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This thesis describes the use of sampling methods in two applications: an epidemic 

model of tuberculosis (TB) and HIV, and the estimation of the number of compo-

nents in finite normal mixture models. We use Bayesian statistics for the analysis, 

which enables us to take into account prior information about parameter values 

in the case of the epidemic modelling, and smooths the likelihood function when 

considering finite mixture models. The convergence properties of importance sam-

pling are investigated and methods for diagnosing non-convergence of importance 

sampling are discussed. We use importance sampling to analyse finite normal mix-

ture models and Markov Chain Monte Carlo sampling to fit the epidemic model. 

Results for effectiveness and cost-effectiveness of different interventions against 

TB and HIV are presented. 
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Chapter 1 

Introduction 

This thesis describes the application of a Bayesian methodology to the analysis of 

two very different problems: model selection for mixtures of normal distributions 

and uncertainty analysis of a compartmental disease model. The methodology uses 

efficient sampling of parameter space to obtain posterior distributions for outputs 

of interest. 

With the ongoing improvements in computing power, it is becoming less time-

consuming to integrate numerically over a large number of dimensions. This 

makes uncertainty analysis possible for statistically non-standard problems and 

very complex models. The hrst example given in this thesis is of model selection 

for finite mixture models, and is statistically non-standard. The second involves 

the uncertainty analysis of a compartmental model of tuberculosis (TB) and HIV, 

a complex model with a large number of parameters. 

As the number of dimensions of the integration increases, more samples are 

required to evaluate an integral accurately. Using variance reduction methods can 

improve the convergence, as discussed in many books on Monte Carlo sampling 

(e.g. [58], [47]). We consider two methods for variance reduction here; impor-

tance sampling and Markov Chain Monte Carlo (MCMC). In both of these tech-
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niques, the variance is reduced by concentrating the sample points in areas where 

the integrand is significant. 

The methodology that we use for the analysis of the two examples considered 

in this thesis is based on Bayesian statistics. With the mixture model application, 

we have only vague prior information, and the benefit of using Bayesian statistics 

for this example is that the posterior distribution function is smoother than the like-

lihood function and has no discontinuities. Using Bayesian statistics to analyse the 

TB-HIV model allows us to take into account prior information about parameter 

values in the uncertainty analysis, as well as the fit of the model to available TB 

incidence and HIV prevalence data. 

1.1 Bayesian Statistics 

In Bayesian statistics, a parameter ^ of a statistical model is regarded as the re-

alised value of a random variable 0 with probability distribution function 7r(^). 

We call 7r(̂ ) the prior distribution. Information about the value of ^ comes from 

both the prior distribution and observations of the data D that the statistical model 

is describing. All of this information can be summarised in the conditional dis-

tribution of 9, conditioned on D. We use Bayes' theorem [8J, [9] to form this 

conditional distribution, such that 

f (g|D) = f (D). (1.1) 

The conditional probability P{9\D) is called the posterior distribution, and P{D\6) 

the likelihood. The function P{D) is a normalising factor. 

We can evaluate the product of the likelihood and the prior distribution at any 

point in parameter space 8 and so obtain the shape of the posterior probability 

distribution, but to obtain a proper probability distribution for the posterior distri-
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bution, we must evaluate the constant of proportionality f (D). It is given by 

f ( D ) = / (1.2) 
Ve 

the product of the likelihood and the prior probability distribution integrated over 

parameter space. In the examples that we consider in this thesis, the integral cannot 

be computed analytically, and we use Monte Carlo sampling to evaluate it, in the 

form of importance sampling or MCMC. 

1.2 Sampling Parameter Space 

As discussed in the previous section, the purpose of the sampling in this thesis is 

to evaluate the normalising constant P{D) by integrating the product of the likeli-

hood and the prior probability distribution over parameter space. The variance of 

the sampling can be reduced if we make use of the available information about the 

shape of the posterior distribution when devising our sampling methodology. We 

consider two sampling methods here: importance sampling and MCMC sampling. 

Both make use of a candidate distribution to focus the sampling in more important 

areas of parameter space, where importance is measured by the size of the poste-

rior probability. By allowing for the fact that we are sampling from a candidate 

distribution, these methods enable us to produce a sample that is effectively drawn 

from the posterior distribution. 

The sampling convergence is improved if the candidate distribution is similar 

to the posterior probability distribution. We obtain knowledge about the shape of 

the posterior distribution prior to sampling by optimizing it to find its mode, and 

using the inverse Hessian of the negative log of the posterior distribution at the 

mode to estimate its covariance matrix. This knowledge is then used to define the 

candidate distribution for the sampling. 
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1.2.1 Importance Sampling 

Importance sampling is a numerical method for evaluating a general integral 

and was first used in the late 1940s and early 1950s. Early discussions 

of its use are given by, among others, Kahn and Marshall [63]. It was popularised 

by Hammersley [58] in the 1960s, helped by an expository paper by Clarke [25], 

which discusses its use within operational research. In importance sampling, sam-

ples are drawn &om a candidate distribution and weighted by the ratio of the inte-

grand h{6) evaluated at the sample point to the value of the candidate distribution 

at that point. If the candidate distribution is chosen correctly, this results in the 

sampling being concentrated in parts of parameter space at which the integrand is 

large, i.e. more important parts of parameter space. In its application to the nor-

malisation of the posterior probability distribution, is the product of the prior 

and likelihood distributions. 

The improvements in convergence of the sampling are dependent on the quality 

of the candidate distribution. We investigate the choice of candidate distribution in 

Chapter 2, and find that the best candidate distribution is one that is proportional 

to the modulus of the integrand, as shown by Marshall [66] in 1954, and more 

recently by Rubinstein [89] and Evans and Swartz [46]. Using this as the candidate 

distribution is not practical as it requires knowledge of the integral that we are 

trying to calculate. We therefore investigate practical solutions to the choice of 

candidate distribution in the normalisation of the posterior distribution in Section 

2.3, giving general results for functions of the exponential family that add detail to 

the usual rule of thumb that the tails of the candidate distribution should be fatter 

than those of the integrand. 

As the number of dimensions increases, knowledge of the integrand becomes 

more important. We show in Section 2.4.1 that when the posterior distribution is 

multivariate normal, and we use a multivariate normal as the candidate distribution. 
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the variance of the sampling increases exponentially with the dimension when 

there are discrepancies in the mean. Discrepancies in the mean have a greater 

effect on convergence than discrepancies in the covariance structure. 

One of the main advantages of importance sampling is its simplicity. It is easy 

to implement and easy to understand. In addition, samples output by importance 

sampling are independent making them easier to work with than those output by 

adaptive algorithms such as MCMC or adaptive importance sampling. Many au-

thors also comment on the ease of assessing the convergence of importance sam-

pling [46], but few seem to perform a formal analysis of convergence [65]. We 

discuss methods for analysing the convergence of importance sampling in Chap-

ter 3, and show how extreme value theory can be used to help diagnose a lack of 

convergence. 

1.2.2 Markov Chain IVIonte Carlo Sampling 

Markov Chain Monte Carlo sampling (MCMC) was first used in statistical physics 

by Metropolis et al in the 1950s [67], who introduced the Metropolis algorithm. 

This was generalised by Hastings in 1970 [59] to give the Metropolis-Hastings 

algorithm. An MCMC algorithm for the problem of finding the posterior distribu-

tion is designed so that, after a steady state has been reached, the points generated 

by the algorithm will come from a Markov chain with stationary distribution given 

by the posterior distribution. In the Metropolis-Hastings algorithm, a point are 

generated from a candidate distribution which may depend on X,, the 

current position of the algorithm. The algorithm will move to Yi with probability 

a, where 

where / ( . ) is the product of the prior and likelihood distributions. 

Most MCMC algorithms are adaptive, in that the parameters of the candidate 
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distribution depend on the current position of the algorithm. For example, in de-

termining the posterior distribution of the parameters in the TB-HIV model, we 

use a random-walk Metropolis algorithm with a multivariate t-distribution as the 

candidate. We set the mean of the t-distribution to be equal to the last accepted 

point, but use the same covariance structure throughout the sampling. This adapt-

ability reduces the importance of knowledge of the posterior distribution prior to 

the sampling as information obtained during the sampling is used to improve the 

convergence. Adaptive algorithms do present problems when analysing output 

however, because the individual observations are not independent. A further diffi-

culty with MCMC algorithms is the difGculty in assessing convergence, although 

many methods have been devised to do this [51]. 

1.3 Finite Mixture Models 

Mixture models are used where a statistical dataset is not homogeneous but is com-

posed of a number of distinct component distributions. An example is the galaxy 

dataset introduced by Roeder [87], where it is believed that there are a number of 

different groups of galaxies present. The number of components then relates di-

rectly to the number of galaxy groups. A further use is in semiparametric density 

estimation, such as modelling input data for simulation models [21]. A number of 

datasets that arise in the mixture models context are examined in Chapter 4. 

We shall discuss only continuous finite normal mixture models, where the 

probability density function can be written as 

k 

1=1 

where gi{.) is a normal distribution and Wi are weights such that Yli=i Wi = I and 

Wi > 0. 
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We wish to determine the number of components A; in a finite mixture model 

for different datasets. The problem is statisticaDy non-standard as it is possible for 

components to be present in the mixture that are not represented within the data. 

We focus on examples for which there is no prior information available, but 

use a Bayesian framework because of the inherent problems with maximum like-

lihood methods. The likelihood surface is often multimodal and has discontinu-

ities near the boundaries, e.g. when the component variances tend to zero. This 

can occur, for example, when a component is centred on just one data point and 

tends to a delta function at that point. In addition, the likelihood increases as 

more components are added, even if these components contribute very little to the 

model, making determination of the optimal number of components difficult. Us-

ing Bayesian statistics, the prior distribution smooths out the discontinuities in the 

likelihood function, though the posterior distribution can still be multimodal. The 

posterior distribution for the number of components k also tends to have a peak 

at A: < n, where n is the number of data points. The posterior distribution for the 

number of components is thus usually a more meaningful measure of the number 

of components in the mixture than the likelihood function. 

We use importance sampling to determine the posterior distribution for the 

number of components, contrasting with much of the established literature in 

which MCMC methods dominate [84], [97]. MCMC algorithms for this prob-

lem tend to be complicated as they must include some mechanism for jumping 

between different models (different values of k). By contrast, the application of 

importance sampling is relatively simple, with the candidate distribution including 

a function describing the probability of selecting a model with a particular k, and 

a function for sampHng parameter values that is dependent on the model with the 

chosen k. 
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1.4 Model of Tuberculosis and HIV 

The second part of the thesis discusses an application of the Bayesian analysis 

methodology in epidemiological modelling. We use a compartmental model to 

describe disease progression through tuberculosis (TB), and the effects of HIV on 

that progression. In this example, we have good prior information about model pa-

rameters, which comes from medical studies within the literature (see the supple-

mentary material of [36] for full details). The extent of the prior knowledge makes 

a Bayesian methodology particularly attractive. With 23 parameters, the model is 

relatively complex and determining the posterior distribution is time-consuming. 

We use a Metropolis MCMC algorithm to determine the posterior distribution of 

the model parameters, using the output of this algorithm to estimate the uncer-

tainty on our estimates of the costs, effects and cost-effectiveness of the different 

intervention strategies, as well as our predictions of TB incidence and deaths. We 

chose to use MCMC sampling for this example because importance sampling per-

formed relatively poorly due to the shape of the posterior distribution, which is 

skewed and so not very similar to a normal distribution. 

The modelling study focuses on high burden countries in Sub-Saharan Africa, 

where HIV prevalence is greater than 10% and there has been a marked increase 

in TB incidence as a result of the HIV epidemic. We use the model to predict 

TB incidence in the future and the effects that different interventions against the 

two diseases will have on the future course of the TB epidemic. Further work, 

discussed in Chapter 6, evaluates the cost-effectiveness of different intervention 

strategies, measured in terms of the costs per disability adjusted life year (DALY) 

averted. 
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1.5 Outline of the Thesis 

The optimal choice of sampling function to use in importance sampling is dis-

cussed in Chapter 2, including an evaluation of the convergence of importance 

sampling in many dimensions. We then present diagnostic and statistical methods 

for assessing the convergence in Chapter 3. In Chapter 4 we apply the methodol-

ogy to the statistically non-standard problem of determining the number of compo-

nents in a finite normal mixture model. The TB-HIV model and the methodology 

that we used for the uncertainty analysis is described in Chapter 5. Predictions for 

the TB incidence in Kenya, Uganda and South Africa, and estimates of the effects 

that different interventions will have on reducing TB incidence and TB deaths 

in these countries are shown here. Further work analysed the costs, effects and 

cost-effectiveness of different intervention strategies against TB and HIV in terms 

of costs per disability adjusted life year (DALY) averted, and this is discussed in 

Chapter 6. We conclude in Chapter 7. 



Chapter 2 

Choosing the Candidate Function in 

Importance Sampling 

Importance sampling is a numerical method of evaluating an integral 

(2.1) 

In standard Monte Carlo sampling, I would be evaluated by taking K samples 

distributed uniformly over the region D, giving / = In importance 

sampling, we concentrate the sample points in areas of "importance" within D by 

sampling from a candidate distribution /)). We then allow for the fact that we 

are sampling from /)), rather than a uniform distribution, by weighting each 

of the observations of and so Anding the expectation of /)). The 

integral I can therefore be approximated by 

The choice of /?) affects the convergence rate of to 7 and the optimal 

choice for w(^, /)) is as we show for the particular example of statistical 

estimation in Section 2.2. This requires full knowledge of the integral that we are 

trying to evaluate and so it is not a practical solution to the problem. 

10 
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This chapter focuses on the use of importance sampling in statistical estima-

tion, and in Section 2.3, we consider the problem of normalising univariate func-

tions of the general exponential family using importance sampling. We present 

conditions on the parameters of the candidate distribution for sampling to con-

verge and demonstrate these results by considering three examples of common 

probability distributions. 

The convergence of importance sampling is dependent on the number of di-

mensions of the integration, and we discuss the dependence in Section 2.4. We 

begin by considering how the number of dimensions and discrepancies between 

the candidate distribution w{d, P) and the integrand affect the convergence of the 

sampling, where the integrand and the candidate distribution are both assumed to 

be multivariate normal. We then go on to present four numerical examples of im-

portance sampling in two dimensions, which demonstrate some of the limitations 

of importance sampling. 

2.1 Importance Sampling for Statistical Estimation 

Often in problems of statistical estimation, we need to evaluate the expectation of 

a statistic 77z(̂ ). In this case, 7 can be written as 

/ ( m ) = / (2.3) 
Ve 

where f(6) is a probability density function. A typical example is where m{9) = 9. 

This kind of integral is very common in statistical calculations but frequently can-

not be calculated analytically. The integral can be estimated by sampling from f{6) 

and calculating at each sample point such that /(771) = 

Convergence can be improved by using importance sampling and sampling from a 

candidate distribution w{9, /?) instead of f{9). As in Equation 2.2, we must weight 

each of the observations by the probability of having selected that sample point. 



CHAPTER 2 12 

and so the integral / (m) is approximated by 

(2.4) 

Another integral of interest in statistics is the normalisation of the posterior 

probability distribution in Bayesian statistics. We say that the posterior probability 

distribution of the parameters given available data z; is p(^|2;), which is propor-

tional to the product of the likelihood and the prior probability distribution 

for 7r(^). To obtain a proper probability distribution for the posterior distribu-

tion, it is necessaiy to And the normalising factor by integrating Z,(z|^)7r(^) over 

parameter space. Setting and = 7r(^) we can see that this 

integral has the same general form as / (m) and the results of subsequent sections 

will therefore apply to this problem. 

2.2 Theoretical Results 

Theorem 

The variance of importance sampling is minimized if 

° urnmrndB 

Proof 

That this is the optimal form for /?) has been shown by Evans and Swartz 

[46] and Rubinstein [89]. Evans and Swartz use the law of the iterated logarithm 

attributable to Durrett, and Rubinstein uses the Cauchy Schwarz inequality. These 

proofs are more complicated, and will not be discussed here. Instead we present a 

simpler more direct derivation using the calculus of variations. 
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We assume that our candidate distribution, /)) is a true probability distri-

bution function such that 

1. jg = 1 

2. > 0 

The variance of the sampling can be written as 

L J 

2 

'W(̂ , 
LVe 

. (2.6) 
/e \ ^(<9,/)) y 

The second term in Equation 2.6 is independent of /)), therefore can be ig-

nored when choosing the best form for Therefore, we are left with the 

problem of minimising subject to the conditions given 

above. Using Lagrangian multipliers to take account of the first constraint on 

± e objective function becomes 

where A is a Lagrangian multiplier. Using Ruler's equation, the optimal form for 

must obey 

therefore 

= (2.9) 
A 

To find A, we substitute the expression for w{9) into the normalisation constraint. 

Assuming that f{6) is a proper probability distribution function such that f{9) > 

0, and remembering that w{9,P) > 0, the normalisation constraint becomes 

= 1. (2.10) 
e V A 

Solving for A and substituting this back into Equation 2.9, we find that 
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and so the theorem is proved. 

Geweke [53] uses a similar method to Evans and Swartz [46] to And the opti-

mum sampling density but obtains a different expression, 

oc |m(^) — (2.12) 

In arriving at this expression Geweke uses a central limit theorem to make the 

assumption that in the limit of a large number of samples (mn—m) is described 

by a normal distribution with zero mean and variance 

= (2.13) 
Ve 

where the expectation is taken over the distribution /(^). Minimising cr̂  is equiv-

alent to maximising the rate of convergence, and a minimum is achieved when 

w(^, ^) is given by the expression in Equation 2.12. 

The expression Geweke uses for cr̂  is derived making the assumption that we 

are sampling from /(^) and calculating m,(^)/(^)/w(^, /)) at every sample point, 

whereas we are actually sampling from ;^). Therefore, should be given by 

(7̂  E;^{[m(i9)/(6')/w(l9,/?)-m//'u;]^} 

[m(^)/(^)/w(^, /3) — /))d^ 
0 

1 2 
2 / 

0 LVe 
(2.14) 

where the subscript w implies that we are calculating the expectation assuming 

sampling from 'u;(̂ , /9). The correct expression for <7̂ , given in Equation 2.14, is 

minimised for ,8) = y |m(8j|/(ejde - ^ identical result to that obtained 

above. 

This result makes more sense intuitively than the result presented by Geweke 

as it suggests that more points should be sampled in regions close to the mean. 
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where is highest. The result presented by Geweke suggests that more 

points should be sampled at points distant from the mean, where is 

large. Geweke's result would minimise the sampling variance of the expectation 

over /(^) of — m. 

2.3 Choosing the Candidate Distribution in Practice: 

Results for Functions in the Exponential Family 

Although the results of Section 2.2 show that the optimal choice of candidate dis-

tribution is 0̂) = ^ this is not a practical solution 

as it requires knowledge of the integral that we are trying to evaluate. In prac-

tice we must choose a candidate distribution that is simple to sample from, with 

parameters that can be estimated without excessive preliminary investigations of 

Often /?) has a parametric form that can be adjusted to change its 

shape and the choice of functional for /?) must take into account the ease of 

adjusting the parameters to obtain a good fit to Although comput-

ing time may be saved by using a candidate distribution that is very close to the 

function being estimated, if estimating or sampling from this distribution requires 

a large amount of computing time, any gains in efficiency due to good convergence 

will be lost. 

In this section, we give the form of the candidate distribution that should be 

used to ensure convergence for a general function from the exponential family. 

We then go on to find expressions for the variance associated with the sample 

for some standard probability distributions. We find analytical expressions for the 

variance associated with sampling the normal, gamma and student-t distributions 

in Sections 2.3.1, 2.3.2 and 2.3.3 respectively. 

A general discussion of the choice of sampling candidate distribution is given 
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by Robert and Cassella [85], while Geweke [53] gives a set of conditions that a 

sampling distribution must obey to ensure convergence. Although his estimate of 

the variance of the sampling is different from ours, his conditions still hold. Using 

the notation of Equation 2.3, they are equivalent to 

1. < C < OO 

2. 0 is compact and < A; < oo 

where A; and c are arbitrary constants greater than zero. The hrst condition ensures 

that the ratios calculated during the sampling are always finite and the second that 

the integral being evaluated is always finite. 

We reduce the problem of Equation 2.3 to one of obtaining a sample from 

/ (^), by sampling from the importance sampling candidate distribution 

This allows us to draw conclusions about the efficiency of importance sampling for 

the generation of samples from the posterior distribution, where is now con-

sidered to be the posterior distribution. The variance associated with the sample, 

,g)], is then given by 

2 

(2.15) 

The second term in the expression is unaffected by the choice of candidate distribu-

tion. Therefore, assuming that ^ is not divergent, to obtain a finite variance, 

;0) must be chosen such that J is finite. 

However, as we calculate at each step of the sampling, we must also 

impose the condition that is finite. 

Let the function that we are trying to sample be , . . . , O!^), where / (0; ai , 

is from the exponential family and of the form 

= exp f + s(i9) + g ( a i , . . . j - (2.16) 
\ j= i / 
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We assume the candidate distribution to also be from the expo-

nential family such that 

w(6);/3) = exp | + + - (2-17) 
y 

In this context, the conditions for the importance sampling to converge are 

1. /(^)/w(^,;0) is finite for all ^ 

j%y^('9)/^( '9,/9)di9isAnite 

The first condition will hold if > 0, V ;̂ /(^) is not divergent over ± e 

range [—oo, +oo]; and 

(f f < 0 ^ > oo 
; s ( / W M « ) ) < " . (2.18) 

I > 0 e ̂  -oo 

This last condition implies that the expression 

Z M m + (2.'9) 

j=l i=l 

must be less than or equal to zero as 0 —> oo and greater than or equal to zero as 0 

tends to — oo. 

Using these results, we can determine whether importance sampling will con-

verge when sampling a probability density function f(9) with a given candidate 

distribution /3). We consider the sampling of three specific probability distri-

bution functions from the general exponential family: normal, gamma and student 

t distributions. 

2.3.1 Sampling a Normal with a Normal 

In this section, we use the conditions of Section 2.3 to determine the limits on the 

parameters of the candidate distribution /3), when sampling a normal distrib-
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ution of mean ai , variance under the assumption that the candidate distribution 

is also normal, with mean and variance 

Using the notation of the general exponential family, 

Pi(a:i,a!2) 

(<3:1,0:2) = — 

^2(^) = 

7ri(A,A) = 

ln(27ra:2) + 
a 2 J 

ln(27r;^2) + 

2 

1 
7r2(A,^2) = -

7 1 ^ 

72 

Ignoring the constant terms in we can write this as 

/^(g)/w(0) oc exp 
20!i 1 1 

2/). 
0' 

(2.20) 

(2.21) 

In the limit that 0 ±co, the 0^ term will dominate and so for the variance to be 

finite, 

/)2 > (2.22) 

Writing out the expression for ± e variance of the sampling with /(^, a) and 

w{0, P) defined as in Equation 2.20, we can show how the choice of parameters 

for a normal importance sampling distribution affects the convergence to the actual 

function. The integrand, a:)/w(^; /?) is given by 
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P{6;a) 

w{6;/3) 

eexp 

exp 2g A 5 
0:0 
+ 

2^^ 

2^1 
(2.23) 

where ^ and e are constants, 

(6 = 
A 
2̂ ^ 

CKn 
exp 

CKn 
+ ^ + 2/?? + 2/) | 

(2.24) 

We can integrate PiO; a)/w{9;p) to obtain tlie expected value, 

E4f(e-,a)/w''(eiP}] 
roo 

6 / exp 
CX) (l/cKg — l/2/)i 

TT 
(l/cKg — 1/2/); 

and writing out the expression for e in full, 

1 

(2.25) 

1 

0̂ 2 \ 
exp 

2/3^ 

1 

^2 2 ,̂2 

(2.26) 

Using Equation 2.26, we find expressions for the and that minimise and max-

imise a!)/w^(^; /))], by differentiating with respect to /)%. Differ-

entiating with respect to Pi initially, we find that there is an extreme value at Pi, 

where 

A 

therefore, 

cki/0:2 ' A / 2 ^ 2 

1/Ckg — 1/2/^2 

A = CKi, 

= 0, (2.27) 

(2.28) 

i.e. the means of the sampling distribution w{d-, a) and the distribution being sam-

pled from /(^; a) are equal. 
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Using the same principle, we can And the value of at which 

o;)/'u;^(0; /))] takes on an extreme value. After much algebra, it is found 

that ^2 obeys the expression 

0 = ,̂̂ 2 ^ ^ (A — (2.29) 

and solving the quadratic equation, 

^2 = Sag/4 ± ^ 1 / 4 - 4(/)i - C K i ) ^ / ( 2 . 3 0 ) 

with ± e smaller solution a maximum and the larger solution a minimum. 

If we now set /)i =0:1, 

= 3 a ^ / 4 ± a ^ / 4 (2.31) 

(2.32) 
CK2 

0:2/2, 

and we can see that the variance of the sampling has a minimum where the variance 

of the candidate distribution equals the variance of f{9) and a maximum where its 

variance is equal to half this value. 

We now investigate the behaviour of the optimal value of ^ discrepancy 

(/̂ i — cKi) = is increased. We assume is small relative to the variance cKg, i.e. 

that we have a good estimate of the mean of the normal distribution that we are 

trying to find, 

^ ^2/2 — 86^/2o!2 

Therefore, as we move further from the mean, the value of /?| that minimises 

a!)/w^(^; ;0)] increases and the worst value decreases. 

We can write expressions for a)/w^(^; ;^)] for known mean and known 

variance to determine how knowledge of the mean and variance influences the vari-
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ance of the sampling. Where the mean is known, 

= a i ) = — 
CK2 

and where the variance is known 

= 0=2) = exp 

/?: 
1/2 

(2.34) 

(/9l — CKi)'' 
(2.35) 

Equations 2.34 and 2.35 suggest that knowledge of a i is more important than 

knowledge of 0:2, providing the variance of the candidate distribution is greater 

than the variance of the function being sampled, with a polynomial increase in the 

variance for worsening estimates of and an exponential increase in the variance 

for worsening estimates of a j . Oh [76] also discusses this, showing graphically 

that knowledge of the position, in this case ai , improves the convergence more 

than knowledge of the scale, here given by ag. 

For less than there is a sharp increase in the variance as /?2 is decreased 

to 0:2/2, where the variance is infinite. Below 0=2/2, the variance expression given 

in Equation 2.34 is imaginary. 

2.3.2 Sampling a Gamma Distribution 

The gamma distribution, 

g > 0 r(7)iT 

can be written as a function of the exponential family, with 

g(0!i,0!2) = -hi[r(a! i)a;2 ' ] 

Pi(o:i,a!2) = a i —1 

^2(0:1,0:2) = —1/0:2 

A;i(g) = Ing 

^2(^) = 

(2.36) 

(2.37) 
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where 0:1 = ') and ag = We begin by investigating sampling a gamma widi a 

gamma. Considering the ^ dependent terms in Equation 2.37, and using and 

to describe the parameters of the gamma distribution we are using as the candidate 

distribution, we can write as 

oc exp (2ai — pi — 1) In ^ + j — — — I 9 
P2 0:2 y . 

(2.38) 

The ^ term will dominate as ^ » 00. Therefore, for the integral to be Unite and 

the sampling to converge, 

A > ^ 2 / 2 . (2.39) 

If we instead use a normal distribution as a sampling distribution for the gamma 

distribution, we can write /^(^)/'w(0, /)) as 

oc exp (2.40) 

As ^ 00 the term will dominate. This term is greater than zero for ^ > 0, 

therefore the variance of the sampling is never Anite, and using a normal distri-

bution as a sampling function for a gamma distribution will never result in the 

sampling converging. 

2.3.3 Sampling a Student t-Distribution 

The t-distribution, 

1 1 

r(z//2) + 

can be written as a function of the exponential family if we make the transforma-

tion 6 = t/^/a, where a = u. Using the notation of the exponential family, 

/ p / a + l \ 

p(a!) = —(a! + l ) / 2 

A;(g) = l i i ( l + g"). (2.42) 
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We begin by investigating the sampling of a t-distribution with another t-distribution, 

with ,0 degrees of freedom and a similar transformation of Considering just the 

^ dependent terms of 

^ 4-1) lii(l + (2.43) oc exp 

Therefore, for the sampling to converge, 

/ ) < 2 a 4 - l . (2.44) 

E we now consider sampling a t-distribution using a normal distribution as a 

candidate distribution, 

/^(^)/w(^) oc exp — (a + 1) ln(l + — 7^^ + (2.45) 

As 6* —> CX3, the 6"̂  term dominates and the variance will tend to infinity for all real 

(32- Therefore, a normal distribution could not be used as a candidate distribution 

for a t-distribution. However, importance sampling will always converge when 

using a t-distribution as a candidate distribution when sampling a normal distribu-

tion, because as 6* ^ oo, the 9^ term wil again dominate, but will now be negative. 

Therefore, the sampling variance will always tend to zero. 

2.4 Sampling Multivariate Distributions 

We begin this section by considering how the convergence of importance sampling 

of a multivariate normal distribution varies with the number of dimensions n, and 

draw some general conclusions from this analysis. We then go on to consider three 

different specific candidate distributions: the multivariate normal distribution; a 

multivariate generalisation of the t-distribution and a non-standard adaptation of 

a multivariate normal distribution. The adaptation allows the axes of symmetry 
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of the normal distribution to curve. These distributions are described in Sections 

2.4.2, 2.4.3 and 2.4.4. 

In Sections 2.4.5 to 2.4.8 we consider a two dimensional example and describe 

the performance of these three different candidate distributions. We show the fit 

of the candidate distributions to the actual function and the results of the impor-

tance sampling. Conclusions are then drawn about the suitability of each of these 

functions as importance sampling candidate distributions. 

2.4.1 Dependence of Convergence Rate on the Number of Di-

mensions 

The problem of how the convergence of importance sampling varies as the number 

of dimensions n is increased has been considered before by Au and Beck [3] and 

Oh [76]. Au and Beck introduce a function describing the relative entropy of the 

candidate distribution and the function being sampled and examine its variation to 

determine how convergence of the importance sampler will change with the num-

ber of dimensions. We find the variance a more useful measure of the convergence 

and use this and the unit coefficient of variation (unit c.o.v.) introduced by Oh [76], 

which is the standard deviation divided by the mean, to describe the convergence. 

We assume that the function being sampled f{9) is a standard multivariate nor-

mal distribution of M dimensions with mean vector (//i, . . . , covari-

ance matrix cr, and that we use an importance sampler /)) that is a multivariate 

normal distribution with mean vector (mi, 7712, - -, covariance matrix s. 

The squared unit c.o.v. for importance sampling can be written as 

A L = / f - 1. (2.46) 
[ /e SW'iO] 

where f{9) is the function being sampled over the range 8 and w{6,(3) is the 

importance sampler. 
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We And an expression for for general multivariate normal distributions 

/(^) and Oh [76] considers only the situation where // = 0 and cr = I. 

Having obtained the general result, we go on to consider two situations; in the first 

we assume that the mean is known and in the second that the covariance structure 

is known. This allows us to determine how the variance of importance sampling 

is affected by the number of dimensions for discrepancies in the mean and in the 

covariance structure. 

We consider the integral 

(2.47) 
/e 

As /(^) is a normal distribution, the denominator of the first term of Equation 

2.46 is one and so the integral in Equation 2.47 determines the behaviour of the 

unit covariance. Writing the expression out in full 

(fg = 
11/2 

I (27r)"̂ /̂  
exp 

e (2.48) 

where n, is the number of dimensions. This can be written as 

where 

11/2 

(27r)"/^ <71 
exp 

8 
(2.49) 

- i \ - i X = (2cr-^ - g-^)-

( = (2(7-^ -

(2.50) 

Evaluating the integral. 

8 
•dO = 

^ 2o—1 
(2.51) 



CHAPTER 2 26 

We consider two special cases: unknown covariance, known mean; known 

covariance, unknown mean. 

When the covariance is unknown but the mean is known, m = ^, and Equation 

2.51 can be simplified to 

(2.52) 
|crp|2cr~^ — 

To demonstrate the effect of the dimension, we consider a specific example in 

which the covariance matrix cr of is diagonal and the covariance matrix g 

of the candidate distribution is also diagonal, such that + -y). 

Under these assumptions, in n dimensions, Equation 2.51 reduces to 

(1 + 2"/)"/^' 
(2.53) 

When the covariance is known, but the mean is unknown, s — a and Equation 

2.51 can be simplified to 

exp [(// — m)^(7^^(// — m ) ] . (2.54) 

If we assume that fii — rrii = S for i ^ 1,... ,n then Equation 2.54 can be written 

as 

(2.55) exp [(// — m,)^(7 ^(// — m)] = exp ^ ' 
i=i ]=i 

in n dimensions. Further assuming that a is the identity matrix, we find that 

/ = exp(7i(^^). (2.56) 

Therefore, as the number of dimensions increases, the variance of the sampling 
will increase exponentially with n, the number of dimensions for unknown mean. 

Considering Equations 2.53 and 2.56, we can see that errors in the estimate 

of the mean will have a greater effect on the variance of the sampling for large 

n than a lack of knowledge about the covariance structure. For small n, the rela-

tive effects of knowledge about the mean and knowledge about the variance would 
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depend more on the relative sizes of the discrepancies between the actual and es-

timated values. These two results agree with the findings of Oh [76], who consid-

ered the effect of varying e and when sampling /(^) -AA(0,7) with candidate 

distribution ^ 

Although we have focused only on the multivariate normal in this section, it 

is suspected that similar results will hold for other distribution functions, i.e. that 

knowledge of the mean is more important than knowledge of the shape, assuming 

that the candidate distribution has fat enough tails for convergence to be possible. 

2.4.2 Multivariate Normal Distribution 

The multivariate normal distribution has the probability density function 

/ ( x ) = exp j , (2.57) 

in n dimensions, where ji is the vector of means and a is the covariance matrix. 

Samples from the multivariate normal distribution can be generated in a num-

ber of ways. We describe here the method attributed to Box and Muller for gener-

ation of standard normal variates [15] and extend this to M dimensions, using the 

preferred method of Barr and Slezak [7]. 

The proof of Box and Muller's method is given in most simulation text books 

(e.g. [16]) and will not be reproduced here. If and [/g are independent random 

variates from a uniform distribution between 0 and 1, then and Z2 will be 

independent standard normal variates where 

= (—21n[/i)9cos(27r[/2) 

Z2 = (-21n[/i)lsiii(27r[/2). (2.58) 

This can be extended to n dimensions using the Cholesky factorization C of the 

covariance matrix a. The variable W will be a multivariate normal variate with 
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covariance matrix cr and mean where 

W = /̂  + CZ, (2.59) 

and Z is a vector of standard normal variates. 

2.4.3 A Multivariate Generalisation of the Student t-Distribution 

The student t-distribution has fatter tails than the normal distribution and as was 

shown in Section 2.3.3, is a good choice of candidate distribution when sampling 

a normal distribution. In this section we introduce a multivariate generalisation 

of the student t-distribution. This is not identical to the multivariate t-distribution 

introduced by Dunnett and Sobel [43], but has similar characteristics, as will be 

discussed below. 

We use the same method as in Equation 2.59 to generate a variate from the 

multivariate t-distribution. 

W = // 4- C T / - 2), (2.60) 

where T is a vector of independent t-distributed variates with z/ degrees of free-

dom, C is the Cholesky factorisation of the covariance matrix and — 2) is 

the standard deviation of a t-distribution with u degrees of freedom. 

In generating the vector of t-distributed variates we make use of the relation-

ship between the student t-distribution and the chi-squared and normal distribu-

tions. The random variate X will have a t-distribution with u degrees of freedom 

when X is given by 

where Z is a standard normal variate and y is a random variate generated from a 

chi-squared distribution with v degrees of freedom. 
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The chi-squared distribution with i/ degrees of freedom is equivalent to a gamma 

distribution with a = i//2 and /) — 2. We therefore use Cheng's gamma generator 

[19] to generate the chi-squared variates. Combining a chi-squared variate with a 

standard normal variate according to Equation 2.61, we can generate a t-distributed 

variate. This process is followed n times to generate the n, t-distributed variates T 

used to calculate W , as described in Equation 2.60. 

This multivariate generalisation differs from the multivariate t-distribution de-

scribed for example in [43]. In the alternative formulation, variates are generated 

using the transform 

= + (2.62) 

where Z is a vector of standard normals, C is the Cholesky factorisation of the 

covariance matrix, 6"̂  is a variate from the chi-squared distribution with z/ degrees 

of freedom and is the mean vector. The only difference between this method of 

generation and the method that we use is that only one variate is generated from 

the chi-squared distribution, rather than one for each component of Z. 

We can derive the probability density function for our multivariate generalisa-

tion of a t-distribution. The probability density function for a vector of independent 

t-distributed variates is given by 

Using this expression and Equation 2.60, we can write the probability density func-

tion of W , a vector of correlated t-distributed variates, with covariance structure a 

and mean // as 

2~\ —(^+i)/2 (2.64) 

3=1 

\ r(z//2) 
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Working through the transformation of Equation 2.60, we can see that 

- E ( C T T ^ C ^ ) 

= C E ( T T ^ ) C ^ 

= C C ^ , (2.65) 

as T is a vector of standardised student t-variates. Therefore, the covariance struc-

ture of W is cr = C C ^ . 

Using the alternative formulation, with only one chi-squared variable, the prob-

ability density function for the multivariate t-distribution can be written as 

/ ( w ' ) = r [(̂  + 7̂ )/2] 
(z/7r)^/^r(z//2)|cr|V2 

- —(n+u)/2 

1-1—(w' — c r ^(w' — (2.66) 
u 

a tidier expression than Equation 2.64. However, the expression for the covariance 

matrix is more complicated in this case. 

2.4.4 Bent Multivariate Normal Distribution 

The bent multivariate normal distribution is not a standard distribution and was 

devised as part of the thesis for the purpose of testing importance sampling on 

a multivariate probability distribution with non-elliptical contours. Only a two-

dimensional example has been considered so far. We wish to deform a multivari-

ate normal distribution so that instead of having elliptical contours with axes of 

symmetry that are straight lines, we instead have contours that have curved axes of 

symmetry. To create a function which is not symmetric about the x-axis, i.e. has a 

bend in the y-direction, we make the transformations 

^2 = 4" (1 4" -t- a ) , (2.67) 
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where and Z2 are standard normal variates and G( dictates the angle of the bend. 

To make this function more general, we can rotate the coordinates through an angle 

1̂ , allowing the function to be oriented in any direction. Incorporating this rotation, 

the transformations given in Equation 2.67 become 

2/1 = (<71 cos + (cr2Z2 + o)(l + sin (6, 

Z/2 = (o"!-::! + Ati) + [//2 + (0-2̂ 2 + a)(1 + cos (2.68) 

The probability density function of this bent bivariate normal can then be written 

as 

1 
/(z/ii^a) 

27ro-i(72(l + _ /^i)^) 

(M - /^i)^ 1 / - /̂ 2 
exp 

where we use 

2(72 "̂̂ 2 \ 1 + CP('U —A l̂)^ 

« = 2/1 cos ^ + 2/2 sin ^ 

u = —3/1 sin (̂  + 2/2 cos ^ 

(2.69) 

(2.70) 

for conciseness. 

In generating a sample from this distribution, we make use of the transfor-

mation equations (Equation 2.68) describing the relationship between (1/1,2/2) and 

(^1,^2) to transform standard normal variates to random variates of the bent nor-

mal distribution. A contour plot of one instance of the bent normal distribution is 

given in Figure 2.1. 

2.4.5 Using a Normal as Candidate Distribution for a Bent Nor-

mal Distribution 

In this example, f{9) is the bent normal distribution with ai = 2, erg = 0.1, 

//I = —0.1, /i2 = —12, d = 2, a = 0.5 and = 0.2, as shown in Figure 2.1. The 
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Figure 2.1: Contour plot of a bent normal distribution. 

mean of the normal distribution used as the candidate distribution, w{6, (5) was set 

to be the position of the mode of the bent normal distribution, as found using the 

Nelder Mead optimization routine [74]. The Hessian was then calculated at the 

mode, and the inverse of this was used as the covariance matrix. 

Sampling with the normal distribution provides a good estimate of the function 

close to the mode. Few points are sampled in the arms of the function however, 

and so a large part of the function is ignored. The reason for the difference in range 

of the normal candidate distribution and the bent normal is a result of the method 

used to estimate the covariance matrix. 

Assuming for simplicity that 0 = 0, the matrix of second derivatives of the 

negative logarithm of the bent normal distribution is 

H = 
1/crf + 2cP 0 

0 
C171) 

Assuming normality, the covariance matrix is given by the inverse of the Hessian 
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at the mode, 

\ 0 4 J 

Therefore, ya,r[3;i] is estimated to be (1/cr^ + and yar[ i2] is estimated to 

be (72. Using ± e definition of variance, 

/
oo roo 

d3;i / ^372(2:1 -A^i)^/(2;i ,a;2), % = 1 ,2 , (2.73) 
00 J —00 

the true variances of the bent normal distribution are found to be 

yar[2;i] = 
yor[a;2] = ((72 4 - a ^ ) ( l + 3c(^o-i+2G(^cr^). (2.74) 

Comparison with the expressions for the variances derived assuming normahty 

shows a signiAcant difference. Inputting the parameter values used in the trial 

function, we find that the actual variance of Xi is 4, whereas the estimated variance 

of is 0.121, and the actual and estimated variances of 2:2 are 208 and 0.01 

respectfully. Hence the normal sampling distribution will miss a significant part of 

the actual function when practical sample sizes are used. 

2.4.6 Using a Student t-Distribution as a Candidate Distribu-

tion for a Bent Normal Distribution 

We use the same bent normal distribution as in Section 2.4.5 for f{9). The mean 

and the covariance structure of the t-distribution were calculated in the same way 

as for the normal distribution, using the mode of the function as the mean and 

the inverse of the Hessian as the covariance matrix. The t-distribution, therefore 

suffers from the same problem as the normal distribution in that the area sampled 

covers only a small fraction of the significant part of the actual function. This is 

shown very clearly in Figure 2.2 which shows the points sampled from the can-

didate distribution during the importance sampling and points sampled from the 
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- m > . 

Figure 2.2: Samples from the t-distributed candidate distribution (blue) and the 

bent normal distribution (pink) highlighting the points with very high ratios 

(green). 

actual function. Highlighted on the graph are the points with the highest ratios 

of bent normal distribution to candidate distribution. These are all in the tails of 

the t-distribution, but where the bent normal distribution still has a relatively high 

density. High ratios cause problems with convergence in importance sampling and 

generally also suggest that the candidate distribution being used is unsuitable, as 

is seen to be the case here. 

The t-distribution appears to perform worse than the normal distribution when 

only a small number of degrees of freedom are used. The standardized t-distribution 

has much longer tails than the normal distribution, but the standardization means 

that the peak is much narrower. This means that a significant proportion of the 

points sampled from a t-distribution will correspond to fairly low values of the 

probability density function. Therefore, if the function being sampled has a sig-
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niAcant probability in the tails of the t-distribution, as is the case in this example, 

points sampled in the tails will correspond to very high ratios of actual distribu-

tion to candidate distribution. This will result in very high peaks in the tails of the 

candidate distribution, which are artefacts of the sampling rather than true features 

of the function being estimated. The t-distribution suffers more from this problem 

in this example than the normal distribution because it samples more points in its 

tails. 

2.4.7 Using a Bent Normal Distribution as a Candidate Distri-

bution for a Bent Normal Distribution 

Results given at the start of this chapter suggest that ideally the sampling function 

should be identical to the function being sampled. Therefore, we consider using 

a bent normal distribution as a candidate distribution. We estimate the mode and 

second derivatives of the bent normal distribution being sampled and use these to 

determine the optimal values for most of the parameters of the candidate distribu-

tion, /?). The mode of the bent normal distribution occurs at 

cos ^ -t- 3:2 sin 

Z2 cos ^ sin + o- (2.75) 

The second derivatives of the bent normal distribution at the mode are given by 

a v 

mode 

mode 

= — jV[(l/(7^-|-2G(^)co8^(^4-l/cr2sin^,^] (2.76) 

= —TV ( l / d i + 2^^ — 1/(72) sin^cos(^ (2.77) 

= —TV [(l/cr^ 4- 2ii^) sin^ 4- l/crg cos^ </)] , (2.78) 
mode 

where N is the value of the function at the mode. For the normalized function, 

N = but in general the posterior distribution will not be normalized, and we 
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assume throughout that jV can take any (unknown) value. Solving Equations 2.76 

- 2.78, gives us expressions for erg, + l / c i and ^ in terms of known variables. 

This leaves four variables undetermined o, ^ d d, with expressions linking 

a and ^2, and d and cri. We used the Nelder Mead optimization routine [74] to 

find the best values for these parameters, with the best values defined as being 

those that minimize the sum of the squared error between the actual function and 

the candidate distribution for a set of one thousand randomly generated samples. 

Table 2.4.7 shows the parameter values for the actual function and the sampling 

function, demonstrating how good a fit can be obtained using this method. 

Actual Sampling 

0"! 2 2.01 

0.1 0.100 

/̂ 1 -0.1 -0.0966 

/̂ 2 -1.2 -1.19 

d 2 2.01 

a 0.5 0.492 

9 0.2 0.193 

Table 2.1: Comparison between the parameters used in the sampling function and 

those of the actual function 

Using this function as a candidate distribution gives very disappointing results. 

We obtain very high values for the ratio of actual function to candidate distribution 

in the tails of the function. These values far exceed those obtained in regions where 

the actual and candidate distributions both have higher values. In fact, where the 

candidate distribution is a good fit, the ratio of actual function to candidate distri-

bution tends to be of order one. Elsewhere, the ratios rise to the order of hundreds 

and thousands, with a continuum up to the very high values. The parameter values 

corresponding to the large ratios have a very small probability of being sampled 
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(of the order of 10^^ or less of the maximum), but the actual function is often a 

factor of 10^ or more different from the sampling probability. The discrepancy in 

the parameter values makes very little difference to the fit of the candidate distrib-

ution to the actual function, but a huge difference to the results of the importance 

sampling. 

These results suggest that finding a good fit to the function being estimated is 

not always good enough to ensure that the importance sampling works well. It is 

also essential to find a sampling function with fatter tails than the function being 

estimated. 

2.4.8 Using a Bent t-Distribution as a Candidate Distribution 

for a Bent Normal Distribution 

In this section, we introduce a bent t-distribution and present some of the results 

obtained when using this function as a sampling distribution for the bent normal 

distribution, shown in Figure 2.1. By constructing a bent t-distribution, we hope to 

construct a suitable candidate distribution for a bent normal distribution, that has 

a similar shape but fatter tails. 

We use the transformations described in Equation 2.68, using standard t-variates 

in place of the standard normal variates zi and zg to generate variates of the bent 

t-distribution. The probability density function for the bent t-distribution with i/ 

degrees of freedom can be written as 

K 

1 + oP(3;i -

/ \2-] r 1 / \ 2l 
. (3:1 - . I 1 / 2:2-/^2 

z/o"! dgV 

(2.79) 
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Figure 2.3: Contour plot of the bent t-distribution with four degrees of freedom. 

in unrotated coordinates, where 

K = r ( ^ ) 1/2 1 
(2.80) 

r ( f ) V ^ / Z/TTlTiCrs 

In rotated coordinates, xi would be replaced by yi cos (f) + y2 sin 0 and X2 by 

2/2 cos sin 

We obtain best-fit parameters using the procedure detailed in Section 2.4.7, 

for finding the parameters of a bent normal distribution, and then experiment with 

different values for the degrees of freedom u to obtain the best results for the 

estimated function. 

Figure 2.3 shows the bent t-distribution for z/ = 4. Comparison with Figure 2.1 

(the bent normal distribution) shows that the bent normal distribution has arms of 

approximately equal length, whereas the bent t-distribution does not. The estimate 

to the function obtained using this candidate distribution is given in Figure 2.4 and 

shows the effect of this discrepancy. In addition to the peak corresponding to the 

maximum of the function, there is a second peak in the region where the difference 



CHAPTER 2 39 

-1.15 

• 250-300 

• 200-250 

• 150-200 

• 100-150 

050-100 

• 0-50 

Figure 2.4: Contour plot of the estimated bent normal distribution. 

between the bent normal and the bent t-distribution is largest. Similar results are 

obtained with higher values of v. 

With u = 3, the estimated function is similar to that obtained using the standard 

bent normal distribution as candidate distribution, with very high peaks in the tails 

of the function. 

These results suggest that the bent t-distribution would not be suitable as a can-

didate distribution for a bent normal distribution as the shapes of the two functions 

are different. 

2.5 Discussion 

The optimal candidate distribution to use in importance sampling is a normalised 

version of the function whose integral we are trying to estimate, as we showed in 

Section 2.2. However, finding this function involves evaluating the integral and so 

this is not a practical solution to the problem. The results suggest that we should 
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use a candidate distribution that is as close as possible in form to the function 

whose integral we are evaluating. 

The wrong choice of candidate distribution in importance sampling can result 

in a situation where the sampling does not converge, and the variance of the im-

portance sampling is infinite. In general, this can be overcome by ensuring that 

the candidate distribution used has thicker tails than the function being integrated. 

We discussed this in Section 2.3 for one-dimensional functions, and gave some 

general results for functions from the exponential family. 

As the number of dimensions increases, knowledge about the function becomes 

more critical. Expressions were derived for the variance of importance sampling 

when both the sampler function and the function being integrated are multivariate 

normal, and are given in Section 2.4.1. These showed that knowledge of the mean 

is more important than knowledge of the covariance structure when defining the 

candidate distribution in importance sampling. 

The practical examples introduced in Section 2.4 show that obtaining conver-

gence of importance sampling in multi-dimensional space is difficult when the 

function being integrated has a different shape from a normal distribution, with 

non-elliptical contours. None of the candidate distributions tried worked well in 

this situation, but the lack of convergence was easily diagnosed by the extreme 

values of the ratios of the function being sampled to the candidate distribution for 

a few of the observations in each of the runs of the sampling. 

The results of this chapter suggest that some time should be spent learning 

about the function being sampled prior to defining the candidate distribution. They 

also demonstrate that importance sampling does not perform well in all situations 

and that some kind of robustness test is required to check that the sampling has 

converged. Chapter 3 discusses a number of convergence tests for importance 

sampling, all of which work by examining the distribution of the ratios output for 
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each observation. The ratios should be approximately equal if importance sam-

pling is performing well, with extreme ratios suggesting that importance sampling 

is not converging. 



Chapter 3 

Techniques for Measuring the 

Convergence of Importance 

SampUng 

3.1 Introduction 

In this chapter, we describe diagnostic and statistical methods for assessing the 

convergence of importance sampling. As discussed at the end of Chapter 2, the 

distribution of the importance sampling weights, which are the ratio of the function 

being sampled to the candidate distribution at each sampling point, give a good 

indication of whether the sampling has converged. All of the methods we consider 

for assessing convergence in this chapter use only the values of these weights in 

their assessment. 

The diagnostic tests that we consider mainly involve graphical indicators of 

convergence, such as plotting the variation in the variance over the sampling. We 

also consider statistical tests based on extreme value theory that test whether the 

variance of the sampling is finite or not. To compare the performance of the dif-

42 
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ferent methods and demonstrate their use, we apply them to two simple examples, 

one of well-behaved and the other of non-convergent importance sampling. 

3.2 Diagnostic Tests 

3.2.1 Plot of Top One Hundred Weights and Variance of Weights 

In this test, the highest one hundred weights are plotted as they occur in the sample, 

with the running estimate of the variance of the weights plotted on the same graph. 

From this we can tell if the sample is being biased by any very large weights. With 

perfect convergence, all the weights would be equal, and if importance sampling 

is converging well this plot should show weights to be of a similar order of mag-

nitude, and the variance of the sample should not be affected significantly by any 

individual weight. 

For example. Figure 3.1 shows the top one hundred weights in a sample of 

ten thousand when a student t-distribution is being used to sample a normal dis-

tribution, with the variance of the weights over the run superimposed. This is 

an example where importance sampling does work well. Figure 3.2 on the other 

hand shows the top one hundred weights in a sample of ten thousand when using 

a normal distribution as a candidate distribution for a t-distribution. This is an 

example where importance sampling does not perform well and we can see that 

there are two very high-valued weights that have a great effect on the variance of 

the sampling. 

We can relate the variance of the weights to the variance of the sampling as 

follows. An expression for the variance of the sampling is given in Equation 2.6. 

The second term of this expression is independent of the candidate distribution; 

therefore assuming that the quantity we are trying to estimate has a finite variance, 

this term can be ignored. In assessing whether convergence will occur, we can 
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Figure 3.1: Distribution of the highest one hundred importance sampling weights 

when sampling a normal distribution with mean zero and variance one with a t-

distribution with three degrees of freedom. The variance of the weights over the 

run is superimposed. 
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= 200 
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10000 

Run # 

Figure 3.2: Distribution of the highest one hundred importance sampling weights 

when sampling a t-distribution with ten degrees of freedom with a normal distrib-

ution with mean zero and variance one. The variance of the weights over the run 

is superimposed. 
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therefore concentrate on the first term, which can be approximated by 

where the M samples {^i} are drawn from the candidate distribution The 

variance of the weights can be expressed as 

which is equal to the expression in Equation 3.1 minus the square of the mean of 

the weights. Therefore, if the variance of the weights is divergent, the variance of 

the sampling will also be divergent. 

We can judge whether the variance is tending to some finite value or is di-

vergent by evaluating the variance of the weights over the run and observing any 

trends. Necessarily, this judgment must be subjective, but as Figures 3.2 and 3.1 

show, observing the evolution of the variance of the weights can give a good indi-

cation of sampling convergence. 

3.2.2 Distribution of Weights Between Observations 

This is a diagnostic test that we have developed to give an indication of the propor-

tion of the sum of the weights that is being assigned to individual observations and 

to groups of observations. We calculate the maximum normalised weight initially 

to determine how extreme this weight is. The proportion of the sample making 

up different proportions of the sum of the weights can also be useful in assessing 

convergence. 

This test can find examples where the importance sampling is definitely not 

performing well but can occasionally suggest excellent convergence when other 

tests indicate that this is not the case. For example, Figures 3.3 and 3.4 show that 
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Figure 3.3; The percentage of the sample points making up percentages of the sum 

of the weights when sampling a normal distribution with mean zero and variance 

one with a t-distribution with three degrees of freedom. 

for the case in which importance sampling is less appropriate (3.4), the results ap-

pear better than for the case in which importance sampling should definitely con-

verge (3.3). Considering the highest-valued weights for these examples, however, 

we find that the example in which a t-distribution is used as a candidate distribu-

tion for a normal (a good use of importance sampling), has a maximum normalised 

weight of 0.02% and in the example where a normal distribution is used as a can-

didate distribution for a t-distribution (a poor use of importance sampling) the 

maximum normalised weight is 3.0%. In an ideal situation, all normalised weights 

should have an equal value of one over the number of samples; in this case a value 

of 0.01%. 
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Figure 3.4: The percentage of the sample points making up percentages of the sum 

of the weights when sampling a t-distribution with ten degrees of freedom with a 

normal distribution with mean zero and variance one. 

3.3 Statistical Tests 

Importance sampling is only valid if the variance of the sampling is finite, as was 

shown in Chapter 2 and has also been discussed by Geweke [53]. Proving that the 

variance is finite can be very difficult for high-dimensional complex integrals. We 

consider below a method based on extreme value theory that was recently proposed 

by Koopman and Shephard [65]. 

3.3.1 Tests Based on Extreme Value Theory 

To determine whether the variance is finite, we need to investigate the distribu-

tion of the weights. We make use of results from extreme value theory and fit a 

generalised pareto distribution (GPD) to the highest valued weights. The shape 

parameter ^ of the GPD determines the number of moments that exist. The best-fit 
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value for ^ for a set of weights can therefore be used to determine whether the 

variance of the weights is finite. This work follows that of Koopman and Shephard 

[65]. 

The generalised pareto distribution (GPD) describes the distribution of ex-

cesses over a threshold and has probability density function 

0.3) 

where z are the exceedances over the threshold w, such that z > 0. For ,̂  < 0, we 

have the additional constraint that z < — 

According to Smith [96], if we have a set of independent, identically distrib-

uted weights {z/i}, then as the threshold u increases, the limit distributions of the 

random variables over this threshold z, = — «) will be generalised pareto. The 

threshold u is defined by the user, and the choice must be made carefully to ensure 

that u is low enough for there to be sufficient data available to use for inference, 

but high enough for the excesses to follow a GPD distribution. 

As only 1/^ moments exist, the variance is finite only if ^ < 0.5. Following 

Koopman and Shephard [65], we test the hypothesis 

: ^ = I and ^ (3.4) 

where equality is used in the expression for to simplify the statistical analysis. 

The score vector g of the parameters A = /?) for a sample of n exceedances 

Zt is given by 

a i o g / ( z ; A) 
gA 

r ' EILi log z, - (1 + ZILi 

-j- (1 + 
(3.5) 
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where we use the shorthand a;, = 1 + The expected information matrix of 

A is then Mi, where 

I ( 2 V (3.6) 
(1+20(1+5)^^^1 + j 

This is a different expression from that of [65]. Using this expression for the infor-

mation matrix, the asymptotic distribution of the maximum likelihood estimator A 

is given by 

\ / ^ ( A - A ) - ^ ' ^ 7 V ( 0 , i - ^ ) , (3.7) 

where 

_i . v.\ I 1 ^ 
M = + . (3.8) 

We know from [96] that likelihood inference is regular for ^ > —1/2. 

We use three different hypothesis tests: 

1. The Wald test is based directly on the result of Equation 3.7 and involves 

computation of an asymptotic signed t-test 

(3.9) 

where is the diagonal component of corresponding to evaluated 

at ^ = 1/2. This gives 

(3.10) 

where the null hypothesis is rejected if t takes a large positive value com-

pared with the standard normal. 

2. In the score test we consider the score value for the null hypothesis 

4 ^ 4 g l o g ^ . ^ 3 r ' E i + / - i , . / 2 -
1=1 i=l 
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Its standardised value 

4 = (3.12) 
V 

is asymptotically N(0,1) under ^o- Substituting = 1/2 into Equation 3.6, 

we can evaluate and write as 

= (3.13) 

In the score test we therefore reject the null if s | is significantly positive 

compared with a standard normal. 

3. The likelihood ratio test compares the log likelihoods of the best fit para-

meters under the restriction that ^ > 1/2, and the best fit parameters 

where ^ is restricted to be equal to 1/2. The maximum likelihood estimator 

for is then given by We evaluate 

2 log / (z ; /)) - log / (z ; /3o, = 1/2) (3.14) 

Using Equations 3.3 and 3.14, 

= 2 n(ln;go - + 3 ^ 1 n ( l + Zi/(2/3o)) 
i = l 

71 
-(l + i ) 5 ^ 1 n ( l + / 3 W / ' ) 

i=l 

(3.15) 

The null hypothesis is rejected if is high compared with + %i)/2, 

where is a unit point mass at the origin. The %Q term arises because is 

on a boundary [23]. 

Asymptotically these tests should give the same results, with the likelihood 

ratio considering the differences in log likelihood between the maximum and the 

hypothesis point, the Wald test considering the difference in the position of the 

maximum likelihood estimator and hypothesis point, and the score test considering 

the difference between the gradient of the log likelihood surface at the hypothesis 
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point and at the actual maximum. With a finite number of data points, the results 

of the three tests may be different, and it is useful to take all of them into account 

when assessing the convergence of the importance sampling. 

We use Davidon's method of conjugate gradients [37] (a good description is 

given in [17]) to fit the unrestricted maximum likelihood estimates ( < ^ , a n d 

a Fibonacci line search to fit ^o- We found that the method of Fisher Scoring 

suggested by Koopman and Shephard [65] frequently entered infeasible regions of 

parameter space. We compared the results of our maximum likelihood fitting with 

those produced using the ExtRemes toolkit [54] and found that our estimates of ^ 

and matched their results in all cases of interest. 

When the weights are very small, problems are encountered fitting the GPD. 

The parameter /), which acts as a scale parameter is very small in these situations, 

but tends to have very high derivatives, making the optimization routine suggest 

infeasible values. Rescaling the data before performing the fitting routine seems 

to help, but more investigations are required into the sensitivity of the final values 

to the scale parameter used. Earlier work on fitting a GPD to data [18] has tended 

to concentrate on datasets for which < 1/2, considering the case where ^ > 1/2 

to be less practically useful. The problem of very small data values also does not 

appear to have been considered within the literature. 

Results for the two examples are given in Table 3.3.1. We find that the results 

corroborate the theory of Chapter 2, that using a t-distribution as the candidate dis-

tribution when sampling a normal distribution results in a finite sampling variance, 

whereas using a normal distribution as a sampling function for a t-distribution 

leads to the sampling having a non-finite variance. 
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3.4 Evaluation of Convergence Tests 

We find the diagnostic tests presented here to be very useful tools for assessing 

convergence of importance sampling and indicating situations where the candi-

date distribution is not sufficiently close to the actual function for importance sam-

pling to work efficiently. We have introduced one new diagnostic test to those 

of Koopman and Shepherd [65], evaluating the proportion of the sample account-

ing for different proportions of the sum of weights. This did not prove useful for 

assessing convergence for the two examples presented here, suggesting good con-

vergence for the example where convergence was poor and worse convergence in 

the example where convergence was in fact good. In other examples, this test has 

been found to be useful, where there are a few very extreme weights that absorb 

most of the probability. We have not included an histogram of all but the top one 

hundred weights, as suggested by Koopman and Shephard because we did not find 

this to be a useful tool. It told us very little about the extreme weights, which seem 

to be principally responsible for non-convergence. 

Fitting the generalised pareto distribution to the weights can be time consuming 

as this needs to be done for a number of different thresholds to check that the 

Example Test Statistic Result 

Good IS Wald test -1300 Accept Ho 

Score test -178 Accept Ho 

Likelihood ratio -43600 Accept Ho 

Poor IS Wald test 3.72 Reject Ho 

Score test 253 Reject Ho 

Likelihood ratio 2650 Reject Ho 

Table 3.1: Results of statistical tests of the hypothesis given in Equation 3.4 to 

assess convergence of importance sampling. 
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weights included in the fitting process come from a distribution of this type. If 

one threshold only could be chosen, this would reduce CPU time, but perhaps at 

the expense of accuracy. The statistical tests appear to be useful in assessing the 

convergence and possibly provide a more concrete measure than the diagnostic 

tests. 

The recommendation based on this investigation is to use both diagnostic and 

statistical tests. Non-convergence can generally be determined from the diagnostic 

tests, with the statistical tests confirming the user's beliefs. 
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Bayesian Model Selection 

4.1 Introduction 

In this chapter, we describe the application of Bayesian methods to model selection 

in normal mixture models. These are models of the form 

k 

= ( 4 . 1 ) 

1=1 

where g(.) is a normal distribution. The problem that we consider is the statisti-

cally non-standard one of finding the probability distribution for k, the number of 

components in the normal mixture. The focus of the work is on examples in which 

there is no prior information available. We use importance sampling to find the 

posterior distribution for the number of components in the mixture and apply our 

methodology to a number of standard datasets. There are two main applications; 

semiparametric density estimation, such as that used in input modelling for simu-

lation models [21] and determination of the number of distinct groups present in a 

dataset, when it is known prior to the investigation that such groups do exist. 

We use a Bayesian framework to analyse the problem, finding the posterior 

distribution of the number of components in the mixture. Maximum likelihood 

5 4 
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methods have some drawbacks in this application as the likelihood surface has 

discontinuities near its boundaries, e.g. as the component variances tend to zero. 

In addition, a maximum likelihood methodology will tend to prefer the model 

with the largest number of components, as this is always the model that best fits 

the data. Including the prior distribution acts to smooth out the discontinuities in 

the likelihood. 

A review of the available literature on the analysis of finite mixture models is 

given in Section 4.2. There are a number of issues concerned with model selection 

in finite mixture models, and these are discussed in Section 4.3. We then go on to 

describe the methodology that we have used to solve this problem in Sections 4.4 

and 4,5. Results are presented in Section 4.6 and are followed by a discussion in 

Section 4.7. 

4.2 Literature Review 

The main issues in designing a Bayesian methodology for the solution of this prob-

lem are the choice of prior distribution and the sampling methodology used to find 

the posterior distribution. We begin by discussing the choice of prior distribution 

in Section 4.2.1 and then go on to describe the different sampling methodologies 

used to find the posterior distribution in Section 4.2.2. 

4.2.1 Prior Distribution 

It is not possible for the prior distribution used to be fully non-informative and 

still to obtain proper posterior distributions for mixture models. The choice of 

prior distribution in a mixture model setting that is proper and yet sufficiently non-

informative is an important part of the methodology. 
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Both Richardson and Green [84] and Roeder and Wasserman [88] use a Dirich-

let distribution with parameters set equal to 1 as a prior for the component weights, 

and a discrete uniform distribution to describe the number of components in the 

model such that = A;} = ^ zero for all other val-

ues of A:. Providing is chosen to be sufficiently large, these priors impart no 

inHuence on the posterior distribution. 

Phillips and Smith [80] use a modiAed Poisson distribution as a prior distribu-

tion for the number of components, in which the probability of obtaining no com-

ponents is zero, and a uniform distribution as a prior distribution for the weights. 

The use of a Poisson distribution places a greater probability mass on values closer 

to the input parameter of the distribution, which in this example is a hyperparame-

ter that is chosen by the user. Therefore, this prior distribution is less flat than the 

discrete uniform prior described in the previous paragraph. 

The prior distributions for the number of components and the weights used by 

Escobar and West [45] are fundamentally different from those described above. 

They use a Dirichlet process as a prior distribution for the mixture, with the dis-

tribution of the (n + 1)*^ sample, conditional on the previous n estimates, equal 

to 
k 

TTn+ik rvv a!anG'o(7r,i+i) + On ^ ( : ; r n + i ) . (4.2) 
j=i 

Therefore there is a positive probability that the sample from the distribution 

comes from the same component as one of the previous samples. Using this distri-

bution, the expected number of components in the mixture for a sample of size n is 

proportional to ln(l + n / a ) . Therefore, as the sample size increases, the expected 

number of components also increases. Although to a certain extent this is logical, 

it does lead to some influence in the prior distribution. Priors of this form, with 

Dirichlet mixtures and Poisson-like priors for the number of components are more 

geared toward density estimation than to determining the number of components. 
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with the number of components being treated more as a nuisance parameter [99]. 

Most authors use a normal prior for the means of the components and a gamma 

distribution for the inverse variances. This choice of distributions gives some ad-

vantages of conjugacy. Richardson and Green [84] extend this to include a hyper-

prior structure for the shape parameter in the gamma distribution for the inverse 

variance. They argue that although it is possible to deAne a sufficiently vague prior 

distribution for the mean based on the range of the data available, little informa-

tion can be gleaned from the data about the variances of the components. In their 

model, 

(4.3) 

where g, h k and a are hyperparameters to be determined by the user. With 

this approach, the prior probability distributions for the means and variances of 

the components are independent of each other. 

Hierarchical priors are also advocated by Berkhoff, van Mechelen and Gel-

man [11] who investigated the sensitivity of the prior structure for a latent class 

model. They argue that by using a hierarchical model for the prior distribution, 

they are selecting prior distributions that are not contradicted by the data. Ap-

plying this methodology to a model of psychiatric symptoms, they find that the 

hierarchical prior distribution produces more sensible posterior distributions than 

the non-hierarchical distributions. 

Roeder and Wasserman [88] use what they describe as partially proper priors 

for the means and standard deviations of the component parameters. These are 

partially proper in the sense that the overall scale and location of the parameters 

require no subjective input but the parameters for different components are linked. 

The means are loosely linked through a Markov Chain, which means that the prior 
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distribution for the position of an individual component mean in parameter space 

is flat but the distribution describing the distance between two component means is 

not. The joint prior distribution for the component variances is a product of scaled 

inverse-chi distributions with a common scale parameter and common degrees of 

freedom. This has the effect of pushing all of the component standard deviations 

toward some common, unspecified value. The prior requires two hyperparameters, 

one influencing the distance between the component means and the other affecting 

the difference in the scale of the component variances. 

Although this choice of prior distribution could be used in many different 

applications without adaptation, it does impose some structure on the problem 

through having non-flat distributions describing the distance between the com-

ponent means and the difference in scale of the component variances. A prior 

distribution that imposes some scale on the component means and variances but 

treats them independently may actually impart less information. Further problems 

arrive with Roeder and Wasserman's approach if the data being modelled comes 

from a mixture of components when two or more of those components have the 

same mean. The prior that they use has zero probability of this occurring and so 

prevents the correct posterior probability distribution being obtained. 

Stephens [97] suggests however, that choosing a vague prior distribution for 

this problem is more difficult than it might first appear, and this point is also picked 

up by Jennison in the discussion of Richardson and Green's paper [61]. Both show 

the dependence of the posterior distribution for the number of components k, on 

the prior distributions used for the component means and variances. Stephens 

discusses how for a very small variance in the prior distribution for the component 

means or variances, models with a low number of components are favoured, then as 

the variance is increased, the prior distribution favours models with high numbers 

of components. As the variance is increased even further, to very high levels, the 

prior distribution again begins to favour models with few components. We discuss 
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this sensitivity of the posterior distribution of the number of components to the 

prior distributions of the other model parameters further in Section 4.3.3. 

4.2.2 Sampling Methodologies 

Previous work in this area has mainly concentrated on the use of Markov Chain 

Monte Carlo (MCMC) methods for the solution of the problem. Richardson and 

Green [84] and Phillips and Smith [80] describe reversible jump methodologies for 

model selection. Stephens [97] again uses MCMC sampling but considers an al-

ternative to the reversible jump methodologies. Independence sampling has been 

considered by Cheng [20] and importance sampling by Raftery [82]. Raftery's 

approach is based on the estimation of marginal likelihoods for each of the pos-

sible models, with several methods of determining the marginal likelihoods pro-

posed, importance sampling being just one. His favoured approach is the Laplace-

Metropolis estimator, which is based on the Laplace method, but uses posterior 

simulation to estimate the quantities that the Laplace method needs. In the exam-

ple he considers of one-dimensional mixing, Gibbs sampling is used to perform 

the posterior simulation. 

In jump-diffusion sampling [80], [84], the Markov chain can make discrete 

transitions between different models (jumps) and can sample model-specific pa-

rameters between these transitions (diffusion). Two different jump dynamics are 

described by Phillips and Smith [80]: Gibbs and Metropolis-Hastings. In Gibbs 

jump dynamics, the jump intensity, i.e. the probability of jumping from the cur-

rent model to a new model, is proportional to the full conditional distribution. 

With the Metropolis-Hastings jump dynamics, jump times are calculated using a 

modified jump intensity dependent on the prior distribution, and are accepted with 

a probability of min{l,exp[Z,j((^) - where Z,i(^) is the log likelihood 

of a parameter set 9 for model i. The diffusion step then consists of a Langevin 
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diffusion in the subspace corresponding to the current model. 

Phillips and Smith [80] have applied this methodology to normal mixture mod-

els, and here they restricted the jump space of the sampler, allowing it only to jump 

from its current state k to models with either A: — 1 or A: + 1 components. There -

fore, the number of components can only increase or decrease by 1 in each move 

of the sampler. Metropolis-Hastings jump dynamics were used, as obtaining full 

conditional distributions for the parameters is difficult for mixture models. 

A similar methodology is used by Richardson and Green [84], who also use 

Metropolis-Hastings jump dynamics in a reversible jump MCMC sampler. Instead 

of performing the random sampling of jump times, as used by Phillips and Smith 

[80], Richardson and Green use a systematic approach, in which the parameters 

in the current model are sampled from their full conditional distributions, and the 

sampler then goes on to either split one component or combine two components, 

resulting in a model with either one more or one less component. 

Stephens's MCMC sampler [97] appears simpler than the reversible jump sam-

plers described above. The method is based on the construction of a continuous 

time Markov birth-death process which has the posterior as its stationary distribu-

tion. The number of components is varied in the model by allowing new compo-

nents to be bom and old components to die. Births occur at a constant rate from 

the prior while deaths occur at a rate dependent on the quality of the component. 

A further example of the use of MCMC methods is given by Escobar and West 

[45], who use Gibbs sampling to find the full posterior distribution. This is made 

possible by their choice of prior distribution for the number of components and 

the weightings associated with these components, as it means that a discrete move 

between different models is not required. 

Other methods proposed in the literature determine the posterior distribution 

using the marginal likelihoods of the different models. The posterior distribution 
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for a model and the Bayes factor for comparing that model with others are 

dependent on the marginal likelihood P{Mk\D), where D is the available data. 

The marginal likelihood for a model is defined to be the integral over that model's 

parameter space of the prior distribution multiplied by the likelihood. Raftery [82] 

proposes using importance sampling or maximum likelihood methods for find-

ing the marginal likelihood, while Roeder and Wasserman [88] and Chib [24] use 

Gibbs sampling. As a result of using partially proper priors, Roeder and Wasser-

man can only estimate the marginal likelihoods up to an unknown factor, therefore, 

the Schwarz criterion [94] is used to find the optimal model. Under the Schwarz 

criterion, the optimal model is that for which ln[p(D|^t)] — is largest, 

where model A: has parameters 0 ,̂ M is the number of observations, denoted 

by D. 

Berkhof et al [11] also use marginal Ukelihoods to calculate Bayes factors for 

model selection, using a variant of Chib's estimator [24] for the computation. The 

variant involves implementing a relabelling transition for the mixture components, 

as suggested by Neal [73], to enhance mixing between different modes of the 

mixture distribution. Due to non-identifiability of the components in a mixture 

model, the posterior for a model with k components will have k\ symmetrical 

modes. Neal argues that marginal likelihoods cannot be used to compare models 

if the sampling does not allow sufficient mixing between these different modes, as 

the estimates of the marginal likelihoods will be incorrect. Further discussion of 

identifiability in mixture models is given by Crawford [31] and in Section 4.3.1. 

Cheng [20] describes a different method again of determining the posterior dis-

tribution of a mixture model. He assumes during the sampling that all components 

are present in the model, up to a maximum number kmax- Markov Chain Monte 

Carlo sampling is then used to produce m samples from the posterior distribution 

of this model. For each of the samples, if the weighting assigned to a component is 

below some predetermined value 5, the component is ignored. No rule for choos-
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ing 5 is given and this must be determined subjectively by the user. In his paper, 

Cheng uses an independence sampler to sample from the posterior distribution. 

Gibbs sampling can also be used for most problems and this has been found to 

give better results. 

4.3 Issues 

4.3.1 Label-Switching 

The components in a mixture model are non-identifiable, which means that the 

posterior distribution will have k! symmetric modes for a model with A: compo-

nents. If the separation between component means is small, there could be inter-

ference from one or more of the other kl — 1 symmetric modes. We assume that 

we identify only one of these modes in the optimization, and that the importance 

sampling only samples from close to this mode. For the datasets analysed in this 

thesis, we assume in addition that the kl modes are well separated in the best-fit 

models. 

The problem of label-switching, as the phenomenon described above is re-

ferred to, is not necessarily important in mixture analysis. In situations where the 

data are known to be made up of finite mixtures, it is important to identify and label 

the components correctly, as the component means and variances have a physical 

meaning. On the other hand, where finite mixtures are being used simply as semi-

parametric density estimates, the component parameters are of less interest and the 

analysis should focus on quantities such as the probability density, which will be 

invariant to label-switches. The aim of our analysis is somewhere between these 

two extremes, and is probably best described as "investigating heterogeneity", a 

term used by Richardson and Green to describe their own work [83]. We wish to 

determine the posterior distribution for the number of components in the mixture 
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model, and we have less interest in the accurate determination of component means 

and variances. The label-switching problem is therefore not of paramount interest 

to us, as the results of the importance sampling for the number of components will 

be invariant to label-switching. 

4.3.2 Bayesian versus Frequentist Argument 

The likelihood of the parameters of mixtures of normal distributions with different 

variances has several problems. As a component variance tends to the boundary 

level of zero, the likelihood tends to an infinite spike. This corresponds to the sit-

uation where one component is fitting to just one data point, and the component 

tends to a delta function centred on that point. The likelihood function also suffers 

from the existence of local maxima, which can create some computational difficul-

ties when trying to estimate the number of components. The effect of the prior can 

alleviate these difficulties in the Bayesian analysis, although the posterior distribu-

tion can also suffer from local maxima. For example, the prior distribution for the 

variance of the sampling will usually associate a very low or zero prior probability 

with the variance of the component tending to zero. The prior probability can be 

seen as introducing a smoothing effect, resulting in a posterior distribution that is 

easier to deal with than the corresponding likelihood distribution. 

There are ways of overcoming the problem of zero variance in maximum like-

lihood estimation. These usually rely on restricting the variance, and it could be 

argued that these use much the same methods as incorporating a prior distribution 

but in a less transparent way. 

4.3.3 Sensitivity to the Prior Distribution 

Both Richardson and Green [84] and Stephens [97] comment on the sensitivity of 

the posterior distribution for the number of components in a finite mixture model 
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(/u) to the prior distributions for other parameters in the mixture model. 

Richardson and Green found that when the variance of the prior distribution 

is small, representing a strong belief that the means are at the mean of the prior 

distribution, models with a small number of components are favoured. As the 

variance is increased, to represent vaguer prior knowledge of the position of the 

component means, initially more components are fitted with means spread across 

the range of the data, but continuing to increase the variance will eventually favour 

fitting fewer components. In the limit of the variance tending to oo, the distribution 

of A; becomes independent of the data (according to Stephens [97]) and this heavily 

favours a one component model. 

We investigate this dependence further by considering a very simple prior dis-

tribution for the means, variances and weights of a normal mixture model. We 

assume that the means follow a uniform distribution with minimum at % — A/2 

and maximum at % + A/2 and that the variances also follow a uniform with lower 

and upper values at 0 and T, where %, R and T are hyperparameters to be set by 

the user. The values of the parameters R and T will determine how vague the 

prior distributions for the component means and variances are, and % sets the lo-

cation of the mean. The weights are assumed to follow a Dirichlet distribution 

with parameter S set equal to one. The prior probability of choosing a model with 

A; components is assumed to be l/kmoi for ^ up to /Cmaz- Therefore, the prior 

probability of a model with k components with parameters 6 is 

where 0 < cr < T, - A / 2 < / / - % < A/2, 0 < A; < Writing AT = 6", and 

expanding the gamma function we obtain an expression for the prior probability in 

terms of A; and 5', 

( « ) 

We use Maple to plot this function for different values of S in Figure 4.1. Higher 
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values of S imply vaguer prior knowledge. As can be seen in the figure, the prior 

distribution has a minimum for some value of k. As S increases and the prior 

knowledge becomes vaguer, the minimum occurs at higher values of A;. Thus 

the scale parameters used in the prior distributions for the component means and 

variances impact on the prior distribution for A;. In general, intermediate values of 

k seem to have a lower probability than very low or very high values of k. 

A 3-d plot showing the variation of 7r(A;, with A; and 6" is shown in Figure 

4.2. This is not very clear, which is why the set of 6 graphs for different values 

of S were produced. The graphs in Figure 4.1 all use an integer value for S and 

it is interesting to note, that 7r(A;, is equal at A: = 5" and A; = 5" + 1, with the 

minimum of 7r(A;, with respect to A; always lying between 6" and . 9 + 1 . In fact, 

this is also true for non-integer 5" as is easily shown by considering the definition 

of %(A:, in Equation 4.4. 

So what does it mean geometrically? As we are using uniform distributions, 

the prior distribution 7r(A;, gives an indication of the volume of our available 

parameter space. The weights are restricted to always sum to one, therefore the 

volume of our parameter space is defined by a simplex in A; — 1 dimensions (pa-

rameter space of the weights) multiplied by a cuboid of side 5" in A: dimensions 

(parameter space of combined means and variances). As k increases, the volume 

of the cuboid increases for 5" > 1, decreases for 5 < 1 and remains constant for 

5" = 1; the volume of the simplex always decreases. The maximimi volume of 

parameter space, and so the minimum value for 7r{k, 6), will therefore occur at 

different values for different S. 

We can obtain an approximate expression for the value of k at which the prior 

distribution has a minimum by using Stirling's approximation to the factorial func-

tion. 

n —» oo. (4.6) 
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Figure 4.1: The variation of the prior distribution with A; for (a)5' — 2, (b) 5" = 4, 

(c) ^ = 7, (d)^ = 15, (e)^ = 25, (f) S = 50. 
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3 3 

Figure 4.2: The variation of the prior distribution with k and S. 

Substituting this into Equation 4.5, 

(k - i)'=-ie-('=-i)y/27r(A: - 1) 
7r{k, 9) = 

S'^ 
(4.7) 

Differentiating and setting the differential equal to zero, we find that k has a mini-

mum at 
^ -'^^LambertW ( - ^ ) 

where LambertW{x) is defined such that 

LambertW{x) exp{LambertW{x)) = x. 

Therefore, the joint prior distribution for k, the number of components in a normal 

mixture model, is dependent on the prior distribution for the component means 

and variances. 

Rescaling the data could result in a change in the prior distribution, and so 

an increase or a reduction in S, with no increase in the vagueness of the priors 
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for the means and variances. This could then change the joint prior distribution 

for the number of components. For example, if the data, and corresponding prior 

distributions, were rescaled so that 5" < 1, the prior distribution would have a 

minimum at A; = 1, rather than at the integer value of /c between unsealed values 

of 5" and 5" + 1. This results from the interplay between the volume of the simplex 

defining the parameter space of the weights and the cuboid defining the parameter 

space of the means and variances. 

Although this analysis has been conducted for uniform distributions for the 

means and variances, it is suspected that the results will be similar for other dis-

tributions as the cause of the variation is the interplay between the increase in the 

volume of the parameter space of the component means and variances and the 

decrease in the volume of the parameter space of the component weights. 

4.4 Prior Distribution 

We use as a prior distribution 

Vi 

f (z, = ; ) = % 

a -

^ / ) ) 

— 1/^mas 

(4.10) 

k — 1 , 2 , . . . , k j j i a x } 

where Di{S) denotes a Dirichlet distribution with parameter vector S and = 

1/Oj. The parameters m, a, /?, J are chosen in advance to give an uninformative 

prior. We set m equal to the mean of the data, and equal to the sample variance 

multiplied by a stretch factor, that we set equal to one thousand. We set a , the 

shape parameter in the prior distribution for the inverse variance, equal to one and 
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such that the mean of the distribution is equal to one over the variance of the 

data multiplied by the stretch factor. The parameter in the Dirichlet distribution, 5 

is set to one, placing equal prior probability on values of the component weights, 

^ d /cnwn is chosen to be 10 in all of the examples considered. 

The prior distribution given in Equation 4.10 is of a simpler form than that 

used by Richardson and Green [84] and described in Section 4.2.1 as it includes 

one less hierarchical layer. This has no effect on the prior distributions for the 

component means and weightings nor on that for the number of components in 

the mixture. It will result in a slightly more restrictive prior distribution for the 

component variances. 

We investigated the effect of changing the scale parameters in the prior distrib-

utions for the component means and variances, considering three different datasets. 

Results suggested that for this form of the prior distribution, changing the scale 

parameters (and so altering some of the hyperparameters) had little effect on the 

posterior distribution for k, with the optimal number of components changing by 

at most one, but in the main staying the same. 

Choosing a higher value for S could have a more significant effect on the opti-

mal number of components, as this parameter affects the the size of the component 

weights. Setting S to one allows the model to choose zero values for some of the 

weights. This means that a model that appears to have many components could ac-

tually be a model with only a few components, as some of the component weights 

may be zero or very close to zero. As ^ is increased beyond one, the dirichlet 

distribution favours larger weights. It could be argued that the best value for this 

parameter is slightly higher than one, and this should be the subject of further 

investigation. 
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4.5 Importance Sampling 

Obtaining good convergence using importance sampling requires good knowledge 

about the function being sampled and the methodology we propose here incorpo-

rates an initial step in which we investigate the form of the posterior distribution 

by finding the modes of the posterior distributions of each of the models in terms 

of the component means, variances and weights, and the covariance structure at 

the modes. We then use this information to set our candidate distribution for the 

importance sampling. 

4.5.1 Optimization to Find the Mode of the Posterior Distribu-

tion 

Three methods were evaluated for finding the maxima of the posterior distribu-

tions: the Nelder Mead optimization routine [74], conjugate gradient optimization 

[37] and the EM algorithm [39]. Nelder Mead was chosen for the final methodol-

ogy because it was found be more robust than the EM algorithm and to give better 

results than the conjugate gradient optimization. We discuss the implementations 

of the different optimization routines further below. 

With each of the optimization methods tried, starting parameters for the models 

with k < kmax — 1 are determined from the best estimates for the model with 

k + I components, usually by combining two of the original components. Unless 

otherwise stated, two components are combined to give a new component that has 

a mean equal to the weighted average of the means of the original components, a 

variance equal to a weighted average of the variances of the original components 

and a weight equal to the sum of the two original weights. All other parameter 

values remain the same. Five different methods of choosing which components to 

combine are considered. 
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1. Combine the two components that give the highest posterior probability, be-

fore optimization. 

2. The collapsing method introduced by Sahu and Cheng [91], in which the 

closest two components, measured in terms of the difference in the means, 

are combined. 

3. Any components with very large variances have their weights added to the 

component with the closest mean. If no large variance components exist, 

the optimization is started from two points: combining the components with 

the closest means, and combining the component with the smallest central 

weight with its nearest component, measured in terms of the difference in 

the mean. The solution that has the higher posterior probability following 

optimization is retained. 

4. As the previous method but instead of trying just two combinations of com-

ponents in the case of there being no large variance components, we try 

all combinations of adjacent components, where components are adjacent if 

their means are adjacent. Select the solution that has the highest posterior 

probability following optimization. 

5. Run the optimization for all possible combinations of adjacent components, 

where components are combined as described in method two. Select the 

solution that has the highest posterior probability following optimization. 

The Ave different methods of combining components have been tried on a num-

ber of different data sets. We find that method three works well for most examples, 

performing a much smaller number of iterations than methods four and five and 

finding optima that are either similar or better than these more thorough methods. 

Methods one and two involve the smallest number of iterations but the optima that 

they find are generally not as good as those found by the other three methods. 
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All methods have problems fitting skewed data, with the more thorough search 

methods performing better. 

Nelder Mead 

In the final methodology we used the Nelder Mead optimization routine [74]. 

Moves were chosen by the Nelder Mead routine ignoring the positivity constraints 

on the -n and w. and the constraint that the weights summed to one. We dealt with 

the positivity constraints by imposing a very large penalty on transgressions into 

infeasible areas. We ensured the sum of the weights remained equal to one by 

renormalising the weights at each new point. 

The Nelder Mead is a local optimization routine. We tested how local the 

optimization was by running it from a number of different starting points. Only 

the start point for the model with components was changed. In the test, we 

used method five for combining components for A; < as described above. 

Four different sets of initial conditions were considered; 

1. Standard initial conditions: put the data into non-decreasing order of means, 

and split into groups. These are assumed to be a very rough approx-

imation to the kmax components, and we take the initial component means 

to be the group means and the initial component weights to be l/Amoz. The 

initial group variances are assumed to be equal and are set to be the data 

variance divided by k'^ax-

2. Initial component variances and weights are set using the standard initial 

conditions; the initial component means are set to be equal, at the mean of 

the whole dataset. 

3. Initial component means and variances are set using the standard initial con-

ditions; the initial component weights are set so that there is one very low 
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weight and — 1 high weights. 

4. Initial component means and weights set using the standard initial condition; 

the initial component variances are set to be equal to the data variance. 

The optimal solutions found by the Nelder Mead routine were very similar 

for each of the start points, with the main differences being between the models 

with components. When applying the routine to the galaxy dataset [87], we 

found that the sum of the squared differences between the component means of 

the different solutions and the solution found using the standard initial conditions 

was at most 1.37 (for scenario 4), when considering all possible models and 4.63 

X 10"^ when considering only the Arst /cmaz — 1 models. Similarly, when looking 

at the variances, the sum of the squared difference between the T, = was 

2150 (for scenario 4) when considering all models and 0.0311 (for scenario 2) 

when considering only the Arst — 1 models. For the weights, the sum of the 

squared difference was at most 2.18 x 10"^ (for scenario 4) when considering all 

models and 2.34 x 10"^ (for scenario 4) when looking at only the Arst /cmoa; — 1 

models. This suggests that the Nelder Mead is performing a sufficiently wide-

ranging search for the first — 1 models but that the initial conditions have a 

greater effect on the optimum reached for the model with components. The 

optimum is likely to not be as well-defined with higher numbers of components 

and so any optimization routine would have problems finding the global optimum. 

We calculated Anderson-Darling statistics for each of the optimal sets of para-

meters found by the Nelder Mead routine for the four different starting points and 

for each value of k. These are given in Table 4.1. Critical values are not available 

but the magnitude of the statistics allows an informal comparison of fits across sce-

narios. We find that there is only a big difference in these statistics for the model 

with k^ax components, for which scenario three has an Anderson-Darling statistic 

that is double that found for the other four scenarios. 
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We find that a total of approximately 25 ,000 runs ( and no more than 30,000) 

are required to find the optimal solutions for all of the different models considered 

using the Nelder Mead routine. 

Conjugate Gradient Opt imizat ion 

The B F G S (Broyden-Fletcher-Goldfarb-Shanno) m e t h o d of gradient-based opti-

mization introduced by Davidon [37], was tried initially, as the gradient of the pos-

terior distribution can be calculated. A good review of c o n j u g a t e gradient methods 

is given in Chapter Two of [17]. Transformed parameters were used to ensure that 

positivity constraints on the inverse variances and the weights Oi were always 

satisfied, with the weights also always summing to one, such that 

Ti •— 6 ' % 1, . . . , 

z — 1 . . . . . Ai 
(4.11) 

where d and b are opt imized and can vary be tween — oo a n d oo with the constraints 

always being met. 

We used the algori thm to minimise minus the pos te r io r and minus the log of 

the posterior. When minimis ing the posterior, we found tha t the algori thm did not 

k Scenario 1 Scenario 2 Scenario 3 Scenar io 4 

1 3.86 3.85 3.85 3.85 

2 1.98 1.99 1.98 1.98 

3 0.521 0.521 0 .519 0 .520 

4 0.136 0 .136 0.135 0 .136 

5 0.101 0.101 0.101 0 .101 

6 0 .0750 0 .0749 0 .135 0 .0786 

Table 4.1: Anderson-Dar l ing statistics for opt imal mode l s f o u n d us ing the Nelder 

M e a d routine, with different initial solutions. 
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move far from its starting point, as the gradients calculated at the initial points 

were very small. When instead minimising the negative log of the posterior, the 

algorithm frequently moved to areas of parameter space associated with a very low 

posterior probability. The errors causing this originated in the routine updating H, 

the estimate of the covariance matrix and we suspect were due to the surface being 

a long way from quadratic. 

EM Algorithm 

We also considered using the EM algorithm, introduced by Dempster et al [39] 

to find the mode of the posterior. Traditionally, the EM algorithm has been used 

to find the maximum likelihood solution, but it can be easily adapted to instead 

And the maximum of the posterior distribution. The basic idea behind the EM 

algorithm is to augment the original data with latent data in order to obtain a more 

tractable expression for the likelihood. When applied to mixture models, the latent 

variables are assumed to be the components that data points have been generated 

from. A good introduction to the EM algorithm and its application to mixture 

models is given in [12]. We describe its application to this problem below. 

Using the prior distributions given in Section 4.4, the log of the prior proba-

bility can be incorporated into the expression for Q given in Section 3 of [12] to 

give 

0 = ^{log[7r(^)] + log[Z,(g|2:,y)]}p(y|5, 8 ) , (4.12) 

where H is the data, 9 is the vector of parameters and y is the unknown data, 

which tells us which component each of the data points was generated from. The 

first term is the prior distribution and the second the likelihood. 

Using this expression for Q, we find that the updated and Of, Z = 1 , . . . , A; 
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in the iteration should be 

Âf 

Tf = 
2(a - 1) + 0 ^ ' ^ ) 

af = ' ^ ' - L + £ ." . . iP ( 'L^-'Q°^') , ( 4 . 1 3 ) 

i V - A + E t i i , 

The algorithm is run until convergence is reached, where convergence is measured 

by the similarity in the Q values between subsequent iterations. 

We found that the EM algorithm did not converge to as good an optimum and 

was more sensitive to the starting solution than the Nelder Mead. It also did not 

converge for some initial solutions. Often this occurred when a large number of 

components were being Atted to a dataset for which only a small number of com-

ponents might be required, and took the form of one of the r/ tending to zero for 

a component with a very small weight a/. The sensitivity of the limiting solution 

to the initial solution and the convergence to local maxima or saddle points are 

drawbacks that have been discussed elsewhere in the literature, e.g. in [41]. 

The EM algorithm is much quicker than the Nelder Mead algorithm, perform-

ing about 100 iterations per model compared with a few thousand for the Nelder 

Mead. We have not pursued this method further but there is scope for more re-

search in this area, possibly considering an adaptation of a more sophisticated ver-

sion of the EM algorithm, such as that put forward in [2], or the use of a stochastic 

EM algorithm, which has previously been applied to mixture models by Diebolt 

and Robert [42]. If a sufficiently good optimum could be obtained without a sig-

nificant increase in the number of runs required, this method could out-perform 

the Nelder Mead. 
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4.5.2 Estimation of the Covariance Matrix 

Having found the modes of the posterior distributions for each model, we can then 

estimate the covariance matrix for each of the models us ing the information matrix 

at the maxima of the model posteriors. 

Estimating the covariance matrices for a mixture model of k components is 

non-trivial because the weights, w, must sum to one. Let the vector of weights be 

w = (4.14) 

then 
k 

= 1 (4.15) 
i=l 

and 

W i > 0 , a lH. (4.16) 

Let all the other parameters be written as a = ( a i , ozg,..., and let 

Z, = ^ ( a , w ) (4.17) 

be the log posterior probability . Suppose its max imum occurs at (&, w ) , where 

this optimum has been obtained subject to Yli=i w, = 1. Let the negative Hessian 

be 

H = | H „ . , \ 

\ H . , . J 
with, in particular, 

H w , w ( w ) = . (4.19) 
w=w 

Here, the partial derivatives of H are obtained ignoring the restriction on the 

weights that Y l L i = 1-

Suppose that we now replace Wi by the parameters 6i where 

Wi — 6i k ^ ^ , i = 1 , k . (4.20) 



CHAPTER 4 78 

This ensures that 
k 

= 1. (4.21) 
%=1 

The Jacobian matrix of the transformation is 

J = ^ (4.22) 

where is the A;—component identity matrix and 1^= (1,1, . . . , 1)^ is the A:-component 

vector with unit entries. The log posterior density in terms of this parameterization, 

Z, = i,(a:, where ^ = (^i,..., has negative Hessian 

A(„ .« ) = A ( a . w ) = f V (4.23) 

which we write as A from now on, and gives the joint distributional behaviour of 

&, w, subject to w, = 1,. 

More precisely, the inverse of A gives the covariance of (a, w) subject to 

J2i=i = 1- Clearly therefore A must be singular, and indeed the sub matrix 

JHw.wJ^ is singular, as det(J) = 0. 

Thus A does not have a full inverse. However it does have a generalised in-

verse, G, which by definition will satisfy 

A G A = A. (4.24) 

To find the generalised inverse, we begin by assuming that H and A are eval-

uated at q; = a and w = w. We then let P be the orthogonal matrix formed from 

the eigenvectors of A (so that P P ^ = P ^ P = Im+k)- Then 

P ^ A P = D, (4.25) 

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors 

forming P . Then it is known (see for example [95]) that a generalised inverse of 

A is 

G = P M P ^ (4.26) 
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where M is the diagonal matrix whose non-zero diagonal elements are the recip-

rocals of the non-zero diagonal elements of D. For example, if 

D = 

/ 

\ 

D i 0 0 0 ^ 

0 0 0 0 

0 0 Dg 0 

0 0 0 0 y 

— 772,1 

}A: — fci 

where D i and Dg are non-singular diagonal matrices, then 

Dr^ 0 0 0 \ 

M = 

V 

0 0 0 0 

0 0 0 

0 0 0 0 / 

— m i 

— A;i 

(4.27) 

.28) 

Note that rrii < m with equality allowed, but the last row and column of M 

are zeros, as will be shown in the lemma below, therefore 

A; — /ci > 1. (4.29) 

From the definition of M it easily follows that 

D M D = D (4.30) 

and rearranging Equation (4.25), 

A = P D P ^ (4.31) 

Using these two expressions, we can show that G satisfies Equation 4.24 and is 

thus the generalised inverse of A 

A G A = P D P ^ P M P ^ P D P ^ = P D M D P " = P D P " = A. (4.32) T 
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4.5.3 Candidate Distribution 

When the modes and covariance matrices for the posterior distributions have been 

found, we use a multivariate generalisation of a student t-distribution (defined in 

Section 2.4.3) as a sampler for component weights, means and variances. We 

assume that we are sampling within only one of the k\ identical simlexes of para-

meter space, and so the probability of sampling each of the points must be scaled 

by a factor of 1/A;!. A uniform distribution is used as a sampler for A;, the number 

of components in the model. 

The algorithm for this method is then 

1. Sample A; with probability 1 //cmoz of sampling each of the A; = 1 , 2 , . . . , . 

2. Sample the mixture model parameters from a multivariate t-distribution with 

mean given by the mode of the posterior for the model with k components 

and covariance matrix A, using the method described in Section 4.5.2. 

3. Calculate the posterior probability divided by sampler probability (sampling 

ratio). 

4. Output parameters and the sampling ratio to the worksheet. 

5. Repeat N times, where N is the number of samples required. 

A weighted frequency plot using the sampling ratios as the weights will then give 

the posterior probability density function, if the sampling has converged. 

4.5.4 Generating Parameters Using the Generalised Inverse 

If H is positive semidefinite then so is A and all its eigenvalues are non-negative, 

meaning that the diagonal elements of M are also non-negative. We can therefore 
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write M = M ^ M z and define a matrix L 

L == (4.33) 

G = PM&M2P^= LL^. (4.34) 

such that 

Lemma 

(i) The vector 

}k 

is an eigenvector of A with eigenvalue 0. 

(ii) All other eigenvectors of A, which we write as 

Po = (4J5) 

(4J6) 

PT / 

where z/ = m + A; — 1, satisfy 

l ^ p - ^ O . 0L37) 

Proof The matrix A is singular and so, by definition, has at least one eigenvalue 

that is equal to zero. Therefore, in order to prove that part (i) of the lemma is true, 

we simply need to show that 

Apo = 0. (4.38) 

Using the expansion given in Equation 4.23, we can rewrite this condition as 

Apo = ^ _ (4_39) 

The expression for the Jacobian J is given in Equation 4.22 and it is easy to show 

that J^lfc is equal to 0^, the fc-dimensional column vector of zeros. Hence, Equa-

tion 4.38 holds and part (i) of the lemma is proved. 
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To prove part (ii) we simply note that the matrix A is symmetric and therefore 

has orthogonal eigenvectors. Thus p^po = j = 1, 2 , . . . , z/. As the upper 

m components of po are zero, the orthogonality condition reduces to pjlk = 0*=, 

hence proving part (ii) of the lemma. • 

We now put po in the last column of P, and write 

Pi Po (4.40) 

with 

P i = ( Pi P2 ... P:/ j (4.41) 

the matrix comprising the other eigenvectors. From the Lemma we can write 

A 0, 
M2 = 

0^ 0 
(4.42) 

where Oj is the d—dimensional column vector of zeros and 

\ 

A = 

\ 

0 0 0 

0 0 0 0 

0 0 0 

0 0 0 0 / 

— m i 

}k — ki — 1 

(4.43) 

These new expressions for P and can then be substituted into Equation 4.33 

to yield 

L = P i Po 
A 0^ 

0^ 0 

P i A 0 (4.44) 

We now consider how the above results can be applied to the generation of 

variates x from the singular multivariate t-distribution 

X — LL T (4.45) 



CHAPTER 4 83 

where 6'T indicates a singular multivariate generalisation of the student t-distribution 

as defined in Section 2.4.3. A variate from this distribution can be generated using 

/ & A 
X = j j + PxAz;^, (4.46) 

I - / 
where is a vector of standard t-variates. These can have arbitrary degrees of 

freedom and are derived from non-standard t-variates by dividing through by 

— 2), the variance of the student t-distribution. The covariance of the x 

generated in this way is then 

Var(x) = E(PiAz^z3'APf) - P i A A P f = G. (4.47) 

Moreover, using the result of Equation 4.37, 

( O ; , l I ) P i = 0^, (4.48) 

and the sum of the component weights is given by 

= (oLiDI " 
i=l \ w 

= ( o L i D j | + ( o L i D P i A z , 
\ w 

(oLiDI l + O ^ A z , 
w 

= 1. (4.49) 

1=1 

Thus under this sampling we are restricted to the simplex 
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4.5.5 Restricting the Range of the Weights to (0,1) 

The above transformation needs an adjustment to ensure that in addition to sum-

ming to unity, the Anal weights each he in the unit interval. We write 

& ^ 

w 
P iAz^ 

/ 

I + f I z , , (4.50) 
w y y Qv 

where Qa is the first m rows of P i A and are the remaining A: rows, and let 

(4.51) 

We define a new vector y such that 

^ w M d (4.52) 
Wi exp(ai^i) + 1 - Wi 

where 
1 

(4.53) 
Wi(l - Wi) 

The effect of this transform is to ensure that the are all positive and less than 

one. For the final weights Wi we use the transform 

2 = 1 , 2 , . . . , A; (4.54) 
2/i + Z/2 + . . .+3/ t 

to ensure that the also sum to one. 

The vector of weights, w = (wi, W 2 , c l e a r l y has a singular distribution. 

Let u be the (k — 1) dimensional vector formed from the first (A: — 1) components 

of w and write 

(̂  = . (4.55) 

In terms of the importance sampling we can think of the probabilistic distribution 

as being completely determined just by cf) for the parameter set. Therefore, when 
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determining the probability of sampling a particular set of parameters, we need 

only determine the candidate probability of </), which is non-degenerate and given 

by 

W 
0(0;, w) 

0(0:, w) - 1 

Oi56) 

where is the joint probability of sampling the z/ standard t-variates. The 

(m + A; — 1) X (m + A; — 1) matrix, is made up of two parts: a(z.,) 

a(z^; 
Qc (4.57) 

and 

a(w) 

a(z^; 

<9(w)a(y) 

^(y) 

a(w) a(y) 

where 

and 

—Wj 

'9(y) 

j = % 

; f % 

Qw, 

1 < J < A:, 

1 < 2 < A; — 

(4.58) 

(4.59) 
1 

1 < 2, ; < A;, (4.60) Wi(l—t&i) 

= 0 J i 

where the matrix is the A; by A: — 1 matrix that forms the bottom right hand 

corner of G. 

We have thus shown how parameters for a mixture model can be generated 

using a multivariate t-distribution, going into some detail over how the component 

weights are generated to ensure that they both sum to one and are in the range 

(0,1). Expressions have also been given for the probability of sampling parameter 

sets under this sampling procedure, which are vital for importance sampling. 
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4.5.6 Convergence Statistics 

We make use of the methods presented in Chapter 3 and in addition, evaluate the 

variance of pt, the probability that the number of components in the model is equal 

to A;, 

N 

(4.61) 

where /(0^) is the posterior probability of the sample 0̂ , is the probability 

of sampling the parameter set and 

{1 number of components is A; 

(4.62) 
0 otherwise 

The variance of pt can be calculated for each value of A;, A: = 1 , . . . , /cmoi to 

give a measure of the quality of the solution. We also consider the unit coefficient 

of variance Aĵ  for each of the pt, which is deAned to be the estimated standard 

deviation divided by the estimated mean. 

The maximum of the normalised importance sampling weights is the percent-

age of the probability distribution included in just one point of the sample. This 

gives a further indication of convergence and is presented for all examples. In ad-

dition, we At an extreme value distribution to the importance sampling weights, 

and use the results of the fitting to assess the convergence, as described in Section 

3.3. 

4.6 Examples 

There are a number of standard datasets for the mixture model problem, most of 

which are discussed by Richardson and Green [84]. We here present results for 

four examples: a generated distribution of three normal distributions; a dataset 
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Figure 4.3: Probability density function for the three normals data. 

describing the speeds of galaxies [87]; one of the more difficult standard datasets, 

the enzyme data [10]; and finally a dataset describing the acidity of lakes in north-

central Wisconsin, [32]. 

4.6.1 Example 1: Three Normals 

This is a test dataset of 100 data points sampled from a mixture of three normals 

with component means at 0, 10 and 15, component variances of 1 , 2 and 1, and 

with equal weight applied to each component of the mixture. The sampling assigns 

a posterior probability of 0.87 to there being 3 components and 0.13 to there being 

2 components. The best-fit distribution with three components (as found using the 

optimization routine), the data and the actual distribution are given in Figure 4.3. 

It has been argued [1] that it is easier to assess the fit of a distribution to data using 

an EDF and this is given in Figure 4.4 

We assess the convergence of the importance sampling using the techniques 
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Figure 4.4: Empirical distribution function for the three normals data. 

described in Chapter 3 and Section 4.5.6. Convergence statistics for the sampling 

are given in Table 4.2. These include the results of fitting an extreme-value distri-

bution to the importance sampling weights. The tests work by fitting a generalised 

pareto distribution to the exceedances over a threshold. Weights that are smaller 

than the threshold are not included in the fitting. Choosing the threshold is a mat-

ter of judgment, and we used a number of different thresholds for each example. 

Only the results for the most representative thresholds for each of the three tests 

described in Section 3.3 are included. 

The convergence statistics suggest that the importance sampling has converged 

for this example, with a relatively small sampling variance and maximum weight. 

The unit coefficients of variance are also small for the models of interest, becoming 

larger for models with high numbers of components. 

One difficulty with the methodology that we have used for the importance sam-

pling here is that we do not take full account of our knowledge of the posterior 

distribution. Although by looking at the data for this example, we can be reason-

ably confident that the number of components will be less than five, we still assign 
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Measure Result 

Ai 0.0366 

<̂ 2 0.0659 

^ 3 0.0585 

A4 0JJ8 

A5 0.424 

Ae 0388 

Ay &597 

Ag 0386 

Ag 0.976 

Aio 0.951 

2.02 xlO-^ 

Max( / /w) 0.00818 

Wald Test -4 (accept) 

Score Test -2.2 (accept) 

Likelihood Ratio -700 (accept) 

Table 4.2: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the three normals example. 



CHAPTER 4 90 

equal probability to sampling models with numbers of components between one 

and /cmoi (in this case is 10). Models with numbers of components very 

different from three will have a relatively small posterior probability associated 

with them, and so relatively small sampling weights. If there were zero poste-

rior probability associated with the other models, the weights associated with the 

correct model should be approximately where TV is the number of runs 

performed during the importance sampling, /cmoi times larger than the weights 

generated by a model in which the sampling function is a good description of the 

actual function. In reality the posterior probabilities for the other models will be 

non-zero, but will contribute less than 1 — 1/k^ax to the posterior distribution. This 

necessarily worsens the convergence of the importance sampling. 

4.6.2 Example 2: Enzyme Data 

The enzyme data comes from [10] and is made up of 245 data points. The re-

sults suggest that there is a 70% probability of the model being made up of four 

components and a 30% chance that it has only three components. The estimated 

probability distribution, with parameters set at the mode of the posterior distribu-

tion, and a histogram of the data are given in Figure 4.5. We also include the EDF 

of the data and the estimated cumulative distribution function in Figure 4,6 

Convergence statistics for the enzyme data are given in Table 4.3. They suggest 

relatively high unit coefficients of variance and a relatively high maximum weight. 

Two out of three of the EVT statistics suggest that the variance does exist. 

4.6.3 Example 3: Acidity Data 

The acidity data comes from [32] and is made up of 155 data points. The results 

suggest that the mixture distribution is made up of two components, with a 99.8% 
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Figure 4.5: Probability density function for the enzyme data. 
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Figure 4.6: Empirical distribution function for the enzyme data. 
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Measure Result 

Ai 

As 

^ 3 

A4 

A5 

Ae 

Ar 

Ag 

Ag 

Aio 

y a r ( / / w ) 

Max(/ /w) 

Wald Test 

Score Test 

Likelihood Ratio 

(10367 

0.991 

0.423 

0 J ^ 8 

0 J ^ 4 

0.265 

&777 

&838 

0.825 

0.496 

7 / ^ x 1 0 - 6 

0.254 

-0.1 (accept) 

-0.1 (accept) 

2900 (rqect) 

Table 4.3: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the enzyme example. 
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Figure 4.7: Probability density function for the acidity data. 

posterior probability of this being the correct model. Figure 4.7 shows the prob-

ability distribution function for the model with two components, using the modal 

parameter values found in the optimization, with a histogram of the data. We also 

give the empirical distribution function of the data in 4.8 

As Table 4.4 shows, the variance of the sampling and the maximum weight are 

small for this example, suggesting that the importance sampling has converged, 

which is confirmed by the extreme value statistics. Unit coefficients of variance 

are also small for the models of interest, again increasing for models with higher 

numbers of components. 

4.6.4 Example 4: Galaxy Data 

The galaxy data comes from [87] and is made up of 82 data points. The posterior 

distribution has a maximum for k — 3, with a 99% chance that the model has three 

components, and a 1 % chance that it has only two. We present the probability 
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Measure Result 

Ai 0 .0368 

Ag 0 .0774 

As 0 J ^ 2 

A4 0 J ^ 7 

As 0 .254 

Ag 0 .284 

Ay 0.627 

Ag & 7 1 2 

Ag 0 .554 

Alo &759 

5 . # ) x l O - f 

M a x ( / / w ) 0 .0485 

Wald Test -2.7 (accept) 

Score Test -0.5 (accept) 

Likelihood Ratio 1900 (reject) 

Table 4.4; Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the acidity example. 
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Figure 4.8: Empirical distribution function for the acidity data. 

distribution function for a model with three components, using the modal parame-

ters estimated using the optimization routine, alongside a histogram of the data in 

Figure 4.9. The empirical distribution function for the three component model is 

given in Figure 4.10. 

The convergence statistics shown in Table 4.5 are slightly puzzling. The unit 

coefficients of variance, the variance of the sampling and the size of the maximum 

weight suggest that the sampling has converged. However the extreme value sta-

tistics suggest the opposite. We can be relatively confident that the model with two 

components is the most likely but can probably be less confident about the value 

given for the posterior probability of it being the true model. 
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Figure 4.9: Probability density function for the galaxy data. 
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Figure 4.10: Empirical distribution function for the galaxy data. 
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Measure Result 

Ai 0.0378 

A2 0.0915 

A3 0.128 

A4 0.720 

A5 0.667 

Ae 0.442 

A? 0.559 

As 0.964 

Ag 0.651 

Aio 0.734 

1.52xl0-G 

Max( / /w) 0.0555 

Wald Test 8 (reject) 

Score Test -0.4 (accept) 

Likelihood Ratio 1000 (reject) 

Table 4.5: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the galaxy example. 
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4.7 Discussion 

We have successfully used importance sampling to determine the posterior prob-

ability distributions of normal mixture models for a number of standard datasets, 

as shown in Section 4.6. The convergence statistics that we have presented sug-

gest that importance sampling can be an efRcient method of model selection, when 

combined with a prior investigation of parameter space to determine the optimal 

sampler function. 

4.7.1 Comparison of the Results with the Literature 

Comparison of our results with those of Richardson and Green [84], show that we 

suggest more definite posterior probability distributions for the number of com-

ponents in the model, which generally predict a smaller number of components 

in the mixture. This may be due to the choice of prior distributions, as discussed 

in Section 4.3.3. Alternatively, it could reflect differences in the methodology. A 

comment by Cheng and Liu in the discussion of the Richardson and Green paper 

[22] suggests the possibility that models in which the number of components are 

greater than the true number of components could have a finite posterior probabil-

ity incorrectly associated with them. It is possible to generate a model in which 

two or more of the components are very similar or one or more components have 

a very high variance or a very low weight. In such models, one or more of the 

components could be combined with other components, or removed, without sig-

nificantly altering the probability density, and so these are effectively models with 

a smaller number of components than are actually used. These models are proba-

bly only rarely generated using our methodology because the importance sampling 

focuses on areas of parameter space relatively close to the mode found by the opti-

mization. It may be more likely that such models are generated using the reversible 

jump MCMC and this may be an explanation for the difference in the results. 
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It is possible that a small change to the prior distributions might make it less 

likely that models are generated with very small component weights. This would 

involve increasing the parameter in the Dirichlet distribution from one to some 

higher value. The Dirichlet distribution describes the prior probability function 

for the component weights and increasing its parameter beyond one assigns a zero 

probability to component weights of zero, which is desirable, but also introduces 

some bias towards more uniform component weights in the prior distribution. How 

best to balance these two effects could be the subject of future research. 

Looking at this problem from the frequentist point of view, one suggestion for 

determining the optimal number of components is to make use of the fact that the 

Fisher information matrix of a model becomes close to singular when the model 

is being overfitted. The fit of the model will always improve with an increase in 

the number of components, therefore from the frequentist perspective the optimal 

number of components will be the smallest number that still produces a reasonable 

fit. 

4.7.2 Discussion of the Sampling Methodology 

Importance sampling has several advantages over MCMC including the lack of 

serial correlation between samples and the better measures of convergence. These 

are discussed by Evans and Swartz [46] in their review paper. There are addi-

tional advantages in this particular example because of the difficulty of designing 

a MCMC routine that can jump between different models. With importance sam-

pling, the choice of model can be made in an identical manner to the choice of 

parameters in the models. However, for importance sampling to be efficient, time 

must be spent investigating the distribution being sampled from and this time must 

be combined with the run length of the sampling itself to give the total computing 

time expended on the problem. For the examples considered here, the total number 
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of function evaluations was approximately 25,000 for the optimization plus 10,000 

for the importance sampling, giving a total of 35,000. 

For some examples, especially those with a large number of data points, it can 

be difficult to find the modes of the posterior for models with a large number of 

components. The estimates found can often be such that the Hessian matrices cal-

culated at the modes are not positive-definite. In these cases, we transform the 

Hessian matrix to a matrix of eigenvalues, swap the sign of any negative eigenval-

ues and then use this in our calculation of the generalised inverse. We suspect that 

these problems arise mainly in situations where the posterior distribution is very 

flat at the mode, generally where the model has too many components for the data. 

The methodology that we use for the importance sampling results in imperfect 

convergence, as we take no account of our knowledge of which is the correct model 

when setting the candidate function in the importance sampling. Instead, an equal 

probability is assigned to the sampling of each of the kmax models. This allows us 

to argue that we introduce no bias on the choice of model into the importance sam-

pling, but will result in the sampler wasting time sampling parameters for models 

with a very low posterior probability. One small extension to the methodology 

that could be investigated in the future is to use different probabilities for sampling 

different models. 



Chapter 5 

Investigation of the Effectiveness of 

Interventions Against Tuberculosis 

and HIV Using a Compartmental 

Model 

5.1 Introduction 

In this chapter we use use Bayesian methods to fit a compartmental difference 

equation model of tuberculosis (TB) driven by HIV The model is then used to 

compare the effectiveness of preventive and curative methods for the control of TB 

in high HIV prevalence settings. This is a slight adaptation of a model described 

previously [36] and will be described in Section 5.3. The methodology used for 

the uncertainty analysis is very similar to that used in the analysis of finite mixture 

models, although the application is very different. 

We fit the model using literature estimates for the model parameter values as 

prior information, and time series of HIV prevalence and TB incidence to estimate 

101 
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the likelihood. The methodology used for the fitting process includes an initial 

optimization routine to find the maximum of the posterior distribution, followed 

by calculation of the Hessian matrix at that optimum to define a good candidate 

distribution. We tried using both importance sampling and Markov Chain Monte 

Carlo sampling (MCMC) to find the posterior distribution. MCMC was chosen as 

the Anal sampling methodology because it converged much better than the impor-

tance sampling. The results of the importance sampling were often biased by very 

large weights, corresponding to points in parameter space at which the candidate 

probability is low but the posterior probability is high. The output of the MCMC 

is used to determine the expected TB incidence and HIV prevalence and projec-

tions of the effectiveness of interventions. Sampling from the output, equivalent 

to sampling from the posterior distribution, enables the estimation of confidence 

limits that incorporate the knowledge coming from prior information on parameter 

values and the fit of the model to the available data. 

We describe the aims of the study and some of the context to the problem 

in Section 5.2. The model is described in Section 5.3, and the modelling of the 

interventions in Section 5.4. A full description of the Bayesian methodology used 

to fit the model is given in Section 5.5, and the results of the study are given in 

Section 5.6. We conclude in Section 5.7. 

5.2 Background to the Problem 

Mycobacterium tuberculosis (TB) and the human immunodeficiency virus (HIV) 

are the leading causes of death due to infectious diseases among adults [30], [77]. 

The spread of HIV infection has already led to a dramatic increase in TB cases in 

eastern and southern Africa [79], where up to 60% of TB patients are co-infected 

with HIV [101], and threatens to do so elsewhere. The World Health Organiza-

tion's DOTS strategy for TB control [79], [78], based on the provision of adequate 
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resources, accurate diagnosis, good treatment, the use of the correct drugs and 

good monitoring to ensure that active cases of disease are rapidly found and cured, 

forms die basis of most national TB control programmes. In recent years however 

even good DOTS programmes have failed to check the rapid increase in TB cases 

in countries with a high prevalence of HTV, and this has stimulated the search for 

new ways to manage TB epidemics [38]. 

Since HIV is a potent risk factor for the development of TB, it should be possi-

ble to avert new TB cases by reducing HIV transmission through behavioural inter-

ventions (promoting condoms, changing sexual behaviour etc.), boosting patients' 

immunity by treating them with highly-active anti-retro viral therapy (ART) [93], 

or by administering TB preventive therapy (IPT), usually through 6-9 months' 

treatment with isoniazid [26]. Previous studies have attempted to calculate the 

number of TB cases and deaths that can be averted by finding and treating ac-

tive TB cases during the course of HIV epidemics [44], [71], [81], but none have 

evaluated the curative approach against the three principal means of prevention. 

The analysis of the effectiveness of the different interventions focused on Kenya. 

There are reasonably good data available both for HIV and TB in Kenya, and the 

epidemic is more advanced than in some African countries (such as South Africa), 

but less advanced than in others (such as Uganda). It is impossible to determine 

from the available data whether the prevalence of HIV will continue to rise, re-

main steady or fall, so we consider three different underlying HIV epidemics in 

which HIV incidence, in the absence of any further intervention, levels off at its 

current value, increases by half, or falls by half (Figures 5.6 to 5.8). To explore the 

generality of the findings for Kenya, we also fitted the model to data from Uganda 

and South Africa [75], where the HIV epidemics are, respectively, more and less 

advanced. 
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5.3 Mathematical Model of TB-HIV 

We reduced an earlier compartmental model of TB-HIV epidemiology [44] to a 

single age class (adults 15-49 years), and extended the modelling of interventions 

to include TB preventive therapy, the administration of ART and the effect of HIV 

prevention methods, as well as TB case detection and cure. The model was written 

in Visual Basic and combines a compartmental model of TB progression with a 

statistical model of HIV prevalence. Figure 5.1 illustrates the general structure of 

the TB model. For clarity, non-infectious TB states have been omitted from this 

diagram and in the full model active TB may be infectious or non-infectious, with 

movement allowed from active non-infectious disease to active infectious disease. 

An identical sub-model, with different parameter values, describes the progression 

of those in the later stages of HIV (Stages 3 and above of the WHO staging system 

[4], [68]). Movement between the two sub-models is governed by the statistical 

model of HIV prevalence, described in Section 5.3.1. Death can occur in any state, 

but death rates are higher for patients with active disease. An early version of this 

model was presented in [34]. 

Active TB can arise through any of three mechanisms. Those who acquire a 

new TB infection either develop progressive primary disease within 1 year, or enter 

a latent state from which TB can arise by reactivation or re-infection. The same 

proportion of individuals who are latently infected can also develop TB within 

one year of re-infection or reactivation. We use a time step of three months in 

the model and assume that those developing primary disease move straight to the 

active disease state. Active TB may be infectious or non-infectious. 

During the later stages of HIV, co-infection leads to a greatly increased risk of 

developing TB, though a smaller fraction of active TB cases becomes infectious. 

Individuals with late-stage HIV infections (WHO stages three and above) also have 

higher death rates, with and without active TB. 
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Figure 5.1: Outline of the TB sub-model. 
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53.1 HIV Model 

The purpose of the separate HIV model is to determine the incidence of HIV in 

each time step and from this, estimate the rate at which people move from one 

TB sub-model to another. We assume that approximately four years after infection 

with HIV, individuals will enter late-stage HIV, where this time lag is described 

by the model parameter tivs. Therefore, in a given time period, the number of 

individuals moved from the first sub-model to the corresponding state in the second 

sub-model (TB uninfected or latently infected), is equal to the HIV incidence tLs 

time periods previous, coirected for deaths. 

Reasonably good data are available for the prevalence of HIV infection over 

time in the countries of interest but the future course of the epidemic is much 

less certain. It is therefore desirable to use a flexible model to describe the HTV 

epidemic, allowing the HIV prevalence to increase, decrease or remain constant in 

the future. 

The model that we developed originally in [36] fits a logistic function to HIV 

prevalence data and then uses a given relationship between prevalence and inci-

dence to derive the HIV incidence from this functional form. This method is at-

tractive as HIV epidemics are traditionally measured in terms of prevalence (num-

ber of cases per unit population) rather than incidence (number of cases per unit 

time), and it allows the long-term behaviour of the HIV epidemic to be set in terms 

of long-term HIV prevalence. The incidence can then be derived from this. Of the 

other authors who have considered this problem Salomon and Murray [92] have 

approached it from the opposite perspective, selecting a functional form for the 

incidence and using the relationship between incidence and prevalence to find the 

HIV prevalence. The others [29], [102] approach it from a similar perspective to 

[36]. 

Investigations of the different models showed that the method used originally 
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in [36] and the method of WiUiams et al [102] result in the incidence of HIV be-

ing very dependent on the value of the time step ts used in the calculations. The 

method of Salomon and Murray [92] is also dependent on ts but the dependence 

is much weaker, and insignificant with respect to the results. The model described 

by Colvin et al [29] would also be stable to changes in the time step as earlier es-

timates of incidence have no effect on future values of the incidence, but restricts 

the choice of survival function. The Salomon and Murray method seems to be the 

most attractive and is the method used in this study to derive the HIV incidence. 

Although the HIV prevalence is now derived from an estimate of the HIV inci-

dence, it is still possible to define long-term scenarios for the HIV epidemic, but 

expressed in terms of the long-term HIV-incidence rather than the long-term HIV 

prevalence. 

Using Salomon and Murray's model [92], the prevalence p(t) is given by 

(5.1) 
i = 0 

where F{T) is the probability of surviving r time periods and Inc(i) is the HIV 

incidence in time period i. Salomon and Murray use a Weibull function to describe 

the time from infection to death. We instead use a survival function which mirrors 

that used in the TB compartmental model, such that 

F(t)=[ (5,2) 
I e x p ( — t 

where /i is the background death rate and hhiv is the death rate for those in late-

stage HIV. We use the function suggested by Salomon and Murray for the inci-

dence of HIV, 

/nc(t) = (5.3) 
i [CXj 

for ^ < 0̂ + — 1) and 

/nc(^) = . [(1 — 
i (^Oi) 

+g(/)(a - (5.4) 
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for t > 0̂ + " 1)- This is a gamma distribution with a multiplicative factor 'y 

to allow for differences in scale, and an additive term that is used to describe the 

long-term incidence. The variables o: and set the shape of the incidence curve, "y 

sets the scale of the curve and 9 sets the level of the long-term incidence, which is 

equal to 6 multiplied by the peak incidence. 

We use the parameter ^ to deAne the scenario for long-term behaviour that we 

are considering (incidence falls to 50% of current value — 0 = 0.5, incidence 

remains at its current level — ̂  = 1, incidence increases to 150% of its current 

value — 0 = 1.5) and fit the model to HIV prevalence data by varying the para-

meters a, and 'y. We assume that the HIV prevalence data points have normal 

errors and therefore find the optimal set of parameters by minimising the sum of 

the squared difference between the model's estimate for HIV prevalence and the 

HIV prevalence data. 

5.4 Interventions 

The TB case detection rate is the proportion of new, active cases that are found 

and begin treatment during a given time period. The cure rate is the proportion of 

those who are treated that become non-infectious and are at no additional risk of 

dying from TB. We assume that cured TB patients uninfected with HIV, or in the 

early stages of HIV infection, remain infected with TB; those that have late-stage 

HIV infections return to the uninfected state, which gives them some immunity 

against developing active TB. Among patients that fail treatment, a proportion 

remains infectious; the remainders do not transmit TB, but have a high probability 

of relapsing to active disease, compared with patients that were deemed to have 

been cured at first treatment. 

The main effect of preventive therapy for TB is to eliminate the chance of 

developing active TB for 70% of infected people who receive it; the other 30% 
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are assumed to receive no benefit [55], [100]. Ideally, TB preventive therapy is 

given only to those who are already infected with TB (and never to active cases); 

however, TB infections cannot always be identified by tuberculin skin-testing, es-

pecially in anergic subjects co-infected with HIV [26]. We therefore use HIV 

infection as the criterion for the administration of TB preventive therapy, and cov-

erage is measured as the fraction of patients that receive one course of treatment 

between initial HIV infection and death. We assume that those given preventive 

therapy for TB are protected from TB infection for the duration of treatment [62]. 

Treatment is either for six months or for life; patients treated for six months return 

to their previous state, either latent or uninfected. 

By reducing TB prevalence among HIV-positives we effectively reduce the 

death rate of those in late-stage HTV, thereby increasing the late-stage HIV popu-

lation. We assume that this has a negligible effect on HIV transmission and do not 

include a corresponding rise in HIV incidence. 

In our model ART returns patients to their corresponding TB state in early-

stage HIV infection, and prevents their HIV infection from progressing for as long 

as they continue to take the appropriate combination of drugs. Since the increase 

in life expectancy of patients on ART (as currently formulated) has been measured 

at 5-7 years [40], [27], [28], or less [50], this is an optimistic view of the e^ec-

tiveness of ART. As yet, there are few data on compliance with ART. We consider 

an optimistic scenario and a more realistic scenario for dropout from ART, with 

dropout rates of 5% and 20% per year [98]. We have not explicitly allowed for the 

emergence of drug resistance under ART, and we assume that ART has no impact 

on HIV transmission. 

The coverage of interventions that do reduce HIV transmission (condoms, 

change of sexual behaviour, etc) is expressed in terms of the effects on HIV in-

cidence, e.g. reducing the annual HIV incidence rate by 1% from the point of 

intervention onwards. 
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We measure the impact of interventions over and above present levels of cov-

erage. For the TB treatment measures, we assume that cuirently 50% of the new 

infectious TB cases that arise each year are detected, and 70% of these are cured, 

which is thought to be typical for sub-Saharan Africa [79]. For ART, coverage is 

measured as the fraction of HIV-infected persons progressing to AIDS that receive 

antiretroviral drugs. Similarly, the coverage of TB preventive therapy is measured 

as the fraction of HIV-infected persons (including all TB and HIV co-infected 

persons) given one course of treatment between HIV infection and death. For con-

doms and other measures designed to prevent infection, we express coverage in 

terms of its effect on HIV incidence, applying a fixed percentage reduction in an-

nual HIV incidence from the point of intervention onwards. For all three of the 

preventive measures, we assume that coverage was negligible prior to the mod-

elled interventions. Thus, there is great potential to improve on prevention, much 

less to improve on cure. 

5.5 Fitting the Model to Data 

We use a Bayesian methodology [64], [46] to fit the model to the available data. 

Prior estimates of the distribution of each parameter are combined with the like-

lihood function to give the posterior distribution. The likelihood is estimated by 

fitting the model output to estimates of TB incidence and HIV prevalence from 

each country [79], [75], assuming normal errors. Prior distributions for the pa-

rameters describing transitions between TB states were obtained from published 

studies (Further information on these studies is given in the supplementary mate-

rial of [36]). These prior distributions are all assumed to be normal. Little prior 

knowledge about the parameters describing the HIV epidemic was available and 

vague priors were used (uniform distributions with lower limits of zero and very 

high upper limits). As all of the parameters must be greater than zero and the rate 
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parameters should be between zero and one, gamma or beta distributions may be 

more appropriate prior distributions for most of the model parameters. However, 

none of the parameters have priors with a significant probability outside the per-

missible region and as we assume normal errors for the data, with normal priors 

the posterior distribution is also likely to be close to a normal distribution. We as-

sume that the posterior is normally distributed in defining the candidate functions 

for both the importance sampling and the Markov Chain Monte Carlo sampling 

(MCMC). 

The advantage of using a Bayesian approach in this situation is that prior in-

formation on most parameter values is good and using a likelihood approach, this 

prior information would simply have been ignored. The scarcity of TB incidence 

data and the large number of parameters used in the model means that it is espe-

cially useful to use all of the prior information. With the Bayesian approach, if 

more information is available from the prior distribution than from the new data 

for a particular parameter the posterior distribution will depend mainly on the prior 

information. Conversely, if the prior information on a particular parameter is weak 

and the data constrain the parameter to a relatively small range of values, the pos-

terior distribution will depend mainly on the likelihood function. 

Two methods were tried for finding the posterior probability distributions of 

the parameters: the importance sampling methodology described earlier in this 

thesis and MCMC sampling. In both cases, before conducting the sampling, we 

investigated the form of the posterior probability distribution, using the Nelder 

Mead optimization routine [74] to find the mode of the posterior distribution. We 

then estimated the Hessian matrix at the mode and used this to find the covariance 

matrix of the posterior distribution. 
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5.5.1 Importance Sampling 

Given the form of the prior distributions and the likelihood function, we assume 

that the posterior distribution will be approximately multivariate normal. There-

fore, based on the results of Chapter 2 a multivariate t-distribution with 4 degrees 

of freedom is used as the candidate distribution in the importance sampling with 

mean given by the mode of the posterior distribution and covariance matrix as 

calculated at the mode. 

We found that importance sampling converges relatively poorly for this exam-

ple. This is principally due to the presence of very large weights, which produce 

high, narrow peaks in the the resulting posterior distribution, and introduce a bias 

into statistics such as the mean. In fact the top five normalised weights were 1, 

3.19 X 10-^^ 3.46 X 10-4", ^ Qg ^ and 1.10 x compared with the 

ideal weight size of 1/80,000 (1.25 x 10"^). Obtaining very high weights is gen-

erally regarded as a symptom of poor convergence, and suggests that the sampling 

function used was not sufficiently close to the function being integrated over (in 

this case the posterior distribution) or that the number of runs is insufficient. In 

previous work [36] we used importance sampling to determine the posterior distri-

bution and convergence was reasonable. In that study, we assumed a multivariate 

normal prior distribution for the HIV prevalence parameters, based on the fit of 

the HIV prevalence model to the HIV prevalence data and used a different model 

for estimating HIV incidence. We then only incorporated the fit of the model to 

the TB incidence data in calculating the likelihood. This meant that the posterior 

distribution for the HIV parameters was close to multivariate normal. In this study, 

we use a uniform as the prior distribution for the HIV parameters, and incorporate 

the fit of the HIV model into the calculation of the likelihood. This means that 

the posterior distribution for the HIV parameters is further from a normal distribu-

tion, as the results of the MCMC sampling show. This probably explains why the 
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Figure 5.2; Highest one hundred normalised weights and sampling variance using 

importance sampling to find the posterior distribution of the parameters of the TB-

HIV model. 

importance sampling convergence was worse in this study than in [36]. 

We make use of the results of Chapter 3 and perform diagnostic and statistical 

tests of convergence. Both suggest that the importance sampling is not performing 

well. Figure 5.2 shows how the variance of the sampling varied during the 80,000 

runs, with the top one hundred weights superimposed on this. It clearly shows how 

one high weight affects the sampling variance. The statistical tests of convergence 

based on extreme value theory, as described in Section 3.3 unequivocally state that 

the sampling has not converged. 

The estimates of the posterior distribution obtained by importance sampling 

for the parameter w is shown in Figure 5.3. This parameter describes the rate at 

which non-infectious active TB becomes infectious active TB for those who are 

HlV-negative/early HIV-positive. There is one large spike in the graph, which 

corresponds to the set of parameters with the largest weight, and demonstrates the 

non-convergence. 
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Figure 5.3: Estimated posterior distribution for w (rate at which non-infectious 

active TB becomes infectious active TB), determined using importance sampling. 

5.5.2 Markov Chain Monte Carlo Sampling 

We use the Metropolis-Hastings algorithm for the MCMC sampling, with a mul-

tivariate t-distribution with four degrees of freedom as the candidate distribution. 

We set the mean to be the current position of the chain in parameter space and the 

covariance structure of the candidate distribution to be the inverse of the Hessian 

matrix at the mode of the distribution, multiplied by a scaling factor, where the 

scaling factor is chosen based on observations of the mixing of the chains. Ideally, 

the mixing should be such that the probability of the chain moving to a new posi-

tion should be between about 15 and 50% [86]. To achieve a level of mixing within 

this range, the best scaling factor appears to be 0.23, for which the probability of 

the chain moving to a new position is approximately 16%. 

The warm up is set to be 3000 runs based on observations of the trace. To check 

that the simulation is covering the full range of parameter space, the algorithm is 

started from five different points: the mode, all parameter values below their mode 
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values, all parameter values above their mode values and parameter values set at a 

mixture of low and high values in the other two chains. Following the warm up, 

we run each of the chains for 5000 iterations. 

The MCMC is run separately for two different groups of parameters, with the 

first group containing all of the TB model parameters and the second group con-

taining the parameters used in the estimate of the HIV incidence. The parameter 

determining the long-term HIV incidence 9 is held constant during the sampling. 

It is set by the user to one of three different values corresponding to three sce-

narios for the HIV epidemic: incidence decreases by 50% = 0.5), remains the 

same {9 = 1), or increases by 50% {9 = 1.5), in the long-term. The parameters 

are split to improve convergence of the MCMC to the posterior distribution. The 

covariance matrix estimated following the optimization suggests little correlation 

between the HIV model parameters and the TB model parameters, and so the split 

seems reasonable. 

Various methods exist for checking the convergence of MCMC. Comparing the 

traces of the different chains can be used as an initial check. If, after discarding the 

initial warm up runs, the traces seem to overlap and appear to have been produced 

by the same process, then they have probably reached a stage where the starting 

position of a chain is no longer influencing its current position in parameter space. 

The analytical methods described in [51] give a more quantitative method of mea-

suring the same thing, i.e. whether the chains have reached a stationary state. 

These techniques compare the between-chain-variance 

with the within-chain-variance 

^ 771 

(5.6) 

where m is the number of chains, n is the number of runs made after the warm up 
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for each chain and 

1 " 

= -JL* 
^ m 

V ' . . = — 

:1 

1 

1=1 

n - 1 . T 

J = 1 

-- (5.7) 

The within-sequence-variance, W should be an underestimate of the variance of 

ip because each of the individual sequences will not have moved over the whole 

range of We can also calculate an overestimate of the variance of 

77 — 1 1 
y = ; y + - g . (5.8) 

This estimate will be unbiased if the starting points were drawn from the target dis-

tribution, but an overestimate under the more realistic assumption that the starting 

points are over-dispersed. By measuring the ratio of these two quantities we can 

estimate the factor by which W, the conservative estimate of the range of might 

be reduced. Gelman terms this the "estimated potential scale reduction", given by 

(5.9) 

the ratio between the estimated upper and lower bounds for the standard deviation 

of 

We here estimate for each of the parameters, with a value close to 1 sug-

gesting good convergence. Results shown in Table 5.5.2 show that V A is less 

than 1.10 for all of the parameters, which suggests that a stationary distribution 

has been reached. We use this as our threshold for convergence: if the model has 

converged, < 1.10. 
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Parameter V A 

1.00 

P 1.03 

1.04 

V 1.01 

1.00 

X 1.03 

1.02 

/ 1.02 

1.03 

1.01 

w 1.02 

1.02 

fi 1.03 

1.02 

1.02 

..non—inf 
/ " • 

LOl 

non—inf 1.02 

e 1.01 

rf 1.00 

1.00 

LOl 

a 1.01 

P LOl 

7 LOl 

Table 5.1: Convergence results for the MCMC sampling, showing \/li, the estimated 

potential scale reduction, for the mean of each of the parameters, where 6 = 1. 
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Figure 5.4: Estimated posterior distribution for w (rate at which non-infectious 

active TB becomes infectious active TB), determined using MCMC sampling. 

5.5.3 Posterior Distributions of Parameters 

The posterior means and variances of the parameters are given in Table 5.2, along-

side the prior means and prior variances for the parameters, for 9 = \. These 

show how our beliefs about the model parameters change based on the fit of the 

model to the data. Figures 5.4 and 5.5 show the prior and posterior distributions 

for parameters w and whiv- These parameters describe the rate of movement 

from non-infectious active tuberculosis to infectious active tuberculosis, among 

HIV-negatives/early-stage HIV patients, and late-stage HIV patients, respectively. 

As the figure shows, the posterior distribution for w is very different from the prior 

distribution, showing that the likelihood function has strongly influenced the pos-

terior distribution. The posterior distribution for whiv on the other hand is almost 

identical to the prior distribution. 

The estimated posterior correlation matrix for the TB parameters is given in 

Appendix A. The estimated posterior correlation matrix for the HIV parameters is 
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Figure 5.5: Estimated posterior distribution for whiv (rate at which non-infectious 

active TB becomes infectious active TB among late-stage HIV-positives), deter-

mined using MCMC sampling. 

more interesting and is given in Table 5.3. This shows significant correlations 

between the parameters of the HIV model. As the prior distribution includes 

no dependence between parameters, these correlations must be coming from the 

likelihood function. This helps to demonstrate one of the advantages of using a 

Bayesian approach in this situation. Determining the confidence intervals around 

the predictions from models such as this has often been done by Monte Carlo 

sampling from the prior distributions. No account can then be taken of these cor-

relations, and confidence intervals are therefore often predicted to be wider than 

they should be. 
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Parameter Prior Mean Prior Van- Posterior Posterior 

ance Mean Variance 

P 

P a j y 

V 

X 

zavy 
/ 

(t> 

w 

..non—inf H' 
non—inf 

e 

rf 

a 

/? 

7 

01^95 

&14 

0.67 

L13xlO-4 

&17 

0 3 5 

0.75 

0.45 

0.3 

0.5 

0.015 

0.015 

0.0185 

0.3 

I 

0.1 

1 

0.5 

0.3 

3 J 9 

8J2 

n/a 

n/a 

n/a 

LOO X10-6 

3 J J x l O - 3 

&0250 

&10xl0-9 

4.40 X 10-^ 

0.0163 

0.0163 

2.03 X 10-3 

3J:5xl0-3 

0.0163 

1.67 X 10-5 

1.67 X 10-5 

7 J 3 x l O - ? 

260x10-3 

0.01 

4 J 6 x l 0 - 4 

0.01 

2.50 X 10-3 

0.0104 

0U56 

0.0268 

n/a 

n/a 

n/a 

0.0116 

0.244 

0.892 

1.24 X 10-4 

a i 0 7 

0.313 

0.787 

0.383 

0J35 

0.451 

0.0107 

0.0154 

0.0185 

O/WO 

0.808 

CU09 

0.997 

0.512 

0.435 

3^1 

8J8 

7&1 

&128 

0.0499 

6.74 X 10-G 

4.47 X 10-4 

&0233 

5.84 X 10-^ 

3.78 X 10-4 

0.0105 

0.0171 

213x10-3 

2 1 5 x 1 0 - 3 

0.0159 

L 5 3 x l 0 - s 

1.59 X 10-5 

6.80 X 10-7 

L43xlO-3 

0.0106 

3.43 X 10-4 

9.92 X 10-3 

2 J 3 x l O - 3 

7JOxlO-3 

0.0269 

0.0262 

178 

5^3x10-4 

2 ^ ^ x 1 0 - 5 

Table 5.2; Prior and posterior distributions for the parameters 

of the TB-HIV model, estimated using MCMC sampling. 
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5.5.4 Estimating Confidence Intervals 

Confidence intervals around each series of projected TB incidence and death rates 

are obtained by carrying out 1000 simulations using parameter values randomly 

chosen from the posterior distributions. Samples are drawn independently from the 

two groups of parameters (TB parameters and HIV parameters). This will result 

in a slight over-estimate of the confidence intervals due to the small interactions 

between HIV and TB parameters. 

We use sensitivity analysis to identify the model parameters that most influ-

enced our results, judging their influence from partial rank correlation coefficients 

calculated between each outcome measure and each of the parameters in the model 

[13]. These suggest that die parameters responsible for most of the uncertainty in 

model outputs are also those for which there is least information, i.e. those de-

scribing the effect of HIV infection on the course of TB. They are, for those with 

HIV, the rate of progression from co-infection to active TB, the proportion of ac-

tive TB cases that is infectious, the death rate of TB cases, and the relapse rate 

to active TB among those who have failed treatment. The accuracy of the results 

depends on the structure of the TB-HIV model as well as the parameter values. Al-

though a simpler model may stiU have captured the main features of the data, the 

model structure is the simplest that could be used to explore all of the interventions 

considered in this study. 

a 1 -0.980 -0.903 

-0.980 1 0.942 

-y -0.903 0.942 1 

Table 5.3: Posterior correlation matrix for the HIV parameters in the TB-HIV 

model, estimated using MCMC sampling. 
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5.6 Results 

Figures 5.6 to 5.8 show the projected TB incidence and HIV prevalence for each 

of the three scenarios for the HIV epidemic with 95% confidence intervals. If 

HIV prevalence declines in Kenya, we expect TB incidence to fall, even without 

additional interventions (Figure 5.7). The time lag between the start of the HIV 

epidemic and the increase in TB incidence is approximately four years. The delay 

is due to the time lag between becoming infected with HIV and becoming more 

susceptible to TB, as the TB epidemic is fuelled by those in late-stage HIV. If 

HIV prevalence stabilises or continues to increase, then the number of TB cases 

is also expected to increase (Figures 5.6 and 5.8), by about 60% for constant HIV 

incidence, and by approximately 70% for a 50% increase in HIV incidence. 
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Figure 5.6; Estimated TB incidence and HIV prevalence in Kenya assuming HIV 

incidence remains approximately constant (0 = 1). Confidence intervals are 95%. 
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Figure 5.7: Estimated TB incidence and HIV prevalence in Kenya assuming HIV 

incidence declines by approximately 50% {0 = 0.5). Confidence intervals are 

95%. 
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Figure 5.8: Estimated TB incidence and HIV prevalence in Kenya assuming HIV 

incidence increases by approximately 50% {9 = 1.5). Confidence intervals are 

95%. 
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Figure 5.9; Effect of increasing intervention levels by 10% on TB incidence in 

Kenya, assuming constant HIV incidence in the long-term. 

Figure 5.9 shows the impact on TB incidence of a 10% increase in coverage 

of each intervention in 2001 for the epidemic in which HIV prevalence stabilises 

at its current level. This demonstrates the advantage that increasing TB cure or 

detection rates has over implementing the other interventions, in that the impact 

is immediate. Reducing HIV incidence or administering TB preventive therapy 

have a delayed effect on TB incidence rates. Although ART has a high initial 

impact, when drop out from the therapy is incorporated into the modelling, its 

effects diminish with time. 

The relative effectiveness of the different interventions is judged first by ap-

plying and maintaining the same, small improvements in coverage, and recording 

consequent reductions, over 10 years, in the numbers of new TB cases and TB 

deaths. Figure 5.10 shows the number of TB cases averted over 10 years when 
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Figure 5.10: Effect of increasing intervention levels by 1% on the number of cases 

of active TB over ten years, assuming constant HIV incidence in the long-term. 

Confidence intervals are 95%. 

HIV incidence is assumed to remain approximately constant. Figure 5.11 shows 

the number of deaths averted by the different interventions over 10 years, assuming 

constant HIV incidence in the long-term. 

Larger HIV epidemics generate larger burdens of TB, and so more cases (Fig-

ure 5.10) and deaths (Figure 5.11) are averted by each intervention. In all of the 

scenarios considered, the most effective way to reduce TB incidence is by increas-

ing TB case detection and cure rates (Figure 5.10). Reducing HIV incidence or 

administering ART or preventive therapy for TB never appear to be highly effec-

tive interventions. 

The most effective way to avert TB deaths (Figure 5.11) is by improving case 

detection. For both TB cases and deaths, TB preventive therapy is relatively inef-

fective, although the effectiveness improves for lifelong treatment. 

Since unit changes in the coverage of very different interventions are unlikely 
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Figure 5.11: Effect of increasing intervention levels by 1 % on the number of TB 

deaths over ten years, assuming constant HIV incidence in the long-term. Confi-

dence intervals are 95%. 

to be equally feasible or equally costly, these results are more of interest than of 

use to policy-makers. In Chapter 6 we extend this analysis to incorporate the costs 

of implementing the different interventions and evaluate the cost-effectiveness of 

a number of intervention strategies. 

A third way of comparing interventions is to ask what improvement in coverage 

would be needed to match the impact of a 5% increase in the case detection rate, 

over the baseline level of 50%. We calculate that the same reduction in the number 

of TB cases over 10 years could be obtained by any of the following means: reduce 

HIV incidence by 50%; increase the coverage of ART from 0% to 90%, assuming 

20% dropout each year; provide six months TB preventive therapy to 90% of all 

HIV-infected persons; or increase the TB cure rate from 70% to 79%. Thus, all in-

terventions, except augmenting the TB cure rate, require relatively large increases 

in coverage to compete with a 5% improvement in case detection. 

In order to assess how generally our results apply, we conducted a similar 
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Figure 5.12: Projected TB incidence and HIV prevalence in Uganda assuming HIV 

incidence declines to 25%. Confidence intervals are 95%. 

exercise for Uganda, which has an earlier epidemic than Kenya, and for South 

Africa, which has a later epidemic than Kenya. We assume that HIV incidence in 

Uganda will decline to 25% of its peak and in South Africa to 50% of its peak. The 

projected HIV and TB epidemics along with predicted reductions in the number 

of TB cases and deaths with increases in intervention levels are shown in Figures 

5.12 and 5.13. We expect the number of TB cases in Uganda to be declining, 

irrespective of any change in control efforts, because the prevalence of HIV peaked 

in the early 1990s and has fallen by about 50% since then. 

As HIV incidence is falling in Uganda [60], the measures aimed at curbing 

the effect of HIV on TB, such as ART or reducing HIV incidence, are much less 

effective than improving TB case detection and cure at averting TB cases and 

deaths (Figure 5.14). By contrast. South Africa appears to be on the threshold of 

a very large TB epidemic, driven by HIV. With no additional interventions, we 
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Figure 5.13: Projected TB incidence and HIV prevalence in South Africa assuming 

HIV incidence declines to 50%. Confidence intervals are 95%. 
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Figure 5.14: Number of TB cases averted in Uganda by increasing intervention 

levels by 1% from base. Confidence intervals are 95%. 

forecast a 60% increase in TB incidence from 1999 levels, before 2010, whatever 

the future course of the HIV epidemic. Despite the different characteristics of the 

South Africa epidemic curative measures are, per unit improvement in coverage, 

still the best way to diminish TB incidence, as for Uganda (Figure 5.15). 

5.7 Discussion 

5.7.1 Study Results 

The results of this study suggest that the best way to manage TB epidemics driven 

by HIV over the next five to ten years is to find and treat TB cases, rather than 

to prevent or mitigate the effects of HIV infection. These results are robust to 

uncertainties in the values of model parameters and are similar for early (Uganda), 

intermediate (Kenya) and late (South Africa) epidemics. The principal explanation 

for this finding is that curative measures reduce deaths and decrease transmission 
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Figure 5.15: Number of TB cases averted in South Africa by increasing interven-

tion levels by 1% from base. Confidence intervals are 95%. 

immediately in all TB patients, irrespective of whether patients are infected with 

HIV. By contrast, the preventive methods are directed at people co-infected with 

TB and HIV, who typically represent only one third to one half of the sources of 

new TB cases in eastern and southern Africa [30]. In addition, whilst preventing 

HIV infection removes the underlying cause of rising TB incidence, the benefits 

only begin to appear after approximately four years [81], [4], the time lag between 

HIV infection and late-stage HIV (WHO stage three). 

National TB control programmes in many African countries are already im-

plementing the WHO DOTS strategy [79], which gives curative measures an ad-

ditional practical advantage, because coverage can be improved by strengthening 

existing programmes. 

Even if DOTS is necessary to contain the HIV-related epidemics of TB, it may 

not be sufficient to bring such epidemics under control for two reasons. First, 

although curing TB cases is relatively effective, the results of this analysis suggest 

that curative programmes on their own will stabilise, but not reverse, TB incidence 
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and deaths. Second, methods for preventing and ameliorating the effects of HTV 

infection will be essential for tackling AIDS in general, as distinct from HIV-

related TB in particular. The principal recommendation from this initial study is 

that national TB programmes in areas of high HTV prevalence should continue to 

strengthen their curative services, using preventive measures in addition to, but not 

as a substitute for, finding and treating active TB cases. 

5.7.2 Methodology 

With both the Markov Chain Monte Carlo sampling (MCMC) and the importance 

sampling, knowledge of the posterior function, especially of its mode, is necessary 

to ensure convergence, and the computing time used by the optimization routine 

to find the maximum of the posterior distribution seems to be better spent in this 

manner than it would be performing additional MCMC or importance sampling 

runs. 

The MCMC works well for most scenarios, obtaining good convergence for 

approximately 80,000 model runs (3000 runs warm up and 5000 runs for each of 5 

chains with separate runs for the TB and the HIV parameters). Some scenarios are 

more troublesome, most notably Uganda, where the data is worse than in Kenya 

and South Africa and the epidemic characteristics are very different. In Uganda 

the HIV prevalence data show a decline from a maximum in the early 1990s and 

no data are available for the years in which HIV prevalence was increasing. This 

may introduce some ambiguity into the fitting of the HIV parameters. 

Importance sampling shows poor convergence, diagnosed by the existence of 

very high-valued weights, corresponding to points in parameter space at which 

the candidate distribution is very low and the posterior distribution relatively high. 

This suggests that the candidate distribution is not a good enough approximation 

to the posterior distribution. Importance sampling did work reasonably well in 
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a previous study [36], and we suspect that the reason why convergence was so 

poor in this situation was due to the non-normal shape of the posterior distribution 

for the HIV parameters. High-valued weights skew the estimate of the posterior 

distribution of the model parameters, as Figure 5.3 shows, and in so doing lead to 

incorrect estimates of results such as TB incidence and intervention effectiveness, 

and the confidence intervals around these results. 

We found the convergence of MCMC to be less dependent on the knowledge of 

the posterior distribution prior to sampling than importance sampling. As MCMC 

is an adaptive sampling procedure, this is to be expected. An additional advantage 

of MCMC is that the output, when the warm up has been removed, is a sample 

from the posterior distribution. This makes the sampling of parameters from their 

posterior distributions, e.g. for the estimation of uncertainty intervals on model 

results, easier than with importance sampling, where each of the sets of parameters 

must be weighted by the ratio of the posterior probability to candidate probability. 



Chapter 6 

Cost-Effectiveness Analysis of TB 

and HIV Interventions 

6.1 Introduction 

This chapter describes the cost-effectiveness analysis of interventions against tu-

berculosis (TB) and HIV, extending the analysis of Chapter 5. The work described 

here is not directly related to the main academic thread of the thesis; however 

the successful application of the Bayesian methodology to the initial study of the 

effects of different interventions led to a fuller requirement for an economic analy-

sis. Introducing costs to the analysis of Chapter 5 allows us to measure the effort 

involved with increasing intervention levels on the same scale: that of money. Us-

ing more generic measures of effectiveness such as disability adjusted life years 

(DALYs) gained also enables a fairer comparison of interventions against HIV and 

interventions against TB. The work described in this chapter is therefore of great 

practical use to policy-makers. 

As discussed in Chapter 5, TB remains the most common opportunistic infec-

tion associated with HIV in Sub-Saharan Africa, and interventions aimed at either 

134 
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disease must be considered in the context of a joint epidemic. Where budgets are 

limited, decisions must be made as to which interventions should be prioritized 

and implemented first. Cost and cost-effectiveness analysis can play an impor-

tant role in this decision process, because they allow an assessment of which of 

many competing interventions are affordable, and which provide the best value for 

money. 

A recent systematic review [33] identified 24 cost-effectiveness studies of 31 

different HTV prevention, treatment and care interventions in sub-Saharan Africa 

that allowed cost-effectiveness to be assessed using a generic indicator of effective-

ness (DALYs averted). Several studies of the cost-effectiveness of TB treatment in 

sub-Saharan Africa have also been undertaken, and two recent reviews are avail-

able [14], [48]. However, the existing studies have three important limitations. 

First, almost all studies consider only one intervention rather than comparing a 

range of interventions in the same setting. This limits the extent to which fair 

comparisons among interventions can be made. None of the published studies 

consider a range of TB/HIV interventions simultaneously. Second, they employ 

different approaches to transmission of both HIV and TB; in some studies, trans-

mission is not considered and where it is, the methods for estimating the costs and 

effects associated with an intervention's impact on transmission vary. The only 

cost-effectiveness study of TB treatment in Africa that has incorporated transmis-

sion in the analysis focused on the treatment of HIV-negative patients, and cost 

per DALY averted figures that applied in high HIV prevalence settings were not 

reported [69]. Third, few studies consider the total number of people that would 

need to receive an intervention if existing policy was implemented and control 

targets met, and few analyse the related total costs, effects, affordability and cost-

effectiveness of interventions. For example, all cost-effectiveness studies of TB 

treatment relate to existing levels of case detection and cure. They do not as-

sess the cost-effectiveness of improving case detection and cure rates beyond their 
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existing levels, even though this is needed if global TB control targets are to be 

achieved. None of the limited number of cost-effectiveness studies of antiretro-

viral treatment (ART) relate to the coverage levels needed to achieve the World 

Health Organization's recently announced goal of enrolling three million people 

on ART by 2005 (the "3 by 5 initiative"). 

In Chapter 5 and [36], we compared the effects of several strategies to re-

duce the burden of TB and HIV in high HIV prevalence countries in Africa. This 

analysis used a mathematical model that allowed impacts on transmission to be 

considered in a consistent way. Here, we extend this work to assess the costs, ef-

fects, affordability and cost-effectiveness of six strategies for reducing the burden 

of TB and HIV, using data for Kenya. Each strategy relates to existing targets or 

policy for TB control and ART enrolment, and in each case we include assessment 

of the total number of people that would need to be reached. The analysis follows 

that described in [35], but uses the model described in Chapter 5 rather than that 

described in [36]. 

6.2 Methods 

6.2.1 Country and Strategies Considered 

Our analysis focuses on Kenya. Kenya has an HIV epidemic that is typical of the 

region, good data on the prevalence and incidence of HIV and TB are available, 

and detailed costing studies of TB treatment have recently been undertaken. 

We considered six strategies for reducing the burden of TB and HIV in Kenya. 

These were 

1. Improving TB case detection rates so that the WHO target of 70% is reached 

in 2005 and then sustained 
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2. Improving TB cure rates so that the WHO target of 85% is achieved in 2005 

and then sustained 

3. Simultaneously improving both TB case detection and cure rates so that both 

WHO targets are met in 2005 and then sustained (DOTS) 

4. Providing ART so that the targets for enrolment included in the recent WHO 

"3 by 5" initiative are met i.e. 50% of the estimated population in need 

receives treatment 

5. Providing isoniazid preventive therapy (IPT) to HIV-positive individuals with-

out TB for six months 

6. Providing IPT for life to HIV positive individuals without TB 

All six strategies were assessed for the ten year period 2005-2014, and compared 

with a scenario (which we term the baseline scenario) in which interventions con-

tinue at their existing levels. This means a 50% TB case detection rate, a 70% 

TB cure rate, and no implementation of either ART or preventive therapy (we ac-

knowledge that there is some provision of ART and preventive therapy in Kenya, 

but this is very limited). 

We also analyse the cost-effectiveness of reducing HIV incidence, but this was 

assessed differently from the other interventions for reasons that are discussed in 

Section 6.2.3 

6.2.2 Analysis of Numbers to be Treated, Costs and Effects 

The numbers to be treated in each strategy, and the associated costs and effects, 

were estimated using the mathematical model described in detail in Chapter 5. We 

focus on the scenario in which the HIV epidemic stabilises at a prevalence of 14% 

in adults, the value observed in ante-natal clinic surveys in Kenya in 1999 [75]. 
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The model was extended to include the annual numbers of patients detected and 

treated (for strategies to improve TB case detection and cure rates, and preventive 

therapy for six months) and the annual person years of treatment (ART, lifelong 

preventive therapy) as model outputs. Unit costs of TB detection and treatment, 

one year of ART, and a six month course of preventive therapy were also incorpo-

rated into the model and were used, in combination with the model estimates of 

the numbers detected, numbers treated or the person years of treatment, to produce 

the total annual costs of each strategy as model outputs. 

Costs incurred in future years were discounted at 3%, in line with recent in-

ternational guidelines [90], [56]. Costs were assessed from the perspective of the 

health system only (i.e. costs incurred by patients themselves were not included) 

in year 2003 US$. It is important to highlight that because ART will defer costs 

associated with treatment of AIDS-related opportunistic infections (OIs) and pal-

liative care, our analysis allowed for treatment savings arising from the provision 

of ART. For each year, costs for the treatment of OIs and palliative care were esti-

mated as the total people years of treatment multiplied by the average annual cost 

of such treatment. The total people years of treatment were based on the numbers 

with AIDS (estimated as a fixed proportion - 40% - of the numbers in late stage 

HIV) and the fraction assumed to access care (assumed to be 50%). As ART re-

duces the numbers of people with AIDS, the total annual cost of 01 treatment and 

palliative care is lowered when the strategy of providing ART is implemented. The 

cost parameters used, and the related assumptions and sources of data, are given 

in Appendix B. 

The measure of effectiveness used in this analysis is the number of disability 

adjusted life years (DALYs) gained by each of the interventions. Our previous 

analysis focused on TB deaths and TB cases averted, but a fair comparison of the 

cost-effectiveness of interventions requires that the analysis captures a) differences 

in the years of life gained from averting deaths in HIV-positive and HIV-negative 
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individuals, and b) the prevention of deaths from causes other than TB. If this is 

not done, the analysis will be biased against interventions that prevent relatively 

higher numbers of deaths in HIV-negative individuals and/or deaths unrelated to 

TB. The mathematical model does not include age structure; therefore, we estimate 

the average number of DALYs gained by averting a death among HIV-negative TB 

patients, HIV-infected TB patients and HIV-positives to be 

" r KCpTo-x 

'=1 + _ (6.1) 

_e-%(r+/3) _ 1)] + (1 _ 

based on the standard equation for a DALY averted as given in [70]. Here a, is 

the average age in age group i, is the proportion of deaths in age group % for the 

population under consideration, 2,̂  is the life expectancy for someone in the given 

population at age %, K is the age weighting modulation factor, C is a constant, r 

is the discount rate and p is the parameter from the age-weighting function. The 

values of jiT, C and come from [49] and are given in Table 6.1. 

Parameter Value 

K 1 

C 0.1658 

r 0.03 

P 0.04 

Table 6.1: Parameter values used in the calculation of disability adjusted life years 

(DALYs) gained. 

Using Equation 6.1, life expectancy data for Kenya [103], evidence that life 

expectancy among HIV-positive TB patients is approximately three years [72], 

[5], [6], and the assumption that the death rate among TB patients is the same in 

each age group, we estimate that the DALYs gained by averting a TB death in an 
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HTV-positive TB patient would be 4 years, and that the gain in an HTV-negative 

individual would be 24 years. To capture the effect of ART on non-TB related 

mortality, we further assume that 1 DALY is averted for each person year of ART. 

To avoid double counting of deaths, we assume that ART can only affect TB deaths 

among HIV-negatives and not those among HIV-positives. For consistency with 

the analysis of total costs, DALYs averted in future years were discounted at 3%. 

The model was run for the baseline scenario and the addition of each of the 

six intervention strategies to the baseline. When considering the baseline, cost-

effectiveness is estimated as the net change in costs from a situation where no 

interventions are applied, divided by the net increase in DALYs averted from a 

situation in which no interventions are applied. The six intervention strategies 

were applied individually, allowing comparison between strategies, which would 

not have been possible if the model had been run with all strategies applied si-

multaneously. Cost-effectiveness was calculated as the net change in costs from 

the baseline scenario divided by the net increase in the number of DALYs averted 

compared with the baseline scenario. Uncertainty intervals were obtained by sam-

pling 1000 sets of model parameters from the output of the Markov Chain Monte 

Carlo sampling (MCMC), while costs were sampled from the distributions given 

in Table B.l . The uncertainty intervals therefore simultaneously incorporate un-

certainty about unit costs, the numbers given interventions in each scenario, and 

effects. 

In order to assess the how generally applicable our results are, we obtained 

results for a number of possible scenarios for Kenya: 

1. The implementation of the six intervention strategies occurring at 50% and 

25% of the rate required to meet the targets specified above 

2. Assessment of the results over five and twenty years 
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Results for these scenarios will not be presented here but will be discussed in 

Section 6.3. 

6.2.3 Reducing HIV Incidence 

In Chapter 5, we considered the effect of reducing HIV incidence. The model 

cannot be used to estimate the total costs of implementing interventions aimed at 

reducing HIV incidence because the effect of reducing HIV incidence is explored 

simply by changing the assumed trajectory of the HIV epidemic, with no consid-

eration of the specific interventions that would be required to achieve this and how 

many people they would need to reach. We therefore estimated the threshold costs 

per HIV infection averted at which reducing HIV incidence would have the same 

cost-effectiveness as the other six strategies, and compared these with existing 

published data. For HIV prevention, we estimate that 22 DALYs are averted for 

each HIV infection averted, based on the the standard DALY formula (Equation 

6.1) and demographic data for Kenya. 

6.3 Results 

In the baseline scenario, the only interventions offered are treatment for active TB, 

with a cure rate of 70% and a case detection rate of 50%, and treatment for AIDS-

related OIs and palliative care. The model estimated that 96,000 (95% confidence 

intervals [81,000, 120,000]) people are treated per year for TB, at a total cost of 

US$ 17 million [US$ 15 million, US$ 21 million], and 185,000 [175,000,195,000] 

people receive treatment and care for AIDS, at a cost of US$ 37 million [US$ 

33 million, US$ 41 million]. This results in 2 million [1.5 million, 2.8 million] 

DALYs being averted per year compared with a situation in which no interventions 

are offered. The cost per DALY averted is US$ 8.70 [US$ 6.60, US$ 11.10]. 
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The numbers of people treated for TB per year for each of the six strategies 

to reduce the burden of TB and HIV are shown in Figure 6.1. Numbers increase 

for most interventions because of population growth. Some other trends are worth 

noting. Increasing TB case detection or implementing the DOTS strategy result in 

an initial increase in the number of TB cases being treated. After several years, 

however the impact of this improved control strategy on TB transmission becomes 

obvious as the number of TB cases needing treatment drops and the number being 

treated for TB under the DOTS strategy is lower than for any other intervention 

strategy. Increasing TB cure rates also results in smaller numbers being treated, 

because those who are treated are more likely to recover. Administration of ART 

also reduces the number of people given TB treatment. Those taking ART are 

assumed to have the same risk of developing TB as someone who is HIV-negative, 

thus reducing the expected number of TB cases. Other interventions have little 

effect on the numbers being treated for TB. 
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Figure 6.1: Numbers of people given TB treatment under each of the six interven-

tion strategies. 
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As shown in Figure 6.2, when preventive therapy is provided for six months, 

the average number on treatment each year is stable at around 20,000 per year. 

When provided for life, there is a steady increase in the numbers on treatment 

from zero to 180,000 after 10 years. 
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Figure 6.2: Numbers of people given TB preventive therapy under the two TB 

preventive therapy intervention strategies. 

Provision of ART so that the "3 by 5" target for Kenya is met and then followed 

by enrolment of 50% of those in need of treatment, is associated with an increase 

from less than 10,000 on treatment in 2005 to 490,000 after 10 years, as shown 

in Figure 6.3. If the annual drop out rate from ART were 5% rather than 20%, 

numbers taking ART would increase to 880,000 after 10 years. 

The numbers of people with AIDS receiving 01 treatment and palliative care 

for the different intervention strategies are shown in Figure 6.4. Only administra-

tion of ART results in a substantial reduction (10% on average over the ten years) 

in the numbers of people with AIDS receiving treatment. As more people drop 
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Figure 6.3: Numbers of people given antiretroviral therapy under different scenar-

ios for dropout and administration. 

out of antiretroviral treatment, the numbers given treatment for OIs and palliative 

care start to increase again, a trend that is not so pronounced with the lower annual 

dropout rate of only 5%. 

The change in total annual costs (including cost-savings associated with re-

ductions in the number treated for TB and AIDS-related OIs and palliative care) 

compared with the baseline situation is shown in Figure 6.5. Improving TB case 

detection results in a slight increase in costs (average U S $ 2.6 million per year), 

while improving cure rates reduces costs (average of U S $ 1.9 million per year). 

Provision of preventive therapy increases costs by between US$ 0.9 million (for 

6 months of treatment) and US$ 5.3 million (lifetime treatment) per year, both of 

which are a small percentage of existing total health care expenditure. The most 

dramatic change in costs is for provision of ART; in 2014, ART will cost just over 

US$ 200 million per year more than the baseline strategy — greater than total gov-



CHAPTER 6 145 

-a 
c 

s i 
(0 ffl 5 o % 

(0 

® c 
Q. (U 
o E 
0) 5 _ 
Q. « ro 

0) Q. 

220000 -I 

200000 

180000 -
w 
9160000 4 < 

140000 H 

120000 

100000 

2005 2007 2009 2011 

Year 

2013 2015 

• Improve TB Cure Rate 
• IPT Lifetime 
•DOTS 
ART to TB Patients 

-a— Improve TB Detection Rate 
-I— IPT 6 IVlonttis 
- ^ A R T 
— Baseline (TB Treatment) 

ART 5% Dropout 

Figure 6.4: Numbers of people with AIDS receiving treatment for opportunistic 

infections and palliative care. 

emment health expenditure in 2000. This equates to an average annual cost of 

administering ART of US$ 163 million over the ten years. 

We measure the effectiveness of the different intervention strategies by the 

number of disability adjusted life years (DALYs) that they avert, and the expected 

annual numbers averted over the next ten years are given in Figure 6.6. Provision 

of ART averts the most DALYs over the ten years, followed by simultaneously 

improving TB case detection and cure rates (DOTS) and increasing TB case de-

tection rates. Other strategies avert far fewer DALYs. As people drop out of ART, 

it becomes less effective than other interventions, and it averts fewer DALYs than 

DOTS in the period 2012 to 2014. 

The cost per DALY averted varies widely (Figure 6.7). Improving TB cure 

rates saves DALYs and lowers costs, and thus has a negative cost per DALY 

averted. Improving case detection has a very low cost per DALY averted 
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Figure 6.5; Additional annual costs over baseline for the six intervention strategies 

and government health expenditure for Kenya in 2000. 
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(US$ 7 [US$ 3, US$ 12). Other interventions cost more — the mean costs per 

DALY averted for TB preventive therapy for 6 months and for ART are approxi-

mately US$ 225, although the 95% confidence interval for the cost-effectiveness 

of short-course TB preventive therapy is wide, between US$170 and US$290. The 

strategy with the highest cost per DALY averted is provision of lifetime preventive 

therapy (mean US$ 690 [US$500, US$910]). Decreasing the dropout rate from 

ART to 5% will result in a higher cost per DALY averted of US$ 268 [US$265, 

US$271]. 
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Figure 6.7; Average cost per DALY averted for the six intervention strategies. 

Improving TB case detection and cure rates simultaneously could reduce TB 

incidence to 284 per 100,000 by the end of 2014, 60% of the estimated incidence 

rate for 2004 (Figure 6.8). Increasing either the case detection or cure rates inde-

pendently gives a smaller effect, with a reduction of 5% by the end of 2014 for 

increases to the cure rate and of 20% for increases to the detection rate. Provi-

sion of ART results in an increase in the TB incidence, with TB incidence just 7% 
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below that of the baseline scenario in 2014. Preventive therapy has only a small 

effect on TB incidence. 
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Figure 6.8: TB incidence over time for the six intervention strategies. 

The picture is similar for the effect of interventions on deaths from TB, shown 

in Figure 6.9, with DOTS cutting the rate of TB deaths by just under 50% by the 

end of 2014, in line with the Millennium Development Goals, which state that TB 

deaths should be reduced by 50% by 2015. Improvements to the TB case detection 

rate have a proportionally greater effect on TB deaths than TB incidence, reducing 

the number of TB deaths to 142 per hundred thousand by the end of 2014. ART 

has a slightly greater effect on TB deaths than on TB incidence, with TB deaths 

per year 9% lower than baseline at the end of 2014, but still higher than the number 

of TB deaths per year in 2004. 

The threshold costs per HIV infection averted for HIV prevention strategies 

compared with the other intervention strategies are given in Table 6.3. We can 

see that the threshold costs are all relatively high. The threshold cost compared 

with increasing the TB cure rate is negative because, even taking into account the 
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Figure 6.9: TB deaths per year for the six intervention strategies. 

additional cost of improved treatment, increasing the TB cure rate is still more 

cost-effective than spending no money on reducing HIV incidence. 

Intervention Threshold Cost per HIV 

Infection Averted 

Increasing TB Detection Rate $208 

Increasing TB Cure Rate -$215 

DOTS $76.90 

Administering TB Preventive Therapy $3 600 

(6 Months) 

Administering TB Preventive Therapy $10 800 

(Lifetime) 

Administering ART $3 560 

Table 6.2: Threshold costs per HIV infection averted to be as cost-effective as the 

other intervention strategies. 
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We can compare the threshold costs of reducing HIV incidence with the results 

presented in [33] for the costs per HIV infection averted of some standard HIV pre-

vention strategies. Based on these, we can conclude that condom distribution of 

provision of blood safety measures could be more cost-effective than increasing 

TB treatment to DOTS levels or increasing the TB detection rate. Giving preven-

tive therapy for TB or administering ART are both less cost-effective than all of 

the strategies for reducing HIV incidence discussed in [33]. 

The cost-effectiveness of the different interventions measured over periods of 

five and twenty years, and with different rates of progress toward targets, was 

very similar to those for the scenario presented here, where results were measured 

over ten years. We did not consider the effect of the HIV epidemic only being 

half that predicted by the antenatal clinic data from Kenya. In a previous study 

[35], this was found to reduce the numbers given ART and preventive therapy for 

TB (as this is given only to HIV-positives), and to reduce the numbers of DALYs 

averted by these interventions. Consequently, simultaneous improvements to TB 

case detection and cure rates were found to be the most effective interventions at 

gaining DALYs. 

6.4 Discussion 

6.4.1 Main Findings 

The results suggest that the priority for TB programmes in high HIV settings 

should be to concentrate on doing better what they already do, i.e. improving 

TB treatment by increasing the TB cure and detection rates. This has been shown 

to be more cost-effective than the other interventions considered and is affordable 

with existing national health budgets. 

Providing ART at the levels suggested in the "3 by 5" initiative has the poten-
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tial to avert the most DALYs, 15% more than implementation of DOTS over the 

period 2005 to 2014. However realising this potential will require significant new 

funding, equivalent to a doubling of annual health spending in Kenya by 2013. 

Even if the money is made available from other external sources, the problem of 

absorbing a doubling in annual health expenditure over such a short space of time 

will remain. 

Although low cost, the cost-effectiveness of IPT for 6 months is approximately 

equal to that of ART. The higher cost of lifelong IPT, and the small additional 

benefit associated with extending treatment beyond 6 months, make it a much less 

cost-e&ctive strategy. 

Condom distribution or improvements to blood safety could be more cost-

effective than an of the interventions considered, with the exception of increas-

ing the TB cure rate. Administering ART or TB preventive therapy is less cost-

effective than all of the HIV prevention strategies considered in [33]. 

6.4.2 Limitations of Analysis 

The nature of the mathematical model used prevents full account being taken of 

any reduction in HIV transmission caused by these interventions. Even allowing 

for this however, we would recommend that further efforts be concentrated on im-

provements to TB treatment programmes and implementation of HIV prevention 

strategies, with increasing coverage of ART as a secondary aim. 

No data exist on the costs of improving case detection rates, and so it was 

necessary to make assumptions. However, even taking the cost of finding addi-

tional cases to be double the existing level, improving case detection is very cost-

effective. It could be 30 times more costly before it would be less cost-effective 

than ART or short-course IPT. Assumptions were also made about the cost of im-

proving cure rates due to a lack of data for Kenya. 
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We encountered further problems with limited data when estimating the costs 

of providing ART in practice. Costs may fall over time due to economies of scale; 

alternatively, some costs may have been underestimated in the existing analysis 

due to the limited experience of administration to such large numbers of people. 

Little data exists in the literature about the life expectancy of patients who 

default from ART. We have assumed that, following default from ART, a person is 

at the same position in the natural history of HIV as someone entering late-stage 

HIV (WHO stage 3). This means that those given ART effectively pass through 

stage 3 twice: first before being given ART; second following default from ART. 

During stage 3, they are more susceptible to TB, and therefore HIV-positives given 

ART have an increased risk of TB for longer than HIV-positives not given ART. 

This partly explains why the numbers on TB treatment under the ART strategy 

increase to the same level as under the baseline strategy when those first given 

ART start to drop out of treatment. 

6.4.3 VeriGcation of Results 

The results that we present here are based on a model of the situation in Kenya. 

To verify these results and compare them with results obtained in other similar 

situations, we compare them with those presented in Creese et al [33] for the cost 

per DALY gained of TB treatment, ART and TB preventive therapy, which are 

reproduced in Table 6.4.3. The comparison shows that the results given here are 

not dissimilar to previously published estimates with the exception of costs for 

ART. The costs estimated here tend to be on the low side of the literature estimates, 

which is to be expected, as the epidemiological model takes account of reductions 

in TB transmission, whereas this has not been possible in previous studies. Costs 

per DALY gained for ART are also significantly lower because of the low costs 

per person year of treatment used (based on the "3 by 5" analysis), and due to the 
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allowance made for the reduced AIDS costs under the ART strategy. 

Intervention 

TB Treatment 

Coa: DALY C%W3 CXM3 

US$): Creese et al [33] US$): this Analysis 

$2475 -$20 [-$24, -$15] 

(Increase cure rate) 

$7 [$3, $12] 

(Increase detection rate) 

-$1.20 [-$4.60, $2.70] 

(Increase cure and detec-

tion rate) 

ART $1200-$2000 $224 [$220, $227] 

$268 [$265, $271] for 5% 

dropout 

TB Preventive Ther- $185-$320 $226 [$173, $290] 

apy (6 months) 

TB Preventive Ther- None available $692 [$503, $913] 

apy (Lifetime) 

Table 6.3: Comparison of our estimates of the cost per DALY with current litera-

ture estimates. Confidence intervals are 95% 

6.4.4 Conclusions 

We have shown in this chapter, that the most cost-effective intervention strategy, 

measured in terms of cost per DALY gained, is to increase the cure rate for ac-

tive TB, with improvements to the TB case detection rate also being highly cost-

effective. Increasing the TB case detection and cure rates to DOTS levels of 70% 

and 85% will result in a 40% reduction in TB incidence by the end of 2014 and 
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a just under 50% reduction in TB deaths, as compared with the 2004 estimate, 

suggesting that implementation of DOTS alone will be sufficient to meet the Mil-

lennium Development Goal of reducing TB deaths by 50% by 2015. Some HIV 

prevention strategies are also very cost-effective and all are estimated to be more 

cost-effective than administering ART or TB preventive therapy. Increasing the 

coverage of ART has the greatest effect on reducing DALYs but suffers from very 

high costs. Provision of ART and HIV prevention interventions will however be 

necessary to reduce the burden of HIV. 



Chapter 7 

Conclusion 

In this thesis we have described a Bayesian methodology to analyse complex sta-

tistical models. The methodology uses Monte Carlo sampling to integrate over 

the posterior distribution. We concentrated initially on importance sampling; in 

Chapter 2 discussing how the candidate distribution should be chosen to improve 

convergence. We then went on to show how the convergence of importance sam-

pling can be measured in Chapter 3. The methodology has been applied to two 

examples: in Chapter 4 we considered the non-standard statistical problem of de-

termining the number of components in a finite normal mixture model; and we 

described the Bayesian uncertainty analysis of a compartmental model of tubercu-

losis (TB) and HIV in Chapter 5. The ease with which the results of the sampling 

can be used was demonstrated in Chapter 6, where we used the parameter values 

output by the sampling to evaluate the cost-effectiveness of different interventions 

against TB and HIV and the uncertainty around these results. 

7.1 Bayesian Statistics 

In Bayesian statistics we work with the posterior probability distributions of model 

parameters. The posterior distribution is proportional to the product of the prior 

1 5 5 
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distribution of the parameters and the likelihood function. It therefore combines 

any prior knowledge of parameter values with the fit of the model to the data. No 

prior knowledge was available in the finite mixture models example and a Bayesian 

methodology was used because of the smoothing effect of the prior distribution on 

the likelihood distribution. The posterior distribution was therefore better behaved 

than the likelihood distribution; in particular not suffering from discontinuities. 

Good prior knowledge of the model parameter values for the TB-HIV model was 

available in the medical literature. Using Bayesian statistics in this example meant 

that we could give an estimate of the uncertainty on the results that took into ac-

count the fit of the model to the data and our prior knowledge of the parameter 

values. 

7.2 Sampling Methodology 

Normalising the posterior probability distribution involves integrating the product 

of the prior distribution and the likelihood over parameter space. The integral can 

sometimes be calculated analytically, but in the two examples that we considered 

in this thesis it was necessary to integrate numerically. We used Monte Carlo 

methods to perform this integration, using importance sampling in the analysis of 

finite mixture models and Markov Chain Monte Carlo sampling (MCMC) when 

analysing the model of TB and HIV. 

Both importance sampling and MCMC require some information about the 

posterior distribution for them to be more efficient than simple Monte Carlo sam-

pling. In importance sampling, all of the knowledge must be obtained before 

starting the sampling as the candidate distribution used is fixed. Most MCMC 

algorithms are adaptive however, meaning that the candidate distribution changes 

over the course of the sampling. The advantages of the adaptive approach were 

observed in the analysis of the TB-HIV model where the normal candidate distrib-
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ution was very different from the skewed posterior distribution. Here, importance 

sampling performed badly but MCMC converged well. 

The examples we considered were assumed to have approximately multivariate 

normal posterior distributions. We therefore restricted our investigations of the 

posterior distribution prior to the sampling to finding its mode and estimating the 

CO variance matrix. 

7.2.1 Importance Sampling 

In Chapter 2 we investigated the choice of candidate distribution in importance 

sampling, showing that the optimal sampling function is the posterior distribution. 

When sampling to find the normalising factor for the posterior distribution, this is 

not a practical solution, and the chapter went on to discuss some of the practicali-

ties of importance sampling in the context of statistical estimation. As the number 

of dimensions increases, discrepancies between the candidate distribution and the 

posterior distribution become more costly in importance sampling. We showed in 

Section 2.4.1 that the variance of the sampling increases exponentially with the 

dimension for any discrepancies in the mean, when both the candidate and the 

posterior distributions are multivariate normal. Knowledge of the mean was found 

to be more important than knowledge of the covariance. 

Assessing the convergence of importance sampling focuses on the distribution 

of the weights, the ratios of the posterior distribution to candidate distribution at 

each of the sampling points. Very high weights are generally indicative of a lack 

of convergence. We described a number of diagnostic and statistical tests of im-

portance sampling convergence in Chapter 3. The diagnostic tests relied heavily 

on graphical indicators of convergence and the statistical tests made use of results 

from extreme value theory to determine whether the weights had a finite variance. 

We found both to be useful but the diagnostic tests much more straightforward to 
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use and interpret. We would recommend the use of both diagnostic and statistical 

tests. Non-convergence can generally be identiHed using the diagnostic tests, and 

confirmed by the statistical tests. 

7.2.2 Markov Chain Monte Carlo 

In MCMC, a Markov chain is constructed that has as its stationary distribution the 

distribution being integrated over; in our case this is the posterior distribution. We 

used the Metropolis-Hastings algorithm to determine the posterior distribution for 

the TB-HIV model, updating the mean after every acceptance. The adaptability of 

this algorithm means that it can cope better with the posterior distribution being 

different from the initial candidate distribution. 

Individual samples generated by MCMC are not independent, and when analysing 

the TB-HIV model we ran several chains from different starting points to avoid 

problems of autocorrelation. Output from the different chains was then compared 

to determine whether the chains had been run for long enough for the output to be 

unaffected by their start points. 

7.3 Model Selection for Finite Mixture Models 

We used importance sampling to find the posterior distribution of the number of 

components in a finite normal mixture model. Comparison of our results with the 

literature, especially those of Richardson and Green [84], shows that we suggest 

more definite posterior distributions for the number of components. We suspect 

that this is due to the choice of prior distribution, but may be due to the presence 

of "nuisance" components in the results of the reversible jump sampling used in 

[84]. These components may have a very large variance, or alternatively may have 
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a very similar mean and variance to another component in the mixture, effectively 

doubling up on one component. 

Importance sampling has advantages over MCMC in this example. Construct-

ing a Markov chain that moves between the different possible models is very dif-

ficult and requires rather complicated methodology, such as jump diffusion sam-

pling [84]. In comparison, the importance sampling methodology is relatively 

simple, as movement between models with different numbers of components is 

dictated by the candidate distribution, which is made up of the probability of sam-

pling each model, in addition to the probabilities of sampling each of the para-

meters of the model. The posterior distribution was found to be approximately 

multivariate normal, ensuring that the importance sampling also converged. 

7.4 Model of Ibberculosis and HIV 

The Bayesian analysis of a compartmental disease model of TB and HIV was de-

scribed in Chapter 5. We found that MCMC worked well in determining the poste-

rior distribution of the model parameters. Importance sampling demonstrated poor 

convergence, possibly due to the posterior distribution being skewed and therefore 

not a close enough match to the candidate distribution, a multivariate t-distribution. 

The model results suggested that, in countries with high HIV prevalence and 

high TB incidence, the best method of reducing TB incidence over the next five 

to ten years is to improve treatment of TB, by detecting more cases and curing 

them more effectively. Interventions aimed at reducing HIV incidence or mitigat-

ing the effects of HIV infection will have a smaller effect on TB incidence and TB 

deaths. Improvements to TB treatment are also relatively cheap, and we showed 

in Chapter 6 that the cost per disability adjusted life year (DALY) gained for im-

plementing the World Health Organization targets of 70% TB case detection and 

85% TB cure was -$1.20 [-$4.60, $2.70]. This made it much more cost-effective 
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than antiretroviral therapy for which the cost per DALY averted was $ 2 2 4 [ $ 2 2 0 , 

$227]. Antiretroviral therapy is very effective at reducing DALYs but the large 

costs involved in implementing it reduce its cost-effectiveness. 

7.5 Further Work 

In many areas of research, stochastic models are used more widely than determin-

istic models and are considered to be a better description of reality. One possible 

extension of this methodology would be to the analysis of stochastic models. The 

additional uncertainty in the model output may make determining convergence 

more difficult. 

One simple extension of the model selection work would be to consider mix-

tures of distributions other than the normal distribution. For example mixtures of 

skewed distributions could provide better descriptions of skewed data sets, and use 

fewer components. The basic methodology would not need to change substantially 

to make this extension, with most of the work being involved in choosing appro-

priate prior distributions and refining the optimization routine. The methodology 

could also be extended to model selection in regression analysis, which is also 

a statistically non-standard problem. Our approach would probably be closest to 

work by George and McCulloch [52] and Cheng [20]. 

We have assessed the cost-effectiveness of interventions against TB and HIV 

when they are applied individually. In practice, several interventions will be im-

plemented together, and decision-makers are interested in the cost-effectiveness of 

mixes of interventions. A resource allocation study may be useful in determining 

the best mix of interventions in different resource settings. 
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7.6 Discussion 

We have demonstrated the use of a Bayesian methodology involving Monte Carlo 

sampling on two examples: determining the posterior distribution of the number of 

components in a finite normal mixture model and estimating the uncertainty in the 

output of a compartmental model of TB and HIV. We found that importance sam-

pling worked well in the mixture models example, providing a relatively simple 

mechanism for jumping between different models. MCMC worked better in the 

TB-HIV model, where the posterior distribution had a very different shape from 

the chosen candidate distribution. The adaptability of the MCMC algorithm was 

an advantage in this case. 

Implementing importance sampling is relatively straightforward and the algo-

rithm is easily understood. In addition, as the samples output are independent, 

assessing convergence is much easier than for MCMC. Therefore, if it is possi-

ble to obtain reasonable convergence with importance sampling, without too much 

additional effort learning about the distribution, we would recommend its use in 

preference to MCMC. The main advantage of MCMC is its adaptability, but this 

contributes to the problems assessing its convergence because it means that the 

samples output will be correlated. 

In conclusion, with the right choice of Monte Carlo sampling algorithm, the 

Bayesian methodology described in this thesis can be used to determine the pos-

terior distribution of a complex system. We have demonstrated its use on model 

selection for finite normal mixture models and uncertainty analysis for a compart-

mental model of disease. 



Appendix A 

Posterior Correlation Matrix of the 

Tuberculosis Parameters 

The estimated posterior correlation matrix of the TB parameters in the TB-HIV 

model described in Chapter 5 is given in Tables A.l and A.2. The matrix has been 

split across the two tables for presentation purposes. 
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Table A.l: Posterior correlation matrix for the first ten TB 

parameters in the TB-HIV model, estimated using MCMC 

sampling. 
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Table A.2: Posterior correlation matrix for the last eleven TB 

parameters in the TB-HIV model, estimated using MCMC 

sampling. 
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Appendix B 

Unit Costs of Treatments for 

Tuberculosis and HIV 

The table gives unit costs of treatments for tuberculosis (TB) and HIV used in the 

cost-effectiveness analysis in Chapter 6. For normal distributions, the first figure 

gives the mean and the second the variance. For uniform distributions, the two fig-

ures give the lower and upper limits. Confidence intervals are 95%. (Although data 

are available on the costs of treatment and care for people with AIDS in Kenya, 

these data were not used because they are out-of-date and currently implausible -

the cost per person multiplied by the number of people with AIDS gives a total 

cost in excess of the country's total government health care expenditure. 

1 6 7 



Treatment Unit Unit Cost in US$ Uncertainty Dis- Reference/Assumptions 

(year 2003 prices) tribution 

> 
s 
z 
D 
X 
Cd 

TB diagnosis costs, ex- SS+ case 101 

i sting level of case de- detected 

tection 

SS+ case 152 

detected 

Short course treatment Person 

for TB (SS+), existing treated 

level of case detection 

140 

Uniform(101, 

202) 

Normal(101, 25) Nganda et al [10] For every SS+ case de-

tected, assume 10 suspects are seen. For 

each suspect, assume 3 sputum smears 

and 1 chest X-ray are done. 

Detecting additional cases is likely to be 

more costly on a per case basis than treat-

ment at existing level of case detection. 

No data are available to suggest what 

these costs would be so we allow them to 

vary between 1 and 2 times the existing 

cost. 

Normal(140, 49) Nganda et al [10] 

o\ 
00 



Treatment Unit Unit Cost in US$ 

(year 2003 prices) 

Uncertainty Dis-

tribution 

Reference/Assumptions 

Short course treatment Person 130 Normal(130. 43) Nganda et al [10] 

for TB (SS-), existing treated 

level of case detection 

Short course treatment Person 210 Uniform(140, Treating additional cases is likely to be 

for TB (SS+), any addi- treated 280) more costly on a per patient basis than 

tional case above exist- treatment at existing level of case detec-

ing case detection lev- tion. No data are available to suggest 

els what these costs would be, so we allow 

them to vary between 1 and 2 times the 

existing cost. 

Short course treatment Person 195 Uniform(130, As above for treatment of SS+ cases 

for TB (SS-), any addi- treated 260) 

tional case above exist-

ing case detection level 

> s 
z 
a 
X 
dd 

o\ \o 



Treatment Unit Unit Cost in US$ 

(year 2003 prices) 

Uncertainty Dis-

tribution 

Reference/Assumptions 

Isoniazid preventive Person 32 Uniform(27, 37) Bell et al [11] and evidence from 

therapy (6 months) treated ProTEST pilot projects (need ref). As-

sume 13% adult population accesses VCT 

each year, 36% are HIV4-, 100% are 

screened for IPT, 43% start treatment of 

whom 38% complete treatment (give refs) 

Isoniazid preventive Person 64 Uniform(54, 74) As above for isoniazid preventive therapy 

therapy (lifetime) year of 

treatment 

for six months, plus assumption that treat-

ment for one year is double the cost of 

treatment for six months 

Treatment for AIDS- Person 199 Normal(199,99) Cost and access to care assumptions used 

related opportunistic year of in recent cost analysis of "3 by 5". 56 - 78 

infections and palliative treatment % of people with AIDS assumed to ac-

care in the absence of cess treatment (WHO/UNAIDS working 

ART group, unpublished report) 

> % 
m 
z 
o 
X 
tx) 

o 



Treatment Unit Unit Cost in US$ Uncertainty Dis- Reference/Assumptions ^ 

ART Person 308 for all except None specified Cost assumptions used in recent cost 

year of people with TB , 548 analysis of "3 by 5" [57] 

treatment for patients with TB 

Table B.I: Unit costs of treatments for tuberculosis (TB) and 

HIV used in the cost-effectiveness analysis in Chapter 6 

(year 2003 prices) tribution § o 
X 
dd 

-J 
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