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Chapter 1

Introduction and Basic

Definitions

1.1 Introduction

Every compact Riemann Surface can be uniformised by a Schottky group,
so to study the space of Riemann Surfaces we can study Schottky space, see
Bers [Ber61]. They are also an extremely nice example of a geometrically

finite Kleinian groups.

Schottky groups are naturally classified as to when their defining curves
can be circles or not. If a Schottky group has defining curves which are circles
then it is classical, otherwise we say it is non-classical. Marden [Mar74]
was the first to show that non-classical Schottky groups do in fact exist.
Yamamoto [Yam91] gave an explicit example of a family of non-classical
Schottky groups, in Chapter 4 we generalise this family to give a family of

non-classical Schottky groups that leaves PSLo(C).



The Hausdorft dimension of the limit set of a Kleinian group has been
of interest for many years. It was studied by Ahlfors and his conjecture
that the limit set of a finitely generated Kleinian group is either C or has 0

2-dimensional Hausdorff measure is still open.

Patterson [Pat76a], [Pat76b] in the Fuchsian case and Sullivan [Sul79],
[Sul84] in the Kleinian case studied the connection between the exponent of
convergence of the Poincaré series and the Hausdorff dimension of the limit
set. We use these results in an essential way when finding bounds on the

Hausdorff dimension of the limit set of a Schottky group.

Bowen [Bow79] characterised the Hausdorff dimension of the limit set of a
Fuchsion or Schottky group in terms of the Pressure function. Ruelle [Rue82]
used this fact and his analysis of the dynamical zeta function to show that
the Hausdorff dimension of the limit set is a real analytic function over the

appropriate deformation space.

An old question (from Schottky) that was answered by Doyle [Doy88]
states that there is a universal upper bound on the Hausdorff dimension of

the limit set of a classical Schottky group.

We provide a partial complement to this result and prove that there is a

universal positive lower bound on the Hausdorff dimension of the limit set of

a non-classical genus two Schottky group.

We prove the above result by contradiction. We show that if a sequence
of Schottky groups has Hausdorff dimension tending to 0 then given any set
of generators at least one of the sequence of generators must converge. So
to study sequences of Schottky groups that might have Hausdorff dimension
— 0 we study divergent sequence of genus two Schottky groups. We classify

what can happen to such a sequence in terms of its generators. In each case



we show that either the sequence is eventually classical or there is a lower

bound on the Hausdorff dimension in the limit.

Key to showing that the groups are eventually classical is the result that
we can take the centres of the isometric circles of the groups “close” relative
to the multiplier of the other generator, see Lemma 6.1.3. From this result

it is a case of checking that the groups are indeed classical.

Finding lower bounds on the Hausdorff dimension of the limit sets is more

sophisticated.

The main result is a refinement of the Poincaré Series, see Lemma, 5.4.20,
that allows us to sum over a set that reflects the “density” of the generators
in the limit set. The technical result, Lemma 5.4.11, allows us to control
the growth rate of this set. This result allows us to bound the exponent of

convergence of the Poincaré series.
This thesis is split into six chapters.

The first, this one, is composed of two parts; an overview of the thesis

and a section on the basic notation we will use.

In the second chapter we introduce standard results on Md&bius transfor-
mations and Kleinian groups. The main theme we shall concentrate on is
the relationship between the ball model and the upper half space model of
hyperbolic space H3. There are three results we use repeatedly. Namely,
that stereographic projection restricted to a closed subset of B0 — j is a
bi-Lipshitz map and that it induces a homomorphism from Mob(B10) to
Mob(H?) via conjugation. We will often use the useful equality that given a

Mobius transformation v then

v(z) — y(w)| = |7 (2) |37 (w) |3z — w]



for z,w € C. Lastly we study what can happen to a sequence of loxodromics,
in particular the manner in which they can diverge. This will be useful when

we study divergent sequences of Schottky groups in Chapter 6.

Chapter three is composed of the definition of a Schottky group I', the
notation we will use and the main known results. It is worth noting that
H3/T is a handlebody, that Q(I")/T" is a Riemann Surface and that every
Riemann Surface is uniformised by a Schottky group. The main results we
use are that the limit set of a Schottky group is a cantor set homeomorphic

to its shift space. We also discuss Schottky space and its boundary.

In Chapter four we look at the different types of Schottky groups and give
a family of non-classical Schottky groups for which a subsequence diverges.
This family is an example of a sequence of Schottky groups which diverge

but that the Hausdorfl dimension of their limit sets does not vanish.

In Chapter five we introduce the two main measures, Hausdorff measure
and Patterson-Sullivan measure, on the limit set of a Kleinian group. We
state the important result that for a convex cocompact group they are the
same up to multiplication by a constant. In fact for a geometrically finite
group the Hausdorff dimension and exponent of convergence of the group
coincide. We use this to show that if the Hausdorff dimension of the limit sets
of a sequence of Schottky groups vanishes then the groups diverge. Chapter 6
will be spent showing to what extent the converse of this statement holds. In
the second part of this chapter we show that when calculating the exponent of
convergence of the Poincaré series you only need to sum over a certain subset
of I and not the whole group. This result will allow us to give estimates for

the limits of the Hausdorff dimension of various sequences of Schottky groups.

Chapter six contains the bulk of the calculations. We consider a divergent

sequence of Schottky. groups < g(n), h(n) >, where g(n) diverges. We then



split the problem into various cases depending on what h(n) converges to and
how g(n) diverges. For each case we discuss on what conditions the sequence
is eventually classical and whether the Hausdorff dimension of the limit sets
vanish. We use this classification to show that there is a lower bound on the
Hausdorff dimension of a non-classical Schottky group although we do not

find an explicit bound.

1.2 Basic Definitions

In this Section we introduce the basic topological and notational conven-

tions we will use.

Definition 1.2.1 For any n > 1 we denote the one point compactifica-

tion of R™ by R".
Definition 1.2.2 The Riemann Sphere C U {co} is denoted by C.

In this thesis we will often use a generalised metric, this is a very natural
notion when considering path metric spaces. In a generalised metric we allow
the distance between any two points to be infinite. We immediately see that
R" and C are examples of spaces with generalised metrics. We will keep the
normal norm notation |- | and allow it to take values in [0,00]. As usual,
to allow arithmetical operations we define [co — cof to be 0. It still makes
sense to talk about divergence in a generalised metric, for instance in C it
just means convergence to co. We restrict the use of divergence to spaces
such as PSLy(C)9 where divergence cannot include convergence (to infinity).

In spaces such as R™ and C we will talk about convergence to oo.

We will need to discuss the distances between sets, to do this we make

the following definition.

D



Definition 1.2.3 Given sets X, Y C Z we let

distgp(X,Y) = sup |z — 1y
zeX,yeyYy

and

distins(X,Y) = inf v lz — yl.

zeX,ye

We should note that except in very special circumstance neither of these

is a metric on the space of all subsets of Z.
Definition 1.2.4 Let B,(z) = {y € R?|jz —y| < r} denote an open ball.

Definition 1.2.5 Given any set £ in a topological space, let £ denote its

closure and int(E) its interior.
Definition 1.2.6 We let j € R? be the point (0,0, 1).

Definition 1.2.7 We let 0 denote the points (0,0) and (0,0, 0).



Chapter 2

Hyperbolic space and Kleinian

groups

In this chapter we look at the relationship between the ball model and the
upper-half space model of Hyperbolic space H?. In both cases the isometries
Isom (H?) of HP are restrictions of Mdbius transformations of R3, to By (0) in
the ball model and H® = {(z,y, )|z > 0} in the upper half space model. A
homomorphism from Mob(B;(0)) to Mob(H?) is induced by conjugation by
stereographic projection so it makes sense to study this map. We show that
stereographic projection is bi-Lipshitz away from 7 and co. The sphere at
infinity S of H? is $1(0) in the ball model and C in the upper-half space
model. One of the reasons the ball model is useful is that the metric on
51(0) is compact while C has a generalised metric. However the action of
Isom™ (H?) extends to S in a particularly nice way in the upper-half space

model; the set of orientation preserving Mobius transformations that preserve



H3 Mob™ (H?) is homomorphic to PSL,(C) and acts on C by

+a =+b (2) az+b
2) =
+c +d cz+d

which is obviously well defined.

In this Chapter we essentially follow the above discussion. Firstly we in-
troduce Mobius transformations and a useful Lemma concerning them. Then
we define the two models. We next give an explicit formula for stereographic
projection that allows us to show that it is bi-Lipshitz when restricted to

compact sets not containing j. The next step is to analyse the action of

PSLy(C) on C.

We then classify types of orientation preserving isometries of H? in terms
of their fixed points. We introduce the convex hull of a subset of H? U C. We

then look at types of Kleinian groups and the objects associated to them.

Lastly we look at sequences of loxodromics that converge pointwise to

some function.

2.1 Mobius Transformations

In this Section we give the definition of a Mobius Transformations and
state a useful Lemma relating the Jacobian of a Mdbius Transformations to

the distance it moves points.

Definition 2.1.1 A generalised sphere of R is either a sphere S, (z)
{y € R¥|z —y| = r} or a plane union infinity P.(z) = {y € R¥|y -z =
r}U{oo}.

We see that a generalized sphere is a topological sphere.

8



Definition 2.1.2 A reflection in a generalized sphere S is the map

{ oy oy, if S=S5(u)
V=

jv—ul®

v+2(r—vuu if S=P(u)

which is the normal plane reflection if S = F,(u). If S = P,(u) then oo is
fixed and if S = S, (u) then oo — u and u — oo.

Definition 2.1.3 A M&bius transformation v : R® — R3 is a composition
of reflections in finitely many generalised spheres. We let Mob(R®) denote

the group of all such transformations.

The Jacobian of a Mébius Transformations is orthogonal up to multipli-

cation by a constant see [Rat94] so we make the following definition.

Definition 2.1.4 Given a Mo&bius transformation v then we define the

conformal dilation at (z,y, ) to be the number |7'((z,y, z))| such that

1 !

=7 (2,9, 2))
7 ((2,y,2))]

is orthogonal where ' is the Jacobian of .

The conformal dilation is related to the distance that v moves points in
the following nice way.
Lemma 2.1.5 Given a Mébius transformation v we have that
[7(w) = ()] = [ @2l ()] - o]

for u,v € R.

For a proof of this see [Nic89)].

Mobius transformations are differentiable conformal homeomorphisms.

A Mobius transformation is orientation preserving if it is a composition of

9



reflections in an even number of distinct spheres. We let Mob™(R?) be the

group of all orientation preserving Mobius transformations.
In a similar manner we make the following definition.

Definition 2.1.6 Given E C R® let Mob(E) be the set of Mobius transfor-
mations that preserve F, so Mob(E) = {y € Mob(ﬂA@)h(E) = E}. Define
Mob™(E) similarly.

We now look at the set on which « acts as an Euclidean isometry.

Definition 2.1.7 Given vy € Mob(l@g’) that does not fix infinity then the iso-
metric sphere 5, of 7y is the unique sphere on which 7y acts as an Euclidean

isometry. For existence see p.117 - 120 [Rat94].

It is worth pointing out that the image, under -y, of the isometric sphere

of 7y is the isometric sphere of y~1.

Definition 2.1.8 Giveny € Mob(B;((0,0,0))) that does not fix infinity then

the intersection of the isometric sphere S, with S;((0,0,0)) is the isometric

circle I, of 7.

2.2 The models of hyperbolic Space

We first define 3—dimensional hyperbolic space.

Definition 2.2.1 Hyperbolic 3—space I is the unique simply connected

complete Riemannian manifold of constant curvature —1.

10



2.2.1 The models:

Definition 2.2.2 We define the unit ball model of H? to be B;(0) with
the metric defined by

. 2
du(p, q) :lgféijmg|dxi

where p,q € B1(0) and the infimum is taken over all differentiable paths o

in B;(0) from p to g.
Definition 2.2.3 We define the upper-half space model of H? to be
H? = {(z,y, 2)|z > 0} with the metric defined by
. 1
du(p,q) = M;f/ ;}dr(

[83

where p,q € B1(0) and the infimum is taken over all differentiable paths o

in H? from p to q.

That these are equivalent spaces and that Isom(H?), Mob(B;(0)) and
Mob(H?) are all isomorphic can be found in [Rat94].

2.2.2 The boundaries of the models

The boundary of H? is sometimes called the sphere at infinity or visual

boundary 5.

The boundary of B;(0) is S;(0) and the action of Mob(B;(0)) extends
naturally. This model is useful as it is conformal and the metric on the

boundary of B;(0) is not a generalised metric.

n be defined in

]
[eBEN 4

mi 73

The boundary of H®is C and the action of Mob™(

3
H?) ¢

\
the following nice way as Mob™ (H?) is isomorphic to P.S L, (C) as topological
groups see [Rat94].

11



Definition 2.2.4 We define an action of PSL,y(C) on C by, given v €

PS1,(C) such that
| #a +b
LA

aztb 5 C
i d
v(z) = { Cz:
- Z =00

and z € @ then

this is obviously well defined.

We can restrict Lemma 2.1.5 to C in the following way.

Lemma 2.2.5 Given vy € PSLy(C) and z,w € C then

7(2) = y(w)] = Iy @1 (W) ]z — wl.

Proof: We know

az +b 1
= ith ad —bc =1 "(2) = ————
~(z) g Fith o c so v'(2) r d)?
and
(2) (w)_az+b aw+b z—w

7 = T d cw+d  (cz+d)(cw+d)
So when we take norms and get the result. O
We can extend the above result to z,w € C if we allow |- — -] to take

values in R and define |oo — co| to be zero.

Definition 2.2.6 Given v € PSL,(C) that does not fix oo then the iso-
metric circle I, of v is the circle in C on which v acts as a Euclidean
o Y

isometry.

12



The following Lemma gives an algebraic formula for the isometric circle.

Lemma 2.2.7 Giwen v € PSLy(C) that does not fix oo then
L ={z€Cllcz+d| =1}

where I, 1s the isometric circle of 7.

Proof: By Lemma 2.2.5 we see
Y(2) = v(w) = |/ ()2 (w)] 2]z — w]

so 7 acts on the set {z|]7/(z)] = 1} as a Euclidean isometry. But |y'(z)] =1
iff

1
!
= —— = 1
V= e
which is a circle and therefore the isometric circle. ]

2.2.3 Stereographic projection

Definition 2.2.8 Stereographic projection is the map ¢ from the unit
ball B;(0) to upper half space H? defined by

_ 2z 2y 2(1 — z) 3
¢lw) = <x2+y2+(z~1)2’z2+y2+(z—1)2’x2+y2+(z~1)2 1)

and has inverse defined by

1 2z 2y 2(—1—2)
¢~ (w) = : : 1
2+ + 2+ 1) 22+ 2+ (2 4+ 1) 22+ 2+ (24 1)

where w = (z,y, z).

Stereographic projection is a Mdbius transformation of R3 see [Rat94].

13



Lemma 2.2.9 The inverse of stereographic projection restricted to a

bounded subset X C H? U C is bi-Lipshitz with constants

2
K =max ——— and K' = min ————
weX |w + 7|2 weX |w+ 7|2

where K 1s the constant corresponding to the upper bound and K' the lower

bound.

Proof:  The Jacobian of ¢~! at (z,y,2) is

_9 z2—y?—22-22-1 —4 Ty 4 z (z41)
(22 Fy? 4 2242241)2 (z?+y2+22422+1)2 (2 +y2+22+22+1)2
4 Ty 22—y 42242241 4 y(z+1)
@yt 22122112 @2y 7+ 221 1) @y 27422 41)7
4 z (2+1) y{z+1) _9 224y?2—22-22-1
(@47 427 +22+1)2 (@2 +y2+224+22+1)? (@2 +y2+224+22+1)°

so we can calculate |[(¢71)((z, v, 2))| to get

1y _ 2
}(éﬁ )((.’E,’LI/,Z))’—~ (x2+y2+22+22+1)

So given u,v € X C H3UC then
67 (w) — ¢ ()] = [(@™) (W72(671) ()| ?|u — o]
by Lemma 2.1.5 so define

2 . . 2
K = max ————— and K' = min ———
weX |w + weX |w + jJ?

both of which are finite and non zero so we have that
K'lu—v| <97 (u) — ¢ (v)| < Klu — v

as required.

14



2.3 Types of isometries of H?

We classify elements of 7 € Isom™H? by their fixed points (they have at
least one by the Brouwer fixed point theorem as they are homeomorphisms

of the closed unit ball, see p.14 [Mil65] for an elegant proof of this.

Given vy € Isom™ (H?3) then we say that

e ~ is elliptic if it fixes at least one point of H®.
e + is loxodromic if it fixes 2 points of S* and no points of H?.

e 7 is parabolic in any other case.

This classification is possible because of the fact that if v € Isom™ (H?)
fixes 3 or more points of S then +y is the identity see [And99].

If we work in the upper-half space model we can make the following

algebraic classification.

Let v € PSLy(C) then

o If vy is elliptic then it is conjugate in PSLy(C) to the map z — Az
where |A| = 1. So an elliptic element is characterised by its 2 fixed

points and the amount by which it rotates C.

e If v is loxodromic then it is conjugate to the map z — Az where |A| > 1.
So a loxodromic element is characterised by its 2 fixed points and its

multiplier A.

e If v is parabolic then it is conjugate to the map z — z + 1. In fact
a parabolic element is characterised by its fixed point and a constant

related to the action of v on H2.

15



We can express v in terms of these constants, if -y if loxodromic or elliptic
with fixed points z,y # oo and multiplier A then

_(z—yNztay(A—1)
1(e) = (I-XNz+zA—y

if v is parabolic with fixed point z # 0, co then

22— 12X

v(z) = 1,

where 7 € C.

2.4 Convex hulls

We will work in upper half space model for H? although the following

definitions and results can be made intrinsically.

Definition 2.4.1 Given any set £ C H? then the convex hull C(F) of E
is the intersection of all closed convex sets in H*® containing E. Now suppose
that E C H3UC then C(E) is the intersection of all closed convex sets in H?

whose Euclidean closure contains E.

Example:  If z,w € R? then C({z,w}) is the geodesic in H* whose end

points in R? are z and w.

The following lemma is well known but we give its proof for completeness.

Lemma 2.4.2 Let E C H3UC and v € Isom(H?) then v(C(E)) = C(v(E)).

Proof:  Closure is taken in R®.

16



By definition
v(C(E)) = 'yﬂX where X convex and E C X
= ﬂy(X ) where X convex and E C X
since vy is a bijection.
= ﬂX' where X' convex and E C y~1(X)
where we let X' = y(X) and note that -y preserves convexity
= mX’ where X' convex and y(E) C y(v~+(X"))

= mX' where X' convex and y(E) € X' = C(v(E))

since 7y is a homeomorphism.

2.5 Kleinian groups

Definition 2.5.1 A Kleinian group is a discrete subgroup of Isom™ (H?),

where Isom™ (H?) is given the topology of pointwise convergence.

It is worth noting that the following result, Selberg’s Lemma [Sel60],
applies to any subgroup of Isom(H?).

Lemma 2.5.2 Given any finitely generated subgroup of Isom(H?) then it has

a torsion free normal subgroup of finite index.

We will wish to exclude the most basic type of Kleinian group so we make

the following definition.
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Definition 2.5.3 A subgroup of PSL,(C) is elementary if every two ele-
ments of infinite order in the group share a fixed point in common. Equivalent
definitions for a Kleinian group are that its limit set is finite or that it is a

virtually abelian group.
We now give a necessary conditions for discreteness.
Lemma 2.5.4 A non-elementary Kleinian group I' =< g,h > satisfies
Jagrgensen’s inequality
|tr(9)* — 4] + [tx([g, A]) — 2 > 1
where tr(7y) is the trace of a lift of v € PSLy(C) to SLo(C) and [g,h] is the

commutator of g and h.

This was proved by Jorgensen [Jgr76).

2.6 Fundamental domains

Fundamental domains are essential to understand the action of a Kleinian

group on H3.
Definition 2.6.1 A fundamental domain for a Kleinian group I' acting
on H? is an open set D C H? with the following properties,

e I'D=H®

e YDND=0VyeT —{id}.

e The hyperbolic volume measure of 0D = 0.
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A fundamental region “tiles” H3 under T.

Definition 2.6.2 A fundamental domain D is locally finite if every com-

pact set intersects only a finite number of translates of D.
We now give an example of a fundamental domain for any Kleinian group.

Definition 2.6.3 Given a Kleinian group I' and a point p € H? not fixed
by any element of I' then the Dirichlet domain with centre p is

D(p) = {q € ®|du(p,q) < du(yp,q) Yy €T —id}.

The Dirichlet domain is a locally finite convex fundamental domain

bounded by hyperbolic planes meeting along geodesics see p.233-245 [Rat94].

Lemma 2.6.4 Let I be a non-elementary Kleinian group with a locally finite
fundamental domain D in the ball model for H3 then if {y,} C T is a sequence
of distinct elements then the hyperbolic distance from vy, (D) to 0 tends to co.

Proof: We prove this by contradiction. Suppose there is a K > 0 and
pn € D such that d(v(p.),0) < K for an infinite number of -,,. So an infinite
number of v, p, lie in the compact ball m, SO some subsequence converges
to a point p € H®. But then an infinite number of ~,(p,) lie in the hyperbolic
ball Bx(p), so an infinite number of images of D lie in a compact set which

violates the fact the collection I'D is locally finite. U

Lemma 2.6.5 Let ' be a non-elementary Kleinian group with a locally finite

conver fundamental region D in the ball model for H® then if {y,} C [ is
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any sequence of distinct elements then the Euclidean diameter diam(vy,(D))

of v (D) tends to 0.

Proof:

We prove this by contradiction. Suppose that the Euclidean diameter of
Y (D) is greater than K for an infinite number of n. So there are p,, g, € D
such that |v,pn — Yndn| > K for all n.

So a subsequence of p, converges to p € S1(0) and a subsequence of g,

converges to g € Si(0), such that [p—¢| > K.

Since D is convex and 7, is an isometry then «, D is convex for all n. By

the convexity of D the geodesic segment ¢, from p, to g, is contained in D.

So a subsequence of y,a;, converges (in the Euclidean Hausdorff topology)

to « the geodesic from p to q.

But this contradicts Lemma 2.6.4 as the hyperbolic distance from 0 to
YnOin goes to oo but for large n the hyperbolic distance from 0 to ypc, 18

close to distiye(0, &) which is finite. O

2.7 Spaces associated to a Kleinian group

Associated to a Kleinian group there are lots of topological objects with

interesting properties; we introduce the most well known of them.

Definition 2.7.1 The limit set A(T") of a Kleinian group I' is the closure

of the set of accumulation points in R® of I'p for any p € HE.
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A(T") is independent of the p chosen and is contained in C [Rat94].

Lemma 2.7.2 The limit set of a non-elementary Kleinian group can be
characterised in the following ways:
e the closure of the fized points of all the lozodromic elements of T,

e if [ contains a parabolic element then A(T) is the closure of all the fized

points of all the parabolic elements,

the set of accumulation points I'z for any z € @,

e A(T) is the smallest non-empty closed subset of@ invariant under T

A proof of this and that A(T") is perfect can be found in [Rat94].
Definition 2.7.3 The ordinary set Q(I') of a Kleinian group I is C -
A(D).

Definition 2.7.4 Given any group I' acting on a topological space X then

we say that the action is properly discontinuous if given any compact set

K then {y € T|yK N K # (0} is finite.

The largest subset of H? U C on which a Kleinian group [' acts properly
discontinuously is H?® U Q(T') see p.579-580 [Rat94].

Definition 2.7.5 A fundamental region for a Kleinian group I' acting on

Q(T) is an open set D C Q(I") with the following properties:

)

e I'D=0Q(),

e yDND=0VyeTl,
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e The spherical measure of 0D = 0.

Definition 2.7.6 The hyperbolic manifold associated to a torsion-free

Kleinian group I is the space H®/I" with the quotient topology.

This is an “extrinsic” definition for an intrinsic definition see p23-25

[MT98] and a general discussion see [Rat94].

Definition 2.7.7 The possibly disconnected Riemann surface associated

to a torsion-free Kleinian group I' is the space Q(I')/I".

Definition 2.7.8 The closed topological manifold associated to a

torsion-free Kleinian group I is the space (H® U Q(T))/T.

We can extend the above definitions to Kleinian groups with torsion how-

ever the resulting manifolds are no longer smooth and are called orbifolds

see chap.13 [Rat94] or [Thu80].

2.8 Types of Kleinian groups

We have already defined a non-elementary Kleinian group.

Definition 2.8.1 A Kleinian group I' is analytically finite if Q(T)/I is
of finite analytic type, in other words Q(I")/T" consists of a finite number

of surfaces each of which is of finite genus with only a finite number of

punctures.

Ahlfors [Ahl64] showed that every finitely generated Kleinian group is

analytically finite.
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Definition 2.8.2 A Kleinian group I' is geometrically finite if it has a

convex fundamental domain which is a polyhedron which is bounded by a

finite number of planes.

There are many other equivalent definitions of geometrically finite, see
[Bow93]. Not every finitely generated group is geometrically finite see

[Gre66].

Definition 2.8.3 A Kleinian group I' is convex cocompact if the quotient

of the convex hull of the limit set of I', the convex core, is compact in

ST

The above definition is well defined since A(T') is invariant under I' so
C(A(T")) is also invariant. An alternative definition is that the intersection
of C(A(T")) with any locally finite fundamental region for I' is compact. A
non-elementary convex cocompact group contains no parabolic elements see

p.57-59 [MT98].

2.9 The Loxodromic

In this Section we collect a selection of formula involving loxodromics

which we will use throughout this thesis and classify the limits of loxodromics.

Lemma 2.9.1 Given v a lozodromic such that

B +a =+b
= +¢ +d

then
+ z—yA zy(A~-1)
- VA(z—y) VA(z-y)
7= 1—A TA—y

+ VA(z—y) + Vi(z—y)
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where v fizes x and y both not co and has multiplier . We nest look at the

Isometric circle of vy

rad]v _ \/|—/\-Hy - SUQ

A =1
and \
cenl, = /\I:ly and cenl, -1 = yA __1:6
If v does not fiz co then
—w(A+1) (wA+z)(w+2A)
— VAz—w) VAR (z-w)
v L =0 (A+1)z
VX(z~w) V(z~w)
where z = cenl, and w = cenl,-1.
Proof: The first equation is seen by conjugating <y so that its repulsive

fixed point is 0 and its attractive fixed point is co then the image of 1 is its
multiplier. In fact it is the map z +— Az and on conjugating back we have

the above form.

The description of the isometric circles comes from the above formula and

Lemma 2.2.7.

The last formula comes from solving for the fixed points in terms of the

centres of the isometric circles and substituting this into the first formula. [

We next give a Lemma relating the multiplier of a loxodromic to its

isometric circles.

Lemma 2.9.2 A lozodromic v has disjoint isometric circles if [\ > 3-+2/2

where A = mult(7y).
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Proof:  Let v fix z and y then

vadr, = Yz =4l

[1=2
by Lemma 2.9.1 and
A —y T — YA
cenl, = — T and cenl,-1 = T
also by Lemma 2.9.1. We need that
|z —yll1 + A 2v/|AMlz — gl
lcenl, — cenl,-1| = oA > 2radl, = EERTE

which is true if
2

}1—

which is always satisfied for [A| > 3 + 2+/2.

We classify what can happen to a sequence of loxodromics.

Lemma 2.9.3 Suppose that g(n) is a sequence of loxodromics such that the
fized points x(n) and y(n) converge to x and y respectively and A(n) the

multiplier converges to A. Then what g(n) can converge to is collected in the

following table.

Figure 2.1: Limits of Loxodromics

( A=o00 | |A#x0,1 Al =1 J
J z # y || Diverges | Loxodromic | Identity or elliptic
i z =1y || Diverges | Diverges | Diverges or parabolic
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Proof: Recall that a sequence g(n) diverges if any of its entries when

lifted to a matrix in SLy(C) diverges, i.e if
a(n) b(n
g(n) == e
¢(n) d(n)
diverges then at least one of a(n),b(n),c(n) or d(n) diverges.

We shall work through the cases from left to right and top to bottom.

In the first case we look at ¢(n) which is equal to
1—An)
An)(z(n) — y(n))

which converges to co unless |z(n) —y(n)| — oco. However if [z(n) —y(n)| —

oo we look at b(n) which is

z(n)y(n)(A(n) — 1)

VAm)(z(n) - y(n))

which diverges as lim,,_, ]—:';x(%—)_% > 1. So in either case we have that at

least one of the matrix entries of v diverges.

In Case 2 we see that g(n) converges to some element of P.SL,(C) since
all the matrix entries converge. It can be seen to be loxodromic as it fixes
distinct points z and y so it cannot be parabolic. On conjugating so that it
fixes 0 and oo we see that it has multiplier A which has absolute value greater

that 1 so it cannot be elliptic or the identity.

Case 3 is seen in a similar way to Case 2 we see that the matrix entries
converge and so g(n) converges in PSLy(C). It can be seen to be either

elliptic or the identity by conjugating it so that it fixes 0 and oco.

The bottom left hand case, Case 4 is seen to diverge by considering c(n)

which clearly diverges.
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Case 5 is also seen to diverge by considering c(n).

We shall now look at Case 6. If A = exp(if) where § # 0 then c(n) clearly
diverges. However if A = 1 the rate of convergence comes into play. We can
express this by looking at the isometric circles of g(n). For convenience we

shall look at the case that z = y ¢ 0o the case that x = y = oc is similar.

Since x = y # oo we have that for large n g(n) does not fix co so we can

lift it to
—w(n)(A(n)+1) (w(n)A(n)+z(n))(wn)+z(n)A(n))

V AR)(z(n)—w(n)) VAR AR)+1)(2(n)—w(n))

—(A(n)+1) (A(n)+1)z(n)
VAm)(z(n)~w(n)) VA (z(n)~w(n))
where z(n) = cenlym) and w(n) = cenl 1. We shall show that if |2(n) —
w(n)| # 0 then g(n) converges in PSLy(C) but this means that it has to
converge to a parabolic as it only fixes one point. We have that A(n) — 1 so

that

oy )

: —1: Z{n)—win Zini—win

lim g(n) = lim - ()
EOETON EOEIO)N

if |2(n) — w(n)] — 0 then c(n) diverges so g(n) diverges. However if [z(n) —
w(n)| # 0 then a(n),c(n) and d(n) obviously do not diverge. So we will
concentrate on b(n).

(w(n) + 2(n))?

2(2(n) — w(n))

however we have assumed that [2(n) —w(n)| # 0 and w(n) + z(n) = z(n) +
y(n) by the expressions for the centres of the isometric circles in terms of the
fixed points. But we are in the case that z(n), y(n) —  # oo. This means

that b(n) converges and so g(n) converges to a parabolic.

limb(n) = lim

T et arias we cop +hat ~(m) conver inli
To summarise we see that g(n) converges to a parabolic if its multiplier

converges to 1, its fixed points converge to each other but the centres of its
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isometric circles do not converge to each other.
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Chapter 3

Schottky groups

In this chapter we define Schottky groups and the various topological

objects associated to them. We also give the some known results concerning

them.

3.1 Definition and basic results

Definition 3.1.1 Given a finitely generated group I' with generating
set {g1,...,9n} we define its symmetric generating set G(I') to be

{gl;:gn79;177951}

Definition 3.1.2 Given a finitely generated group I' with generating set
{g1,..., 9.} then (; ... is a reduced word if (41 # g:97*, 97 *gs for all |

and 1.

Definition 3.1.3 Given any finitely generated group I'" with generating set
{g1,...,9n} we define the length I(vy) of v € I" to be the minimal n such
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that v = (... Ca, G € G(D).

A free group is one with no relations. Given a generating set of a free

group then every reduced word is unique.

Definition 3.1.4 A non-elementary sub-group I' =< g¢1,...,9, > of
PSLy(C) is a Schottky group if there are 2n analytic- Jordan curves L,
£ € G(I') that bound an open 2n connected region D with the property that

o~

E(Re) = C —int(Re-1) vé e G(T)
where Ry is the closed component of C — D that contains L¢. We say that

the curves L, are defining curves for the group I'.

Figure 3.1: Schottky group

gi
/’\

B e

The condition that the defining curves are analytic is not too strong,
since if we are given Jordan curves paired up by G(I'), we can find analytic
curves sufficiently close to the Jordan curves so that these are also paired
up by G(I'). We use this fact in Chapter 4 when we construct a family of

non-classical Schottky groups.

Chuckrow [Chu68] showed that every set of generators for a Schottky

group has associated defining curves.
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The lemmas in the rest of this section are well known probably going back

to Schottky.

Lemma 3.1.5 Given a Schottky group U with region D as above and v €
I' —id then y(D) C int(R,-1), where (1 ...Cy is a reduced word for .

Proof: = We prove this by induction on the length of ~.

Base case: {(y) =1.
Sove G(I)sov(R,) = ((Aj—z'nt(Rv-l) and y(D) C R,-1 since DNR, = (.

Inductive step: Assume the result is true for all v € I" — id such that
[(y) < n.

Let {(y) = n+ 1 then v = (3...Ce1 with (3 ... (x41 & reduced word.
Then I((...Ck+1) = n so we can apply the inductive hypothesis to say

Since (1(p # id then Ry N Re-2 = @ so that (1(R,-1) C int(R.-1) and
therefore ¢ ... (41(D) C mt(Rgl). O

Lemma 3.1.6 Given a Schottky group I' and v € I' — ¢d then the attractive
fized point r of v lies in Rg—l where (... 1s a reduced word for 7.

Proof:  The attractive fixed point a is defined by lim v"(z) = a for z any

)
5

point in C not the repulsive fixed point of v. By Lemma 3.1.5 we know that
p

)/ U, LU

then

y™(D) C R,-: for all m > 0. So choose z € D not the repulsive
1

a =limy™(z) € B
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as required. O

Lemma 3.1.7 Given a Schottky group I' and v € I' with v not fizing co

then cen(ly) lies in Re,, where (1 ...(y 1s a reduced word for .

Proof:  Let
_az+b
e =
then cen(l,) = —d/c but y(cen(l,)) = y(—d/c) = oo so cen(l,) = vy 1(o0) €
y~1(D) and by Lemma 3.1.5, we are done. O

In the next four Lemmas we show that a Schottky group is discrete, free,
purely loxodromic and Q(T") # 0. Maskit [Mas67] proved that if a subgroup
of PSLy(C) satisfies these conditions then it is a Schottky group.

Lemma 3.1.8 A Schottky group is a discrete group

Proof: We will prove this by contradiction. Given a Schottky group
I’ imagine that there is a sequence of distinct elements v, € I' such that
Y, — id. Pick z € D then v,(z) — z but for large n this means that
Yo(D) N D # ( which contradicts Lemma 3.1.5. O

Lemma 3.1.9 A Schottky group T is a free group.

Proof: We will prove this by contradiction. Imagine there is a word
(...¢ € T with ¢ € G(I') and (Gay # id but (...¢ = td. In the
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proof of Lemma 3.1.5 we only used the fact that (;(;11 ## id so that for any
sequence (i ..., such that (;(iy1 # id we have (3 ... (D) C R-1 but then

In a free group reduced words are unique so from now on we will talk

about the reduced word (; ... for 7.

Recall that a loxodromic or parabolic element  has 2 fixed points a, 7,
an attractive one a such that 7"z — a for all z € C — {r} and a repulsive
one 7 such that v""z — 7 for all z € C — {a}, for a loxodromic these points

are distinct and for a parabolic they coincide.

Lemma 3.1.10 A Schottky group I s purely loxodromic, in other words

every element apart from the identity is lozodromic.

Proof: Since I' is free we know it is torsion free so any elliptic elements

are of infinite order but this violates discreteness.

We need to show that there are no parabolic elements of I, it is sufficient

to prove that every element v € I' has distinct fixed points.

Given v € I" where v # id write v as (fi... fx( ! where fifr # id and
I(f;) =1.

As ( is a bijection we have that v has two fixed points iff (71v(¢ does.

But (¢7'v¢)™(D) C Ry for all m by Lemma 3.1.5 so we have that
the attractive fixed point of (~1y( is in Rfl——l and by the same argument the
repulsive fixed point is in Ry, and since these are disjoint the two fixed points

must be distinct. O
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Lemma 3.1.11 The ordinary set of a Schottky group I' is non-empty, in
fact D c Q(T)

Proof: The limit set of I" is the closure of all the fixed points of all the
elements of I'. But by Lemma 3.1.5 we see that all the fixed points lie outside
Dso D c Q(I'). In fact by changing the defining curves for a Schottky group
a little at each point we see that D C Q(T). O

A Schottky group is convex co-compact so is geometrically finite see p.118

[MT98].

Definition 3.1.12 Given a Schottky group I' =< ¢1,...,9, > and y € T’
we write v = (;...(; as a reduced word and define D(y) = D((...¢) =

G G R

So for ¢ € G(I') we see that D(¢) = R¢-1, we can think of D(() to be
what ¢ maps D into and R, to be what { maps over D.

Figure 3.2: Domains of generators

g1
m

V) O

We collect the basic facts about D() in the following two Lemmas.
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Lemma 3.1.13 Given a Schottky group I and (1, (& € G(T) such that (;( #
id then ¢1(D(¢2)) C D(G).

Proof: We have that

G'DiG)=bu | D
CEG(T)—{(1}

and since (1(s # id we see that D((3) C 2 D(C) as required. [
(eG(T)—{¢1}

Lemma 3.1.14 Given a Schottky group I' then:

1. y(D) € D(v),

2. if oo € D then y(oo) = cenl,—1 € D(v) and

3. the attractive fized point of v ties in (D(f™) for all m, wherey = (f(7*
and [ is cyclically reduced, i.e [(f?) = 2I(f)

forallyel.

Proof:

1. Write v as the reduced word (;...¢; then y(D) = (... ¢(D) and
D(y)=¢Ce o Go1D(Ck). Soy(D) € D(y) iff (D) C D(¢) = R-x which is
true by Lemma 3.1.5.

2. If oo € D then v(o0) € y(D) C D(7) by 1.

3. Write v as (f1... fx¢"! where I(f;) = 1 and f1fx # id. These two
conditions are equivalent to f = f... fx where [(f?) = 2I(f).
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Let a, be the attractive fixed point of v and a; be the attractive fixed
point of f. Then a, = (ay.

We shall show that a; C D(f) which will prove the Lemma.

If we can show that fD(f) C D(f) then f"D(f) C D(f) for all n and so
af C D(f) as required.

Now fD(f) € D(f) iff f1...fiD(f) C fi... fie1D(fx) by definition.
This is true if frD(f) C D(f;). By the definition of a Schottky group this
holds if D(f) ¢ € — D(f;Y). However D(f) € D(f1) and fi # f;* so
D(f Y N D(f1) = 0 so D(f) is indeed in C - D(f") which proves the

Lemma. O

It is worth noting that given v € I' then, although D(+y™) converges to
the attractive fixed point a of v, it is not necessarily true that a € D(y™).
It is this obstruction that means that we cannot include the multiplier of

in the various bi-Lipshitz inequalities in Section 3.8.

Definition 3.1.15 Given a Schottky group I" and v € I" then define P(y)

to be the set
P(y)H? — int(con.hull (T — D(7))).

Lemma 3.1.16 Given a Schottky group T and v € T then P(7) is the union

of all closed hyperbolic half spaces whose boundary in S is contained in

Bt

Proof: Recall that the convex hull of X is

conhull(X) = (| H
XCOH

36



where H is a closed half space.

For convenience we will work in the upper half space model and will
assume that co € D, we can conjugate so this is true as conjugation will not

affect the statement of the Lemma.

Then

H® — int(con.hull(@ — D(7))) =H3 - con.hull(@ — D(%))

=H- (| H= |J ®-H

C-D(y)coH C-D(y)coH

We now let the complements cancel each other out, so the above is equal to
U 0
80CD(y

where O is an open half space. |

We shall show that

‘U o 0= U #
80CD(y 8HCD(v)
where O and H are open and closed half spaces respectively.

Let p € UBOCD(Y) O then there are p, € UaOCDm O such that p, — p.
Now each p, € O, where 00, C D(7).

Since D(y) is closed then H,, = O,, C D(v). This means that p, € Hy, C
Usrcp(y) H for all n. We will have that p € UchDh) H if we can show that

this set is closed.

Let gn € Upgepy H and o — g € H2. There are H,, such that ¢, € H,
and 0H,, C D(v), let the radius of 0H, be denoted r, and its centre c,.
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Since oo € D and g € H? we have that r, /4 0,00. Since D(v) is com-
pact we can choose a subsequence n,, such that both ¢,,, and 7, _ converge.
This means that 0H,,  converges to 0H. where H, is a closed half space.
However 0Ho C D(7v) as D(v) is closed. So ¢ € Ho C Uggeppy) H a8

required.

We now do the other direction. Let ¢ € Upgcp(y) H then ¢ € H where
H is a closed half space and H C D(vy). Let 0H have radius r and centre c.

Consider O,, the open half space with centres ¢ and radius r, = r — %

Then there are ¢, € O, such that ¢, — ¢ C UaOCD('y) O and we are done. [

Lemma 3.1.17 Given a Schottky group T and p € H? then (p) € P(y) for

every v € I' iff p lies on a hyperbolic plane whose boundary is contained in

D.

Proof: Let p € Q where Q is a hyperbolic plane such that 0Q C D.

Then
v(p) € Y(Q) = con.hull(v0Q)

and as D(v) is simply connected one of the hyperbolic half spaces which has
v(Q) as its hyperbolic boundary must have its boundary at infinity contained

in D(7) so we are done by Lemma 3.1.16.

Now suppose that v(p) € P(y) for every v € I'. Then ((p) € P(¢) for
every ¢ € G(I).

So there are discs B, C D(({) such that ((p) € con.hull(B¢) for every
¢ € G(I') by Lemma 3.1.16.
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So that

pe [ ¢ leonhull(B;) C ﬂ CPO)= ()¢t U H

¢eG(T) ¢eG(T CeG(T) 8HCD(()
by Lemma 3.1.16.

Now

' w= U e

AHCD(C) BHCD(C

:UH

8HC(1D(()

as ( is a bijection.
However (,cqqry ¢ 7 D(¢) = D so that

pe V¢ U #=U #

¢Ceq(r) SHCD(() 8HCD

as required.

Lemma 3.1.18 Given a Schottky group T with oo € D and p € H where H
is a hyperbolic plane such that OH C D then the vertical projection of v(p)
to C is contained in D(v) for every v € T.

Proof:  This is obvious by Lemma 3.1.17 and Lemma 3.1.16. O

3.2 Types of Schottky groups

In this section we classify Schottky groups in terms of their geometry.
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Example:  Let gi,..., g, be loxodromic with isometric circles I, , ..., I,,,
Igl—l, ., I,-1, disjoint and bounding a 2n connected region of C. Then <
g1,---,9n > 18 a Schottky group as g;l,, = Igj—l and gj(cenlgj) = oo for all
7

Definition 3.2.1 A Schottky group I' is an isometric Schottky group if it
has some generating set {gi, ..., g} such that the isometric circles of all the

g € G(I') are disjoint and bound a 2n connected region.

Definition 3.2.2 A Schottky group I' is a classical Schottky group if it

has a generating set whose defining curves are circles.
So any isometric Schottky group is classical.

Definition 3.2.3 A Schottky group I' is a non-~classical Schottky group if

it is not classical.

Marden in [Mar74] proved the existence of non-classical Schottky groups

and Yamamoto [Yam91] gave an explicit example of one.

Lemma 3.2.4 The property of being classical is independent of conjugation
by elements of PSLy(C).

Proof: LetT =< gi,..., g, > be a classical Schottky group with defining
circles L1, ..., Ly, and ¢ € PSLy(C) then ¢T'¢g™! =< ¢g17,. .., ¢gngd™! >
and has generating curves ¢L1, ..., ¢Lo,, which are circles since elements of

PSLy(C) are conformal. O
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3.3 Schottky manifolds

The manifolds associated to a Schottky group are topologically very sim-

ple.

Lemma 3.3.1 Given a Schottky group I' and a sequence of distinct elements

Y. € T then diam(y, D) — 0 where distance is taken in the ball model.

Proof: By Lemma 3.1.11 we have that 0D C Q(T"). Let P be a convex
locally finite fundamental region for the action of I' on Q(T") UH?. Since I’
acts properly discontinuously on Q(I') UH?® and con.hull(D) U D is compact

we have that con.hull(D) U D is contained in the union of a finite number of

images of P, (1P, ..., CnP.

Let a be a geodesic with endpoints in D then o C con.hull(D). By

Lemma 2.6.4 we know that
diSﬁinf(O, Vi U QP) — 0

where distance is Fuclidean and taken in the ball model. But this means

that v («) converges to a point and so diam(y,D) — 0 as required. O

Lemma 3.3.2 If T =< g1,...,9, > 18 a Schottky group then Q(T)/T" is a

genus n surface.

Proof:  We shall prove this by showing that D is a fundamental region for

ion of I" on Q(I"). For this we need three conditions to be satisfied:

1. the Lebesgue measure of 0D is 0,

41



2. y(D)N D =0 for all y € T — {id},

3. I'D = Q(I).

The first comes from the fact that 0D is a collection of analytic curves,

the second from Lemma 3.1.5. We will now prove the third statement.
We will work in the ball model so we can apply Lemma 3.3.1.

As D c Q') and Q(I") is " invariant we have that TD < Q(T"). We shall

now prove the reverse inclusion.

Let zy € D be fixed and choose any z € Q(I') then there are two options
either the number of simple curves in I'9D that separate zy and z is finite or

infinite.

Suppose that the number of curves is finite. We shall prove the result by

induction on the number of curves n.
Base Case: n = 0 then z € D along with zg.

Inductive step: Suppose the result is true for w separated by n curves

from zg.

Let the number of curves in ['dD separating zy and z be n+ 1. Suppose
the curves are C1, ..., (.1 ordered so that the component of C— C; contains
7o and C;_;. Then there are v; such that 1;(C;) € D. If y,12 € D we are
done. If not then there is some ¢ € G(I') such that (z is only separated by n
curves from zy. We can take ¢ so that it interchanges the two components of
Q(T') — 8D that bound Cpy;. Then ¢z € I'D by the inductive hypothesis.

Since I'D is invariant under I' we see that z € I'D as required.

We shall now show that if there are an infinite number of curves separating

z and zg then z € A(T"). Let the curves be {C,}. By Lemma 3.3.1 we know
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that diamC, — 0. Let D, be the component of C - C', that contains zg
then diamD,, # 0 as it contained D so that C, — z. There are =y, such that
C, C 7, D this means that y,D — z as v, DN D = () by Lemma 3.1.5. But
this means that z € A(I") as required.

The following proof is a consequence of [Ber61] and the fact that a quasi-

conformal map extends to a homeomorphic quasi-isometry of H? see [Thu80].

Lemma 3.3.3 Given a Schottky group of genus n then H®/T s genus n
handlebody.

3.4 The limit set of a Schottky group

We will reprove the following lemmas later in this section with a more

dynamical flavour. We give the following elementary proofs for completeness.
Lemma 3.4.1 The limit set of a Schottky group is totally discomnected.

Proof:  We recall that a set is totally disconnected iff for any two distinct
points there are two disjoint open sets with one point in each set and whose

union is the original set.

Conjugate I' to the ball model of hyperbolic space, since elements of

M ob(]@s) are homeomorphisms they preserve total disconnectedness.

Let z,w € A(T"). Note that A(I") has the subspace topology so that a set
is open in A(T") if it is the intersection of an open set in C with A(D).
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If z,w are in different D(7) then without loss of generality suppose that
z € D(v) and w € D(v). Then D(y)NA(I') and o= D())NA(I") are both
open sets as A(I') NT9D = @ so that D(vy) N A(T") = intD(y) N A(T"). For

the same reason the union of the two is A(T).

Now assume that they lie in the same D(~;) for some sequence of distinct

elements -y, such that z,w € D(y) for all k but by Lemma 3.3.1 we have

that z = w as required. O

Lemma 3.4.2 The limit set of a Schottky group is a Cantor set.

Proof: Recall that a Cantor set is a metrisable, compact, perfect and
totally disconnected set. The first and second conditions come from the fact

it is a closed set subset of ([AZ, the third from Section 2.7 and the fourth from

the above lemma. O

3.5 Schottky space

We now investigate the collection of all Schottky groups.

Definition 3.5.1 Fix a genus n > 1 then marked Schottky space M.S,
is the subspace of PSL,(C)™ such that (gi,...,g,) € MS, generates a genus
n Schottky group.

Definition 3.5.2 Fix a genus n > 1 then Schottky space 5, is the quotient
of M S, by conjugation by elements of PSLy(C).

44



Chuckrow and Marden proved that M .S, and S,, are path connected and
open see [Chu68] and [Mar74].

Note that different points of M.S,, or S,, do not necessarily generate dif-

ferent Kleinian groups.

Definition 3.5.3 Marked Classical Schottky space MCS, is the col-
lection of elements of M.S,, that generate a classical Schottky group.

Definition 3.5.4 Classical Schottky space CS, is the collection of el-
ements of S, whose lift to M S, is a classical Schottky group. Classical
Schottky space is well defined as conjugation by PSLs(C) preserves classi-

calness see Lemma 3.2.4.
Lemma 3.5.5 Classical Schottky space is open in S,

Proof: Let [I'] € S, then I" = (g1,...,9,) € [I'] is uniquely defined by
requiring that g; fixes 0 and co and the attractive fixed point of g9 is 1.

Now let [['(k)] — [[] then I'(k) — T where the I'(k) = (g1(k), . .., gn(k))
are uniquely defined by letting g1 (k) fix 0 and oo and the attractive fixed
point of go(k) be 1. So we have that g;(k) — g; for all 7.

Now suppose that I" has generators {hy, ..., h,} on which it is classical.
Each h; can be expressed as a word in {gi,...,gx}. Define h;(k) to be the
same word with g; replaced by g;(k). Then h;(k) € T'(k) and I'(k) is generated

by {ha(k), ..., ha(E)}.

As g;(k) — g; we see h;(k) — h;. Then for large £ the circles paired up

by h; are almost paired up by h;(k) and by the openness of the fundamental

domain of I we see that I'(k) is a classical Schottky group for large k and so
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[C(k)] € CS, for large k. O

There is a nice discussion of Schottky space in [Mar74].

3.6 The boundary of Schottky space

Given a sequence {(g1(k), ..., gn(k))} of M S, we ask the question “what

can this sequence converge to?”.

We first note that it is possible that one of the g¢;(k) leaves PSLs(C).
If this happens then the objects associated to the groups degenerate fairly
severely. We investigate this for genus 2 Schottky groups in Chapter 6.

We now look at what can occur if all the g;(k) converge in PSLy(C).

They can of course converge to a Schottky group.

They cannot converge to a non-discrete group, in other words leave the

space of all Kleinian groups by a theorem of Jgergensen [JK8&2].

Chuckrow [Chu68] showed that if lim I, is a Kleinian group then it must

be free and of the same genus thus torsion free.

limT',, can contain parabolics and the subset of M S, for which limI',,
has a parabolic element is of at most codimension 1 [Chu68| although it is
a dense set see [RCS03] where they attribute the statement in the case of
Schottky groups to Sullivan.

So the following case must occur.
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They converge to a free, purely loxodromic Kleinian group that is not a
Schottky group. By Maskit’s classification of Schottky groups [Mas67] we
see that A(T") = C. This means that lim I, is geometrically infinite.

3.7 Dynamics and Schottky groups

In this section we introduce the shift space of a free group I' which is
the set of sequences (¢;) where ¢; € G(I') and (;(;+1 # t¢d. This set can be
viewed as the boundary at infinity of the Cayley graph of the group or for
a Schottky group its limit set. We then project the left shift acting on the
shift space to the limit set.

The statement of the following proofs can be found in [Bow79] where he
proves it in the case of quasi-Fuchsian groups. The quasi-Fuchsian case 1s
more complicated as the shift space is no longer in one to one correspondence

with the limit set.

Definition 3.7.1 Given a Schottky group I let the shift space %, of
I' be the subset of [[°G(T") such that for all (z;) € =y, 2; # ;. We
give ¥, the topology generated by setting a basis to be the cylinder sets

C(*Tla .- -;xi) - {(yl;y% .- ) € Zn]yl =T, ¥ = xl}
With this topology %, is a Cantor set.

Definition 3.7.2 Given a Schottky group I' =< ¢, ..., g» > define the map
7 from ¥, to closed sets of C by

m((z:)) = (D@1 ... z:).

i>1

47



Lemma 3.7.3 7 is a bijection from &, to A(T).

Proof:  We will first of all prove that 7 maps into A(T").
Let (z;) € &, then D(z1...2i41) C D(z1...2;) as z;x:41 # id.

Because the intersection of an infinite number of nested compact sets is

non-empty and Lemma 3.3.1 we have that ()5, D(z1 ... 2;) is a single point.

Let w € D then by definition z1...2;(w) € D(z1...z;) for all 7 so that

(Nis; D(z1 ... ;) is an accumulation point of I'w so is in the limit set.

We now prove injectivity. Let (z;), (v;) € £, such that (z;) # (y;) then
there is some minimum k such that z; # y;. We shall show that n(z;) #
7(y;). We have that

m(z;) = D(zy...2;) and 7(y;) = D (y1 - .. yi)-

However z ...Z # y1 ...y so that D(zy ... z) and D(yy ... y) are disjoint
but by the definition of 7 this means that «(z;) and 7 (y;) are distinct as

required.

We now prove surjectivity. Let z € A(I") then for each n there is some
vn such that z € D(v,) and I(y,) = n. Now (v, 'vn+1) = 1 otherwise
D(Ynt1) ¢ D{(7yn). This means that (v, 'vui1) € Zp and so 7((4; ' ns1)) = 2

as required. ]

To show that 7 is a homeomorphism we will need the following topological

Lemma.

Lemma 3.7.4 Two sets are homeomorphic if there is a bijection between the

sets that induces a bijection between open bases for the two sets.
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Proof: Suppose that ¢ : X — Y is a bijection that induces a bijection
#B — C where B and C are bases for X and Y respectively.

Given an open set U C X we shall show that ¢(U) is open.
As B is an open basis there are b) € B such that U = N, U, b} where the
union is over arbitrarily many elements while the intersection is over a finite

number.

Now
$(U) = ¢ Ny Ul = Ny U; ¢b]

as ¢ is a bijection. This means that ¢(U) is open as it is the union and finite

intersection of open sets, the ¢(b;).

The reverse direction is done by considering ¢! instead of ¢ and we are

done. 0

Lemma 3.7.5 The map 7 is a homeomorphism.

Proof:

We will use Lemma 3.7.4 so we only need to consider the cylinder sets.

7 induces a bijection between the cylinder sets and the open sets A(I') N
int(D(7)). So we need to show that the sets A(I') Nint(D(y)) form a basis

for A(T).

Let U be an open subset of A(T) and z € U then z = (1,5, D(z1...3:)
for some (z;) € %, by Lemma 3.7.3. By Lemma 3.3.1 we have that
diam(D(z1...z;)) — 0 so that for some & D(zq...25) C U as required.
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Definition 3.7.6 We define z ~ {v,} to mean that the sequence {v,}
satisfies z € D(vn), [(vn) = n and (7, 'n+1) = 1 for all n. Lemma 3.7.3

shows that such a sequence exists and is unique.
Definition 3.7.7 Define the left shift 7 : £, — %, by

7((z1, 29, 23, ...)) = (22,23, .. .).

We now project the left shift 7 to A(T).

Definition 3.7.8 Given a Schottky group I' =< g1, ..., g, > define the map
f:C—Chby

i) = { (N2) z€D(Q) VCeGT)
z z€D.

Lemma 3.7.9 The following diagram commutes

Y, — 5,

Wl lﬂ

AT L A(D)

Proof:  Let (z;) € &, then f(n((z,))) =

f (m D(zy.. :r:z)> = ﬂf(D(:cl cT)) = ﬂf:cl oz D(xy)

i>1 i>1 i>1
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as required. O

3.8 Estimates for Schottky groups

In this section we give various inequalities that are specific to a particular

Schottky group. All of the results in this section are well known.

The following Lemma is proved by Bowen [Bow79].

Lemma 3.8.1 Given a Schottky group T' with oo € D then there are con-
stants K, K' > 0 and p,o € (0,1) such that

K'c'™ < diamD(y) < K '@

for every v € T'.

Definition 3.8.2 Given a Schottky group I' and v € I', we define the

contracting set con(y) of v to be the set

con(v)= |J D)

(EG(D) (gn

where v = ¢1 ... ¢, as a reduced word.

For an isometric Schottky group the set con(7y) contains the subset of
e

A(T") on which ~ acts as a contraction, in the general case, given a Schottky
group there is an N such that v acts as a contraction on con(y) as long as

I(v) > N, this can be seen by Lemma 3.8.1 and the following inequalities.
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Lemma 3.8.3 Given a Schottky group I' with co € D and fized w € D not

oo then there are positive constants K, K such that
K|y (w)] < 1/ (2)] < Kily'(w)]

for ally € T and z € con(y).

Proof: Fixw € D and let v € I" and z € con(y) be given. Then

(2) = az +b
! ez +d

so that i
(z)]  |lw+%

Y @W)l e+ 42

where —¢ = cenl, = y7!(c0).

Now define
L = distin (0D, U cenl,)

yer
this is positive as the set of accumulation points of |, . cenZ, is the limit set
of I" see Lemma 2.7.2, D and A(T") are closed and disjoint and cenl, € D(vy)
for all v € I' by Lemma 3.1.14.

We have that
]’UJ — cenI7|2 diStsup (w> aD)2
|z — cenl,|? ~ mingeeqm) distims (D(C), D(£))?

as z and cenl/, lie in different components C — D by the definition of con(v)

and we define
distgyp (w, 0D)

K| = — : :
! mlng,geg(lﬂ) dlStinf(D(C): D(g))

The lower bound is
|w — cenl,|? L?
|z — cenl,|? — diam(8D)?
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and we let Ki = ML@‘D—). 0]

Lemma 3.8.4 Given a Schottky group I with oo € D and fized w € D then

there are positive constants Ky and K such that
K31 (w)] < diam(D(v)) < Ka|7'(w)]

forally el

Proof: FixweD.
Given v € T write v as the reduced word (; ... (.

By definition
D(vy)= ¢ Ge—1D(Cr)

diam(D(y)) = diam (¢; - .. Ge—1D(Cr))

= max lCl c gk__1<21) - Cl s Ck—l(ZQ){

21,226 D ()

= zl’zﬁ%}&w (G Gen) (OG- - Goer) ()] P21 — 22 (3.8.1)

by Lemma 2.2.5.
We first do the upper bound

< max [(G ... Ge-1)'(2)|diamD(¢x)

diam(D(y)) < max

by taking the maximum of each term of equation 3.8.1 and since z € D({) C
N

n{(y...C(x—1) we can apply Lemma 3.8.3 to find the constant K such
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< Kdiam(8D)|(¢y ... Crr)' (w)]
for some w € D.

Now we have that

(G- Gen) (W) (G- Ge1)'(w))]
(GG @)l (G Geen) (Gr(w)] 1€ ()]

by the chain rule. Since (x(w) € con((;...(x-1) we can apply Lemma 3.8.3

o et (G Gt ()
1+--8k—1 "(w K K
G Gy @) TG = mingeeg 1€/(w)

and note that this is finite as G(I') is a finite set and w € D.

So putting it together we have

K?diam(8D)

mincemy @) )

diam(D(7)) <

s0 define
K?diam(0D)

mingeq(ry [¢'(w)|

which does not depend on the particular v € I but does depend on w and

KQ‘:

the defining curves.
We now do the lower bound.

Let wy, ws € D((;) be such that |w; — ws| = diamD((x) then

diam(D(v)) = e (G Comt) () M2(G e Gem1) ()M 2 — 22

> (G Ger) (wi) [M2)(Cr - Gom) (w2) [P diamD ()

and by Lemma 3.8.3 twice this is
2 (G G ()diamDIG) 2 (G -G ()] (i diamD(0))
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for the fixed w € D.

In the same way as for the upper bound we have

(G Crm1) (W) K K'
G Gy @)] ~ 1G]~ mingeeq 1C(@)]

So putting it all together we have

K" (min¢eg(y) diamD(())
mingeg(ry |¢'(w)]

diamD(~) > 1Y (w)]

and we define
_ K" (l’l’lingeg(,y) diamD(C))

Ky = _
mingeq(r) [¢'(w)]
which does not depend on the particular v € I but does depend on the fixed
we D. O

We need the following Lemma to relate distances in H® to distances in C.

Lemma 3.8.5 Given two vertical geodesics H and H' in H? whose non-

infinite end-points are separated by o Fuclidean distance d and a further

geodesic segment « of length | whose endpoints lie on the two vertical

geodesics then the lowest possible height that one of the endpoints of a can
. _d

be s SOk

Proof: Without loss of generality let p € H be the lowest possible

endpoint of .

We shall prove by contradiction that « is perpendicular to H'. Assume
not then there is some ¢’ € H' such that the geodesic ¢ from p to ¢’ realises
the shortest path from p to H'. So we have that d(p,¢’) < [ and so there is

some point ¢ below p such that d(g,q") = | and we have the contradiction.
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Translation parallel to R is both a Euclidean and a hyperbolic isometry so
preserves the setup, the same is true of a reflection in any line perpendicular
to R. So we can give coordinates to H? such that p = (d,y) for d > 0 and
p' = (0,1) but as « is perpendicular to H' we have that y"? = d? +y? so that

<\/d2+y2—d)
L =log | —F—

by the formula in [And99]. We can solve this for y to get

. d
Y7 Sinh()

as required. O

Lemma 3.8.6 Given a Schottky group I' with oo € D and fized w € D then

there are positive constants K3 and Kj such that
K3l (w)] < hy < Kl (w)]

for all v € T, where hy is the Euclidean height of v(j).

Proof: We shall prove the existence of a lower bound first by showing
that there is a lower bound for the height of v(p) for a particular p € H?
then extending this bound to any g € H®.

Let C be a circle such that the disc bounded by C' is contained in D
then let p be the point that lies on the top of P, the hyperbolic plane whose
boundary is C. We see that p satisfies the conditions of Lemma 3.1.17. Note

that there are many choices for C'.

b

Now choose another circle C’ such that C and (" have the same centres

i A i (SR MR Y 4 1

and the annulus bounded by C and C’ contains D in its interior. Again

there are many choices for C'.



Define P to be the hyperbolic plane that bounds C' and P’ to be the
hyperbolic plane which bounds C’. Let o be the geodesic segment from P
to P'. Define p and p' to be the endpoints of o which are in P and P’

respectively. Note that « is a vertical line segment.

Figure 3.3: Setup for height derivative equivalence

P

Given v € I we shall apply it to this setup, then find a lower bound on
the height of v(p).

Project v(a) vertically to C; then this is a Euclidean line v that intersects
v(C) and v(C") in z and 2’ say. Let H be the unique hyperbolic plane which
contains oo and whose boundary is tangent to v(C) and intersects v at right

angles, define H' similarly except let its boundary be tangent to v(C").

Now consider the hyperbolic sphere S of radius [(a) centred at y(p) and
the points ¢ and ¢’ which are the unique points vertically below v{«) such

that g€ SN H and ¢ € SN H'.
We shall bound the height of ¢ and then the height of v(p).
We have the following estimates
d(g,q") < 2l(a) so that distiue(g, H') < 2l(a)
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Figure 3.4: Setup under vy

H}

(P)

Figure 3.5: Lower bound on the distance

%

distine(7(C),7(C")) = min__ |y (w1)

w €CaweelC’

and

11/2

[ (w2) /2w — ws

2 Kih'wl glee

for some w € D by Lemma 2.2.5 and then Lemma 3.8.3. We define K; =

K mi — w| and note that it is independent of .

LM eCwed” !Z ey
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By Lemma 3.8.5 we have that the height of ¢ is greater than

distine(1(0),1(C) o S

sinh(d(q,¢)) = sinh(2l(a)) ]

where we note that {(«) is a constant independent of ~.

We have that d(7(p), ¢) = I(«) so that the lowest that ~(p) can be below
g is the hyperbolic distance {(c) but this corresponds to «y(p) being at the
height of ¢ divided by exp(I(a)).

Similarly if we let I' = d(j,p) then h, can be at most g;}}m times the

height of v(p) so in conclusion we have

1 1 K,
T exp(l') exp(l(e)) sinh(2((a))

I~'

12

so define /
1% 1 1 K2

37 exp(l') exp(l(a)) sinh(2l(a))”

The other side of the proof is simpler. Let p be the same p as in the
first half of the proof then v(p) € P(y) for every v € I" by Lemma 3.1.17.
Since P(vy) C Con.Hull(D(7)) we have that the height of y(p) is less than
diam(D(7)) and so by Lemma 3.8.4 this is less than K|y’ (w)| for some K > 0

and fixed w € D.
As above if we let I' = d(j,p) then we have that
hy < exp()K Y (2)]

so define
Kg = exp(l’)K

as required, note that the constant depends on w. 1
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Lemma 3.8.7 Given a Schottky group I with oo € D then there are positive
constants K4 and K such that

Ky exp(—d(j,7])) < hy < Kyexp(—d(j, 7))

for ally eI

Proof:  We first do the upper bound.

Given v € I" let o be the geodesic ray from j through ~y(j) with endpoint
z and let d = |z — v(j)| then d > h,,.

Pull everything back to the ball model by the inverse of stereographic
projection ¢~ % then ¢71(j) = 0.

Let 7 = [¢7*(v(5)) — ¢ (2)| we can then calculate to get that

tanh ——————d(j;”) =1-

which means that
2

exp(d(f,77)) +1

T =

We can apply Lemma 2.2.9 since oo € Q(T") to get a constant L' such
that

T 2 2exp(—d(j,77))
hy<d< — < < !
! L'~ Lexp(d(j,v5)) + 1 L
so define
2
K4 - "L—,'

We now do the lower bound.

Given 7y € I" then the lowest that h, can be is directly below j at hyper-

bolic distance d{7,v7) and we can calculate this explicitly as
\Js ' 1J 1Y



so that the lowest that h, can be is exp(—d(j,vj)) and we have the lower
bound with Kj = 1. O
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Chapter 4

Types and Examples of
Schottky Groups

In this chapter we give various examples of Schottky groups. For simplic-

ity we shall consider only two generator groups.

4.1 Isometric Schottky groups

Definition 4.1.1 Perhaps the simplest example of a Schottky group is an
isometric Schottky group. A group I' is isometric if it has generators {g, h}
such that Iy, I -1, I and I,-1 are all disjoint and not nested. The isometric

circles then form a set of defining curves for I

Example:  Given four distinct points z1, Z2,y1,y2 in C then for A, p € C
sufficiently large, < g, h > is an isometric Schottky group where g fixes z;, 25

with multiplier A and A fixes y1, y2 with multiplier u.
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Figure 4.1: Isometric Schottky group
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The proof is essentially Lemma 2.9.1 and the expression for the radius of

the isometric circle.

Since the isometric circle of a Md&bius transformation is not preserved
by conjugation the property of being an isometric Schottky group is not
invariant under conjugation. It is easy to see this if one of the fixed points is
sent to co. A non-isometric Schottky group is a Schottky group that is not

an isometric Schottky group.

4.2 Classical Schottky groups

Definition 4.2.1 A Schottky group is classical if it has defining curves

which are circles for a set of generators.

It is worth noting that classicalness is invariant by conjugation by Mobius

transformations.

Example: The obvious example of a classical non-isometric Schottky
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group on a set of generators is

A+ 4 (A —1)? B
9(z) = —(A+ 12z + (A +1)2 and h(z) = pz

where || > max{7, |\|?} and g fixes =1 with multiplier A.

Figure 4.2: Classical non-isometric

Example: A slightly more interesting example of a classical Schottky
group is < g,h > where cenl, = —i, cenl,-» = 7 and g has multiplier —2
then

—1.70710678102 + 2.121320338

9(2) = — 70710678107 = 1.7071067810
so that g has fixed points 71.732050806 and —:1.732050806. The cir-
cles Ser41665(—17.591665) and ¢(Se.7a1665(—07.591665)) are disjoint and as
cenl, € Be 7a1665(—17.591665) we have that < g, h > is classical as long as
the isometric circles of A do not intersect each other and Bg 741665 (—17.591665)

and 9(36.741665 (“27591665)) .

Note that < g, h > is non-isometric on these generators.
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Figure 4.3: Non-isometric with bounded Limit set
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All Fuchsian Schottky groups are classical see [Mar74] although he at-

tributes it to Jgrgensen.

We can define [I'] in Schottky space to be isometric if there is some I' € [T']
such that I' is isometric. I believe it is an open question whether the isometric
subset of Schottky space is equal to the classical subset. I conjecture that

this is not the case, i.e that there are classical Schottky groups that are not

isometric up to conjugation.

4.3 Non-classical Schottky groups

Definition 4.3.1 A non-classical Schottky group is a Schottky group for
which no set of generators is classical.  Non-classicalness is invariant by con-

jugation under Mobius transformations for the same reason that classicalness
is.

Marden [Mar74] proved the existence of Non-classical Schottky groups
by showing that if the limit of a sequence of classical Schottky groups is a
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Kleinian group then it has non-empty domain of discontinuity. We know by
a result of Chuckrow [Chu68] that there are limits of Schottky groups for
which this does not happen.

Yamamoto [Yam91l] gave the first explicit example of a non-classical
Schottky group. In the following section we generalize this example to a
family which contains a sequence of non-classical Schottky groups which do
not converge to a subgroup of PSLy(C). Our proof follows very closely his

proof except that we allow the multiplier of A; to vary.

4.4 An Example of a sequence of Non-

classical Schottky groups

We shall show that the following group is Schottky and non-classical for
[ € (1,/2) and € small depending on /.

Definition 4.4.1 We let I, =< g1, hy > where
hl(z) =1lz

and

(z) _ az +c
Ghe B cz+a

such that a = fif% +¢eand ¢ = —/a? — 1. We assume that [ € (1, \/5) and
¢ € (0,1), this means that a > 1.

Lemma 4.4.2 T',. is a Schottky group.

Proof:  Consider I, and I, -1 then we have
a a a a

Cen(Igz,e> = H = ——a‘;_—-l' , Cen(fgl’e_l) = nm — __.C_L_Q_i__i
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11
lef ~ Va2=1

since [ > 1 and € > 0. Note that a — oo as I — 1 so that cen(l, +1) — =£1
and rad(ly, ) — 0.

and rad(/, ) =

Given §,¢" > 0 then define R;y to be the boundary of a rectangle such
that Rss N (RUIR) = {5 4, _(QTETI — 8),il(%5 +47), —il(e=t + ")},

We shall show that I, , I, -1, Rss and h(Rse) do not intersect and

form defining curves for I, ., for 6,6’ small.

Figure 4.4: Non-classical Schottky group

Y

| g |~

By symmetry we only need to check that:

1. &= —§ < cen(Iy,,) —rad(Zy, ),

E

2. hl(—il(ﬂl—;'i +¢")) > cen(l, ) +rad(ly, ),

3. hl(g—l — 5) > z'rad(fgl,e),

g
4 (52— 0) > il(st - ).
1. cen(l, ) —rad(ly, ) = & — o which is greater than 0 for all § > 0.

el el
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Figure 4.5: Distances to check

T T

I

2. hl(——il(ﬂl—z[i +8)) > cen(l,, ) +rad(ly, ) iff I*(a— 1) +26'|c] > a+ 1 if
lc[I?6' > 0 which is true for all &' > 0.

, ~0) > irad([y,,) iff gzﬂ +e—1—6|c| > } since §2 —1> 1 for

€ (1,14 +/2) we need to check € > d|c| and for all small ¢ this is true.

3. hl(

4. hl(%—;—,l— ~§) > zl(f‘l—a—l — ¢') iff 6 < ¢’ but we are allowed to choose this
since the previous cases only needed ¢ less than some fixed small value.

0

Definition 4.4.3 Let G, =< h*, g1 >

Lemma 4.4.4 G, is a classical Schottky group. In fact it’s extended Fuch-

s1a7n.

[ > 1 and € > 0 we have that a,¢ € R. The generators of
G have real entries in their matrix forms so G preserves R and since it is

a subgroup of a Schottky group it is also a Schottky group [Chu68].
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In fact we can give it explicit defining curves.

We have o
1*(|cenly, .| — radly, ) > |cenly, |+ radl,,

since
o PH1+4(e+1)(?=1) a+1

> -
P+1+(e—1—-1) a-1
foralll > 1 and ¢ > 0.

So we can find a § > 0 such that the curves Igl)e,Igl)E_l,S%_,;(O) and

Slz(gﬁ _5>(O) are all disjoint which proves that the group is classical.

Figure 4.6: Subgroup is Classical
2
g
¢

It is useful to give a short overview of the proof. In the first part of
the proof we provide an upper bound on the length of the components of

Q(Gl,e) NR.

We then, for contradiction, assume that I'; . is classical. We use this and

the bounds on (G ) NR to bound Q(T) N (R UIR). Once we have this
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bound we show that there is some image of a defining circle under I'; . that

intersects another image of a defining circle.

4.4.1 Investigate the lengths of components Q(G, )

Definition 4.4.5 Define ¢; to be the interval in R bounded by the fixed
points of g;hi’giehi . Define ¢, ¢3 and ¢y by ¢2 = g1 (¢1), ¢35 = by~ (¢2)
and ¢4 = hy~*(¢1).

By the definition we see that g .hg b "¢1 = @1 s0 by 2gretér =
gr.ehi~*¢1 which means g;.(¢4) = ¢s.

Figure 4.7: The order of the ¢;

We will now show that the longest component of (D(g;¢) U D(gie"')) N
(G} e) is shorter than max; ¢;.

Lemma 4.4.6 If I is a component of (D(gie) U D(gie™ 1)) N Q(Gye) then
I C v(¢;) for some i and some v € G.

Proof:  All components of Q(G;.) NR are equivalent under G, and each
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¢; contains at least one component as it has its endpoints in A(T"). O

Lemma 4.4.7 Given I as above and -y of minimal length such that [ C

o1 then my >0 o0rm,r=0and n; >0

¢o then myp>0o0rmp=0and ng <0

if 6 =

¢3 then mp <0 ormy=0andng >0

¢4 then myp <0 ormp=0andng <0

where v = g1 ™ L g™ A such that my, ..., ng # 0.

Proof: If ¢; = ¢ and my < 0 then we can reduce the length of y by

considering 7h12¢4 and if my, = 0 and ny < 0 we can reduce the length of 7

by considering vgi (p2.

The other cases follow by the same argument on noting that g, (¢s) = ¢3.

i

Lemma 4.4.8 Given I and minimal v such that I C y(¢) then
gl,emhlmt cee gl,enkhlmk (Z) S D(gl,e) U D(gl,e_l)

forallt < k.

Proof:  We prove this by induction on & — t.

Base Case: t = k then consider g, /"*h,”* and by the table in Lemma

4.4.7 we have the result.
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Inductive step: Assume the result is true for ¢ +1 < k then
gL g ™ (2) € D{(gie) U D (g )

but as the group is classical on the defining curves in Lemma 4.4.4 we have

that h,™ (D(g1c) U D(g1,e")) is disjoint from D(g;.) U D(gy,.~t) as my # 0.

If t # 1 then ny # 0 so that g, ™ (D(g) U D(g™") C D(gre) U
D(g17t) as required.

If t = 1 then n; might be 0 but we have just shown that
™ g M (2) € D(gie) U D(gie™)

so that y(2) & D(gic) U D(g,~") but this contradicts that I C D(g,.) U
D(gl,eﬁl)'

Lemma 4.4.9 ny #0

Proof:  This is the last part of Lemma 4.4.8. O

We now prove a technical Lemma.

Lemma 4.4.10 We have

forl>1 and € small.
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Proof: By calculation we have

Iil%% distine(0, ¢;) — 1

as € — (.

We will show that

) . a
161:%1 1c|lzr£1%% distine (0, @;) — 7 1>0

then for small € we will have the result. Expressing this in terms of [ we have

that this inequality is satisfied if

and by calculation we see that this is true for > 1. ]

Lemma 4.4.11 Given I and minimal 7y such that I C ~y(¢;) then |¥'(2)] <1
for all z € ¢; and € suffictently small.

Proof:  Write v as g, ™A™ ... g1 W™ such that my,...,ng # 0.
) g)

We shall prove that (g, ™A™ ... g™ ™) (2)| < 1 for every t by in-

duction on £ — .
Base case: k —t=0.
We split this into 3 cases depending on the value of my.

Case 1. my = 0, then ¢; lies outside I, ~ by the table in Lemma 4.4.7

we have [(g;*) (2)| < 1.
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Case 2. my < 0, then

(g1, M ™) (2)] = 1(gue™) (R™ 2) || (™) (2)| = l(gz,e”‘“)'(hzm’“Z)}llik;

which is less than 1 as h;™*(z) is outside D(gi,) U D(g;,.~') because ¢; = ¢3
or ¢4 by the table in Lemma 4.4.7.

Case 3. my > 0, then ¢; = ¢1 or ¢ then
191 R ™) (2)] = g™ ™ g™ 2) | lgue (R ) (2) |1

now |g ™ (g h™2)| < 1 as the isometric circles of g; . are disjoint so we
will look at the last two terms. They are
[mE 1

lane (™) () = le(il)™z +af?  |e(il) ™l F 2+ al- P P

which is less than or equal to 1 iff
(i)™ 1~ 2+ al™ | > 1.
Using the triangle inequality we get that this is true is

le|l72 2| — al~ " > 1

but |2] is greater than min; disti(0, ¢;) so the above inequality is satisfied if

|l min distiat (0, ;) — al” 7 > 1.

But
ICU%LL ffl%% disting (0, ;) — al= 7 > |c|l 1’1_1%1’% distine (0, &) —a™ M1
as |c| min;_q o distine(0, ¢;), @ > 0 so by Lemma 4.4.10 we are done.

The inductive step is done in exactly the same way. 0

74



Lemma 4.4.12 The length of I is less than L = max; diam(¢;).

Proof:  Find minimal v such that I C (¢;) then by Lemma 2.2.5

diam([) < diam(y(¢:)) < max Y @Y ()22 — w| < diam(gy)

’

by Lemma 4.4.11. 0

4.4.2 Using bounds on Q(G).) to get bounds on Q(I,)

For contradiction assume that I';  is classical and let C be a set of defining

curves which are circles. Note that the circles I'C are pairwise disjoint.

Definition 4.4.13 Let {C;};=1., be the complete collection of circles in
I'C that separate 0 and oo and cut R inside R(gi). We give the collection
{C;}i=1..n the order such that C; separates 0 and Cy1. Let Cy be the unique
circle in I'C that separates 0 and co with the property Cy intersects (0, Qi-gll)
and Co N (0,43 is greater than C' N (0, 45+) for any other circle C' that
separates 0 and co. We define C,; to be the unique circle in I'C that
separates 0 and oo and intersects (%’OO) at the lowest point out of all

circles in I'C that separate 0 and co.

Lemma 4.4.14 The collection {C;}i=o..n+1 always contains at least two el-

ements and if we let 2] = j571(0,00) N C; then

T . 7
(e —1) <1:] < "(a+1)
lc] c]
for all k and j. Also note that
"(a+1)
I‘ade <2 }cl

forall j.
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Figure 4.8: The Images of the Defining Circles that separate 0 and co

Proof: By Lemma 4.1 of [Mar74] we know that there is a fundamental
domain D for I'; . bounded by circles in I'; .C such that D separates 0 and oo

so there are at least two circles in I'; (C that separate 0 and oo and we have

that Cy and Cj,11 must exist.

Since the circles are disjoint, for the upper bound, we only need to check

the assertion for i =n + 1.

If 2771 > 14“—‘}1 then h;*C,41 is in C and contradicts the definition of

Chp1 50 271 < 14%“:—{1.

Since the circles I'; .C are disjoint, preserved by I',. and in particular &

we have
- 1
Z;L+l _<__ ZZ71’L+1 S laa};
and
L < Zsa’*‘l
A P2
and

zn+l<l70’+1
e
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by the same argument.
The lower bound works in exactly the same way.

The bound on the radius is obvious. O

Definition 4.4.15 As C; and Cj4; are adjacent in I' [ we have that they

bound a fundamental region which we denote D;.

Lemma 4.4.16 The lengths of at least two components of D; N (RUIR) are
less than I L.

Proof:  Let the boundary circles of D; be C;, C;11,C and C’ say, then C

and C" intersect at most two half axes. The other two half axis intersect D;

in oy and «y say.
We will consider a; and the same argument will work for as,.

Let the furthest point on «; from 0 be denoted z;.

By Lemma 4.4.14 the distance from 0 to z; is less than ﬂ(f:l“l) SO we can

find £ > —7 such that |0 — hlkxll € <(a_1) (ﬁiﬂ) There may be more than

e[ 7 el

one possible value of &k as ((a["c”[l), (afg ]1)) is smaller than the increase in [,

otherwise the group would obviously be classical.

If A%z; is in R then «; it intersects D(g1e) U D(g1e7*) and by Lemma
4.4.12 we have that

so that diam(cy) < I"L.
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If h*z; is in iR then Ak z; lies on R. Consider Q(Gye) then hohy" s
either lies inside D(g;.) U D(gic~") or outside it away from 0. This means
that either oy intersects D(g;.) U D(g;.~!) or is contained in one of the ¢;’s.

In either case we have the bound. O

Lemma 4.4.17 Given a point z in a circle C and two chords o, o that
meet at right angles and the rectangle R with the property that each side of R
meets an endpoint of one of the chords at right angles then the circumference

of R is greater than twice the diameter of C.

Proof:

Figure 4.9: Setup for big rectangle and small circle

Let z; be an endpoint of a; and e; the edge of R that contains z;.
Consider the segment s; of e; that is contained in C', let y; be the other

endpoint of this segment.

Now s; and ap meet at right angles and are both chords so the hypotenuse

of this triangle is a diameter.
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Figure 4.10: Proof that the rectangle is larger than the circle

So the diameter of the circle is less than the diameter of the rectangle

which is less than the length of two incident sides of R. O

Lemma 4.4.18 Given circles C; and Cjiq let z, = C; N 710, 00) and
yp = Cju1 N0, 00) then if |Tm — ym| and |z, — yn| for m # n are both
less than n then

2 — ya| < 78282555

for all k such that | € (1,2) and € > 0.

Proof:  Let p; be the centre of C; and r; the radius and let S,,, (pis1) =
Cit1-

This proof works by bounding |zx — ¥/ in terms of |p; — pi1]|. First we
bound |p; — ps+1| in terms of an angle and then bound this angle in terms of

L.

Construct a new circle C' with centre p; and radius |p;s1 — p;| then C
touches Cj.1 at a point z, let 2’ be the antipode of z then p;+1, 2/, p; and z

all lie on a line. Let z; = C Ni*71(0, 00).
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Figure 4.11: Initial Setup

Define 6,, to be the angle Z2'p;z, and 6, to be the angle /2'p;z,.
We split the problem into two cases.

Case 1. Oy, 0, > 7.

We now prove a series of inequalities relating these constants.

Let o, and «,, be the angles /p;2'z, and Zp;z'z,, respectively then

sin(6,,) + sin(6,,) > sin(a,) + sin(a,) (4.4.1)

by the sine rule as we are in Case 1.

We let 7 be the radius of C then

T =Tir1 — fpz‘ "pz'+1f (4-4-2)

since |pi+1 — 2| = Tit1 = |pis1 — pi] + r as all 4 points lie on a straight line.

We have I | | |
. Zn — 2 . _em — 2
sin(ay,) = 5 and sin(ay,) = o (4.4.3)
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Figure 4.12: Construct the intermediate circle

Zt

since a,, = Zzz'z, and z to 2’ is a diameter so the angle /zz,7' is a right

angle, the same is true for a,.

We now find a lower bound for sin(6,,) + sin(6,,) using 4.4.1 to 4.4.3,

[zn2; o, Izm2;~ A E:]jT’ZAI (4.4.4)

as |zn — z| + |2m — 2| > |20 — 2m| > |2n| OF |2m| a8 £2,02,, is a right angled

triangle. We have 2r < 3", |z| by Lemma 4.4.17.

As the circles C; and Cjy; are part of the boundary of a fundamental
domain D; for the action of [';, on Q(I';.) we must have that .D; N .D; = 00

so that
llZ[J > |Zk+1| (445)

for all k.

Azl by 441 to 4.4.4. Without loss
2ok |2k

of generality we assume that 8, < 8, then

2
v

We have that sin(6,) + sin(¢

1
>
Tl

2sin(6,,) > sin(6,) + sin(6,,)
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Figure 4.13: Bound the angles

by 4.4.5. We can use this to get that
1 1
1+ cos(6y) = 1
no 1= \/ L = seree

by Pythagorases Theorem and as 6, € [5, 7] we have that cos(6,) is negative.

(4.4.6)

Case 2. Assume that at least one of 0, 0,, < 7, without loss of generality
assume that 6, < 7 then
1
Thoos(@y) =15 :
cos 1
" L= \/1 T AR EE)?

which is the same equation as 4.4.6.
Consider the triangle p;11p;z, then
pit1 — 2] = Ipi — pisa]? + 72 = 2|p; — puaalr cos(6y)
by the cosine rule which implies

(rig1 — |Zn — yn))® < |pi — pig1|* + 77 = 2|p; — pisa|r cos(6,) (4.4.7)
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as |Pis1 — 2zn| > Tiv1 = |Yn — 20| > rit1 — |Tn — yn| by the triangle inequality

applied t0 p;y1Ynzn and the fact the C lies between C; and Cj,;.
Applying 4.4.2 to 4.4.7 we have
(riv1 — |2 — yn|)2

< |pi — pisa [P+ (g1 — [P — Pig1])® = 2|ps — Pit1|(Tix1 — [Ps — piga|) cos(by)

SO
(Tig1 — 77)2 < |p; _pi+112 + (rig1 — |pi — pi+1|)2

—2|pi — pit1|(rig1 — |Ps — Piga]) cos(6y) (4.4.8)

since [T, — Y| < 7.

From 4.4.8 we get that

7417}
(L ot g~ P e
n c

using the fact that r;oy — [p; — pia| =7 > 1 > 5_—72(19(:'——12 since C; contains 0

and C; N (0, 00) > l:?—%]:l)— by Lemma 4.4.14.
We apply 4.4.6 to 4.4.9 to get that

V2He)
' <1 B \/1 - 4(1+1+}L12+13)2> l_;(&[_l)

S 221" (a + 1)
(1= /1~ sty (0= 1)

as rip1 < \/51_7.(_‘511_) by Lemma 4.4.14. This is our bound on |p; — pi+1|.
Ic] *

> |pi — Pig1] (4.4.10)

We prove the following for k = 3 so that zz,yx € (—o0,0) although the
proof works for any k. We have that

(z5 — reps))? + (im(p:))* = r7
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and
(y3 — Te(pi+1))2 + (im(pis1))? = 7}2+1

so that

z3 = re(p;) — \/7“3 — (im(p;))?

and

Yz = re(Diy1) — \/7’1'2+1 — (1m(piv1))?
as z3 < re(p;) and y3 < re(piv1)-

So we have that

re(pis) = 3frn — (m(pe))? = re(ps) + 1/r? — (im(p:))?

T3 — y3| =

< freien) = re(p)| + |72 = mlpie))F = /7 = Gralp)

< pirr — pil + iy — (im(pin1))? — 7 + (im(p:))?|
< [pis1 = pil + Iri = rillrigs + il + lim(pas) — im(pa) |im(pig1) + im(ps)]
< piss — pil + Iriva = il* + lim(pina) — im(py)

< piv1 = pi| + [riea — millrien + il + [im(pisa) — im(ps) [[im(pisa) + im(pi)|

2v20"(a + 1) 2217 (a + 1)

< i — pil + “’_{‘CT'””“ — i + ———‘[cr—“lpm — i

by Lemma 4.4.14. Using the fact that |r;y —ri| < |pi1 — pi| + 71 we get that

|23 — y3| < [piz1 — pi| + %‘Q]pi—ﬂ — il + ?-\/—Zlixgii‘l—)??
e WAa+1)) | WA (a+])
= |[pit1 — pi <1+ B ) +n B .

On applying 4.4.10 we get that
2¢/20"(a + 1)+

|25 = ys| < 77
el
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2+/21% 1 4-/217 1
V2 (a+ ) <1+ V2o + )) (4.4.11)
(1 B \/1 1+l+l2+l3 ) (a—1) i
which is a linear bound in 7.
However for [ € (1,/2) and € > 0 we get that
7
2v/21 (a+1) < \/511
lc]
a-+1 <9
a—17
and
1—4/1-= 1 > .008
41 4+1+12413)2 —
by calculation, plugging these all in to 4.4.11 we get
44/2°5
|25 —ys| < 7 Ve (f13+1> +v2'1) < n8282555
0.008
O

as required.

Definition 4.4.19 Let C be the unique image of C,.; under < h;* > that

[ l4a+1 g—_f—_l)'

intersects B

Lemma 4.4.20 T, is non-classical for fized | € (1,4/2) and ¢ > 0 suffi-

ciently small.

Proof:  The contradiction we shall derive is that g, (C') must intersect at

least one of the C;, which contradicts the fact that they are all disjoint.

Let CNR = {z,y} where y < 0 < z then

sa+1Y 1
191,6(2) = ge(y)] = |g1.e(00) — gu,e ( l B > | = I[P+ )+ 22 +1— ¢
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as the component of C — C that contains co does not contain cenl e
By Lemma 4.4.16 we can apply Lemma 4.4.18 with n = ["L to get that
|z; — 2i41| < 1718282555
where z; = C; N (0, c0).

We have

I vV (2la+ c+ cd?)(—2la+ c+ cl?)
a
by calculation and L — 0 as ¢ — 0, which was the point of setting up ¢ in

the first place.
To get a contradiction we need

1
> 71,8282
le[ll42 4 €) + 212 +1 — ¢ > ["1.8282555

since C' is outside Iy, so is contained in D(g;).

But
1 ?2—-1

__)
lelli*(2+€)+ 202+ 1 — ¢ 20(12 4+ 1)2
which is greater than 0 for all [ > 1 so we have the desired contradiction for
O

L small enough.
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Chapter 5
Dynamics

This chapter is split into four sections. The first three introduce the
main definitions and tools we will use. In the first section we define Haus-
dorff dimension and give some basic invariance results. In section two we
define the exponent of convergence of the Poincaré series and give the im-
portant result that for geometrically finite Kleinian groups it is equal to the
Hausdorff dimension of the groups limit set. Using this we prove that if
the Hausdorff dimension of the limit sets of a sequence of Schottky groups
I'(n) =< g(n), h(n) > vanishes then at least one of the generators, g(n) or
h(n), leaves PSLs(C). In chapter 6 we examine to what extent the converse
of this statement is true. In section 3 we state the famous Birkhoff Ergodic
Theorem. In the last section we prove technical results that allow us to anal-
yse the Hausdorft dimension of a Schottky group. To do this we introduce
the full measured set L(g) € A(T') and the set L.(t) € . We then bound
the growth rate of fe(t) () for small ¢. In the next part of this section we de-
scribe the relationship between L(g) and L. () when ¢t = m(D(g) U D(g71)),
specifically we show that L(g) can be viewed as the “conical boundary” of

L.(t)(§). This with a result on the way that the embedded Cayley tree of T
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approaches its limit set allows us to prove that when calculating the expo-
nent of convergence of the Poincaré Series of the group I' we only need to
consider L¢(¢) and not the whole group I. It is this result and the bound on

the growth of L.(¢) which are the technical tools we use in Chapter 6.

5.1 Hausdorff Measure

In this section we give the definition of the Hausdorff dimension of a subset
of C. We also state that Hausdorff dimension is invariant under elements of

PSLy(C).

Definition 5.1.1 Given a set X C C and d > 0 then the d-dimensional

Hausdorff measure of F is

#%(X) = lim sup inf Z diam(U;)?

e—0

where the infimum is taken over all ¢ open covers of X, in other words

countable collections of open sets U; that cover X such that diam(U;) < €

for all 4.
Note that H? takes values in [0, co].

Lemma 5.1.2 Given a set X C C then there is a unique number H(X) €
[0, 00] such that HYX) is 0 for d > H(X) and oo for d < H(X).

Proof: Take ¢ < 1 then diam(U;)? is a decreasing function of d so we
have that H4(X) < H? (X) for d > d.
Suppose that H(E) € (0,00) and § > 0 then

H(X) = limsup inf Z diam(U;)%0 < limsup €° Z diam(U;)?

e—0 e—0
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< limsup "H4(E) = 0.

e—0

Suppose that H4(E) € (0,00) and 6 > 0 then

e—0 e—0

H4O(X) = lim sup inf Z diam(U;)4° > limsup ¢ Z diam(U;)®

> limsup e *H(E) = oo.
=0
Next suppose that H4(X) & (0,00) for any d. Then either H4(X) is
constant and equal to 0 or oo or there is some jump point d where H(X) = co
for § < d and H*(X) =0 for § > d. At d #4(X) may be 0 or oo. This is the
only jump point since H(X) < H¥(X) for d > d'.

This definition can be generalised to any metric space see [Fal97]. If

X C R™ then #"(X) is a constant times the n-dimensional Lebesgue measure

of X [Fal97].

Definition 5.1.3 We define the Hausdorff dimension of a Kleinian

group H(I") to be the Hausdorff dimension of its limit set.

The Hausdorff dimension of a Kleinian group is invariant under conjuga-
tion by Mobius transformations, this follows from the fact that the limit set

is closed and that Hausdorfl dimension is invariant under bi-Lipshitz maps

see [Fal97].

Ruelle [Rue82] using techniques developed by Bowen [Bow79] showed that
the Hausdorff dimension is a real-analytic function over either Quasi-Fuchsian

or Schottky Space. Anderson and Rocha [AR97] extended this result to a

wider class of Kleinian groups.
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5.2 Patterson-Sullivan Theory

In this section we introduce the Poincaré series and its exponent of con-
vergence which are the main tools in Patterson-Sullivan Theory. We state
the important result that the exponent of convergence of a geometrically fi-
nite group is the same as the Hausdorff dimension of its limit set. We also
prove that if a sequence of Schottky groups satisfies H(< g(n), h(n) >) — 0
then one of the generators leaves PSLo(C). It is worth noting that this is

true for any set of generators.

Definition 5.2.1 Given a Kleinian group I and p € H® and s > 0 we define

the Poincaré series to be

> exp(—sd(p, 1p))-

yel

The Poincaré series is independent of the base point p chosen, for a

proof of this in the Fuchsian case see [Pat76a).

Definition 5.2.2 The exponent of convergence 6(I") of the Poincaré

series of a Kleinian I' is the infimum over all s > 0 such that

> exp(—sd(p, vp))-

vel

converges.

A proof of the following theorem can be found in [Sul84]

Theorem 5.2.3 Given a geometrically finite Kleinian group I' then §(I') =
H(T).

As an application of Patterson-Sullivan theory we prove the following.
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Lemma 5.2.4 Given a sequence of Schottky groups I'(n) and any set of
generators {g(n), h(n)} such that H(I'(n)) — 0 then either g(n) or h(n)
leaves PSLy(C).

Proof:  We shall prove this Lemma by contradiction. We shall show that
if both the generators do not diverge then liminf H(I'(n)) > 0.

This proof is split into two parts. First we show that we can assume that
the generators converge then the second part shows that in this case we can

find a uniform lower bound on the exponent of convergence of the Poincaré

Series.

Consider the accumulation points A of H(I'(n)). Now A C [0,00] (in
fact A C [0,2]) so we can split this into two cases, either 4 C [e, oo] for
some € > 0 or there is some subsequence H(['(n,,)) of H(I'(n)) such that

H(D(nm)) — 0.

Suppose that for every subsequence n,, there is a subsubsequence n,,
such that lim inf 2 (I'(ny,, )) > 0. Then we cannot be in the second case as in
this case there is some subsequence n,,, with the property that H(I'(n,)) — 0,
but every subsubsequence n,,, of n,, satisfies liminf #(I'(ny,,)) = 0 which is
a contradiction. This means that we are in the first case, so there is some

uniform lower bound on H(T'(n)).

This means that if we can show that given any subsequence n, we can

find a subsubsequence n,,, such that lim inf 7 (I'(n,,,)) > 0 then we will have

proved the Lemma.

Given a subsequence n,, of n we can find a subsubsequence n,,, such that
9(nm,) — g and h(n,,) — h where g,h € PSLy(C). We shall show that
liminf #(< g(nm, ), h(nm, ) >) > 0 which by the above argument is enough

to show that the original sequence has a lower bound.
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Given v € I'(nm, ) write v as a reduced word ;... (-

By the triangle inequality we have

i)

< ) <
d(p,yp) < ; d(p, Gp) < U() el ) d(p, &p).

We apply this bound to the Poincaré series with exponent «

> exp(—ad(p,yp)) > D exp <—Ozl(7) gegﬁ%&};k))d@@))

el (nm,, ) YET (nmy, )
- 423'“‘1 exp /—ak max d(p §p))
- \ ™" eectomen
since the number of elements in a genus 2 free group of length k is 4 357,

This diverges iff

3exp | — max d(p, >1
p( e (p fp))

or |
o< 0g(3) .
MaX¢eG(T(nm,)) AP, EP)

So let a = log(3) then the Poincaré series diverges but this

MaXee G (nm), ) AUPEP)
means that the Hausdorff dimension of I'(n,,, ) is greater than or equal to o

by Theorem 5.2.3.

In conclusion we have

log(3)
mangg(I‘(nmk )) d(p7 fp)

,H(F(nmk» >

and so
log(3)

MAX¢eG(Tnm, ) 4D, EP)

lim inf H(I' (4, )) > liminf
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but since maxeec(r(n., )) 4P, £p) — maxeegx px1y d(p, Ep) we have that

log 3
MaXge{gtl p21} d(p, £p)

lm H(T(nm,,)) >

which is strictly greater than 0. O

5.3 The Birkhoff Ergodic Theorem

In this section we introduce the Birkhoff Ergodic Theorem along with a
the statement that we can apply it to the ergodic map f : A(T') — A(T) as
in Definition 3.7.8.

Definition 5.3.1 Given a probability space (X, m) and amap 7: X — X

then 7 is measurable if 771 F is a measurable set for every measurable set

E.

Definition 5.3.2 Given a probability space (X, m) and a measurable map 7 :
X — X then 7 is m-preserving if m(r7'F) = m(E) for every measurable

set .

Definition 5.3.3 Given a probability space (X, m) and a measurable m-
preserving map 7 : X — X then 7 is ergodic if 77!E = E implies that
m(E) =0 or 1.

Definition 5.3.4 Given a measurable m-preserving map 7 : X — X and

¢ : X — R we define the function S, : X — R by

n—~1
Snd(z) = > 6(7'x).
=0
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The following Theorem was proved by Birkhoff [Bir31].

Theorem 5.3.5 Given a probability space (X, m) and 7 : X — X an ergodic
measurable m-preserving surjective map then

lim Sqﬁ )= lim — Z¢’7‘ﬂ? /(bdm

n—00 17, n—00 7

for every m—measurable function ¢ and m almost every x € X.
The following Lemma was proved by Bowen [Bow79].

Lemma 5.3.6 Given a Schottky group T and f as in Definition 3.7.8 then

f is an ergodic H-preserving surjective map on A(T'), where d = H(T).

5.4 The density of ¢ in the limit set

In this section we define the sets L(g) C A(T') and L.(t) € I'. We then
bound the growth rate of Ze(t) in terms of £. We then prove the technical
Lemma that if (;(j) — z € A(T) conically then {(;} stays close to {7,} where
{vn} = z. This results allows us to define L(g) in terms of L.(t). This allows
us to show that when calculating the exponent of convergence we only need
to consider L¢(t) and not the whole group I'. It is this result and the bound
on the growth of Ze(t) which are the tools we use in Chapter 6 to investigate

what happens to the Hausdorff dimension of a divergent sequence of Schottky

groups.

Lemma 5.4.1 Given a Schottky group I' =< g, h > then the indicator func-
tion 1pgup(e-1) : AI') — R restricted to A(T") is measurable for any Borel
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measure and s equal to

1 ifyp=gorgt
1pup(e-1)(2) =

0 otherwise

where z ~ {Vn}.

Proof: Given z € A(T') then z = N,D(vy,) by Lemma 3.7.5 so that
z€ D(g)uUD(g71) iff v is g or g7 1.

The function is measurable as both [D(g)UD(g~1)]NA(T) and C—[D(g)U
D(g7H]NA(T) = [D(h) U D(A™1)]NA(T") are open in the subspace topology
O

so Borel and therefore measurable.

Definition 5.4.2 Given a Schottky group I' =< ¢g,h > and «y € I" define
g(7) to be the number of times the letters g or g~' appear in + when it is

written as a reduced word. Define h(7y) similarly.

Definition 5.4.3 Given a Schottky group I' then H™I)(T') € (0,00) see

[Bow79] so we can define the normalised H™T) measure m by

fHH(F) (E)

mE) = Fpn A

where E is a H™T) measurable set.

Lemma 5.4.4 Given a Schottky group I' =< g, h > then for m-almost every
{} =~z e A(l") we have

lim 9(7n) o
Lty —— — ¥it{
n—oco N

where m is defined above.



Proof: Consider the probability measure (A(T'),m) and the function
f: A(T') = A(I") as in Definition 3.7.8.

Apply Sy to this setup with ¢ = 1p(yup(e-1) then

k-1

St(Ipgune-1)7z = Y 1p(gup-1)f 'z
1=0

ko

—1
1p(up(e-1) (fzw((ﬁ’;l%ﬂ)nzo))

|

Il
=

where 7 is defined in Definition 3.7.2, z =~ {7,} and we define 7, to be the

identity.

By Lemma 3.7.9 this is

k—1 k1
> 1Ingune-y (M7 (1 ms)nzo0)) = D In@gune—) (7((% “Fnt1)nze))
1= =0

by the definition of 7.

Now 7((7 " fnt1)n>i) € D(g) U D(g™) iff 77 yiqn = g or g7* by the
definition of . So we are counting the number of times the letters g or g~

appear in vy, when it is written as a reduced word, which is g(~).

The result now follows directly from Theorem 5.3.5 by Lemma 5.3.6. [

Since H*T)(T') and m have the same 0-sets we can replace m in the above

Lemma by H7D).

Definition 5.4.5 Let L(g) be the set of points z € A(T") for which *27—8% —

1

m(D(g) U D(g™ ")) where z =~ {v,}.
L(g) has full measure by Lemma 5.4.4.
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The following is a purely combinatorial discussion and the results depend

only on the properties of a free group and not on the particular generators

of a Schottky group.

Definition 5.4.6 Given a free group Fy =< g, h > and constants ¢ € [0, 1]
and € € (0, %) define

L(t) = {7 e P]M S (t—e,t+e)}
We will link the growth rate of L(¢) to the constant ¢. Before we can do

this we need the following Lemmas.

Lemma 5.4.7 Given a € N then (Z:?) is an increasing function of b for

a
b< g

Proof: We shall show that

o= ()

for b < %.
Now
(a — b)! < (a—b—1)!
(b— 1N a—2b+ 1) — bl(a—2b—1)!
iff ,
| < (a—2b)(a—2b+1)
- b(a—b)
or that

a® — 5ba + a + 50 — 2b > 0.
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This equation is satisfied for

50 + 2 ++/ba? +4 5a¢ 4+ 2 —/ba? + 4
> 70 and b < 10 )

b

Now b — 1 < a — b otherwise the binomial is invalid so b ¥ Set2tyse td,
Which means we are left with b < 5¢2=¥20%2 However

< 5a+ 2 —+/5a%+4

a
4 10

for all @ > 0 so if b < % then b < Set2=ydedd 65“”4 and we have the result. O

Lemma 5.4.8 Given n,m > 0 then

o () (5) =)= (Z5) (57)

form>7, m>7andn—m>T7.

Proof:  We coarsen the following formula found in [Rob55],
VT T exp(—n +1/(12n+ 1)) < n! < V2/70n™ 2 exp(—n +1/(12n))

to

exp(—n)n" < n! < nexp(—n)n"

forn>T.

S0
n! nexp(—n)n™

<
(n— )il = exp(~m)m™ exp(—(n — m))(n — m)—

- (Z5) (50
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as required.

The lower bound is done in the same way.

Lemma 5.4.9 Given T € R then
T T
(Tn] Tn]
n n
as n — oo, where [n] is the smallest integer greater than n and [n] is the

greatest integer less than n.

Proof: We have that
Tn—1 < | Tn ] < [Tn] < Tn+1
n n n 7

and so they all converge to 1" as n — co. O

The following Lemma will allow us to pull back a result that holds in the

limit.
Lemma 5.4.10 Given a sequence a, € R such that 1—0%1% —a€Randb>a
then there is an N > 0 such that a, < exp(b)™ for alln > N.

Proof: = We shall prove this by contradiction. Assume that

an, > exp(b)” for all n

then
log(ay)

n

> bforalln
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but this means that lim 1—0555‘11‘—) > b which is the desired contradiction. It is

worth pointing out that the inequality must be strict. O

Lemma 5.4.11 Given a free group Fy =< g,h > then
t7% < card{y € L.(O)|I(y) = n} < ¢t~

fort >0 sufficiently small, e € (0,%) and n sufficiently large depending on t

and €.

Proof: This proof is split into three parts. In the first part we express
card{y € L.(t)|I(y) = n} as a summation over k where v = g™ ... k™. The
second part is the upper bound. We solve for the maximum value that k can
be. Then we express card{y € I'|i(y) = n,k = i,m;,n; > 0} as a binomial.
These two results allow us to find an upper bound that only involves ¢t. We
then take limits and apply Lemma 5.4.10. For the lower bound we show
that {y € T'/i(y) = n,k = i4,n; = 1,m; > 0,[n(t—¢)] <k < [n(t+e)]}
is contained in the set we are considering. For fixed k we express this as
a binomial. We then remove the dependence on k and use Lemma 5.4.7 to
remove the dependence on €. So once again we have a formula involving just

t and n and we take limits and apply Lemma 5.4.10.

Before we start on the upper and lower bounds we express
card{y € L.(t)|i(y) = n}
as a summation.

Given v € I express it as g™ A™ ... g"™h™ where n;, m; # 0 except for
J J

ny and my which may be 0.
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We have
card{y € Lc(t)|l(y) = n}

K
= > " 2%9%card{y € L(t)|I(7) = n, k = i,m;, n; > 0}

i=1

K
+Y 2 2%card{y € L(8)|i(v) = n, k =i, m;,n; > 0 except n; = 0}

i=]

K
+Z 212 card{y € L.®)|l(y) = n, k = i,mj,n; > 0 except my = 0}

=1

%
+ Z 21191 card{y € L ()|i(y) = n, k = i,mj,n; > 0 except ny, my = 0}
1=1

~ where K is the maximum possible value of k over all the 4 options, this does-
not change the summation as if a particular 7 is too large then card{y €
Le(t)]...} = 0. We have taken the case that ny, my are O or not separately
then split it up into sums depending on the value of k. Finally we note
that given the absolute values |n;],...,|my| there are 20121~ 1gcard{ni,my70}
possible elements of the group that can have these absolute values. We are
using the fact that the inclusion of v € Ee(t) depends only on the absolute

values, |ny,. .., |ms|, and note on the signs of the exponents.

The upper bound.

The upper sum we use is

card{y € L(¢)|I(y) = n}

K
< 4Z2i2icard{7 € Ze(t)“(’)’) =n,k =1,m;,n; >0 except ni, my > 0}
i=1

where we have taken the greatest generality of the elements to conside

Q.

P4

an

th

:j.
0]

also taken an upper bound on the component coming from the fact i

card we are only considering absolute values i.e the 2°s.
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Next we find an upper bound on K.

We first look at the inequalities coming from the ranges of ¢
3t
t<t+e<§— (5.4.1)

and

t
g <t—e<t (5.4.2)

Given v € L, (t) such that [(y) =n and v = g"h™ ... g"*h™ then

k
<zl g
n

and an upper bound on k is when all the |n;| = 1 except for n; which is 0
and in this case we have

¢
1<l =K< 24 (5.4.3)
by equation 5.4.1.

We now bound

card{y € L(O)|I(y) = n, k = i, m;,n; > 0 except ny, mg > 0}

card{y € T'|{(y) = n,k =i,m;,n; > 0}.

To calculate this we set up a bijection from C' which is the set of all ways

we can place 2k —1 objects into n+1 slots to {y € T'li(vy) = n, k =i, m;,n; >
0}.

Elements of C' are sets {s1,...50-1} where s; € {1,...n+ 1} and 5; <

;41 for all j.
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We define the map
k:C—={yelly) =nk=1imjn; > 0}
as follows, given {s;,.. .91} € C then
({81, .. 8op-1}) =y =gMh™ ... g"FR™
where

Ny =8 —1,M1 =83 — 81,...,N = Sog—1 — Sok—2, Mk =N+ 1 — 891

We see that v € {y € L.()|I(v) = n, k = i, m;,n; > 0 except ny, my > 0}
as

k
l(’)’) = ijJrnj = *1—{—81—51—!—52—. ce— 82k 2+ Sop—1 —Sgk_l-‘f-n—f—l =T
i=1

and m;,n; > 0 except for n; and my, which are greater than or equal to 0.
To show that x is a bijection we define the map
v:{yel|l(y)=nk=1im;n; >0} = C

as follows, given v € {y € L(t)|i(y) = n, k = i,mj,n; > 0 except ny,my >
0} define

s1=1+ny,s=14+n+mq,...,8% 1=14+n+my+ ...+ 0
it is worth noting that m; does not appear in the definition of v.

We shall now check that v is well defined, i.e that {si,...,S%-1} € C.
First we see that s; € {1,...,n+1}asl4+n +m;+...ny <n+1and
nj,m; > 0 for all j. Since ng,...,Ngk_1,M1,...,Mak_o = 1 we have that

sj < 8441 for all 7.
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We complete the proof by showing that kv = vk = id.

Given v € {y € L()|i(7) = n, k = i, mj,n; > 0 except ny, my > 0} then
v(y) ={s1,...,S2k—1} is defined by

s1 =1-4+mny,8s=1~4n+mMq,...,8%1=14+n+m+...+ 0.
Now s({s1,...,S2k—1}) is defined by
ny=s1—1,m] =83 — S1,...,M = S2p—1 — Sog—2,My, =N+ 1 — Sop—1
but this means that
ny=mny,mi=my,...,np=ng,m,=n+1—(1+n+m;+...+ng) =my
as required.
The case of vk is similar.

So the cardinality of card{y € I'll(y) = n,k = i,m;,n; > 0} is equal to
the number of ways to place 2k — 1 objects into 7 + 1 places which is

n-+1
2k—1)°

We have shown that

2
and
1
card{y € T|i() = n,k = i,my,m; > 0} < (;* 1)
’L —
so that
N I
card{y € L(t)fi(y) =n} <4 > & (q‘ \
.: \A’Z — 1/

=1

We wish to find an upper bound for this that does not involve 3.
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If ﬂ—,j—l > 2¢ — 1 then we can maximise the binomial by maximising the ¢

but we have that 7 < F’%n] + 1 so we need that

n+1 Fwn
> 2 5

— 2-1
227

which is true if
5
1—6¢

but for fixed ¢ < ¢ this is satisfied for n large enough.

n >

So under these conditions we have that
3tn n+1

Ay e L@l =nt <4 |Z2] £ 1) 4]
cardy € L) =np < 4 ([ 22 1) o[5] 1) -1
by taking the maximum value [22] + 1 of i for each 1.

We wish to bound this above using Lemma 5.4.8 so to apply this Lemma

we need that
3t 3t
n+1>7,2[—§ﬁl +1>7andn+1-— (2 {Tn\‘ +1> > 7
which are satisfied for ¢ < %, so t small and n large enough.

So for n large enough we apply Lemma 5.4.8 to get that
3tn

card{y € L (t)|i(y) =n} < 4 <(71 < 1) 4l %]+

n+1 2[ 2] 41
ni1 nt1- (23] +1
(n +1—(2 [?’ﬂl_l < 1)) ( 5 [&Tn—l T ) . (5.4.4)

2

We wish to show that this is less than (¢7%)". We take the log of the
righthand side of the inequality in equation 5.4.4 and divide by n then the

limit of this as n = oo is

t 1 —
Stlog(4) + log (1——1—?)%) + 3tlog ( 3t> (5.4.5)

2 3t
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by Lemma 5.4.9.

We shall show that for small ¢ that this is strictly less that —6¢log(t).

We will deal with equation 5.4.5 term by term, the first term satisfies

3tlog(4) 6t log(?)
2 ST 1

for t < 1.

For the second term we want that

1 6t log(t)
1 . .
©8 (1 - 3t) ST

Both sides of this inequality converge to 0 as ¢t — 0. As both are left differ-

entiable as ¢ — 0 we have that the inequality is satisfied, for small ¢, if it is

satisfied for the derivatives of the functions, i.e if

3 3/ 1
° log = —
1~—3t<2<0gt 1)

as t — 0, but the left hand side converges to 3 and the right hand side

converges to co so for small enough ¢ the equation must be satisfied.

The third term,

1-3t 6t log(t)
3t —_ < -
o8 ( 3¢ ) 2
iff 5% < Lorthat 1 — 3t < 3 which is satisfied for all positive ¢.

We put this all together to get that equation 5.4.5 is strictly less than
- Gtlog®)  Gtloglt) _ t10e(t) — _6t1og(¢) for small t. And so equation 5.4.4 is

strictly less than ¢~ for large n by Lemma 5.4.10.

We now do the lower bound.
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We have that
(v €T = n k= in; = 1,m; > 0, [t — ] < & < [nlt+6)}

c{ve L) =nk= i,m; = 1,m; > 0 except my > 0}

as if [n(t —¢€)] <k < |n(t+€)] then
n(t—e¢ <k<n(t+e

and so

since n; = 1 for all 7 which means that v € L(¢). Note that for small n there

may be no £ that satisfy [n(t —€)] <k < |n(t+¢€)]}.

So we have that
card{y € L(t)[i(y) = n}
[n(t+e)]
> Z 2'card{y € T|I(y) = n,k =1i,n; = 1,m; > 0 except my > 0}
i=[n(t—e)]
where we have absorbed the bounds on k into the summation. The compo-
nent coming from the fact that we are only considering positive exponents is

2¢ since the exponents of g; is 1 for all j.

We now find a formula for card{y € T'|i(y) = n,k = t,n; = 1,m; >

0 except my > 0}.

To do this we shall set up a: bijection &' from C" the set of all ways to
place k — 1 objects into n — k& slots to {y € T|i(y) = n, k = t,n; = 1,m; >
0 except my, > 0}.

As in the upper bound an element of C" is {sy,..., sg_1} where s; €

{1,...,n—k} and s; < s;4+; for all j.
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We define s’ as follows, given {s1,..., 551} let &' ({s1,...,501}) =7 =

g™ ... h™ where
M1 = 81,Mg = 89 — 81,...,Mp =N —k — S5,
and n,; = 1 for all j.

We now check that this is well defined i.e that v € {v € T|i(y) = n,k =
i,n; = 1,m; > 0 except my > 0}. We see that I(y) => n;+m; =k+ s —
81+ 83 —...— 8 +n—k=mn as required, n; = 1 for all 7 by definition and
m; are all greater than 1 except for m; which may be 0, so the map is well

defined.
To show that k' is a bijection we define
Vi {yel|l(y) =nk=1,n;=1m; >0 except my >0} = C’

by, given v = gh™ ...gh™ € {v € T|l(y) = n,k = i,n; = 1,m; >
0 except my > 0} then v/(y) = {s1,...,8k—1} where

S1 =My, 82 =My +Ma,...,8k-1 = My + ...+ Mg-1.
This is well defined as s; € {1,...,n — k} since m; > 1 and mq + ...+
Mg-1 <n—kand s; < sj41 as mj > 1 for j < k.

We shall now show that «' is a bijection by showing that v/ = id and

V' =1d.

Given gh™ ...gh™ = v € {y € Tli(y) = n,k = i,n; = 1,m; >
0 except my > 0} then v'(y) = {s1,..., 551} is defined by

81 =M1,82 =M1 +Mo,..., 81 =M1+ ...+ Mk_1.

Now &'({s1,...,8k-1}) = g™ ... h™k is

! ! ! J—
My =81 = M1, My =83 — §1 = My,..., My =N~k — Sp_1 = My,
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and nj = 1 for all j this means that x'v'(y) = v as required.
The case of V/«' is similar.
This means that
card{y € T|l(y) =n,k =14,n; = 1,m; > 0 except my > 0} = (?:f)

and we have that
d{y € L()|1 > Wﬁmz'”“i
car c L.t =n}> i
Grelann=nt> > (7))
aslong as n— [n(t +¢€)| > |[n(t + €)] — 1, otherwise the binomial is not valid.
But this inequality is satisfied for ¢ < .

Assume that n is large enough so that there is at least one summand in
the sum, i.e let [n(t+¢€)| — [n(t —€)] > 0 which depends only on ¢ and e.

There always is a lower bound on the n as € > 0.

For n sufficiently large we are then free to choose a particular 7 so let

i=[n(t — ¢)] and we have that

card{y € Ze(t)ll(*y) =n} > 2=l <?n—(-t|‘f(:ﬂ—_€)]>

by only considering one summand.
We wish to get rid of the dependence on ¢. To do this we will show that
n—[n(t—e€)]
[n(t—e] -1
is a decreasing function of e.

We can apply Lemma 5.4.7 as long as £ > [n(t —¢)] but this is true as

long as 2 > [nt] which is true for n > 4nt + 4 which is satisfied for ¢ < %

and n > 20.
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So under these conditions we can minimise

i 7)

by maximising ¢, but € < £ so we have

card{y € ze(t)'l(ﬂ =n}> 2(%’5 (nn' {‘2‘1

We wish to bound this using Lemma 5.4.8 to do this we need that

tn tn tn tn
—_— >7 — -1 — | — — —_ =
which are satisfied for ¢t < 1 and n sufficiently large.

So Wev have that

card{y € L(t)[i(7) = n} > 2/ #1 :

n—[%] [2]-1
nol n=[%]- (3]~
(n-(%]—(%}—n> ( G ) . (5.4.6)

We wish to show that this is greater than (£72)™. We take the log of the
right hand side of the inequality in equation 5.4.6 and divide by n then the

limit of this as n — oo is

t ¢ 1-1 ¢ 1—1
—log(2 1—= 2 - 4.
20g()+( 2)log<1_t>+2log< 5 ) (5.4.7)

2

by Lemma 5.4.9.

¢ (1—1)? 1-1 t, 1
=1 4 1 2 Zlog =
2(%< 1—§>%_%<1—t T8

This is




but

t (1-1)? 1-1%
~1 4 1 2
2og< 1_%>+og<1_t >0

for small ¢ as its gradient at ¢ = 0 is 2142,

In conclusion we have that equation 5.4.7 is greater that £log (1) for ¢
small and so equation 5.4.6 is greater than (t‘%)” for ¢t small and n sufficiently

large by Lemma 5.4.10. 0J

We now look at the relationship between L(¢) and the L(g). To do this
we prove that if {y,} ~ z € A(T") then v,(j) — 2 conically.

Given an abstract free group Fy =< a,b >, we let 1" be its Cayley Tree.

We define a metric on 7" by letting each edge be isometric to the unit interval.

Definition 5.4.12 Given a Schottky group I' =< ¢g,h > we define the
immersed Cayley tree T'(p) at p to be the immersed tree in H?® whose
vertices are I'(p) and whose edges are geodesic segments such that two points

v(p) and ((p) are connected iff {(y(~1) = 1.

There are three choices of metric we could put on 7'(p), we could give
each edge length 1 and then there would be an isometry from 7" to T'(p)
or we could give T'(p) the metric coming from H? but we shall choose the

induced path metric on T'(p) coming from H?.

1t is well known that all of these metrics are quasi-isometric, for example

see Hamenstddt [Ham02].

Definition 5.4.13 We define a branch of T'(p) to be a ray of T'(p) that

originates at p.
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Given a branch R then the vertices {y,(p)} of R satisfy I(v,) = n,
Ly vps1) = 1 and y,(p) — 2z € A(D) for some z € A(T) so z =~ {v,}

c.f Definition 3.7.6 for the converse.

Lemma 5.4.14 Given a Schottky group I with oo € D and {v,} ~ z € A(T")
with corresponding branch R in the embedded Cayley tree T(j) then the se-
quence {&,(7)} C T'(J) converges to z conically iff {£€,(5)} lies in Npgj)(R,t),
the t neighbourhood of R in T(j) for somet.

Proof:

We shall prove that &,(j) approaching z conically implies that {&,(j)} C
Nrey(R, t) for some ¢ by contradiction.

So assume that we have a sequence {&,(j)} that converges to z conically

but does not lie in Np¢;) (R, t) for any ¢. So for every ¢ > 0 there is some &y
such that §n<t) ¢ NT(j)<R, t).

This means that {&,¢) } N {¥m} = 050 D(&nr)) N D (Ymey) = O where m(z)
is defined by Z(Cn(t)) = Z(’)’m(t)) = m(t).
We first of all look at the setup in H® then use estimates in C to get the

contradiction.

As &) (7) converges conically this means that &, (p) converges conically
for any p € H?, we choose a p € H such that H is a hyperbolic plane with
OH C D. Note that &,;)(p) may or may not lie in 7'(j).

Let ; be the angle that the Euclidean line from z to &, (p) makes with
C.
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Then tan(0;) < —i where h; is the height of &, (p) and d; is the minimum
distance from z to D({n(t ). Note that d; > 0 by Lemma 3.1.18 and the fact
that D (&) N D(Ym)) = 0 where 2z € D(vymu)) by Lemma 3.7.5.

Figure 5.1: Conical Convergence means near the Immersed Cayley Tree

S5

D(Ene) D(me)

We shall show that §; — 0 so that {&,) (p)} cannot lie in a cone.

Let (; be the unique maximal element of I" such that there are elements
Y@y and &gy Where Yy = (Ym( and &nuy = (iba(ry such that m(t) =
1(G) + U (Tm@p) and m(t) = U&agry) = 1(G) + Uénew)-

Ast — oo the distance in 7'(7) from &, (7) to R diverges, but this implies
that (fn(t)) diverges as t — 0o as it represents the geodesic in T'(j) from R

t0 &) (7). We shall use this fact to force -Zf to converge to 0 and so get a

contradiction.
We get bounds on h; and d; in terms of the group elements.
Fix w € D, then we can apply Lemma 3.8.6 to get that
he < Ki&(t) (w)]
for some K > 0 independent of §n(t)’
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Now
dy > distint (D (Ym(s)), D(Eny))-

because z € D(Vm))-
There are z € D(7mm) and y € D(Ey) such that
distint (D (Ymn), D (énn)) = |Gz — Gyl = |G W)V @) e — wl
by Lemma 2.2.5.
By Lemma 3.8.3 we have that
di > K'|G(w)]z -y

however z and y are in different components of C — D since ¢; is maximal.
So we have that |z — y| > ming, g,eqr) disting(D(g1), D(g2)), we let d =
ming, g,ec(r) distint(D(g1), D(g2)) then

d > K'd|¢(w)]

So in conclusion we have that

he < Kl @) _ K 6wl (w)

d ~ K'di¢j(w)]  K'd |G (w)]

"

——

<
again by Lemma 3.8.3.

By our assumption we have that z@{)) — o0 and by Lemma 3.8.1 and
Lemma 3.8.4 this means that }f/:(t)’(z)] — 0 and we have the required con-

tradiction.

We now prove the other direction. We wish to show that if {£,(j)} C
Nry(R,t) for some ¢ then &,(j) — 2z conically but this is equivalent to
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Nr¢;) (R, t) being contained in a cone for any ¢ which is equivalent to R lying

in a cone. We shall prove this by contradiction so assume that some infinite

subsequence {Yn(m)(j)} C {7n(j)} does not approach z conically.

We choose a point p with the same properties as in the first part of
the proof and note that {v,(j)} tends to z conically iff {7,(p)} tends to z

conically.

This means that the Euclidean angle 6, from z to vyp(m)(p) converges to

0 so that

tan(f,,) = g—"l - 0

where hp, is the Euclidean height from C to vum)(p) and d,, the distance
from z to the vertical projection of v, (m)(p) to C.

Figure 5.2: Immersed Cayley Tree approches boundary Conically

(

D ('Yn(m)

Now dp < diamD(7Vnem)) as the projection of v,m)(p) to C lies in
D(Yn(m)) by Lemma 3.1.18 and z also lies in D(Vn(m)) by Lemma 3.7.5. So
dm < K|Ypn (w)] for some w € D by Lemma 2.2.5 and Lemma 3.8.4.
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Now A > K|, (w)| by Lemma 3.8.6 for some w € D and so

b K Wy (W)l K’

b
A, K"Ym(t) (w)] K

and so cannot converge to 0.

Corollary 5.4.15 Given {y,} ~ z € A(T') then the corresponding branch

lies in a cone centered at z with radius independent of z.

Proof:  Apply Lemma 5.4.14 to {v,(j)} which trivially lies in Ny (R, 1)

for any ¢ > 0. O

Definition 5.4.16 Given a set X C H?® then we define the conical bound-
ary C(X) of X to be the set of all z € C such that there are z,, € X such

that z, — 2z conically.

For a Kleinian group I' then C(I'(j)) is the conical limit set of I' see
[Nic89].

Definition 5.4.17 Given p,q € H? and ¢ > 0 then the shadow b(p; ¢, c) of
the hyperbolic ball B.(g) from p is the set of endpoints at infinity of all rays
starting at p and intersecting B.(¢). This shadow is a ball contained in C.

The following Lemma gives an alternative formulation for C(X).

Lemma 5.4.18 Given a set X C H? then

cooy=UN U iz

¢ n>td{j,z)>n

where £ € X.

116



A proof of the above Lemma can be found in Theorem 1.2.4 of [Nic89].

We now give an alternative definition of L(g), see Definition 5.4.5.

Lemma 5.4.19 L(g) is equal to NesoC(L(t)(j)) where t = m[D(g) U
D(g™h)].

Proof: ~ We first show that L(g) C NesoC(Le(2) (7).

Let {7} =~ z € L(g) then ﬁ’((;’:)) — t so for all € > 0 there is an N such

that
(771)

H(yn)
for all n > N. This means that {v,}nsny C Le(t) and as v, (j) — z conically

by corollary 5.4.15 we see that z € C(L.(t)(j)). Since this is true for all € we

have z € NesoC(Le(t)(4)) as required.

@

t—e<

<t+e

We now prove that NesoC(Le(£)(5)) € L(g).

Let z € NesoC(Le(t)(5)) then for every e > 0 there is a sequence {G} C T

such that (;(j) lies in a cone based at z and satisfies

9(¢)

t—e<=—22L<t+4e¢
1(¢)

for all {.

We shall show that the above inequalities almost hold for ~, where {7, } ~

By Lemma 5.4.14 the distance from {{;(5)} to {7.(j)} is bounded in the
Cayley tree.



Figure 5.3: Finite elements at the end of long elements

So for each (; there is some «y; such that {; = & and [(§) is uniformly
bounded. Since (&) is bounded over ! there are only a finite number of

choices for . Pick any infinite subsequence I, such that & _ = £ for all [,

Then

0Gw)  1m€)

9n) _ 900 o1y py g

and

90a) = 9(8) _ 908 _ 9(0m) +9(€)
(V) +16) ™ 10n8) — 1) = U(E)

for I(v,,,) > {(€). So that

Nal

() 9% p
o) € [t — 2¢,t + 2¢

for large l,,. But since the length of & is uniformally bounded the above
equation holds for a finite number of infinite subsequences of [, so we have
that

9(n) € [t — 2¢,t + 2¢]

467

for all [ large enough. But as € is arbitrary we have that



and z € L(g) as required. O

The next result is the main result of this part of the section. We show
that when calculating the exponent of convergence we only need to consider

L.(t) where t = m[D(g) U D(g™1)].

We state and prove the result in the ball model H®. Although the result
holds in the upper half space model on conjugating the group by stereographic
projection and replacing 0 by j.

Lemma 5.4.20 Given a Schottky group T in the ball model for H® and e > 0
then

Z exp(—40d(0,70)) = o0

YELe(2)

where Le(t) is as in Definition 5.4.6, t = m[D(g) U D(g™")] and § = H(T).

Proof:  We will prove this by contradiction, assume that

Z exp(—40d(0,~0)) < oo.

veLe(t)

Given 1 > 0 then there is an N > 0 such that

> exp(=6d(0,70)) <7
7EZE(t)>l(7)2N
and by Lemma 4.4.1 of [Nic89], there is an 4 > 0 such that
> HB(0;4(0),¢) < An
'Yeze(t)al(’Y)ZN

for any fixed ¢ > 0.
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Now conjugate the group to the upper-half space model with co € D then
choose L > 0 such that d(j,~vj) > L = I(y) > N which is possible by Lemma

3.8.1 and the various estimates in that section. However this is equivalent to

d(0,70) > L = I(ry) > N on conjugating back so

> H(0;4(0),0)) < An.

vEL(t),d(0,70)>L

By Lemma 5.4.18 we have

C(Z) =N U b(0;(0), ¢)

e>01>0 ye T, (t),d(0,70)>

so that

W(CEW) <tmsp# [ | 30:1(0).0)

c— 00 ~
€L (t),d(0,40)>L
<limsup Y H(B(0;7(0),0) < An
yeL(t),d(0,70)>L

and since this is true for all 7 > 0 we have H(C(L.(t))) = 0 but this
contradicts the fact that C(L.(t)) = L(g) by Lemma 5.4.19 which has full

measure by Lemma 5.4.4. 0]
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Chapter 6

The Geometry and Dimension
of sequences of Schottky groups
that leave PSLy(C)

In this chapter we classify what can happen to the classicalness and Haus-

dorff dimension of a sequence of divergent Schottky groups.

We define exactly what we mean by a divergent sequence of Schottky

groups and then pick certain generators. We then define the cases that we

will be looking at.

Recall that a sequence of Mobius transformations v(n) leaves PSLy(C)
if it is unbounded as a set of PSLy(C) with the Euclidean norm see [Rat94].

We have classified how a sequence of loxodromics can leave PSL,(C) see

Lemma 2.9.3.

Definition 6.0.21 Given a sequence of 2 generator Schottky groups I'(n)
we say that '(n) leaves PSL,(C) if given any set of generators {g(n), h(n)}
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for I'(n) at least one of g(n) or h(n) diverges, see Lemma 2.9.3.

The reason for taking any set of generators is the example of I' = I'(n) =<

h,h™g > where h™g leaves PSL,(C) while the group is constant.

We will be looking at the Hausdorff dimension of a Schottky group and
whether or not it is classical, it is worth reiterating that both of these prop-

erties are invariant under conjugation by Mobius transformations see Lemma

3.2.4 and [Fal97].

This chapter is split into four sections. We first pick generators
{g(n), h(n)} for the groups I'(n) and define the cases we will work with.
The next two sections deal with the cases. The last section shows that no

sequence of non-classical Schottky groups can have vanishing Hausdorff di-

mension.

6.1 The Setup

6.1.1 Standard Generators

In this section we choose a particular set of generators for the groups I'(n)

up to conjugation by a sequence of Mdbius transformations.

To find the generators we shall need the following lemma.

Lemma 6.1.1 Given v and { Mdbius transformations such that v does not

fiz oo while ¢ does fix oo then

cenl,, = ('cenl,

122



and
cenl., = cenl,

we note here that the fact that v does not fix co guarantees the existence of

the isometric circles.
Proof:  The proof can either be done by direct calculation on the entries
of v and ¢ or by noting that cenl, = v *(c0) so that

cenl; = ("'y Y oo) = (" 'cenl,

and
cenly, = v 1( 7 (00) = cenl,

as ( preserves co.

Definition 6.1.2 Given a Schottky group I' =< g, h > we say that g and
h are standard generators if:

1. h fixes 0 and oo,

2. the multiplier p of h satisfies |u| > 1,

3. h has minimum absolute value of multiplier over all possible generators,

4. cenl, =1,

. 1< feenly—1| < \/[——1

[

We have there is a minimum by the discreteness of the group.

It is possible that Standard generators are not unique, however the fol-

lowing Lemma shows that they always exist.
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Lemma 6.1.3 Given a Schottky group T then there is a Mébius transforma-

tion ¢ such that ¢71'¢ has a set of standard generators.

Proof: Find A € I' such that A has minimum absolute value of multiplier
over all possible generators of I'. Then conjugate [' by a Mo&bius transforma-
tion so that A fixes 0 and oo with multiplier p such that |u| > 1. We will

suppress this conjugation.
Now choose g to be another generator of I' such that I' =< g, h >.

Note that the centre of the isometric circle of ¢ and its inverse are not
0. Assume that I, = 0 then ghg™! fixes oo but since the group is free we

know that ghg~! # h™ for any m. This is a contradiction as it shows that

the group is no longer discrete. The same argument works for g~1.

We will be conjugating the group by Mé&bius transformations that fix 0

and oo so they leave h unchanged.
Find %k and [ such that

ul = < Jeendy| < |u] ™" and || ™ < Jeenly-i| < |l

then
1 < |f¥fcent,| < ] and 1< |plljcen, | < Ju.

By Lemma 6.1.1 we have that
1 < |cenlyp-i| < |uf and 1 < [cendp-1p-1] < [p

so that
1 < Jeendyigp-k] , [cendipigp-ry-1] < |p]

again by Lemma 6.1.1.
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Let z; = cenlpigp-+ and 2p = CenI(}-;lgh—k)—l, if |z1] > |2| then consider
(htgh=*)~! instead of hlgh™ so we will assume that |z;| < |2
Now conjugate the group by ¥ (w) = zyw so that
| 22|

Cen]¢—1hlgh~k¢ =1land 1 < Icenj(w—lhlgh—kw)_ll = -Z—ll < “_1,|

by Lemma 6.1.1.

Let z = 2, if |2| < y/|u] then we are done so assume that [z] > \/|u|.

Conjugate the group by x where y(w) = zw then

1
Cen]X—lw—lhlgh—kwx = ; and Cen_[(x~1¢—lh1gh~k¢x)—1 =1

x Myt high Ry R

then
_ M
CenIX—lw—lhlgh—kah_l = ;
and
cend(y~1yp=1plgh—kapyh-1)-1 = 1 ‘
by Lemma 6.1.1, but 1 —“T /|| and we are done. O

6.1.2 The Cases

We will investigate what can happen to the Hausdorff dimension and the

classicalness of a sequence of Schottky groups I'(n) that leaves PSLy(C). To

do this we will split the problem up into a number of cases.
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By Lemma 6.1.3 we can assume that the Schottky groups I'(n) have
standard generators {g(n), h(n)}. We are investigating the situation that
['(n) leaves PSLy(C) so by definition one of the generators g(n) or A(n)
leaves PSL,(C).

We shall show that g(n) always leaves P.SLy(C).

If h(n) leaves PSLy(C) then either p(n) the multiplier of h(n) is un-
bounded or the fixed points of h(n) converge to each other. However we
have chosen standard generators so that the fixed points of h(n) are 0 and oo
so the fixed points of h(n) cannot converge to each other. We are therefore
in the case that u(n) is unbounded but we have chosen p(n) to have minimal
absolute value over all generators of I'(n) which means that the multiplier of

A(n) of g(n) is also unbounded. So g(n) leaves PSLy(C).

We shall split the problem up into various cases depending on what g(n)

and h(n) converge/diverge to, see Lemma 2.9.3.

To help the calculations we will assume that various objects associated
to g(n) and h(n) converge (in C). In particular we will assume that the
multipliers and fixed points of g(n) and h(n) converge. Also that the centre
and radius of the isometric circles of g(n) and g(n) ™" converge. In the infinite
case (to be defined) we will need that \%Zij)l and ;2%} converge. We are

talking about convergence since we are working with a divergent sequence of

loxodromics we say that the various objects converge in C or R whichever
is appropriate. If we are given a sequence for which these objects do not
converge then we can always pass to a subsequence as we are only considering

a finite number of objects.
We are now ready to define the various cases.

Definition 6.1.4 We define the following cases:
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A. if the multiplier A(n) of g(n) diverges

1. and |p(n)| the multiplier of h(n) diverges then this is the infinite

case,

2. and lim |u(n)| € (1, 00) then this is the loxodromic case,

3. and |u(n)| — 1 then this is the identity/elliptic case,
B. if the fixed points of g(n) converge to the same point and A(n) /4 oo

1. and lim |p(n)| € (1,00) then this is the bounded case,

2. and |u(n)] — 1 then this is the identity/elliptic converging

case.

We note that the cases are mutually exclusive. We have chosen these
particular cases as they imply information when combined with standard
generators. For instance [p(n)| — 1 implies that [cenly,)| — 1 which gives

useful control.

Lemma 6.1.5 Given any sequence of Schottky groups I'(n) with standard
generators {g(n), h(n)} that leaves PSLy(C) then there is a subsequence of

['(n) that is in one of the above cases.

Proof:  We choose a subsequence such that all the various objects we have

discussed converge. This is possible because we are only considering a finite

number of objects.

By the above discussion we know that g(n) leaves PSLy(C). If A(n) the
1

m

multiplier of g(n) is unbounded then |A(n)| converges to oo and

[1, c0] which means that we are in one of the first 3 cases.
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If the multiplier of g(n) is bounded then the fixed points of g(n) must

both converge to the same point by Lemma 2.9.3 and we are in one of the

last two cases. O

6.2 The Multiplier Diverges
We shall often use the following Lemma to prove classicalness.

Lemma 6.2.1 Given a Schottky group I' with standard generators {g,h}

then the group is classical if

\pu|(1 —radly) > |cenl,—1| + radl,
where p is the multiplier of h and |\ > 3 + 2+/2.

Proof:  Consider the circles S5(0), S),5(0), I, and I -1, I and I,- are
disjoint by Lemma 2.9.2 so we just need to check that the isometric circles

are disjoint from S5(0) and Sj,5(0) for some 6.

Let 6 =1 —radl, — € for small ¢ then the circles are all disjoint if

1 —radl, > ¢ and |cenl,-:| — radl, > &

and
1+ radl, < élp| and |cenl,-1| +radly, < &|pu|.

1 —radl, > 6 and |cenl,—1| + radl, < §|ul.
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The first inequality is automatically satisfied by our choice of §.

We shall now show that the second inequality is satisfied. We are assum-

ing that
|pu|(1 —radl,) > |cenly-1] 4 radl,

so that &|u| > |cenl,-1| 4+ radl, if
Sl > [ul(1 — radl,)

however this is true by our choice of €. So that both inequalities are satisfied

and the group is classical. ]

6.2.1 The Loxodromic case

This is the case that p(n) — u so that h(n) converges to a loxodromic

and A(n) — oo.

We will first prove that the groups are eventually classical and then show

that the Hausdorfl dimension tends to 0.

Lemma 6.2.2 Given a sequence of Schottky groups I'(n) in the lozodromic

case with standard generators {g(n), h(n)} then I'(n) is eventually classical.

Proof:  As h(n) fixes 0 and oo for all n and lim jmult(h(n))] € (0, c0) we
know that h(n) — h some loxodromic and if we let p(n) = mult(h(n)) and

p = mult(h) then u(n) — p.

Since we have standard generators we have that cenly(,y = 1 for all n, we

let I,(p)-1 = #(n). We denote multg(n) by A(n).
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The group I'(n) is classical if
|z(n)| + radlymy < |pw(n)|(1 —radlym))
by Lemma 6.2.1.

By Lemma 2.9.1 we know that

(AL = z(n)]
1+ A(n)]

radfg(n) ==

which converges to 0 as n — oo since |A(n)] — oo and |z(n)| < /|u(n)] —
v/ |p| which is finite.

Since we have standard generators we know that |z(n)| < 1/|u(n)] so that

the group is classical if

V()| +radlypy < |p(n)|(1 — radlypm)

but this is eventually satisfied as radym,) — 0. O

We will now show that the Hausdorff dimension converges to 0. To do

this we need the following result.

Definition 6.2.3 Given a sequence of classical Schottky groups I'(n) =<
g(n), h(n) > with fundamental domains D(n) then we say that the sequence

is nicely bounded if:
1. oo € D(n) for all n,
2. o0 €D,
3. D(h)yN D(h™!) = and
4. (D(g)UD(g™)) N (D(R)UD(h™)) =0
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where D is defined by C — D = lim C — D(n) in the Hausdorff topology on
closed sets and D(¢) = lim D(¢(n)) for ¢ € {g, g7, h,h™*}.

Lemma 6.2.4 Given a sequence of Schottky groups I'(n) in the lozodromic

case there is a @ such that ¢I'(n)¢~1 is nicely bounded for large enough n.

Proof: Choose standard generators {g(n),h(n)} for I'(n). Then
I'(n) is classical on these generators by Lemma 6.2.2 for large n. By
the proof of Lemma 6.2.2 we have that the defining circles for I'(n) are
Tonys Lypmy~1 Ss(n) (0) and Syunyja(n) (0) for specific 6(n) > 0 and n sufficiently
large.

In fact we can take §(n) = mm for large enough n. By the same
u(n
reasoning as in Lemma 6.2.2 the group is classical if

Vs +1

1 —rad/, (n) >
! 2/|u(n))]

and

IR+ Ly < o) ST 1 = )

Which are both satisfied as |u(n)| — |p| > 1 > 1 and radlgen) — 0.

We are now ready to define ¢, let B,(c) be a closed ball in D then for large
n B,(c) is a closed ball in D(n). Define ¢ to be the Mdbius transformation
that takes B,(c) to C with the open unit ball removed. Note that there are

many choices of B,(c) and ¢, none of these choices will affect the result.

We shall now check that ¢I'(n)¢~! is nicely bounded with fundamental
domain ¢ D(n). Note that ¢D(n) converges to ¢.D in the Hausdorff topology.

Property 1 is satisfied as co € ¢B,(c) C ¢D(n) for all large n. Property
2 is satisfied by the choice of B,(c).
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We note that D(¢h(n)¢™') = ¢D(h(n)) so that lim D(¢h(n)¢p™!) =
¢D(h) and the same holds for A~!. We have that ¢D(h) and ¢D(h7!) are
disjoint as D(h)ND(h™') = ) since the boundary of D(h) and D(h~!) are the
circles S il (0) and S

Rt (0) by our choice of §(n). So we have property
]
3.

e

Property 4 is done in the same way by noticing that 1 < (cenIg(n)_;] <

|(n)| as we have standard generators and so

———‘—#I—j—<1<hm(cenf S <Vl < W+1

Ll |14)

Definition 6.2.5 Given a sequence I'(n) of Schottky groups in the loxo-
dromic case and ¢ such that ¢I'(n)¢~" is nicely bounded then we say that

the sequence ¢I'(n)¢~! is nicely bounded in the loxodromic case.

The tool we shall use to show that the Hausdorff dimension vanishes is
Patterson-Sullivan theory i.e we have that if
YW@=
~vel
then ¢ is less than or equal to the Hausdorff dimension of I'. In fact we
shall use Lemma 5.4.20 and restrict ourselves to the subset L(t). This will
mean that we only need to consider v with a certain ratio of g(n)’s to h(n)’s.

Although this ratio will change for the various groups I'(n) we will still be

able to extract a contradiction if the Hausdorff dimension does not vanish.

Given v € T'(n) we look at

K (Cerl G "/)Z){
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where v = (3 .. C I(y) @s & reduced word. We distinguish between the cases

that ¢; = g(n)™, ¢ = h(n)™ is not followed followed by a sequence of

h(n)*'s and ¢; = h(n)™" followed by a sequence of h(n)™'s. The length of
1

(
the sequence of h(n)™'s will be given later.

What we show is that if (; = g(n)il then the derivative of (; converges to
0 uniformly over all the possible (;y1...(y)s as n — co. This will force the

Hausdorff dimension to 0 as long as the derivative of A(n) is not too large.

There are only a finite number of options in the second case, this and the

fact we are nicely bounded allows us to show that there is a uniform bound

over all the derivatives of the (.

We show that, in the third case, there is some uniform bound s for which

the derivative of (; is less than this bound for large enough n.

The proof works by contradiction. We show that if the Hausdorff dimen-
sion does not vanish then ¢(n) the density of g(n) in the limit set must vanish.
This forces the ratio of h(n)*! to g(n)*" in L.(t(n)) to tends to 1. This means
that the proportion of (; = h(n )lLl such that Git1 ... () has a long string of
h(n)*"’s at the start increases. This pulls the Hausdorff dimension down as

the derivative of these (;s is bounded above. This gives us our contradiction.

Definition 6.2.6 Given a sequence of Schottky groups I'(n) = <
g(n),h(n) > in the nicely bounded loxodromic case we define the follow-

ing constants
gmax(n) = max{|g(n)'(2)], |(g(n) ") ()}
where z € con(g(n)) and w € con(g(n)™"). Given L > 0 define

hmax”*(n) = max{|A(n)' (h(n)™2)], [(h(n) ") (R(n) ""w)[}
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where the maximum is taken over z € con(h(n)), w € con(h(n)™") and

m > L. Given L > 0 define

hmax=*(n) = max max{|h(n)'(h(n)™2)|, |(h(n) ™)' (A(n) "w)|}

m<L zw

where the second maximum is over z € con(h(n)), w € con(h(n)™").

Lemma 6.2.7 Given a sequence of Schottky groups I'(n) =< g(n), h(n) >

that is nicely bounded in the lozodromic case then gmaz(n) — 0.

Proof:

This proof works by showing that |g(n)'(2)| vanishes as n — co. This
will be true as A(n) — oo as long as z is not too close to the centre of the
isometric circle of g(n). The first part of the proof uses the fact that we are
nicely bounded to show that this is the case. The second part of the proof

is just the calculation.

We know by Lemma 6.2.2 that I'(n) is eventually classical. In fact choose
defining curves as given in this Lemma, so that the defining curves for g(n)

and g(n)”" are eventually their isometric circles.

We will prove the result for |g(n)(z)| but the same technique works for
[(g(n)™) (w)].

Let z € con(g(n)) then, by the definition of con(g(n)), z is either in
D(h(n)) U D(h(n)™") or in D(g(n)). We shall deal with these two cases

separately.

We have that D(h(n)) — D(h) some disk as the sequence is nicely
bounded. The distance from this disk to the limit of fixed points of g(n)
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is bounded below. The same is true for D(k(n)™"). This means that there is
an N > 0 such that for

distine (U D(h(n)) U D(h(n)™), U z(n) Uy(n)) >0

where z(n) is the attractive fixed point of g(n) and y(n) is the repulsive fixed

point.

Let A(n) be the multiplier of g(n) then by Lemma 2.9.1

VIAmllz(n) — y(n)|

= An >>z+x( mWA) — y(n)]

max |g(n)'(2)["/? = max

where the maximum is taken over z € J,. y D(h(n)) U D(h(n)™").

Now [(1 = A(n))z + z(n)A(n) — y(n)| = [A(n)[lz(n) — 2| — |y(n) — 2| by
the triangle inequality.

For n > N we see that |z(n) — z| is uniformly bounded away from 0.
Since the sequence is nicely bounded so that co € limintD(n) we have that

ly(n) — z| is uniformly bounded away from co.

Since we are in the loxodromic case we have that A(n) — oo so that
max |g(n)'(2)[1/? = 0 for z € .y D(A(n)) U D(h(n) ™).

The next case is that of z € D(g(n)). We let c(n) = cenly,) and d(n) =

cenly, -1 then by Lemma 2.9.1 we have

VAR Je(n) —d(n)]

[An) + 11 [z = c(n)]

max |g(n)'(2)]*/? = max

where we are taking the maximum over all z € D(g(n)).

The extremal value is at the boundary of D(g(n)) but for large n we have

chosen this to be Ig(n)—l, which is possible by the proof of Lemma 6.2.2.
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Let r(n) = rad/y,) then

1/2 A()] le(n) — d(n)]

= mgax P\(n) I H rd(n) + 7"(71) exp(’ig) - C(TZN

max |g(n) ()]

which is

. B0
5 T+ M) + exp(i6)y/ ]

n) = A—emIVIAL o oo have that

as r(n) T+A(n)]
VA s IA(n)]
lg( ) (2)] 6 |1 +/\(n)[ + exp(i6) [A(n)]]
which is less than
[A(n)]
A(n)| = V[An)] ~ 1

for |\(n)| large enough and converges to 0 as [A(n)| — oo.

Lemma 6.2.8 Given a sequence of Schottky groups I'(n) =< g(n), h(n) >

that is nicely bounded in the lozodromic case then there is a constant L > 0

such that
hmazt(n) < s

where s € (0,1) for all n large enough.

Proof:  We will prove the result for h(n), the proof for h(n)~" is essentially

the same.

This proof works by showing that the result is true in the limit as n — oo,

we then pull back the inequality for n large enough.

136



Since we are in the nicely bounded loxodromic case we have h(n) — h

some loxodromic. Let the repulsive fixed point of h be y and the attractive

fixed point be z.

Then for any compact set C' C C - {y} we have A™(C) — z in the

Hausdorff metric.

Let C be limcon(h(n)) in the Hausdorff metric, then C' is compact and

disjoint from y.

Since the attractive fixed point x of h lies outside the isometric circle I
of h we have that there exists an L such that h™(C) lies outside I, for all
m > L. This means that there is some s € (0,1) such that

[ (™ (2))] < s
forall z e C and m > L.

We now extend the bound to i(n) for n large enough. We have 2 things
converging, we have the convergence of A(n) to h and the convergence of

C(n) = con(h(n)) to C.

Consider the set | J,. 5 C(n) which converges to C respectively as N —

oo. This means that for large fixed N there is some s’ such that
[B'(h™(2))] <s' <1
forall z € oy C(n) and m > L.

Now as h(n) — h it is easy to see that for fixed m we can find an N’ such

that for n > N'(m)
[h(n) (h(n)"(2))| < 8" <1

for z € |J,5x C(n) and m > L. Since | J,, y C(n) is compact. However this

is not strong enough for us as we wish to have an N’ that is valid for all m.
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We shall accomplish this by showing that h(n)m is contained inside
m for large n.

As we are nicely bounded we can find N large enough so that |, v C(n)
is disjoint from D(h™1).

Which means that

rlJ cmycomc | cm)

n>N' n>N’

so that if
|R(n)'(h(n)"2)]

is uniformly bounded over all z € m then so is
|h(n)'(h(n)"2)]
for all m > L.
So we can find s” < 1 such that
[h(n) (h(n)"2)| < 5"

for all z € {J,, x5 C(n), m > L and n sufficiently large as required. O

Lemma 6.2.9 Given a sequence of Schottky groups I'(n) =< g(n),h(n) >

that is nicely bounded in the lozodromic case and fired L > 0 then hmaz="(n)

is uniformly bounded above over all n large enough.

Proof:  Let {a,7} be the limit of the fixed points of g(n), note that these

may not be disjoint.
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We will do the case for h(n), the case for h(n) ™" is similar.

We have that h(n) — h and con(h(n)) — D(h™')U{a, r} in the Hausdorff

topology as we are in the nicely bounded loxodromic case.

As con(h(n)) converges to a compact set we have that

h(n) (h(n)™z)] — h'(h™
Jmex ) (h)"2) = max IR (A7)

for fixed m. This is bounded as the fixed repulsive fixed point of A is a
bounded distance away from {a, r}. But this argument works for each m < L

so we have an overall bound. O

Lemma 6.2.10 Given a Schottky group I'(n) =< g(n), h(n) > that is nicely
bounded in the lozodromic case then H(I'(n)) — 0.

Proof:  We have already discussed the outline of the proof at the beginning

of this section, however we will give a short outline of the end of the proof

here.

e

Given arbitrary v € L(n)(t(n)), see Definition 5.4.6, we find an upper

bound for
i)

2l = [[16G(Gisr - G (2)]-

i=1
The upper bound is expressed using the 3 constants we have defined, namely
gmax(n), hmax=¥'(n) and hmax”*(n). Tt is obvious that to find an upper
bound we shall have to estimate the number of times the appropriate (;
appears in v = (i ... (yy to replace it by one of the 3 constants. To do this

N

we shall use the properties of L(n),(¢(n)).
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We then use Lemma 5.4.11 to find an upper bound on the growth rate of
Z(\n/)e(t(n)) We assume that the Hausdorff dimension does not vanish. Then
the fact that gmax(n) — 0 implies that ¢(n) — 0 otherwise the influence of
g(n) on the derivatives is too large which will force the Hausdorff dimension
to vanish. If (n) — O then the proportion of hmax”*(n) to hmax=*(n) in
the upper bound on the derivative increases. However as hmax™*(n) < s < 1

for all n this forces the Hausdorff dimension to vanish as required.

Recall that g(n)(y) is the number of times the letters g(n) or g(n)™!

appear in the reduced word for v € I'(n) and similarly for A(n)(v).

By Lemma 5.4.4 there is a set L(g(n)) such that -*‘%%/%’“—) — m[D(g(n)) U
D(g(n)™")] for every {7} = z € L(g(n)) see Definition 5.4.5.

Lemma 5.4.20 states that

> W™=
YEL(m). (¢(n)
where t(n) = m[D(g(n)) U D(g(n)™")] and é(n) is the Hausdorff dimension
of A(T'(n)).

——

Given v € L(n) (t(n)) then

=1
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where (; ... () is a reduced word for 7.
We cut the word (3...(y,) up into the pieces such that ¢ = g(n =1

¢; = h(n)™ followed by L h(n)*'s and ¢ = h(n)™" not followed by L h(n)*'s.

So we have that

7 (w)| = 11 16 (G- Gy (w))]

¢i=g(n) OT ({;=g(n)~1

11 G (G- - Gy ()]

G=h(n)E ;) 1 Lipz=h(n)EL

11 (G - - - Gy (w))]

Gi=h(n)E | Gip1. Ly L FAR(n)EL

which is less than

H gmax(n)

Gi=g(n) OF ¢;=g(n)~*

H hmax™* (n) H hmax="(n)

G=hM)EL | Git1..Gipr=h(n)EL G=h(n)*! ) GerlippZh{n)*L

by Definition 6.2.6 which gives us the upper bounds.
We know bound the size of these products.

The first is the number of ¢; equal to g(n)™". We write € Ze(t(n)) such
that {(7) =n as v = g(n)" h(n)™ ... g(n)" h(n)™ then

Zf:l |7 <t

tn) —e < 2L <

(n)+e€
which means that

card{ilG; = g(n)*'} = g(n)(v) = (t(n) — O)I(7).
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The second we bound is the case that (; = h(n)i1 and Gii...Ger =
h(n)™. Because we are looking for an upper bound on the derivative of =
and by Lemma 6.2.8 we know that for large n hmax”*(n) is less than 1 so

we need to find a lower bound on the size of the product.
We bound

card{i|¢; = h(n)™ and G1 ... Girr = A(n)*F}

by saying it is greater than a lower bound on the number of ¢; = h(n)il

minus an upper bound on the number of
card{i|¢; = h(n)* and Gyy ... Gaz # A(n)FL}

which is the size of the last product. We will return to this product later and

find an upper bound on the last product.

The bound on the size of the last product is slightly complicated as we do
not know if hmax=%(n) is greater than 1 or not. The way we get around this
is to consider max{1, hmax="(n)} in the place of hmax=¥(n), if we do this
the product is obviously larger than if we only consider hmax="(n) so we still
have an upper bound. By considering max{1, hmax=%(n)} we need to find an
upper bound on the size of the product. If we write y asy = g(n)™ ... h(n)™
then

card{i|¢; = h(n)*" and (i1 ... Gur # A(n)*F} < Lk.
By considering the case that n; = 1 for all 7 except ¢ = 1 which is 0 we see
that the maximum that k can be is [(7)(¢(n) +€)+ 1 since v € L.(t(n)). This

means that

card{i|¢; = h(n)*' and i1 ... ¢ # h(n)*™} < L(U(y) (¢(n) +€) +1).

We now return to the size of the second product. A lower bound on the
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number of ¢; equal to h(n)*' is
{1 —¢(n) —¢)
so that
card{i|¢; = h(n)*" and iy ... Gur = A(n)*L}
> (7)1 —t(n) =€) = LU(Y)(¢(n) +€) + 1)
and we have bounds on the size of all 3 products.

So we bound |y (w)| from above by

gmaX(n)(t(n)—e)l('y)hmaX>L( n)l(v)(1—t(n)—e)—L(l(7)(t(n)+e)+1)
max{1, hmax<Z () } )t} +e-+)
in fact for ease of reading we shall write max{1, hmax=*(n)} as hmax="(n).
Having a bound on the derivatives of the individual v € L.(¢(n)) we find
a bound on the number of such 7.

Define the supremum growth rate of L (¢(n)) to be

p logcard{y € Le(t(n)U(y) = m}

gr(n) = limsu
m

this is finite, since if we consider the whole group, I['(n), then its growth rate

1s 3.
Then for all 7 > 0 we can find a M such that
card{~y € Ze(t(n))]l(fy) =m} < eXp(m+ n)™
form > M.

Putting this together we have that

o= 3 W@ < Y (exp(gr{n) +n)gmax(n) M
veL(n)(¢(n)) m>M
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8(n)(1=t(n) (L+1)-+e(1—-L))+ 2% <L (n)w(nxtm)ﬂw&%) "

hmax”*(n) ™ hmax=

Note that

o0 = (hmax”*(n)hmax<*(n))5WL Z <exp(gr(n) + 1) gmax(n) M HM =9
m>M

hmax>L (n) 5(“)(1—t(ﬂ)(L+l)+€(1—L))hmang (n)Lﬁ(n)(f(nHE)) n

iff
exp (gr(n) + n)gmax(n) (=9
hmaX>L(n)6(n)(l"t(n)(LHHE(I_L))hmaXSL(n)L5(n)(t(n)+e) -

This equation holds for all €,7 > 0 so let ¢,7 — 0 and we have
(n)(1~t(n)(L+1))hmangm)Lﬁ(n)t(n) > 1

exp(gr (”))gmax(n)é(n) M) hmax>t (n)a

and

exp(gr(n))gmax(n)5(”)t(n)5‘5(")(1—t(n)(L+1))hmaX§L(n)L‘5(n)f(n) >1

since hmax”%(n) < s < 1.
We shall now prove the Lemma by contradiction. Assume that §(n) —

d > 0. We know that gmax(n) — 0 by Lemma 6.2.7 so we must have

t(n) — 0 as (gmax(n)?)*™ does not converge to 0. This means that for small
t(n) we have

t(n)——Gt(n) gmax(n>6(n)t(n) S (A=t)(LA1) ] 0 ST (n)w(n)t(m >1
by Lemma 5.4.11.

But ¢(n) %™ — 1 and lim sup gmax(n)*™* ™ < 1 so on letting t(n) — 0

we have that
s° >1

but this contradicts Lemma 6.2.8 as it states that s < 1 and we are done. [J
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6.2.2 The Infinite case

This is the case that both multipliers diverge.

We will first prove that the groups are eventually classical and then show

that the Hausdorff dimension of the groups converges to 0.

Lemma 6.2.11 Given a sequence of Schottky groups I'(n) in the infinite case
with standard generators {g(n), h(n)} then I'(n) is classical for n sufficiently

large.

Proof:
Recall that multg(n) = A(n), multh(n) = u(n) and z(n) = cenlyp-1.

We have chosen a sequence for which various objects associated to the

generators converge. In particular, for certain cases, in this proof we shall

z(n)] |s(n)|
need that NI and )| converge.

We split the problem up into two cases:
LGN
lu(n)] ’

el
()]

Case 1.

We have that

o VPRI = 2(m)] VA A |z(0)])

P = T ) S TESYO)




and as —!Zl(—n()[)—‘ — t < 1 for all € > 0 there is an /V such that n > N implies
ui{n

lz(n)] < (t+€)/|u(n)]. Sofor n > N
VIAM)(A + (£ + €)4/|pu(n)])

1+ A(n)]

radIg(n) <

and by our assumption of the minimality of u(n) we have that

VW + ¢+ /I [m)])
radfg(n) < Il n /\(n)’

which converges to ¢t + € as A(n) — oo which occurs as n — co. So there is
an N' > N such that radfyp,) < t+ 2¢ for n > N'. Since e is arbitrary we
choose it so that ¢ + 2¢ < 1.

The group is classical if
() |(1 = radlym)) > |2(n)] + radIym)
by Lemma 6.2.1.
Which is true if

lu(n)|(1 = (t+2¢) > /|un)] +t + 2

by our bound on rad/y,y of t+2¢. But we have chosen e such that 1—(t+2¢) >
0, so this inequality is eventually satisified as |u(n)| — oo.

Case 2.

We have that EA 3[' converges in particular as |u(n)| < |A(n)| for all n it

converges to s say, such that s € [0, 1].

We have two cases:

w(n)]
& Xn)|

— s <1,
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Case a.

For each € > 0 we can find an NV such that |z(n)| < (1 +¢€)+/|p(n)| for all
n > N because we are in case 2 and similarly for all § > 0 we can find an N’

such that /|u(n)] < (/s +48)/|A(n)| for all n > N’ as we are in Case a.

We can use this to find an upper bound on radly,) namely

o Dl L O PRV E ] R B )
SO T T W) T T+ aMm)]

A+ A +)vIpm)) - VIARIE+ 0+ (/5 +6)vIAm))
- 11+ A(n)| - 114+ A(n)]
which converges to (1 + ¢)(1/s 4+ 8) as n — oco. If we choose ¢ and & small
enough so that (1 + €)(y/s+6) < 1 we have that the groups are eventually

classical by the same reasoning as in case 1.

Case b.

In this case our bounds on radl,,) are not strong enough so we consider

a circle of radius less than 1, centred at 1.

Let 6 € (0,1) be given and consider the circle S;_s(1). This shall be one
of the defining curves. Obviously cenly,,y = 1 is inside this circle so we need
to check that the repulsive fixed point is inside. We shall so this by showing

that z(n) the repulsive fixed point converges to 1.

Since we are in this case we know that

|2(n)|
IA(n)]

— 1
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and as we have standard generators and the formula for the centre of the
isometric circle in Lemma 2.9.1

_ 1-y(n)

An) = T a(n)’

We can express z(n) as Q@\’\(—g{l—m@ by Lemma 2.9.1. As |z(n)| is uni-

formly bounded over n, we see that

yl
[A(n)]

where y(n) is the attractive fixed point of g(n).

But the formula A(n) = i:zgzg shows that y(n) does not diverge suffi-

ciently fast so 1 — z(n) must converge to 0 as required.

Let w € S1_4(1) then by Lemma 2.9.1

z(n)  z(n) (A(n) +1)*(w —1)
_ 1 (w _ A ) + 1)(a(n) + A<n>>)
w—1 z2(n)(A(n) + 1)?

As we are in case 2 and case b we have that 2% v 1 as n — oo.
Aol
Which means that

for w € S1_4(1).
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I'(n) is classical for small ¢ and large n if the circles S5/2(0), Sjumyjs/2(0),
S1-4(1) and g(n)(S1—s(1)) are all disjoint as the interior of S1_4(1) is mapped
to the exterior of g(n) (S1-4(1)) since the repulsive fixed point z(n) of g(n)
lies in B;_s(1) as |z(n) — 1] — 0 as n — oo see Lemma 2.9.1.

S5/2(0), S)uemye/2(0) and S1_45(1) are all disjoint as ¢ > 0 and |p(n)[6/2 >
2 — § for n large enough. We need that g(n)(S1—s(1)) is contained in the
annulus bounded by Ss/2(0) and Sju(n)s/2(0) and is disjoint from S;_5(1).

We need to show that

‘—/ﬂ—;ﬁ@: > |g(n)(w)| > max{g,2+(5} =2+94

for every w € S1_4(1) and sufficiently large n.

Since ’ng)TS‘I’N — 1, for all > 0 we can find an N such that
(1 =n)lz(n)] < lg(n)(w)] < (1 +n)|z(n)|

forn > N and all w.

Since we are in case 2 and b there is a constant N’ such that
(1 =)V lp(n)] < 12(n)] < 1+ 1)/ |u(n)]

for n > N'.

By the above inequalities we have that
(1=n2/Ta)] < (1=n)lz(n)] < lg(r)(w)] < (L+m)]=(n)] < 1+7)v/Talm)]
so if we can show that

2+6 < (1= /()] and (1+n)2y/Jafm)] < L
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then we are done. But these inequalities are obviously satisfied as |u(n)| — oo

so we are done. OJ

We now show that the Hausdorff dimension tends to 0. Given v € I'(n)
such that v = (1, ... Gy) We show that |((;G11)'(w)| converges to as n — oo

for every 4. This forces the Hausdorff dimension to vanish.

We shall need the following Lemma which gives conditions for the deriva-

tive to vanish.

Lemma 6.2.12 Given a sequence of lozodromics y(n) with attractive fized
point z(n) that converges to x, repulsive fized point y(n) that converges to y
such that =,y # oo and multipliers M\(n) such that \(n) — oo then given any
set X C C we have

mas [y(n) ()| = 0

as long as the closure of X does not contain z.

Figure 6.1: Vanishing Derivative
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Proof: The idea of this proof is captured in Diagram 6.1; since the
isometric circle converges to the repulsive fixed point and X is away from
this fixed point, eventually I, is disjoint from X. This means that the

derivative is less than 1 and as the isometric circle shrinks the derivative

vanishes.

By Lemma 2.9.1 we have

SRam) —ym)]  Yegle(n) = y(n)]

y(n) ()7 = (1= A(n))w + z(n)A(n) —y(n)] a5
=5t

which converges to 0 as n — oo as long as the denominator does not converge

to 0.

Since A(n) — oo as n — oo choose A(n) large enough so that

7 — Y
YO

is bounded away from 0 for all w € X. Then for large n

) 5
w = 1
L= 5m

is also bounded away from 0.

The following Lemma gives conditions for the Hausdorff dimension of
a sequence of Schottky groups to vanish. The condition first is that oo
stays away from the limit set of the groups. We can always satisfy this by
conjugating the group. The second condition is that the derivatives all the

elements in the groups of a certain length vanish.
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Lemma 6.2.13 Given a sequence of Schottky groups I'(n) with C- D(n) C
Br(0) for some R > 0 and the property that

max "2 =0
Eel(n),l(&)=K ‘5( )[

for some fited K > 0 and any z € con(€) as n — oo then the Hausdorff

dimension of T'(n) tends to 0.

Proof:  Consider the Poincaré series of I'(n)
> WP
7€l (n)

if > er [¥'(2)|° < oo for some  then § > H(I'(n)) see Theorem 5.2.3.

K
Given ¢ > 0 then choose € < %5 . By the assumptions of the Lemma we

can find an N > 0 so that forn > N
1§'(z)] < e
for all &€ € I'(n) where [(§) = K and z € con(§).

Given v € I'(n) write it as & ... &C where [(&§) = K, 1(§&iv) = U(&) +
l(&_{_l) and Z(C) < K.

By the conditions on the defining curves of the group we can find a

w # oo € D(n) that remains a fixed distance away from the limit set of

every group, fix this w.

We shall now bound the size of |¢'(w)] over all ¢ € I'(n) such that I({) <
K. Suppose that there are ¢, € I'(n) such that |¢}(w)| is unbounded. Let
z, and y, be the fixed points of {;, and A, its multiplier then

])\onn “yniQ
[(w—2p) Ay — W+ Ynl?

|Guw)| =
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However this cannot converge to oo as |z, —¥y,| is bounded above and (w—z,,)

is bounded above and below so even if |[A\,| — oo the denominator will

dominate.

All of this means that there is some upper bound on |('(w)]| over all I'(n)
call this L say.

We now find an upper bound on the Poincaré series,

S WEP=ICwP Y 215 (G- - EC(w) PIC (w) P

vel(n) ~vel(n) =1

since &11. .. £ ((w) € con(€) for every 7 and by our bound on ¢ we have that

1.8 Z ko

vel'(n)

We now calculate k in terms of I(y) = m and express this as a sum over m

S B =4y amel #10 < 418 3 meryd
m m

€T (n)

his is less than

assuming that ¢ < 1. The above converges if
5
3ex < 1
but this is exactly what we have assumed that ¢ satisfies so the Poincaré
Series converges at § for n > N.

However ¢ was arbitrary so we have that the Hausdorff dimension van-

ishes. 0

Lemma 6.2.14 Given a sequence of Schottky groups T'(n) in the infinite
case then H(I'(n)) — 0.
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Proof: = We split the proof of this Lemma into various cases we will define
later. Generally we will be applying Lemma 6.2.12 and then Lemma 6.2.13

to show that the Hausdorff dimension vanishes.

Pick standard generators {(n) and £(n) for I'(n) where £(n) fixes 0 and
oo for all n. Let ((n) have multiplier A(n) and £(n) have multiplier u(n).

Let the fixed points of {(n) be z(n) and y(n).

We are assuming that z(n), y(n) and the multipliers converge.

3

Conjugate the group by ¢(n)(w) = ;”;igzg Let h(n) = ¢(n)é(n)d(n)~*
then h(n) fixes —1 and 1. Let g(n) = ¢(n)((n)d(n)~! then g(n) fixes 0 and
p(n) say. Note that conjugation does not change the multipliers.

We split the proof into four cases, depending on where p(n) converges to:

1. p(n) = p # 0,0,1,
2. p(n) — oo,
3. p(n) — 0,

4. p(n) — 1.

Case 1.

As the isometric circles of g(n) and A(n) shrink to points eventually they
must be disjoint so we have a sequence of isometric Schottky groups and we

use these as defining curves.

We wish to apply Lemma 6.2.12. Let x € {g*!, A1} then consider x(n)
with Xy = U,sncon(x(n)). Since p(n) — p away from the other fixed points

we see that U,sycon(x(n)) is a bounded distance away from cenly ) for N

large enough.
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This means that for n sufficiently large we can apply Lemma 6.2.12 to

x(n) with X containing con(x(n)) for each n.

So we can apply Lemma 6.2.13 as the condition on co is obviously satisfied

to get that the Hausdorff dimension vanishes.

Case 2.

This is the case that p(n) — co. We shall first of all show that this means
that z(n) — 1 and y(n) — —1 then we shall conjugate the group I'(n) by a
different Mobius transformation so we can apply similar reasoning as in case

1.

We have that p(n) = ¢(n)(y(n)) = zgz;;zgz; which converges to co. By

Lemma 2.9.1 we see that

1 =cenl¢m =

Aln) =1
which means that . ( )
An) = 1—z(n)

We shall consider the.4 case that y(n) and z(n) do or do not converge to co.

Case z(n), y(n) — oo.

Consider Y% which either is or is not unbounded. If ygz) is unbounded

z(n)
then we know that

_ z(n)
ym) —z(m) _ 1w
y(n)+z(n)  1+24
so that 2 — —1. However if 2 y( ¥ is bounded then once again we must have

W) a(n)

;j—g% — —1 by the above limit. But we get a contradiction as this forces

1 —y(n)

Aln) = 1 —z(n)
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to converge to —1 but this is not the case. So this case cannot occur.

Case z(n) — oo, y(n) 4 oo.

This forces

_1-y(n)
M) = T
to tend to 0 which is a contradiction.
Case z(n) 4 o0, y(n) — oco.
This forces
y(n) = z(n)

p(n) =
y(n) + z(n)

to tend to 1 which is a contradiction.
Case z(n),y(n) # oco. In this case by the formula for A\(n) we have that
z(n) — —1 and by the formula for p(n) we get that y(n) — 1 as required.
Instead of conjugation the groups by ¢(n) we will conjugate them by
$lw) = 2=
(n)—1i

Then (¢ (n)y~! has fixed points zgg;z that converges to —i and ¥ive

that converges to 7.
While & (n)1w~! has fixed point 1 and —1 as before.

An argument as in Case 1. will show that the Hausdorff dimension van-

ishes.
Case 3.

Once again we have a sequence of isometric Schottky groups as the isomet-
ric circles of g(n) are disjoint by Lemma 2.9.2, we will use these as defining

curves.
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Figure 6.2: Infinite Case 3.

g(n
SO
&n
Ty #()—r‘j
n

We wish to apply Lemma 6.2.13 to each sequence g(n)™", h(n)™". So we
have 4 sequences to check, in fact the cases of the inverse are very similar so
we shall just do the two cases ¢g(n) and A(n). In most cases we will be able

to apply Lemma 6.2.12 with X the contracting set.
Case h(n).

In this case we let X = U,sncon(h(n)), for N large enough so that this
set remains a bound distance away from —1. We can then apply Lemma

6.2.12 to get that the derivative vanishes.
Case g(n).
This case is a little more complicated. Recall that
con(g(n)) = D(g(n)) U D(A(n)) U D(h(n)™")

so for D(h(n)) U D(h(n)™") we can apply Lemma 6.2.12 with X =
UpsnD(h(n)) U D(h(n)™") for N large enough.

However we will not be able to apply Lemma 6.2.12 for D(g(n)) as 0 is

contained in the closure of U,snD(g(n)) for any N.
We will have to do this case by hand. Let z € D(g(n))
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By calculation and Lemma 2.9.1

VIA@)llp(n)]

lg(n) (2)]7 = 2(O\(n) — 1)+ p(n)|’

We shall now bound |z| in terms of |p(n)|.

By Lemma 2.9.1

_ VIM)llp(n)]

rdlom = TN

and as p(n) and z are both in D(h(n)) we have that

for [A(n)| > 9+ 4v/5. So |z| > @ for |A(n)| sufficiently large.

We now go back to the derivative

VIOl VAW V@) lle(n)]

[2(AMn) = 1) +p(n)] ~ [[2l]A(n) = 1] = p(m)[] — |2l|A(n) — 1] = |p(n)]

for |A(n) —1| >4 as |z| > i—p%@i. So we can plug in our estimate for |z| to get

) < VIXOIlpM) _  ViIA()]

that

pI(PE - 1)~ (B

which converges to 0 as A(n) — oo.

lg(n) (2

So we have that maX.econ(g(n)) |9(n)(2)] = 0 as n — co. Trivially we have

the other condition of Lemma 6.2.13 so we can apply it and this case is done.

Case 4.

Previously the defining curves have been isometric circles, in this case

the defining curves will be the images of the defining curves of the standard

generators under ¢.
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Figure 6.3: The Conjugation of Infinite Case 4.

é—\\g@ g

- o0 N O
NP BN/ u

%@) %J

We shall once again consider the sequence g(n)*', A(n)*'. However in
this case we shall run into a problem as one of the sequences of derivatives
does not converge to 0. We shall get around this problem by considering

words of length 2 when it comes applying Lemma 6.2.13 instead of words of

length 1.

As before there are four sequences to check, we shall check them in the
order g(n), h(n), h(n)~" and g(n)~".

Case g(n).

In this case we can apply Lemma 6.2.12 using a similar argument as case

Case h(n).
The same holds true in this case.
Case h(n)™".

The contracting set of A(n) ™" is the set D(h(n) ™ )UD(g(n))UD(g(n)™").
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Figure 6.4: Tricky stages in Infinite Case 4.

h(n)’

Once again we can apply Lemma 6.2.12 to the set D(h(n)”"UD(g(n)™")
so the set we need to check by hand is the set D(g(n)) see Diagram 6.4.

First we bound the distance from D(g(n)) to 1. Let w € ¢ 'D(g(n))
then the largest that |w| can be is in case 2b of Lemma 6.2.11 but by the

analysis of that section we have that

[¢(n) ()]

— 1

[cen[c(n)_l [
for w' € Sy_5(1).

For all n > 0 there is an N > 0 such that n > N implies

wl < max [0(m)(w)] < (1+ )leeney-s] < (1 -+ ) /)]

for n > N large enough since we have standard generators.

The closest that D(g(n)) can be to 1 is greater than

1 —

min ‘1 — ¢ (exp(it)(l + n)\/l_u(_n)—oi = min
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1

= min 2
CL 2+ )T eos(®) + (Lt 0)/a(])?

9
1+ )]

By the above discussion we have that

max (h(n)™)'2] > max [(h(n)™")w

so we shall attempt to bound

—Ly 2 exp(is
(h(n) )(“mm — el >) l

for any s. This is

2] 2
]m(n) -1 (14 g (i) ) — ) — 1
. 3] 2
) 1) (s esnlis)) =2
which converges to ,

as u(n) — oo.

So we see that |A(n) ™ z| does not vanish for z € D(g(n)) but it is bounded.

Case g(n)™".

As before we can apply Lemma 6.2.12 for the sets D(g(n)™") and
D(h(n)™"). We shall have to do the case of D(h(n)) by hand see Diagram

6.4.
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Consider ¢(n) ' D(h(n)) which contains co and is bounded by a circle of

radius §|u(n)| for some § in every case of Lemma 6.2.11.

The maximum that the derivative of g(n)~" over D(h(n)) can be is at the
boundary of D(h(n)) which is ¢(Ss.m)(0))-
Let z € D(h(n)) then

A
()& = TSty + ol m))E

We are in the case that p(n) — 1 and z € D(h(n)) is bounded for all n so

D

Py — PP ™ o) — 2]

lim |(g(n) ™)' (2)| = lim
we shall find an upper bound for this.

In fact we shall show that

() = 21D
- >

lim

for some 1 > 0. This will show that
: =17 1
lim [(g(n)™")'(2)] < p

which will be our upper bound.

We will pull everything back to the standard generators and then use
Lemma 2.2.5. We have that ¢(n)"*(p(n)) = y(n) and we let ¢(n)"'z = w.

By Lemma 2.2.5 we see that
Ip(n) — 2| = [$(n)y(n) — d(m)w| = [¢(n)y(n)[**[¢(n) w[**y(n) — w|

so we will bound the expression on the right.
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We express the derivatives first,

, _ /[2z(n)]
66yl = ol e
and
v - V@]

So we will bound |z(n)|, |y(n)] and |w|.

First of all we shall bound |z(n)|. Recall from Lemma 2.9.1 that

cadl, = YD =()

1+ A(n)|
A+ ()] VM)A + VIA(R)])
- |1+ A(n)] - |1+ A(n)]

since we have standard generators.
This means that limradly;,y < 1, in other words that
0< |z(n)] <2

However in each case of Lemma 6.2.11 we have defining curves one of which

is a circle centred at 0, since z(n) is not within this defining curve we have

that there is some 7 > 0 such that |z(n)| > 7 for all n.
We now can bound y(n). Since
oy — 1) =)
y(n) + z(n)
converges to 1 as we are in case 4 we see that y(n) — oo.

With the same reasoning as for z(n) we have a lower bound on |y(n)| of

7. As we have standard generators we have that |z(n)| < +/|u(n)| and if we

express z(n) using Lemma 2.9.1 we get that
ly(n)A(n) — 2(n)]
|2(n)] = [cendy 1| = < Vlp(n)l.
o [A(n) =1
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This means that for large n we have that

n)| < 2v/|u(n)].

We now bound w. Since w € Sgj,(n)(0) fairly obviously |w| = &|u(n)|.

We now use all the bounds,
p(n) — 2| = [9(n)y(n) — p(n)w| = |¢(n)'y(n)|"/*|¢(n) w|*/*|y(n) — wl
_ /)] /Pl
y(n) + z(n)| [w + z(n)]
S 2z(n)|(Jw] — y(n)])
~ ()] + lz(m))(lw] + [z(n)])

by the triangle inequality.

We now plug in the bounds we have to get that the above is greater than

2n(8lp(n)| — /lp(n)])

Ui 7
)] + 2Glam)] +2) — ] — )]

for large n as we have standard generators.

We will now show that we can apply Lemma 6.2.13 with the length of
the words being 2.

If you check each of the 12 combinations it is easy to see. As if the
derivative of one of the elements does not vanish then the derivative of the

other must vanish and since the derivative of first is bounded the derivative

of the two multiplied together must vanish.

We shall give an example. Consider the case of g(n)” " h(n)™"

max_|(g(n) "h(n)" )l
wecon(h(n)™")
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vanishes.

By the chain rule we have that
max _ |(g(n) " h(n)") ]
wecon(h(n)™1)
< max |(g(n)7)'2|  max_ |(h(n)"") wl
2€D(h(n)"1) wecon(h(n) 1)
which is less than

(+n? max |(o(n) 2]
z€D(h(n)™")

by our case by case discussion.

But if we consider the derivative of g(n)™" on D(h(n)™") we see that this

does tend to 0, so we have the result. O

6.2.3 The Identity/Elliptic case

This is the case that |u(n)| — 1 so h(n) converges to either the identity
or an elliptic. The multiplier A(n) of g(n) diverges.

We prove two lemmas that give conditions for a sequence of Schottky
groups in the identity/elliptic case to be eventually classical. The first shows
that if [A(n)| is large compared to how small |u(n)| — 1 is, then the sequence
is eventually classical. The second compares the distance between the fixed
points of g(n) or equivalently the distance from j to the axis of g(n) to
lu(n)| — 1. We then show that if these conditions are not satisfied for a

sequence of Schottky groups then the Hausdorff dimension of the limit sets

of these groups cannot converge to 0.
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Lemma 6.2.15 Given a sequence of Schottky groups I'(n) in the iden-
tity/elliptic case with standard generators {g(n), h(n)} such that

302
W for all n

where mult(h(n)) = p(n) and mult(g(n)) = A(n) then the groups are even-

tually classical.

[A(n)] >

Proof:  Our groups are classical if
()|(1 = radl,gy) > |2(n)] + radlyen
by Lemma 6.2.1.

By Lemma 2.9.1

Dl - 2(m)| _ 3N 6
L@ S Tam = Vo)

radIg(n) =

as |z(n)] < +/|u(n)| since we have standard generators, for |u(n)| < 2 and
IA(n)| > 2.
So the group is classical if

()] — lu(n)radlye) > |u(n) 2 + rad Iy

which is implied by

()] — |u(n)|? 6
o > IA(n)J' (6.2.2)

Now ,
)| = ()2

1
(um)] = D(um+1) "4
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as |u(n)| — 1 so there is some U > 1 such that |u(n)| < U means that

()] = lp(m) 2 1

(e =D () +1) ~ 5

Combined with equation 6.2.2 we see that the group is eventually classical

if
p)l =1 6
RNV Yo]
or 30
AN Tt

and we are done.

We need the following technical lemma relating lengths in C to distances

in HB.

Lemma 6.2.16 Given a geodesic v C H® with endpoints z,w € C such that
L < 2|, lw] < 2 then

L. |z —w| < 18
exp(l) ~ ~ exp(l)

where [ 18 the hyperbolic distance from j to o.

Proof: We pull everything back to the ball model using the inverse of
stereographic projection ¢~ : H® — B?. We let d be the BEuclidean distance

from 0 to ¢(c) then d = tanh ().

If a contains 7 then ¢(a) is a straight segment. The circle S% must be

contained under « so |z — w| > 1 and the inequalities are satisfied.
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If o does not contain j then ¢(«) is contained in a circle with radius r

such that this circle is tangent to the unit sphere and so we have that

T_l—f
2

and
1—d? 4

67 (2) = 67 (w)| = 21 Td exp(l) +exp(—1)’

By Lemma 2.2.9 we have constants K, K’ such that
K'lz —w| < [¢71(2) — ¢ (w)] < Kz — w]

S50

o
K exp(l) + exp(—I) K'exp(l) + exp(—1)
We have that 1 < |z],|w| < 2 so we can find explicit values for K and K’
namely
K = 8 and K' = 2
S 9
so that 3
° 4 <lz—w| < 9 1

8exp(l) + exp(—I) ~ 2exp(l) + exp(—I{)

and because [ > 0 we have

L < 5 < |Z — w] < *lé__
exp(l) ~ 4dexp(l)

~ exp(l)

as required.

In the next Lemma we show that if the multiplier of a loxodromic is large

between its fixed points.
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Lemma 6.2.17 Given a lozodromic g that fives z and y such that cenly = 1,

1 < |ceng-1| = |z| £ 2 and X the multiplier of g satisfies |A| > 3 then

1
slz =yl <1 - 2] < 20—y

Proof: We have that

1 — 2| = [cenly, — cenly-1| = |z — y| H—i——é

by Lemma 2.9.1. Since
1+ A

1—=A

1
- <

<2
5 = =

for |A| > 3 the Lemma is proved.

Lemma 6.2.18 Given a sequence of Schottky groups I'(n) in the iden-
tity/elliptic case with standard generators {g(n), h(n)} then the groups are

eventually classical if
37

exp(l(n)) > ——~—— for alln
)Z =1
where (n) is the hyperbolic distance from j to the azis of g(n) and pu(n) =
mult(h(n)).
Proof:  The group I'(n) is classical if
() (1 = 12 y) > [2(n)| + rad Iy
by Lemma 6.2.1

By Lemma 2.9.1

_ VP = 2(n)]

radlom = = 3wl

169



which we shall now bound.

We have

VA(n) < 2
1+ ()| 7 /)]

for |A(n)| > 2 and
36
11— z(n)| < 2|z(n) - y(n)| < p——))]
by Lemma 6.2.17 and Lemma 6.2.16 for |u(n)| < 4 and |A(n)| > 3.

So I'(n) is classical if

/
|(n)| (1 ~- 72 ) >1+ 30 + 72
exp(l(n))/|A(n)] exp(i(n)) ~ exp(U(n))+/IA(n)]
and on rearranging we have that the group is classical if
2(|pn) +1)

A Tt~ 1) expli(n)) — 36
as |A\(n)| — oo the above inequality is satisfied if the right hand side is finite
which is implied by (|u(n)| — 1) exp(l(n)) — 36 > 1 so

37
exp(l(n)) > m(—n)—{t—i

suffices to show that the sequence is eventually classical. U

Lemma 6.2.19 Given a sequence of Schottky groups F(n) in the iden-
tity /elliptic case with standard generators {g(n), h(n)} such that

37 302
—— and | N < —o———
=1 POl e e
where 1(n) is the distance from j to the azis of g(n), mult(g(n)) = A(n) and
mult(h(n)) = p(n) then liminf #(T(n)) > 5.

exp(l(n)) <
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Proof:  This proof works by finding lower bounds for the Poincaré Series
that diverge, this forces the Hausdorff dimension to have a lower bound. We
wish to estimate the Poincaré Series by a geometric sum. To do this we have
two things to estimate, the growth rate of the group or by Lemma 5.4.20 the
growth rate of some subset and the size of d(p(n),vp(n)). Using geometric
estimate we shall estimate d(p(n),yp(n)) in terms of the generators of the
group. Once we we have the geometric sum we can decide if it converges.
We will manipulate this formula and show that in the limit for § > % that
the geometric sum diverges. This forces the Poincaré Series to diverge for

large n and ¢ close to él—, which by Lemma 5.2.3 means that the Hausdorff

dimension does not vanish.

By Lemma 5.2.3 we will have the result if we can show that
> exp(—6d(p(n), yp(n))) = o0
Y€ (n)

for p(n) € H3, ¢ arbitrarily close to 3 and all n sufficiently large.

Choose p(n) to be the point on the axis of h(n) that is closest to the axis
of g(n). Then
d(p(n), h(n)p(n)) = log |u(n)|

and
d(p(n), g(n)p(n)) < d(4, g(n)p(n)) < 2l(n) + log |A(n)]

by the triangle inequality.

By the triangle inequality

S~ exp(~dd(p(n), p(n) > S ] exp(=8d(p(n), Gw(n)))

v€l(n) v€l(n) 1

where (i ...(, is the reduced word for +.
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Figure 6.5: Bound on the generators

I(n)

Given v € I'(n) recall the definition that h(n)(y) = card{¢ = h(n)*'}
and g(n)(y) = card{¢; = g(n)**} where v = (31 ...{y( as a reduced word.

We have
S T exp(=dd(p(n), Gp(n))
veT(n) i
> Y ()| THOO (A ()] exp(21(n))) PO
v€T(n)

by the bounds on g(n) and h(n).

Given t(n) and € > 0, recall the Definition 5.4.6. We have

S )] (A )] exp(21(n)) 7D = o0

vel(n)
iff
> ST ) | ()] exp(21(m)) ) = o
YEL(t(n))
by Lemma 5.4.20. This is the vital result as it allows us to estimate g(n)(7)
and h(n)(7) in terms of I(y). Since we also have a bound on the growth
rate of L.(t(n)) we can find a lower bound on the above sum in terms of a

geometric sum, for which we can determine whether it converges.
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We shall now bound g(n)(v) and h(n)(7) in terms of t(n), e and {(+y). Since
both |p(n)| and (JA(n)|exp(2l(n))) are greater than 1 and we are looking for
a lower bound on the sum we need to find upper bounds on g(n)(y) and

h(n)(y). Since y € we know that
[(W)(tn) =€) < g(n)(v) < Uv)En) + €)
this means that
(1 —=t(n) = < h(n)(7) < U1 —tn) +€)
which are the bounds we shall use.

Note that ¢(n) is arbitrary so choose t(n) small enough so we can apply

Lemma 5.4.11. We then have that the above sum is greater than

> () K2 ()| OCSHDEOR (| X () exp(2(n))) OO

n

by Lemma 5.4.11.

This sum is a geometric sum so it diverges iff

1) () [ [ ()] exp(20(m)) I 2 1.

Since € is arbitrary we have that the above is true if

() /2 () [P0 HD (A (n) | exp(21(n))) Y > 1.

By our bounds on I(n) and |[A(n)| we have the above is true if

—5(1~t(n)) /__w —6t(n)
" \(!u(n))—1)4> > 1

t(n) "2 p(n
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We isolate ¢ and get that the above inequality is satisfied iff

2 log(t(n))

log (|p(n)|#™=1) — t(n) log (@3’(?5—",‘—3%—);)

6>

To apply Lemma 5.4.11 we only need that ¢ is sufficiently small. This
value is a property of the free group and independent of the Schottky group.
As |p(n)] =1 — 0 we can set t(n) = |u(n)] — 1 and apply Lemma 5.4.11 for

all n large enough .

So we need that

= 10g | p(n)| - 1)

log ([u(m)|41-2) — (|u(n)] — 1) log 2580 )

6>

however (|u(n)|~1)log(Ju(n)]—1) — 0 more slowly than log |u(n)| or [u(n)|—

1, so
B2 g ()] — 1)

log (Ja(r)][#1=2) ~ (Ju(n)| - 1)log ( 22520 )

i L ()] = Dlog(uw(m)| - 1) _ 1
2 4(|u(n)] — 1) log(lu(n)] — 1)~ 8

lim

as required.

6.3 The Fixed Points Converging

We recall that this is the case where the fixed points of g(n) converge to

the same point and its multiplier does not converge to co. We first of all
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prove two Lemmas that we will use in both cases. The first shows that the
fixed points of g(n) converge to 1 and the second gives us defining circles for
g(n) that will be used, in some circumstances, to show that the sequence is

eventually classical.

Lemma 6.3.1 Given a sequence of Schottky groups T'(n) with standard gen-
erators g(n) and h(n) in either of the two fized points converging cases case

then the fized points z(n) and y(n) of g(n) converge to 1.

Proof:  Let z(n) and y(n) converge to z.

By Lemma 2.9.1 and as we have standard generators

An)z(n) — y(n) _ _ y(mAn) — z(n)
Nn) =1 and z(n) = cenl - = ) — 1

1=

so that
_z(n) 4+ A(n)

sy = 2L £20) ) +1
Aln) +1

and y(n) = Aln) +1

We first note that as we have standard generators
1 <lim|z(n)| <lim+/|p(n)| < lim+/|A(n)] < oo
so that lim z(n) # co.

We shall now show that this means that z # co. Let lim A(n) = A then

L o z(n)+AMn)  limz(n) + A
z = limz(n) = lim NOFS RS

as |A| # oo since we have standard generators and are in the one of the fixed

points converging case.

Consider z(n) — y(n) this satisfies
o(n) — y(n) = L FAD) _ ZAn) £ (=(0) — 1)(1 - A(n))
WE T AT A+ ) 11
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and converges to 0 so either z(n) — 1 or A(n) — 1.

We shall now show that z(n) — 1, if z(n) /4 1 then A(n) — 1 and by
Lemma 2.9.3 this means that g(n) converges to a parabolic. However this

contradicts [JK82] since the group generated in the limit is either elementary

or is not free.

By the expression for z(n) we see that

y(n)A(n) — z(n) _ TA—x
An) =1 A—1

=T

1 =limz(n) =lim

as required.

We will not be able to use the isometric circles as defining curves so we

find disjoint circles and bound their size.

Lemma 6.3.2 Suppose that g is a lozodromic that fizes x and y both not oo
and has multiplier X such that |A\| > 1 then there are disjoint circles C,C"

such that g(int(C)) = extC' and diam(C'UC") = |z — y| “’““\/%i

Proof:  Conjugate g to g1 by w > —3}”17 then g; fixes f_iy and f—_yg and the

distance between the fixed points is 2.

Next conjugate g1 to g» by w = w — $I¥ so that g, fixes &1. This is a

Fuclidean isometry.

We now conjugate g, by w — _ww‘:ll to g3 where gs fixes 0 and co.

Now gs; has disjoint circles S \/]—>\~|—1(O) and S \/!—/\—1(0) satisfying the first
property.
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We will conjugate these circles back to find circles with the required prop-

erties.

Conjugate these circles back so they are paired up by go. Then the diam-

/=1 /Pl _ /i
YRV -1

Now when we conjugate them so they are paired up by g¢; this does not

eter of there union is

change their diameter as it is a Euclidean isometry.
We conjugate them back so that they are paired up by g.
These last two maps are both similarities so they preserve extreme points

VIA+1
A}

this means that the diameter of the circles is |z — y| 1 as required. [

6.3.1 The Bounded case

This is the case that the multiplier u(n) of h(n) converge to p such that
ln| € (1,00). This means the h(n) converges to a loxodromic. The fixed

points of g(n) converge to each other.

We shall first show that the sequence is eventually classical. As [u(n)| # 1

we will easily be able to find defining curves for I'(n) that are circles.

Lemma 6.3.3 Given a sequence of Schottky groups I'(n) in the bounded case

with standard generators {g(n), h(n)} then the groups are eventually classical.

Proof:  Let z(n),y(n) be the fixed points of g(n) then z(n),y(n) — 1 by
Lemma 6.3.1.
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The sequence is eventually classical as the circles S O 0), S /i (0)
and the circles C(n) and C'(n) which are paired up by g(n) as in Lemma

6.3.2 are disjoint for large n.

This is because |u(n)] # 1 so the circles S ﬁ—-—m(n)!_l(O) and S r——m(n”(O)

remain a bounded distance away from 1.

And diam(C(n) U C'(n)) = |z(n) — y(n)|——\/;-————m — 0 as n — oo since

A(n) is bounded away from 1. This means that the circles C(n) and C'(n)
are disjoint from S ’u(n)l——l(O) and S\/m—(n—)[(O) for large n.

The group is seen to be Schottky by Lemma 6.3.2 as g(n)(int(C(n))) =
extC’(n). O

6.3.2 The Identity/Elliptic Converging case
This is the case that |u(n)] — 1 and the fixed points of g(n) converge to
the same point.

We shall first give conditions for a sequence to be classical and then show

if this does not happen that the Hausdorff dimension must vanish.

Lemma 6.3.4 Given a sequence of Schottky groups I'(n) with standard gen-
erators g(n), h(n) in the identity/elliptic converging case such that
(lu(m)] = D(A(m)] = 1) > 18[A[[z(n) — y(n)]

AY

for all n, where A\(n) — A, then the sequence is eventually classical.
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Proof: By Lemma 6.3.2 there are defining circles for g(n) whose combined

oln \/IA )+ 1
lz(n) — y(n) e )1

where z(n) and y(n) are the fixed points of g(n )

diameter is

If |u(n)| is large enough we can find circles centred at O that are defining
curves for h(n) and which are disjoint from the defining curves for g(n) and

we will have shown that the groups are classical.

Let d(n) = |z(n) — y(n)| \/—*’MWH then we can find circles centred at 0

4(n)|(1 = d(n)) > 1 + d(n) (6.3.3)

that will suffice if

as 1 is inside the defining curves for g(n).

Figure 6.6: Conditions for classicalness when fixed points converge

&

We rearrange equation 6.3.3 to get

(] =1 NALID (6.3.4)

1 ) vl s ( >;—1

which we will now simplify.

Choose n large enough so that

mmn+1<3deMN<;M
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then

) -1 _ ()| -1 5
MO 029

and
VM) +1 o A 6 (6.3.6)

VIX@[=17 =1 " An)] -1
as (34/]A(n)] +1)(y/|A(n)| = 1)? > 0 for |[A(n)| > 1 then applying the bound
[A(n)]
Putting equation 6.3.5 and 6.3.6 into equation 6.3.4 we get that the group

is classical if

Lﬂ@?:_l > |a(n) — W”;K%’TL—‘I
lu(n)] — 1> 18lz(n) — y(n)]—}i(%%l_—*f
as required. -

Lemma 6.3.5 Given a geodesic o C H3 with endpoints z,w € C such that

2 <z, |w| < 2 then

1 18
exp(l) S le—wl < exp(l)

where | is the hyperbolic distance from j to «.

Proof: We pull everything back to the ball model using the inverse of
stereographic projection ¢! : H® — B3, We let d be the Euclidean distance

from 0 to ¢(a) then d = tanh (4).

If « contains j then ¢(«) is a straight segment. The circle 5_12_ must be

contained under a so |z — w| > 1 and the inequalities are satisfied.
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If o does not contain j then ¢(«) is contained in a circle with radius r
such that this circle is tangent to the unit sphere and so we have that
1=
- 2d

T

and
1 — d? 4

67 (2) — 7' (w)| = Trd exp(l) + exp(—1)’

By Lemma 2.2.9 we have constants K, K’ such that

K'lz—w| < [¢7(2) = 67 (w)] < Kz ~ w]

S0

1 4 <| < 1 4

— z—w| < — :

K exp(l) + exp(—1) — — K'exp(l) + exp(—I)

We have that § < 2|, [w| < 2 so we can find explicit values for K and K’
namely
K = g and K' = —
so that
4 9 4

= <
8exp(l) + exp(—1)
and because [ > 0 we have
1 5) 18
< < —_ <
exp(l) ~ 4exp(l) [z = wl <

as required.

Lemma 6.3.6 Given a sequence of Schottky groups I'(n) in the iden-
tity/elliptic converging case with standard generators {g(n), h(n)} such that

(lu(m)] = 1)* < 18]Aflz(n) — y(n)]
then liminf #(T'(n)) > 1.
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Proof: This proof is somewhat similar to the identity/elliptic case see

Lemma 6.2.19.

By Lemma 5.2.3 we wish to show that

> exp(=dd(j,74)) = o0

vl (n)

for ¢ arbitrarily close to 41 and n sufficiently large.

We have
d(4, h(n)j) = log |u(n)|

and
d(j,9(n)j) < log|A(n)| + 2i(n)

by the triangle inequality, where [(n) is the distance from j to the axis of

g9(n).

Figure 6.7: Bound on the generators

I(n) log A(n)

I(n)

By the triangle inequality

Z exp(—dd(4,v7)) > Z HGXP(“M(jan))

v€l(n) yel(n) i

where (7 ..., is the reduced word for +.
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Given 7 € I'(n) recall the definition that h(n)(y) = card{(|¢ = h(n)*'}
and g(n)(v) is defined similarly, where v = (i ... () as a reduced word.

We have
> HGXP(*M(MJ)) > 3 un)[TPHO (A (n) | exp(2i(n))) O
yeT(n) i e

by the bounds on d(j, g(n)j) and d(4, h(n)j).

Given t(n) and € > 0, recall the Definition 5.4.6. We have

S [(n) |0 )| exp(21(n))) OO = o0
Y€l (n)
iff
Z | ()| =R (| X () exp(21(n))) 9N = g
TELe((n))
by Lemma 5.4.20. This is the vital result as it allows us to estimate g(n)(7)
and h(n)(y) in terms of {(y). Since we also have a bound on the growth
rate of L(t(n)) we can find a lower bound on the above sum in terms of a

geometric sum, for which we can determine whether it converges.

We shall now bound g(n)(7) and h(n)(y) in terms of ¢(n), e and (7). Since
both |u(n)| and (|A(n)|exp(2{(n))) are greater than 1 and we are looking for
a lower bound on the sum we need to find upper bounds on g(n)(7) and

R(n)(y). Since v € L.(t(n)) we know that
) (E(n) =€) < g(n)(y) < U(En) + €
this means that
(7)1 —t(n) =€) < h(n)(7) < Uy)(L —t(n) +¢)
which are the bounds we shall use.
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Note that #(n) is arbitrary so choose t(n) small enough so we can apply

Lemma 5.4.11. We then have that the above sum is greater than

Z t(n) ~H 2|y () |70 ATHRO™ (| X ()] exp(21(n))) ~OERITO™

m

by 5.4.11.
This sum is a geometric sum so it diverges iff

() 02| (| ()] exp(20(m))) ) > 1

Since € is arbitrary we have that the above is true if

()42 () |7 EN (|4 ()| exp(21(n))) 7 > 1.

We now isolate ¢

1 —t(n)
g l

1 og(t(n))
2 t(n)log |A\(n)| + 2t(n)

1
(n) 4+ (1 = t(n)) log |u(n)|

We let z(n) and y(n) be the fixed points of g(n). By Lemma 6.3.1 we have
lz(n)—y(n)] — 0. So for n sufficiently large we can let t(n) = +/|z(n) — y(n)|
and still apply Lemma 5.4.11.

We wish to show that the above equation cannot converge to 0, which
occurs iff the inverse does not converge to oo, 1.e

t(n) log [A(n)| + 2¢(n)U(n) + (1 — t(n)) log|p(n)| _
—t(n) log(¢(n))

We shall look at each term in the inequality.

Firstly

\/ l:v n)||log M log [A(n)]
—/|z(n) — y(n log\/lﬂs ) —y(n " Clog iz(n) —y(n)|
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as |A(n)] = [A| # 0.

Next
2\/|x(n) y(ﬂ)ﬂ(ﬂ)
—+/|z(n) — y(n)|log v/|z(n
I(n) @%mwam>

—log +/|z(n) — y(n)] ~10g\/(&“(n —y(n

by Lemma 6.3.5 for 3 < |z(n)], |y(n)| < 2 which occurs for large n by Lemma

[\

6.3.1. This means

18
4 (log EOE y‘(n>|'>

“Togla(m) —y(m)]

as |z(n) —y(n)| — 0.

Lastly
(1 = /|z(n) — y(n)|) log |u(n)]
—/|z(n) — y(n)]log v/|z(n) — y(n)]
< loglu( )|
~ —Vlz(n) —y(n)llog /Iz(n) — y(n)]
. 2\/18MH:6 v
S 00 =y Tioe o) 30

as log(r) < 2(r — 1) for r € (1,€?) and by our assumption on p(n). We see

that this 1s
2./18)]

—loglz(n) — y(n)]
which converges to 0 as |z(n) — y(n)| — 0.

So we have shown that
. ~i(n) logft(n) 21
2 #n) Tog ()| + 28(n)i(n) + (1 — () log [u(m)] = 4

and we have a lower bound on the Hausdorff dimension in the limit.
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6.4 Non-classical Schottky groups

We are now ready to show that there exists a universal lower bound on

the Hausdorff dimension of the limit set of a non-classical Schottky group.

Theorem 6.4.1 There are no non-classical Schottky groups of genus 2 with

arbitrarily small Hausdorff dimension.

Proof:  We shall prove this by contradiction. If there is no universal lower
bound then there exists some sequence I'(n) of non-classical Schottky groups

such that H(T'(n)) — 0.

Conjugate I'(n) so that it has standard generators this does not change its
classicalness or its Hausdorff dimension by Lemma 3.2.4 and [Fal97]. Since
the Hausdorff dimension of the sequence still vanishes we know that one of

the generators diverges by Lemma 5.2.4.

By Lemma 6.1.5 there is a subsequence I'(n,,) of I'(n) that is in one of

the 5 cases in definition 6.1.4. This subsequence has vanishing Hausdorff

dimension and every group is non-classical.

If we are in the loxodromic, infinite or bounded case then the groups are

eventually classical by Lemmas 6.2.2, 6.2.11 and 6.3.3.

The only other two cases are the identity/elliptic or identity/elliptic con-

verging case.

In the identity/elliptic case the groups are either eventually classical by
Lemmas 6.2.15 and 6.2.18 or liminf #(I'(n,,)) > & by Lemma 6.2.19.

The only case left is the identity/elliptic converging case. But in this

case either the groups are eventually classical by Lemma 6.3.4 or the Haus-
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dorff dimension does not converge to 0 by Lemma 6.3.6. Here we have
used that if the assumption in Lemma 6.3.4, that (Ju(n)| — D)(JA(n)| = 1) >
18|A||z(n) — y(n)|, does not hold then the condition in Lemma 6.3.6, that
(Ju(n)| = 1)* < 18|Al|z(n) — y(n)| does hold as |u(n)| < |A(n)| since we have

standard generators.

So none of the cases can occur and we have a contradiction. This means
that there is a universal lower bound on the Hausdorfl dimension of a non-

classical Schottky group. 1
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