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Abstract

High Level Synthesis (HLS) is used to aid the implementation of a design into
hardware. HLS achieves this by testing lots of different design architectures with
metrics e.g. delay, power, area, etc. to guide decision-making. Hence the metrics need
to be obtained quickly while maintaining a high degree of accuracy. The estimators are
fundamental to the acceptance of HLS as a design methodology. By enhancing the
understanding of how a design will be implemented in hardware, the accuracy of the
estimators can be improved. Using the knowledge of the hardware implementation, an a
priori estimate of the routing layout of a design can be established and then used to
improve the accuracy of the pre-existing estimators, which will in turn give a better
representation and improve decision making. A HLS system is presented called
MOODS (Multiple Objective Optimisation in Data and control path Synthesis), which
has been developed by Southampton University and LME Design Automation Ltd. In
order to improve the level of estimation of the behaviour of design at the physical level,
i.e. after the design has been implemented in hardware, interconnect predictors will be
introduced into MOODS. Circuit partitioning will form the foundations of all
interconnect predictors by forming a relative placement. This relative placement can
then be used to estimate the average interconnect length of a circuit and quickly obtain
a floorplan. This thesis shows that the average interconnect delay of a design on FPGA
correlates to a high degree with average interconnect length predicted by MOODS, and
when used to guide optimisation design optimality improves significantly. It is also
shown that when an APR tool is given hierarchical information obtained during circuit
partitioning to guide placement and routing of an FPGA, the overall design optimality
in terms of area and delay is improved. The floorplan can then be used to find
individual Wire Lengths, as the approximate position of every module on the chip will
now be known. These individual Wire Lengths will then be shown to be highly
desirable when deciding on whether to perform certain transformations to the design
architecture, during optimisation. Finally the future development of interconnect

predictors with their applications will be shown.
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Chapter 1 Introduction

1.1 Problem Realisation

Designs that are now implemented on a chip are composed of millions of logic elements
or memory cells. This produces a mammoth task when designing a circuit that will
perform a function, as the design considerations are so large, i.e. how all the components
of the chip interact to produce an optimal design in terms of metrics (Definition 1) such
as the size of the chip needed to implement the design, the Clock Period (Definition 2),
etc. A list of useful definitions can be found in Appendix 1. The larger the number of
components that are needed to realise a design, the more possible combinations of
components a design architecture can have, which dramatically increases the complexity
of the design process, this in turn dramatically increases the time taken to design an
architecture that carries out the desired functionality satisfying all the designer’s
requirements for the proposed design. Hence a method is needed to handle large designs
and speed up the design process. One approach is to raise the level of abstraction of the

starting point and to use automatic behavioural synthesis tools.

Definitions:

(1) Metrics — A Metric is a value (technology specific) that represents a physical
property, which can then be used to compare with their respective design constraint. Le.
the metric for the size of a Xilinx Virtex chip (FPGA) would be the number of slices
needed for all the components that are needed for the design to be implemented on the
FPGA. The constraint would then be the number of slices available on a particular
Vertex chip.

(2) Clock Period (CP) - The Clock Period is the minimal period of the clock
wavelength, which has to be greater than the delay of the critical path. If the clock period

is less than the critical path the functionality of the design is destroyed.

When optimising the design before the design has been implemented on the targeted
architecture, estimates of the design’s physical characteristics when implemented in
hardware need to be made. These estimates are then used to guide optimisation so that a
design obtained through optimisation satisfies the design’s objectives. A more accurate

estimation of the physical characteristics means a better decision can be made as to
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which design architecture should be chosen during optimisation. This leads on to the
timing closure problem, which is the motivation for this thesis. Timing closure is the
process of reducing the number of times a design is run between the optimisation stage
and the implementation of a design on hardware. Timing closure can become a problem
when a design is implemented on its desired platform and does not meet the designer’s
objectives. The design architecture will then have to be re-optimised or re-designed,
being careful that the design is changed so that the properties of the design satisfy the
constraints that caused the failure in the first place. But when trying to satisfy the
constraint that caused the failure of the design objective, a different constraint might be
unsatisfied, meaning the design has to be re-run in order to satisfy the last constraint
failure. Or when optimising the design in order to pass the first failed constraint it does
not accurately depict the design once implemented on the desired platform, so the

design might fail the same constraint again.

3 Design Conception, Create an
Proli&m Comiplio D Algorithm to Solve the Probkm

Prod Optimal Desig Targeted Architecture
Hardw are/Software/Co-Design Topuse.an Upima e R, (Hardware/Software/Co-Design)
Implemetation Reptnding on o Desiga's Depending on Application
Requirements

Requirements

Does it meet
the Designs
Objectives

Produce the pcsngn for the Market Place
Prospective Market

Figure 1: Design Process for a Product to Enter the Market Place

In order to produce timing closure, hence reduce the number of times the design has to
re-enter the design optimising stage, an accurate estimation of all the design properties
that affect a design once implemented on the desired platform can be applied to the

optimisation stage. If the design properties are accurate enough, problems can be
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foreseen later on in the design cycle (not meeting design objective) and measures taken
to solve problems before the design has been implemented on the desired platform. The
design will then satisfy the design objectives without having to enter a costly loop,

which can cost time, and time is money.

There are two ways of increasing the accuracy of the estimates of a design’s physical
characteristics once implemented in hardware. Firstly pre-existing characteristics can
be improved by considering individual design architectures and then accurately
characterising them into a library, so designs can use characteristics of pre-existing
similar designs in the library as estimates. Secondly extra metrics can be added to
further understand the behaviour of a design implemented in hardware. Both these
methods are employed in this thesis, but the latter is the underlying principle.
Interconnect Prediction will be used to further estimate the accuracy of how a design
will perform once implemented in hardware. Interconnect prediction on a chip heavily
influences the CP, hence the overall delay (Number of CPs * CP) of a circuit, hence the
main focus of using interconnect prediction during optimisation is to reduce the
detrimental effect that timing properties can have on a circuit. But first the platform on
which interconnect prediction will be used to aid the optimisation of the delay of a

design will be discussed.

1.1.1 Role of High Level Synthesis

Computer Aided Design (CAD) tools are used to reduce the complexity of VLSI
design, by automating steps in the design process. This should make steps in the design
process easier for a user to implement and be free from errors (in terms of what the step
produces). Another benefit is that the solution should be guaranteed optimal while also
reducing the time to complete the step. If a design were implemented in hardware and
every minute detail was carried out by the designer, the process would be very time
consuming and expensive. So CAD tools are developed to aid a designer. There are
three general areas of CAD:

1. Verification

2. Synthesis

3. Design Management

Verification is the process whereby once a design is implemented in Hardware the
implementation is tested to see whether it satisfies the design objectives set by the

designer. Design Management is the overseeing of the design process, ensuring that



10
research, theory validation, limiting factors (such as cost, yield, etc.), time to market are
satisfactorily managed. In this thesis only optimising a design depending on a
designer’s objective shall be considered. There are various ways that a design can be
optimised with many different considerations. In our case we shall presume the
design’s functionality remains the same, only different design architectures that carry
out the same task shall be considered in the process of optimising a design. This
process of deriving the (optimised) design circuit architecture from design
specifications is called Synthesis. Synthesis can be broken down into different levels of
abstraction. When the synthesis is at a stage when the higher level is a behavioural
description and the lower level is a structural description, the synthesis process from
higher level to the lower level is known as High Level Synthesis (HLS). HLS uses an
objective function, with design constraints such as area, delay, etc. to produce an
optimal design with respect to the design constraints. HLS takes the behavioural
description and characterises it in terms of estimated physical characteristics of a
design, as implemented in hardware. These estimates known as metrics are then used in
the objective function, which is then minimised according to design constraints (such as
CP, designated chip area, etc.) The objective function is minimised with respect to the
design constraints, by altering the design structure, while keeping the original
functionality of the design. The architecture of the design can change many times;

hence the estimates need to be obtained very quickly while remaining accurate.

With the current rate of progress in technology, designs need to be in the market place
as soon as possible or competitors will realise their version of the design first. Hence a
methodology is needed that produces an optimum design satisfying a designer’s
demands, but in as short amount of time as possible. High level Synthesis (HLS) is such
a methodology; it is used to aid the implementation of a design into hardware. HLS
achieves this by testing lots of different design architectures which all carry out the
same task. The different architectures are compared using metrics, e.g. delay, power,
area, etc. to guide decision-making. Hence the metrics need to be obtained quickly
while maintaining a high degree of accuracy. This high accuracy allows intelligent
decisions concerning the design’s architecture to be made that in turn increase the
quality of the eventual design. The estimators are fundamental to the acceptance of
HLS as a design methodology. Multiple Objective Optimisation in Datapath Synthesis
(MOODS) is a HLS tool [20], developed in the Electronic Systems Design Group

(ESDQ) at the University of Southampton. This tool will form the foundations for the
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work covered in this thesis. Once the HLS tool has converted the behavioural
description of a design into an optimised structural description of the design, this
description then needs to be implemented on a chip. The process of implementing a
design on a chip is called Physical Synthesis, when both the higher and lower levels are

structural representations.

1.1.2 Automated Placement and Routing

Another CAD tool is used for the implementation of a design onto hardware. The tool
that converts a design from a circuit netlist to a description of a design that can be
implemented on a chip is called Automated Placement and Routing (APR) tool. This
tool does not alter the netlist of a design, but decides on where all the elements that
make up the hardware get placed on the chip, as the name would suggest. Placing
(assigning cells to locations on a chip) and Routing (assigning nets in the netlist to
tracks in the routing channels on the chip) a chip takes a long time to complete, with the
majority of the time spent routing as it is the most complex task. This is why it is
important to minimise the number of times the APR tool is visited. Ideally the APR tool
should only be visited once through a correct characterisation of the design during

HLS, hence producing timing closure (Definition 3).
Definition:

(3) Timing Closure — Timing closure is the problem where multiple design iterations
are caused due to unrealistic design representations, increasing the time to develop a

product.

1.1.3 Producing Timing Closure with HLS

A HLS tool can also be used to tackle the problem of timing closure by enumerating all
the physical properties accurately early in the design cycle (in order to satisfy design
constraints before the costly (in time) process of implementing a design in hardware). If
the design’s physical properties once implemented in hardware are accurately depicted
in HLS, the design objective should be fulfilled when implemented in hardware,
without the need to re-synthesise a design due to failing the design objective. For
example the HLS tool passes on a design to the APR tool, but if when processed the
design’s clock period is too large then the design re-enters the HLS tool, with a
condition that the clock period needs to be reduced. To reduce the clock period the area

is increased, but once the design has been processed the design is found to be too large
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for the chip. Hence another iteration of the design loop needs to be undertaken, and by

removing these multiple iterations the timing closure problem will be solved.

There are two strategies for producing timing closure through increasing the accuracy
of estimating the physical characteristics of a design once implemented in hardware.
The first strategy is when a design is run from HLS then run through the APR tool, and
then the physical characteristics of the design (area, delay, etc.) can be passed back to
the HLS tool. The HLS tool can then be re-run with accurate physical characteristics of
the design in hardware. The synthesised design is then passed back to the APR tool and
re-run. If the new design architecture still fails to meet the design objectives then the
process is repeated and the design is passed back to the HLS tool, where the process
repeats until the design objectives are met or the design cannot be optimised anymore.
The problem with this methodology is that even though the accuracy of the metrics
used during synthesis would be very high, every time the design is passed back to HLS,
the new physical characteristics can become redundant very quickly once the design
architecture has been altered. A slight change in the design architecture during
synthesis can lead to a dramatic change in the hardware implementation. To combat
this change in the architecture, the APR tool could be run after small changes to the
design architecture during HL.S. But this would be extremely slow as an APR tool
performs a very complex task. Due to the complexity, the APR tool takes a long time to
complete placement and routing. Hence the slowness of running the APR tool
frequently goes against the underlying principle that HL.S compares many different
design architectures so that it can extensively search the design space, while still
remaining feasible in run time. Visiting the APR tool many times negates the objective
of using Physical Estimation to improve design optimality, while producing timing
closure. The next section will introduce those properties of a physical implementation
that will be estimated with the intention to satisfy the design objective. The second
methodology is to use highly accurate estimates of the physical characteristics of a
design if placed on hardware, while also being quick to quantify. This is where
interconnect prediction will be used as the routing characteristics of a design heavily
influence the delay of a circuit and can also affect the area of a chip. So by taking the
interconnect characteristics into account, augmentations of the design architecture
during HLS can be accurately evaluated by how the changes in design architecture will

affect the delay of a chip once placed on hardware.
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1.2 Representation of a Design

When creating a design in hardware there are several possible levels of description,
which include:
* Behavioural Level, this is the highest level of abstraction, similar to C
programming, as it does not describe the hardware implementation.
e Register Transfer Level (RTL), concentrates on design at the register level.
¢ Gate Level, this describes the gates, flip-flops and their interconnections.
e Switch Level, this is the most detailed where the layout of all the wires,

transistors and resistors on an Integrated Circuit are described.

The two levels that are used and produced by HLS are the Behavioural Level and the
RTL ILevel. A language needs to be used that describes both these levels so that
optimisation can be performed. The description needs to model the eventual hardware
that would be produced if the design were implemented on a chip. This model of the
hardware can then be simulated, allowing design faults to be identified and corrected
before the design is implemented in hardware. Hence Hardware Description Languages
(HDLs) have been produced. HDLs can be used to describe the behavioural level and
the RTL and the more detailed the description that is used is dependent on the design’s

designated chip.

Behavioural HDL (BHDL) does not consider the structure of a design, as implied by
the name. This means the functions that are performed in a design are not considered in
terms of delay or area, only that the tasks are carried out in the design are undertaken in
the correct order so as to make the design functionally correct. As deiay of functions is
not considered, the CP of a design is not used, which is essential beyond the

behavioural stage.

Register Transfer Level (RTL) uses black boxes to represent functions in a design.
These black boxes are then used within the optimisation process of the HLS tool, as
they contain all the physical estimates of the functional units (when implemented on a
chip) needed for a design to be successfully optimised. During optimisation different
architectures are formed which all represent the same design, the estimates of area,
delay, etc. are then used to decide whether one architecture will lead to a higher

reduction in the cost function (Definition 4) compared to another design architecture.
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Definitions:
(4) Cost Function — A cost function (also known as an objective function) represents
all the design criteria on which the optimisation process will base its decisions.
(5) Critical Path — The Critical Path is the largest Register to Register delay of a
circuit.
(6) Signals Nets / Nets - Signal Nets are signal nets are defined as sets of points that

are to be electrically connected together.

These black boxes contain all the information needed to represent the structure of a
design. In this thesis these black boxes will be called Macros. A Macro is a collection
of pre-characterised logic functions that perform a particular task such as addition. The
values in the black boxes are area of a functional unit, delay to carry out the function,
power consumption. At the RTL stage these values are estimates of the actual values
that would be found at the physical level. The clock period is now considered so as to
ensure the design is legal. By legal we mean the critical path (Definition 5) is smaller
then the desired CP. At the behavioural level there is high level of abstraction from the
eventual hardware implementation, which allows more flexibility in the design. Hence
estimation of a design’s performarnce is achieved faster than if a design is implemented

in hardware and its physical properties such as area and CP are recorded.

1.3 Design Flow from Software Representation to Hardware

Implementation

Figure 2 shows the design process from a design’s conception to its implementation in
hardware. The first step of the software to hardware refinement process is to write the
proposed design in behavioural VHDL. To verify that the design has been correctly
written according to its functionality, the design needs to be compiled and simulated in
an HDL simulator. The HDL Simulator uses a testbench to simulate a design written in
HDL, to test whether a design works prior to physical implementation. A testbench is
written to provide stimuli for simulation. These signals are input (Definition 6) signals

that will be found in the final physical implementation.

These signals can represent values that are bit vectors, integers, hexadecimal, etc. When
input into the HDL simulator, the design will simulate the actual working of the design
as if those same inputs were applied to the final physical implementation of the design.

But only timing issues are considered, no physical considerations such as cross talk are
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modelled. When the design is simulated observation of all the signal values that are
produced (as if the design was running in hardware) can be undertaken. Obviously prior
(correct) knowledge of how the design is meant to behave is needed. If the behaviour of
the design simulation matches the desired behaviour, then the design is deemed to be
functionally correct. If the design does not simulate correctly the design is altered to
carry out its task correctly. Once the correct behaviour is achieved the design is loaded
into MOODS. MOODS synthesises the Behavioural VHDL (at this level there does no
need for the consideration of the clock or registers within the code), where the synthesis
process converts the Behavioural VHDL to RTL VHDL. The RTL VHDL is an
optimised structural description of the Design that was input into MOODS. This
optimisation is dependent on design objectives set by the user/designer. This

conversion will be discussed in much greater detail in section 2.7.

A low-level synthesis program is used to convert the VHDL of the design optimised in
MQOODS into Electronic Design Interchange Format (EDIF). An EDIF file contains the
netlist of the design, which shows what components are used and the topological
layout. During the conversion from RTL VHDL to EDIF, the design is further
optimised at the Gate Level without changing the functionality of the netlist. The
optimisation process can remove redundant logic decides the most optimal mapping in

terms of criterion such as area, delay, etc.

The EDIF then can be transferred to an Automated Placement and Routing (APR) tool.
This starts with the netlist contained in the EDIF file and then places the components
which are needed for the design on a chip and routes the design together. This final
stage is at the Physical Level, where the circuit is designed with the components that

would be used in the actual manufacturing of the circuit.
1.4 High level synthesis with Interconnect Prediction

As stated earlier, when design exploration is performed during HLS, metrics are used in
order to decide which design architectures are more optimal than others (depending on
the priorities chosen by the designer). The more comprehensive the information
provided by these metrics, the better the final design architecture will be. Using
information both from a High (Abstract) Level and Physical Level perspective,
decisions can be made at a higher level where the most design flexibility exists, but

with the knowledge of the decision’s consequences at the physical level [2]. Figure 2
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shows in a more detail when timing closure is performed; the dashed line represents the
loop, which occurs if the implementation of a design does not meet certain conditions,
and hence needs to be re-optimised (to enable the design to be implemented in

hardware).
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When using HDL Simulator
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v

Figure 2. Design Process from a Design Represented in Software to a Design

Implemented in Hardware

In this thesis only delay (including interconnect prediction) and area will be considered
when optimising a design. At the moment MOODS, when minimising the objective
function of a design, does not use any interconnect properties as a constraint in order to
minimise the CP (total delay) of a circuit. This causes a discrepancy between what
MOODS thinks is an optimal design architecture in terms of delay and area, but really
is sub-optimal through a poor routing layout, which can in turn increase the CP if nets

on the critical path are elongated through not being able to find an optimal path. The
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delay caused by interconnects between gates in ASICs is becoming an important factor,
as the delay caused by gates is decreasing. But in this thesis the main focus will be on
interconnect prediction for FPGAs. To allow for a range of different designs to be
implemented on an FPGA, the interconnect resources dominate the area and delay of an
FPGA, making interconnect a greater influence when choosing a design architecture,

and that is why in this thesis the target chip for the design will be an FPGA.

1.5 Interconnect Properties

To allow MOODS to measure tradeoffs between alternative design architectures, some
way of predicting the Physical Properties of a design prior to hardware implementation
is needed. Finding the exact physical properties of a design would be too time
consuming, so estimated metrics are used in MOODS that represent the predicted
physical properties of a design implemented in hardware. Interconnect properties will
be estimated and made accessible for MOODS to use within optimisation (in the Cost
Function (Definition 8 section 7.1)), where area and delay of functional units are
already characterised). There are two types of interconnect prediction that will be used.
The first type of interconnect prediction will be the Average Interconnect Length (AIL),
which will be used to give an estimate of the level of congestion. If a design has a
possible architecture that has a higher AIL than an alternative architecture for the same
design, this signifies that the second architecture’s nets will generally take up less
routing resources of the targeted chip. This means that the nets have more chance to
attain optimal paths, hence reducing the delay of the nets. If interconnect prediction can
be performed accurately then designs that produce optimal routing plans (Definition 7)

should be chosen, this will then reduce the CP.

Definition:

(7) Routing Plan — Routing plan is the layout of the routing on a chip.

The reason for CP reduction is that if routing plans are optimal, then interconnects
between macros should be optimal; hence the delay between macros will be optimal
which should reduce the CP if the macros being considered lie on the critical path. The
next factor to consider is how long nets are between macros; hence knowledge of the
approximate location of the macros is needed during HLS. This approximation of the
final placement of the macros in hardware will be known as a Floorplan. The floorplan

will provide the approximate distances that macros lie from each other. This will allow
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greater accuracy on how the structural changes to a design will affect the interconnect
layout of the final physical implementation. For example the longer interconnects are
between macros, the larger the delay, hence the larger the detrimental effect on the

design, especially if these macros lie on the critical path.

1.6 Structure of Thesis

In this chapter the focus has been on what type of physical information is required and
why the information is desirable to be included in MOODS to aid design exploration
during the optimisation loop. Chapters 2, 3, 4 will show how this physical information
will be obtained prior to the design entering the APR stage and in what way the
information can be applied. Chapter 2 will discuss circuit partitioning in detail, which
will form the foundations of all the physical estimates. An estimate of the interconnect
complexity using only hierarchical information obtained from circuit partitioning will
be pursued in chapter 3. This estimate will then be used in MOODS cost function, so as
to influence decision-making during HLS. Also the hierarchical information will be
shown to improve a design’s optimality in terms of area and delay when used to guide
place and routing within an APR tool. To obtain more in-depth information, a floorplan
will be constructed. This floorplan will be used to only gain knowledge of the rough
proximity all the shapes are to each other. This new information will then be made
available to MOODS as discussed in chapter 4. The Heuristic will base transformation
decisions on a design’s architecture depending on where they are placed on the circuit
and what the circuit conditions are. Results presented in chapters 3 and 4 will prove that
Physical Level estimation is a viable resource in HLS. Chapter 5 will discuss what
enhancements could be made and what future developments concerning MOODS are
possible using physical estimates to improve the final design architecture after design

exploration,



Chapter 2 Literature Survey

2.1 High Level Synthesis

As explained in chapter 1, a process in which a representation goes from behavioural
level to structural level is called High Level Synthesis (HLS). A HLS CAD tool is used to
provide an optimal RTL representation in a relatively short amount of time satisfying the
designer’s requirements. A CAD tool is used in order to automate processes that are
carried repeatedly; if a process was just carried out once there would be no point in
automating it. Once a process is automated it frees up time that can be spent carrying

other tasks. Automation also reduces the risk of human error.

Before a design is synthesised in a HLS tool, first a design language needs to be used to
describe the function. This description can then be used to model the hardware. Faults in
the design can then be identified and corrected before synthesis has even been started.
Behavioural VHDL (B VHDL) is used to describe the design as if it were implemented in
hardware, but in an abstract manner. The description is abstract as it only contains the
functionality without any timing specifications, allowing the user to concentrate on the
algorithms contained in the design rather than any timing issues. When the HLS tool
receives a functionally correct design described in BVHDL, the HLS tool transforms the
description into a format for efficient optimisation. This format is known as a data
structure and it is designed so that information is easily available, easily alterable and
requires minimal memory requirements and computational power. All these factors
(except for minimal memory requirements) reduce the period of time that the HLS tool
takes to complete its task, as the same data structure is used throughout optimisation. The
data structure within the HLS tool is now at the structural level, as it includes structural
(include area, delay, power, etc.) information about the target components obtained from
libraries. These library components can be thought of as black boxes that can be used to
represent functional units in a design such as Registers, ALUs, and MUXes. From this
point we shall refer to these black boxes as Macros. As defined in Chapter 1, a Macro is a
collection of pre-characterised logic functions that perform a particular task such as
addition. The metrics (delay, power, area, etc.) values are all estimates of what the actual
values would be if the respective macro was implemented within a design on a chip.

These values need to be estimated, as other than actually physically implementing a
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design there is no way of knowing the actual design metrics for all possible
configurations that a large set of macros can take within the design space. The more
accurate the metrics used for HLS, the more likely the design will meet its objectives,
whether in terms of meeting a clock period or fitting on a chip. This leads onto the next
question, why cannot the design simply be implemented in hardware and find out the real
values, then augment the design accordingly to meet the designs objectives? This is where

timing closure shall be discussed, but first an outline of HLLS must be completed.

The data structure is augmented through the design space. Design space means all
possible structural configurations that a design can take while remaining legal i.e.
structures that do not change the functionality of the design. This can be done through a
random process (randomly picking different design architectures, while remaining
functionally correct) or through an intelligent process (using knowledge of the optimality
of previous designs to guide the optimisation of future designs). For every design
synthesised within a HLS tool, exploration of the entire design space could be pursued,
but would take a long time when designs are very large. For HLS to produce an optimal
design an Objective Function is used. The objective function within a HLS is used to
compare design criteria such as delay and area of different architectures. This objective
function is then minimised to find the most optimal design, i.e. the design architecture
that minimises the objective function will be the most optimal design, and this design will

then be passed onto the APR tool.

Some formal definitions follow:

Given a function f: A— R from some set A to the real numbers (R). This function
becomes a cost function (also known as an objective function) when the following
property is sought: an element xp in A, such that f(xy) < f{x) for all x in A (minimisation)
or such that f{xg) > f{x) for all x in A (maximisation). The challenge of finding the
minimum/maximum of a cost function is called an Optimisation Problem. The domain A
of f is called the search space, while the elements of A are called feasible solutions or

candidate solutions.

So to explore the design (search) space, algorithms are used that find global or local
minima. A local minimum is a point where the objective function takes on its smallest
value among all points in the immediate vicinity. Global and local minima are shown in

Figure 3.
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Figure 3. Graph to Show the Local and Global Minima of an Objective Function f

Optimisation algorithms that attempt to find the global minimum during HLS in MOODS
will be discussed in section 2.7.3. The depth of their search for the global minimum
greatly depends on the time given in order to search the design space. Once an optimal
design has been found, the final step in HLS is to convert the data structure into RTL
VHDL, which can then be passed on to an APR tool. This conversion process is out of the

scope of this thesis but details can be found in [20].

2.2 Automated Placement and Routing (APR)

The optimisation constraints for routing on an FPGA are used to minimise interconnect
lengths. These constraints depend on two major factors, which are Routing Demand on
the routing channels (Definition 8), which is how many routes wish to be placed within

the routing channel.
Definition:

(8) Routing Channel - The routing channel runs between the cells on a chip and this is

where nets are placed.

The other factor is routing supply, which is how many routes can be placed on tracks
within the routing channel. The higher the routing demand on a routing channel, the more
likely that the routing channel will become full, which can force some paths to be placed
In alternative routing channels making the path non-optimal. This sub-optimality will then
increase the net length; hence increase delay between cells on the FPGAS that are

connected by the nets having to find sub-optimal paths. Hence the APR tool will try to
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minimise the demand on each routing channel while decreasing the distance between cells

on the layout.

2.3 Timing Closure Problem

Figure 4 gives an overview of the design flow from design conception right through to
physical implementation. A problem occurs when a design fails its design objectives. After
being placed and routed in the APR tool, there are two options available to the designer.
Firstly a designer may wish to tweak the design depending on their competency, and how
close the design is to meeting its objectives. Secondly the designer may go back to the HL.S
tool and repeat the synthesis step, but this time with different constraints in order to meet

the design’s objective, post APR.

Design
Conception
v i
~
<7 HLS [ -
/ e (]
\ Does the Design meet /
\\ APR it's Objectives?
\

Physical
Implementation

Figure 4. An Overview of the Design Flow from Design Conception to Physical

Implementation

The second option is a very time consuming loop, especially if it is repeated many times.
This is where reducing the number of loops can produce timing closure. Timing closure is
the motivation for this thesis, as by providing a more highly optimal design through
increasing the accuracy of the estimation of the physical characterisation of a design,
there is less chance that the design will fail to meet the design objectives when
implemented in hardware. An increase in the level of characterisation of a design
(Interconnect Prediction), allows the HLS tool when optimising the design, all possible

problems (with respect to area and delay) can be realised, and thus the problems can then
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be avoided. Figure 4 shows the opportunity where timing closure can be performed.
Closure can be obtained by reducing the number of times a design has to be passed back
to HLS, due to the design failing one of its design objectives, such as it might be too big

for a chip, or it the critical path delay exceeds the desired CP.

The more accurate a design is depicted (in terms of its physical implementation) during
HLS, the more optimal the final design will be when placed on the chip. This will now be
shown in section 2.6 through some examples. But first the general architecture of an
FPGA will be described; as it is important to understand the platform on which the design
will be eventually placed (a detailed description will be given in Chapter 3). This is
important, as accurately depicting the properties of the architecture during HLS will

enable accurate optimisation.

2.4 General FPGA Architecture

Programmable Switch Boxes

| | | | | | | | | _(In[erconnectRowsand

Columns Meet)

Interconnect

Function =

Blocks |:|

Figure 5. General Architecture of an FPGA

An FPGA architecture generally consists of an array of functional blocks, interconnects
and IO connections. All these elements are reconfigurable, allowing the FPGA to be re-
used to represent different design architectures. The general FPGA structure (known as

Island Style) can be seen in Figure 5.

Each functional block can be reconfigured to provide a combinational or sequential logic

function. The interconnect structure is comprised of horizontal and vertical routing
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channels. These routing channels run in between the functional blocks. The horizontal
and vertical routing channels are connected using programmable switches. How
horizontal and vertical tracks combine to form a route is shown in Figure 6. Figure 6
shows this Horizontal Vertical routing on a Manhattan Grid, which can be used to model
the chip layout. A Manhattan grid consists of a rectangular space between two parallel
rows of pins (terminals). The locations of these pins are fixed and aligned with vertical

grid lines. A Manbhattan grid is often used to represent the layout of a chip.

@ (i)

(]

(i) Manhatten Grid with “a” routed to “c”
(i1) Horizontal routing of “a” to “c” (layer 1)
(iiiy ~ Vertical routing of “a” to *c” (layer 2)

Figure 6. Manhattan Grid with Horizontal-Vertical Routing.

This means one layer carries wires in the horizontal direction and the other layer carries
wires in the vertical direction. If there is bend in the path of a net, then the net uses the
programmable switch to change from a vertical interconnect to a horizontal interconnect
or vice versa as shown in Figure 6 (ii & iii). Programmable switches are also used to

connect the routes leading from the functional blocks and 10Bs.

2.5 Overview of the Optimisation Considerations during
Automated Place and Route

Now that the general architecture of an FPGA has been described, how an Automated

Place and Route (APR) tool optimises a design architecture needs to be considered, as the
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final design architecture will be very dependent on how the design is optimised during
Place and Route. Hence by understanding the way an APR tool optimises a design, a
better estimation can be made during HLS of the final design architecture post Place and
Route. An APR tool consists of three main stages:

Placement — Global Routing — Local (Detailed) Routing

Area of Chip = 6 Area of Chip = 8

| 7

%

Occupied Placement

Site
Deadspace 1 /

11—
——

Figure 7. Diagram Showing How Different Layouts can Increase Dead space which in

turn Increases the Size of a Chip.

An APR tool, when placing a circuit, can consider many constraints but in this thesis only
clock period (hence total delay) and area are targeted during optimisation. The first reason
an APR is a slow process is that macros are not being dealt with, the logic blocks or gates
(cells) that make up these macros are. A cell is a small circuit macro such as a two input
NAND gate or a CLB. This increases the complexity of the Place and Route problem, as
now there are many more elements to deal with, while also having to contend with the
routing that joins all these cells together. The placement phase attempts to minimise the
Dead space (Definition 9), while providing a good foundation for delay minimisation.
Definition:

(9) Dead Space — A placement site that is not occupied is known as Dead Space.

An example of how dead space can be minimised can be seen in Figure 7. The benefit of
dead space minimisation is that with less dead space the smaller the chip that can be used,
while also allowing macros to be placed closer together. The placement phase is relatively

quick compared to the routing stage, as there are fewer constraints and estimates of the
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routing are used to aid the optimality of the placement in terms of delay (CP). Before
placement a floorplan is generally constructed which is a generalised (more abstract)
placement, where macros/cells are grouped into regions. These regions are then arranged
into an optimal placement and then the macros/cells within the regions are optimally
placed. This reduces the complexity of the process while keeping the placement optimal,

as macros are highly connected; hence they should be placed together.

Routing Layout is much more complex as the routing placement has a highly complex
objective function that has many constraints; this makes the routing stage very slow. The
routing problem can be defined as follows: Given a set of cells, a set of signal nets and the
location of cells on the layout that has been obtained from the placement stage, routing
can now be performed. Routing consists of finding paths on the layout surface, in which
wires can be placed in order to connect pins together to satisfy the design’s functionality.
To ensure the delay is minimised these paths are kept to the minimum possible length
with respect to constraints. The complexity of the placement problem is reduced by
grouping cells/macros together into regions to form a floorplan, optimising the floorplan
with respect to area, delay, then finding an optimal placement, followed by a further
optimisation within each region. This same methodology is generally used for routing as
well. Routing can be split into two main stages, firstly global routing, and secondly local

(detailed) routing.

Global routing is used to assign each net into a particular region on the layout surface,
making sure that routing demand does not exceed routing supply. Once all the nets on the
layout surface, have been assigned to a region, local routing takes over. Local routing is
far more detailed, as it assigns nets to particular routing tracks that run in the routing
channel, again satisfying an objective function, but this time it has many more constraints

such as crosstalk, routing channel blockage, CP, etc.

Global routing can be modelled during HLS, as it is still fairly abstract and does not have
too many constraints. Local routing will not be discussed, as it would be extremely hard
to estimate local routing, as there are far too many factors to contend with. The extra
accuracy in estimation of the interconnect layout which would be achieved would by too
time consuming for it to be feasible during HLS. Presently MOODS only considers
macros not the individual cells that make up the macro, and does not contain most of the

information needed to estimate Local Routing.



2.6 Factors Involved in Metric Estimation during HLS

Area (slices on an FPGA) and CP of a design will be the target for the optimisation during
HLS. Hence all the physical characteristics that affect arca and CP on a design once
implemented in hardware need to be accurately estimated. There are more optimisation
considerations, for example power, but they are out of the scope of this thesis; here we are

only concerned with area and delay.

Accurate area estimation can easily be achieved by observing how many placement sites
(in terms of slices) a macro occupies when implemented in a design. This placement of
the macros might change from one design architecture to the next, but the actual area of a
macro does not greatly change. When calculating the area of a design, the area of
individual macros is calculated then summed together to form the total area (number of
placement sites) needed for the design to be placed on a chip. Dead space does not need
to be accounted for when estimating the number of placement sites a design needs in
order to be placed on a chip, as the dead space on an FPGA can be minimised to a
negligible amount, if the number of slices needed to place a design on an FPGA, is close
to the number of placement sites on the designated chip. This reduction in dead space is
due to cells belonging to macros not having to be placed in adjacent placement sites (with
the exception of macros that use carry logic on the Xilinx definition). Hence the
individual cells that make up a macro can be placed into dead space if there is no room
for the macros to be placed in adjacent cells, or it is seen to be optimal for the cells to be
placed non-adjacently. Hence dead space is not accounted for currently in MOQODS, when

targeting FPGAs.

Estimating the CP delay is a 2-stage problem, first the delay of the macros that cells that
belong to the critical path need to be estimated. Delay estimation of macros is in the cell
library. But this delay does not include the delay of interconnect between the macros,
which can dramatically increase the CP. Accurately estimating the interconnect properties
of a design once implemented on hardware is a much more complex process than area
estimation. Further understanding of the layout of the chip in HLS needs to be obtained
before accurate interconnect prediction can be achieved. Hence this depiction of the

interconnect properties that can affect the CP will be called interconnect prediction.

Interconnect prediction estimates the routing layout of a chip, and different factors that
influence the routing need to be considered. Routing is very dependent on placement as if

the placement is bad this can cause the routing to be bad (simply shown in Figure 8).
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Figure 8. Diagram to Show How Routing can be improved by Simply Rearranging the

Placement.

Placement can be affected by the RTL supplied to it, so there can be a knock-on effect from
HLS. If the HLS tool supplies an RTL description of a design to an APR tool that is a
good platform on which the APR tool can perform its optimisation of the placement and
routing, the APR tool will produce a highly optimal design implemented on hardware. For
example, consider an RTL representation that can be optimised in an APR tool with
respect to interconnect. Again a simple example shall be used to demonstrate this point,
before a more detailed example later on in this chapter. Figure 9 shows how an RTL
description can aid APR optimisation. It will be assumed that all macros can only occupy
the position given in Figure 9. Let Al, A2, B1, B2, and E be registers and C and D be
identical adders. C and D are combined to form X (MUX) and Y (adder identical to B and
C). This assumes that C and D can be combined and still keep the functionality of the
design. All the functional units are of equal size. This combination reduces the unit
distance from 16 to 14. The 1 unit in distance in Figure 9 is measured from one placement
site to the next placement site. So the RTL, which would represent the architecture from
Figure 9 (ii), would produce a more optimal design in terms of interconnect distances,
which will be proven in chapters 3 and 4, produces more optimal designs in terms of CP.

Interconnect delay has a large impact on the critical path, hence total delay can be
reduced by using interconnect prediction. This reduction can be produced by providing an
RTL VHDL version of a design that will form a hardware implementation that has
relatively small interconnect lengths, compared to an implementation formed from an
RTL VHDL version of the same design that does not use interconnect prediction during
HLS. So by using interconnect prediction within HLS the detrimental effect that bad
(very complex) interconnect topology has on the critical path of a design implemented on

a chip, is reduced, hence reducing the delay of a chip.
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Figure 9. Diagram to Show How Different RTL Descriptions Can Affect Interconnect

Lengths.

A HLS tool is designed to speed up the design process by allowing the designer to

optimise a design with little knowledge of
overview of this tool shall be discussed as

involved with all the results presented.

2.7 MOODS Overview

the RTL. MOODS is such a HLS tool, an

it forms the backbone to this thesis and is

To initiate HLS, the design has to be changed into the desired format on which to

perform optimisation. The input data contained in the behavioural VHDL is transformed

into an intermediate code (ICODE), which is used to build a data structure. The data

structure is in the form of a Data Path and Control Graph: a very brief description will

follow. Every node on the control graph represents a state; each state has Instruction

Graph (IGR) nodes, which contain a list of instructions that need to be carried out in one

clock cycle.
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Figure 10. MOODS Optimisation Loop.

All instructions in an IGR node are dependent on each other; hence the instructions are
carried out sequentially. Finally all the IGR nodes in the same control node run in
parallel. A data path graph node represents a functional unit (adders, multipliers,
subtractors,...), register or a multiplexer. These nodes are also known as macros. The
CFG and DFG now representing the design are passed through an optimisation loop,
which is shown in Figure 10, from [20]. Transforms are used to alter the structure of the
design while maintaining the design’s behaviour. The two-optimisation algorithms, which
are used to find random/suitable transformations, are Simulated Annealing (SA) and

Quasi-Exhaustive (QE). Details of these algorithms can be found in [20]. A brief
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description is given below, once the cost function and transformations that form the

backbone of the optimisation algorithms have been discussed.

2.7.1 Transformations

When exploring the design space, the design architecture is perturbed in order to find the
most optimal solution. Transforms are used to alter the design depending on certain
conditions.
In order to optimise a design within MOODS, three functions that are needed to be
applied to the data structure, namely:

1. Scheduling

2. Allocation

3. Binding

Scheduling decides at what stages behavioural operations (such as addition) are carried
out during the design’s execution. At each stage that operations are carried out, the
resulting values are stored in a register, ready to be used in a later stage. Allocation is
used to map operations, storage and interconnect onto specific data path units (ALUs,
registers, MUXes). After this mapping, the data path units are still abstract (no structural
information), but give a basic netlist of the design. Binding is then used to map these
abstract data path units to technology specific cells from a structural library, allowing an

estimated view of the final physical implementation.

These transforms affect the scheduling, allocation and binding properties of the design.
Whether these transforms are performed depends on the cost function (discussed in the
next section), which informs how a transform will affect the overall system. First the
node/nodes are selected on which the transform will act. Then these nodes/nodes are
tested to see whether the transform, if performed, would be legal. If the test is successful,
an estimation of how this transform will affect the design in terms of delay, area, etc is
made. Estimation is needed as once a transform is selected it cannot be undone (so as to
speed up design exploration). Finally if the transform is deemed to push the design
architecture in the right direction it is performed. The acceptance of the transform is
dependent on which optimisation algorithm is used, as design degradation can be

accepted as well as improvement (depending on the algorithm).

The actual transformations that are used in MOODS will now be discussed in more detail.

These transformations can affect the entire data structure or just a small part of it. The
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transformation will primarily affect either scheduling, allocation or binding, but generally
affects all three. The transformations will now be grouped into three categories, the first
category are transformations that mainly affect scheduling. These transformations are
used on the control graph, which can in turn affect what transformations can be used on
the data path. This will become clear once the transformations have been discussed. The
second group contains transformations that mainly affect allocation and binding. The
third group mainly affects binding. These transformations are used on the data path,
which in turn affect what transformations can be used on the control graph. Appendix 7.2
gives a brief description of the transformations. Greater detail of the description of the

transformations can be found in [20].

2.7.1.1 Scheduling Transformations

Scheduling transformations alter the control graph by altering the assignment of
instructions to control states. These transformations merge control states in order to
increase parallelism or unmerge control states. Parallelism is increased in order that tasks
can be carried out at the same time so that total delay is reduced. Unmerging control
states is desirable as this allows functional units to be merged, as the functional units in
the two disjoint group no longer carry out their tasks at the same time, allowing functional
units that carry out the same operation to be merged into one data path unit, which can

decrease area among other benefits.

There are four merging transformations, which are:
1. Merge Sequential IGR nodes. These nodes are contained in the control graph and
contain instructions on when tasks should be carried out.
2. Merge Parallel nodes after fork, where a fork is a node that has two successor
nodes in the control graph
3. Merge fork and successor

4. Group instructions on variable

There are two unmerging transformations
1. Ungroup node by separating groups
2. Ungroup node into time slices
2.7.1.2 Allocation and Binding Transformations

Allocation and binding transforms manipulate the data path by sharing and unsharing data
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path nodes, while also mapping library cells. There are two sharing transforms:
1. Data Path unit sharing/ALU creation
2. Register Sharing

There are four transforms that reverse the last two transforms:

1. Unshare single instruction from unit
Unshare unit fully

Unshare variable from register

Sl

Unshare register fully

2.7.1.3 Binding Transformation

These transforms are used to see if any other cell in the library could carry out the task
better than the current cell chosen for a particular Data Path (DP) or Control Path (CoP)
unit. These transforms are:

1. Alternative DP cell selection

2. Alternative CoP cell selection

2.7.2 Cost Function within MOODS

A utility is needed to choose the most beneficial transform with the most appropriate
candidates, in order to produce the most optimal design by satisfying the objective
function. This utility needs to differentiate between what makes a good transformation and
a bad transformation. A cost function will be used for this task; it will represent all the
design criteria (area and delay in this thesis) on which the optimisation process will base
its decisions. Due to the data structure’s architecture, once a design’s architecture has
been changed through a transformation, the previous design architecture pre-
transformation can only be achieved again through further transformations being applied.
Hence an estimation of the effect on the cost function caused by the proposed
transformation is made. If the transformation is accepted then the cost function is updated.
If the design is optimised sufficiently the optimisation loop is exited. But if a further
optimisation is required, another transformation is suggested and the whole process is
repeated. The next transformation that is chosen is dependent on the optimisation

algorithm used, so the different types of optimisation algorithms shall now be discussed.

The cost function is used to decide which transforms are accepted. It achieves this by

collating all the values representing the different design criteria into one value. This value
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is then used to tell us whether the transformation will be good or bad to the overall
system. The cost of a design can be thought of as the energy of the system. Each design
metric describes a certain amount of energy in the overall system: the lower the energy,
the less impact it will have on a system. So, for example, if a design’s area is reduced due
to a transform, the smaller area increases the optimality (in terms of area) of the design.
This reduces the value (energy) supplied to the Cost Function (CF) and hence a CF can
represent a design’s optimality as the lower the energy, the more optimal a design’s

architecture will be.

Each metric (area, power, CP, total delay, etc.) that is represented in the CF needs to be
represented by a suitable value that accurately estimates a design’s current standing in
terms of these metrics. These metrics are calculated as follows: The total area of a design

is the sum of all the functional units that the design is composed of.

Total Area = Total Area of Data Path + Total Area of the Critical Path )+
Total Area of MUXes

The delay of the control node is the longest delay of all the IGR nodes contained in the
respective control node, as all IGR nodes are run in parallel, within the same control
node. The total delay is then calculated by multiplying the number of CPs that will be
needed to run the design to completion by the delay of the CP. For the last two metrics the
delay of the control nodes needs to be calculated, this is show in [20] and is out of the
scope of this thesis. All the parameters that are used to calculate the delay of the control
nodes (e.g. inherent delays, delay factors, input capacitance and set up times) are stored in

the MOQODS cell library.

To calculate each individual value that represents how good or bad a transform is with

respect to certain criteria, the following equation is used:

AE = Ce,\‘limule _ CI'HI'I'L’HI (2)

initial

where Cyimare 15 the estimated cost after the transformation has been applied;
Ceurrent 18 the cost of the current design architecture before the transformation has
been applied;
Ciniiat 18 the cost of the initial design architecture. This value is used as a

normalisation factor in order to give a fair comparison with all the design
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criteria;

E is the energy of the system, where the delta sign signifies a change in state.

The Es for each individual design criteria are then simply added together to give the
overall E for the transformation. A negative overall E shows that a transform is beneficial
to the overall system. By performing a transform, a certain aspect of a design (area, CP,
etc.) will decrease significantly enough to warrant the transformation, while not badly
affecting any other criteria. The more negative (lower) the value, the better the

transformation will be for the overall system.

When a designer is synthesising a design, certain design criteria might be more important
such as reducing the design’s area but not the delay, hence the designer can set the
priority for area. The priorities set the order in which targets are attempted to be met. So if
the area metric has the highest priority then the design will first be optimised until it has
met that target or has been deemed to be unreachable. Then the algorithm will try and

satisfy the next criteria.

2.7.3 Optimisation Algorithms, Within MOODS

2.7.3.1 Simulated Annealing (SA)

Cost of a Design Configuration

Design Space (Possible Configurations)

Figure 11. SA design space exploration.

SA is based on the Metropolis algorithm [4]. SA is a general optimisation technique for
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minimising a function of many variables. SA can perform comparisons between multiple
objectives without stating the complex interactions involved. Hence, this method is very
good for tradeoffs between multiple objectives, due to its ability to find a global

minimum.

The transformations are made through a random process, which is as follows. Firstly an
optimisation type is chosen whether a scheduling (as well as alternative control cell) or
allocation (alternative DP cell) transform. If scheduling is the optimisation type, an IGR
node is randomly selected, or if allocation is the optimisation type then a DP node is
selected. Then a transform is randomly selected but dependent on which class of
transformations was selected at the beginning. Finally the data that is needed to carry out
the transform is selected, for example if the transform which shares DP units were

chosen, then another DP unit needs to be randomly selected.

When deciding whether to accept/refuse a transform, SA can accept improving ( E < 0)
or degrading ( E > 0) transforms. The probability of acceptance of a degrading transform
is a function of the annealing temperature (as the temperature decreases the probability of
accepting a degrading transform decreases, allowing SA to settle in a minimum). This
means that if SA has settled in a local minimum, allowing a degrading transform enables
SA to jump out of the local minimum and carry on exploring the rest of the design space.
This is shown in Figure 11, where without the degrading transform (green dashed line),
SA will settle in the local minimum, but using the degrading transform allows SA to find
the global minimum. A cooling schedule is used to dictate how the algorithm explores the
design space, initially giving the algorithm lots of energy to jump out if local minima,
then gradually reducing the energy so that the algorithm gets trapped in a global
minimum (with an appropriate cooling schedule). This is why the cooling schedule is so
important, as it has a large influence on whether the global minimum is found. An

example of a cooling schedule can be found in [100] [70] [93].

The cooling schedule for SA consists of 4 variables.
1. Initial temperature
2. Terminating temperature
3. Number of iterations per temperature step
4

Level of degradation per temperature step
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The initial temperature has to be high enough to enable full design exploration, without
getting caught in a local minimum. The terminating temperature needs to be low enough
to find the bottom of the global minimum. The number of iterations needs to be high
enough to cover the entire design space to again maximise the chance of finding the
global minimum. The degradation needs to be slow enough again to minimise the chance
of getting caught in a local minimum. SA requires a high level of user interaction when
setting up the cooling schedule. This can require extensive knowledge and experience of
the design to obtain the most optimal solution. Hence many iterations of the algorithm
may be undertaken to gain the knowledge needed to achieve the optimum solution, which
increases the duration of the design process. As SA uses random transforms and selects
random nodes, this means the process is slow as the design space is being explored
exhaustively. But the design space has to be explored extensively, so as to maximise the
chance of finding the global minimum, not a local minimum. The more irregular the
landscape of the design space in terms of cost (i.e. if there are lots of local minima) the

harder it is to find the global minimum.

To sum up, the advantages of SA as an optimisation algorithm during HLS are:
¢ The Global Minimum is guaranteed to be found (given enough time).
¢ It performs comparisons between multiple objectives without stating complex

interactions.

The disadvantages of SA as an optimisation algorithm during HLS are:
e Extensive knowledge and experience of the design is needed in order to obtain
the most optimal solution.
¢ Run time is slow as it randomly searches the design space so we need to give it
enough time to explore enough of the design space to give the SA a good chance

of finding the global minimum of the objective function
2.7.3.2 Quasi-exhaustive (QE)

The QE technique combats the SA disadvantages in two different ways. Firstly the
designer is not required to create a cooling schedule, because the heuristic makes
intelligent decisions concerning which transforms are chosen. A by-product of the
intelligent decision-making is that the algorithm can find a good solution in a short

amount of time compared to SA, but the solution could be worse than SA’s solution, if a
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suitable cooling schedule were chosen for the latter. The algorithm has a subset of
transformations, which follow a set order, guided by an analysis of the design, rather than

random transformation selection.

a. Delay with Highest Priority

b. Area with Highest Priority

c. Area and Delay with Equal
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Figure 12. QE Design Flow with Different Design Criteria Priorities.

To allow for the QE to have little user interaction in order to produce optimal RTL VHDL
for a design, QE has been derived only to support area, delay and the clock period targets.
Using an intelligent strategy for design space exploration means that redundant searches
through the design space are eliminated, hence speeding up the algorithm significantly.
This limitation on the number of metrics that are entered into the cost function is needed,
as the algorithm then can intelligently choose the transform that will benefit these criteria.
If more criteria were added and they conflicted with the current metrics this would reduce

the usefulness of the algorithm. By conflict, we mean if a path was chosen during the
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optimisation that would improve area, delay and CP, but could really degrade another

metric, then this would mean the objectives would be in conflict.

QE has three forms: the first is when Delay is the main priority; the second when Area is
the main priority; and lastly when Area and delay have equal priority (clock period
always has high priority). These different forms of the algorithm are shown in Figure 12.
When attempting to meet the delay target, QE uses a process called compact_CP. This
compacts the control graph, by merging nodes on the control graph, and hence reducing
the length of the control graph and to some degree reducing area. When attempting to
meet the area target, QE uses a process called compact_DP. This compacts the datapath,
by merging nodes on the datapath in order to reduce the area. Lastly the registers are
exhaustively searched, to see if any registers can be shared to optimise area, while also
checking for registers with only one input and output to see if they are redundant (Group
Instruction on Variable Transform), so that they can be eliminated, so as to optimise
delay. Compact_CP and compact_DP are now described in more detail as they are

fundamental to the algorithm.

Compact_CP is dependent on two metrics that are:

e C(Critical Path Factor

This metric is used to identify which control nodes affect the delay, it achieves
this by only allowing control nodes that lie on the critical path to be merged.

e Share Factor

The metric measures the number of sharable data path units that carry out the
instructions found in the control nodes being considered for merging. The
likelihood of a pair of shareable datapath nodes merging will be reduced when the
control nodes are merged, this is due to the datapath nodes becoming dependent.
Hence the less the share factor, the less consequence there will be on area

reduction of a DP.

The two metrics are designed to reduce delay with minimal affect on area minimisation.
Compact_CP is recursively performed until either the delay target is met or the share
factor threshold reaches 100%. The share factor threshold starts at 0% and is increased
systematically (20% by default) on every use of compact_CP. Only nodes with a share
factor less than the threshold are considered for transformations geared towards total

delay minimisation.
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Compact_DP is dependent on another two metrics that are:

e Share Factor

This factor is derived for every datapath node by measuring the difference in
area if the respective node was merged with every suitable datapath node. The
higher the value of the shareability factor, the higher the likelihood of finding
an appropriate candidate for merging. A negative value signifies that a unit is
not satisfactory for merging.

e Critical Path Factor

This metric is to minimise the affect on the control graph. The metric
identifies how close the unit is to the critical path. The metric is derived by
finding how many instructions the unit cairies out that lie in a control node
belonging to the critical path. A lower value will mean less effect on the

critical path hence it is better for delay.

The two metrics are designed to reduce area with minimal effect on delay minimisation.
Compact_DP is recursively performed until either the area target is met or the critical
path factor threshold reaches 100%. The critical path factor threshold starts at 0% and is
increased systematically (20% by default) on every use of compact_DP. Only nodes with
a critical path factor less than the threshold are considered for transformations geared

towards area minimisation.

2.8 High Level Synthesis with Interconnect Prediction

Up to this point Interconnect Prediction has been discussed in general terms. Now
Interconnect Prediction fundamentals will be discussed in much greater detail. In order to
estimate the physical properties of a design once implemented in hardware, consideration
needs to be taken of how the final physical implementation will be derived. A good
floorplan strongly affects the eventual placement implementation, hence a design
architecture that can easily form a highly optimal floorplan, will have a high probability
of producing a highly optimal placement. Therefore the first topic to investigate will be
how to form an optimal floorplan, the floorplan will then allow global interconnect
properties to be evaluated during HLS. A brief survey on Placement tools can be found in

[56] with industry benchmarks also listed.

Following the question posed in section 2.3: if the higher the accuracy of the metrics

during HLS the better the optimised RTL is at producing an optimal physical
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implementation with regards to the design objective, why do we not just use actual design
metrics (area, power, CP, etc.) post APR tool during HLS? This thinking would imply
that a design should be taken through to the APR tool and physically implemented to
obtain the actual metric values such as CP, hence total delay, area, etc. Then re-adjust the
design accordingly to obtain the final physical implementation that satisfies the design’s
objectives. But an APR tool takes a relatively long time to carry out all the procedures

required so that a design can be implemented on a chip as described in section 2.5.

2.9 Transforms that Benefit from Interconnect Prediction

In order for interconnect prediction to aid the minimisation of delay during HLS, we need
to identify what type of transforms will benefit from interconnect prediction. Any
transform that merges or duplicates functional units will benefit from interconnect
prediction. When considering design architectures it is sometimes better to merge or

duplicate [119] [55] functional units in order to:

¢ Decrease clock period
¢ Reduce routing density

¢ Decrease area
To know when it is best to merge, duplicate or just leave the functional units alone, the
physical estimates are very useful. The methodology presented in this section is founded

on the work presented in [2].

2.9.1 Sharing Hardware with Respect to Interconnect Prediction

The merging transformation implemented in MOODS is shown in Appendix 7.1.2.1. To
merge a functional unit depends on the following conditions. First whether the operation
of the functional units can use the same hardware and in which states they exist after
scheduling has been performed. Secondly the interconnect length between the two
functional units can be thought of as a gravitational force, where the larger the
interconnect length, the less gravitational pull the units have on each other. Conversely
the larger the gravitational pull the more likely that the functional units will be merged,
this is dependent on whether the functional units are suitable for merging, for example the
units will need to be of the same type (i.e. both adders). Two functional units would be
merged to reduce the area of a chip. If the area of functional units is large then there is
more to gain by merging rather than if the functional units are small. Ideally the area of

the functional units being merged needs to be larger than the area of all the components to
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be added to legalise the design, this is so that the design’s area is reduced. In Figure 13,
this would mean that the area of adders one and two should have less area than the new
adder and multiplexer (where the multiplexer was added to keep the design functionally
correct) that replaces them, in order to make this transformation worthwhile. If both
functional units have a high number of Input/Output net values, then this would
discourage merging of the functional units, because all the interconnects from both
functional units will be brought into one locality which will increase congestion. Merging
of two functional units is not warranted if the routing channels in the affected area are
heavily congested before merging, because all the interconnects which flowed into the
original functional units will now flow just into one functional unit which will increase
routing density to an even higher degree. Excessive attempts to minimise the area can
cause higher congestion [23], which can lead to the actual area being increased. So

another constraint to merging two functional units is a global congestion measure.

£\ = Mux = = Interconnect

(i) The gravitational force surrounding each adder
(ii) The affect of the merged adders

Figure 13. Showing Two Adders Merging.

If two operations are merged, this will affect the circuit in three different ways
1. The operations will share the same functional unit;
2. MUX units will be inserted into the design;
3. A Register may have to be added to legalise the design.

This can be seen in Figure 13, which describes a simple design architecture pre- and post-
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merging of a functional unit. If merging occurs there will have to be 2 clock periods and a

register will be needed in Figure 13(ii), also 2 MUXes (trapezium) have to be added.

2.9.2 Duplicating Hardware with Respect to Interconnect Prediction

(i) Circuit before duplicating a functional unit

(ii) Circuit after duplicating a functional unit

Figure 14. Showing a Functional Unit Being Duplicated.

When considering duplication, the forces between macros can be thought of as behaving
like forces belonging to springs, which are compression and tension, one encourages
duplication and one discourages duplication, whichever is stronger will decide the
respective course of action. The first force, which shall be represented as C, represents
(with respect to this thesis) the Area pre- and post-duplication. The larger the area post-
duplication the more that C will oppose duplicating the macro in question. In general
when a macro is duplicated this will increase the total area of a design, which can reduce
the optimality of the overall system, hence will be used to oppose duplication. The second
force that will be considered shall be represented by T, this is the force from all of the
functional unit’s neighbours. To duplicate the functional unit depends on C and T. If C
were less than T this would encourage duplication of the functional unit. If C is greater
than T this would discourage duplication. A factor which influences T in a positive
fashion is routing demand, i.e. the higher the routing demand in the region of the macros
being duplicated, the larger T will be. If routing demand is high in the location of a

functional unit, then to relieve congestion the functional unit could be duplicated so that
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all the interconnects which lead into that functional unit do not lead into just one locality,
this will be affected by the global level of congestion. Figure 14(i) shows seven
components, where 2 is a functional unit, say an ALU. Another factor that influences T is
the length of interconnects connected to the macro being duplicated, the longer the nets
are, the higher the stress on the net, hence the greater the value of T. So Comp 1 and
Comp 3 are pulling ALU 2 in opposite directions. ALU 2 is then duplicated, which
relieves the stress, by reducing the interconnect length as shown in Figure 14(i1), where

ALU 2 now becomes ALU 2' and ALU 2".

2.10 Algorithms Needed To Enable Interconnect Prediction
During HLS

The following section will now introduce all the platforms needed for enabling MOODS
to evaluate the interconnect properties of a design architecture, which then allows
MOODS to compare which design architectures will create the most optimal routing

layout, hence reducing delay between macros thus decreasing the CP.

2.10.1 Individual Wire Length Calculation

To calculate the length of the individual interconnects they will need to be modelled in
order to estimate the routing layouts of each interconnect. Interconnect can be modelled
in two ways when considering the calculation of individual interconnect lengths. Either
the interconnects can be described as multi-pin nets which would be more accurate to the
actual routing, or they can be thought of as two pin nets, this reduces the computation
dramatically without having too much effect on the accuracy, as described earlier. These
individual interconnects can then be used to find the average interconnect of the circuit. In
order to predict the interconnect properties of a design, decisions on how the nets will be
modelled need to be considered. This modelling of the nets is very important as it will

affect how the nets are distributed, when predicting the interconnect properties.

2.10.1.1 Two Terminal Nets

A quick but accurate method for 2 pin nets is using bounding box estimators to predict
individual interconnects. The size of the bounding box for a n-pin net would be just large
enough to encompass all n pins. The half perimeter rule estimates the Wire Length of a
net to be half the perimeter of the bounding box, as shown in Figure 15. The half
perimeter rule gives the exact cost for 2-pin and 3-pin nets and is used in many

applications for a fast but relatively accurate estimator of Wire Length
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! E(¢,)=X+Y (3)
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Figure 15. Representing a Net with Two Terminals A and B.

2.10.1.2 Multi-pin Nets

A popular representation for the multi-pin nets is a Rectilinear Steiner Minimal Tree
(RSMT). Hence the Wire Length of a net is the same as the Wire Length of the RSMT.
[36] gives an extensive survey on heuristics that minimise a RSMT. Heuristics are used as
it is an NP-complete problem. Once a RSMT is found, a bounding box can again be used
to calculate an interconnect length. Caldwell et al. [50] expand on the half perimeter rule
and the estimating bounding box which encompasses the interconnect whose length is
being measured. The paper shows that the Wire Length is dependent on the aspect ratio of
the bounding box, which had not been considered before. Hence the proposed new

equation for the expected length of an » terminal net would be:

E(0)=XYn @

where X and Y represent the vertical and horizontal length of the bounding box that

encompasses the net.

A criticism of the technique is that it does not take into account the local congestion of the
region through which the net passes. If the routing channels are highly connected then the
path of a net might not stay within the boundary or it might snake back and forth,
increasing the net length. Hence a metric which represented the level of congestion in the
region would be useful to act as a factor to increase or decrease the average interconnect
depending on whether the level of congestion is respectively large or small. This method
requires a floorplan so that the bounding box can be calculated. An alternative mode] to
the RSMT model for estimating the routing layout of a multi-pin net can be found in

[116], where the computation is too complex to be feasible for HLS.



46
2.10.1.3 Summation on Net Models

All nets belonging to the circuit’s netlist shall be modelled as two pin nets. This means
that costly prediction of multi-pin nets lengths is not needed; whereas multi-pin net
lengths need an estimation on the layout of the routing depending on where the terminals
lie, two pin nets simply use the half perimeter Wire Length, which involves no prediction
of the layout of the routing. This also means that when producing models of interconnect
properties, the behaviour of two pin nets is much easier to describe and predict. This
abstraction does not cause a significant impact on the accuracy of interconnect prediction

as the majority of nets are two-pin nets [111].

2.10.2 Placement of Functional Units

To establish a good platform for metrics that accurately depict physical level properties
during HLS, placement information will need to be obtained. As discussed earlier the
placement of cells onto an FPGA or ASIC heavily influences the routing that follows,
which in turn heavily influences the critical path delay, which needs to meet the Clock
Period (CP). During HLS to perform a placement would be impractical, with too many
constraints for an accurate estimation, making the placement problem highly intricate. But
a floorplan can be used as an abstract representation of the placement problem. That is
macros can be used instead as cells when placing the floorplan. This abstraction does not
lose too much accuracy, as cells that belong to a macro are highly connected and in most
cases are placed together on an FPGA. A floorplan can then be used within HLS to
improve the depiction of a design once placed on a chip. This in turn can be used to guide
the optimisation process during HLS. The closer an estimated floorplan within HLS is,
the more accurate the metrics resulting from the floorplan will be. If the metrics can
become more representational of a design post APR, but during HLS, then better
decisions can be made during design exploration in order to meet design objectives once
placed in Hardware. In order to obtain an accurate floorplan of functional units, accurate
estimation of the area during HLS is needed, this can be achieved fairly easily as the area

of a macro that carries out a particular task does not change that much if at all.

Producing a Floorplan would be desirable when estimating the physical properties of the
design once implemented in hardware [69]. If the Floorplan highly resembles the final
hardware implementation of the design, but is produced in a fraction of the time, this
would be greatly beneficial. Hence the placement algorithm will need to mimic the

behaviour of the APR’s placement algorithm as closely as possible. At the higher level,
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generally the layout of the chip is not known, but this means that decisions are made that
do not take into account the actual size, layout of the chip and routing topology. This is
important because the layout of the chip influences how the chip will be routed and the
routing affects delay. Hence a floorplan during HLS will allow higher accuracy in
prediction of interconnect properties. When constructing the floorplan certain
considerations need to be taken into account, these are:

®  Minimising Area, The area is minimised by fitting macros together in a certain
combination and minimising the dead space between macros. This problem is
more related to the ASIC placement problem, as FPGA cells do not have to be
placed in adjacent placement sites of other cells that make up the same macro,
allowing greater flexibility (except for macros that use carry logic).

*  Minimising Wire Length, The shorter the interconnect between the macros, the
smaller the delay between the macros.

*  Maximum Routability, By increasing the routability of a floorplan, this can allow
routes to be placed on their optimal path, hence keeping the interconnect length to
a minimum.

®  Minimising Delay, Estimates of the delay of paths is used to minimise the CP.

2.10.2.1 Floorplan Construction Methods

A good background to floorplan construction can be found in [19], but only the most
recent and popular methods shall be discussed. To construct a floorplan, and hence reduce
the complexity of placement, there are 4 different methods:

1. Construction based methodology builds a floorplan by grouping macros together
(according to a set of criteria) until all the macros have been placed;

2. Tterative based methodology starts with an initial floorplan then improves the
floorplan iteratively until the floorplan satisfies the objective function or can no
longer by improved in optimality;

3. Knowledge Based methodology uses pre-existing optimal floorplans to construct
new floorplans;

4. Hybrid based methodology uses a combination of the first two methods.
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Construction-Based Floorplan

Construction-based approaches are used to generate an initial implementation for
algorithms to further optimise [104]. Once the macros have been optimally placed, a
detailed placement is performed on each individual block. Construction based approaches
can be used to reduce the problem size [63]. So initially the circuit is divided into sub
groups which are then optimised. This method can drastically reduce the solution space.
One construction-based method is circuit partitioning [53]. This is where macros are
grouped together into tightly connected sub groups. When using a circuit partitioning
method, there are three approaches; these are hierarchical, flat, or Greedy. The
hierarchical method can either be bottom-up, or top-down. A bottom-up strategy means
starting at the bottom of the hierarchy and the working up the tree as in Figure 17. The
process involves starting with all the macros then gradually merging (clustering [122])
them at each hierarchical level until all the macros are in one group at the top of the
hierarchical tree. A top-down strategy means starting at the top of the hierarchy and
working down the tree as in Figure 17. Each time a cut is performed to form two sub
groups then this forms a hierarchical level again shown in Figure 17. A floorplan can be
obtained by recursively bi-partitioning a circuit’s netlist. For example if bi-partitioning is
being used, the algorithm is used for the first partition then the algorithm is used to
partition the resulting sub groups from the initial partition. This is repeated until the
required level of abstraction is reached (the circuit cannot be partitioned anymore), and
will be discussed in much greater detail when partitioning algorithms are discussed in
section 3.5. The hierarchical structure formed after using a bottom up or top down
approach to floorplan construction is known as a slicing tree. A slicing tree (Figure 16(1))
is a binary tree with n leaves and n-1 nodes, where each node represents a vertical cut line

or a horizontal cut line and each leaf is a basic rectangular macro.

At each hierarchical level there are two types of nets, internal and external. An external
net is a net that has pins in one subgroup and has another pin in a different sub group. An
internal net is a net that has pins that all remain in the same sub group. When partitioning
the objective is to minimise the number of external nets, this is known as minimising the
cut-set (Min Cut). The cutset of a partition is equal to the weight of the set of edges cut by
the partition. as shown in Figure 18. When partitioning the netlist, this approach is known
as a net-based approach, as only the nets are being considered when minimising the cut
set, and not the net lengths. If net lengths were taken into account, the distance between

macros would have to be known. The distance between macros cannot be obtained solely
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through circuit partitioning, the distances would only be calculated once the floorplan has
been constructed. When partitioning a circuit, optimising the cut-set is a linear function

and this type of approach is called the net-based approach.

A Linear objective function can be formulated as follows:

¢q(x’y)=zaij(xi_xj)2+zaij(yi_yj)z &)

Where (x; y;) is the location of one terminal and (x; , y;) is the location of the other
terminal. (x; -x ,-)2+ (vi -yj)2 represents the half perimeter distance. a;; is the weight of the

net.

Partitioning is a very quick method for obtaining a globally optimal solution, and it forms

the basis for most recent placement tools [113][81].
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R
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X

CutSet={ec, 0y ep }=3+1+1=5

Figure 18. Diagram to Show How External and Internal Nets are Formed and How the

External Nets Form the Cut Set.

The greedy approach (also known as a neighbourhood search) strategy constructs the
floorplan starting with one node and gradually builds the floorplan by adding one node at
a time. The floorplan is initialised with a seed (macro chosen randomly or has a property
that makes it a good starting point). Then in a greedy fashion (look for the best suited
macro to join the macros placed already, for example the most connected macro to the

post placed macros) one macro is added at a time until every macro has been added. The
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flat-based approach is where a floorplan is constructed by grouping macros together into
clusters all at the same time, but this increases the number of constraints needed, which

increase the complexity of the algorithm.

lterative Based Floorplan Construction

Iterative floorplan construction starts with an initial floorplan, undergoes a series of
perturbations until a feasible floorplan is obtained or no more improvements can be
achieved. Generally a construction method is used to speed up the optimisation but can
cause the optimisation to be trapped in a local minimum. The most common iterative
method is Simulated Annealing (SA) [93][88][89][99][62]. The SA algorithm behaves as

described in section 2.7.3.1.

The same properties are present when using SA for placement as in during HLS, as it
randomly chooses transformations and randomly chooses the macros that the
transformations will act on, in an effort to improve optimality of a floorplan. Hence the
same advantages and disadvantages apply both for SA in placement and in HLS. Due to
SA’s lack of speed it is generally used at the end of placement to improve a good initial
solution, hence reducing the run time significantly while obtaining a highly optimal
solution. Other widely used iterative techniques include Linear Programming (LP) [79],
Quadratic Programming (QP) [117] and Force Directed Placement [49] is used in
conjunction with QP, so as to remove the overlap formed by QP. The design then

naturally settles in state of equilibrium between tension and compression.

The objective function solving the QP problem can be formulated as follows:

¢q(x’y):2aij(xi_xj)2+zaij(yi—yj)2 (6)
ij ij .
Where (x,,y,) is the location of one terminal and (xj,yj) is the location of the other

terminal. (x,. - X, )2 + (y,. -y )2 represents the half perimeter distance. aij is the respective

weight of the net. The difference between equation 5 and equation 6 is that in equation 6
the bounding box has a much larger contributing factor due to the x, y coordinates being
squared rather than just taking the modulus. The QP problem is equivalent to solving the
squared Wire Length [49] and is called a “path based approach. It is a path based approach
as now it is considering the length of a path that a net may take. When using QP it

produces larger amount of cell overlap, as the objective function does not consider



52
overlaps only net lengths and the respective weights that apply to the nets. This can be
stopped by adding constraints during QP or by performing legalisation after QP [117]
[131]. Legalisation means removing the overlap, as multiple macros cannot be placed on
the same placement site.
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Figure 19. How Bins may be Swapped at a Given Hierarchical Level.

A common method for legalisation (i.e. removal of the overlapping of macros on the
floorplan) is Force-Directed Placement, where the floorplan is first optimised using QP
then perturbed over many iterations using forces that push the macros apart removing the
overlapping of the macros. The forces involved are calculated by measuring the overlaps,

the greater the overlap the larger the force pushing the macros apart. The interaction
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between the QP objective function and the forces that remove the overlap is a complex
interaction. The process is repeated until the floorplan naturally settles in state of
equilibrium between tension (provided by the forces pushing macros apart) and

compression (provided by QP).

A path-based approach tends to make global nets longer while decreasing the size of local
nets, while LP tends to reduce the size of global nets while increasing local nets [114].
This is why a LP solution is better for critical paths. QP does not allow simultaneous
optimisation of design criteria such as critical path. A. B. Kahng says that linear Wire
Length (WL) is better objective for minimisation of WL [57], but QP provides better

timing minimisation than min-cut (LP objective) placers.

Knowledge Base Floorplan Construction

Knowledge based approaches to floorplan construction is where previous
floorplan/placement constructions are used to form a library from which future floorplans
are constructed. This method is only feasible if there is a slight change in the design’s

architecture.

Hybrid Methods

M. Wang, X. Yang, M. Sarrafzadeh state that recursive partitioning (net-cut objectives)
tools are more affective than WL minimisation tools, such as QP at reducing the delay of
a circuit [113]. But they say that at different hierarchical levels, the WL objective is better
than net-cut at reducing delay. Hence M. Wang, X. Yang, M. Sarrafzadeh partitions the
circuit using the net-cut objective, then at each level of the hierarchy they allow bins to be
swapped around at the end of each stage. Bins can be thought of as regions on a floorplan
that group macros together. This methodologies presented in [113] will be discussed in
further detail in section 2.10.5. Using bins allows further abstraction by reducing the
solution space; e.g. a solution space of 4 square shaped macros has 4! (24) possible
arrangements, 16 square shaped macros have 16! (20922789888000) possible
arrangements. But if the 16 macros get grouped into 4 sets of 4 macros then there are 4!
possible arrangements for each group, hence 4*24 = 96 possible arrangements, these
groups also have 4! possible arrangements, hence the total number of possible
combinations is 96+24=120, which is vastly smaller than 16!, hence the search space has

been reduced significantly.
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In the case of the algorithm found in [113], the different regions are formed by
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partitioning, where each sub group is assigned to a particular bin. Then in order to
optimise the overall Wire Length the bins are swapped around (shown in Figure 19).
Once no further optimisation can be achieved the algorithm proceeds to the next
hierarchical level. But global bin swapping is not allowed, i.e. 4-way partitioning is used
to produce 4 sub groups, to every group, at each partitioning level. Hence those 4 sub
groups can only be moved within the boundaries of the original sub group, this can be
seen in figure 20. Four approaches to bin placement are proposed, and these approaches
are introduced to reduce interconnect distance. The approaches will be covered in section
2.10.5, when this type of interconnect minimisation is discussed. In [77] the cells are
partitioned into bins using min cut based partitioning algorithm. This floorplan is then
optimised using SA, then the cells inside the bins are detailed placed. As the bins when
being swapped are not allowed to traverse along block boundaries when being optimised,

hence reducing the likelihood of finding a global minimum.

2.10.3 Circuit (Netlist) Partitioning

As partitioning has been chosen to construct the floorplan, a way of finding the most
optimum partitioning is needed to form an optimal floorplan. Because partitioning a
design’s netlist to obtain the exact optimal solution is NP-complete, heuristics are used to

obtain approximately optimal solutions.

2.10.3.1 Partitioning a Circuit to Minimise Interconnect Length

At a high level the only information available for partitioning a design is the netlist of a
design’s architecture and the area of the individual components using specific technology
libraries. The circuit is represented as a hyper graph (G) as shown in Figure 22(ii), where
each vertex (inacro) can represent transistors, gates, ALUs or even entire circuits, but in
our case a macro could represent a storage unit, e.g. register, a functional unit, e.g. adder
or multiplier, or an interconnect unit e.g. multiplexer, that belongs to a design’s structure.
A formal definition is given below:

Given a graph G(V, E), where each vertex ve V has size s(v) and edge ec E has a weight
w(e) the problem is to divide the set V into k subsets V 1, V 5 ,..., Vi, such that an
objective function is optimised subject to certain constraints. When a partition divides the
set into k subsets this is known as k-way partitioning. If £ = 2 this is referred to as Bi-
partitioning. G will be partitioned into two sub partitions A and B, where each vertex
ac A, each vertex be B, ANnB=C and AuUB=G. Each edge represents the

interconnect between the macros. The weight of each edge will be the number of I/O pins
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the interconnect required to join the net to a macro.

(1)

M13 | M14

M = Macro
— = Interconnect Between Macros
(i)Macros Placed (ii) Hypergraph (G) Representation
Together of the Design’s Netlist

Figure 21. Design’s Netlist Partitioned into Macros and Nets Joining the Separate

Macros.

Figure 21(i) shows a circuit, which has been partitioned into 16 separate macros (sub-
circuits) with nets joining them to each other. Now to minimise the long nets the
individual macros get moved around. The nets that go from one macro to another macro
are called external nets. Nets that stay within a macro boundary are called internal nets.
To minimise the overall interconnect length, when partitioning the design’s netlist,
reduction of the length of external nets is strived for, (external nets are mostly longer than
the internal nets of a circuit). So if M1 in Figure 21(i) were swapped with M 16 their nets
would need to travel across a large proportion of the chip to connect with their

neighbours, which would be undesirable.

To minimise these long nets a Min Cut algorithm [19][73] can be used, which is very fast.
The Min Cut algorithm partitions the circuit into a desired number of parts, while
minimising the cutset. The cutset of a partition is equal to the weight of the set of edges
cut by the partition. The components within the groups created by this partition should be
placed close to other components in the same group. This reduces the routing resources

occupied, since the lengths of the nets that have a higher weight are reduced.
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2.10.3.2 Relative Placement Information Obtained from Partitioning

To obtain a relative placement of all the components, the circuit needs to be partitioned
until no group can be partitioned any further. There are two ways of achieving this
objective. A k-way partition (flat) can be performed, where the circuit is partitioned into k
disjoint parts or recursive partitioning can be used. Recursive Bi-Partitioning (RBP)
produces more optimal floorplans than flat placement [99][43][59][101][106][120], which
can get trapped in local minima [107]. [77] uses RBP, and then uses a greedy
(neighbourhood search) strategy to legalise the placement (by the term legalise, no

overlapping of the macros exists when placed on a floorplan).

From the floorplanning discussion RBP has evolved as the most suitable choice for
partitioning a circuit’s netlist within MOODS. To obtain the relative placement through
recursive partitioning the circuit is recursively bi-partitioned until no sub-group can be
partitioned any more, hence a top-down partitioning approach. The sub-groups formed by
the partition should be evenly sized, so that we can compare different groups fairly. Once
the circuit has been recursively bi-partitioned, a hierarchical map can be obtained, i.c.

where the macros should be placed in relation to each other.

2.10.3.3 Partitioning Heuristics

There are 5 types of general methods of partitioning a netlist, 4 of which can be found in
[41], where an extensive survey on partitioning heuristics can be found. The 5" general
method of partitioning can be found in [51]. Only iterative improvement and clustering
heuristics shall be considered as they are the most commonly used due to their high
optimisation potential while being the quickest heuristics. Iterative Improvement [1][3]
and Clustering algorithm [59] have been chosen to partition a circuits netlist within the

HLS tool MOODS, due to their speed, optimality and hence popularity [45].

A clustering algorithm groups elements together, by forming natural clusters. These
clusters then form the sub-groups of the partitioned group. These algorithms are very fast
and simple, while maintaining reasonable optimality. The iterative improvement
algorithms start with two different sub-groups. The two sub-groups have either been
picked randomly or produced by an alternative algorithm e.g. a clustering algorithm. The
iterative improvement algorithm attempts to reduce the cut-set by moving elements from

one sub-group to the other, either by swapping nodes in each group, or by just swapping
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one node at a time while maintaining an even spread between the two sub-sets.

Madden et al derives an iterative deleting partitioning algorithm [51], in which a vertex is
assigned to multiple groups rather than to just one group as normal, then the worst case
redundant (having multiple locations) vertices are removed one by one to obtain the final
solution, when no more redundant vertices are left. This approach looks promising due to
speed, but when bi-partitioning the algorithm behaves like a greedy clustering algorithm.

As recursive bi-partitioning will be used, this technique is redundant.

Figure 22. Showing how swapping two nodes can be detrimental to the overall system

if internal nets of the candidates for swapping are not considered prior to

swapping.

Kernighan and Lin (KL)[1] proposed an iterative improvement algorithm that swaps two
nodes between partitions, but which is quite slow, with time complexity O(n*logn). The
swapping of two nodes from either side of the partition is performed in order to reduce the
number of external nets (i.e. the nets in the cut set). Hence before the swap is performed,
the algorithm needs to make sure that by swapping the nodes, there is not an increase in
external nets caused by the swap. This can happen if the nodes being swapped were

highly connected to nodes within the partition they originally resided in, as shown in
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Figure 22. Then if each net has unit weight, the number of external nets is 3, and then if
node A and node 1 are swapped, the external nets increase to 5, which is detrimental to
minimising the cut set. Thus a value called the D value is used that represents the gain in a
system i.e. how much a swap will benefit (reduce) the cut set. The D value is calculated as

follows:

Di=E;- I )

Where E is the external nets that belong to node x and 7 is the internal nets that belong to
x. The more positive Dy, the more that x will reduce the cut set if placed in the other region
(if negative, x would increase the cut set if placed in the other region). As the nodes are
swapped, D values of each node need to be considered, and this will be the gain G to the
system if both nodes are swapped. If G produces a positive value then the swap is
beneficial to the cut set. G is calculated as follows:

Gy =Dy + Dy - 2cyy (8)

Where c,yis the net that joins x and y; if it exists, the net value needs to be subtracted as
the net will be in both sets of nets belonging to x and y, hence c,, will be counted twice,
and the net will be still external after the swap so does not affect the equation. The nodes
being swapped need to be of similar size, so that the groups do not become too uneven.
Partitioning tolerance is used as a limiting factor on how uneven sub groups formed from
a partition can be. The larger the partitioning tolerance, the larger the imbalance of the
sub groups respective area can be. The algorithm stops when no more swaps can be made

that will decrease the cut set.

The algorithm cannot handle nodes with non-uniform area. The problem of KL failing to
deal with non-uniform area will be shown in section 3.5.4. An extension to KL to rectify
this failing can be found in [19], which considers the area when partitioning a circuit. The
method duplicates a node until the number of duplicated nodes matched the area of the
original node (assuming the area value is an integer). The duplicated nodes then have a
very high weighting between the duplicated node so that they are kept together during
partitioning (i.e. they are always placed in the same group, unless the sub group is less
than the number of duplicated nodes that make up the original node), simulating the
original node. But the computation increases dramatically for HLS as the number of
nodes, n, will increase dependent on the area of the macros. So whereas the complexity
for the KL algorithm was O(n2logn), the complexity now would be O(a2n2logan), where

a is the average area. The average area can be very large in HLS (much larger than n for
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example), hence making the methodology infeasible for HLS.

The Fiducci Mattaus (FM) algorithm [3] is a very well known and popular iterative
improvement algorithm. FM is similar to KL, but only moves one node at a time from one
sub-partition to the other. FM is faster than KIL. with a time complexity of O(n) (where n
is the number of nodes) when using a bucket sorting algorithm [91] on data that belongs
to a uniform distribution. When the edge costs in the graph do not all have a unit cost (i.e.
do not belong to a uniform distribution) the bucket data structure can no longer be used
and the time complexity increases to O(nlogn+e) where e is the number of edges. The
nets of the graph in MOODS will not have uniform weighted nets, as all nets are treated
as two terminal nets with a weight equal to the number of bits or bit-width between nodes.
Hence O(nlogn+e) is used as the time complexity. An algorithm that swaps two nodes
produces a better cutset improvement compared to an algorithm that only moves one node
at a time between partitions, as stated in [22]. The reason for this is the observation that
small groups that are being partitioned contain macros that are larger than the partitioning
tolerance in FM. First it partitions a netlist with a large tolerance with regard to area
equality. This high tolerance to large area mismatch allows a lot of freedom for macros to
be placed with their highly connected neighbours [64] [102]. The tolerance is then
reduced until it is at an acceptable level. But again multiple runs are too time-consuming,
so in [78] a look-ahead strategy of possible reverse moves is used to legalise the design.
An algorithm called Quick Cut [22] uses the same method as KL, but reduces the time
complexity of KIL. by decreasing the amount of searching through the neighbourhood
when selecting the two nodes to swap. The time complexity of Quick Cut is in the worst
case O(max(ed, elogn)) (where d is the maximum node degree (number of nets/edges a
node has) of G) and average case complexity O(elogn), which is less than FM when the

following constraint is satisfied:

elogn<nlogn+e
elogn—e <nlogn
e(logn—1)< nlogn 9
< nlogn
logn—1
n

e<n+
logn—1
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This constraint means that the modified KL algorithm time complexity is much closer to
the FM time complexity, and is faster when the average degree of the nodes in the
circuit’s netlist is small. The Dutt and Deng approach to netlist partitioning uses a look-
ahead strategy [45], where consideration of not just the immediate effect of swapping or
moving a node is considered, but the after effect as well. This method shows a good
improvement, but the algorithm is too slow to make it feasible. But if finding the most

optimum solution becomes the priority then this method is worth considering.

The final solution to obtaining a global minimum is to use multiple runs with different
initial partitions, so as not get trapped in a local minimum [110]. This means the design
space is explored in more depth; hence there is more chance in finding the global
minimum. The algorithm is performed once with an initial partition, and then the
algorithm is run again but this time with a different initial partition. The resulting cut-sets
are compared to see which resulting partition is the most optimal. Carrying out multiple
runs will obviously increase the run time of the algorithm. As long as the algorithm
remains stable and comparisons can be made with confidence, the most optimum solution
is not of the utmost importance. The reason for this is that the partition will only influence
transform acceptance, and not actually contribute to the conversion from the data
structure into the RTL VHDL output post HLS. So our main concern is that the RTL
VHDL output is the most optimal RTL VHDL, compared to any other possible
combination of RTL VHDL that could have been written to produce the same
functionality. Hence the initial partition has to be selected in a way that stabilises the
partitioning algorithm. But the iterative improvement algorithms have results that form a
normal distribution, i.e. they form a bell shape graph (Figure 23) where the majority of
the results are found on the centre of the graph. This means there is a high probability that
a resulting cut set will be a value close to the centre of the graph making comparisons
between cutsets belonging to different architectures fairer. This is very important when
comparing multiple designs, as comparison of one design architecture cut set, which has
the most optimal value is compared with another design architecture cut set which has the
worst possible cut set, can lead to incorrect conclusions on which design architecture

offers the most optimality.
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These incorrect conclusions discussed in the last paragraph could occur when performing
HLS. A design architecture pre-transformation might produce a highly optimal cut-set
better than the average cut set if many multiple runs were made. But post-transformation
may then produce a low optimised cut set, worse than the average cut-set if many
multiple runs were made. When both pre- and post-transformation designs are compared,
the first design structure could appear to lead to a more optimal partition than the second
design structure, when in reality the second design will lead to a more optimal circuit
partition than the first partitioned design. This confusion on which design has the highest

optimality needs to be avoided, so that we can compare design architectures fairly.

2.10.4 Net Consideration During Recursive Bi Partitioning (RBP)

When partitioning, the aim is to reduce the overall Wire Length in order to have a smaller
impact on the critical path. Timing-Aware Weighting can be used to reduce overall net
length or just concentrate on the critical path [9]. When considering just the critical path
the nets are weighted so that the macros on the critical path are placed closer together to
reduce the critical path. S. Ou and M. Pedram add weights to the nets but also reduce the
number of times nets are cut [115]. B, Halpin, R. Chen and N. Sehgal disagree with this
method as it is hard to quantify how the weights are increased/decreased according to
their critical priority. B, Halpin, R. Chen and N. Sehgal use linear programming [108] to

improve on the partitioning solution, they obtain impressive improvements in delay, but it
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is too computationally expensive. A. B. Kahng et al. use this method in [79], but then
develop a much faster method in [57], as they simply increase the weight of a net once it

has been cut to reduce the likelihood of the net being cut again.
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Figure 24. Showing different Approaches to Net Representation During Circuit

Partitioning.
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Figure 25. Diagram Demonstrating the Effect of Terminal Propagation

M. Wang et al. uses recursive partitioning to group macros together [113], then
experiments with 4 different approaches to how to model the nets during recursive
partitioning in order to decrease interconnect length. The following approaches can be
seen in Figure 24, which has been extracted from [113]. The first approach (Figure 24(a))

ignores all external nets, the second approach (Figure 24(b)) ignores all external terminals.
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Ckts #Heells  App. A App. B App. € App. D
ibm0T 12282 — 479 4.71 4 98 4 81
ibm02 19321 13.70 13.91 14.38 13,99
tbm03 22207 13.12 12.83 13.02 12,93
ibmd4 26633 17.66 16,58 17.54 17.21
ibmt> 29347 38.94 3821 39.32 39.12

Figure 26. Comparison of 4 Different Approaches [113] to Wire Length minimisation.

The third approach (Figure 24(c)) is to add dummy nodes to represent external nets; this
will encourage nodes to be placed close to their external neighbours, this is called
terminal propagation. Terminal propagation [59] is defined as the process through which
nodes external to the block being partitioned are propagated as tfixed terminals. During
partitioning normally only internal nets are considered when partitioning a group. But the
external nets that are being ignored will still be affected by how the sub groups are
positioned after the cut has been made, as shown in Figure 25. Terminal propagation (TP)
is an important factor in minimising global Wire Length. For this to work an appropriate
weighting scheme would have to be devised. In order to reduce the overall Wire Length
in Figure 25 sub-group A2 should be placed next to B and A1l should be placed next to C.
This placement would then reduce the terminal propagation effect. Terminal propagation
will be discussed in greater detail in section 4.6, where the Wire Length is minimised by
swapping bins around at each hierarchical level, so as to minimise terminal propagation.
Finally the fourth approach (Figure 24(d)), rather than swapping whole bins around once
a partitioning has been completed, single nodes are swapped one at a time to try to
improve the cut set. M. Wang, X. Yang and M. Sarrafzadel find that the second approach
provides the best result but this method cannot be used here as it considers multi-pin nets,
as shown in Figure 26, extracted from [113]. But their first approach does not perform
significantly worse and is favourably compared to the other approaches. So when
partitioning they show there is no benefit in considering external nets. But when deciding
which side of a partition a sub-group should be placed these external nets will be
considered, as having a post bin swapping stage is very useful in reducing the Wire
Length (shown in Figure 25). Figure 27 again extracted from [113] shows min cut with
and without terminal propagation, and then approaches B and C, which have a post-bin

swapping stage. Figure 27 shows how using a post-bin swapping stage can decrease Wire
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Length, while also showing that during partitioning the external nets do not need to be

considered.

Ckis Heells App. A App. B App. C  App. D
ibm0O1 12282 4.79 4.71 4.98 4.81
ibm02 19321 13.70 13.91 14.38 13.99
ibm03 22207 13.12 12.83 13.02 12.93
ibm04 26633 17.66 16.58 17.54 17.21
ibm05 29347 38.94 38.21 39.32 39.12

Figure 27. Table Comparison of Conventional Min-cut Schemes and [113]

Approaches.

An extension to the terminal propagation problem is the case when there is ambiguous
terminal propagation. Ambiguous terminal propagation [59] arises when terminals lie
equally proximate from two sub-blocks of block being partitioned, so that their
destination propagation is ambiguous. To solve this case A. B. Kahng and S. Reda re-
partition the circuit at each hierarchical level. A. B. Kahng and S. Reda achieve this by
using recursive partitioning, first placing a group on the same hierarchical level, and then
using that group’s location on the floorplan to position the other sub-groups on the same
hierarchical level. Then the algorithm is moved onto the next hierarchical level. This is a
good idea but would be very dependent on the first group’s location, so would heavily
influence the other groups at the same hierarchical level and below. This could lead to a
local minimum, if the initial node chosen forces the algorithm in the wrong direction. The
reason for this is that the second pass uses the terminal location from the first pass. This
process removes the ambiguity, as the partitioning tool now knows where the external
nets lead. But the re-partitioning would be expensive in time. And there is no guarantee
that partitioning the second time will cause the terminals to stay in the same place with

the new information.

2.10.5 Cut Sequences

Another consideration during floorplan construction is to determine orientation of the
cutting of the groups: when to create vertical cuts or horizontal cuts during recursive bi-
partitioning that will form the most optimum floorplan. When recursively bi- partitioning a
circuit, normally a Horizontal (H)/Vertical (V) cut is used to partition the circuit then

followed by a V/H cut respectively then a H/V cut etc...
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The integer values are the approximate area of each macro for descriptive purposes only

Figure 28. Representing a Floorplan of a Circuit.

Complete Set Prior to Partitioning
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Figure 29. Corresponding Slicing Tree of Floorplan in Figure 10

If 4 components are shaped as squares with area 4, then it would be easy to predict the order
of cuts when partitioning the circuit i.e. H => V => H => V. But the order might change
according to the geometry of the shapes of the elements, which are in the groups being
partitioned, as shown in Figure 28 and Figure 29. When F and G are partitioned they should

have a vertical cut instead of a horizontal cut, hence the order of cuts is now V, H, V, V,
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instead of V, H, V, H, so as to keep dead space to a minimum. Large amounts of dead space
can lead to macros being further away from macros it is connected to, hence this increases
interconnect length and might increase the clock period. The disadvantage with the Bottom
Up methodology is that a prediction of the order of the cuts cannot be made, hence the
direction the external nets lead to cannot be known. So, for example, when presuming
(Horizontal/Vertical)® (HV)" cuts (where n is an arbitrary real positive value) partitioning, a
macro appears to being pulled upwards/downwards by extemnal nets in the cut set, where
the macros should actually be being pulled to the left/right. To demonstrate this point, look
at Figure 30, which has two floorplans: floorplan (i) can be split using HV cuts one after the

other; and the second floorplan (ii) does not consistently have a H cut followed by a V cut.

nl with weight 32 nl with weight 32
X X
Y .
n2 with weight 64 X
B
B

Figure 30. Diagram to Show How Net Lengths can be Affected by Cut Orientation.

Sub-Group A4 can be placed in site X or site Y in the floorplan (i). From above, a net with
weight 32 is connected to A and A4 is also connected to B with a value of 64. Ignoring the
length of the nets only the weight of them, it would be more beneficial to place A in
position Y. But in floorplan (ii) B is now to the right (still with the same area but has a
different shape). As the macros are long and thin, they have been placed alongside each
other by using a vertical cut so as to minimise dead space. Now whether 4 is placed into X
or Y is much more dependent on the external net from above as B only influences whether
A gets placed left or right of a partition. So now A4 should be placed in X presuming net nl
is the only external net. But if it is presumed that a H cut is always followed by a V cut

and that a V cut is always followed by a H-cut, then A would be placed in X as in
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floorplan (i). This would not be the optimal placement in terms of A and its external nets.
This is where combination of a top down and bottom up strategy will be useful, because
prediction of the order of cuts can be made when proceeding in a top down manner, then
using that information obtained on the way down the floorplan can be built in a bottom up
manner. This methodology will combine the advantages of both approaches without the

disadvantages.

2.10.5.1 Methods in which the Cut Orientations are Chosen

While the design is being partitioned a quick analysis of the sub partitions will be
processed. Firstly the square root of the total area of the original group G will be taken.
Now depending on different conditions, the cut will either be Vertical (V) or Horizontal
(H). The conditions will depend on the aspect ratio (AR) (Height / Width). Yildiz and
Madden show that by considering the aspect ratio, an appropriate cut direction [43] [99]
can be chosen. [69] decide on the orientation of the cut once the complete slicing tree has
been formed, so that the macros can be matched up evenly. But this method does not
consider how the smaller macro’s shape will conform to the overall design. So to
envisage this global view the complete design and consequent sub partitions will be
placed within boundaries called bins. Tessier places all the macros into bins whose
dimensions are decided by the largest hard macro [47], which is a good way of estimating
the order of cuts, without actually having to place the components. The bins will be at
least as large as the total area of the macros they contain and will satisfy the dimensions
of the hard macros. The bins will also ensure that design will fit within the boundaries of

the designated chip.

2.11 Interconnect Prediction

As previously discussed, when constructing a floorplan (estimated) Wire Length values
are used to guide placement. This section will now consider what interconnect properties
are needed to differentiate between a good design architecture and a bad design
architecture in terms of design criteria. It is insufficient to know the positions of the
components on a chip. Knowledge of the routing topology is needed to improve analysis
of a design architecture during exploration of the design space. Awareness of how the
circuit’s components are positioned relative to each other is now achieved due to
recursively partitioning the circuit’s netlist. This section will show how routing models
can aid prediction of interconnect length properties of a design, and in Chapter 3 routing

models will be incorporated into HLS to improve optimality of a design’s delay in terms
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of CP, hence total delay. The interconnect length properties will then be developed further
in Chapter 4, to show that this same relationship can provide more comprehensive details
about the circuit. This will deliver a better understanding of a circuit’s hardware

implementation at a higher level.

2.11.1 Different Methods for Obtaining a Priori Estimate of Routing
Topology

A measure of the complexity of the interconnect topology needs to be achieved. This
interconnect topology can affect delay, area, power, etc. The first metric which shall be
used to represent interconnect topology is average interconnect length. Reducing the
average interconnect length will reduce the size of the local nets hence allowing easier

routing [109][84], but still keeping global nets under control.

2.11.1.1 Average Interconnect Length Prediction

To predict average interconnect there are three ways.

(i) A Pre-Floorplan prediction uses statistical prediction based on previous design
properties. This concept of prediction can be used for many different designs
as it does not need a floorplan. At this stage two-pin nets are presumed so that
prediction of multipin nets is not needed (and which in a floorplan would be
needed).

(ii) Post-Floorplan Prediction uses a floorplan to predict the length of individual
nets. These nets can then used to find the average interconnect. This uses
partial prediction as the actual routing of each individual interconnect will
need to be predicted.

(iii)  Post-Placement Prediction uses more routing information, as now there is a

much higher level of information.

A truly a priori method is needed for obtaining estimates of the routing topology.
Simultaneously the method needs to be quick enough to test many different architectures

in a short enough time to make the process viable for HLS.

Pre-Floorplan Prediction

Statistical Inferences
These approaches try to predict how a circuit will behave without actually measuring the
individual interconnects themselves. For the following, statistical inferences are based on

a relationship called Rent’s Rule. Rent’s Rule is an a priori method for estimating
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interconnect properties [32] [94] [7] [29] [33] [46] [74] [65]. Only the information
provided in the netlist and partitioning the circuit is required to use Rent’s Rule, as will be

shown in section 3.8.

If any physical information about the design is desired, prior to the APR tool, partitioning
the netlist of the design is the fastest method to obtain that information. The most
important detail is that Rent’s Rule provides physical metrics, which are accurate enough
to compare different design architectures. Rent’s Rule has been shown to be an accurate
interconnect a priori estimate for ASICs [14] [30] [31] [8] [12] [65] and FPGAs [37] [74]
[89] [25].

Interconnects between macros shall only be considered, not the interconnects between the
cells that make up the macros. The reason for this is that macros are only being
considered during HLS not the cells that make up the macros, but when macros are used
in the following section, cells can be interchanged with macros without affecting the

properties of the relationships discussed.

Rent’s Rule gives a complexity measure of the interconnection topology and the quality
of the placement, or if placement has not been done, an estimate of the quality of the
placement using circuit partitioning. This is the relationship between the average number
of terminals (or pins) T of a part of a circuit (a bin) and the average number of
cells/macros (Basic Logic Blocks B) inside the bin. ¢ is the average number of terminals

per cell/macro, p is the Rent Exponent and their relationship is given by:

T=1tB" (10)

Equation 10 is called Rent’s Rule [12].

The relationship T = ¢tB” provides the Rent exponent p. The Rent Exponent depends on the
complexity of the interconnect topology (with higher values for more complex
topologies) and on the quality of the placement (with higher values for less placement
optimisation). The Rent exponent can be in the range 0 < p < 1, but generally p’s value is
between 0.5 and 0.75. The relationship of the equation follows (depending on p): if p is
close to 1 then this increases B’ to a higher value, which in turn makes the RHS of the
equation higher. Hence the number of external nets between bins becomes larger, which

means the overall interconnect length also becomes larger. As p decreases in size this also
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decreases the RHS of equation 1, which means the overall interconnect length reduces.
Hence this relationship can be used to predict the routing behaviour because:

e The more complex the interconnect topology, the harder it is to route the
interconnects, which increases interconnect length and could increase area.

e If each bin is connected to a high number of bins this means it is much harder to
place the bin next to its topological neighbours, which again will increase

interconnect length because the neighbours will be placed further away.

The bins can represent transistors, gates or even entire circuits. The average interconnect
length of a design’s architecture can be calculated using p (derived from Rent’s Rule)
placed in a equation that maps out the behaviour of average interconnect depending on a
design’s p value. The derived equation to calculate the average interconnect length is

given in section 3.9.

As Rent’s Rule gives a level of complexity of the interconnect topology, this can be used
to derive metrics that are heavily influenced by how complex the interconnect topology
is. For example if the interconnect topology is highly dense in a particular region, this
means there is a large amount of interconnect in that region, which means there will be
fewer available routing tracks for nets to be placed, compared to a region which is sparse.
Have fewer tracks to be routed on, makes it probable that nets will be forced to find sub-
optimal routing tracks to be routed on, hence increasing the delay of those nets, which in

turn can lead to an increase in the CP if those nets lie on the critical path.

Derivatives of Rent’s Rule can then be used in conjunction with an estimated floorplan to
further improve the design’s architecture. It is shown in [31] that for FPGAs that when a
placement was refined the Rent exponent also decreased, hence showing it is a valid
metric for a measuring the optimality of a design’s architecture. [89] shows there is a
strong correlation between Wire Length and the Rent Exponent for a fixed design
architecture. D. Chen et al. use Rent’s Rule to achieve constant reduction in area and
power [71], while also reducing delay in most cases, where they state using the results in

[68] that 60% of the total power is taken up by interconnects in deep sub-micron FPGAs.

To reduce the drawback from the non-homogeneous properties of a circuit, the Rent
Expornent can be obtained from values available while partitioning the circuit’s netlist. This

would be highly computationally expensive. To construct a floorplan, circuit partitioning
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will have already been performed.

Post-Floorplan Prediction

Once a floorplan has been generated, the floorplan can then be used to estimate distances
between macros, which in turn allows interconnect lengths to be enumerated in terms of
delay. The length of interconnects can be used to obtain interconnect topology properties
of an entire circuit, but require much more computation, due to having to enumerate every

single net to obtain a complexity measure of the estimated routing topology [86].

An extensive survey on detailed routing can be found in [48] but these algorithms are out
of the scope of this thesis. The routing algorithm is far too complex to obtain a priori
estimate of the interconnect lengths. Detailed routing of all the nets would be impractical
to obtain the expected lengths. Maze Routing [38] for example becomes redundant, due to
it being too slow to be feasible. Kastner, et al. uses pre-defined nets to limit the search of

all possible edges in which the interconnect can travel [40], but this is still too slow.

2.11.1.2 Conclusion on Proposed Interconnect Predictors
After partitioning the netlist, the only information available is how the elements are

related hierarchically. So the only logical method to predict interconnect properties is
Rent’s Rule, because the relationship only requires knowledge of the interconnections,
size and number of the logic blocks and hierarchical information obtained from
partitioning. Using Rent’s Rule, the average interconnect length of a design can be
calculated immediately after partitioning the netlist, this will give a quickly derived
metric to be implemented in the cost function of MOODS. To further estimate
interconnect topology, knowledge of the congestion is needed as this affects interconnect

extensively, hence congestion shall now be discussed.

2.11.2 Congestion Estimation

In order to analyse a circuits interconnect properties an accurate estimate of the
congestion of a circuit is needed. But first how congestion is related to interconnect and
why it is important to the prediction of the routing layout in HLS shall be examined.
Where a region is congested, nets that are located in that region have much more chance
of having to detour outside the bounding box [98], hence increasing the net length. The
reason for the last statement is when the routing channels of a chip get congested, the
design will become harder to route, which will increase time spent routing the chip and

could increase the average interconnect length.
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Maximal capacity of a routing channel is 2 interconnects

interconnect between modules alternative route for interconnect between C and D
e minimum distance interconnect between C and D but blocked by congested routing channel

Modules Routing Channel

Figure 31. Circuit which Shows Increased Interconnect Length Due to Routing

Channel Congestion, with 2 Layer HV Routing.

A chip’s routing channels become congested in various ways. The chip can be affected by
having longer interconnects between modules, which means more routing channels are
monopolised, i.e. the tracks within the routing channel are used, leaving fewer tracks
available for unrouted nets. This causes the routing channels in that area to become more
densely populated, which leaves less room available for routing other interconnects. This
unavailability can lead to a routing channel becoming full, i.e. blocked, which means that
interconnect will need to find a different routing channel to connect all the pins that
belong to the same interconnect. This alternative route can increase interconnect length,
as shown in Figure 31. Congestion of a circuit relates to what interconnect resources are
needed and what resources are available, i.e. the closer routing demand is to routing
supply the more congested a circuit is. The Four main factors that influence congestion
are:

¢ Area Utilisation

e Availability of Routing Channels

¢ Number of Nets

¢ Length of Nets

Area Utilisation represents how dense the surface of the chip will be, i.e. the ratio of the
number of occupied slices to the total number of available slices. As an FPGA has fixed
routing channels, the widths of the channels do not need to be considered when

considering the level of congestion in a region. As the routing channels have a fixed value
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they will not influence the calculation of the congestion. The number of nets and the
length of those nets can be represented by the average interconnect of a circuit. Average
interconnect is a major contributing factor to congestion as the longer the interconnect, the
more densely populated the routing channels become, which leaves less room available
for routing. The Wire Length objective is found to be a very useful metric when
minimising congestion in placement [63]. When the routing channels get congested, the
design will become harder to route, which will increase the time spent routing the chip

and could increase the average interconnect length.

The higher the congestion of a circuit the more chance there is that a routing channel of a
circuit will be full when wanting to route an interconnect in it. This means that the
interconnect needs to find a different channel to connect all the pins that belong to the
same interconnect. This alternative route can increase interconnect length, as shown in
Figure 31. C. Cheung et al. attempt to reduce this by altering the paths of the nets to

reduce congestion [121], but that is too low level, so is infeasible for HLS.

Also the more an APR tool has to find alternative paths for interconnect, the longer the
run time will be, especially if the routing tool has to rip up all the interconnect and start
again. But re-routing the chip takes time and might not work, so in the worst case, a larger
chip will be needed to allow for the routing. If a larger chip is not desirable or possible,
the RTL design can be altered to decrease the area, which will increase the time to market

window and could cause further problems with delay.

2.11.2.1 Definitions of Congestion

Routing demand is a made up of an internal routing demand and an external routing
demand. The internal routing demand for a region is proportional to the total routed Wire
Length within that region, which can be obtained from the average interconnect in that

region, which can be derived from Rent’s Rule.

External routing demand needs a probability density function to represent the probability
that interconnects will pass through that region from other regions. Figure 32 shows the
internal and external nets according to placement regions. J. Dambre et al. sum up the
individual routing demands in each region to form a congestion guide [13]. The
congestion guide can be used in the cost function as an extra variable and has been shown

in to be very useful when optimising a design [13]. The more congested a design is the
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harder it is to route and the average interconnect length will increase.

Internal nets

Placement
regions

External nets

Figure 32. Placement Region in More Detail.

2.11.2.2 Previous Work on Congestion Estimation

Congestion Reduction During Placement

Pandini, et al. do not believe that accurate prediction of congestion of a circuit can be
achieved without introducing iteration loops between the Logic/High Level synthesis and
APR tools [35], which requires multiple iterations. But MOODS is comparing many
different architectures for a design, so this is not feasible. If interconnect length can be
predicted at a high level then congestion should also be predicted at a high level, on the
basis that congestion is highly dependent on interconnect length and routing channel
resources. Routing channel resources would depend on the technology but especially
when dealing with FPGAs, the routing resources are fixed, hence can be predicted with a
high level of accuracy. P. N. Parakh remarks in [118] that Wire Length is a good metric
for good placement, but it is an indirect measure for congestion as it only represents
demand not supply. But an FPGA’s supply is constant with respect to each family of chips,
as discussed earlier. Previous methods of congestion derivation will now be shown. Yang,
et al. show two approaches to measuring the congestion of a circuit [13]. The first

approach measures the peak congestion, which is given by:

JN & —1
c S (l+2aj7‘ (11)

max \/V( 2% -1

where C, 1s the cost of the cut at the first Bi-Partition;



76
o is the ratio between the net cuts of two consecutive partitioning operations
in an ideal circuit this is equal to 2®, where p is the Rent Exponent;
N, is the number of cells in the circuit;

H is equal to loga(N,).

Again this can be obtained without relying on a floorplan, so could be calculated as soon
as partitioning has been completed, and hence will give a quick congestion metric for a
design.

Yang, et al. then proceed into local congestion, which is more detailed and would require
a floorplan. The level of routing demand in the region controls local congestion. Routing
demands give two useful properties for the following

¢ Routability in a placement region

¢ Congestion guide for the overall Design

X. Yang et al. present an equation to measure the congestion in sub regions [34], which
is:
If the macros of sub-groups G1 and G2 of group G have approximately the same area,

c =Ltlogl, ;i

lo (EL]
8N

Where r; is equal to the local Rent exponent

then Congestion (12)

C; is the congestion of that region

log(Ty;)is the intersection on y axis

N is the number of sub partitions
B; is the number of logic blocks
P is the Rent Exponent

The problem with this equation is that the circuit would have to be large enough that the

local regions are themselves large enough for the Rent exponent to be extracted.

In [18] a probabilistic matrix is used to predict all possible routes that a net can take. To
find the congestion they then enumerate every net, which is computationally expensive.
This graphically shows however, how congestion prediction is a good prevention measure

for congestion limitation in the final implementation. [109] define local nets in terms of a
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net that has a terminal in one bin and then has a terminal in one of its neighbour’s bins,
otherwise it is deemed to be a global net. Firstly, multi-pin nets would have to be
considered for this to work and we do not consider them. Secondly, this method would
depend very highly on bins being of equal size. This is hard when dealing with macros of

varying size, and can lead to unfair representation as shown in Figure 33.

E i

[0

Figure 33. To Show How Different Macro Sizes Affect Global Wire Length.

The congestion improvement using the method found in [109] is predominately based on
Wire Length and gives favourable results. [105] use the number of times a net is cut, but
this time they divide the Wire Length by the number of edges that cut it. This is a much
truer representation of local congestion. They define the overall congestion of a chip as
the total over flow of all edges or the number of congested bin edges. Again this depends
on size of bins, which is not applicable. They show that Wire Length is a very good
objective for congestion, but state that this is not always the case. To combat this M.
Wang and M. Sarrafzadeh introduce a simple look-ahead strategy where they consider
how a move will affect the system by introducing the following cost function:
max(d,,s, — §)—min(d,',s, - 5) (13)
where d, is the current demand on edge e

d,’ is the resulting demand on e if move accepted

0is an adjustable parameter.

Again this strategy would be useful if we were trying to improve a congested floorplan by
moving bins around but a global congestion value is wanted. But this paper shows that

Wire Length is a good metric for estimating congestiorn.
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P. Kannan, et al. present 4 methods of predicting congestion in a circuit [42]. Three of the
methods would need a floorplan, while the fourth uses Rent’s Rule [13], and hence does
not need a floorplan. They are measuring the peak routing demand. The three methods are
based on fGREP[17], RISA[16] and Lou’s Method[18]. Enhancements are shown for
fGREP and Lou’s Method, where they increase the speed of fGREP and accuracy of
Lou’s Method. Results show that the enhanced fGREP is very accurate while maintaining
a high speed. RISA is extremely fast while beating the accuracy of Rent’s Rule and
enhanced Lou’s Method. Lou’s Method beats Rent’s Rule for speed and accuracy. The
times given for Rent’s Rule include the time to partition the circuit, but partitioning will
have already been completed in our case. Calculation of the congestion metric would only
require the values to be inputted into the equation, which would require a negligible
amount of time. [98] extends RISA from just reporting the Total Routing Demand to
finding the maximum channel width, which is not in the scope of this work. For a quick
analysis, Rent’s Rule is still the best candidate for measuring Peak Congestion, so it will
now be discussed in more detail. But when measuring local congestion, enhanced fGrep

or RISA looks very attractive, depending on accuracy or speed respectively.

Congestion Reduction by Utilising Dead space

When trying to reduce congestion on a circuit, a preventative method can be used, that is
obtaining a congestion metric and using it to influence the design of the circuit. Or you
can cure the circuit of congestion. A circuit can be relieved of its congestion by spreading
out the macros. Densely placed designs with little dead space can increase congestion,
while designs that are sparsely packed can increase delay so a compromise needs to be
found. [58] use an analytical approach to solve this problem, which is too slow. Another
congestion minimisation method uses the dead space on a chip for expansion, so as to
reduce congestion [109][85]. B. Hu and M. Marek-Sadowska alleviate congestion in [109]
by considering dead space (also called whitespace). The method presented in [109] is
used to improve a congested design, and not prevent the design from being congested in
the first place. P. N. Parakh et al. use Quadratic Programming in [118] to relieve
congestion by increasing bin sizes. They form these bins by recursive partitioning. But
these types of methods will have little impact on the usefulness of the floorplan in HLS,
as they use dead space to reduce congestion, whereas we are not concerned with dead
space as it will have little impact on distance between metrics, as the floorplan is an
estimate. In the work of this thesis the only concern is that macros are in the same

approximate location (with respect to all other macros) as their location when actually
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implemented on a chip. These methods are only useful once a floorplan has been realised
so as to further improve a detailed placement, which is too low level for High Level

Synthesis.

In [87] N. Selvakkumaran, P. N. Parakh and G. Karypis address the problem of locality of
congestion, with the main focus on the non-homogeneity in routing supply, which is not
applicable to FPGAs. But they do introduce a measure called “perimeter degree”, which
is the net degree of a bin divided by the bin’s perimeter. The usefulness of this can be
seen in Figure 34 [87]. The perimeter degree is a much fairer representation of the
congestion in that region than just the net degree. B has more routing resources available,
thus it will have a lower perimeter degree compared to A, which has the same net degree

but has less routing resources. They then use Rent’s Rule to prove the following

relationship:
. _P
Perimeter Degree = %’erimeter
_ kB”
sqri(area) (19
= const * BP9

where p is the Rent Exponent, the Perimeter is the perimeter of the region on which the
perimeter degree is being measured in. Finally B is the size of the region same as in
Equation 10 (kB"), where the size is measured as the area of B, hence the sgrtfarea) is

equal to B>, Obviously this would depend on the bins being square.
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Figure 34. Considering a Macro’s Area when Considering Congestion can Alleviate

Congestion.

Effectively the perimeter degree is based on Rent’s Rule which is the same basis for
estimating the average interconnect length. N. Selvakkumaran, P. N. Parakh and G.
Karypis then introduce a heuristic to avoid finding the Rent Exponent. To get to this

stage, circuit partitioning will already have been performed, so the Rent Exponent can be
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obtained for free. They use this perimeter degree as a constraint to alleviate congestion by
expanding the bins, by reducing the perimeter degree it alleviates congestion as shown in

Figure 34.

2.12 Conclusion of Congestion Methodologies

The critical path is of most concern, but as the congestion metric will be a global
measure, the critical path will be dependent on congestion. The higher the congestion, the
larger the delay of the interconnect belonging to the critical path, which is detrimental to
the design. Where [13] splits congestion into internal and external routing demand,
internal routing demand is of only concern where the region is the entire chip, as a global
congestion measure is desired. The external routing demand would be the IO pins, hence
the internal routing demands for a circuit is predominately influenced by the average

interconnect length of a circuit.

2.13 Floorplanning

So far, average interconnect and congestion have been the only physical properties that
have been considered for estimation. They have not needed a floorplan to calculate their
values. But if merging two macros is being considered and the distance between these
macros is needed, knowing their relative position is not enough as we do not know in
which direction the macro’s neighbours lie. Two methods can be used to obtain an

approximate distance of a macro and with any other macros on a chip.

Firstly using the hierarchical information, the number of cuts between the two macros
could be used. So, a larger number of cuts could imply that the macros are quite far away
from each other. But this can be misleading, as it would depend on where each sub group
is placed. The second method is to construct a floorplan. The main application of this
floorplan is to obtain a fast, global view of the macros. The information from this floorplan
is basically to show whether macro’s respective distance is at a value in which it would be
desirable to perform transforms during HLS. These transforms are either to merge macros

on the data path, or to unmerge a macro that has previously been merged.

The method of constructing a floorplan has already been decided (Recursive Bi-
Partitioning, but how a floorplan is actually represented has not yet been discussed. The
floorplan will be constructed during HLS, as a simple representation containing the

dimensions and locations of all the macros. Hence when constructing the floorplan a
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representation is needed that is fast to construct, in which information is easily available,
and which does not require a large storage space. This floorplan is needed so that distances
between macros can be calculated accurately, in order to aid decision making when
considering duplicating or merging functional units (discussed in greater detail in section
4.11). The following section will now discuss these individual properties and describe

relevant floorplans that would have these desirable properties.

2.13.1 Floorplan Representations

The floorplan representation includes the geometry and size of the components, including
the gaps in between the elements if they do not fit exactly together. The floorplan will
need to include the type of component, either a hard macro, in which the geometry of the
element cannot change or a soft macro, in which the geometry of the element can change,
also the orientation of the element will need to be considered. Hard and soft macros have
to be considered, as FPGAs have hard macros such as adders (any macro that uses carry
logic) and FPGAs also use soft macros for any other macro that does not use carry logic.
Both types of macros need to be considered, so that the floorplan in MOODS will be

similar to the FPGA’s final placement.

2
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Figure 35. Different Floorplan Representations.

There are 3 types of floorplan representations: sliceable, non-sliceable and mosaic as
shown in Figure 35. A sliceable floorplan is where the macros can be organised in a set of
slices which recursively bisect the layout horizontally and vertically (hence a non-

sliceable floorplan is where you cannot). Figure 35(ii) is also called a Wheel. A mosaic
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floorplan is similar but the floorplan cannot have any gaps as in Figure 35(ii) and cannot
have a crossing cut as shown in The merging transformation implemented in MOODS is
shown in Appendix 7.1.2.1. To merge a functional unit depends on the following
conditions. First whether the operation of the functional units can use the same hardware
and in which states they exist after scheduling has been performed. Secondly the
interconnect length between the two functional units can be thought of as a gravitational
force, where the larger the interconnect length, the less gravitational pull the units have on
each other. Conversely the larger the gravitational pull the more likely that the functional
units will be merged, this is dependent on whether the functional units are suitable for
merging, for example the units will need to be of the same type (i.e. both adders). Two
functional units would be merged to reduce the area of a chip. If the area of functional
units is large then there is more to gain by merging rather than if the functional units are
small. Ideally the area of the functional units being merged needs to be larger than the
area of all the components to be added to legalise the design, this is so that the design’s
area is reduced. In Figure 13, this would mean that the area of adders one and two should
have less area than the new adder and multiplexer (where the multiplexer was added to
keep the design functionally correct) that replaces them, in order to make this
transformation worthwhile. If both functional units have a high number of Input/Output
net values, then this would discourage merging of the functional units, because all the
interconnects from both functional units will be brought into one locality which will
increase congestion. Merging of two functional units is not warranted if the routing
channels in the affected area are heavily congested before merging, because all the
interconnects which flowed into the original functional units will now flow just into one
functional unit which will increase routing density to an even higher degree. Excessive
attempts to minimise the area can cause higher congestion [23], which can lead to the
actual area being increased. So another constraint to merging two functional units is a

global congestion measure.

Figure 35(i) by the dot. To produce a fast and efficient algorithm it is very important to
decide how the data will be stored and accessed, enabling ease of manipulation. An
extensive analysis of recent advancements in floorplan optimisation can be found in
[90][15][96] and [24]. [92] introduces bounds on the number of solutions for a particular
floorplan representation, the reason being that the smaller the solution space the easier it is
to find the most optimal solution. [15][24] compare the attributes of all the recent

methods in optimising floorplans. All the methods presented in these papers are focused
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on area optimisation (as expected), but the run time of the algorithm is more crucial. This
is due to many designs being constructed and RBMT should have produced an optimal
hierarchical structure from which an optimal floorplan can be constructed. After RBP a
circuits netlist, a slicing tree (structure) [88] [69] is produced. If the placement algorithms
discussed in the last paragraph were implemented, the slicing tree would have to be
transformed into a different format, which would require time (hence increase the run
time). Slicing floorplans, due to their nature, are very fast and easy to implement. Wong
shows that slicing floorplans produce good floorplans for soft macros [39], and in the case
of FPGAs the majority of the macros are soft. Incremental changes are easily applied to
slicing trees [97], which is a highly desirable property, as this speeds up the transition
from one slicing tree to the next slicing tree, when the Data Path (DP) is changed after a

transformation has been applied during HLS.

M. Lai, D. Wong show that a slicing tree can represent a non-slicing floorplan [21]. They
use XY-compaction to transform a slicing tree into a non-slicing floorplan. XY-
compaction pushes every macro to the left until no macro can move any more to the left,
then every macro is pushed downwards until no macro can move downwards. This is
repeated until every macro cannot be moved either to the left or downwards. Alternatively
the initial push could be downwards then to the left which might give a different
floorplan. The drawback of this method is that it might separate macros from each other,
where partitioning has derived the macros should be placed together to minimise Wire

Length.

2.13.2 Calculation of Macro Proximities

To enhance interconnect prediction to include individual interconnects, knowledge of
how the macros are placed with respect to each other is needed, which cannot be achieved
by simple partitioning. To enable this better understanding of how the individual
components are connected a floorplan has been produced. Two-pin nets are then used to
model interconnects to reduce computation with a negligible loss in accuracy. The half
perimeter of the bounding box is then used to estimate the actual length of the respective
interconnect. This method of calculation will also be used to measure the distance
between two macros placed on the floorplan, whether connected or not. The distance
between two macros when not connected will need to be known in the case when
decisions are being made as to whether to merge a functional unit. This will now be

discussed in the next section.
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2.14 Conclusion on Interconnect Predictors within HLS

In this chapter physical estimation has been discussed, with the main focus on
Interconnect Prediction. The entire prerequisite that are needed to allow Interconnect

Prediction during HLS were introduced, and the following conclusions were made:

The Rent Exponent (p) obtained from Rent’s Rule relationship shall be used to obtain a
measure of the estimated complexity of the routing layout of a design’s architecture once
implemented in hardware. The higher the complexity of the routing layout, the larger the
interconnects will be due to less likely that the interconnects will find an optimal path. To
obtain p a slicing tree of a design architecture is derived. Recursive Bi-Partitioning (RBP)
has been chosen to construct the slicing tree. RBP minimises the cut set when performing
the partitioning. p will then be input into an average interconnect equation that will take
area of the design into account as the larger the area of a design, the greater the

interconnects will need to span.

Estimated Average interconnect length (AIL) will give a measure of the congestion of a
circuit, as the higher the AIL, the greater the demand on the routing channels. Finally to
obtain interconnect lengths or distances between macros (which is needed when deciding
on whether to perform merging or duplicating functional units with respect to
interconnect lengths) the hierarchical slicing tree formed from RBP is used to construct a
floorplan, which will then give locations of all the macros in a design. The estimated
interconnect properties from Rent’s Rule (derived from RBP) and the floorplan will then
be made available to MOODS to influence decisions on which candidates are most
appropriate for merging and duplicating within a design architecture. Through the
increase in accuracy of the physical characterisation of the design architecture, these
transformations will have an improved effect on the optimality (reducing CP) of a

design’s physical implementation in hardware, hence produce timing closure.
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Chapter 3 Pre-Floorplan
Interconnect Prediction

Foundations now have been laid on which to find suitable Interconnect Prediction
Methods to guide our HLS tool. Once all the new interconnect metrics are incorporated
into MOODS, the new metrics will improve the optimality of the eventual design
architecture. The main focus of the metrics will be the improvement of the delay
optimisation in terms of total delay and clock period. The first priori estimate of
interconnect properties of a design will be the average interconnect length, derived using
Rent’s Rule as an accurate predictor of the average interconnect length of a design once
placed on the designated chip. In the case of this thesis, the targeted chip for the designs
to be placed on will belong to the Xilinx Virtex series. When average interconnect
prediction is shown to be accurate (high enough for high level synthesis) this will show
that prediction of the general routing layout can accurately be achieved at a high level.
This can then be used to guide design space exploration during HLS, as routing layout
can drastically affect a design performance in terms of delay. When the designs
optimality in terms of delay shown to improve using interconnect prediction, this will
show that Interconnect Prediction is a beneficial addition to HLS. At this stage the
hierarchical information obtained from Recursive Bi-Partitioning (RBP) (i.e. how macros
should be grouped together) obtained during HLS will be used to aid the placement in
Xilinx, this will be shown to improve designs in terms of delay. This is due to placement
forming the foundation for all the routing that follows; hence a good placement can
provide a good platform for routing. Also the design improvement shows that during HLS
the groupings formed during circuit partitioning are accurately portraying an optimal
placement. The Quasi-Exhaustive (section 2.7.3.2) algorithm will be used for this as it
gives a fair comparison between all the metrics belonging to the cost function, allowing
an excellent way of discovering whether Interconnect Prediction within HLS can provide
Clock Period Reduction. This will now lead onto the next chapter, where a floorplan
generated from the hierarchical information provided by RBP (during HLS) will be used
to make much more detailed analysis of interconnect characteristics of a design, hence

aiding decision making during HLS.
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This is where using the estimated location of macros and the routing topology will be
used to consider whether a certain transformation will cause a detrimental effect on the
routing topology which in turn will cause a detrimental affect on the delay as the
interconnect on the chip plays a large role in the total delay produced by a chip. These
metrics will need to be formulated so that MOODS can effectively use them when

performing design space exploration.

In this chapter interconnect predictors that do not require a floorplan to be realised will be
discussed in terms of how the metrics are obtained, and in what way the metrics influence
design exploration, with results to validate the methodologies. In the next chapter
interconnect predictors that need a floorplan will be introduced. As discussed in earlier
chapters, to achieve a quick analysis of a design’s routing layout, circuit partitioning will
form the basis of all interconnect prediction in this thesis. But in order that circuit
partitioning and all the estimation tools that follow are accurate, the Xilinx Virtex Series

Architecture needs to be understood.

3.1 Architectural Considerations

When obtaining a metric to be placed with the cost function of MOODS during synthesis,
the metric needs to represent the routing characteristics and the type of technology will
have to be considered, for example whether the design will be implemented on an FPGA.
Hence the architecture of the chip that the design is to be placed needs to be quantified in
terms of area and delay. This means knowing the number of placement sites that are
available, and how many placement sites are needed for a macro to be placed on the
designated chip. These values are then stored in the cell library in MOODS, this library is
then accessed when providing the structural information to the black boxes that represent
macros during HLS. In terms of delay, the length of time that a macro takes to complete
its task when implemented on a chip needs to be known. Finally how many IOBs (as
shown in Figure 5 in section 2.4) does the chip contain, so that the designs off chip nets

do not exceed the number of IOB sites.

The series of chips that will be targeted in this thesis belong to the Virtex FPGA Series,
which comprises 9 distinct chips, with the same basic architecture. The Virtex FPGA
series has been chosen as it offers a wide range of system gates from 50000 (XCV50) to
1000000 (XCV1000), enabling many different design architectures of varying sizes to be

implemented on the chips. The chips allow a highly optimal placement and routing of
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designs and are a very popular brand of chip. The Xilinx Virtex Structure is the same as
the structure in Figure 6 in section 2.4. A functional block on a Virtex chip is called a
Configurable Logic Block (CLB). Each CLB on a Virtex chip is comprised of two slices.
A slice consists of two independent SRAM Look Up Tables (LUT), embedded
Multiplexers, Carry Logic and two Registers. Each LUT can be configured into a 16 x 1
RAM unit or a 16 bit shift Register. When a LUT is configured into a RAM unit this is
known as distributed RAM. There is also dedicated Block SelectRAM (BRAM). BRAM
are placed in two columns, the first column is placed in between the first column of CLBs
and the IOBs to the left, and the second column is placed in between the last column of

CLBs and the IOBs to the right.

The routing consists of 5 layers of horizontal and vertical routing channels.
Programmable Interconnect Points (PIP) are used to connect the routing of channels
together, where they are pre-programmed to define in which direction a signal goes [23].
The PIPs are located in switch matrices (boxes) that are located where the horizontal and
vertical routing channels overlap. Routing can also pass through CLBs using pass
transistors. Hence by decreasing the interconnect complexity, this resource will not have

to be used, thus decreasing the number of slices needed to place the design.

There are different types of routing on a vertex chip: general purpose routing and global
routing. The general purpose routing makes up the majority of the interconnect resources.
The general purpose routing can be split into 3 types:
1. 24 single-length lines between adjacent switch matrices in 4 directions
2. 72 buffered hex line routes switch matrices to other switch matrices 6 blocks away
again 4 directions.
3. 12 longlines, in each column and 24 longlines in each row, are buffered bi-
directional wires that distribute signals across the chip. If the longlines run in the
vertical/horizontal direction the wire runs from the furthest left/top of the chip to

the furthest right/bottom of the chip.

Global routing is used to distribute the clock and any signal with high fanout. There are
two standards of global routing; the primary global routing contains 4 dedicated global
nets with dedicated input pins for clocks, driven by global routing buffers to reduce skew.
The secondary global routes contain 24 backbone lines, 12 across the top of the chip and

12 across the bottom of the chip. 12 distinct signals can be distributed using these lines
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via 12 longlines in each column. There is one more type of dedicated routing, which is for
the carry logic, there are two dedicated routes per CLB for vertical carry signals to

adjacent cells.

The interconnect resources just described dominate the area and delay of an FPGA, so
FPGAs are prime candidates for the use of interconnect prediction, as reducing the
interconnect lengths will reduce the delay of an FPGA. When considering the layout of
interconnects (routing layout) there is one major factor that influences the optimality of
the routing layout, which is Wire Length. The longer nets are, the more routing channels
they occupy, which means, that when other nets are wishing to be placed, there is more
chance that these longer nets occupy routes that would provide the shortest distance for
nets that have not been placed yet. Hence forcing the nets to find longer routes, increases

interconnect delay, which can lead to an increase in the critical path if the nets lie on it.

3.2 Pre-Floorplan Interconnect Prediction

The interconnect properties are needed for accurate estimation of the density and
performance of the design, especially when considering deep submicron designs. Wire
length estimation of the interconnect lengths in a design implemented in hardware is
fundamental to measuring the affects of the interconnect topology. Wire length estimation
can include average interconnect of a circuit or individual interconnects between
modules. Wire length estimation has become increasingly more relevant, due to the
switching delay of gates reducing significantly with respect to interconnect delay. Hence
the interconnect delay can no longer be ignored, (making interconnect delay a greater
influence) when deciding which design architecture is to be implemented. Minimising the
detrimental affects of interconnect on the Clock Period, will produce a highly optimal
design in terms of delay. The longer interconnects between macros are, the larger the
delay between the macros connected by these interconnects will be. Hence if the length of
interconnect between macros is reduced, the delay will also be reduced. To enable delay
reductions to be made, accurate estimates of interconnect lengths between macros needs
to be obtained. These estimates can then be used when making decisions on whether to
perform a transform on the design architecture (such as merging or duplicating functional
units) during synthesis. The distance between macros cannot just be used by itself for the
interconnect prediction, as the routing is also affected by congestion, where the more
congested a chip is the harder it is to route a net on its optimal path, which will mean a

higher chance for the net length to be sub-optimal, hence causing an increase in the delay



89

of the net.

3.2.1 Average Interconnect Length Metric

A property that can be affected by the average interconnect of a circuit is the interconnect
congestion of a circuit, which can influence circuit area and interconnect length. A higher
number of longer interconnects can lead to more nets having sub-optimal paths. The
higher the congestion of a circuit the more chance there is that a routing channel will be
full (when wanting to route a net into it), this can cause the delay to increase as stated
earlier. And the more the nets have to look outside their locality, the greater detrimental
effect they will have on their neighbours which could cause a chain reaction, affecting the
entire chip. Circuit area can also be influenced by congestion if the routing channels
become so full that the interconnect overflows the chip, hence the circuit would need to be
put on a larger chip. This will increase the design’s area or the design’s architecture would

need to be changed to allow it to be placed on the current chip.

The higher the complexity of interconnects on the routing layout, the higher the
congestion of the circuit will be. Rent’s Rule can be used to represent the interconnect
complexity (Rent Exponent p) of a design’s architecture. Interconnect complexity of a
design gives a detailed guide of the density and performance of a design [6]. Rent’s Rule
achieves this by using circuit partitioning to obtain a relationship between the nets cut at
each hierarchical level and the size of the sub groups at that hierarchical level. This
relationship then allows an estimate of the complexity of a design’s routing architecture,
which is represented by the Rent Exponent (p), the less complex the routing architecture
the better the design is in terms of routing potential. Just p by itself is not a true
representation of an interconnect layout when considering delay between macros, as it

does not take into account the size of the overall design architecture.

The area of the design architecture needs to be taken into account as the larger the area of
a design architecture, the larger the interconnect delays on the nets, as nets will need to
cover more distance. To take area into account, the Average Interconnect Length (AIL) of
a circuit is used. AIL is calculated using equations which were derived under assumptions
on how p is obtained. AIL now gives a fair representation of the interconnect complexity
of any given design architecture, and can be used to measure how good a design will be in
terms of interconnect when physically implemented. Hence AIL will be the first metric
that will be used to influence decision making during the optimisation process within

MOODS.
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If the average interconnect length is relatively high for a particular design’s architecture,
this can lead to a chip having a larger area, as the longer interconnects need more
available routing channels or even CLBs (using pass transistors). If there are no more
routing channels available, a larger chip will have to be used to allow routing of all

interconnects.

The larger the average interconnect length, the larger is the Clock Period (CP), hence total
delay of the circuit, due to the larger interconnects between components. The average
interconnect length of a circuit is a beneficial metric to be used in HLS, due to the one
value expressing numerous characteristics in which to compare alternative design
architectures. This metric will be used within MOODS cost function to determine whether

to accept transformations on the design architecture during synthesis.

Congestion will be represented in the cost function by the Average Interconnect Length
(AIL) of a design (while also providing the average delay between macros), as the AIL
gives a complexity measure of the routing layout of a proposed design architecture. A
Congestion measure will also be used, when testing to see if macros should be merged or
duplicated during synthesis. The higher the congestion the more undesirable long nets are
between macros, as a high level of congestion will make interconnects even longer. So if
any transformation would increase the length of interconnects between the macros, then

the higher the congestion and the less likely we are to accept that transform.

3.3 Accurate Area Estimation

In order to obtain accurate estimates of the number of slices that a macro would occupy
on a Xilinx Virtex chip, a tool called COREGEN developed by Xilinx was used.
COREGEN allows a designer to map macros into cells that can be placed on an FPGA.
Hence this tool gives accurate information on how many slices a macro needs to be
placed on a Virtex chip. The different types of macros that are supported by MOODS are
then mapped using Coregen, the relation between the area of the macro and the number of
inputs plus the bit width of each of the inputs is formulated. Once this formulation has
been completed it is placed in a library for MOODS to access when constructing the black
boxes. As there are two registers within each slice, some registers maybe combined with
other functional units that the registers store the output of. By observing which registers
get observed when a design is placed on a Xilinx chip it was noticed that registers with

one input and one output were generally absorbed into the same slices as the functional
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unit they store the value of, so the register that has been absorbed will no longer
contribute to the total area estimated by MOODS. But if the register has multiple outputs
it was also observed that if the number of output nets numbers less than approximately

ten, the register would still be absorbed. The register absorptions can be seen in Figure

36.
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Figure 36. Register Absorption.

Figure 105 (Appendix 7.7) shows the total area (the total number of slices needed to place
a design) estimations of a design against the actual area results, with the % error value.
The estimated area is produced by MOODS using the method in the previous paragraph,
the actual area is measured once the design has been run in Xilinx and has completed the
Place and Route stage. The average % error for all the designs equals 2.666012 with the
range [-8.40662, 17.88377]. The % error is sometimes negative as the number of registers
absorbed is overestimated. A positive average % error is to be expected due to logic being
optimized during the Logic Optimisation stage in Synplify. The reason for the high
overestimate is that MOODS does not always remove all redundant logic, to tackle this
problem is out of the scope of this Thesis. But as is shown in Figure 37, majority of the %

error differences are within 10% with a few outliers.

Now that reasonably accurate area estimates are provided in MOODS (for macros being
placed on a Xilinx Virtex chip), partitioning of the circuit netlist can now be made, where
confidence that the size of the groups being partitioned is within acceptable accuracy. The
accuracy of the partitioning and the floorplan that will follow will be increased with more
accurate area estimation (improvement of the previous area prediction of MOODS). But
to ensure that the floorplan will be as accurate as possible, a method for influencing how
the design is placed during the Placement stage in Xilinx will be introduced at the end of
this chapter. This method will then show if the groupings produced by partitioning are
accurate. If influencing placement with information obtained during HLS improves the

design optimality, this will show that the groupings created during partitioning are
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optimal groupings and have been predicted accurately, as Xilinx will not necessarily

choose the most optimal design.
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Figure 37 to show the Absolute % Error of the Predicted Area against the Actual Area

3.4 Partitioning Algorithm within MOODS

Partitioning is used to obtain information about where every macro is, relative to every
other macro in the circuit. This information will show which macros should be placed
close together. When partitioning the design’s netlist, the elements are grouped together
according to how highly connected they are with their neighbours, so as to reduce the

number of longer nets that span the width or length of a circuit.

In this chapter partitioning of a netlist provided by MOODS will be discussed, to obtain
physical level information. During the explanation of the methods used to partition a
circuit’s netlist, macros will be referred to as nodes on a graph, where interconnects of
the macros are represented as nets that connect the nodes, the weight of a net is the
number of bits that are transferred between macros. When partitioning a netlist the

design is separated into multiple disjoint groups.

The two partitioning algorithms that are used are a neighbourhood search (greedy) based
algorithm and an iterative improvement algorithm. The latter will never be used by itself
as it is too slow, so the cluster based algorithm will be used then further improvement can
be applied by the iterative improvement algorithm, if any exists. But first some definitions

will be provided that will be used in the remaining part of this chapter.

3.4.1 Definitions Needed for Partitioning

Let o, represent the area of a € A, where A is the set of nodes (macros) in the first sub



93

partition formed by a cut at hierarchical level /

Let the total area of the node in A be 70, = Zaa . (15)

acA

Let &, represent the area of » € B, where B is the set of nodes (macros) in the second sub

partition formed by a cut at hierarchical level /

Let the total area of the node in Bbe 79, =) 0, . (16)

beB

The total area of both sub partitions A and B need to be equal or similar in size, i.e.

79, ~Td,

Let E, represent the nets, which start at a€ Aand finish in B, i.e. external nets. Let I,
represent the nets, which start at a€ Aand finish in 4, i.e. internal nets.

When considering moving a node from one sub partition to another in order to reduce the
size of the cut set, assurance is needed that when the node is placed in another sub-
partition that the number of external nets that are created (if any) are not more than the
original number of external nets that existed before the movement. This assurance is so
that we do not produce a sub-optimal cutset. Hence knowledge of the benefit the move
would provide in reducing the number of external nets of each sub-partition is needed.
The value that shall be used is called the D - value, which is given by:

D,=E,—1, (17)
The smaller the D-value, the less beneficial the move would be. When the D-value is
negative the move would be adverse to the overall solution. The reason for this is that if D
is negative this means that there are more internal nets than there are external nets. If this
node in question was moved to the other sub partition then the external nets would
become internal nets and visa versa. Hence now there are more external nets than there
are internal nets, meaning the optimality of the solution has been degraded.

When two nodes are swapped a € A and b € B, the gain produced by this swap is given
by

8w =D, +D,=2c, (18)
where c,; represents the sum of weights of the edges which connect a and . Equation 18

is comprised of the two D values of a and b, but if there are any nets that connect a and b
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then these will have no effect on the gain to the overall system as the nets will still remain
unchanged after the swap (i.e. both are external). Hence the value of the nets in question
needs to be removed from the equation. ¢4 is multiplied by two as the nets will be

included in both D values.

In order to choose the 2 nodes to swap in order to produce the most beneficial effect on

the cutset, we choose to swap the nodes which cause the greatest gain value given by
g_ub:max(g,,b),Vae ANYbe B (19)

Now we have swapped these nodes, we need to adjust the D-values of all the nodes
adjacent to a and b,

D/'=D_+2c,—2c,,Vxe A—{a}

b (20)

D, is the original D value before swapping a into the sub group B. If nodes have nets
connecting to a or b, the corresponding D values need to be changed as external nets will
become internal nets and visa versa. c¢,, is the value of the net that was connected to q,
where b is now entering the same sub group as x. Hence ¢,, needs to be multiplied by two
and is positive as first we need to remove the effect of the net as an internal net, then we
need to add the effect of the net now being an external net. ¢, is the value of the net that
is connected to b, where b is now entering the same sub group as x. Hence ¢, needs to be
multiplied by two and is negative as first we need to remove the effect of the net as an
external net, then we need to add the effect of the net now being an internal net. The
approach just explained is the same for Equation 20.

D,'=D, +2c,-2c,,Vye B—1{b} @)

ya?
If ae A is being swapped with b,,..,b, € B the gain value of this swap would be

n=1

gn[)],b2 vy = gab, N 2Cab,I + ZZCIJ,»b,,
i=1

(22)
where b, is the latest node to be considered. The maximum gain is given by
By, = max(gabl b, ),Vae A,Vb,,...b € B,n< ‘B| 23)
The difference in A and B areas is given by
e=[ro, —TE)B|‘ (24)

To ensure that € is not too great an upper and lower bound to € are used to keep the

difference in total areas of A and B satisfactory.
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Let £, represents the lower bound of € and is given by
>,

— _| zEG 5 1 :
£, = 2|G‘ , where |Gl is the cardinality of G. (25)

£, was found experimentally and is only an approximate bound. But it was found to

provide enough flexibility for the partitioning to reach an optimal solution, without the
sub groups being too different in size.
Let ¢, represents the higher bound of € and is given by

2.9,

E, — z£G
20 (26)

Hence £, <e</,.

The definitions in this section have provided all the tools that are needed for the
algorithms presented in section 3.4.2 and 3.4.3. The definitions are mainly used to decide
whether swapping a node to an alternative sub group is advantageous. The remaining

definitions are then concerned with keeping the two sub-groups equal.

3.4.2 Greedy Algorithm

The first partitioning algorithm, which is going to be used for partitioning a netlist, is the
Greedy (Gr) Algorithm, modified from [27]. The algorithm was designed for speed and
ease of implementation. The algorithm is outlined in figure 38, and a practical example is
shown in Figures 39 and 40. Figure 39 shows a graph of 14 nodes that represent macros
with unit area. The graph is desired to split into two distinct sub graphs, using the greedy
algorithm as described in Figure 38. Figure 40 shows the process of partitioning the graph
using initial node 1 and cut A shows the resulting partition. Now an outline will be given
explaining how the partition forming cut A in Figure 39 is derived. Let node 1 be chosen
to be the initial seed, hence node 1 is placed in set A, and every other node is in set B.
Next we need to choose the most highly connected node to set A. The nodes in set B that
are connected to nodes inside A are deemed to be connected to A (hence external nets),

and we wish these nets to be minimised in order to reduce the cut set.
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Greedy Partitioning Algorithm

Find € (Eqn 26) and mid point(mp) of the areain Gie. (2,0.+1)/2
If anode ne G is greater than mp enter n into A and go to 7

Choose node ne G to enter A, let na represent the last node to enter A
Find D values of all the neighbours of 74, and place them in a vector V
Order V in descending order according to D values

While Vis empty go to 3

Let n:= first element of V and removed from V

¥ (mp+{, <To, +d, <mp+¢)

S ORIl

nientersA and na = n:Go to 8
Else If (mp + £< T3, + k)

n:entersB
Goto6

Else
n:entersA and na = n.
Goto4

8. If the D value of n:is greater than O
Goto 4
Else
Goto9

9. Nodes which have not entered A are placed in B and End of Algorithm

Figure 38. Constructive Circuit Partitioning Algorithm

Key
cut i12) — — Nets with weight x

Cut B(ii) O node with area of 1 unit
(Value of
Total Value of cut is 26) Cut A
Cut B (i and ii) is 38 (Value of
cut is 36)

Figure 39 Representing the Effect on the cutset Depending on the Choice of Initial Node

The next step is to find a node in B that if brought over to A will produce the smallest cut

set than if any other node was placed in A. To make this choice we find the D value of all
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the nodes that are connected to A. If there is no node that resides in B and is connected to
A, then we just chose the node with the lowest number of weight of nets. The D values

that are in the “Respective D Values” column of Figure 40 are calculated as follows:

Node 4, 5 and 2 are connected to A through node 1. Node 4 has one external net that starts
in B and ends in A, namely the net that connects node 4 with node 1. Node 4 also has one
internal net that starts in B and finishes in B, namely the net that connects node 4 to node

5.

=D, =E, 1 ,=8-4=4

(|) A Node Numbers | Respective D Values
connected to A D,=E,-1,

@ @O® | o
60 ®0 o
OOG® ®® i
QOO ®® sl
OOOOG ®O® ]
000e0® |© 12
(”) @@@@@@ Reached Mid Point

\Y%

A Node Numbers Respective D Values
connected to A D,=E, -1,

00000@@®| o-czzzsa
@ @@@@@@@ 0,-4,0,10,-2,-6,0
OOO 01016101010
CIOI0I0)] OEOO®E T
000 |©00000 e
@EeOOG® ®OAOO® PN
@@@@@@ Reached Mid Point

Initial node is I resulting in cut A in figure 39

Initial node is 8 resulting in cut B in figure 39

Figure 40. Showing the Derivation of Sub Groups Formed by a Partition Using the
Greedy Algorithm (figure 38) with Different Initial Nodes.

The same method for obtaining the D value for node 4 is used for obtaining the D value



98

for nodes 5 and 2;

=Dy =E;—1,=4—(4+8)=-38

=>D,=E,—1,=4—(4+8)=-8

So node 4 has the most positive D value, hence is chosen to join node 1 in set A. Now all
the nodes that are connected to node 4 are now connected to A. The D Values are now
calculated for the newly connected nodes to A, and the already connected nodes if they
were connected to node 4. The next node will then be chosen depending on which node
has the highest D value, and so on until the area of A is within an acceptable range of the

mid-point of the total area of A and B.

3.4.3 Key Improvements to the Greedy Algorithm

Initially the algorithm did not use D values when considering the next node to enter A.
Only the nets incident with A were considered. This could cause a bad choice when
selecting the next node to enter A, owing to the chosen node having a large number of
nets not already in A. These nets then result in a high weighting being added to the cutset.
This problem becomes especially important during the latter phase of the algorithm. The
first improvement to the initial algorithm was the ordering of the Neighbourhood Vector
(V) in decreasing order using the Quicksort algorithm [91] for sorting and Select
algorithm [91] for selecting a good pivot. The Quicksort algorithm requires O(nlogn)
comparisons, where n is the total number of nodes. Hence the first node will always be
the best candidate for entering into A, this means the complete list of nodes in V does not
need to be looked at to find the best candidate, therefore reducing the run time. Further
explanation can be found in [19]. This causes another problem because re-ordering the
whole of V every time would be highly undesirable. Firstly, all those D values that have
not been changed do not have to be re-ordered. So only order the nodes that have been
affected by the latest entry into A, which might include nodes from V m B, then merge
this list with the existing nodes in V. The technique of the merge requires in the worst
case n-] comparisons and at best n/2 comparisons. This is a very efficient technique due
to the fact that every time a new/changed node is inserted into V, the whole vector does
not need to be ordered again - only a fraction of V. For the method to be efficient, the

number of nodes in the vector to be merged needs to satisfy the constraint:

mlogm1<(logn) 27)
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where m is the number of nodes in the vector which is joining V, and r is the size of V.
Hence the smaller m is, the more efficient the sorting method will be. If the constraint is
not satisfied then we use Quicksort and Select algorithm as before for all the nodes, but

this occasion will seldom occur.
3.4.3.1 Data Structure Improvement

When very large netlists were processed, a problem was revealed due to considerable
reduction in speed of the execution of the program. There is a repetition of most of the
numbers in the set, so when ordering this vector the searching process had to look at
multiple nodes with the same D value, this is illustrated in Figure 41, where x represents
a node in V and D[x] is equal to the D value of x. So the V vector would be as follows
with the node that has the largest D-value first, then descending in value.
V. {555,56,221, 1999, 46, 765, 64, 256, 141, 1566, 232, 356, 799, 999, 567, 679, 888,
1788, 1222, 1445, 987, 777, 675, 23, 1764, 1111, 123,432, 901, 1301, 32, 451,
987,741, 158, 469, 816, 1725, 1425, 247, 453,324, 874,....... }

D[555] = 6 D[679] = 2 D[32] = -2
D[56] = 6 D[888] = 2 D[451] = -2
D[221] =6 D[1788] = 1 D[987] = -2
D[1999] = 6 D[1222] =0 D[741] = -3
D[46] = 5 D[1445] = 0 D[158] = -3
D[765] = 5 D[987] = 0 D[469] = -3
D[64] = 4 D[777] =0 D[816] = -3
D[256] = 4 D[675] = -1 D[1725] = -3
D[141] =4 D[23] = -1 D[1425] = -3
D[1566] = 4 D[1764] = -1 D[247] = -4
D[232] = 3 D[1111] = -1 D[453] = -4
D[356] = 3 D[123] = -1 D[324] = -4
D[799] = 3 D[432] = -2 D[643] = -4
D[999] = 3 D[901] = -2 D[874] = -5
D[567] = 2 D[1301] = -2 ol el

Figure 41. Diagram Representing the Elements in V in Descending Order.

Now if the next node to be added has a D value of -3, assuming the search starts at the
beginning of the set, then 34 comparisons need to be made before the correct location is
found for this node. To prevent this from happening the type of storage arrangement was

changed. Instead of storing the node numbers in the V vector, the D values were stored in
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the vector, which would look as follows:
V:{6,5,4,3,2,1,0,-1,-2,-3,-4,-5, ......... }

These D values then point to other vectors for each respective node, which has that
particular D value as shown in Figure 42. So now if the next node with D value to enter is
-3, there are now only 9 comparisons. This data structure means inserting or deleting
nodes is a lot faster. When inserting a node, if the vector pointed to by that node’s D
value is non-empty, no further searching needs to be done on where to place the node’s D
value in V. If deleting a node, only the vector, which is pointed to by the old D value,

needs to be searched in order to delete the relevant node.

Corresponding Nodes
/\

[| 6 | === |555]| 56 | 221 | 1999 3
- | 46 | 765
==g%'> 64 | 256 | 141 | 1566
ey | 232 | 356 | 799 | 999
*;=> 567 | 679 | 888

M —_— | 1788

A§ —L 5 [1200|1445]| 987 | 777

P\ L ——
o=t
—_—
—_—
==
—_—

675 | 23 | 1764 | 1111| 123
432 | 901 | 1301 | 32 | 451 | 987
741 | 168 | 469 | 816 | 1725 | 1425
247 | 453 | 324 | 643
874

! L

—
X OHNOmMK

Figure 42. Showing the Data Structure which Holds the Nodes and D values.

3.4.3.2 Applications of the Partitioning Algorithm

The Greedy algorithm can be used in two ways. Firstly the greedy algorithm can be used
for speed, i.e. just pick a random starting point run the algorithm through once and use
the result to partition the circuit. The problem with this methodology is that the results are
very dependent on the initial partition. The results can and most often change depending
on the starting node chosen. This behaviour is demonstrated in Figures 39 and 40. For
example Cut A in Figure 39 has a value of 36, when initial node 1 is chosen. If the initial

node was 8, which is in the centre of the graph, the resulting cut is shown as cut B in
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Figure 39, and the value of the cut is 38, the derivation of this cut is shown in Figure 40.
The reason the cut has a higher value is that it has expanded from the centre fairly evenly
to the left and the right, which has caused a graph to be split into 3 distinct (disjoint)
groups. This increases the size of the cut, due to forming a bottle neck, where nets have to
pass through a small number of nodes before reaching the remaining nodes in the graph.
Node 8 is a bridge between the left and right of the group. Hence avoidance of

bottlenecks is preferable; as this will prevent a bridge, hence reduce the cut set.

3.4.3.3 Seed Selection

Obviously it would be desirable to choose the starting position that would yield the best
result. Hence a fast heuristic is desired to choose a good initial node, which will produce
an optimal partition.
The different criteria when choosing the initial node are

1. area

2. max weight

3. random

Two methods, are used to choose the best seed for the cut-set minimisation problem.
Firstly choose the module with the largest area. This has more chance in reducing the run
time of the algorithm because it will be closer to the mid point of the total area, when the
algorithm will stop once the mid point has been reached. Hence in the majority of cases,

choosing the node with the largest area will speed up the algorithm.

Secondly choose the module that has the highest total sum of interconnect weights: the
more neighbours that are considered when choosing the best solution the more chance the
most optimum partition will be obtained. Also, if the weighting is high then it is probably
best to make sure that it is placed with all its neighbours to reduce the cost of the system
under scrutiny. If two or more nodes have an equal area, then out of those nodes,
whichever node has the highest connectivity can be chosen as the seed. If this time two or
more nodes have the same connectivity, the initial seed can be chosen at random out of

the nodes selected that have the highest connectivity and largest area.

As an alternative to selecting a single seed, multiple initial seeds can be selected on
separate partitions. The partition that produces the smallest cutset is chosen to be the

partition of the circuit. The seeds can be chosen by an exhaustive search or alternatively



the seed can be picked at random throughout the set for an allocated number of times.

—_

6.

7.

4. Order the nodes in containers (as shown in figure 9)

. If (any candidate nodes for swapping) Then Swap nodes and re-order the

10.

Modified Kernighan Lin Partitioning Algorithm

Calculate error value €
Create the partition the group into two distinct sub groups A and B, which

satisfies :
222,

ke

AUB=¢

ANB=G ayd
Set GL =0 and find all values of Da for 4 ¢ 4 and D» for b€ B

Find g_ab and A (all marked nodes for swapping are ignored)

If ((E)SGL) Then

If (D, >0) Then
Replace b with a Dummy node with O degree and O area without
loss of generality
Find g and A (all marked nodes for swapping are ignored)

Else if (p, > 0) Then
Replace a with a Dummy node with O degree and O area without
loss of generality
Find g_ab and A (all marked nodes for swapping are ignored)

If{8 abSGL) Then
Goto9
Else
Goto 6
Calculate
g _ 4

b="b 4+ ¢

E, =f, + €

it (¢, > GLand(a=0))oA(e, <A<t )and(g,, > GL) Then
Mark a and b for swapping. Then
Goto 8
Else
Goto7
Find 8up..y, »Where bx is the latest node to be added (all marked nodes for

swapping are ignored)

¥ (¢, <a<e)and(e, , >GL) Then
Identify ba for swapping
Goto7

Else if (¢, = Aand(g,, , >GL) Then

Remove bx from consideration Then
Goto7

Else if ((Eb > £)O){gn&“_h < GL)) Then

Change Da to —9999, so the node is not chosen again Then

Goto5

Else
Goto7
Derive new D values using Dx And Dy for the Neighbours of the nodes to be

swapped and re-order the nodes and corresponding D values, Then go to 5

nodes and corresponding D values, Then Go to 5 Else Go to 10

End Of Algorithm

Figure 43. Iterative Improvement Circuit Partitioning Algorithm

102
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As speed is the main consideration the initial seed will be chosen based on which node
has the largest area. Generally this node will have the largest number of nets as well
(except if a multiplier). The more times the algorithm is run the longer it takes to obtain
the final solution, but with an increased chance in obtaining an optimal solution or close

to it.

3.4.4 Modified Kernighan Lin Algorithm (MKL)

The KL algorithm presented in [19] was used as a comparison in order to see how results
differ when using different partitioning algorithms. KL will always have as good if not
better cut set than the Greedy algorithm as it improves on the Greedy algorithm’s cut set.
KL does not consider area when partitioning the circuit. But an algorithm, which
considers area and net cost is needed. When partitioning the circuit each sub-partition
should be approximately of equal size. The algorithm that has been developed to fulfil
these criteria is outlined in Figure 43, using definitions from section 2.2. Consider Figure
39; when the initial node is 8, the resulting cut set is given by cut B. This cut can be
further improved by applying the MKL to cut B, as shown in Figure 44. This solution

now outperforms both cuts produced by the Greedy algorithm.

Group A Group B Group A Group B
Nodes | D Values Nodes D Values Nodes | D Values Nodes D Values
4 -2 b 8 3 -4 c 2
3 -4 5 0 suEphande b -8 5 0
because they will 5
2 -8 a -6 pmduce the 2 -8 a
6 -10 1 -8 highest gainin 6 -10 1 -8
8 -12 d -10 the system 8 -12 d -10
7 -18 4 -12 7 -18 4 -12
9 -24 e -18 9 -24 e -18

There is now no more possible swaps that will decrease the cut set, but by using an iterative
improvement algorithm we have decreased the cut set from 38 to 32

Figure 44. Iterative Improvement using MKL of the Solution in figure 42.

3.4.5 Key Improvements to the Kernighan Lin Algorithm

To decrease run time, the methods given in [22] have also implemented in this algorithm,
to make the complexity comparable with Fiduccia Mattheyses algorithm [3]. KL
algorithm was chosen rather than FM, as a partitioning algorithm that swaps two nodes at
a time provides a better solution than an algorithm that only moves one node at a time
between two sub-sets. The reason such a good solution is required is to see whether a

better partitioning method (better the cut-set) for each respective hierarchical level results
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in more accurate interconnect prediction, hence producing better designs when using
interconnect prediction. There is a similar problem to that of the greedy algorithm, in that
KL can settle into a local minimum and the partition is dependent on the initial partition
of the circuit. The greedy algorithm may be used to improve the initial partition. This
approach gives a very good initial partition, which the iterative improvement algorithms
can enhance [41]. Due to the fact that the initial partition will be ordered, the number of
runs of the algorithm should drastically be reduced. The drawback to this methodology is
that the greedy algorithm might have too much influence over the KL and force the
partition into a local minimum, which is not the best result achievable if the Greedy
Algorithm were not used. But having the Greedy Algorithm produce the initial cut should
stabilise the process of partitioning the circuit, as the end partitioning will be dependent
on the initial cut. Due to the resulting partitions being a basis for all the predicted
physical information, this stability is very useful during design exploration, because
different architectures for a design can be compared fairly. Another benefit of running the
greedy algorithm first is that some of the D values will have already been calculated,
namely the ones in set A and in V. The D values of the remaining nodes that are in B but
not in V, can be calculated just by summing all the Input/Output nets of each respective
node. The destination of the nets need not be searched; as when a node enters A it brings
all its neighbours that are not already in A into V. Hence if a node is not in V then a node

in B cannot be connected to any node in A, hence all nets must be internal.

Alpert and Kahng show that the FM (which is similar to KL) cutset results follow an
approximately normal distribution [41], where the average results are significantly worse
than the best results. Again multiple runs of the KL algorithm could be made, but the
algorithm is required to be fast, so that many different architectures for a design can be

compared. Hence the number of iterations of KL needs to be kept to a minimum.

3.5 Recursive Patrtitioning and Representation
Whether passing on the hierarchical grouping information to an APR tool or providing a

floorplan, the relative placement/groupings of all the components needs to be known. To
obtain this information the circuit needs to be recursively partitioned until all sub-
partitions contain only one module. At this point, all the relative positions will be known,
so formation of a slicing tree representing of all the components can be derived, forming
the foundations for the floorplan. The slicing tree is formed during the recursive
partitioning. A binary tree is shown in Figure 45, which is a simple representation of a

slicing tree. Every time the circuit is partitioned, all the nets that cross the partition
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become redundant as far as partitioning is concerned, so need to be removed in order not
to influence the partitions further down the hierarchy.

Complete Set Prior to Partitioning

Horizontal_Cut

Figure 45. Formation of a Slicing Tree Represented as a Binary Tree.

Hence when partitioning it would be useful to have some way of deciding on which side
of the partition the modules are placed. When the redundant nets are removed the weights
of the nets are stored within each sub-partition, so that the values are accessible when

producing the floorplan.

The nets are used to decide on which side a partition should be placed, enabling quick
decisions to be undertaken, while providing a valuable metric to reduce interconnect
length, as the modules with the highest interconnects should be placed as close together as
possible. The process is explained in more detail in chapter 4, as these values have no

effect during the recursive partitioning phase, but will help reduce terminal propagation.

3.6 Average Interconnect Relationship

In section 2.11, the Rent’s Rule relationship was chosen to estimate a circuit’s average
interconnect length. The relationship can be used to represent the interconnect complexity
of the circuit, which is then used to obtain an estimate of the average interconnect of a
circuit. The average interconnect of a circuit depends on two main characteristics: the size
of the circuit being partitioned and how complex the interconnect topology is. The size of
the circuit is trivial but the second property is a much harder factor to characterise. As
stated earlier, the Rent exponent represents this interconnect complexity. So a method that
can find the Rent exponent of a circuit needs to be used that can account for the non-
homogeneous nature of a circuit’s netlist. To represent the non-homogeneous nature of a
circuit the different levels of the hierarchical tree are used to derive the Rent exponent.

Hence methods for obtaining the Rent exponent in this manner shall now be discussed.
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3.7 Methods for Obtaining the Rent Exponent
The Rent Exponent can be obtained before or after a circuit is placed. Another extraction
procedure for the Rent Exponent uses previously built designs, but that is more beneficial
for verification, although it is shown to be better than the pre-placement extraction in
{30]. For HLS, the Rent Exponent of a design’s architecture needs to be obtained before
the design has been implemented in hardware, so only pre-placement Rent Exponent

Extraction will be discussed.

3.7.1 Pre-Placement Rent Exponent Extraction

There are two types of ways of finding the Rent Exponent: either by flat (k-way)
partitioning {31], or hierarchical partitioning {112] {75] (Recursive Bi-Partitioning). As
Recursive Bi-Partitioning (RBP) has been chosen to partition a circuit’s netlist, the Rent

exponent of a design architecture will be extracted using hierarchical partitioning.

Figure 46 shows the Rent exponent, p, being extracted using RBP. The circuit is
partitioned into 4 subcircuits. This is achieved by Bi-Partitioning (BP) a group, then BP
the two sub-groups formed by the previous partition. The average number of cells and the
average number of external nets for all subcircuits are recorded and used to calculate p.
Hence a hierarchical structure is formed, where each level consists of 4 subcircuits (of
equal size) at the next (lower) level of hierarchy. 4 sub circuits are used as at this point as
there are only three distinct directions an external net can take, for example if an external
net starts in the lower left quadrant then it can only go to the left, right or diagonal
direction, this simplifies analysis, and allows estimation of the behaviour of the external
nets to be performed. If there were more sub-groups the complexity of the problem would
dramatically increase. A common way of achieving a four way partitioning is to Bi-
partition the circuit twice, there is a methodology that has been formulated using the
assumption that the circuit is being Bi-Partitioned. The sub groups formed from
partitioning the circuit shall be called bins. Later on when constructing the floorplan,
these bins will have a dimension in which the macros inside the bins can be located.
Every time the circuit is partitioned, each bin gets split up into 4 parts, until each cell is
assigned to a single grid point in a Manhattan Grid as shown in Figure 47 (i) and (ii). The
gridlines in Figure 47 (ii) correspond to routing channels and each grid point (node)
represents where one logic block (this can be a macro, group of macros or even an entire

circuit) can be placed.
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v Averzge Pxiemel Nets
Average n0. of Logic Blocks
Renf's Ruke

No of Logic Blocks

Figure 46. Extraction of Rent Exponent Using Circuit Partitioning.

The circuit is split in this manner, so that the number of cells in the circuit is a power of 4
(when split k£ times the circuit has 4k cells at the k™ hierarchical level). This is used to
derive the hierarchical-based average interconnect length equation. Hence it is a condition
that needs to be satisfied when partitioning the circuit. The average interconnect equations
from hierarchical partitioning can also be derived presuming that the circuit is bi-
partitioned twice in order to form these 4 subcircuits. Equations formulated in this way
should provide the best results, as the partitioning methodology being used is recursive
bipartitioning. These equations will be discussed further in the next section but first

obtaining p will be examined.

v

Figure 47. Transformation from a Topological Graph of a Design to a Manhattan Grid.
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Rent's Rule
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Figure 48. Graph Showing Log-Log Plot of the Average Number of Terminals (or pins)
T of a Part of a Circuit (a module) and the Average Number of Logic Gates (Basic
Logic Blocks B) Inside the Modules.

Rent’s Exponent (p) is computed by plotting the average number of terminals, 7, of a part
of a bin versus the average Basic Logic Blocks, B, inside the module relation in a log-log
plot (Figure 48), during a top-down partitioning process. Figure 48 shows the relationship,
which is used to extract the Rent Exponent for an ISCAS89 benchmark ‘s953" used in [12].
The graph’s points stop following the trend at 100 gates per sub-circuit in region II. The
reason for this is that as the number of gates approaches the total number of gates on the
chip, the number of terminals becomes constrained by the limited number of input/output
terminals at the edge of the chip. This results in a rapid decrease in the number of
estimated terminals [95]. A best line is placed through the plotted points (this is found
using least squares, Appendix 7.3); the gradient of this line is the Rent exponent (p). The
Rent exponent requires several levels of partitioning in order to obtain enough points to
achieve reasonable accuracy, and this process will be shown in the next section with an

example of a Rent Exponent extraction from Benchmark?2 (Appendix 7.6).

3.7.2 Actual Extraction of the Rent Exponent

To obtain the Rent Exponent, we shall be using a Bi-Partitioning approach taking a
reading of the number of external nets cut at each hierarchical level. This approach must
be taken, as in general there are not enough levels of hierarchy if only external nets

caused at every fourth hierarchical level are used to calculate the Rent Exponent, in order
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to provide enough points for reasonable accuracy for least squares. Hence Figure 49
shows a hierarchical structure formed from Bi-Partitioning. This should not affect the
calculation of the Rent exponent due to 4 way partitioning in general being formed from 2
way partitioning as stated earlier. But this assumption will be tested in Section 3.8 when

the application of the Rent Exponent is introduced.
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Figure 49. Benchmark2 Recursively Bi-Partitioned, with all Relevant Information
Needed to Obtain the Rent Exponent. Where the criterion of the partitioning
algorithm is to minimise the cutset. The weight of each net is the bit width of the

respective net.

Instead of using the number of components in each group as stated in section 3.3.1, the
total of each group shall be used. This will give a fairer representation because sometimes
there are large differences between the total areas of the groups at a certain hierarchical
level. i.e. if one group, say ‘A’, has one module with an area of 500 and the other group,
say ‘B’, has 10 modules with a total area of 250, and if we were to use the number of
modules it would look as if group B is 10 times larger, which would be an unfair
comparison as in reality group A is twice the size of group B. The average area for each

group will be calculated as follows:

TotalArea
21—-1

Average Area at Hierarchical Level / = (28)
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Let Q, represent the total number of external nets belonging to groups that have

cardinality of one. In Figure 49 this value is represented by the numbers in bold.

-1
Total# ExternalNets +1 .SZ (0N

Average # of External Nets at [ = o= r=l (29)

The reasoning for using Q; is as follows; Figure 49 shows benchmark 2 partitioned all the
way down until each sub-group only contains one node, but if the tree is uneven this leads
to nodes being removed from the hierarchical structure before the final hierarchical level.
For example at hierarchical level 3, M22 and M23 are isolated in their own respective
groups, hence cannot be partitioned anymore. But the external nets that are supplied to the
overall system cannot be ignored. An estimate of the extra number of external nets that
would be produced by splitting this node further is needed, so that the external nets are
accounted for. If they are not accounted for then the number of external nets lower down
in the hierarchy would appear to be lower than they actually were, hence producing an

unrealistic relation. Q, is calculated as follows:

The 1.5 constant is experimentally validated in the next section, when the average
interconnect equations are introduced and the Al values derived are then compared to the
actual average interconnect length post PAR. The external nets are summed from one
hierarchical level to the next. This is different to how the Rent Exponent is normally
calculated. But it was found that summing the external nets produced a better correlation
on average compared to not summing the external nets. This is again shown in the next

section when the Average Interconnect Length Equations are discussed.

Once the bottom of the tree has been reached we can then fit a line of best fit using least
squares, the very bottom of the tree is not used so as to reduce the influence of the
estimated nets formed after a macro has reached the bottom of a branch. The logarithm
values in Figure 49 can be seen on the graph for the benchmark 2 in Figure 50. The gradient
is then obtained from the line of best fit, and hence p has been calculated and is 0.64. This
is also a graph for Matrix 2 benchmark to show a graph with a larger data series. The
number of coordinates used when deriving the linear model depends on the size of the
design. The more points used the more reliable the test and solution. Hence the number of
data points is equal to:

(log(total number of nodes of the complete graph / log(2)) - 1, as this is the value that
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represents the number of bi-partitions needed to split the graph until each node resides by
itself in a sub group. The value is decremented by one so as to make sure that the data
sample is inside Region L

Bench_2 with target clock period 20ns
Graph with all data points Graph with data points within region 1
8 8

°
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Y-Axis = Log2(Average # of External Nets belonging to a Group)
X-Axis = Log2(Average Area of a Group)
Figure 50. Graph Showing Log-Log Plot of the Average Total Area of Each Group
Verses the Average Number of External Nets of Each Group at Each Hierarchical
Level from Figure 49.

3.8 Average Interconnect Length Equations

The Rent exponent can now be used to estimate the interconnect lengths ranging from
individual interconnects to the average interconnect of an entire circuit. The first
interconnect length characteristic we will consider is the average interconnect length (AI)
of a circuit. There are two types of models for predicting Wire Length, one is based on
hierarchical placement and the other on flat placement. As discussed earlier hierarchical
placement is formed from recursive bi-partitioning, while flat placement is formed from
one multi-way partition. The following equations are used to predict the average
interconnect of a design once implemented in hardware. When deriving Equation 3, it is
assumed that, at each hierarchical level, each group is partitioned into 4 parts, as in

section 3.3.1.

Donath’s Average Interconnect Equation

Donath’s Average Interconnect Length Equation [12] is given by:
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_14H(K,p,))-2H(K, p.3)

9H(K, p.2) (30)
( ) K(Zp—x) _1
HIK,p,x)=
where P 27—

K is the number of Hierarchical Levels.
p is the Rent Exponent.

As shown in Figure 49, a partitioned circuit might not be split evenly, so to use the
number of hierarchical levels produced while partitioning would cause an unfair
representation, because if the tree is uneven this will cause more hierarchical levels.
Instead K= log.(total area) will be used to represent the number of hierarchical levels, as
this is the value if the tree was split evenly, and hence will be a fairer value. When the
equations are tested for their suitability for predicting Average Interconnect, Log to the

base 2 will also be tested as Bi Partitioning is being used to partition the design.

Davis’s Model Average Interconnect

Equation Davis’s Model [14] is given by:

p=05 o=  p-05 ( —p-1+4" j
LoD 6JN(p+0.5) 2p+0.5)p(p-1)
M s —2p-14277 p-05 (p-05WN

2p(p-12p-3) 6pVN p-1 31

This equation is based on a flat placement, where N is the total number of nodes in the

circuit. N is equal to the total area, using the same argument for K when used in

conjunction with Equation 30.

An extension to Equation 30 is also found in [12] and is given by:

2p=3) 477 3%t 43270 . .
R = , where Ry represents interconnects travellin
«(p) [2p+1I42P'l—32"+322"—‘—1 P ®

along the diagonal.

If (p>0.5) Then

R ()= 223 3 _2p+ 727 +(4p+5)
‘ 2p+1 ) 3 —(p+3R¥ +(4p+3)

] , where R, represents interconnects

travelling in a vertical or horizontal direction.
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Lm,, — 4Ra(p)+2Rd (p) H(K7 p’l) (323)
s 6 H(K,p2)
Else
La\,, — Rd (p)w H(K7 pvl) (32b)
¢ 3 / H(K, p72)
Where
2]((2[1—-1‘) _1
H(K,p,x)= By

Bi-Partitioning Average Interconnect Equation [12]

The final average interconnect equation presented, when derived, takes into account bi-
partitioning, rather than 4-way partitioning. This is the same method used to extract the
Rent Exponent, and the equation is given by:

_(16+2" =52 YH(K,p))) (4-2"-2"")H(K,pJ3)
6(2-2") JH(K,p2) | 6(2-2"") JH(K, p,2)

(33)

Equations 30-33 show that the only values needed are the Rent exponent and the total area
of components in the circuit. Both the Rent Exponent (p) and area can be obtained after
RBP, which means after RBP the average interconnect length of a circuit can be
calculated simply by inputting p and K= logs(total area) into the derived interconnect
equation. So when RBP is performed on the circuit netlist within MOODS during design
space exploration, the average interconnect length can then be obtained and used during
HLS to aid design space exploration, in terms of minimising the detrimental effect of
routing by choosing a design architecture with a relatively low average interconnect
length with respect to other design architectures. To obtain the most accurate predicted Al
value, the assumed conditions used to derive the model should be the same as the actual
conditions when obtaining the Rent Exponent. When obtaining p through partitioning the
netlist, an average Wire Length equation based on hierarchical placement models
(Equations 30, 32 and 33) is preferred, rather than a flat placement model (Equation 31),
as shown in [30] and [31]. The average interconnect equations will now be tested to see
which equation offers the best power of prediction of a design’s average interconnect

length when placed on an FPGA.

The values are calculated as follows:

Each benchmark was synthesised in MOODS with the design criteria in Figure 51, where |
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is the highest and 2 is the lowest priority. The clock period always has priority 1. 17
different benchmarks were used, which makes a total of 204 data points in the series. The
average correlation is the correlation for each benchmark summed then divided by 17. The
value will show which equation and partitioning set up produced the most optimal
average interconnect predictor. Figures 52-54 are tables to show the Average Pearson’s
Correlation Coefficient, between the predicted Average Interconnect post MOODS, and
the actual average interconnect post PAR in Xilinx. Y represents the different factors that
are used to multiply the macros external nets once the macro has reached the bottom of a
branch and can no longer be partitioned.

Area Area Delay Delay Ccp

Target Priority = Target Priority Target

1 1 1 1 5
1 1 1 1 10

1 1 1 1 20
1 1 1 1 50
1 2 1 1 5
1 2 1 1 10
1 2 1 1 20
1 2 1 1 50
1 1 1 2 5
i 1 i 2 10
1 1 1 2 20
1 1 1 2 50

Figure 51. Table Showing the Different Criteria used During Optimisation of

Benchmarks

The next three tables in Figures 52, 53 and 54 use the Pearsons Correlation Coefficient,
this is used to demonstrate how good a relationship there is between the predicted average
interconnect length and the actual average interconnect delay. The closer the Pearsons
Correlation Coefficient is to 1, the better the relationship, 1 being perfect. Column 1 with
the heading Y contains the coefficient that is used when multiplying Q,.; in Equation 29.
The second column contains the value which is used in calculating K in Equations 30 to
33. So increasing x, reduces the effect of K on the overall equation, and in this case this
means that the interconnect complexity has a larger influence compared to the size of the
design. The final 5 columns are the 4 different equations plus a variant to Equation 33 in

how K is calculated, where L4 is Log to the base 4 and L2 is Log to the base 2. The
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reason for this variant is to see whether L2 might be a better estimate for K, because when

deriving Equation 33 the Bi-Partitioning was used as the main assumption.

NS(g) NS(g) NS(g) NS(g) NS(g)
Y i/ Area Eqn(32)  Eqn(33)L2 Egn(33)L4  Egn(31)  Eqn(30)
0.5 X = 0.022 -0.092 -0.004 0.087 0.105
X=2 -0.04 -0.003 0.06 0.071 0.154
x=3 -0.074 0.037 0.081 0.071 0.36
X=4 -0.093 0.059 0.092 0.07 0.638
x=5 -0.104 0.068 0.092 0.071 0.652
1 X=1 0.119 0.016 0.055 0.149 0.164
X=2 0.024 0.052 0.078 0.175 0.247
x=3 0.059 0.068 0.085 0.19 0.423
X =4 0.074 0.077 0.088 0.197 0.662
x=5 0.054 0.022 0.051 0.206 0.655
15 X=1 0.136 -0.03 0.261 -0.001 -0.021
X=2 0.128 0.25 0.271 0.129 0.185
x=3 0.126 0.368 0.221 0.18 0.397
X=4 0.124 0.268 0.203 0.202 0.664
Xx=5 0.095 0.211 0.164 0.25 0.649

Figure 52. Table to show the correlation between predicted average interconnect and
actual interconnect, NS(g) represents predicted Al lengths without summing the

external nets at each level while just using the greedy algorithm to partition.

It was found that reducing the area improved the correlation between the predicted
average interconnect delay and actual average interconnect delay. The reason for this is
that the influence of the size of the chip is being reduced, while increasing the influence
of the interconnect complexity represented by the Rent Exponent. In all of the tables
Equation 32 performs very poorly, the reason for this is that the data series is not large
enough. Equation 33 has the number of levels as log(area ) / log(2) compared to log(area)
/ log(4), this is because the equation is derived assuming the circuit is being bi-
partitioned. This is shown to be valid in all the tables. When the number of hierarchical
levels is given as log (area) / log (2) it out-performs the correlation when the number of

hierarchical levels is given as log (area) / log (4).
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S(g) S(g) S(g) S(g) S(g)
Y i/ Area Eqn(32) Eqn(33)L2 Eqn(33)L4  Eqn(31)  Eqn(30)
05 X = 0.176 -0.072 -0.071 0.332 0.358
=2 0.157 -0.115 -0.143 0.366 0.457
X =3 0.143 -0.138 -0.144 0.384 0.602
X =4 0.135 -0.142 -0.144 0.392 0.721
X=5 0.124 -0.071 -0.059 0.389 0.74
1 X=1 -0.346 0.14 0.09 0.42 0.427
X=2 -0.163 0.105 -0.058 0.509 0.595
X=3 -0.025 -0.016 -0.088 0.551 0.719
X =4 0.035 -0.056 -0.102 0.569 0.754
x=5 0.151 -0.006 -0.029 0.575 0.749
15 X=1 -0.041 0.11 0.478 0.32 0.267
X=2 -0.053 0.517 0.478 0.542 0.609
x=3 -0.062 0.585 0.38 0.612 0.727
X =4 -0.068 0.48 0.331 0.639 0.754
x=5 -0.088 0.449 0.291 0.588 0.686

Figure 53. Table to show the correlation between predicted average interconnect and
actual interconnect, S(g) represents predicted Al lengths summing the external nets

at each level while just using the greedy algorithm to partition.

The correlation values in Figure 52 are significantly worse than in the other two tables
where external nets are summed when finding the rent exponent. For both Figures 53 and
54, Equation 30 produces the best correlation with Y=1.5 and Input Area = N Area.
There is very little improvement of the highest correlation value in Figure 54, compared
to the highest correlation value in Figure 55 compared to the extra computation needed to
partition the circuit using an iterative improvement algorithm. Hence just the Greedy

algorithm will be used to perform circuit partitioning.

Figure 55(i) shows the correlation from all the benchmarks. With a correlation of 0.89,
this means there is a very high relationship between the predicted Average Interconnect
Length of a design and the delay of the design when implemented in hardware. Hence
when a design has a high predicted average interconnect length during the transformation
stage in High Level Synthesis, the relationship tells us that the delay of that design has a
high probability of also being large when implemented on an FPGA. This information
can then be used to decide whether the transformation in question will be good for the

system. Hence the values are unimportant — it is the relationship that is of most concern.
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S(b) S(b) S(b) S(b) S(b)
Y i Area Eqn(32) Eqn(33)L2 Eqn(33)L4  Eqn(31)  Eqn(30)

0.5 X=1 0.148 -0.085 -0.079 0.382 0.41

X=2 0.101 -0.16 -0.138 0.399 0.489

X=3 0.079 -0.148 -0.127 0.414 0.622

=4 0.068 -0.138 -0.121 0.422 0.663

x=5 0.045 -0.039 -0.021 0.422 0.659

1 X =1 -0.275 0.138 -0.076 0.493 0.497

X=2 -0.032 -0.067 -0.215 0.57 0.646
x=3 0.137 -0.176 -0.243 0.61 0.74

X=4 0.18 -0.214 -0.255 0.628 0.762

x=5 0.295 -0.138 -0.167 0.635 0.735

15 X=1 0.113 0.181 0.546 0.372 0.326

X=2 0.102 0.631 0.446 0.583 0.656

x=3 0.093 0.586 0.329 0.641 0.765

X =4 0.087 0.447 0.276 0.66 0.767

x=5 0.107 0.407 0.22 0.616 0.697

Figure 54. Table to show the correlation between predicted average interconnect and
actual interconnect, S(b) represents predicted Al lengths summing the external nets
at each level while using the greedy algorithm to partition, and iteratively improving

the solution using the modified Kernighan Lin Algorithm
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Y-Axis = Average Delay in NS Post PAR stage using Xilinx PAR Tool.
X-Axis = Estimated Average Interconnect Length in Gate Pitches During High Level Synthesis

Figure 55. Graph to show the Relationship between Predicted Average Interconnect and

Actual Average Interconnect Delay.

To remove the influence of the outliers on the average correlation, the lower quartile,
median and upper quartile respectively are (0.71, 0.86, 0.88), which shows a high
correlation for the majority of the benchmarks. Figure 55(ii) has the data points belonging

to the benchmark GCD removed to observe the graph without the few outliers, so as to
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see the correlation more clearly.

3.9 Passing on Information to the FPGA APR tool

At this point we can retrieve information that is useful when passing the design through
Synplify and eventually onto Xilinx [67]. We cluster macros together to form one big
macro, a sub-group, which is highly connected without too many external nets. This
means the information about the hierarchical structure is passed down to the placement
tool through the RTL Synthesis. The problem with this method is that it reduces the
freedom of the APR tool, by forcing it into a local minimum. So if we want to pass on
hierarchical information to the APR tool we can use a User Constraint File (UCF), which
allows the user to add Location and Timing constraints to a design when it is placed and
routed in Xilinx. The UCF is a better choice as this allows suggestions on where macros
should be placed in relation to each other without adversely affecting the APR’s

placement optimisation.

3.9.1 User Constraint File (UCF) Application

3.9.1.1 Location Constraints

Metric Type AREA | AREA Al Al WN WN W10 W10 CP CP
Restriction No Yes No Yes No Yes No Yes No Yes
Average 0.65 0.59 0.15 0.04 1.63 0.06 1.71 0.89 2.19 1.88

Data Source Figure 106 (Appendix). Al = Average Interconnect Delay, WN = Worst
Net Delay, W10 = Average Worst Ten Net Delays, CP = Clock Period.

Figure 56. Table representing test statistics of the % improvement of a design being

placed using a UCF to guide placement.

The UCF is a constraint file that is used to apply user constraints to a design when being
placed and routed using the Xilinx APR tool. As shown in Appendix 7.1, there are two
constraints we are concerned with, that is the LOC and AREA_GROUP constraints.
These constraints are used to pass information about instance locations onto the Xilinx tool.
LOC constraints designate specific areas on the chip where instances should be placed,
but this is not beneficial, as this will take control away from Xilinx and not allow it to
optimise to the maximum potential. The second constraint is more desirable, as
AREA_GROUP still allows Xilinx to have full control but suggests which instances
should be placed next to each other. Thus AREA_GROUP can be used to pass high level

information to the APR tool. The actual information passed to the APR tool is the
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hierarchical information obtained when circuit partitioning was performed. That is which

macros should be placed together according to hierarchical groupings during RBP.

In the UCF, if an instance is placed in a group but then, later in the file, the same module
is placed in another group; the last entry will negate the previous entry. This means there
is no point in writing the complete hierarchy. If the complete hierarchical structure is
written in the UCF starting with the top of the hierarchical tree, then all the groupings that
are suggested higher up the tree will be ignored, as these same nodes will be repeated
lower down the tree. So two methods have been used to pass on the hierarchical
information. One method is to pass the groups at the bottom of the hierarchy onto Xilinx.
The second method is to pass some of the groups onto Xilinx depending on the following
criteria:

If the average number of external nets is less than the average number of external nets at
that particular hierarchical level, then the group is passed on. The results of these two
methods can be seen in the table of Figure 56. In every single case the average %
improvement is higher when passing on the complete hierarchical information compared
to using a criterion to pass on restricted hierarchical information, hence the complete
hierarchical information should be passed onto Xilinx. But as can be seen there is no
degradation on average, on any of the design metrics. The CP is improved by a significant
amount when considering that the designs are exactly the same, other than being
influenced by the hierarchical information supplied by MOODS. The methodology when
using location constraints in the UCF can be as follows, find the minimal CP then once
that has been achieved a UCF file can be used to see if the solution can be improved

anymore, and as can be seen from the results this extremely likely.

3.9.1.2 Timing Aware Constraints
This topic will be discussed in Chapter 5 with future work.

3.10 Average Interconnect Length Influencing Decision Making

At this point a metric that describes the predicted average interconnect for a design has
been derived. The average interconnect is now placed in the MOODS cost function so
that the optimisation algorithm QE can optimise the design. The cost function objective

function is shown below:

AE — Ce.\'/imule - C(;urrcm
C

initial

where C.gimar 15 the estimated cost after the transformation has been applied;
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Currens 18 the cost of the current design architecture before the transformation has
been applied;
Ciniiar 15 the cost of the initial design architecture; this value is used as a
normalisation factor in order to give a fair comparison with all the design
criteria;

E is the energy of the system, where the delta sign signifies a change in state.

Using the average interconnect length of a design in the cost function, we shall show how
this new metric has influenced the final design implementation in terms of the clock
period. Even though QE heuristic is designed for minimising area and delay, the same
transforms that achieve those objectives will also achieve the objective of reducing the
average interconnect of a circuit. As the average interconnect for a design does not vary
significantly compared to area or total delay, different factors were tested when
calculating AI's E of a respective design architecture, to see which factor would produce
the most favourable design architecture. The effect on the area and CP of the different
benchmarks can be seen in the tables of Figures 57 and 58, due to the different factors
used when calculating E, the factor is represented by an integer value, where the larger
the factor the more influence the Al will have on the cost function. S10 represents 10 *

(Al’s E), 525 represents 25 * (AI’s E), etc. The % improvement is calculated as follows:

Let X' Represent a metric (e.g. Area) of a synthesized design obtained after PAR using
the Xilinx tool. 7 represents the set of constraints that were used when exploring the
design space as the design is being synthesized in MOODS. These different constraints
decide how much influence interconnect prediction has on the final design. These
different constraints will be discussed later in this chapter and the next, when the actual

constraints are included into the synthesis process within MOODS.

The % Difference is calculated as follows:

) x"-x'
% Difference = {T (34)
This equation shows what improvement (+ve) or degradation (-ve) of a design metric, has
been caused by using Interconnect Prediction during Synthesis. The % Difference is
averaged to give an overall measure of how effective Interconnect Prediction during

synthesis is. This measure will be used for all the remaining results.
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Scaling Factor S10 S25 S50 S75 S100 S150
Average 0.46 0.49 0.36 0.51 086 | -0.85
First Quartile | 0 -0.1 -0.1 -0.19 0.2
Median 0.58 0.97 0.67 0.67 0.59 0.67

Third Quartile
3.1 4.26 3.1 4.11 4.11 4.11

Data Source Figure 107 (Appendix). S* represents the scaling factor used
when calculating E of Al in conjunction with the cost function, where * is an

integer.

Figure 57. Table representing test statistics of the % improvement of area of a design

that has been synthesised using different Al metric scaling factors

Scaling Factor| S10 S25 S50 S75 5100 S150
Average 2454 | 19.15 | 18.27 | 2055 | 1293 | 13.84
First Quartile 0 0.65 0 277 0.65 0.65
Median 2.98 16.03 6.62 13.31 9.37 9.37

Third Quartile
2353 | 2823 | 29.84 32.3 34.95 | 3495

Data Source Figure 108 (Appendix). S* represents the scaling factor used
when calculating E of Al in conjunction with the cost function, where * is an

integer.

Figure 58. Table representing test statistics of the % improvement of CP of a design

that has been synthesised using different Al metric scaling factors

Figures 57 and 58 contain the average, median, lower quartile and upper quartile. The
reason why there are 4 statistical measures are as follows: An average value is a good
indication of the value in most cases. But this can be varied dramatically by the outliers
whether negative or positive. For example we could have the following set of results -5,
-5, -5, -5, -5, 0, 0, 0, 50, which would give an average value of 3.57, which would
indicate that there is a positive improvement due to the effect of the outlier 50. But in
reality if a there is only 1/7 chance of the design improving and 5/7 chance that the design
will degrade, the methodology would be termed a failure due to the poor chances of
success. For example the lower quartile (-5), median (-5) and upper quartile (0) provide a
more realistic interpretation of how much actual improvement is being provided by this

particular example.

When analysing the % improvement of area of a design, we are looking for a small

change in area. This will show that when using interconnect topology to optimise the CP
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of a design, there will be no major degradation of the area of a design. This will be the
case throughout the analysis of the % improvement of area when interconnect prediction

is used to guide HLS.

As can be seen in Figure 57 there is in fact a slight improvement of area on average until
the scale factor has too much influence in the cost function. For the CP shown in Figure
58, the CP can be seen to increase in third quartile as the scale factor gets higher. The
problem is that Al metric has too much influence, so does not always produce an overall
optimal design in terms of area and delay. But overall there is a very good improvement
of the minimal CP across the board. Figure 58 shows that in the first quartile there is no
degradation while a large improvement in the third quartile, which steadily increases
under the influence of the Al metric in the cost function. This shows that if the metric is
used then there will be little chance of degradation (if any, the degradation would be very
small) in the design’s optimality in terms of delay and area. Actually there is a good
chance of a large improvement in the design’s optimality. Scale factor 25, 50 or 75 have
all very similar results in terms of average % error. But the median value for scale factor
25 is a significant improvement over the medians belonging to the other scale factors,
while the degradation in area is the least. Hence a scale factor of 25 shall be chosen for

the AI metric in the cost function.

3.11 Conclusion on Pre-Floorplan Interconnect Prediction

Having seen in the last section that interconnect prediction can aid HLS, greater
influences of interconnect properties are desired, in order to improve the optimality (in
terms of CP) of a design produced by MOODS. Up to this point only a global measure of
the interconnect layouts has been used to guide the quasi-exhaustive optimisation
algorithm within MOODS. But if the distances between macros can be estimated then
these distances can be used to decide whether merging or duplicating functional units
would be beneficial or detrimental to the overall system. A further metric will also be
introduced into the cost function within MOODS. The metric will measure the effect a
transform has on the interconnect lengths of the macros involved in the transformation,
whether the interconnects get smaller or larger if the transformation is performed, and to
what degree. This will be a local measure of the interconnect layout compared to the
global measure of the average interconnect metric. In the next chapter it will be shown
that estimations of individual interconnect lengths between modules is an integral part of

using interconnect prediction information when performing transforms in MOODS. The
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original method for calculating individual interconnect lengths was to use equations
derived from Rent’s Rule that represent the expected interconnect length at a given
hierarchical level. In order to find the expected individual Wire Length of a net, first the
hierarchical level at which the net was cut would be found, then placed into an equation.

But the drawback to this method is demonstrated in Figure 59.

Key
Actual Location of Logic Block
Expected Location of Jogic block
[ Distance Between Logic Blocks

1 28 2 1

Figure 59. Positioning of Components Within the Hierarchy

The diagram shows that even though two logic blocks might be on either side of a
partition, they can still be located next to each other. So if the expected interconnect
length at hierarchical level k was used then the estimated interconnect length would be
over-estimated. The higher up the hierarchical level, the more the expected interconnect
length could be overestimated. So in order to solve this problem a floorplan will be
generated. In the next chapter a floorplan will be constructed, which will then allow
individual interconnect lengths to be calculated, enabling much greater physical
information about a design to be used during HLS. This more extensive information will
be shown to provide much more optimal designs in terms of Area and Delay (CP and

Total Delay).
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Chapter 4 Post Floorplan
Interconnect Prediction

The next stage in using interconnect prediction within Moods (during synthesis) is to
improve the clock period optimality of a design. Hence a measure of how transforms
(namely transforms that merge or duplicate functional units) affect interconnect
topology needs to be obtained. A transformation that causes a bad routing topology can
cause a degrading effect on the delay of a design, hence interconnect prediction will aid
in avoiding these transformations. In this thesis this includes interconnect length and
congestion as stated throughout this thesis. To enable a measure of how transforms
affect interconnect distances of macros belonging to a design during synthesis (within
MOODS), individual interconnects will need to be calculated. Thus far, only the
relative location of the macros are known, therefore to use bounding box methods to
calculate interconnect distances, knowledge of the approximate location of macros on a
chip is necessity. To find the approximate location of macros on a chip, an algorithm is
provided in order to construct a floorplan from the slicing tree formed by Recursive Bi-
Partitioning (RBT) in the last chapter. Once a floorplan has been constructed, the
approximate location of all the macros will be known. Candidates will then be chosen
for merging or duplicating functional units will be partly chosen based on the proximity
of the candidate macros to their neighbours. The next few sections will now discuss the

formation of the floorplan representation and all the considerations this entails.

4.1 Placement of Functional Units

At the highest level, generally the layout of the chip is not known, this means that
decisions are made which cannot take into account how components are placed relative
to each other. The only information available during HLS in MOODS is the circuit’s
netlist and the structural information of the macros needed for correct design
functionality (data path units). This does not describe how close macros are and where

they are located in relation to all the other macros that make the design architecture.

The layout of the chip influences how the chip will be routed and the routing delay. So
a Floorplan available during HLS would be useful to predict how the functional units

will eventually be placed on a chip. Having the knowledge of the approximate locations



125
of macros on a chip enables interconnect delay to be taken into account when deciding
whether to perform transformations (namely merging and duplicating transforms), as
how a transforma‘tion affects distances between macros (larger the distance, larger the
delay) will now be available during HLS. So if a transformation causes distances
between macros to increase to the point that the transform makes a design’s delay

decrease in optimality, then the transform will be declined.

To obtain the initial placement a floorplan can be used: a floorplan is an abstraction of a
placement, i.e. the placement is generalised to reduce the detail to enable faster
optimisation. As HLS is using an abstracted view of the physical level, a floorplan
(topological) representation will be used in order to estimate the final placement. The
macros will be represented as non-disjoint shapes on the floorplan, even though on an
actual Xilinx Virtex chip the cells that make up a macro do not need to be in adjacent
slices unless using carry logic. This abstraction is acceptable as Macros when placed
will be tightly packed [47]. A Macro’s internal routings will be concentrated in the
locality of the macro, so has less effect on the global scale. The Floorplan will need to
be fast in construction, while still being accurate enough to make good architectural
decisions when optimising a design. The Floorplan will allow further design metrics to
be produced, which will enhance the level of interconnect prediction in MOODS, which

will then be used to improve design optimality.

The Floorplan will provide the knowledge of how the modules will be placed with
respect to each other, most importantly which modules will be placed close together or
far away from each other. The floorplan construction will also provide the basis for the
estimation of the routing topology. The information obtained from the floorplan will
then form the basis for all physical metrics. In order for this information to be as
accurate as possible, the construction of the floorplan during HLS should mimic (as
closely as possible) the floorplan constructed during APR. Remember a floorplan is an
abstraction of the placement problem, hence the floorplan produced during HLS will
have a higher level of abstraction compared to the floorplan during the PAR stage in
Xilinx. To obtain this information various methods can be used, these methods were
discussed in chapter 2. A floorplan can be randomly constructed then iteratively
improved by rearranging the macros until the overall system is sufficiently optimized in

terms of the design’s objective function, or the floorplan can be constructed by
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grouping modules together that are highly connected, in an effort to reduce interconnect

lengths, hence increasing the optimality of the floorplan in terms of delay.

4.2 Constructing a Floorplan Representation

The first decision about deriving the floorplan is whether to form the floorplan in a top
down or bottom up fashion. A top down approach is building the floorplan in a top
down manner as shown in Figure 17. The floorplan is constructed while traversing
down a slicing tree formed by RBP. Hence RBP first partitions the macros into sub-
groups, then the sub-groups formed from this partition are placed into bins (in which
the location and dimension of the region that the macros belonging to the sub-group are
placed) on either side of the partition depending on an objective function such as the net
cut objective or the Wire Length objective. The macros are then fixed in this region,

unless a bin swapping stage is invoked later in the construction of the floorplan.

A bottom up approach starts at the bottom of the slicing tree and then gradually builds
the floorplan up using a cluster based algorithm. Hence the macros at the bottom of the
tree are placed first, then at the next hierarchical level they are combined with other
macros to form bins. These bins will then combine with other bins of equal size at the
next hierarchical level, this process is repeated until the top of the slicing tree is
reached. At each hierarchical level there is no knowledge of the location of any of the
other bins at the same hierarchical level. The locations are not known, as the groups that
were partitioned to form the current sub-groups the macros reside in, have not been
given a location yet. This can cause problems when minimising the net length between
macros/sub-groups, as sub-groups can be placed on a non-optimal side of a join. This
sub-optimal placement is caused by a sub-group being unaware of the approximate
locations of other sub-groups that it is highly connected to, causing the sub-group to be
placed on the wrong side of a join, further away from the sub-groups that it is highly
connected to. Again on which side of the join the sub-groups in bins are placed is

dependent on an objective function.

4.2.1 Floorplan Construction Considerations

The first decision that needs to be made is how the macros will be represented. Firstly
the macros can be of two types: a hard macro, in which the geometry of the shape
cannot change or a soft macro, in which the geometry of the shape can change. For the

Virtex Xilinx Series the only macro that has a shape that is a hard is one that uses carry
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logic. Fast carry logic is contained in each CLB and is used to increase the efficiency
and performance of adders, subtractors, accumulators, comparators and counters. The
routing of the carry signal can only move in a vertical direction to the CLB above it,
unless at the top or bottom of the chip, where the carry logic moves to the next adjacent
CLB to the right. The reason for the restriction in routing is that the carry logic uses

separate logic and routing for fast generation of the carry logic.

The second decision is how these macros will be represented in our floorplan. There are
only two real choices. One choice is to have each macro represented by a rectangle or a
square (rectangular); this will allow the programming to be much simpler, hence much
faster when run. Or to allow macros to be represented by shapes such as rectangular, L-
shapes, T-shapes, Z-shapes or even allow non-regular shapes with sides like steps as
shown in Figure 60. The macros could even have unrestricted dimensions (with respect
to still fitting on the chip it is being placed on), where the macro is split into unit blocks
with a number the same as the number of slices that the macro requires once placed in
Xilinx. When Xilinx places macros (that do not use carry logic) the dimension are not
fixed, as the cells that make up the macro do not have to be placed in adjoining slices.
Hence the cells can fit into slices, into which macros with fixed dimensions (cells that
have to be placed in a particular arrangement) would not. This allows dead space to be
reduced while also allowing cells belonging to macros to be placed closer to cells they
are connected with. Hence representing macros as a group of cells (Figure 60(iii))
would represent macros in Xilinx better, hence mimicking the placement of a design
produced by Xilinx. But the abstraction of the floorplan in MOODS would be lost;
hence the computational complexity would increase dramatically, with a slightly better
imitation of the final Xilinx placement. The floorplan is going to be used to decide
whether transforms during synthesis are good or bad with respect to interconnect delay,
hence the floorplan only needs to be sufficiently accurate to correctly judge this
decision. Again for complexity reasons the step-like shape will not be considered, even
though allowing the shape to take this non-regular shape, will enable the macros to
mould round other macros (shown in Figure 60), mimicking the way cells in macros
would be placed in Xilinx. This will increase complexity for a negligible increase in the
accuracy of the floorplan being used in Synthesis. L-shapes or T-shapes will not be
considered as cells of macros on a Xilinx FPGA do not take this form. Using either the
unrestricted dimensions or step-like dimensions as representations of a macro’s shape,

an increase in run time would occur. This increase would be caused by the combination
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of the shapes becoming a much more complex problem, in an attempt to reduce the
dead space on the floorplan. The dead space will not have much impact on the distances
between macros, and as this is the main reason for the floorplan, the reduction in dead
space is not worth the extra complexity. Hence all macros will be represented as

rectangular shapes. Now how the floorplan is to be constructed needs to be considered.
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Figure 60. Different Shape Representations on a Floorplan

Now that the representation of the macro has been decided, consideration of what
macro dimensions (long thin rectangle, square) will produce the most floorplan
optimality is needed, so as to mimic a design’s optimal placement in Xilinx. Using this
knowledge a floorplan construction method can be chosen so that it is most likely to
produce macros with the most optimum shape. When forming the floorplan, the most
desirable shape for each sub section is a square as it has the smallest area to perimeter
ratio. If this ratio is small, then the interconnect lengths within the macro boundaries
will be smaller, as all the macros will be close to the middle, and hence should be in
close contact with each other, reducing the average interconnect length. Macros/Bins
that have elongated shapes are harder to join together without leaving dead space,
which will cause an unnecessary increase in design size. Cells belonging to macros are
tightly connected [47], hence it is important to have as much surface area for the routing
of interconnects belonging to a macro. A square has a larger surface area than a
rectangle with the same perimeter. This reasoning also applies to Bins lower down in
the hierarchy, as they are also highly connected due to the nature of RBP. By highly
connected we mean the number of interconnects with respect to the size of the Bin.
Having a higher routing supply is desirable as this will relieve congestion if demand is

high.

4.2.1.1 Dead Space Minimisation

To minimise dead space, the shapes of groups at the same hierarchical level need to
closely match each other in width and length. If not, when the uneven bin is placed
together with the bin in the next level of the slicing tree, dead space will occur, the

assumption is that the larger the mismatch in shape, the larger the dead space. This
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assumption is based on the following: bins are combined at every level of the hierarchy,
which causes a problem when a bottom up strategy is used, as the dead space is caused
due to a bad formation of a bin further down the tree. This can be seen in Figure 61,
where shapes formed at early stages will not necessarily be the best fit further up the
hierarchical tree. The reason A and B have an elongated shape is that a macro in either
group A or in group B contains a hard macro and has that shape fixed. But a top down
approach will tackle this problem, as it will start at the top of the hierarchical tree, and
the shapes in a lower branch will be dictated by the shape of the group above them (as
shown in Figure 62), so this will reduce dead space.
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Figure 61. Demonstrating the Deterministic Effect on Macro Shape

4.2.1.2 Average Interconnect Minimisation
To minimise the average interconnect length the floorplan needs to be placed such that

the number of longer interconnects is reduced. The hierarchy level that has the highest
number of interconnects will be found at the lowest level, given the nature of recursive
partitioning. Hence the interconnects belonging to the macros at the bottom of the
hierarchy need to be kept to a minimum so as to reduce the average interconnect, as
these interconnects will have the greatest effect. If a bottom up strategy is used, the
smaller macros found at the lower levels of the hierarchy are shaped according to local
restrictions, hence reducing the average interconnect length. If a top-down method were

used, where the shapes of the smaller macros would be dictated by global restrictions,
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this would increase the average interconnect length (but decrease the global
interconnect length), the assumption being that the macros at the bottom of the
hierarchy are shaped according to the placement sites left by the larger macros further
up the hierarchy tree that have already been placed. The effect of the last statement is
that the placement sites left can force the macros that are still needed to be placed, into

a sub optimal placement.
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Figure 62. Floorplans Representing the Same Design, but Using Different
Strategies

Hence a bottom up approach would produce a floorplan with lower average
interconnect length compared to a top down approach. Also, using a top down method
may lead to higher congestion, as an interconnect is constricted into a smaller region to
reach its destinations, as shown in Figure 62. The nets in Figure 62(i) will have optimal
paths all within close proximity. This means that there will be more nets wishing to be
placed within that region, hence increasing demand on the routing channels, which in
turn will increase congestion. The congestion can then lead to a detrimental effect on
the critical path delay, hence the clock period of a design. The nets in Figure 62(ii) have
a much expanded region in which to find an optimal path, hence will be easier to route

as the route will cause less demand on routing channels in a particular region.

Through the cases stated in this section the conclusion is that a mixed approach between
bottom up and top down is needed, this will provide the least dead space while reducing

the average interconnect length and minimising global interconnect. The degree of
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optimality of a floorplan is important, as the more optimal the floorplan representation
during HLS, the greater chance of mimicking the optimal floorplan of the design once
implemented in hardware. This hybrid floorplan construction algorithm shall now be

discussed.

4.3 Top Down Bottom Up Placement Algorithm

In order to combine top down placement with bottom up placement, the properties that
will degrade the floorplan need to be removed while keeping the properties that will
improve the floorplan. This same strategy is used in both [103] and [109], where they
partition the design’s netlist first then combine the macros in a bottom up fashion to
produce good results. There will be two stages to the floorplan construction algorithm.
Firstly when the slicing tree is derived using RBP, each sub-group formed from a
partition at a hierarchical level k shall be placed into bins. These bins shall represent the
region which the sub-group will occupy; the area of the region will be large enough to
accommodate all the macros in the sub-group, (i.e. the area of the sub-group will be
equal to the total area of the sub-group placed in it). The dimensions of the bins will
also be used to determine the most appropriate orientation of cut to produce the next
hierarchical level in RBP. Decisions on whether a cut is horizontal or vertical are made

depending on the aspect ratio, as decided in section 2.10.6 to minimise dead space.

When a group within bin B is partitioned into two sub groups, these groups are both
placed into a bin, both bins lie within the region of Bin B, without overlapping. The
regions of the bins at each hierarchical level will not have a specific location, but
decisions are made on which side of the cut, sub groups are placed on. The decision on
which side of the cut sub groups are placed are made on order to minimise net length,
hence reducing the delay between macros. The algorithm that is used to determine the
dimension of every bin and what the cut orientations should be is shown in Figure 63,

and will be discussed in the following section.

When a sub group contains one macro, the macro temporarily takes the dimension of
the bin that the group resides in; this dimension will then be used when assigning
locations to all the macros that are at the bottom of a branch in the slicing tree. This
assignment of location is in the final stage of the algorithm and uses a Cluster-based
algorithm in a Bottom-up manner. That is the smallest macros (highest hierarchical

levels) are placed first, then larger macros that have not been assigned a dimension are



132
placed while traversing back up the slicing tree, this process will be covered in more
detail in section 4.6. The reason for the Bin dimension being used is so that the shapes
of the macros initially being placed have some consideration of the macros that will be
placed around them. Once the hierarchical tree has been completed, a bottom up
strategy will commence, where all the groups are pieced together. Once a macro has
been given a dimension it is fixed (i.e. the macro shape becomes hard) until the
floorplan formation has been completed. This is to reduce the complexity and the shape
should be reasonably optimal as it was heavily influenced by top down partitioning.
When a macro is at the bottom of a branch its shape is assumed to be soft unless the
shape is hard due to being bound to a particular library cell (e.g. an ALU that uses carry
logic on an FPGA). So presuming the shape of the macro is soft, the shape is moulded
to fit the other sub group on the adjoining branch at the same hierarchical level. Once a
macro’s dimensions have been decided the macros shape becomes hard, so as to reduce

complexity.

4.4 Bin Creation

Figure 64 shows the algorithm that is used to form the bins that are used to shape the
groups of macros during RBP. These bins are used to decide how to cut the groups to
form their sub groups. But first the initial dimension of the complete design needs to be
decided.

Let A represent the area of all the total area of the design.

Initially

A =d + remainder, where d is an integer value
If remainder is equal to O then the dimension of the border is d x d If
remainder is not equal to 0 then the dimension of the border is
(d+1)xd
Let &, and w, represent the height and width (respectively) of the Bin x, being

partitioned to form two bins at the next hierarchical level.



Bin Creation Algorithm

1. Let the Bin being partitioned be P and the two bins being formed from this

partition be Bin A that contains macros q,,...,a, € A, and Bin B that contains

macros b,,....b, € B
2. If [h—"] 2 lThen
Wp
Goto3
Else
Goto 4
3. Horizontal Cut has been chosen
w; will stay constant
Find the Maximum height of all the hard macros (if any) in A.
Let that value be mhj,,
Find the Maximum height of all the hard macros (if any) in B..
Let that value be mhg

It ([A'%P(A)J > mh, ]o{[f‘%(m] > th]Then

A Vertical Cut must be chosen

Goto4
Else
Remain with a Horizontal Cut
g= Area(A)
Wp
Wy =We
AL Area(B)
Wp
Wy = Wp
Goto 5
4. Vertical Cut has been chosen
Area(A)
Wy = ——
hl’
h, =h,
Area(B)
g e
hl’
h, =h,

5. If Aonly contains one Macro, assign dimensions of A to the
Macro If Bonly contains one Macro, assign dimensions of B to
the Macro

6. End of Algorithm

Figure 64. Bin Dimension Assignment Algorithm
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Let the dimensions of the designated chip be C,, x C,, and for this case, let the remainder
be equal to 0, and finally let the dimensions of the initial border be dx x d,, which are also

the dimensions of the whole design. If the initial border is not square then

If (C,C, >d.d,) then the design is too big for the chip

h~w

Let i be the initial dimensions of the design before any partitions are made,

Ifd,<C, =h=d, Ifd,<C,=>w=d,
: - Cwa h,' — Chcw
d, d,

Ifd >=C,andd >=C, = hi=Cyand w; = G,

Then the new dimension is passed onto the next iteration of the algorithm.

When the bins are given dimensions they are also allocated a region on one side of the
partitioning cut. If it is a horizontal cut the bins whether placed below or above the cut
and if the cut is in the vertical direction, then the bins are either placed to the right or
the left of the partitioning cut. The allocation of the bin on either side of the cut is very
important in terms of reducing interconnect length. If the bin is placed on the wrong
side of the cut, this can increase the overall net length of the macros involved. Simple
diagrams that show how arrangement of bins on a floorplan can affect the overall net

length are shown in Figure 25 (section 2.10.5).

4.5 Minimising Wire Length through Bin Assignment

When deciding on the arrangement of the individual macros on the floorplan,
information (in terms which macros should be grouped together) obtained by circuit
partitioning would be beneficial, as this will tell us where all macros should be placed
in relation to every other macro on the chip. The lower down in the hierarchy a
grouping of macros is, the higher the priority that the macros in the group should be
placed in close proximity. During RBP with bin assignment, an approximate geometric
relation of the bins/macros is known. This relationship will be used in conjunction with
all the external nets caused at each respective hierarchical level, &, to decide on which
side of a cut bins are placed. In section 3.5, the weights of each net in the cut set of each
individual group at each hierarchical level were stored. At this stage we are only using
the net-cut cost, not the actual Wire Length between the macros. Yang, et al. found that

the net-cut cost was globally consistent with the Wire Length [26]. These net values can
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now be used during the placement of the macros to decide whether a macro is placed on
the left/top or the right/bottom when a vertical/horizontal cut is made. Using these

external nets during this phase will reduce terminal propagation (section 2.10.5).

To decide where a component will be placed, the following representation will be used:
Let A represent a bin, such that a,,q,,..,a, € A, where a,,a,,..,a, are macros that lie
within A.

Let B represent a bin, such that b,,b,,..,b6, € B, where b,,b,,..,b, are macros that lie
within B.

Let d4p represent the sum of all the weights of the nets that connect bin A with bin B.

Let @4 represent the Z(—l)‘&AB , where C is the set of all bins that are connected to A,
BeC

at hierarchical level /. s is dependent on which direction the external net lies and which
of the next 3 methods is being used. This value is the summation of all the external nets

that are sourced or have a destination in A.

3 methods have been investigated. In the examples below for the 3 methods, the equations

are in accordance with figure 65.

1. Two separate values which represent the Vertical (y) and Horizontal (x)

direction separately

Let @ represent ¢ in the x direction, and ¢* represent ¢ in the y direction, the more

negative ¢*, the further to the left the bins should be placed; the more negative ¢", the

further upwards the bins should be placed. So for Figure 65, the ¢4 values would be:

For y direction at Cut 8 @ =(=1)8,, + 3, +(=1)S,, (35)
={(3)+2+(-1)=-2

For x direction at Cut 7 P =0, +(=Dd,; +6,, (36)

=3+(-3)+1=1

Hence Bin A wishes to be placed in the bottom right hand corner as shown in Figure 65,

but this would also depend on the value gpx of Bin C and gpy of Bin B, which have been

ignored for simplicity. But if for the y direction at Cut 7, Bin B had @y =-3, Bin B
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would be placed on the bottom and Bin A would be placed on the top. A more detailed

explanation follows:

The nets when cut by a vertical bisection are added to the horizontal ¢ and if the cut is
a horizontal cut the nets are added to the vertical ¢". When a group of nodes is
partitioned with a horizontal cut, then the nets in the cut set are added (s = 2) to the ¢
value for the sub-partition placed on the bottom and subtracted (s = 1) from goy for the
sub-partition placed on the top, this means that the more positive the value of ¢', the
more the Bin will be drawn upwards. When a group of nodes is partitioned with a
vertical cut, then the nets in the cut set are added to ;JY value for the sub-partition placed
on the left and subtracted from ¢1Y for the sub-partition placed on the right. This means
that the more positive the value of ¢, the more the Bin will be drawn to the right. So if
a group of nodes is partitioned, then the sub-partition with the highest value should be
placed towards the top or right of the cut. The method is advantageous due to the fact
that if, for example, a vertical cut partitions the circuit, the sub-groups produced will
always lie on the left or right with regards to each other, depending on which side of the
partition the sub-groups are placed. The downside is that if the weights of the external
nets in a cut set are given to the x-direction 6 value, then those nets will not influence
the y-direction. So this would cause ambiguous terminal propagation, as discussed in
section 2.10.4.

When two bins are formed from a partition, if one bin A is placed on the left and the
other bin B is placed on the right of a vertical cut, then throughout the floorplan we
know that the macros in bin A will always be on the left of the macros that reside in bin
B. This means that the external nets (if any) that join A to B will always pull A towards
the right. This makes equations (35 and 36) an accurate model for these forces.

5AD has a negative value as bin D is below bin A, this will make go,ﬂ more negative

with a larger number of nets that connect A to D and H, hence pulling bin A

downwards. The higher the value of 0,, the stronger the attraction for A to be placed
closer to F. &,, has a positive value as bin F is above bin A, this will make ¢}, more
positive the larger the number of nets that connect A to F, hence pulling bin A upwards.

The same methodology applies to calculating @Y, , when positive, Bin A is being pulled

to the right and if gof,; is negative, Bin A is being pulled to the left. This same method
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for calculating ¢* and ¢ is used for all bins during RBP, pulling all highly connected
bins into the same region, reducing interconnect lengths between the bins. If two sub-
groups (Bins) have the same value of ¢ then the group that has the highest number of

external nets gets assigned to its desired region. If both sub-groups have the same

number of external nets then the regions are assigned arbitrarily.
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Figure 65. To Show the Relative Placement of Macros According to Partitioning

2. One value which represents both the x and y direction

To combat the disadvantage of method one, a combination of external nets belonging to
both horizontal and vertical cut sets shall be put into the same ¢. This is a
straightforward representation, where the external nets that lead away from the centre
will be negative and nets that lead into the centre are positive. The ¢, for Figure 65 is

shown below:

@ag = Oaps + SaEs — Sars — Oags + damz + dan @37
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=24+3+CD2+C-D3+1+1=2

The sub group with the highest ¢ is placed towards the centre of the floorplan. This is

simple but allows the bins with the highest number of external nets to be placed in the

centre where they are most accessible, as shown in Figure 66.

Figure 66. Diagram to show the most desirable location for a highly connected

macro

This method is preferable to method one through its simplicity, as our only objective is
to place the highly connected macros in the centre of the floorplan. Again this method
does not accurately consider the direction in which the external nets that belong to bins
pull them. For example if ¢ for a bin is negative, this suggests that the bin should be
placed away from the centre of the chip, i.e. on the furthest side of the cut away from
the centre of the chip. But the reason why a bin’s ¢ is negative could be that the bin is
highly connected to a bin from up above (presuming the bin is above the centre of the
chip). Placing the bin on the left side of the partition will have little if any effect on
reducing the interconnect distance between those highly connected bins. The bin might
have actually been better placed on the right side of the partition, where it had other
highly connected bins, but that were not as highly connected as the bin from above. So
when @ signals that the group should be placed away from the centre, it should really be
placed on the side of the partition closest to the centre. Another problem with this
approach is that it could lead to higher congestion in the centre of the chip, as the
majority of interconnects will be routed in the centre of the chip. Hence it would require

too many resources in the centre of the chip to make this a practical approach.
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Figure 67. Ambiguous Terminal Propagation

3. Knowing the exact location of each macro

This is the final method that monitors the approximate location of every group on the
chip as recursive partitioning is performed. This is useful as knowledge of whether
macros in a bin have external nets that are above/below/right/left or at the same level.
To achieve this computation is marginally more expensive and storage would increase
to hold all these extra values (true/false if the net has been added to ¢, @' and
approximate locations of bins). But the gain in accuracy of the placement information
would improve the overall solution, and will remove the ambiguity of terminal
propagation (Figure 67). Figure 67 demonstrates the result when Bin A does not know
where Bin B will be placed until once the Bins have been placed, this means that Bin A
is placed on the top and Bin B is placed on the bottom where this is not the most
optimal placement (assuming there are no other external nets). As for method one, nets
cut at a vertical cut are used to calculate ¢* and nets cut from a horizontal cut are used
to calculate (ay But the nets are then added to the Jipx (if originally partitioned by a
horizontal cut) or gy (if originally partitioned by a vertical cut) further down the
slicing tree. For the explanation of this method the original partition is made by a
horizontal cut shall be presumed and also using Figure 67. So the first cut is a vertical
cut, where the weight of the net going from bin A to bin B is 20 so this is added to dpy.
Then RBP carries out the partitioning on the next hierarchical level, both A and B get
placed on the higher bin of the respective partition. The next cut is a vertical cut so has
no influence on dypy Then finally A is placed on the upper bin of partition after a
vertical cut. The weight of the net is then added to sy, This means that A will also pull
B in an upwards direction which can now be accounted for where method (1) could not

account for this.
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4.5.1 Conclusion on Wire Length Minimisation Strategies

Method 3 has been chosen for its better floorplan optimisation potential, while having
little increase in computation. This is important as this will increase the predictive
power of the floorplan, as it should more closely match the optimal floorplan of the
APR tool. The drawback to this method is storage, but for the extra accuracy only two
extra bits are needed to store whether a net has been added to the horizontal, vertical or
both external values and the approximate locations of the bins. Each individual data path
node will have an external vertical and horizontal value. When a sub-group’s location
on either side of a horizontal cut is being decided, the vertical external (+ or — depending
on the direction of the external nets) values for all the macros belonging to the group
are added together. This value is then used to decide on what side of the partition the
bin containing the group is placed. If the cut is horizontal then the sub-group with the
highest vertical external value is placed on the top, hence the other sub-group is placed
on the bottom. If the cut is vertical then the sub-group with the highest horizontal

external value is placed on the right, hence the other sub-group is placed on the left.

The orientation of the macros after the initial partition is not important due to the fact
that the design’s floorplan can be flipped along the x or y- axis and there would be no
loss in generality. Until either 2 or more Vertical Cuts and 2 or more Horizontal cuts, no
components have actually been moved away from the perimeter of the chip, but during
the next phase some of the sub-partitions will be moved into the centre (away from the
periphery of the chip). Hence after the second cut is the best time to remove the IOB
pins. The IOB pins are the pins that join nets from off the chip; this is why they are on
the periphery of the chip. As they are on the periphery of the chip, they do not occupy
any slices, so they are modelled with no area, hence will not affect RBP when taken
out. At the same time, which sub-partition the IOB pins belong to is stored, so that later

on pin locations can be placed in the most advantageous region, at the edge of the chip.

4.6 Formation of the Floorplan

The actual formulation of the floorplan starts at the bottom of the hierarchy and works
up towards the top, placing all the macros together until all groups have been placed
together. The decisions on whether the groups shall be placed on the top/bottom or to
the left/right have already been made, so it is simply placing the macros together in

order to realise the floorplan. The algorithm is shown in Figure 68.
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Let k represent the number of hierarchical levels produced by Recursive Bi-Partitioning

(RBP) the circuit netlist.

Let X, = {xl,xz,....xc} be the set of all bins formed during RBP (using the bin creation

algorithm) at hierarchical level / and C is the cardinality of X, where each bin contains at

least one macro.
Let a(x,) represent the area of bin x,

Let A(x,) represent the height of bin x,
Let w(x,) represent the width of bin x,

Let s (x,) represent the number of macros that lie within bin x,
Let #(x,) represent the type of shape of bin x, (i.e. either hard (fixed dimension) or soft
(variable height, variable width))

Let y,€ X,, and z,€ X, | be the two children bins of x, € X, when partitioned

given that s(x”) > 1.

For all of the following functions, the orientation of the cut and which side of the cut a
bin is placed was decided in the Bin_creation Algorithm (section 4.4). When a bin has
been chosen to be placed on the right or on top of a cut, the bin is said to have been
given priority. There are only two functions shown in the algorithm but repeated many

times, it has been shown this way to clarify the different type of combinations of bin

types.

Function 1: Both Bins Hard()

Place Macros together, according to what type of cut has been decided and which bin has
priority. If a vertical cut, match up the bottom of the bins with each other, if a
horizontal cut, match up the furthest left point. Assign combined dimensions of y, and
Z, to bin x,, so that the dimension of x, can be used for the preceding hierarchical level,

t(x,) = Hard.
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Floorplan Generation Algorithm

1. Let hierarchical levelbe =k~ and n =1
2. While s(x,l) =1, x, € X, and n does not equal C then
n=n+1
3. Ifn=Cgoto
4. Get y and z,
5. If s(y,)=1 and s(z,)=1 then
If t(y,)= Hard and t(z,)= Hard then
Both_Bins_Hard()
Else #(y, )= Hard or t(z,)= Hard then
Soft_ Bin()
Else #(y, )= Soft and t(z,) = Soft then
Soft_Bin()
Else If s(y,)>1 and s(z,)=1 then
If t(z,,)=Hard then
Both_Bins_Hard()
Else t(z,) is Soft then
Soft_Bin()
Else If s(z,,)>1 and s(y")=1 then
If t(yn)= Hard then
Both_Bins_Hard()
Else ¢(y, ) is Soft then
Soft_Bin()
Else s(z,)>1 and s(y,)>1 then
Both_Bins_Hard()

6. Ifn=C,goto7
Elsen=n+1,goto2
7. Ifl=1goto8
Else [=k— 1 and n = I and then go to 2
8. Floorplan Fully Constructed, hence Algorithm Finished

Figure 68. Floorplan Construction during HL.S

Function 2: Soft_and Hard Bins()

Choose the bin with #( )= hard, if both ¢( ) are soft, choose the bin with priority.
Assume the bin chosen is y,, obtain dimensions of the bin. (if s(y,)=1, the
dimensions were assigned during Bin_Creation Algorithm). If a Vertical cut, let
h(z,)=h(y,), then adjust w(z,) so that a(z,)<h(z,)*w(z,) and the total area of the

group z, can fit inside the Bin. If a Horizontal cut, let w(z" ) = w(y,,), then adjust h(z")
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so that a(z,,)<h(z,,)* w(z") and the total area of the group z, can fit inside the Bin.

Place the bins together depending on the type of cut and which bin has priority. If a
vertical cut, match up the bottom of the bins with each other, if a horizontal cut, match

up the furthest left point and then assign the combined dimensions to bin x_, t(xn) =

Hard.
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Synthesised using QF optimisation algorithm with all metrics having equal priority
and target clock period of 20ns. FLR file produced post MOODS showing an estimated
Floorplan, using Floorplan.exe to view the file. Macros 7, 22, 27, 10, have
respectively absorbed 6, 5, 8, and 9.

Figure 69. Floorplans obtained from benchmark design Bench_mark_2;

The floorplan is written to a floorplan (FLR) file that lists all the coordinates of all the
macros. Another program which has been introduced is called Visual_Floorplan. This
program takes in a Floorplan (FLR) file which contains all the locations of the macros
on the floorplan. The floorplan for a design can then be viewed, and examples are
shown in Figures 69 and 70. This is accessible as part of the design process in MOODS.
Having a visual aid allows a better understanding of how the design will eventually

look rather than just coordinates, which are harder to comprehend.
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Synthesised using QF optimisation algorithm with all metrics having equal priority
and target clock period of 50ns. FLR file produced post MOODS showing an

estimated Floorplan, using Floorplan. exe to view the file.

Figure 70. Floorplan obtained from benchmark design Matrix_2

Figure 71 shows that there is a good imitation of the floorplan produced in MOODS
compared to the final floorplan after the place and route stage in Xilinx. The imitation
is not exact, but as long as the macros are in approximately in the same position as
the macros placed on the floorplan produced from the NCD file, then the decisions
based upon the floorplan in MOODS can accurately take into account individual nets.
There can be some dead space on the floorplan as shown in Figure 70. This may have
an effect on the interconnect lengths between macros, and hence could lead to false
information, that is, macros that are separated by dead space could move into this
dead space to shorten the distance between macros. So the next stage is to test
whether dead space does have an effect on the accuracy (and hence improve design
optimality) of the floorplan, by removing as much of this dead space as possible, this

is covered in Chapter 5.
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(i) Synthesised using QF optimisation algorithm with all metrics having equal
priority and target clock period of 20ns. NCD file produced post Xilinx Place and
Route, using Xilinx Floorplanner 6.3i to view the file

(ii) Same floorplan as in Figure 69 but colour coded to match Figure 71(i)

Figure 71. Comparison of Floorplans obtained from benchmark design

Bench_mark_2;

4.7 IOB Pin Assignment
The final stage of the floorplan is to assign the IOBs to pin sites around the periphery of

the chip. These pin sites then can be passed on to Xilinx using the UCF file. The main
algorithm is shown in Figure 72, followed by a more detailed description of selected
functions, but first some definitions.

Let P= {pl , pz,....,pF} be the set of all input signals in the entity declaration, where p,
has ¢ number of nets with bit width w.

Let M(p,)= {ml,mz,....,mc} be the set of all macros that are connected to p,, where
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(x », ¥n ) is the centre point of the space that m, occupies on the design floorplan.

Let h represent the chip height, Let w represent the chip width

Let m, represent the pin sites wanted in region r

Pin Placement Algorithm

For all p, € P repeat 2to 3

A=yl )

Find_Region()
the region with the lowest demand.

Pin_region_Assignment()
6. Assign specific locations to all pins

2. Find Average Location (A) of m, € M(p, ), calculation as follows:

3. Find desired region in which to place p, using following criteria:

4. Order the regions with the highest demand first, then in descending order to

5. Assign the actual region in which to place pins

Figure 72. IOB Location Assignment

(1) No Specific Order in which Regions are Placed

x

lo d. =16
Region 7 ] Region 6
o = 32 = 32
dy =32
5y = 32 > =32
Region 0 Region 5
Region | Region 4
3 = 32 o, =3l
d, =04 |2
5. =32 3, = 32
Region 2 § Region 3
Io
d, =16
| . -
i,s' . = supply on region x

Figure 73. Region Assignment

Function 1: Find Region()

dy =32

=64

d_ = demand onregion y ||

(ii1Placed in Order of Demand on Region

(Highest Demand Placed First)

- =10
Reyion 7 | Region ¢
s, =32 N . 32
i, = 32 3, = 32
Region 0 Region 5
Region | Region 4
5 =132 o, =1
X, = 32 3, = 32
RL_‘{‘[L"IL 2 ]\‘{:'[:{il>|] i
d,=106

The regions are assigned using the algorithm described in Figure 74, where a positive
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gradient is the diagonal from bottom left hand corner to the top right hand corner. The

different regions are shown in Figure 73.

Find Desired Region

Let pos _grad = (h/ w)* x, represent the diagonal
Let neg _ grad = h—((h/ w)* x,) represent the negative diagonal

If (0 <=x, <= w/2)and(0 <=y, <= h/2) then
If (y <= pos _ grad) then
Assign region 7
Ele
Assign region 0
Eke if (0 <= x, <= w/2)and(h/2 <y, <= h) then
If (y <= neg _grad) then
Assign region 2
Ele
Assign region 1

Else if (w/2 < x, <= w)and(O <=y, <= h/2) then
If (y <= neg _grad) then
Assign region 5
Elke
Assign region 6
Else (w/2 < x, <=w)and(h/2 < y, <=h) then
If (y <= pos _ grad) then
Assign region 4
Elke

Assign region 3

Figure 74. Region Assignment Algorithm

Function 2: Pin Region Assignment()

The desired location of all pins is now known, so the actual regions where the pins are
placed needs to be decided, as the desired location for the pins might not be available.
Now each region is ordered so that the region with the highest demand is placed first.
Hence the region with the highest demand will have pins placed in it first: p; is placed

before any other set of pins.
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Pin Region Assignment
If (s, —d,)>=0 then
bpr =bu’ Sn =Sn _dn7 en =bu +dn 2 dn = 0
Else
bpr =bn’ bn =en’ Su =Sn _dn’ dn =dn _Sn' Sn =0
Next search through adjacent regions for pin sites
Let i=n-1 ( adjacent region anti-clockwise direction) and
j=n+1l (adjacent region clockwise direction)
While d, >0
If (s, —v,)>= (sj —vj) then
If d, > s, then
si =0’ bi = ei’ dn =du _Si
Else
b,=¢-4d, ¢=¢-4d,,5=5-d,,d,=0,i=i-]
End
Else
If 4, >s; then
s;=0,b;,=¢;,,d,=d,-5s;
Else
by=b;+d,, e,=¢,-d,, s;,=5,-4d,,d,=0,j=j+]1
End
End
End While Loop
End

Figure 75. Pin Region Assignment Algorithm

For an explanation of this concept Figure 73 shall be used. Figure 73(i) is where the
pins are placed without any specific order, where by matter of chance region 0 is placed
first followed by region 2, then region 7, then finally region 1. In Figure 73(ii) the pins
are placed such that the pins that lie in the region that has the highest demand are placed
first, hence the pins that lie in region 1 are placed first followed by region 0, then either
region 2 or region 7 followed by either region 2 or region 7 with respect to the last
choice. When placing the pins into regions 0, 1, 2 and 7 in Figure 73(i), as region 1 is
placed last the pins become very disjoint forcing the some of the pins wishing to be
placed in region 1 to placed far away. But Figure 73(i) shows that placing pins that lie
in the region that has the highest demand makes the pin placement much less disjoint.
Also the pins are not placed that far away from their desired location. Now all p, € P,
that were assigned to a pin placement region on the chip, have an exact region in which

to be placed, all there to do now is to use the starting point of each region b,, to assign
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IOBs exact locations that are available on the chip. The algorithm that actually finds the
specific locations of the IOBs is shown in Figure 75. When the Pin locations are passed
onto Xilinx using the UCF, the new locations do not affect the design metrics, so the

concepts discussed in this section are more applicable for an ASIC.

4.8 Individual Wires Calculation Considerations

Using the floorplan that is now accessible during HLS, it is desirable to find the
individual Wire Lengths of the interconnects between the macros. The individual Wire
Length will be used when deciding on resource allocation, whether to merge or
duplicate components and the clock period. A floorplan is now available in MOODS
allowing an estimation of the bounding box to become possible. Bodapati et al. expand
on estimating the bounding box and use both the half perimeter and the area for
estimating the Wire Length, depending on the aspect ratio [10], as shown in 2.5.1.1.
The problem with the proposed method in [10] is that too much detail of the routing
would be needed to implement it. Also the algorithm should be extended to include a

factor that will represent how congested a region is.

The problem with individual Wire Lengths is that if a circuit is split into different areas
each sub-group will have a different Rent exponent (p), as demonstrated in [34]. But
these individual interconnect lengths shall be used when considering candidates for the
merging or duplicating transforms within MOODS. When considering candidates for
the duplication transform, the candidate’s interconnects will span many different
regions, i.e. spanning the entire circuit or the candidate would not be suitable for
duplication, hence the p for the whole design can be used so no more calculation would
be needed. The merging transform will be more sensitive to variations in local
congestion, but to compute the local congestion every time would be too time
consuming. We shall use the global congestion (derived from the average interconnect
length) as a measure for how congestion will affect a transform. The global congestion
will be slightly less accurate than a local congestion measure for describing the
congestion in the region in which the new and old interconnects (evolved from a
transformation) are/were located, this is due to local congestion taking into account the
non-homogeneous properties of a circuit. But the global congestion measure will give
an accurate measure of the congestion on the entire chip. If the global congestion is
high and the merging transform is wishing to be performed, a merging transform

generally elongates the interconnect lengths of the macros that are connected to the
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candidates for merging. The reason for this is that two data path units can be separated,
giving a larger degree of freedom where the macros can be placed, hence allowing the
macros to be placed in close proximity to the macros that are connected to them. Once
the candidates for the transform have been merged the new macro will most likely be
placed in the middle of all the macros that are connected to it. This means that global
congestion will affect these new interconnects, as interconnects will be travelling on a
large portion of the chip, hence making these interconnects more susceptible to global

congestion.

The penultimate consideration for individual wires is the number of pins each
interconnect has got. The larger the number of pins, the larger the density of the
interconnect will be, which, as stated before, can have adverse affects. The problem is
that at a higher level, the number of terminals each net has is not known without
estimation, only the combined number of bits each interconnect contains. It has already
been shown that two-terminal nets are sufficiently accurate to model all the nets on a
chip, so we shall model all individual interconnects as 2-pin nets, with a weight equal to

the number of bits of each interconnect.

The final consideration is from which two points the distance between two macros is
calculated. As stated earlier the half perimeter rule estimates the Wire Length of a net to
be half the perimeter of the bounding box that encompasses the terminals of the net as
shown in Figure 16 (section 2.10.1.1). But where these terminals will reside is not
known, hence this approach does not fully lend itself to HL.S. So a way of deciding
what this bounding box will encompass is needed. There are two different places on a
macro from where the interconnect can be measured, either measuring the interconnect
length from the closest points of both macros to each other (Figure 76(i)) or measuring
interconnect length from the centre of both respective macros [60] (Figure 76(ii)). As
shown in Figure 76(i), measuring the interconnect length from the closest points of the
macros with respect to each other does not consider the size of the macro, where Figure
76(ii) does. Taking the size of a macro into account when measuring the interconnect
distance is important because interconnects will not necessarily be sunk in the closest
point to all the pins on the net, so the larger the macro the more probable the net will
have a greater distance to travel. If there was only a one to one mapping from input to
output then the second choice might be adequate, as it will orientate the shape to make

the output closer to its destination macro. But if there are two output macros these
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become a less realistic representation, as the orientation will now be dependent on two
locations. Even though taking the points to be in the centre of the macros will result in
longer interconnect. This should give a fairer representation with which to make

comparisons.

Placement Slic

(i) (i)

Figure 76. Where to Measure the Interconnect Distance From on a Manhattan Grid

4.8.1 Actual Individual interconnect Calculation

From the points discussed in the previous discussion the most desirable choice from
where to measure interconnects is the centre of the macros. The interconnect distance
between two macros will be calculated by using the half perimeter rule between the

centre/closest points of the two respective macros.

Centre Point Calculation

The centre points are found simply. For clarity, Figure 77 can be used to understand the
process. First to work out the centre point on B we need to know the most extreme
points in the X direction. These points are 6 and 12, which are added together and
divided by 2, hence making the mid point of B in the X direction 9. Then to find the mid
point of B in the Y direction the two extreme points are 1 and 5, which are added
together and divided by 2 to give 3. This gives the centre point as (8, 3) for B. The same

procedure gives the centre point for A as (3, 8).

Now to find the distance from the centre of A to the centre of B the following half

perimeter equation is used:

D

xa—xb|+ Yo=Yl (38)

AB =

where the centre co-ordinates of macro C are (xc, yc); the calculation of these points

will be discussed next.
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Hence the estimated interconnect length of AB in Figure 77 using the formula for Dy,

1s 5.

¢

b
X
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b % & w8 s % R % 6 1 12 5
X ]
% Module === Distance Metric

Figure 77. Calculation of Individual Interconnect Distance

Closest Point Calculation

X1 X2 X1 X2 X1 X2 X1 X2 Xl X2

A B C D E

Figure 78. Diagram Showing Different Relative Positions of Macros

To calculate the closest point there are three conditions that need to be considered,
depending on the two macros positioning with respect to each other and whether the X

or Y coordinate is being considered.

Using Figure 78, we can see where the three conditions occur. Firstly A is completely to
the left of S, so the closest point (with respect to the X-coordinate) will be the

furthermost point to the right of A, and the furthermost point to the left of S. E is
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completely to the right of S, so the closest point (with respect to the X-coordinate) will
be the furthermost point to the left of E, and the furthermost point to the right of S. B,
C, and D shall be classed as the same condition as there is some overlap in each case.
To calculate when each of these conditions occurs, the following method is used:

Let (x,,y,)&(x,,,,,) be the coordinates of A, and (x,,,y, )& (x;,,,,) be the
coordinates of B, then using Figure 79 the closest points of two macros can be

calculated.

Calculation of the Coordinates of the Closest Points Between Two Macros

If x,, <x; then If y,, <yp then
X, =%, and x,, = xg Y = yg and yy, =y
Else if x, > x,, then Elseif y, > y;, then
X = Xz, and Xz = Xg Y =yg and y, = vy
Else Else
X, +x T I 4
x, :( a T X2 ‘]2 and Yy = (} A }A_’%d and
X, +X / b Ve, )/
x,, =( B Bzf)/2 Vy = (} Bl yﬂu}z

Figure 79. Algorithm for Calculating the Closest Points Between Two Macros

Again D,, =|xwl—xw2‘+‘yhl—yh2|, where h;, hz, wj, and w;, are the closest points

between two macros, is used to calculate the half perimeter distance between two macros.
From the points discussed in the previous section, calculating the bounding box using
the middle points seems to be the most suitable choice in which to calculate the
bounding box to calculate the distance between two macros. But to validate whether
this would be the correct choice, experiments were run to compare the two bounding
box methods to see which method produces the best results. The experiments were run
using the algorithm that will be discussed in much greater detail in section 4.8, but a
quick description of the algorithm is that when two candidates are chosen for merging
they are first tested to see whether the transformation would be detrimental to the
overall system. If they pass this test the process is allowed to proceed onto the
estimation stage to see whether the cost function is improved. The test is to see how
close the macros are to each other, if they are close enough then the test is passed, the

benefits of this test will again be discussed in section 4.8. The more accurate the
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bounding box method, hence the half perimeter distance, the better the decisions will be
in regards to whether candidates for merging will be allowed to proceed onto the

estimation stage.

@Middle Points @ Closest Points

M10 M25 M50

Source Figure 109
The values M10, M25 and M50 represent different constraints on which to accept
merging transformations M50 are the most lax and M10 being the most strict. This

concept will be discussed in much greater detail later in this chapter.

Figure 80. Graph showing the average % improvement of CP when using different

net sources.

So to decide which bounding box method will be chosen graph shown in figure 80 will
be used to see which bounding box method shows the greatest improvement to a
design’s architecture in terms of delay. The calculation of the % improvement of the
Clock Period will be calculated using Equation 34 in Section 3.10. To deem whether
macros are close enough to merge, three different limits are used in which the macros
must be closer than this value to be allowed to proceed onto the next stage. The limits
are unimportant, as they are only being used to see which point calculation method
discussed in this section consistently outperforms the other. The average %
improvement shown in the graph consistently shows that using the centre (middle) point
for two macros produces the best bounding box (in terms of producing the best design
optimality in terms of CP), for calculation of the half perimeter distance for all different

limiting factors. Hence when calculating the half perimeter distance, the bounding box
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shall be calculated using the centre points of the macros involved.

As stated earlier, the congestion of a circuit can affect the length of the interconnect, so
when calculating individual interconnect lengths, congestion of the circuit needs to be
considered. So the next section will introduce a value to represent the congestion of a

circuit.

4.9 Congestion Metric Calculation

As discussed earlier, routing congestion can affect area and delay, where the higher the
congestion the higher the impact will be. So a way of measuring this congestion is
needed. Previous methods for analysing congestion were discussed and now those ideas
shall be realised with a few additional ones. This metric shall be called the Congestion
Metric (CM), and this will be used to influence Merging or Duplicating Functional

Units.

As stated in section 4.5.3 only a global congestion measure shall be used to represent
the effect of congestion on a transform. Also as previously discussed, due to the target
architecture being the Xilinx Virtex Series, the routing channel supply does not change
within this family of chips. Hence the routing channels can be treated as constant
factors. When average interconnect increases so does the demand on the routing
channels. So as the supply is constant, average interconnect can be used to represent the
congestion. The current set up is that the average interconnect length is multiplied by
the individual interconnect distance to form a new distance D that now reflects
congestion as well. So as when the routing supply is already congested the larger the
average interconnect value, the worse the congestion will become, hence making the
path of the individual interconnects longer. An extension to the congestion measure
would be to find a suitable normalising factor, which would have been pursued if more
time had been available. Currently the normalizing factor is the average interconnect
value obtained from the initial design architecture. The normalised average interconnect
will then be multiplied by the individual interconnect distance to form D. So the more
congested the circuit (i.e. > 1) the larger the distance will become and the less

congested the circuit (i.e. < 1) the smaller the distance will become.

Another metric that was considered was how the percentage of a chip occupied affected

the routing. Firstly, a merging transformation will be considered. If a chip is quite close
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to being full, merging will allow more space for macros to be moved about; hence
making it more likely macros will be placed in an optimum location. But if the
percentage of the chip being occupied is high, then merging would not be wanted as the
congestion will be high and merging will just increase the congestion as it will draw
more interconnect into one area. Hence, these two factors cancel each other out, so this

metric will not be used when calculating the congestion metric.

Before discussing how exactly the individual interconnect lengths between macros will
aid transformations of a designs architecture during synthesis, a final metric shall now
be added to the MOODS cost function. This metric will improve the functionality of the
cost function through better understanding of the effects of transformations on the

physical behaviour of a design.

4.10 Individual Interconnect Aware (IIA) Metric in Cost
Function
The last metric to be added to MOOQODS is called Individual Interconnect Aware (ITA)

and is concerned only with interconnects between the macros involved with the
transformation and all their immediate neighbours. The metric will measure the
difference between the average interconnect of these nets pre and post (estimate)
transformation using the following equation (equation 4, section 2.7.2):

AE - Ceslimmle - Ccurreul
C

initial

where C,yimae 18 the estimated cost after the transformation has been applied;

C.urrent 18 the cost of the current design architecture before the transformation has
been applied;

Ciniiar is the cost of the initial design architecture. This value is used as a
normalising factor in order to give a fair comparison with all the design
criteria;

E is the energy of the system, where the delta sign signifies a change in

state.

C esiimare for IIA will be the average interconnect length of all interconnects that belong
to the macros being brought in to replace the old macros removed by the

transformation. Curen for IIA will be the average interconnect length of all the macros
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removed due to the transformation. And finally Ciuiir will be the half perimeter of the
bounding box that encompasses the entire design. To explain the derivation and
reasoning behind the calculation of E of IIA, let us consider a Merging Transformation.
If the two candidates for merging have been selected and the transformation has passed
all tests (section2.7), satisfying the conditions for the transformations to be performed,
the estimation of the design metrics such as area, delay are entered into the cost
function as above. The IIA first needs to calculate the Average Interconnect Length
(AIL) for all interconnects belonging to the modules being removed through

optimisation. To calculate the AIL for a macro g, the following equation is used:

Z Xab

AL, =8 (39)
n

Where B is the set of all macros connected to macro a and n is the cardinality of B.
The average AlLs for all the old macros is found and given to C e, and this same
method is used for the AIL of the new macros that would be formed (if the transformation
is performed) and the value is given to Ceyimae. Finally the normalising factor of Ci,iiar
is the half perimeter of the bounding box that encompasses the entire design, before the
transform is performed. The larger the area of the design, the larger the difference
between the present IIA and the estimate IIA is needed, in order to have a large effect
on the CF. The reason this is a good property can be seen in Figure 81. Figure 81(i) will
have much more effect on the global interconnect, hence CP, as the routing demand
within the bounding box requires a higher proportion of routing resources of the chip.
This is compared to the bounding box in Figure 81(ii) where the proportion of the
routing demand on the routing resources of the chip is comparatively small. To model

this effect, the chip perimeter shall be used as the normalising factor Cjyjsiar.

This will then give a view of how this transformation is affecting the general system,
not just the immediate macro or macros involved. By this we mean that a transform
might look desirable when we are only considering the macro or macros directly
involved, but when looking at the bigger picture the transform might be detrimental to
the overall system, i.e. the transformation might be causing unfavourable effects on the
respective macro’s immediate network neighbours. Now that all the interconnect
prediction metrics have been discussed, consideration on how the Quasi Exhaustive

Heuristic should be influenced by these metrics needs to be made.
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Figure 81. Diagram showing the effect of the same size bounding box on two

different sized designs.

Scaling Factor AO A0.125 A0.25 A0.5 A1
Average 1.02 1.36 1.56 1.45 1.03
First Quartile 019 | 0.11 0.11 0.11 -0.1
Median 0.52 0.59 0.59 0.12 0.36
Third Quartile
1.92 1.94 1.94 1.6 1.71

Data Source Figure 110 (Appendix). A* represents the scaling factor used when
calculating E of IA in conjunction with the cost function, where * is an integer. All
results obtained when using interconnect prediction use Al in the Cost Function with

scaling factor 25.

Figure 82. Table representing test statistics of the % improvement of area of

benchmarks that has been synthesised using different IIA metric scaling factors

With the AIL metric in the cost function (section 3.11) a scaling factor was used to
increase the influence of the metric, this will be again used when using the IIA in
MOODS’s cost function. The influence of the IIA needs to be reduced as the IIA
favours the duplication of functional units significantly compared to merging functional
units, as generally, if two functional units are merged this stretches the interconnects
directly involved in the transformation. Conversely if a duplication transform is being
performed the interconnects should be reduced as duplication allows the duplicated
macros to be separated and placed in a closer proximity to their network neighbours. So
if the IIA is left with too much influence, only duplication transforms will be performed

which will have a detrimental affect on the optimality of the area of a design. To find
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the most suitable scaling factor, the QE algorithm was run with the Al in the cost
function with the scaling factor 25 chosen in the last chapter and then a range of scaling

factors for the ITA metric starting with 1 and then reducing.

Scaling Factor A0 A0.125 A0.25 AQ.5 A1l

Average 28.02 33.41 34.38 34.43 32.76
First Quartile 7.97 5.34 5.34 5.34 13.37

Median 19.29 | 3544 | 3544 | 4125 | 32.06
Third Quartile

42.2 42.73 47.3 49.78 46.6
Data Source Figure 111 (Appendix). A * represents the scaling factor used when

calculating E of IA in conjunction with the cost function, where * is an integer. All
results obtained when using interconnect prediction use Al in the Cost Function with

scaling factor 25.

Figure 83. Table representing test statistics of the % improvement of CP of

benchmarks that have been synthesised using different ITA metric scaling factors

When using IIA in the cost function, Figure 82 shows that the metric is beneficial for
reducing the area of designs. The first quartile only drops below O where the scaling
factor is 1. In Figures 82 and 83, scale factors 0.25 and 0.5 are very close; they further
improve the CP and Area. But as our main focus is on delay, a scaling factor of 0.5 shall
be chosen for IIA, as it has the best CP improvement on average (34.43%) and as we
are looking for consistency this is the best candidate. But as the average improvement
of CP is so close further investigation on which Scaling Factor is best would be

beneficial.

4.11 Interconnect Predictors Influencing Transform
Candidates Selection

All the metrics now made available shall be used to aid decision-making when the Quasi

Exhaustive Heuristic (QE) algorithm is performed.

4.11.1 QE with Interconnect Prediction

Access to substantially more interconnect layout information is now available. This
information will now be incorporated into the QE heuristic. More in-depth design
information will enhance the QE’s decision making so that it can choose more

favourable transform actions to increase the optimality of a design passed through
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MOODS. The algorithm is split into three main parts. First there is compacting of the
control graph, and secondly there is merging functional units on the data path. If
desired, a final duplication phase can be performed on the data path. The compaction of
the control graph was explained earlier, as it is part of the QE. The compaction of the
data path will be the same function as described for the QE, except that the selection
procedure for the candidates of a datapath transformation will depend on estimated
physical characteristics. When duplication is required, a simple function will look
through all eligible macros in the datapath and again will use a selection procedure
based on estimated physical characteristics. Both selection procedures will now be

discussed.

4.11.2 Selection Criteria

In order to select appropriate candidates for either merging or duplication, some form of
selection criteria according to area and delay is required. But first, they need to be
eligible for merging or duplication. To test which, a function called test_trans [20] is
used. Once a node or nodes have been chosen and found to be eligible for merging or
duplication they then are tested for favourable properties with which to perform the
respective transform. The selection criteria will be performed as follows, depending on

which transform is being performed.

4.11.2.1 In the case of Merging

For this test, the clock period or delay of the nodes will not be considered. For the
merging test only the distance between the two macros that are being considered for
merging is of interest. For the distance between the macros, the half perimeter rule will
be used, as we are only considering two pin nets. In this process, the aim is to look at
the two macros under consideration and if they are close enough, then the test is
successful; if not then the test is unsuccessful. Hence merging will be prevented
between the two macros being tested. In order to know when macros are close enough,
an upper limit for the distance D between these macros is needed. If the distance
between the macros is greater than this upper limit M, then the macros are deemed too

far away to make merging feasible.

The Distance D between two macros is measured as shown in section 4.6.4. Once this
distance has been calculated, congestion needs to be considered. If the congestion is

high, the nets belonging to the macros involved in the transformation will generally be a
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bit longer; a merging transformation will increase these nets even further. Merging two
data path units will generally increase the interconnect lengths of the nets belonging to
the macros involved in the transformation. To model this behaviour, D is multiplied by
the average interconnect length (discussed in section 4.7), hence the larger the average
interconnect length the larger the value of D, hence making it harder for D to fall under
the limit. This factoring of D means that the candidates have to be even closer for the
merging transform to be performed, if congestion is high, compared to a design with
low congestion. Multiplying by the average interconnect length will be beneficial as the

higher the congestion of a circuit; the less desirable it is for merging to take place.

Merge Limit 10 M25 50 M75
‘Average 1.02 ~13.11 (1294 0.97 1.04
First Quartile ~0.19 -25.58 27.49 -0.19 0
Median 0.52 0.11 0.47 0.67 0.67
[Third Quartile 192 1.6 227 182 194
(1)Data Source Figure 112 (Appendix). % improvement of Area
pp P

Merge Limit M10 M25 50 M75
|Average 28.02 M336 42,12 38.7 37.92
First Quartile 7.97 35.21 32.3 23.79  123.79
Median 19.29  41.89  40.95 34.75 35.01
[Third Quartile 422 52.68  50.59  M4.69  45.15

(ii)Data Source Figure 113 (Appendix). % improvement of CP
M* represents the limiting factor used when deciding whether to merge two data path

*

units, where * is an integer. All results obtained when using interconnect prediction

use Al in the Cost Function with scaling factor 25.

Figure 84. Table representing test statistics of the % improvement of physical
metrics of benchmarks that has been synthesised using restrictions on candidates

nominated for Merging.

The upper limit M now needs to be decided. This value will be decided by running
multiple experiments and the results of these experiments are found in Figures 84(i)(ii).
Figure 85(i) shows the % improvement in Area of a design when using different M
values. The lower the M value, the less likely merging will be performed, this can be
seen when looking at the highly detrimental affect on the area design when using a very
small M value, as the smaller the M, the more merging transformations will be
prevented, which would have reduced the area. But the higher the M value, the less

detrimental the effect on the area becomes, until using the Distance Metric Calculation
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actually improves the area on average, even more so than just using the Al metric in the
Cost Function (CF). When considering CP, Figure 84(ii) shows that the tighter the
restriction on merging, i.e. the lower the value of M, the higher the improvement in the
CP. But as there was a large increase in area in Figure 84(i) when M dropped below 50,
M50 is chosen to be the limit for the distance at which two functional units may merge

as it produces designs with a small average CP but does not increase the area.

4.11.2.2 In the case of Duplicating

Duplication is used for undoing transforms that were made earlier in the optimisation
process, where unforeseeable badness could not be accounted for. The lack of foresight
is due to design transformations being thought good for the design objective function, at
the current time of execution. But changes in the design architecture later on in the
optimisation process may reduce the optimality of previous transforms. When trying to
find nodes to duplicate, this will be an exhaustive search after every completion of the
Compact_DP in QE. An exhaustive search is not too slow as only one node at a time
can be chosen for duplication. If a data path unit is duplicated, the resulting data paths
cannot be duplicated so there is no need to test them. Hence the new data path units do
not add to the search space. When duplicating, only one node at a time will be
considered. If a node is chosen, it will be split up into multiple nodes, but as stated

earlier, this can have its drawbacks as well as its benefits.

Again, a test needs to be provided in order to make the best decisions. The test is
similar to the merging test, in which candidates are tested to see how, if duplicated, the
transformation will affect interconnect length. But this time to measure whether a
candidate is appropriate for duplication, the average interconnect distance of all the
macros that are involved with the transformation are calculated. The Average
Interconnect Length (AIL) is calculating for the data paths that will be removed. AIL is
used, as a smaller AIL means interconnects that are connected to the macro that is the
candidate for duplication will be less spread out. So duplicating the functional unit will
not greatly aid the interconnect lengths that are already small. But if the AIL of the
macros connected to the candidate for duplicating is large then this means the
interconnect belonging to these macros is spread out, this means that duplicating the
candidate will allow the resulting data path units to be placed closer to the data path
units that were connected to the original data path (shown in Figure 15, section 2.9.2),

hence reducing the average interconnect of all the data path units involved in the
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transformation. Hence we require that the AIL is larger than a minimal limit U so as to

know when a transformation is beneficial in terms of interconnect length.

/Average Interconnect length  MO+UO |M50+U5 M50+U10 M50+U25 M50+U50

verage 1.02 -3.9 -0.3 -0.32 -0.43
First Quartile 019 | -0.19 -0.5 -0.5 -0.5
Median 0.52 0.67 0.59 0.59 0.59

Third Quartile

1.92 1.82 1.94 1.94 1.54
(i)Data Source Figure 114 (Appendix). % improvement of Area

Merge Limit + Duplication Limit MO+U0 M50+U5 |M50+U10|M50+U25 |M50+U50

Average 28.02 33.42 35.24 35.43 33.94
First Quartile 7.97 12.42 | 2227 21.5 13.47
Median

19.29 34.85 35.15 35.15 32.55

Third Quartile
42.2 44.48 441 441 441

(ii)Data Source Figure 115 (Appendix). % improvement of CP

M* represents the limiting factor used when deciding whether to merge two
data path units, where * is an integer. All results when using interconnect
prediction use Al in the Cost Function with scaling factor 25. Limiting

Jfactor for Merging of 50

Figure 85. Table representing test statistics of the % improvement of physical
metrics of benchmarks that has been synthesised using restrictions on candidates

nominated for Duplication

Again the limiting factor U needs to be decided. This value is will be decided by
running multiple experiments and the results of these experiments are found in Figures
85(1)(ii). From Figure 85(i), even though duplication does degrade the area on average,
the degradation is very minimal; except when there is a scaling factor of 5, but this
means a lot of duplication transformations are allowed to go ahead. The CP is further
improved the larger U is, due to the algorithm becoming more selective, until U
becomes too large and restricts the heuristic too much. Using Figures 85(i)(ii), a limit of
25 or 10 are both valid limits as both produce designs with good CPs. But
encouragement of duplication is not desirable unless necessary, as the size of the design
could increase substantially depending on the transformation. So a limit of 25 shall be

chosen for U.
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4.12 Summary of Results
All the physical characteristics that will be estimated in order to improve design
exploration in MOODS have now been discussed. Through additional metrics
implemented in the Cost Function that represent interconnect properties, it has been
shown that these metrics in conjunction with the QE algorithm increase the optimality
of a design in terms of Clock Period (CP). This is due to the metrics allowing better
decisions to be made, when selecting which candidates will be best for transformations
within synthesis, with respect to reducing the interconnect distances, and hence CP. The
CP should then be reduced through the reduction of interconnect distances. The next
stage is to experimentally validate the use of interconnect prediction with some more
benchmarks. The results of these further experiments can be seen in Figures 86 — 91.
The design procedure can be found in Appendix 7.6, which includes information on all
the benchmarks used. The benchmarks are chosen so that there is a variety of different
design architectures. 2 different designs will be synthesised with two different CP
targets set during synthesis (20ns and 50ns). Each design will be synthesised using
different levels of interconnect prediction to guide decision making during synthesis.
Each level of interconnect prediction has been discussed in the last chapter and this

chapter and they are as follows:

N = No interconnect Prediction is involved during Synthesis.

A = Average Interconnect Metric is used in MOODS Cost Function (Section 3.11).
B = Methodology A and restriction on merging (Section 4.8.3.1).

C =Methodology B and duplication is introduced with restrictions (Section 4.8.3.2).
D =Methodology A and Individual Interconnect Aware (IIA) (Section 4.7.1).

E = Methodology B and IIA.

F =Methodology C and ITA.

Firstly % improvement of area will be discussed (shown in Figure 86). When using
method A the area is increased slightly on average compared to a design produced
using no interconnect prediction to guide synthesis N. B again increases the area, but
this can be expected as the constraint M is not allowing some merging transformations
to be performed, hence in some cases not allowing a reduction in area. C then increases
area further as now using duplicating functional units will cause the area to increase.
Method D is now using the IIA metric; this metric will restrict merging as discussed in
section 4.7.1 because merging in most cases causes the ITA metric to increase. Hence

the area degradation increases even further compared to just using Al in the Cost
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Function. E increases the area further on average due to the merging restriction, but
method F reduces the increase in average % difference of the area. One reason for this
could be that the IIA metric is calculated in the same way as the value used to decide
whether interconnect directly involved in the potential transformation are stressed
(long) enough for the transformation to be beneficial. In all cases the average %
increase in area for designs using interconnect prediction during synthesis is a slight

increase but nothing substantial.

Heuristic Method. A B C D E F
Average -0.68 -1.17 -2.43 -1.63 -2.54 -1.6
First Quartile -1.65 2.06 -4.84 -1.65 -4.78 377
Median 0.47 0.13 0.27 0.12 0.12 0.12
Third Quartile

1.54 1.23 0.76 1.58 1.1 1.26

Data Source Figure 116 (Appendix).

Figure 86. Table representing test statistics of the % improvement of Area of

benchmarks using different levels of interconnect prediction during synthesis.

Heuristic Method. A B C D E F
Average 0.83 0.48 1 15 1.11 1.41
First Quartile -1.98 1.91 131 277 1.64 0.76
Median 0 0.74 1.67 0.07 16 1.8
Third Quartile

3.88 3.69 3.51 3.17 4.58 5.62

Data Source Figure 117 (Appendix).

Figure 87. Table representing test statistics of the % improvement of Average
Interconnect Delay of benchmarks using different levels of interconnect

prediction during synthesis.

Using Figure 87, the % improvement of the average interconnect delay obtained post
PAR can be seen, on average, to increase when using interconnect prediction during
synthesis for all methods. Method A shows a small improvement, but when restriction
on merging is implemented this drops, but then increases again when duplication is
implemented. The improvement of the Average Interconnect Delay steadily increases
through designs A to C. This pattern then repeats for D through to E, but shows that
using the ITA metric in the cost function in MOODS in conjunction with Al metric is

very beneficial.
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Heuristic Method. A B C D E F
Average 233 133 -1.92 0.19 1.65 1.68
First Quartile 14.16 | -10.33 | -192 | -793 | -9.15 | -8.97
Median -0.38 1.39 1.4 0 4.55 1.46
Third Quartile

" 8.34 8.89 9.08 8.7 9.56 8.47

Data Source Figure 118 (Appendix).

Figure 88. Table representing test statistics of the % improvement of Worst Net

Delay of benchmarks using different levels of interconnect prediction during

synthesis.
Heuristic Method. A B C D E F
Average 2.64 2.8 -1.53 0.76 -0.49 -0.15
First Quartile -9.35 9.35 8.25 57 -4.98 5.06
Median 196 | -0.93 -0.22 0 0.83 1.51
Third Quartile
2,50 6.72 5.11 5.96 7.18 5.76

Data Source Figure 119 (Appendix).

Figure 89. Table representing test statistics of the % improvement of Average Worst
Ten Net Delay of benchmarks using different levels of interconnect prediction

during synthesis.

Heuristic Method. B C D E 3
Average 18.82 21.73 22.28 18.42 21.6 23.03
First Quartile 2.98 3.17 4.88 1.18 5.3 5.3
Median 1328 | 17.44 | 20.44 | 1345 | 1713 | 18.02
Third Quartile

22.27 33.52 33.96 32.67 32.32 33.77
Data Source Figure 120 (Appendix).

Figure 90. Table representing test statistics of the % improvement of Minimum
Clock Period Delay of benchmarks using different levels of interconnect

prediction during synthesis.

The average % improvement of the Worst Net Delays shown in Figure 88 steadily
increases, the higher the level of interconnect prediction used to guide HLS. Where
there is a degradation in the Average Worst Net Delay and where IIA is introduced
into the cost function, there is an improvement in the average % difference. This
same pattern is seen for the average % difference of the 10 worst net delays in Figure

89, except that the average % difference never shows an improvement. So this shows
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that the IIA metric is a good metric for reducing the delay of global interconnect, as it

reduces the degree of degradation to the global nets.

Heuristic Method. A B C D E F
Average 21.83 | 2465 | 24.74 20.8 2447 | 25.05
First Quartile 2.08 5.34 4.88 1.18 53 53
Median 16.3 19.3 20.44 | 13.45 17.73 18.02
Third Quartile

40.02 41.75 39.36 44.2 37.06 35.79
Data Source Figure 121 (Appendix).

Figure 91. Table representing test statistics of the % improvement of Total Delay of

benchmarks using different levels of interconnect prediction during synthesis.

The next two Figures, 90 and 91, are where the expected highest metric improvement
should be seen, as this is the main focus to reduce the CP, and hence the total delay by
using interconnect prediction. Figure 90 shows there is a large improvement in the CP
when using Interconnect Prediction; in the majority of cases the CP is improved and if
there is degradation in the CP it is minimal. The average % improvement increases
steadily from A to B to C, showing that the higher the level of interconnect prediction
used during HLS, the better the CP will become. This same pattern repeats with
methods D, E and F. But there is a drop in the % of improvement from A to D. But as
discussed earlier, using the metric ITA in the cost function is most beneficial when using
duplication, as it has the highest average % improvement compared to any other
method. Throughout the table the first quartile never drops below 0, while the third
quartile is extremely high. This shows that when using interconnect prediction, it is
very unlikely the minimal CP will degrade, while it is very likely the minimal CP will
be improved significantly. The length of CP alters insignificantly between designs that
have the same criteria during synthesis (delay, area and CP target), hence Figure 91
repeats the pattern of Figure 90. The results presented in this section show that
Interconnect Prediction is a valid HLS methodology for providing optimal design in

terms of CP.

4.13 Does a Better Partitioning Algorithm Improve Optimality?

The next test is to see whether using an iterative improvement algorithm to improve the
cut set produced by the Greedy algorithm during Recursive Bi-Partitioning, improves
the eventual optimality of a design, compared to just using the Greedy algorithm by

itself to perform partitioning. The global net statistics in Figure 92(i) seem to improve
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when using an iterative improvement-partitioning algorithm, but the CP is better
without. Figure 92(ii) shows that to obtain the highest level of optimality the Greedy

algorithm should be used by itself, which is useful as this requires a lot less

computation.
Metric Type AREA AREA A | N WN _Wio Wwio [cP P
Partitioning Method ;G B G B G B G B G B
Average 1147 1.6 048 [0.88 [1.33 [0.86 |-2.8 |-0.60 |21.73 |19.36
First Quartile 175 [1.26 -1.71 }2.38 l9.31 L7.02 |-8.53 |-8.25 4.8  [3.49
Median 019 .28 |139 |1.75 139 [0.11 -0.93 -0.29 |17.7 [13.67
Third Quartile {1.3 1.05 |3.69 [4.71 9 7.99 6.77 [8.96 33.86 |30.87
Metric Type AREA(G) | AREA(B) | CP(G) | CP (B)
Average 1417 1.6 | 21.73 | 19.36
First Quartile 206 | -1.63 | 347 0.79
Median 013 024 | 17.44 | 13.45
Third Quartile
1.23 102 | 3352 | 30.65

Data Source Figure 122 (Appendix). G represents circuit partitioning undertaken by
Greedy Algorithm (G) and B represents circuit partitioning undertaken by Greedy
algorithm and the Modified Kernighan Lin Algorithim. AI = Average Interconnect
Delay, WN = Worst Net Delay, W10 = Average Worst Ten Net Delays, CP = Clock
Period

Figure 92. Table showing test statistics of the % improvement of the physical
metrics of a design using interconnect prediction during synthesis derived from

different partitioning algorithms.

4.14 Simulated Annealing with Interconnect Prediction

As time was limited, only Al in the cost function using Simulated Annealing (SA) to
perform the optimisation during HLS was tested (with a scale factor of 1). As can be
seen from Figure 93 there is an improvement across the board, except for the first
quartile for the average worst ten net delays. This shows that even with SA, which is a
very random process, interconnect prediction can improve the optimality of the physical

metrics once a design has been placed on an FPGA.
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Metric Type AREA | Al WN | W10 cP
Average 05 | 06 | 036 | 1.19 | 4.58
First Quartile 0 0 0 0 0
Median 0 0 0 0 0
Third Quartile

0.07 | 0.72 | 419 | 2.89 | 4.62
Data Source Figure 123 (Appendix). Matrix_calc has been left out as the design did

not fit on a Virtex chip. Al = Average Interconnect Delay, WN = Worst Net Delay,
WI0 = Average Worst Ten Net Delays, CP = Clock Period

Figure 93. % Improvement of the physical metrics of a design using interconnect
prediction during synthesis within MOODS. The Simulated Annealing Heuristic
was used for the optimisation. Al with a scaling factor of 1 is in the Cost Function

and a merging limit of 50.

4.15 The Advanced Encryption Standard (AES)
The AES is a cryptographic algorithm called Rijndael. Rijndael was chosen for AES

because of its combination of security, performance, efficiency and ease of

implementation.

4.15.1 The Structure of Rijndael

A thorough explanation of Rijndael can be found from [52]. Rijndael has a variable key
and block length, the general values of these lengths are 128, 192 and 256. But the key
or data length can be any value as long as it is a multiple of 32. The algorithm was
designed so that it acts on bytes rather than on single bits, and the other main design
considerations were:

¢ Resistance against all known attacks;
e Speed and code compactness on a wide range of platforms;
¢ Design simplicity.

4.15.2 Implementation of Rijndael

The algorithm is designed for encryption rather than decryption. Thus encryption
requires less computation (hence is smaller and faster) than decryption. An example
application of the encryption algorithm is smart cards, and this is where hardware
designs are very applicable. Smarts Cards encrypt data and send out the information to
stationary receptors; hence the size is not so much of an issue. This algorithm has been
written with fixed and small (128 bit) key/block length, thus reducing the amount of

components that are needed. The target architecture is the XCV 1000 chip. The design is
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semi-pipelined: after half the key has been expanded, the next data block is passed
through, so as to increase throughput. A fully pipelined design was constructed but the
number of slices exceeded the number of slices available on the largest chip in the
Virtex series, unless the block RAM was used on the Virtex chip, but MOODS does not

support this option.

Heuristic|AREA| Al WN | wio cp 1st Output Repeated Clock Rate

#CPs Output #CPs | Fred. (Mbs)
QE 12080| 3.64 | 18.14| 15.32| 23.84 35 18 41.95 298.28
QE +A [11900] 3.76 | 16.29| 14.65| 23.9 35 18 41.85 297.59
QE +B [11834| 3.6 17.78 | 15.06 | 22.96 35 18 43.56 309.73
QE+C |11834| 3.6 17.78 | 15.06 | 22.96 35 18 43.56 309.73
QE +D |12028| 3.65 | 15.97 | 14.2 | 24.87 35 18 40.21 285.94
QE +E [11897| 3.58 | 14.54| 13.6 | 23.95 35 18 41.76 296.93
QE+F |11877| 3.71 | 17.94| 15.26| 23.9 35 18 41.84 297.55

Al = Average Interconnect Delay (ns), WN = Worst Net Delay (ns), Wi0 =
Average Worst Ten Net Delays (ns), CP = Clock Period (ns).

Figure 94. Table showing the % improvement of the physical metrics of Rijndael

using varying levels of interconnect prediction during synthesis within MOODS.

Figure 94 shows that in all cases the area, worst net delay and average worst ten net
delays reduce when interconnect prediction is used during synthesis. Also it can be seen
that restricting the candidates available for merging and duplication decreases the clock
period, while also reducing the area, compared to just using the metrics in the cost
function. The highest throughput is achieved when the Average Interconnect Length
metric is used in the cost function. The average interconnect delays do not vary

significantly.
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Chapter 5 Conclusion and
Future Work

5.1 Conclusion

The work presented in this thesis has shown that interconnect prediction is a beneficial
process in which to significantly improve the CP and hence the total delay of a design.
At the same time as improving the CP of a design, the area is also improved in the
majority of cases. The first step in testing whether interconnect prediction was possible
during High Level Synthesis (HLS), was to compare the predicted Average
Interconnect Length in MOODS and the actual Average Interconnect Delay post Place
and Route (PAR) and to see if the correlation between them was high enough to show a
linear relationship, and hence to allow accurate prediction of the average interconnect
of a design during HLS. Average Interconnect Length was chosen as it gives a global
measure of the interconnect topology. When used in conjunction with a floorplan it can
be obtained freely, as partitioning is needed to obtain a floorplan and also to calculate
the Rent Exponent used in the average interconnect equation. It was then shown that
this average interconnect length obtained during HLS correlated very well with the
actual average interconnect delay post PAR stage in Xilinx. This correlation meant that
there was a strong linear relationship between the predicted values and actual values

using 23 different benchmarks.

Next the hierarchical information obtained through partitioning the final design
produced by MOODS improved the optimality of the design when used to guide PAR.
This showed that the interconnect prediction metrics that are fundamentally based on
the circuit partitioning were accurate if Xilinx optimises a design sufficiently well. If the
hierarchical information provided made the designs worse, then it would show that the
circuit partitioning is forming sub-optimal groups and is not creating an optimal slicing
tree. Once this relationship was found, this meant that the predicted Average
Interconnect Length (AI) Metric could be used to accurately model the actual average
interconnect during design space exploration. The next stage was then to prove that Al
was a good metric when used in the cost function during synthesis, in terms of
producing a design that reduced delay but did not adversely affect any other design

characteristics. As the results showed the Clock period (CP) and hence the total delay
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was significantly reduced, while also improving the majority of the design’s overall
physical characteristics. Then a restriction on which candidates were eligible for the
merging transform was applied, defined in terms of distances between the candidates.
This improved the delay of most designs even further. Finally a duplication transform
was introduced to the Quasi Exhaustive Optimisation algorithm, again with a restriction
on the candidate proposed for duplication. This methodology, in conjunction with the
Individual Interconnect Aware Metric in the MOODS Cost Function, produced the

highest level of optimality in terms of delay.

5.2 Future Work

5.2.1 Timing-Aware Circuit Partitioning

For future work, more timing-driven partitioning could be implemented, where weights
according to the hierarchical level could be assigned. To decrease the length of the
longer wires the weights of the external nets can be increased at the top end of the
hierarchy. One possible avenue is to increase the weight of the nets that belong to the
critical path, so as mimic the minimisation of the critical path during PAR. Another
approach could be to have higher weights at the beginning of the partitioning then
systematically reducing them so as to reduce global nets. The final approach could be to
weight a net every time it is cut during recursive partitioning, so as to reduce the

number of times the net is cut hence reduce the net length.

5.2.2 False Paths

A major part of this thesis concerns delays caused by interconnect, but delay can also be
attributed to false paths. Obviously this is not a real delay as the name suggests. A False
Path is due to merging of functional units: a path between two registers that did not
exist before merging, but exists after the transformation will be a false path. This path
will not affect the functionality of the design, but when trying to optimise a design’s
architecture that is dependent on the clock period, this false path can cause a timing
error. This error occurs because this path could appear to be the longest path. To avoid

this error the functionality of the design can be used to discover the false paths.
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(ii) Shared Components with Two Sensitisable Paths Two

False paths.
Figure 95. Creation of False paths.

Figure 95 demonstrates how resource sharing can create false paths. From Figure 95(i),
it can be seen that there is no resource sharing, which prevents false paths from
forming. If the delay was estimated, the correct delay should be derived assuming that
the estimated delay measurement was 100% accurate. In Figure 95 (ii) resources are
shared. Where the first diagram had two true paths, which were R1 - F1 — R3 and R2 - F2
— R4, due to resource sharing in Figure 95 (ii) there are 4 paths of which 2 are false:
they are R1 - M - F3 - R4 and R2 - M - F3 - R3. When the delay is estimated, 4 paths
would be measured which takes longer to compute. But the more important factor is
that one of the false paths could be longer than the sensitisable paths, which would give

an incorrect delay value of the circuit.

Firstly a map of all the datapaths is constructed at the beginning of the synthesis process
before any transforms have been performed. This map just shows how the datapath is
connected. At this stage there will be no false paths. This map is then kept until the
optimisation has been completed, and the final design architecture has been chosen. The
next step is an easy process where the first map constructed from the initial design
architecture is compared to the current design architecture. A neighbourhood search is
used for the comparison. If a path is present between two registers which was not there
in the beginning, then this is a false path. If Figure 95 is used the paths in (i) would be
simply compared to the paths in (ii). All paths that were not found in (i) but are found in

(ii) are false paths.
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This method was implemented in MOODS, so now that the false paths have been
identified this information needs to be passed onto Synplify, so that when the tool is
optimising the logic, the false paths can be accounted for. This information will then
need to be passed onto Xilinx. For this purpose the SDC file is used, which will now be
introduced. The false paths derived using the method in the last section that did not
exist prior to optimisation then get written to a SDC file. The next stage in this process
would be to test that the correct paths were identified, and that Xilinx ignored only the
false paths and did not cause any true paths to be ignored, before this method could be

accepted within MOODS and be deemed successful.

5.2.2.1 Synplify Design Constraints (SDC) File Application

The SDC is Synplify’s constraint file. This file shall be used to inform Synplify, and
then Xilinx which paths are False Paths, hence these paths are ignored when timing
analysis in Synplify and Xilinx is performed, hence allowing an accurate measurement
of the critical path delay, and hence clock period to be measured. The problem with
using the SDC was that when these false paths are identified to Synplify, those nets are
then ignored when estimating the delay. But when passing these paths onto Synplify the
paths have to start and finish in a Register or IOB. But as Figure 95 shows, this can

cause Synplify to ignore nets that belong to true paths.
5.2.3 Finalise the Floorplan

The floorplan during HLS in MOODS has been shown to be sufficiently accurate for
interconnect length estimation, but it would be interesting to see whether reducing the
dead space on the floorplan would increase the accuracy of the interconnect prediction
obtained from the floorplan. As discussed in section 2.13.1, Lai and Wong show that a
slicing tree can represent a non-slicing floorplan [21]. They use XY-compaction to
transform a slicing tree into a non-slicing floorplan. XY-compaction pushes every
module to the left until no module can move any more to the left, then every module is
pushed downwards until no module can move downwards. This is repeated until every
module cannot be moved either to the left or downwards. Alternatively the initial push
could be downwards then to the left which might give a different floorplan. The
drawback of this method is that it might separate modules, which were shown, by
partitioning, to be better placed together, to minimise the Wire Length. Hence to obtain
the final placement, an XY compaction algorithm can be introduced to reduce the dead

space. To ensure minimal degradation of the original floorplan solution in terms of
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Wire Length, the XY compaction will be directed towards the middle of the circuit as

shown in Figure 96.
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Figure 96. Direction of XY Compaction.

5.2.4 Iterative Recursive Partitioning

Good quality results have been obtained using PLE, showing that using PLE will
improve a design’s optimality. But in order to make this approach more desirable, a
method for speeding up the partitioning of the circuit netlist is needed, as this is the
most expensive part of our physical estimation process. The recursive partitioning needs
to become iterative, because many different architectures for a design are analysed
during synthesis in MOODS. Every time the Rent exponent is needed for a different
architecture of a design, the whole process of recursively bi-partitioning (RBP) the
entire circuit is repeated, even if only a small part of the design is altered. As mentioned
earlier, MOODS changes the design architecture iteratively when searching through the
design space, hence the different design architectures change little between iterations.
Hence when calculating the Rent exponent, repeating the entire process of recursively
bi-partitioning the circuit from scratch would be impractical. A structure needs to be set
up so that if part of a design’s structure is altered, then only the affected region needs to
be re-partitioned. When the partitioning phase can be performed iteratively, then the

derivation of the Al will become a great deal quicker and much more viable for HLS.

In order to achieve this speed up in PLE, a short cut needs to be thought of that will
partition a circuit’s netlist in the fraction of the time. The first method could be a look-
ahead strategy, predicting how a merging or a duplication transform would affect the
hierarchical structure. This might be possible if the network has a very low
interconnection and the modules in question do not occupy a large proportion of the

total chip space. These properties would mean that if the transform in question was
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performed, the difference in the netlist would probably have very little effect on the rest
of the hierarchy, but this could not be relied on. The second approach is to reduce the
number of partitions needed to obtain enough points for the Rent Exponent p
calculation. [61] obtains impressive results and shows that p can be calculated with a
small number of partitions without a degradation in accuracy. This method would
obviously speed up the partitioning stage to obtain p but is still too slow, and would not
help floorplan construction. Also forming an optimal cut at the top of the hierarchical
tree takes up a significant amount of the RBP, due to the number of possible solutions
increasing dramatically with size of group being partitioned. The third approach could
be using an iterative floorplan algorithm such as SA or Force directed placement. But
this would still mean partitioning the floorplan to obtain p. If this method was used
when calculating the average interconnect it would be best to just enumerate all the
paths. This method would be fairly fast but would greatly depend on the initial solution,
so as not to have to perturb the initial floorplan too much. The final approach takes
advantage of the deterministic nature of a hierarchical tree. As recursive partitioning
has a deterministic effect, the cuts at the top of the hierarchical tree in Figure 97 will
affect the cutsets further down the tree. Hence to deduce the hierarchical structure of a
design architecture if a transform is performed, knowledge of how the newly formed

modules affect the whole hierarchy is needed.

() eyl | (ii)

Figure 97. Deterministic Iterative Partitioning Algorithm.

For simplicity, we are going to presume that when merging module 9 and module C,
one module replaces them, which will be called X. The dashed lines in Figure 97(i)
represent the nets that are removed once a partition is formed. For example, the two

groups at hierarchical level 2 have no more communication with each other once



177
partitioned. When modules 9 and C are merged, repartitioning of the design is needed.
But if after partitioning the initial group, G2 (i) is the same as the previous iteration, the
partitions beneath this group will be the same. After the first cut, nets belonging to 9
and C (now X) do not have any effect on G2(i) subgroups. As in the previous iteration
those nets will be removed. This means no more partitions of this group are needed.
The next stage is to partition G2(ii), this time G3 (iv) is the same as G3 (iv) from the
previous iteration. Again no more partitions are needed. If this design was very big and
the first cut formed an identical group to the previous design architecture, then this
would significantly reduce the amount of computation needed. If an identical group is
not formed then this would suggest that the design architecture has changed too much,

so it would be best to re-partition to obtain an accurate floorplan.

To maximise the potential for this event to happen, the initial partitions shall be chosen in
the following manner. The two groups formed from the previous design iteration at the
respective hierarchical level will be used as the initial groups for the min cut algorithm
in the current iteration. But the initial partition will be modified so as to remove and add
the appropriate nodes. So as to leave one side unchanged, if feasible new modules are

placed back into the same partition the merged modules were taken from.

Due to the min cut solution being dependent on the initial partition, the more similar the
initial partitions, the more stable the results will be. As the results will be more stable,
the comparisons of PLE between design iterations will become more accurate. Hence
using the last method described means maximising the potential for the maximum
amount of the design to have the same hierarchical structure, hence produce a similar
slicing tree. Obviously if the majority of the slicing tree remains unchanged, then the
resulting analysis of the new tree structure, caused by the current design architecture,
will be more dependent on the part of the design that has been altered. Hence this
stability makes the analysis more efficient when deciding if the new architecture is

beneficial or not.
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Appendix

A.1 Definitions

1. Critical Path — The Critical Path (Definition 1) is the largest Register to
Register delay of a circuit.

2. Clock Period - The Clock Period is the minimal period of the clock wavelength,
which has to be greater than the delay of the critical path. If the clock period is less
than the critical path the functionality of the design is destroyed.

3. Metrics — A Metric is a value (technology specific) that represents a physical
property, which can then be used to compare with their respective design constraint.
L.e. the metric for the size of a Xilinx Virtex chip (FPGA) would be the number of
slices needed for all the components that are needed for the design to be
implemented on the FPGA. The constraint would then be the number of slices
available on a particular Vertex chip.

4, Signals Nets / Nets — Signal Nets are signal nets are defined as sets of points
that are to be electrically connected together.

5. Routing Plan — Routing plan is the layout of the routing on a chip;

6. Routing Channel - The routing channel runs between the cells on a chip and
this is where nets are placed;

7. Dead Space — A placement site that is not occupied is known as Dead Space.

8. Cost Function — A cost function (also known as an objective function)
represents all the design criteria on which the optimisation process will base its

decisions.
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A.2 Description of Transformations Applied during
Optimisation within MOODS

A.2.1 Scheduling Transformations
Scheduling transformations alter the control graph by altering the assignment of

instructions to control states. These transformations merge control states in order to
increase parallelism or unmerge control states. Parallelism is increased in order that
tasks can be carried out at the same time so that total delay is reduced. Unmerging
control states is desirable as this allows functional units to be merged, as the functional
units in the two disjoint group no longer carry out their tasks at the same time, allowing
functional units that carry out the same operation to be merged into one data path unit,

which can decrease area among other benefits.

There are four merging transformations which are:
1. Merge Sequential IGR nodes. These nodes are contained in the control graph
and contain instructions on when tasks should be carried out.
2. Merge Parallel nodes after fork, where a fork is when a node has two successor
nodes in the control graph
3. Merge fork and successor
4. Group instructions on variable
There are two unmerging transformations
1. Ungroup node by separating groups

2. Ungroup node into time slices

A.2.1.1 Merge Sequential IGR nodes

This transformation merges two control nodes. N.B. one control node is assumed to
take one clock cycle. The nodes have to be sequential such that the second node is
performed after the first without any feedback loops. The transformation takes the
instructions from the second node and places them into the first node; hence the second
node is now redundant and can be removed from the control graph. The instructions
being merged cannot share any data path hardware unless the instructions which share
the hardware are mutually exclusive. Instructions that are mutually exclusive are not
active at the same time; hence the two functional units that carry out the instruction are
not used at the same time. If this were the case and the IGR nodes were still merged,

this would lead to the functionality of the design being incorrect. Finally the clock
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period cannot be violated if the instructions are combined into the same state. If the

CP is violated then this means that the output signal that the instructions have created
will be produced after the CP has already moved the system to the next state. This is a
matter of logistics: for example if a product is ready after a transportation lorry has left
the depot then when the lorry arrives at its destination without any cargo, the chain will

be broken and the product cannot fulfil its purpose.

A.2.1.2 Merge parallel nodes after fork

This transform merges control states, but only in the case that the nodes being
considered proceed directly after a fork node. A fork node is simply a node that has two
outputs. The two nodes that are being considered for merging can only have one input

and have the same activation conditions i.e. they run in parallel.

A.2.1.3 Merge fork node and successor

This transform merges a fork node with its successor. Again the successor node has to
follow directly after the fork node. There cannot be any hardware sharing between the
nodes and the clock period cannot be exceeded due to the new control state containing all

the merged instructions.

A.2.1.4 Group instructions on variables

The transform only acts on register nodes that only have one input and one output,
which it then tries to remove them, as they may be redundant. This redundancy occurs
because when the data structure is built, registers are placed after every data path unit
that carries out an operation. Some of these registers are not needed because through the
process of optimisation they do not store anything. The value that would have been
stored is immediately used by a data path unit carrying out the next operation in the
same stage. To remove the register, the register first needs to be bypassed. This means
the instructions that write/read the input/output of the register are placed into the same
contro] state as the functional unit that writes to the register. This will then make the
register redundant. Bypassing the register will mean more operations will be carried out
one after the other in the same CP. If this new path created becomes the new critical
path it cannot exceed the CP, for reasons stated earlier. The instructions that are placed

in the same instruction group cannot share the same hardware.
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A.2.1.5 Ungroup node by separating groups
This transform simply splits one control state into multiple control states, by
ungrouping instructions and placing them into separate nodes. No new data

dependencies can be formed between the instructions.

A.2.1.6 Extract single instruction

This transform selects an instruction to be extracted from a control node and places it
into a new control node. If any instructions are initiated sequentially, hence dependent
on each other and must follow the extracted instruction, they are also placed into the
new control node. The instructions that are extracted cannot share the same registers, as
this would mean that the registers that the instructions point to would store information

at the same time, hence destroying the functionality of the design.

A.2.2 Allocation and Binding Transformations
Allocation and binding transforms manipulate the data path by sharing and unsharing

data path nodes, while also mapping library cells. There are two sharing transforms:
3. Data Path unit sharing/ALU creation
4. Register Sharing

There are four transforms that reverse the last two transforms:

Unshare single instruction from unit

5.

6. Unshare unit fully

7. Unshare variable from register
8.

Unshare register fully

A.2.2.1 DP unit sharing/ALU creation

This transform shares the functionality of two data path units into one ALU. The new
ALU needs to be capable of carrying out the functions of the old data path units, so as
to keep the same functionality of the design. Also the old units cannot be run

concurrently.

A.2.2.2 Register sharing

This transform tries to allow variables that are stored in two registers to be stored into
one register, hence removing a register. The registers under consideration cannot have
variables that need to be read before another variable is written to them. That is the
variable lifetimes cannot overlap or occurs only in mutually exclusive conditional

branches.
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A.2.2.3 Unshare single instruction from DP unit

This transform removes an instruction from a previously merged DP unit. This
instruction is then placed into a new data path node leaving the other instructions in the
original DP node. Again the cell library is used to obtain the new ALU physical

properties.

A.2.2.4 Unshare DP unit fully

This transform unshares all the instructions in a previously shared DP and places each

instruction into its own ALU.

A.2.2.5 Unshare variable from register

This transform selects one variable from a register that stores multiple variables and

places it into a new register.

A.2.2.6 Unshare Register Fully
This transform unshares all the variables in a previously shared register and gives each

variable its own register unit.

A.2.2.7 Binding Transformation

These transforms are used to see if any other cell in the library could carry out the task
better than the current cell chosen for a particular DP or CP unit. These transforms are:
1. Alternative DP cell selection

2. Alternative CP cell selection

A.2.2.8 Alternative DP cell selection

This transform offers alternative cell implementations to the current cell that has been

selected for a functional DP unit.

A.2.2.9 Alternate control cell selection
This transform offers alternative cell implementations to the current cell that has been

selected for a control node.
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A.3 Least Squares

The least squares model [5] can be represented as:

E(Y)=pf,+Bx+e (A1)

where x represents the values on the x axis
Y represents the values on the y axis

E(Y) represents the expected value of Y given x

By

is equal to the intercept on the x — axis

A, is equal to the gradient of the graph

€ represents the random error (i.e. cannot predict an exact model for

nature)

Definition from [5]
If the model relates E(Y) as a linear function of 3, and S only, the model is called a

simple linear regression model. To estimate the parameters of this linear model we use
least squares, which fits a line to the data. Least Squares is used because it is an

accurate but convenient method.

The least squares estimators for the simple linear regression model are:
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A.4 APR Tool (Xilinx)

ngdbuild -p xcv800-4-hq240 -uc design.ucf -dd design.edf design.ngd

Ngdbuild ngdbuild stage converts the netlist (contained in the EDIF file) and the
l constraints in the UCF file into a NGD file, which is a logic design representation.

map -p xcv800-4-hq240 -o map.ncd design.ngd design.pcf

Map map stage maps pads and their associated logic into CLBs
v
par -w -ol -d 0 map.ncd design.ncd design.pcf
PAR par stage places and routes the design
S ¥
TRCE trce design.ncd design.pcf -e 3 -o design.twr

trce stage gives timing information

Figure 98. Design Flow Within the Xilinx Tool.

An overview of Xilinx’s design flow is shown in figure 98. The architectures of
Xlilnix’s FPGA’s are shown in [25] and [37], and further information can be found on
their website ‘www.Xliinx.com’. UCF file is used to influence placement of a design’s
components when the design is being placed and routed in Xilinx, hence enabling a
representation of the design in hardware at a higher level, i.e. during design exploration
in MOODS. Xilinx placement can be influenced by using a called the User Constraint
File (UCF). This file allows timing and physical constraints to be entered into Xilinx at
the NDGbuild stage.

The constraints contained in the UCF override any previous constraints, which maybe
in the EDIF file. The two different constraint entries, which have been considered, to be
placed in the UCF are, LOC and AREA_GROUP constraints. A LOC constraint fixes
an instance into a specific location on a chip. AREA_GROUP constraints group

Instances together.

AREA_GROUP constraints are of the following format :
INST logic_name_l AREA_GROUP = Group_A;
INST logic_name_2 AREA_GROUP = Group_A;
INST logic_name_3 AREA_GROUP = Group_A;
INST logic_name_4 AREA_GROUP = Group_A;
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This information will now inform Xilinx to keep Instances logic_name_l1,
logic_name_2, logic_name_3 and logic_name_4, close to each other.
If you want to assign Group A, a designated area on the board you can then write the
following :
AREA_GROUP Group_A RANGE = CLB_R1C2:CLB_R5C6;
So the area the group will be placed in, is in between Row 1 and Row 5, Column 2 and
Column 6.
Stars can be used instead of numbers. The stars represent any value within the limits of
the chip.
LOC constraints are of the following format:
INST logic_name LOC=CLB_RI1CI1:CLB_R5C5;
So the Instance ‘logic_name’ will be placed in between Row 1 and Row 5, Column 2

and Column 6.
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A.5 False Paths

A.5.1 Cutting Down the Design Space

Rapid increase in the design complexity has increased the need for High Level
Synthesis, whose benefit is that it can quickly search design alternatives. The problem
is that design exploration is infeasible without fast and accurate delay and area
estimation. One way in doing this is to reduce the design space in which to search up to
the point where more thorough techniques can be applied without the computation
becoming infeasible. Reducing the design space reduces the amount of paths, which
need to be analysed. Hence less computation is needed, simultaneously increasing the
accuracy by filtering out the paths, which cause bad estimations. A method used in the
past was to use a topological based method, which ignores interconnect delay and this
compromises accuracy. Though a topological methodology is a lot faster due to lees
computation, interconnect delay is becoming much more of a factor when considering

design architecture alternatives, because of the decreasing delay in gates.

A.5.2 Sensitisable/False Paths

The next few definitions are from [54], they help to understand what a sensitisable path

is, and how it relates to a circuit.

Let p = (fo, 81,--» 8m-1, fm-1) be a path in the combinational circuit, where f; is a lead and
gi is a gate.

Leads fp and fi,; are the primary input and output respectively. All inputs to g; other
than fi.; are called side-inputs of gate g;.

A logic value is the controlling value of a gate if the logic value at an input of the gate
determines the gate output independently of the other inputs, and the converse is called
a non-controlling value.

E.g.if gis an AND gate, c(g) = 0 and n(g) = 1, because | does not alter any value it is
with but O will change the value if not 0, so it is controlling the output of the gate.
Definition 1

fi dominates g, if any one of the following conditions is true.

1 The only controlling input to gi,1 is f;



197
2 There are more than one controlling inputs to g, but {j arrives before
the other controlling inputs.
3 Every input to gy is non-controlling. However, f; is the last input to

stabilise and it is the last to arrive.

Definition 2
A path p is sensitisable if there is at least one input vector v under which every lead f;

on p dominates g4, 0 <1< m-2.

Definition 3

The true delay of a circuit is the delay of the longest sensitisable path in the circuit. A
clock period of a circuit greater than or equal to its true delay is a correct clock period

for the circuit.

Sensitisable paths are often referred to as true paths, and unsensitisable paths are often
referred to as false paths. There is much interest in these types of paths. Because if the
delay is read from a false path and it is the longest path in the circuit, it will result in the
wrong delay. Time is being wasted measuring the delay from a false because it has no
influence on the clock delay. If a clock period is measured at 50 ns, but the real clock
period is 40 ns. Then every period 10 ns are being lost. When comparing different

architectures false paths might lead to a false comparison hence a bad decision.

A.5.3 Recognising False Paths

[44] discusses false paths and is a good grounding for path analysis. There are a few
papers which use the term false path, when talking about delay estimation. Delay and
area estimation is easier at RTL due to fewer components. By understanding how the
design functions enables manipulation of the design without destroying the
functionality. This is the advantage of being at a higher level, rather than at the logic
level where it would take to much time sifting through all the gates etc. One major
cause of false paths is resource binding (components, wires are shared), causing false
paths. Figure 99 shows the path in which you measure the clock period. The clock
period is the largest delay between one register and its successor in the circuit. The

diagrams in this section are drawn from [44].
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Activities Components

MLIX, BUS, Wires

BUS

Figure 100. Affect of Binding Decision.

[44] presents six situations where resource binding can cause false paths:

A.5.3.1 Example 1: Certain Binding Decisions
From figure 100 the true paths are A1 -B-D -E3,Al1-BUS-D-E3and A2-B-D-

Al call these paths pl, p2 and p3 respectively. Let p1 occur in state 1 and p2, p3 occur
in state 3. A false path is A1 - BUS - D - Al call this path f1. The circuit has two states.
The problem occurs when in the first state instead of just going to E3 the path also
loops round to A2, ready for p2 in state 2. This reduces the amount of functional units
required (i.e. resource sharing p1 and p2 have the same functional unit), but this is what
causes the false paths e.g. f1. When the clock delay is being computed, the delay of f1

would be measured.
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A.5.3.2 Example 2: Multi-Functional ALU’s
If an ALU has more than one function, and one function has a larger delay than another.
This can lead to a false path due to over estimating the delay, but this can be remedied

by making the estimator more accurate and not just going for the worst case scenario.

A.5.3.3 Example 3: Testable Datapaths
Different types of test registers cause inaccuracy, because the testing registers should

not be used in the analysis, and they have different delays.

A.5.3.4 Example 4 : Chaining

Looking at the scheduling graph (figure 101 (i)) both g and h need an ALU(+) which
they share. By chaining the ALU(-) to the output of MUX3 instead of creating either
another MUX or another ALU(+), creates a false path, from ALU(*) to the ALU(-).
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Figure 101. False Paths Created by Chaining.
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A.5.3.5 Example 5: Redundant Components

Redundant components occur when components are added one by one i.e. sequentially
as shown in figure 102. Consider figure 102 (a) & (b). First b is passed through Mux?2
and then goes to ALU(+) and also ALU(*) using wl. But then ¢ is considered, where ¢
and b occur in the same state. b and ¢ cannot go through the same MUX at the same
time. Hence w2 is introduced to replace w1 to pass b to the ALU(*). But because w1 is
still there, the synthesis tool thinks a MUX is needed. Hence MUX3 is introduced to

choose between w1 and w2. Figure 102 (c) shows what the design should look like.
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Figure 102. Redundant Components due to Error in High-level Processing

The examples give a deeper understanding of false paths, and how they are caused. The
problem of false paths was tackled by giving weights to paths. The weights correspond
to register-to-register delays, and construction of a Propagation Delay Graph (PDG).
During the analysis, the information about the data transfer is always accessible (edges
of the graph) so the tautology (whether true or false) of the path can be decided. This is
the benefit of High-level synthesis because there is easy access to functional

information.
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A.6 Design Flow from HLS to Placement and Routing

A.6.1 Design Procedure Overview
In the following experiments 23 benchmarks shall be used. The benchmarks are all

written in High Level VHDL. The code is then validated using Modelsim with stimuli,
pre and post MOODS to ensure that the output RTL VHDL from MOODS remains
functionally correct. The main aim for these benchmarks is to prove that using
Interconnect Prediction in HLS is a valid process. Hence the optimality of the designs
shall be tested by how much (if any) a design’s optimality is improved when using
Interconnect Prediction to guide decision making. When constructing these benchmarks
their size and design nature was considered in order to try to make the designs as varied
as possible. This ensures that the process works for differing design architectures rather
than a select few. This is very important as HLS is used for many different design
architectures and should not be biased to any particular sect. The benchmarks consist of
10 purely arithmetic benchmarks with if statements. 5 sorting algorithms, 5 matrix
arithmetic algorithms. Finally a GCD and a quadratic algorithm. All these algorithms

can be found on the accompanying Compact Disc.

The first set of results shall be obtained by using Quasi Exhaustive heuristic in MOODS
to optimise our benchmarks. This will form the control set in which Interconnect

Prediction will have to improve on to be come a viable methodology.

Once the optimised RTL VHDL has been outputted from MOODS, this code will then be
inputted into Synplify. The Synplify tool has been chosen to convert the RTL VHDL to
the EDIF, as Synplify uses a mapper that has been developed in close cooperation with
Xilinx, hence the mapper can convert an RTL design to an EDIF, optimally mapping a
design, taking full advantage of the Virtex chip architecture. The Xilinx Virtex Series
family shall be the designated chip. The size of the chip will be designated by MOODS,
when the average interconnect is calculated post synthesis. Hence the average
interconnect will be calculated post synthesis for every optimised design architecture. If
the size of the design is overestimated and the design could fit onto a smaller chip than
the one designated, this means the area estimate was too large. But in the case of the
Clock Period (CP), the CP will only be affected within approximately Ins, so makes
little difference to our observation of the CP. The EDIF outputted by Synplify is then
passed onto Xilinx. When Xilinx is run, if the CP target (passed on from Synplify in the
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NCF) has not been achieved the actual achieved CP (in the PAR file) is used as the

target for the next run of Xilinx. After the first run the CP is systematically reduced
every time Xilinx is run. Once the CP cannot be reduced any further that is the
minimum CP, and then all desired physical characteristics are recorded. A detailed
explanation and all the files and programmes involved with the design process now

follow.

A.6.2 Automated Design Flow

Chip Pin Package Speed No of Slices # of User IOBs
XCV50 BG256 -4 768 180
XCV100 BG256 -4 1200 180
XCV150 BG256 -4 1728 180
XCV200 BG256 -4 2352 180
XCV300 BG432 -4 3072 316
XCV400 BG432 -4 4800 316
XCV600 BG432 -4 6912 316
XCV800 BG432 -4 9408 316

XCV1 000 BG560 -4 12288 404

Temperature Range
C = Commercial (T}, =—4(°C to +85°C)
I = Industrial (7, =0°C to +100°C)

Number of 1O Pins
Device Type

XCVA400 -6 PQ 240 (| Package Type

/ BG = Ball Grid Array
/ \ FG = Fine-Pitch Ball Grid Array
Speed Grad PQ = Plastic Quad Flat Pack

-4,-5,-6 HQ = High Heat Dissipation QFP
TQ = Thin Quad Flat Pack
CS = Chip-Scale Package

Figure 103. Available Chips within the Virtex Family

The desired architecture for all the benchmarks is the Xlinx Virtex Series, as chosen in
Chapter 3. The possible chips are and physical limitations are shown in figure 103. The
first stage is to write the behavioural code of a design. The behavioural code is then
simulated on Modelsim, which is a HDL simulator. The code is then test to see whether

the design shows the correct functionality with an appropriate testbench. If the code has
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any errors, the code is modified until all errors are removed. Now that the code is

correct the remaining design process from HLS to the design being ready to being
implemented on an FPGA chip is automated. The structure of the automation can be

seen in figure 104.

MOODS outputs 4 files, the first file is the RTL VHDL that contains the RTL
description of the design that has undergone synthesis. The second file is the Floorplan
(FLR) file, this contains the average interconnect length of a design, the total area of the
design, the locations of all the macros that lie on the floorplan and finally the designated
chip for the design. The smallest possible chip in the Xilinx Vertex Family that the
design can fit on is chosen. This method of chip selection is chosen due to the tighter
the restriction on area forces the design to be more compact than if the design was
placed on a larger chip. This forces the routing to also be placed in a more constricted
region, hence increasing congestion, hence increase average interconnect length,

increasing the probability of a negative impact on the Clock Period (CP).

As the main focus of this thesis is to show how interconnect prediction can improve a
designs routing layout, the more chance there is a negative impact on the CP, the more
of a role interconnect prediction will have in order to reduce the affect of routing on the
critical path. The User Constraint File (UCF) contains location and timing constraints of
macros and pin placements (if selected) which can be used during Xilinx, to aid in the
optimisation of the placement of routing of a chip. The second stage after MOODS has
synthesised a design, a Synplify project file is written so that the Synplify tool can
convert the RTL VHDL into an EDIF, so that Xilinx can proceed with APR. The FLR
file is used to provide which chip architecture the design is placed on. The desired
frequency of the CP is set at 50 MHz. This frequency is purposely set higher than the
actual expected frequency of all the designs (normally 30-50 ns), so that every design
has the same effort in trying to obtain a relatively small frequency. The pin package is
dependent on the chip selected and is chosen according to figure 103. The speed of the
chip is chosen to be 4 because. The fanout of the nets is set to a maximum of 100, which
is default value of the Synplify tool. At the same time the Xilinx batch file is written
which contains all the programs that are needed to run the APR, but this batch file will

be discussed when discussing the design being run in Xilinx.
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Now that the Synplify project file has been written, the design is now ready to proceed

to the RTL= EDIF conversion. So the batch file now proceeds to the command line

which contains the location of the Synplify executable followed by the project file that

is used to provide all the constraints previously discussed, and the location of all the

input files and the destination of the output files. During the conversion an SDF is

supplied, this tells Synplify which paths to ignore when analysing delays of paths. This
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is required for when false paths are introduced to a design through combining of

functional units during HLS. The SDF will then prevent false paths by analysed,

allowing the true CP to be calculated.

When Synplify outputs the EDIF this is then used in the Xilinx batch file. A break
down of the Xilinx batch file can be seen in figure 98 (Appendix A.4). Two constraint
files are passed on to Xilinx, one file from MOODS, and another file from Synplify.
The constraint file from MOODS is the UCF that contains suggested groupings of
macros. The groupings are decided during circuit partitioning within MOODS, the
process was discussed in section 3.10. The AREA_GROUP constraints are used, as
they do not force the groupings to be placed in a particular location, allowing Xilinx
freedom to use hierarchical information if it aids placement, or to ignore hierarchical
information if it will degrade a design’s placement. Also is the user desires, they can
pass on pin locations, which are dependent on where the macros the IOB pins are
connected to are placed on the MOODS floorplan. The other constraint file is the SDF,
which in this design process contains which paths should be ignored during timing

analysis and what the maximum CP for a design is.

With the following constraint files the batch file is run, at the end of the batch file PAR
and TWR files are produced which contain all the placement and timing formation of a
design. At this point a loop is formed as shown in figure 104, this is due to wanting to
obtain the smallest CP for a design. The reason we wish to obtain the smallest CP for a
design is that different design architectures formed from different design objectives in

HLS can be accurately compared.

A.6.3 Looping Process

To ensure that fair comparisons can be made between the CP of two different design
architectures of the same design and objective function (during HLS), the absolute
minimum CP needs to be found for every single design architecture. This is why we run
a design in Xilinx with a CP constraint in the NCF. If the design manages to reach at CP,
the CP constraint is reduced by two ns. If the design fails to meet the CP the design is
run through once more but with the CP constraint increased by one. Again all timing

and physical information is obtained through the PAR and TWR file.



A.7 Results
Bench Marks Predicted area | Actual Area %Error
bench_1(20) 920.477 845 8.932189
bench_1(50) 888.477 847 4.89693
bench_2(20) 921.715 889 3.679978
bench_2(50) 1211.48 1193 1.549036
bench_3(20) 1145.48 1040 10.14231
bench_3(50) 1176.48 998 17.88377
bench_4(20) 1210.72 1102 9.865699
bench_4(50) 1178.72 1050 12.25905
bench_5(20) 1416.1 1338 5.83707
bench_5(50) 1733.15 1678 3.286651
bench_6(20) 1559.1 1582 -1.44753
bench_6(50) 1571.15 1551 1.299162
bench_7(20) 1653.91 1594 3.758469
bench_7(50) 1748.15 1647 6.141469
bench_8(20) 1603.67 1572 2.014631
bench_8(50) 1677.95 1562 7.423175
bench_9(20) 1538.43 1514 1.613606
bench_9(50) 1581.95 1496 5.745321
bench_10(20) 1909.43 1898 0.602213
bench_10(50) 1936.95 1867 3.746652
GCD_GCD(20) 123.861 121 2.364463
GCD_GCD(50) 123.861 121 2.364463
matrix_calc_1(20) 2788.48 2978 -6.364
matrix_calc_1(50) 2788.48 2978 -6.364
matrix_calc_2(20) 6035.28 5589 7.98497
matrix_calc_2(50) 7837.85 7765 0.938184
matrix_calc_3(20) 4072.63 4338 -6.11734
matrix_calc_3(50) 4072.63 4338 -6.11734
matrix_calc_4(20) 2842.46 3023 -5.97221
matrix_calc_4(50) 2842.46 3023 -5.97221
matrix_calc(20) 8353.91 8283 0.856091
matrix_calc(50) 10156.5 10541 -3.64766
insertion(20) 691.53 755 -8.40662
insertion(50) 691.53 755 -8.40662
main_quadratic(20) 2262.08 2110 7.207583
main_quadratic(50) 2127.13 1956 8.748978
merge(20) 4390.07 4302 2.047187
merge(50) 4349.35 4308 0.959842
heap(20) 4151.35 3897 6.526815
heap(50) 4067.58 4023 1.108128
quick(20) 5936.15 5879 0.972104
quick(50) 5909.96 5665 4.324095
B_alg(20) 4812.5 4332 11.09187
B_alg(50) 4621.25 4281 7.947909
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Figure 105. Table Al: % error Between the Estimated Area and Actual Area of a design once placed

on a Virtex Chip
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Name of Bench mark | AREA| AREA | Al Al WN| WN | wio | wio cP| cP

(CP target in MOODS) c c c c c
bench_1(20) -1.89 0 0.04 | -4.69 902 -33.93 | -7.39 | -16.86 | 211 | -2.06
bench_1(50) 0 0 -3.35 | 3.72 0.62| 1223 | 584 | 1532 0.06 | 0.83
bench_2(20) -1.8 0 0.78 | -8.18 8.14 | -16.69 | -0.09 | -11.11| -0.37 | -2.95
bench_2(50) 0 0 0.65 | 065 | -10.67 | -10.67 | -6.31 | -6.31 343 | 3.43
bench_3(20) 0 0 6.48 | 3.44 11.83| 1193 | 036 | -3.91 259 | 5.11
bench_3(50) 0 0 -1.32 | -3.61 | -23.49| -19.42 | -10.23 | -10.29 | 261 | -0.08
bench_4(20) -0.09 0.09 | -1.11 3.36 7.21 2352 | -467 | 1042 175 | 197
bench_4(50) 0.1 0.1 1.43 -3.2 15.34 | 11.06 | -0.79 | -421 | -2.05 | -44
bench_5(20) 1.05 0 0.08 | -1.76 573 | 0.23 0.23 | -4.89 | -1.07 | -2.03

bench_5(50) 0.3 0.3 -1.27 | 447 -576| 375 | -6.22 | -1411 | -5.06 -4
bench_6(20) 0.06 0 264 | 184 | -10.28| -10.88 | 0.68 3.31 1.26 0.28
bench_6(50) 0.06 0 2.5 1.51 429 | 357 | 11.35 6.49 | 10.57 6.89
bench_7(20) -0.94 -1 1.89 | 3.65 6.26 | 7.71 6.33 6.99 1.4 3.14
bench_7(50) 0 0 6.38 | 1.51 367 | -23.08 | 3.24 0.97 | -1.68 | -0.47
bench_8(20) -0.06 -0.06 | -7.64 | -1.76 | -21.99 | -1053 | -11.66 | -7.23 | -0.13 0.74
bench_8(50) -0.06 -0.06 3.03 3 079 | 1269 | 472 9.1 1.46 3.02
bench_9(20) -0.07 -0.07 442 4.12 562 | -5.62 | 1233 | 1233 | 18.92 | 18.92
bench_9(50) -0.07 0 2.8 1.21 -3.04 | 047 22 | -5.09 11.1 | 14.83
bench_10(20) -0.79 0 6.2 -0.47 1.49| 8.8 1.29 1.8 22| -5.59
bench_10(50) -0.91 0 12.97 9.96 -3.05| 6.99 8.31 | 1085 | -0.33 | -2.07
GCD(20) 0 0 6.45 | -3.48 -3.85| -4.09 | -12.2 -0.69 29 -0.51
GCD(50) 0 0 -6.45 | -3.48 -3.85| -4.09 | -12.2 -0.69 29 -0.51
matrix_calc_1(20) 1.21 1.04 2.61 2.44 28.88 | 33.16 | 14.85 | 17.17 | -0.12 3.01
matrix_calc_1(50) 1.21 1.04 2.61 2.44 28.88 | 33.16 | 14.85 | 17.17 | -0.12 3.01
matrix_calc_2(20) 1.91 1.02 | -0.62 0.56 | -31.57 | -14.94 | 3.13 7.05 0.32 | -245
matrix_calc_2(50) 1.93 1.08 | -2.61 0.99 -0.28| 299 4.28 3.09 | -1.42 | -3.06
matrix_calc_3(20) 2.26 2.31 4.14 4.83 | -11.97| -10.3 8.17 6.52 | -0.02 0.05
matrix_calc_3(50) 2.26 2.31 4.14 4.83 | -11.97| -10.3 8.17 6.52 | -0.02 0.05
matrix_calc_4(20) 2.58 2.35 4.4 3.56 17 393 | 11.55 879 | -441 | -4.02
matrix_calc_4(50) 2.58 2.35 1.91 1.05 | 21.76 | 9.45 | 2358 | 21.2 | 26.27 | 26.54
matrix_calc(20) 2.39 157 | -456 | -291 | 30.04 | 28.92 | 1367 867 | -225 | -0.11
matrix_calc(50) 2.52 1.4 -4.74 | -3.06 102 572 7.84 | 024 | -0.18 | -3.02
insertionsort(20) 0.93 0.79 2.5 2.73 3.19 -0.08 | -0.45 4.62 0.82 5.01
insertionsort(50) 0.93 0.79 -2.5 2.73 3.19 -0.08 | -0.45 4.62 0.82 5.01
quadratic(20) 2.46 1.71 -437 | 52 4064 | 29.99 | 562 3.56 2.72 | -2.63
quadratic(50) 1.89 1.58 0.24 072 | -158 | 1.85 | -0.91 2.93 | -0.02 | -0.54
mergesort(20) 1.65 1.67 | 226 | -252 1.53 -6.1 -3.72 | -11.09 | -0.52 | -3.01
mergesort(50) 1.46 1.46 1.95 1.61 798 | 1339 | 377 7.79 0.08 | -4.06
heapsort(20) 0 -0.03 2.05 | -9.08 | -3.8 -30.7 | -5.86 | -22.32 | -2.26 1.11
heapsort(50) 0.25 0.25 3.06 2.29 | 1251 | 10.36 | 13.28 | 10.51 | -0.73 1.71
quicksort(20) 0.85 0.83 0.5 0.42 4.3 -6.45 | 2.08 67 | 375 | -9.21
quicksort(50) 0.85 0.85 | -5.27 037 | -9.17 | 964 | -8.76 5.5 032 | -0.22
B_alg(20) 0.16 -0.6 -3.48 | -6.35 | -9.84 | -11.1 | -10.07 | -19.01 | 33.01 | 33.66
B_alg(50) 1.4 112 | -1.81 | -392 | -11.51 | -53.81 | -10.18 | -29.6 | -217 1.42

C represents when a restriction on the groups are passed onto Xilinx. Al = Average Interconnect

Delay, WN = Worst Net Delay, W10 = Average Worst Ten Net Delays, CP = Clock Period.

Figure 106. Table showing % improvement of the physical metrics of a design when a design has been placed and

routed with location constraints obtained from circuit partitioning during HLS.
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Name of Bench mark
(GP target in MOODS) S10 825 S50 S75 S100 S150
bench_1(20) 0 0.24 0.24 0.59 0.59 0.59
bench_1(50) 0 0.47 0.47 047 0.47 0.47
bench_2(20) 0.11 0.11 0.11 0.11 0.11 0.11
bench_2(50) 0 0 0 0 0 -0.5
bench_3(20) 1.54 1.54 1.54 1.54 1.54 1.54
bench_3(50) -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
bench_4(20) 2.27 2.27 2.27 2.27 2.27 2.27
bench_4(50) -0.48 -0.19 -0.19 -0.19 -0.19 -0.19
bench_5(20) 1.94 0.52 217 217 -1.42 -1.42
bench_5(50) -1.85 4.35 -1.01 -1.01 -57.99 -57.99
bench_6(20) -2.47 1.77 -0.44 -0.44 -0.44 -0.44
bench_6(50) -2.45 -2.06 -1.29 -1.29 -1.29 -1.29
bench_7(20) -0.13 -1.69 -2.38 -2.95 -2.95 -2.95
bench_7(50) 0.55 -0.67 0.43 0.43 0.43 0.43
bench_8(20) 4.2 4.26 4.83 4.83 4.01 4.01
bench_8(50) 0.58 1.92 1.86 1.86 2.3 2.3
bench_9(20} 3.1 3.1 3.1 3.1 3.1 3.1
bench_9(50) 1.94 1.94 1.94 1.94 1.94 1.94
bench_10(20) 2.37 1.16 1.63 1.74 1.74 1.74
bench_10(50) -0.05 1.55 1.55 1.55 1.55 1.55
GCD(20) 0 -1.65 -1.65 -1.65 -1.65 -1.65
GCD(50) 0 -1.65 -1.65 -1.65 -1.65 -1.65
matrix_calc_1(20) 0.67 0.67 0.67 0.67 0.67 0.67
matrix_calc_1(50) 0.67 0.67 0.67 0.67 0.67 0.67
matrix_calc_2(20) 1.83 1.95 -0.2 -0.2 0.09 1.27
matrix_calc_2(50) -0.52 0.12 0.12 0.12 -0.31 -0.31
matrix_calc_3(20) 0.55 0.97 1.2 0.37 0.37 0.37
matrix_calc_3(50) 0.55 0.97 1.2 0.37 0.37 0.37
matrix_calc_4(20) 1.16 0.23 0 0.23 0.23 0.23
matrix_calc_4(50) 1.16 0.23 0.23 0.23 0.23 0.23
matrix_calc(20) -0.74 -0.1 -0.1 -0.1 -0.1 -0.1
matrix_calc(50) -0.83 -1.22 -1.22 -1.22 -0.73 -0.73
insertion(20) 0 0 0 4.11 411 4.11
insertion(50) 0 0 0 4.11 4.1 4.11

All criteria have equal priority. S* represents the scaling factor used when calculating E in conjunction

with the cost function, where * is an integer.

Figure 107. Table showing % improvement of the Area of a design using a value that represents the Average

Interconnect (AI) in the cost function against a design that does not use Al in the cost function.
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Name of Bench mark

(CP target in MOODS) S10 S25 S50 S75 S100 S150
bench_1(20) 0 17.44 17.44 31.85 31.85 31.85
bench_1(50) 0 17.96 17.96 22.81 22.81 22.81
bench_2(20) 5.34 5.34 5.34 5.34 5.34 5.34
bench_2(50) 3.63 3.63 3.63 3.63 3.63 35.15
bench_3(20) -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
bench_3(50) 0.16 0.16 0.16 0.16 0.16 0.16
bench_4(20) 42.2 422 42.2 422 42.2 42.2
bench_4(50) 21.33 32.3 32.3 32.3 32.3 32.3
bench_5(20) 73.29 76.42 7217 7217 -229.29 -229.29
bench_5(50) 72.49 76.17 77.86 77.86 78.81 78.81
bench_6(20) 59.6 51.32 66.49 66.49 66.49 66.49
bench_6(50) 452 44.47 475 475 47.5 475
bench_7(20) 27.5 7.97 6.62 37.78 37.78 37.78
bench_7(50) 17.86 16.03 15.01 15.01 15.01 15.01
bench_8(20) -827.14 19.29 13.31 13.31 44.89 44.89
bench_8(50) 36.63 21.14 -4.51 -4.51 34.95 34.95
bench_9(20) 563.81 53.81 63.81 63.81 53.81 53.81
bench_9(50) 37.13 37.13 37.13 37.13 37.13 37.13
bench_10(20) -665.23 28.23 37.63 49.85 49.85 49.85
bench_10(50) 18.42 9.37 9.37 9.37 9.37 9.37
GCD(20) o] 19.87 19.87 19.87 19.87 19.87
GCD(50) 0 19.87 19.87 19.87 19.87 19.87
matrix_calc_1(20) 2.98 2.98 2.98 2.98 2.98 2.98
matrix_calc_1(50) 2.98 2.98 2.98 2.98 2.98 2.98
matrix_calc_2(20) 3.12 4.95 2.77 2.77 2.64 2.36
matrix_calc_2(50) -12.5 -4.66 -1.12 7.72 -2.96 -2.96
matrix_calc_3(20) -0.02 -3.25 -3.39 6.5 6.5 6.5
matrix_calc_3(50) -0.02 -3.25 -3.39 -6.5 -6.5 -6.5
matrix_calc_4(20) -9.18 0.65 o] 0.65 0.65 0.65
matrix_calc_4(50) 22.9 29.84 29.84 29.84 5.6 -5.6
matrix_calc(20) 23.53 21.82 0.56 21.82 21.82 21.82
matrix_calc(50) -0.22 -1.17 -1.17 -1.17 -0.07 -0.07
insertion(20) 0 0 2.86 2.86 2.86
insertion(50) o] o] 2.86 2.86 2.86

All criteria have equal priority. S* represents the scaling factor used when calculating E in conjunction

with the cost function, where * is an integer.

Figure 108. Table showing % improvement of the CP of a design using a value that represents the Average

Interconnect (AI) in the cost function against a design that does not use Al in the cost function.
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Name of Bench mark S25 525 S25 S25 825 525

(CP target in MOODS) M10(m) | M10(c) | M25(m) | M25(c) | M50(m) M50(c)
bench_1(20) 17.44 17.44 17.44 17.44 17.44 17.44
bench_1(50) 17.96 17.96 17.96 17.96 17.96 17.96
bench_2(20) 6.07 5.76 6.07 5.76 5.34 5.34
bench_2(50) 4232 40.95 42.32 40.95 35.15 3.63
bench_3(20) 47.38 47.38 34.75 34.75 5.34 5.34
bench_3(50) 52.68 52.68 44.69 44.69 0.49 0.49
bench_4(20) 42.2 42,2 42.2 422 42,2 42.2
bench_4(50) [ 3732 32.3 32.3 32.3 32.3 32.3
bench_5(20) 83.17 80.45 83.17 80.44 74.3 74.21
bench_5(50) 85.56 78.36 85.56 76.13 76.14 76.14
bench_6(20) 53.41 50.59 50.59 50.59 51.32 51.32
bench_6(50) 36.84 35.01 35.01 35.01 44.48 44.48
bench_7(20) 39.45 39.45 23.79 23.79 12.42 12.42
bench_7(50) 26.66 26.66 31.41 31.41 34.85 34.85
bench_8(20) 35.21 35.21 15.68 2.29 2.29 19.27
bench_8(50) 44.41 44.41 33.52 33.52 33.52 34.95
bench_9(20) 62.41 62.41 53.81 53.81 53.81 53.81
bench_9(50) 41.82 46.54 37.13 37.13 37.13 37.13
bench_10(20) 52.98 52.98 52.98 52.98 46.24 46.24
bench_10{50) 41.9 33.59 33.59 45.15 41.75 41.75

All criteria have equal priority. M* represents the limiting factor used when deciding whether to merge to
data path units, where * is an integer. M is at which point interconnects which are involved, are
measured from. m is from the centre point and c is from the closest point between the two macros that the

interconnect connects.

Figure 109. Table showing % improvement of the CP of a design using a value that represents the Average

Interconnect (Al) in the cost function against a design that does not use Al in the cost function.
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Name of Bench mark 525 S25 S25 S25

(CP target in MOODS) S25 and A0.125 | and A0.25 | and A0.05 | and A1
bench_1(20) 0.24 0.59 0.59 0.12 0.12
bench_1(50) 0.47 0.47 0.47 0.24 0.24
bench_2(20) 0.11 0.11 0.1 0.11 0.11
bench_2(50) 0 0 0 0 0
bench_3(20) 1.54 1.54 1.54 -0.1 -0.1
bench_3(50) -0.2 -0.2 -0.2 -2.1 -2.1
bench_4(20) 2.27 1 1 5.72 2.99
bench_4(50) -0.19 -0.29 -0.29 -0.19 -0.1
bench_5(20) 0.52 1.49 1.87 4.78 3.36
bench 5(50) 4.35 4.35 1.67 4.47 -0.6
bench_6(20) 1.77 0.44 3.67 0.44 0.44
bench_8&(50) -2.06 1.48 2.26 -0.64 -0.64
bench_7(20) -1.69 0.19 1.88 1.44 1.44
bench_7(50) -0.67 0.36 1.03 1.58 0.36
bench_8(20) 4.26 5.34 5.34 4.58 4,83
bench_8(50) 1.92 3.07 3.07 0 1.6
bench_9(20) 3.1 3.1 3.1 2.77 2.77
bench_9(50) 1.94 1.94 1.94 1.6 1.6
bench_10(20) 1.16 2.21 2.21 2.42 2.48
bench_10(50) 1.55 0 0 1.71 1.71

All criteria have equal priority. A* represents the scaling factor used to increase (if less than 0) the
quai p ¥ 4 g

influence of Al in the Cost function, where * is an integer. S25 represents the scaling factor for Al

Figure 110. Table showing % improvement of the Area of a design using a value that represents the
Average Interconnect (AIl) in the cost function against a design that does not use interconnect

prediction to aid synthesis.



212

Name of Bench mark S$25 S25 $25 S25

(CP target in MOODS) 825 And A0.125 | and A0.25 | and A0.05 and A1
bench_1(20) 17.44 31.85 31.85 13.37 13.37
bench_1(50) 17.96 22.81 22.81 19.67 18.67
bench_2(20) 5.34 5.34 5.34 5.34 5.34
bench_2(50) 3.63 3.63 3.63 3.63 3.63
bench_3(20) -0.03 -0.03 -0.03 2.48 2.48
bench_3(50) 0.16 0.16 0.16 0.2 0.2
bench_4(20) 42.2 37.93 37.93 44.48 46.6
bench_4(50) 32.3 32.55 32.55 32.3 39.78
bench_5(20) 76.42 75.53 75.89 77.56 80.36
bench_5(50) 76.17 76.17 78.67 77.9 76.19
bench_6(20) 51.32 64.9 71.58 69.44 69.44
bench_6(50) 44.47 40.5 47.64 46.79 46.79
bench_7(20) 7.97 45.15 47.3 49.78 49.78
bench_7(50) 16.03 42.73 43.37 42.41 32.06
bench_8(20) 19.29 35.44 35.44 41.25 15.73
bench_8(50) 21.14 39.36 39.36 35.75 21.61
bench_9(20) 53.81 53.81 53.81 37.55 37.55
bench_9(50) 37.13 37.13 37.13 21.32 21.32
bench_10(20) 28.23 -0.11 -0.11 30.24 36.04
bench_10(50) 9.37 23.25 23.25 37.17 37.17

All criteria have equal priority. A* represents the scaling factor used to increase (if less than 0) the

influence of Al in the Cost function, where * is an integer. 525 represents the scaling factor for Al
g 4 g

Figure 111. Table showing % improvement of the CP of a design using a value that represents the
Average Interconnect (All) in the cost function against a design that does not use interconnect

prediction to aid synthesis.
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Name of Bench mark S25 S25 S25 S25 825

(CP target in MOODS) M10 M25 M50 M75
bench_1(20) 0.24 0.24 0.24 0.24 0.24
bench_1(50) 0.47 0.47 0.47 0.47 0.47
bench_2(20) 0.11 0.11 0.11 0.11 0.11
bench_2(50) 0 -27.49 -27.49 -0.5 0
bench_3(20) 1.54 -25.58 -29.81 0.67 0.67
bench_3(50) -0.2 -29.76 -32.16 -2.51 -2.51
bench_4(20) 2.27 2.27 2.27 227 2.27
bench_4(50) 0.19 -0.29 -0.19 -0.19 -0.19
bench_5(20) 0.52 -121.45 -121.45 0.6 4.33
bench_5(50) 4.35 -74.26 -74.26 1.49 2.56
bench_6(20) 1.77 0.06 3.98 1.77 1.77
bench_6(50) -2.06 2.13 2.13 -2.06 -2.06
bench_7(20) -1.69 -1.38 -0.25 -0.19 -1.69
bench_7(50) -0.67 1.34 0.67 1.82 0.43
bench_8(20) 4.26 5.22 5.28 4.96 4.26
bench_8(50) 1.92 1.6 2.69 2.69 1.92
bench_9(20) 3.1 3.17 3.1 3.1 3.1
bench_9(50) 1.94 1.67 1.94 1.94 1.94
bench_10(20) 1.16 2.95 2.95 1.58 1.58
bench_10(50) 1.55 1.12 1.02 1.23 1.55

All criteria have equal priority. M* represents the limiting factor used when deciding whether to merge two

data path units, where * is an integer. S25 represents the scaling factor for Al

Figure 112. Table showing % improvement of the Area of a design using different limits for the distance at
which candidates put forward for merging need to be within, against a design that does not use

interconnect prediction to aid synthesis.
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Name of Bench mark S25 525 525 525 825
(CP target in MOODS) M10 M25 M50 M75
bench_1(20) 17.44 17.44 17.44 17.44 17.44
bench_1(50) 17.96 17.96 17.96 17.96 17.96
bench_2(20) 5.34 6.07 5.76 6.07 5.76
bench_2(50) 3.63 42.32 40.95 42.32 40.95
bench_3(20) -0.03 47.38 47.38 34.75 34.75
bench_3(50) 0.16 5268 52,68 44.69 44.69
bench_4(20) 42.2 422 42.2 42.2 42.2
bench_4(50) 32.3 37.32 32.3 32.3 32.3
bench_5(20) 76.42 83.17 80.45 83.17 80.44
bench_5(50) 76.17 85.56 78.36 85.56 76.13
bench_6(20) 51.32 53.41 50.59 50.59 50.59
bench_6(50) 44.47 36.84 35.01 35.01 35.01
bench_7(20) 7.97 39.45 39.45 23.79 23.79
bench_7(50) 16.03 26.66 26.66 31.41 31.41
bench_8(20) 19.29 35.21 35.21 15.68 2.29
bench_8(50) 21.14 44.41 44.41 33.52 33.52
bench_8(20) 53.81 62.41 62.41 53.81 53.81
bench_9(50) 37.13 41.82 46.54 37.13 37.13
bench_10(20) 28.23 52.98 52.98 52.98 52.98
bench_10(50) 9.37 41.89 33.59 33.59 45.15

All criteria have equal priority. M* represents the limiting factor used when deciding whether to merge two

data path units, where *is an integer. S25 represents the scaling factor for AL

Figure 113. Table showing % Improvement of the CP of a design using different limits for the distance at
which candidates put forward for merging need to be within, against a design that does not use

interconnect prediction to aid synthesis.
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Name of Bench mark $25 S25&M50 | S25&M50 | S25&M50 | S25&M50 | S25&M50
(CP target in MOODS) & U5 & U10 & U25 & U50

bench_1(20) 0.24 0.24 0.24 0.59 0.59 0.59
bench_1(50) 0.47 0.47 0.47 0.47 0.47 0.47
bench_2(20) 0.11 0.11 0.1 0.11 0.1 0.11
bench_2(50) 0 0.5 0.5 0.5 0.5 -0.5
bench_3(20) 1.54 0.67 0.67 25 25 25
bench_3(50) 0.2 -2.51 -2.51 0.7 0.7 0.7
bench_4(20) 2.27 2.27 2.27 1 1 1

bench_4(50) -0.19 -0.19 -0.19 -0.29 -0.29 0.29
bench_5(20) 0.52 0.6 -96.86 222 222 222
bench_5(50) 435 1.49 1.49 2.03 2.03 2.03
bench_6(20) 1.77 1.77 1.77 1.2 1.2 -1.2
bench_6(50) -2.06 -2.06 -2.06 -4.84 -4.84 -4.84
bench_7(20) -1.69 -0.19 -0.19 1.25 1.25 1.25
bench_7(50) -0.67 1.82 1.82 0.85 0.85 0.85
bench_8(20) 4.26 4.96 4.96 5.34 5.34 3.88
bench_8(50) 1.92 2.69 2.69 3.07 3.07 1.54
bench_9(20) 3.1 3.1 3.1 341 3.1 3.1

bench_9(50) 1.94 1.94 1.94 1.94 1.94 1.94
bench_10(20) 1.16 1.58 1.58 1.48 1.37 1.48
bench_10(50) 1.55 1.23 1.23 0 0.27 0.43

All criteria have equal priority. U* represents the limiting factor used when deciding whether to
duplicate a data path unit, where * is an integer. §25 represents the scaling factor for Al and M50

represents the limiting factor for the distance candidates for merging need to be within.

Figure 114. Table showing % improvement of the Area of a design using different limits for the distance at which
candidates put forward for duplication need to exceed, against a design that does not use interconnect

prediction to aid synthesis.
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Name of Bench mark 525 S25&M50 | S25&M50 | S25&M50 | S25&M50
(CP target in MOODS) & U5 & U10 & U25 & U50
bench_1(20) 17.44 17.44 31.85 31.85 31.85
bench_1(50) 17.96 17.96 22.81 22.81 22.81
bench_2(20) 5.34 5.34 5.34 5.34 5.34
bench_2(50) 3.63 35.15 35.15 35.15 35.15
bench_3(20) -0.03 5.34 11.03 11.03 11.03
bench_3(50) 0.16 0.49 2.54 2.54 2.54
bench_4(20) 42.2 42.2 37.93 37.93 37.93
bench_4(50) 32.3 32.3 32.55 32.55 32.55
bench_5(20) 76.42 78.31 76.53 76.53 76.53
bench_5(50) 76.17 76.14 77.92 77.92 77.92
bench_6(20) 51.32 51.32 51.93 51.93 51.93
bench_6(50) 44.48 44.48 44.1 44.1 44.1
bench_7(20) 7.97 12.42 45.12 45.12 45,12
bench_7(50) 16.03 34.85 33.98 33.98 33.98
bench_8(20) 19.29 2.29 35.44 35.44 13.47
bench_8(50) 21.14 33.52 39.36 39.36 27.83
bench_9(20) 53.81 53.81 53.81 53.81 53.81
bench_98(50) 37.13 37.13 37.13 37.13 37.13
bench_10(20) 28.23 46.24 22.27 21.5 11.01
bench_10(50) 9.37 41.75 7.93 12.52 26.76

All criteria have equal priority. U* represents the limiting factor used when deciding whether to
duplicate a data path unit, where * is an integer. S25 represents the scaling factor for AI and M50

represents the limiting factor for the distance candidates for merging need to be within.

Figure 115. Table showing % improvement of the CP of a design using different limits for the distance at which
candidates put forward for duplication need to exceed, against a design that does not use interconnect

prediction to aid synthesis.



217

The following tables are comparing different levels of interconnect prediction
during HLS against using no interconnect prediction during HLS for all the benchmarks
used in this thesis (except Rijndael which will be discussed by itself). The following

different interconnect prediction methodologies are pursued in the following tables:

N = No interconnect Prediction is involved during Synthesis.

A = Average Interconnect Metric is used in MOODS Cost Function (Section 3.10).

B = Methodology A and restriction on merging (Section 4.11.2.1).

C = Methodology B and duplication is introduced with restriction (Section 4.11.2.2).

D = Methodology A and Individual Interconnect Aware (IIA) (Section 4.7.1).

E = Methodology B and IIA.

F = Methodology C and IIA.

These metrics Area, Average Interconnect Delay, Worst Net Delay, Average Worst Ten
Net Delay, Clock Period, Total Delay, Combined Clock Period and Area, and finally

Combined Total Delay and Area, will be discussed in the following figures.
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Name of Bench mark A B C D E F
(CP target in MOODS)
bench_1(20) 0.24 0.24 0.59 0.12 0.12 0.12
bench_1(50) 0.47 0.47 0.47 0.24 0.24 0.24
bench_2(20) 0.1 0.11 0.11 0.1 0.1 0.1
bench_2(50) 0 -0.5 -0.5 0 -0.84 -0.84
bench_3(20) 1.54 0.67 25 -0.1 0.77 0.77
bench_3(50) -0.2 -2.51 -0.7 -2.1 -0.4 -0.4
bench_4(20) 2.27 2.27 1 5.72 2.81 2.81
bench_4(50) -0.19 -0.19 -0.29 -0.19 -0.19 -0.19
bench_5(20) 0.52 0.6 222 4.78 -20.48 -19.13
bench_5(50) 4.35 1.49 2.03 4.47 -18.42 3.52
bench_6(20) 1.77 1.77 1.2 0.44 3.48 1.26
bench_6(50) -2.06 -2.08 -4.84 -0.65 1.1 1.1
bench_7(20) -1.69 -0.19 1.26 1.44 1.51 1.51
bench_7(50) -0.67 1.82 0.85 1.58 -0.24 -0.24
bench_8(20) 4.26 4.96 5.34 4.58 4.64 4.58
bench_8(50) 1.92 2.69 3.07 0 2.75 2.43
bench_9(20) 3.1 3.1 3.1 2.77 4.1 4.1
bench_9(50) 1.94 1.94 1.94 1.6 3.54 3.54
bench_10(20) 1.16 1.58 1.37 2.42 2.11 2.1
bench_10(50) 1.55 1.23 -0.27 1.71 1.13 1.13
GCD(20) -1.65 -1.65 5.79 -1.65 -1.65 9.09
GCD(50) -1.65 -1.65 -5.79 -1.65 -1.85 9.09
matrix_calc_1(20) 0.67 0.13 0.13 -1.31 0.13 -1.31
matrix_calc_1(50) 0.67 0.13 0.13 -1.31 0.13 -1.31
matrix_calc_2(20) 1.85 -5.51 -11.18 1.13 -4.78 1.75
matrix_calc_2(50) 0.12 0.04 0.9 -0.94 -0.19 -0.61
matrix_calc_3(20) 0.97 0.53 0.76 0.65 0.3 0.65
matrix_calc_3(50) 0.97 0.53 0.76 0.65 0.3 0.65
matrix_calc_4(20) 0.7 0.7 0.7 0.43 0.7 0.27
matrix_calc_4(50) 0.7 0.7 0.7 0.43 0.7 0.27
matrix_calc(20) -0.35 -0.62 -4.37 -24.79 -8.79 -0.56
matrix_calc(50) -0.73 -0.66 -0.65 -0.78 -0.44 -0.47
insertionsort(20) -1.85 4.77 -21.19 15.23 -8.01 -9.01
insertionsort(50) -1.85 4.77 1.59 15.23 -9.01 -9.01
quadratic(20) 0.57 0.57 0.57 0.57 0.57 1.19
quadratic(50) 0.97 0.31 0.31 0.87 0.46 0.46
mergesort(20) -1.35 -3.81 -3.53 -25.66 -16.27 -3.77
mergesort(50) -11.37 | -7.54 -1.09 -20.4 -14.55 -7.59
heapsort(20) -14.14 | -13.81 -2.72 -18.01 -13.7 -13.7
heapsort(50) -13.25 | -14.62 -10.42 -11.53 -13.95 -13.95
quicksort(20) -5.46 -5.48 -6.69 2.62 2.74 -9.44
quicksort(50) -8.69 -8.69 -11.76 -3.65 -3.65 -9.85
B_alg(20) 1.96 -8.2 -10.76 -14.94 -10.76 -10.76
B_alg(50) 1.96 | -12.08 -9.37 -11.66 2.92 -10.82

Figure 116. Table showing % improverent of the Area of a design using different levels of interconnect

prediction during synthesis within MOODS
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Name of Bench mark A B C D E F
(CP target in MOODS)

bench_1(20) 0.04 0.04 2.49 0.71 0.71 0.71
bench_1(50) -0.63 | -0.63 1.67 -0.41 -0.37 -0.41
bench_2(20) 2.52 2,52 2.52 2.52 2.52 2.52
bench_2(50) 0 -4.89 -4.89 0 -15.57 -15.57
bench_3(20) 2.42 0.74 1.07 -4.96 5.37 5.37
bench_3(50) -4.01 5.9 -4.05 -11.5 -4.67 -467
bench_4(20) 3.44 3.44 0.36 10.52 10.41 10.41
bench_4(50) 2.79 2.79 4.74 2.79 2.79 2.79
bench_5(20) 6.51 7.73 -0.12 13.73 5.14 8.78
bench_5(50) -1.55 -0.74 2.37 -3.19 -8.83 7.65
bench 6(20) 5.78 5.78 4.55 9.83 7.82 7.49
bench_6(50) -1.62 -1.62 -5.91 -0.85 0.29 0.29
bench_7(20) 2.1 -0.97 -0.38 6.41 6.17 6.17
bench_7(50) 3.88 414 0.69 10.03 5.62 5.62
bench_8(20) -0.04 -8.38 2.45 -0.84 3.8 1.76
bench_8(50) 1.04 -6.46 6.42 -3.57 0.71 -0.07
bench_9(20) -1.31 -1.31 -1.31 -6.32 -3.37 -3.37
bench_9(50) -3.6 -3.6 3.6 -6.32 -5.41 -5.41
bench_10(20) 4.44 2.78 0.31 2.7 1.56 1.56
bench_10(50) 13.34 11.51 10.18 12.44 6.14 6.14
GCD(20) -1.64 -1.64 -0.79 -1.64 -1.64 -3.63
GCD(50) -1.64 -1.64 -0.79 -1.64 -1.64 -3.63
matrix_calc_1(20) -6.7 3.69 3.69 6.41 3.69 6.41
matrix_calc_1(50) -6.7 3.69 3.69 6.41 3.69 6.41
matrix_calc_2(20) -1.98 2.05 2.29 -0.63 1.6 2.36
matrix_calc_2(50) -2.16 -2.57 -2.16 -0.07 1.3 0.72
matrix_calc_3(20) 4.73 3.88 3.1 3.17 3.62 3.17
matrix_calc_3(50) 473 3.88 3.1 3.17 3.62 3.2
matrix_calc_4(20) 4.58 4.58 4.58 0.53 4.58 1.8
matrix_calc_4(50) 2.1 2.1 2.1 -2.06 2.1 -0.76
matrix_calc(20) 2.4 -1.59 -3.35 -2.77 4.02 0.34
matrix_calc(50) 1.28 -0.5 2.35 -2.92 0.64 -0.3
insertionsort(20) 4.99 2.27 0.23 16.67 -3.92 -3.92
insertionsort(50) 4.99 2.27 1.84 16.67 0.65 0.65
quadratic(20) -1.91 -1.91 -1.91 1.95 1.58 2.56
quadratic(50) 1.67 4.18 4.18 2.07 4.5 4.5
mergesort(20) -1.08 3.53 -2.21 -1.83 -4.63 4.63
mergesort(50) 6.97 8.26 3.51 3.22 7.59 10.44
heapsort(20) -5.86 | -10.93 0.24 -3.31 -8.7 -8.7
heapsort(50) 1.04 4.68 4.45 -2.08 5.12 5.12
quicksort(20) 2.04 2.04 6.96 0.04 5.94 7.6
quicksort(50) 215 2.15 6.17 -4.42 -4.42 8.04
B_alg(20) -0.58 -5.42 -14.64 -4.11 -11.89 -15.42
B_alg(50) 5.75 -8.5 -2.38 -0.48 10.75 -7.47

Figure 117. Table showing % improvement of the Average Interconnect Delay of a design using different

levels of interconnect prediction during synthesis within MOODS
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Name of Bench mark A B C D E F
(CP target in MOODS)

bench_1(20) -18.57 | -18.57 -5.8 -10.28 -10.28 -10.28
bench_1(50) 2.91 2.91 12.26 7.87 3.72 7.87
bench_2(20) -2.33 -2.33 -2.33 -2.33 -2.33 -2.33
bench_2(50) 0 -39.17 -39.17 0 -11.58 -11.58
bench_3(20) -9.49 -3.78 0.3 -9.69 -7.39 -7.39
bench_3(50) -36.1 -15.38 22,62 -63.03 -26.12 26.12
bench_4(20) 11.93 11.93 18.11 3.01 25.42 25.42
bench_4(50) -8.97 -8.97 3.25 -8.97 -8.97 -8.97

bench_5(20) -42.68 | -18.03 -26.97 -8.41 -20.16 1.7
bench_5(50) -7.86 | -22.39 9.08 5.87 -24.91 9.8
bench_6(20) -6.79 -6.79 0.79 -6.09 -15.51 8.47
bench_8&(50) 5.21 5.21 -1.69 -0.95 6.27 6.27

bench_7(20) 0.11 -10.33 -15.96 5.29 5.5 55
bench_7(50) -14.16 | 10.22 -10.94 -0.51 -9.15 9.15
bench_8(20) 1131 | -19.77 -28.27 -12.22 -0.56 2.89
bench_8(50) -15.48 -8.35 6.16 -7.93 -0.66 3.28
bench_9(20) 7.3 7.3 7.3 -7.89 9.56 9.56
bench_9(50) -36.54 | -36.54 -36.54 -25.38 -9.15 9.15
bench_10(20) 14.77 7.43 7.43 1.38 9.33 9.33
bench_10(50) 17.66 -2.01 -26.16 5.56 -8.23 -8.23
GCD(20) 11.28 | 11.28 4.58 11.28 11.28 -1.02
GCD(50) 11.28 | 11.28 4.58 11.28 11.28 -1.02
matrix_calc_1(20) -3.55 | 2043 20.43 20.52 20.43 20.52
matrix_calc_1(50) -3.55 | 2043 20.43 20.52 20.43 20.52
matrix_calc_2(20) 1339 | 13.8 16.96 5.46 11.48 3.47
matrix_calc_2(50) -8.94 -6.17 5.31 -1.64 -0.68 -7.42
matrix_calc_3(20) -17.01 1.39 -32.61 2,12 -19.34 212
matrix_calc_3(50) -17.01 1.39 -32.61 2,12 -19.34 1.46
matrix_calc_4(20) 6.79 6.79 6.79 0.17 6.79 -1.24
matrix_calc_4(50) 12.14 12.14 12.14 5.58 12.14 4.58
matrix_calc(20) -18.06 | 24.15 21.55 18.27 4.99 27.19
matrix_calc(50) 11.06 9.33 1.4 1.68 4.55 7.189
insertionsort(20) 8.34 8.89 4.03 24.58 -0.78 -0.78
insertionsort(50) 8.34 8.89 1017 24.58 7.87 7.87
Quadratic(20) 4475 | 44.75 44.75 18.53 42.94 33.12
Quadratic(50) 5.55 1.29 1.29 9.64 18.16 18.16
mergesort(20) -1.5 -3.02 -19.2 8.27 8.53 4.84
mergesort(50) 16.52 5.6 9.47 22,22 14.6 26.18
Heapsort(20) -0.38 | -18.72 14.91 -11.18 -10.81 -10.81
Heapsort(50) 6.56 2.24 -0.63 -30.51 16.85 16.85
Quicksort(20) 2.99 2.99 -5.97 -1.92 8.26 -4.74
Quicksort(50) 3.79 3.79 7.72 7.92 7.92 13.16
B_alg(20) -29.63 | -34.35 21.34 0.58 -18.4 22.24
B_alg(50) -15.17 | -35.17 -26.71 -24.24 8.74 -43.87

Figure 118. Table showing % improvement of the Worst Net Delay of a design using different levels of

interconnect prediction during synthesis within MOODS
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Name of Bench mark A B c D E F
(CP target in MOODS)
bench_1(20) -15.45| -15.45 2.96 711 711 711
bench_1(50) 2.52 2.52 8.44 5.76 3.02 5.76
bench_2(20) -825| -825 -8.25 -8.25 -8.25 -8.25
bench_2(50) 0 -18.53 -18.53 0 -19.89 -19.89
bench_3(20) -20.94 | -22.05 -10.56 -23.02 0.46 0.46
bench_3(50) -15.24 | -2.21 -11.88 -27.42 -13.98 -13.98
bench_4(20) -1.46 -1.46 5.11 7.94 10.9 10.9
bench_4(50) -1.57 -1.57 -1.59 -1.57 -1.57 -1.57
bench_5(20) -26.89 1.45 -20.09 6.61 -15.86 -9.95
bench_5(50) -16.6 | -15.74 -0.92 -5.46 -32.02 1.51
bench_6(20) 6.9 6.9 4.32 5.26 1.98 10.96
bench_6(50) 0.4 -0.4 -1.81 2.16 7.18 7.18
bench_7(20) -3.18 -5.59 -11.73 2 591 5.91
bench_7(50) -4.62 14.11 -2.84 12.44 0.16 0.16
bench_8(20) -7.09 -15.22 -13.81 -9.41 1.74 1.96
bench_8(50) -2.99 -6.73 5.98 5.7 3.67 1.92
bench_9(20) 10.9 10.9 10.9 -1.22 3.51 3.51
bench_8(50) -11.46 | -11.46 -11.46 -13.79 -6.25 -6.25
bench_10(20) 10.62 7.62 3.43 5 5.04 5.04
bench_10(50) 17.49 5.43 -0.8 9.48 -0.11 -0.11
GCD(20) -4.98 -4.98 -7.81 -4.98 -4.98 -3.38
GCD(50) -4.98 -4.98 -7.81 -4.98 -4.98 -3.38
matrix_calc_1(20) -1.96 10.88 10.88 3.27 10.88 3.27
matrix_calc_1(50) -1.96 10.88 10.88 3.27 10.88 3.27
matrix_calc_2(20) 6.96 8.1 16.41 6.93 6.8 1.31
matrix_calc_2(50) -4.86 -1.49 1.43 1.58 -0.19 -1.91
matrix_calc_3(20) 1.05 -0.93 -4.62 -5.06 3.12 -5.06
matrix_calc_3(50) 1.05 -0.93 -4.62 -5.06 -3.12 -2.59
matrix_calc_4(20) -0.22 0.22 0.22 -3.74 -0.22 2.81
matrix_calc_4(50) 13.42 13.42 13.42 10.37 13.42 16.03
matrix_calc(20) 5.46 498 5.82 -3.44 8.42 13.61
matrix_calc(50) 7.62 6.72 1.83 6.21 0.83 -2.07
insertionsort(20) 0.47 7.24 2.05 21.96 -16.75 -16.75
insertionsort(50) 0.47 7.24 245 21.96 3.18 3.18
quadratic(20) 9.44 9.44 9.44 3.77 13.34 238
quadratic(50) 0.73 0.59 0.59 0.4 10.46 10.46
mergesort(20) 9.78 | -1279 -9.99 4 1.19 11.92
mergesort(50) 8.32 6.62 11.28 9.44 9.61 20.97
heapsort(20) -13.07 | -37.36 3.59 -12.34 -26.17 -26.17
heapsort(50) 2.82 -0.71 3.06 9.24 12.64 12.64
quicksort(20) -5.55 -5.55 1.89 -5.61 1.1 3
quicksort(50) -9.35 9.35 5.98 0.15 0.15 15.99
B_alg(20) -18.48 | -27.13 -30.34 -8.21 -29.1 -34.69
B_alg(50) -10.88 | -27.09 -24.03 -17.99 15.7 -19.59

Figure 119. Table showing % improvement of the Average Worst Ten Net Delays of a design using different

levels of interconnect prediction during synthesis within MOODS
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Name of Bench mark A B [ D E F
(CP target in MOODS)
bench_1(20) 17.44 | 17.44 31.85 13.37 13.37 13.37
bench_1(50) 17.96 | 17.96 22.81 19.67 12.15 19.67
bench_2(20) 534 | 5.34 5.34 5.34 5.34 5.34
bench_2(50) 0 32.71 32.71 0 37.06 37.06
bench_3(20) -0.03 5.34 11.04 2.48 53 53
bench_3(50) 0.16 0.49 2.54 0.2 7.7 7.7
bench_4(20) 42.2 42.2 37.93 44.48 35.79 35.79
bench_4(50) 32.3 32.3 32.55 323 323 32.3
bench_5(20) 76.42 74.3 76.53 77.57 77.55 77.15
bench_5(50) 76.17 | 76.14 77.92 77.9 77.39 76.97
bench_6(20) 5132 | 5132 51.93 69.44 67.55 69.14
bench_6(50) 44.48 | 44.48 44.1 46.79 45.34 45.34
bench_7(20) 7.97 12.42 45.12 49.78 32.71 32.71
bench_7(50) 16.03 | 34.86 33.99 42.41 19.49 19.49
bench_8(20) 17.44 0.05 33.96 39.91 6.8 44.18
bench_8(50) 2114 | 33.52 39.36 35.75 31.05 33.35
bench_9(20) 50.2 50.2 50.2 32,67 32.32 32.32
bench_9(50) 4459 | 44.59 44.59 30.65 34.71 34.71
bench_10(20) 28.23 | 46.24 215 30.24 36.07 36.07
bench_10(50) 9.37 41.75 12,52 37.17 28.71 28.71
GCD(20) 19.87 | 19.87 20.44 19.87 19.87 33.77
GCD(50) 19.87 | 19.87 20.44 19.87 19.87 33.77
matrix_calc_1(20) 2.98 317 3.17 0.2 3.17 0.2
matrix_calc_1(50) 2.98 317 3.17 0.2 3.17 0.2
matrix_calc_2(20) 4.95 7.42 7.48 5.41 5.24 5.08
matrix_calc_2(50) .12 -1.35 -4.59 0.16 -1.52 -2.82
matrix_calc_3(20) 3.25 -3.16 -6.46 -0.04 -3.3 -0.04
matrix_calc_3(50) -3.25 -3.16 -6.46 -0.04 -3.3 -3.31
matrix_calc_4(20) 0.3 0.3 0.3 1.18 0.3 0.36
matrix_calc_4(50) 29.59 29.59 29.59 30.22 29.59 29.64
matrix_calc(20) 2.45 -0.17 2.74 5.56 2.33 2.65
matrix_calc(50) -1.76 0.01 -1.38 -3.37 -1.46 -2.81
insertionsort(20) 13.28 | 15.06 24.17 -54.56 18.02 18.02
insertionsort(50) 13.28 | 15.06 4.88 -54.56 15.22 15.22
quadratic(20) 11.22 | 11.22 11.22 8.57 14.05 13.81
quadratic(50) 1.42 2.07 2.07 2.86 -0.41 -0.41
mergesort(20) 8.16 11.71 14.29 5.55 14.23 13.26
mergesort(50) 9.96 7.91 9.9 3.186 14.66 12.8
heapsort(20) 16.3 22.15 15.84 13.45 16.47 16.47
heapsort(50) 6.48 20.66 23.69 1.94 17.73 12.73
quicksort(20) 17.38 | 17.38 8.42 1517 17.13 14.21
quicksort(50) 2139 | 21.39 16.94 24.11 24.11 21.64
B_alg(20) 54.44 | 53.16 49.53 50.61 49,92 54.68
B_alg(50) 2227 19.3 22.27 27.78 J 36.81 33.4

Figure 120. Table showing % improvement of the Clock Period of a design using different levels of

interconnect prediction during synthesis within MOODS.
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Name of Bench mark A B [ D E F
(CP target in MOODS)
bench_1(20) 17.44 | 17.44 31.85 13.37 13.37 13.37
bench_1(50) 17.96 | 17.96 22.81 19.67 12.15 19.67
bench_2(20) 534 | 5.34 5.34 5.34 5.34 5.34
bench_2(50) 0 32.71 32.71 0 37.06 37.06
bench_3(20) -0.03 5.34 11.04 2.48 5.3 5.3
bench_3(50) 0.16 0.49 2.54 0.2 7.7 7.7
bench_4(20) 422 | 422 37.93 44.48 35.79 35.79
bench_4(50) 5487 | 54.87 55.03 54.87 54.87 54.87
bench_5(20) 76.42 74.3 76.53 77.57 77.55 77.15
bench_5(50) 84.12 | 84.09 81.6 81.59 81.16 76.97
bench_6(20) 5132 | 51.32 51.93 69.44 67.55 69.14
bench_6(50) 4448 | 44.48 44.1 46.79 45.34 45.34
bench_7(20) 3427 | 3745 60.8 64.13 51.93 42.32
bench_7(50) 40.02 | 5347 52.85 58.86 42.49 30.99
bench_8(20) 44,96 | 33.37 55.97 59.94 37.86 62.79
bench_8(50) 21.14 | 3352 39.36 35.75 31.05 33.35
bench_9(20) 60.16 | 60.16 60.16 46.13 45.85 45.85
bench_9(50) 4459 | 4459 44.59 30.65 34.71 34.71
bench_10(20) 4259 | 56.99 37.2 44.2 48.86 48.86
bench_10(50) 9.37 41.75 12.52 37.17 28.71 28.71
GCD(20) 19.87 | 19.87 20.44 19.87 19.87 33.77
GCD(50) 19.87 | 19.87 20.44 19.87 19.87 33.77
matrix_calc_1(20) 2.98 3.17 3.17 -0.2 3.17 -0.2
matrix_calc_1(50) 2.98 317 317 0.2 317 0.2
matrix_calc_2(20) 4.95 7.42 7.48 5.41 5.24 5.08
matrix_calc_2(50) -1.12 -1.35 -4.59 0.16 -1.52 -2.82
matrix_calc_3(20) -3.25 -3.16 -6.46 -0.04 3.3 -0.04
matrix_calc_3(50) -3.25 -3.16 -6.46 -0.04 -3.3 -3.31
matrix_calc_4(20) 0.3 0.3 0.3 1.18 0.3 0.36
matrix_calc_4(50) 29.59 | 29.59 29.59 30.22 29.59 29.64
matrix_calc(20) 2.45 -0.17 2.74 5.56 2.33 2.65
matrix_calc(50) -1.76 0.01 -1.38 -3.37 -1.46 -2.81
insertionsort(20) 13.28 | 15.06 24.17 -54.56 18.02 18.02
insertionsort(50) 13.28 15.06 4.88 -54.56 15.22 15.22
quadratic(20) 11.22 | 11.22 11.22 8.57 14.05 13.81
quadratic(50) 1.42 2.07 2.07 2.86 -0.41 -0.41
mergesort(20) 8.16 11.71 14.29 5.55 14.23 13.26
mergesort(50) 9.96 7.91 9.9 3.16 14.66 12.8
heapsort(20) 16.3 | 2215 15.84 13.45 16.47 16.47
heapsort(50) 6.48 20.66 23.69 1.94 17.73 17.73
quicksort(20) 17.38 | 17.38 8.42 15.17 17.13 14.21
quicksort(50) 2139 | 21.39 16.94 24.11 24.11 21.64
B_alg(20) 5444 | 53.16 49.53 50.61 49.92 54.68
B_alg(50) 2227 19.3 22.27 27.78 36.81 33.4

Figure 121. Table showing % improvement of the Total Delay (Number of CPs * CP Delay) of a design

using different levels of interconnect prediction during synthesis within MOODS
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Name of Bench mark | AREA | AREA Al Al WN WN W10 W10 CP CP
(CP target in MOODS) G B G B G B G B G B
bench_1(20) 0.24 | 024 0.04 182 | -1857 | 6.27 | -1545[ 036 | 17.44 | 13.21
bench_1(50) 0.47 | 047 -0.63 167 | 291 | 1226 | 252 | 844 | 17.96 | 2281
bench_2(20) 0.11 0.11 252 252 | -233 | 233 | 825 | -8.25 534 | 534
bench_2(50) 05 | 042 | 489 | -8.78 | -39.17 | -17.12 | -1853 | -16.17 | 3271 | 39.04
bench_3(20) 0.67 | 048 0.74 217 | 378 | 52 2205 | 53 5.34 11
bench_3(50) -2.51 -0.6 5.9 | -6.34 | -1538 | -22.94 | -221 | -1322 | 049 7.86
bench_4(20) 227 | 191 3.44 573 | 1193 | 571 -1.46 2 422 | 31.54
bench_4(50) 019 | 114 2.79 272 | -897 | -196 | -157 | 071 323 | 23.13
bench_5(20) 06 | -23.02 | 773 22 | -18.03 | 2482 | 145 | -1446 | 743 | 7589
bench_5(50) 149 | -40.94 | -074 | 859 | -2239 | -362 | -15.74 | -19.18 | 76.14 | 70.99
bench_6(20) 1.77 | -2.21 5.78 836 | -6.79 | 297 6.9 12.3 | 51.32 | 554
bench_6(50) 206 | -555 | -162 | -499 | 5.2 4.03 -0.4 -212 | 44.48 | 33.53
bench_7(20) -019 | -1.76 | -097 | 434 | -10.33 | -13141 | -559 | -8.26 | 1242 | 079
bench_7(50) 1.82 | -0.18 4.14 6.18 | 1022 | 561 | 1411 | 1052 | 34.86 | 1479
bench_8(20) 496 | 3.56 -8.38 | -7.28 | -19.77 | -21.03 | -1522 | -17.69 | 0.05 | 41.85
bench_8(50) 269 | 211 -6.46 3.07 | -835 | -017 | 673 | 657 | 3352 | 21.14
bench_9(20) 3.1 3.1 -1.31 | -1.31 7.3 7.3 10.9 10.9 50.2 | 50.2
bench_9(50) 1.94 1.6 -3.6 | -6.32 | -36.54 | -25.38 | -11.46 | -13.79 | 4459 | 30.65
bench_10(20) 1.58 | 153 278 | 11.52 | 743 | 27.93 7.62 | 2267 | 46.24 | 40.79
bench_10(50) 123 | 102 1151 | 1046 | -2.01 | -4.44 5.43 7.5 41.75 | 3877
GCD(20) -1.65 | 992 -1.64 | -2.38 | 1128 | 7.99 -498 | -408 | 19.87 | 6.14
GCD(50) -1.65 | 9.92 -1.64 | -2.38 | 1128 | 7.99 -498 | -4.08 | 19.87 | 6.14
matrix_calc_1(20) 0.13 | 0.44 369 | -1.04 | 2043 | -0.11 | 1088 | 3.93 3.17 0.67
matrix_calc_1(50) 0.13 | 044 369 | -1.04 | 2043 | -0.11 | 1088 | 393 3.17 0.67
matrix_calc_2(20) -5.51 | -9.59 205 | -1.53 | 138 | -854 8.1 -3.8 7.42 7.5
matrix_calc_2(50) 0.04 | 0.4 257 | -1.75 | 617 | -138 149 | -1.84 | -1.35 | -1.39
matrix_calc_3(20) 053 | 076 3.88 405 | 139 | -086 | -0.93 | -1.27 | -316 | 0.09
matrix_calc_3(50) 053 | 076 3.88 4.05 139 | -066 | 093 | -1.27 | -316 | 0.09
matrix_calc_4(20) 0.7 0.7 4.58 458 | 679 | 679 022 | -022 03 0.3
matrix_calc_4(50) 0.7 0.7 2.1 2.1 1214 | 1214 | 1342 | 1342 | 2959 | 29.59
matrix_calc(20) -0.62 | -868 | -159 1.18 | 24.15 | 20.66 498 | 213 017 | 7.64
matrix_calc(50) 066 | -1.14 0.5 1.21 9.33 | -6.51 6.72 | 3.38 0.01 -4.32
insertionsort(20) 477 | 384 2.27 6.49 | 889 | 18.85 7.24 | 1472 | 1506 | 1812
insertionsort(50) 477 | 384 2.27 6.49 | 889 | 1885 7.24 | 1472 | 1506 | 18.12
quadratic(20) 0.57 0.1 191 | 074 | 4475 | 43.04 9.44 | 11.21 | 1122 | 13.88
quadratic(50) 0.31 0.31 4.18 5.69 129 | -9.08 0.59 4.1 2.07 -0.23
mergesort(20) -3.81 | -1.83 353 | 172 | -3.02 | 031 | -1279 | -483 | 11.71 | -07
mergesort(50) -7.54 -1 8.26 6.31 56 | 22.21 6.62 | 1759 | 7.91 -4.87
heapsort(20) -13.81 | -0.74 | -10.93 | -4.15 | -1872 | -8.83 | -37.36 | -27.29 | 22.15 | 24.66
heapsort(50) -14.62 | 0.75 4.68 5.91 -224 | 16.08 | -0.71 | 1973 | 20.66 | 4.39
quicksort(20) -5.46 | -6.87 2.04 3.32 | 299 -6.3 -5.55 | -11.46 | 17.38 | 12.05
quicksort(50) -8.69 | -102 | -2.15 5.1 3.79 | 1607 | 9.35 | 13.68 | 21.39 | 1345
B_alg(20) 82 | 074 | -542 | 851 | -3435 | -29.8 | -27.13 | -26.52 | 53.16 | 50.56
B_alg(50) -12.08 | -4.98 -85 | -3.07 | -35.17 | -2t -27.09 | 2895 | 193 | 2078

Al = Average Interconnect Delay, WN = Worst Net Delay, W10 = Average Worst Ten Net Delays, CP =

Clock Period.

Figure 122. Table showing % improvement of the physical metrics of a design using interconnect prediction

during synthesis within MOODS, derived from the Greedy Algorithm (G) and secondly the Greedy algorithm
and the Modified Kernighan Lin Algorithm combined(B).
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Name of Bench mark AREA Al WN W10 CP
(CP target in MOODS)
bench_1(20) 0 1.63 11.67 3.27 22.69
bench_1 (50) 0 0 0 0 0
bench_2(20) 0 0 0 0 0
bench_2(50) 0 0 0 0 0
bench_3(20) 0 0 0 0 0
bench_3(50) 0 0 0 0 0
bench_4(20) 0.86 3.41 7.85 272 15.95
bench_4(50) 0.86 3.41 7.85 272 15.95
bench_5(20) 0 0 0 0 0
ench_5(50) 0 0 0 0 0
bench_6(20) -3.44 0.78 -8.8 -4.41 259
bench_6(50) 0 0 0 0 0
bench_7(20) 3.49 3.38 35 4.15 90.97
bench_7(50) -1.83 1.04 2.06 9.25 14.84
bench_8(20) 0 0 0 0 0
bench_8(50) -0.64 0.43 -18.57 5.25 0.11
bench_9(20) 0 0 0 0 0
bench_9(50) 0 0 0 0 0
bench_10(20) 0.35 -4.01 -26.27 4.61 -0.11
bench_1 0(50) 0 0 0 0 0
GCD(20) 0 3.51 0.79 -0.99 6.43
GCD(50) 0 3.51 0.79 0.99 6.43
matrix_calc_1(20) -0.27 0.72 -3.26 9.22 0.33
matrix_calc_1 (50) 0 0 0 0 0
matrix_calc_2(20) 0 0 0 0 0
matrix_calc_2(50) 0 0 0 0 0
matrix_calc_3(20) -0.17 4.14 11 7.79 6.27
matrix_calc_3(50) 0 0 0 0 0
matrix_calc_4(20) 0.07 0.7 -13.84 3.64 5.66
matrix_calc_4(50) 0.07 0.7 -13.84 3.64 -5.66
matrix_calc(20) 0 0 0 0 0
insertionsort(20) 0 0 0 0 0
insertionsort(50) 0 0 0 0 0
quadratic(20) 0 0 0 0 0
quadratic(50) 0.64 -3.38 -1.15 9.96 -0.06
mergesort(20) 3.73 -10.4 4.19 -8.07 34.47
mergesort(50) 0.14 3.24 2.08 4.89 -18.79
heapsort(20) 0.07 8.52 14.19 17.79 11.36
heapsort(50) 12.53 -3.95 10.14 4.87 -4.33
quicksort(20) -1.69 4 4.95 9.88 -4.71
quicksort(50) 1.8 2.29 7.16 7.92 -6.04
B_alg(20) 1.17 2.81 4.85 2.89 4.62
B_alg(50) 4.58 18.52 8.57 24.83 2.94

Matrix_calc has been left out as the design did not fit on a Virtex chip.

Al = Average Interconnect Delay,

WN = Worst Net Delay, W10 = Average Worst Ten Net Delays, CP = Clock Period

Figure 123. Table showing % improvement of the physical metrics of a design using interconnect

prediction during synthesis within MOODS, but this time using the Simulated Annealing

Heuristic.



