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This thesis describes the use of sampling methods in two applications: an epidemic
model of tuberculosis (TB) and HIV, and the estimation of the number of compo-
nents in finite normal mixture models. We use Bayesian statistics for the analysis,
which enables us to take into account prior information about parameter values
in the case of the epidemic modelling, and smooths the likelihood function when
considering finite mixture models. The convergence properties of importance sam-
pling are investigated and methods for diagnosing non-convergence of importance
sampling are discussed. We use importance sampling to analyse finite normal mix-
ture models and Markov Chain Monte Carlo sampling to fit the epidemic model.
Results for effectiveness and cost-effectiveness of different interventions against

TB and HIV. are presented.
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Chapter 1

Introduction

This thesis describes the application of a Bayesian methodology to the analysis of
two very different problems: model selection for mixtures of normal distributions
and uncertainty analysis of a compartmental disease model. The methodology uses
efficient sampling of parameter space to obtain posterior distributions for outputs

of interest.

With the ongoing improvements in computing power, it is becoming less time-
consuming to integrate numerically over a large number of dimensions. This
makes uncertainty analysis possible for statistically non-standard problems and
very complex models. The first example given in this thesis is of model selection
for finite mixture models, and is statistically non-standard. The second involves
the uncertainty analysis of a compartmental model of tuberculosis (TB) and HIV,

a complex model with a large number of parameters.

As the number of dimensions of the integration increases, more samples are
required to evaluate an integral accurately. Using variance reduction methods can
improve the convergence, as discussed in many books on Monte Carlo sampling
(e.g. [58], [47]). We consider two methods for variance reduction here: impor-

tance sampling and Markov Chain Monte Carlo (MCMC). In both of these tech-
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niques, the variance is reduced by concentrating the sample points in areas where

the integrand is significant.

The methodology that we use for the analysis of the two examples considered
in this thesis is based on Bayesian statistics. With the mixture model application,
we have only vague prior information, and the benefit of using Bayesian statistics
for this example is that the posterior distribution function is smoother than the like-
lihood function and has no discontinuities. Using Bayesian statistics to analyse the
TB-HIV model allows us to take into account prior information about parameter
values in the uncertainty analysis, as well as the fit of the model to available TB

incidence and HIV prevalence data.

1.1 Bayesian Statistics

In Bayesian statistics, a parameter 6 of a statistical model is regarded as the re-
alised value of a random variable © with probability distribution function 7 (f).
We call 7(0) the prior distribution. Information about the value of § comes from
both the prior distribution and observations of the data D that the statistical model
is describing. All of this information can be summarised in the conditional dis-
tribution of 6, conditioned on D. We use Bayes’ theorem [8], [9] to form this

conditional distribution, such that
P(6]D) = P(DI0)P(8)/P(D). (L.1)
The conditional probability P(6| D) is called the posterior distribution, and P(D|6)

the likelihood. The function P(D) is a normalising factor.

We can evaluate the product of the likelihood and the prior distribution at any
point in parameter space © and so obtain the shape of the posterior probability

distribution, but to obtain a proper probability distribution for the posterior distri-
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bution, we must evaluate the constant of proportionality P (D). It is given by
P(D) = / P(D|0)P(8)de, (1.2)
©

the product of the likelihood and the prior probability distribution integrated over
parameter space. In the examples that we consider in this thesis, the integral cannot
be computed analytically, and we use Monte Carlo sampling to evaluate it, in the

form of importance sampling or MCMC.

1.2 Sampling Parameter Space

As discussed in the previous section, the purpose of the sampling in this thesis is
to evaluate the normalising constant (D) by integrating the product of the likeli-
hood and the prior probability distribution over parameter space. The variance of
the sampling can be reduced if we make use of the available information about the
shape of the posterior distribution when devising our sampling methodology. We
consider two sampling methods here: importance sampling and MCMC sampling.
Both make use of a candidate distribution to focus the sampling in more important
areas of parameter space, where importance is measured by the size of the poste-
rior probability. By allowing for the fact that we are sampling from a candidate
distribution, these methods enable us to produce a sample that is effectively drawn

from P(6|D), the posterior distribution.

The sampling convergence is improved if the candidate distribution is similar
to the posterior probability distribution. We obtain knowledge about the shape of
the posterior distribution prior to sampling by optimizing it to find its mode, and
using the inverse Hessian of the negative log of the posterior distribution at the
mode to estimate its covariance matrix. This knowledge is then used to define the

candidate distribution for the sampling.
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1.2.1 Importance Sampling

Importance sampling is a numerical method for evaluating a general integral

Jo R(8)d6 and was first used in the late 1940s and early 1950s. Early discussions
of its use are given by, among others, Kahn and Marshall [63]. It was popularised
by Hammersley [58] in the 1960s, helped by an expository paper by Clarke [25],
which discusses its use within operational research. In importance sampling, sam-
ples are drawn from a candidate distribution and weighted by the ratio of the inte-
grand h(0) evaluated at the sample point to the value of the candidate distribution
at that point. If the candidate distribution is chosen correctly, this results in the
sampling being concentrated in parts of parameter space at which the integrand is
large, i.e. more important parts of parameter space. In its application to the nor-
malisation of the posterior probability distribution, 2(#) is the product of the prior

and likelihood distributions.

The improvements in convergence of the sampling are dependent on the quality
of the candidate distribution. We investigate the choice of candidate distribution in
Chapter 2, and find that the best candidate distribution is one that is proportional
to the modulus of the integrand, as shown by Marshall [66] in 1954, and more
recently by Rubinstein [89] and Evans and Swartz [46]. Using this as the candidate
distribution is not practical as it requires knowledge of the integral that we are
trying to calculate. We therefore investigate practical solutions to the choice of
candidate distribution in the normalisation of the posterior distribution in Section
2.3, giving general results for functions of the exponential family that add detail to
the usual rule of thumb that the tails of the candidate distribution should be fatter
than those of the integrand.

As the number of dimensions increases, knowledge of the integrand becomes

more important. We show in Section 2.4.1 that when the posterior distribution is

multivariate normal, and we use a multivariate normal as the candidate distribution,
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the variance of the sampling increases exponentially with the dimension when
there are discrepancies in the mean. Discrepancies in the mean have a greater

effect on convergence than discrepancies in the covariance structure.

One of the main advantages of importance sampling is its simplicity. It is easy
to implement and easy to understand. In addition, samples output by importance
sampling are independent making them easier to work with than those output by
adaptive algorithms such as MCMC or adaptive importance sampling. Many au-
thors also comment on the ease of assessing the convergence of importance sam-
pling [46], but few seem to perform a formal analysis of convergence [65]. We
discuss methods for analysing the convergence of importance sampling in Chap-
ter 3, and show how extreme value theory can be used to help diagnose a lack of

convergence.

1.2.2 Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo sampling (MCMC) was first used in statistical physics
by Metropolis et al in the 1950s [67], who introduced the Metropolis algorithm.
This was generalised by Hastings in 1970 [59] to give the Metropolis-Hastings
algorithm. An MCMC algorithm for the problem of finding the posterior distribu-
tion is designed so that, after a steady state has been reached, the points generated
by the algorithm will come from a Markov chain with stationary distribution given
by the posterior distribution. In the Metropolis-Hastings algorithm, a point Y; are
generated from a candidate distribution ¢(Y;, X;), which may depend on X, the
current position of the algorithm. The algorithm will move to Y; with probability

c, where

where f(.) is the product of the prior and likelihood distributions.

Most MCMC algorithms are adaptive, in that the parameters of the candidate
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distribution depend on the current position of the algorithm. For example, in de-
termining the posterior distribution of the parameters in the TB-HIV model, we
use a random-walk Metropolis algorithm with a multivariate t-distribution as the
candidate. We set the mean of the t-distribution to be equal to the last accepted
point, but use the same covariance structure throughout the sampling. This adapt-
ability reduces the importance of knowledge of the posterior distribution prior to
the sampling as information obtained during the sampling is used to improve the
convergence. Adaptive algorithms do present problems when analysing output
however, because the individual observations are not independent. A further diffi-
culty with MCMC algorithms is the difficulty in assessing convergence, although

many methods have been devised to do this [51].

1.3 Finite Mixture Models

Mixture models are used where a statistical dataset is not homogeneous but is com-
posed of a number of distinct component distributions. An example is the galaxy
dataset introduced by Roeder [87], where it is believed that there are a number of
different groups of galaxies present. The number of components then relates di-
rectly to the number of galaxy groups. A further use is in semiparametric density
estimation, such as modelling input data for simulation models [21]. A number of

datasets that arise in the mixture models context are examined in Chapter 4.

We shall discuss only continuous finite normal mixture models, where the

probability density function can be written as
k
fz) = Zwigi(ﬂff@i), (1.4)
i=1

where g;(.) is a normal distribution and w; are weights such that Zle w; = 1 and
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We wish to determine the number of components £ in a finite mixture model
for different datasets. The problem is statistically non-standard as it is possible for

components to be present in the mixture that are not represented within the data.

We focus on examples for which there is no prior information available, but
use a Bayesian framework because of the inherent problems with maximum like-
lihood methods. The likelihood surface is often multimodal and has discontinu-
ities near the boundaries, e.g. when the component variances tend to zero. This
can occur, for example, when a component is centred on just one data point and
tends to a delta function at that point. In addition, the likelihood increases as
more components are added, even if these components contribute very little to the
model, making determination of the optimal number of components difficult. Us-
ing Bayesian statistics, the prior distribution smooths out the discontinuities in the
likelihood function, though the posterior distribution can still be multimodal. The
posterior distribution for the number of components k also tends to have a peak
at k < n, where n is the number of data points. The posterior distribution for the
number of components is thus usually a more meaningful measure of the number

of components in the mixture than the likelihood function.

We use importance sampling to determine the posterior distribution for the
number of components, contrasting with much of the established literature in
which MCMC methods dominate [84], [97]. MCMC algorithms for this prob-
lem tend to be complicated as they must include some mechanism for jumping
between different models (different values of k). By contrast, the application of
importance sampling is relatively simple, with the candidate distribution including
a function describing the probability of selecting a model with a particular &, and
a function for sampling parameter values that is dependent on the model with the

chosen k.
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1.4 Model of Tuberculosis and HIV

The second part of the thesis discusses an application of the Bayesian analysis
methodology in epidemiological modelling. We use a compartmental model to
describe disease progression through tuberculosis (TB), and the effects of HIV on
that progression. In this example, we have good prior information about model pa-
rameters, which comes from medical studies within the literature (see the supple-
mentary material of [36] for full details). The extent of the prior knowledge makes
a Bayesian methodology particularly attractive. With 23 parameters, the model is
relatively complex and determining the posterior distribution is time-consuming.
We use a Metropolis MCMC algorithm to determine the posterior distribution of
the model parameters, using the output of this algorithm to estimate the uncer-
tainty on our estimates of the costs, effects and cost-effectiveness of the different
intervention strategies, as well as our predictions of TB incidence and deaths. We
chose to use MCMC sampling for this example because importance sampling per-
formed relatively poorly due to the shape of the posterior distribution, which is

skewed and so not very similar to a normal distribution.

The modelling study focuses on high burden countries in Sub-Saharan AfTica,
where HIV prevalence is greater than 10% and there has been a marked increase
in TB incidence as a result of the HIV epidemic. We use the model to predict
TB incidence in the future and the effects that different interventions against the
two diseases will have on the future course of the TB epidemic. Further work,
discussed in Chapter 6, evaluates the cost-effectiveness of different intervention
strategies, measured in terms of the costs per disability adjusted life year (DALY)

averted.
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1.5 OQOutline of the Thesis

The optimal choice of sampling function to use in importance sampling is dis-
cussed in Chapter 2, including an evaluation of the convergence of importance
sampling in many dimensions. We then present diagnostic and statistical methods
for assessing the convergence in Chapter 3. In Chapter 4 we apply the methodol-
ogy to the statistically non-standard problem of determining the number of compo-
nents in a finite normal mixture model. The TB-HIV model and the methodology
that we used for the uncertainty analysis is described in Chapter 5. Predictions for
the TB incidence in Kenya, Uganda and South Africa, and estimates of the effects
that different interventions will have on reducing TB incidence and TB deaths
in these countries are shown here. Further work analysed the costs, effects and
cost-effectiveness of different intervention strategies against TB and HIV in terms
of costs per disability adjusted life year (DALY) averted, and this is discussed in

Chapter 6. We conclude in Chapter 7.



Chapter 2

Choosing the Candidate Function in

Importance Sampling

Importance sampling is a numerical method of evaluating an integral
I= /h(&)de, e DcCR" 2.1

In standard Monte Carlo sampling, [ would be evaluated by taking K samples
distributed uniformly over the region D, giving [ = Zfi , h(6;)/ K. In importance
sampling, we concentrate the sample points in areas of “importance” within D by
sampling from a candidate distribution w(#, 3). We then allow for the fact that we
are sampling from w(#, 3), rather than a uniform distribution, by weighting each
of the observations of A(#) and so finding the expectation of A(#)/w(8,3). The
integral I can therefore be approximated by

. 1N h(8)
I, = ?;w(@,ﬁ)' (2.2)

The choice of w(f, 3) affects the convergence rate of I, to I and the optimal

choice for w(0, §) is flg((g))fm, as we show for the particular example of statistical
estimation in Section 2.2. This requires full knowledge of the integral that we are

trying to evaluate and so it is not a practical solution to the problem.

10
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This chapter focuses on the use of importance sampling in statistical estima-
tion, and in Section 2.3, we consider the problem of normalising univariate func-
tions of the general exponential family using importance sampling. We present
conditions on the parameters of the candidate distribution for sampling to con-
verge and demonstrate these results by considering three examples of common

probability distributions.

The convergence of importance sampling is dependent on the number of di-
mensions of the integration, and we discuss the dependence in Section 2.4. We
begin by considering how the number of dimensions and discrepancies between
the candidate distribution w(#, 3) and the integrand affect the convergence of the
sampling, where the integrand and the candidate distribution are both assumed to
be multivariate normal. We then go on to present four numerical examples of im-
portance sampling in two dimensions, which demonstrate some of the limitations

of importance sampling.

2.1 Importance Sampling for Statistical Estimation

Often in problems of statistical estimation, we need to evaluate the expectation of

a statistic m(6). In this case, [ can be written as

I(m) = /@ m(0) £(8)d6), 2.3)

where f(8) is a probability density function. A typical example is where m(f) = 6.
This kind of integral is very common in statistical calculations but frequently can-
not be calculated analytically. The integral can be estimated by sampling from f()
and calculating m(f) at each sample point 6;, such that /(m) = Zfil m(6;)/ K.
Convergence can be improved by using importance sampling and sampling from a
candidate distribution w(#, 3) instead of f(#). Asin Equation 2.2, we must weight

each of the observations by the probability of having selected that sample point,
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and so the integral /(m) is approximated by

K
1 3 m(%:)f(6:) 2.4)

Another integral of interest in statistics is the normalisation of the posterior
probability distribution in Bayesian statistics. We say that the posterior probability
distribution of the parameters #, given available data z is p(é|z), which is propor-
tional to the product of the likelihood L(x|#) and the prior probability distribution
for 6, m(#). To obtain a proper probability distribution for the posterior distribu-
tion, it is necessary to find the normalising factor by integrating L(z|0)7(6) over
parameter space. Setting m(#) = L(z|0) and f(f) = 7 (0) we can see that this
integral has the same general form as /(m) and the results of subsequent sections

will therefore apply to this problem.

2.2 Theoretical Results

Theorem

The variance of importance sampling is minimized if

_ o))
YOO = T F@m@)a @9

Proof

That this is the optimal form for w(, ) has been shown by Evans and Swartz
[46] and Rubinstein [89]. Evans and Swartz use the law of the iterated logarithm
attributable to Durrett, and Rubinstein uses the Cauchy Schwarz inequality. These
proofs are more complicated, and will not be discussed here. Instead we present a

simpler more direct derivation using the calculus of variations.
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We assume that our candidate distribution, w(f, 5) is a true probability distri-

bution function such that

1. [ow(8,B)dd =1

2. w(d,8) >0

The variance of the sampling can be written as
m(0)£(9) } / (m(9)f(9)>2 [ / }
Var, | —%—==| = ——=— 1} w(h, [)dl — m(0)f(6)do| . (2.6)
o] = i) veswe- | [mose
The second term in Equation 2.6 is independent of w(8, 3), therefore can be ig-
nored when choosing the best form for w(f, 3). Therefore, we are left with the
2
problem of minimising [, (%%%—?) w(#, B)df subject to the conditions given
above. Using Lagrangian multipliers to take account of the first constraint on
w(#, B), the objective function becomes
m(0)f (9)>2
—=—2 ) w(b,B)do + A /w 6,8)dd —1 ), 2.7
where X is a Lagrangian multiplier. Using Euler’s equation, the optimal form for

w(#, B) must obey

2 2
therefore
2 2
w2(9,5) = T__@L@ (2.9)

A

To find A, we substitute the expression for w(#) into the normalisation constraint.
Assuming that f(6) is a proper probability distribution function such that f(8) >

0, and remembering that w(f, §) > 0, the normalisation constraint becomes

/ mBIFO) gy 1. (2.10)
o VA
Solving for A and substituting this back into Equation 2.9, we find that

~ JoIm(0)]£(6)do’
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and so the theorem is proved.

Geweke [53] uses a similar method to Evans and Swartz [46] to find the opti-

mum sampling density but obtains a different expression,
w(d, B) o< [m(6) —m] f(6) (2.12)

In arriving at this expression Geweke uses a central limit theorem to make the
assumption that in the limit of a large number of samples n*/? (7, —7) is described

by a normal distribution with zero mean and variance

0> = E{Im(6) —mf(6)/w(6,5))
= [ m®) =m0/ (6, 8).5(0)ds @.13)

where the expectation is taken over the distribution f(#). Minimising o2 is equiv-
alent to maximising the rate of convergence, and a minimum is achieved when

w(, ) is given by the expression in Equation 2.12.

The expression Geweke uses for o2 is derived making the assumption that we
are sampling from f(6) and calculating m(6) f(9)/w(6, ) at every sample point,

whereas we are actually sampling from w(6, 8). Therefore, o2 should be given by

o? = E{[m(9)(6)/w(8,8) — mf/ul’}
= [ mi)16)/wt6,8) ~ miTulwle, £)d8

_ /m /w(&ﬁd0~[/m(9)f d@J, 2.14)

where the subscript w implies that we are calculating the expectation assuming
sampling from w(#, 3). The correct expression for o, given in Equation 2.14, is

minimised for w(4, 8) = ﬂ%((g% This is an identical result to that obtained

above.

This result makes more sense intuitively than the result presented by Geweke

as it suggests that more points should be sampled in regions close to the mean,
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where m(6) () is highest. The result presented by Geweke suggests that more
points should be sampled at points distant from the mean, where |m(§) — m| is
large. Geweke’s result would minimise the sampling variance of the expectation

over f(6) of m(@) — .

2.3 Choosing the Candidate Distribution in Practice:

Results for Functions in the Exponential Family

Although the results of Section 2.2 show that the optimal choice of candidate dis-
tribution is w(8, B) = |m(0)|f(0)/ [ |m(0)|f(#)d, this is not a practical solution
as it requires knowledge of the integral that we are trying to evaluate. In prac-
tice we must choose a candidate distribution that is simple to sample from, with
parameters that can be estimated without excessive preliminary investigations of
m(8) f(9). Often w(#, B) has a parametric form that can be adjusted to change its
shape and the choice of functional for w(f, 5) must take into account the ease of
adjusting the parameters [ to obtain a good fit to |m(8)|f(6). Although comput-
ing time may be saved by using a candidate distribution that is very close to the
function being estimated, if estimating or sampling from this distribution requires
a large amount of computing time, any gains in efficiency due to good convergence

will be lost.

In this section, we give the form of the candidate distribution that should be
used to ensure convergence for a general function from the exponential family.
We then go on to find expressions for the variance associated with the sample
for some standard probability distributions. We find analytical expressions for the
variance associated with sampling the normal, gamma and student-t distributions

in Sections 2.3.1, 2.3.2 and 2.3.3 respectively.

A general discussion of the choice of sampling candidate distribution is given
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by Robert and Cassella [85], while Geweke [53] gives a set of conditions that a
sampling distribution must obey to ensure convergence. Although his estimate of
the variance of the sampling is different from ours, his conditions still hold. Using

the notation of Equation 2.3, they are equivalent to

1. f()m(0)/w(0,0) <c<
2. @ is compact and f(8)m(0) < k < o0

where k and c are arbitrary constants greater than zero. The first condition ensures
that the ratios calculated during the sampling are always finite and the second that

the integral being evaluated is always finite.

We reduce the problem of Equation 2.3 to one of obtaining a sample from
f(8), by sampling from the importance sampling candidate distribution w(8, ).
This allows us to draw conclusions about the efficiency of importance sampling for
the generation of samples from the posterior distribution, where f(6) is now con-

sidered to be the posterior distribution. The variance associated with the sample,

Vary[f(0)/w(8, )], is then given by

Vary[f(0)/w(®,0)] = Eul(f(0)/w(0,8))’] = (Eulf(0)/w(0, 8)])*

= /f /weﬁdx—[/f d@}. (2.15)

The second term in the expression is unaffected by the choice of candidate distribu-
tion. Therefore, assuming that [ f(6)d@ is not divergent, to obtain a finite variance,
w(#, B) must be chosen such that [ f2(6)/w(8, 8)d = Ef[f(6)/w(8,5)] s finite.
However, as we calculate f(8)/w(8, () at each step of the sampling, we must also

impose the condition that f(6)/w(6, 3) is finite.

Let the function that we are trying to sample be f(0; a1, . . ., o), where f(8; a1, . ..

is from the exponential family and of the form

f(0; ) = exp (ij(al, o o)k (0) + 5(0) 4+ g(a, - - - am)) . (2.16)

J=1

, Ot )
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We assume the candidate distribution w(@; 5y, ..., ;) to also be from the expo-

nential family such that

l

w(0; B) = exp (}: w(Br, - B)w(0) + o (0) + (B, . . ,ﬁ») .@1D)

gl

In this context, the conditions for the importance sampling to converge are

1. f(8)/w(8, ) is finite for all ¢

2. [0 f2(6)/w(8, B)d0 is finite
The first condition will hold if w(#; 3) > 0,V6; f(6) is not divergent over the
range [—o0, +00]; and

d <0 #—c0

FUOmENS T @.18)

This last condition implies that the expression

Y ds(0) , ds(6) du(8) _ do(®)
;pj(oﬂ;...;am) a0 + a0 *;ﬂﬁ(/@ly,ﬂl) 70 — 5 (2.19)

must be less than or equal to zero as # — oo and greater than or equal to zero as ¢

tends to —co.

Using these results, we can determine whether importance sampling will con-
verge when sampling a probability density function f(@) with a given candidate
distribution w(#, ). We consider the sampling of three specific probability distri-
bution functions from the general exponential family: normal, gamma and student

t distributions.

2.3.1 Sampling a Normal with a Normal

In this section, we use the conditions of Section 2.3 to determine the limits on the

parameters of the candidate distribution w(#, 3), when sampling a normal distrib-
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ution of mean ¢, variance a%, under the assumption that the candidate distribution

is also normal, with mean 3; and variance 3.

Using the notation of the general exponential family,

2
qlar, 0p) = —-% [ln(%rag) + %J
2
_ @
pilar, o) = o2
pz(Odl)QQ) = —ig
]ﬁ(@) =
ki (0) = 6
1 2
o6, F2) = -5 {ln(gﬁﬂg)+_ﬂ_§}
(61, 02) = %
2
1
T (01, B2) = —ij—g
m(@) = 6
72(6) = 6% (220)

Ignoring the constant terms in f2(#)/w(#), we can write this as
F26) /w(8) < exp [(_2_&_1 - gl) g — (-1— — ——1—> 92} (2.21)
af B3 af 263
In the limit that # — o0, the §? term will dominate and so for the variance to be

finite,
B3 > a5/2. (2.22)

Writing out the expression for the variance of the sampling with f(#,a) and
w(0, ) defined as in Equation 2.20, we can show how the choice of parameters
for a normal importance sampling distribution affects the convergence to the actual

function. The integrand, f3(; o) /w(6; §) is given by
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f2(950-'> o 1 _23 o[ 1 _1_ 841 I ﬁ1J
w@,0) a3V P [“9 (@“2@)”9(%“@)‘“*%

1
= cexp {«— <&g 2ﬁ2> (60— 9¢) } (2.23)

§b a3 202
- 1 1
of 2063

1 /B3 of B LY o
€ = &—% %exp{ -—g+252+ a§ §BQ§>¢ . (2.24)

We can integrate f2(8; «)/w(0; 8) to obtain the expected value,

EL[f2(0; ) /w*(6;8)] = 6/_00 exp {—(1/0120_—1%;22)_1} do

o0

v
= e v e

and writing out the expression for ¢ in full,

2
i ( 1) g | 22
+ = .
2/32 O‘% 2522 alg - 27133

Using Equation 2.26, we find expressions for the 42 and £; that minimise and max-

Ey[f2(0; ) /w?(8; 6)] =

t\Jl\J Hl\)

imise E,[f?(6; «)/w?(8; )], by differentiating with respect to 33 and ;. Differ-

entiating with respect to J; initially, we find that there is an extreme value at 61,

where }
P 041/@5 - ﬁ1/2552
— =0 2.27
therefore,
B = a, (2.28)

i.e. the means of the sampling distribution w(0; «) and the distribution being sam-

pled from f(6; «) are equal.
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Using the same principle, we can find 33, the value of 82 at which
E[f%(0; o) /w?(0; B)] takes on an extreme value. After much algebra, it is found

that 32 obeys the expression
0= (B —of) (B —o/2) - (B — o)’ (229)

and solving the quadratic equation,

B 2
32 = 3a2/4 + 9‘22\/1/4 4B — )2/l (2.30)

with the smaller solution a maximum and the larger solution a minimum.

If we now set (0, = «y,

G2 = 3ai/4+al/4 (2.31)
a3
= (2.32)
a3/2,

and we can see that the variance of the sampling has a minimum where the variance
of the candidate distribution equals the variance of f(¢) and a maximum where its

variance is equal to half this value.

We now investigate the behaviour of the optimal value of 33 as the discrepancy
(81 — a1) = ¢ is increased. We assume ¢ is small relative to the variance a3, i.e.
that we have a good estimate of the mean of the normal distribution that we are

trying to find,
al + 80%/2a2
ol /2 — 86% /203

(2.33)

Therefore, as we move further from the mean, the value of f7 that minimises

Eu[f?(0; ) /w?(9; B)] increases and the worst value decreases.

We can write expressions for E,,[f2(0; o) /w?(8; 8)] for known mean and known

variance to determine how knowledge of the mean and variance influences the vari-
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ance of the sampling. Where the mean is known,

1/2
1 2

Fulf2(6;0) w6, 8)) (1 = ca) = — ~—-1£”—~_ L 23

2 \2 (‘ - )

and where the variance is known
- 2

BP0/ 600 = of) = exp | 2ZOL[ s

2

Equations 2.34 and 2.35 suggest that knowledge of o is more important than
knowledge of as, providing the variance of the candidate distribution is greater
than the variance of the function being sampled, with a polynomial increase in the
variance for worsening estimates of 3 and an exponential increase in the variance
for worsening estimates of ;. Oh [76] also discusses this, showing graphically
that knowledge of the position, in this case «;, improves the convergence more
than knowledge of the scale, here given by a2.

For (3% less than o2 there is a sharp increase in the variance as 7 is decreased
to a2/2, where the variance is infinite. Below a2 /2, the variance expression given

in Equation 2.34 is imaginary.

2.3.2 Sampling a Gamma Distribution

The gamma distribution,
gr—1 6—9 /3

f(e)“w

can be written as a function of the exponential family, with

>0 (2.36)

— —I[[()ag]

= Oél—‘l

)
)
plon,on) = —1/a
) = Ing
)

= 0, (2.37)
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where a; = v and o = §. We begin by investigating sampling a gamma with a
gamma. Considering the § dependent terms in Equation 2.37, and using 5; and 55

to describe the parameters of the gamma distribution we are using as the candidate

distribution, we can write f2(6)/w(6, 3) as

F2(0)/w(8,8) < exp | (2 — By — 1) In b + <,6’i — 3) HJ : (2.38)

2 Q2
The 6 term will dominate as § — co. Therefore, for the integral to be finite and

the sampling to converge,

Ba > aa/2. (2.39)

If we instead use a normal distribution as a sampling distribution for the gamma

distribution, we can write f2(6)/w(6, 3) as
F2(0)/w(8, ) o exp {Q(al ~1)Inf— (3- - —> 6 + —9-2—} : (2.40)
(&%) ﬂ% 253
As 6 — oo the §? term will dominate. This term is greater than zero for 6 > 0,
therefore the variance of the sampling is never finite, and using a normal distri-
bution as a sampling function for a gamma distribution will never result in the

sampling converging.

2.3.3 Sampling a Student t-Distribution

The t-distribution,
L4 1 1

0= Tem voma+e/menn

can be written as a function of the exponential family if we make the transforma-

(2.41)

tion § = ¢/+/a, where a = v. Using the notation of the exponential family,

_ o (L) 1
we) = l“(r<oz/z> ﬁ)
pl@) = —(a+1)/2
k() = In(1+6%. (2.42)
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We begin by investigating the sampling of a t-distribution with another t-distribution,
with J degrees of freedom and a similar transformation of ¢. Considering just the

6 dependent terms of f2(6)/w(6),
1
F2(0)/w(0) x exp ——5(204 — B+ 1) In(1 +6%]. (2.43)
Therefore, for the sampling to converge,

B < 2a+1. (2.44)

If we now consider sampling a t-distribution using a normal distribution as a

candidate distribution,

F2(0)/w(8) o< exp | —(a+ 1) In(1 + 6%) — %9 + -2-%?-2?- : (2.45)

As 0 — oo, the 2 term dominates and the variance will tend to infinity for all real
(G2. Therefore, a normal distribution could not be used as a candidate distribution
for a t-distribution. However, importance sampling will always converge when
using a t-distribution as a candidate distribution when sampling a normal distribu-
tion, because as § — oo, the 62 term wil again dominate, but will now be negative.

Therefore, the sampling variance will always tend to zero.

2.4 Sampling Multivariate Distributions

We begin this section by considering how the convergence of importance sampling
of a multivariate normal distribution varies with the number of dimensions 7, and
draw some general conclusions from this analysis. We then go on to consider three
different specific candidate distributions: the multivariate normal distribution; a
multivariate generalisation of the t-distribution and a non-standard adaptation of

a multivariate normal distribution. The adaptation allows the axes of symmetry
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of the normal distribution to curve. These distributions are described in Sections

242,243 and 2.4.4.

In Sections 2.4.5 to 2.4.8 we consider a two dimensional example and describe
the performance of these three different candidate distributions. We show the fit
of the candidate distributions to the actual function and the results of the impor-
tance sampling. Conclusions are then drawn about the suitability of each of these

functions as importance sampling candidate distributions.

2.4.1 Dependence of Convergence Rate on the Number of Di-

mensions

The problem of how the convergence of importance sampling varies as the number
of dimensions n is increased has been considered before by Au and Beck [3] and
Oh [76]. Au and Beck introduce a function describing the relative entropy of the
candidate distribution and the function being sampled and examine its variation to
determine how convergence of the importance sampler will change with the num-
ber of dimensions. We find the variance a more useful measure of the convergence
and use this and the unit coefficient of variation (unit c.0.v.) introduced by Oh [76],

which is the standard deviation divided by the mean, to describe the convergence.

We assume that the function being sampled f(6) is a standard multivariate nor-
mal distribution of n dimensions with mean vector (i1, s, . .., in)* and covari-
ance matrix o, and that we use an importance sampler w(#, () that is a multivariate
normal distribution with mean vector (my, my, . .., m,)T and covariance matrix s.

The squared unit c.o.v. for importance sampling can be written as

©. 30
7= Joww® -1, (2.46)
[fo £(6)d6]

where f(6) is the function being sampled over the range © and w(#, () is the

importance sampler.
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We find an expression for A%g for general multivariate normal distributions
f(8) and w(#, 3). Oh [76] considers only the situation where ;. = 0 and 0 = L
Having obtained the general result, we go on to consider two situations; in the first
we assume that the mean is known and in the second that the covariance structure
is known. This allows us to determine how the variance of importance sampling
is affected by the number of dimensions for discrepancies in the mean and in the

covariance structure.

We consider the integral

S2(9)
NIl (2.47)

As f(0) is a normal distribution, the denominator of the first term of Equation
2.46 is one and so the integral in Equation 2.47 determines the behaviour of the

unit covariance. Writing the expression out in full

10 s

exp| — (0 — )00 — p)
foo]

B n/2
w(f) |ol(2m) 1 (2.48)
+§(9 —m)Ts7H6 — m)} s,
where 7 is the number of dimensions. This can be written as
f ( Js[2 L . .
d9 = )n/z o Joexp | 50— xTHO =) —p/2| db, (2.49)
where
X = (20_—-1 _ S—l)—l
= (27~ s‘l)*l@a‘lu - s7m)
p = 2pfotu—mTs™im — T (2.50)

Evaluating the integral,

f2 0) \/
w(6) |o|? 120“‘1 — 57! 2.51)

exp {—5 (2u o ,u m?sim — §TX 5)
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We consider two special cases: unknown covariance, known mean; known

covariance, unknown mean.

When the covariance is unknown but the mean is known, m = p, and Equation

5]
\/10|2120—-1 —7 (2.52)

To demonstrate the effect of the dimension, we consider a specific example in

2.51 can be simplified to

which the covariance matrix o of f(6) is diagonal and the covariance matrix s
of the candidate distribution w(, 3) is also diagonal, such that s; = o4(1 + 7).

Under these assumptions, in n dimensions, Equation 2.51 reduces to

f0) go_ A£2)" (2.53)

o w(f,[) (14292

When the covariance is known, but the mean is unknown, s = ¢ and Equation

2.51 can be simplified to
exp [(u—m) o™ (u—m)]. (2.54)

If we assume that u; — m; = 0 fori = 1,...,n then Equation 2.54 can be written

as

exp [(u — m) o™ (u —m)] = exp [52 Z Z ai]] : (2.55)

i=1 4=1

in n dimensions. Further assuming that ¢ is the identity matrix, we find that

PO
/@ = exp(ne?) (2.56)

w

Therefore, as the number of dimensions increases, the variance of the sampling

will increase exponentially with n, the number of dimensions for unknown mean.

Considering Equations 2.53 and 2.56, we can see that errors in the estimate
of the mean will have a greater effect on the variance of the sampling for large
n than a lack of knowledge about the covariance structure. For small n, the rela-

tive effects of knowledge about the mean and knowledge about the variance would
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depend more on the relative sizes of the discrepancies between the actual and es-
timated values. These two results agree with the findings of Oh [76], who consid-
ered the effect of varying ¢ and ¢ when sampling f(6) ~ N(0, ) with candidate
distribution w(f, 8) ~ N(el,61).

Although we have focused only on the multivariate normal in this section, it
is suspected that similar results will hold for other distribution functions, i.e. that
knowledge of the mean is more important than knowledge of the shape, assuming

that the candidate distribution has fat enough tails for convergence to be possible.

2.4.2 Multivariate Normal Distribution

The multivariate normal distribution has the probability density function

10 = 2n) o e { - o e - |, 25T

in n dimensions, where p is the vector of means and ¢ is the covariance matrix.

Samples from the multivariate normal distribution can be generated in a num-
ber of ways. We describe here the method attributed to Box and Muller for gener-
ation of standard normal variates [15] and extend this to n dimensions, using the

preferred method of Barr and Slezak [7].

The proof of Box and Muller’s method is given in most simulation text books
(e.g. [16]) and will not be reproduced here. If U; and U, are independent random
variates from a uniform distribution between 0 and 1, then Z; and Z, will be

independent standard normal variates where

Z, = (—21nU1)%cos(27rU2)
Zy, = (=2Inl;)%sin(2x0). (2.58)

This can be extended to n dimensions using the Cholesky factorization C of the

covariance matrix ¢. The variable W will be a multivariate normal variate with
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covariance matrix ¢ and mean u, where
W =1+ CZ, (2.59)

and Z is a vector of standard normal variates.

2.4.3 A Multivariate Generalisation of the Student t-Distribution

The student t-distribution has fatter tails than the normal distribution and as was
shown in Section 2.3.3, is a good choice of candidate distribution when sampling
a normal distribution. In this section we introduce a multivariate generalisation
of the student t-distribution. This is not identical to the multivariate t-distribution
introduced by Dunnett and Sobel [43], but has similar characteristics, as will be

discussed below.

We use the same method as in Equation 2.59 to generate a variate from the

multivariate t-distribution,

W = pu+ CT//v/(v—2), (2.60)

where T is a vector of independent t-distributed variates with v degrees of free-

dom, C is the Cholesky factorisation of the covariance matrix and \/v/(v — 2) is

the standard deviation of a t-distribution with v degrees of freedom.

In generating the vector of t-distributed variates we make use of the relation-
ship between the student t-distribution and the chi-squared and normal distribu-

tions. The random variate X will have a t-distribution with v degrees of freedom

when X is given by
Z

\/Y/V?

where Z is a standard normal variate and Y is a random variate generated from a

(2.61)

chi-squared distribution with v degrees of freedom.
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The chi-squared distribution with v degrees of freedom is equivalent to a gamma
distribution with o = v/2 and # = 2. We therefore use Cheng’s gamma generator
[19] to generate the chi-squared variates. Combining a chi-squared variate with a
standard normal variate according to Equation 2.61, we can generate a t-distributed
variate. This process is followed n times to generate the n t-distributed variates T

used to calculate W, as described in Equation 2.60.

This multivariate generalisation differs from the multivariate t-distribution de-
scribed for example in [43]. In the alternative formulation, variates are generated
using the transform

(CZ)

where Z is a vector of standard normals, C is the Cholesky factorisation of the
covariance matrix, S? is a variate from the chi-squared distribution with v degrees
of freedom and p is the mean vector. The only difference between this method of
generation and the method that we use is that only one variate is generated from

the chi-squared distribution, rather than one for each component of Z.

We can derive the probability density function for our multivariate generalisa-
tion of a t-distribution. The probability density function for a vector of independent

t-distributed variates is given by

Using this expression and Equation 2.60, we can write the probability density func-

tion of W, a vector of correlated t-distributed variates, with covariance structure o

and mean p as
oty 1Y
1o = o (m/zz) ﬁ)

H 1+ ” i 5 (Z Ci—jl(wj — uj)>

i=1 j=1

—(v+1)/2 (2.64)
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Working through the transformation of Equation 2.60, we can see that

VarW = B(W - p)(W —)T)
= E(CcTT’CT)
= CE(TTH)C”
= CC7, (2.65)

as T is a vector of standardised student t-variates. Therefore, the covariance struc-

ture of W is ¢ = CC7T.

Using the alternative formulation, with only one chi-squared variable, the prob-

ability density function for the multivariate t-distribution can be written as

—(n+v)/2

L[(v+n)/2] [1 N _i_(w, — )T (W — 1) . (2.66)

1) = Gyt ) o

a tidier expression than Equation 2.64. However, the expression for the covariance

matrix is more complicated in this case.

2.4.4 Bent Multivariate Normal Distribution

The bent multivariate normal distribution is not a standard distribution and was
devised as part of the thesis for the purpose of testing importance sampling on
a multivariate probability distribution with non-elliptical contours. Only a two-
dimensional example has been considered so far. We wish to deform a multivari-
ate normal distribution so that instead of having elliptical contours with axes of
symmetry that are straight lines, we instead have contours that have curved axes of
symmetry. To create a function which is not symmetric about the x-axis, i.e. has a

bend in the y-direction, we make the transformations

1 = zoy+ U,

Ty = po+ (1+d*0i2}) (o220 + a), (2.67)
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where z; and 2z are standard normal variates and d dictates the angle of the bend.
To make this function more general, we can rotate the coordinates through an angle
¢, allowing the function to be oriented in any direction. Incorporating this rotation,

the transformations given in Equation 2.67 become

y1 = (0121 + 1) cos ¢ — (g + (0220 + a)(1 + d*c?22)]sin ¢,

Yo = (01214 p1)sing + [ug + (0220 + a)(1 + d*0?2)] cos ¢.  (2.68)

The probability density function of this bent bivariate normal can then be written

as
Pl ve) = 1
b2 " 2mo102(1 + d2(u — p1)?)
2.69

20% 202 \ 1+ d?(u — py)? ’

where we use
U = Y1Co8¢+ yzsing
v = —yisin ¢+ yscos P (2.70)

for conciseness.

In generating a sample from this distribution, we make use of the transfor-
mation equations (Equation 2.68) describing the relationship between (1, y2) and
(21, z3) to transform standard normal variates to random variates of the bent nor-
mal distribution. A contour plot of one instance of the bent normal distribution is

given in Figure 2.1.

2.4.5 Using a Normal as Candidate Distribution for a Bent Nor-

mal Distribution

In this example, f(f) is the bent normal distribution with o1 = 2, o5 = 0.1,

= —0.1, o = —1.2,d = 2,a = 0.5 and ¢ = 0.2, as shown in Figure 2.1. The



CHAPTER 2 32

bo0.7-0.8
m0.6-0.7
[@0.5-0.6
W0.4-0.5
0o0.3-0.4
0o0.2-0.3
m0.1-0.2
m0-0.1

Figure 2.1: Contour plot of a bent normal distribution.

mean of the normal distribution used as the candidate distribution, w(6, 3) was set
to be the position of the mode of the bent normal distribution, as found using the
Nelder Mead optimization routine [74]. The Hessian was then calculated at the

mode, and the inverse of this was used as the covariance matrix.

Sampling with the normal distribution provides a good estimate of the function
close to the mode. Few points are sampled in the arms of the function however,
and so a large part of the function is ignored. The reason for the difference in range
of the normal candidate distribution and the bent normal is a result of the method

used to estimate the covariance matrix.
Assuming for simplicity that ¢ = 0, the matrix of second derivatives of the

negative logarithm of the bent normal distribution is

1/o?+2d*> 0
H= . (2.71)
0 1/02

Assuming normality, the covariance matrix is given by the inverse of the Hessian
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at the mode,

12 2\ —1
po [ Her2d)7 0 (2.72)

2
0 o5

Therefore, Var(z] is estimated to be (1/0% + 2d?)~1, and Var[z,] is estimated to

be o2. Using the definition of variance,
Var|z;] = / ‘ dazl/ dzo(z; — pi)? flxy, 29), 1 = 1,2, (2.73)
the true variances of the bent normal distribution are found to be

Varlz,] = of,

Var[ze] = (024 a®)(1+ 3d%} +2d%02). (2.74)

Comparison with the expressions for the variances derived assuming normality
shows a significant difference. Inputting the parameter values used in the trial
function, we find that the actual variance of z; is 4, whereas the estimated variance
of z; is 0.121, and the actual and estimated variances of z, are 208 and 0.01
respectfully. Hence the normal sampling distribution will miss a significant part of

the actual function when practical sample sizes are used.

2.4.6 Using a Student t-Distribution as a Candidate Distribu-

tion for a Bent Normal Distribution

We use the same bent normal distribution as in Section 2.4.5 for f(#). The mean
and the covariance structure of the t-distribution were calculated in the same way
as for the normal distribution, using the mode of the function as the mean and
the inverse of the Hessian as the covariance matrix. The t-distribution, therefore
suffers from the same problem as the normal distribution in that the area sampled
covers only a small fraction of the significant part of the actual function. This is
shown very clearly in Figure 2.2 which shows the points sampled from the can-

didate distribution during the importance sampling and points sampled from the
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Figure 2.2: Samples from the t-distributed candidate distribution (blue) and the
bent normal distribution (pink) highlighting the points with very high ratios

(green).

actual function. Highlighted on the graph are the points with the highest ratios
of bent normal distribution to candidate distribution. These are all in the tails of
the t-distribution, but where the bent normal distribution still has a relatively high
density. High ratios cause problems with convergence in importance sampling and
generally also suggest that the candidate distribution being used is unsuitable, as

is seen to be the case here.

The t-distribution appears to perform worse than the normal distribution when
only a small number of degrees of freedom are used. The standardized t-distribution
has much longer tails than the normal distribution, but the standardization means
that the peak is much narrower. This means that a significant proportion of the
points sampled from a t-distribution will correspond to fairly low values of the

probability density function. Therefore, if the function being sampled has a sig-



CHAPTER 2 35

nificant probability in the tails of the t-distribution, as is the case in this example,
points sampled in the tails will correspond to very high ratios of actual distribu-
tion to candidate distribution. This will result in very high peaks in the tails of the
candidate distribution, which are artefacts of the sampling rather than true features
of the function being estimated. The t-distribution suffers more from this problem
in this example than the normal distribution because it samples more points in its

tails.

2.4.7 Using a Bent Normal Distribution as a Candidate Distri-

bution for a Bent Normal Distribution

Results given at the start of this chapter suggest that ideally the sampling function
should be identical to the function being sampled. Therefore, we consider using
a bent normal distribution as a candidate distribution. We estimate the mode and
second derivatives of the bent normal distribution being sampled and use these to
determine the optimal values for most of the parameters of the candidate distribu-

tion, w(d, B). The mode of the bent normal distribution occurs at

T1COSP+ Tosing =

ZaCOS¢P — x1sing = up+ a. : (2.75)

The second derivatives of the bent normal distribution at the mode are given by

2
g—zé = —N[(1/o] +2d*) cos® ¢ + 1 /03 sin® ¢] (2.76)
1
mode
o*f 2 2 2\ o
0.2, = —N(1/o7+2d” —1/03)sin ¢ cos¢ .77)
mode
0*f 2 2Y cin? 2 2
-a—;g = —-N [(1/01 + 2d°)sin® ¢ + 1 /05 cos gb] , (2.78)
mode

where IV is the value of the function at the mode. For the normalized function,

N = —L— but in general the posterior distribution will not be normalized, and we

2roi09
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assume throughout that /V can take any (unknown) value. Solving Equations 2.76
- 2.78, gives us expressions for gy, 2d% + 1 / Jf and ¢ in terms of known variables.
This leaves four variables undetermined a, 2, 07 and d, with expressions linking
a and uo, and d and o;. We used the Nelder Mead optimization routine [74] to
find the best values for these parameters, with the best values defined as being
those that minimize the sum of the squared error between the actual function and
the candidate distribution for a set of one thousand randomly generated samples.
Table 2.4.7 shows the parameter values for the actual function and the sampling

function, demonstrating how good a fit can be obtained using this method.

Actual Sampling

o1 2 2.01
oo 0.1 0.100
o -0.1 -0.0966
te  -1.2 -1.19

d 2 2.01

a 0.5 0.492

o 0.2 0.193

Table 2.1: Comparison between the parameters used in the sampling function and

those of the actual function

Using this function as a candidate distribution gives very disappointing results.
We obtain very high values for the ratio of actual function to candidate distribution
in the tails of the function. These values far exceed those obtained in regions where
the actual and candidate distributions both have higher values. In fact, where the
candidate distribution is a good fit, the ratio of actual function to candidate distri-
bution tends to be of order one. Elsewhere, the ratios rise to the order of hundreds
and thousands, with a continuum up to the very high values. The parameter values

corresponding to the large ratios have a very small probability of being sampled
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(of the order of 107> or less of the maximum), but the actual function is often a
factor of 10% or more different from the sampling probability. The discrepancy in
the parameter values makes very little difference to the fit of the candidate distrib-
ution to the actual function, but a huge difference to the results of the importance
sampling.

These results suggest that finding a good fit to the function being estimated is
not always good enough to ensure that the importance sampling works well. It is

also essential to find a sampling function with fatter tails than the function being

estimated.

2.4.8 Using a Bent t-Distribution as a Candidate Distribution

for a Bent Normal Distribution

In this section, we introduce a bent t-distribution and present some of the results
obtained when using this function as a sampling distribution for the bent normal
distribution, shown in Figure 2.1. By constructing a bent t-distribution, we hope to

construct a suitable candidate distribution for a bent normal distribution, that has
a similar shape but fatter tails.

We use the transformations described in Equation 2.68, using standard t-variates
in place of the standard normal variates z; and 2, to generate variates of the bent
t-distribution. The probability density function for the bent t-distribution with v

degrees of freedom can be written as

K
fm, z2) 1+ (- )

—-(v+1)/2
— )2 1 - 2
14+ g_x_l___éﬂ)_ 14 — T2 — Ha - —a
Vo3 osv \ 1+ d?*(z1 — 1)

(2.79)
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Figure 2.3: Contour plot of the bent t-distribution with four degrees of freedom.

in unrotated coordinates, where

T v+1 _ 1/2
Free Tl 7l {72 b (2.80)
I'(%) v V0109

In rotated coordinates, z; would be replaced by y; cos ¢ + yssin¢ and x5 by

Yo COS ¢ — Y1 sin ¢.

We obtain best-fit parameters using the procedure detailed in Section 2.4.7,
for finding the parameters of a bent normal distribution, and then experiment with
different values for the degrees of freedom v to obtain the best results for the

estimated function.

Figure 2.3 shows the bent t-distribution for » = 4. Comparison with Figure 2.1
(the bent normal distribution) shows that the bent normal distribution has arms of
approximately equal length, whereas the bent t-distribution does not. The estimate
to the function obtained using this candidate distribution is given in Figure 2.4 and
shows the effect of this discrepancy. In addition to the peak corresponding to the

maximum of the function, there is a second peak in the region where the difference
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Figure 2.4: Contour plot of the estimated bent normal distribution.

between the bent normal and the bent t-distribution is largest. Similar results are

obtained with higher values of v.

With v = 3, the estimated function is similar to that obtained using the standard
bent normal distribution as candidate distribution, with very high peaks in the tails

of the function.

These results suggest that the bent t-distribution would not be suitable as a can-
didate distribution for a bent normal distribution as the shapes of the two functions

are different.

2.5 Discussion

The optimal candidate distribution to use in importance sampling is a normalised
version of the function whose integral we are trying to estimate, as we showed in
Section 2.2. However, finding this function involves evaluating the integral and so

this is not a practical solution to the problem. The results suggest that we should
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use a candidate distribution that is as close as possible in form to the function

whose integral we are evaluating.

The wrong choice of candidate distribution in importance sampling can result
in a situation where the sampling does not converge, and the variance of the im-
portance sampling is infinite. In general, this can be overcome by ensuring that
the candidate distribution used has thicker tails than the function being integrated.
We discussed this in Section 2.3 for one-dimensional functions, and gave some

general results for functions from the exponential family.

As the number of dimensions increases, knowledge about the function becomes
more critical. Expressions were derived for the variance of importance sampling
when both the sampler function and the function being integrated are multivariate
normal, and are given in Section 2.4.1. These showed that knowledge of the mean
is more important than knowledge of the covariance structure when defining the

candidate distribution in importance sampling.

The practical examples introduced in Section 2.4 show that obtaining conver-
gence of importance sampling in multi-dimensional space is difficult when the
function being integrated has a different shape from a normal distribution, with
non-elliptical contours. None of the candidate distributions tried worked well in
this situation, but the lack of convergence was easily diagnosed by the extreme
values of the ratios of the function being sampled to the candidate distribution for

a few of the observations in each of the runs of the sampling.

The results of this chapter suggest that some time should be spent learning
about the function being sampled prior to defining the candidate distribution. They
also demonstrate that importance sampling does not perform well in all situations
and that some kind of robustness test is required to check that the sampling has
converged. Chapter 3 discusses a number of convergence tests for importance

sampling, all of which work by examining the distribution of the ratios output for
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each observation. The ratios should be approximately equal if importance sam-

pling 18 performing well, with extreme ratios suggesting that importance sampling

is not converging.



Chapter 3

Techniques for Measuring the
Convergence of Importance

Sampling

3.1 Introduction

In this chapter, we describe diagnostic and statistical methods for assessing the
convergence of importance sampling. As discussed at the end of Chapter 2, the
distribution of the importance sampling weights, which are the ratio of the function
being sampled to the candidate distribution at each sampling point, give a good
indication of whether the sampling has converged. All of the methods we consider
for assessing convergence in this chapter use only the values of these weights in
their assessment.

The diagnostic tests that we consider mainly involve graphical indicators of
convergence, such as plotting the variation in the variance over the sampling. We
also consider statistical tests based on extreme value theory that test whether the

variance of the sampling is finite or not. To compare the performance of the dif-

42
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ferent methods and demonstrate their use, we apply them to two simple examples,

one of well-behaved and the other of non-convergent importance sampling.

3.2 Diagnostic Tests

3.2.1 Plot of Top One Hundred Weights and Variance of Weights

In this test, the highest one hundred weights are plotted as they occur in the sample,
with the running estimate of the variance of the weights plotted on the same graph.
From this we can tell if the sample is being biased by any very large weights. With
perfect convergence, all the weights would be equal, and if importance sampling
is converging well this plot should show weights to be of a similar order of mag-
nitude, and the variance of the sample should not be affected significantly by any

individual weight.

For example, Figure 3.1 shows the top one hundred weights in a sample of
ten thousand when a student t-distribution is being used to sample a normal dis-
tribution, with the variance of the weights over the run superimposed. This 1s
an example where importance sampling does work well. Figure 3.2 on the other
hand shows the top one hundred weights in a sample of ten thousand when using
a normal distribution as a candidate distribution for a t-distribution. This is an
example where importance sampling does not perform well and we can see that
there are two very high-valued weights that have a great effect on the variance of

the sampling.

We can relate the variance of the weights to the variance of the sampling as
follows. An expression for the variance of the sampling is given in Equation 2.6.
The second term of this expression is independent of the candidate distribution;
therefore assuming that the quantity we are trying to estimate has a finite variance,

this term can be ignored. In assessing whether convergence will occur, we can
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Figure 3.1: Distribution of the highest one hundred importance sampling weights
when sampling a normal distribution with mean zero and variance one with a t-
distribution with three degrees of freedom. The variance of the weights over the

run is superimposed.
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Figure 3.2: Distribution of the highest one hundred importance sampling weights
when sampling a t-distribution with ten degrees of freedom with a normal distrib-
ution with mean zero and variance one. The variance of the weights over the run

is superimposed.
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therefore concentrate on the first term, which can be approximated by
m<6>f<6>>2 L~ (86’
— ) w(f,0)dl = — ——r ) (3.1
/( w6, B) 22w 9)
where the n samples {6;} are drawn from the candidate distribution w(0, 3). The
variance of the weights can be expressed as
2
1 ¢ m(&)f(@i))Q 1~ m(6:)f(6:)
Var, = — (——-—-—-—— - | = — |, (3.2)
which is equal to the expression in Equation 3.1 minus the square of the mean of
the weights. Therefore, if the variance of the weights is divergent, the variance of

the sampling will also be divergent.

We can judge whether the variance is tending to some finite value or is di-
vergent by evaluating the variance of the weights over the run and observing any
trends. Necessarily, this judgment must be subjective, but as Figures 3.2 and 3.1
show, observing the evolution of the variance of the weights can give a good indi-

cation of sampling convergence.

3.2.2 Distribution of Weights Between Observations

This is a diagnostic test that we have developed to give an indication of the propor-
tion of the sum of the weights that is being assigned to individual observations and
to groups of observations. We calculate the maximum normalised weight initially
to determine how extreme this weight is. The proportion of the sample making
up different proportions of the sum of the weights can also be useful in assessing
convergence.

This test can find examples where the importance sampling is definitely not

performing well but can occasionally suggest excellent convergence when other

tests indicate that this is not the case. For example, Figures 3.3 and 3.4 show that
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Figure 3.3: The percentage of the sample points making up percentages of the sum
of the weights when sampling a normal distribution with mean zero and variance

one with a t-distribution with three degrees of freedom.

for the case in which importance sampling is less appropriate (3.4), the results ap-
pear better than for the case in which importance sampling should definitely con-
verge (3.3). Considering the highest-valued weights for these examples, however,
we find that the example in which a t-distribution is used as a candidate distribu-
tion for a normal (a good use of importance sampling), has a maximum normalised
weight of 0.02% and in the example where a normal distribution is used as a can-
didate distribution for a t-distribution (a poor use of importance sampling) the
maximum normalised weight is 3.0%. In an ideal situation, all normalised weights
should have an equal value of one over the number of samples; in this case a value

of 0.01%.
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Figure 3.4: The percentage of the sample points making up percentages of the sum
of the weights when sampling a t-distribution with ten degrees of freedom with a

normal distribution with mean zero and variance one.

3.3 Statistical Tests

Importance sampling is only valid if the variance of the sampling is finite, as was
shown in Chapter 2 and has also been discussed by Geweke [53]. Proving that the
variance is finite can be very difficult for high-dimensional complex integrals. We
consider below a method based on extreme value theory that was recently proposed

by Koopman and Shephard [65].

3.3.1 Tests Based on Extreme Value Theory

To determine whether the variance is finite, we need to investigate the distribu-
tion of the weights. We make use of results from extreme value theory and fit a
generalised pareto distribution (GPD) to the highest valued weights. The shape

parameter ¢ of the GPD determines the number of moments that exist. The best-fit
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value for & for a set of weights can therefore be used to determine whether the
variance of the weights is finite. This work follows that of Koopman and Shephard
[65].

The generalised pareto distribution (GPD) describes the distribution of ex-

cesses over a threshold and has probability density function

1

1,
f(z) == (Hff—) o (33)
5 5

where z are the exceedances over the threshold u, such that z > 0. For £ < 0, we

have the additional constraint that z < —3/&.

According to Smith [96], if we have a set of independent, identically distrib-
uted weights {y;}, then as the threshold u increases, the limit distributions of the
random variables over this threshold z; = (y; — u) will be generalised pareto. The
threshold u is defined by the user, and the choice must be made carefully to ensure
that u 1s low enough for there to be sufficient data available to use for inference,

but high enough for the excesses to follow a GPD distribution.

As only 1/€ moments exist, the variance is finite only if £ < 0.5. Following

Koopman and Shephard [65], we test the hypothesis

H()Zf:% and H1:§>%, (34)

where equality is used in the expression for Hj to simplify the statistical analysis.

The score vector s of the parameters A = (£, §) for a sample of n exceedances
z; 1s given by
se | Ologf(z\)
Sg oA
23 i loga — (1 + 67871 300, 2/
BT+ (1+ 87250 ai/m

(3.5)
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where we use the shorthand z; = 1 + £871z;. The expected information matrix of

A is then n/, where

2 —1
7= L b ‘ (3.6)

(14+25(1+¢) Bl B1+ &)

This is a different expression from that of [65]. Using this expression for the infor-

mation matrix, the asymptotic distribution of the maximum likelihood estimator A

is given by
V(A =A) =2 N(0,I7Y), (3.7)
where
1 —_
IM=(1+¢) +E -F . (3.8)
—-B 28

We know from [96] that likelihood inference is regular for & > —1/2.

We use three different hypothesis tests:

1. The Wald test is based directly on the result of Equation 3.7 and involves

computation of an asymptotic signed t-test
(€-3)
t= —=—=%, (3.9)
VvV 9%éo
where ¢, is the diagonal component of /™! corresponding to &, evaluated

oy, 1
t= "0 <§-——2—>, (3.10)

where the null hypothesis is rejected if ¢ takes a large positive value com-

at £ = 1/2. This gives

pared with the standard normal.

2. In the score test we consider the score value for the null hypothesis

0_ - RS ~i
sg——4;10gz¢—3ﬁ Zm (3.11)

gzl
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Its standardised value
0

« S¢
st = (3.12)

V 15050 7

is asymptotically N(0,1) under Hy. Substituting € = 1/2 into Equation 3.6,

we can evaluate /¢¢, and write s; as

/2
s; = asg. (3.13)

In the score test we therefore reject the null if s is significantly positive

compared with a standard normal.

3. The likelihood ratio test compares the log likelihoods of the best fit para-
meters (£, ) under the restriction that € > 1/2, and the best fit parameters
where £ is restricted to be equal to 1/2. The maximum likelihood estimator

for 3 is then given by Go. We evaluate
LR=2 [logf(z;é, B) — logf(z;ﬁo,f = 1/2)} . (3.14)
Using Equations 3.3 and 3.14,

LR =2

n(infy—nB)+3> In(1+ z/(26))
i=1 (3.15)

—(1+ -51—) Zln(l + ,szi/ﬁ)} )

The null hypothesis is rejected if LR is high compared with (x2 + x%)/2,
where xZ is a unit point mass at the origin. The x3 term arises because Hy is

on a boundary [23].

Asymptotically these tests should give the same results, with the likelihood
ratio considering the differences in log likelihood between the maximum and the
hypothesis point, the Wald test considering the difference in the position of the
maximum likelihood estimator and hypothesis point, and the score test considering

the difference between the gradient of the log likelihood surface at the hypothesis
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point and at the actual maximum. With a finite number of data points, the results
of the three tests may be different, and it is useful to take all of them into account

when assessing the convergence of the importance sampling.

We use Davidon’s method of conjugate gradients [37] (a good description is
given in [17]) to fit the unrestricted maximum likelihood estimates (J;2 , [3’), and
a Fibonacci line search to fit §;. We found that the method of Fisher Scoring
suggested by Koopman and Shephard [65] frequently entered infeasible regions of
parameter space. We compared the results of our maximum likelihood fitting with
those produced using the ExtRemes toolkit [54] and found that our estimates of £

and ( matched their results in all cases of interest.

When the weights are very small, problems are encountered fitting the GPD.
The parameter J, which acts as a scale parameter is very small in these situations,
but tends to have very high derivatives, making the optimization routine suggest
infeasible values. Rescaling the data before performing the fitting routine seems
to help, but more investigations are required into the sensitivity of the final values
to the scale parameter used. Earlier work on fitting a GPD to data [18] has tended
to concentrate on datasets for which & < 1/2, considering the case where £ > 1/2
to be less practically useful. The problem of very small data values also does not

appear to have been considered within the literature.

Results for the two examples are given in Table 3.3.1. We find that the results
corroborate the theory of Chapter 2, that using a t-distribution as the candidate dis-
tribution when sampling a normal distribution results in a finite sampling variance,
whereas using a normal distribution as a sampling function for a t-distribution

leads to the sampling having a non-finite variance.
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3.4 Evaluation of Convergence Tests

We find the diagnostic tests presented here to be very useful tools for assessing
convergence of importance sampling and indicating situations where the candi-
date distribution is not sufficiently close to the actual function for importance sam-
pling to work efficiently. We have introduced one new diagnostic test to those
of Koopman and Shepherd [65], evaluating the proportion of the sample account-
ing for different proportions of the sum of weights. This did not prove useful for
assessing convergence for the two examples presented here, suggesting good con-
vergence for the example where convergence was poor and worse convergence in
the example where convergence was in fact good. In other examples, this test has
been found to be useful, where there are a few very extreme weights that absorb
most of the probability. We have not included an histogram of all but the top one
hundred weights, as suggested by Koopman and Shephard because we did not find
this to be a useful tool. It told us very little about the extreme weights, which seem

to be principally responsible for non-convergence.

Fitting the generalised pareto distribution to the weights can be time consuming

as this needs to be done for a number of different thresholds to check that the

Example Test Statistic Result
Good IS Wald test -1300  Accept Hy
Score test -178  Accept Hy
Likelihood ratio  -43600 Accept H
Poor IS Wald test 3.72 Reject Hy
Score test 253 Reject Hy

Likelihood ratio 2650  Reject Hy

Table 3.1: Results of statistical tests of the hypothesis given in Equation 3.4 to

assess convergence of importance sampling.
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weights included in the fitting process come from a distribution of this type. If
one threshold only could be chosen, this would reduce CPU time, but perhaps at
the expense of accuracy. The statistical tests appear to be useful in assessing the

convergence and possibly provide a more concrete measure than the diagnostic
tests.
The recommendation based on this investigation is to use both diagnostic and

statistical tests. Non-convergence can generally be determined from the diagnostic

tests, with the statistical tests confirming the user’s beliefs.



Chapter 4

Bayesian Model Selection

4.1 Introduction

In this chapter, we describe the application of Bayesian methods to model selection

in normal mixture models. These are models of the form
k
fla) =" " wg(]6y), (4.1)
i=1

where g(.) is a normal distribution. The problem that we consider is the statisti-
cally non-standard one of finding the probability distribution for &, the number of
components in the normal mixture. The focus of the work is on examples in which
there is no prior information available. We use importance sampling to find the
posterior distribution for the number of components in the mixture and apply our
methodology to a number of standard datasets. There are two main applications:
semiparametric density estimation, such as that used in input modelling for simu-
lation models [21] and determination of the number of distinct groups present in a

dataset, when it is known prior to the investigation that such groups do exist.

We use a Bayesian framework to analyse the problem, finding the posterior

distribution of the number of components in the mixture. Maximum likelihood

54
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methods have some drawbacks in this application as the likelihood surface has
discontinuities near its boundaries, €.g. as the component variances tend to zero.
In addition, a maximum likelihood methodology will tend to prefer the model
with the largest number of components, as this is always the model that best fits

the data. Including the prior distribution acts to smooth out the discontinuities in

the likelihood.

A review of the available literature on the analysis of finite mixture models is
given in Section 4.2. There are a number of issues concerned with model selection
in finite mixture models, and these are discussed in Section 4.3. We then go on to
describe the methodology that we have used to solve this problem in Sections 4.4

and 4.5. Results are presented in Section 4.6 and are followed by a discussion in

Section 4.7.

4.2 Literature Review

The main issues in designing a Bayesian methodology for the solution of this prob-
lem are the choice of prior distribution and the sampling methodology used to find
the posterior distribution. We begin by discussing the choice of prior distribution
in Section 4.2.1 and then go on to describe the different sampling methodologies

used to find the posterior distribution in Section 4.2.2.

4.2.1 Prior Distribution

It is not possible for the prior distribution used to be fully non-informative and
still to obtain proper posterior distributions for mixture models. The choice of
prior distribution in a mixture model setting that is proper and yet sufficiently non-

informative is an important part of the methodology.



CHAPTER 4 56

Both Richardson and Green [84] and Roeder and Wasserman [88] use a Dirich-
let distribution with parameters set equal to 1 as a prior for the component weights,
and a discrete uniform distribution to describe the number of components in the
model such that Pr{K = k} = 1/kmaz, ¥ < kma, and zero for all other val-
ues of k. Providing k,,,, is chosen to be sufficiently large, these priors impart no

influence on the posterior distribution.

Phillips and Smith {80] use a modified Poisson distribution as a prior distribu-
tion for the number of components, in which the probability of obtaining no com-
ponents is zero, and a uniform distribution as a prior distribution for the weights.
The use of a Poisson distribution places a greater probability mass on values closer
to the input parameter of the distribution, which in this example is a hyperparame-
ter that is chosen by the user. Therefore, this prior distribution is less flat than the

discrete uniform prior described in the previous paragraph.

The prior distributions for the number of components and the weights used by
Escobar and West [45] are fundamentally different from those described above.
They use a Dirichlet process as a prior distribution for the mixture, with the dis-
tribution of the (n + 1)™ sample, conditional on the previous n estimates, equal

to
k

Tne1|T ~ @, Go(Tre1) + an ij&w (Tns1)- (4.2)
7=1

Therefore there is a positive probability that the n’* sample from the distribution
comes from the same component as one of the previous samples. Using this distri-
bution, the expected number of components in the mixture for a sample of size n is
proportional to In(1 + n/«). Therefore, as the sample size increases, the expected
number of components also increases. Although to a certain extent this is logical,
it does lead to some influence in the prior distribution. Priors of this form, with
Dirichlet mixtures and Poisson-like priors for the number of components are more

geared toward density estimation than to determining the number of components,
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with the number of components being treated more as a nuisance parameter [99].

Most authors use a normal prior for the means of the components and a gamma
distribution for the inverse variances. This choice of distributions gives some ad-
vantages of conjugacy. Richardson and Green [84] extend this to include a hyper-
prior structure for the shape parameter in the gamma distribution for the inverse
variance. They argue that although it is possible to define a sufficiently vague prior
distribution for the mean based on the range of the data available, little informa-

tion can be gleaned from the data about the variances of the components. In their

model,

Hi ~ N(S:K’—l)
o7 ~ TI'(e, 8)
B~ I(g,h), (4.3)

where g, h £, x and « are hyperparameters to be determined by the user. With
this approach, the prior probability distributions for the means and variances of

the components are independent of each other.

Hierarchical priors are also advocated by Berkhoff, van Mechelen and Gel-
man [11] who investigated the sensitivity of the prior structure for a latent class
model. They argue that by using a hierarchical model for the prior distribution,
they are selecting prior distributions that are not contradicted by the data. Ap-
plying this methodology to a model of psychiatric symptoms, they find that the
hierarchical prior distribution produces more sensible posterior distributions than

the non-hierarchical distributions.

Roeder and Wasserman [88] use what they describe as partially proper priors
for the means and standard deviations of the component parameters. These are
partially proper in the sense that the overall scale and location of the parameters
require no subjective input but the parameters for different components are linked.

The means are loosely linked through a Markov Chain, which means that the prior
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distribution for the position of an individual component mean in parameter space
is flat but the distribution describing the distance between two component means is
not. The joint prior distribution for the component variances is a product of scaled
inverse-chi distributions with a common scale parameter and common degrees of
freedom. This has the effect of pushing all of the component standard deviations
toward some common, unspecified value. The prior requires two hyperparameters,
one influencing the distance between the component means and the other affecting

the difference in the scale of the component variances.

Although this choice of prior distribution could be used in many different
applications without adaptation, it does impose some structure on the problem
through having non-flat distributions describing the distance between the com-
ponent means and the difference in scale of the component variances. A prior
distribution that imposes some scale on the component means and variances but
treats them independently may actually impart less information. Further problems
arrive with Roeder and Wasserman’s approach if the data being modelled comes
from a mixture of components when two or more of those components have the
same mean. The prior that they use has zero probability of this occurring and so

prevents the correct posterior probability distribution being obtained.

Stephens [97] suggests however, that choosing a vague prior distribution for
this problem is more difficult than it might first appear, and this point is also picked
up by Jennison in the discussion of Richardson and Green’s paper [61]. Both show
the dependence of the posterior distribution for the number of components &, on
the prior distributions used for the component means and variances. Stephens
discusses how for a very small variance in the prior distribution for the component
means or variances, models with a low number of components are favoured, then as
the variance is increased, the prior distribution favours models with high numbers
of components. As the variance is increased even further, to very high levels, the

prior distribution again begins to favour models with few components. We discuss
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this sensitivity of the posterior distribution of the number of components to the

prior distributions of the other model parameters further in Section 4.3.3.

4.2.2 Sampling Methodologies

Previous work in this area has mainly concentrated on the use of Markov Chain
Monte Carlo (MCMC) methods for the solution of the problem. Richardson and
Green [84] and Phillips and Smith [80] describe reversible jump methodologies for
model selection. Stephens [97] again uses MCMC sampling but considers an al-
ternative to the reversible jump methodologies. Independence sampling has been
considered by Cheng [20] and importance sampling by Raftery [82]. Raftery’s
approach is based on the estimation of marginal likelihoods for each of the pos-
sible models, with several methods of determining the marginal likelihoods pro-
posed, importance sampling being just one. His favoured approach is the Laplace-
Metropolis estimator, which is based on the Laplace method, but uses posterior
simulation to estimate the quantities that the Laplace method needs. In the exam-
ple he considers of one-dimensional mixing, Gibbs sampling is used to perform

the posterior simulation.

In jump-diffusion sampling [80], [84], the Markov chain can make discrete
transitions between different models (jumps) and can sample model-specific pa-
rameters between these transitions (diffusion). Two different jump dynamics are
described by Phillips and Smith [80]: Gibbs and Metropolis-Hastings. In Gibbs
jump dynamics, the jump intensity, i.e. the probability of jumping from the cur-
rent model to a new model, is proportional to the full conditional distribution.
With the Metropolis-Hastings jump dynamics, jump times are calculated using a
modified jump intensity dependent on the prior distribution, and are accepted with
a probability of min{1, exp [L;(¢) — Lx(¢)]}, where L;(0) is the log likelihood

of a parameter set @ for model 7. The diffusion step then consists of a Langevin
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diffusion in the subspace corresponding to the current model.

Phillips and Smith {80] have applied this methodology to normal mixture mod-
els, and here they restricted the jump space of the sampler, allowing it only to jump
from its current state k£ to models with either £ — 1 or k¥ 4+ 1 components. There-
fore, the number of components can only increase or decrease by 1 in each move
of the sampler. Metropolis-Hastings jump dynamics were used, as obtaining full

conditional distributions for the parameters is difficult for mixture models.

A similar methodology is used by Richardson and Green [84], who also use
Metropolis-Hastings jump dynamics in a reversible jump MCMC sampler. Instead
of performing the random sampling of jump times, as used by Phillips and Smith
[80], Richardson and Green use a systematic approach, in which the parameters
in the current model are sampled from their full conditional distributions, and the
sampler then goes on to either split one component or combine two components,

resulting in a model with either one more or one less component.

Stephens’s MCMC sampler [97] appears simpler than the reversible jump sam-
plers described above. The method is based on the construction of a continuous
time Markov birth-death process which has the posterior as its stationary distribu-
tion. The number of components is varied in the model by allowing new compo-
nents to be born and old components to die. Births occur at a constant rate from

the prior while deaths occur at a rate dependent on the quality of the component.

A further example of the use of MCMC methods is given by Escobar and West
[45], who use Gibbs sampling to find the full posterior distribution. This is made
possible by their choice of prior distribution for the number of components and
the weightings associated with these components, as it means that a discrete move

between different models is not required.

Other methods proposed in the literature determine the posterior distribution

using the marginal likelihoods of the different models. The posterior distribution



CHAPTER 4 61

for a model M} and the Bayes factor for comparing that model with others are
dependent on the marginal likelihood P(My|D), where D is the available data.
The marginal likelihood for a model is defined to be the integral over that model’s
parameter space of the prior distribution multiplied by the likelihood. Raftery [82]
proposes using importance sampling or maximum likelihood methods for find-
ing the marginal likelihood, while Roeder and Wasserman [88] and Chib [24] use
Gibbs sampling. As a result of using partially proper priors, Roeder and Wasser-
man can only estimate the marginal likelihoods up to an unknown factor, therefore,
the Schwarz criterion [94] is used to find the optimal model. Under the Schwarz
criterion, the optimal model is that for which In[p(D|6;)] — sdy, In[n] is largest,
where model & has dj, parameters 8, and n is the number of observations, denoted
by D.

Berkhof et al [11] also use marginal likelihoods to calculate Bayes factors for
model selection, using a variant of Chib’s estimator {24] for the computation. The
variant involves implementing a relabelling transition for the mixture components,
as suggested by Neal [73], to enhance mixing between different modes of the
mixture distribution. Due to non-identifiability of the components in a mixture
model, the posterior for a model with & components will have k! symmetrical
modes. Neal argues that marginal likelihoods cannot be used to compare models
if the sampling does not allow sufficient mixing between these different modes, as
the estimates of the marginal likelihoods will be incorrect. Further discussion of

identifiability in mixture models is given by Crawford [31] and in Section 4.3.1.

Cheng [20] describes a different method again of determining the posterior dis-
tribution of a mixture model. He assumes during the sampling that all components
are present in the model, up to a maximum number k,,,,. Markov Chain Monte
Carlo sampling is then used to produce m samples from the posterior distribution
of this model. For each of the samples, if the weighting assigned to a component is

below some predetermined value 9, the component is ignored. No rule for choos-
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ing ¢ is given and this must be determined subjectively by the user. In his paper,
Cheng uses an independence sampler to sample from the posterior distribution.
Gibbs sampling can also be used for most problems and this has been found to

give better results.

4.3 Issues

4.3.1 Label-Switching

The components in a mixture model are non-identifiable, which means that the
posterior distribution will have k! symmetric modes for a model with & compo-
nents. If the separation between component means is small, there could be inter-
ference from one or more of the other £! — 1 symmetric modes. We assume that
we identify only one of these modes in the optimization, and that the importance
sampling only samples from close to this mode. For the datasets analysed in this

thesis, we assume in addition that the £! modes are well separated in the best-fit

models.

The problem of label-switching, as the phenomenon described above is re-
ferred to, is not necessarily important in mixture analysis. In situations where the
data are known to be made up of finite mixtures, it is important to identify and label
the components correctly, as the component means and variances have a physical
meaning. On the other hand, where finite mixtures are being used simply as semi-
parametric density estimates, the component parameters are of less interest and the
analysis should focus on quantities such as the probability density, which will be
invariant to label-switches. The aim of our analysis is somewhere between these
two extremes, and is probably best described as “investigating heterogeneity”, a
term used by Richardson and Green to describe their own work [83]. We wish to

determine the posterior distribution for the number of components in the mixture
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model, and we have less interest in the accurate determination of component means
and variances. The label-switching problem is therefore not of paramount interest
to us, as the results of the importance sampling for the number of components will

be invariant to label-switching.

4.3.2 Bayesian versus Frequentist Argument

The likelihood of the parameters of mixtures of normal distributions with different
variances has several problems. As a component variance tends to the boundary
level of zero, the likelihood tends to an infinite spike. This corresponds to the sit-
uation where one component is fitting to just one data point, and the component
tends to a delta function centred on that point. The likelihood function also suffers
from the existence of local maxima, which can create some computational difficul-
ties when trying to estimate the number of components. The effect of the prior can
alleviate these difficulties in the Bayesian analysis, although the posterior distribu-
tion can also suffer from local maxima. For example, the prior distribution for the
variance of the sampling will usually associate a very low or zero prior probability
with the variance of the component tending to zero. The prior probability can be
seen as introducing a smoothing effect, resulting in a posterior distribution that is

easier to deal with than the corresponding likelihood distribution.

There are ways of overcoming the problem of zero variance in maximum like-
lihood estimation. These usually rely on restricting the variance, and it could be
argued that these use much the same methods as incorporating a prior distribution

but in a less transparent way.

4.3.3 Sensitivity to the Prior Distribution

Both Richardson and Green [84] and Stephens [97] comment on the sensitivity of

the posterior distribution for the number of components in a finite mixture model
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(k) to the prior distributions for other parameters in the mixture model.

Richardson and Green found that when the variance of the prior distribution
is small, representing a strong belief that the means are at the mean of the prior
distribution, models with a small number of components are favoured. As the
variance is increased, to represent vaguer prior knowledge of the position of the
component means, initially more components are fitted with means spread across
the range of the data, but continuing to increase the variance will eventually favour
fitting fewer components. In the limit of the variance tending to oo, the distribution
of k£ becomes independent of the data (according to Stephens [97]) and this heavily

favours a one component model.

We investigate this dependence further by considering a very simple prior dis-
tribution for the means, variances and weights of a normal mixture model. We
assume that the means follow a uniform distribution with minimum at x — R/2
and maximum at y + R/2 and that the variances also follow a uniform with lower
and upper values at 0 and 7', where x, K and T are hyperparameters to be set by
the user. The values of the parameters R and T will determine how vague the
prior distributions for the component means and variances are, and X sets the lo-
cation of the mean. The weights are assumed to follow a Dirichlet distribution
with parameter ¢ set equal to one. The prior probability of choosing a model with
k components is assumed to be 1/k,,,, for k up to kye.. Therefore, the prior
probability of a model with & components with parameters 6 is

T'(%)

TRT)F 4.4)

m(k,0) x

where 0 < 0 < T, —R/2 < u—x < R/2,0 < k < ko, Writing RT = S, and
expanding the gamma function we obtain an expression for the prior probability in

terms of k£ and S,
(k—1)!

Gk
We use Maple to plot this function for different values of .S in Figure 4.1. Higher

w(k,0) = (4.5)
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values of S imply vaguer prior knowledge. As can be seen in the figure, the prior
distribution has a minimum for some value of k. As S increases and the prior
knowledge becomes vaguer, the minimum occurs at higher values of k. Thus
the scale parameters used in the prior distributions for the component means and
variances impact on the prior distribution for k. In general, intermediate values of

k seem to have a lower probability than very low or very high values of k.

A 3-d plot showing the variation of 7 (k,#) with k£ and S is shown in Figure
4.2. This is not very clear, which is why the set of 6 graphs for different values
of S were produced. The graphs in Figure 4.1 all use an integer value for S and
it is interesting to note, that w(k, ) is equal at £ = S and k = § + 1, with the
minimum of 7 (k, #) with respect to k always lying between S and S + 1. In fact,
this is also true for non-integer S as is easily shown by considering the definition

of w(k,8) in Equation 4.4.

So what does it mean geometrically? As we are using uniform distributions,
the prior distribution 7(k, 8) gives an indication of the volume of our available
parameter space. The weights are restricted to always sum to one, therefore the
volume of our parameter space is defined by a simplex in £ — 1 dimensions (pa-
rameter space of the weights) multiplied by a cuboid of side S in & dimensions
(parameter space of combined means and variances). As k increases, the volume
of the cuboid increases for S > 1, decreases for S < 1 and remains constant for
S = 1; the volume of the simplex always decreases. The maximum volume of
parameter space, and so the minimum value for 7(k, #), will therefore occur at

different values for different S.

We can obtain an approximate expression for the value of k at which the prior
distribution has a minimum by using Stirling’s approximation to the factorial func-

tion,
nl ~n"e " 2rn,n — oo. (4.6)
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Figure 4.2: The variation of the prior distribution with £ and S.

Substituting this into Equation 4.5,

(k — 1)k~le=k-1), /on(k — 1)
Gk

Differentiating and setting the differential equal to zero, we find that £ has a mini-

w(k,0) = . 4.7)

mum at
1
L -1+ LambertW (rﬁ , (4.8)
LambertW (— ﬁ)
where LambertW (z) is defined such that
LambertW (z) exp(LambertW (z)) = . 4.9)

Therefore, the joint prior distribution for k, the number of components in a normal
mixture model, is dependent on the prior distribution for the component means

and variances.

Rescaling the data could result in a change in the prior distribution, and so

an increase or a reduction in .S, with no increase in the vagueness of the priors
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for the means and variances. This could then change the joint prior distribution
for the number of components. For example, if the data, and corresponding prior
distributions, were rescaled so that S < 1, the prior distribution would have a
minimum at k = 1, rather than at the integer value of k£ between unscaled values
of S and § + 1. This results from the interplay between the volume of the simplex
defining the parameter space of the weights and the cuboid defining the parameter
space of the means and variances.

Although this analysis has been conducted for uniform distributions for the
means and variances, it is suspected that the results will be similar for other dis-
tributions as the cause of the variation is the interplay between the increase in the
volume of the parameter space of the component means and variances and the

decrease in the volume of the parameter space of the component weights.

4.4 Prior Distribution

We use as a prior distribution

Yi ~ N(Mzw Ui)
Plzi=j) = aj
a ~  Di(0)
(4.10)
i ~ N(m,s?)
sz ~ Gala,B)
PT(/{,‘) - 1/kmam k= 172,-v-;kmaz?

where Di(d) denotes a Dirichlet distribution with parameter vector § and 77 =
1/ 0]2. The parameters m, s2, o, 3, § are chosen in advance to give an uninformative
prior. We set m equal to the mean of the data, and s? equal to the sample variance
multiplied by a stretch factor, that we set equal to one thousand. We set «, the

shape parameter in the prior distribution for the inverse variance, equal to one and
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0 such that the mean of the distribution is equal to one over the variance of the
data multiplied by the stretch factor. The parameter in the Dirichlet distribution, §
is set to one, placing equal prior probability on values of the component weights,

and k4, 1S chosen to be 10 in all of the examples considered.

The prior distribution given in Equation 4.10 is of a simpler form than that
used by Richardson and Green [84] and described in Section 4.2.1 as it includes
one less hierarchical layer. This has no effect on the prior distributions for the
component means and weightings nor on that for the number of components in

the mixture. It will result in a slightly more restrictive prior distribution for the

component variances.

We investigated the effect of changing the scale parameters in the prior distrib-
utions for the component means and variances, considering three different datasets.
Results suggested that for this form of the prior distribution, changing the scale
parameters (and so altering some of the hyperparameters) had little effect on the
posterior distribution for k, with the optimal number of components changing by

at most one, but in the main staying the same.

Choosing a higher value for 6 could have a more significant effect on the opti-
mal number of components, as this parameter affects the the size of the component
weights. Setting 0 to one allows the model to choose zero values for some of the
weights. This means that a model that appears to have many components could ac-
tually be a model with only a few components, as some of the component weights
may be zero or very close to zero. As J is increased beyond one, the dirichlet
distribution favours larger weights. It could be argued that the best value for this

parameter is slightly higher than one, and this should be the subject of further

investigation.
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4.5 Importance Sampling

Obtaining good convergence using importance sampling requires good knowledge
about the function being sampled and the methodology we propose here incorpo-
rates an initial step in which we investigate the form of the posterior distribution
by finding the modes of the posterior distributions of each of the models in terms
of the component means, variances and weights, and the covariance structure at

the modes. We then use this information to set our candidate distribution for the

importance sampling.

4.5.1 Optimization to Find the Mode of the Posterior Distribu-

tion

Three methods were evaluated for finding the maxima of the posterior distribu-
tions: the Nelder Mead optimization routine [74], conjugate gradient optimization
[37] and the EM algorithm [39]. Nelder Mead was chosen for the final methodol-
ogy because it was found be more robust than the EM algorithm and to give better
results than the conjugate gradient optimization. We discuss the implementations

of the different optimization routines further below.

With each of the optimization methods tried, starting parameters for the models
with & < k.. — 1 are determined from the best estimates for the model with
k + 1 components, usually by combining two of the original components. Unless
otherwise stated, two components are combined to give a new component that has
a mean equal to the weighted average of the means of the original components, a
variance equal to a weighted average of the variances of the original components
and a weight equal to the sum of the two original weights. All other parameter
values remain the same. Five different methods of choosing which components to

combine are considered.
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1. Combine the two components that give the highest posterior probability, be-

fore optimization.

2. The collapsing method introduced by Sahu and Cheng [91], in which the
closest two components, measured in terms of the difference in the means,

are combined.

3. Any components with very large variances have their weights added to the
component with the closest mean. If no large variance components exist,
the optimization is started from two points: combining the components with
the closest means, and combining the component with the smallest central
weight with its nearest component, measured in terms of the difference in
the mean. The solution that has the higher posterior probability following

optimization is retained.

4. As the previous method but instead of trying just two combinations of com-
ponents in the case of there being no large variance components, we try
all combinations of adjacent components, where components are adjacent if
their means are adjacent. Select the solution that has the highest posterior

probability following optimization.

5. Run the optimization for all possible combinations of adjacent components,
where components are combined as described in method two. Select the

solution that has the highest posterior probability following optimization.

The five different methods of combining components have been tried on a num-
ber of different data sets. We find that method three works well for most examples,
performing a much smaller number of iterations than methods four and five and
finding optima that are either similar or better than these more thorough methods.
Methods one and two involve the smallest number of iterations but the optima that

they find are generally not as good as those found by the other three methods.
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All methods have problems fitting skewed data, with the more thorough search

methods performing better.

Nelder Mead

In the final methodology we used the Nelder Mead optimization routine [74].
Moves were chosen by the Nelder Mead routine ignoring the positivity constraints
on the 7; and w; and the constraint that the weights summed to one. We dealt with
the positivity constraints by imposing a very large penalty on transgressions into
infeasible areas. We ensured the sum of the weights remained equal to one by

renormalising the weights at each new point.

The Nelder Mead is a local optimization routine. We tested how local the
optimization was by running it from a number of different starting points. Only
the start point for the model with k,,,, components was changed. In the test, we
used method five for combining components for k& < Kpq., as described above.

Four different sets of initial conditions were considered:

1. Standard initial conditions: put the data into non-decreasing order of means,
and split into k4, groups. These are assumed to be a very rough approx-
imation to the k,,,, components, and we take the initial component means
to be the group means and the initial component weights to be 1/kp,,. The
initial group variances are assumed to be equal and are set to be the data

variance divided by k2, ..

2. Initial component variances and weights are set using the standard initial
conditions; the initial component means are set to be equal, at the mean of

the whole dataset.

3. Initial component means and variances are set using the standard initial con-

ditions; the initial component weights are set so that there is one very low
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weight and k4, — 1 high weights.

4. Initial component means and weights set using the standard initial condition;

the initial component variances are set to be equal to the data variance.

The optimal solutions found by the Nelder Mead routine were very similar
for each of the start points, with the main differences being between the models
with k,,,, components. When applying the routine to the galaxy dataset [87], we
found that the sum of the squared differences between the component means of
the different solutions and the solution found using the standard initial conditions
was at most 1.37 (for scenario 4), when considering all possible models and 4.63
x 107° when considering only the first k., — 1 models. Similarly, when looking
at the variances, the sum of the squared difference between the ; = 1/0; was
2150 (for scenario 4) when considering all models and 0.0311 (for scenario 2)
when considering only the first £,,,, — 1 models. For the weights, the sum of the
squared difference was at most 2.18 x 10~2 (for scenario 4) when considering all
models and 2.34 x 107° (for scenario 4) when looking at only the first kpq, — 1
models. This suggests that the Nelder Mead is performing a sufficiently wide-
ranging search for the first k., — 1 models but that the initial conditions have a
greater effect on the optimum reached for the model with k.4, components. The
optimum is likely to not be as well-defined with higher numbers of components

and so any optimization routine would have problems finding the global optimum.

We calculated Anderson-Darling statistics for each of the optimal sets of para-
meters found by the Nelder Mead routine for the four different starting points and
for each value of k. These are given in Table 4.1. Critical values are not available
but the magnitude of the statistics allows an informal comparison of fits across sce-
narios. We find that there is only a big difference in these statistics for the model
with k., components, for which scenario three has an Anderson-Darling statistic

that is double that found for the other four scenarios.
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We find that a total of approximately 25,000 runs (and no more than 30,000)
are required to find the optimal solutions for all of the different models considered

using the Nelder Mead routine.

Conjugate Gradient Optimization

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method of gradient-based opti-
mization introduced by Davidon [37], was tried initially, as the gradient of the pos-
terior distribution can be calculated. A good review of conjugate gradient methods
is given in Chapter Two of [17]. Transformed parameters were used to ensure that
positivity constraints on the inverse variances 7; and the weights a; were always

satisfied, with the weights also always summing to one, such that

o= e% i=1...k
b . 4.11)
4 = Z?=1€bi Z:17"'7k

where d and b are optimized and can vary between —oo and oo with the constraints
always being met.

We used the algorithm to minimise minus the posterior and minus the log of

the posterior. When minimising the posterior, we found that the algorithm did not

k Scenariol Scenario2 Scenario3 Scenario 4

1 3.86 3.85 3.85 3.85
2 1.98 1.99 1.98 1.98
3 0.521 0.521 0.519 0.520
4 0.136 0.136 0.135 0.136
5 0.101 0.101 0.101 0.101
6 0.0750 0.0749 0.135 0.0786

Table 4.1: Anderson-Darling statistics for optimal models found using the Nelder

Mead routine, with different initial solutions.
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move far from its starting point, as the gradients calculated at the initial points
were very small. When instead minimising the negative log of the posterior, the
algorithm frequently moved to areas of parameter space associated with a very low
posterior probability. The errors causing this originated in the routine updating H,
the estimate of the covariance matrix and we suspect were due to the surface being

a long way from quadratic.

EM Algorithm

We also considered using the EM algorithm, introduced by Dempster et al [39]
to find the mode of the posterior. Traditionally, the EM algorithm has been used
to find the maximum likelihood solution, but it can be easily adapted to instead
find the maximum of the posterior distribution. The basic idea behind the EM
algorithm is to augment the original data with latent data in order to obtain a more
tractable expression for the likelihood. When applied to mixture models, the latent
variables are assumed to be the components that data points have been generated
from. A good introduction to the EM algorithm and its application to mixture

models is given in [12]. We describe its application to this problem below.

Using the prior distributions given in Section 4.4, the log of the prior proba-
bility can be incorporated into the expression for ¢) given in Section 3 of [12] to
give

Q=" {log[r(8)] + log[L(0|=,y)]} p(¥|Z, ©), (4.12)

yer
where = is the data, 0 is the vector of parameters and y is the unknown data,

which tells us which component each of the data points was generated from. The

first term is the prior distribution and the second the likelihood.

Using this expression for ), we find that the updated y;,  and a;, [ =1,...,k
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in the ¢** iteration should be

&k + Soiy niap(le, ©97)

SR + 5o 7 p(l)mi, ©97Y)
o= 2(a ”Nl) + Z?:lﬁ(”mh ©91)
2/B+ > ey (T — i )?p(l| s, ©971)
_ N . Og-1
alg . 51 1"‘21:1]9(”1'1,@ ) (413)

k
N—-k+ Zl::l 0
The algorithm is run until convergence is reached, where convergence is measured

by the similarity in the Q values between subsequent iterations.

We found that the EM algorithm did not converge to as good an optimum and
was more sensitive to the starting solution than the Nelder Mead. It also did not
converge for some initial solutions. Often this occurred when a large number of
components were being fitted to a dataset for which only a small number of com-
ponents might be required, and took the form of one of the 7; tending to zero for
a component with a very small weight ¢;. The sensitivity of the limiting solution
to the initial solution and the convergence to local maxima or saddle points are

drawbacks that have been discussed elsewhere in the literature, e.g. in [41].

The EM algorithm is much quicker than the Nelder Mead algorithm, perform-
ing about 100 iterations per model compared with a few thousand for the Nelder
Mead. We have not pursued this method further but there is scope for more re-
search in this area, possibly considering an adaptation of a more sophisticated ver-
sion of the EM algorithm, such as that put forward in [2], or the use of a stochastic
EM algorithm, which has previously been applied to mixture models by Diebolt
and Robert [42]. If a sufficiently good optimum could be obtained without a sig-
nificant increase in the number of runs required, this method could out-perform

the Nelder Mead.
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4.5.2 Estimation of the Covariance Matrix

Having found the modes of the posterior distributions for each model, we can then
estimate the covariance matrix for each of the models using the information matrix

at the maxima of the model posteriors.

Estimating the covariance matrices for a mixture model of & components is

non-trivial because the weights, w; must sum to one. Let the vector of weights be

w = (wi, ..., wp)" (4.14)
then
k
Zwi =1 (4.15)
1=1
and
w; >0, alli. (4.16)

Let all the other parameters be written as a = (a, @, ..., @)’ and let
L= Lla,w) 4.17)

be the log posterior probability . Suppose its maximum occurs at (&, W), where

this optimum has been obtained subject to Zle w; = 1. Let the negative Hesslan

be
Ha 84 H(X w
H= ’ ’ (4.18)
HY, Hy.
with, in particular,
R 5?L(w)

Here, the partial derivatives of H are obtained ignoring the restriction on the
weights that }:f:l w; = 1.

Suppose that we now replace w; by the parameters ¢, where

w; = 0; + k7 (1 — Z@) ci=1,..,k (4.20)

Jj=1
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This ensures that

k
Z w; = 1. 4.21)
i=1
The Jacobian matrix of the transformation is
1,
J= Tf% = (I, — k11,17), 4.22)

where I, is the k—component identity matrix and 1= (1, 1, ..., 1)T is the k-component
vector with unit entries. The log posterior density in terms of this parameterization,

L = L(c, ), where § = (61, ..., 0;)", has negative Hessian

Ha,a Ha,wJT
Ala,0) = Ala,w) = : (4.23)
JHL,, JH, .J7
which we write as A from now on, and gives the joint distributional behaviour of
&, W, subject to Zle w; =1,

More precisely, the inverse of A gives the covariance of (&, W) subject to
Zle w; = 1. Clearly therefore A must be singular, and indeed the sub matrix
JH,, J7 is singular, as det(J) = 0.

Thus A does not have a full inverse. However it does have a generalised in-

verse, G, which by definition will satisfy

AGA = A. (4.24)

To find the generalised inverse, we begin by assuming that H and A are eval-
uated at « = & and w = W. We then let P be the orthogonal matrix formed from

the eigenvectors of A (so that PPT= PP =1,,.,). Then
PTAP =D, (4.25)

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors
forming P. Then it is known (see for example [95]) that a generalised inverse of
Ais

G = PMP” (4.26)
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where M is the diagonal matrix whose non-zero diagonal elements are the recip-

rocals of the non-zero diagonal elements of D. For example, if

D1 0 0 0 }m1
D= (4.27)
0 0 Dy O j23)
0O 0 0 0 e — ks
where D, and D, are non-singular diagonal matrices, then
DY 0 0 01\ }m
0 0 0 0] Jm—m
M= (4.28)
0 0 D;' 0 | Yk
0O 0 0 O e — k

Note that m; < m with equality allowed, but the last row and column of M

are zeros, as will be shown in the lemma below, therefore

k—k > 1. (4.29)

From the definition of M it easily follows that
DMD =D (4.30)
and rearranging Equation (4.25),
A =PDP”. (4.31)

Using these two expressions, we can show that G satisfies Equation 4.24 and is

thus the generalised inverse of A

AGA = PDPTPMPTPDP? = PDMDP” = PDP = A. (4.32)
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4.5.3 Candidate Distribution

When the modes and covariance matrices for the posterior distributions have been
found, we use a multivariate generalisation of a student t-distribution (defined in
Section 2.4.3) as a sampler for component weights, means and variances. We
assume that we are sampling within only one of the k! identical simlexes of para-
meter space, and so the probability of sampling each of the points must be scaled
by a factor of 1/k!. A uniform distribution is used as a sampler for %, the number

of components in the model.

The algorithm for this method is then

[y

. Sample k with probability 1/k;,,, of sampling each of the k = 1,2, ..., knaz-

2. Sample the mixture model parameters from a multivariate t-distribution with
mean given by the mode of the posterior for the model with £ components

and covariance matrix A, using the method described in Section 4.5.2.

3. Calculate the posterior probability divided by sampler probability (sampling

ratio).
4. Output parameters and the sampling ratio to the worksheet.

5. Repeat N times, where NV is the number of samples required.
A weighted frequency plot using the sampling ratios as the weights will then give
the posterior probability density function, if the sampling has converged.
4.5.4 Generating Parameters Using the Generalised Inverse

If H is positive semidefinite then so is A and all its eigenvalues are non-negative,

meaning that the diagonal elements of M are also non-negative. We can therefore
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write M = M%M% and define a matrix L

L = PMz. (4.33)
such that
G = PM:M:P7= LL7. (4.34)
Lemma
(i) The vector
0,, tm
po = (4.35)
1 1k

is an eigenvector of A with eigenvalue 0.

(ii) All other eigenvectors of A, which we write as

o m
p= | me e (4.36)
py ) 1k
where v = m + k — 1, satisfy
1;p) =0. 4.37)

Proof The matrix A is singular and so, by definition, has at least one eigenvalue
that is equal to zero. Therefore, in order to prove that part (i) of the lemma is true,

we simply need to show that

A_po e O‘ (4.38)
Using the expansion given in Equation 4.23, we can rewrite this condition as

Howd 71,
Apo = : (4.39)
JH,, ,JT1;

The expression for the Jacobian J is given in Equation 4.22 and it is easy to show
that J71, is equal to O, the k-dimensional column vector of zeros. Hence, Equa-

tion 4.38 holds and part (i) of the lemma is proved.
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To prove part (ii) we simply note that the matrix A is symmetric and therefore
has orthogonal eigenvectors. Thus p;po = 0,41, J = 1,2,...,v. As the upper
m components of py are zero, the orthogonality condition reduces to p;1; = O,

hence proving part (ii) of the lemma. [

We now put py in the last column of P, and write
P- (P, p) (4.40)

with
Po=(p b2 - b ) @41)

the matrix comprising the other eigenvectors. From the Lemma we can write

! A O,
M2 = , (4.42)
ol 0
where 0, is the d—dimensional column vector of zeros and
D2 0 0 0 my
0 0 0 0 tm —my
A= . (4.43)
0 0 ]:)w2 0 }kl
O 0 0 O e —ki—1

These new expressions for P and M'/? can then be substituted into Equation 4.33

to yield
L = (Pl Po) ;;: (Z)V
— (PlA 0m+k)_ (4.44)

We now consider how the above results can be applied to the generation of

variates x from the singular multivariate t-distribution

o & T
X = ~ ST LT |, (4.45)

-~

W w
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where ST indicates a singular multivariate generalisation of the student t-distribution

as defined in Section 2.4.3. A variate from this distribution can be generated using

&
X = +P,Az,, (4.46)

-~

w

where z, is a vector of standard t-variates. These can have arbitrary degrees of
freedom 9, and are derived from non-standard t-variates by dividing through by

\/v/(v — 2), the variance of the student t-distribution. The covariance of the x

generated in this way is then
Var(x) = E(P1Az,zl APT) = P, AAPT = G. (4.47)
Moreover, using the result of Equation 4.37,
(0%, 15)P1 =07, (4.48)

and the sum of the component weights is given by

k
«
Zwi = (nglg)
=1 W
T T & T T
= (0,,,1;) +(0,,,1; )P Az,
W
&
W
k
- Zw =1. (4.49)

Thus under this sampling we are restricted to the simplex Zf::l w; = 1.
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4.5.5 Restricting the Range of the Weights to (0,1)

The above transformation needs an adjustment to ensure that in addition to sum-

ming to unity, the final weights each lie in the unit interval. We write

[N

X = +PiAz,
W
& .
_ LR, (4.50)
% Q.

where Q,, is the first m rows of P; A and Q,, are the remaining k£ rows, and let

£ = Ea= Quzw (4.51)

We define a new vector y such that

o Wepla&) g, (4.52)
w; exp(ai&;) +1 — Wy
where
1

The effect of this transform is to ensure that the y; are all positive and less than

one. For the final weights w; we use the transform

w; = Y i=12 ..k (4.54)
Y1+ Y2+ ...+ Yi

to ensure that the y; also sum to one.

The vector of weights, w = (w1, wa, ..., wy) clearly has a singular distribution.

Let w be the (k — 1) dimensional vector formed from the first (k — 1) components

of w and write
o
¢ = . (4.55)
w
In terms of the importance sampling we can think of the probabilistic distribution

as being completely determined just by ¢ for the parameter set. Therefore, when
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determining the probability of sampling a particular set of parameters, we need

only determine the candidate probability of ¢, which is non-degenerate and given

by
frb(avw) = fzu(ZV> 8(?12:))]
Jz, (20) a;?;,:;) . : (4.56)

where f,,(z,) is the joint probability of sampling the v standard t-variates. The

(m-+k—1) x (m+ k— 1) matrix, -‘?9({';—’5’)), is made up of two parts:

ola)
5y = @ (4.57)
and
Bw) _ 0w)aly) (e
o(z,) Ay) 0(¢) 9(z.)
O(w) A(y)
- AW (4.58)
(y) 8(¢)
where
Awy) _ (l—w;) _ :
) ~ w7 ¢ l<j<k (4.59)
= Ez;::yz j#i 1<1<k—-1
and
Ow) . wmlzv) 5y
a(&;) by (1—;) 1<i, j <k, (4.60)

where the matrix Q,, is the £ by & — 1 matrix that forms the bottom right hand

corner of G.

We have thus shown how parameters for a mixture model can be generated
using a multivariate t-distribution, going into some detail over how the component
weights are generated to ensure that they both sum to one and are in the range
(0,1). Expressions have also been given for the probability of sampling parameter

sets under this sampling procedure, which are vital for importance sampling.
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4.5.6 Convergence Statistics

We make use of the methods presented in Chapter 3 and in addition, evaluate the
variance of py, the probability that the number of components in the model is equal

to k,

varpd = 32 (£08) a0 - 3 [ o] we

where f(6;) is the posterior probability of the i** sample 0;, w(#;) is the probability

of sampling the parameter set §;, and

1 number of components is &
0(0;) = (4.62)
0 otherwise
The variance of p, can be calculated for each value of k, &k = 1,..., kpae tO
give a measure of the quality of the solution. We also consider the unit coefficient

of variance A for each of the pg, which is defined to be the estimated standard

deviation divided by the estimated mean.

The maximum of the normalised importance sampling weights is the percent-
age of the probability distribution included in just one point of the sample. This
gives a further indication of convergence and is presented for all examples. In ad-
dition, we fit an extreme value distribution to the importance sampling weights,

and use the results of the fitting to assess the convergence, as described in Section

3.3.

4.6 Examples

There are a number of standard datasets for the mixture model problem, most of
which are discussed by Richardson and Green [84]. We here present results for

four examples: a generated distribution of three normal distributions; a dataset
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Figure 4.3: Probability density function for the three normals data.

describing the speeds of galaxies [87]; one of the more difficult standard datasets,
the enzyme data [10]; and finally a dataset describing the acidity of lakes in north-

central Wisconsin, [32].

4.6.1 Example 1: Three Normals

This is a test dataset of 100 data points sampled from a mixture of three normals
with component means at 0, 10 and 15, component variances of 1, 2 and 1, and
with equal weight applied to each component of the mixture. The sampling assigns
a posterior probability of 0.87 to there being 3 components and 0.13 to there being
2 components. The best-fit distribution with three components (as found using the
optimization routine), the data and the actual distribution are given in Figure 4.3.
It has been argued [1] that it is easier to assess the fit of a distribution to data using

an EDF and this is given in Figure 4.4

We assess the convergence of the importance sampling using the techniques
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Figure 4.4: Empirical distribution function for the three normals data.

described in Chapter 3 and Section 4.5.6. Convergence statistics for the sampling
are given in Table 4.2. These include the results of fitting an extreme-value distri-
bution to the importance sampling weights. The tests work by fitting a generalised
pareto distribution to the exceedances over a threshold. Weights that are smaller
than the threshold are not included in the fitting. Choosing the threshold is a mat-
ter of judgment, and we used a number of different thresholds for each example.
Only the results for the most representative thresholds for each of the three tests

described in Section 3.3 are included.

The convergence statistics suggest that the importance sampling has converged
for this example, with a relatively small sampling variance and maximum weight.
The unit coefficients of variance are also small for the models of interest, becoming

larger for models with high numbers of components.

One difficulty with the methodology that we have used for the importance sam-
pling here is that we do not take full account of our knowledge of the posterior
distribution. Although by looking at the data for this example, we can be reason-

ably confident that the number of components will be less than five, we still assign
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Measure Result
Ay 0.0366
JAD) 0.0659
Aj 0.0585
Ay 0.138
A; 0.424
JAV: 0.388
A 0.597
Ag 0.386
Ag 0.976
ANTS 0.951
Var(f/w) 2.02x1077
Max(f/w) 0.00818
Wald Test -4 (accept)
Score Test -2.2 (accept)

Likelihood Ratio  -700 (accept)

Table 4.2: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the three normals example.
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equal probability to sampling models with numbers of components between one
and ke (in this case kg, is 10). Models with numbers of components very
different from three will have a relatively small posterior probability associated
with them, and so relatively small sampling weights. If there were zero poste-
rior probability associated with the other models, the weights associated with the
correct model should be approximately k,,,./N, where /V is the number of runs
performed during the importance sampling, k., times larger than the weights
generated by a model in which the sampling function is a good description of the
actual function. In reality the posterior probabilities for the other models will be
non-zero, but will contribute less than 1 — 1/ k4 to the posterior distribution. This

necessarily worsens the convergence of the importance sampling.

4.6.2 Example 2: Enzyme Data

The enzyme data comes from [10] and is made up of 245 data points. The re-
sults suggest that there is a 70% probability of the model being made up of four
components and a 30% chance that it has only three components. The estimated
probability distribution, with parameters set at the mode of the posterior distribu-
tion, and a histogram of the data are given in Figure 4.5. We also include the EDF

of the data and the estimated cumulative distribution function in Figure 4.6

Convergence statistics for the enzyme data are given in Table 4.3. They suggest
relatively high unit coefficients of variance and a relatively high maximum weight.

Two out of three of the EVT statistics suggest that the variance does exist.

4.6.3 Example 3: Acidity Data

The acidity data comes from [32] and is made up of 155 data points. The results

suggest that the mixture distribution is made up of two components, with a 99.8%
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Figure 4.5: Probability density function for the enzyme data.
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Figure 4.6: Empirical distribution function for the enzyme data.
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Measure Result

A 0.0367

JAD) 0.991

As 0.423

AV 0.198

As 0.194

Ag 0.265

Ay 0.777

Ag 0.838

Ag 0.825

Aqg 0.496
Var(f/w) 7.75 x107°

Max(f/w) 0.254
Wald Test -0.1 (accept)
Score Test -0.1 (accept)

Likelihood Ratio 2900 (reject)

Table 4.3: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the enzyme example.
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Figure 4.7: Probability density function for the acidity data.

posterior probability of this being the correct model. Figure 4.7 shows the prob-
ability distribution function for the model with two components, using the modal
parameter values found in the optimization, with a histogram of the data. We also

give the empirical distribution function of the data in 4.8

As Table 4.4 shows, the variance of the sampling and the maximum weight are
small for this example, suggesting that the importance sampling has converged,
which is confirmed by the extreme value statistics. Unit coefficients of variance
are also small for the models of interest, again increasing for models with higher

numbers of components.

4.6.4 Example 4: Galaxy Data

The galaxy data comes from [87] and is made up of 82 data points. The posterior
distribution has a maximum for k = 3, with a 99% chance that the model has three

components, and a 1% chance that it has only two. We present the probability
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Measure Result

A 0.0368

A, 0.0774

Aj 0.132

Ay 0.157

A; 0.254

AV 0.284

Aq 0.627

Ag 0.712

Ag 0.554

ANTS 0.759
Var(f/w) 5.99 x1077

Max(f/w) 0.0485
Wald Test -2.7 (accept)

Score Test -0.5 (accept)
Likelihood Ratio 1900 (reject)

Table 4.4: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the acidity example.
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Figure 4.8: Empirical distribution function for the acidity data.

distribution function for a model with three components, using the modal parame-
ters estimated using the optimization routine, alongside a histogram of the data in

Figure 4.9. The empirical distribution function for the three component model is

given in Figure 4.10.

The convergence statistics shown in Table 4.5 are slightly puzzling. The unit
coefficients of variance, the variance of the sampling and the size of the maximum
weight suggest that the sampling has converged. However the extreme value sta-
tistics suggest the opposite. We can be relatively confident that the model with two
components is the most likely but can probably be less confident about the value

given for the posterior probability of it being the true model.
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Figure 4.9: Probability density function for the galaxy data.

Figure 4.10: Empirical distribution function for the galaxy data.
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Measure Result
AN 0.0378
JAV) 0.0915
Aj 0.128
Ay 0.720
As 0.667
Ag 0.442
A; 0.559
Ag 0.964
Ag 0.651
AT 0.734
Var(f/w) 1.52 x107°
Max(f/w) 0.0555
Wald Test 8 (reject)
Score Test -0.4 (accept)
Likelihood Ratio 1000 (reject)

Table 4.5: Unit coefficients of variance and convergence statistics for the impor-

tance sampling in the galaxy example.
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4.7 Discussion

We have successfully used importance sampling to determine the posterior prob-
ability distributions of normal mixture models for a number of standard datasets,
as shown in Section 4.6. The convergence statistics that we have presented sug-
gest that importance sampling can be an efficient method of model selection, when
combined with a prior investigation of parameter space to determine the optimal

sampler function.

4.7.1 Comparison of the Results with the Literature

Comparison of our results with those of Richardson and Green [84], show that we
suggest more definite posterior probability distributions for the number of com-
ponents in the model, which generally predict a smaller number of components
in the mixture. This may be due to the choice of prior distributions, as discussed
in Section 4.3.3. Alternatively, it could reflect differences in the methodology. A
comment by Cheng and Liu in the discussion of the Richardson and Green paper
[22] suggests the possibility that models in which the number of components are
greater than the true number of components could have a finite posterior probabil-
ity incorrectly associated with them. It is possible to generate a model in which
two or more of the components are very similar or one or more components have
a very high variance or a very low weight. In such models, one or more of the
components could be combined with other components, or removed, without sig-
nificantly altering the probability density, and so these are effectively models with
a smaller number of components than are actually used. These models are proba-
bly only rarely generated using our methodology because the importance sampling
focuses on areas of parameter space relatively close to the mode found by the opti-
mization. It may be more likely that such models are generated using the reversible

jump MCMC and this may be an explanation for the difference in the results.
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It is possible that a small change to the prior distributions might make it less
likely that models are generated with very small component weights. This would
involve increasing the parameter in the Dirichlet distribution from one to some
higher value. The Dirichlet distribution describes the prior probability function
for the component weights and increasing its parameter beyond one assigns a zero
probability to component weights of zero, which is desirable, but also introduces
some bias towards more uniform component weights in the prior distribution. How

best to balance these two effects could be the subject of future research.

Looking at this problem from the frequentist point of view, one suggestion for
determining the optimal number of components is to make use of the fact that the
Fisher information matrix of a model becomes close to singular when the model
is being overfitted. The fit of the model will always improve with an increase in
the number of components, therefore from the frequentist perspective the optimal

number of components will be the smallest number that still produces a reasonable

fit.

4.7.2 Discussion of the Sampling Methodology

Importance sampling has several advantages over MCMC including the lack of
serial correlation between samples and the better measures of convergence. These
are discussed by Evans and Swartz [46] in their review paper. There are addi-
tional advantages in this particular example because of the difficulty of designing
a MCMC routine that can jump between different models. With importance sam-
pling, the choice of model can be made in an identical manner to the choice of
parameters in the models. However, for importance sampling to be efficient, time
must be spent investigating the distribution being sampled from and this time must
be combined with the run length of the sampling itself to give the total computing

time expended on the problem. For the examples considered here, the total number
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of function evaluations was approximately 25,000 for the optimization plus 10,000

for the importance sampling, giving a total of 35,000.

For some examples, especially those with a large number of data points, it can
be difficult to find the modes of the posterior for models with a large number of
components. The estimates found can often be such that the Hessian matrices cal-
culated at the modes are not positive-definite. In these cases, we transform the
Hessian matrix to a matrix of eigenvalues, swap the sign of any negative eigenval-
ues and then use this in our calculation of the generalised inverse. We suspect that
these problems arise mainly in situations where the posterior distribution is very

flat at the mode, generally where the model has too many components for the data.

The methodology that we use for the importance sampling results in imperfect
convergence, as we take no account of our knowledge of which is the correct model
when setting the candidate function in the importance sampling. Instead, an equal
probability is assigned to the sampling of each of the k,,,, models. This allows us
to argue that we introduce no bias on the choice of model into the importance sam-
pling, but will result in the sampler wasting time sampling parameters for models
with a very low posterior probability. One small extension to the methodology
that could be investigated in the future is to use different probabilities for sampling

different models.



Chapter 5

Investigation of the Effectiveness of
Interventions Against Tuberculosis
and HIV Using a Compartmental
Model

5.1 Introduction

In this chapter we use use Bayesian methods to fit a compartmental difference
equation model of tuberculosis (TB) driven by HIV The model is then used to
compare the effectiveness of preventive and curative methods for the control of TB
in high HIV prevalence settings. This is a slight adaptation of a model described
previously [36] and will be described in Section 5.3. The methodology used for
the uncertainty analysis is very similar to that used in the analysis of finite mixture

models, although the application is very different.

We fit the model using literature estimates for the model parameter values as

prior information, and time series of HIV prevalence and TB incidence to estimate

101
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the likelihood. The methodology used for the fitting process includes an initial
optimization routine to find the maximum of the posterior distribution, followed
by calculation of the Hessian matrix at that optimum to define a good candidate
distribution. We tried using both importance sampling and Markov Chain Monte
Carlo sampling (MCMC) to find the posterior distribution. MCMC was chosen as
the final sampling methodology because it converged much better than the impor-
tance sampling. The results of the importance sampling were often biased by very
large weights, corresponding to points in parameter space at which the candidate
probability is low but the posterior probability is high. The output of the MCMC
is used to determine the expected TB incidence and HIV prevalence and projec-
tions of the effectiveness of interventions. Sampling from the output, equivalent
to sampling from the posterior distribution, enables the estimation of confidence
limits that incorporate the knowledge coming from prior information on parameter

values and the fit of the model to the available data.

We describe the aims of the study and some of the context to the problem
in Section 5.2. The model is described in Section 5.3, and the modelling of the
interventions in Section 5.4. A full description of the Bayesian methodology used
to fit the model is given in Section 5.5, and the results of the study are given in

Section 5.6. We conclude in Section 5.7.

5.2 Background to the Problem

Mycobacterium tuberculosis (TB) and the human immunodeficiency virus (HIV)
are the leading causes of death due to infectious diseases among adults [30], [77].
The spread of HIV infection has already led to a dramatic increase in TB cases in
eastern and southern Africa [79], where up to 60% of TB patients are co-infected
with HIV [101], and threatens to do so elsewhere. The World Health Organiza-
tion’s DOTS strategy for TB control [79], [78], based on the provision of adequate



CHAPTER 5 103

resources, accurate diagnosis, good treatment, the use of the correct drugs and
good monitoring to ensure that active cases of disease are rapidly found and cured,
forms the basis of most national TB control programmes. In recent years however
even good DOTS programmes have failed to check the rapid increase in TB cases
in countries with a high prevalence of HIV, and this has stimulated the search for

new ways to manage TB epidemics [38].

Since HIV is a potent risk factor for the development of TB, it should be possi-
ble to avert new TB cases by reducing HIV transmission through behavioural inter-
ventions (promoting condoms, changing sexual behaviour etc.), boosting patients’
immunity by treating them with highly-active anti-retroviral therapy (ART) [93],
or by administering TB preventive therapy (IPT), usually through 6-9 months’
treatment with isoniazid [26]. Previous studies have attempted to calculate the
number of TB cases and deaths that can be averted by finding and treating ac-
tive TB cases during the course of HIV epidemics [44], [71], [81], but none have

evaluated the curative approach against the three principal means of prevention.

The analysis of the effectiveness of the different interventions focused on Kenya.
There are reasonably good data available both for HIV and TB in Kenya, and the
epidemic is more advanced than in some African countries (such as South Africa),
but less advanced than in others (such as Uganda). It is impossible to determine
from the available data whether the prevalence of HIV will continue to rise, re-
main steady or fall, so we consider three different underlying HIV epidemics in
which HIV incidence, in the absence of any further intervention, levels off at its
current value, increases by half, or falls by half (Figures 5.6 to 5.8). To explore the
generality of the findings for Kenya, we also fitted the model to data from Uganda
and South Affrica [75], where the HIV epidemics are, respectively, more and less

advanced.
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5.3 Mathematical Model of TB-HIV

We reduced an earlier compartmental model of TB-HIV epidemiology [44] to a
single age class (adults 15-49 years), and extended the modelling of interventions
to include TB preventive therapy, the administration of ART and the effect of HIV
prevention methods, as well as TB case detection and cure. The model was written
in Visual Basic and combines a compartmental model of TB progression with a
statistical model of HIV prevalence. Figure 5.1 illustrates the general structure of
the TB model. For clarity, non-infectious TB states have been omitted from this
diagram and in the full model active TB may be infectious or non-infectious, with
movement allowed from active non-infectious disease to active infectious disease.
An identical sub-model, with different parameter values, describes the progression
of those in the later stages of HIV (Stages 3 and above of the WHO staging system
[4], [68]). Movement between the two sub-models is governed by the statistical
model of HIV prevalence, described in Section 5.3.1. Death can occur in any state,

but death rates are higher for patients with active disease. An early version of this

model was presented in [34].

Active TB can arise through any of three mechanisms. Those who acquire a
new TB infection either develop progressive primary disease within 1 year, or enter
a latent state from which TB can arise by reactivation or re-infection. The same
proportion of individuals who are latently infected can also develop TB within
one year of re-infection or reactivation. We use a time step of three months in
the model and assume that those developing primary disease move straight to the

active disease state. Active TB may be infectious or non-infectious.

During the later stages of HIV, co-infection leads to a greatly increased risk of
developing TB, though a smaller fraction of active TB cases becomes infectious.
Individuals with late-stage HIV infections (WHO stages three and above) also have

higher death rates, with and without active TB.
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Figure 5.1: Outline of the TB sub-model.
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5.3.1 HIV Model

The purpose of the separate HIV model is to determine the incidence of HIV in
each time step and from this, estimate the rate at which people move from one
TB sub-model to another. We assume that approximately four years after infection
with HIV, individuals will enter late-stage HIV, where this time lag is described
by the model parameter tLs. Therefore, in a given time period, the number of
individuals moved from the first sub-model to the corresponding state in the second
sub-model (TB uninfected or latently infected), is equal to the HIV incidence tLs

time periods previous, corrected for deaths.

Reasonably good data are available for the prevalence of HIV infection over
time in the countries of interest but the future course of the epidemic is much
less certain. It is therefore desirable to use a flexible model to describe the HIV
epidemic, allowing the HIV prevalence to increase, decrease or remain constant in

the future.

The model that we developed originally in [36] fits a logistic function to HIV
prevalence data and then uses a given relationship between prevalence and inci-
dence to derive the HIV incidence from this functional form. This method is at-
tractive as HIV epidemics are traditionally measured in terms of prevalence (num-
ber of cases per unit population) rather than incidence (number of cases per unit
time), and it allows the long-term behaviour of the HIV epidemic to be set in terms
of long-term HIV prevalence. The incidence can then be derived from this. Of the
other authors who have considered this problem Salomon and Murray [92] have
approached it from the opposite perspective, selecting a functional form for the
incidence and using the relationship between incidence and prevalence to find the
HIV prevalence. The others [29], [102] approach it from a similar perspective to

[36].

Investigations of the different models showed that the method used originally
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in [36] and the method of Williams et al [102] result in the incidence of HIV be-
ing very dependent on the value of the time step ¢s used in the calculations. The
method of Salomon and Murray [92] is also dependent on ¢s but the dependence
is much weaker, and insignificant with respect to the results. The model described
by Colvin et al [29] would also be stable to changes in the time step as earlier es-
timates of incidence have no effect on future values of the incidence, but restricts
the choice of survival function. The Salomon and Murray method seems to be the
most attractive and is the method used in this study to derive the HIV incidence.
Although the HIV prevalence is now derived from an estimate of the HIV inci-
dence, it is still possible to define long-term scenarios for the HIV epidemic, but
expressed in terms of the long-term HIV-incidence rather than the long-term HIV

prevalence.

Using Salomon and Murray’s model [92], the prevalence p(t) is given by

p(t) = z—: Inc(z')F(t —1)ts, (5.1)

where F(7) is the probability of surviving 7 time periods and Inc(i) is the HIV
incidence in time period ¢. Salomon and Murray use a Weibull function to describe
the time from infection to death. We instead use a survival function which mirrors

that used in the TB compartmental model, such that

exp(—ut t<tLs
F) = pl=pt) < (5.2)
exp(—pyryt) t>tLs
where ( is the background death rate and p gy is the death rate for those in late-

stage HIV. We use the function suggested by Salomon and Murray for the inci-

dence of HIV,
’Yﬁ—a(t _ tQ)a—le—(t——to)/ﬂ
I = 53
ne(t) T (5.3)
fort <¢p+ fF(a— 1) and
Inc(t) = éf&) [(1—0)(t —ty) e~ (tt0)/B

+0(B(a — 1)) Le=Ala—1)/8] (5.4)
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fort > tg+ B(a — 1). This is a gamma distribution with a multiplicative factor -y
to allow for differences in scale, and an additive term that is used to describe the
long-term incidence. The variables « and [ set the shape of the incidence curve,
sets the scale of the curve and @ sets the level of the long-term incidence, which is

equal to ¢ multiplied by the peak incidence.

We use the parameter € to define the scenario for long-term behaviour that we
are considering (incidence falls to 50% of current value — 6 = 0.5, incidence
remains at its current level — 8 = 1, incidence increases to 150% of its current
value — ¢ = 1.5) and fit the model to HIV prevalence data by varying the para-
meters «, J and y. We assume that the HIV prevalence data points have normal
errors and therefore find the optimal set of parameters by minimising the sum of

the squared difference between the model’s estimate for HIV prevalence and the

HIV prevalence data.

5.4 Interventions

The TB case detection rate is the proportion of new, active cases that are found
and begin treatment during a given time period. The cure rate is the proportion of
those who are treated that become non-infectious and are at no additional risk of
dying from TB. We assume that cured TB patients uninfected with HIV, or in the
early stages of HIV infection, remain infected with TB; those that have late-stage
HIV infections return to the uninfected state, which gives them some immunity
against developing active TB. Among patients that fail treatment, a proportion
remains infectious; the remainders do not transmit TB, but have a high probability
of relapsing to active disease, compared with patients that were deemed to have

been cured at first treatment.

The main effect of preventive therapy for TB is to eliminate the chance of

developing active TB for 70% of infected people who receive it; the other 30%
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are assumed to receive no benefit [55], [100]. Ideally, TB preventive therapy is
given only to those who are already infected with TB (and never to active cases);
however, TB infections cannot always be identified by tuberculin skin-testing, es-
pecially in anergic subjects co-infected with HIV [26]. We therefore use HIV
infection as the criterion for the administration of TB preventive therapy, and cov-
erage is measured as the fraction of patients that receive one course of treatment
between initial HIV infection and death. We assume that those given preventive
therapy for TB are protected from TB infection for the duration of treatment [62].
Treatment is either for six months or for life; patients treated for six months return

to their previous state, either latent or uninfected.

By reducing TB prevalence among HIV-positives we effectively reduce the
death rate of those in late-stage HIV, thereby increasing the late-stage HIV popu-
lation. We assume that this has a negligible effect on HIV transmission and do not

include a corresponding rise in HIV incidence.

In our model ART returns patients to their corresponding TB state in early-
stage HIV infection, and prevents their HIV infection from progressing for as long
as they continue to take the appropriate combination of drugs. Since the increase
in life expectancy of patients on ART (as currently formulated) has been measured
at 5-7 years [40], [27], [28], or less [S0], this is an optimistic view of the effec-
tiveness of ART. As yet, there are few data on compliance with ART. We consider
an optimistic scenario and a more realistic scenario for dropout from ART, with
dropout rates of 5% and 20% per year [98]. We have not explicitly allowed for the
emergence of drug resistance under ART, and we assume that ART has no impact

on HIV transmission.

The coverage of interventions that do reduce HIV transmission (condoms,
change of sexual behaviour, etc) is expressed in terms of the effects on HIV in-
cidence, e.g. reducing the annual HIV incidence rate by 1% from the point of

intervention onwards.
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We measure the impact of interventions over and above present levels of cov-
erage. For the TB treatment measures, we assume that currently 50% of the new
infectious TB cases that arise each year are detected, and 70% of these are cured,
which is thought to be typical for sub-Saharan Africa [79]. For ART, coverage is
measured as the fraction of HIV-infected persons progressing to AIDS that receive
antiretroviral drugs. Similarly, the coverage of TB preventive therapy is measured
as the fraction of HIV-infected persons (including all TB and HIV co-infected
persons) given one course of treatment between HIV infection and death. For con-
doms and other measures designed to prevent infection, we express coverage in
terms of its effect on HIV incidence, applying a fixed percentage reduction in an-
nual HIV incidence from the point of intervention onwards. For all three of the
preventive measures, we assume that coverage was negligible prior to the mod-
elled interventions. Thus, there is great potential to improve on prevention, much

less to improve on cure.

5.5 Fitting the Model to Data

We use a Bayesian methodology [64], [46] to fit the model to the available data.
Prior estimates of the distribution of each parameter are combined with the like-
lihood function to give the posterior distribution. The likelihood is estimated by
fitting the model output to estimates of TB incidence and HIV prevalence from
each country [79], [75], assuming normal errors. Prior distributions for the pa-
rameters describing transitions between TB states were obtained from published
studies (Further information on these studies is given in the supplementary mate-
rial of [36]). These prior distributions are all assumed to be normal. Little prior
knowledge about the parameters describing the HIV epidemic was available and
vague priors were used (uniform distributions with lower limits of zero and very

high upper limits). As all of the parameters must be greater than zero and the rate
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parameters should be between zero and one, gamma or beta distributions may be
more appropriate prior distributions for most of the model parameters. However,
none of the parameters have priors with a significant probability outside the per-
missible region and as we assume normal errors for the data, with normal priors
the posterior distribution is also likely to be close to a normal distribution. We as-
sume that the posterior is normally distributed in defining the candidate functions
for both the importance sampling and the Markov Chain Monte Carlo sampling

MCMC).

The advantage of using a Bayesian approach in this situation is that prior in-
formation on most parameter values is good and using a likelihood approach, this
prior information would simply have been ignored. The scarcity of TB incidence
data and the large number of parameters used in the model means that it is espe-
cially useful to use all of the prior information. With the Bayesian approach, if
more information is available from the prior distribution than from the new data
for a particular parameter the posterior distribution will depend mainly on the prior
information. Conversely, if the prior information on a particular parameter is weak
and the data constrain the parameter to a relatively small range of values, the pos-

terior distribution will depend mainly on the likelihood function.

Two methods were tried for finding the posterior probability distributions of
the parameters: the importance sampling methodology described earlier in this
thesis and MCMC sampling. In both cases, before conducting the sampling, we
investigated the form of the posterior probability distribution, using the Nelder
Mead optimization routine [74] to find the mode of the posterior distribution. We
then estimated the Hessian matrix at the mode and used this to find the covariance

matrix of the posterior distribution.
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5.5.1 Importance Sampling

Given the form of the prior distributions and the likelihood function, we assume
that the posterior distribution will be approximately multivariate normal. There-
fore, based on the results of Chapter 2 a multivariate t-distribution with 4 degrees
of freedom is used as the candidate distribution in the importance sampling with
mean given by the mode of the posterior distribution and covariance matrix as

calculated at the mode.

We found that importance sampling converges relatively poorly for this exam-
ple. This is principally due to the presence of very large weights, which produce
high, narrow peaks in the the resulting posterior distribution, and introduce a bias
into statistics such as the mean. In fact the top five normalised weights were 1,
3.19 x 10716, 3.46 x 107%°, 1.03 x 10* and 1.10 x 10752, compared with the
ideal weight size of 1/80,000 (1.25 x 107%). Obtaining very high weights is gen-
erally regarded as a symptom of poor convergence, and suggests that the sampling
function used was not sufficiently close to the function being integrated over (in
this case the posterior distribution) or that the number of runs is insufficient. In
previous work [36] we used importance sampling to determine the posterior distri-
bution and convergence was reasonable. In that study, we assumed a multivariate
normal prior distribution for the HIV prevalence parameters, based on the fit of
the HIV prevalence model to the HIV prevalence data and used a different model
for estimating HIV incidence. We then only incorporated the fit of the model to
the TB incidence data in calculating the likelihood. This meant that the posterior
distribution for the HIV parameters was close to multivariate normal. In this study,
we use a uniform as the prior distribution for the HIV parameters, and incorporate
the fit of the HIV model into the calculation of the likelihood. This means that
the posterior distribution for the HIV parameters is further from a normal distribu-

tion, as the results of the MCMC sampling show. This probably explains why the
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Figure 5.2: Highest one hundred normalised weights and sampling variance using
importance sampling to find the posterior distribution of the parameters of the TB-

HIV model.

importance sampling convergence was worse in this study than in [36].

We make use of the results of Chapter 3 and perform diagnostic and statistical
tests of convergence. Both suggest that the importance sampling is not performing
well. Figure 5.2 shows how the variance of the sampling varied during the 80,000
runs, with the top one hundred weights superimposed on this. It clearly shows how
one high weight affects the sampling variance. The statistical tests of convergence
based on extreme value theory, as described in Section 3.3 unequivocally state that

the sampling has not converged.

The estimates of the posterior distribution obtained by importance sampling
for the parameter w is shown in Figure 5.3. This parameter describes the rate at
which non-infectious active TB becomes infectious active TB for those who are
HIV-negative/early HIV-positive. There is one large spike in the graph, which
corresponds to the set of parameters with the largest weight, and demonstrates the

non-convergence.
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Figure 5.3: Estimated posterior distribution for w (rate at which non-infectious

active TB becomes infectious active TB), determined using importance sampling.

5.5.2 Markov Chain Monte Carlo Sampling

We use the Metropolis-Hastings algorithm for the MCMC sampling, with a mul-
tivariate t-distribution with four degrees of freedom as the candidate distribution.
We set the mean to be the current position of the chain in parameter space and the
covariance structure of the candidate distribution to be the inverse of the Hessian
matrix at the mode of the distribution, multiplied by a scaling factor, where the
scaling factor is chosen based on observations of the mixing of the chains. Ideally,
the mixing should be such that the probability of the chain moving to a new posi-
tion should be between about 15 and 50% [86]. To achieve a level of mixing within
this range, the best scaling factor appears to be 0.23, for which the probability of

the chain moving to a new position is approximately 16%.

The warm up is set to be 3000 runs based on observations of the trace. To check
that the simulation is covering the full range of parameter space, the algorithm is

started from five different points: the mode, all parameter values below their mode
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values, all parameter values above their mode values and parameter values set at a
mixture of low and high values in the other two chains. Following the warm up,

we run each of the chains for 5000 iterations.

The MCMC is run separately for two different groups of parameters, with the
first group containing all of the TB model parameters and the second group con-
taining the parameters used in the estimate of the HIV incidence. The parameter
determining the long-term HIV incidence @ is held constant during the sampling.
It is set by the user to one of three different values corresponding to three sce-
~ narios for the HIV epidemic: incidence decreases by 50% (6 = 0.5), remains the
same (# = 1), or increases by 50% (# = 1.5), in the long-term. The parameters
are split to improve convergence of the MCMC to the posterior distribution. The
covariance matrix estimated following the optimization suggests little correlation
between the HIV model parameters and the TB model parameters, and so the split

seems reasonable.

Various methods exist for checking the convergence of MCMC. Comparing the
traces of the different chains can be used as an initial check. If, after discarding the
initial warm up runs, the traces seem to overlap and appear to have been produced
by the same process, then they have probably reached a stage where the starting
position of a chain is no longer influencing its current position in parameter space.
The analytical methods described in [51] give a more quantitative method of mea-
suring the same thing, i.e. whether the chains have reached a stationary state.

These techniques compare the between-chain-variance

7 _ -
B=— . =1 )? 55
— ;(w. ) (5.5
with the within-chain-variance
W=t zmj 52 (5.6)
m et P’ ’

where m is the number of chains, n is the number of runs made after the warm up
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for each chain and

J=1
- 1 <
Qp‘ = - Wy
m'i:l
I -
sio= = _12(% ) (57)

The within-sequence-variance, W should be an underestimate of the variance of
1 because each of the individual sequences will not have moved over the whole

range of ). We can also calculate an overestimate of the variance of v,

_ 1
v=""twilp (5.8)

n n

This estimate will be unbiased if the starting points were drawn from the target dis-
tribution, but an overestimate under the more realistic assumption that the starting
points are over-dispersed. By measuring the ratio of these two quantities we can
estimate the factor by which W, the conservative estimate of the range of 7, might

be reduced. Gelman terms this the “estimated potential scale reduction”, given by

Vi = \/%//‘7 (5.9)

the ratio between the estimated upper and lower bounds for the standard deviation
of 1.

We here estimate \/_Rg for each of the parameters, with a value close to 1 sug-
gesting good convergence. Results shown in Table 5.5.2 show that \/—é is less
than 1.10 for all of the parameters, which suggests that a stationary distribution
has been reached. We use this as our threshold for convergence: if the model has

converged, \/E < 1.10.
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Parameter \/E

Ao 1.00
D 1.03
pHIV 1.04
v 1.01
VHIV 1.00
x 1.03
Tyrv 1.02
f 1.02
farv 1.03
¢ 1.01
w 1.02

WHIv 1.02

7 1.03
pins 1.02
MZL;V 1.02
pronTing 1,01
g™ 102
e 1.01

rf 1.00
tLs 1.00
tD 1.01

o 1.01

B 1.01
1.01

Table 5.1: Convergence results for the MCMC sampling, showing VR, the estimated

potential scale reduction, for the mean of each of the parameters, where 8 = 1.
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Figure 5.4: Estimated posterior distribution for w (rate at which non-infectious

active TB becomes infectious active TB), determined using MCMC sampling.

5.5.3 Posterior Distributions of Parameters

The posterior means and variances of the parameters are given in Table 5.2, along-
side the prior means and prior variances for the parameters, for § = 1. These
show how our beliefs about the model parameters change based on the fit of the
model to the data. Figures 5.4 and 5.5 show the prior and posterior distributions
for parameters w and wyry. These parameters describe the rate of movement
from non-infectious active tuberculosis to infectious active tuberculosis, among
HIV-negatives/early-stage HIV patients, and late-stage HIV patients, respectively.
As the figure shows, the posterior distribution for w is very different from the prior
distribution, showing that the likelihood function has strongly influenced the pos-
terior distribution. The posterior distribution for wgy on the other hand is almost

identical to the prior distribution.

The estimated posterior correlation matrix for the TB parameters is given in

Appendix A. The estimated posterior correlation matrix for the HIV parameters is
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Figure 5.5: Estimated posterior distribution for w gy (rate at which non-infectious

active TB becomes infectious active TB among late-stage HIV-positives), deter-

mined using MCMC sampling.

more interesting and is given in Table 5.3. This shows significant correlations
between the parameters of the HIV model. As the prior distribution includes
no dependence between parameters, these correlations must be coming from the
likelihood function. This helps to demonstrate one of the advantages of using a
Bayesian approach in this situation. Determining the confidence intervals around
the predictions from models such as this has often been done by Monte Carlo
sampling from the prior distributions. No account can then be taken of these cor-

relations, and confidence intervals are therefore often predicted to be wider than

they should be.
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CHAPTER 5
Parameter Prior Mean Prior Vari- Posterior Posterior
ance Mean Variance
Ao 0.0095 1.00x 1076  0.0116 6.74x 1076
D 0.14 3.15x107%  0.244 4.47x 1074
purv  0.67 0.0250 0.892 0.0233
v 1.13x107*  9.10x107°% 124x107% 584x107°
vgry 017 440x 1072 0.107 3.78 x 107*
T 0.35 0.0163 0.313 0.0105
zgry 075 0.0163 0.787 0.0171
f 0.45 2.03x1073 0383 2.13x1073
fary 03 3.15x 1072  0.435 2.15x 1073
b 0.5 0.0163 0.451 0.0159
w 0.015 1.67x107°  0.0107 1.53x107°
wgry  0.015 1.67x107°  0.0154 1.59 x 107°
L 0.0185 7.33x 1077 0.0185 6.80 x 1077
wnf 0.3 2.60x 1073 0.430 1.43x1073
pind 1 0.01 0.808 0.0106
pren=inf 0] 4.16x10™%  0.109 3.43x107*
pren=inf 0.01 0.997 9.92x 1073
e 0.5 250x 1073 0.512 2.73x 1073
rf 0.3 0.0104 0.435 7.30x 1073
tLS  3.79 0.156 3.51 0.0269
tD 8.72 0.0268 8.78 0.0262
« n/a n/a 78.1 178
3 n/a n/a 0.128 5.13x 1074
% n/a n/a 0.0499 2.87x 1073

Table 5.2: Prior and posterior distributions for the parameters

of the TB-HIV model, estimated using MCMC sampling.
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5.5.4 Estimating Confidence Intervals

Confidence intervals around each series of projected TB incidence and death rates
are obtained by carrying out 1000 simulations using parameter values randomly
chosen from the posterior distributions. Samples are drawn independently from the
two groups of parameters (TB parameters and HIV parameters). This will result
in a slight over-estimate of the confidence intervals due to the small interactions

between HIV and TB parameters.

We use sensitivity analysis to identify the model parameters that most influ-
enced our results, judging their influence from partial rank correlation coefficients
calculated between each outcome measure and each of the parameters in the model
[13]. These suggest that the parameters responsible for most of the uncertainty in
model outputs are also those for which there is least information, i.e. those de-
scribing the effect of HIV infection on the course of TB. They are, for those with
HIV, the rate of progression from co-infection to active TB, the proportion of ac-
tive TB cases that is infectious, the death rate of TB cases, and the relapse rate
to active TB among those who have failed treatment. The accuracy of the results
depends on the structure of the TB-HIV model as well as the parameter values. Al-
though a simpler model may still have captured the main features of the data, the
model structure is the simplest that could be used to explore all of the interventions

considered in this study.

o 1 -0.980 -0.903
8 -0.980 1 0942
v -0903 0.942 1

Table 5.3: Posterior correlation matrix for the HIV parameters in the TB-HIV

model, estimated using MCMC sampling.



CHAPTER 5 122

5.6 Results

Figures 5.6 to 5.8 show the projected TB incidence and HIV prevalence for each
of the three scenarios for the HIV epidemic with 95% confidence intervals. If
HIV prevalence declines in Kenya, we expect TB incidence to fall, even without
additional interventions (Figure 5.7). The time lag between the start of the HIV
epidemic and the increase in TB incidence is approximately four years. The delay
is due to the time lag between becoming infected with HIV and becoming more
susceptible to TB, as the TB epidemic is fuelled by those in late-stage HIV. If
HIV prevalence stabilises or continues to increase, then the number of TB cases
is also expected to increase (Figures 5.6 and 5.8), by about 60% for constant HIV

incidence, and by approximately 70% for a 50% increase in HIV incidence.
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Figure 5.6: Estimated TB incidence and HIV prevalence in Kenya assuming HIV

incidence remains approximately constant (¢ = 1). Confidence intervals are 95%.
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Figure 5.7: Estimated TB incidence and HIV prevalence in Kenya assuming HIV

incidence declines by approximately 50% (@ = 0.5). Confidence intervals are

95%.
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Figure 5.8: Estimated TB incidence and HIV prevalence in Kenya assuming HIV

incidence increases by approximately 50% (@ = 1.5). Confidence intervals are
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Figure 5.9: Effect of increasing intervention levels by 10% on TB incidence in

Kenya, assuming constant HIV incidence in the long-term.

Figure 5.9 shows the impact on TB incidence of a 10% increase in coverage
of each intervention in 2001 for the epidemic in which HIV prevalence stabilises
at its current level. This demonstrates the advantage that increasing TB cure or
detection rates has over implementing the other interventions, in that the impact
is immediate. Reducing HIV incidence or administering TB preventive therapy
have a delayed effect on TB incidence rates. Although ART has a high initial
impact, when drop out from the therapy is incorporated into the modelling, its

effects diminish with time.

The relative effectiveness of the different interventions is judged first by ap-
plying and maintaining the same, small improvements in coverage, and recording
consequent reductions, over 10 years, in the numbers of new TB cases and TB

deaths. Figure 5.10 shows the number of TB cases averted over 10 years when
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Figure 5.10: Effect of increasing intervention levels by 1% on the number of cases

of active TB over ten years, assuming constant HIV incidence in the long-term.

Confidence intervals are 95%.

HIV incidence is assumed to remain approximately constant. Figure 5.11 shows
the number of deaths averted by the different interventions over 10 years, assuming

constant HIV incidence in the long-term.

Larger HIV epidemics generate larger burdens of TB, and so more cases (Fig-
ure 5.10) and deaths (Figure 5.11) are averted by each intervention. In all of the
scenarios considered, the most effective way to reduce TB incidence is by increas-
ing TB case detection and cure rates (Figure 5.10). Reducing HIV incidence or
administering ART or preventive therapy for TB never appear to be highly effec-

tive interventions.

The most effective way to avert TB deaths (Figure 5.11) is by improving case
detection. For both TB cases and deaths, TB preventive therapy is relatively inef-

fective, although the effectiveness improves for lifelong treatment.

Since unit changes in the coverage of very different interventions are unlikely
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Figure 5.11: Effect of increasing intervention levels by 1% on the number of TB
deaths over ten years, assuming constant HIV incidence in the long-term. Confi-

dence intervals are 95%.

to be equally feasible or equally costly, these results are more of interest than of
use to policy-makers. In Chapter 6 we extend this analysis to incorporate the costs
of implementing the different interventions and evaluate the cost-effectiveness of

a number of intervention strategies.

A third way of comparing interventions is to ask what improvement in coverage
would be needed to match the impact of a 5% increase in the case detection rate,
over the baseline level of 50%. We calculate that the same reduction in the number
of TB cases over 10 years could be obtained by any of the following means: reduce
HIV incidence by 50%; increase the coverage of ART from 0% to 90%, assuming
20% dropout each year; provide six months TB preventive therapy to 90% of all
HIV-infected persons; or increase the TB cure rate from 70% to 79%. Thus, all in-
terventions, except augmenting the TB cure rate, require relatively large increases

in coverage to compete with a 5% improvement in case detection.

In order to assess how generally our results apply, we conducted a similar
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Figure 5.12: Projected TB incidence and HIV prevalence in Uganda assuming HIV

incidence declines to 25%. Confidence intervals are 95%.

exercise for Uganda, which has an earlier epidemic than Kenya, and for South
Africa, which has a later epidemic than Kenya. We assume that HIV incidence in
Uganda will decline to 25% of its peak and in South Africa to 50% of its peak. The
projected HIV and TB epidemics along with predicted reductions in the number
of TB cases and deaths with increases in intervention levels are shown in Figures
5.12 and 5.13. We expect the number of TB cases in Uganda to be declining,
irrespective of any change in control efforts, because the prevalence of HIV peaked

in the early 1990s and has fallen by about 50% since then.

As HIV incidence is falling in Uganda [60], the measures aimed at curbing
the effect of HIV on TB, such as ART or reducing HIV incidence, are much less
effective than improving TB case detection and cure at averting TB cases and
deaths (Figure 5.14). By contrast, South Africa appears to be on the threshold of

a very large TB epidemic, driven by HIV. With no additional interventions, we
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Figure 5.13: Projected TB incidence and HIV prevalence in South Africa assuming

HIV incidence declines to 50%. Confidence intervals are 95%.
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Figure 5.14: Number of TB cases averted in Uganda by increasing intervention

levels by 1% from base. Confidence intervals are 95%.

forecast a 60% increase in TB incidence from 1999 levels, before 2010, whatever
the future course of the HIV epidemic. Despite the different characteristics of the
South Africa epidemic curative measures are, per unit improvement in coverage,

still the best way to diminish TB incidence, as for Uganda (Figure 5.15).

5.7 Discussion

5.7.1 Study Results

The results of this study suggest that the best way to manage TB epidemics driven
by HIV over the next five to ten years is to find and treat TB cases, rather than
to prevent or mitigate the effects of HIV infection. These results are robust to
uncertainties in the values of model parameters and are similar for early (Uganda),
intermediate (Kenya) and late (South Africa) epidemics. The principal explanation

for this finding is that curative measures reduce deaths and decrease transmission
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Figure 5.15: Number of TB cases averted in South Africa by increasing interven-

tion levels by 1% from base. Confidence intervals are 95%.

immediately in all TB patients, irrespective of whether patients are infected with
HIV. By contrast, the preventive methods are directed at people co-infected with
TB and HIV, who typically represent only one third to one half of the sources of
new TB cases in eastern and southern Africa [30]. In addition, whilst preventing
HIV infection removes the underlying cause of rising TB incidence, the benefits
only begin to appear after approximately four years [81], [4], the time lag between

HIV infection and late-stage HIV (WHO stage three).

National TB control programmes in many African countries are already im-
plementing the WHO DOTS strategy [79], which gives curative measures an ad-
ditional practical advantage, because coverage can be improved by strengthening

existing programmes.

Even if DOTS is necessary to contain the HIV-related epidemics of TB, it may
not be sufficient to bring such epidemics under control for two reasons. First,
although curing TB cases is relatively effective, the results of this analysis suggest

that curative programmes on their own will stabilise, but not reverse, TB incidence
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and deaths. Second, methods for preventing and ameliorating the effects of HIV
infection will be essential for tackling AIDS in general, as distinct from HIV-
related TB in particular. The principal recommendation from this initial study is
that national TB programmes in areas of high HIV prevalence should continue to
strengthen their curative services, using preventive measures in addition to, but not

as a substitute for, finding and treating active TB cases.

5.7.2 Methodology

With both the Markov Chain Monte Carlo sampling (MCMC) and the importance
sampling, knowledge of the posterior function, especially of its mode, is necessary
to ensure convergence, and the computing time used by the optimization routine
to find the maximum of the posterior distribution seems to be better spent in this

manner than it would be performing additional MCMC or importance sampling

runs.

The MCMC works well for most scenarios, obtaining good convergence for
approximately 80,000 model runs (3000 runs warm up and 5000 runs for each of 5
chains with separate runs for the TB and the HIV parameters). Some scenarios are
more troublesome, most notably Uganda, where the data is worse than in Kenya
and South Africa and the epidemic characteristics are very different. In Uganda
the HIV prevalence data show a decline from a maximum in the early 1990s and
no data are available for the years in which HIV prevalence was increasing. This

may introduce some ambiguity into the fitting of the HIV parameters.

Importance sampling shows poor convergence, diagnosed by the existence of
very high-valued weights, corresponding to points in parameter space at which
the candidate distribution is very low and the posterior distribution relatively high.
This suggests that the candidate distribution is not a good enough approximation

to the posterior distribution. Importance sampling did work reasonably well in
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a previous study [36], and we suspect that the reason why convergence was so
poor in this situation was due to the non-normal shape of the posterior distribution
for the HIV parameters. High-valued weights skew the estimate of the posterior
distribution of the model parameters, as Figure 5.3 shows, and in so doing lead to
incorrect estimates of results such as TB incidence and intervention effectiveness,

and the confidence intervals around these results.

We found the convergence of MCMC to be less dependent on the knowledge of
the posterior distribution prior to sampling than importance sampling. As MCMC
is an adaptive sampling procedure, this is to be expected. An additional advantage
of MCMC is that the output, when the warm up has been removed, is a sample
from the posterior distribution. This makes the sampling of parameters from their
posterior distributions, e.g. for the estimation of uncertainty intervals on model
results, easier than with importance sampling, where each of the sets of parameters

must be weighted by the ratio of the posterior probability to candidate probability.



Chapter 6

Cost-Effectiveness Analysis of TB

and HIV Interventions

6.1 Introduction

This chapter describes the cost-effectiveness analysis of interventions against tu-
berculosis (TB) and HIV, extending the analysis of Chapter 5. The work described
here is not directly related to the main academic thread of the thesis; however
the successful application of the Bayesian methodology to the initial study of the
effects of different interventions led to a fuller requirement for an economic analy-
sis. Introducing costs to the analysis of Chapter 5 allows us to measure the effort
involved with increasing intervention levels on the same scale: that of money. Us-
ing more generic measures of effectiveness such as disability adjusted life years
(DALYSs) gained also enables a fairer comparison of interventions against HIV and
interventions against TB. The work described in this chapter is therefore of great

practical use to policy-makers.

As discussed in Chapter 5, TB remains the most common opportunistic infec-

tion associated with HIV in Sub-Saharan Africa, and interventions aimed at either

134
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disease must be considered in the context of a joint epidemic. Where budgets are
limited, decisions must be made as to which interventions should be prioritized
and implemented first. Cost and cost-effectiveness analysis can play an impor-
tant role in this decision process, because they allow an assessment of which of
many competing interventions are affordable, and which provide the best value for

money.

A recent systematic review [33] identified 24 cost-effectiveness studies of 31
different HIV prevention, treatment and care interventions in sub-Saharan Africa
that allowed cost-effectiveness to be assessed using a generic indicator of effective-
ness (DALYSs averted). Several studies of the cost-effectiveness of TB treatment in
sub-Saharan Africa have also been undertaken, and two recent reviews are avail-
able [14], [48]. However, the existing studies have three important limitations.
First, almost all studies consider only one intervention rather than comparing a
range of interventions in the same setting. This limits the extent to which fair
comparisons among interventions can be made. None of the published studies
consider a range of TB/HIV interventions simultaneously. Second, they employ
different approaches to transmission of both HIV and TB; in some studies, trans-
mission is not considered and where it is, the methods for estimating the costs and
effects associated with an intervention’s impact on transmission vary. The only
cost-effectiveness study of TB treatment in Africa that has incorporated transmis-
sion in the analysis focused on the treatment of HIV-negative patients, and cost
per DALY averted figures that applied in high HIV prevalence settings were not
reported [69]. Third, few studies consider the total number of people that would
need to receive an intervention if existing policy was implemented and control
targets met, and few analyse the related total costs, effects, affordability and cost-
effectiveness of interventions. For example, all cost-effectiveness studies of TB
treatment relate to existing levels of case detection and cure. They do not as-

sess the cost-effectiveness of improving case detection and cure rates beyond their
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existing levels, even though this is needed if global TB control targets are to be
achieved. None of the limited number of cost-effectiveness studies of antiretro-
viral treatment (ART) relate to the coverage levels needed to achieve the World
Health Organization’s recently announced goal of enrolling three million people

on ART by 2005 (the “3 by 5 initiative”).

In Chapter 5 and [36], we compared the effects of several strategies to re-
duce the burden of TB and HIV in high HIV prevalence countries in Africa. This
analysis used a mathematical model that allowed impacts on transmission to be
considered in a consistent way. Here, we extend this work to assess the costs, ef-
fects, affordability and cost-effectiveness of six strategies for reducing the burden
of TB and HIV, using data for Kenya. Each strategy relates to existing targets or
policy for TB control and ART enrolment, and in each case we include assessment
of the total number of people that would need to be reached. The analysis follows

that described in [35], but uses the model described in Chapter 5 rather than that

described in [36].

6.2 Methods

6.2.1 Country and Strategies Considered

Our analysis focuses on Kenya. Kenya has an HIV epidemic that is typical of the
region, good data on the prevalence and incidence of HIV and TB are available,

and detailed costing studies of TB treatment have recently been undertaken.

We considered six strategies for reducing the burden of TB and HIV in Kenya.

These were

1. Improving TB case detection rates so that the WHO target of 70% is reached

in 2005 and then sustained
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2. Improving TB cure rates so that the WHO target of 85% is achieved in 2005

and then sustained

3. Simultaneously improving both TB case detection and cure rates so that both

WHO targets are met in 2005 and then sustained (DOTS)

4. Providing ART so that the targets for enrolment included in the recent WHO
“3 by 5” initiative are met i.e. 50% of the estimated population in need

receives treatment

5. Providing isoniazid preventive therapy (IPT) to HIV-positive individuals with-

out TB for six months

6. Providing IPT for life to HIV positive individuals without TB

All six strategies were assessed for the ten year period 2005-2014, and compared
with a scenario (which we term the baseline scenario) in which interventions con-
tinue at their existing levels. This means a 50% TB case detection rate, a 70%
TB cure rate, and no implementation of either ART or preventive therapy (we ac-

knowledge that there is some provision of ART and preventive therapy in Kenya,
but this is very limited).

We also analyse the cost-effectiveness of reducing HIV incidence, but this was
assessed differently from the other interventions for reasons that are discussed in

Section 6.2.3

6.2.2 Analysis of Numbers to be Treated, Costs and Effects

The numbers to be treated in each strategy, and the associated costs and effects,
were estimated using the mathematical model described in detail in Chapter 5. We
focus on the scenario in which the HIV epidemic stabilises at a prevalence of 14%

in adults, the value observed in ante-natal clinic surveys in Kenya in 1999 [75].
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The mode] was extended to include the annual numbers of patients detected and
treated (for strategies to improve TB case detection and cure rates, and preventive
therapy for six months) and the annual person years of treatment (ART, lifelong
preventive therapy) as model outputs. Unit costs of TB detection and treatment,
one year of ART, and a six month course of preventive therapy were also incorpo-
rated into the model and were used, in combination with the model estimates of
the numbers detected, numbers treated or the person years of treatment, to produce

the total annual costs of each strategy as model outputs.

Costs incurred in future years were discounted at 3%, in line with recent in-
ternational guidelines [90], [56]. Costs were assessed from the perspective of the
health system only (i.e. costs incurred by patients themselves were not included)
in year 2003 USS. It is important to highlight that because ART will defer costs
associated with treatment of AIDS-related opportunistic infections (Ols) and pal-
liative care, our analysis allowed for treatment savings arising from the provision
of ART. For each year, costs for the treatment of Ols and palliative care were esti-
mated as the total people years of treatment multiplied by the average annual cost
of such treatment. The total people years of treatment were based on the numbers
with AIDS (estimated as a fixed proportion - 40% - of the numbers in late stage
HIV) and the fraction assumed to access care (assumed to be 50%). As ART re-
duces the numbers of people with AIDS, the total annual cost of OI treatment and
palliative care is lowered when the strategy of providing ART is implemented. The
cost parameters used, and the related assumptions and sources of data, are given

in Appendix B.

The measure of effectiveness used in this analysis is the number of disability
adjusted life years (DALYs) gained by each of the interventions. Our previous
analysis focused on TB deaths and TB cases averted, but a fair comparison of the
cost-effectiveness of interventions requires that the analysis captures a) differences

in the years of life gained from averting deaths in HIV-positive and HIV-negative
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individuals, and b) the prevention of deaths from causes other than TB. If this is
not done, the analysis will be biased against interventions that prevent relatively
higher numbers of deaths in HIV-negative individuals and/or deaths unrelated to
TB. The mathematical model does not include age structure; therefore, we estimate
the average number of DALY's gained by averting a death among HIV-negative TB

patients, HIV-infected TB patients and HIV-positives to be

_ KCe™
DALY = Zpi {(_T‘Jr—eﬂ)—i [e_(TJrﬂ)(LH-ai) (=(r +8)(L; +a;) — 1)
=1 6.1)
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T ]
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based on the standard equation for a DALY averted as given in [70]. Here a; is
the average age in age group ¢, p; is the proportion of deaths in age group ¢ for the
population under consideration, L; is the life expectancy for someone in the given
population at age a;, K is the age weighting modulation factor, C' is a constant, r
is the discount rate and (3 is the parameter from the age-weighting function. The

values of K, C' and § come from [49] and are given in Table 6.1.

Parameter Value

K 1

o 0.1658
0.03

g 0.04

Table 6.1: Parameter values used in the calculation of disability adjusted life years

(DALYs) gained.

Using Equation 6.1, life expectancy data for Kenya [103], evidence that life
expectancy among HIV-positive TB patients is approximately three years [72],
[51, [6], and the assumption that the death rate among TB patients is the same in

each age group, we estimate that the DALY's gained by averting a TB death in an
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HIV-positive TB patient would be 4 years, and that the gain in an HIV-negative
individual would be 24 years. To capture the effect of ART on non-TB related
mortality, we further assume that 1 DALY is averted for each person year of ART.
To avoid double counting of deaths, we assume that ART can only affect TB deaths
among HIV-negatives and not those among HIV-positives. For consistency with

the analysis of total costs, DALY's averted in future years were discounted at 3%.

The model was run for the baseline scenario and the addition of each of the
six intervention strategies to the baseline. When considering the baseline, cost-
effectiveness is estimated as the net change in costs from a situation where no
interventions are applied, divided by the net increase in DALY averted from a
situation in which no interventions are applied. The six intervention strategies
were applied individually, allowing comparison between strategies, which would
not have been possible if the model had been run with all strategies applied si-
multaneously. Cost-effectiveness was calculated as the net change in costs from
the baseline scenario divided by the net increase in the number of DALY averted
compared with the baseline scenario. Uncertainty intervals were obtained by sam-
pling 1000 sets of model parameters from the output of the Markov Chain Monte
Carlo sampling (MCMC), while costs were sampled from the distributions given
in Table B.1. The uncertainty intervals therefore simultaneously incorporate un-

certainty about unit costs, the numbers given interventions in each scenario, and

effects.

In order to assess the how generally applicable our results are, we obtained

results for a number of possible scenarios for Kenya:

1. The implementation of the six intervention strategies occurring at 50% and

25% of the rate required to meet the targets specified above

2. Assessment of the results over five and twenty years
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Results for these scenarios will not be presented here but will be discussed in

Section 6.3.

6.2.3 Reducing HIV Incidence

In Chapter 5, we considered the effect of reducing HIV incidence. The model
cannot be used to estimate the total costs of implementing interventions aimed at
reducing HIV incidence because the effect of reducing HIV incidence is explored
simply by changing the assumed trajectory of the HIV epidemic, with no consid-
eration of the specific interventions that would be required to achieve this and how
many people they would need to reach. We therefore estimated the threshold costs
per HIV infection averted at which reducing HIV incidence would have the same
cost-effectiveness as the other six strategies, and compared these with existing
published data. For HIV prevention, we estimate that 22 DALYs are averted for
each HIV infection averted, based on the the standard DALY formula (Equation

6.1) and demographic data for Kenya.

6.3 Results

In the baseline scenario, the only interventions offered are treatment for active TB,
with a cure rate of 70% and a case detection rate of 50%, and treatment for AIDS-
related Ols and palliative care. The model estimated that 96,000 (95% confidence
intervals [81,000, 120,000]) people are treated per year for TB, at a total cost of
US$ 17 million [USS$ 15 million, US$ 21 million], and 185,000 [175,000, 195,000]
people receive treatment and care for AIDS, at a cost of US$ 37 million [US$
33 million, US$ 41 million]. This results in 2 million [1.5 million, 2.8 million]
DALYs being averted per year compared with a situation in which no interventions

are offered. The cost per DALY averted is US$ 8.70 [US$ 6.60, US$ 11.10].
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The numbers of people treated for TB per year for each of the six strategies
to reduce the burden of TB and HIV are shown in Figure 6.1. Numbers increase
for most interventions because of population growth. Some other trends are worth
noting. Increasing TB case detection or implementing the DOTS strategy result in
an initial increase in the number of TB cases being treated. After several years,
however the impact of this improved control strategy on TB transmission becomes
obvious as the number of TB cases needing treatment drops and the number being
treated for TB under the DOTS strategy is lower than for any other intervention
strategy. Increasing TB cure rates also results in smaller numbers being treated,
because those who are treated are more likely to recover. Administration of ART
also reduces the number of people given TB treatment. Those taking ART are
assumed to have the same risk of developing TB as someone who is HIV-negative,
thus reducing the expected number of TB cases. Other interventions have little

effect on the numbers being treated for TB.
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Figure 6.1: Numbers of people given TB treatment under each of the six interven-

tion strategies.



CHAPTER 6 143

As shown in Figure 6.2, when preventive therapy is provided for six months,
the average number on treatment each year is stable at around 20,000 per year.
When provided for life, there is a steady increase in the numbers on treatment

from zero to 180,000 after 10 years.

200000 -
180000 -
160000 -
140000 -
120000 -
AL100000
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Year

Figure 6.2: Numbers of people given TB preventive therapy under the two TB

preventive therapy intervention strategies.

Provision of ART so that the “3 by 5” target for Kenya is met and then followed
by enrolment of 50% of those in need of treatment, is associated with an increase
from less than 10,000 on treatment in 2005 to 490,000 after 10 years, as shown
in Figure 6.3. If the annual drop out rate from ART were 5% rather than 20%,

numbers taking ART would increase to 880,000 after 10 years.

The numbers of people with AIDS receiving OI treatment and palliative care
for the different intervention strategies are shown in Figure 6.4. Only administra-
tion of ART results in a substantial reduction (10% on average over the ten years)

in the numbers of people with AIDS receiving treatment. As more people drop
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Figure 6.3: Numbers of people given antiretroviral therapy under different scenar-

ios for dropout and administration.

out of antiretroviral treatment, the numbers given treatment for OIs and palliative
care start to increase again, a trend that is not so pronounced with the lower annual

dropout rate of only 5%.

The change in total annual costs (including cost-savings associated with re-
ductions in the number treated for TB and AIDS-related OIs and palliative care)
compared with the baseline situation is shown in Figure 6.5. Improving TB case
detection results in a slight increase in costs (average US$ 2.6 million per year),
while improving cure rates reduces costs (average of US$ 1.9 million per year).
Provision of preventive therapy increases costs by between US$ 0.9 million (for
6 months of treatment) and US$ 5.3 million (lifetime treatment) per year, both of
which are a small percentage of existing total health care expenditure. The most
dramatic change in costs is for provision of ART: in 2014, ART will cost just over

US$ 200 million per year more than the baseline strategy — greater than total gov-
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Figure 6.4: Numbers of people with AIDS receiving treatment for opportunistic

infections and palliative care.

ernment health expenditure in 2000. This equates to an average annual cost of

administering ART of US$ 163 million over the ten years.

We measure the effectiveness of the different intervention strategies by the
number of disability adjusted life years (DALYs) that they avert, and the expected
annual numbers averted over the next ten years are given in Figure 6.6. Provision
of ART averts the most DALYs over the ten years, followed by simultaneously
improving TB case detection and cure rates (DOTS) and increasing TB case de-
tection rates. Other strategies avert far fewer DALYs. As people drop out of ART,
it becomes less effective than other interventions, and it averts fewer DALY's than

DOTS in the period 2012 to 2014.

The cost per DALY averted varies widely (Figure 6.7). Improving TB cure
rates saves DALYs and lowers costs, and thus has a negative cost per DALY

averted. Improving case detection has a very low cost per DALY averted
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Figure 6.5: Additional annual costs over baseline for the six intervention strategies

and government health expenditure for Kenya in 2000.
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Figure 6.6: Annual DALY averted for the six intervention strategies.
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(US$ 7 [USS$ 3, USS$ 12). Other interventions cost more — the mean costs per
DALY averted for TB preventive therapy for 6 months and for ART are approxi-
mately US$ 225, although the 95% confidence interval for the cost-effectiveness
of short-course TB preventive therapy is wide, between US$170 and US$290. The
strategy with the highest cost per DALY averted is provision of lifetime preventive
therapy (mean US$ 690 [US$500, US$910]). Decreasing the dropout rate from
ART to 5% will result in a higher cost per DALY averted of US$ 268 [US$265,

US$271].

US$ per DALY Averted
8 8 8 8

0 T — T T T T T
Improve  Improve  DOTS IPT6 IPT ART ARTtoTB ART5%
-200 J B TB Cure Months  Lifetime Patients
Detection Rate
Rate

Figure 6.7: Average cost per DALY averted for the six intervention strategies.

Improving TB case detection and cure rates simultaneously could reduce TB
incidence to 284 per 100,000 by the end of 2014, 60% of the estimated incidence
rate for 2004 (Figure 6.8). Increasing either the case detection or cure rates inde-
pendently gives a smaller effect, with a reduction of 5% by the end of 2014 for
increases to the cure rate and of 20% for increases to the detection rate. Provi-

sion of ART results in an increase in the TB incidence, with TB incidence just 7%
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below that of the baseline scenario in 2014. Preventive therapy has only a small

effect on TB incidence.

TB Inc per 100,000
-8888883
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—ART —— ART to TB Patients

—— ART 5% Dropout

Figure 6.8: TB incidence over time for the six intervention strategies.

The picture is similar for the effect of interventions on deaths from TB, shown
in Figure 6.9, with DOTS cutting the rate of TB deaths by just under 50% by the
end of 2014, in line with the Millennium Development Goals, which state that TB
deaths should be reduced by 50% by 2015. Improvements to the TB case detection
rate have a proportionally greater effect on TB deaths than TB incidence, reducing
the number of TB deaths to 142 per hundred thousand by the end of 2014. ART
has a slightly greater effect on TB deaths than on TB incidence, with TB deaths
per year 9% lower than baseline at the end of 2014, but still higher than the number

of TB deaths per year in 2004.

The threshold costs per HIV infection averted for HIV prevention strategies
compared with the other intervention strategies are given in Table 6.3. We can
see that the threshold costs are all relatively high. The threshold cost compared

with increasing the TB cure rate is negative because, even taking into account the
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Figure 6.9: TB deaths per year for the six intervention strategies.

additional cost of improved treatment, increasing the TB cure rate is still more

cost-effective than spending no money on reducing HIV incidence.

Intervention

Threshold Cost per HIV

Infection Averted

Increasing TB Detection Rate
Increasing TB Cure Rate

DOTS

Administering TB Preventive Therapy
(6 Months)

Administering TB Preventive Therapy
(Lifetime)

Administering ART

$208
-$215
$76.90
$3 600

$10 800

$3 560

Table 6.2: Threshold costs per HIV infection averted to be as cost-effective as the

other intervention strategies.
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We can compare the threshold costs of reducing HIV incidence with the results
presented in [33] for the costs per HIV infection averted of some standard HIV pre-
vention strategies. Based on these, we can conclude that condom distribution of
provision of blood safety measures could be more cost-effective than increasing
TB treatment to DOTS levels or increasing the TB detection rate. Giving preven-
tive therapy for TB or administering ART are both less cost-effective than all of

the strategies for reducing HIV incidence discussed in [33].

The cost-effectiveness of the different interventions measured over periods of
five and twenty years, and with different rates of progress toward targets, was
very similar to those for the scenario presented here, where results were measured
over ten years. We did not consider the effect of the HIV epidemic only being
half that predicted by the antenatal clinic data from Kenya. In a previous study
[35], this was found to reduce the numbers given ART and preventive therapy for
TB (as this is given only to HIV-positives), and to reduce the numbers of DALYs
averted by these interventions. Consequently, simultaneous improvements to TB
case detection and cure rates were found to be the most effective interventions at

gaining DALYs.

6.4 Discussion

6.4.1 Main Findings

The results suggest that the priority for TB programmes in high HIV settings
should be to concentrate on doing better what they already do, i.e. improving
TB treatment by increasing the TB cure and detection rates. This has been shown
to be more cost-effective than the other interventions considered and is affordable

with existing national health budgets.

Providing ART at the levels suggested in the “3 by 5 initiative has the poten-




CHAPTER 6 151

tial to avert the most DALYs, 15% more than implementation of DOTS over the
period 2005 to 2014. However realising this potential will require significant new
funding, equivalent to a doubling of annual health spending in Kenya by 2013.
Even if the money is made available from other external sources, the problem of
absorbing a doubling in annual health expenditure over such a short space of time

will remain.

Although low cost, the cost-effectiveness of IPT for 6 months is approximately
equal to that of ART. The higher cost of lifelong IPT, and the small additional
benefit associated with extending treatment beyond 6 months, make it a much less

cost-effective strategy.

Condom distribution or improvements to blood safety could be more cost-
effective than all of the interventions considered, with the exception of increas-
ing the TB cure rate. Administering ART or TB preventive therapy is less cost-

effective than all of the HIV prevention strategies considered in [33].

6.4.2 Limitations of Analysis

The nature of the mathematical model used prevents full account being taken of
any reduction in HIV transmission caused by these interventions. Even allowing
for this however, we would recommend that further efforts be concentrated on im-
provements to TB treatment programmes and implementation of HIV prevention

strategies, with increasing coverage of ART as a secondary aim.

No data exist on the costs of improving case detection rates, and so it was
necessary to make assumptions. However, even taking the cost of finding addi-
tional cases to be double the existing level, improving case detection is very cost-
effective. It could be 30 times more costly before it would be less cost-effective
than ART or short-course IPT. Assumptions were also made about the cost of im-

proving cure rates due to a lack of data for Kenya.
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We encountered further problems with limited data when estimating the costs
of providing ART in practice. Costs may fall over time due to economies of scale;
alternatively, some costs may have been underestimated in the existing analysis

due to the limited experience of administration to such large numbers of people.

Little data exists in the literature about the life expectancy of patients who
default from ART. We have assumed that, following default from ART, a person is
at the same position in the natural history of HIV as someone entering late-stage
HIV (WHO stage 3). This means that those given ART effectively pass through
stage 3 twice: first before being given ART; second following default from ART.
During stage 3, they are more susceptible to TB, and therefore HIV-positives given
ART have an increased risk of TB for longer than HIV-positives not given ART.
This partly explains why the numbers on TB treatment under the ART strategy
increase to the same level as under the baseline strategy when those first given

ART start to drop out of treatment.

6.4.3 Verification of Results

The results that we present here are based on a model of the situation in Kenya.
To verify these results and compare them with results obtained in other similar
situations, we compare them with those presented in Creese et al [33] for the cost
per DALY gained of TB treatment, ART and TB preventive therapy, which are
reproduced in Table 6.4.3. The comparison shows that the results given here are
not dissimilar to previously published estimates with the exception of costs for
ART. The costs estimated here tend to be on the low side of the literature estimates,
which is to be expected, as the epidemiological model takes account of reductions
in TB transmission, whereas this has not been possible in previous studies. Costs
per DALY gained for ART are also significantly lower because of the low costs

per person year of treatment used (based on the “3 by 5 analysis), and due to the
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allowance made for the reduced AIDS costs under the ART strategy.

Intervention Cost per DALY (2003 Cost per DALY (2003
US$): Creese et al [33]  USS$): this Analysis
TB Treatment $2-$75 -$20 [-$24, -$15]
(Increase cure rate)
$7 [$3, $12]

(Increase detection rate)
-$1.20 [-$4.60, $2.70]

(Increase cure and detec-

tion rate)

ART $1200-$2000 $224 [$220, $227]
$268 [$265, $271] for 5%
dropout

TB Preventive Ther- $185-$320 $226 [$173, $290]

apy (6 months)

TB Preventive Ther- None available $692 [$503, $913]

apy (Lifetime)

Table 6.3: Comparison of our estimates of the cost per DALY with current litera-

ture estimates. Confidence intervals are 95%

6.4.4 Conclusions

We have shown in this chapter, that the most cost-effective intervention strategy,
measured in terms of cost per DALY gained, is to increase the cure rate for ac-
tive TB, with improvements to the TB case detection rate also being highly cost-
effective. Increasing the TB case detection and cure rates to DOTS levels of 70%

and 85% will result in a 40% reduction in TB incidence by the end of 2014 and
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a just under 50% reduction in TB deaths, as compared with the 2004 estimate,
suggesting that implementation of DOTS alone will be sufficient to meet the Mil-
lennium Development Goal of reducing TB deaths by 50% by 2015. Some HIV
prevention strategies are also very cost-effective and all are estimated to be more
cost-effective than administering ART or TB preventive therapy. Increasing the
coverage of ART has the greatest effect on reducing DALYs but suffers from very
high costs. Provision of ART and HIV prevention interventions will however be

necessary to reduce the burden of HIV.



Chapter 7

Conclusion

In this thesis we have described a Bayesian methodology to analyse complex sta-
tistical models. The methodology uses Monte Carlo sampling to integrate over
the posterior distribution. We concentrated initially on importance sampling; in
Chapter 2 discussing how the candidate distribution should be chosen to improve
convergence. We then went on to show how the convergence of importance sam-
pling can be measured in Chapter 3. The methodology has been applied to two
examples: in Chapter 4 we considered the non-standard statistical problem of de-
termining the number of components in a finite normal mixture model; and we
described the Bayesian uncertainty analysis of a compartmental model of tubercu-
losis (TB) and HIV in Chapter 5. The ease with which the results of the sampling
can be used was demonstrated in Chapter 6, where we used the parameter values
output by the sampling to evaluate the cost-effectiveness of different interventions

against TB and HIV and the uncertainty around these results.

7.1 Bayesian Statistics

In Bayesian statistics we work with the posterior probability distributions of model

parameters. The posterior distribution is proportional to the product of the prior
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distribution of the parameters and the likelihood function. It therefore combines
any prior knowledge of parameter values with the fit of the model to the data. No
prior knowledge was available in the finite mixture models example and a Bayesian
methodology was used because of the smoothing effect of the prior distribution on
the likelihood distribution. The posterior distribution was therefore better behaved
than the likelihood distribution; in particular not suffering from discontinuities.
Good prior knowledge of the model parameter values for the TB-HIV model was
available in the medical literature. Using Bayesian statistics in this example meant
that we could give an estimate of the uncertainty on the results that took into ac-
count the fit of the model to the data and our prior knowledge of the parameter

values.

7.2 Sampling Methodology

Normalising the posterior probability distribution involves integrating the product
of the prior distribution and the likelihood over parameter space. The integral can
sometimes be calculated analytically, but in the two examples that we considered
in this thesis it was necessary to integrate numerically. We used Monte Carlo
methods to perform this integration, using importance sampling in the analysis of
finite mixture models and Markov Chain Monte Carlo sampling (MCMC) when

analysing the model of TB and HIV.

Both importance sampling and MCMC require some information about the
posterior distribution for them to be more efficient than simple Monte Carlo sam-
pling. In importance sampling, all of the knowledge must be obtained before
starting the sampling as the candidate distribution used is fixed. Most MCMC
algorithms are adaptive however, meaning that the candidate distribution changes
over the course of the sampling. The advantages of the adaptive approach were

observed in the analysis of the TB-HIV model where the normal candidate distrib-
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ution was very different from the skewed posterior distribution. Here, importance

sampling performed badly but MCMC converged well.

The examples we considered were assumed to have approximately multivariate
normal posterior distributions. We therefore restricted our investigations of the
posterior distribution prior to the sampling to finding its mode and estimating the

covariance matrix.

7.2.1 Importance Sampling

In Chapter 2 we investigated the choice of candidate distribution in importance
sampling, showing that the optimal sampling function is the posterior distribution.
When sampling to find the normalising factor for the posterior distribution, this is
not a practical solution, and the chapter went on to discuss some of the practicali-
ties of importance sampling in the context of statistical estimation. As the number
of dimensions increases, discrepancies between the candidate distribution and the
posterior distribution become more costly in importance sampling. We showed in
Section 2.4.1 that the variance of the sampling increases exponentially with the
dimension for any discrepancies in the mean, when both the candidate and the
posterior distributions are multivariate normal. Knowledge of the mean was found

to be more important than knowledge of the covariance.

Assessing the convergence of importance sampling focuses on the distribution
of the weights, the ratios of the posterior distribution to candidate distribution at
each of the sampling points. Very high weights are generally indicative of a lack
of convergence. We described a number of diagnostic and statistical tests of im-
portance sampling convergence in Chapter 3. The diagnostic tests relied heavily
on graphical indicators of convergence and the statistical tests made use of results
from extreme value theory to determine whether the weights had a finite variance.

We found both to be useful but the diagnostic tests much more straightforward to
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use and interpret. We would recommend the use of both diagnostic and statistical
tests. Non-convergence can generally be identified using the diagnostic tests, and

confirmed by the statistical tests.

7.2.2 Markov Chain Monte Carlo

In MCMC, a Markov chain is constructed that has as its stationary distribution the
distribution being integrated over; in our case this is the posterior distribution. We
used the Metropolis-Hastings algorithm to determine the posterior distribution for
the TB-HIV model, updating the mean after every acceptance. The adaptability of
this algorithm means that it can cope better with the posterior distribution being

different from the initial candidate distribution.

Individual samples generated by MCMC are not independent, and when analysing
the TB-HIV model we ran several chains from different starting points to avoid
problems of autocorrelation. Output from the different chains was then compared
to determine whether the chains had been run for long enough for the output to be

unaffected by their start points.

7.3 Model Selection for Finite Mixture Models

We used importance sampling to find the posterior distribution of the number of
components in a finite normal mixture model. Comparison of our results with the
literature, especially those of Richardson and Green [84], shows that we suggest
more definite posterior distributions for the number of components. We suspect
that this is due to the choice of prior distribution, but may be due to the presence
of “nuisance” components in the results of the reversible jump sampling used in

[84]. These components may have a very large variance, or alternatively may have
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a very similar mean and variance to another component in the mixture, effectively

doubling up on one component.

Importance sampling has advantages over MCMC in this example. Construct-
ing a Markov chain that moves between the different possible models is very dif-
ficult and requires rather complicated methodology, such as jump diffusion sam-
pling [84]. In comparison, the importance sampling methodology is relatively
simple, as movement between models with different numbers of components is
dictated by the candidate distribution, which is made up of the probability of sam-
pling each model, in addition to the probabilities of sampling each of the para-
meters of the model. The posterior distribution was found to be approximately

multivariate normal, ensuring that the importance sampling also converged.

7.4 Model of Tuberculosis and HIV

The Bayesian analysis of a compartmental disease model of TB and HIV was de-
scribed in Chapter 5. We found that MCMC worked well in determining the poste-
rior distribution of the model parameters. Importance sampling demonstrated poor
convergence, possibly due to the posterior distribution being skewed and therefore

not a close enough match to the candidate distribution, a multivariate t-distribution.

The model results suggested that, in countries with high HIV prevalence and
high TB incidence, the best method of reducing TB incidence over the next five
to ten years is to improve treatment of TB, by detecting more cases and curing
them more effectively. Interventions aimed at reducing HIV incidence or mitigat-
ing the effects of HIV infection will have a smaller effect on TB incidence and TB
deaths. Improvements to TB treatment are also relatively cheap, and we showed
in Chapter 6 that the cost per disability adjusted life year (DALY) gained for im-
plementing the World Health Organization targets of 70% TB case detection and

85% TB cure was -$1.20 [-$4.60, $2.70]. This made it much more cost-effective
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than antiretroviral therapy for which the cost per DALY averted was $224 [$220,
$227]. Antiretroviral therapy is very effective at reducing DALYs but the large

costs involved in implementing it reduce its cost-effectiveness.

7.5 Further Work

In many areas of research, stochastic models are used more widely than determin-
istic models and are considered to be a better description of reality. One possible
extension of this methodology would be to the analysis of stochastic models. The
additional uncertainty in the model output may make determining convergence

more difficult.

One simple extension of the model selection work would be to consider mix-
tures of distributions other than the normal distribution. For example mixtures of
skewed distributions could provide better descriptions of skewed data sets, and use
fewer components. The basic methodology would not need to change substantially
to make this extension, with most of the work being involved in choosing appro-
priate prior distributions and refining the optimization routine. The methodology
could also be extended to model selection in regression analysis, which is also
a statistically non-standard problem. Our approach would probably be closest to

work by George and McCulloch [52] and Cheng [20].

We have assessed the cost-effectiveness of interventions against TB and HIV
when they are applied individually. In practice, several interventions will be im-
plemented together, and decision-makers are interested in the cost-effectiveness of
mixes of interventions. A resource allocation study may be useful in determining

the best mix of interventions in different resource settings.
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7.6 Discussion

We have demonstrated the use of a Bayesian methodology involving Monte Carlo
sampling on two examples: determining the posterior distribution of the number of
components in a finite normal mixture model and estimating the uncertainty in the
output of a compartmental model of TB and HIV. We found that importance sam-
pling worked well in the mixture models example, providing a relatively simple
mechanism for jumping between different models. MCMC worked better in the
TB-HIV. model, where the posterior distribution had a very different shape from
the chosen candidate distribution. The adaptability of the MCMC algorithm was

an advantage in this case.

Implementing importance sampling is relatively straightforward and the algo-
rithm is easily understood. In addition, as the samples output are independent,
assessing convergence is much easier than for MCMC. Therefore, if it is possi-
ble to obtain reasonable convergence with importance sampling, without too much
additional effort learning about the distribution, we would recommend its use in
preference to MCMC. The main advantage of MCMC is its adaptability, but this
contributes to the problems assessing its convergence because it means that the

samples output will be correlated.

In conclusion, with the right choice of Monte Carlo sampling algorithm, the
Bayesian methodology described in this thesis can be used to determine the pos-
terior distribution of a complex system. We have demonstrated its use on model
selection for finite normal mixture models and uncertainty analysis for a compart-

mental model of disease.



Appendix A

Posterior Correlation Matrix of the

Tuberculosis Parameters

The estimated posterior correlation matrix of the TB parameters in the TB-HIV
model described in Chapter 5 is given in Tables A.1 and A.2. The matrix has been

split across the two tables for presentation purposes.
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Ao D DHIV U VHIV T

v f farv ¢
rf 0.064 -0.102 0.028 0.009 -0.198 0.074 0.002 0.201 -0.037 0.207
tLs -0.020 0.082 -0.058 0.035 0454 -0.103 0.006 0.030 -0.092 -0.033

Table A.1: Posterior correlation matrix for the first ten TB

parameters in the TB-HIV model, estimated using MCMC
sampling.
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w WY M pint ,U,ZE’{V pron—inf MT;}LV“ infe rf tLs tD
rf 0.130 -0.065 0.098 -0.007 0.080 -0.019 -0.057 -0.184 1 -0.025 -0.076
tLs 0.010 0.053 -0.020 -0.100 0.189 -0.051 0.049 0.040 -0025 1 0.121

Table A.2: Posterior correlation matrix for the last eleven TB

parameters in the TB-HIV model, estimated using MCMC

sampling.
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Appendix B

Unit Costs of Treatments for

Tuberculosis and HIV

The table gives unit costs of treatments for tuberculosis (TB) and HIV used in the
cost-effectiveness analysis in Chapter 6. For normal distributions, the first figure
gives the mean and the second the variance. For uniform distributions, the two fig-
ures give the lower and upper limits. Confidence intervals are 95%. (Although data
are available on the costs of treatment and care for people with AIDS in Kenya,
these data were not used because they are out-of-date and currently implausible -
the cost per person multiplied by the number of people with AIDS gives a total

cost in excess of the country’s total government health care expenditure.
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Treatment Unit

(year 2003 prices)

Unit Cost in US$

Uncertainty Dis-

tribution

Reference/Assumptions

TB diagnosis costs, ex- SS+ case 101

isting level of case de- detected

tection
SS+ case 152
detected

Short course treatment Person 140

for TB (SS+), existing treated

level of case detection

Normal(101, 25)

Uniform(101,
202)

Normal(140, 49)

Nganda et al [10] For every SS+ case de-
tected, assume 10 suspects are seen. For
each suspect, assume 3 sputum smears
and 1 chest X-ray are done.

Detecting additional cases is likely to be
more costly on a per case basis than treat-
ment at existing level of case detection.
No data are available to suggest what
these costs would be so we allow them to
vary between 1 and 2 times the existing

cost.

Nganda et al [10]
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Treatment

Unit Unit Cost in US$
(year 2003 prices)

Uncertainty Dis-

tribution

Reference/Assumptions

Short course treatment
for TB (SS-), existing
level of case detection

Short course treatment
for TB (SS+), any addi-
tional case above exist-
ing case detection lev-

els

Short course treatment
for TB (SS-), any addi-
tional case above exist-

ing case detection level

Person 130
treated
Person 210
treated
Person 195
treated

Normal(130, 43)

Uniform(140,
280)

Uniform(130,
260)

Nganda et al [10]

Treating additional cases is likely to be
more costly on a per patient basis than
treatment at existing level of case detec-
tion. No data are available to suggest
what these costs would be, so we allow
them to vary between 1 and 2 times the
existing cost.

As above for treatment of SS+ cases
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Treatment

Unit

Unit Cost in US$
(year 2003 prices)

Uncertainty Dis-

tribution

Reference/Assumptions

Isoniazid  preventive

therapy (6 months)

Isoniazid  preventive

therapy (lifetime)

Treatment for AIDS-

related  opportunistic
infections and palliative
care in the absence of

ART

Person

treated

Person
year  of

treatment

Person
year  of

treatment

32

64

199

Uniform(27, 37)

Uniform(54, 74)

Normal(199, 99)

Bell et al [11] and evidence from
ProTEST npilot projects (need ref). As-
sume 13% adult population accesses VCT
each year, 36% are HIV+, 100% are
screened for IPT, 43% start treatment of
whom 38% complete treatment (give refs)
As above for isoniazid preventive therapy
for six months, plus assumption that treat-
ment for one year is double the cost of
treatment for six months

Cost and access to care assumptions used
in recent cost analysis of “3 by 5”. 56 - 78
% of people with AIDS assumed to ac-
cess treatment (WHO/UNAIDS working
group, unpublished report)

q XIANdddV
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Treatment

Unit Unit Cost in US$ Uncertainty Dis- Reference/Assumptions

(year 2003 prices) tribution

ART

Person 308 for all except None specified Cost assumptions used in recent cost

year of people withTB, 548 analysis of “3 by 5” [57]

treatment  for patients with TB

Table B.1: Unit costs of treatments for tuberculosis (TB) and

HIV used in the cost-effectiveness analysis in Chapter 6
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