:8282555 

1 - 1 

|c| |Z4(2 + 6) + 2Z2 + 1 - 6| 2Z(Z2 + 1)2 

which is greater than 0 for all Z > 1 so we have the desired contradiction for 

L small enough. • 



Chapter 5 

Dynamics 

This chapter is split into four sections. The hrst three Introduce the 

main deGnitions and tools we will use. In the Srst section we dehne Haus-

dorff dimension and give some basic in variance results. In section two we 

deGne the exponent of convergence of the Poincare series and give the im-

portant result that for geometrically finite Kleinian groups it is equal to the 

Hausdorff dimension of the groups limit set. Using this we prove that if 

the HausdorS' dimension of the limit sets of a sequence of Schottky groups 

r(M) — < p(n),A(n) > vanishes then at least one of the generators, or 

leaves f 5'Z'2(C). In chapter 6 we examine to what extent the converse 

of this statement is true. In section 3 we state the famous Birkhoff Ergodic 

Theorem. In the last section we prove technical results tha t allow us to anal-

yse the Hausdorif dimension of a Schottky group. To do this we introduce 

the full measured set C A(r) and the set ^((() C F. We then bound 

the growth rate of for small t. In the next part of this section we de-

scribe the relationship between Z,(^) and Z/cM when t U 

speciAcally we show that can be viewed as the "conical boundary" of 

This with a result on the way that the embedded Cayley tree of T 
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approaches its limit set allows us to prove that when calculating the expo-

nent of convergence of the Poincare Series of the group T we only need to 

consider and not the whole group F. It is this result and the bound on 

the growth of which are the technical tools we use in Chapter 6. 

5.1 Hausdorff Measure 

In this section we give the deSnition of the HausdorH" dimension of a subset 

of C. We also state that HausdorE dimension is invariant under elements of 

Def ini t ion 5.1.1 Given a set X C C and d > 0 then the d-dimensional 

HausdorfF m e a s u r e of E is 

= limsupinf 
6-̂ 0 

where the inEmum is taken over all e open covers of in other words 

countable collections of open sets that cover % such that < e 

for all z. 

Note that takes values in [0, oo]. 

Lemma 5.1.2 Giuen o C C (Aere o umgite Member %(%) E 

[0, oo] M 0 /or > %(%) oo /or cf < %(%). 

Proof: Take 6 < 1 then is a decreasing function of d so we 

have that for d > d'. 

Suppose that G (0, oo) and (̂  > 0 then 

g^p < lim sup 



< = 0. 
£—>0 

Suppose that G (0, oo) and ^ > 0 then 

= limsupimf > limsupe"'^ 
ê O 6-yO 

t % 
> liinsiip6"'^%'^(^) = oo. 

e-̂ O 

Next suppose that ^ (0,oo) for any d. Then either is 

constant and equal to 0 or oo or there is some jump point cf where %'^(%) = oo 

for 6 < d and = 0 for (̂  > d. At d may be 0 or oo. This is the 

only jump point since for 

• 

This de&aition can be generalised to any metric space see [Fal97]. If 

% C R'" then is a constant times the n-dimensional Lebesgue measure 

o f % [Fal97]. 

Defini t ion 5.1.3 We define the HausdorfF d imens ion of a Kle in ian 

group 'H{T) to be the Hausdorff dimension of its limit set. 

The HausdorE dimension of a Kleinian group is invariant under conjuga-

tion by Mobius transformations, this follows from the fact that the limit set 

is closed and that HausdorfF dimension is invariant under bi-Lipshitz maps 

see [Pal97]. 

Ruelle [Rue82] using techniques developed by Bowen [Bow79] showed that 

the Hausdorff dimension is a real-analytic function over either Quasi-Fuchsiaji 

or Schottky Space. Anderson and Rocha [AR97] extended this result to a 

wider class of Kleinian groups. 



5.2 Pat terson-Sull ivan Theory 

In this section we introduce the Poincare series and its exponent of con-

vergence which are the main tools in Patterson-Sullivan Theory. We state 

the important result that the exponent of convergence of a geometrically h-

nite group is the same as the Hausdorlf dimension of its limit set. We also 

prove that if a sequence of Schottky groups satisfies ? / (< ^(n), >) ^ 0 

then one of the generators leaves It is worth noting that this is 

true for any set of generators. 

Defini t ion 5.2.1 Given a Kleinian group F and p G and s > 0 we define 

the Po inca re series to be 

^exp( -gd(p ,T /p) ) . 
Ter 

The P o i n c a r e series is independent of the base point p chosen, for a 

proof of this in the Fuchsian case see [Pat76a]. 

Defini t ion 5.2.2 The exponent of convergence (5(r) of the Poincare 

series of a Kleinian P is the infimum over all s > 0 such that 

^ e x p ( - g d ( p , i r p ) ) . 
-yer 

converges. 

A proof of the following theorem can be found in [Siil84] 

T h e o r e m 5.2.3 Given a geometrically finite Kleinian group P then 5(r) — 

As an application of Patterson-Sullivan theory we prove the following. 

90 



L e m m a 5.2.4 a ae^'uence 0/ pro%pg ^(71) o^d a/ii/ 0/ 

^emerotora {p(n'),A(7i)} auc/i ?^(r(n,)) 0 (Aen et^Aer ^(71) or /^(n) 

ZeGt;ea f5'Z,2(C). 

P roo f : We shall prove this Lemma by contradiction. We shall show that 

if both the generators do not diverge then liminf'K(r(7i)) > 0. 

This proof is split into two parts. First we show tha t we can assume that 

the generators converge then the second part shows t h a t in this case we can 

End a uniform lower bound on the exponent of convergence of the Poincare 

Series. 

Consider the accumulation points A of ?{(r(n)). Now A C [0,oo] (in 

fact v4 C [0,2]) so we can split this into two cases, either C [e, 00] for 

some e > 0 or there is some subsequence %(r(nm)) of such that 

^(r( '^m)) ^ 0. 

Suppose tha t for every subsequence 7%̂  there is a subsubsequence 

such that liminf ?/(r(nmi,)) > 0- Then we cannot be in the second case as in 

this case there is some subsequence with the property t ha t %(r(n,m)) —0, 

but every subsubsequence of 71̂ 1 satishes l i m i n f = = 0 which is 

a contradiction. This means that we are in the hrst case, so there is some 

uniform lower bound on ?{(r(n)). 

This means that if we can show that given any subsequence we can 

End a subsubsequence such that liminf > 0 then we will have 

proved the Lemma. 

Given a subsequence 71^ of we can hnd a subsubsequence 73^̂  such that 

^ ^ Eind where G f5'Z,2(C). We shall show that 

l iminf?^(< >) > 0 which by the above argument is enough 

to show that the original sequence has a lower bound. 
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Given 'y E r(Mmt) write "y ag a reduced word ( i . . . 

By the triangle inequality we have 

(̂7) 
c((p, 7P) < ^ CiP) < ^(7), mpc d(p, 

gEG(r(7%7n.̂ )) 

We apply this bound to the Poincare series with exponent a 

V ] exp( -W(p , 'yp) )> V ] expf-aZ( 'y) m p c d(p,^p)) 

( 
= 4 ^ 3 exp I —aA max d(p, 

^ \ (eG(r(n_j) 

since the number of elements in a genus 2 free group of length A; is 4 3 

This diverges iE 

3 exp I — max (f(p, (̂ p) ) > 1 

or 
log(3) 

CK < 
max^6G(r(n_j) o((p, '̂ p) 

So let ck = \ then the Poincare series diverges but this 

means that the HausdorS^ dimension of r(Mmt) is greater than or equal to a 

by Theorem 5.2.3. 

In conclusion we have 

log(3) 

and so 

liminf'K(r(7imj^)) > liminf ^ 
max(EG(r(n_j)) W 
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but since max^gG(r(nmt)) (f(p, ̂ p) we have that 

l im?^( r (nmj) > , / — ^ 

which is strictly greater than 0. O 

5.3 The Birkhoff Ergodic T h e o r e m 

In this section we introduce the Birkhoff Ergodic Theorem along with a 

the statement that we can apply it to the ergodic map / : A(r) — A ( r ) as 

in Definition 3.7.8. 

Defini t ion 5.3.1 Given a probability space (X, m) and a map r : X ^ X 

then r is measurable if is a measurable set for every measurable set 

E. 

DeBnition 5.3.2 Given a probabihty space (%, m) and a measurable map r : 

X X then r is m-p rese rv ing if mir^^E) = m{E) for every measurable 

set j5'. 

Def ini t ion 5.3.3 Given a probability space (X,m) and a measurable m-

preserving map r : X X then r is e rgodic if r^^E — E implies that 

m{E) = 0 or 1. 

DeHnition 5.3.4 Given a measurable m-preserving map T : % —> X and 

: X — R we dehne the function 5'̂  : A" -4̂  R by 

n—1 

i=0 
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The following Theorem was proved by Birkhoff [Bir31]. 

Theorem 5.3.5 oprobobtHt;/ apoce (%, m) ondr : % — % on ergodzc 

meo5i^ra6Ze m-preaerfmp map (/leM 

1 1 f 
lim — = lim — — / (̂  (fm 

n-^oo n n-^oo fl ^^ J y 
i=0 

/or etieTT/ m—mengitmbZe and m oZmost enen/ a; 6 %. 

The following Lemma was proved by Bowen [Bow79]. 

Lemma 5.3.6 Given a Schottky group F and f as in Definition 3.7.8 then 

/ ia on e?̂ o(f%c ai/r;ec^we moj) on A(r) ; wAere d = %( r ) . 

5.4 The density of g in t h e limit set 

In this section we dehne the sets C A(r) and Z'e(^) C P. We then 

bound the growth rate of izi terms of We then prove the technical 

Lemma that if - ) z E A(r ) conically then stays close to {'/n} where 

{jn} — z. This results allows us to define L(g) in terms of L^{t). This allows 

us to show that when calculating the exponent of convergence we only need 

to consider and not the whole group F. It is this result and the bound 

on the growth of which are the tools we use in Chapter 6 to investigate 

what happens to the Hausdorff dimension of a divergent sequence of Schottky 

groups. 

L e m m a 5.4.1 Given a Schottky group F =< g,h > then the indicator func-

^zon lD(g)uD(g-i) : A(F) — E ^o A(F) w /or an^ BoreZ 
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meoatire and is egi/aZ to 

' 1 %/ 7i = or 
l D ( g ) U D ( g - i ) ( ^ ) — , « , 

0 omeT-tuzse 

luAere z {7n}-

Proof : Given z E A(r) then z = nnD('yn) by Lemma 3.7.5 so that 

z E D(^) U iff "yi is ^ or 

The function is measurable aa both [D(p)UD(g"^)]nA(r) and C—[D(p)U 

n A(r) = [D(/i) U n A(r) are open in the subspace topology 

so Borel and therefore measurable. O 

Defini t ion 5.4.2 Given a Schottky group F = < g,h > and 7 G F define 

^(7) to be the number of times the letters g or appear in 7 when it is 

written aa a reduced word. Define similarly. 

Defini t ion 5.4.3 Given a Schottky group F then ^ (O.oo) see 

[Bow79] so we can define the normalised measure m by 

?/%(r)(A(r)) 

where E is a measurable set. 

L e m m a 5.4.4 (rZfeM a F = < A > t/ieM /or eiiery 

{^n} z E A(r) we /lofe 

lim U 
n—yoo n 

wAere m w de^Tied o6ot;e. 
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Proof : Consider the probability measure and the function 

/ : A(r) —̂  A(r) as in DeEnition 3.7.8. 

Apply to this setup with i;6 = lD(p)uD(g-i) then 

k—1 

Ski'^D{g)UD{g-'^))^ ~ '^D(g]uD(g-'^)f ^ 
i=0 

k-l 

~ lD(g)UD(g-l) ( / 7n+l)n>o)) 
i=0 

where 7r is deSned in DeSnition 3.7.2, z {'/n} and we deSne 'yo to be the 

identity. 

By Lemma 3.7.9 this is 

t - l k-l 

l z ) ( g ) U . P ( g - i ) {in 7n+l)n>o)) = l . P (g )U .P (g -^ ) (^((7n 7n+l)n>i)) 
1 = 0 i=0 

by the definition of r . 

Now 7r(('y-^'yn+i)n>i) E D(^) U ig ^ or by the 

deSnition of 7r. So we are counting the number of times the letters p or 

appear in 'yt when it is written as a reduced word, which is g(7t)-

The result now follows directly from Theorem 5.3.5 by Lemma 5.3.6. O 

Since (F) and m have the same O-sets we cein replace m in the above 

Lemma by . 

Defini t ion 5.4.5 Let L(g) be the set of points z G A(r) for which —> 

772,(D(̂ ) U where z 2̂  {7n}-

Z,(^) ha5 full measure by Lemma 5.4.4. 
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The following is a purely combinatorial discussion and the results depend 

only on the properties of a free group and not on the particular generators 

of a Schottky group. 

Defini t ion 5.4.6 Given a free group = < g,h > and constants t G [0,1] 

and e E (0, dehne 

7 E r 

We wiU link the growth rate of jLg(̂ ) to the constant it. Before we can do 

this we need the following Lemmas. 

Lemma 5.4.7 Gmen o E N an mcreaamp 0/ b /or 

6 < | . 

Proof : We shall show that 

for 6 < ^. 

Now 
(0 — 6)! (o — 6 — 1)! 

iff 

or that 

(6 — l)!(a — 26+1)! 6!(q. — 2b — 1)! 

(o —26) (o —26+1) 

- 6(0 - 6) 

— 56o + o + 56^ — 26 > 0. 
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This equation is satisEed for 

, ^ 5a + 2 + i/5a^ + 4 5a + 2 — \/5o^ + 4 
J > ^ a B d i < ^ . 

Now 6 — 1 < o — 6 otherwise the binomial is invalid so 6 ^ 

Which means we are left with b < 5q+2 V5a^±4^ However 

CL 5(1 4" 2 — "x/Scî  4 

4 ^ 10 

for all a > 0 so if 6 < ^ then 6 < have the result. O 

L e m m a 5.4.8 Given n,m > 0 then 

1 / \ n / \ m / \ / \ n / \ m 1 / M /MA / 7̂  \ /Tl —771 
< < M 

—mj —my \ m / \7Ti/ — m / \ m 

/or n > 7, 771 > 7 omcf n, — m > 7. 

Proof : We coarsen the following formula found in [Rob55], 

\/2\/^M""'"^/^exp(—71 + 1/(12714-1)) <7i! < '\/2\/^7%"'''^/^exp(—^ + 1/(1271)) 

to 

exp(—7i)7i" < Ti! < nexp(—71)72" 

for 71 > 7. 

So 

7i! 71 exp(—71)77" 

(71 — 7n)!7?2! exp(—771)771"̂  exp(—(71 — 77l))(71 — 77l)("' 

\ n / \ m 
71 \ i n — m 

71 
71 — 771 / V 771 



aa required. 

The lower bound is done in the same way. 

• 

L e m m a 5.4.9 Given T G R then 

\Tn\ [Tn] 
-^T 

M a 

oa n, —oo , wAere ig t/ie m^e^er greo^er M ond M za (Ae 

prea^ea^ mte^er /eaa M. 

Proof : We have that 

T n - 1 7 7 1 + 1 

71 M ^ n "" n 

and so they all converge to T as M —) cx3. O 

The following Lemma will allow us to pull back a result that holds in the 

limit. 

L e m m a 5.4.10 Given a sequence â , G R such that ^ a G R and b > a 

^Aere %a am TV > 0 â ĉ/i < exp(6)" /or oZZ a > TV. 

Proof : We shall prove this by contradiction. Assume that 

> exp(6)" for all n 

then 

> 6 for all n 
n 



but this means that lim ^ which is the desired contradiction. It is 

worth pointing out that the inequality must be strict. O 

Lemma 5.4.11 Given a free group F2 =< g,h > then 

< card{'y E = n} < 

/or ( > 0 smoH, e G (0, aTid ?T, Zarge dependmg OR t 

ATid e. 

P r o o f : This proof is split into three parts. In the Erst part we express 

card{'y E = n} as a summation over A: where 'y = . . . A'"*. The 

second part is the upper bound. We solve for the maximum value that A; can 

be. Then we express card{'y E r|Z('y) = A = %, > 0} as a binomial. 

These two results allow us to And an upper bound that only involves t. We 

then take limits and apply Lemma 5.4.10. For the lower bound we show 

that {'y E r|Z('y) ^ A; = 2,72̂  = 1,771̂ - > 0, — e)] < A; < + 

is contained in the set we are considering. For hxed A: we express this aa 

a binomial. We then remove the dependence on k and use Lemma 5.4.7 to 

remove the dependence on e. So once again we have a formula involving just 

t and 71 and we take limits and apply Lemma 5.4.10. 

Before we start on the upper and lower bounds we express 

card{'y E = n} 

as a summation. 

Given 'y E F express it as where 0 except for 

72% and 771̂  which may be 0. 
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We have 

card{'y G ZE(t)|Z('y) = a} 

K 

= 2'2'card{'y E I/((t)|Z('y) = M, A; = %, > 0} 
i=l 

K 

+ 2^"'^2*card{'y G = n, A; = z, Mj > 0 except = 0} 
1=1 
K 

+ ^22*2*^^card{'y G Z,((^)|Z('y) = A; = > 0 except mt = 0} 
i = l 

K 

+ ^ 2 2'"^2'^^caj:d{'y € Z/((()|Z('y) = n, A: = i, 7%̂- > 0 except Mi, m,t = 0} 
i = l 

where is the raaximiirn jiossible value of A; over all the 4 options, this does-

not change the summation as if a particular 2 is too large then card{'y E 

. . . } = 0. We have taken the caae that Mi, are 0 or not separately 

then split it up into sums depending on the value of k. Finally we note 

that given the absolute values |n, i | , . . . , |mt | there are 

possible elements of the group that can have these absolute values. We are 

using the fact that the inclusion of 'y € Z'e(t) depends only on the absolute 

values, |Mi| , . . . , |mt|, and note on the signs of the exponents. 

The upper bound. 

The upper sum we use is 

card{'y G 

K 

< 4^22'2 'card{ 'y G = M, A; = z, > 0 except M i , > 0} 
1=1 

where we have taken the greatest generality of the elements to consider and 

also taken an upper bound on the component coming from the fact in the 

card we are only considering absolute values i.e the 2^s. 

101 



Next we End an upper bound on 

We Erst look at the inequalities coming from the ranges of e 

^ t + e < — (5.4.1) 

and 

— < i — e < t (5.4.2) 

Given 6 .Ẑ E(̂ ) such that Z('y) = n and 'y = then 

In I 
t - 6 < < < + 6 

n 

and an upper bound on A; is when all the |7î | = 1 except for which is 0 

and in this case we have 

A: — 1 < 7i(t 4- e) => AT < + 1 (5.4.3) 

by equation 5.4.1. 

We now bound 

card{'Y E 2E(t)|/('y) = A = z, > 0 except 721,^* > 0} 

by 

card{'y E r|Z('y) = n, A; = z, nij, > 0}. 

To calculate this we set up a bijection from C which is the set of all ways 

we can place 2A; — 1 objects into M+1 slots to {'y E r|Z('y) — 72, A: — > 

0}. 

Elements of C are sets { a i , . . . sgt-i} where Sj E { 1 , . . . Ti + 1} and gj < 

for all j . 
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We de6ne the map 

K : C {'y G r|Z('y) = A: = z, > 0} 

as follows, given {s i , . . .2^-1} ^ C' then 

/(({gi,... a2t_i}) = 7 = 

where 

Til — 'Si 1) TTli — S2 Si, . . . , Tlj^ — S2k — 1 ^2k—2j '^k — Tl \ S2k—1 

We see that 'y G {') G Z/((f)|(('y) = n,, A = i, m,j, Tij > 0 except ni , > 0} 

as 

k 

^(7) = ^ ^ ITT'j +%' = —1 + Si — S1+S2 — ••• — 52t-2 + •52 -̂1 — S2k-1 +M+ 1 = M 
i=i 

and TMj, My > 0 except for Mi and which are greater than or equal to 0. 

To show that K is a bisection we define the map 

z/ : {7 6 r|Z('y) = M, ^ = 2, Mj > 0} — C 

as follows, given 7 G {7 E Z,c(t)|Z('y) = n, A; = 2,771̂ ,My > 0 except Mi,mt > 

0} define 

5l = 1 + Ml, Sg = 1 + Ml + Mil) • • • ) <82̂ -1 = 1 + Ml + 777.1 + . . . + Mĵ  

it is worth noting that 77̂ ^ does not appear in the dehnition of z/. 

We shall now check that 1/ is well dehned, i.e that { s i , . . . , 52t-i} G C. 

First we see that G {1 , . . . , M + 1} aa 1 + Mi + 7721 + . . . M̂  < 72 + 1 and 

Mj, ?72y > 0 for all j . Since M2,..., M2t-i, TT^i,..., 7722̂ -2 > 1 we have that 

gj < gj+i for all j . 
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We complete the proof by showing that Kt/ = z/K = td. 

Given 'y E {'y E = M, A; = i, > 0 except Mi, > 0} then 

^(?) = , 52t-i} is degned by 

Si = 1 + Til, S2 — 1 H- Til + ^1) • • • ) S2k-1 = 1 + Til + ?Tli + . . . + Tlfc. 

Now /{({gi,. . . , 52A-i}) is defined by 

n[ = Si — 1, m[ = $2 — Si,..., n'j. = S2/t-i ^ S2k-2, "^'k = n + 1 ~ Szt-i 

but this means that 

= Ml, = mi, . . . , Tlj;. — + 1 - (1 + 7̂ 1 + + - - + = 

88 required. 

The case of i/AC is similar. 

So the cardinahty of card{'y 6 rm^y) = M, A; = i, > 0} is eqnal to 

the number of ways to place 2A; — 1 objects into n + 1 places which is 

M + 1 

2A;- 1 

We have shown that 

K < + 1 

and 

card{'y E r|^('y) = M, A; = %, > 0} < ^ j 

so that 

card{ 'yEi : ( (^) |Z( 'y)=n}<4 ^ 4 ' ( ^ . ^ j . 
. - 1 ^ 

We wish to And an upper bound for this that does not involve z. 
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If — 1 then we can maximise the binomial by maximising the % 

but we have that t + 1 so we need that 

n + 1 

which is true if 

> 2 

n > 

2 - 1 

1 - 6 ^ 

but for Gxed t ^ this is satisSed for a large enough. 

So under these conditions we have that 

+ 1 4 card{'y G Z,e(^)|Z('y) = < 4 

by taking the maximum value + 1 of % for each /. 

n + 1 

2 ( | ' ^ ' | + ! ) - ! 

We wish to bound this above using Lemma 5.4.8 so to apply this Lemma 

we need that 

Ti + 1 > 7 , 2 + 1 > 7 and n + 1 + 1 > 7 

which are satisSed for ^ so ^ small and M large enough. 

So for M large enough we apply Lemma 5.4.8 to get t h a t 

3̂ M 
card{'y E = n} < 4 

n + 1 
n+l 

n + 1 - (2 [ ^ 1 + 1) 

M + 1 - (2 + 1) 

2 [ ^ 1 + 1 

+ i j 4 m + ' 

2 [ ^ ' ] + l 

(5.4.4) 

We wish to show that this is less than We take the log of the 

righthand side of the inequality in equation 5.4.4 and divide by M then the 

limit of this as M -4 oo is 

3tlog(4) 
+ log 

l - 3 t 
+ 3tlog 

1 - 3 t 

3t 
(5.4.5) 
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by Lemma 5.4.9. 

We shall show that for small t that this is strictly less that —6tlog((). 

We will deal with equation 5.4.5 term by term, the 6rst term satisGes 

3(log(4) 6(log(^) 
< — r ~ 

for ^ 

For the second term we want that 

Both sides of this inequality converge to 0 as t 0. As both are left diSer-

entiable as t ^ 0 we have that the inequality is satisfied, for small t, if it is 

satisfied for the derivatives of the functions, i.e if 

3 3 A 1 
< - log 1 

1 - 3^ 2 \ ° ^ 

as t > 0, but the left hand side converges to 3 and the right hand side 

converges to oo so for small enough ^ the equation must be satisfied. 

The third term, 

<.!£«!) 

ifT i that 1 — 3( < 3 which is satisfied for all positive 

We put this all together to get that equation 5.4.5 is strictly less than 

small t. And so equation 5.4.4 is 

strictly less than large by Lemma 5.4.10. 

We now do the lower bound. 
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We have that 

{7 e r|Z('y) = n, A; = = 1,771̂  > 0, - e)l < A: < [?T,(t + e)j} 

C {'y G Z,((()|Z('y) = ?%, A: = 2, = 1, > 0 except nit > 0} 

as if — 6)] < A < + E)J then 

— c) < A; < + e) 

and so 

- ^ ( ? ) -

since rij = 1 for all i which means that 7 G L^{t). Note tha t for small n there 

may be no A; that satisfy — ()1 < ^ + ()]}. 

So we have that 

card{7 G 1,^(^)1^(7) = n} 

[n(t+E)J 
> ^ 2 2^card{7 G r|Z(7) = n, A: = t, n,j = 1, m j > 0 except > 0} 

i=|'n(t-e)'| 

where we have absorbed the bounds on k into the summation. The compo-

nent coming from the fact that we are only considering positive exponents is 

2̂  since the exponents of is 1 for all j . 

We now End a formula for card{7 G r | / (7) = Ti, A; = > 

0 except > 0}. 

To do this we shall set up a bisection from C" the set of all ways to 

place A — 1 objects into n — A slots to {7 G r|Z(7) = M, A; = — 1, > 

0 except > 0}. 

As in the upper bound an element of C" is { s i , . . . , g^-i} where G 

{1 , . . . , 72 — A:} and gj < gj+i for all j . 

107 



We deSne /c' as follows, given { s i , . . . , 3 t - i} let , at-i}) = T = 

where 

rrii = Si, 7712 = ^2 — Si,..., rrik = n — k — Sfc_i 

and = 1 for all j . 

We now check that this is well dehned i.e that ^ E {'y E r|Z('y) = 71,,̂  — 

%, = 1, > 0 except > 0}. We see that Z('y) = ^ = A; + 5% — 

gi + 52 — + M — A: = ?ia8 required, = 1 for all by deSnition and 

are all greater thaji 1 except for which may be 0, so the map is well 

dehned. 

To show that /c' is a bijection we de6ne 

z/' : {"y E r|/('y) = ?2, A; = z, = 1,77%̂  > 0 except > 0} —̂  C" 

by, given 'y — E {'y E r|Z('y) = M, A; = = 1,771̂  > 

0 except > 0} then z/'('y) = { s i , . . . , a^-i} where 

Si = ?Tli, S2 = TTli + 777,2, • • • , 5̂ —1 = 77li + • • • + 77%t—1-

This is well dehned as Sj E {1 , . . . , 7i — A} since 7711 > 1 and Tzzi + . . . + 

TTit-i < 71 — A and 5̂ ' < as TMj > 1 for < A;. 

We shall now show that /(' is a bijection by showing that /('i/' = W and 

u'k' = id. 

Given = y E {y E r|Z('y) = 72, A; = 2,72̂  = 1,771̂ - > 

0 except 7Tit > 0} then ^/'('y) = {g^, . . . , at_i} is dehned by 

Si = 77%i, S2 = Tfli + 7712, • • • ! ^k—l — '^1 + • • • + 

Now . . . , = g'"!. . . is 

77̂ 1 — 5i — 771i, 772,2 = 52 — gl = ^2, . . . , = 71 — A: — 
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and = 1 for all j this means that = 'y as required. 

The case of is similar. 

This means that 

card{'y E r|Z('y) = n, A; = %, n j = 1, > 0 except > 0} = 

and we have that 

card{T^eZ,g(t)|Z('y)=n}> ^ 

i=\n{t-e)] 

aa long as n — + e)J > + e)] — 1, otherwise the binomial is not valid. 
1 
3 • But this inequality is satished for ^ ^ 

Assume that M is large enough so that there is at least one summand in 

the sum, i.e let + 6)J — — e)] > 0 which depends only on ^ and e. 

There always is a lower bound on the n as e > 0. 

For M sufBciently large we are then free to choose a particular % so let 

% = — e)] and we have that 

card{7 e ZeW|Z(?) = M} > 2^*-^)! 

by only considering one summand. 

We wish to get rid of the dependence on e. To do this we will show that 

- l y 

is a decreasing function of e. 

We can apply Lemma 5.4.7 as long as ^ — e)] but this is true as 

long as ^ which is true for n, > 4n( + 4 which is satisded for t < g 

and n > 20. 
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So under these conditions we can minimise 

6 ) 1 - 1 

by maximising e, but e < ^ so we have 

card{'y E Z,e(t)|Z('y) = Ti} > 2̂ ^ 21 ti / ?i 

^ 1 - 1 

tn 
> 7 , 

tn 
— 1 > 7 and n — 

tn f 
n — > 7 , — 1 > 7 and n — -

2 2 
— 1 > 7 and n — 

Y V 2 

We wish to bound this using Lemma 5.4.8 to do this we need that 

V . 

which are satisSed for t < 1 and n su&ciently large. 

So we have that 

card{'y G -LE(t)|Z('y) = n} > 

• m 

1 

n — tn [^1 " ([yl " 
^ T l - i 

. (5.4.6) 

We wish to show that this is greater thaji We take the Zop of the 

right hand side of the inequality in equation 5.4.6 and divide by n then the 

limit of this as M —> 00 is 

| l o g ( 2 ) + ( l - l ) l o g ( ^ 
t / 1 — t 

+ 2 log ( (5.4.7) 

by Lemma 5.4.9. 

This is 

log 
1 - 1 

t 1 
2 ' " 8 7 
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| l o 6 ( 4 < ^ ) + l o g ( ^ ) > 0 

for small t as its gradient at t = 0 is 

la conclusion we have that equation 5.4.7 is greater that ^log (Y) for t 

small and so equation 5.4.6 is greater than for ( small and M sufficiently 

large by Lemma 5.4.10. • 

We now look at the relationship between and the To do this 

we prove that if {'y^} — z G A(r) then I'nO) —̂  conically. 

Given an abstract free group = < o, 6 >, we let T" be its Cayley Tree. 

We deEne a metric on T by letting each edge be isometric to the unit interval. 

Defini t ion 5.4.12 Given a Schottky group F = < g.h > we define the 

immersed Cayley t r e e T{p) at p to be the immersed tree in whose 

vertices are r(p) and whose edges are geodesic segments such that two points 

Y(p) and ((p) are connected ig = 1. 

There are three choices of metric we could put on T'(p), we could give 

each edge length 1 and then there would be an isometry from T to T'(p) 

or we could give T'(p) the metric coming from but we shall choose the 

induced path metric on T{p) coming from 

It is well known that all of these metrics are quasi-isometric, for example 

see Hamenstadt [Ham02]. 

Defini t ion 5.4.13 We define a b ranch of T{p) to be a ray of T(p) that 

originates at p. 
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Given a branch then the vertices {7,1 (j))} of satisfy Z('Yn) = 

^(7n^7n+i) = 1 z E A(r) for some z E A(r) so z {I'n} 

c.f Definition 3.7.6 for the converse. 

L e m m a 5.4.14 a 6'cAoMA;?/ F 00 E D ancf {^y^} — z E A(r) 

correapoTidm^ 6ramcA J? m tAe em6ec((fe(f Cai/Ze?/ ^ree T'(j) tAe?i Âe ae-

g?̂ eMce C r ( j ) con?;er^ea (o z coMzcaZZi/ Ziea m t), 

t »e2p/i6ourAoo(f 0 / ^ m T'(_;) /or aomg t. 

Proof : 

We shall prove that approaching z conically implies that {&(^)} C 

(A, for some ^ by contradiction. 

So assume that we have a sequence {&(j)} that converges to z conically 

but does not lie in 7Vr(j) for any 1 So for every t > 0 there is some 

such that ^ 7Vr(j)(A, (). 

This means that {&(t)}n{'Ym} = 0 so nD('yrri(t)) = 0 where 

is denned by Z((nw) = = 771^. 

We hrst of all look at the setup in then use estimates in C to get the 

contradiction. 

As converges conicaily this means that converges conically 

for any p E we choose a p E such that ^ is a hyperbolic plane with 

C D. Note that may or may not lie in T'(j). 

Let be the angle that the Euclidean line from z to (p) makes with 

C. 
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Then tan(^t) < ^ where /i* is the height of (p) and dt is the minimum 

distance from z to Note that > 0 by Lemma 3.1.18 and the fact 

that n = 0 where z E D('ymw) by Lemma 3.7.5. 

Figure 5.1: Conical Convergence means near the Immersed Cayley Tree 

We shall show that —> 0 so that cannot lie in a cone. 

Let be the unique maximal element of P such that there are elements 

and ^n(f) where 'ym(t) = and such that m(t) = 

îCt) îSim{t)) S'lld ?7l(t) = l{^n{t)) — {̂Ct) 

As ( —oo the distance in from 0 ) to A diverges, but this implies 

that Z(&(t)) diverges as t —> oo aa it represents the geodesic in T ( j ) from A 
ht 
dt to We shall use this fact to force ^ to converge to 0 and so get a 

contradiction. 

We get bounds on and (Zt in terms of the group elements. 

Fix lu E D; then we can apply Lemma 3.8.6 to get t ha t 

for some > 0 independent of -
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Now 

dt ^ (listing (Z) ('ym(t))) -D (^n(t)) ) -

because z 6 

There are z E and y E such that 

distinf(D('ym(t)),D(Qf))) = |(tz - (t?/] = - %/| 

by Lemma 2.2.5. 

By Lemma 3.8.3 we have that 

(4 > - 2/1 

however a: and ^ are in diEerent components of C — D since is maximal. 

So we have that ja; - i/j > ming,,g2gG(r)distinf(D(^i),Z)(p2)), we let o( = 

distmf(D(pi),D(^2)) then 

( 4 > AT'cflC'MI 

So in conclusion we have that 

X, 

again by Lemma 3.8.3. 

By our assumption we have that Z(^n(t)) —̂  oo and by Lemma 3.8.1 and 

Lemma 3.8.4 this means that 0 we have the required con-

tradiction. 

We now prove the other direction. We wish to show that if C 

for some ^ then conically but this is equivalent to 
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being contained in a cone for any t which is equivalent to JZ lying 

in a cone. We shall prove this by contradiction so assume that some inSnite 

subsequence C (7^0)} does not approach z conically. 

We choose a point p with the same properties as in the Srst part of 

the proof and note that tends to z conically iff {7n,(p)} tends to z 

conicaily. 

This means that the Euclidean angle z to (p) converges to 

0 so that 
hy, 

0 

where Am is the Euclidean height from C to 'yn(m)(p) and the distance 

from z to the vertical projection of 'Yn(m)(p) to C. 

Figure 5.2: Immersed Cayley Tree approches boundary Conically 

Now as the projection of to C lies in 

by Lemma 3.1.18 and z also lies in by Lemma 3.7.5. So 

some w E D by Lemma 2.2.5 and Lemma 3.8.4. 
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Now Am > by Lemma 3.8.6 for some w E Z) and so 

and 80 cannot converge to 0. O 

Corol lary 5.4.15 Given {jn} — z E A(r) then the corresponding branch 

Zzea m a cone ceM êreĉ  z o/ z. 

P roof : Apply Lemma 5.4.14 to {7n(i)} which trivially lies in iVyy)(i?, t) 

for any < > 0. O 

Defini t ion 5.4.16 Given a set X C then we define the conical bound-

ary C(%) of % to be the set of all z E C such that there are E % such 

that Zn — z conically. 

For a Kleinian group F then C(F(j)) is the conical limit set of F see 

[Nic89]. 

Defini t ion 5.4.17 Given p, g E and c > 0 then the shadovy b(p; q. c) of 

the hyperbolic ball Bc(g) from p is the set of endpoints at infinity of all rays 

starting at p and intersecting Bc(g). This shadow is a ball contained in C. 

The following Lemma gives an alternative formulation for C(X). 

Lemma 5.4.18 Given a set X C then 

(̂̂ ) = U n U 
c n>l d{j,x)>n 

ifAere z; E X . 
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A proof of the above Lemma can be found in Theorem 1.2.4 of [Nic89]. 

We now give an alternative dehnition of see DeAnition 5.4.5. 

Lemma 5.4.19 Z,(g) eguaZ (o nE>oC(-^6(^)0)) (i/Aere t U 

Proof: We hrst show that Z/(p) C n(>oC(-LEMO))-

Let {'Yn} — z 6 Z,(^) then t so for all e > 0 there is an TV such 

that 

47") 

for all M > W. This means that {'yn}n>w C !,((() and as 7 ^ 0 ) —.z: conically 

by corollary 5.4.15 we see that z 6 C(Z^g(()(j)). Since this is true for all e we 

have z G nE>oC(Z'E(^)0)) ^ required. 

We now prove that nE>o(^(-Z^6(^)(j)) C Z,(^). 

Let z G n(>o(^(-^e(t)(j)) then for every e > 0 there is a sequence {C} C F 

such that C(j) lies in a cone based at z and satisSes 

for all I. 

We shall show that the above inequalities almost hold for 'yn where {^y^} — 

z. 

By Lemma 5.4.14 the distance from {CO)} to {TnO)} is bounded in the 

Cayley tree. 
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Figure 5.3: Finite elements at the end of long elements 

So for each there is some such that and is uniformly 

bounded. Since is bounded over Z there are only a Gnite number of 

choices for Pick any inhnite subsequence such that ^ for all (m-

Then 
P(0m) _ 

^(0, 
G [t — 6,t + e] 

and 
^(7!,.) - P(() ^ Phz^) + P(() 

fo: (̂7Zn.) > ^(^)- So that 

E \t — 2e, t + 2£] 

for large But since the length of is uniformally bounded the above 

equation holds for a Enite number of infinite subsequences of Z, so we have 

that 
^(7() 
^(7z) 

G [t — 26, t + 2e] 

for all Z large enough. But as e is arbitrary we have that 

s -
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and z 6 as required. O 

The next result is the main result of this part of the section. We show 

that when calculating the exponent of convergence we only need to consider 

where ( = U 

We state and prove the result in the ball model Although the result 

holds in the upper half space model on conjugating the group by stereographic 

projection and replacing 0 by j . 

L e m m a 5.4.20 Given a Schottky group F in the hall model for and e > 0 

exp(—(^d(0,'yO)) = oo 

tu/iere za aa in t U oncf 6 = ?^(r). 

Proof : We will prove this by contradiction, assume tha t 

exp(—(^c((0;'y0)) < oo. 

Given ?̂  > 0 then there is an TV > 0 such that 

^ exp(-^cg(0,i'0))<?7 

and by Lemma 4.4.1 of [Nic89], there is an v4 > 0 such tha t 

^ ?^'(6(0;T/(0),c))<A77 

for any hxed c > 0. 
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Now conjugate the group to the upper-half space model with oo E D then 

choose Z, > 0 such that 'yj) > 2/ => Z(''y) > which is possible by Lemma 

3.8.1 and the various estimates in that section. However this is equivalent to 

d(0, 'yO) > Z, => on conjugating back so 

^ 9^" (̂6(0; 'y(O), c)) < 4̂?). 

'yeZ;(t),d(0,'y0)>Z, 

By Lemma 5.4.18 we have 

c(i.w) = u n U m7(o),c) 
c>0Z>0̂ g2,«(t),d(0,'Y0)>Z 

so that 

'K'^(C(Z,X^)))<^imsup%'f I J 6(0;'y(0),c) 
c-̂ oo \ _ 

\'YeZ'6 (t),d(0,'y0)>z, 

< l i m s u p ^ ?^'^(6(0;'y(0),c))<v477 
c—̂oo _ 

7GZ,;(t),d(0,'yO)>Z, 

and since this is true for all ?) > 0 we have ?^'^(C(ZE(^))) = 0 but this 

contradicts the fact that C(Z,g(t)) — Z,(^) by Lemma 5.4.19 which has full 

measure by Lemma 5.4.4. • 
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Chap te r 6 

The Geome t ry and Dimension 

of sequences of Scho t tky groups 

t h a t leave PSL2{C 

In this chapter we classify what can happen to the classicalaess and Hans-

dorS" dimension of a sequence of divergent Schottky groups. 

We dehne exactly what we mean by a divergent sequence of Schottky 

groups and then pick certain generators. We then de6ne the cases that we 

will be looking at. 

Recall that a sequence of Mobius transformations leaves f 

if it is unbounded as a set of PSL2{C) with the Euclidean norm see [Rat94]. 

We have classihed how a sequence of loxodromics can leave f 5'Z,2(C) see 

Lemma 2 .9 .3 . 

DeEnition 6.0.21 Given a sequence of 2 generator Schottky groups r(M) 

we say that r(n) leaves f 5'Z2(C) if given any set of generators /i(M')} 
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for r(n,) at least one of or (̂7%) diverges, see Lemma 2.9.3. 

The reason for taking any set of generators is the exajiiple of F = r(n,) = < 

/i, > where leaves f 5'i/2(C) while the group is constant. 

We will be looking at the HausdorE dimension of a Schottky group and 

whether or not it is classical, it is worth reiterating that both of these prop-

erties are invariant under conjugation by Mobius transformations see Lemma 

3.2.4 and [Fal97]. 

This chapter is split into four sections. We Srst pick generators 

{g(n),A(M)} for the groups r(M) and define the cases we will work with. 

The next two sections deal with the cases. The last section shows that no 

sequence of non-classical Schottky groups can have vanishing HausdorSF di-

mension. 

6.1 T h e Se tup 

6.1.1 S t a n d a r d Genera tors 

In this section we choose a particular set of generators for the groups r(M) 

up to conjugation by a sequence of Mobius transformations. 

To find the generators we shall need the following lemma. 

L e m m a 6.1.1 Given 7 and ( Mohius transformations such that 7 does not 

00 wAtZe C (ioea /Za: 00 

cenZy( = ^"^cenZy 
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= cenZy 

we /lere (Ae /ac( ^/lot 'y (foea 72o( ̂  oo gt^oraMteea (Ae ea^aknce 0/ 

Âe zgome^nc circZeg. 

Proof : The proof can either be done by direct calculation on the entries 

of 'y and or by noting that cenZy = 'y"^(oo) so that 

cenZy( = = C"^cenZy 

and 

cenf^^ = = cenZy 

as preserves 00. O 

Defini t ion 6.1.2 Given a Schottky group F = < g,h > we say that g and 

h are s t a n d a r d gene ra to r s if: 

1. h fixes 0 and 00, 

2. the multiplier ^ oi h satisfies |/i| > 1, 

3. has minimum absolute value of multipher over all possible generators, 

4. cen/g = 1, 

5. 1 < |cenfg-i| < y i ^ . 

We have there is a minimum by the discreteness of the group. 

It is possible that Standard generators are not unique, however the fol-

lowing Lemma shows that they always exist. 
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Lemma 6.1.3 Gwem a P t/iere %5 a Mo6%ua trana/orma-

itzon ^ at/cA Aoa a get 0/ staMcfarcf ^enerotorg. 

Proof : Find h gT such that h has minimum absolute value of multiplier 

over all possible generators of P. Then conjugate P by a Mobius transforma-

tion so that /i &x:es 0 and 00 with multiplier // such tha t |//| > 1. We will 

suppress this conjugation. 

Now choose ^ to be another generator of P such that P = < p, A >. 

Note that the centre of the isometric circle of ^ and its inverse are not 

0. Assume that fg = 0 then fixes 00 but since the group is free we 

know that for any m. This is a contradiction as it shows that 

the group is no longer discrete. The same argument works for 

We will be conjugating the group by Mobius transformations that hx 0 

and 00 so they leave /i unchanged. 

Find k and I such that 

< [cenJgl < and [//I"' < |cen7g-i| < 

then 

1 < l/̂ l* |̂cen7g| < and 1 < |/^|'|cen7g-i| < |/^|. 

By Lemma 6.1.1 we have that 

1 < |cenfg,;-&| < l/̂ l and 1 < |cenfg-i/,-;| < |/i| 

so that 

1 < |cen//i!g/j-i; j , [cen/^/ji^/j-Aj-i I ^ \fj,\ 

again by Lemma 6.1.1. 
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Let and zg = if |zi| > Izg] then consider 

instead of so we will assume that |zi| < |z2|. 

Now conjugate the group by '^(w) =^11/; so that 

CQnI^-iî igî -k^ = 1 and 1 ^ | — -j r ^ |/i| 
I 1 

by Lemma 6.1.1. 

Let z = ^ . if |z| < then we are done so assume tha t Izl > \ / W . 
2 2 / I I — V I I I V 1/ I 

Conjugate the group by % where %(tu) = zw then 

= — and = 1 

where A < A ^ Look at 
M — kl — VIH 

then 

and 

by Lemma 6.1.1, but 1 < are done. O 

6.1.2 T h e Cases 

We will investigate what can happen to the HausdorfF dimension and the 

classicalness of a sequence of Schottky groups r (n ) that leaves f5'Z,2((C). To 

do this we will split the problem up into a number of cases. 
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By Lemma 6.1.3 we can assume that the Schottky groups r(n,) have 

standard generators We are investigating the situation that 

r(?T,) leaves f 5̂ 1,2 (C) so by definition one of the generators or /i(n) 

leaves f 5'Z/2(C). 

We shall show that always leaves f 5'Z,2(C). 

If leaves f5'Z/2(C) then either //(n,) the multiplier of is un-

bounded or the hxed points of converge to each other. However we 

have chosen standard generators so that the 6xed points of A(n) are 0 and oo 

so the hxed points of A,(n) cannot converge to each other. We are therefore 

in the case that is unbounded but we have chosen to have minimal 

absolute value over all generators of r (n ) which means t h a t the multipher of 

A(n) of g(n) is also unbounded. So leaves f5'i}2(C). 

We shall split the problem up into various cases depending on what 

and converge/diverge to, see Lemma 2.9.3. 

To help the calculations we will assume that various objects associated 

to ^(») and converge (in C). In particular we will assume that the 

multipliers and 6xed points of and converge. Also that the centre 

and radius of the isometric circles of and converge. In the infinite 

case (to be dehned) we Â dll need that and converge. We are 

talking about convergence since we are working with a divergent sequence of 

loxodromics we say that the various objects converge in C or R whichever 

is appropriate. If we are given a sequence for which these objects do not 

converge then we can always pass to a subsequence as we are only considering 

a hnite number of objects. 

We are now ready to de6ne the various cases. 

Def ini t ion 6.1.4 We define the following cases: 
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A. if the muitipher A(M) of ^(72) diverges 

1. and the multiplier of diverges then this is the iuBnite 

case, 

2. and lim € (1, 00) then this is the l o x o d r o m i c case, 

3. and |/i(n)| —>• 1 then this is the i den t i t y / e l l i p t i c case, 

B. if the hxed points of converge to the same point and 00 

1. and lim |/j(n)| G (1,00) then this is the b o u n d e d case, 

2. and \i-i{n)\ 1 then this is the ident i ty /e l l ipt ic converging 

case. 

We note that the cases are mutually exclusive. We have chosen these 

particular cases as they imply information when combined with standard 

generators. For instance 1/̂ (^)1 —> 1 implies that |cen7g(n)| — 1 which gives 

useful control. 

Lemma 6.1.5 aeguemce 0/ r(M) wztA 

f 5 ' Z / 2 ( C ) t / i e r e o 0 / 

r ( n ) i a m o n e 0 / t A e a ^ o t i e c a ^ e a . 

Proof : We choose a subsequence such that all the various objects we have 

discussed converge. This is possible because we are only considering a dnite 

number of objects. 

By the above discussion we know that (̂71) leaves jP6'Z/2(C). If A(M) the 

muitipher of is unbounded then |A(M)| converges to 00 and lim |/^(mn)| E 

[ 1 , 0 0 ] which means that we are in one of the Erst 3 cases. 
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If the multipher of (̂71) is bounded then the fixed points of (̂7%,) must 

both converge to the same point by Lemma 2.9.3 and we are in one of the 

last two cages. O 

6.2 The Multipl ier Diverges 

We shall often use the following Lemma to prove classicalness. 

Lemma 6.2.1 a 6'cAô ^̂ i/ P {g',A} 

1/̂ 1(1 - rad/g) > |cen7g-i | + rad/g 

w/iere // (Ae mwZtzp/zer 0/ /i |A| > 3 + 2\/2. 

Proof : Consider the circles 5^(0), 5'|^|g(0), and Ig-i. Ig and Ig-i are 

disjoint by Lemma 2.9.2 so we just need to check that the isometric circles 

are disjoint from 5'f(0) and 5'|^|g(0) for some 6. 

Let 6 = 1 — radZg — e for small 6 then the circles are all disjoint if 

1 — radig > and |cen7g-i | — radZg > 

and 

1 + radZg < 6|/^| and |cenfg-i| + radig < (^|//|. 

Since |cen/g-i| > 1 aa we have standard generators we only need to check 

that 

1 — radfg > (5 and |cen7g-i| + radJg < 
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The first inequality is automatically satished by our choice of <5. 

We shall now show that the second inequality is satisfied. We are assum-

ing that 

— radig) > |cen7g-i| + radfg 

so that i5|/i| > |cen7g-i| + rad/^ if 

> 1^1(1 — radfg) 

however this is true by our choice of e. So that both inequalities are satisSed 

and the group is classical. O 

6.2.1 T h e Loxodromic case 

This is the caae that > // so that converges to a loxodromic 

and A(n) -4 oo. 

We will Srst prove that the groups are eventually classical and then show 

that the Hausdorff dimension tends to 0. 

L e m m a 6.2.2 o o/ r(7%) m (Ae 

co5e r (n ) c/o55%ciiZ. 

Proof : As h{n) fixes 0 and oo for all n and lim |mult(/i(n)) | G (0, oo) we 

know that some loxodromic and if we let /^(n) = mult(A(M)) and 

= mult(/i) then //(n.) -4 

Since we have standard generators we have that = 1 foi" we 

let = z(M). We denote mult^(M) by A(n). 
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The group r (n ) is classical if 

|z(n)| + rad7g(n) < lA^WKl - rad7g(n)) 

by Lemma 6.2.1. 

By Lemjna 2.9.1 we know that 

|1 + A(n) 

which converges to 0 as M oo since |A(M)| —> oo and |/2;(72)| < 

which is finite. 

Since we have standard generators we know that |z(m) | < so that 

the group is classical if 

\ / | / i (n) | +rad/g(n) < |A(WI(1 -rad7g(^)) 

but this is eventually satished as radjg(n) —0. O 

We will now show that the HausdorE dimension converges to 0. To do 

this we need the following result. 

Defini t ion 6.2.3 Given a sequence of classical Schottky groups r (n) = < 

/2,(72) > with fundamental domains then we say that the sequence 

is nicely b o u n d e d if: 

1. oo 6 D{n) for all n, 

2. oo E D, 

3. D(A) n = 0 and 

4. ( D W U D(g-:)) n U = 0 
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where D is defhied by C — D = limC — D(M) in the Hausdorif topology on 

closed sets and %)((') = limZ)(C(M)) for ( E /i, 

Lemma 6.2.4 o aeg'ueMce 0/ '̂cAoWA;!/ (̂7%) m ZoarWromzc 

coae ^Aere ia 0 ('a nzceZt/ /or Zo?^e M. 

Proof: Choose standard generators {^(M);A(n)} for r()T,). Then 

r(n,) is classical on these generators by Lemma 6.2.2 for large n,. By 

the proof of Lemma 6.2.2 we have that the defining circles for r(M) are 

'5'|Xn)|6w(0) for speciAc 6(n) > 0 and M snfhciently 

large. 

In fact we can take <̂(7%) = y large enough M. By the same 

reasoning as in Lemma 6.2.2 the group is classical if 

l - r a d / „ „ > 
2 \ / | ^ 

and 

yi/̂ WI + < l/̂ WI " radig(n)). 
2vl /^WI 

Which are both satisEed as |)Lt(M)| -4̂  |/^| > 1 > 1 and rad7g(n) —0. 

We are now ready to de8ne let Br(c) be a closed ball in D then for large 

n Br(c) is a closed ball in D(M). DeSne to be the Mobius transformation 

that takes Br(c) to C with the open unit ball removed. Note that there are 

many choices of -Br(c) and none of these choices will affect the result. 

We shall now check that is nicely bounded with fundamental 

domain Note that converges to in the Hausdorff topology. 

Property 1 is satisSed as 00 G ^Br(c) C ^D(n,) for all large M. Property 

2 is satis6ed by the choice of Br(c). 
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We note that so that = 

^D(A) and the same holds for We have that ajid are 

disjoint as D(A)nD(/^"^) = 0 since the boundary of D(/i) ajid are the 

circles (0) and 5"! (0) by our choice of (̂ (71). So we have property 

3. 

Property 4 is done in the same way by noticing that 1 < [cenZg^^y < 

\/|/2(n)| as we have standard generators and so 

< 1 < ^im|cen7g(^)-i| < 
2 / ^ - ' ' - " ' ' ' ' z y w 

• 

Defini t ion 6.2.5 Given a sequence r (n ) of Schottky groups in the loxo-

dromic case and ^ such that is nicely bounded then we say that 

the sequence is nicely bounded in t h e l o x o d r o m i c case. 

The tool we shall use to show that the Hausdorff dimension vanishes is 

Patterson-Sullivan theory i.e we have that if 

"yer 

then is less than or equal to the HausdorE dimension of P. In fact we 

shall use Lemma 5.4.20 and restrict ourselves to the subset -LE(̂ )- This will 

mean that we only need to consider 'y with a certain ratio of ^(71)'s to /i(yi)'8. 

Although this ratio will change for the various groups r(M) we will still be 

able to extract a contradiction if the Hausdorff dimension does not vanish. 

Given 'y G r(M) we look at 

lC(Ct+l - - ' 
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where 'y = Ci - - Ow îs a reduced word. We distinguish between the cases 

that Ci — is not followed followed by a sequence of 

and followed by a sequence of /i(M)^^s. The length of 

the sequence of /i(?T,)̂ ^s will be given later. 

What we show is that if then the derivative of converges to 

0 uniformly over all the possible ( i+ i . . . as n oo. This will force the 

Hausdorff dimension to 0 as long as the derivative of A(n) is not too large. 

There are only a hnite number of options in the second case, this and the 

fact we are nicely bounded allows us to show that there is a uniform bound 

over all the derivatives of the 

We show that, in the third case, there is some uniform bound s for which 

the derivative of is less than this bound for large enough 7i. 

The proof works by contradiction. We show that if the Hausdorff dimen-

sion does not vanish then the density of p(n,) in the limit set must vanish. 

This forces the ratio of to in to tends to 1. This means 

that the proportion of such that <^,+1... has a long string of 

A(M)^^'s at the start increases. This pulls the HausdorE dimension down as 

the derivative of these (.s is bounded above. This gives us our contradiction. 

Defini t ion 6.2.6 Given a sequence of Schottky groups r (n ) = < 

> in the nicely bounded loxodromic case we deSne the follow-

ing constants 

gmax(7i) = max:{|p(M)'(z)|, 

where z E con(p(M)) and tu E con,(^(n)'"^). Given > 0 deSne 

hmax^'^(M) = max{|/i(n)'(/i(?i)'^z)|, 
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where the maximum is taken over / E con(A(n)), tu E coii(A(n) and 

m > Z,. Given Z, > 0 de&ne 

hmax--^(M) = m^max{|/i(?T,)'(/i(M)"'z)|, |(/^(M)"^)'(A(n)"'^w)|} 

where the second maximum is over z 6 con(A(n)), w E con(A(m)"^). 

L e m m a 6.2.7 Given a sequence of Schottky groups r ( n ) = < g{n),h{n) > 

is ntce/?/ m /oa;odrom%c c&se 0. 

Proof : 

This proof works by showing that \g{n)'(z)\ vanishes as 71 —oo . This 

will be true as A(M) -4 oo as long as z is not too close to the centre of the 

isometric circle of ^(?2). The Rrst part of the proof uses the fact that we are 

nicely bounded to show that this is the case. The second part of the proof 

is just the calculation. 

We know by Lemma 6.2.2 that r(?T,) is eventually classical. In fact choose 

defining curves as given in this Lemma, so that the defining curves for g{n) 

and g{n)~^ are eventually their isometric circles. 

We will prove the result for \g{ny{z)\ but the same technique works for 

Let z E con(^(n,)) then, by the definition of con(^ (?%)), z is either in 

U or in D(p(n)). We shall deal with these two cases 

separately. 

We have that —> D(A) some disk as the sequence is nicely 

bounded. The distance from this disk to the limit of fixed points of 
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is bounded below. The same is true for ^). This means that there is 

an jV > 0 such that for 

distinf f U^(?T,) j > 0 
\n>N n>N / 

where z(M) is the attractive 6xed point of and 2/(M) is the repulsive hxed 

point. 

Let A(?2) be the multiplier of then by Lemma 2.9.1 

m » | f W ' ( z ) | ' / : = m a x , , , v 4 A ^ I ^ ( " ) - ! / ( " ) ! 
1(1 - A(n))z + a;(M)A(7%) - ^(M)| 

where the maximum is taken over z E 

Now 1(1 — A(n))z + 3;(n)A(M) — %/(M)| > |A(n)||a;(M) — 2;| — |2/(n) — z| by 

the triangle inequality. 

For n > we see that |a;(?T,) — z| is uniformly bounded away from 0. 

Since the sequence is nicely bounded so that oo G limm(Z)(7T,) we have that 

|?/(n) — z| is uniformly bounded away from oo. 

Since we are in the loxodromic case we have that A(7%) — o o so that 

max |^(n)'(z) —> 0 for z G Un>N W ) U -D(A(n 

The next caae is that of z E D(p(M)). We let c(yi) = cenip(n) d(M) = 

cen/g^^^-i then by Lemma 2.9.1 we have 

where we are taking the maximum over all z E D(p(M)). 

The extremal value is at the boundary of Z)(^(M)) but for large M we have 

chosen this to be which is possible by the proof of Lemma 6.2.2. 
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Let r(M) = rad7g(n,) then 

max|s(n) '(z) | ' /^ = max 

which is 
v W I 

^ ||1 + A(M)| + exp(z^)'\/|A(M) 

as r(n,) = . So we have that 

m a x | g ( n ) ( z ) | / = inaX' 
I) ||1 + A(?3)| + exp(%^)-\/|A(n)| 

which is less than 
y|AW 

|A(M)| - -\/|A(n)| - 1 

for IA (71) I large enough and converges to 0 as |A(?i)| -4 00. O 

L e m m a 6 . 2 . 8 G w e n a 0 / ^ r o t t p s r ( n , ) = < ^ ( n , ) , / i ( n ) > 

m t/ie Zoarodromic coae t/tere is o 1 > 0 

< s 

w/iere g G (0,1) /or o/( n Zarpe 

P r o o f : We will prove the result for /i(n), the proof for /i(n,) is essentially 

the same. 

This proof works by showing that the result is true in the limit aa M -4 00, 

we then pull back the inequality for M large enough. 
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Since we are in the nicely bounded loxodromic case we have -4̂  A 

some loxodromic. Let the repulsive fixed point of be ^ and the attractive 

hxed point be z. 

Then for any compact set C C C — {?/} we have ^ 2; in the 

Hausdorff metric. 

Let C be limcon(/i(M)) in the HausdorE metric, then C is compact and 

disjoint from 1/. 

Since the attractive hxed point a: of lies outside the isometric circle 

of we have that there exists an 1/ such that lies outside for all 

m > Z,. This means that there is some 5 E (0,1) such that 

< a 

for all z E C and m > Z,. 

We now extend the bound to A(M) for M large enough. We have 2 things 

converging, we have the convergence of A (71) to A and the convergence of 

= con(A(M)) to C. 

Consider the set IJn>7\r which converges to C respectively as N 

00. This means that for large Axed N there is some 5' such that 

< y < 1 

for all z E tjR>^ C'(^) m > Z,. 

Now as A(n) —> A it is easy to see that for hxed m we can Snd an TV' such 

that for n > jV'(m) 

l A W X A W M ) ! < 5" < 1 

for z E Since compact. However this 

is not strong enough for us ag we wish to have an N ' that is valid for all m. 
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We shall accomplish this by showing that is contained inside 

As we are nicely bounded we can hnd TV large enough so that IJTi>N ̂  (^) 

is disjoint from 

Which means that 

A I J C W C D(/i) C I J C(n) 
n>N' n>N' 

SO that if 

is uniformly bounded over all z E Un>;v then so is 

for all m > L. 

So we can End s" < 1 such that 

for all z 6 ^ aad n sufBciently large as required. O 

L e m m a 6.2.9 Gzuen o gegueMce proupa r(77) = < > 

mceZi/ 6ow?i(fe<i m /o3;odrom%c caae 0)i(fyi3;edZ, > 0 

25 o6oi;e otier aZ/ M Zorge 

Proof : Let {a, r} be the limit of the fixed points of note that these 

may not be disjoint. 
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We will do the case for the case for ^ is similar. 

We have that > /z, and con(/i(7%)) —> D(A"^)U{a, r } in the Hansdorff 

topology as we are in the nicely bounded loxodromic case. 

As con(/i(n)) converges to a compact set we have that 

majc max 
z6con(/i(n,)) zEZ)(k-i)U{a,r} 

for hxed m. This is bounded as the Exed repulsive Sxed point of A is a 

bounded distance away from {a, r}. But this argument works for each m < Z, 

so we have an overall bound. O 

L e m m a 6.2.10 Given a Schottky group T{n) =< g{n), h(n) > that is nicely 

case (Aen 0. 

Proof : We have already discussed the outline of the proof at the beginning 

of this section, however we will give a short outline of the end of the proof 

here. 

Given arbitrary 'y 6 see Definition 5.4.6, we hnd an upper 

bound for 

I t — J j [ IC-(Ct+i • • • 0(7) (^) I-
i=l 

The upper bound is expressed using the 3 constants we have deSned, namely 

gmax(?T,),hmax-^(M) and hmax^^(n). It is obvious that to End an upper 

bound we shall have to estimate the number of times the appropriate Ci 

appears in 'y = to replace it by one of the 3 constants. To do this 

we shall use the properties of 
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We then use Lemma 5.4.11 to find an upper bound on the growth rate of 

We assume that the Hausdorff dimension does not vanish. Then 

the fact that gmax(Ti) -4 0 implies that t(?i) —f 0 otherwise the influence of 

g(n) on the derivatives is too lazge which will force the HausdorS dimension 

to vanish. If t(n.) —> 0 then the proportion of hmax^^(n,) to hmax-^(n) in 

the upper bound on the derivative increases. However as hmax^^(?i) < s < 1 

for all M this forces the Hausdorff dimension to vanish as required. 

Recall that is the number of times the letters ^(71) or 

appear in the reduced word for 'y G r(M) and similarly for A(M)('y). 

By Lemma 5.4.4 there is a set jL(̂ (7T,)) such that U 

for every {'yt} — z E see Dehnition 5.4.5. 

= 0 0 

Lemma 5.4.20 states that 

^ iy( 

where and (̂ (72) is the HausdorS" dimension 

of A(r(7i)). 

Given ^ 6 2,(71)^(^(71)) then 

(̂7%) - e < < (̂7%) + e 

so that 

(t(72) - e)Z(i') < p(7%)(7) < (^(/i) + 6)Z(T̂ ) 

and 

(1 - ^(7i) - 6)Z('y) < A(7i)(Y) < (1 - t(M) + e)Z('-y). (6.2.1) 

For any 'y E T we have that 
(̂7) 

l Y M I = r [Ki (Ci+i . . .0(7)(W)I 
i=l 
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where Ci - - - 0(7) is a reduced word for 'y. 

±1 We cut the word Ci - - 0(7) up into the pieces such tha t Ci = 

(i = followed by Z, and not followed by Z, 

So we have that 

i y W I = n IC(0+i-"0(7)('u;))l 
Ci= (̂") or 

n i c ; ( c + i . . . 0 ( 7 ) M ) i 
C'=/j(n)±i , Ci+i...Ci+L=h{n)^^ 

n i c ( 0 + i . . . 0 ( 7 ) M ) i 
Ci=/i(n)±i ^ 

which is less than 

gmax(7%) 
(«=g(n) or (,=g(n)-^ 

hmax^^(n) J J hmax-^(n) 

by Definition 6.2.6 which gives us the upper bounds. 

We know bound the size of these products. 

The first is the number of equal to We write 'y E such 

that Z('y) = a as "Y = then 

in , 
- 6 < < t W + e 

which means that 

card{*|(i = > (^W -
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The second we bound is the case that and (^i+i... Ci+̂ , = 

Because we are looking for an upper bound on the derivative of 'y 

and by Lemma 6.2.8 we know that for large M hmax^^(y%) is less than 1 so 

we need to 6nd a lower bound on the size of the product. 

We bound 

card{2|(i = and ( i+ i . . . (i+z, = 

by saying it is greater than a lower bound on the number of (i = 

minus an upper bound on the number of 

card{%|(i = and ( i+ i . . . (i+z, ^ 

which is the size of the last product. We will return to this product later and 

Snd an upper bound on the last product. 

The bound on the size of the last product is slightly complicated as we do 

not know if hmax-^(M) is greater than 1 or not. The way we get around this 

is to consider max{l,hmax-^(M)} in the place of hmax-^(7i), if we do this 

the product is obviously larger than if we only consider hmax-^(7i) so we still 

have an upper bound. By considering max:{l, hmax-^(M)} we need to 6nd an 

upper bound on the size of the product. If we write 'y as ^ 

then 

card{i|(i = and . . . (̂ +̂2, < Z/A:. 

By considering the case that n, = 1 for all i except i = 1 which is 0 we see 

that the maximum that A; can be is + 6) 4-1 since 'y G This 

means that 

card{%|Ci = and ( i+ i . . . (z, ^ + e) + 1). 

We now return to the size of the second product. A lower bound on the 
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number of C, equal to is 

Z('y)(l - ^ ( n ) - e ) 

so that 

card{%|(i = and ( i+ i . . . (i+z, = 

> Z('y)(l - - e) - + €) + !) 

and we have bounds on the size of all 3 products. 

So we bound |y(w) | from above by 

max{l, 

in fact for ease of reading we shall write max{l,hmax-^(72)} as hmax-^(n). 
Having a bound on the derivatives of the individual ^ E we End 

a bound on the number of such 7. 

De&ne the supremum growth rate of to be 

FFW = Urn sup E = m} 

m 

this is Snite, since if we consider the whole group, r (n) , then its growth rate 

is 3. 

Then for all 7; > 0 we can find a M such that 

card{7 E Z,g(t(n))|Z(7) = m} < exp(^r(7i) + 77)"" 

for m > M. 

Putting this together we have that 
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Note that 

oo = (hmax^^(7i)hmax-^(n))'^W^ ^exp(pr(M) +77)gniax(?2)'̂ ("^(*("^)"^) 
m>M 

h m a ^ > ^ ( n ) " " " ' - " " ' " + " + ' " - ' ' \ m a x S ^ ( n ) " ' " " " " ' + " ) " ' 

iff 

exp(^r(?i) + 

This equation holds for all e, 7; > 0 so let e, 0 and we have 

exp(^r(?2))gmax(n)'^^")^(")hmax^^(?i)'^^"^^^ > 1 

and 

exp(^^)gmaj[(n)'^W*W/W(^-*W(-^+^))hniax^'^(?2)^'("^'^^^ > 1 

since hmax^^(M) < s < 1. 

We shall now prove the Lemma by contradiction. Assume that (̂ (?T,) —> 

1̂  > 0. We know that gmax(n,) —> 0 by Lemma 6.2.7 so we must have 

t(7i) —> 0 as (gmax(7i)'^)^(") does not converge to 0. This means that for small 

t(?T,) we have 

^(7i) gmax(;i)'(")*(") ̂ J ( n ) ( i - t ( n ) ( i , + i ) ) ^ ^ 

by Lemma 5.4.11. 

But 1 and limsupgmax(?i)'^(")*("^) < 1 so on letting ((n) —> 0 

we have that 

/ > ! 

but this contradicts Lemma 6.2.8 aa it states that g < 1 and we are done. O 
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6.2.2 T h e Inf ini te case 

This is the case that both multipliers diverge. 

We will hrst prove that the groups are eventually classical and then show 

that the HausdorE dimension of the groups converges to 0. 

L e m m a 6.2.11 o aegueMce r(M) m (Ae ciise 

Proof : 

Recall that multp(?i) = A(n,), multA(M) = //(yi) and 2(72) = cen7g(^)-i. 

We have chosen a sequence for which various objects associated to the 

generators converge. In particular, for certain cases, in this proof we shall 

need that and jyW converge. 

We split the problem up into two cases: 

1. 

2. 

kWI 
yiX")! 

k ( " ) l 

^ < 1, 

-> 1. 

Case 1. 

We have that 

radf g(n) 
I ̂  A(n) I |1 + A(9l)| 
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and as t < 1 for all e > 0 there is an 7/ such that n > TV implies 

k W I < (̂  + e)\/|;u(n,)|. So for 71 > / / 

-\/|A(M)|(l + (̂  + e) 

|1 + A(?2)| 

Eind by our assumption of the minimality of /^(M) we have that 

•\/|A(n)j(l + (t + e) -y/|A(n)|) 

|1 + A(n)| 

which converges to t + 6 as A(M,) —> oo which occurs as M oo. So there is 

an TV' > such that rad7g(n) < t + 2e for M > Since 6 is arbitrary we 

choose it so that t + 2^ < 1. 

The group is classical if 

- rad7g(n)) > |^WI + rad/g^^i) 

by Lemma 6.2.1. 

Which is true if 

|/i(n.) 1(1 — (i + 2e)) > I + t + 2e 

by our bound on radfg(n) of ^+26. But we have chosen 6 such that 1—(^+2e) > 

0, so this inequality is eventually satisiSed as [//(/i)] —̂  oo. 

Case 2. 

We have that converges in particular as 1/̂ (̂ )1 < |A(72)| for all M it 

converges to g say, such that g E [0,1]. 

We have two caaes: 

a. Im(") 
|A(n) 

5 < 1, 
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y, IX»)I _v 1 

Case a. 

For each e > 0 we can End an such that |z(n) | < (1 + e) for all 

71 > TV because we are in case 2 and similarly for alW > 0 we can 6nd an TV 

such that iy|;u(?T,)| < (-\/g + (^)-\/|A(n)| for all n, > TV' as we are in Case a. 

We can use this to find an upper bound on radfg(n) namely 

radTg^n) 
- -zWI ^ \/|A(72)|(l + |z(7%)|) 

|1 + A(7l)| |1 + A(72)| 

^ '\/|A(7i)|(l + (1 + e)-\/|/̂ (7%)|) ^ \/|A(72)|(l -1̂ (1 + 
|14-A(7T,)| |1 + A(7T,)| 

which converges to (1 + e)(-\/g + (̂ ) as ^ oo. If we choose 6 and small 

enough so that (1 + e)(\/5 + (̂ ) < 1 we have that the groups are eventually 

classical by the same reasoning as in case 1. 

Case b. 

In this case our bounds on rad/^(„) are not strong enough so we consider 

a circle of radius less than 1, centred at 1. 

Let 5 E (0,1) be given and consider the circle This shall be one 

of the dehning curves. Obviously cen/g(n) = 1 is inside this circle so we need 

to check that the repulsive Sxed point is inside. We shall so this by showing 

that the repulsive hxed point converges to 1. 

Since we are in this case we know that 

n 
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and aa we have standard generators and the formula for the centre of the 

isometric circle in Lemma 2.9.1 

= s g ' 

We can express as by Lemma 2.9.1. As is uni-

formly bounded over 7i, we see that 

where 2/(72) is the attractive hxed point of p(n). 

But the formula A(n) = shows that does not diverge su&-

ciently fast so 1 — 2;(M) must converge to 0 as required. 

Let w E Si_f(l) then by Lemma 2.9.1 

1 z(?7)(A(?l) + l)^tU— (l+z(M)A(M))(A(M)+z(M)) 

z(?T,) + l)^('u; — 1) 

_ 1 (z(n)A()i)4-l)(z(n) + A(M))^ 

w —1 \ z(M)(A(n) + l)^ y 

As we are in caae 2 and case b we have that f 1 as n —> 00. 
VlAWI 

Which means that 

(z(?i)A(?i) + l)(z(n) + A(M)) 

z(M)(A(M) +1)^ 

aa M - i CX3. So in conclusion 

k W I 

for w E 6'i_f(l). 
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r (n ) is classical for small and large M if the circles 5'^/2(0), 5'|^(n)|a/2(0), 

6'i_g(l) and ^(72)(6'i_a(l)) are all disjoint as the interior of is mapped 

to the exterior of g(n,) (Si-f (1)) since the repulsive fixed point a:(M) of (̂71) 

lies in as |%(n) — 1| — 0 as m 00 see Lemma 2.9.1. 

'S'a/2(0), 6'|^(n)|a/2(0) and are all disjoint as 6 > 0 and |)u(n)|(^/2 > 

2 — ^ for 71 large enough. We need that is contained in the 

annnlus bounded by 5'f/2(0) and 5'|^(n)|f/2(0) and is disjoint from 

We need to show that 

> |g(n)(w)| > max{^,2 + (̂ } = 2 + ^ 

for every w E and snfBciently large M. 

Since 1, for all 7; > 0 we can End an such that 

(1 - ) 7 ) k W I < < (l + ?7)|;zWI 

for M and all w. 

Since we are in case 2 and b there is a constant A/̂ ' such that 

(1 - 7?))/|//(z%)| < |z(M)| < (1 + 77)\/IX^)l 

for n > N'. 

By the above inequalities we have that 

< (l-77)|z(n)| < |g(n)(w)| < (l+77)|z(?i)| < (l+77)^\/l/^W 

so if we can show that 

2 + J < (1 - and (1 + 
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then we are done. But these inequalities are obviously satisEed as ^ oo 

so we are done. [] 

We now show that the HausdorfT dimension tends to 0. Given "y E r(7i) 

such that = ( i , . . . we show that converges to as n —oo 

for every %. This forces the HausdorS dimension to vanish. 

We shall need the following Lemma which gives conditions for the deriva-

tive to vanish. 

L e m m a 6.2.12 Given a sequence of loxodromics 7(n) with attractive fixed 

37(7%) (o 3;, (0 ?/ 

aucA a;, 2 / c x ) ond A(M) guc/i A(M) —> 00 

ae( % C C we /laue 

max 0 
tuex 

05 cZoaure 0 / % (foeg condom a;. 

Figure 6.1: Vanishing Derivative 

YW 
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Proof : The idea of this proof is captured in Diagram 6.1; since the 

isometric circle converges to the repulsive hxed point and % is away from 

this hxed point, eventually is disjoint from This means that the 

derivative is less than 1 and as the isometric circle shrinks the derivative 

vanishes. 

By Lemma 2.9.1 we have 

n w 2 = 
- 2 / W I 

1(1 — + a;(n)A(M) — ?/(M) 
w 

1- A(n) 

which converges to 0 as n —̂  oo as long as the denominator does not converge 

to 0. 

Since A(?T,) -4̂  oo as n —oo choose A(M) large enough so that 

w 
X — A(n) 

1 -
1 

A(n) 

is bounded away from 0 for all w 6 %. Then for large M 

y{n) 

w 
1 - ^ A(n) 

is also bounded away from 0. • 

The following Lemma gives conditions for the Hausdorif dimension of 

a sequence of Schottky groups to vanish. The condition 6rst is that oo 

stays away from the limit set of the groups. We can always satisfy this by 

conjugating the group. The second condition is that the derivatives all the 

elements in the groups of a certain length vanish. 
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L e m m a 6.2.13 GzneM o geg^eMce 0/ pro^pa r(7T,) luztA C — D(n) C 

^jz(O) /or some jR > 0 oncf tAe proper^;/ ^Aot 

max |^'(z)l — 0 

/or 507716 /ized 7^ > 0 a?i(f z E coii(^) oa n -4 00 ^Ae/i ^auscfoT^y 

dimeM5%on o/r(M) (e/iok ô 0. 

P roof : Consider the Poincare series of r (n ) 

E h ' ( 4 r , 
7€r(n) 

if Z^'yer ^ °° some ^ then 6 > 'K(r(?T,)) see Theorem 5.2.3. 

Given (̂  > 0 then choose 6 < ^ '^. By the assumptions of the Lemma we 

can End an > 0 so that for M > TV 

^ 

for all E r(?%) where = A' and z E con(^). 

Given ^ E r (n ) write it as (1 . . .^k( where Z( t̂) = A!", - /((i) + 

and Z(() < j r . 

By the conditions on the dehning curves of the group we can find a 

w ^ 00 E D(7i) that remains a hxed distance away from the limit set of 

every group, &x: this w. 

We shall now bound the size of over all E r(M) such that (((^) < 

A'. Suppose that there are E r(M) such that is unbounded. Let 

and be the fixed points of and its multiplier then 

l-̂ n I \ ̂ n Vn | 
I C M I \{w — Xn)Xn — W + Un]'^ 

152 



However this cannot converge to ex: as |zn—2/n| is bounded above and (w— 

is bounded above and below so even if |An| oo the denominator wiU 

dominate. 

All of this means that there is some upper bound on |C%^)| over all r(m) 

call this Z say. 

We now hnd an upper bound on the Poincare series, 

7er(n) 76r(ii) i=l 

since ^ con(^) for every % and by our bound on we have that 

his is less than 

I , ' ^ 
'Yer(n) 

We now calculate A: in terms of Z('y) = m, and express this as a sum over m 

i ' g ( I ' y j « = ^ ' < 4 i ' ^ 

7er(n) m m 

assuming that e < 1. The above converges if 

36^ < 1 

but this is exactly what we have assumed that e satisSes so the Poincare 

Series converges at 6 for M 

However was arbitrary so we have that the HausdorE dimension van-

ishes. O 

L e m m a 6.2.14 o o/ prowpg 

caae t/igm %(r(M)) -4̂  0. 
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Proof : We split the proof of this Lemma into various cases we will define 

later. Generally we will be applying Lemma 6.2.12 ajid then Lemma 6.2.13 

to show that the Hausdorff dimension vanishes. 

Pick standard generators C(n,) and (̂72,) for r(7i) where fixes 0 and 

00 for all 71. Let C(n) have multiplier A(n,) emd ^(n.) have multiplier 

Let the hxed points of (^(n) be ];(n) and 

We afe assuming that and the multipliers converge. 

Conjugate the group by Let 

then hxes —1 and 1. Let (̂72) = then ^(77) Sxes 0 and 

(̂7%) say. Note that conjugation does not change the multipliers. 

We split the proof into four cases, depending on where p(7i) converges to: 

1. p(7i) 00 ,0 ,1 , 

2 . p ( 7 i ) -4^ 0 0 , 

3. p(7i) ^ 0, 

4. p(72,) 1. 

Case 1. 

As the isometric circles of (̂71) and shrink to points eventually they 

must be disjoint so we have a sequence of isometric Schottky groups and we 

use these as dehning curves. 

We wish to apply Lemma 6.2.12. Let % G then consider %(7T.) 

with = Un>ArCon(%(7i)). Since p(n) —> p away from the other 6xed points 

we see that Un>ArCon(%(72)) is a bounded distance away from cen7^(n) for N 

large enough. 
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This means that for n suSciently large we can apply Lemma 6.2.12 to 

with % containing con(%(M)) for each n. 

So we can apply Lemma 6.2.13 as the condition on oo is obviously satisfied 

to get that the Hausdorg dimension vanishes. 

Case 2. 

This is the case that oo. We shall Erst of all show that this means 

that 1 and 2/(M) -4̂  —1 then we shall conjugate the group r (n ) by a 

di&rent Mobius transformation so we can apply similar reasoning as in case 

1. 

We have that which converges to oo. By 

Lemma 2.9.1 we see that 

1 = een/«„, = 
A(n) - 1 

which means that 

We shall consider the.4 case that 2/(M) and ^(M) do or do not converge to oo. 

Case > oo. 

Consider which either is or is not unbounded. If is unbounded 

then we know that 

i/(n)+a;(M) 1 + ^ 

so that — 1. However if is bounded then once again we must have 

3 get a cc 

1 - 2/W 

3/W ' 3;(n) 
— 1 by the above limit. But we get a contradiction as this forces 

- 1 - . ( n ) 
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to converge to —1 but this is not the case. So this caae cannot occur. 

Case -4 oo, 2/(n) oo. 

This forces 

1 - i L ) 

to tend to 0 which is a contradiction. 

Case 3;(7i) ^4 oo, oo. 

This forces 
- a; (71) 
_L /rrM") 

to tend to 1 which is a contradiction. 

Case z(M),i/(n) ^4 00. In this case by the formula for A(7T,) we have that 

—1 and by the formula for we get that ^(n) — 1 as required. 

Instead of conjugation the groups by ^(71) we will conjugate them by 

W—% 
W+t' 

Then '^((71)1/' ^ has hxed points that converges to —% and 

that converges to i. 

While has hxed point 1 and —1 as before. 

An argument as in Case 1. will show that the HausdorfF dimension van-

ishes. 

Case 3. 

Once again we have a sequence of isometric Schottky groups as the isomet-

ric circles of (̂7%) are disjoint by Lemma 2.9.2, we will use these as deEning 

curves. 
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Figure 6.2: Infimte Case 3. 

1 
h 

Ih(n) 
A(n) 

We wish to apply Lemma 6.2.13 to each sequence So we 

have 4 sequences to check, in fact the caaes of the inverse are very similar so 

we shall just do the two cases (̂71) and A(?%). In most caaes we will be able 

to apply Lemma 6.2.12 with % the contracting set. 

Case 

In this case we let % = Un>ArCon(/i(?2)), for TV large enough so that this 

set remains a bound distance away from —1. We can then apply Lemma 

6.2.12 to get that the derivative vanishes. 

Case (̂7%). 

This case is a little more complicated. Recall that 

con(^(M)) = D(g(n)) U D(A(M)) U 

so for D(A(7T,)) U we can apply Lemma 6.2.12 with % = 

U for jV large enough. 

However we will not be able to apply Lemma 6.2.12 for D{g{n)) as 0 is 

contained in the closure of for any 

We will have to do this case by hand. Let z E D(p(7%)) 
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By calculation and Lemma 2.9.1 

We shall now bound |z| in terms of |p(n)|. 

By Lemma 2.9.1 

and as p(n) and z are both in we have that 

|pWI < k | + 2radfg(^) = |z| + 2 | p ( ? 2 ) | j Y ^ S ^ < 

for |A(M)| > 9 + 4-\/5. So |z| > for |A(7i)| sufBciently large. 

We now go back to the derivative 

| z ( A ( n ) - l ) + X M ) | | | z | | A M - l | - | p ( n ) | | | z | | A ( M ) - l | - | p ( n ) | 

for |A(M) — 1| > 4 as |z| > So we can plug in our estimate for |z| to get 

that 

which converges to 0 as A(7T,) —> oo. 

So we have that max2gcon(g(n)) 0 as M —> oo. Trivially we have 

the other condition of Lemma 6.2.13 so we can apply it and this case is done. 

Case 4. 

Previously the de&ning curves have been isometric circles, in this case 

the defining curves will be the images of the deAning curves of the standard 

generators under 
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Figure 6.3: The Conjugation of Indnite Case 4. 

/ 6 < — \ 
V; 

1 V / 
A(M) 

We shall once again consider the sequence However in 

this case we shall run into a problem as one of the sequences of derivatives 

does not converge to 0. We shall get around this problem by considering 

words of length 2 when it comes applying Lemma 6.2.13 instead of words of 

length 1. 

As before there are four sequences to check, we shall check them in the 

order ^(71), and 

Case 

In this case we can apply Lemma 6.2.12 using a similar argument as case 

1. 

Case /i(n). 

The same holds true in this case. 

Case 

The contracting set of is the set UD(^(M)) UZ)(^(n) ^). 
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Figure 6.4: Tricky stages in In&nite Caae 4. 

— ^ 

C 
' o ^ 

Once again we can apply Lemma 6.2.12 to the set ^ U 

so the set we need to check by hand is the set see Diagram 6.4. 

First we bound the distance from D(p(n)) to 1. Let tu E 

then the largest that |w| can be is in case 2b of Lemma 6.2.11 but by the 

analysis of that section we have that 

Icenl, 
^ 1 

CW 

for w' G 

For all 7̂  > 0 there is an TV > 0 such that n, > 7/ implies 

^ 9 ^ , J C W M I < (l + ?7)|cen7((n)-i| < (1 +77)Vl/^WI 

for M > # large enough since we have standard generators. 

The closest that D(^(n,)) can be to 1 is greater than 

mm 
t 

1 - ^ (exp(2^)(l + ?7)-/!//(») mm 
t 

1 -
e x p M ( l +77)VI/^W 

exp(2t)(l + + 1 
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min 2 
+ 2((1 + 77) y i / z W I) co8(t) + ((1 + ??) 

2 

(l + 77)y|/^(a)| 

By the above discussion we have that 

max )'z > max I'w 
( 1 + ' 7 ) V ' I M ( " ) 1 

so we shall attempt to bound 

(AW-: ) ' I 1 + 

for any s. This is 

(l + 7 7 ) \ / ^ 

2|A(WI 

:exp(%g) 

M n ) - 1) ( 1 + exp(«) ) - ^(n) - 1 

2|X?^)| 

which converges to 

= (1 + 77)̂  

(!+')) exp(%g) 

as /^(n) -4 00. 

So we see that does not vanish for z E D(p(?i)) but it is bounded. 

Caae 

As before we can apply Lemma 6.2.12 for the sets D(g(7%,) :) and 

We shall have to do the case of by hand see Diagram 

6.4. 
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Consider ^(?i) which contains oo and is bounded by a circle of 

radius ^1/^(^)1 for some in every case of Lemma 6.2.11. 

The maximum that the derivative of over D(A(M)) can be is at the 

boundary of which is ')^('5'%(n)|(0))-

Let z E D(A(M)) then 

W W ((l-A(M))z+p(M)A(7T,))^' 

We are in the case that 1 and z E is bounded for all M so 

lim|(^(M)"^) '(z) |=lim . . ' Xai w \i2 — 
|p(7i) —z|^|A(72)P |p(n) —zp|A(n,)| 

we shaH 6nd an upper bound for this. 

In fact we shall show that 

i t o 1 

V 

for some ij > 0. This will show that 

which will be our upper bound. 

We will pull everything back to the standard generators and then use 

Lemma 2.2.5. We have that = ^(n) and we let = w. 

By Lemma 2.2.5 we see that 

|p(M) — z| = ^ 

so we will bound the expression on the right. 
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We express the derivatives hrst. 

|^(n) + a;(n)| 

and 

(n)'«,)| = 
|w + 

So we will bound |a;(M)|, l^/WI and |w|. 

First of all we shall bound Recall from Lemma 2.9.1 that 

rad/. 
' ' W - |1 + A(?2)| 

^ \/|A(M)|(l + |z(?i)|) ^ i/|A(M)|(l + y|A(7i)|) 

| l + A(7i)| - |1 + AW| 

since we have standard generators. 

This means that limrad7g(n) < 1, in other words that 

0 < < 2. 

However in each case of Lemma 6.2.11 we have dehning curves one of which 

is a circle centred at 0, since z(?i) is not within this deEning curve we have 

that there is some > 0 such that |a;(n)| > for all n. 

We now can bound y{n). Since 

converges to 1 as we are in case 4 we see that 7/(71) —> cxo. 

With the same reasoning as for 2;()i) we have a lower bound on |2/(M)| of 

7;. As we have standard generators we have that |z(7%)| < \/ |//(?i)| and if we 

express z(n) using Lemma 2.9.1 we get that 

I .WI H c e o / , , - . I = 
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This means that for large n we have that 

Iz/WI < 

We now bound lu. Since w E %|^(;i)|(0) fairly obviously jtuj = 6|)u(n,)|. 

We now use all the bounds, 

|p(n,) — z| — ||̂ (?T,)2/(M) — — w| 

-ji/W - w| 
1̂ (71) + a;(n)| |iu + 

^ |2a;(a)|(|w| - |3/(m)|) 

- (I2/WI + |a;(M)|)(|iu| + 

by the triajigle inequality. 

We now plug in the bounds we have to get that the above is greater than 

- V M ^ ) ^ ?7 > _ ^ 

for large M as we have standard generators. 

We will now show that we can apply Lemma 6.2.13 with the length of 

the words being 2. 

H you check each of the 12 combinations it is easy to see. As if the 

derivative of one of the elements does not vanish then the derivative of the 

other must vanish and since the derivative of Erst is bounded the derivative 

of the two multiplied together must vanish. 

We shall give an example. Consider the case of 

We wish to show that 

max 
wecoii{h{n)~^) 
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vanishes. 

By the chain rule we have that 

max /*(») )'w| 
wecon{h{n)^^) 

< max )'z| max |(/t(n) )'iu| 
zeD{h(n)^^) w&C0B{h{n)^^) 

which is less than 

(1 + 77)̂  max | (gW 

by our case by case discussion. 

But if we consider the derivative of on we see that this 

does tend to 0, so we have the result. O 

6.2.3 T h e Ident i ty /El l ip t ic case 

This is the case that |)u(7i)| —> 1 so converges to either the identity 

or an elliptic. The multiplier A(72) of p(n) diverges. 

We prove two lemmas that give conditions for a sequence of Schottky 

groups in the identity/elliptic case to be eventually classical. The first shows 

that if |A(n)| is large compared to how small |/i(n)| — 1 is, then the sequence 

is eventually classical. The second compares the distance between the Sxed 

points of or equivalently the distance from j to the axis of to 

[//(n,)! — 1. We then show that if these conditions are not satisfied for a 

sequence of Schottky groups then the HausdorE dimension of the limit sets 

of these groups cannot converge to 0. 
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L e m m a 6.2.15 Czfem a aeg'weMce 0/ 6'c/̂ o^A;!/ ^ro!;p.s r ( n ) m WeM-

coae a^cTidord gemeratora {p()^): 

qn2 

I^WI > (l^(n)l - 1)2 f"'-

w/zere n m l t ( A ( M ) ) = //(%) ano( m u l t ( g ( n ) ) = A(M) ( A e ^ ( A e prot tps ore e ^ e n -

(uaZZi/ cZa55%coZ. 

Proof : Our groups are classical if 

|/^(n)|(l - rad7g(n)) > k W I +rad7^(n.) 

by Lemma 6.2.1. 

By Lemma 2.9.1 

rad4( . , = < - A 
ll + AWI - ll + AWI - YlAWT 

as |z(n)| < -\/|/2(?i)| since we have standard generators, for |/.t(n)| < 2 and 

|A(a)| > 2. 

So the group is classical if 

- |;/(M)|radig(n) > + rad7g(m) 

which is implied by 

k W I - M " ) ! ' / ' ^ G (6.2,2) 
l/^WI + l \ / |A(n)| 

Now 

— 

(|//,(n)| —1)(|/^(M)| + 1) 4 
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as 1/̂ (7%) I 1 so there is some (7 > 1 such that < [ / means that 

( | X ) i ) | - l ) ( | / ^ W I + l) 5' 

Combined with equation 6.2.2 we see that the group is eventually classical 

if 
|)u(n)| - 1 6 

> 
5 y i A w i 

or 
/ , . / \ | 30 

and we are done. • 

We need the following technical lemma relating lengths in C to distances 

i n E ^ 

L e m m a 6.2.16 Given a geodesic a C with endpoints z, tu 6 C such that 

^ < |z|, jwl < 2 (AeM 

< z — w < 
exp(() exp(^) 

lu/iere Z t/ie A2/per6o/%c dwtance yrom j (o oi. 

Proof : We pull everything back to the ball model using the inverse of 

stereographic projection (f)"^ : . We let d be the Euclidean distance 

from 0 to (^(a) then d = tanh 

If Of contains then (^(a) is a straight segment. The circle 6"! must be 

contained under a so |z — w| > 1 and the inequalities are satisGed. 
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If CK does not contain j then (^(a) is contained in a circle with radius r 

such that this circle is tangent to the unit sphere and so we have that 

-

and 

1 (P exp(/) + 6xp(—Z) 

By Lemma 2.2.9 we have constants jiT, jiT' such that 

jiT'lz — tu] < — tul 

so 

< z — tu < 
AT exp(/) + exp(—Z) K ' exp(Z) + exp(—/) 

We have that 1 < |z|, |iu| < 2 so we can End explicit values for and A"' 

namely 

A" = ^ and K ' = -
0 9 

so that 
5 4 _ , , _ 9 4 

< z — w < 
8 exp(Z) + exp(—Z) 2 exp(Z) + exp(—Z) 

and because / > 0 we have 

< T— < \z — w\ < 
exp(Z) 4exp(Z) exp(Z) 

as required. • 

In the next Lemma we show that if the multiplier of a loxodromic is large 

then the distance between the isometric circles is approximately the distance 

between its fixed points. 
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L e m m a 6.2.17 a ZorocZromzc ̂  _/^e5 3; ai/cA cen/g = 1; 

1 < |ceng-i| = |z| < 2 and A (/le mWttpZter 0 /^ gottayZea |A| > 3 tAem 

%lz — u| < ll — z| <2|a; — u|. 
2 - I I - I yi 

Proof : We have that 

|1 — z| = \ceixlg — cen/g-i \ = \x — y\ 

by Lemma 2.9.1. Since 

1 + A 

1 - A 

1 < 
2 -

1 + A 

1 - A 
< 2 

for |A| > 3 the Lemma is proved. • 

L e m m a 6.2.18 Given a sequence of Schottky groups r ( n ) in the iden-

caae ^enero^ora tAe groups ore 

enentt/aZZ;/ cWszca/ zf 

exp(^(?2)) > 
37 

/or oZZ M 
\fj>{n) I — 1 

wAere Z(n) (Ae Ai/per̂ oZzc yrom j t/ie aa;2s 0/ p(n,) omd /^(n,) 

miilt(A(n)). 

Proof : The group r (n ) is classical if 

|//(n)|(l - rad7g(n)) > |z(M)| + rad7g(n 

by Lemma 6.2.1 

By Lemma 2.9.1 

rad/, g(n) 
y|A(M)||l - z M I 

|1 + A(M)| 
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which we shall now bound. 

We have 

|1 + A(M)| \/|A(?i)| 

for |A(m)| > 2 and 

36 
|1 - z(a)| < 2|];(M) - < 

exp(Z(rz)) 

by Lemma 6.2.17 and Lemma 6.2.16 for [//(»)| < 4 and |A(7T,)| > 3. 

So r(M) is classical if 

/ 72 \ _ 36 72 
1 — — I > 1 

exp(Z(M))y|A(n)| y exp(/(n)) exp(^(M))\/|A(M)| 

and on rearranging we have that the group is classical if 

7 2 ( K n ) | + l ) 

- 1) exp(Z(M)) — 36 

as |A(7i)| -4- oo the above inequality is satis^ed if the right hand side is hnite 

which is implied by — 1) exp(f(n,)) — 36 > 1 so 

37 

sufBces to show that the sequence is eventually classical. O 

L e m m a 6.2.19 GmeM a o/ prowpa r(M) m 

37 30^ 
exp(((n)) < — - OMd |A(M)| < 

tuAere Z(?i) w /rom j (o tAe oris miilt(p(n)) = A(n) 

mult(A(7i)) — /̂ (M) tAen liminf 9^(r(M)) > 
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Proof : This proof works by Ending lower bounds for the Poincare Series 

that diverge, this forces the HausdorfF dimension to have a lower bound. We 

wish to estimate the Poincare Series by a geometric sum. To do this we have 

two things to estimate, the growth rate of the group or by Lemma 5.4.20 the 

growth rate of some subset and the size of Using geometric 

estimate we shall estimate d(p(7i),'yp(n)) in terms of the generators of the 

group. Once we we have the geometric sum we can decide if it converges. 

We will manipulate this formula and show that in the limit for 5 > | that 

the geometric sum diverges. This forces the Poincare Series to diverge for 

large n and close to which by Lemma 5.2.3 means tha t the HausdorE 

dimension does not vanish. 

By Lemma 5.2.3 we wiU have the result if we can show that 

e x p ( — — oo 
7Gr(n) 

for arbitrarily close to ^ and all M su&ciently large. 

Choose to be the point on the axis of A,(n,) that is closest to the axis 

of g{n). Then 

= log 

and 

+ iog|A(M)| 

by the triangle inequality. 

By the triangle inequality 

exp( -^d(p(n) ,YPW))> ^ 2Iexp(-^d(p(n,) ,0p(M))) 

7er(n) 7Gr(n) i 

where Ci . . . (^ is the reduced word for 'y. 
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Figure 6.5: Bound on the generators 

log 

Given "-y G r(7T,) recall the deAnition that 

and = card{C: = where 'y = Ci - - Cw & reduced word. 

We have 

^ YIexp(-(^d(p(M),OpW)) 
7€r(n) i 

> ^ |/^(72)|-'^WM(|AW|exp(2ZM))-'^^WM 
yeT{n) 

by the bounds on ^(n) and A(n). 

Given t(M) and e > 0, recall the DeAnition 5.4.6. We have 

^ |^W|-'^''WM(|AW|exp(2ZW))-'^^W(^) = o o 

iff 

> | / /(n) |- '^(^- 'W+') 'M(|AW|exp(2^(M)))- '^( 'W+4'(7) = o^ 

-yeZxtW) 

by Lemma 5.4.20. This is the vital result as it allows us to estimate 

and A(m)('y) in terms of Z('y). Since we also have a bound on the growth 

rate of Z,;(1̂ (72)) we can f n d a lower bound on the above sum in terms of a 

geometric sum, for which we can determine whether it converges. 
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We shall now bound p(n,)('y) and /i(n)(''y) in terms of (̂7%), e and Z('Y). Since 

both and (|A(M)| exp(2^(M))) are greater than 1 and we are looking for 

a lower bound on the sum we need to And upper bounds on and 

(7) - Since 'y E we know that 

< gW(7) < + e) 

this means that 

- e) < / t W W < - t W + e) 

which are the bounds we shall use. 

Note that t(?i) is arbitrary so choose t(n) small enough so we can apply 

Lemma 5.4.11. We then have that the above sum is greater than 

^ (I A(n) I exp(2Z(7%))) 

by Lemma 5.4.11. 

This sum is a geometric sum so it diverges iS 

Since e is arbitrary we have that the above is true if 

tW-'W/2|^(^) |-m-^W)(|A(n) |exp(2(M))- '^"W > 1. 

By our bounds on Z(m) and |A(7i)| we have the above is true if 

> . 
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We isolate ^ and get that the above inequality ia satisEed iff 

^ ^ ^ l o g ( t W ) 

log - t W log ( 

To apply Lemma 5.4.11 we only need that it is sufBciently small. This 

value is a property of the free group and independent of the Schottky group. 

As 1/̂ (72)1 — 1 —> 0 we can set t(M) = l/^WI — 1 aJid apply Lemma 5.4.11 for 

all n large enough . 

So we need that 

« f ^ l o g ( | ^ ( n ) | - l ) 

- I) log (dJ'ffl-i)-' 

however —l)log(|/^(7i)| —1) —> 0 more slowly than log|/^(72)| or |//(M)| — 

1, so 

lim • 
log(|//(M)|I^WI-2) - (|/^(n)| - l ) log 

= 1 - 1 ) ^ 1 
2 4 ( | / 2 (M) | - l ) l og ( | ; / (n ) | - l ) 8 

as required. 

• 

6.3 The Fixed Points Converging 

We recall that this is the case where the Sxed points of converge to 

the same point and its multiplier does not converge to oo. We first of all 
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prove two Lemmas that we will use in both cases. The Grst shows that the 

hxed points of g(n,) converge to 1 and the second gives us defining circles for 

that will be used, in some circumstances, to show tha t the sequence is 

eventually classical. 

L e m m a 6.3.1 o aeguence r(n,) gen-

ero^ora g(M) oMii m 0/ tAe two pomta co7T,2;ergmp coaes case 

tAsM (Ae _̂ a;e(f pomts 27(71) and i/(n) 0/^(72) coMfen/e to 1. 

Proof : Let x{n) and y{n) converge to x. 

By Lemma 2.9.1 and as we have standard generators 

1 = - f . " ) , („ ) = 
A(M) - 1 A(n) - 1 

so that 

We 6rst note that as we have standard generators 

1 < lim |z(n)| < lim < lim \/ |A(n) | < 00 

so that lim z (71) ^ 00. 

We shall now show that this means that a; 00. Let limA(n,) = A then 

. z(M)+A(n) limz(?T,) + A 
X = lima:(n) = lim , , ,—-— = : 

^ ^ A(72) + 1 A + 1 

as |A| ^ 0 0 since we have standard generators and ajre in the one of the hxed 

points converging case. 

Consider a;(7%) — i/(n) this satis^es 

+ A(?2) z(M)A(M) + 1 — 1)(1 — '^(^)) 
z M - 2/W = 

A(n) + 1 A (71) + 1 A (7%) + 1 
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and converges to 0 so either z(n,) -4̂  1 or A(M) —1. 

We shall now show that 1, if z(a) ^4 1 then A(n) — 1 and by 

Lemma 2.9.3 this means that p(M) converges to a parabolic. However this 

contradicts [JK82] since the group generated in the limit is either elementary 

or is not free. 

By the expression for z(n) we see that 

1 = limz(n) = . 
A(Ti) - 1 A — 1 

as required. 

• 

We will not be able to use the isometric circles as deBning curves so we 

6nd disjoint circles and bound their size. 

L e m m a 6.3.2 6'uppose ^ o Zo3;oo(rom%c a; ond 2/ Mot oo 

and /los A (/lat |A| > 1 t/ien t/iere ore czrcZes C, C" 

ai/cA (Act g(W(C)) = ecctC" diam(C U C") = |T — 3/1 -

P roof : Conjugate ^ to by w i-> ^ then hxes and and the 

distance between the Exed points is 2. 

Next conjugate to ^2 by w i-4 w — so that ^2 fixes ±1. This is a 

Euclidean isometry. 

We now conjugate by tu M- to gs where gs fixes 0 and 00. 

Now ^3 has disjoint circles 5" /r-]-i(0) 'S' /rr](0) satisfying the hrst 

property. 
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We will conjugate these circles back to End circles with the required prop-

erties. 

Conjugate these circles back so they are paired up by ,92. Then the diam-

eter of there union is 
-VIAI - 1 —\/ |A|- l — 2 

1^-1' -\/W +1 

Now when we conjugate them so they are paired up by this does not 

change their diameter as it is a Euclidean isometry. 

We conjugate them back so that they are paired up by g. 

These last two maps are both similarities so they preserve extreme points 

this means that the diameter of the circles is — 2/1 as required. O 
A — 1 

6.3.1 T h e B o u n d e d case 

This is the case that the multipher //(zi) of converge to // such that 

E ( 1 , 0 0 ) . This means the /%(n) converges to a loxodromic. The Exed 

points of p(M) converge to each other. 

We shall Srst show that the sequence is eventually claasical. As 1/̂ (71)1 ̂ 4 1 

we will easily be able to find deEning curves for r(?i) tha t are circles. 

L e m m a 6.3.3 a segT/eTice groups r(?%) m (Ae cose 

(Ae proupa o r e e-uentitoZZ^ cZossico/. 

Proof : Let be the fixed points of ^(n) then a;(n),2/(n) —̂  1 by 

Lemma 6.3.1. 
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The sequence is eventually classical as the circles 5" ,, , - i (0). 6' / m i ( 0 ) 

and the circles C(M) and C"(n) which are paired up by as in Lemma 

6.3.2 are disjoint for large M. 

This is because 1 so the circles 5 " ^ ( 0 ) and S 

remain a bounded distance away from 1. 

And diam(C(?i) U = |2;(n) — -4- 0 as M —> oo since 

A(7i) is bounded away from 1. This means that the circles C(M) and C"(M) 

are disjoint from 5 " i (0) and for large M. 

The group is seen to be Schottky by Lemma 6.3.2 as = 

eztC'(7i). O 

6.3.2 T h e Ident i ty /El l ip t ic Converging case 

This is the caae that 1 and the fixed points of converge to 

the same point. 

We shall hrst give conditions for a sequence to be classical and then show 

if this does not happen that the HausdorfE dimension must vanish. 

L e m m a 6.3.4 Gmem o seguemce o/S'c/ioMA;?/ grot/pa r(n,) wit/i pen-

era(ora m t/ie coM?;ergimp case sttcA t/iot 

- l)(|A(n)| - 1) > 18|A||3;M -

/or aZZ wAerg A(?i) —A, aegwence w cZoaazcaJ. 
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Proof : By Lemma 6.3.2 there are deSning circles for ^(72) whose combined 

diameter is 

k W - 2/W 
v l ^ W I 1 

where a; (71) and ^(m) are the Gxed points of 

If is large enough we can 6nd circles centred a t 0 that are denning 

curves for /i(n) and which are disjoint from the deGning curves for ^(n,) and 

we will have shown that the groups are classical. 

Let then we can 6nd circles centred at 0 

that will sufEce if 

1/̂ (72)1(1 - <i(M)) > 1 + G((n') 

as 1 is inside the deEning curves for g(n). 

(6.3.3) 

Figure 6.6: Conditions for classicalness when Axed points converge 

We rearrange equation 6.3.3 to get 

|//(n)| + 1 

which we will now simplify. 

Choose 71 large enough so that 

\/|A(m)| — 1 
(f(7T,) 

|/^(7i)| + 1 < 3 and |A(7i)| < - |A | 

(6.3.4) 
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then 
1 X 4 1 - 1 1 X 4 1 - 1 
W I + 1 3 

and 
-\/|A(n)| + 1 4|A(n)| 6|A 

^ ,w M , (6.3.6) 
— 1 I ^ W | —1 I ^ W | - 1 

as (3\/ |A(n)| + l)(-\/|A(?2)| — 1)^ > 0 for |A(7i)| > 1 then applying the bound 

|A(M)|. 

Putting equation 6.3.5 and 6.3.6 into equation 6.3.4 we get that the group 

is classical if 
— 1 I . . . . . 6|A| 

> |a7W-i / (?2) | 

or 

|/̂ (7T,)| — 1 > 18|2:(n) — 2/(n,) 

|AW| - 1 

, |A| 

A(n)| — 1 

as required. O 

L e m m a 6.3.5 a ^eodea%c a C endpoWg z, w E C aitc/i 

^ < l^l, Iwj < 2 

1 I ^ < z — w < 
exp(/) exp(/) 

mAere Z tAe Ag/per^oKc dzatomce _/rom j to a . 

P roof : We pull everything back to the ball model using the inverse of 

stereographic projection —> 5^. We let d be the Euclidean distance 

from 0 to (^(a) then d = tanh ( 0 . 

If CK contains then is a straight segment. The circle S": must be 

contained under a so |z — iu| > 1 and the inequalities are satisfied. 
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If CK does not contain j then (^(a) is contained in a circle with radius r 

such that this circle is tangent to the unit sphere and so we have that 

r = 

and 

1 + cP exp(Z) + exp(—Z) 

By Lemma 2.2.9 we have constants fT' such that 

^ — w| 

so 

< z — w < 
^ exp(Z) + exp(—Z) AT' exp(Z) + exp(—Z) 

We have that ^ < |z|, |w| < 2 so we can Snd explicit values for TiT and A"' 

namely 
R 2 

K = - and AT' = -
5 9 

so that 
5 4 , , 9 4 

< z — w < -
8 exp(Z) + exp(—Z) 2 exp(Z) + exp(-Z) 

and because Z > 0 we have 

< rrr < Z — W < 
exp(Z) 4exp(Z) exp(Z) 

as required. O 

Lemma 6.3.6 Given a sequence of Schottky groups r ( n ) in the iden-

caae {^(7%), A(M)} 

tAeM l iminf?/( r ( ) i ) ) > 
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Proof : This proof is somewhat similar to the identity/elliptic case see 

Lemma 6.2.19. 

By Lemma 5.2.3 we wish to show that 

Y ] exp(-(^d(j,'yj)) = oo 
7er(r!,) 

for arbitrarily close to ^ and Ti snlBciently large. 

We have 

and 

by the triangle inequality, where Z(M) is the distance from ^ to the axis of 

Figure 6.7: Bound on the generators 

log M") 

By the triangle inequality 

/ y V 
'7Er(n) 7Gr(n) i 

where Ci . . . is the reduced word for 'y. 
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Given "y E r (n ) recall the deGnition that 

and ^(n,)('y) is de6ned similarly, where 'y = Ci - - Ob) ^ Ei reduced word. 

We have 

7er(n) i 7er(n) 

by the bounds on and d(_;, /i(M)j). 

Given t(M) and e > 0, recall the Definition 5.4.6. We have 

'yer(n) 

iff 

TCZe (*(»)) 

by Lemuma 5.4.20. This is the vital result as it allows us to estimate 

and /i(n)('y) in terms of Since we also have a bound on the growth 

rate of we can hnd a lower bound on the above sum in terms of a 

geometric sum, for which we can determine whether it converges. 

We shall now bound p W M and A(M)('y) intermsoft(n,) ,eandf( 'y) . Since 

both and (|A(M)| exp(2Z(72))) are greater than 1 and we are looking for 

a lower bound on the sum we need to find upper bounds on g(n)(7) 9,nd 

A(M)(Y). Since 'y 6 2,̂ (^(92)) we know that 

- e) < 

this means that 

((-})(! - t(n) - e) < /iW('y) < ((?)(! - t W + e) 

which are the bounds we shall use. 
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Note that t(n) is arbitrajry so choose small enough so we can apply 

Lemma 5.4.11. We then have that the above sum ia greater than 

by 5.4.11. 

This sum is a geometric sum so it diverges iS" 

Since e is arbitrary we have that the above is true if 

We now isolate 

1 -t(M) log(((n)) 

(5 > 
2 t(M) log |A(?T,)| + 2f(n)Z(n,) + (1 — log 

We let 3;(M) and be the hxed points of ^(n). By Lemma 6.3.1 we have 

|z(n)—2/(n,)| 0. So for M suSciently large we can let t(M) = -\/|z(n,) — ^(n)| 

and still apply Lemma 5.4.11. 

We wish to show that the above equation cannot converge to 0, which 

occurs iS the inverse does not converge to cxo, i.e 

t(n,) log |A(M)| + 27̂ (M)Z(n) + (1 — log|//(M)| 

log(^(M)) ^ 

We shall look at each term in the inequality. 

Firstly 

-^ (n ) | | l og |A(n) | _ log|A(?i)| 

-y |3;(n,) - ? / ( a ) | l og \ / t iW - 2/WI - l o g g i a ; ( a ) - ^(n) | 
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as |A(?t,)| —Y [ A | 7^ 0. 

Next 
2 y | z ( n ) -:z/(n)|/(n) 

-y |a;(n) - ! /W| log \ / k W 

2/1^^ 18 

- log V k W - 1 / W I - log \ / | a ; W - ^(n) | 

by Lemma 6.3.5 for ^ < |:z:(?%)|, |2/(9%)| < 2 which occurs for large n by Lemma 

6.3.1. This means 
4 18 

—̂  4 
- l o g | z ( n ) - 2/(71)I 

as |a;(n) — 2/(71) | -4 0. 

Lastly 
(1 - \/|%(7%) - y ( n ) l ) log |//(M)| 

< 

-y | a ; (m) - 2/(^)1 log \/|3;(n) - 2/(71) 1 

log 1X71)1 

- \ / R M ) - 1 / ( 7 1 ) 1 log \/l3;(7l) - 2 / W I 

2i / l8 |A| 37(71)-7/(?i) 

- y k W - 2/(7i)|log \ / | z ( n ) -3/(7%) I 

ag log(r) < 2(r — 1) for r E (1, e^) and by our assumption on //(?%). We see 

that this is 
2 y i # 

-log[a;(ft) - ?/(M)| 

which converges to 0 as |a;(n) — !/(n)| -4̂  0. 

So we have shown that 

-((^)l0g(t(7l)) ^ 1 

2 t(M) log I A(n,) I + 2 (̂71)̂ (72) + (1 — ^(71)) log |/.t(7i) I 4 

and we have a lower bound on the Hausdorff dimension in the limit. 

• 
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6.4 Non-classical Schottky groups 

We are now ready to show that there exists a universal lower bound on 

the Hansdorff dimension of the limit set of a non-claasical Schottky group. 

T h e o r e m 6.4.1 There are no non-classical Schottky groups of genus 2 with 

Proof : We shall prove this by contradiction. If there is no universal lower 

bound then there exists some sequence r(M) of non-classical Schottky groups 

such that ?/(r(7%)) —> 0. 

Conjugate r ( n ) so that it has standard generators this does not change its 

classicalness or its HausdorG" dimension by Lemma 3.2.4 and [Fal97]. Since 

the HausdorS dimension of the sequence still vanishes we know that one of 

the generators diverges by Lemma 5.2.4. 

By Lemma 6.1.5 there is a subsequence r(Mm) of r(n,) that is in one of 

the 5 cases in definition 6.1.4. This subsequence has vanishing Hausdorff 

dimension and every group is non-classical. 

If we are in the loxodromic, ininite or bounded case then the groups are 

eventually classical by Lemmas 6.2.2, 6.2.11 and 6.3.3. 

The only other two cases are the identity/elliptic or identity/elliptic con-

verging case. 

In the identity/elliptic case the groups are either eventually classical by 

Lemmas 6.2.15 and 6.2.18 or liminf%(r(?ini)) 2 g by Lemma 6.2.19. 

The only case left is the identity/elliptic converging case. But in this 

case either the groups are eventually classical by Lemma 6.3.4 or the Haus-
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dorfT dimension does not converge to 0 by Lemma 6.3.6. Here we have 

used that if the assumption in Lemma 6.3.4, that — 1) > 

18|A||a;(n) — does not hold then the condition in Lemma 6.3.6, that 

— 1)^ < 18|A||a;(9i) — does hold as |/̂ ()%)| < |A(?i)| since we have 

standard generators. 

So none of the cases can occur and we have a contradiction. This means 

that there is a universal lower bound on the Hausdorff dimension of a non-

claasical Schottky group. O 
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