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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS 

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE 

Doctor of Philosophy 

Polynomial Matrix Decompositions and Paraunitary Filter Banks 

by Soydan Redif 

There are an increasing number of problems that can be solved using paraunitary filter banks. 

The design of optimal orthonormal filter banks for the efficient coding of signals has received 

considerable interest over the years. In contrast, very little attention has been given to the 

problem of constructing paraunitary matrices for the purpose of broadband signal subspace 

estimation. This thesis begins by relating these two areas of research. A frequency-domain 

method of diagonalising parahermitian polynomial matrices is proposed and shown to have 

fundamental limitations. Then the thesis focuses on the development of a novel time-domain 

technique that extends the eigenvalue decomposition to polynomial matrices, referred to as the 

second order sequential best rotation (SBR2) algorithm. This technique imposes strong 

decOlTelation on its input signals by applying a sequence of elementary paraunitary matrices 

which constitutes a generalisation of the classical Jacobi algorithm to the field of polynomial 

matrices. It is shown to be highly applicable to the problems of broadband signal subspace 

estimation and data compression. Variations on the algorithm are presented which give a 

significant improvement in subspace estimation accuracy and data compression performance. 

Discussions are then mainly concerned with the application of the SBR2 algorithm to the 

problem of data compression, particularly the adaptation of the SBR2 algorithm to subband 

coding. The relevance of the algorithm to traditional orthonormal filter bank design methods is 

examined, highlighting that these techniques are based on an implicit assumption regarding the 

statistics of the input signal. This provides motivation for the development of a method of 

exploiting this knowledge for use with the SBR2 algorithm. The resulting algorithm can design 

orthonormal filter banks for subband coding. The suboptimality, in the sense of maximising the 

coding gain, of the filter bank constructed becomes negligible as the number of algorithm 

iterations increases. The technique is shown to compare favourably to the state-of-the-art on a 

set of benchmark problems. 
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1 Introduction 

1.1 Motivation 

1.1.1 Filter Banks and Subspace Decomposition 

The use of multi rate systems in digital signal processing (DSP) has, in recent years, been at the 

forefront of modern technology. A focal topic in this area is subband processing, which is being 

exploited in an increasing number of applications, including digital communications [1,75,78], 

image and audio coding [12,16,32,63], beamforming [84] and channel coding [41,85]. Fig. 1.1 

shows the block diagram of a subband processor in its polyphase equivalent form [73]. A 

subband processor works by first converting the input data sequence X(l) into demultiplexed 

signals x(t) I: time-delayed and decimated versions of the input signal. Then a bank of filters, 

often refelTed to as the analysis bank, is applied to these signals. These operations essentially 

split the spectrum of the input signal into multiple frequency bands or subband channels vet) . 

This allows for the application of different processing procedures to the different subband 

channels. The filter banks are allowed to operate at a lower sample rate than the rate of x(z), 

which makes for greater computational efficiency. 

In coding applications, the subband processing stage, Q, typically involves quantisation 

which employs a bit allocation strategy. This is commonly referred to as subband coding. The 

quantised subband samples uCt) are then input into a reconstruction stage, called a synthesis 

bank, to form X(l): an approximation to x(z) . This procedure offers the possibility of reduced 

transmission rate, reduced storage requirement and/or increased signal representation accuracy. 

Correlation between the demultiplexed signals is a type of redundancy. The analysis bank 

is essentially a linear transformation that is designed to remove these correlations and perform 

energy compaction: the compaction of as much of the total power into as few subband channels 

as possible. Since most of the total input signal power resides in a reduced number of subbands 

(dominant subbands) a cOlTespondingly reduced number of bits is required to represent (encode) 

the information. As a consequence the input data is compressed. An appropriate bit allocation 

strategy to adopt in this case is one that assigns more bits to dominant subbands and fewer bits 

I In the context of filter banks, we choose to denote the time index for the input signal by l, the Greek 

letter 'iota', and the time index for the decimated sequences by t. 
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to the subbands with lower power (weak subbands), which usually also results in more accurate 

representation of the data. This is in contrast to scalar (uniform) quantisation where the same 

number of bits is allocated to every sample. 
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Figure 1.1: Subband processor and its connection to subspace decomposition. 

If the power of the weak subband signals is small enough then they may be assigned zero 

bits, i.e. they may be discarded. It is easy to see from this how subband processing can be 

applied to the problem of noise reduction (denoising) for additive white noise [3,8]: to reduce 

the noise power in the inputs x(t) , only a subset of the transformed signals vet) (those with 

high energies) are allowed to propagate to the reconstruction stage. As a result, the 

reconstructed signals xU) have a higher signal-to-noise ratio than the inputs. In this light, a 

subband coder may be viewed as a process that extracts a low-dimensional subspace from a 

higher-dimensional observation space as depicted in Fig. 1. I . The transformation is a matrix 

decomposition that permits the partitioning of the observation space into two orthogonal spaces; 

viz., the signal-plus-noise subspace and a noise-only subspace2
• This process is sometimes 

known as subspace decomposition [22]. Those subband channels that contain information 

2 Note that we will refer to the signal-plus-noise subspace as simply the 'signal subspace' since the signal 

dominates this subspace. Also note that we use the term 'noise subspace ' to mean the subspace that 

contains signals from the noise process only. 
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energy constitute the signal subspace. The rest of the channels represent the noise in xU) and 

correspond to the noise subspace. 

If the demultiplexed signals x(t) are related by instantaneous correlations only, then the 

eigenvalue decomposition (EVD) can be used to decorrelate the signals and perform subspace 

decomposition [20,22]. The EVD computes the eigenvalues and eigenvectors (basis vectors) of 

the Hermitian covariance matrix calculated from the signals x(t) . The eigenvectors constitute a 

matrix of complex scalars which is said to be a unitary matrix: an energy preserving 

transformation. Satisfaction of the unitarity property guarantees that the eigenvalues represent 

the true power associated with the transformed signals. As a result, it is often possible to 

identify and separate the signal and noise subspaces in terms of the magnitudes of the 

eigenvalues. It follows that the EVD implicitly performs energy compaction. In the context of 

subband coding, the EVD is known as the Karhunen-Loeve transform (KLT) and has been 

shown to be optimal (in the coding gain sense) for subband coding, as we!! as noise reduction, 

under certain conditions [24,73]. An alternative to the EVD is the singular value decomposition 

(SVD) [20,21] which, unlike the EVD, may be applied directly to the signals themselves. 

Although the SVD is sometimes preferred for its slightly better arithmetic precision, the EVD 

and SVD are regarded as essentially equivalent in this thesis. 

The SVD also plays an important role in narrowband sensor array signal processing. In 

this application, a multi-sensor antenna array is used to receive a mixture of signals arriving 

from different directions. The direction-of-arrival of a signal is one of the most important 

parameters to estimate, which can usually be achieved using high resolution direction finding 

techniques, such as the MUSIC algorithm [23,59]. The SVD forms the basis of this technique. If 

all the signals received by all the sensors can be described in terms of their relative phases and 

amplitudes then the beamformer is referred to as narrowband. The propagation of the source 

signals to the sensors may be represented as a matrix of complex scalars, that is, each received 

signal is an instantaneous mixture of the source signals. Under these conditions, decorrelation of 

the received signals, and subspace decomposition for that matter, may be achieved using the 

SVD. The unitary matrix found by the SVD is designed to modify the phase and amplitude of 

the signals and to combine them such that their estimated covariance matrix is diagonal. The 

SVD is also used as the first stage of instantaneous blind signal separation (BSS) [10] because it 

acts as a decorrelator. 

Over recent years, there has been a growmg requirement for subspace estimation of 

broadband signals [9,79]. This is also necessary, for example, if the signals to be processed are 

the weighted-sum of past and present samples of sources, e.g. if they are a convolutive mixture 

of the sources. The mixing cannot be modelled by a scalar mixing matrix; instead a matrix of 
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finite impulse response (FIR) filters is required. If each filter of the mixing matrix is represented 

as a polynomial, corresponding to its transfer function, the propagation model then takes the 

form of a polynomial (mixing) matrix [3 I ,73]. Such a transformation produces sensor signals 

that relate to a covariance matrix whose entries are polynomials, i.e. a polynomial covariance 

matrix, which is parahennitian: a natural extension of the Hermitian property to the space of 

polynomial matrices. 

In the case of convolutively mixed signals, the sensor outputs will generally be correlated 

with one another. However, they can no longer be decorrelated using the EVD (or SVD), which 

only measure and remove instantaneous correlation, i.e. correlation between pairs of signals 

sampled at the same instant in time. This is not sufficient for accurate broadband signal 

subspace estimation. Therefore, it is necessary to impose decorrelation, not just at the same time 

instant for all signals, but over all relative time delays. This property is known as strong 

decorrelation [74] and a matrix of suitably chosen FIR filters is required to achieve it. 

1.1.2 Paraunitary Filter Bank Design Methods 

One way of diagonalising a polynomial parahermitian matrix is to apply a transformation that is 

a generalisation of the EVD to polynomial matrices. A critically important feature of the EVD is 

that the total spectral energy of the received signals is preserved after the decomposition 

process. The extension of this to polynomial matrices is the requirement that the transformation 

preserves the total signal power at every frequency. Such a transformation is called a 

paraunitary polynomial matrix and represents a multi-channel all-pass filter [73]. Polynomial 

matrices have been used for many years in the area of control [31]. They play an important role 

in the realisation of multi-variable transfer functions associated with multiple-input multiple­

output (MIMO) systems. Numerical procedures have been developed for a range of polynomial 

matrix factorisation and reduction operations such as the Smith-McMillan decomposition 

[19,73]. To date, however, very little attention seems to have been devoted to polynomial matrix 

decompositions that are natural extensions of the EVD (or SVD) to broadband signals, i.e. a 

polynomial matrix EVD (PEVD). 

Subband Coder Design Methods 

In subband coding, the problem of designing a PEVD has been tackled indirectly, from the 

viewpoint of filter bank optimisation for subband coding [13,16,29,32-35,48,56,68-77,88]. One 

body of work on this problem concerns the design of energy compaction filters for the case 

where the input signal x(t) is a known zero mean, wide-sense stationary (WSS) process 

[32,48,74]. In [74], Vaidyanathan has shown that optimality can be achieved using unrestricted 

(ideal) filters to construct paraunitary filter banks. He proves, under mild assumptions, that an 
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ideal optimal paraunitary subband coder satisfies strong decorrelation and a property known as 

spectral majorisation: the ordering imposed on the signal variances at each frequency is 

independent of frequency . An example of spectrally majorised subbands is shown in Fig. 1.2. 

Spectral majorisation is seen as a generalisation of the eigenvalue ordering done by the SVD. 

....... ...... '" - . - .":::,, ~ =--....... -----; - ._._.- .- .- ...... o_.- o_o __ S (e i fO) 
3 

Normalised angular frequency OJ 

Sk (e ifO ): power spectral density of the k th output signal from a subband coder 

Figure 1.2: Example of spectrally majorised signals . 

A filter bank that is optimal for subband coding is known as the principal component filter 

bank (PCFB) [68] . In fact, the PCFB has been shown to be optimal for other objectives, e.g., 

noise reduction [3,4], In general, the existence of a PCFB cannot be assured for FIR filter banks, 

except for the special case of two-channel filter banks [33] . A number of authors have proposed 

design methods for suboptimal paraunitary FIR filter banks [13,16,29,32,48,53-56,69,77,88]. A 

technique that uses linear programming to design such a filter bank is presented in [13,48] . 

Regalia and Huang [56] propose a method based on the parameterisation of fixed degree two­

channel lossless (i .e. stable, causal and all-pass) multivariable lattice filters [73]. The filter 

optimisation is computationally complex and nonlinear; the update equations resemble those of 

standard gradient descent methods. A simpler and more efficient approach is proposed in [32], 

called the window method. The basic idea is to window Vaidyanathan's ideal filter bank 

solution. This technique can be used to design two-channel FIR paraunitary filter banks; a 

design strategy for the multiple-subband case has been conjectured in [32] with little detail. 

Signal Subspace Analysis Methods 

Other authors have presented paraunitary filter bank design algorithms in the context of 

broadband subspace decomposition [17,37,49,57]. Another fixed degree parameterisation 

technique is introduced in [57] (a similar approach to that in [56] above) . In contrast to the other 
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method, the filter bank is constructed using infinite impulse response CIIR) filters, which raises 

stability issues. 

A fairly obvious way of diagonal ising a polynomial covariance matrix is to split the input 

spectra into narrow frequency-bands (subbands) and use the SVD to decorrelate the signals at 

each subband. Lambert et al [37] propose a frequency-domain technique based on this premise 

for broadband signal subspace estimation that is proclaimed to be an extension of the SVD to 

polynomial matrices. The method involves applying an EVD at each frequency to a set of 

conditioned data and the approximate inversion of FIR filters. The drawbacks with these 

frequency-domain approaches mean that they are limited in the extent to which the signals are 

dec on-elated and they introduce phase discontinuities around the band edges. These are 

problems typically encountered with the independent frequency band (IFB) approach used in 

space-time adaptive processing for phased array radar [36]. 

In [5], a novel time-domain technique is proposed for addressing the convolutive BSS 

problem. A variant of the algorithm which is relevant to this thesis has two stages: the first stage 

uses second-order statistics to design a paraunitary matrix for imposing strong decorrelation 

upon the signals, and is referred to as the second order sequential best rotation (SBR2) 

algorithm [44]; the second stage uses a fourth-order cost function to construct a paraunitary 

separation matrix, and is called the fourth order sequential best rotation (SBR4) algorithm. Both 

stages involve constructing a paraunitary matrix in an iterative fashion; at each step of the 

algorithm a time-delay matrix and a rotation matrix is found, which constitute an elementary 

paraunitary matrix that maximises the cost function. The two algorithms construct a paraunitary 

matrix as the product of elementary paraunitary matrices. 

An initial evaluation of the SBR2 algorithm has revealed that it can perform strong 

decorrelation, to a good approximation, in the case of two convolutively mixed signals. This is a 

crucial property of a polynomial matrix EVD (PEVD). However, further development and 

assessment of this technique is required to improve its applicability, e.g. a method for extending 

it to the multichannel case; a thorough investigation of its behaviour and performance to show, 

for example, the level of accuracy achieved in the estimation of broadband signal subspaces. 

Comparison of Methods 

There is a fundamental difference between traditional subband coder design methods and the 

signal subspace analysis techniques. The latter are designed to process arbitrary multichannel 

data. By contrast, the former are typically intended for processing a single known input 

sequence which is assumed to originate from a WSS process [74]. 
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1.2 Thesis Objectives and Contributions 

The purpose of this thesis is to present a contribution to further understanding of polynomial 

matrix decompositions for the task of broadband signal subspace estimation and their 

significance in the design of orthonormal FIR filter banks for subband coding. To this end, the 

research presented focuses on the development of the second-order sequential best rotation 

(SBR2) algorithm. A frequency-domain counterpart, referred to as the bandwise algorithm, is 

also developed. A major part of the thesis is then concerned with the extension of the SBR2 

algorithm for effective application to broadband subspace decomposition and subband coding. 

The following summarises the novel contributions made by this thesis. 

A family of multichannel frequency-domain polynomial matrix EVD (PEVD) methods, 

known as the bandwise algorithm, is introduced. Here, we use classical methods for spectral 

estimation [28,50] in defining new PEVD estimation algorithms. In particular, a sliding-window 

bandwise algorithm is introduced which essentially reduces the variance of the spectral 

estimates in the manner of [87]; a windowed covariance-domain bandwise algorithm that adapts 

a well-known technique for spectral estimation in [7] to the problem of PEVD; and a method for 

improving the frequency resolution of the bandwise algorithm. 

The SBR2 algorithm has been taken from a very basic form to one which handles multiple 

channels; offers a choice of cost function; and has an extended range of applicability. Variations 

on the algorithm have been designed and characterised, which offer significant improvement in 

performance. This work includes the following: 

• Extension of SBR2 to the multichannel case by generalisation of the classical Jacobi 

algorithm [20] to polynomial matrices, and development of an understanding of the 

spectral majorisation performed by the algorithm. 

• Development of the algorithm for broadband subspace decomposition, particularly 

broadband noise reduction for sensor arrays, which has been published in [44]; further 

joint work on the algorithm has been submitted for publication [45,46]. The algorithm 

has also been demonstrated as applicable to the problem of channel coding [41,85], 

which is outside the scope of this thesis. 

• Adaptation of an efficient spectral estimation technique in [7] to the SBR2 algorithm, 

which meant applying a window function to the entries of the polynomial covariance 

matrix. 

• Derivation of a new cost function for SBR2 which is based on the coding gain for 

subband coding [73]. 
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The SBR2 algorithm is adapted to the design of M-channeI uniform, paraunitary filter 

banks [53]. This involved designing a data pre-processing stage for exploitation of knowledge 

about the signal statistics, as performed by traditional subband coder design methods. A solution 

to the negative semidefiniteness problem associated with windowing the space-time covariance 

matrix is presented, which is used to great effect with the SBR2 algorithm. 

1.3 Overview 

In the following, a brief overview of the remaining chapters in this thesis is presented. 

Chapter 2 Fundamental concepts in linear algebra and multirate DSP are described on 

which the rest of the thesis builds. To begin with, a review of subspace decomposition for 

narrowband signals is presented, which includes a discussion on matrix decompositions and 

algorithms for their computation. Multi-input multi-output (MIMO) systems are presented in the 

context of filter banks along with an introduction to the z-transform, polynomial matrices and 

paraunitarity. We conclude this chapter with a study of multirate systems. 

Chapter 3 A review of the literature on the theory and optimisation of orthonormal filter 

banks for subband coding is provided which is relied on by the work in Chapter 6. We begin by 

describing the different classes of filter banks; orthonormality and perfect reconstruction are 

introduced. The problem of optimising subband coders is discussed. The link between optimal 

compaction filters, optimal orthonormal subband coders and the principal component 

representation of signals is explained. We present a review of FIR paraunitary filter bank design 

methods for subband coding. Difficulties in using the Vaidyanathan structure are demonstrated. 

Finally, a computationally efficient technique [32] for compaction filter design, known as the 

window method, is assessed and used as a benchmark later. 

Chapter 4 We introduce the concept of polynomial matrix EVD as a means of solving the 

problem of subspace estimation for broadband signals and present various algorithms for this 

task. The extension of the EVD and SVD from scalar matrices to the realm of polynomial 

matrices is considered. An understanding of broadband subspace decomposition is given along 

with some fundamental limitations. Two performance measures are introduced for evaluating 

the performance of polynomial matrix EVD algorithms. The current state-of-the-art in subspace 

estimation for broadband signals proposed by Lambert [37] is reviewed, including an evaluation 

of the algorithm. Well known limitations connected to frequency-domain techniques are 

discussed and an alternative method is presented: the bandwise algorithm. Extensions of this 

algorithm are introduced, evaluated and compared to the prior art. 
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Chapter 5 The SBR2 algorithm is presented as a novel time-domain polynomial matrix 

EVD technique that avoids the problems associated with the Vaidyanathan structure. We extend 

the classical Jacobi algorithm to the domain of polynomial matrices, resulting in a simple 

algorithm that can impose on a set of signals strong decorrelation and spectral majorisation, to a 

good approximation. Variations on the algorithm are discussed, including a version that uses a 

new cost function based on the coding gain measure; a 'windowed' covariance-domain 

approach to the algorithm which gives a significant saving in computational cost and improves 

the subspace estimation accuracy. A new strategy for covariance-domain windowing IS 

proposed which can be used to produce a windowed space-time covariance matrix that IS 

positive semidefinite; this is necessary when using the coding gain based cost function. 

Efficiency issues regarding the SBR2 algorithm are highlighted and alleviating techniques are 

introduced. This includes replacing a slow iterative time-domain process with a more 

economical covariance-domain approach. Finally, we consider an alternative search technique 

for SBR2 that is based on the cyclic-by-rows Jacobi algorithm. 

Chapter 6 The applicability of the SBR2 algorithm to the problem of data compression is 

investigated. While the chapter does describe a modification of the algorithm that is suited for 

the encoding of multichannel arbitrary broadband data, the focus is on extending and adapting 

SBR2 for subband coding. We start by defining a new measure that is an extension of the 

coding gain for multichannel data. The PEVD is related to the PCFB. The relevance of SBR2 to 

traditional filter bank design methods is examined, highlighting the WSS assumption made by 

these techniques. This study motivates the development of a method whereby the SBR2 

algorithm can exploit this knowledge. The resulting algorithm, called the SBR2 coder, is 

compared with the prior art (window method) [32]. Finally, we present experimental results 

which suggest that the SBR2 coder outperforms the window method on a set of benchmark 

problems. 

Chapter 7 A summary of overarching conclusions is presented along with recommended 

avenues of further work to be pursued. 

Appendices Contain some proofs and definitions. 



2 Preliminary Technical Background 

In this chapter, a reVIew of relevant mathematical tools and fundamental signal processing 

concepts is provided. This serves as reference material for the thesis and familiarises the reader 

with notations and symbolisms used throughout. We start by classifying signals in terms of their 

bandwidth and their interactions with systems in section 2.1. This serves to define and 

distinguish between the narrowband and broadband problems. This is followed by a discussion 

on subspace decomposition and its application to data compression and noise reduction in 

section 2.2. From a linear matrix algebra point of view, we will focus here on the SVD and the 

classical Jacobi algorithm. In section 2.3, the linear time-invariant multi-input multi-output 

(MIMO) system is treated along with an introduction to the polynomial matrix, which provides 

a compact representation. We discuss the paraunitary property and its importance in the design 

of such systems. Finally, in section 2.4, the basic components of multirate systems and digital 

filter banks are discussed. A filter bank may be represented by a MIMO system, which allows 

for more efficient implementation and easier analysis. 

2.1 Signal Classification 

In DSP, signals are represented, stored, and processed as discrete sequences of real or complex 

numbers. These are usually referred to as samples of the analogue signal. We denote discrete­

time signals as x(t), y(t), etc, where t is an integer called the (discrete) time index. We use 

these notations to either indicate the entire sequence (e.g. - T s t s T) or to denote the tth 

sample. The context in which the notation is used will clarify the exact meaning. 

2.1.1 Linear Independence 

Let the discrete-time, complex-valued sequences wk (t) and wm (1) be realisations from the 

stochastic, ergodic random processes Wk (t) and W
I11 

(t), respectively. The mean of Wk (t) is 

given by Ilk = E[Wk(t)] i, where E[·] is the statistical expectation operator. This is generally 

dependent on t, the discrete-time index. Henceforth, we assume that statistical processes have 

I For brevity. we will use lower case letters, e.g. W k (t), to denote both a random process and a realisation 

fi'om a random process. So, we can write E[Wk (t)] = E[,t'k (1)] . 
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zero mean; this assumption does not cause any difficulty in the application of a system to 

stationary signals, since the system can be made a zero-mean system by subtracting the mean 

from the input signals. The quantity 

(2.1 ) 

is the crosscorrelation function (or crosscovariance sequence since Ilk = Ilm = 0), where the 

superscript asterisk denotes complex conjugation. The crosscovariance is a measure of the linear 

dependence between the two sequences at different discrete times t and 1". The sequence 

ckk (t, r) is the autocorrelation (autocovariance) of wk (t) . 

Wide-sense Stationary Processes. A stochastic process is said to be wide-sense stationary 

(WSS) iff: (i) E[wk(t)]= E[wk(t r)], for all integers t and rand (ii) ckkCt,r) is independent of 

t, i.e. Ckk(T)=E[wk(t)w;(t 7)], VT. The variable rin ckk(r) is called the time-lag. This 

condition is usually assumed for stochastic processes encountered in many applications, such as 

communications channel modelling, image processing and speech processing. For example, 

speech signals may be assumed to be WSS when observed over short (and much longer) time 

periods - except in pathological conditions. The analysis of linear systems becomes easier when 

signals are assumed to be WSS. In particular, the wide-sense stationarity assumption simplifies 

subband coder analysis and design to a great extent (see chapters 3 and 6). In this thesis, we 

assume that random processes are stationary in the wide sense, unless stated otherwise. 

Two other useful quantities can be defined using Ckk (r). The mean-square value or 

variance of a WSS sequence \Vk (t) can be written as 

(2.2) 

The power spectrum or power spectral density (PSD) of this sequence can be defined, by the 

Wiener-Khinchin theorem [80], as the Fourier transform of its autocovariance function: 

C ( 10) '" () -j(ur kk e L.,c'kk T e . (2.3) 

The crosscovariance, variance and PSD are usually preceded by 'true' to indicate that the 

quantity is an expected value, i.e., the true statistics are known. For example, Ckk (T) may also 

be referred to as the true autocovariance function. In real applications, the true statistics are 

often unknown and samples from a given (noisy) data set have to be used instead to formulate 

and solve a problem. Therefore, there are only a finite number of samples T available, and only 

estimates of the correlations can be formed. In this thesis, we typically assume that T is fixed. 
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An estimate of the true crosscovariance can be obtained by using noisy data samples x k (t) and 

replacing the ensemble average with a time average: 

(t r). (2.4) 

We refer to this as the sample crosscovariance (or sample autocovariance if k = m) function to 

distinguish it from (2.1). The sample variance, Skk (0), and the sample PSD, Skk (e
jm

), may be 

defined similarly. 

Covariance Matrix. Let xCt) E represent the samples of M discrete-time, stochastic, 

random, zero mean, WSS processes at time t. Then the covariance matrix is defined as [86]: 

r r" 
Cl2 CIM 

C = E[(x flx)(x flx)H] E[xx H]= C~l cn C2M 
(2.5) 

\CMl CM2 CMM 

where (.)H denotes conjugate transposition. Key properties of the covariance matrix are that it 

is positive definite (or positive semidefinite) and, by definition, it is Hermitian (self-adjoint): a 

matrix that is equal to its own conjugate transpose, i.e. C = C H . This is equivalent to the 

condition that C kill ( r) C -r) for crosscovariance sequences. Important properties of a 

Hermitian matrix are that it can be diagonalised by a unitary matrix; all its eigenvalues are real 

and positive semidefinite; and the eigenvectors form an orthonormal basis. This type of 

decomposition is referred to as the EVD, which is described in section 2.2. 

2.1.2 Instantaneous and Convolutive Mixing 

The signals IV/il (t) are said to be linear instantaneous mixtures of the sources x k (t) if they can 

be expressed as a weighted sum of present samples of the individual sources, i.e. 

(2.6) 

where the gmk are some scalars. The mixing does not involve time-delaying any of the sources. 

It is clear from (2.6) that the signals WIIl(t) will generally be correlated with each other. 

By contrast, convolutive mixing involves combining samples of xk Ct) at different time-

delays with different weighting coefficients. This is equivalent to passing the signals xk (t) 

through a FIR filter whose impulse response, hk (t), corresponds to the weighting coefficients in 

the discrete-time convolution, i.e. 
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(2.7) 

where the symbol * denotes the convolution operator. The resulting mixed signal is usually the 

linear combination of the filtered signals Yk(t) , i.e. y(t) = I:=I Yk(t). For a generalisation of 

this to multiple mixed signals refer to section 2.3.3. 

In the problem of BSS, the type of unmixing required for successful signal separation 

depends on the interaction of signals with systems. As a consequence, the problem of BSS is 

commonly divided into two categories, viz., instantaneous BSS and convolutive BSS. The 

former is often used to describe the problem of BSS of instantaneously mixed narrowband 

signals. The latter term is typically used to describe BSS for convolutively mixed broadband 

signals. The convolutive problem is considered by some to also encompass the case of 

instantaneously mixed broadband signals and convolutively mixed narrowband signals. 

2.1.3 Narrowband and Broadband Signals 

There are many ways to classify signals. A categorisation that is relevant to this thesis is one 

based on a signal's bandwidth: the band of frequencies for which the signal takes on non-zero 

values. Let Band f be the bandwidth and the centre frequency of a signal, respectively. Then, 

the following two types of signal are defined in terms of their fractional bandwidth I1f = B / Ie : 

Narrowband Signals. A signal is said to be narrowband if the inequality I1f < 0.05 is satisfied 

[51]. A narrowband signal with a bandwidth of zero gives rise to a true autocorrelation sequence 

with infinite time extent (unbounded in time). The covariance matrix for a set of narrowband 

signals is a scalar matrix. 

Broadband Signals. It follows from the definition of narrowband signals that a signal is 

broadband if I1f > 0.05. The covariance matrix of such signals has polynomial entries; the 

definition for polynomial matrices is given in section 2.3.2. 

In the context of sensor anay processing, the case of instantaneously mixed narrowband 

signals is often said to be a 'narrowband problem'. Another situation that falls under this 

category is that of convolutively mixed narrowband signals, provided the signals have the same 

frequency. In both these cases, the time taken by the impinging waveform to travel from sensor­

to-sensor can be represented accurately as phase shifts, so beamforming can often be achieved 

using just complex gains. On the other hand, convolutively mixed broadband signals typically 

present a situation where the delay between sensors cannot be represented accurately as phase 

shifts alone [52]. This is sometimes termed the 'broadband problem'. A broadband beamformer, 

which can implement the required time delays, is often necessary [9,79]. 
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2.2 Subspace Decomposition 

The extraction of a lower dimensional subspace from a data space is a requirement in many DSP 

applications [10,22,73]. The first step in achieving this is the application of a matrix 

decomposition that finds a, usually orthonormal, basis for the entire M-dimensional observation 

(data) space, X E . An orthonormal basis is a set of M linearly independent, orthonormal 

vectors that span X. In many cases, the data, say x(t), represents a set of desired (information) 

signals as well as noise and possibly redundancy. It is often possible to represent the desired 

signals by a linear combination of K of the basis vectors, where K S; M . This subset of vectors 

span a space S E lRK, called the signal-plus-noise subspace or simply the signal subspace. The 

orthogonal complement of S is referred to as the noise subspace N E . The dissection of 

the space X into Sand N is sometimes referred to as subspace decomposition [22,31]. An 

approximation to xCt) can be obtained by an orthogonal projection of xU) onto the signal 

subspace, which produces a set of new signals x(t) as illustrated in Fig. 2.1. The success of 

subspace decomposition techniques depends on the method for estimating the orthonormal basis 

vectors and the determination of a suitable signal-subspace dimension, i.e., the number of basis 

vectors used in the projection. 

x 

N 

Figure 2.1: Orthonormal projection involved in subspace decomposition. The vector xCt) is 

projected from the entire vector space X on the signal subspace S. The noise subspace N is the 

plane outlined by the dotted lines. 

Depending on the area of application, the matrix decomposition appears in various guises 

and is known by different names. In statistics, it is called principal components analysis (PCA) 

and has the property that the variance of the signal subspace is maximised. This is a criterion 

that has been applied in many applications, for example, pattern recognition and signal subspace 

estimation [22,23]. It is also used as the first step in BSS [10] since it may be viewed as 

minimising second-order statistical dependencies between the input signals. That is, PCA may 
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be used to perform second-order BSS on instantaneously mixed narrowband signals. It is blind 

in the sense that no assumptions are made about either the original source signals or the mixing 

process. A complementary property of the PCA is that the projection of the input data onto the 

signal subspace minimises the reconstruction error in the mean-square sense: the distortion 

between the input data and the approximation. In this context, the PCA is known as the KLT, 

particularly in the subband coding community [34,73]. 

The KLT can be computed easily using the EVD, which decomposes a Hermitian 

covariance matrix related to complex data into a set of eigenvalues and eigenvectors. The 

eigenvectors are the bases for the data; the largest eigenvalues correspond to the signal 

subspace. In many applications, a numerical technique known as the SVD is used instead 

[20,21]. The SVD is one of the most important algorithms in numerical algebra for providing 

accurate information about the structure of a system of linear equations. The SVD is sometimes 

preferred over the EVD because it finds a more arithmetically precise solution than that found 

by the EVD and can be applied to an arbitrary matrix, such as to the input data matrix. 

2.2.1 Singular Value Decomposition 

The SVD can generate a set of decorrelated signals by linear transformation of a set of 

correlated signals. Suppose the vector xU) = [Xl (t),x2(t)""'XM (t)]T represents M correlated 

signals having true statistics as stated in section 2.1.1. Given T samples of these 

signals {x(t)lt=O,l, ... T I} with T?M, the matrix XE may be defined to 

be X = [x(O),x(1), ... ,x(T I)] The SVD finds matrices U E and VE such that [20] 

(2.8) 

and the operator diag[·] takes a vector to a diagonal 

matrix. The elements elk are known as singular values and conventionally they are ordered 

as ell ? el2 ? ... ? d M ? 0 . The matrices U and V are unitary, i.e. 

UHU UU IE and VV H = IE (2.9) 

This property can be re-expressed by saying that the transformation is energy preserving: 

IIxkl2 =trace[XX H]=trace[UH D2U] trace[D2]= felf, (2.10) 
k=1 k=1 

where x k denotes the k rh row of the matrix X and the operator trace[·] sums over the diagonal 

elements of a matrix. In words, the iTnorm of the signals is invariant under a unitary 

transformati on. 
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The rows of DV may be regarded as samples from a set of decorrelated signals defined by 

yet) = Ux(t) Dv(t) E (2.1 1) 

where vet) E is a column taken from the matrix V at time t. This follows from the unitary 

property of U and V since 

(2.12) 

and the energy of the mth signal YIIl(t) is d,;,. The matrix CE CMxM is the outer-product true 

covariance matrix for the output signals. 

Let the sample covariance matrix for the inputs be R = XX H / T E . The matri x R has 

two special propeliies, which are that it is (i) Hermitian, i.e. R H = R, and (ii) positive 

semidefinite [21]. The SVD corresponds to computing the EVD of R, i.e. performing the unitary 

diagonalisation given by 

(2.13) 

The diagonals of D2 are the eigenvalues of R, which are real valued and non-negative. The 

rows of U (left singular vectors) are the eigenvectors of R. The matrix U is unique, up to a 

unitary transformation of R. 

2.2.2 Subspace Decomposition and its Applications 

Consider a MxT data matrix X comprising of M correlated narrowband signals x(t), which are 

now in the presence of additive white Gaussian noise. Furthermore, suppose that T» M and 

that the signal-to-noise ratio (SNR) of the signals is sufficiently high. The unitary matrix U 

found by the SVD may be applied to the signals to produce M new decorrelated signals: 

y(t) Ux(t). The unitary matrix is designed to modify the signals in phase and amplitude and 

combine them such that their estimated correlation matrix is diagonal. Since the transformation 

is unitary, the square of the associated singular values represent the true energy associated with 

each of the decOlTelated components. The decorrelation of the signals may be construed as a 

second-order blind signal separation process2
. Since the SNR of the signals is high, the last 

M - K singular values of the diagonal matrix D in (2.8) are very small, for 1 :; K :; M . A new 

approximate reconstruction of the signals x(t) is: 

Note that, in general, higher order statisties are exploited to determine the "hidden" rotation matrix for 

completion of the separation process. 
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(2.14) 

Here, P is a projection matrix of the form diag[pl' P2"'" P k"'" PM], where P k 1, for 

1:; k :; K and Pk 0, for K < k :; M. This is the Karhunen-Loeve expansion truncated 

at k = K, as illustrated in Fig. 2.2. We may use the system in the figure to perform a number of 

tasks, particularly data compression and noise reduction, as will be explained next. 

Noise Reduction 

Consider the problem of increasing the SNR of desired narrowband signals in nOIsy data 

derived, for example, from an antenna sensor array. The diagonal matrix in (2.8) is 

approximately of the form D 
0'1 
j since the signals are decOlTelated from the noise. 

10' 

Here, cr is the square root of the noise variance, Icr is a eM K) x(M - K) matrix, and DI is a 

KxK diagonal matrix with elements elk »0', for 1 :; k :; K . The matrix D is partitioned, which 

corresponds to separating large singular values in D j from smaller ones in 10' . Appropriately, 

the (unmixing) matrix U is partitioned as U = [U I' U 2 r, where V I comprises the eigenvectors 

corresponding to 10'. The rows of U I define the signal-plus-noise subspace. The rows of U 2 

define the space orthogonal to the signal subspace; this is the complement of the signal 

subspace, sometimes called the noise subspace, although the whole M-dimensionaI space 

contains values from the noise. 

Signal and noise Signal subspace Approximation 
subspaces 

,--------, L 
Application of yet Projection: 
unitary matrix 

U found by 
SVD 

removal of 
unwanted 
channels 

l r---------, t10 x(t) 

Reconstruction: 
application of 

VH x(t) 

Figure 2.2: Block diagram representation of the Karhunen-Loeve expansion. 

Note that the distribution of energy between the signal and noise subspaces is physically 

meaningful because of the invariance of the lrnorm under the unitary transformation. Also note 

that, if there were two signals with very different power levels, the process described here 

would accomplish signal separation, to a large extent. 
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Data Compression 

Consider the task of minimally coding multichannel data. COlTelation between the input signals 

x(t) is a type of redundancy. The SVD (or EVD) removes this redundancy by removing 

instantaneous cross-correlations between the signals. If we keep the first K of the decorrelated 

signals yet) and discard the rest there will be a corresponding reconstruction error. The unitary 

matrix found by the SVD is the one that minimises this error and thus most of the information in 

the input data is contained in the first K signals. In other words, amongst all unitary choices of 

U, the total energy in the first K signals, for 1:::; k :::; K, is maximised; this property is known as 

energy compaction in subband coding [73,74]. This choice of U minimises (amongst all unitary 

U) the product of the data channel variances, i.e. TIk:] 1 Yk (t) 12 . After possibly a quantisation 

stage, which is omitted in Fig. 2.2, the amount of storage capacity required to hold the data 

produced by all the sources is minimised, to a fixed level of accuracy. In (2.14), the Ux(t) and 

the U H yet) pal1s of the expression may be seen, respectively, as the analysis stage and the 

synthesis stage found in filter banks (discussed later in section 2.4). 

2.2.3 Classical Jacobi Algorithm 

The EVD can be computed in a step-by-step fashion using the classical Jacobi algorithm, which 

consists of a sequence of orthogonal similarity transformations [20]. Each transformation is an 

elementary plane rotation (Jacobi rotation) designed to selectively zero an off-diagonal of a 

matrix. Consider a positive semidefinite symmetric (real) matrix R E , which may be, for 

example, the sample covariance matrix for M real signals. Note that the transformation required 

for the more general case of a Hermitian matrix is discussed later in section 5.2. The Jacobi 

rotation matrix is defined for the intersection of rows nand p with columns nand pas: 

11
,,_, 

0 
c s 

Q(lip)CB) = 
11'_11_1 (2.15) 

l 0 
-s C 

I M _
p 

where c and s denote the cosine and sine respectively of the angle BE lR and I M _ p is the 

(M - p)x(M - p) identity matrix. Notice that Q( I1P i(B) is an orthonormal matrix. In a single 

step of the Jacobi algorithm, the plane rotation in (2.15) is used to transform R according to 

(2.16) 
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where (.) T denotes matrix transposition. Using the symmetric property of R, multiplying out 

(2.16), and setting t;;p = 0 we have that 

(2.17) 

If r"p = 0 then the matrix is already diagonal and we can set B = J[ /2. Otherwise, we have the 

following expression for the rotation angle: 

tan2B = (2.18) 

The denominator r,1Il - rpp and the numerator 2r"p of the quotient In (2.18) are the 

components of a vector v. The task of zeroing the cross-correlation terms r"p and rpli may be 

interpreted as one of rotating the vector v onto the (r,," - rpp) -axis so that the 2r"p component 

of the vector vanishes. One possible solution to (2.17) is to apply a clockwise rotation of 2B 

radians so that v is brought onto the positive (r,," - rpp) -axis, as illustrated by the example 

shown in Fig. 2.3. 

2r ........................... v np 

o 

Figure 2.3: Plane rotation of a symmetric matrix. 

The Jacobi algorithm applies a sequence of such transformations to produce a matrix S 

that is more diagonal than R . It can be thought of as iteratively modifying the symmetric matrix 

such that the off-diagonal terms diminish with each step. The EVD orthogonal matrix U 

comprises the product of successive Jacobi rotation matrices Q r ' This is true since every 

orthogonal (or unitary) matrix can, up to a channel negation, be decomposed into the product of 

a sequence of rotation matrices [73]. The operations carried out by the Jacobi algorithm are as 

follows: 

Initialise: R' := Rand U := 1M . 
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Iterate: 

It follows that after every step, the R' is still symmetric and the identity URU H R' 

continues to hold. 

The Q(n[J!(B) chosen is the one that annihilates the off-diagonal in R' with the largest 

magnitude. It turns out that Q(IlI')(B) minimises the sum of the squares of the off-diagonal 

terms. Equivalently, since the transformation is unitary, it maximises the sum of the squares of 

the diagonal terms. Successive transformations undo some of the off-diagonals that were 

previously annihilated, but nevel1heless at each stage of the algorithm, the sum of the squares of 

the diagonal terms of R' increases. Using this fact, it can be shown that the off-diagonal 

elements get smaller and smaller until the symmetric matrix is diagonal to machine precision. It 

is complete after a permutation (orthogonal transformation) is applied to the channels to order 

the diagonal of S . 

An alternative strategy for applying plane rotations with the aim of obtaining the EVD (or 

SVD) is the cyclic Jacobi algorithm [20,21]. The algorithm applies the plane rotation defined in 

(2.15) to the symmetric matrix RE for a total of (M - M ) / 2 different index pairs. Such 

a sequence of transformations is called a sweep. The pairs are selected on a fixed cyclic-by-rows 

or cyclic-by-columns basis. As an example, consider the following transformations: 

(operation on signal pair 1,2) 

(then operation on signal pair 1,3) 

(then operation on signal pair 1,4, and so on) 

A different and more popular method for computing the EVD (or SVD) is the QR 

algorithm, which is generally computationally superior to the Jacobi algorithms described above 

[20]. However, in comparison to the QR algorithm, the Jacobi algorithms are very simple, and 

therefore they are attractive for extension to the realm of polynomial matrices. In chapter 4, we 

present an algorithm that is essentially a generalisation of the classical Jacobi algorithm to 

polynomial matrices. The extension of the cyclic-by-rows Jacobi algorithm to the same field is 

also considered to a lesser extent in the chapter. 
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2.3 Multi-input Multi-output systems 

2.3.1 The z-transform 

Signal processing analysis IS often simplified by considering the frequency domain 

representation of signals and systems. A commonly used alternative representation of xU) is its 

z-transform: 

(2.19) 

The z-transform encodes the data as polynomials, power senes, Laurent series or Laurent 

polynomials in Z-l (a two-sided polynomial) [15,86]. We will use the term polynomial to 

include Laurent polynomials. Note that the Fourier transform, X (e jUJ
), of X(l) is X 

evaluated on the unit circle, i.e. for z = ejW
; the evaluation of X (z) for different points on the 

unit circle in the z-plane gives the discrete Fourier transform (DFT) of xU), provided x(t) has 

finite sample support. 

A feature of the z-transform representation is that operations such as convolution or the 

filtering of data corresponds to taking the product of two polynomials. For a filter gU) of 

order 2N g , the convolution sum (as in (2.7» may be expressed as 

No 

G(z)X(z) = I> Ig(r)x(t-r). (2.20) 

2.3.2 Polynomial Matrices 

An MxM polynomial matrix H(z) in the indeterminate variable Z-l can be expressed as 

/) 

H(z) = Lh(t)z 

where tE 7L tl 2: 0, t2 > 0, 

Hkm 

H1I(z) H I2 (Z) 

H 21 (Z) Hn(z) 

h 

= Lhkm(t)z 

HIM (z) 

H 2J'v1 (z) 

are (Laurent) polynomials in the indeterminate z and h(t) E 

(2.21) 

(2.22) 

or equivalently we write 

H(Z)E The elements of the matrix h(t) are denoted by [h(t)]km = hkm (t) . In keeping 
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with the standard notation for linear systems and signal processing, we have chosen to denote 

the indeterminate variable by z since this is normally used to represent a unit delay. 

Multiplying a polynomial by z -I will sometimes be referred to as applying a delay. Since the 

leading term of z-!lH(z) is constant, the effective order of H(z) isN=t2 +t l • If tl =0 

and h(t2)::j:. 0, then H(z) represents a FIR system of order N t 2. The matrix H(z) may also 

be viewed as a matrix polynomial, i.e., a polynomial whose coefficients are matrices. 

Polynomial vectors and vector polynomials are defined accordingly. 

Polynomial matrices provide an easy way of describing and analysing multidimensional 

systems. They have been used for many years in the areas of control [31] and multi rate systems 

[73], and more recently in MIMO communications [47,58]. Polynomial matrices play an 

important role in this thesis. In particular, they are used to represent the estimated covariance 

matrix of broadband (or convolutively mixed) signals, which we refer to as a polynomial 

covariance matrix, as discussed in chapter 4. 

Degree of a Polynomial Matrix. In general, the order of a polynomial matrix is different from 

its degree (or McMillan degree). The degree of the polynomial matrix H(z) is the minimum 

number of delay elements (i.e. 

Example. Let 

elements) required to implement ie [73]. 

H(z) 
-I 

Z 
(2.23) 

It is clear that, in order to implement this polynomial matrix, at least two delays are required; 

see Fig. 2.4. So the degree of H(z) is two, whereas the order is N = 1 . A tool for computing the 

degree is defined in [73], which uses the Smith-McMillan decomposition of a polynomial 

matrix. 

f---f-+-'f--+ Y 1 (t) 

X2(t) 

Figure 2.4: Implementation of the system in (2.23). 

3 Note that the degree is not defined for Laurent polynomials (or non-causal systems) because they cannot 

by implemented purely using delays. 
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Properties of Polynomial Matrices 

Paraconjugation. The paraconjugate of a polynomial matrix H(z) E is defined as: 

(2.24) 

where the superscript asterisk represents complex conjugation. Example: Let A(z) = b - c 

then A(z) = b - z. If a(k) is real, then A(z) A(Z-I). Note that in the degenerate case of an 

order-zero polynomial matrix, this cOlTesponds to the usual Hermitian transpose. 

Parahermitian. The polynomial matrix H(z) is refelTed to as parahermitian if it is identical to 

its paraconjugate, i.e. if 

8(z) H(z). (2.25) 

In other words, 

(-t)=[h(-t)]:m' k,lnE {I,2, ... M}. (2.26) 

This property requires the limits of summation, tl and t 2 as defined in (2.21), to be identical. It 

should be noted that in the degenerate case of an order-zero polynomial matrix, this corresponds 

to the usual Hermitian (symmetric) matrix. 

Paraunitarity. Recall from section 2.2.1, that the SVD could be used to provide a unitary 

transformation of a matrix of scalars. The extension of the unitary property to polynomial 

matrices leads to the definition of the paraunitary property [73]. The polynomial matrix H(z) 

satisfies the paraunitary property iff 

H(z)H(z) = 8(z)H(z) = I. (2.27) 

An important property of a paraunitary matrix H(z) IS that it is an energy-preservmg 

transformation, that is, in terms of a MIMO system, the total spectral energy of the input signals 

is conserved; this is shown later in chapter 4. This implies that the filters of the system have 

constant gain over all frequencies (Le. it is a multidimensional extension of the all-pass filter). If 

the paraunitary system comprises causal FIR (stable) filters, then we say that it is lossless, a 

natural choice in the design of FIR filter banks - see chapter 3. 

2.3.3 FIR MIMO Systems 

Consider the multi-input multi-output (MIMO) linear time-invariant (LTI) system with K inputs 

and N outputs shown in Fig. 2.5. Say x k (t)=[xk (O),Xk (1), ... ,xk (t), ... Y is the eh input. 

Let X = [X 1(t),X2(t), ... ,xk(t), ... ,X K(t)]T. Then the time series in X may be represented as a 
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vector of algebraic power series: X(z)=[X I (Z),X 2 ... ,XK(z)Y. An LTI system is 

characterised by its impulse response or equivalently its transfer function. The MIMO system 

can be characterised by H(z) E CVfXK(Z), whose entries hklll (t) may be viewed as the impulse 

responses between the k lh input to the In lh output. Equivalently, the system may be thought of 

as a set of transfer functions Hmk(z). Assuming the transfer functions are LTI digital filters 

(e.g. FIR filters), the rnlh output of H(z) in response to all inputs is given by 

K 

YIIl(z) = LHlIlk(z)Xk(z), 1 ~/n~M. (2.28) 
k=1 

The operation in (2.28) can be described compactly as 

(2.29) 

where rCz) = [Ym (Z)] IS a vector of power series corresponding to the outputs from this 

transformation. 

The MIMO systems we consider in this thesis are limited to the case where M ;::: K , i.e. 

for square polynomial matrices or the overdetermined problem. This is advantageous in, for 

example, communications and sensor array signal processing, where the number of antenna 

sensors is equal to or greater than the number of source signals. Such a scenario provides a 

sufficient number of degrees-of-freedom for exploitation of the spatial diversity. A typical 

application of MIMO systems is communications, where for example, they may be employed to 

overcome bandwidth limitations and increase signal quality [66]. In multirate DSP, the 

representation of a filter bank as a MIMO system results in more efficient implementations and 

easier analysis [73]. 

XI (t) 
YI (t) 

x2 (t) MIMO 
Y2(t) 

.. 
" 

System .. .. 
" " .. .. 

x K (t) 
Yk! (t) 

Figure 2.5: A K-input M-output L TI system. 
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2.4 Introduction to Multirate Systems 

2.4.1 Basic Components 

In DSP, digital signals are often obtained by sampling and quanti sing continuous-time signals. 

The discretisation of a continuous-time signal leads to the notion of resolution in time and 

amplitude. The higher the sample rate and the larger the number of quantisation levels the more 

accurate the digital approximations. The cost of having higher sample rates and more 

quantisation levels is of course larger amounts of data to process. The widespread popularity of 

multirate DSP systems is mainly due to their ability to process data in a very efficient manner 

and thus reduce these costs. This is achieved by allowing sampling rate variation throughout the 

system and, moreover, keeping the sample rate at internal points to a minimum. Multirate DSP 

techniques have been exploited in many applications, including spectrum analysis, digital 

communications [1,75,78], image and audio coding [32,63,71], equaiisation [82] and noise 

reduction [3]. They offer the possibility of, for example, reduced communications bandwidth, 

reduced storage requirement, improved noise rejection, andlor reduced computational 

complexity. 

A multirate DSP system is usually composed of three basic building blocks that operate 

on a signal x(!) . Two of these are decimation and interpolation, which enable the efficient 

alteration of the data rate. An M-fold decimator and the expander stage of the interpolator are 

shown in Fig. 2.6. The decimation retains every M th sample, i.e. the sampling rate at the output 

of the decimator is M times lower than the rate of the input. The expander inserts M 1 zeros in 

between every original sample. The decimation process generates frequency-shifted stretched 

versions (spectral images or alias components) of the original information signal. If the original 

signal is not suitably bandlimited, then direct decimation of the signal will cause aliasing: 

corruption of the baseband signal spectrum by overlapping alias components [73]. Without 

some sort of compensation, aliasing results in the loss of information. For example, an analytic 

bandpass signal of bandwidth b" can be decimated by a factor M = J[ I b" without creating 

overlap of the images. 

The other building block is a transformation, such as a LTI system (filter), as shown in 

Fig. 2.7(a). The transformation usually serves to transform XCI) into a domain where processing 

is more convenient. The transformation can be viewed as a decomposition of the signal into 

4 When the distinction is required, we use the variable I as an index for the samples of a high rate signal 

and the variable t for indexing the samples of a low rate (decimated) signal (i.e. the subband signals). 
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basis vectors, and the inverse transformation may be looked upon as the reconstruction with the 

transform coefficients. The systems shown in Figs. 2.6 and 2.7 are single-input signal-output 

systems since they operate on a scalar signal (e.g. x(z) ). 

X('Y tM PI)=X(MIJ 

(a) 

{

X(z/M).l tM 
x(t) .I I Y(I) ~ . . 'I-. _I M_-,I 0, otherwIse 

(b) 

Figure 2.6: (a) decimation and (b) expansion. 

X(~ ~') ,H(Z)X('~ pi H-1 (z)Y(z) 
H(z) H-1(z) 

xU) 

y(t) == Ix(T)h(t T) 
r;;;;::(j 

(a) (b) 

Figure 2.7: (a) filter operation (LTI system) and (b) its inverse. 

2.4.2 Filter banks 

Another type of transformation, which is used predominantly in multirate DSP, is the filter 

bank, as given in Fig. 2.8. The input signal xCz) is split into M (high sample rate) bandlimited 

signals, xk(z), by a set of filters {Hk(z)} called the analysis bank. Each filtered signal Xk(l) is 

then decimated to produce new (low rate) time sequences or subband signals, vk (t). This 

process is known as subband decomposition. In Fig. 2.9, we show a typical set of frequency 

responses for the analysis filters. Each of the subbands corresponds to a different portion of the 

input power spectrum. The type of subband processing used is application dependent, although 

generally they are converted to digital form by a quantiser, which constrains the amplitudes of 

the signals to a set of discrete values. To reconstruct the original signal, the signals vk (t) are 

ex panded by a factor of M and passed through a synthesis bank {G k (z)} before they are 

recombined. The recombined output, y(l), is at the same sampling rate as xC!) . 

We often desire the inverse of a transformation in order to generate (or approximate) the 

original input signal. In Fig 2.7, the signal xCz) is transformed by the LTI filter H(z) to 
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produce xCz). A simple method of recovering x(z) from Y(l) is to pass y(l) through the 

inverse filter, H- 1 (z) . Such a system is said to be a perfect reconstruction system. However, in 

the case of the filter banks in Fig. 2.8 it is more difficult to design a perfect reconstruction 

system on the basis that the synthesis filters form the inverse of the analysis bank. This is 

because the decimation and expansion stages introduce aliasing, which needs to be cancelled by 

the combination of the analysis and synthesis banks. Given the set of FIR filters {Hk(z)}, an 

FIR-inverse for the synthesis bank, {Fk (z)}, does not necessarily exist. The inverse may consist 

of infinite impulse response (UR) filters. A problem with using IIR filters is that they are 

notoriously unstable. However, this is not the only way of achieving perfect reconstruction. In 

[73], Vaidyanathan shows that it is possible to construct a perfect reconstruction system using 

only FIR filters. Any aliasing caused by the decimation stage of a filter bank can be cancelled 

by careful selection of the analysis and synthesis banks. 

.. .. 
co 

Analysis bank 

co .. 
co 
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Figure 2.8: Analysis and synthesis filter bank for multirate DSP. 
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Figure 2.9: Typical frequency response of an analysis (or synthesis) bank. 

Polyphase Representation 

An important concept in multirate DSP is the polyphase decomposition [6,73] of signals and 

systems. It can considerably simplify theoretical results and produce computationally efficient 
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implementations of multirate systems. Since the polyphase representation of filter banks plays 

an important role in the rest of this thesis, we formally define it here. Let H (z) = I:= h(t)z-I 

be the transfer function of a digital filter. It is possible to decompose H(z) as: 

M-J 

H(z) = Iz Ek (Type 1 polyphase representation), (2.30) 
k=O 

where Ek (z) = I:= ek (t)Z-1 are called the Type 1 polyphase components of H (z). The 

coefficients of each polyphase component are given by ek (t) = h(Mt + k), 0 ~ k ~ MI. In 

words, the impulse response sequence h(t) is divided into M non-overlapping subsequences 

ek(t) , and the e" subsequence is merely the M-fold decimated version of h(t+k). Note that 

the quantity Ek(z) depends on M for a given H(z), e.g. the lengths of the sequences ek(t) 

depend on M, and are less than the length of h(t) . 

Essentially, polyphase decomposition allows for the representation of a filter bank as a 

MIMO system that operates on a vector signal ,x(t) . The vector x(t) is obtained by passing the 

scalar signal X(l) through a delay-chain and decimation (or demultiplexing or blocking) 

network shown in Fig. 2.1O(a). It has been shown that the analysis bank in Fig. 2.8 is equivalent 

to having a demultiplexer network followed by a MIMO system in [73], as shown in Fig. 2.11. 

The noble identities [73] have been used to obtain the representation shown. The analysis bank 

is now described by the MxM polynomial (polyphase) matrix E(z) E Similarly, the 

synthesis bank may be represented in this way as shown in Figs. 2.1 O(b) and 2.11. 
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Figure 2.10: (a) Conversion of a scalar signal to a vector signal and (b) conversion of a vector 

signal to a scalar one. 
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We can now see that a filter bank is a natural extension of a matrix transform for scalar 

matrices by comparing Figs. 2.2 (ignoring the transform domain operation shown) and 2.11. 

The MIMO representation has converted sequential processing to parallel processing. This 

makes for more efficient implementation since all the processing (filtering) is performed at 

lower sampling frequencies. For example, the sample rate of the input x(t) to E(z) in Fig. 2.11 

is M times lower than that of the input signal to the filters {H k (z)} in Figs. 2.8. 

2.5 Concluding Remarks 

The aim in this chapter has been to provide some basic concepts that are used in the remainder 

of this thesis. We have introduced the EVD (and SVD) for instantaneous decorrelation of 

narrowband signals from which the discussion has progressed to considering their use for 

subspace decomposition in two typical applications: data compression and noise reduction. We 

have presented the classical Jacobi algorithm for implementation of the EVD. An introduction 

to MIMO systems and polynomial matrices was presented. We have looked at the extension of 

unitarity to polynomial matrices, which lead to the notion of a paraunitary matrix. A short study 

of multirate building blocks and their interconnections with digital filters is provided. This 

includes an introduction to filter banks and their polyphase representation. With the introduction 

of polynomial matrices we have motivated the extension of classical EVD / SVD algorithms to 

the case of polynomial matrices, which will be addressed, in one form or another, in the next 

three chapters. 



3 Theory and Design of Optimal 

Orthonormal Filter Banks 

In this chapter, a review of relevant theory and results for the design of filter banks is presented. 

We begin by defining different classes of filter banks in section 3.1. An introduction to the 

optimisation of orthonormal filter banks for subband coding is provided in section 3.2. Optimal 

orthonormal filter banks and optimal compaction filters are found by the principal component 

filter bank (PCFB), if one exists. A PCFB exists for ideal filter banks, block transforms, and any 

two-channel filter bank, but, in general, will not exist for FIR filter banks of arbitrary number of 

channels. The procedure in designing a PCFB using ideal filters is described in section 3.3, 

which is adopted by a state-of-the-art FIR filter bank design tool, called the window method. 

This method, along with other prior-art techniques, is studied in section 3.4. A short evaluation 

of the window method is presented, which provides a benchmark for algorithms proposed later. 

3.1 Filter Bank Classification 

Consider the filter bank in Fig. 3.1. The filter bank shown is said to be a uniform filter bank 

because each of the subband signals is decimated by the same factor, M [35,76]. In this case, the 

filters typically have identical but shifted frequency responses, as shown in Fig. 2.9. The 

average sampling rate over the subbands is equal to the input sampling rate. It is possible to 

have different decimation factors for different channels provided the overall number of samples 

across all subbands, per time interval, remains the same as that for the input signal. This type of 

filter bank is said to be non-uniform and is suited for coding of certain types of signal, e.g. those 

targeted for human perception. The filter bank shown in the figures are also said to be 

maximally (critically) decimated because the decimation factor is equal to the number of 

channels. In recent years, filter banks with M less than the number of subband channels have 

been shown to offer advantages over maximally decimated systems for applications such as 

equalisation of acoustics [82] and adaptive beamforming [84]. Our discussions in this thesis are 

restricted to the uniform, maximally decimated filter bank in Fig. 3.1. We consider subclasses of 

all such filter banks, as defined in the following. 

Unconstrained Filter Banks. A filter bank with filters H k (z) that have no restriction on the 

order, N, is called an unconstrained filter bank or ideal filter bank. The filters of such a filter 

bank are allowed to be IIR filters and/or non-causal. 
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Block Transforms (or transform coder). A filter bank with the constraint that N is less than the 

number of channels M, i.e. N < M . In terms of the polyphase representation in Fig.3.1(b), this 

is the special case where E(z) and F(z) are scalar matrices, i.e. E and FE . The operation 

of the filter bank is simply a matrix transformation of the vector signal x(t) (the 'blocked' 

version of the input signal X(l) ). 

Constrained (FIR) Filter Banks. A filter bank with the constraint N < 00. The matrices E(z) 

and F(z) of such a filter bank are polynomial matrices, as given in (2.21). In relation to the 

block transform, an FIR filter bank can be viewed as a lapped transform; i.e. the present output 

vector is the sum of the matrix transformations of the present and all past blocks of data x(t) . 
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Figure 3.1: (a) M-band uniform, maximally decimated subband coder and (b) its polyphase 

equivalent. 
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Orthonormal Filter Banks. The set of filters {H k (z)} in Fig. 3.1 (a) are orthonormal if [73] 

(3.1 ) 

where OIJ.M denotes the z-transform of a sequence that is decimated by a factor M. This, in 

particular, implies that each filter H k (e jOJ
) satisfies the Nyquist(M) constraint: 

IH k (e j {O)1
2

1 = 1 ,i.e. ,M / H k (e j(W-2Jr(n-I)IM» /2 = M . 
L...n=J 

",M 
(3.2) 

In words, the filters {H k (z)} are orthogonal with impulse responses that have unit energy. 

Orthonormal filter banks have several advantages which make them very attractive to use: 

I. The total signal energy in the subband channels is preserved, which guarantees that 

errors generated by the quantisation process (quantisation noise) are not amplified; 

2. The design of either the analysis or synthesis bank is required only see perfect 

reconstruction filter banks below; 

3. If the analysis filters {Hk(z)} are FIR, then the corresponding synthesis filters {Gk(z)} 

and synthesis polyphase matrix F(z) are also necessarily FIR; 

4. Allows for efficient implementations using unitary (Jacobi rotation) matrices. 

The Nyquist(M) constraint translates into the following specification for a filter, h(!): 

h(O) = c and heM z) 0 for 1 * 0, where c is some constant. Such a filter is referred to as a 

Nyquist (or M lh -band) filter. An ideal brickwall filter, i.e. one that has a sinc impulse response, 

would satisfy this criterion; however, such a filter would be impractical for use in real systems. 

The Nyquist criterion does not define a unique spectrum and so other constraints can be 

included, e.g., a smooth transition band in the filter's frequency response. The Nyquist filters 

may also be understood from a heuristic stand point. For example, consider the design of the 

transmitter and receiver filters, H(z) and F(z) respectively, for data transmission through a 

bandlimited communications channel. The filters are designed such that there is zero 

intersymbol interference (lSI) at the sampling instants of the filtered signal. In the presence of 

additive white Gaussian noise, the SNR is maximised if F(z) is matched to H(z), i.e. 

F(z) H(z) [51], in which case both the zero lSI and the Nyquist(M) properties are satisfied. 

Nyquist filters are particularly useful in subband coding, as will be discussed in section 3.3. 

The orthonormality of a filter bank can also be expressed in terms of the polyphase 

representation in Fig. 3.1 (b). The filter bank is orthonormal if E(z)E(z) = I (or E(eJ(V) is 
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unitary for all m), i.e. it is paraunitary. A transform coder (E(z) = E) is orthonormal when E is a 

unitary matrix. 

Perfect Reconstruction Filter Banks. A perfect reconstruction filter bank (PRFB) is one that, 

in the absence of any subband-processing, yields the output [73] 

y(z) cx(z r), VI, r, (3.3) 

and for some constant c 7:- a, where X(l) and y(z) are, respectively, the input and output of the 

filter bank in Fig. 3.1. This implies that a PRFB minimises the mean-square error (MSE) or 

reconstruction error: 

£ = IY(l) - x(z)1
2 

• (3.4) 

To design a PRFB the polyphase synthesis bank F(z) is chosen to be the inverse of E(z) in Fig. 

3.1 (b). More generally, a filter bank has the perfect reconstmction property if: 

for r > a. (3.5) 

A PRFB is able to completely cancel aliasing and its outputs are free from amplitude dist0l1ion 

and phase dist0l1ion. The perfect reconstmction property is desirable in applications where 

lossless signal representation is required (e.g. lossless compression). 

In most practical applications, it is important to find a PRFB with FIR filters H k (z) and 

Gk (z) in order to avoid issues such as non-causality and instability, typically associated with 

IIR filters. It has been shown in [73] that a PRFB can be designed using only FIR filter banks by 

imposing the paraunitary property on E(z) and using its paraconjugate to design F(z) , i.e., 

F(z) cz- r E(z). (3.6) 

Example. A two-channel PRFB may be designed using the 2a-tap lowpass FIR filter in [73] as 

the first filter, HJz), of the analysis bank. The second analysis filter,H 2 (z), can be obtained 

simply by taking the time reversed version of HI (z) and alternately changing the sign of the 

resulting filter coefficients. This yields a filter with a high pass response. The frequency 

response of the FIR PRFB analysis filters are shown in Fig. 3.2. The synthesis bank is found 

simply by taking the paraconjugate transpose of E(z) corresponding to the filters {H k (z)}. 
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Figure 3.2: Magnitude-frequency responses of the analysis filters of a two-channel PRFB with 

coefficients as in [73]. 

3.2 Subband Coding and Optimisation 

One of the most fmitful applications of filter banks has been subband coding [2,12,32-

35,48,73,74,88]. The uniform, maximally decimated filter bank in Fig. 3.1 is shown in a 

subband coding scheme, where the blocks labelled Q are quantisers. This type of arrangement is 

commonly referred to as an M-band subband coder. The block transform coder, lapped 

transform coder [42] and wavelet coder [63,70] may be looked upon as subclasses of the 

subband coder. The subband coder can be used to compress (or minimally encode) the input 

data by quanti sing each subband signal, Vk (t), with a different number of bits bk • This is 

achieved through use of a bit allocation strategy [61,73], which has a direct impact on the 

coding performance of the subband coder. 

An intuitive way of accomplishing data compression is to allocate the quantiser bits 

according to the signal spectmm. For example, more bits can be assigned to the subbands with 

greater energy (variance) and fewer bits to the subbands with lower variance, as depicted in Fig. 

3.3. If a PRFB is used and there are subband channels with zero variance, then those channels 

may be discarded. Usually, this kind of strategy can also result in a more accurate representation 

of the signal since there are more bits being used for subbands that contain most of the energy 

related to the information. Hence, a subband coder may be thought of as a sophisticated 

quantiser that can encode data more efficiently and/or accurately than direct techniques, such as 

pulse code modulation (PCM), which allocates bits uniformly without discretion. By 

comparison, in a time-domain coding strategy, the bks may be adapted according to the energy 

in the signal at different time periods. This is exploited by wavelet coders (zero-tree coding) for 

image compression [63], which are highly suited to the human auditory and visual responses. 
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Bit allocation strategy: b l ~ b2 ~ •.• ~ b\1 

Subbands 

/ j \ 

Figure 3.3: Example of a bit allocation strategy based on the subband variances for a six-band 

subband coder. 

An optimal subband coder is the one that minimises the MSE given in (3.4) due to the 

subband quantisation [74J. In the case where the filter bank is orthonormal, it has been shown 

7 ,IV!) 
[73] that the reconstruction error has average variance (T;: (l / M) L.k=1 (57:, called the 

quantisation error, where (51 is the quantisation noise variance due to the k th quantiser. For a 

subband coding scheme that employs a PRFB, the reconstruction error becomes the quantisation 

error, i.e. [; = (5; . In this thesis, we are mainly concerned with the optimisation of orthonormal 

filter banks for subband coding. When the term 'optimal' is used to describe a system it is 

assumed that an optimum bit allocation strategy is employed. 

3.2.1 Optimal Sub band Coders with High Bit Rate Quantisers 

The first theoretical results on the optimisation of subband coders were obtained for the 

transform coder [24,61]. In [24], Huang and Schultheiss show that the KLT is optimal for a 

wide class of signals under mild assumptions on the quantisation noise sources, particularly for 

arbitrary bit rates (see the next section). Here, the unitary matrix E is defined to be that given by 

the EVD of the covariance matrix for the demultiplexed signals. 

The optimality problem is more complicated for subband coders than it is for transform 

coders because E(ej{U) should be specified for all OJ. Vaidyanathan [74] has shown that optimal 

subband coders can be constructed using unconstrained (ideal) orthonormal filter banks. This is 

under the assumption that the quantisers Q operate at high bit rates. Furthermore, the 

quantisation noise (error) process is assumed to be a uniformly distributed, white, WSS random 

process [73]. These assumptions allows one to model the quantiser noise with the simple model 

, where d is a constant assumed to be the same for all subbands and CkkO is the 
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variance of the signal vk (t) (output of H k (z) ), i.e. the zero-lag term of the true autocovariance 

function (r) = E[v k (t)v k (t r)]. Thus, the noise decays exponentially with number of 

bits bk • It turns out that at high bit rates, optimality of orthonormal ideal filter banks is the same 

as the maximisation of a measure known as the coding gain [73,74]: 

I ~M 
M ~k=!CkkO 

G = --=---.,-(nM \J{f 
k=! CkkO J 

(3.7) 

The coding gain is a signal dependent quantity whose value is determined by the input 

PSD and frequency response of the analysis filters. It can be interpreted as the ratio of the mean­

square values of the direct quantisation error (e.g. round-off error in PCM) to that of E in (3.4). 

The numerator of (3.7) represents the variance of the subband signals (arithmetic mean) when a 

direct quantisation scheme is used. This quantity is not affected by subband coding (i.e. it is a 

constant) since the total power in the subbands is preserved under the application of a lossless 

filter bank. The denominator is the geometric mean of the subband signal variances. If, for 

example, the variances of the subbands were the same, the geometric mean would be equal to 

the arithmetic mean, and therefore the coding performed would be identical to that of PCM. 

The high bit rate assumption is generally unsatisfactory in practice. In [3,4], the 

optimality of olthonormal subband coders is proved under a more general quantiser model. The 

authors show that the optimum subband coder is the principal component filter bank; see section 

3.2.3. Hence, in general, the coding gain does not represent the objective in the design of 

optimal subband coders. 

A quantity that is closely related to the coding gain is the entropy: the average amount of 

information emitted from a source [51,62]. A measure of the efficiency of a source encoding 

method is obtained by comparing the entropy to the average number of binary digits per output 

symbol/character from the source. 

3.2.2 Conditions for Coding Gain Optimality 

From the expression of the coding gain in (3.7), it IS clear that the minimisation of the 

denominator term (i.e. the product of the subband variances) leads to the maximisation of the 

coding gain. It is easy to see why this leads to optimal compression by expressing the 

denominator of (3.7) in terms of the number of bits required to encode the subband signals, thus 

(n'VI 
log2 k=1 (3.8) 
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So, the minimisation of the product of the subband variances results in the minimisation of the 

number of bits required in encoding each subband channel, which leads to optimally 

compressed data; the less uniform the energy distribution across the subband channels is, the 

fewer the bits required in quantising the signals. Vaidyanathan provides a set of necessary and 

sufficient conditions for the coding gain optimality of a paraunitary subband coder in [74]. The 

coding gain is maximised if and only if the output subband signals simultaneously satisfy strong 

decorrelation and spectral majorisation. It is also shown that, while each condition individually 

is only necessary, together they form a set of necessary and sufficient conditions. 

Strong Decorrelation. If the subband signals vk (t) of Fig. 3.1 are decOlTelated at all relative 

time lags then they are said to be strongly decOlTelated, i.e., 

(3.9) 

Equivalently, the true PSD matrix of the vector signal v(t) is diagonal: 

C(e JW ) = IE[v(t)vH (t - T) ~ -j(UT = diag[CII (e
jw ), Cn (ej(O), .. "CMM (ej(U)] , (3.10) 

T 

where Ckk(ej{U) i:-, the power spectrum of Vk(t) , i.e. the Fourier transform of the hue 

autocorrelation sequence ckk (T) of the k th subband signal. 

Spectral Majorisation. Assume, without loss of generality, that the subbands are numbered 

such that c kkO .:::: c( k+I)(k-'-I)O' The set of subband spectra {C kk (ej(U)} has the spectral majorisation 

property if 

C ( jW) > C ( JOY) > > C (j(U) \-1 m II e - 22 e' - ... - MM e , v . (3.11 ) 

An example of majorised subband power spectra is given for a three-channel filter bank in Fig. 

3.4b. In Fig. 3.4a, we show subband channels that are not majorised; one signal dominates for 

some frequencies and the other signals for other frequencies. 
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Figure 3.4: Example of subband signals that (a) are not spectrally majorised and (b) are 

spectrally majorised. 

Optimal Compaction Filter 

Consider the filter H k (e jlU ) of order N on the k th branch of the M-channel filter bank in Fig. 

3.I(a). The filter is said to be an optimal energy compaction filter (or optimal compaction filter) 

for the pair (M, N) if it is designed such that the variance of its output is maximised subject to 

the constraint that the product filter, IH k (ejlUf ' be Nyquist(M) [74]. A measure of the energy 

compaction achieved by the filter is defined as 

G (M N) ckkO 
comp , =--, 

ao 
(3.12) 

where ao E~x(z)12] is the true varIance of the input signal. The aIm IS to maximise the 

compaction gain under the Nyquist(M) assumption, which depends on the filter H k (ej(V), the 

input PSD, and the integers Nand M. The maximum (or ideal) compaction gain, G
COIllP

' is 

achieved if Hk(ej(J)) is the optimal compaction filter with an ideal 'brickwalI' frequency 

response for the input PSD. The ideal compaction gain is bounded thus 1 ~ GcoIllP(M ,N) ~ M 

[74]. By contrast, the coding gain in (3.7) has no such bounds. The design of optimal 

compaction filters has been of interest in recent years because of their known connection to 

optimal subband coding and the principal component representation of signals [2,16,68,70,74]. 

3.2.3 Principal Component Filter Bank 

Consider the filter bank in Fig. 3.1. Suppose the first m < M subband signals are retained 

without quantising and the others are discarded. Then there will be a corresponding distortion 
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(reconstruction error) between x(z) and y(l). The filter bank that minimises this distortion for 

each m = 1,2, . .. ,M is called a principal component filter bank (PCFB). From this intuitive 

explanation one can see that the PCFB is an extension of PCA to polynomial matrices. We now 

review a mathematical result that will be useful in formally defining the PCFB. 

Majorisation Theory. Let Jl = {ao,a 1, ••• ,a\H} and 13 = {bo,b], . .. ,b"'H} be two sets of real 

numbers. The set Jl is said to majorise the set 13 if, after reordering such that ao ~ a1 ~ ••• ~ an 

1. 

2. 

",M-l 

L..k=O a k 

1. 

Thus every partial sum of set Jl is at least as large as the corresponding partial sum of set B. 

Example. Let JZ{ 

that {_I_, ... ,_1_-}:::; Jl:::; {1,0, ... ,O}. This suggests that majorisation may be used as a measure of 
M M 

the non-uniformity among the elements of a set. 

A formal definition of the PCFB is as follows [3]: A PCFB is from a subclass CP of 

orthonormal, uniform, maximally decimated filter banks. A filter bank 'f in the subclass CP is 

said to be a PCFB for that class and for a given PSD if it has the set of subband variances that 

majorises every other set of subband variances (produced by other filter banks) in that class. 

This definition broadly implies two conditions: Firstly, a PCFB maximises the partial sum 

I
n 

CkkO k=1 
(3. I 3) 

for each 11 :::; M . In particular, when n 1, then c i 10 is maximised by the choice of HI (z) ; that 

is, the first filter is an optimal compactionfUter (maximises the compaction gain in (3.12))1. The 

second property is that a PCFB minimises the product 

Il
k! 

ckkO ' k=i 
(3. 14) 

and therefore is an optimal orthonormal filter bank for subband coding, i.e. it maximises the 

coding gain in (3.7). In fact, the PCFB, if one exists, is optimal for subband coding for all bit 

I Note that for a set of all possible paraunitary filter banks. if optimal energy compaction is achieved then 

the data is optimally compressed; this is in the sense of maximising the coding gain in (3.7). However. 

this would not necessarily be true for a set of arbitrary paraunitary matrices. 
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rates and for all bit alloeation strategies, particularly for the optimal bit allocation [34]. 

Recently, the PCFB has been shown to be optimal for a broader class of objectives, such as 

noise reduction, [3,4], 

Existence of a FIR PCFB 

There are three subclasses of filter bank (special cases) for which the existence of a PCFB is 

assured. Consider the subclass of filter banks e p
• A PCFB exists for the subclass ep in the 

following cases [3,4,33]: 

i) if e p is the class of unconstrained (ideal) filter banks ell ; 

ii) if e p is the class of transform coders et
; 

iii) if M = 2, i.e. the classes of all two-channel filter banks. 

The problems of orthonormal filter bank optimisation and compaction filter optimisation are 

solved by a PCFB for these classes of filter bank only and for a given input signal PSD. In [33], 

it was shown that a PCFB cannot be guaranteed for the intermediate case where N is constrained 

(FIR filter banks) for arbitrary M, i.e. the constrained class of filter banks ec 
. This is because 

the description of a PCFB is associated with an optimisation problem that has a multitude of 

objectives, which generally do not admit a common solution. In the recent past, suboptimal 

techniques have been proposed for this class, which basically try to find an approximate PCFB 

for a given PSD. A review of these methods is presented in section 3.4. 

The PCFB has been an active area of research for some time [3,4,33,68,70,88]. The 

optimality of the PCFS was first independently observed in [68,70] for different objectives. In 

[68], Tsatsanis and Giannakis propounded the PCFB for multiresolution representation of 

signals Llsing filters with a brick-wall (ideal) frequency-domain support. A strategy for 

designing a PCFS using ideal filters, introduced in [74], is detailed in the next section. In the 

case of the transform coder class, a PCFB is obtained with the SVD as explained in section 

3.2. I. For the classes of two-channel filter banks the PCFB is found by designing an optimal 

compaction filter; then the other filter is determined trivially, as described in section 3.3.2. It 

turns out that the existence of a PCFB in these three cases is assured by their very construction. 

3.3 Design of Optimal Orthonormal Filter Banks 

A methodology for the design of optimal orthonormal filter banks for subband coding using 

filters among the class eli is proposed by Vaidyanathan [74]. It turns out that the filter bank 
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obtained using this technique is a PCFB [34]. The methodology entails successively finding a 

set of M ideal optimal energy compaction filters for a given power spectrum. In effect, energy 

compaction is used as the objective function for the design of optimal filter banks [13,48,68]. In 

this section, we present a description of the design methodology. This is detailed because it is 

employed in a more 'practical' approach, known as the window method; an evaluation of this 

method is presented in section 3.4.2 and used to provide benchmark performances in chapter 6. 

3.3.1 Compaction Filter Design with Unconstrained Filters 

The procedure in designing an optimal compaction filter H(e iOJ ) is described here as in [74]. 

The following design is for the case where H (ej(v) is an ideal 'brickwall' filter with passband 

and stopband responses -fij and 0, respectively. Also, it is assumed that the filter is 

antialias(M): a filter whose output can be decimated without aliasing, that is, the shifted 

versions H(e j [(J}-2711lIMl) do not overlap for distinct n in OSn sM -1. The filter H(ej{V) can 

be constructed using the ideal compaction Jilter design technique: 

I. Let A(ej(U) be the PSD of a WSS input signal. Divide the frequency axis of the 

spectrum into M equal (alias) regions (width of all passbands is 2ll 1 M ). Thus, for each 

frequency OJ" in Os 0) < 2ll 1 M , define the M alias frequencies ~, = ~, + 2lln 1 M . 

2. Compare the values of A(ej{u) at these M alias frequencies {~,}, Let a be the 

smallest integer such that A(ej(Va) is a maximum in this set. Then assign 

I -fij, when 11 a 
lO, otherwise. 

(3.15) 

3. The filter H(e j
(() can be completely defined for all 0) in Os 0) < 2ll by repeating step 

2 for each ~) in the region Os 0) < 2ll 1 M. This filter satisfies the Nyquist(M) 

constrain, moreover, maximises its output variance under this constraint. 

Example. Consider the construction of an optimal compaction filter H(e J((}) for an input PSD, 

A(e j
((}), as in Fig. 3.5(a), and let M 3. Firstly, the frequency axis is divided into 3 equal 

regions labelled 0,1, and 2. Secondly, in the spectral band4ll13s~)<14ll19, A(ej(V,) 

dominates the spectrum at the al ias frequencies Os 0)0 < 21[ 1 9 and 2ll 1 3 S OJo < 8ll 1 9 in 

regions ° and I, respectively. Next, for the band 2ll/9s~) <41[19, A(ejO~.) dominates the 

PSD at the alias frequencies 81[19 s OJ() < lOll 19 and 14ll 1 9 S OJo < 16ll / 9 in regions 1 and 2, 
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respectively. FinaIIy, for the frequencies 1 OJl' /9:-:; ~) < 4Jl' /3, A(eieo,,) dominates the PSD at the 

alias frequencies 4Jl'/9:-:;~) < 2Jl'/3 and 16Jl'/9:-:; (JJo < 18Jl'/9 in regions 0 and 2, respectively. 

The optimal compaction filter designed is shown in Fig. 3.5(b). 

A(e jl6
) 

region 0 region 1 region 2 

2 3 , I , , 

, 
0 2nl9 2n 13 4nl3 2n l6 

(a) 

region 0 
, 

region 1 
, 

region 2 , , , , , , 
-- ,.------f---- .Jj , , , 

2 , 3 1 , , , , 
, 

o 2n 1 9 2n 13 4n 13 2n 
(b) 

Figure 3.5: (a) input signal PSD and (b) optimal compaction filter for this signal for M = 3. 

3.3.2 Optimal Filter Bank Design with Unconstrained Filters 

We are now equipped to design an optimal orthonormal subband coder {H (e iaJ )}. The procedure 

for the construction of the analysis bank {H k (e iaJ )} is described through an example. The filter 

bank may be found by successive application of the ideal compaction filter design technique 

described in the previous section. Consider the design of a three-channel optimal orthonormal 

subband coder for the input power spectrum presented in Fig. 3.6(a). The first step is to design 

an optimal compaction filter HI (e iaJ ) for the given input PSD, A(e iaJ ) , using the procedure 

described above. The frequency response of this analysis filter is shown in Fig. 3.6(b). Let the 

passband support of HI (e iaJ ) be denoted as ~I . A new 'partial' power spectrum is defined: 

in ~I 

otherwise. 
(3.16) 

as given in Fig. 3.6(c). Thus, the partial power spectrum C(l )(e iW ) is defined by 'peeling off' 

the portion of A(eiaJ ) falling in the passband of HI (ei(O). 
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Figure 3.6: A graphical description of the ideal design procedure M = 3 . (a) Input signal PSD 

and (b) corresponding optimal compaction filter magnitude-frequency response. (c)-(f) Partial 

power spectra and corresponding optimal compaction filters. (g) Frequency responses of the 

three optimal analysis filters . 

The next step is to construct an optimal energy compaction filter H 2 (e j{J) ) for C (l) (e j(V) . 

The magnitude-frequency response for H 2 (e j{J) ) is shown in Fig. 3.6(d). The next partial 

PSD C (2) (e j{J)), shown in Fig. 3.6(e), is obtained by peeling off the portions of C O\ej (V ) falling 

on the passband ofH 2(e j{J) ) . Finally, H 3(e j{J)) (Fig. 3.6(f)) is constructed as the optimal 

compaction filter for C (2) (e j{J)). The portions of C (2) (e j{J)) falling on the passband of H 3(e j{J)) 

are then removed to leave a partial spectrum with, notionally, no energy. Hence, the analysis 

filters of an optimal orthonormal filter bank for the given PSD have been identified, as 

presented in Fig. 3.6(g). 

Since the filters have non-overlapping frequency spectra strong decorrelation is satisfied, 

moreover, spectral majorisation is also satisfied. Therefore, it follows that the filter bank 

constructed using this algorithm maximises the coding gain in (3.7) . It has been shown that this 

design procedure yields a PCFB [34,74]. 

Two-channel Optimal Filter Bank Design 

It is easy to see how the PCFB for the class of two-channel filter banks is constructed: Consider 

the ideal compaction filter design procedure given in section 3.3 .1, the coding gain G, and the 
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filter bank in Fig. 3. I for M 2. Let the input variance of x(z) be unity, i.e. ao 1. The output 

variances of HI (z) and H 2(z) are denoted by CliO and c220 ' respectively. Orthonormality implies 

the equality CliO + c220 = 2, which is the upper bound on the compaction gain (GWIIlP ) given in 

(3.12). For the first channel, Gcomp CIIO / ao = CliO' The compaction gain of the second channel 

is c220 / ao = c220 = 2 - ClIO = 2 - G
COI1lP 

• Thus, the coding gain becomes 

( [ ])
1I2 . 

G
COIl1P 

2 - Gcomp 

(3.17) 

Since the sum CliO + c22G is constant, the only variable is CliO = G
COIllP 

• The filter bank is found by 

designing the first filter HI(z) to be an optimal compaction filter such that it minimises the 

denominator (i.e. maximises CliO)' 

The choice of HI(z) is subject to the OIihonormality of the filter bank and is equivalent to 

the Nyquist(2) constraint, i.e., IHI (eilUf +IHJ (-eilUf = 2. Hence, the other filter is determined 

from the first such that the two filters form an orthonormal set. Assuming HI(z) has order N, the 

other filter may be obtained by the well-known relationship [73] 

(3.18) 

In the real-coefficients case (3. I 8) means IH 2 (eilU)1 = IH I (ei(lU-iT) )1. Therefore, optimising one of 

the analysis filters for maximum energy compaction is equivalent to optimising a two-channel 

orthonormal filter bank according to input statistics. It follows (by constmction) that there is a 

PCFB for all classes of two-channel filter banks. 

3.4 Review of Suboptimal Filter Bank Design Algorithms 

As already discussed, the design and optimisation of filter banks has been solved for the 

unconstrained class, transform coder class, and the classes of all two-channel filter banks. In 

these cases, the PCFB is the solution. However, in general, the PCFB does not exist for the class 

of FIR filter banks. A number of authors have proposed suboptimal techniques that achieve 

good approximations of the optimum coding gain [13,16,29,32,48,56,69,77,88]. Other authors 

have presented paraunitary filter bank design in the context of subspace analysis 

[17,37,44,49,57]; this topic is treated in chapter 4. A review of conventional design methods is 

presented here, and their relative merits and short-falls are investigated. This is done with the 



3.4 Review of Suboptimal Filter Bank Design Algorithms 45 

goal of selecting one as a benchmark algorithm for the SBR2 coder, introduced later in section 

6.2 as a method for subband coder design. 

A type of transform that is relevant to the design of paraunitary FIR filter banks is the 

lapped orthogonal transform (LOT) [42]. Although studied independently in the past, the LOT 

and the uniform maximally decimated paraunitary FIR filter bank are equivalent [43]. The 

difference between the two types of filter bank is in the way they are designed and 

implemented. Algorithms for LOT-based filter bank design are not considered in this thesis. 

3.4.1 Lattice Parameterisation 

A paraunitary filter bank can be constructed by cascading L blocks 111 an M-channel lattice 

structure [73]. Each block in the lattice has a parameter matrix defined by rotation angles, which 

are optimised subject to a constraint (or constraints). An approach that is found predominantly 

in the literature involves the optimisation of the parameter matrices subject to two constraints: 

(i) the decorrelation of the signals and (ii) the imposition of the paraunitary condition. These 

techniques adapt the lattice parameters according to the received signal samples iteratively. Two 

optimisation methods for this type of architecture are given in the following. 

Gradient Descent 

A method that is commonly found in the literature is one that uses an adaptive algorithm based 

on the stochastic gradient descent/ascent [16,29]. Each block (matrix of rotation angles) is 

optimised iteratively: parameter values are optimised as the data samples are input, i.e. online. 

In [29], the authors show that these algorithms can be made to be more computationally 

efficient. However, they are highly nonlinear and suffer from the usual problem of convergence 

to local minima associated with nonlinear optimisation. 

Eigenstructure 

The other type of optimisation scheme available for lattice optimisation IS eigenstructure 

algorithms [25,56]. Eigenstructure algorithms can avoid converging to local minima, which is 

an advantage over the gradient-based algorithms. These techniques involve the explicit 

decomposition of the covariance matrix with the aim that dominant and weak eigenvalues and 

associated eigenvectors are identified. It is possible to use a suitably parameterised two-channel 

lattice structure as a relatively straightforward way of generating an FIR paraunitary filter bank. 

That is, one that is guaranteed to be paraunitary irrespective of the parameter values. Paraunitary 

matrices may be cascaded to form matrices that satisfy the paraunitary condition in (2.27). A 

very good example is given by Vaidyanathan in [73], as stated in the following: every FIR 

paraunitary matrix can, up to some permutation of the inputs, be represented as the product of a 
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sequence of Jacobi rotations interspersed by pure time-delay matrices. In specific terms, a 2 x 2 

paraunitary matrix may be decomposed as a sequence of paraunitary stages: 

H(z) = QIVA(z) ... A(z)QjA(z)Qo, (3.19) 

where A(z)QII constitutes a single stage, Q
il 

E 15 a Jacobi rotation (unitary) matrix 

parameterised by a rotation angle Bli in (2.15), i.e. 

( cosBII 
Q II =l . B -S111 II 

sinBIIJ, 
cosB

Il 

(3.20) 

and A(Z)E is a pure time-delay (paraunitary) matrix and of the form 

(3.21) 

In Fig. 3.7, we show a flow diagram of the decomposition in (3.19). 

Recalling from section 2.3.2 that the degree of a polynomial matrix is the minimum 

number of delay elements required to implement it, we note that the degree (and order) of H(z) 

is N. Also note that in the degenerate case of degree zero, H(z) takes the form of a single unitary 

matrix as required for the EVD of a conventional Hermitian matrix. Even if the degree N could 

be established in advance there are a few problems with using the lattice filter of (3.19) to 

construct a paraunitary matrix. These are demonstrated with the help of an example. 

Xl (t) --+-----+..----11>-1 >---'--H-!-~ --+---;--..--'--l >--I~++-+-+ Y j (t) 

io 0 o! 

A(z) Qo A(z) 

where en = COS~" .I'll = sin~, and ~, E 

Figure 3.7: A 2x2 paraunitary lattice filter consisting of N paraunitary blocks. 
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Example. Consider that the optimal paraunitary filter bank to be found is a simple one given by: 

_ [ cose Sine) 
H(z)- If' -sine z-) case . 

(3.22) 

which has degree and order 16. Suppose that the parameters are determined in a sequential 

manner. Then the following problems may exist:-

• The constmction of (3.22) would involve the parameterisation of a 16 stage lattice filter 

requiring the estimation of 16 parameters (rotations). This is even though only a single 

parameter is needed. The estimation of the other 15 rotation angles is likely to result in 

the design of a suboptimal filter bank. 

• The correct estimation of the final parameter could be very difficult since it is likely that 

the effect of the first 15 rotations on the data is to increase the sample noise. This 

problem would be exacerbated by the fact that it is impossible for later rotations to undo 

the effects of preceding rotations. 

In order to overcome these problems, the optimisation of the multi variable lattice filter would 

need to be nonlinear, and therefore complex and computationally costly. If the rotation angles ell 

could be computed independently, then these problems would be alleviated. This kind of 

approach is adopted by the SBR2 algorithm in constmcting paraunitary matrices, as described in 

section 5. 

Regalia and Huang [56] have proposed an eigenstmcture-based signal-adapted algorithm 

for the fixed degree parameterisation of a two-channel lossless filter bank described by (3.19). 

The difficult nonlinear optimisation is re-formulated using a state space approach that lends 

itself to an iterative solution. The algorithm optimises the rotation matrices such that the energy 

in the second output channel is minimised, i.e., the cost function used is ELvi(z)]. This is 

achieved by seeking to make E[yiCz)] the smallest eigenvalue of the covariance matrix. The 

filter bank produced by this method is assured to be paraunitary by its very constmction. An 

inherent advantage of this technique over other eigenstmcture techniques is that the cost 

function is quadratic in the rotation angles, which makes for a computationally simpler 

approach. The method avoids the problems of local minima associated with gradient descent 

techniques. A cmciaI disadvantage of this technique is that it is limited to the design of two­

channel filter banks; an extension to the M > 2 case is not considered by the authors. 
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3.4.2 Linear Programming and the Window Method 

Linear Programming 

Another approach to filter bank construction consists of designing signal-adapted filters using 

energy compaction as the adaptation criterion [13,48]: for a given power spectrum, the 

components of an orthonormal filter bank are designed so that the energy in the first channel is 

maximised; the energy in each of the remaining channels is maximised successively. The energy 

compaction problem is different to the coding gain problem for constrained-order filters; this is 

explained in terms of the PCFB in section 3.2.3. In the case of FIR filters, there are spare 

degrees-of-freedom after the first stage for maximising the energy in the rest of the channels. 

In [48], Moulin et af propose the use of linear programming for the design of optimal 

paraunitary filter banks. An overview of the algorithm is provided in the following. It is well 

known that the polyphase analysis bank (Fig. 3.I(b» can be factorised as [73]: 

(3.23) 

where N is the order and degree of E(z); U is a unitary matrix (possibly KLT or discrete cosine 

transform (DCT»); QI1(z) Iv! -qf/q;~ +z-lqnq;; are similar in form to Householder matrices; 

and qn are unit-norm real valued vectors with 1:;; n:;; N. The polyphase matrix is 

parameterised by the rows, {q,,} and {un}' of Q" and U, respectively. The variance of the 

first subband signal C]IO is a linear function of the product filter coefficients g] (z) 

of GI (ej(O) = IH] (e j{O)1
2 

• It is maximised subject to the constraints that G] (e JW
) is Nyquist(M) 

(trivially achieved) and that GI (e
JW

);::: 0 for all OJ. The latter is written as a linear inequality for 

each OJ in term of gl (z). Hence, the maximisation problem is a linear programming one with 

finitely many variables and infinitely many inequality constraints, which yields a linear semi­

infinite problem. The second part of the method consists of performing an eigenvector 

decomposition of the M x M correlation matrix for the signals transformed by 

Q(z) = " Q n (z) . The optimal filters are spectral factors of the product filter. This method 
L.." 

produces filter banks that are paraunitary. The compaction gain achieved by its filters 

asymptotes to the optimal one as N increases. An improvement to the method is proposed in 

[32], which involves windowing the linear programming solution. 

Window Method 

The window method, proposed by in [32], is based on a common practice in FIR filter design: 

approximate an ideal filter response by windowing its impulse response. The basic idea behind 
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the technique is to construct the product filter GI (e
j

(() =1 HI (ej(U) 12 by windowing a periodic 

function. The periodic function is determined by applying the ideal compaction filter design 

algorithm, as described in section 3.3.1, at P uniform DFT frequencies. Hence, there are a finite 

number of comparisons to be made on a finite frequency grid. 

In formulating the above idea, the impulse response of the product filter, g(l), is 

gel) (jJ(Ofp(l), (3.24) 

where (jJ(l) is a window function of the same length as gel) with a non-negative DFT and 

fp (l) is a periodic sequence with period P = <I>M > 2N . Here, <I> is the number of design 

(comparison) frequencies and N is the order of gel) (and hence the resulting compaction filter). 

Spectral factorisation [30] is performed on gel) to extract the filter h(f). Given a positive 

semidefinite sample correlation sequence r(l), {lE 7L 10::; l::; N}, the expression in (3.24) is 

implemented: 

1. Compute the PSD of the input signal, Rp(¢), I.e., the P-point DFT coefficients of 

conjugate symmetric sequence r(l) (jJ,' (z)r(l) . 

2. Design an ideal compaction filter at each frequency {rjJ E 7L 10::; rjJ ::; <I>}, That is, 

determine the index 1110 for which Rp(rjJ+m()<I» is maximum, and make the 

assignments Fp(rjJ+mo<I» = M and Fp(k +ml/<I» = 0, n = 1, ... ,M . 

3. Compute fp(z): the inverse DFT (IDFT) of Fp(k). 

4. Determine the optimal window (jJ(l) and form the product filter gel) = (jJ(l)fp (l) . 

5. Find h(z) by spectrally factorising gel) . 

The window method produces compaction filters that are Nyquist(M) as long as <I> is a 

multiple of M and greater than the filter order N. The suboptimality of its filters diminishes as N 

increases. Note that an appropriate value of N must be chosen prior to using the above 

algorithm. The window method is an offline technique and does not require optimisation tools 

or iterative methods. The number of design frequencies to use depends on the autocolTelation 

function of the input process, which in turn influences the choice N. 

The two-channel orthonormal filter bank can be easily obtained from the compaction filter 

designed by the window method; therefore, orthonormality is guaranteed by construction. The 

originators of the window method recommend a possible strategy for the design of M-channel 

orthonormal subband coders in [32]. There suggested scheme involves using the procedure 

proposed in [48] to construct a multichannel filter bank; the compaction filter generated by the 
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window method is used as the basis for the remaining filters of an M-channel 011honormal filter 

bank. An evaluation of the M-channel strategy will not be presented in this thesis. 

Example. Let the input, x(1), be an order N g 5 autoregressive moving-average (or 

ARMA(5) process with a multiband spectmm, ACe!'"), as shown by the dashed curve in Fig 

3.8(a). The ARMA(5) process was implemented using a Yule-Walker IIR filter with coefficients 

Be(z) 0.6903-0.0160z-] 0.l453z 

A,(z) 0.6867 0.4363z +O.l 
(3.25) 

We have chosen this PSD based on examples given in [32]. The design of the two-channel 

analysis bank using the window method involved the following: The window method was 

implemented directly from [32] and used to constmct a compaction filter H] (z) for x(z). A 

cepstral-FFT based spectral factorisation algorithm [30] was used to complete the compaction 

filter constmction. The filter designed in this way is both stable and causal [18,26], i.e. it is non­

minimum phase, as can be ascertained from the locations of the poles and zeros of H] (z) 

shown in Fig. 3.9(a). The second filter, H 2(Z), is simply determined from the first by time-

reversing the impulse response of h] (z) and alternately changing the sign of the time-reversed 

filter coefficients see (3.18). 

For xCz) and N = 65, the 2 analysis filters produced using the window method have the 

frequency responses shown in Fig. 3.8(a). The compaction gain (obtained from the tme statistics 

of the signal) for this filter indicated in the paper was Gmmp "" 1.86 and that obtained from our 

experiment is 1.84. The disparity between the results is likely to be due to two minor differences 

between the experiments; viz., the type of spectral factorisation algorithm used and the input 

signal. These results helped in validating our implementation of the window method: results 

obtained are very similar to those in [32]. 

The window method has designed a multiband compaction filter with passbands that 

coincide with dominant signal frequency components, as is clear from Fig. 3.8(a). This is 

indicative of a high compaction gain since the filter is accepting most of the signal energy (into 

the first channel). In Fig. 3.8(b), we show the tme PSD of the subband channels, (e!w) . It is 

obvious from this graph that the window method has performed spectral majorisation. 
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Figure 3.8: (a) PSD of an ARMA(5) process and the magnitude-frequency response of the 

filters designed using the window method for N = 65 [32] . (b) PSD of the input and subband 

channels. 
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Figure 3.9: Analysis of the FIR filter designed by the window method for N = 65 : poles and 

zeros of (a) HI ( z) and (b) H 2 (z) . 

3.4.3 Comparison of Suboptimal Design Algorithms 

We have seen that the linear programming, eigenstructure, and gradient descent based 

algorithms adapt to each input signal sample, i.e. they are on-line techniques. By contrast, the 

window method is a non-adaptive technique, so it uses all the samples in a data set to compute 

its filters instead of adapting to each data sample. Both the adaptive and non-adaptive methods 

can produce filters that achieve near optimal compaction gains; it follows that the filter banks 

obtained can perform strong decorrelation and spectral majori sation. The main advantage of 



3.5 Concluding Remarks 52 

adaptive algorithms is that they can usually yield high coding gains with very short filters. 

Therefore, the resources required in storing or conveying the filter impulse responses would be 

comparatively low. However, it is often the case that the coding gains attained by the window 

method are better than those attained by adaptive algorithms for longer filters. Also, a drawback 

of the adaptive algorithms is that they are highly complex and computationally expensive as a 

consequence of their adaptive nature. The complexity of the window method is greatly 

simplified because it involves the mere comparison of some frequency bins and windowing, and 

essentially solves a deterministic problem. This makes it much more computationally efficient 

than the adaptive algorithms. For the reasons just cited we have chosen the performance and 

efficiency of the window method as benchmarks in assessing the subband coder design method 

proposed in chapter 6. 

There is a level of a priori knowledge required for successful application of the subband 

coder design methods discussed in this section. The input is assumed to originate from a WSS 

process [74]. In the case of a WSS input process, the special form of the polynomial covariance 

matrix ofthe subband signals is exploited by these methods, as will be discussed in section 6.2. 

3.5 Concluding Remarks 

In this chapter, we have presented a study of filter bank theory and a survey of practical 

methods for the design of filter banks. The solution to the energy compaction problem is the 

same as that of the coding gain problem when ideal filters are used: the PCFB designs an 

optimal orthonormal subband coder which minimises the reconstruction error and whose first 

filter provides optimal energy compaction. However, the PCFB is only guaranteed to exist for 

certain classes of filter bank; it has been shown not to exist, in generally, for FIR filters. 

We have described various suboptimal approaches for the design of (practical) FIR 

paraunitary filter banks and made performance comparisons based on the literature. The 

suboptimality of these techniques does not seem to be significant for practical signals. This 

review has revealed that the window method has certain salient advantages over the other state­

of-the-art algorithms. Most importantly, it can construct near-optimal compaction filters at low 

computational cost. The window method is therefore a good technique to use as a benchmark in 

evaluating an algorithm for the design of subband coders, introduced later in this thesis. 



4 Polynomial Matrix Eigenvalue 

Decompositions 

In this chapter, we extend some of the most important matrix computations required for 

subspace estimation, which were introduced in chapter 2, from conventional matrices to the 

relatively unexplored domain of polynomial matrices. The properties of the resultant 

decomposition of polynomial matrices are observed to be those that are satisfied by PCFBs 

discussed in chapter 3. To begin with, the problem of diagonalising a polynomial matrix is 

formulated in section 4.1. This makes apparent the requirements of a polynomial matrix 

decomposition and serves to demonstrate the fundamental limitations of the EVD/SVD for the 

problem. Generalisations of the EVD and SVD for scalar matrices to parahermitian polynomial 

matrices are defined and their limitations are discussed in section 4.2. We show that a 

polynomial matrix EVD (PEVD) satisfies properties that are generalisations of those satisfied 

by the EVD, particularly energy preservation, energy compaction, strong decorrelation and 

spectral majorisation. These generalised properties are satisfied by optimal orthonormal filter 

banks for subbands in section 3.2. Two natural performance measures are introduced that 

quantify the diagonalisation performance and broadband subspace decomposition accuracy of a 

PEVD technique. Energy compaction and data encoding are recognised as possible tasks for an 

algorithm that computes a PEVD. In section 4.3, a brief review of existing algorithms for 

broadband signal subspace estimation is given along with some assessment of their 

performances. A family of frequency-domain approaches to PEVD, known as the bandwise 

algorithm, is introduced and evaluated in section 4.4. They rely on well-known methods for 

classical spectral estimation and contribute to the novel work in this thesis. The performances of 

these methods are assessed. 

4.1 Motivation 

Recall from section 2.2 that for a set of correlated narrowband signals it is possible to use the 

SVD or EVD to find a unitary matrix that diagonalises the (Hermitian) covariance matrix of the 

signals. These decompositions also order the eigenvalues of the Hermitian matrix in terms of 

their power. This gives a good estimate of the signal and noise subspaces and is a way of 

solving many problems, including signal detection, noise reduction, signal separation and data 

compression [22,72]. In sensor array signal processing, the signal subspace usually represents 
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the signals of interest. For data compression applications, the signal subspace contains the bulk 

of the information in the data whilst the noise subspace represents redundancy and noise. 

In recent years the need for techniques that can perform subspace decomposition for 

broadband signals and convolutively mixed signals has grown [9,11,17,27,37,44,49, 

52,57,79,81,84]. Instantaneous decorrelation is not sufficient for accurate signal subspace 

estimation of these types of signals. This is because the signals are correlated not just at a single 

relative time-lag, but usually at many time-lags. Therefore, decorrelation at all relative time-lags 

is required, i.e. we need to perform strong decorrelation. In addition, we require that the set of 

transformed signals have the spectral majorisation property. These properties were discussed in 

the context of filter bank design for subband coding in section 3.2, but, as will be shown in this 

chapter, they can be imposed on arbitrary signals as well. 

In terms of matrices, the entries of the corresponding covariance matrix for the correlated 

signals are not scalars, but polynomials. We require a transformation (filter bank) for 

polynomial matrices that satisfies properties that are generalisations of those satisfied by the 

EVD: the diagonalisation of the parahermitian matrix; the fixed ordering of its diagonals 

(polynomial eigenvalues) in terms of decreasing norm; and conservation of the total energy of 

the signals, i.e. paraunitarity. In this chapter, we show that strongly decorrelating a set of input 

sequences is equivalent to diagonalising the corresponding polynomial covariance matrix. The 

satisfaction of this property and spectral majorisation by the outputs from a multichannel filter 

bank would allow for accurate estimation of the broadband signal and noise sllbspaces. 

It is worth noting that the paraunitary filter bank design methods introduced 111 this 

chapter are intended for application to arbitrary multichannel data. By contrast, the filter bank 

design algorithms for subband coding presented in section 3.4 are based around the assumption 

that the input signal is WSS. This is a fundamental difference between the subband coder design 

methods and the techniques presented in this chapter. 

4.1.1 Convolutive Mixing Problem 

Consider the linear convolutive mixing exemplar in Fig. 4.1. This type of mixing is encountered 

in numerous signal processing applications. For illustrative purposes, we shall consider this 

problem in the context of sensor array signal processing. The diagram shown depicts a model 

for the propagation of K source signals, wk (t), emitted from separate transmit antennas and 

received by an antenna array of M sensors. The received (sensor) signals, xk (t), are then 

processed, which usually involves beamforming: for background on sensor arrays and 

beamforming, refer to [23]. If the sensor signals are narrowband, then the relative delay between 

different propagation paths can be represented in terms of different instantaneous phase and 
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amplitude factors imposed at the sensor elements. Under these circumstances, the propagation 

of the sources to sensors may be represented as a scalar (mixing) matrix (i.e. the instantaneous 

mixture model given by (2.6». However, the instantaneous mixture model is not, in general, a 

sufficient model for the case of broadband source signals or for the situation where narrowband 

signals have been convolutively mixed (as shown in the figure). Instead, the mixing must be 

represented as a linear superposition of delayed samples of the signals emitted by each source. 

Input 
Convolutive 

Output 
Sources ~(z) 'A(z) lJfM(z) Signals 

Mixing I ••• I X1(z) YI(z) 
WI(z) 

I Y2(z) PEVD 
X2(z) 

W2(z) H(z) 

It It • It 

III It • It 

III .. • It 

WK(z) XM(z) YM(z) 

Figure 4.1: Block diagram illustration of the linear convolutive mixing problem followed by 

second-order blind signal separation: the source signals are mixed to produce data which is then 

transformed into decOlTelated outputs. 

The input to output channels of the mixing process are described by different unknown 

FIR filters gmk(t) (k = 1,2, ... ,K; m 1,2, ... ,M) that model the effects of multipath 

propagation and dispersion: commonly referred to as convolutive mixing. The mixing matrix is 

thus a M x K matrix of FIR filters, not a scalar matrix. Suppose the K source signals wk (t) are 

statistically independent and identically distributed (Li.d.) with zero mean and unit variance and 

let M 2': K . The mth received signal at time tis: 

Xmt = ("K 
L.,;k=1 W k ) + !flllt' 

I 
( 4.1) 

The sequences !fmCt) represent the system noise on the mth receive channel (e.g. the thermal 

noise due to the antenna array and electronics), the samples of which are drawn from an 

independent white Gaussian noise process with 
. 2 

vanance (J1j/' We can express the 

sequences W k (t), !fill (t) and x/I1 (t) as algebraic power series, respectively: 
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The function glllk (t) can be written as a Laurent polynomial in the indeterminate variable 

the product X
I11

(z) Gmk(Z)Wk(z) - see section 2.3.1. The mixing problem can now be 

expressed in the form: 

XI (z) r GII(Z) GI2 (z) GIK (z) 
W, (2) 1 I]/I(Z) 

X 2 (z) , G21 (z) Gn(z) G2K (z) W?(z) 1]/2(Z) 
(4.2) 

= l G"', (2) 

-. + 

X M (z) G V/2 (z) GMK(Z) WK (z») I]/H (z) 

This expression may be more compactly written using polynomial matrix notation: 

X(z)=G(z)W(z)+\.}l(Z)E CM(z), (4.3) 

where G(z) is a M x K polynomial matrix that represents the convolutive mixing process 

and W(z), \.}l(z) and X(z) are vectors of algebraic power series representing the sources, 

noise and received signals, respectively. 

Note that if we had knowledge of the mixing G(z) and ()~ was very small, it would be 

possible to get a (least-squares) solution to this problem by applying the pseudo-inverse of 

G(z) to X (z) [20J, in other words 

W(z) ~ (G(z)G(z) t G(z)X (z) = r(z)X (z) , (4.4) 

where nz) is sometimes called the unmixing matrixl. This is provided M :::: K (i.e., G(z) is a 

fully-determined or overdetermined system) and the rank of G( z) is equal to K. In general, 

since G(z) is a matrix of FIR filters, its inverse involves IlR filters. In 'real-life' applications a 

priori knowledge of the mixing is usually not available. Instead, multichannel BSS (blind 

deconvolution) techniques are applied that attempt to extract the source signals by estimating 

the unmixing matrix [14,40,80,89]. However, finding such an unmixing matrix (i.e. extraction 

of the sources) is not our interest here. 

I In the communications context, r(z) defines the zero-forcing equaliser which can separate the input 

signals and mitigate (equalise) the lSI [80]. 
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4.1.2 Polynomial Covariance Matrix 

Since the source signals are statistically independent they are strongly decorrelated, i.e. 

E[wk(t)w/1I(t-~r)] =0, for n1't=k and 1:E 'Z. Let the vector, W(t)E , represent terms from 

the K source signals at time t. The matrix 3,,,, (1:) E rcKXK( i) is a space-time covariance matrix 

for the vector of sources and takes the diagonal form 

o 
, 1:E 'Z (4.5) 

o 
where akk (1:) denotes the true autoconelation sequence of the k th source. This matrix describes 

both spatial and temporal relationships between signals. It follows that the z-transform 

of a
WH 

(1:) , which is called a polynomial covariance matrix, is also diagonal, in other words 

T 

A (z) = Ia
WH

(1:)z-r =diag[AII(z),An(z), ... ,AKK(z)]E r;KXK(z), (4.6) 
7=-7;1 

i.e. akk(T) has finite support. Evaluation of AHH(z) on the unit circle (i.e. for z= 

produces the true PSD matrix, A1n,(ejaJ)E of the form of (3.10), which is also diagonal. 

The diagonal entries, Akk Cejli), of AMI (e jaJ ) are the true power spectrum of wk (t), i.e. the 

Fourier transform of a kk (1:). 

As a result of the mixing process in (4. I), the received signals x", (t) will generally be 

correlated, i.e. 

a km (1:) = E[xk (t)x,:, (t 1:)] i:- 0, for k i:- In , (4.7) 

where akm (1:) is an individual entry of the true space-time covariance matrix: 

(4.8) 

for the signals X (z). It follows that a( 1:) will generally not be diagonal for \;/1:. The true 

polynomial covariance matrix is given by 

T, 

A(z) = La(1:)z-r E 

r=-7: 

(4.9) 
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where Tc E 7L, ;::: 0 and a( T) = 0, ViTI> Tc . The matrix A(z) has the non-diagonal form: 

All (z) AI2 (z) AIM (z) 

A(z) G(z)A (z)G(z) + I(}~ 
A21 (z) An (z) A2M (z) 

(4.10) 

AM I (z) AM2 (z) AMM (z) 

The individual entries of this polynomial matrix, Akm(z) Ik *- m, correspond to the cross-

correlation between the kth and mth channels. It follows directly that the PSD matrix A(e j
(() 

will also not be diagonal. 

By virtue of its constmction, A(z) IS parahermitian, I.e. A(z) A(z) or 

(T) = (-r) = [a(-T)];nk , k,I11E {1,2, ... M} (see section 2.3.2). Furthermore, it is 

assumed A(z) is positive semidefinite: we shall say a parahermitian matrix is positive 

semidefinite if for all E( z) , the parahermitian form 

A(z) = E(z)A(z)E(z) has a(O);::: O. (4.11) 

where a(O) is the zero-lag coefficient in the sequence a( T) . This definition is a generalisation 

of that for scalar matrices in [21]. 

Since the EVD can only measure and remove instantaneous correlations, it cannot 

sufficiently diagonalise the matrix A(z) . Our goal is to find a matrix decomposition of A(z) 

that satisfies properties that are generalisations of those satisfied by the EVD given in section 

2.2. That is, we require an energy preserving transformation that diagonalises A(z) and 

imposes a frequency-independent ordering regime on the diagonals of the resultant PSD matrix. 

Amongst other advantages (e.g. general rank determination), this type of transformation would 

allow for the estimation of the broadband signal and noise subspaces. 

4.2 Extension of the EVD and SVD to Polynomial Matrices 

4.2.1 Polynomial EVD 

Consider the parahermitian matrix A(z) in (4.10). We desire a transformation H(z) such that 

C(z) = H(z)A(z)H(z) ( 4.12) 

is a diagonal polynomial matrix, i.e. 
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r
c

" 

0 

C(z) = 
C22 (z) 

(4.13) 

l 0 CMM (z) 

and the diagonal entries of the corresponding PSD matrix, C(e jill
), are ordered (without loss of 

generality) in the manner 

C ( jill) > C ( JOJ) 
kk e - (k+1 )( hi) e , k = 1,2, ... M -I and '\jOY. (4.14) 

Equation (4.14) is the spectral majorisation property given in (3.11) but for arbitrary 

multichannel data. In addition, we demand that the matrix H(z) is constrained to be 

paraunitary, i.e. H(z)H(z) H(z)H(z) I. This ensures that the total energy, as constituted by 

the matrix A(z), is invariant to the application of the transformation. Note that in the 

degenerate case of order zero, this reduces to the definition of a conventional unitary matrix. We 

also require that the polynomial entries of H(z) have finite order, so that H(z) represents a 

matrix of FIR filters. Hence, the FIR paraunitary transformation H(z) is linear, convolutive and 

lossless (i.e. it is stable and causal with an all-pass frequency response). 

The decomposition in (4.12) is not known to exist in general. In this thesis, we shall 

assume that an approximation to the decomposition exists. The challenge then is to compute a 

paraunitary matrix H( z) such that the polynomial matrix C( z) is as close to diagonal as 

possible. In general, it will not be possible to achieve exact diagonalisation since the paraunitary 

matrix H(z) represents an anay of FIR filters; one cannot expect the filters to reverse the 

(second-order) transformations imposed by a mixing matrix of FIR filters. However, if the order 

of the entries of H(z) is sufficiently large, the diagonalisation can be achieved to a very good 

approximation. 

The polynomial matrix decomposition of (4.12) may be looked upon as an extension of 

the conventional EVD to polynomial (space-time) covariance matrices, i.e. it is a polynomial 

matrix EVD (PEVD). Recall that the conventional EVD takes a Hermitian matrix, A, and finds a 

unitary matrix, U, such that D UAU H is a diagonal matrix with the eigenvalues of A on its 

diagonal. The eigenvalues are usually ordered with the most dominant located in the first (top) 

row. In the same way, the diagonals C(z) obtained by performing a PEVD may be regarded as 

eigenvalues that are functions of the indeterminate z, that is, they are polynomial eigenvalues. 

Correspondingly, the rows of H(z) may be seen as the polynomial eigenvectors of A(z) which 

form an orthonormal set [64,65]. In other words, at each frequency (j), H(ej(V) E IS 
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comprised of the eigenvectors of the Hermitian matrix A(e jW
). It is easy to see the connection 

between Ckk (z) and the scalar eigenvalues d k found by the EVD if we made the components 

of (4.12) scalar matrices; the expression would simply be that for the EVD. 

A general polynomial matrix is not necessarily paraunitary, and therefore it is vital to 

ensure that the diagonalisation is carried out over the restricted subspace of paraunitary 

matrices. Methods of generating FIR paraunitary matrices have been discussed in the context of 

subband coding in chapter 3. Later in this chapter (sections 4.3 to 5), we explore techniques for 

constructing FIR paraunitary matrices for arbitrary multichannel data with the aim of 

performing broadband subspace decomposition. 

Sample Polynomial Covariances 

In practice, the design of a paraunitary matrix is usually based on an estimate of the true 

polynomial covariance matrix A(z). This is because we often do not have explicit knowledge 

of A(z). The received data vector x(t) in equation (4.3) is used to generate the sample 

polynomial covariance matrix, which is typically of the form: 

where 

!] 

R(z) = 'Ir(T) Z-7, 

reT) 
I T-] 

_~X(t)XH(t 1'), TL. . 

(4.15) 

(4.16) 

T is the number of data samples llsed to obtain the estimate and t] ~ O. Individual entries of 

r( T) are denoted as 

(4.17) 

It is assumed that r( 1') == 0 for 11'1> t] and that that T» t] . In practice, the value of t] is often 

measured experimentally. It follows that rkm(T)= (-1'), and so the polynomial matrix R(z) 

is parahermitian by construction. 

Given the data x(t) or R(z), a PEVD algorithm can then be used to construct a 

paraunitary matrix H(z) such that 

S(z) H(z)R(z)H(z), (4.18) 

where S(z) is approximately diagonal; more specifically, 
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S(z) == diag[SJ I (z), S22 .. ,SMM (z)], (4.19) 

and the diagonals Skk (z) are ordered, without loss of generality, according to (4.14); i.e. 

(4.20) 

The transformed matrix S(z) is a consistent estimate of (4.13). 

4.2.2 Polynomial SVD 

The matrix H(z) is also a space-time analogue of the unitary matrix found by the SVD, and so 

may be applied to a more general polynomial matrix. We know that, conventionally, the EVD 

can be used to find the SVD of a scalar matrix. This can be extended to polynomial matrices as 

follows. Let X(z) E CMXK(Z). A PEVD will find a paraunitary matrix U(z) such that the 

parahermitian matrix A(z) = X(z)X(z) is diagonal, i.e. 

D(z) = U(z)A(z)U(z), (4.21) 

where D(z) =diag{DII(z),D22(z), ... DVlM (z)} and Dkk(ej{J»'?D(k+J)(k+l)(ej(tJ),'I/()). We may 

apply U(z) directly to X(z) and obtain the equality U(z)X(z) = V(z). It is clear from this that 

V(z)V(z) = D(z) so the rows ofV(z) are 011hogonal. It follows that the identity 

D(z) = U(z)X(z)V(z) (4.22) 

is an effective generalisation of the SVD to polynomial matrices, namely a space-time or 

polynomial matrix SVD (PSVD). The diagonals Dkk (z) obtained with a PSVD may be viewed 

as the polynomial singular values; U(z) and V(z) are the left- and right-hand polynomial 

singular vectors, respectively. 

4.2.3 Properties of a PEVD/PSVD 

It is possible to generalise the requirements from properties of matrices of polynomials to 

properties of signals. This helps to highlight the connection of the paraunitary matrix found by a 

PEVD or PSVD to signal processing applications; particularly, broadband sensor array 

processing and subband coding. 

Strong Decorrelation. The paraunitary polynomial matrix H(z) , as defined in (4.12), may be 

applied to the received multichannel data X (z) (Fig. 4.1) to produce the transformed sequences 

.t.(z) according to 
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HII(z) H 12 (z) 

H 21 (z) H 22 (z) 
HIM (z) 'I XI (z) j\ 
H 2M (Z) X 2(z) 

••. HWMJ XM(Z) 

(4.23) 

or more compactly 

tez) = H(z)X (z) , (4.24) 

where, as before, X (z) and t(z) denote algebraic power series. Now we can make the 

following assertion. 

Theorem. 4.1. If the condition of equation (4.13) is satisfied, then the paraunitary matrix H(z) 

can be applied to X (z) to produce tranlformed signals that satisfy the strong decorrelation 

property. 

Proof. By analogy with (4.9), the polynomial covariance matrix of the transformed signals is: 

H(z)A(z)H(z) . (4.25) 

where y(t) relates to the series tez). From (4.13) and (4.25) it is easy to see that the output 

signals t(z) have been spatially whitened or strongly decorrelated2 since 

H(z)A(z)H(z) = C(z) . (4.26) 

Q.E.D. 

This proof naturally carries over to the case of sample statistics and the lossless filter bank 

H(z) in (4.18) for the sample polynomial matrix R(z) defined in (4.15). Hence, an 

approximation to C (z) is given by 

S(z) = H(z)R(z)H(z). (4.27) 

It follows that 

S(z) = diag[5 11 (z), 5 22 (z), ... 5 M V! (z)] en (z) , (4.28) 

where 

1 In the context of decorrelating multichannel broadband data, a practical PEVD (or PSVD) may be 

regarded as a second-order BSS (i.e. the first step in BSS) technique. The paraunitary matrix H(z) 

generated is an estimate of the second-order unmixing matrix. It is 'second-order' in the sense that 

second-order statistical dependencies between the signals are being minimised. 
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(4.29) 

Spectral Majorisation. The ordering imposed on the diagonals in (4.14) and (4.20) amounts to 

ordering the signals yet) such that the variance of YI(t) is greater than the variance of h(t) at 

every frequency OJ, and the variance of Y2(t) is greater than that of y,(t) at every OJ, and so on. 

That is, the signals yet) satisfy spectral majorisation. Recalling the discussions in section 4.2.1, 

we can say that spectral majorisation is a generalisation of the eigenvalue ordering performed by 

the EVD to polynomial eigenvalues. 

Theorem 4.2. If the conditions of equations (4. J 3) and (4. J 4) are satisfied, then the set of power 

spectra {Ckk(ej(V)} is unique. 

Proof. This may be shown by simple generalisation of the proof in [74]. The fact that H( ej{U) IS 

unitary for each fixed OJ implies that that the power spectra Ckk (ej(U) are eigenvalues of A(e jCO
) 

for each OJ. Suppose the majorisation property is satisfied. Then at each and every frequency OJ 

the eigenvalues are ordered as a sequence of decreasing magnitudes. Since the set of 

eigenvalues is unique, each diagonal entry in (4.13) is uniquely determined for each OJ. Thus, 

the set of power spectra, which has the majorisation propel1y, is unique'. Q.E.D. 

It is easy to see from (4.29) that this proof also shows that the set of sample power spectra 

{Skk (ej(U)} are unique. 

Energy Compaction. It is obvious from (4.14) that the transformed signals are also ordered in 

terms of their total spectral energy, i.e. 

(4.30) 

which is a weaker condition than spectral majorisation. 

Energy Conservation. Since the PSD matrix transforms according to (4.12) and H(z) IS 

paraunitary, it can be shown that 

trace{A(z)} = trace{H(z)A(z)H(z)} 
T=-oo 

M = 

=trace{C(z)}=I IE[Yk(t)Yk(t T)]z-r 

(4.31 ) 

k=1 

3 It should be noted that H(z) may not be unique since the matrix of eigenvectors H(ej(U) may not be 

unique. 
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and so the combined signal power is preserved. Without this property, the power of the output 

signals would have no physical significance. Setting z = ej
(() in (4.31) leads to the much 

stronger result that 

(4.32) 

In other words, the total power of the input signals is preserved at every frequency under the 

transformation. The transformation can redistribute energy between the signals; however, it 

cannot amplify or attenuate energy. Without this (energy preservation) property the output 

signals would have no physical significance. 

Permutation Indeterminacy 

A paraunitary H(z) that is found to diagonalise a parahermitian matrix is not unique. The lack 

of uniqueness is easiest explained in the Fourier domain. The filter bank H(z) is a unitary 

matrix that diagonalises the Hermitian matrix at each frequency. This means that the order in 

which the results in each frequency bin occur may differ to those in other bins. It is crucial to 

remove this ambiguity if, say the desire is to perform signal separation (which would require a 

second stage for minimisation of higher-order statistics). 

A paraunitary permutation matrix can be cascaded with H(z) independently at each 

frequency in order to correct for any permutation. The filter bank H(z) retains the same 

property, since the permutation matrix is paraunitary. As specified by (4.13) and (4.]4), our 

interest is to investigate the more restrictive case where H(z) not only strongly decorrelates the 

input signals but also spectrally majorises them. This removes the freedom to arbitrarily 

permute the channels at each frequency. Such a matrix is unique, up to the application of an all-

pass matrix, such as diag[I, ... ,I,z-r] . 

Broadband Subspace Decomposition 

It may not be immediately clear to the reader as to the physical meaning of broadband subspace 

decomposition. A possible explanation is given here by generalising narrowband subspace 

decomposition to broadband signals. Consider again the convolutive mixing scenario in Fig. 

4.1. Assume that there are a large number of samples in the received data, the SNR of the 

signals is sufficiently high and the rank of G(z) is equal to the number of source signals. Now 

suppose a paraunitary matrix H(z) is computed that when applied to a set of correlated signals 

produces signals r( z) that satisfy strong decorrelation. Further suppose that spectral 

majorisation holds for the corresponding set of spectra. This means that for each OJ, the 
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variances of the strongly deconelated signals are ordered in a decreasing fashion. The first p 

polynomial eigenvalues will represent most of the output signal power, and the rows of 1::.(z) 

conesponding to the first p diagonals constitute the broadband signal subspace. The other 

M p rows correspond to the broadband noise subspace, which may therefore be identified 

and separated. 

At each OJ, H(ej{o) is a unitary matrix that diagonalises the Hermitian matrix A(e jCO ). 

The matrix H(e jco ) is partitioned into a (narrowband) signal subspace, H(ejCOl' ), and noise 

subspace, H(e j
(O)(1l1, for all OJ. Since H(z) is paraunitary the distribution of energy between the 

resulting broadband signal subspace and noise subspaces is guaranteed to have proper physical 

significance. Note that if the signals transformed by the paraunitary matrix satisfy strong 

decorrelation and spectral majorisation then an estimate of the broadband signal and noise 

subspaces may be obtained. 

There are other possible requirements of a PEVD that also conespond to properties of the 

EVD/SVD for nanowband sources. In particular, a technique that computes a PEVD can also be 

used to achieve efficient coding of data. This is the topic of discussion in chapter 6. 

4.2.4 Performance Measures 

Diagonalisation Performance Measure 

In order to assess the performance of algorithms that compute the PEVD, a measure based on 

the true statistics of the input signals is introduced. This measure is defined in terms of the 

parahermitian matrix C(z) in (4.12): 

where C(z) H(z)A(z):H(z). (4.33) 

m=i k=l T 

The numerator represents the sum of the squares of the moduli of the off-diagonal terms of 

C(z) at all time delays. The denominator is the sum of the squares of all the matrix terms at all 

time delays, which is conserved. The /L measure indicates how well a PEVD/PSVD algorithm 

would diagonalise a matrix (or strongly decorrelate the input signals). That is, it gauges the 

amount of energy leakage there is from the diagonals to off-diagonals of the output polynomial 
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covariance matrix4
• This measure is always non-negative and takes values between 0 and 1. The 

closer it is to zero, the more successfully the algorithm is in performing polynomial matrix 

diagonalisation. The condition /1, = 0 means perfect diagonalisation of the matrix has been 

attained. 

Suppose that W(z) represents K real, discrete-time, stochastic, i.i.d. sources which are 

convolutively mixed as in Fig. 4.1. In this case, the quantities ckmr may be computed as follows. 

These sources are mixed using a polynomial-mixing matrix G(z) and then transformed by a 

paraunitary matrix, H(z). Let A (z) be the polynomial covariance matrix for the sources 

W(z) . The (parahermitian) covariance matrix, A(z), for the mixed signals is: 

(4.34) 

SInce A"H (z) I. Similarly, C(z) is the mixed-decOlTelated signal covariance matrix: 

C(z) E[H(z)A(z)H(z)] = H(z)G(z)G(z)H(z). (4.35) 

Hence, the expectation of /1, for a paI1icular H(z) may be determined directly if we have 

knowledge of G(z) . 

Subspace Decomposition Performance Measure 

The subspace estimation accuracy of a PEVD/PSVD algorithm for broadband signals may be 

quantified. Consider again the parahermitian matrix C(z) for the transformed broadband 

signals t.Cz) in (4.24) and the convolutive mixing model illustrated in Fig. 4.1. We define a 

measure based on the projection of the source signals onto the estimate of the signal-plus-noise 

and noise subspaces obtained by a PEVD/PSVD. It is given by 

M 

LCkkO 
YIJ k=K+I Y=-= K 

y, "c L.. kkO 
k=l 

(4.36) 

where, as before, K is the number of source signals, M is the number of received signals and CkkO 

is the zero-lag term of the autocovariance (i.e. the variance) of the k th transformed signal. 

Heuristically, the quantity y, is a measure of the accuracy of the signal-plus-noise subspace 

estimated by the PEVD/PSVD. More formally, it is equivalent to taking the sum of the resultant 

-l It can also be viewed as a measure of how well the algorithm, as an initial step of BSS, could he 

expected to estimate the second-order mixing matrix up to permutation and scaling effects. 
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powers from projecting the original signals onto the PEVD/PSVD estimate of the signal-plus­

noise subspace. The quantity r'l indicates the accuracy of the noise subspace estimated by the 

PEVD/PSVD; it is equivalent to the sum of the resultant powers from projecting the original 

signals onto the noise subspace estimated by the PEVD/PSVD. A small value of r indicates 

good subspace estimation. Perfect subspace estimation is achieved when r 0, which is not 

possible in practice. 

The rmeasure is dependent on the SNR of the inputs X (z) , which is gi ven by 

Px _ trace[R(z)to 

P'If a-:trace[I] 

trace[G(z)G(z)] /zo 

a-:trace[I] 
(4.37) 

The notation A(zlll is used to mean that A(z) is only evaluated for the zero lag term. A small 

value of r can be achieved with a large value of SNRill . In the case where the thermal noise 

power of the receive antenna is relatively large, ris large. 

4.3 Review of Algorithms for Obtaining a PEVDIPSVD 

4.3.1 Lattice Parameterisation 

A paraunitary matrix can be obtained by the parameterisation of Vaidyanathan' s lattice structure 

presented in section 3.4.1. As demonstrated there, the parameterisation of this type of lattice can 

be computationally costly and complex optimisation is often required. Regalia and Loubaton 

[57] propose a filter bank design algorithm based on this premise for rational signal subspace 

analysis. It uses an eigenstructure based adaptive algorithm for the optimisation of multiple 

parameters. The algorithm constructs the paraunitary matrix (adapts the lattice parameters) 

according to the received signal samples iteratively (i.e., it is a signal-adapted or online 

technique). This technique can avoid converging to local minima, which is an advantage over 

gradient-based algorithms. However, the optimisation of the multi variable lattice filter is 

nonlinear (the update equations resemble those of standard gradient descent methods) and 

computationally complex. 

4.3.2 Frequency-Domain Techniques 

The strong decorrelation of signals may be performed in the frequency-domain. A rather simple 

but "naive" approach would be to take the DFT over the entire data length and apply the 

SVD/EVD to decorrelate the signals at each discrete frequency independently of other 
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frequencies. This reduces the broadband problem to narrowband form. The cmcial problem with 

this is that there are many quantities (unitary matrices) to estimate with insufficient data samples 

(one sample per bin) to use in obtaining a reliable estimate. An extension of this approach is to 

split the input spectra into frequency bands (subbands) and apply a different (decorrelating) 

unitary matrix to the signals at each subband. The principle is the same as that behind the 

independent frequency band (IFB) method used in space-time adaptive processing [11,36]. 

There are two major drawbacks with an IFB type approach and thus the subband approach: 

I. The phase (temporal) coherence (discontinuity) of the source signals may become 

cormpted because in each subband the SVD will order the output signal powers in order 

of decreasing energy irrespective of the ordering in neighbouring subbands. In other 

words, a unitary matrix applied to a subband is independent of that applied to any other 

subband; therefore, the signals in each subband wi II undergo a different phase change to 

those in any other subband. For this reason, an IFB-based approach would generally not 

be suitable for some applications where minimal signal conuption is necessary; e.g., 

signal separation of audio, in speech recognition, for example, and medical signals, e.g. 

electrocardiographic (EeG) and electroencephalographic (EEG) data. 

2. Since a unitary matrix is computed independently for each subband, the algorithm will 

disregard correlations that may exist between the subbands, which may be important. 

The extent to which decorrelation is performed is restricted because these (usually 

relatively small) correlations are not minimised. This would be disadvantageous in 

applications such as subband coding, where the algorithm generally could not be 

expected to produce optimal filter banks (in the sense of the coding gain). 

An alternative frequency-domain approach, namely the multipath-enabled SVD, is 

proposed by Lambert et al [37] for signal subspace estimation of multi path (broadband) signals. 

He represents the convolutive mixing problem in terms of DFT filter matrices as well as 

polynomial matrices. An extension of the SVD to polynomial matrices is obtained by 

generalising some conventional linear algebra and control theory methods from the complex 

number field to the field of rational functions. The technique initially applies of a rectangular 

window function to all the entries of the space-time sample covariance matrix of the input 

signals. The length of this window is ideally made equal to the length of the tme autocovariance 

function of the signals. The windowing removes any noise related cross-covariance terms, thus 

improving the algorithms estimate of the signal statistics. The technique then diagonalises the 

covariance matrix at each and every frequency using an extension of the QR-algorithm: a 

Householder transformation is applied to the (instantaneous) covariance matrix at each and 

every frequency; an ordering of the polynomial singular values (or equivalently, the diagonals 

of the covariance matrix) is performed according to total energy. The algorithm involves the 
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approximate inversion of FIR filters, and is therefore quite distinct from the algorithms 

developed in this thesis. An evaluation of this algorithm is given in section 4.5, where we also 

compare its performances to that of three sub band approaches that are proposed in this thesis. 

Hung and Kaveh [27] propose the use of focusing matrices that align (linearly transform) 

the signal subspaces of the narrowband components within the bandwidth of the signal, which is 

called focusing. The method of focusing takes the correlation matrices at different frequency 

bins and combines them to form a general correlation matrix that is a sufficient statistic for the 

spatial observation vectors. This matrix may then be used as the data matrix that is processed by 

the conventional MUSIC algorithm. With regards to the single channel case the DFT of the 

signal would need to be taken and split into sub-frequencies (bins). Each frequency bin would 

then have a different signal subspace that would be transformed by the corresponding focusing 

matrix to a subspace representing the baseband signal. This algorithm requires an initial 

estimate of the spatial characteristics of the impinging signals and the array in order to work. 

Coherent subspace estimation algorithms, such as this one, are known to generate erroneous 

subspaces due to the focusing process, which is exacerbated when using poor initial estimates. 

For this reason, these techniques cannot be considered as prior-art algorithms for computing a 

PEVD, and therefore will not be investigated further. 

4.4 Bandwise Algorithm 

In order to gather a better understanding of the time-domain SBR2 algorithm, which will be 

described later in section 5, we introduce and develop a family of frequency-domain subband 

approaches to computing (estimating) a PEVD in this thesis. These techniques are based on 

methods that are typically applied to problems related to classical spectral estimation [28,50]. 

4.4.1 Derivation of the Regular Bandwise Algorithm 

Suppose there are M data sequences of length T samples. The first stage of the bandwise 

algorithm is to divide the sequences into non-overlapping equal length segments (blocks), as 

depicted in Fig. 4.2. Then, the DFT of the blocks of data is computed. Let 0) be the number of 

samples in a block so that there are B T 10) (for 0, ::::; T ) blocks per channel k. The b th block 

has the data 

corresponding to a set of Fourier-domain samples (or design frequencies). Let 

]1 . A data matrix containing all the Fourier domain data points for the 

- see Fig. 4.2. The sample 
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covariance matrix of the data, which IS Hermitian, IS estimated at each design frequency 

independently, i.e. 

(4.38) 

There are B data samples to use for each estimate. At the other frequencies (not included 

in the set), the covariance at the closest of the set of design frequencies is used. A unitary 

matrix, UdJ E , is then found that diagonalises RdJ. The matrices U I/J define the paraunitary 

matrix, H(z) E CMXIVf(Z), in the frequency domain for the entire data set. Hence, estimates of the 

covariance matrix and thus the unitary matrix are created at a set of frequencies. 

A Modified Schur Decomposition Technique. The matrices U dJ may be found by computing 

the Schur decomposition of RdJ' The problem of permutation indeterminacy see section 4.2.3 

caused by ambiguities in the rotation values can be resolved by permuting the eigenvectors 

(and eigenvalues) of RdJ at each frequency in accordance to the ordering regime in (4.14). 
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Figure 4.2: Illustration of the data sectioning performed by the bandwise algorithm. 
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In Fig. 4.3, we show a flowchat1 representation of the bandwise algorithm. The algorithm 

finds a frequency-domain paraunitary matrix H(z) that can strongly decorrelate signals. It may 

be applied directly to the data at each frequency by first obtaining the DFT of the data set. The 

matrix H(z) corresponds to a unitary matrix which is applied to the components (M complex 

numbers) at the rjP frequency. For a set of frequencies (0, < T), H(z) is also applied to those 

frequencies closest to the ¢th design frequency in the original sequences. The set of Tb 

frequencies may be viewed as unitary-matrix design frequencies for the original length-T 

sequences. The IDFT may be used to obtain the time-domain output signals. 

START 

Do k = I to lv! 

Dob= I toB 

Do 1/1= I to 7" 

Covariance matrix 

R(ltoM. ltoB. ¢) = 

X(ItoM, HoB, ¢)X"(ltoM. ItoB, ¢) 

Do 1/1= I to T;, 

Apply Schur decomposition 
R(ltoM,ltoB.¢) = 

U6S(ltoM ,ltoB,I/1)U~ 

Order eigenvectors in 
unitary matrix Uo 

Define (he set of design-to­
data frequency indices 
{~ ... tq, .,WI} 

H(ltoM, ltoB, ItoT) = 
U(1toM. ltoB, tq) 

Apply paraunitary matIix 

H( !toM, I toB,j)X(ltoM,j) 

END 

List of important symbols 
M. total number of channels 
T total number of data samples 
T., block length 
B total number of data blocks 
X data matrix (frequency-domain) 
R input COVaI1anCe matrix 
S updated covariance matIix 
H paraunitary matrix 
U unitary matrix 

Figure 4.3: Flowchart of both the regular and SW-bandwise algorithms. 
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In order to simplify the bandwise algorithm the following assumptions are made: 

1. The data is periodic (circulant): data sequences repeat periodically every T" samples. 

Obviously, the simplification is gained since the assumption is naturally conducive to 

operating in the Fourier domain. However, this means that H(z) produced by the 

method does not have a time-domain equivalent; that is, H(z) is not the proper 

paraunitary matrix to apply to non-circulant data. The construction of a non-circulant 

H(z) with a frequency-domain algorithm seems to be a non-trivial task. 

2. The data length T is an odd multiple of the block length T" when assuming circulant 

data. Assuming this relationship between T and T" guarantees that each frequency in 

the Fourier domain data is closest to a unique frequency from the block Fourier 

transforms. 

Note that the description of the bandwise algorithm is for both complex-valued and real­

valued data. However, our evaluation of the algorithm (presented later) is limited to the specific 

case of real-valued data. For this case, we must ensure that the complex numbers at opposite 

frequencies (positive and negative frequency components) of the Fourier domain data are 

exactly complex conjugates. Therefore, the unitary matrices selected for opposite frequencies 

will be complex conjugates as well. This guarantees that H(z) is real. 

4.4.2 Sliding-Window Bandwise Algorithm 

The bandwise algorithm can be improved upon by adopting the Welch method [87] of PSD 

estimation rather than the Bartlett estimator. The new algorithm, namely the sliding-window 

(SW) bandwise algorithm, carries out exactly the same processes as the regular bandwise 

algorithm with the exception of the following: the input signals are divided into B overlapping 

blocks of length 0) so that each block contains samples from neighbouring blocks, i.e. there is 

redundancy of samples in the blocks. The action of collecting data in this way may be viewed as 

sliding a window along the original data sequence and taking a 'snapshot' of data at periodic 

intervals, hence the algorithm's name. This is illustrated for a single time series in Fig. 4.4. The 

bth block of the k th signal is defined as 

(¢)=Xk(¢Hb~J for¢ O,I, ... ,T,,-l,b=O,l, ... ,B-l, (4.39) 

where ~) is the number of samples from xk (t) that are not common to a given block and the 

preceding block (i.e. the overlap length is 0) ~). Recalling the assumptions made for 

simplification of the bandwise algorithm in section 4.4.1, the total number of blocks is given by 
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for the {;}' design frequency has the general 

form 

XI.(B-I)l;, +(11 

X L (B-I)7;+¢ 
(4.40) 

Using X(~, an estimate of the covariance matrix is obtained for each design frequency ¢. 

We are now in a similar position to that in the bandwise algorithm, having estimates of 

the covariance matrix at a set of design frequencies. The SW -bandwise algorithm has two 

parameters: the block length 0, and the disparity length ~)' If~} = 1, the disparity in data 

samples between consecutive overlapped blocks is a single data sample, in which case we say 

that there is maximal overlap. With ~) = 0, there are contiguous blocks, i.e. no overlap, and the 

algorithm becomes the regular bandwise algorithm. A summary of the SW-bandwise algorithm 

is represented by the flow diagram for the regular bandwise algorithm in Fig. 4.3. 

Single channel data sequence 

~XLO'XU"'" XU;._I' xu;.'·" ,XU:,_I 'I xu;, , ... ,XLT 

~ 
Sliding window 

Data blocks 

[XLO xl.! 

[Xl.T,. XI.T,.+1 Xu;, 

[Xl ;T 
,- (I +Th -'] 

Figure 4.4: Illustration of the data segmentation employed by the SW-bandwise algorithm. 

Data Windowing 

The degree to which decOiTelation can be achieved with the regular bandwise algorithm is 

constrained to an extent by the spreading of signal energy from one frequency component to 

nearby frequencies. This phenomenon, known as spectral leakage [50], occurs because the DFT 
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is based on the assumption that the signals are periodic. If, as in most cases, the signals operated 

on by the bandwise algorithm are not periodic, 'spiky' discontinuities occur at the endpoints of 

the blocks of data processed by the DFT, as shown in Fig. 4.5(a). The discontinuities give rise to 

spurious components in the signal's spectrum, causing a particular frequency component to 

appear as a spread of frequencies. 

The effects of spectral leakage may be reduced by applying a tapered window function to 

the data sequence in each block [50]. A tapered window would attenuate the endpoints of each 

block smoothly - see Fig. 4.5(b) - and hence reduce the spread (smearing) of spectral energy. 

To elaborate, consider that the segmentation performed by the regular bandwise algorithm may 

be looked upon as implicit windowing with a rectangular window function. The Fourier 

transform of a rectangular window is a sinc function that has high sidelobe energy, as 

represented by the thin solid curve in Fig. 4.6(b). The sidelobes enable the distribution of signal 

energy in frequency . The problem is exacerbated for short data lengths. A tapered window may 

be applied that has low magnitude sidelobes, which alleviates spectral smearing. 

The disadvantage of using a tapered window is the loss of spectral resolution since these 

windows have a broader mainlobe. A number of window functions have been devised that 

achieve a compromise between these conflicting requirements. Some popular choices are the 

Hann, Blackman and Hamming windows [50]. The time and frequency response of these 

windows may be compared in Fig. 4.6. For the SW-bandwise algorithm, a Blackman window 

function (represented by the thick solid curve in Fig. 4.6) is applied to each data block. A 

compromise is met between spectral leakage and frequency resolution with this window. 
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Figure 4.5: (a) Effect of windowing a signal with a rectangular window is discontinuities at the 

endpoints . (b) By comparison, when a tapered window is used the discontinuities are reduced. 
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Figure 4.6: Comparison of well-known window functions. 

4.4.3 Windowed Covariance-Domain Bandwise Algorithm 
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A third band wise algorithm variant, termed the windowed covariance-domain (WCD) band wise 

algorithm, may be obtained by adopting the Blackman-Tukey spectral estimation technique [7]. 

The WCD-bandwise algorithm carries out exactly the same processes as the other two 

(bandwise) variants with the exception of the following: the MxM sample polynomial 

covariance matrix of the data is computed; each of the entries (covariance functions) of the 

space-time parahermitian matrix is windowed (i.e., multiplied by a function of time-lag); and 

with a covariance matrix estimate R f for each of the T frequencies, a paraunitary matrix is 

constructed as a unitary matrix given by the EVD at each and every frequency . 

4.4.4 Other Possible Bandwise Algorithms 

The DFT produces a sampled version of the true spectrum since there are only a finite number 

of samples that make up the data record. As a consequence, frequency components that are 

located between DFT samples (or bins) are attenuated. This effect is known as the 'picket­

fence' phenomenon or scalloping loss [28,50]. A solution to this problem is to append zeros to 

the end of the block of data (i.e. zero-pad the data blocks). The result is in a smoother spectral 

estimate and allows for more precise localisation of a frequency component that does not 

correspond to an integer number of bins. Note that this effect should not be confused with 

improving spectral resolution. By the sampling theorem, we know that the only way of doing 

this would be to use more data samples in the DFT. 
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This technique may be incorporated into the first two bandwise techniques. After the 

possible application of a tapered window to each block of data, the blocks (initially of 

length ~) are zero-padded such that the original data length of T samples is restored. The zero­

padded blocks are then Fourier transformed. As in the bandwise algorithm, for each block and 

each frequency, these Fourier transforms are multiplied to give an estimate of the covariance 

matrix; then this estimate is improved by averaging over the blocks. Now we have estimates of 

the covariance matrix at a set of frequencies. However, unlike in the bandwise algorithm, the set 

of frequencies is not a reduced set but the set of all the frequencies present in the data. The 

paraunitary matrix is constructed as a unitary matrix at a set of frequencies, as in the bandwise 

algorithm. However, now the SVD produces a unitary matrix at each frequency, instead of at the 

closest frequency in the reduced set. The two variants of the bandwise algorithm discussed in 

this and the previous paragraph will not be evaluated due to time constraints. 

4.5 PEVD Performance Analysis 

4.5.1 Characterisation of the Bandwise Algorithm 

The bandwise algorithm has a single parameter: the block length ~)' which is the number of 

design frequencies to use. The choice of ~i has a major influence on the algorithm's 

decorrelation performance. Residual correlations between output signals from the bandwise 

algorithm with an optimal block length T,; are due to the same factors that typically limit the 

accuracy of non-parametric spectral estimators, in particular the Bartlett method [28]. Let the 

true polynomial covariance functions of the signals have finite support 2T, + 1; covariance 

terms outside the range [-~,~] are zero, as in (4.9). Suppose that T, «T, where as before T 

is the finite data length. As discussed in section 4.2.4, the extent to which decorrelation has been 

performed can be gauged by observing the amount of energy movement from the off-diagonals, 

ckll1 T' (k :;t. In), to the zero-lag coefficient of the diagonals, CkkO ' of the true parahermitian 

matrix C(z) . This quantity is given by the IL measure in (4.33). We can think of this measure 

for the bandwise algorithm (and other PEVD algorithms) as being governed by two factors: 

Spectral (frequency) resolution. This is limited by two forms of error contributed in the mean 

value of the estimate R
j 

"" A(ej(u! ), for f 1,2, ... , T . Firstly, R j is not separately estimated 

at each j; instead the estimate for the closest mUltiple ¢ of 0) is taken. Secondly, even at the 

correct value off, the estimate is biased because it is only based on finite sample lengths (blocks 
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of data of length 0,)' These two errors lead to a lack of spectral resolution; their contribution to 

/t is proportional to I I 0), but independent of T. 

Sample noise (error). This is due to using sample statistics rather than true statistics. Its 

contribution to /t is proportional to Th IT. Hence, the shorter the data length compared to the 

block length, the greater the error is due to sample noise. Conversely, in the extreme case when 

0) T (i.e. the naive approach), sample noise dominates the A measure and so the designed 

filter bank would not be expected to perform decorrelation well in general; the algorithm would 

essentially fit to the data used to learn the filters5
. 

In summary, there is a trade-off that has to be made between frequency resolution and 

sample noise because there are a fixed number of data samples to be divided between the 

statistical quantities (unitary matrices) for estimation. If a large number of samples are used for 

each unitary matrix estimate, then Th « T , i.e. fewer independent quantities are estimated, and 

so averaging is performed across neighbouring frequencies. This results in a reduction in 

spectral resolution. Conversely, if there are many statistical quantities to be estimated 

independently (i.e. many degrees-of-freedom), the variance of the covariance matrix estimates 

increases. This is because the number of effective samples per quantity being estimated is small, 

i.e. a high sample noise scenario. 

Characterisation of the SW -Bandwise Algorithm 

We now consider how the analysis of /t is modified when applied to this algorithm. Recall that, 

for the bandwise algorithm, the second contribution to /t is due to sample elTors. It follows that 

this source of error is considerably reduced in the SW-bandwise algorithm. This is because there 

are effectively more data samples used in estimating each of the Th covariance matrices. The 

result of this is an improvement in the decorrelation performance of the filter bank. The 

algorithm is subject to errors that limit its spectral resolution in the same way that the regular 

bandwise algorithm is. The cost of this improvement in performance is an increase in 

computation time since there are more blocks of data to be obtained and used in the estimation 

process. 

Another advantage this algorithm has over the regular bandwise algorithm is that the 

extent of spectral leakage is reduced because of the application of a tapered window to the 

, Note that errors due to sample noise would not be apparent if sample statistics were used to obtain the 

diagonalisation performance for a single realisation of the given problem. 
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blocks. As with the IFB approaches and the regular bandwise algorithm, this algorithm has the 

problems of phase discontinuity and restricted decOITelation. 

Characterisation of the WCD-Bandwise Algorithm 

There are many possible choices of window that can be used with the WCD-bandwise 

algorithm. We chose to use a rectangular window, as in the case of the multipath-enabled SVD 

technique in section 4.3.2, centred at zero lag that is zero beyond the known temporal bounds of 

the tme signal autocorrelation. For this window, the algorithm's only parameter is the window 

length, T". For optimality, this should be made equal to the length of the tme correlation 

function, i.e. T" = 2~ + I. For the mixing scenario of Fig. 4.1 with white source signals 

assumed, T" = 2N" + 1, where N, is the order of the FIR filters in the mixing matrix G(z). If 
., <~ 

we set T" = 2N r; + I, the expectation of the windowed sample covariance matrix is the tme 

covariance matrix. This is the optimal window length to use with a rectangular window. In 

effect, the windowing acts as a covariance-domain noise reduction filter. Since this algorithm 

does not process segmented data, it does not suffer from the associated problems of IFB 

processing. 

In the case of the regular bandwise algorithm, only products of terms within the block are 

used in estimating the true autocovariance terms. If we chose to use a triangular (Bartlett) 

window function with the WCD-bandwise algorithm it would behave in a similar fashion to the 

regular bandwise algorithm. By contrast, the SW-bandwise algorithm, in effect, uses some 

products of terms that exist outside the block as well as all of those within the block for its 

estimates. The WCD-bandwise algorithm uses all of the products of terms at each lag to 

estimate the autocovariances. Its unitary matrix estimates should, therefore, have fewer errors 

due to the statistical estimates than those obtained by the other two algorithm versions6
. For a 

rectangular window of optimal length the expectation of the windowed sample covariance 

matrix is the true covariance matrix, therefore sample noise is the only contributor to ;L 

Therefore, the algorithm constmcts a more accurate estimate of H(z) and could be expected in 

general to perform better polynomial matrix diagonalisation than the other two bandwise 

algorithms. This performance improvement is not mysterious, it occurs because the WeD 

variant tackles an easier, 'less blind' problem, made easier by the fact that Tc is known. 

6 The WCD-bandwise algorithm would perform in a similar way to the SW variant if it was used with a 

rectangular window with curved eorners. 
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4.5.2 Experimental Results 
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Through example simulations, an evaluation of the three bandwise algorithms described in 

sections 4.4.1 to 4.4.3 and the multipath-enabled SVD detailed in section 4.3.2 is presented. The 

performance of the conventional SVD, which is for scalar matrices, is also assessed. The 

algorithms were applied to the multichannel convolutive problem illustrated in Fig. 4.1. The 

following experiments also serve to reveal the influence of the various parameters on the 

decOlTelation performance of the algorithms. Examples are given that indirectly highlight the 

validity of the performance limitations due to phase discontinuity. Fm1hermore, we investigate 

the spectral majorisation performance of the various algorithms. 

In order to test the performance of the various algorithms, simulated data was created by 

modelling the propagation of M signals onto M sensors, as given by (4.3). Specifically, the 

mixing was modelled by an M x M polynomial mixing matrix G(z) whose entries were FIR 

filters of order N I{ 5 with coefficients drawn randomly from a uniform distribution in the 

range [- 1, I]. The source signals were independent binary phase-shift keying (BPSK) [51] 

sequences (with zero mean and unit variance) for which each sample takes the value ± 1 with a 

probability of 112. Additive noise (due to the receiver) was not included in these simulations, i.e. 

(5~ = O. For each experiment, the average of 100 realisations (simulation runs) were used to 

obtain each simulated point, which gives an estimate of the expected value of a quantity. 

Strong Decorrelation 

Dependence on Th• The evolution of the A measure with block length 0, is provided for the 

regular bandwise and SW-bandwise algorithms in Figs. 4.7(a) and (b), respectively. These 

results were produced by processing three signals, which were generated as in the previous 

paragraph, with T = 729 samples of data. The results confirm the analysis given in section 

4.5.1: the left hand side of the optimal (minimum A) point is dominated by errors that limit 

frequency resolution, whereas the right hand side is dominated by the sample noise. It is clear 

from the figures that the algorithms cannot achieve a zero A value, i.e. they cannot perform 

strong decorrelation (in the strictest sense), for an optimal block length. A contributory factor to 

this shortfall is that these two bandwise methods are oblivious to relatively small but important 

correlations that may exist between subbands for the reasons cited in section 4.3.2. This means 

that, in general, these two algorithms and most other subband methods would not be expected to 

perform strong decorrelation in the strict sense of the term. 
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Figure 4.7: Diagonalisation performances as a function of 0, for the 3-channel (a) bandwise 

algorithm and (b) SW -band wise algorithm. 

Dependence on T. Our analysis in section 4.5.1 of the relationship between T and A, (for a 

fixed N Ii ) has been verified, and some results for the four-channel case are presented in Table 

4.1. An optimal block length T; of 0, = 27 was set for the regular bandwise and SW-bandwise 

algorithms, this number being chosen from the previous experiment, which is optimal for 

T = 729; a maximum block overlap (To = 1) was used with the SW-bandwise algorithm; and 

the correlation window length Tw was set to 11 for the WCD-bandwise algorithm. 

If an optimal 0, (T; ) or T.v (depending on the algorithm) is used, the diagonalisation 

performance is primarily influenced by T and the true correlation time of the signals, Tc . Each 

independent quantity can be estimated using many samples if T » ~ .. However, if Tc is large 

compared to T, then there is insufficient data for a good estimate of H(z) to be found . As 

expected, the WCD-bandwise algorithm can generally perform better decorrelation than the 
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other methods. Results from using the conventional SVD and the multi path-enabled SVD are 

also provided in the table. It is apparent that the state-of-the-art method does poorly in 

comparison to the bandwise algorithms but appears to achieve greater diagonalisation than the 

conventional SVD. These results confirm that the SVD cannot perform strong decorrelation. 

The diagonality of the input parahermitian matrix is shown as reference (denoted by the symbol 

I, to signify the effective application of an identity transformation). 

Data length / 243 samples 729 samples 2187 samples 

Algorithm (A) (A) (A) 

WCD-bandwise 5.5xIO-2 1.9xlO-2 6.5xIO-3 

SW-bandwise 6.3xl0-2 2.8xI0-2 1.7x 10-2 

Regular bandwise 1.1xl0-1 5.0xlO--2 2.5xIO-2 

Multipath-enabled SVD I.7xIO-1 l.OxlO- 1 6.6xIO-2 

SVD 3.5xIO-1 3.5xlO- 1 3.6xlO-1 

I (no transformation) 3.8xIO-1 3.8xI0- 1 3.7xIO-1 

Table 4.1: Comparison of the decorrelation (A) performance of the bandwise algorithms, the 

multipath-enable SVD and the conventional SVD for different values of T. 

Spectral Majorisation 

We have observed that all versions of the bandwise algorithm produce output signals that are, in 

general, approximately spectrally majorised. This can be seen for the four-channel case for the 

SW bandwise with 0, = 27 and To = I and the WCD-bandwise algorithm with T" = 1 I in Figs. 

4.8(b) and (c), respectively. The four input signals used were of length T = 2186 samples and 

had spectra as in Fig. 4.8(a). Note that we have chosen to show two-sided spectra in order to 

show that the prior-art algorithm (in Fig. 4.9(b» does not preserve the real nature of the signals 

(discussed below). 

The output spectra from the regular bandwise algorithm (for an optimal block length of 

0) = 0: = 27) had similar characteristics to that of the SW bandwise algorithm; therefore, SW-
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bandwise results are shown only. With close inspection of the figures, one can gather that the 

WCD-bandwise algorithm performs spectral majorisation slightly better than the other bandwise 

variants. A more obvious dissimilarity between the sets of output spectra is that the regular and 

SW-bandwise algorithms produce transformed signals that have spectra with sharp (jagged) 

transitions (Fig. 4.8(b» . In general the SW variant produces outputs with spectra that are 

smoother (less jagged features) than the output spectra from the regular bandwise algorithm. 

The jagged features are a sign that there is a lack of phase coherence in the output signals, that 

is, the temporal structure of the signals could have been corrupted somewhat. This could be due 

to the same problems found with the subband or IFB approaches in section 4.3.2. The jagged 

features are also indicative of large-order filters ; this could be detrimental to many practical 

systems, where often the desire is to minimise the use of storage space and/or bandwidth. 
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Figure 4.8: (a) Spectra of four input signals for processing. The output signal spectra of (b) the 

SW-bandwise algorithm and (c) the WCD-bandwise algorithm. 
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For comparison, the power spectra for the output signals from the (conventional) SVD 

and the multipath-enabled SVD are shown, respectively, in Figs. 4.9(a) and (b) for the input 

PSD shown in Fig. 4.8(a). We observe that the signals produced by the multipath-enabled SVD 

are somewhat majorised, which is in contrast to the transformed signals from the SVD. Notice 

that the output spectra related to the multi path-enabled SVD method are non-symmetric even 

though real-valued data was processed; this is an artefact introduced by the algorithm, which is 

due to the way it constructs its paraunitary matrix. 
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Figure 4.9: The output signal spectra of (a) the SVD and (b) the multipath-enabled SVD. 

4.6 Concluding Remarks 

In this chapter, the notion of a polynomial matrix EVD/SVD decomposition (PEVD/PSVD) in 

the context of broadband subspace estimation has been presented. A PEVD is equivalent to the 

conventional EVD in the sense that it can diagonalise a parahermitian matrix and order the 

resulting polynomial eigenvalues based on their spectra. This has been shown to be the same as 

producing output signals that are strongly decorrelated and spectrally majorised. A study of the 
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few known methods for broadband subspace decomposition has been presented and a state-of­

the-art algorithm for polynomial matrix diagonalisation has been evaluated. We have proposed a 

family of frequency-domain PEVD algorithms, collectively known as the bandwise algorithm. 

The bandwise technique essentially finds a paraunitary matrix which at each frequency is 

an estimate of the diagonalising unitary matrix for the set of data channels. This algorithm has 

been shown to give an effective extension of the SVD to convolutively mixed signals or 

broadband signals. Here, the role of a hidden (decOlTelating) unitary matrix is extended to that 

of a hidden (strongly decorrelating) paraunitary matrix. We have demonstrated that the 

bandwise algorithm can impose strong decorrelation and spectral majorisation on a set of input 

signals. It also has the effect of compacting as much of the total signal power into as few 

channels as possible, which suggests that it could be useful in data compression applications. 

The extreme inadequacy of the EVD (or SVD) for the problem of broadband signals subspace 

estimation has been demonstrated through simulation. Also, preliminary assessment of a state­

of-the-art subspace estimation method has shown that its subspace decomposition performance 

is inferior to that of the bandwise algorithm. 

The relationship between the PEVD problem and spectral estimation has been 

highlighted; the factors that restrict an optimal bandwise algorithm in diagonalising a 

polynomial matrix (i.e. 11.= 0) are those that typically limit the accuracy of spectral estimators. 

Applying a window to the sample space-time covariance matrix of the input data increases the 

diagonalisation (and thus the subspace estimation) performance of the algorithm. The 

windowing solves problems caused by the degenerate nature of the covariance matrix, and 

optimal polynomial diagonalisation may be achieved if knowledge of the true correlation time 

of the signals is available. 

Crucially, a disadvantageous feature of the bandwise method is that the paraunitary matrix 

it produces is defined in the frequency-domain, i.e. it is for circulant data. Therefore, the filters 

generated by the algorithm are not the correct ones to use on non-circulant data. It is not clear 

how to obtain an equivalent paraunitary transform for non-circulant data from the filter bank 

generated by the bandwise algorithm. Another drawback of the bandwise algorithm is that it 

leads to a lack of temporal (phase) discontinuity across the bands. Long filters are required in 

order to realise these discontinuities, which further reduces the practicality of this technique. 



5 Second-Order Sequential Best Rotation 

Algorithm 

In this chapter, a novel technique is introduced for finding a paraunitary matrix that can impose, 

on a set of signals, strong decorrelation and spectral majorisation, to a good approximation. This 

algorithm is referred to as the second-order sequential best rotation (SBR2) [44]. It may be 

viewed as an extension of the EVD or SVD to polynomial matrices and can be used to obtain 

subspace decomposition of broadband signals. In contrast to the bandwise algorithm presented 

in section 4.4, the SBR2 algorithm is a time-domain PEVD technique that can design a 

paraunitary matrix for both circulant and non-circulant data. The development of SBR2 has 

dramatically improved its applicability and its performances, which are demonstrated through 

experimental results. The development, extensions and variations of the SBR2 algorithm 

presented here contributes to the original work in this thesis. 

In section 5.2, we derive the SBR2 algorithm. In section 5.3, we observe important 

properties of the algorithm and define a new cost function through extension of the coding gain 

measure, given in section 3.2.1, as a means of improving the coding efficiency of the SBR2 

algorithm. In section 5.4, a data pre-processing stage is introduced which involves the 

application of a window to the entries of the space-time polynomial covariance matrix. This 

improves the algorithm's diagonalisation performance and data compression ability. A strategy 

is given for covariance-domain windowing which guarantees a positive-semidefinite windowed 

space-time covariance matrix. All the relevant variations on the SBR2 algorithm are 

summarised in section 5.5. In section 5.6, we discuss some of the issues regarding the design 

and implementation of the algorithm, e.g., its computation speed. This includes replacing a slow 

recursive time-domain process with a more economical frequency-domain alternative. We also 

consider in brief the implementation and performance of the cyclic-by-rows Jacobi algorithm 

extended to polynomial matrices as an alternative to the classical greedy method employed by 

the SBR algorithm. Finally, the diagonalisation and broadband signal subspace estimation 

performances of the algorithm is assessed in section 5.7. 

5.1 Introduction 

Recall the Vaidyanathan decomposition of a paraunitary matrix given by (3.19). The 

construction is guaranteed to be paraunitary irrespective of the parameter values because the 
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design is carried out over the constrained space of paraunitary matrices. However, as 

demonstrated in section 3.4.1, the optimisation of the parameters of such a filter is quite difficult 

and requires a multi-parameter nonlinear optimisation routine, which could turn out to be highly 

complex and computationally costly. In this section, we develop and evaluate a novel time­

domain technique as a method for simplifying these problems. The algorithm extends the EVD 

from conventional Hermitian matrices with complex scalar elements to parahermitian 

polynomial matrices, i.e. it performs PEVD. The algorithm takes the form of the sequential best 

rotation (SBR) algorithm [5] but only involves second order statistics, and is therefore referred 

to as the second-order SBR (SBR2) algorithm [44-46]. 

A brief reminder of the task of a 'practical' PEVD algorithm now follows. As discussed 

in section 4.2.1, the tme polynomial covariance matrix A(z) (defined by (4.10» is not usually 

known so the received data vector x(t) (equation (4.3» must be used to generate an estimate 

of A(z). This is the sample polynomial covariance matrix R(z) in (4.15) given again here: 

I Ii T-j 

R(z) = T I Ix(t)xH(t-r)z-r , 
r=-/J 1=0 

(5.1 ) 

where tj ;:::: 0 and it is assumed that T» tj ; see the discussion in section 4.2.1. 

As with A(z), R(z) is parahermitian (this property is defined in (2.25». A PEVD algorithm 

can be used to constmct a paraunitary matrix H(z) that transforms the parahermitian matrix 

R( z) according to (4.18); to reiterate, 

S(z) H(z)R(z)H(z), (5.2) 

where S(z) is approximately diagonal, i.e. S(z) == diag[Sj (Z),S2 (z), ... S.V) (z)], and the set of 

diagonals have, to a good approximation, the spectral majorisation property defined in (4.14): 

S ( j(U') > 
kk e - (ej{O), k = 1,2, ... ,M 1 and \/OJ. The matrix S(z) is a reliable estimate of 

the tme polynomial covariance matrix C(z) in (4.12). 

5.2 Derivation of the SBR2 Algorithm 

The SBR2 algorithm constructs a paraunitary matrix that may be expressed as, up to a 

channel negation, 

(5.3) 

where the polynomial matrices Pi E Cd4XM
(Z) are elementary paraunitary matrices: 
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(5.4) 

with specific values being chosen for the parameters n, p,T{ ,f)n (jJ{. The scalar matrix 

is a rank-two correction to the identity matrix at the intersection of the 

rows nand p with the columns 11 and p and takes the form 

1
11

_ 1 0 
c{ s e jqJ, 

( 

Q(I1. p ICO{,(jJt) 11'_11_1 (5.5) 

s(e- jqJ c { 

lO I H _
p 

where c{ = cos B{, S i = sin Of> and {BI , (jJ! } E lR are rotation angles. The polynomial matrix 

A (pr,) (z) E lRMXiVf(Z) is a delay matrix of the form 

r
l p-J 

A (p.r,) (z) = 

\. 0 

o 
(5.6) 

where 1:{ E 7L is an arbitrary delay. The delay matrix imposes a 1:{ -fold delay to the pth row of 

the polynomial matrix on which it operates I. 

Any polynomial matrix constructed according to (5.3) is paraunitary because each term is 

paraunitary. The paraunitary matrix PI (z) is elementary in the sense that it only involves one 

rotation, but it does not necessarily have degree one. Since the parameters Tr may take on any 

integer, the degree of the paraunitary matrix in H( z) is no longer certain. 

The SBR2 algorithm iteratively constructs a paraunitary matrix as in (5.3) by computing 

and applying a sequence of elementary paraunitary matrices designed to diagonalise a 

parahermitian matrix as much as possible. Each stage of the iterative process applies a single 

elementary paraunitary matrix, chosen to eliminate the off-diagonal polynomial coefficient with 

the highest magnitude square value (i.e. the dominant cross-term); this is clearly analogous to a 

single step of the classical Jacobi algorithm for diagonalising conventional Hermitian matrices. 

I Note that in the case wherc 2"1 = 0 and T{ = 1 for 1 < e :s; L equation (5.3) reduces to the familiar 

decomposition in (3.19). It is also worth noting that in the degenerate case where L = 1 and 2"J O. the 

matrix H(z) takes the form of a single rotation matrix that is found by the conventional EVD/SVD for 

the diagonalisation of a Hermitian matrix. 



5.2 Derivation of the SBR2 Algorithm 88 

The algorithm begins by searching through the entries rklll (T) = I~=~\k (t T)IT, 

k,I11E {1,2, ... M}, of the polynomial covariance matrix in (5.l) for the largest modulus-square 

off-diagonal. This is a two-dimensional search in both space and time: a search considering off­

diagonal terms corresponding to all possible channel pairs (i.e. a spatial search) and for a range 

of relative time delays between each signal-pair (i.e. a temporal searchl 

Assume that the first search has produced rill' (II) as the dominant coefficient, where 

11 < P . The specific values 11, p and II ' which define the dominant cross-term, are now used to 

specify the corresponding parameters of the first elementary paraunitary matrix, PI (z), in (5.3). 

In accordance with (5.2), the elementary delay matrix is applied first to generate the transformed 

polynomial matrix: 

(5.7) 

The effect of this transformation is to shift in time the largest cross-term l~,p (II) to the plane of 

order zero so that <) (0) '""I' (II) = (-TI )* = r;1l (0)" . 

The parameters 8 1 and qJI of the Jacobi rotation matrix Q(I1./J1(8j ,qJ) are now chosen to 

drive the dominant coefficient to zero. More specifically, they are chosen such that 

(5.8) 

This condition is satisfied when 

(5.9) 

and 

(5.10) 

Having computed the values of 8, and qJI' the rotation matrix is applied thus: 

The search may be restricted to the upper (or lower) off-diagonal elements due to the parahermitian 

property defined in (2.25). The search in time for the optimum delay, 1:" may be performed for a range 

of time delays (a delay set), where the maximum delay in the set is less than or equal to the total number 

of data samples, T. If the dominant coefficient is not unique, anyone from the set of coefficients with 

largest (equal) magnitudes may be chosen. 
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(5.11 ) 

It should be clear that the polynomial matrices R(z) and RH(z) are related by the generalised 

similarity transformation: 

RH(z) = PI (z)R(z)PI (z). (5.l2) 

The elementary paraunitary transformation in (5.12) constitutes one stage of the SBR2 

algorithm designed to zero the dominant off-diagonal coefficient of R(z). The algorithm 

continues by making the substitution R(z) ~ R H(Z) and repeating the process outlined above, 

i.e. applying a new elementary paraunitary transformation of the form given in (5.12) designed, 

this time, to zero the most significant coefficient of the updated polynomial matrix R(z). In 

practice, this iterative process is repeated until the magnitude of the dominant off-diagonal 

coefficient of R(z) is sufficiently small, say, smaller than or equal to some constant Cs > 0 : 

stopping criterion; at which point the polynomial matrix is declared to be diagonal. Assuming L 

iterations, the result will be a generalised similarity transformation of the form 

(5.13) 

It is worth noting that the estimated polynomial covariance matrix in (5.1) is updated as 

part of the SBR2 algorithm and does not need to be recomputed from the transformed data. A 

flowchart of the SBR2 algorithm is shown in Fig. 5.1. The paraunitary matrix H(1.) may be 

updated at each step of the algorithm or constructed afterwards: Initialisation: H~ (1.) := I; 

Iteration f: H~(1.)~PI(1.)H~_I(1.); Output: HL(Z)~H~(1.). It should be noted that the 

paraunitary matrix found by this algorithm is unique, up to the application of all-pass filtering. 

The paraunitary matrix H(z) can be applied to the input signals X (1.), used to generate 

R(1.) in (5.1), stage by stage during the SBR2 computation. This is achieved with the 

application of the elementary paraunitary matrices PI (z) contributing to (5.3) to the input 

signals in the manner 

(5.14) 

Equation (5.14) is represented for the two-channel case by a flow diagram in Fig. 5.2. In words, 

at the 

first f 

stage, Pi (1.) may be applied to the transformed signals produced as a result of the 

stages, in order to generate the output data from stage e. This constitutes a sequence 

of pairwise delay-and-rotate operations since each elementary paraunitary matrix only affects 

two of the signal channels. 
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START 

Initialise: S(z) := R(z) 

Initialise: E, 

Initialise other variables 

Do e I to L 

Set 11. P and T, for largest 

modulus-square cross­
term in S(z) 

I 
8(= 

2 

C __ E_I\'D~) END 

List of important symbols 
L : maximum number of algorithm iterations 
1;,1' (Tf) < largest sample cross-covariance 

r,;o (0) : variance of the time-delayed signal 

£, : constant related to stopping condition 

Figure 5.1: Flowchart of the SBR2 algorithm. 

HL(z) -----------.. ~ 

-i----f--.::---; ~ __ H-H-+,Y,l t) 

Q(O<I') (f) In)" 
o 1''1'1 

90 

Figure 5.2: A diagrammatic representation of a cascade of a 2x2 paraunitary lattice filter 

consisting of L elementary paraunitary blocks. 
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At first sight, the strategy outlined above might not seem sensible since the successive 

elementary paraunitary matrices do not commute and applying a rotation does not just affect the 

current state but also the potential future gains of the algorithm. Unlike the narrowband case, 

applying a poorly chosen rotation is likely to make the problem more difficult by increasing the 

order of the mixing polynomial for no good reason. However, the freedom to choose an 

optimum delay for each stage makes this process much more meaningful. 

A SBR2 algorithm that operates directly on the data (i.e. a data-domain algorithm) is not 

defined in this thesis. There are two reasons for this: (I) such an algorithm would be 

computationally less efficient than the covariance-domain algorithm given here, as explained 

later in section 5.6.2; (2) a better approximation to strongly decorrelated signals can be gained 

by working with a windowed version of the space-time covariance matrix, as discussed later in 

section 5.4. 

5.3 Cost Functions 

5.3.1 Cost Function Based on Correlation 

In order to explain how the SBR2 algorithm achieves its objective, we introduce the following 

set of measures: 

and 

M 

NI 2};m(Of 

Iv! M ? 

N3 = LI}'P(Of 
'1=11'=1 

p:Fl1 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

Similarly, we define the sets {N;, ,N;, N~} and {N~, N;, N;, N;} for R'(z) and R#(z). It is 

easy to see that NI is a local measure of the instantaneous autocovariance associated with the 

signals while NJ is the corresponding measure of instantaneous crosscovariance between the 

signals. The quantities N2 and N-l constitute the squares of the Frobenius norm of the 
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instantaneous covariance matrix rCO) and the space-time covariance matrix r(r) respectively. 

Note the following important properties: 

• NI is preserved under the application of a delay matrix; 

• N2 is invariant to the application of a rotation matrix; 

• N4 is preserved under the application of an elementary paraunitary matrix; 

After applying the delay matrix A (p.T, ) (z) to generate R'(z) in the procedure outlined 

above, we have N; = NI and N; = N4 with new values for N~ and N~. The effect of applying 

the rotation matrix Q(Il P\e/ ,cPf) in the procedure outlined above is to reduce N~ by an amount 

2g, where g = Il;~) (0)1 . By construction, this is the maximum value of hm Cr)1 taken over all 

off-diagonal coefficients in R(z). Since N; is unchanged by the application of Q(I1·jJ)cep rpf), 

it follows that 

N;'=N;+2g=N I +2g 

N;=N~ 

1/ = N; -2g 

N; =N; =N", 

(5.19) 

The result of each algorithm step (iteration) is to increase NI by 2g which constitutes the 

magnitude squared of the greatest off-diagonal polynomial coefficient. This leads naturally to 

the following assertion. 

Theorem 5.1. The maximum magnitude squared off-diagonal term of the parahermitian 

polynomial matrix R(z) tends to zero, that is the SBR2 algorithm is guaranteed to converge. 

Proof. Since NI increases monotonically and is bounded from above by N 4' which is constant, 

it must have a supremum S. It follows that for any E, > 0 there must be an iteration number L, 

say, for which IS - Nil < 2Es and so the increase in NI at all subsequent stages must satisfy 

2g siS - Nil < 2E,. In other words, for any E, > 0 there must be an iteration by which the 

maximum magnitude square off-diagonal polynomial coefficient is bounded by the stopping 

condition constant, Q.E.D. 

Note that the value of Ii does not necessarily decline monotonically. Each rotation is 

computed with reference to elements in the plane of order zero in R'(z) , and is guaranteed to 
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increase N; by driving the (maximised) off-diagonal element to zero, thus reducing N;. 
However, in any other plane of the polynomial matrix R/(z) , where the same rotation is being 

applied, it could have the effect of increasing the magnitude of the off-diagonal element whilst 

reducing the sum of the squares of the diagonal elements. As a result, the dominant off-diagonal 

element, taken over all values of T, could be larger at the start of the next iteration3
. The 

algorithm does not seek to reduce the on-diagonal coefficients for non-zero values of T, let alone 

drive them to zero. In the context of strong decorrelation, this would correspond to temporal 

whitening of the decorrelated signals, which is often highly undesirable and cannot occur as the 

result of a paraunitary transformation (which preserves the total PSD). Note also that the 

quantity NI may be viewed as a cost function which the algorithm maximises by minimising 

the measure N]. This algorithm is, therefore, referred to as the SBR2(NI) algorithm. We will 

now illustrate the operation of this algorithm by means of some simple but insightful examples. 

Example 1. The SBR2(NI) algorithm was first applied to the parahermitian matrix given by: 

0.4 jz 0 

1 0.SZ-2 

O.Sz 

In seven iterations, it converged to produce the following factorisation: 

H(z) = 

0.4417 

0.7809j 

0.4417 

0.7071jz -0.S522jz-1 

o 0.6247z-1 

-0.707Iz 0.5522z-1 

1.6403 

and S(z) = 0 

o 

o 
1.0000 

o 

(S.20) 

o j o . 
0.3597 

(S.21) 

The final value of g was zero (to computational precision). The value of NI increased from 

3.0000 to 3.8200, which, in this case, is equal to the value of N 4' This reflects the fact the sum 

of the squares of the diagonal elements of S(z) was also zero except in the plane of order zero. 

Since H(z) is paraunitary, the inverse decomposition IS given very simply by 

R(z) = H(z)S(z)H(z). The Frobenius norm between the result of this computation and the 

original matrix R(z) was zero (to computational precision). 

This example is particularly simple in the sense that the matrix R(z) can be reduced to a 

scalar matrix by initially applying two successive delay transformations of the type specified in 

(S.7). The problem then reduces to one of standard Jacobi diagonalisation. Note, however, that 

this "trick" is not exploited by the SBR2 algorithm which performs a strict sequence of 

3 The difference between N 4 and the supremum of NI will generally be non-zero. 
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alternating delay and rotate operations as specified in section 5.2. Despite the simplicity of this 

example, it is worth bearing in mind that the same decomposition would be much more 

complicated if carried out in the frequency domain. 

Example 2. The SBR2(N1) algorithm was applied to the parahermitian matrix given by: 

R(z) r 0.8Z~2 ~OAZ l O.7z~1 

0.8z -OAz 0.7 z 

1 O.5z~2 

0.5z 2 

(5.22) 

Note that the scalar reduction trick cannot be used successfully in this case. For ease of 

graphical representation, the coefficients of the parahermitian matrix were chosen to be real. A 

negative value was assigned to the (3,3) element so that the zero-lag coefficient matrix is not 

positive semidefinite. In this case, the SBR2 algorithm converged to a level of Ii < I 0~3 in 37 

iterations. The Frobenius norm of the off-diagonal elements of the diagonalised matrix S(z) 

was 3A x 1 0~3, which should be compared to the total Frobenius norm given by jiV; 2A7 

and the value of fii: which increased from 1.73 to 2A5. 

The algorithm generated the polynomial matrices S(z) and H(z) depicted in Fig. 5.3 and 

Fig. SA, respectively. These figures show a plot of the coefficients for each polynomial entry 

over a suitable range of values of T. During the computation the effective order of S(z) grew to 

101 50:S; T:S; 50) but we have only plotted terms for which ITI :s; 5 since all terms outside that 

range are negligible. The order of the paraunitary matrix H(z) was restricted to terms for which 

ITI:s; 10, as shown in Fig. SA. When the polynomial matrix R(z) was reconstructed by 

computing the inverse decomposition R(z) = H(z)S(z)H(z) to the order of approximation 

represented in Fig. 5.3 and Fig. SA, the Frobenius norm of the difference matrix was - 2x 1 0~3 . 

This error is due to the truncation of H(z) . Clearly, for this example, an excellent approximate 

decomposition can be implemented using polynomial matrices of very modest order. 
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Figure 5.3: Diagonalised polynomial matrix obtained using the SBR2 algorithm for example 2. 

°r~TJ or-·} I °r~ 
-0,5t::::j -0'5~ -0,5t::Qf:j 

-10 0 10 -10 0 10 -10 0 10 

b-- 1~ 1t;;d 0.5 _, Q _ _ _ 0: 1 o: ! 
-0,5 -0,5 -0,5 

-10 0 10 -10 0 10 -10 0 10 

O':H O':g o':L~ o ' ~ 0 
6 6 

-0,5 -05 -0,5 

-10 o 10 -10 o 10 -10 o 10 

Figure 5.4: Paraunitary matrix obtained using the SBR2 algorithm for example 2. 

As given by (5 .14), the SBR2 algorithm can be applied directly to multichannel data. 

Then the transformed signals have the following impOltant property. 

Theorem 5.2. The signals transformed by the elementary paraunitary matrices satisfy strong 

decorrelation, to a good approximation. 

Proof. As in (4.25), the polynomial covariance matrix is : 
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C (5.23) 

It can be seen that the signals [(z) are strongly decOlTelated since 

en (z) = H(z)A(z)H(z) (5.24) 

and a consistent estimate of C (z) is given by 

R (z) = H(z)R(z)H(z) = S(z) . (5.25) 

It follows from Theorem 5.1 that 

(5.26) 

and so C (z) is approximately diagonal. Q.E.D. 

Another salient characteristic of the SBR2(Nd algorithm is given as follows: 

Conjecture 5.1. The signals tramformed by the elementary paraunitary matrices will tend to 

satisfy the spectral majorisation property, to a good approximation. 

Illustration. Consider the case of two input signals. From (5.15) we have that 

(5.27) 

where 

1'-1 1'-1 

'kk (0) IIYk (tf = IIYk (5.28) 
/=0 

as from Parseval's theorem. It follows from (4.32) that 

(5.29) 

where Kis a constant determined by the input signals. Assuming the diagonals are to be ordered 

as defined in (4.14) and expressing (5.27) as 

(5.30) 

we see that NI increases to its maximum value as 'i I (0) -7 K and r22 (0) -70, i.e. the smaller 

the value of r22 (0) the larger the value of N I . Since the SBR2 algorithm maximises the quantity 

, therefore minimising '22 (0), and since (5.28) holds for k = 2, it intrinsically strives to 

perform spectral majorisation. 

Needless to say, this does not constitute a proof of spectral majorisation for the SBR2 

algorithm. In fact it is easy to see that two signals in non-overlapping subbands (or two different 
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sinusoids), whilst not spectrally majorised, will be strongly decorrelated from the outset, so the 

SBR2 algorithm can make no improvement. However, situations such as this rarely occur in 

practice and can be circumvented by means of a very small (paraunitary) perturbation of the 

input parahermitian matrix. 

Note that in practice, the SBR2 algorithm only has a finite number of degrees-of-freedom. 

Therefore, the set of transformed signals, in general, does not strictly have the spectral 

majorisation property; it is a good approximation to a majorised set. If the algorithm were 

allowed to carry out an infinite number of stages then spectral majorisation would be satisfied 

by the transformed signals. 

It may now be clear from the discussions in this sub-section and the definition of the 

PEVD in section 4.2.1 that the SBR2 algorithm provides an estimated PEVD of a parahermitian 

polynomial matrix. 

5.3.2 Cost Function Based on the Coding Gain 

There is an important limitation of the search strategy described in section 5.3.1. This is that the 

SBR2 algorithm tends to strongly decorrelate signals with large power and ignore signals that 

have relatively lower power. In other words, the SBR2(N1) is proportionately more sensitive to 

changes in dominant signals than it is to changes in weak signals. This is because, in general, 

the largest cross-correlation coefficients occur between dominant signals, which are minimised 

by the algorithm at every step. The detrimental effect this has on the performance of the 

algorithm is twofold: 

1. The extent to which polynomial diagonalisation (strong decorrelation) is carried out is 

restricted: After a number of iterations, the algorithm begins to zero noise-related cross­

correlations between dominant signals rather than signal-related (true) cross­

correlations between weaker signals. 

2. The extent to which spectral majorisation is performed is limited: Energy in weaker, 

correlated signals is not compacted into as few channels as possible (lack of energy 

compaction). This is usually because energies due to cross-correlation terms, which are 

spread among pairs of weak signals, are not transferred to the auto-correlation (PSD) of 

the signals. 

These problems can be alleviated by the use a cost function which is proportionately, 

equally sensitive to changes in any of the signals. A cost function that is based on the coding 

gain measure in (3.7) for subband coding would have this property. Hence, we define a new 

objective function simply by substituting quantities based on sample statistics for those in the 

expression for the coding gain. In other words, 
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(S.31) 

where rHO and r:~o are, respectively, the diagonals of the zero-lag matrices rCO) and r"(O) 

related by (S.12). As with the coding gain, minimisation of the denominator (product of the 

transformed signal variances) leads to maximal energy compaction and spectral majorisation for 

paraunitary transformations. The SBR2 algorithm with this cost function is appropriately 

referred to as the SBR2(GJ algorithm. We now make the following assertion. 

Theorem 5.3. The G( cost function is maximised at each step of the SBR2 algorithm if the 

largest normalised magnitude squared off-diagonal term in r(r) is zeroed. 

Proof. Let rnno and rppo denote the sample variances of the 11 th and pth signals, respectively, 

prior to the application of an elementary paraunitary transformation of the form (S.4). Further 

consider that the numerator of (S.31) can be treated as a constant KI during an iteration of the 

algorithm. Also, since the channels 11 and p are the only channels modified by the 

transformation, the product of all of the sample variances of the transformed output channels, 

h th d th . W . hG f' except ten an p ,1S a constant, say K2 . e may now wnte t e ( cost unctIOn as 

(S.32) 

where K= (l/2)log2(KI I K2 ). The change in Gc ' denoted ; .. ,.Gc ' due to an iteration of the 

algorithm can be expressed as 

I 
-loa 2 02 

(S.33) 

where It and It t;,nO rppo are the lag-zero off-diagonal terms of the transformed space-time 

covariance matrix r"('r) in (S.l2). Equation (S.33) is maximised with the application of an 

appropriate relative delay i{ and rotation ()/ to the 11 th and p th signals: 

= argmax I. J 
[ 

t;UI 0 rppo .' 
!I.p/i. ) 

(S.34) 
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Let rIel) be the resulting space-time covariance matrix after the application of the delay matrix 

in (S.7). The denominator of the quotient in (S.34) may be expressed in terms of the diagonal 

coefficients r,;nO and r;po and the off-diagonal 1;~)0 on the r = 0 plane of r/( r) : 

(S.3S) 

But the right-hand side of (S.3S) is: 

[ 
rnnorppo j arg max ? = arg max 

!l.p.Tt r r -II' 1- l1.p.T{ 
11110 ppO !lpT( 1- hpT(1

2 
(S.36) 

r,llIo r ppo 

Therefore, the objective in (S.34) is equivalently given by 

(S.37) 

The denominator of (S.37) can be viewed as a normalisation factor that essentially stabilises the 

algorithm. In essence, this is because large cross-covariance coefficients due to, say, strong 

signals are attenuated relative to those associated with weaker signals. Hence, the maximisation 

of Gt entails a generalised classical Jacobi search for the largest normalised cross-covariance 

term. Q.E.D. 

There are two modifications that need to be made to the SBR2 algorithm in order to 

obtain the SBR2(G,) algorithm. The first is that the correlation based objective function, which 

is a function of klP (T( f ' is replaced with the quotient in (S.37). Secondly, the stopping criterion 

Cs is in terms of the quotient in (S.37) rather than /r,lP (T( f. These two modifications are 

indicated, respectively, by the circles labelled as (a) and (b) in Fig. S.l. These are the only 

modifications that are required to the algorithm described in section S.3.1 for implementation of 

the SBR2(GJ algorithm. 

The cost function proposed here improves the strong decorrelation and spectral 

majorisation performances of the SBR2 algorithm. The satisfaction of these conditions is 

necessary for optimal data compression and broadband subspace decomposition. Hence, the 

SBR2(GJ algorithm is more suited to these applications than its con"elation-based counterpalt. 

Note that the algorithm intrinsically aims to design a filter bank that is optimal for multichannel 
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data compression because its optimisation is exclusively geared towards the maximisation of 

energy compaction. It is not easy to see how one can obtain a proof of convergence for the 

SBR2(G{) algorithm, since the condition J = 00 will arise if r;1Il0 or rppo are zero. 

5.3.3 Cost Function Based on True Statistics 

As a means of producing an upper bound on the performance for the SBR2 algorithm, we 

present a SBR2 variant that exploits knowledge about the true statistics of the input data. As a 

consequence, it gives near ideal performance. It is from a class of 'non-blind' SBR2 algorithms. 

Essentially, this technique is allowed to operate on the true covariances as opposed to the 

sample covariances. Correspondingly, the cost function used by this algorithm differs from 

those discussed thus far. 

This algorithm is based on the SBR2(NJ algorithm in the sense that it also finds the 

largest off-diagonal term in the given matrix at each step. Since the operations are performed on 

C(z) , the cost function is not N I , but is given by 

;VI 

A' = I/cikOI, (5.38) 
k=1 

where cuo is the zero-lag term of the true autocorrelation function of the eh signal. The 

quantity A' is more suitably described as a measure rather than a cost function since true 

statistics are used. The algorithm described will be given the name SBR2( A') for future 

reference. It finds a paraunitary matrix that is, to a good approximation (since we are dealing 

with FIR filters), the optimum decorrelation filter bank. 

5.4 Windowed Covariance-Domain SBR2 Algorithm 

A window function may be applied to the entries of the sample space-time covariance matrix 

rCr) in (5.1) prior to the application the SBR2 algorithm. The algorithm begins by constructing 

the sample parahermitian matrix R(z). A suitable window function, w( T), is then applied to 

each of the polynomial entries of r(T), as performed by the WCD-bandwise algorithm. The 

windowed polynomial covariance matrix is typically given by 

I, 

R(z) = I w( T)r(T)z (5.39) 
r=-f l 

where 
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T-I 

reT) = Lx(t)x H 
(t T)/T (5.40) 

1=0 

and 

(5.41) 

is a window function of length Tw = 2tl + I with v( T) the impulse response of a FIR filter. It is 

assumed that r( T) 0, for ITI > tl and that T » tl . In practice, the value of tl is often measured 

experimentally. If the correlation time interval [-7;,7;.] of the signals is known, then this is 

used to set the value Tv., i.e. tl = Tc and T" 2T, + I. In which case, all sample correlation 

terms at lags greater than this maximum delay are zeroed. If v( T) = I, then w( T) is a 

rectangular window and the windowed space-time covariance matrix f(T) is obtained simply by 

truncating the entries of the original space-time covariance matrix in (5.40). 

The SBR2 algorithm is carried out on the windowed space-time covariance matrix f( T) . 

This algorithm is referred to as the windowed covariance domain (WCD) SBR2 algorithm. 

Typically, a rectangular window function is used prior to the application of the SBR2(N1) 

algorithm. We refer to this algorithm as WCD-SBR2(N1). 

The matrix f( T) is a more accurate estimate of the true space-time covariance matrix than 

the (unwindowed) sample space-time covariance matrix in (5.40), both for our purposes and in 

terms of sums of square errors. One consequence of this is that there is no set of data with 

sample variances equal to the windowed sample covariance of the original data. It follows that 

the WCD-SBR2 algorithm cannot be carried out in the data domain, and the covariance domain 

version of the algorithm must be used. 

In the case of a rectangular window, the windowed space-time covariance matrix IS 

parahermitian since rkll1 (T) = (-T). However, this is not guaranteed for arbitrary window 

functions; e.g., asymmetric windows. Another important property is stated in the following. 

Theorem 5.4. The windowed parahermitian matrix is not necessarily positive semidefinite. 

Proof. This can be shown with an example. Suppose the entries of the sample space-time 

covariance matrix in (5.40), rkll/(T) , are constant functions, so that the Fourier transforms 

R ( jO» d If' . R (j{O) km e' ) are e ta unctIOns, I.e. km e 5( OJ). Furthermore, suppose that the rectangular 

window function w( T) of length TH = 2tl + I is applied to rkll1 (1:) . The Fourier transform of the 

rectangular window is a sine function: W(e!W)=sin(tIOJ)/tIOJ=sinc(tIOJ). In the frequency 
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domain, the product of w( T) with rkm (I') is a convolution of the sinc function with the 

Kronecker delta function, as shown in Fig. 5.5, which gives a sinc function, i.e. 

(5.42) 

The smc function has negative amplitudes at frequencies on and around multiples 

of OJ=3ff/2t" therefore the windowed spectra Rkk(e iaJ ) will also have negative energy at 

these points. (Note that this, of course, could never happen for true spectra.) Since some of the 

terms in rkk (I') take on negative values, it follows from the definition of positive 

semidefiniteness for polynomials in (4.11) that the polynomial matrix reT) is not positive 

semidefinite. Q.E.D 

It is easy to see how this condition would arise in the more practical case where rkm (I') is a 

slowly varying function of time, whose Fourier transform approximates the delta function. If the 

rectangular window to be applied is relatively short, then the Fourier transform of the windowed 

function rkk (I') would be a good approximation to the sinc function . 

* 
0 1-------+---------1 

o co o co 

Figure 5.5: Showing the convolution of the frequency response a rectangular window function 

(left) with the Fourier transform of a constant function rkm (I') (right) . 

Choice of Window Function and the Gc Cost Function 

It may now be clear that the positive semidefiniteness of r( T) depends, to a great extent, on the 

type of window function applied. A window function whose frequency response is characterised 

by non-negative amplitude values would guarantee that r( T) is positive semidefinite for any 

true spectrum. Examples of common window functions that satisfy this criterion are those that 

have a sinc2 frequency response, i.e . the triangular, Bartlett, Blackman-Harris and Chebyshev 

window functions. 
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It would not be sensible to operate on a parahermitian matrix that has been modified by a 

rectangular window with the version of the SBR2 algorithm that uses the G, cost function, 

SBR2( Gc ) introduced in (5.14). This is because the product in the denominator of the objective 

defined by (5.37) will be negative if one of the zero-lag terms, rkk (0), is negative; cross­

correlation terms that are negative will be ignored by the SBR2 algorithm. Instead of the 

rectangular window, one of the window functions mentioned in the previous paragraph would 

need to be used in combination with the G( cost function, such as the Bartlett window. 

5.5 SBR2 Family of Algorithms 

We shall introduce a categorisation of the SBR2 algorithm based on whether or not a window is 

explicitly applied in the covariance-domain. Those versions that do not explicitly window the 

co variances are from the class of regular SBR2 algorithms and those that do are of the class of 

WCD-SBR2 algorithms. This will make comparing the two types of algorithm less confusing. 

All versions of the algorithm are collectively referred to as the SBR2 algorithm. Two important 

governors of the performance of SBR2 are: 

1. The adaptation technique or algorithm core which estimates the parameters for each 

elementary paraunitary block, e.g. the classical Jacobi-type search strategy in section 

5.2 and the cost functions introduced in section 5.3; 

2. Any processing that is applied to the input data prior to the application of SBR2, e.g. 

covariance-domain windowing in section 5.4. 

As shown in this chapter, the development of SBR2 has led to the creation of different 

versions of the algorithm with differing pre-processing stages and algorithm cores. Note that 

using a different cost function constitutes a change to the algorithm core. In order to show the 

relationship between the different SBR2 variants and what has been introduced in this thesis, a 

summary chart is presented in Fig. 5.6. Those algorithm variants that are marked with X have 

not been analysed in this thesis. This is mainly because they can be outperformed by other 

similar versions and their analysis would be superfluous in the presence of the characterisations 

of those other versions. In Fig. 5.7, we provide a flow diagram from which all the algorithm 

variants may be obtained. 

Note that another way of modifying the algorithm core is to adopt a different search 

scheme, such as a generalisation of the cyclic Jacobi algorithm introduced in section 5.6.3. Due 

to time constraints, SBR2-algorithms based on this strategy of optimisation are not considered 

for analysis in this thesis. Therefore, they are left out altogether from Fig. 5.6 and Fig. 5.7. 
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Data pre-processing Algorithm core Algorithm 

Multichannel data Correlati on-based SBR2(X) 
(e.g. second-order BSS) Model of / cost -function 

signal statistics \ Coding gain-based . 
SBR2(Gm) 

cost-function 

Correlation-based WCD-SBR2(NJ 
Windowed / cost-function 

1/ covariances \ Coding gain-based WCD-SBR2(G() 
cost-function 

Correlati 0 n -based SBR2(N1) 

I 
Sample / cost-function 

covanances \ Coding gain-based SBR2(Gc) 

cost-function 

Correlati on-based 
SBR2( X) coder 

Single-channel data Model of / cost-function 
(e.g. subband coding) 

signal statistics '\ Coding gain-based 

cost-function 
SBR2(Gm) coder 

Correlati on-based SBR2(N1) coder 
Windowed / cost-function 

1/ covariances \ Coding gain-based SBR2(Gc) coder 
Knowledge of signal cost-function 

statistics exploited Correlation-based X 
Sample II cost-function 

covariances \ Coding gain-based X 
cost-function 

Correlation-based X 
Polyphase Model of / cost-function 

decomposition signal statistics! Coding gain-based 
X 

cost-function 

Correlation-based PD-SBR2(NI) 
Windowed / cost -functi on 

1/ covariances \ Coding gain-based PD-SBR2(G,.) 
cost-function 

Correlation-based 
X 

Sample V cost -functi on 

covariances \ Coding gain-based X 
cost-function 

Figure 5.6: Chart of possible SBR2 algorithms and algorithm families. 
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function 
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Figure 5.7: Variable flow diagram for obtaining anyone of the eighteen different SBR2 

algorithm variants. 

The algorithms labelled PD-SBR2 will be evaluated later in section 6.2 in order to 

motivate the development of a novel technique for adapting SBR2 to subband coding. This 

involves the invention of a pre-processing stage for effective application of the SBR2 algorithm 

to the subband-coder design problem; the resultant algorithm is termed the SBR2 coder, which 

is included in Fig. 5.6 and Fig. 5.7. 
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5.6 Implementation Aspects 

5.6.1 Solution to the Rotation Angle 

Recall from section 5.2 that, at each SBR2 iteration, the dominant off-diagonal <) is zeroed by 

rotating the elements of the covariance matrix r'(O) in (5.8) through an angle () . This angle is 

found by solving a quadratic in tan(()), as expressed by (5.9) . The numerator y = 21<,,(0)1 and 

denominator x = r,;n (0) - r;" (0) of the quotient in (5.9) are the components of a vector v. The 

task of zeroing the cross-correlation terms <) (0) and r;n (0) may be interpreted as one of 

rotating the vector v onto the x-axis so that the y th component of the vector vanishes. This is 

illustrated by the example shown in Fig. 5.8. One of the solutions to (5.8) is to rotate v onto the 

negative x-axis through an angle ei ' as represented by the red dashed arrow in the diagram. 

This is the minimum rotation angle required for this particular example. The other possible 

solution is to rotate v clockwise by an angle eo so that it is brought onto the positive x-axis; see 

the blue dash-dotted arrow. 

Resultant from using v ................ y 

the arctangent ~ 
function \ 

- y 

Resultant from using the 
/ 4-quadrant arctangent 

..;. function 

Figure 5.8: Example of the different rotation angle solutions. 

The range of the arctangent function is commonly selected as the interval (-;r/2,;r/2]. 

This is adopted by the 'atan.m' function in Matlab [67]. The input argument to the atan.m 

function is the ratio in (5.9) . In the example shown (Fig. 5.8), v lies in the upper-left quadrant so 

it is outside the range space of the arctangent function. The function interprets the negative 
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valued ratio as the vector V', which is the vector v rotated by 1C radians, and so, for the example 

shown, it will find the angle Bj • Essentially, the sign of the individual coordinates x and yare 

ignored by this function. Equation (5.9) is in terms of double angles, so a rotation of the 

covariance functions by B corresponds to a rotation of xn (t) with (t) by B = (1C + BJ / 2 . 

Therefore, a rotation of 1C radians corresponds to a 90° rotation of the signals. In other words, the 

two signals are swapped and the resultant lower indexed signal is negated. 

Since the x-coordinate of v in Fig. 5.8 is negative, we have r;p (0) > <, (0), and an anti­

clockwise rotation of v by Bi preserves this condition. That is, energy from the cross-terms is 

moved mostly onto the lower diagonal (the autocovariance of the second signal xI' (t». 

Because of this nature and since (by conjecture 5.1 in section 5.3) the SBR2 algorithm tends to 

impose spectral majorisation on the signals, we can infer that the ordering of the signal spectra 

after a number of iterations depends on the total power of the input (unprocessed) signals. 

Therefore, the output signals, even though approximately majorised, would not necessarily 

satisfy the ordering regime defined in (4.14); however, this is trivially obtained by permuting 

the majorised signals accordingly. An example of signals that are spectrally majorised but 

ordered according to the input signal powers is shown in Fig. 5.9(b) for the input spectra in Fig. 

5.9(a). In Fig. 5.9(c) we show a set of spectra ordered in the manner of (4.14), which can be 

obtained from Fig. 5.9(b) by the application of a permutation matrix. 

In contrast to the regular arctangent function, the four-quadrant arctangent function (or 

MatIab's atan2.m function) can take into account the quadrant in which the vector actually lies 

when determining a suitable angle. This is because its range space has the limits (- Jr,Jr]. The 

four-quadrant arctangent function finds an angle such that the vector v is always rotated onto the 

positive x-axis. Hence, for the example of Fig. 5.8, the solution to the optimal rotation angle is 

Bo not 1C + Bi ; i.e. there is no signal swapping. Using the four-quadrant arctangent function 

essentially constrains the ordering of the output signals to be independent of the variances of the 

input signals, and so the output spectra satisfy the condition in (4.14): the spectrum of the first 

output signal dominates that of the second output signal, subject to the spectrum of the second 

output signal dominating that of the third and so on, as in Fig. 5.9(c). Hence, the only difference 

in using the atan.m and the atan2.m functions in terms of observable results is the labelling of 

the output signals. 
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Figure 5.9: Example of channel swapping. (a) Input signal spectra. (b) Majorised spectra from 

using the regular arctangent function; the ordering is based on the input powers. (c) Majorised 

spectra from using the four-quadrant arctangent function; the spectra are ordered according to 

the ordering regime in (4.14). 

5.6.2 Algorithm Efficiency 

Circulant Assumption 

It is convenient to assume that the data sequences repeat periodically every T samples, i.e. that 

the sequences are cyclic (or circulant) . When data is shifted beyond T samples it is wrapped 

around to the zero time lag position. Therefore, we do not differentiate between delays whose 

lengths differ by a multiple of T. This permits the order of all polynomial matrices involved in 

the computation to be restricted to order T. It also provides a firm foundation for computing 

entries of the space-time covariance matrix using the DFT or FFT, as will be explained later in 

this subsection. This can help to reduce the computational cost, and has obvious advantages in 
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terms of computer programming by defining a fixed bound for the size of any associated arrays. 

This cyclic data version of SBR2 is also guaranteed to converge. 

If circulant data is assumed, then the paraunitary matrix found by SBR is irrevocably tied 

to the circulant assumption; it is not easy to see how a non-circulant paraunitary matrix can be 

found from the circulant one. By contrast, we can treat non-circulant data as circulant and apply 

the circulant SBR2 algorithm to find a circulant paraunitary matrix. As long as the correlation 

time of the signals is much less than the circulant length T, the non-circulant paraunitary matrix, 

which is a product of the same delays and rotations, should give an effective EVD/SVD for the 

original non-circulant data. Note that, unlike the bandwise algorithm, the SBR2 algorithm is not 

restricted to operating on circulant data; it can construct a legitimate paraunitary matrix for non­

circulant data without the circulant assumption in place. 

Exploitation of Covariance Matrix Symmetry 

One way of reducing the computational cost of the search procedure is to take advantage of the 

fact that the polynomial covariance matrix R(z) in (5.1) is parahermitian. This is done by 

considering the entries in the upper (or lower) triangle of R(z) only. Instead of searching 

through M 2 - M off-diagonal entries, only (M M) I 2 are necessary for the search, where 

M is the number of channels. This modification results in a factor of two saving in computation 

time. However, this is not significant in terms of overall algorithm execution time since both 

methods have computational complexity of order M 2, i.e. OeM 2) ; this is for a single step and 

not taking into account the search in time. 

Computing the Covariances in the Frequency-Domain 

The largest cross-covariance term l;,p (II) can be found by an exhaustive time-domain 

approach; to find the optimum delay I/ would require a search through the (M 2 -M)/2 off­

diagonal entries for all the elements of a set of time delays. This would, however, be rather 

computationally expensive. Let the range of delays considered be equal to the data length, T. 

The SBR2 algorithm using this search method requires O( LM 2T 2) arithmetic operations, 

where, as before, L is the total number of algorithm iterations. 

The speed of the algorithm can be considerably increased by using the DFT to obtain the 

correlations, provided that the circulant assumption is made. The cross-covariances between 

pairs of signals x~(t) and xnJt) can be computed thus RkIlJejW)=XkCej(O)Xm(ej(o), where 

X k (ej(O) is the DFT of xk (t) and XIII (e W') is the DFT of X
I1l 

(t) with all terms complex 

conjugated. The sequence rkm (I) is then obtained for all I by way of the IDFT. A flowchart of 
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this method is given in Fig. 5.10. The search for the optimum delay or largest magnitude square 

term in rkm(T), for k:j:. In and In> k (assuming a search in the upper-triangle), is then carried 

out. This algorithm computes the same result as the time-domain technique in O(LM 2Tlog2 T) 

operations. It is clear that for large T, using this method for SBR2 is computationally more 

efficient than the time-domain approach. 

Covariance-Domain Approach 

As discussed in section 5.2, the SBR2 algorithm can operate on the sample space-time 

covariance matrix rather than operating on the data channels. A consequence of which is an 

increase in the algorithm's computational speed. The computation time is dominated by two 

factors. The first is the one-off cost of constructing the space-time covariance matrix (Fig. 5.10) 

at the start of the algorithm (before the SBR2 loop). This process requires O(M 2Tlog 2 T) 

operations. The second slowest point in the algorithm is within the main loop of the algorithm. 

This is the search for the largest off-diagonal term, which does O(LM 2T) work. Thus, the 

complexity of this algorithm is OeM 2T log2 T + LM 2T) . In comparing the dominant term here, 

OeM 2TlOg2 T), with that of the time-domain approach, O(LM 2T2), we see that the 

covariance-domain version of the SBR2 algorithm is faster. An idea of the speed of the 

algorithm can be gathered from the following example. 

START 

Do/= I to T 

END 

Figure 5.10: Algorithm for the transformation of the data to the covariance-domain. 
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Example. Let there be M = 10 signals with T = 1000 data samples. A good estimate of the 

optimal decOlTelation filter bank can be obtained with L = 600 iterations of the SBR2 algorithm 

in approximately 16 seconds using a 3GHz Pentium 4 processor. Although this would typically 

be too slow for real-time applications, there is a great deal of scope for improving the 

computational performance of the algorithm. 

5.6.3 Alternative Search Technique 

In section 5.2, we extended the classical Jacobi algorithm to polynomial matrices to create the 

multichannel SBR2 algorithm. This strategy may be described as a 'greedy' approach that 

searches for the largest con-elation between two signals at each iteration. An alternative scheme 

can be obtained by generalising the cyclic Jacobi algorithm, introduced in section 2.2.3, to 

polynomial matrices. The paraunitary transformation of (5.4) can be applied to the 

(M 2 - M) /2 off-diagonal entries (to zero the largest term in each entry) that are selected in 

some fixed order. The sequence of transformations constitutes a sweep, which may have a 

cyclic-by-rows or cyclic-by-columns construction. 

In contrast to the SBR2(N1) algorithm, this strategy treats all off-diagonal entries equally. 

Therefore, it is propOliionately, equally sensitive to all the signals, which is also a property of 

the Gc cost function, discussed in section 5.3.2. A SBR2 algorithm that is based on the cyclic 

Jacobi algorithm would naturally perform better spectral majorisation than SBR2(NJ. 

The computation time of the SBR2 algorithm with the cyclic-by-rows Jacobi method is 

greater than that for the SBR2 algorithm with the classical Jacobi algorithm in place. In each 

step of the SBR2 algorithm a Jacobi sweep is executed, which means that the algorithm does 

O(M 2Tlog;T+LM 3T) work. The increase in order arises because there are (M 2 M)/2 

delay-rotates, each of which requires O(M) operations. 

Note that there may be other ways of implementing the SBR2 algorithm that are not based 

on a pairwise search approach. One method is to search over a wide range of possible delays in 

a delay set for the entire polynomial covariance matrix to find the best delay and then apply a 

multichannel rotation. However, at first glance, this would seem to be a computationally costly 

technique. Investigation into a computationally efficient implementation of this scheme has not 

been performed due to constraints on time. 
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5.7 Performance Analysis 

5.7.1 Characterisation of the SBR2 Algorithm 

The performance limiting factors of the bandwise algorithms discussed in section 4.4 are not 

specific to those algorithms, but seem to occur in a hidden form in the SBR2 algorithm. As 

before, the limitations transcribe into a trade-off between frequency resolution and sample 

noise. The number of degrees-of-freedom the algorithm has increases as the number of 

algorithm steps L increases. A large value of L results in the algorithm having increased 

resolution in frequency space, but effectively reduces the number of data samples that it can use 

in estimating each quantity (unitary matrix). In this case, the diagonalisation performance (A) is 

dominated by the sample errors. In contrast, for small L, the predominant contributing factor to 

A is the lack of spectral resolution. 

The SBR2 algorithm can be thought of as applying a window to the sample covariance 

functions. The window edges asymptote to a peak value obeying a power law behaviour of 

order 17 . The algorithm applies a window with a bounded value of 17 . The larger the value of 17 

the better the diagonalisation performance of the algorithm for data with short covariance 

functions; the performance tends to be worse otherwise. Note that a large value of 17 will give 

performance approaching that of the WCD-bandwise algorithm with a rectangular window, as 

discussed in section 4.4.3. 

Characterisation of the WCD-SBR2 Algorithm 

The application of a covariance-domain window can be viewed as a modification to the SBR2 

algorithm that increases the effective value of 17. A rectangular window function effectively 

means that 17 = 00. This algorithm has two parameters: the number of iterations L and the 

window length T". The application of a window in the covariance domain effectively reduces 

the number of independent estimates made and so the accuracy of these estimates can be 

significantly improved. The windowed space-time covariance matrix 1'(1:) is a better estimate of 

the true statistical measure a( r) than the original space-time covariance matrix r( r), both for 

our purposes and in terms of sums of square errors. The effect of the windowing is to smooth 

the signal spectra, as performed by the Blackman-Tukey spectral estimator [7]. 

It is important that the length of the window is not less than the time extent of the true 

correlations between the signals. This condition must be adhered to so that the algorithm has 

access to all true cross-covariance terms. In the case where a rectangular window is used, 

sample noise is the only contributor to A. Because of this, the WCD-SBR2 algorithm offers an 
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improvement in performance over the regular SBR2 algorithm when the true covanance 

function has finite extent in time (windowing is ineffective otherwise) . 

The type of covariance-domain window function applied will have an effect on the 

performance of the algorithm, and its effectiveness depends on the true correlations of the 

signals. Therefore, knowledge about the underlying statistics of the signals will aid in choosing 

a suitable window function; a poorly chosen window may attenuate or even remove some 

essential cross-covariance terms. This may be demonstrated through some examples . 

Example 1. Consider the case of two signals with a corresponding true cross-covariance 

function a l2 (r) as represented by the green curve in Fig 5.11 (a). The greatest lag at which 

correlations exist is Tc = 5 . The sample cross-covariance function, '12 (r) , consists of significant 

(signal-related) covariance coefficients in the range [-Tc ' I:.] and noise-related coefficients 

outside this range; this is the solid blue curve in Fig 5.1 I(b). The noise terms may be set to zero 

with the application of a rectangular window function of length Tw = 2Tc + 1, represented by the 

dotted red curve in Fig. 5. II(b). With such a window function the important cross-covariance 

terms are preserved, including those close to ITcl, as seen in Fig. 5. 1 I(c) . 
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Figure 5.11: (a) True cross-covariance function . (b) sample cross-covariance function and a 

rectangular window. (c) Result of windowing the sample covariance in (b); all signal-related 

terms are preserved. 
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Example 2. Consider again the two-signal case with a true cross-covariance function as shown 

in Fig. 5.12(a). Suppose the SNR of the signals is low and so the sample covariance function is 

a noisy estimate ofaI2 (r), as represented by the solid blue curve in Fig. 5.12(b) . If a 

rectangular window (thin dotted black curve in Fig. 5.12(b)) is applied in this case, some 

dominant noise-related coefficients would be preserved; see the thin black dotted curve in Fig. 

5.12(c). On the other hand, if a tapered window, such as the Bartlett window function 

represented by the thick dotted red curve in Fig. 5.12(b), is used, then the dominant noise­

related terms are attenuated; see the solid pink curve in Fig. 5.12( c) . 
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Figure 5.12: (a) True cross-covariance function . (b) sample cross-covariance sequence, a 

rectangular window and a Bartlett window function . (c) Results of windowing the sample 

covariance in (b) with a rectangular window (dashed curve with noise-related terms preserved) 

and a Bartlett window (solid curve with noise-related terms attenuated). 

5.7.2 Experimental Results 

Using computer simulations we evaluate the performance of the various SBR2 algorithms. The 

algorithms were applied to the multichannel convolutive problem represented by Fig. 4. I . The 

results provided here underline the validity of the performance characterisation given in sections 

4.5. I and 5.7.1 . Finally, the subspace decomposition accuracy of the SBR2 algorithm is 

in vestigated. 

For the following simulations the input signals to be processed were generated as follows : 

With reference to (4.3) (or Fig. 4.1), the propagation of M signals onto M sensors was modelled 

by means of a M x M polynomial mixing matrix G(z) whose entries were FIR filters of order 
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with coefficients drawn randomly from a uniform distribution in the range [-1.1]. The 

source signals took the form of independent BPSK sequences, which were convolutively mixed 

using G(z). This model is the same as that used in all the experiments in section 4.5. In some of 

the following experiments the source signals were modelled as quaternary phase-shift keying 

(QPSK) sequences with zero mean and unit variance. The samples took values ± 1/12 ± j I/Ii , 
each with a probability of 114, which gives rotated rc/4 constellation points [51]. For reasons 

given in section 5.6.2, we assume that the input data is circulant. 

The WCD-SBR2(N1) algorithm, like the WCD-bandwise algorithm, was run with a 

rectangular correlation window and a correlation window length of T" = 2NR + I 2~ + 1 . For 

the reason given in section 5.4, the WCD-SBR2(GJ algorithm was applied with a triangular 

window function, where T" = 4N Ii + 1. Expected performance quantities were obtained by 

averaging over] 00 realisations of each experiment. 

Strong Decorrelation 

Dependence on L. In Fig. 5.13, the evolution of the diagonalisation performance measure (A) 

for the SBR2(N1), SBR2(G,), WCD-SBR2(NJ and WCD-SBR2(GJ algorithms over a number 

of algorithm iterations L for the three-channel case is shown. Also included in these figures is 

the performance of the non-blind technique, SBR2( A'). For this simulation, the order of the 

filters in G(z) was N~ = 5 and the number of data samples, T, used to estimate the space-time 

covariance matrix in (5.1) was chosen to be 729. The correlation window parameter for the 

WCD-SBR2(NJ and WCD-SBR2(GJ algorithms was set to II and 21, respectively. 

It is obvious from these plots that there is an optimal number of steps, L t

, required at 

which the regular SBR2 algorithms achieve the lowest value of A. The optimum performance 

point for the SBR2(GJ algorithm (thick solid curve) is reached with a greater number of 

iterations than is required for SBR2(NJ (thick dashed curve). This is because SBR2(G,) is not 

as sensitive to large cross-correlations as SBR2(N1) is, as explained later in section 6.1.2. For 

the same reason, the SBR2(Gc ) obtains a lower value of A than SBR2(N1). The reduction in 

performance either side of the L' point for the regular SBR2 algorithm substantiates the analysis 

presented in section 5.7.1. For small values of L, A is governed by the errors that restrict 

frequency resolution. For large values of L, errors are due to sample noise. 

As expected, the WCD-SBR2 algorithms produce output signals that are a closer 

approximation to strongly decorrelated signals than those obtained from the regular SBR2 

algorithms. Their success is directly attributed to the windowing performed on the sample 

covariances, which largely removes noise related crosscovariance terms (i.e. that are not related 
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to the true statistics of the signals) . It is apparent that the performance of the WCD-SBR2(Nt ) is 

slightly better than that of the WCD-SBR2(Gc). A likely reason for this is that a rectangular 

window is more suited to the true covariances of the signals, as discussed in section 5.7.1. This 

is evident in the fact that a larger window length was required when using a triangular window. 

By contrast to the regular SBR2 algorithms, a very low value of A, is attained by the WCD­

SBR2 algorithms, which is due to the windowing. The SBR2( 1') algorithm finds a paraunitary 

matrix that is the optimum decorrelation filter bank, to a good approximation. Its success is 

certainly due to the fact that it uses true statistics to design near-optimal filters. 
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Figure 5.13: A comparison of the diagonalisation performance of the various SBR2 algorithms 

for the case of 3 signals with real-valued data samples. 

The 1 performance evolution of the various algorithms has been assessed for the case 

where there were three complex-valued signals; see Fig. 5.14. The source signals were QPSK 

sequences of length T = 729. The general performance characteristics of the algorithms are 

similar to those seen for real-valued data. However, a difference in absolute terms is observed: 

the regular SBR2 algorithms achieve a somewhat greater level of diagonalisation than for the 

real-signals case. A possible hypothesis for this is that there is effectively extra information 

about the source signals in the complex part of the data, which is exploited by SBR2. This may 

be easily verified by doubling the number of samples used in the real-signals case and noting the 

increase in performance, as will be demonstrated in the following experiment. 
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Figure 5.14: A comparison of the diagonalisation performances of the various SBR2 algorithms 

for the case of 3 complex-valued sequences. 

Dependence on T. The dependence of the A measure on the number of data samples T for 

varying L was obtained using SBR2(N]) and WCD-SBR2(N ]) , the results from which are 

provided, respectively, in Fig. 5.15 and Fig. 5.16. The simulations were for four signals 

and N R = 3. It is clear that the more data samples there are available for processing the better 

the performances of the algorithms. For both algorithms, we see that A is approximately 

independent of T for small L and for T» Tc ' This occurs because of a lack of spectral 

resolution, which is consistent with the analysis given in 5.7.1 . Conversely, as L increases, 

sample errors become more dominant and therefore A becomes more dependent on T. These 

relationships were also observed for SBR2(Gc) (not shown). 

Identical simulations to those in Table 4.1 of section 4.5 have been carried out for the 

SBR2 algorithms with results tabulated in Table 5.1. The regular SBR2 algorithms were 

allowed to run for an optimum number of steps L', which ranged from 18 to 60 iterations 

depending on the algorithm and T: the values of L were determined by conducting experiments 

of the type for which the results in Fig. 5.13 relate. The WCD-SBR2 algorithms were allowed to 

run for 500 iterations. In comparing the A performances of SBR2 with those of the bandwise 

algorithms, the multipath-enabled SVD and the SVD, we note the following : WCD-bandwise 

and WCD-SBR2 algorithms produce comparable performances and can generally achieve 

greater diagonalisation than the other methods; the SW-bandwise algorithm performs slightly 

better than the regular SBR2 algorithms with T/; and L ', respectively; and the SBR2(Gc) 

algorithm attains a lower value of A generally than that obtained by the multipath-enabled SVD. 
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Data length / Algorithm 243 samples 729 samples 2187 samples 

(A) (A) (A) 

SBR2(A') 9.9xlO-s 1.0xlO-4 9.6xlO-5 

WCD-SBR2(NJ 5.6xlO-2 1.9x 10-2 6.6xlO-3 

WCD-SBR2( Gc) 5.3xlO-2 2.3x I 0-2 9.7xlO-3 

SBR2(GJ 1.7xlO-1 9.3xlO-2 4.8xlO-2 

SBR2(N1) 2.1xlO- 1 1.3xlO-1 7.5x I 0-2 

Table 5.1: Comparison of the decorrelation performance of the SBR2 algorithms for different 

values of T. 

Spectral Majorisation 

In Fig. 5.17, the power spectral densities of the output signals from three SBR2 algorithm 

variants are shown for four input signals (identical to those used in section 4.5) with spectra as 

in Fig. 5.17(a). The SBR2(N]) and SBR2(GJ algorithms were allowed to mn for an optimum 

number of steps, which was 20 and 35 iterations, respectively; see Figs. 5.17(b) and (c), 

respectively. The WCD-SBR2 algorithms were allowed to mn for 300 iterations. We see that all 

the algorithms produced output signals that are approximately spectrally majorised. It is quite 

evident that the WCD-SBR2(N]) algorithm - see Fig. 5.17(d) - produces significantly better 

results than the regular SBR2 algorithms. The WCD-SBR2( GJ and 'near' -optimal algorithms 

produced majorised spectra (not shown) similar to those from WCD-SBR2(N]). 

In general, SBR2(GJ and the bandwise methods have consistently performed better 

spectral majorisation than SBR2(N]). As explained in section 5.3.2, a possible reason for the 

short coming of SBR2(N1) is that after a few iterations, it concentrates on improving energy 

compaction in signals with large power and neglects compacting energy from weaker signals. It 

does this because powerful signals gi ve rise to large crosscorrelations, which the algorithm 

targets in order to maximise the N] cost function. The condition is exacerbated when there are 

very weak signals present, and highlights a drawback of the cost function used and/or the 

method of search adopted (classical Jacobi method) for coding applications. In contrast, the Gc 

cost function is proportionately, equally sensitive to changes in any of the signals. Therefore, it 

enables SBR2 to perform greater data compression. 
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Figure 5.17: The majorised output signal spectra of (b) SBR2(N[), (c) SBR2(Gc) and (d) WCD­

SBR2(N[) for the given input signal spectra in (a). 

Broadband Subspace Decomposition 

In order to demonstrate the capability of the SBR2 algorithm in performing broadband subspace 

decomposition, we present the results of a simple computer simulation. The propagation of three 

source signals onto six sensors was modelled by means of a 6 x 3 polynomial mixing matrix 

G(z) whose entries were order-S FIR filters with coefficients drawn randomly from a uniform 
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distribution in the range [-1,1]. This overdetermined system is expressed in (4.3) and depicted 

in Fig. 4.1. The source signals were simulated as QPSK sequences of length T = 2000, as 

specified in section 5.7. Gaussian random noise was added to each simulated sensor output with 

variance, (J'~, chosen to achieve the desired SNR. From (4.37), the input SNR is given by 

SNRil1 = trace[G(z)G(z)] 1/1 / 6(J'~ for this experiment. 

For each chosen value of SNR, the SBR2(N1) and WCD-SBR2(N 1) algorithms were used 

to strongly decorrelate the sensor signals by diagonal ising the space-time covariance matrix 

according to (5.2). The SBR2(NJ algorithm was allowed to run for L = 50 iterations which was 

the optimal number of steps for this problem, as determined from the corresponding ensemble /L 

performance. On the other hand, the WCD-SBR2(NJ algorithm was run for 400 iterations, at 

which stage the modulus of the largest off-diagonal coefficient was extremely small. The signal 

and noise subspaces were then separated, assuming that the SBR2 algorithms had successfully 

achieved spectral majorisation. The signal subspace was defined by the first three output 

channels. The integrity of the signal and noise subspaces was quantified using the y measure 

defined by (4.36) in section 4.2.4. The smaller the value of r the more reliable the subspace 

estimation. The value of yas a function of SNR for this experiment is plotted in Fig. 5.18. Each 

point on the graph represents the value of yfor 100 trials. 

From Fig. 5.18, it can be seen that low values of ywere achieved by both SBR2 variants, 

and ydiminishes rapidly with increasing SNR. This indicates that the algorithms are capable of 

effective broadband subspace decomposition. The algorithms produce inaccurate subspace 

estimates below a certain input SNR level, which is different for the two algorithms. These 

curves show that a transition band exists where the algorithms go from producing many errors 

to providing good subspace estimation. We also make the following interesting observations: 

1. As expected, more accurate subspace estimation can be achieved with WCD-SBR2 

(dashed curve in Fig. 5.18) than is obtained by the regular algorithm (solid curve): at 

OdB SNR, r '" 0.2 for SBR2(NJ, by contrast, r '" 0.02 for the WCD variant; 

2. The variance of y for moderate-to-high input SNR is somewhat smaller (i.e. a 

smoother curve) for WCD-SBR2 than that for the regular SBR2 algorithm; 

3. The variance of the y measure gets larger as the input SNR falls. 

4. There are values of y that are greater than unity (for low input SNRs). 

A possible hypothesis for the first two points in this list is that the WCD-SBR2 algorithm 

operates on a more accurate estimate of the space-time covariance matrix so it makes less errors 

than the regular SBR2 algorithm. The last two observations can be easily explained as an effect 
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due to the fact that the construction of the paraunitary matrix is based on sample statistics, and 

so there are sample errors in the quantities being estimated. 
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Figure 5.18: A comparison of subspace decomposition performances for regular SBR2 (solid 

curve) and WCD-SBR2 (dashed curve) . 

5.8 Concluding Remarks 

In this chapter, we have introduced the second-order sequential best rotation (SBR2) algorithm 

as a method of constructing paraunitary matrices for polynomial matrix diagonalisation (or 

PEVD). In contrast to frequency-domain methods presented in chapter 4, the SBR2 algorithm is 

a time-domain approach that is not restricted to circulant (periodic) data. It uses the 

decomposition in [73] but with a fundamental difference that allows for a much simpler method 

of parameter optimisation: a generalisation of the classical Jacobi algorithm to the relatively 

unexplored domain of polynomial matrices. The SBR2 algorithm constructs a paraunitary 

matrix as a sequence of elementary paraunitary matrices computed one at a time. It can strongly 

decorrelate signals, to a good degree, in a perfectly conditioned manner ·and has a proof of 

convergence. The algorithm has been shown to give an effective extension of the EVD to 

polynomial matrices or the SVD to broadband signals. 

We have introduced variations on the SBR2 algorithm which improve its strong 

decorrelation and spectral majorisation (and thus the broadband signal subspace estimation) 

performances. One of these variants is created by changing the algorithm's correlation-based 
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cost function to one that is based on the coding gain. Another version of the algorithm IS 

proposed that applies a window to the sample space-time covariance matrix of the input data. 

In this chapter we have only attempted to indicate the relevance of the SBR2 algorithm to 

signal processing by means of some typical examples. However, as with the conventional 

SVD/EVD, the SBR2 algorithm is a generic tool, applicable to a wide range of problems. It has 

already been applied successfully to data obtained from real sensor arrays in a number of 

application areas including sonar and seismology; however, discussion of the specific 

applications and results is beyond the scope of this thesis. It has also been adopted successfully 

by other researchers for the purpose of designing oversampled filter banks for channel coding 

[41,85] and for second order blind signal separation, applied to polarised signals from a 3-axis 

seismic sensor array using quaternion (hypercomplex) arithmetic [39]. It is envisaged that the 

SBR2 algorithm can also be applied to more esoteric applications, such as cancer diagnosis. 

The SBR2 algorithm has the effect of compacting most of the total signal power into as 

few channels as possible. This implies that it is also suitable for application to multichannel data 

compression and subband coding. In chapter 6, we focus on extending the capability of the 

SBR2 algorithm to data compression, in pm1icular the design of optimal orthonormal subband 

coders, in the following chapter. 



6 PEVD for Data Compression 

In chapter 5, the SBR2 algorithm was introduced as a time-domain approach to computing the 

PEVD of parahermitian matrices. The algorithm calculates a paraunitary filter bank that 

imposes, to a good approximation, strong decorrelation and spectral majorisation upon the input 

signals. In chapter 3, it was shown that these qualities are necessarily satisfied by the analysis 

bank of an optimal orthonormal subband coder, where optimality is in the sense of maximising 

the coding gain. In this chapter, we introduce variations on the SBR2 algorithm that are suitable 

for application to both multichannel data compression and subband coding. Correspondingly, 

the chapter is sectioned into two parts: in section 6.1, an investigation into the applicability of 

the SBR2 algorithm to the task of compressing multichannel arbitrary data is presented; in 

section 6.2, we introduce the SBR2 coder, which is an adaptation of the SBR2 algorithm for 

effective application to the problem of optimal subband coding. The SBR2 coder represents a 

major part of the innovation presented in this thesis. 

In section 6.1, we begin by recognising that energy compaction and minimal data 

encoding for multichannel data are possible tasks for a PEVD algorithm. The connection 

between the PEVD and the PCFB, introduced in chapter 3, is highlighted. A new measure of 

data compression for multichannel arbitrary data is defined by extension of the coding gain 

given by (3.7). The coding ability of the various SBR2 algorithms is demonstrated through 

experimental results. In section 6.2, the SBR2 coder is introduced as a technique for producing 

orthonormal PRFBs for subband coding. Firstly, an examination of the effect of the delay-chain 

and decimation (demultiplexing) stage of a subband coder on the statistics of the input signal is 

given. We show that the space-time covariance matrix of the input vector signal has a special 

structure when the input signal is stationary in the wide sense. This is exploited by conventional 

subband coder design methods. We introduce a method of incorporating knowledge of this 

structure into the SBR2 algorithm. The resulting algorithm is coined the SBR2 coder. Certain 

relationships between the SBR2 coder and a prior-art algorithm proposed in [32] for designing 

compaction filters, called the window method, are then given. Finally, results are included 

showing that the SBR2 coder can produce filter banks that outperform those obtained using the 

window method for a set of benchmark problems. 
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6.1 Data Encoding of Multiple Signals 

The correlations that exist between multiple signals constitute a type of redundancy. A linear 

transformation, such as the SVD, may be used to remove these correlations and perform optimal 

energy compaction (see chapter 2). As a result, most of the total input signal power resides in a 

reduced number of channels (dominant channels). Data compression may be achieved by 

encoding (quanti sing) the data with a reduced number of bits: typical strategies for quantisation 

have been discussed in section 3.2. 

However, if the input multichannel data are strongly correlated, then instantaneous 

decorrelation would not yield optimal compression. For this case, optimality may be attained 

with a filter bank that imposes strong decorrelation and spectral majorisation upon the input 

signals - see section 4.2.3 for a definition of these two properties in the context of arbitrary 

multichannel data. It is also desirable for the filter bank to be paraunitary because it simplifies 

considerably the design of a stable PRFB and prevents the amplification of quantisation noise 

(see chapter 3). Such a filter bank can be found by the SBR2 algorithm, as shown in chapter 5. 

In this section, we evaluate the SBR2 algorithm for data compression of multichannel data. 

6.1.1 Energy Compaction and Coding 

It has been shown that the PCFB is the optimal filter bank for both energy compaction and 

subband coding, as discussed in section 3.2.3. Optimality in terms of the former objective is 

achieved when the paJiial sum in (3.13) is maximised. An optimal solution to the latter objective 

is found because a PCFB also maximises the non-uniformity of the variances of all the subband 

signals, and so the product of these variances is minimised (i.e. the coding gain in (3.7) is 

maximised). An algorithm for estimating a PEVD of arbitrary multichannel data may also be 

designed with these two objectives. This is now considered through trivial extension of these 

objective functions. 

The energy compaction property of the PEVD (see section 4.2.3) is highly relevant and 

beneficial to the task of data compression. The PEVD produces a paraunitary matrix H(z) such 

that for all n less than M, the sum of the powers of the first n of the transformed channels is as 

high as possible, i.e. the partial sum 

,\,Ii 
Lk=i C kkO for each n:S; M (6.1) 

IS maximised. Here, M is the total number of arbitrary broadband data channels and 

Ckk (z) = I:-= ckklZ-
1 are the diagonal entries of the true polynomial covariance matrix C(z) 

defined in (4.12) (related to the signals transformed by the PEVD). Now suppose that the 
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signals are reconstructed by applying H(z) (the paraconjugate transpose of H(z» to the 

reduced set of n transformed signals t(z), i.e. nz) = H(z)t(z) . Since (6.1) is maximised and 

H( z) is paraunitary, the sum of the variances of the M - n -I signals is minimised. It follows 

directly that the error in the reconstructed signal fez) is minimised, i.e. the multichannel 

L
id 

reconstruction error £ = (1 / M) c"o is minimised. 
k=n+1 M 

A paraunitary matrix that minimises the multichannel reconstruction error may be looked 

upon as an extension of the PCFB for subband coding to arbitrary multichannel data. It follows 

that we can make the following assertions: 

• In the particular case when 11 and CliO is maximised, the first row (polynomial 

vector) of H(z) is a generalisation of the optimal compaction filter (defined in section 

3.2.2) to arbitrary multichannel signals. 

• The sum 

(6.2) 

is minimised. This is a simple generalisation of the un-normalised coding gain in (3.7) 

to arbitrary multichannel signals. 

Since we are limited to the case where H(z) is comprised of FIR filters we cannot in 

general minimise £ and thus obtain optimal multichannel data compression, which is analogous 

to the intermediate condition for PCFB design given in section 3.2.3. If the aim is to produce 

minimally coded data, then a PEVD-estimating algorithm would be at an advantage if it aimed 

to maximise CliO (i.e. energy compaction) or minimise (6.2). It follows from the discussions in 

sections 3.2.2 that such an algorithm would implicitly impose strong decorrelation and spectral 

majorisation. The SBR2(Gc ) algorithm, introduced in 5.3.2, would be suitable for the task of 

data compression since it uses the G, cost function defined in (5.31), which is based on the 

coding gain measure. It stands to reason then that this algorithm aims to minimise (6.2). 

6.1.2 Performance Measure Based on the Coding Gain 

The methods for computing the PEVD introduced in sections 4.4 and chapter 5, produce filter 

banks that can be used to perform multichannel data compression. A measure is required to 

assess the data compression ability of the filter bank constructed by a PEVD algorithm. Recall 

from section 4.2.4 that the sum of the magnitude-square off-diagonal terms at all time delays 

gives a measure of the diagonality of a polynomial matrix, as represented by ,1 in (4.33). This 

quantity cannot be used for the purpose of measuring data compression performance since it is 
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proportionately more sensitive to changes in signals with high energy. It follows, therefore, that 

it is weakly sensitive to spectral majorisation, which is a necessary property when trying to 

correctly gauge the level of data compression achieved. Therefore, an alternative performance 

measure is defined, called the compression gain. The measure may be looked upon as a 

generalisation of the coding gain to multichannel data. It allows for the direct comparison of the 

data compression performance of the various PEVD-estimating techniques presented in this 

thesis. 

The compression gain is defined as a measure of the number of bits per sample saved 

after encoding the data channels. This is provided that the original information content is 

faithfully reproducible. The compression gain, Gm , is simply the difference between the 

number of bits required to encode the input channels, N j , to that required for the output 

channels, No' In other words, 

Gm = Ni - No (number of bits). (6.3) 

The measure may be expressed in terms of the variances of the input and output (transformed) 

channels, akkO and ckkO ' respectively: the zero-lag coefficient of the kth diagonal entry of the 

true covariance matrices A(z) and C(z) defined in sections (4.10) and (4.13), respectively. 

Now, the number of bits/sample (data rate) required for M data channels before and after strong 

decorrelation may be expressed as, respectively, 

(6.4) 

and 

(6.5) 

Here, q is a constant associated with the signal digitisation process, such as quantisation, and 

Q = log2 (q). We define the compression gain as 

(6.6) 

This measure is maximised when the product of the variance of the transformed output 

channels is minimised. In Appendix 8. I, we prove that maximisation of the compression gain 

leads to paraunitary filter bank that is optimal in the sense of the compression gain. 
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Cost Function Based on True Statistics 

Another variation on the SBR2 algorithm can be created by using the Gm measure in (6.6) as 

the cost function. This SBR2 variant belongs to the class of non-blind SBR2 algorithms defined 

earlier in section 5.3.3, and is referred to as SBR2(GIl,). Viewed differently, the algorithm 

operates on the true space-time covariance matrix C(z) with the Gc cost function defined in 

(5.3 I). Therefore, the Gill measure is maximised when the largest normalised crosscovariance 

term in CCz) is zeroed. The SBR2( Gm) algorithm finds an 'almost' -optimal filter bank for 

multichannel data compression. The performance of this algorithm is an upper bound on the 

compression gain performance of the 'blind' SBR2 algorithms. 

6.1.3 Performance Analysis 

In the following we present the results of numerical simulations. The systems under 

investigation are the regular SBR2 and WCD-SBR2 algorithms. The inputs were three complex­

valued data channels as generated in section 5.7. The WCD-SBR2 algorithms were run with the 

parameters as given in section 5.7. As before, expected performance quantities were obtained by 

taking the average across 100 trials of the experiments. 

The evolution of the compression gain Gm for the SBR2(N j ), SBR2(GJ, WCD-SBR2(N j ) 

and WCD-SBR2( G{) algorithms over a number of algorithm iterations L is shown in Fig. 6.1. 

The performance of the non-blind technique, SBR2( Gm), is also shown. As seen for the A 

performance in section 5.7, there is an optimal number of steps, L', required at which point the 

regular SBR2 algorithms achieve the highest value of Gm obtainable with these algorithms. 

Notice that the optimum performance point for the SBR2(G,) algorithm (thick solid curve) is 

obtained with a greater number of iterations than is required for SBR2(NJ (thick dashed curve). 

As expected, the SBR2(Gc) performs data compression better than SBR2(N j ). The cause of the 

reduction in performance either side of L' (where the peak occurs) for the regular SBR2 

algorithms are for the same reasons as cited in section 4.4. 

Notice also that the WCD-SBR2 algorithms are superior to the regular SBR2 algorithms 

at data compression. This is attributed to the windowing performed on the sample covariances. 

Their compression gain performances asymptote to values just below optimality (as indicated by 

the thick dash-dot curve for SBR2(GIlJ). The filter banks produced for this part of the curve 

attain high levels of energy compaction, as can be ascertained by comparing the variances of the 

input and output signals in Fig. 6.2. In general, the WCD-SBR2(N j ) algorithm achieves 

marginally better performance than that of the WCD-SBR2(GJ. This is because a rectangular 

window is more suited to the true autocovariance of the sources (providing a slightly better 
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estimate of the true space-time covariance matrix), as explained in section 5.7.1. The success of 

SBR2(GIIl ) is attributed solely to the fact that true statistics are used to design a near-optimal 

compaction filter bank. Results verifying the fulfilment of strong decorrelation and spectral 

majorisation for some ofthe algorithms evaluated here are given in section 5.7. 
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Figure 6.1: Comparison of the compression gain performances of the various SBR2 algorithms 

for complex valued data. 

12 1 

10 ----,------ (a) 

8 ------------

1: 1 
o -- , ------

-2 - - - -: - - - - - - - - - ~ - - - - - - - - -: - - - -

2 
Channel index, m 

12 

10 

8 

co 6 '0 

OJ 
u 4 c 
<1l 

.~ 
2 > 
0 

-2 

-4 

- -

- -

- -

- -

, 
, (b) 

~ - - - - - -1 - - - -

, 
, , 

----- - -~---- -- -- ~ -- - -

, 
_ _ _____ .l ______ __ _ 1 ___ _ 

, , 
, , ------1--------:----

- - - - - - - - - - - - - -1- - - -
, 
, 

- ~~~~~~ - t- ~ ~~~~ ~ 1IIJ ~~ 
2 

Channel index, m 
3 

Figure 6.2: Total true power of each (a) input signal (a kk O ) and (b) output signal (CkkO ) ' 

6.2 SBR2 Coder 

In this section, we present an investigation into the applicability of SBR2 to optimal subband 

coding. A study of its relevance to the subband coder design algorithms found in the literature is 

presented, particularly its relevance to the window method, described in section 3.4.2, is 

assessed . Important differences between the window method and SBR2 (in relation to the 
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architecture) are identified and explained. Specifically, we show that the true polynomial 

covariance matrix of the demultiplexed signals x(t) in Fig. 3.1 (b) has a special form for WSS 

signals, which is exploited by the window method. It is then shown that the SBR2 algorithm, as 

it is, is oblivious to this property, and so would not, in general, perform data compression as 

well as the window method. This motivates the development of a data pre-processing stage that 

exploits the extra knowledge about the statistics of the input signal. The relative performances 

of the modified SBR2 algorithm and the window method are then assessed. 

6.2.1 Covariance of the Demultiplexed Signals 

Pseudocirculant Matrices 

Consider the MxM polynomial matrix A(z) with entries Akm (z) , where 

{kE 7L Il:S;k:S;K}and{mE 7L Il:S;m:S;M}. From [73], the matrix A(z) is said to be 

pseudocirculant if there exists <P I 

l:S;k :S;m 
(6.7) 

In words, A(z) is a circulant matrix except that the entries below the main diagonal are 

multiplied by Z-I . Thus, a pseudocirculant matrix has the form 

All (z) AI2 AIM (z) I <P1(z) <P2 (z) <PM (z) 

A21 (z) A22 (z) A2M (z) -I<p (7 <PI (z) <PM_I(Z) 
A(z) 

AMM (z) J 

M ~) 
(6.8) 

AMI (z) AM Z-I<P 2(Z) -I<P 3 (z) .. <Pj(z) 

The entries of A(z) that are equal, but for a permutation, are termed related entries; e.g., in the 

4x4 case, the set {Au (z), A2-i A31 (z), A-i2 (z)} consists of related entries. 

Properties of the Demultiplexed Covariances 

In the following, we will show that the true polynomial covariance matrix of the vector signal 

xU) is pseudocirculant if the input signal xCz) is WSS, as was first discovered in [60]. This 

result will reveal the importance of pseudocirculants in the design of optimal subband coders; 

moreover, it will expose a performance limiting factor of the SBR2 algorithm if applied to 

problem of subband coding. 

Consider the input signal XCl) and the analysis bank of the subband coder in Fig. 3.1. Let 

(t) x(Mz+p-l) {pE 7L Il:S;p:S;M} be the demultiplexed (low sample rate) signals, 
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which are naturally elements of the vector signal xU) = [X(Ml)X(Mz+ I), .. ,x(Mz+ M J)Y: 

the polyphase components of XCl) . Suppose that xCz) is drawn from a zero-mean WSS process. 

The vector signal x(t) is, therefore, also zero-mean and WSS. The true autocovariance function 

of X(I) is defined as 

(6.9) 

The space-time (or rather, time-time) covariance matrix for the polyphase components of X(I) 

may be written as 

(1'), Vz and VT. 

The z-transform of (6.10) is given by 

A(z) = )Z-1' aCT), VT. 
"--' 

T 

Theorem 6.1. The matrix A(z) is pseudocirculant if X(l) is a WSS signal. 

Proof. The (k,m)th entry of aU) can be expressed as 

The relationship between these entries and the samples of x(z) may be expressed as 

Since X(l) is WSS, (6.13) can be rewritten for I :s; k :s; m as 

= rpm-hi (T) = rpp(T) = a(MT+ (p -I)). 

In the z-domain, (6.14) becomes 

T T 

(6.10) 

(6.! 1) 

( 6.12) 

(6.13) 

(6.14) 

(6.15) 

For 111 < k :s; M , the polyphase index (m - k) in (6.15) is negative, but m - k + M is positive, 

hence we have a new expression for the entries of A(z) given by 

T 
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+1 (r') 
7 r' 

z Iz-r'lPm_k+M+l (r') = z-l<t>ill_k+M+l (z). 
r' 

(6.16) 

From (6.7) we conclude that A(z) is pseudocirculant. Q.E.D. 

There are some key points to note regarding the estimation of A(z) using the entries in 

A(z) : 

1. The decimation process for the analysis bank causes the loss of information in each 

individual entry of A(z). Its diagonal and off-diagonal entries are computed using 

only, respectively, (1/ M)tb and (21 M)th of the information available. 

2. The diagonals of A(z) are identical (i.e. an M fold redundancy of information) and 

represent an estimate of A(z). 

3. Due to the pseudocirculant structure of A(z), there is extra (useful) information about 

A(z) in the combination of related entries, which can be used to determine A(z). 

The sample autocovariance function for the input signal X(l) may be expressed as 

I, 1 T-l .. 

R(z) = L LX(l)X(l+ 
7=-1, T 1=0 

(6.17) 

The sample polynomial covariance matrix for the demuitiplexed signals x(t) is given by 

I, 

R(z) Lr(r)z-r E 1), rE (6.18) 

where 

M T-l 

r(T) = -Lx(t)xH (t + T). 
T 1=0 

( 6.19) 

There are points worthy of mention about the estimation of the autocovariance A(z) using R(z) : 

1. As with the construction of the matrix A(z), the diagonal and off-diagonal entries of 

R(z) are computed using only, respectively, (lIM )th and (21M ),h of the information 

available. Since there are fewer samples to estimate A(z) , and thus A(z), the sample 

noise in the estimates is amplified. 
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2. The diagonal entries of R(z) are different noisy estimates of A(z). Hence, they may be 

averaged to form a better estimate of A(z) . 

The related entries of R(z) are different estimates of the cross-terms in A(z). Hence, by taking 

the mean across the related entries one can obtain a more accurate estimate of the true 

crosscovariances. 

6.2.2 SBR2 Applied to Sub band Coding 

In chapter 5, we showed that, given a set of M arbitrary sequences, the SBR2 algorithm can 

generate an MxM paraunitary polynomial matrix, E(z). The paraunitary matrix can be applied 

to the signals to produce strongly decorrelated and spectrally majorised signals, to a good 

approximation. In other words, the algorithm aims to perform PEVD on the input sample 

covariance matrix R(z) expressed in (5.1). The accuracy of the decomposition depends on the 

accuracy of its estimate of the true input covariance matrix. 

The SBR2 algorithm may be categorised as a lattice parameterisation method see 

section 3.4.1 since the algorithm constitutes the optimisation of parameters of a lattice 

structure. To further relate these algorithms, we may regard the optimisation performed by 

SBR2 as being eigenstructure based. This is because it essentially aims to decompose a 

covariance matrix into its (polynomial) eigenvalues and eigenvectors. The SBR2 algorithm can 

be classed as a blind technique since it does not use knowledge about the signals or the mixing 

matrix. Furthermore, its formulation is not based on knowledge of the input signal statistics save 

for the minor requirement that the mean value of the signals is zero, i.e. E[X(l)] = O. 

Consider now using SBR2 to design the polyphase analysis bank for the subband coder in 

Fig. 3.1. The aim is to perform optimal (or near-optimal) data compression (in the sense of 

maximising the coding gain in (3.7» on the single input signal x(z). One way of achieving this 

is to apply the paraunitary filter bank produced by SBR2 directly to the demultiplexed signals, 

that is 

~(z) = E(z)X (z) , (6.20) 

where X (z) is a vector of algebraic power series related to the vector signal x(t) . Here, E(z) 

is treated as the analysis (polyphase) matrix of the subband coder, which is illustrated in Fig. 

6.3. A high coding gain may be achieved if SBR2 is allowed to operate on a good 

approximation to A(z). Recall that the sample covariance matrix for the demultiplexed signals, 

R(z), represents a somewhat noisier and dist0I1ed estimate of A(z) than that derived directly 
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from xU) (the sample autocovariance R(z». If applied in the conventional way, the filter bank 

produced by SBR2 will be based on R(z) and not on R(z). 

In the above regime, SBR2 does not use knowledge that the demultiplexed signals xk (t) 

are jointly WSS to gain a better estimate of A(z) since it is a blind algorithm. That is, the SBR2 

algorithm does not exploit the special form (pseudocirculants) of A(z). Therefore, in general, 

the SBR2 algorithm will not perform data compression as proficiently as those techniques 

whose filters are based on R(z), such as the window method in section 3.4.2. This is 

demonstrated by the following example. 
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Figure 6.3: SBR2 can design the analysis bank of a subband coder by direct application to the 

M polyphase channels. 

Example: ARMA(5) process. The window method and the WCD-SBR2(NJ are used to design 

a two-channel ( M = 2) olihonormal filter bank for the ARMA(5) example given in section 

3.4.2. The SBR2 algorithm was applied directly to the vector signal 

x(t) = [XI (t),XI (t), .. "XM (t)r, as shown in Fig. 6.3. The algorithm produced a 2x2 paraunitary 

polynomial matrix E(z), with polyphase filters Ekm (z) . 

The coding gain performances of the two algorithms have been evaluated, the results from 

which are shown in Fig. 6.4. In the case of SBR2, the coding gain was computed for a number 

of iterations. For the window method, it was evaluated for a number of filter orders. The coding 

gain was computed directly from the statistical process (i.e. it is based on the tme statistics of 

the data). The experiment was repeated 70 times and the mean value of the measure was 

graphed. The red dotted (horizontal) line represents the theoretical (ideal) coding gain (; = 1.94, 

which is the maximum attainable coding gain - see the next section for a derivation of this. 



6.2 SBR2 Coder 135 

As expected, the coding gain curves produced by the algorithms are below the theoretical 

value. It is evident that the window method is able to achieve greater levels of data compression 

than the SBR2 algorithm for filter orders (or the number of SBR2 steps) greater than -50; 

however, for filter orders (number of iterations) less than -50 the SBR2 algorithm can attain 

higher coding gains. We also observe that the filter bank produced by WCD-SBR2(Nl) 

asymptotes to the optimal one as the number of SBR2 steps increase. There seems to be a slight 

dip in the performance of the window method for large N, the reason for which is discussed later 

in section 6.2.5. 
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Figure 6.4: Comparison of coding gain performances between the window method and WCD­

SBR2(N1) algorithm for M = 2 and an ARMA(5) input process . 

Exploitation of Signal Statistics 

The SBR2 algorithm may be modified to exploit the stationarity of the input signal, i.e. take 

advantage of the pseudocirculant structure of A(z). A set of related entries in R( z) are 

different estimates of the same true cross-covariance. Therefore, to improve on the estimate 

of A(z), averaging may be performed across the related entries for all time lags. This would 

involve taking account of the delay between related entries either side of the main diagonal. It is 

instructive to examine the operations on R( z) for M = 2. Let the entries in R( z) be 

denoted rkm (r). The diagonals '{I(r) and r;2 (r) of the modified matrix R'( Z)E C 2X2 (Z) are 

computed as 

\:j r . (6.21) 

The off-diagonals are computed as, respectively, 



6.2 SBR2 Coder 136 

(6.22) 

and 

(6.23) 

For the general M x M case, we define 

;Yi 

(7')+ L (6.24) 
k=M-p-"1 

and a typical entry of the new (averaged) sample polynomial covariance matrix R'(z) as 

(6.25) 

The SBR2 algorithm can now be applied to our improved estimate of the covariance 

matrix R'(z). This modification yields the SBR2 coder. A schematic diagram of the process 

blocks involved in producing an analysis filter bank for subband coding using the SBR2 coder is 

shown in Fig. 6.5. 
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Conjecture 6.1. The averaged sample polynomial covariance matrix is parahermitian. 

Illustration. It is easy to see that R'(z) is parahermitian by considering the two channel 

example above. We have that 
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(6.26) 

and 

(6.27) 

It is now easy to see that 

2R~1 (z) = z(Ru (z) + ZR2J (z») 2R;2 (z) . (6.28) 

6.2.3 Theoretical (Ideal) Performance 

Our aim is to determine the theoretically optimal or ideal values for the compaction gain 

(related to the input and output of the first filter HI (z) ) in (3.12) and the coding gain in (3.7) 

and for the M-band subband coder of Fig. 3.1. These ideal values would be attained if the 

theoretically optimal transform were to be applied to the demultiplexed signals x k (t). The 

Fourier transform of these signals may be expressed in terms of the Fourier transform of the 

input xCZ) : 

) . (6.29) 

The first term (e 0) in (6.29) is of course an M-fold stretched version of X (ej(V) , and the 

other (aliasing) terms (ji > 0 ) are uniformly shifted versions of the first term. Suppose that the 

variances of the signals X k (e
jtu

) are permuted at each frequency such that the spectra 

{Ck(e jtu
)} of the resulting (transformed) signals Vk(e jli

) have the spectral majorisation 

property: 

(6.30) 

. The mean spectral power (tme variance) for 

the transformed signals and the input signal may be expressed as, respectively, 

(6.31 ) 

and 

(6.32) 
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ideal compaction gain is given by 

A CliO G
COIl1P 

:=--

ao 

and the ideal coding gain may be expressed as 

A ao 

G = (M A )~1 n CkkO 
k~l 

An example for the two-channel case is provided in Fig. 6.6. 
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Figure 6.6: Illustration of the transform-domain effects for a theoretically optimal 2-channel 

subband coder and a multiband input process with PSD in (a). (b) PSD of the demultiplexed 

channels. (c) and (d) PSDs of the corresponding subband channels, which are spectrally 

majorised. 

6.2.4 Comparison of the SBR2 Coder and the Window Method 

Stationarity Assumption 

The window method, as with other traditional subband coder design methods, has been 

formulated with the assumption that X(I) is WSS. In other words, it intrinsically exploits the 

pseudocirculant structure of the covariance matrix A(z) for the subband signals in (6.8). An 

obvious drawback with the window method is that it is not suited to designing compaction 

filters for non-WSS signals. Using this algorithm in practical communications systems may 
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prove to be problematic, where in general the receiver (filters plus down-conversion system) 

may modify the statistics of the signal [51]. 

By contrast, the SBR2 algorithm can be used to design suboptimal paraunitary filter banks 

for arbitrary (zero-mean) signals; it does not exploit the prior information about the stationarity 

of the input-signal statistics. Although, as discussed in the previous section, esoteric knowledge 

about the pseudocirculants of the polynomial covariance matrix can be fed to the SBR2 

algorithm by way of a simple averaging scheme, which gives the SBR2 coder. This IS a 

fundamental difference between the SBR2 algorithm and the conventional design methods. 

Filter Bank Efficiency 

Evaluation of the window method has revealed that it is less complex than SBR2. It is expected, 

therefore, that the computation time required by the SBR2 algorithm in constmcting a 

paraunitary filter bank for efficient coding would be greater than that taken by the window 

method. The fastest pmt of the window method is the application of the ideal compaction filter 

design. This is essentially a search for the frequency components with the greatest power; this 

entails a comparison of a set of baseband components with their images, where each component 

corresponds to a discrete design frequency. The window design and spectral factorisation 

routines in the algorithm are very simple and efficient algorithms as well. There is only one 

comparison to make at each of the design frequencies and the designed compaction filter can be 

used to determine the second filter. The computation time in determining the second filter is 

comparatively small and the complexity very simple. Consequently, the computational 

efficiency of the window method is significantly greater than that of SBR2. 

In typical storage and communications systems, the level of compression achievable can 

sometimes have priority over the cost of computation. It is becoming more and more common to 

compress signals before their transmission since the available bandwidth of a communications 

link is at a premium. Therefore, in practice, an increase in computational cost may be justified 

by enhancement in the level of compression. With an adaptive filter bank design algorithm, like 

the window method and SBR2, information regarding how to constmct the filter bank used 

would need to be stored or transmitted so that compression applied to the data may be undone 

(decompression). The amount of information required in describing the filter bank adds to the 

bandwidth required in transmitting the data. 

Example. Consider the design of an M-channel filter bank with real filter coefficients for the 

task of data compression. The filters generated by the window method have been shown to be 

shOlt for experiments presented in [32]: filter orders N of 31 and 65 were used to obtain near­

optimal compaction filters. In the special case of two-channels, it is only necessary to store or 

transmit the first decimation filter, that is, N + I real numbers. However, generally, for an M-
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channel filter bank we would need to design M filters. Therefore, a maximum of M (N + 1) real 

numbers would need to be stored or communicated for faithful filter-bank reconstruction. 

In the case of SBR2, it is the number of elementary paraunitary matrices required 111 

producing the filter bank that is an important factor here and not the order of the filters. Recall 

that a single step of the SBR2 algorithm involves the application of a delay and a rotation. 

Consequently, after a predetermined number of iterations, L, SBR2 generates 2L parameters 

(assuming real coefficients) and the 2L indices (real numbers) for identifying the pair of signals 

to which each elementary paraunitary matrix is applied. Hence, 4L real numbers are required in 

order to reconstruct the filter bank generated by SBR2. Usually, these numbers would 

necessitate less storage space (or a narrower bandwidth) than that for filter coefficients. Note 

that information about the synthesis bank does not need to be conveyed because it can be 

determined from the analysis bank for paraunitary filter banks. 

Paraunitarity and Stability 

The window method is a technique for the design of optimal compaction filters. It cannot 

construct an M-channel filter bank. As a special case, the compaction filter found by the 

window method may be used to determine the second filter of a two-channel orthonormal filter 

bank shown in section 3.3.2. Thus, paraunitarity is assured by construction. A possible scheme 

for the design of M-channel orthonormal subband coders has been given in [32]. The procedure 

introduced by Moulin and Mihcak in [48] obtains the remaining filters from the first 

(compaction filter). The design of the remaining filters is subject to the constraint that the filters 

are orthonormal. Therefore, we conjecture that such a technique (i.e. a multichannel window 

method) would produce paraunitary filter banks, as indeed does the SBR2 coder. This implies 

the following about the SBR2 coder and a 'potential' multichannel window method: 

1. The algorithms do not modify the total signal power, and therefore cannot corrupt the 

signals. 

2. The inverse of the filter bank can be used to obtain exactly the original signal, i.e. the 

algorithms can produce a PRFB for lossless data encoding. 

3. The PRFB is guaranteed to be stable since the inverse of a paraunitary analysis bank is 

assured to be stable [73]. 

Causality and Phase 

The application of an elementary paraunitary matrix can be restricted to only delaying one of 

the signals relative to the other (Le. signals are not advanced). This ensures that the filter bank 

designed by SBR2 is causal and thus realisable. The window method guarantees causal 
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compaction filters [26]; because the spectral factorisation produces right-sided polynomials with 

real coefficients. 

It is well known in the subband coding community that usually linear phase (i.e. constant 

group delay) and orthogonality are mutually exclusive design criteria for the construction of 

filter banks; each filter of a set of orthogonal filters generally has a non-linear phase response 

[73]. The SBR2 coder and the window method generally produce filters with asymmetric 

impulse responses, which is indicative of filters that have varying group delay. Therefore, it is 

expected that the filters designed by the SBR2 coder and a multichannel window method will in 

general have non-linear phase responses. Although the phase of the compaction filters is 

immaterial for the compaction gain and coding gain, it is vital in certain applications where 

minimal signal corruption is sought after, such as image compression [33]. 

Filter Order Constraint 

Another important distinction to make between the two algorithms is that the SBR2 algorithm 

does not enforce a filter order constraint on the design directly. If the source signals are i.i.d. 

sequences, then the number of iterations of the algorithm required is essentially governed by the 

order of the mixing. This gives the algorithm the freedom to select the most important filter 

coefficients as it begins building the lattice filter In contrast, the window method designs its 

compaction filter with a fixed constraint on the number of coefficients it can use. 

Extendibility to MIMO Subband Coding 

The capacity and reliability of a radio communications link can be improved by employing 

multiple antennas at both the transmitter and receiver, i.e. by using MIMO systems. MIMO 

communications systems are being used more and more to overcoming bandwidth limitations. 

Transmission of data from a sensor array over a communications network places significant 

demands on the available bandwidth. However, this could be greatly reduced by using MIMO 

subband coding to eliminate the high degree of spatial and temporal redundancy associated with 

sensor array signals. Notionally, an M-channel subband coder would be comprised of an array 

of M-band subband coders interconnected in some manner. 

It is envisaged that the SBR2 coder can be extended naturally to the case of MIMO 

subband coding. There are several possible ideas for an SBR2-based M-channel subband coder, 

which are left for future exploration. On the other hand, we cannot immediately see how a 

multichannel window method would be used to design an M-channel sub band coder. 
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6.2.5 Performance Analysis 

In this section, we present simulation results that quantify the compaction gain and coding gain 

performances of the filter banks constructed using the SBR2 coder. Its performances are 

compared to those of the KLT and a prior-art algorithm called the window method (described in 

section 3.4.2). We also show frequency responses of the various filter banks. 

The data simulated for the following experiments are based on some examples given in 

[32,48]. The algorithms were tested on three types of input signal with an ARMA( N a ) (or 

Markov- N a ) process. This type of process is regarded as a good model for many practical 

signals such as image and speech signals. In all cases, the input signal x(1) was generated as 

follows: An ij.d. sequence with unit variance and zero mean of length T was realised, which 

was, as will be indicated, either a BPSK or QPSK signal (specified in sections 4.5 and 5.7). The 

number of samples per subband channel was maintained at Ts = T / M 1024. The signal x(t) 

was then obtained from the output of an ARMA (Yule-Walker IIR) filter with order N" when 

driven by the i.i.d. sequence. For all simulations T» N a . The three types of signal used were: 

I. ARMA(5) process with poles p = [0.1 195,0.8990e±j21472 ,0.8824e±jOS594] and zeros 

z = [±0.9992,-0.454 1 6,10020e±jI330S ] . This has a multiband PSD which allows for 

clear illustration of the capturing of the signal energy at different frequencies, as 

suggested in [32]. The ARMA(5) filter was used to filter a BPSK sequence. 

2. ARMA(4) process with poles and zeros p O.8456[e±j27328, and 

z [1.0053e±jL5741 ,0.1575e±jI9193] , respectively. This has a difficult multiband PSD 

and requires M > 2 for good coding. The ARMA(4) process was driven by a complex­

valued i.i.d. process; viz., a QPSK sequence. 

. +'0 3864 + j? 04,4 . 3. ARMA(2) process With poles p = 0.6041e-J .. and zeros z = 1.0003c - .. ThiS 

models certain types of image texture [48]. A BPSK sequence was used as input to the 

ARMA(2) filter. 

As before, performance measures were obtained using the true statistics of the data, that 

is, true compaction gains and true coding gains are reported here. The sample measures were 

also computed for the above experiments but are not shown since they do not represent an 

accurate measure of the general performance of the algorithm. This is because the algorithms 

can adapt to (exploit) the noise and signal energies of a particular data set, allowing them to 

optimise their filters on the sample statistics (fit to the data) rather than the true statistics. Unless 
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stated otherwise, experiments quantifying compaction gain and coding gain peIformances were 

repeated over 50 realisations and the mean of the measures were taken. 

The design of a two-channel orthonormal filter bank using the window method for a given 

PSD is described in section 3.4.2. The SBR2 coder, employing either the WCD-SBR2(N I ) or the 

WCD-SBR2(Gc) algorithms, was applied to the vector signal x(t) = [XI (t),x2(t),···,x\'f (t)Y: 

inputs to the analysis bank (of a subband coder) shown in Fig. 3.1. The algorithm then produces 

a paraunitary matrix E(z), with polyphase filters E km (z). For reasons stated in section 5.4, the 

SBR2(Gc) coder was applied with a triangular window function, whereas the SBR2(N I ) coder 

was applied with the (default) rectangular window. In the case of a triangular window, it was 

found that a window length of T" = 20Na produced the best results. For the rectangular 

window, TH = 2Na + 1 gave the best performance. 

SBR2 Coder and the Window Method for an ARMA(S) Process 

In the first set of experiments, filter banks were designed mainly using the SBR2 coder and the 

window method with varying parameters for an ARMA(5) process with a PSD as in Fig. 6.7. 

Example 1. The SBR2(G,) coder was used to design a two-channel filter bank. It was allowed 

to lUn for 200 iterations and produced a filter bank with a maximum order of N = 52. The 

magnitude-square frequency response of the two filters designed by the algorithm is shown in 

Fig. 6.7(a): the frequency response of the compaction filter, HI (z), is shown as the solid (blue) 

curve and its orthogonal complement, H 2 (z), is represented by the dotted (red) curve. It can be 

seen that the algorithm has designed a multiband compaction filter with passbands that coincide 

with the dominant signal energies. Such a response is commensurate with high compaction 

gains. In Fig. 6.7(b), we show the PSD of the subband channels C kk (e
jiO

) (also included is the 

PSD of the demultiplexed signals Akk (ej{U»). It is obvious from this graph that the SBR2 coder 

has performed spectral majorisation. The window method for N = 200 produces similar results 

to those in Fig. 6.7 (not shown). 

Example 2: Dependence on L. Figs. 6.8(a) and (b) give a comparison of compaction gain and 

coding gain performances, respectively, between the two-channel filter bank designed using the 

window method and that produced by the SBR2(Gc) coder. The abscissa on this figure 

represents both the number of SBR2 iterations L and the order (N) of the filters produced using 

the window method. The red dotted (horizontal) line represents the ideal compaction gain and 

the ideal coding gain for the respective graphs. As expected, the maximum compaction gain and 

coding gain attained by the algorithms are below their respective ideal values. An important 

result is that a greater degree of data compression can be achieved using the SBR2 coder than 
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using the SBR2 algorithm alone (i .e. without a priori knowledge); this can be ascertained by 

comparing the coding gain performance in Fig. 6.8(b) to that in Fig. 6.4, which both relate to the 

same ARMA(5) input process as in Fig. 6.7(a). Moreover, for the given input process, the filter 

banks constructed by the SBR2 coder generally attain a higher coding gain than those of the 

window method. In particular, for L or N < -100, SBR2 converges to a near optimal solution by 

-50 iterations . This is because SBR2 has the freedom to choose the principal filter coefficients 

first. On the other hand, the window method has a fixed order filter, which it must parameterise. 

An obvious characteristic of the compaction gain and coding gain curves of Fig. 6.8 is 

that the sUboptimality of the filter banks designed by the SBR2 coder diminishes as L (N) 

increases. This is also true in the case of the window method for N <- 200 . The slight fall in 

performance of the window method at high orders is because there are only a fixed and finite 

number of samples available, and so at large filter orders its estimate of the true PSD suffers 

from sample noise. Recall that this phenomenon was also observed for PEVD algorithms and 

related to spectral estimators in sections 4.4 and 5. 
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Figure 6.7: Analysis of the two-channel filter bank designed by the SBR2 coder run with 200 

iterations (or the window method with order 200 filters). (a) PSD of the input signal (ARMA(5) 

process) and the magnitude-square of the two filters . (b) Majorised spectra of the subband 

channels and input signal PSD. 
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Example 3: Performance for small L. A comparison of the compaction gain and coding gain 

achieved by the SBR2 coder for L = 1 I (or N = 19 ) and the window method for N = 11 is 

given in Table 6.1 . For this dataset, the SBR2 coder achieves a compaction gain and coding gain 

that are, respectively, O.S9dB and I.46dB higher than those obtained using the window method. 

Figs. 6.9(a) and (b) show the frequency response of the filters produced by the window method 

and the SBR2 coder for L = N = I I , respectively. It is clear that the filters constructed by the 

SBR2 coder have better passband and stopband characteristics than those of the window 

method. The table also includes the performance of the KLT for comparison. The KLT obtains 

relatively poor results because the required degrees-of-freedom are not available for the given 

problem. 
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Figure 6.8: Comparison of the window method and SBR2(CJ coder for the two-channel case. 

(a) Compaction gain as a function of L (or N) and (b) coding gain versus L (or N) for the 

ARMA(S) process with PSD as in Fig. 6.7. 
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Algorithm / measure G
COI1JP 

G 

Ideal values 1.86 1.94 

KLT 0.79 1.07 

Window method (N = 11) 1.58 1.23 

SBR2 coder (L = I I) l.81 1.72 

Table 6.1: Comparison of the compaction and coding gain performances of two-channel filter 

banks designed using the KL T, window method and SBR2(Gc) coder for the PSD in Fig. 6.7(a) . 
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Figure 6.9: Comparison of the frequency responses of a two-channel filter bank designed by (a) 

the window method with N = II and (b) the SBR2 coder with L =] I for an ARMA(5) process . 

PSD of the process is also shown. 

Example 4: Dependence on Ts. The dependence of the coding gain performance on the input 

data length (or the number of low rate samples Ts) of the window method is revealed in Fig. 

6. IO(a) . It is quite clear that the coding gain performance of the window method relies heavily 

on the number of data samples available, especially for large filter orders . This is in contrast to 

the coding gain curves produced when using the SBR2 coder for different Ts, as shown in Fig. 

6. 1 O(b) . 
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Figure 6.10: (a) Coding gain as a function of N for different data lengths Ts. (b) Coding gain as 

a function of L for three different data lengths Ts. These are for the two-channel case and for the 

coloured input signal with PSD as in Fig. 6.7(a). 

Comparison of SBR2 Coder Variants for an ARMA(5) Process 

Example 5: Effect of different cost functions and windows. The compression performances 

of the filter banks designed by the SBR2(N I ) coder and SBR2(Gc) coder were compared. In 

Figs . 6.11(a) and (b), the compaction gains and coding gains versus the number of iterations for 

four-channel filter banks are shown, respectively. The prominent result in these simulations is 

that the coding gains achieved by the filter banks constructed using the SBR2(Gc) coder are 

higher than those of the SBR2(NI ) coder for most L. In addition, we observe that the SBR2(Gc) 

coder designs a first filter with better energy compaction properties than that of the SBR2(NI ) 

coder for most L. 

Note that the two algorithms would perform exactly the same in the two-channel case 

were it not for the difference in the window functions used. In fact, for M > 2, the success of 

SBR2(Gc) coder over the other variant is mainly due to the use of a triangular window function. 

A possible reason for this is that a triangular window is more suited to the input process. This 

hypothesis was tested by applying the SBR2(N1) coder with a triangular window function to the 

same problem example (results not shown) . Very similar findings to those obtained from using 

the SBR2(Gc) coder hold for thi s case. Specifically, for small L (up to -300 steps), the coding 

gains achieved by the SBR2(Gc) coder were slightly higher than those attained by the SBR2(N1) 

coder with a triangular window. Interestingly, the contrary is true for the compaction gam 

performance for the two algorithms; for large L, performances are almost identical. 
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Figure 6.11: Comparison of four-channel filter banks designed by the SBR2(Gc) coder and 

SBR2(N,) coder for the input process in Fig. 6.7(a) . (a) Compaction gain versus L and (b) 

coding gain versus L. 

Example 6: Dependence on M. Similar performance differences to those in Fig. 6 .1 I have 

been observed between the SBR2(N,) and SBR2(Gc) coders for varying M, with L = 600; see 

Fig. 6.12. Note that each point on the graph represents an average over 25 trials. A striking 

result is that, even though the coding gains (in Fig. 6.12(b» attained by the SBR2(Gc) coder are 

greater than those of the SBR2(NJ ) coder for nearly all M , the compaction gains (in Fig. 6.12(a» 

achieved by the latter are actually higher in most cases for large M. This, in a sense, suggests 

that energy compaction based optimisation (see chapter 3) may generally give a different 

solution to coding gain optimisation, which is an observation also made by the authors of [48] . 

From this we make the conjecture that a multichannel window method based on the construction 

in [48] would not in general guarantee high coding gains. 
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A di stinct feature in the coding gain results of Fig. 6. l2(b) for the L = 600 case is that the 

performances diverge from the ideal value as M increases. A reason for this is as follows: The 

algorithm has a fixed number of degrees-of-freedom (iterations) to use in order to perform 

strong decorrelation. As the number of channels increases so does the complexity of the 

problem; there are more and more channel-pairs to go through and decorrelate in the Jacobi 

search (see section 5.2 for a description of thi s) . This was tested by setting L = 1200, i.e. a two 

fold increase in the number of iterations, the results from which are shown in Fig. 6.12 and seem 

to con'oborate the hypothesis. This could also be an explanation for the following: the 

superiority of the SBR2(Gc) coder over the NI based algorithm increases with M at first and 

then looks to plateau. A noticeable characteristic of the compaction gain curves is the ripple-like 

structure. This is a phenomenon that cannot be explained at present. 
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Figure 6.12: Comparison of the SBR2(GC> coder and SBR2(NI ) coder for the coloured input 

signal with PSD in Fig. 6.7(a). (a) Compaction gain as a function of M, for L = 600 . (b) Coding 

gain as a function of M, for L = 600 and L = 1200 . 
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Comparison of SBR2 Coder Variants for an ARMA(4) Process 

The second set of experiments is concerned with the application of the SBR2 coder with varying 

parameters to a complex-valued coloured signal with a PSD as in Fig. 6.13. 

Example 7: M = 3. We have used the SBR2(Gc) coder to design a three-channel filter bank for 

the ARMA(4) process. The frequency response of the filters generated for L = 100 in Fig. 

6.13(b) exhibit good energy compaction performance: the algorithm has designed a multiband 

compaction filter, H I(z), with passbands that coincide with dominant signal frequency 

components. Notice that the passbands of the other two decimation filters H2(z) and H3(z) fall 

mostly in low-energy regions. This is commensurate with a high coding gain since the 

distribution of the subband channel powers is highly non-uniform. By contrast, the two-channel 

filter bank designed by the SBR2 coder (or the window method) has poor compaction gain and 

coding gain performances for thi s type of signal, as shown in Fig. 6.13(a) . 
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Figure 6.13: Frequency responses of a (a) two-channel filter bank and (b) three-channel filter 

bank designed by the SBR2(Gc) coder when run with L = 100. These are for an ARMA(4) 

process with PSD as represented by the dashed (green) curve. 

Example 8: M = 8. The compression performances of eight-channel filter banks designed by 

the SBR2(NI ) coder and SBR2(Gc) coder have been compared for the ARMA(4) input process. 

In Fig. 6.14(a) and (b), the compaction gains and coding gains versus the number iterations are 

shown, respectively. Again we see that whilst the energy compaction properties of the 

algorithms are si milar for L> - 200, the coding gains attained by SBR2(Gc) coder are actually 

much greater than those of the SBR2(NI ) coder for all L. The frequency responses of the filters 

produced by the SBR2(Gc) coder is shown in Figs. 6.1S(a). We have also observed that the set 

of subband spectra have the spectral majori sation property (approximately); see Fig. 6.1S(b). 
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Figure 6.14: Comparison of the SBR2(GJ and SBR2(N,) coders for the PSD in Fig. 6.13 . 

(a) Compaction gain versus L for M = 8. (b) Coding gain versus L for M = 8. 

SBR2 Coder and the Window Method for an ARMA(2) Process 

In the third and final set of experiments, we considered an ARMA(2) process and compared the 

compaction gain and coding gain performances of two-channel filter banks; see Table 6.2. The 

coding gain achieved by the filter bank produced by the SBR2 coder for L = 4 (N, = 2) was 

3.74dB higher than that obtained by using the window method for N = 4 ; this is despite the fact 

that the first filter designed by the two algorithms attain virtually identical compaction gains. 
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Figure 6.15: (a) PSD of an ARMA(4) process and the magnitude-square of the filters produced 

by the SBR2(Gc) coder run with L = 400. (b) Approximately majorised spectra of the subband 

signals along with the input signal PSD. 

Algorithm / measure G
C011lP 

G 

Ideal values 2.00 10.2 

KLT 1.33 2.39 

Window method (N = 4) 1.92 2.61 

SBR2(G,) coder (L = 4) 1.92 6.17 

Table 6.2: Compaction and coding gain performances of two-channel filter banks designed 

using the KLT, window method and SBR2(GJ coder for an ARMA(2) process. 
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6.3 Concluding Remarks 

In this chapter, we have investigated the applicability of the SBR2 algorithm to multichannel 

data compression and, more extensively, optimal subband coding. The main result of this 

chapter is that the SBR2 algorithm can be applied as a very effective tool for optimal 

orthonormal subband coding. We have shown that the statistics of the demultiplexed signals 

have a special form for a wide-sense stationary input signal, which is implicitly exploited by 

prior-art design methods. This motivated an investigation into finding a means of adapting the 

algorithm for the purpose of subband coding. A data pre-processing stage to SBR2 has been 

designed which takes advantage of this special structure. The resultant algorithm, called the 

SBR2 coder, can produce 'near-optimal' M-channel paraunitary (perfect reconstruction) filter 

banks in a small number of iterations; the suboptimality of the algorithm diminishes as the 

number of steps increases. This algorithm is applicable to most types of input signal. 

The SBR2 coder has been shown to outperform the window method for the two-channel 

case and for a set of typically encountered signals. Part of this success is due to the fact that 

SBR2 has the flexibility to select the most appropriate filter coefficients in a small number of 

steps. This difference in performance increases dramatically as the number of data samples is 

reduced. The window method cannot be used on its own to produce a subband coder for the case 

where there are more than two subband channels. A technique for optimally constructing an M­

channel filter bank when given the first filter has been proposed in [48]. However, we have 

observed that having a better energy compaction filter does not in general guarantee better 

coding gains, as observed in [48]. 

In audio coding applications, filter banks are commonly used, usually requiring high 

orders. As discussed in chapters 1 and 3, there are many other applications where filter banks 

are being used. We believe the SBR2 coder will be valuable for such applications. The SBR2 

coder may be extended naturally for MIMO subband coding. This algorithm would improve the 

utilisation of available bandwidth. 



7 Conclusions 

7.1 Review 

To date, very little attention seems to have been devoted to polynomial matrix techniques 

equivalent to the eigenvalue decomposition (EVD) or singular value decomposition (SVD) for 

conventional matrices. In this thesis, a novel algorithm has been developed for the construction 

of paraunitary matrices for polynomial matrix diagonalisation. It is a natural generalisation of 

the EVD/SVD to polynomial matrices, and so could have as wide a range of applications for 

polynomial matrices as the EVD/SVD has for scalar matrices. The algorithm has been 

successfully applied to the problems of broadband signal subspace estimation and, in particular, 

optimal orthonormal subband coder design. 

7.1.1 Polynomial Matrix EVD 

The lack of numerical algorithms for estimating the signal subspace of broadband signals has 

been the motivation for the development of techniques for extending the EVD to polynomial 

matrices. We have developed a time-domain method that extends the classical Jacobi algorithm, 

which can compute the EVD, to the space-time domain, called the second order sequential best 

rotation (SBR2) algorithm. This approach is a good balance between simplicity and 

computational speed. The salient features of the algorithm are that it: 

• Designs a paraunitary (energy preserving) filter bank; 

• Is numerically stable with proven convergence; 

• Imposes strong decOlTelation and spectral majorisation, to a good approximation; 

• Compacts most of the total signal energy into the first channel, i.e., it performs energy 

compaction. 

The algorithm has been shown to provide a good estimate of the signal and nOise 

subspaces of convolutively mixed signals, which is useful in applications such as broadband 

noise reduction and data compression. The solution provided by the SBR2 algorithm for 

multichannel arbitrary data is analogous to an estimate of that provided by the PCFB for 

subband signals. A key assertion made in this thesis is that the problems of broadband subspace 

decomposition and subband coder design are related through the need for a polynomial matrix 

EVD (PEVD). 
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A frequency-domain (counterpaI1) technique has also been developed, known as the 

band wise algorithm. Variations on this algorithm have been proposed that vastly improve its 

performance. However, we have shown that frequency-domain algorithms have fundamental 

restrictions on performance, which are the same restrictions that typically limit the accuracy of 

spectral estimators. The SBR2 and bandwise algorithms have been shown to be superior to a 

stat-of-the-art algorithm for broadband signal subspace estimation proposed by Lambert in [38]. 

An objective function has been proposed for use with the SBR2 algorithm that 

significantly improves the diagonalisation and data compression performances of the algorithm. 

A covariance-domain version of both the band wise and SBR2 algorithms have been developed 

which apply a window to the sample covariances of the input data. The windowing alleviates 

the degenerateness of the sample covariance and so increases the strong decorrelation 

performance of the algorithms. 

It is expected that the applicability of the SBR2 algorithm to practical problems requiring 

off-line processing has been increased through improvements made in this thesis. 

Computationally, the cost of running SBR2 has been lowered by typically an order of 

magnitude. Although it is not quite fast enough for real time applications, there is much scope 

for fm1her enhancement. 

7.1.2 SBR2 Applied to Subband Coding 

The principal component filter bank (PCFB) is optimal, in the mean-square error sense, for both 

subband coding and energy compaction but its existence cannot be guaranteed for the practical 

case of FIR filters. However, suboptimal techniques do exist in the literature. One such 

approach, called the window method in [32], designs a FIR compaction filter, which can be used 

to construct a two-channel orthonormal filter bank. 

The relationship between suboptimal subband coder design techniques, such as the 

window method, and the SBR2 algorithm has been investigated. This revealed that the 

suboptimal methods implicitly exploit the special form of the covariance matrix for the 

demultiplexed signals that exists for a wide-sense stationary input signal. An adaptation of the 

SBR2 algorithm has been proposed that takes advantage of this fact to design multi-band 

orthonormal sub band coders. The resultant algorithm, called the SBR2 coder, can converge to a 

solution that yields a perfect reconstruction filter bank which is approximately optimal for 

subband coding in a small number of iterations; the suboptimality of the algorithm diminishes 

as the number of steps increases. 
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The SBR2 coder has been shown to outperform the window method for the two-channel 

case and for a set of benchmark problems. This success is due to the flexibility of SBR2 to 

select the most important filter coefficients first. By contrast, the window method works by 

parameterising a filter of fixed order. We have conjectured that the computation speed of a 

potential multichannel window method may, in general, be greater than that of the SBR2 coder. 

However, this is justifiable on the basis that an enhancement in coding efficiency is gained by 

using the SBR2 coder. 

7.2 Future Work 

A number of ideas to further enhance and apply the SBR2 algorithm are identified m the 

following. 

7.2.1 Extensions 

The SBR2 algorithm IS based on one of several possible approaches to diagonal ising a 

polynomial matrix. In principle, the basic concept of an elementary paraunitary matrix, as 

introduced in this thesis, could be used to generalise other, more sophisticated EVD or SVD 

algorithms for application to polynomial matrices. They could also be used to generate 

polynomial matrix versions of entirely different numerical procedures, such as the QR 

algorithm. The generalisation of the QR algorithm to polynomial matrices could lead to a more 

efficient decomposition and faster processing. 

The two implementations of the SBR2 algorithm described in this thesis, the classical and 

cyclic Jacobi algorithms, can be viewed as operating on the signals in a pairwise fashion. An 

alternative strategy is one that applies a sequence of delays such that the instantaneous cross­

correlations between most channels are maximised, then an SVD may be applied to the delayed 

signals. One avenue of future work is to explore computationally efficient implementations of 

this strategy. 

7.2.2 Applications 

In this thesis, we have demonstrated that the SBR2 algorithm can be used to design filter banks 

for efficient subband coding. However, its range of applicability is not confined to just this 

problem. Some possible routes of exploitation are given in the following. 

In section 4.2.2, we showed how the polynomial matrix SVD (PSVD) of a general 

polynomial matrix may be derived by carrying out the PEVD of the corresponding 
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parahermitian matrix to obtain the left hand polynomial singular vectors. In this way, the SBR2 

algorithm can be used to compute the PSVD of the convolutive mixing process inherent in a 

multi-input multi-output (MIMO) communication channel. This has been used successfully to 

design orthogonal space-time channels for optimal data transmission over MIMO channels, i.e., 

broadband eigen-beamforming (precoding) for MIMO channels. This allows the transmitted 

beam pattern and the receiver directional sensitivity to be steered. 

A related application of the SBR2 algorithm to that described above is its use for the 

design of oversampled filter banks for coding of channels corrupted by correlated noise [4 1,85]. 

This was achieved by identification of and transmission over the low-noise broadband subspace 

through exploiting the redundancy offered by oversampled filter banks, thus permitting the 

detection and correction of channel errors. 

The SBR2 algorithm is a highly generic numerical technique for multichannel data. It is 

envisaged that it can be extended naturally for application to the problem of multichannel 

subband coding, that IS, to jointly encode multiple input signal. In the context of digital 

communications using sensor arrays and NEe (network enabled capability), multichannel 

sub band coding could be invaluable and should be investigated. 

There are a number of possible applications which arise from the idea of using the SBR2 

algorithm to estimate signal and interference subspaces based on a strong disparity between the 

signal and interference power spectra. In [55], the SBR2 algorithm was used as a power-based 

blind signal separation (BSS) algorithm for robust broadband adaptive beamforming. A priori 

knowledge, which was in the form of an estimated steering vector and the difference in the 

powers of the signals, was exploited to achieve signal separation. In [39], the SBR2 algorithm 

was extended using quaternion arithmetic for the purpose of performing second order BSS of 

polarised signals from a 3-axis seismic sensor array. 

In the context of broadband adaptive beamforming, power-based BSS can be applied to 

the problems of acoustic interference suppression in multistatic active sonar. This would involve 

the estimation of the angle-of-arrival and range of a weak desired signal and the suppression of 

the effects of strong acoustic interference signals and multi path (reverberation). The same 

philosophy can be adopted for the purpose of mitigating radar clutter for phased array radar. The 

SBR2 algorithm may offer two advantages over conventional space-time adaptive processing 

(ST AP) techniques: it is inherently robust to array calibration errors, since it does not rely on 

prior information about the array geometry; and it does not require training data to successfully 

detect difficult targets. 
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The SBR2 algorithm is particularly effective at producing a compact representation of 

some aspect of the environment, be it reverberation, e.g. underwater acoustics; radar clutter; or 

communication channels. It might therefore be a useful tool for detecting changes in an 

environment. This, in turn, could have potential application to intruder detection, for example 

harbour security. 

Subband coding has been considered as the main deployment area for PEVD algorithms 

in this thesis. However, the above applications, which are paltly hypothetical and partly already 

implemented with considerable impact, provide a glimpse of the capabilities of the introduced 

polynomial matrix decompositions and may likely be as wide-ranging for broadband scenarios 

as the SVD and EVD algorithms are for narrowband problems. 



8 Appendices 

8.1 Concise Statement of the SBR2 Algorithm 

Begin 

Step J: Input M xM parahermitian matrix R(z) as defined in (5.1). 

Step 2: Find (j,k, t) with j 7:- k and t;::: 0 such that hk (t)1 ;::: lrim (r)1 for any coefficient 'illl (r) 

in R(z) with I 7:- m and r;::: O. 

Step 3: Generate the transformed polynomial matrix R'(z) A (kl) (z)R(z}A (kJ) (z) using the 

transformation defined in (5.6). This leads to a polynomial matrix with entries of the form 

'i~, (z) = lim (z) \:f1,mE{J,2"'M}\{k}; 'i~(Z)=Z''ik(Z) \:fIE {1,2···M}\{k} 

\:fkE{l,2···M}. 

Step 4: Define rp arg(r;k (0», c = cos () and s sin () where () is the smaller of the two angles 

gIven by 
r~ (0) - irk (0) 

cot 2() = .. . Generate the transformed polynomial matrix 
2!r;k (0)1 

R"(z) = Qljk) «(),rp)R'(Z)QUk)H «(),rp) using the rotation matrix defined in (5.8). This leads to a 

polynomial matrix with elements given by 

(z) \:fIE{l,2···M}\{j,k}; 

r~(z) 

(z) = (z) (z) + (z) + se idJ CI[k (z) ; and 
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( 
2 z) - s e (z) + se 

Step 5: Set R(z) = R"(z) to define the input for the next iteration. 

Repeat steps 2 to 5 until the maximum value for the modulus of any off-diagonal coefficient of 

the polynomial matrix is sufficiently small. 

End. 

8.2 Necessary and Sufficient Conditions for Optimality 

In subband coding theory it is well known that strong decorrelation and spectral majorisation of 

the subband signals are necessary and sufficient for optimality (the maximisation of the coding 

gain) [74]. By simple generalisations of proofs given in [74], we aim to show that strong 

decOITelation and spectral majorisation of WSS broadband signals are necessary and sufficient 

conditions for optimality in the sense of maximising the Gm • 

Theorem 8.1. Strong decorrelation is necessary. 

Proof. It is sufficient to show that compression can be improved in the two-channel case 

because this transformation could then be applied to any two channels that are not strongly 

decOITelated. Suppose the pair of channels, say XI (z) and X 2 (z) are not orthogonalised. Then 

E[ LJI (t) Y2 (t + T)] :;t: 0 for some T. By applying a time delay, z -[ , to one of the channels we 

can assume T = O. It will be shown how the compression gain can be increased without 

violating the paraunitary condition. Suppose a unitary matrix E> is used to transform the pair 

[Xl (z), X 2 (z)] into a decorrelated pair [YI (z), Y2 (z)]. This can be done by choosing e to be a 

matrix composed of the orthogonal eigenvectors of the l' 0 element of the space-time 

covariance matrix A( 1'). It can be concluded that the compression gain has increased if it is 

shown that the product of the channel variances has been reduced, i.e. a110ano > cllOCno . Let 

C(z) be the covariance matrix of the vector tez) [Yj (z), Y2 (z) r , then 

C(z) 0A(z)0. (8. I) 

Notice that the diagonal elements of A(z) and C(z) are the quantities a HO and CkkO . Now, 

note: 

(8.2) 
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where det[·] denotes the determinant of a matrix. The first equality follows because e(z) is 

diagonal since the signal pair [YI (z), Y2 (z)] are decorrelated. The second equality follows from 

the unitarity of 8. Therefore, for this transformation, the compression gain 

(8.3) 

Q.E.D. 

Strong decon-elation, while necessary, is not sufficient for the maximisation of Gill' A filter 

bank is optimal if the product of the output channel variances ~ 

Theorem 8.2. To minimise ~ it is necessary that the eigenvalues of the parahermitian matrix be 

ordered in the same fashion for all frequencies aJ, i.e., the set of output signals has the spectral 

majorisation property. 

Proof. Assuming that the majorisation property is not satisfied, it will be shown how the data 

can be compressed without violating the paraunitary condition. Again, since a transformation 

could be applied to any channel-pair that is not spectrally majorised, it is sufficient to show that 

compression can be improved in the two-channel case. Suppose All (e
jW

) ;:::: A22 (e jw
) is not valid 

for all OJ, even though a llO ;:::: 

permutation matrix T(ej{O) is applied to the channels. The matrix T(ej(O) is chosen as 

(804) 

The new pair of power spectra CII(e Jw
) and C22 (e jW

) will then satisfy the propeliy 

A22 (e j {O);:::: C22 (e JW ). Thus, the variances of the new signals YI (z) and Y2(Z) are such that 

. Since T(ej{U) is paraunitary by construction, the filter bank remains 

paraunitary, and the sum of the variances is preserved, i.e. CliO + eno = a llO + anD' Thus 

(8.5) 

equation implies c11oc220 < a 11OCl 220 ; therefore, the compression gain is positive. Q.E.D. 
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Though strong decorrelation and spectral majorisation are necessary for optimality 

(maximisation of the compression gain), neither is individually sufficient. 

Theorem 8.3. The compression gain is maximised iff the output data channels simultaneously 

satisfy strong decorrelation and spectral majorisation. 

Proof. In view of the theorems set out in the first two paragraphs of this section, it only remains 

to prove that strong decorrelation and spectral majorisation together imply optimality. If a 

unitary matrix H( eJO
) performs strong decorrelation then 

(8.6) 

where A(ei{U) and C(e ilU ) are the input and output sample data covariance matrices, 

respectively, and Ckk (e
ilU ) is the ell output channel power spectrum (or eigenvalue of C(e ilU » 

for some frequency (J). Suppose the majorisation property holds. This means that for every (J)the 

eigenvalues are ordered as in (4.14). Since the set of eigenvalues is unique, each diagonal 

element in (8.6) is uniquely determined for each (J). Since majorisation and strong decOiTelation 

are necessary for optimality and since there is only one set of majorised decorrelated channel 

power spectra, it follows that majorisation together with decOiTelation leads to optimality. 

Q.E.D. 
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