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In the 2-local stable homotopy category the group of left bu-module automor-
phisms of bu Abo which induce the identity on mod 2 homology is isomorphic
to the group of infinite, invertible upper triangular matrices with entries in
the 2-adic integers. After giving a survey of the required background material
from stable homotopy theory, we identify the conjugacy class of the matrix
corresponding to 1 A 93, where 1 is the Adams operation. We conclude by

giving two applications of having knowledge of the identity of this matrix.
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Chapter 1

Introduction

1.0.1 Summary

I would like to begin by giving a very general summary of the results of
this thesis aimed at a general mathematical audience. In [24] Snaith defined
an isomorphism of groups which relates an automorphism group of a purely
stable homotopy theoretic construction and a certain matrix group. The
motivation for defining this isomorphism was to be able to turn difficult ho-
motopy theoretic problems into simpler problems of matrix algebra. Within
this automorphism group there exists an element which is particularly im-
portant in algebraic topology and in [24] a footnote was printed predicting
the identity of the matrix corresponding to this automorphism. The bulk of
the original work contained in this thesis proves this prediction, which turned
out to take more work than expected. The final chapter of this thesis goes
on to give two applications of the results obtained in proving the identity of

the matrix.



1.0.2 Overview

I now wish to give a more detailed summary of the structure of this thesis
aimed at an audience with some knowledge of algebraic topology and homo-
topy theory. In 1966 Boardman [7] introduced the stable homotopy category
of spectra, which we denote .. The objects in this category are spectra,
introduced by Lima, which are sequences of topological spaces along with
maps from the suspension of one space in the sequence to the next. The
morphisms are complicated to define, but importantly are homotopy classes,
in some appropriate sense, of maps of spectra. After giving a few topological
preliminaries in §2.1, we give details of the construction of .% in §2.2. In
this thesis we work with a localisation of the category ., with respect to
mod 2 singular homology, in the sense of Bousfield [9]. The details of this

localisation are given in §2.7.

The notion of spectra is very natural if one starts with a generalised coho-
mology theory, as every such cohomology theory defines a spectrum which
represents it. Conversely, to every spectrum we can associate a generalised
cohomology theory. The relationship between generalised (co)homology the-
ories and spectra is discussed in §2.5. In this thesis we are particularly
interested in the spectra bu and bo which represent 2-local complex and real
connective K-theory respectively. After defining a suitable product of spec-
tra we can introduce the notion of a ring spectrum and a module spectrum
over a ring spectrum. The smash product of spectra A, once correctly de-
fined, makes bu A bo a left module spectrum over the ring spectrum bu. Ring
and module spectra, and in particular bu and bo, are introduced in §2.6. Af-

ter describing how to calculate the mod 2 singular homology of a spectrum
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(§2.5) we can consider the set of left bu-module automorphisms of bu A bo
which induce the identity map on mod 2 singular homology. This set actually
forms a group, which we denote Aut?eft_bu_mod(bu A bo). The main result of

24], Theorem 1.2, is a group isomorphism of the form
AUt?eft—bu—mod(bU Abo) 2 UyZs

where U, Z, represents the group of infinite upper triangular matrices with
2-adic integer entries. This isomorphism is defined up to inner automor-
phism in U, Zy. As introduced in §2.8, by far the most important element in
Aui?eft_bu_mod(bu A bo) is the automorphism 1 A 93, where ¢3 : bo —> bo is
the Adams operation on the real connective K-theory spectrum. The obvious
question to ask is, what is the conjugacy class of matrices which represents
1 A3 In [24] a footnote appeared (page 1273) predicting that the matrix

representing 1 A 9% is conjugate in U,.Zs to the matrix

The main result of this thesis, Theorem 3.4.2, is a proof of this prediction.

This result and its proof have been published in the collaborative paper [11].

As discussed in §3.5, an element of the group Aut), s, 4, m.q(bu A bo) is de-
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7w (buAbo)®Zo
Torsion

termined by its effect on , the homotopy group of the spectrum
bu A bo tensored with the 2-adic integers and modulo torsion. The homotopy
groups of spectra are introduced in §2.3.1. As explained in §3.1, Snaith’s
group isomorphism mentioned above makes use of a decomposition of the
spectrum bu A bo given by Mahowald. We therefore find that if we wish to
determine the effect of the map induced on homotopy by 1 A 9% we need to
work out its effect on basis elements, for the homotopy group as a module
of the 2-adic integers, given in terms of this decomposition. These basis ele-
ments are discussed in §3.5. To enable us to do this we make use of a second,
far more convenient, basis for the homotopy group shown above given by
Clarke, Crossley and Whitehouse in [12] and described here in §3.6. The
advantage of this basis is that the effect of the map induced by 1 Ay is well
known. We therefore proceed to find the relationship between the two bases
and translate the effect of the map induced by 1 A 9% from Clarke, Crossley
and Whitehouse’s basis to the basis coming from Mahowald’s decomposition.
Once this relationship of bases is established we are able to use Snaith’s iso-

morphism to calculate the matrix corresponding to 1 A3, We find that this

matrix is

1 1 as ca Cis
0 9 1 C2,4 02,5

C — 00 92 1 C375

where the ¢;; are arbitrary 2-adic integers. We conclude Chapter 3 by
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proving that the matrix B is in fact conjugate in U, 7Zs to the constructed

matrix C, as predicted in [24].

In Chapter 4 we present two applications of the main results of Chapter
3. The first application (§4.1) describes how knowledge of the matrix corre-
sponding to 1AY? : buAbo — buAbo allows us to explicitely describe the left
bu-module automorphism 1 A3 : bu A bu — bu A bu in terms of morphisms
arising from the Mahowald splitting of bu Abo. The second application (§4.2)
investigates the ring of left bu-module endomorphisms of bu A bo. In particu-
lar the main result of this section reproves and slightly extends a 1974 result
of Milgram ([19], Theorem B). Both of these applications are the result of
the collaborative work of the author and his PhD supervisor Prof. V. Snaith
being published in [11]. They are not presented as the original work of the
author but they are included here as immediate examples of how knowledge

of the matrix corresponding to 1 A 1% can be put to good use.

1.0.3 Prerequisites and assumptions

The required knowledge to begin original research in stable homotopy the-
ory is vast. There are certain substantial assumptions that needed to be
made in the preparation of this thesis, as a complete account of the rele-
vant background material would be impossible. We therefore assume a basic
general knowledge of algebraic topology, specifically CW-complexes, basic
singular (co)homology theory, generalised homology theories and basic ho-
motopy theory. We also assume a basic working knowledge of homological
algebra. Possibly our biggest assumption though is knowledge of the basic

theory of spectral sequences and, in particular, the Adams spectral sequence.



Chapter 2

Background material

The aim of the following chapter is to provide the reader with enough back-
ground material, at an appropriate level of detail, so that they may feel
comfortable with the concepts required to understand the original research
contained in this thesis. References are given for more comprehensive ac-
counts and the reference chosen usually reflects the publication the author

found most useful in understanding the concept.

2.1 Topological preliminaries

Let .7 denote the category of topological spaces with basepoint. In this
category the morphisms are base-point preserving continuous maps of topo-
logical spaces. Let ¥# denote the category of CW-complexes with base-

point. In this category morphisms are base-point preserving cellular maps of

CW-complexes.
Definition 2.1.1. Given (X, z0), (Y, %) € 7, we define the smash product

H

13



2.1. Topological preliminaries 14

(X NY, %) € J to be the quotient space

XxY

Y =
XA XVY

with basepoint * = p(X VYY), where p: X xY — X AY is the projection.

Definition 2.1.2. Given (X, zq) € & we define the suspension (£X,%) € 7

of X to be the smash product (S* A X, *) of X with the 1-sphere.

Definition 2.1.3. Given (X, z9) € 7, we define the n-th suspension of X
(E"X, ) inductively as the smash product (S* A Z"71 X, %) of X"7' X with

the 1-sphere, for n > 1.

Definition 2.1.4. (X, zy) € 7 is called n-connected if and only if 74 (X, z) =
Ofor0<k<nandall z € X.

Let o denote the homomorphism induced on homotopy groups by suspension.

Theorem 2.1.5. Freudenthal Suspension Theorem For every n-connected
CW-complez X, n > 0, the homomorphism o : 7.(X, zg) — mr11(ZX, %) is

an isomorphism for 1 <r < 2n.

Definition 2.1.6. Given (Y, o) € .7, we define the loop space (QY,wo) € T

of Y to be the function space
QY = (Y, 1))

with the constant loop wg(s) = yo for all s € S! as base-point.

Definition 2.1.7. Given (Y, 1) € 7 we define the n-th loop space ("Y', wy) €

7 inductively as the loop space Q(Q"7'Y), for n > 1.
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Proposition 2.1.8. The suspension and loop space functors are adjoint.

For the remainder of this chapter we shall use the word space to mean an
element of 7 and map of spaces to mean a morphism in 7. We shall omit

basepoints unless explicitely required.

2.2 The stable homotopy category of spectra

In this section we shall describe the stable homotopy category of CW-spectra
introduced by Boardman in his 1966 Warwick preprint [7]; but our description
is due to Adams ([4]). We shall denote this category by %#. The account
given here largely follows Adams’s account but also includes explanations of

some concepts inspired by the explanations given in [26] and [13].

2.2.1 Objects

Definition 2.2.1. A CW-spectrum E is a sequence of pointed CW-complexes

FE, provided with structure maps
€n : EEjn — En+l

such that each structure map ¢, is a homeomorphism from X F, to a sub-

complex of E, 1.

It is equivalent to define a spectrum in terms of structure maps ¢ : £, —

QFE, 1 as ¥ and  are adjoint functors.

We could define a more general notion of spectra which drops the requirement
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that the sequence of spaces be CW-complexes, but for the purposes of this
thesis this is unnecessary as all the spectra we will be using are CW-spectra.
There is no loss in generality by restricting to CW-spectra in any case since
it can be shown that any spectrum in the more general sense is weakly
equivalent to some CW-spectrum. Therefore from this point on we shall

simply say spectrum to mean CW-spectrum.

Example: Given a CW-complex X, we define the suspension spectrum X
to be the spectrum with
X n>0
(X)), =
* n <0
and structure maps the obvious maps e, : (X)), = ZXZ"X — (8%°X),11 =
$7HIX . In particular if we take X = S° we obtain a spectrum S called the

sphere spectrum.

Example: We may also define a spectrum representing the n-th desuspension
of a space X as
S0 0<m<n

(7" X)) =
X om>n

with the obvious maps.

Example: As is usual, let U(n) denote the n x n unitary group. This is the
group of n x n complex matrices U satisfying the condition U*U = UU* = I,
where [, is the n x n identity matrix and U* is the conjugate transpose

of U. The group operation is matrix multiplication. Let BU denote the
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classifying space of the infinite unitary group (i.e. a K (U, 1) space where
U = U,>1 U(n)). Most proofs of the Bott Periodicity Theorem actually

prove a stronger result, that there is a homotopy equivalence
Z x BU ~ Q*(Z x BU).

This result allows us to define the complex K-theory spectrum, denoted KU,

by

Z x BU if n is even,
KU, =
QZ x BU) if nis odd.

The structure maps ¢,
Y(Z x BU) — Q(Z x BU)

and

SQ(Z x BU) — Z x BU

are given by the adjoints of the Bott periodicity homotopy equivalence and

the identity map,
Z x BU — Q*(Z x BU)

and

Q(Z x BU) — Q(Z x BU),

respectively. It is easy to see that all the structure maps €, : E, — QF,
are weak equivalences. This property means that we call the spectrum KU

an -spectrum.
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Example: Let BO and BSp denote the classifying spaces of the infinite
orthogonal and symplectic groups respectively. The proof of the Bott Peri-

odicity Theorem also yields the homotopy equivalences

Z x BO ~ Q*BSp

and

Z x BSp ~ Q*BO.

These results allow us to define the real K-theory spectrum, denoted KO.

The spectrum KO is of period 8 (i.e. KO,=KO,.s) and is defined by

KO, KOy KO3 KOy KOs KOs KO; KOy

I I I I I I I I
03BSp Q2BSp QBSp Zx BSp Q3BO Q2BO QBO 7 x BO

The structure maps eg,, : KOgm —> QLK Ogpy) are given by the first of the
homotopy equivalences given above. Similarly the structure maps €z, 4 :
KOsmry — QK Ogpmys are given by the second of the homotopy equivalences

given above. All other structure maps are given by the identity map.

The following definitions relating to the objects will be required when we

come to define the morphisms in .%.

Definition 2.2.2. A subspectrum E’ of a spectrum F consists of subcom-
plexes E! C E, for each n such that the structure map €, : £E, — Enq1

maps X E, into E; ;.

Definition 2.2.3. A subspectrum E’ of a spectrum F is said to be cofinal
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in F if for each n and each finite subcomplex K C FE, there is an m, which

depends on n and K, such that ¥™K maps into E}, ,, under the map

sm-1lg - €m+4n—1
SE, =TS B — s —— SE i 2 B

Intuitively, this definition says that given enough suspensions any cell in F,

gets mapped into E’.

2.2.2 Morphisms

We now wish to complete the construction of .% by defining morphisms be-
tween spectra. Unfortunately the obvious definition, which we call a function
of spectra, turns out to be inadequate. It can be shown that many reason-
able morphisms you may expect to have in .% cannot exist using this naive
definition. See [4] pages 141-2 for an example of such a morphism. Therefore

we define the morphisms in a series of steps.

Definition 2.2.4. A function f : E — F of CW-spectra of degree r is a
collection of cellular maps f, : E, — F,_,, n € Z, such that the following

diagram is strictly commutative for each n:

SE, e Ens1
an fn—H
¢
E}Fn—r i Fn—r+1

Remark 2.2.5. The grading of functions given here is designed to eventually

give 7. (F) =[S, F);.
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We now define an equivalence relation ~ which will allow us to define maps

of spectra.

Definition 2.2.6. Let E, F be spectra. Consider the set S of all pairs (E’, f’)
such that £’ C E is a cofinal subspectrum and f': £/ — F' is a function of
spectra. We introduce an equivalence relation ~ on S by (E’, f') ~ (E”, f")

if and only if there is a pair (E", /) with E” C E'N E", E" cofinal and
f/|E/// — f/// — f//‘E///.

The proof that ~ is an equivalence relation follows from the facts that in-
tersections and arbitrary unions of cofinal subspectra are cofinal, and that if
G C F C FE are subspectra such that F'is cofinal in £ and G is cofinal in F,

then GG if cofinal in F.

Definition 2.2.7. We call equivalence classes of ~ maps from E to F

This definition of ~ in terms of cofinal subspectra allows us to define a map
on the suspension ¥"c € E, 4, of a cell ¢ € E,, rather than having to define

the map on c itself.

A morphism in .¥ will be defined as a homotopy class of maps, therefore we

require the notion of a homotopy of maps of spectra.

Definition 2.2.8. Let /™ denote the union of the unit interval [0, 1] and a
disjoint base-point. A homotopy is a map of spectra g : EA [T — F', where
EAI* is defined to be the spectrum with (EAIT), = E,AIT. There are two
obvious morphisms of spectra iy : E — EA I, 4y, : E — E A1 induced
by the inclusions of 0,1 in /7. We say two maps of spectra fo, f1: F — F
are homotopic if there is a homotopy h : EA It — F with ho iy = fo,

hoiy = fi.
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Homotopy as defined here is an equivalence relation, which leaves us in a
position to finally define the morphisms in our category. If E, F are spectra
we write [E, F|, for the set of homotopy classes of maps of degree r from E

to F.

Definition 2.2.9. A morphism of degree r in .% is a homotopy class of maps

of degree r.

Given the notion of homotopy we may define fibre and cofibre sequences for
spectra in exactly the same way as on the space level so that they will enjoy
all the same homotopical properties. In fact, for the CW-spectra we are

considering the notion of fibre sequence and cofibre sequence coincide.

2.3 Homotopy groups of spectra

We shall now define homotopy groups of spectra in such a way that the
homotopy groups of a suspension spectrum X°° X will coincide with the stable

homotopy groups of the space X.

Given any spectrum E € . we have the following homomorphisms of ho-

motopy groups of spaces
a (fn)*
7Tn—§—7‘(En) — 7Tn+'r+1(ZEn) — 7Tn+r+1(En+1)

given by the Freudenthal suspension homomorphism ([26] Theorem 15.46)
and the map induced by the structure map €, in the spectrum E. If we
consider all such homomorphisms for n € Z we obtain a direct system and

hence we can take the direct limit of such a system, which leads us to the
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following definition:

Definition 2.3.1. The r-th homotopy group of the spectrum FE is defined to

be

m(E) = lim m . (Ey,).

Definition 2.3.2. A spectrum FE is called connective if 3ng € Z such that

m,(E) = 0 for g < ne.

Recall that a standard definition of a homotopy group of a space is given
in terms of homotopy classes of maps by 7, (X) = [S™, X], obviously we are
omitting writing base-points here. Therefore we may rewrite the homomor-

phisms above as
[Snﬂ",ETJ SN [STL-H"-H./ EEn] SN [STL-H-H, En+1]

Restating Definition 2.3.1 in this notation gives rise to the following propo-

sition:

Proposition 2.3.3.

WT(E) = lim [Sn+T7En] = [S’ E}T'

n—oc

For a proof of this proposition see [4] Proposition 2.8.

Clearly we have yet to show that [E, F|, has the structure of a group for
any spectra E,F. In fact it is possible to prove the stronger result that
[E, F|, has the structure of an abelian group. For a proof of this fact see [26]

Corollary 8.27.
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When considering homotopy groups of suspension spectra it is important to
make the distinction between the homotopy group of the space X and the

homotopy group of its suspension spectrum as they may be quite different.

Definition 2.3.4. Any morphism of spectra f : £ — F’ induces a homo-
morphism f, : 7,(E) — m,(F), n € Z. If f, is an isomorphism for all n € Z

we call f a weak homotopy equivalence.

We state, without proof, the following propositions which give the relation-
ship between weak homotopy equivalences of spectra, homotopy equivalences

of spectra and homotopy classes of morphisms of spectra:

Proposition 2.3.5. A morphism of spectra is a weak homotopy equivalence

if and only if it 1s a homotopy equivalence.

Proposition 2.3.6. If f : E — F 1is a morphism of spectra which is a
weak homotopy equivalence, then f, : |G, E], — [G, F], 1s a bijection for

any spectrum G.

For proofs of these propositions see [26] pages 140 and 141 respectively.

Definition 2.3.7. Two spaces S, T are said to be stably homotopy equivalent

if there exists a homotopy equivalence of spectra g : X5 — 37"

In the spectra we are going to study it will sometimes be convenient to
work only with the spaces FEs, to represent the spectrum E. There is no
loss of generality in doing this providing we are given all the maps €z, 41 ©
Yeon : 82Ey, — Ey,,0 as from this we may define a spectrum E’ with
Ey, = Eon, By, = £ Ey, and structure maps ey, = 1,€5,,1 = €2n41 © Lo

Let f,: E' — E be the degree 0 function of spectra which is ¢,, for m odd
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and equality for m even. The morphism of spectra obtained from f,, is a

homotopy equivalence of spectra.

2.4 The smash product of spectra

We now wish to introduce a smash product of spectra which is compatible
with the smash product we already have for CW-complexes and, given spec-
tra F,F,G € ., satisfies the following properties, with each equivalence

natural in E, F, G:

(i) EAF is a functor in two variables from . to %

(ii) associativity, i.e. I a homotopy equivalence a : (EA F)AG —
EAN(FAG)

(ili) commutativity, i.e. 3 a homotopy equivalence c: EAF — FAE

(iv) the sphere spectrum S is a two sided unit, i.e. 3 homotopy equivalences

[:SANE—Fandr: EAS — F

The above list is not intended to be a complete list of the desired properties

of such a product.

The basic strategy in constructing such a product is that we want E A F' to
be the spectrum you obtain from some limit of the spaces E,, A F,, as m,n
tend to infinity. A naive way to construct such a product would be to take
(EAF), = Eny A Fyny for some functions r(n) and s(n) with r(n)+s(n) = n
and such that r(n) — oo and s(n) — oo as n — oo. Unfortunately

constructing smash products in this way requires the choice of functions r(n)
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and s(n) to be made and it is not immediately clear what is the correct choice
as there are many such possibilities. Making a particular choice for r(n) and
s(n) gives what Boardman [7] referred to as a “handicrafted smash product”.
Adams ([4] Theorem 4.1) proved that these different choices of product are
in fact related by natural homotopy equivalences. I have chosen to omit the
details of this proof here as they are unecessary for the rest of this thesis and
instead direct the reader to [4] Part 3 Chapter 4 and [26] Chapter 13. In these
references complete constructions are given of the smash product although it
requires a significant amount of work to do so. The important point to note
for the purposes of this thesis is that we only wish the smash product to be

defined upto homotopy, hence any such “handicrafted” product will do.

2.5 Generalised homology theories

Given any spectrum F € %, we now show how to define the (reduced)

homology and cohomology theories associated to F.

Definition 2.5.1. Let £, F' be spectra. For each n € Z we define the £-

homology and E-cohomology to be
E.(F)=[S,EANF],=m,(EANF)

and

En(F) = [F> E]fn
respectively.

We shall now list the properties that F-homology and E-cohomology are
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required to satisfy in order to be called a generalized (co)homology theory
defined on spectra. These are the analogues for spectra of the Eilenberg-
Steenrod axioms for spaces. Proofs that these properties are satisfied may

be found in [26] §8.33.

1. E.(F) is a covariant functor of two variables from .’ to the category

of graded abelian groups.

2. E*(F) is also a functor between . and the category of graded abelian

groups but it is covariant in £ and contravariant in F.

3. Given a cofiber sequence

x Ly 4z

then

En(X) L5 EL(Y) 25 E,(2)
and

EMZ) 2 BMY) LS B X)
are exact.

4. Given a cofiber sequence
E-LF-Lq

then
En(X) =5 Fo(X) 25 Ga(X)
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and

EM(X) - FMX) 25 Gr(X)
are exact.

We have natural isomorphisms

(@2}

E,(F) 2 E, . 1(S'AF)

and

E"(F) = E"Y(S' A F),

Given a spectrum E and a CW-complex X we may also define the FE-
homology and E-cohomology, E,(X) and E"(X) respectively, for n € Z
by the E-homology and E-cohomology of ¥ X, the suspension spectrum of

X. Exactly the same properties as above are satisfied.

Example: An Eilenberg-Mac Lane spectrum for the group 7 is a spectrum
Hr with n'" space the Eilenberg-Mac Lane space of type (7, n) and stfucture
maps as described in [26] §10.2. In this case, (Hr), applied to the suspension
spectrum of a complex X coincides with the ordinary singular homology of

X with coefficients in 7 (see [4] Part 3, Chapter 6).

The above example motivates the following definition:

Definition 2.5.2. The (co)homology with coefficients in © of a spectrum

E € 7 is defined to be the H7m-(co)homology of E.
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Example: Consider the spectra KU and KO defined in §2.2.1. The (co)homology
theories associated to these spectra are called the complex and real K-
(co)homology respectively. If X is a finite-dimensional CW-complex, [ X, Z x
BU] and [ X, Z x BO| agree with the classical definitions of complex and real

topological K-theory (see [4] Part 3, Chapter 6).

2.6 Ring and module spectra

With a smash product defined on . we can define spectra with further

structure in the following way:

Definition 2.6.1. A ring spectrum is a spectrum R with product, ie. a

morphism of spectra, u : RA R — R and identity n : S — R such that

the diagrams

Ul nAl
RARANR——RAR SAR ; RAR
~ JH
1AL H R L R
/l ~ 1 An T
RAR R RAS RAR

commute. The product p is commutative if

RAR K R
RAR

also commutes.



2.6. Ring and module spectra 29

Given the notion of a ring spectrum we have the following obvious notion of

a module spectrum:

Definition 2.6.2. Let R be a ring spectrum. Then a spectrum M is called
a left R-module spectrum if there is a morphism v : RA M — M of degree
0, which we will sometimes refer to as the action morphism, such that the

following diagrams commute upto homotopy

Al
RARAM—Y 2L spayv samM— RAM
1AV vV ~ v
RAM v M M L M

It is in fact true that all the spectra we have already mentioned, and will
mention, in this thesis are ring spectra. Explicit constructions of the products

are given in [26] Chapter 13.

Example: Following the account of [4] there exists a spectrum bu, the uni-
tary connective K-theory spectrum, which comes provided with a morphism

bu — KU and which is characterized by the following properties:

1. m(bu) =0 for r < 0.

2. The induced map
mr(bu) — 7.(KU)

is an isomorphism for r > 0.

The structure maps of bu are constructed using obstruction theory so as to
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make the following diagram commute upto homotopy.

. €9
$2bugy, ————— buamyo

f2m‘ ‘f2m+2

2K Uy 2% KUy

This diagram defines a canonical morphism of spectra bu — KU
In a similar way we can define bo, the orthogonal connective K-theory spec-

trum.

Proposition 2.6.3. bu and bo are ring spectra.
Proof. The product morphisms giving bu and bo their ring structure are
pulled back from the ring spectrum structure of KU and KO respectively.

The products in KU and KO, as shown in [26] Chapter 13, are defined at

the level of vector bundles. O

Let p denote the product p : bu A bu — bu then bu A bo is a left bu-module

spectrum with left bu action defined by

pAL:buA (bu Abo) — bu A bo.

Definition 2.6.4. Let F be a ring spectrum and F, G be E-module spectra.

A left-E-module spectrum morphism is a morphism of spectra f : F — G
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of degree 0 such that the following diagram commutes:

EAF v F
EAG v G

Definition 2.6.5. A left-E-module spectrum endomorphism of F is a left-

E-module morphism g : FF — F.

Proposition 2.6.6. The set Endjesi—p-moa(F') of endomorphisms of the left-

E-module spectrum F has the structure of a ring.

Proof. The fact the set of endomorphisms of a spectrum F has the struc-
ture of a ring comes from the fact that .% is an additive category, which is
proven in [4] Part 3 Chapter 3. Composition of morphisms gives the multi-
plicative structure and Adams gives addition in [4] Part 3 Chapter 3. It is

straightforward to show that Endi i g—mea(F') is a subring. O

Definition 2.6.7. A left-F-module spectrum endomorphism g : ' — F
is a left-E-module spectrum automorphism if there exists a left- E-module

spectrum endomorphism A : F — F such that hg = 1z and gh ~ 1p.

Remark 2.6.8. By definition, a left E-module automorphism is the same as

a homotopy equivalence of left E-module spectra.

Proposition 2.6.9. The set of Autiesi—g—mod(F) of automorphims of the

left-E-module spectrum F is the group of units of Endiest—g—mod(F')-
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2.7 Bousfield localisation

Recall from §2.5 that HZ/2 represents the Eilenberg-Maclane spectrum re-
lated to the group Z/2. A morphism f : X — X' in .% is a (HZ/2).-
equivalence if the induced homomorphism f. : (HZ/2).(X) — (HZ/2).(X")

is an isomorphism.

In 1979, Bousfield ([9]) introduced a functor L gz, from & to a new category,
which we shall denote .%%, in which we do not attempt to distinguish between
two spectra if there is an (HZ/2),-equivalence between them. The objects
of ., are the same as those of . and Lpyz/, is the identity on objects. If
e: X — Y is an (HZ/2),-equivalence in .%, then Lpz/»(e) is an actual
equivalence in %5, i.e. it has an inverse. Lpyz/, is universal with respect
to this property. To be more precise, we give the following definition and

theorem.

Definition 2.7.1. A spectrum Y € . is said to be (HZ/2).-local if each
(HZ/2),-equivalence f : X — X' induces a bijection f* : [X', Y], —
[X,Y].. This is equivalent to saying that Y is (HZ/2).-local if [X,Y], =0
whenever (HZ/2).(X) = 0.

Theorem 2.7.2. (Bousfield Localisation Theorem) There ezists a functor
Luzp @ & — S, called the (HZ/2),-localisation, such that Lyz/(X) is
(HZ/2),-local. Lyz/s(X) is functorial in X.

Proof. See [9] O

Localisation with respect to HZ/2 may also be referred to as localisation

with respect to mod 2 singular homology as this is the homology theory
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associated to HZ/2.

In particular, we will be interested in the case of connective spectra. In this
case Bousfield proved that localisation of X € .¥ with respect to HZ/2 is
equivalent to taking the 2-adic completion of X, which we shall not define
here. But for this reason throughout this thesis we shall use the terms “2-adic
completion” and “localisation with respect to HZ/2” synonymously, and we

shall refer to spectra which have undergone this process to be 2-local.

As described in [9], .%% has a smash product which enjoys all the same prop-
erties as the smash product in .. (HZ/2),-localisation does not necessarily
preserve smash products, but there is a canonical map Xgz/2 A Yz —

(X NY)nz/e with the expected properties.
Proposition 2.7.3. If R is a commutative ring spectrum, then so is Rgzo.

Proposition 2.7.4. If R is a 2-local ring spectrum, then any module spec-

trum over R is 2-local.

Both propositions are discussed in [9)].

If the homotopy of a spectrum F € .¥ is finitely generated in every dimension
then the n-th homotopy group of the (HZ/2).-localisation of E is isomorphic
to m(E) ® Zs, the n-th homotopy group of E tensored with the 2-adic

integers. This is precisely the case for the spectra bu and bo (See [21] Chapter

3).
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2.8 Cohomology Operations

2.8.1 1Ay buAbo— buAbo

Definition 2.8.1. Given a spectrum E € . and the corresponding coho-
mology theory E* a cohomology operation of type (p, q) is a natural transfor-

mation 6 : EP(—) — FE4(—) between cofunctors regarded as taking values

in sets.

Example: Let X be an element of 7. Recall the spectrum KU and the
corresponding cohomology theory KU*(X), KU-cohomology. Adams showed
([5]) there exist cohomology operations (originally defined at the level of vec-
tor bundles for topological K-theory) of the form ¢* : KU%(X) — KU®(X)

for k € 7 with the following properties:
1. ¢* is a ring homomorphism KU®(X) — KU?(X)
9. Wyt =
3. If £ is a line bundle then ¥*(¢) = ¢F
4. If p is a prime then ¥?(z) = zP mod p

5. On the reduced cohomology theory K~UO(S‘2”) = 7, ¥* acts as multi-

plication by &™

These operations are defined on KU®(X) = [X,Z x BU| by composition with

amap ¥*:Z x BU — Z x BU.

We wish to construct a morphism of spectra ¢ : KU — KU which extends

the map ¢ : Z x BU — Z x BU. For reasons related to the fifth property
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above, it is only possible to do this if we first 2-adically complete the spectrum
KU, as discussed in §2.7, and work with the spectrum (KU)gz/. The
morphism ¥° : (KU)pz/2 — (KU)pnz/s is induced by the function of spectra
which is 37 : Zx BU — Z x BU on the 2m-th space of the spectrum for
m > 0. The maps on the spaces of the spectrum (KU)gz/, which form the
morphism 72 induce maps on the spaces of the 2-adically complete spectrum
(bu) gz/2. Hence, we obtain a morphism of 2-adically complete spectra P2

(bu)mz/2 — (bu)mz/2 so that the following diagram commutes:

3
(bU)HZ/2 ____w—___) (bU)Hz/Q

L,

(KU)#zjp———(KU)nz/2

In the case of the real connective K-theory spectrum bo we can obtain a
morphism ¢ : (bo)gz/2 — (bo)gz 2 of 2-adically complete spectra in a
similar way.

The homorphisms induced by ¥* : (bo)gz/a — (bo)mz/2 and 1 A 3
(bu)mz/2 A (b0)Hz/2 — (bu)pHz/2 A (bO)HZ/2 On mod 2 singular homology
are the identity homomorphisms.

The significance of the left (bu)#z/2-module automorphism 1 A (bu) gz 2 A

(b0)mz/2 — (bu)mzs2 A (b0)Hz/2 is shown by results given in [1] §6.3.
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2.8.2 The mod 2 Steenrod Algebra

Definition 2.8.2. Given a spectrum E € . and the corresponding coho-
1nolqu theory E*, a stable cohomology operation of degree q is a sequence
of cohomology operations 6" : E"(—) — E™"9(—), which commutes with
the suspension isomorphisms given in §2.5 which we denote here by o, i.e.

9”00‘:0‘09n+l.

Let A(E)? denote the set of all stable cohomology operations of degree q for
the cohomology theory E*. A(FE)? can be made into an abelian group by
taking (0 + ¢)(z) = 8(z) + ¢(x) for operations § and ¢, all z € E*(X). Via
composition of operations we can construct a pairing A(E)? ® A(E)" —

A(E)*". This makes A(E)* = P, A(E)? a graded ring.

Proposition 2.8.3. For any X, E*(X) is a graded module over A(E)*.

Example: The mod 2 Steenrod Algrebra is defined to be the algebra of op-
erations for singular homology with Z/2 coefficients. We denote this algebra
by &/. &/ is an incredibly complicated algebra but, although it is highly
non-trivial to prove, it can be expressed in terms of generators and relations
in the following way: the generators are the Steenrod Squares, stable coho-
mology operations of the form Sq' : H*(X;Z/2) — H"™"(X;Z/2) and the
relations are the Adém relations, which we omit here as their explicit detail is
unnecessary for this thesis. Following [4] Part 3 Chapter 16 let S¢®! denote

the operation Sq'Sq? + S¢2Sq*.

Proposition 2.8.4. The operations Sq* and Sq®! generate a subalgebra of

&, denoted B.
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Proof. See [4] Part 3 Chapter 16. O

For the purposes of this thesis, B can be thought of as the following algebra

over Z/2:

Z/2]5q", Sq™']

=7/297/2-S¢*272/2-S¢" @7/2-Sq* - 5"
((Sq1)27(5q0’1)2) / / q / q / q q

B=

2.9 A 2-local Adams spectral sequence

In this section we wish to merely introduce a particular case of the Adams
spectral sequence. The details of this spectral sequence are well known, and

the author recommends [18],(21] and [15] for full expositions.

The Adams spectral sequence was originally invented as a method of com-
puting the stable homotopy groups of spheres, but in its full generality the
Adams spectral sequence computes [ X, Y] for spectra X and Y. We specialise
to a version of the spectral sequence which computes 7, (Y) for a spectrum Y.
This version of the spectral sequence is the classical Adams spectral sequence

first introduced in [3].

Let X be a 2-local connective spectrum with finitely generated homotopy
in every dimension. Note that, bu and bo, and bu A X for any other such
spectrum X, satisfy this property (see [4] Part 3 Chapter 16). Recall from
§2.8.2 that H*(X;Z/2) is a module over the mod 2 Steenrod algebra. Adams

([3]) proved the following theorem:
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Theorem 2.9.1. There is a spectral sequence with Ey term given by
Eyt = Bxt/(H*(X;Z/2); Z/2)

and converging to 7, (X) ® Zy where Zo denotes the 2-adic integers.

Remark 2.9.2. Ext®! is defined in the following way. A projective resolution
c— P — P —F —X—0

of X is taken and Ext®/(H*(X;Z/2);Z/2) = H*(Hom!,(P.,Z/2)fors> 0,

teZ.

Adams ([4] Proposition 16.1) also showed that the F, term of this spec-
tral sequence is isomorphic to Exty'(H*(X;Z/2); Z/2). Therefore the main

spectral sequence used in this thesis takes the form

(2.1) Est = Bt (H*(X;2/2);2)2) = m_s(buh X) ® Zso

Proposition 2.9.3. Let f : E — F be a morphism of spectra which induces
an isomorphism in mod 2 homology. Then f induces an isomorphism (from

the Ey page onwards) of Adams spectral sequences.

Proof. See [21] Corollary 2.1.13 O



Chapter 3

3 as an upper triangular

matrix

Throughout the remainder of this thesis we shall only consider the 2-adically
complete spectra (bu)pz/e and (bo)mz 2, and their smash product in “.
Therefore, for clarity we shall omit the completion notation and simply de-

note them by bu and bo.

3.1 A stable splitting of bu A bo

We shall begin by recalling the 2-local homotopy decomposition of bu A bo.
This is one of a number of similar results discovered by Mahowald in the
1970’s ([17]). We are referring to a proof of the result given in 2002 by
Snaith in [24].

Consider the second loop space of the 3-sphere, 2253, In the 1970’s the work

of Brown and Peterson ([10]) and separately Snaith ([22]) showed that there

39
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exists a filtration of 9253 of the form

S'=RchcFRc..cQ8=|]F

k>1

where each F; is a finite complex. Snaith also showed there is a stable
homotopy equivalence, an example of the so-called Snaith splitting, of the

form

025’3 ~ \/kZle/Fk—l-

There is a 2-local homotopy equivalence of left bu-module spectra (see [24]

Theorem 2.3(ii)) of the form
[A/ . \/kzobu AN (F4k/F4k_1) i) bu A bo.

The important fact about this homotopy equivalence is that its induced ho-
momorphism on mod 2 homology is a specific isomorphism which is described

in [24] §2.2.

If we wish to study 2-local left bu-module morphisms of bu A bo, the splitting

L leads us to study 2-local left bu-module morphisms of the form
Grp i bu A (Fup/Fapr) —> bu A (Fy/Fy 1)

for all k,1. A 2-local left bu-module morphism of this form is determined

by its restriction to S® A (Fy/Fu—1). To see this, consider the following



3.1. A stable splitting of bu A bo 41

homotopy commutative diagram:

bu A (S° A (Fur/Fak-1))

1A C.bk,l (77 A 1) ~1A ¢)k,l|5°/\F4k/F4k—1
1AnAL
1A
bu A bu A (F4k/F4k_1> C‘bk’l bu/\ bU/\(F4[/F4z_1>
uAnl uAl
Pk,

bu AN (F4Z/F4l—1)

bu A (F4k/F4k_1>

where the composition of the left hand vertical morphisms is homotopic to the

identity morphism, p is the product pu : bu Abu — bu and 7 is the unit mor-

phism 7 : S° — bu. This diagram implies ¢y =~ (LA L) (LA (k| s0AFu/Fur1)

and hence ¢, is completely determined by its restriction to S° A Fiag/Fag—1.

Following the account of [26] §14.19, let X be any finite spectrum, then there
exists a spectrum DX called the S-dual of X, characterized by the property

that for any spectra U, V' there exist isomorphisms of groups

D,:[UVADX], = [UAX,V].
and ,D:[U,XAV], = [DXAUV],

Hence, letting D(Fyx/Fur—1) denote the S-dual of Fuy/Fyr—1, this means that
the restriction of a 2-local morphism of the form ¢, : bu A (Fax/Fag—1) —
bu A (Fy/Fyu-1) to S° A Fy/Fyx—1 is equivalent to a 2-local morphism ¢} :

S® — D(Fuy/Fyr—1) N (Fy/Fy_1) A bu. A morphism of this form is a
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homotopy element
(041 € mo(D(Fur/ Fap—1) N (Far/Fayo1) N bu) ® Zs.

This homotopy group is calculated using the (collapsed) Adams spectral

sequence

Eyt = Bty (H(D(Fa/Fux-1;72/2) ® H*(Fy/Fu_1;Z/2); 2/2)

(3.1)
—> Mo (D(Far/ Fag—1) N (Fu/Fu—1) Nbu) ® Zy

Proposition 3.1.1. The spectral sequence 3.1 has all differentials zero.

Proof. A clear, concise proof that this spectral sequence collapses is given
by Adams in [4] (Lemma 17.12). We follow his proof in the next section to

show that a different spectral sequence, (3.2), collapses. O

3.2 The structure of B-modules

The following section uses techniques devised by Adams and Margolis ([6])
to study the structure of modules over exterior algebras. The notation used

is from [4] Part 3 Chapter 16.

Definition 3.2.1. Two left B-modules M, N are said to be stably isomorphic
if there exist free B-modules F,G such that M & FF = N & G.

Proposition 3.2.2. In this sense, stable isomorphism is an equivalence re-
lation. Furthermore, for s > 0 the groups Ea:tfg’t(M, 7./2) depend only on the

stable isomorphism class of M.
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Proof. See [4] Part 3 Chapter 16 O

Therefore, we may simplify the calculation of the FEy term in the Adams

spectral sequence (3.1)

ESt = Exty (H*(D(Fu/Fap—1;7/2) ® H*(Fy/Fy_1;72/2); Z/2)
— Wt_s(D(F4k/F4k_1) A (F41/F4l__1) A bU) X ZQ

by changing the B-module H*(D(Fy/Fy—1)) & H*(Fy/Fy-1) for some sim-
pler stably isomorphic module. Since B is a Hopf algebra we can define the
tensor product of M and N by giving M & N the diagonal action. The sum
and product pass to stable isomorphism classes and the product has a unit
given by the module 1 with Z/2 in degree 0. A stable class P is invertible if

there is a stable class @ such that P® Q = 1.

Recall from [4] p.332 that £¢ is the B-module given by Z/2 in degree a and
£7% = Hom(X% Z/2). £% and £7% are inverse modules, i.e. 3°X7¢ =1 [is
the augmentation ideal, I = ker(e¢ : B — Z/2) with inverse module given

by I7° = Hom(I®,Z/2), where I® is the b-fold tensor product of I, for b > 0.

In [4] (p.334 Theorem 16.3) Adams shows how to calculate the stable class
of a B-module M in the form ¥27° for unique a,b € Z. He then goes on to

show (p.341) that the B-module given by
H™(D(Fa/Fap-1); 2/2) = H(Fa/Fap—1;Z/2)

is stably equivalent to £ '*1127'-1 when 0 < 4k = 2". Therefore
H*(D(Fy./Fyx_1); Z/2) is stably equivalent to £~@ "+ 12" when 0 <

4k = 2. If k is not a power of two we may write 4k = 2™ + 2™ + ... + 2™
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with2 <7 <7 <... <7 In this case

Ho(Fy/Fa_1;2/2) = @7, H.(Fo [ Foi_1; Z/2)

J=r1

which is stably equivalent to $2k+a(®) [2k—a(k) where a(k) equals the num-
ber of 1’s in the dyadic expansion of k, as in Proposition A.0.4. Similarly,

H*(D(Fy/Fu-1); Z/2) is stably equivalent to $~2k—alk) Jalk) -2k,

Now, following the account of [24] p.1268, Ext3 (S M, Z/2) = Exty' (M, Z/2).

The short exact sequence
0—IR®M—BM —M—0
induces a long exact sequence of the form
- — Ext3 (B M,Z/2) — Ext3' (1@ M,Z/2)

— Exty Y (M,Z/2) — Ext " (B® M,Z/2) — - -

so that, for s > 0, there is an isomorphism

Bxt3 (I ® M,Z/2) = Exty V(M Z/2).

Finally, for s > 0 we obtain an isomorphism of the form
E;-t ~ EIt;t(22l—2k+a(l)—a(k)IZZ—Zk—a(l)+a(k), Z/2)

o EItsB+2l—2k-a(l)+a(k),t—2l+2k—a(()+a(k) (Z/Q Z/Q)
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3.3 Spectral sequence structure

A standard calculation shows there is also an algebra isomorphism of the form
Exty (2)2,7,)2) = 7./2]a,b] where a € Exty', b € Exty’. Clearly in the

spectral sequence (3.1) the contributions to the groups mo(D(Fur/Fur-1) A

(Fy/Fy-1) A bu) ® Zy come from the groups {E5*|s > 0}. These groups
correspond to Exty’(Z/2,Z/2) with § = s + 2l — 2k — a(l) + o(k) and

T =s— 2l + 2k — a(l) + a(k), which implies that T'— S = 4(k — [).

Clearly for k < I, E3* = Ea:t;’T(Z/Q, Z/2) = 0. Therefore mo(D(Fyy./Fap—1) N
(F41/F4l_1) AN bU) & 7o =0for k <L

For k > I, as shown in [24] p.1268, Fxt57(Z/2,7/2) is non-zero only for
s>0if k=1orfor s >2(k—1)+1if k > I. If this group is non-zero then it
is cyclic of order two generated by a(35-7)/2p(T=5)/2 = gs+al-dk—al)+alk)p2(k=1)
In [4] Part 3 Lemma 17.11(i) Adams showed that multiplication by a in the
spectral sequence, which maps the generator of E5* to E5TH* corresponds
to left multiplication by 2 on 7s—s(D(Fax/ Fag—1) A (Fa/Fu—1) ANbu) ® Zy and

multiplication by b, which maps the generator of E5* to B3, corresponds

to left multiplication by the generator u of 7. (bu) ® Zy = Zs[u).

Now again consider, for k£ > [, a non-trivial homotopy class of left bu-module

morphisms

[qbZﬂ cbu A (F4k/F4k_1) — bu A (F4[/F41_1).

In the spectral sequence these morphisms are represented by elements of
ES* = E%5 for s > 0. In order that we can use the Adams-Margolis structure
theory we shall restrict to such morphisms which also induce the zero ho-

momorphism on mod 2 singular homology, as any morphism detected by the
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induced map on mod 2 homology is represented in Egé*. Any such morphism
¢y, is represented by the generator of a group perale-bral—alk)erdlk-lra(l)—alk)
for some ¢ > 0. The generator of this group is a° times the generator of
EAk=Dra)—alk)Ak-D+al)=al®)  gijee multiplication by a in the spectral se-
quence corresponds to multiplication by 2 on 7o (D (Fax/Far—1) A (Fay/Fu-1) A
bu) ® Zy we find that

/! €
[ Y2

for some 2-adic unit v and € > 0, where

by s bu A (Fag/ Fug—1) — bu A (Fiy/Fy_)

is represented by the generator of EafDrei-e®.dk-Dral)-alk)

Similarly if k = I

(1 €
Prp = V2 ek

where iy denotes the identity map of bu A (Fir/Far—1).

3.4 An isomorphism of groups

Recall from §2.6 that Autjepi—pu—moda(bu A bo) the set of left bu-module auto-
morphisms of bu A bo, which are precisely the left bu-module homotopy equiv-
alences of bu A bo, has the structure of a group. Let Autf. s, 4, mea(bu A b0)
denote the set of left bu-module automorphisms of bu A bo which induce the

identity map on mod 2 singular homology.

Proposition 3.4.1. Aut?eft_bu_mod(bu/‘\bo) is a subgroup of Autiefi—bu—mod (bUA

bo).
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Proof. See [24]. O

Let UsZy denote the group of infinite, invertible upper triangular matrices
with entries in the 2-adic integers. That is, X = (X, ;) € UsZs if X;; € Zy
for each pair of integers 0 < 7,j and X,; = 0if j > 7 and X;; is a 2-adic
unit. This upper triangular group is not equal to the direct limit lim~ UnZo
of the finite upper triangular groups. The main result of [24] is the existence

of an isomorphism of groups
A UsZy — AWtD 4y moa(bu A bo).

By the Mahowald decomposition of bu A bo the existence of A is equivalent

to an isomorphism of the form
A UsZy 5 AUt ry_ by moa(Visobu A (Far/ Fap_1)).

If we choose v to satisfy 1) = tr1itivogen .. tek—1 for all k —1 > 2 then,

for X € UxZsy, we define ([24] §3.2)

A(X_l) = ZXl,kLk,l sbu A (Vk20F4k/F4k—1) — bu A (Vk_>_0F4k/F4k—1)-
1<k

The ambiguity in the definition of the tx,;’s implies that A is defined up to

inner automorphism in U, Zo, i.e. conjugation by a matrix.

The obvious question to ask is, given an element of Auty, s, 4, mea(bu A b0)
what is the corresponding conjugacy class of matrices in U, Zs. As discussed
in §2.8, by far the most important such element is 1 A ¢3. The main result

of this thesis is the following theorem:
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Theorem 3.4.2. Under the isomorphism A the automorphism 1 A ? €

AU, ¢ty moa(bu A bO) corresponds to a matriz in the conjugacy class of

11 0 00
09 1 00
009 10
00 0 9 1

3.5 The 2-adic homotopy of bu A bo

The key observation in deducing the identity of the matrix corresponding to

1 A %% under the isomorphism A is the following proposition:

Proposition 3.5.1. An automorphism in Aut], ¢, p,_m.q(bu A bo) is deter-

74 (bunbo)RZ;

mined by 1ts eﬁect 0T —Torsion

Proof. See [4] pg.355 et seq. O

Tw (bunbo)RZg
Torsion

We begin by calculating via the Mahowald decomposition of bu A

bo of §3.1.

Let G, denote the 2-adic homotopy group modulo torsion

G - Ts(bu A Fay/Far_1) ® Zy
st —

’ Torsion
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SO

Ts(bu A Fay/Fyy_1) ® Loy ., mu(bu Abo) ® Zy
G*,* - @s,t - .

Torsion Torsion

This group is calculated by means of the Adams spectral sequence

Byt = Eaty/(H"(Fu/Fu;2/2);7/2)

(3.2)
= ms(bu A (Far/Fap-1)) ® Zo

From the discussion of §3.2, H*(Fy/Fu-1;7Z/2) is stably isomorphic to

y2k+alk) [2k—a(k) therefore

E;J — Extgt(z%-f-a(k)]%—a(k); Z/?)

1R

Ext3"(7.)2;7.,/2)

where S = s + 2k — a(k), T =t — 2k — a(k).

Since Exty*(Z/2;7./2) = 7Z/2[a,b] with a € Exty" and b € Exty® we must

have T — § =t — s — 4k > 0 otherwise E;t = (. Hence, the only non-zero
Eg’t’s are in the region t —s > 4k, s > 0. Therefore we find that the Eg page

of the spectral sequence looks as follows:
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e ° ° o 8k-2a(k)+6
" o
< :
e @ ° e o o 8k-2a(k)+4
_ o
o
. . ° PY P o 8k-2a(k)+2
H
- e ° . ° o o 4k+2
— ‘\‘
§
£ ° ° ° ° ‘e o 4k
: 0
wn < o aV] -— o
-«
w

Figure 3.1: E5* = Ext}y!(H*(Fu/Fux_1);: Z./2)
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Summarising, above the s = 0 line we have vertical towers of groups 7Z/2
connected vertically by multiplication by a. The foot of each of these towers

is given in the following table:

Generator | s t t—s

afk—elk+1l 1 4k +1 4k

a?k—akp |1 4k +3 4k + 2
a?k—elk)—1p2 | 1 4k +5 4k + 4

ab?—ak) 1| 8k — 2a(k) + 1 8k — 2a(k)

proat+l 1 | 8k — 2a(k) + 3 | 8k — 2a(k) + 2

pPoe+2 g 8k —2a(k)+6 | 8k — 2a(k) + 4

poelk)ts | o | 8k — 2a(k) + 3s | 8k — 2a(k) + 25

Recall that the differentials in the Adams spectral sequence are of the form

. st s+rt+r—1
d’f‘ . E27 — E2 .

Proposition 3.5.2. The spectral sequence 8.2 has all differentials zero

Proof. The following proof is a specific case of the proof of [4] Lemma 17.12.
Since F5' = 0 for s > 0 and ¢ — s odd, the same must hold for 5% r > 2.
Hence there can be no non-zero differentials with domain E%* for s > 0.
Therefore it is sufficient to check d.(e) = 0, where € € Eit and s =0,1— s
odd. We proceed by induction. First consider r = 2, any non-zero differential
would be of the form dy : E5* — E§™" for s = 0, ¢ 0dd, i.e. in the spectral

sequence it would map the generator of a group on the s = 0 line with t—s odd
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to a copy of Z/2 two places up and one place to the left. Since multiplication
by a in the spectral sequence is a monomorphism from E5* to EST we
must have that ads(e) = dy(ae) = 0 == dy(e) = 0. Now suppose that
dpm = 0 for m < r so that Eﬁ’t i E;t Again, any non-zero differential in
Er* would have to be of the form d, : ESt — E5t747=1 for g = 0, ¢ odd,
i.e in the spectral sequence it would map the generator of a group on the
s = 0 line with ¢ — s odd to a copy of Z/2 r places up and one place left. As
before, since multiplication by a in the spectral sequence is a monomorphism
a: E5 — E5T141 we must have that ad,(e) = d,.(ae) = 0 = d,(e) =0.

This completes the induction. O

Proposition 3.5.3.

Zy if s even, s > 4t,

0 otherwise

and if Gs,t denotes we(bu A Fyy/Fap—1) ® Zo then és,t =G, & Wy where Wy

1S a finite, elementary abelian 2-group.

Proof. Adams ([4] Lemma 17.1 (1)) showed that H, (buA Fyux/ Fyr—1) is a direct
sum of a finite number of groups Z, Z/2 and Z/p for p > 2. He then went

on to show ([4] Proposition 17.2 (i)) that the Hurewicz homomorphism
h:mabuA Fap/Fap—1) — Ho(bu A Fyp/Fap—1)

is a monomorphism. Hence, it follows that 7, (bu A Fux/Fyx—1) is a direct sum

of a finite number of groups Z, Z/2 and Z/p for p > 2. Therefore @*Jg is a
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direct sum of a finite number of groups Z, and Z/2. Since

Te(bu A Fag/Fa1) ® Zo
Torsion ’

G*,* = Bst

G+ must be a direct sum of a finite number of groups Z, and Z/2. Therefore,
when we work with homotopy modulo torsion we find G, is at most a direct

sum of a finite number of copies of Z,.

Recall from the construction of the Adams spectral sequence 3.2 there exists

a filtration
e CFTIC P CFT - CFPCF =Gy

such that

= Fs_l@t—s,k.

I

By passing from the £, page of the spectral sequence to the filtration quo-

tients, multiplying the generator of Egot by a corresponds to multiplication

Fsét—s,k

—i==t_ For s > 0 we only have non-zero entries in the spectral
Fs 1Gt75 & y

by 2 on
sequence for t —s > 4k and ¢ —s even. In this case we have an infinite tower of
Z/2's connected by multiplication by.a, which corresponds to multiplication
by 2 on homotopy elements. The foot of each tower is on or above s = 1.
Any homotopy element represented at the foot of such a tower is of infinite
order since, for all § > 0, 27 times this element is non-zero. This element
therefore either represents the generator of a copy of Z,, as a module over Z,,

or if the foot of the tower is on s = 1 it may represent 2 times the generator

of a copy of Z, which is represented on s = 0. @t_&k can in fact contain at
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Torsjon

most one copy of Z, as a direct summand. This is due to the fact that at
no point in the tower of Z/2’s do we have a direct sum of more than one
copy of Z/2. Similarly, any 2-torsion in G;_; must be represented on the
s = 0 line. Hence, modulo torsion, G5 = Z, for t — s > 4k and ¢ — s even.
To see that G, = 0 otherwise the same arguments show that G, can be at

most a direct sum of a finite number of copies of Z/2 being represented on

s =0. a

3.6 A basis for muNbo)8Zy
' Torsion

In [12] a Zo-basis is given for G. . consisting of elements lying in the subring

Zaolu/2,v*/4] of Qyu/2,v*/4]. One starts with the elements

2 i—1,,2
ok [T 9Tu _
C4k—Hi:1(W), k—l,Q,

and “rationalises” them, after the manner of ([4] p.358), to obtain elements of
Zo|u/2,v?/4]. In order to describe this basis we shall require a few well-known
preparatory results about 2-adic valuations. These results are Proposition

A.0.4 and Lemmas A.0.1 to A.0.3 in Appendix A.

. ,2_gi—-1,,2 .
Now consider the elements cqj, = IT%_, (L—gq%_—lf—) for a particular k =1,2,....

For completeness write co = 1 so that cq, € Qq[u/2,v?/4]. Since the degree
of the numerator of ¢y, is 2k, Proposition A.0.4 implies that

U2 _ 97,—1“2

f4k: _ 24k:—a(k:)—2k:c4k _ 22k:—a(k:)1—‘[;c:1( T )

liesin Zy[u/2, v? /4] but 24—k =2k=1¢c & 7,(u /2, v?/4]. Similarly (u/2) fax =
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Torsion

24k—alk)=2k=1yc € Zylu/2,v?/4] but 28-ek)=2%=2yc, & 7,[u/2,v?/4] and
so on. This process is the “rationalisation yoga” referred to in §3.5. One
forms w7cy and then multiplies by the smallest positive power of 2 to obtain

an element of Zs[u/2,v?/4].

By Proposition A.0.4, starting with fy = 24%-*0-2¢, this process produces

the following set of elements of Zy[u/2, v?/4]

fu, (W/2) fu, (w/2)3fu, ..., (u/2)*72Ofy,

u(u/?)zl_a(l)ﬂu, u2(u/2)2l—a(l) f4l; UB(U/Q)ZZ—a(l)ﬁH’ )
As explained in ([4] p.352 et seq), the Hurewicz homorphism defines an in-

jection of graded groups of the form

T.(bu A bo) @ Zs
Torsion

— Qafu/2,v*/4]

which, by the main theorem of [12], induces an isomorphism between f—*%/r\;—%%

and the free graded Z,-module whose basis consists of the elements of

Zalu/2,v?/4] listed above for [ = 0,1,2,3,. ...

From this list we shall be particularly interested in the elements whose degree
is a multiple of 4. Therefore denote by guma € Zs[u/2, v?/4] for | < m the

element produced from fy in degree 4m. Hence, for m > [, gam,a is given by
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the formula

p2m—+a(l) [_—_“Z;fgzlf;‘“] if 41 — a(l) < 2m,

Fama =

[ O] it 41 — a(l) > 2m.

22(m—1)
Lemma 3.6.1. Let P, denote the projection

P, T (bu A bo) @ Zy

Torsion =G — G = O G

Then Pk(g4k=4i) =0 fOT‘ all i < k.

Proof. Since G, is torsion free it suffices to show that Pj(gax4;) vanishes

in Gy ® Qy. When i < k, by definition
2k—2: T4i (bu A b.o) ® Zo 2Q, C Tar (Du A Z?o) ® Zsy
Torsion Torsion

® Qs.

G4k 4i € U

T (buAFyp/Fay_1)®Z2
Torsion

However P, projects onto &, and commutes with mul-

tiplication by u so the result follows from the fact that the homotopy of

bu A Fyi/Fyey is trivial in degrees less than 4k (see [24] §3). O

3.7 A basis for TN/ Far )87
. Torsion

Recall from §3.5 that G = Zy for £ = 0,1,2,3,... so we may choose a
generator 24 for this group as a module over the 2-adic integers (with the
convention that zy = fy = 1). Let Zy be any choice of an element in the

2-adic homotopy group Chk,k = Gk ® Wakr whose first coordinate is zy.
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o Torsion

Lemma 3.7.1. Let B denote the exterior subalgebra of the Z/2 Steenrod

algebra generated by Sq* and Sq®'. In the collapsed Adams spectral sequence

(see [4] or [24])

B3 = Baty (H*(Fu/Fa—1;Z/2), Z/2)

= T (bu A (Fup/Fap-1))  Zs

the homotopy class Zu is represented either in Eg"lk or Eé"‘kﬂ.

Proof. Recall from §3.5 that my(buA(Fur/ Far—1)) ®Z2 = Gapp = Zo @ Wi
The following behaviour of the filtration coming from the spectral sequence

is well-known, being explained in [4]. The group @4;97;9 has a filtration
L CFC.. . FPCF'CF°=Gyy

with F?/Fi+l o2 ER*%4 and 2F C F'*1. Also 2- Wyx = 0, every non-trivial
element of Wy, being represented in E%‘““ . Furthermore for i =1,2,3,...

we have 2F* = F*! and F! & Z,.

Now suppose that Z4; is represented in Eé’4k+j for j > 2 then Z4, € F7. From
the multiplicative structure of the spectral sequence there exists a generator
24 of F! such that 292, generates F7*! and therefore 2724, = 224 for some
2-adic integer v. Hence 2(2j_1’y£4k — Zg) = 0 and so 2y — Zuy € Wk k
which implies the contradiction that the generator zy, is divisible by 2 in

G4k,k- O
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3.8 Relating the bases

Theorem 3.8.1. In the notation of §3.5 and §3.7

Tax(bu A bo) & Zg
Torsion

za = LE 0225\ igapai €

’U)Zth /\s,t € Zg, /\4k,4k € Z; (md

4k — 1) —a(k) + als) if 46— i) > 2k,
Ak, i) =
2k — a(k) if 4i — (i) < 2k.

Proof. From [12], as explained in §3.5, a Zy-module basis for Gy« is given

by {9k 4 }o<i<k- Hence there is a relation of the form
Zak = Aak 4k Gak 4k + Mk a(k—1)0aka(k—1) + - - - + Aak,094k,0

where ;\4k747; and Ag 4 are 2-adic integers.  Applying the projection
Pk : G4k,* — G4k,k we see that Z4k = -Pk(z4k) = /\4k,4kPk (g4k,4k); by Lemma
3.6.1. Hence, if Ay 4x is not a 2-adic unit, then zy would be divisible by 2

in Gy and this is impossible since 24 is a generator, by definition.

Multiplying the relation
24 = Age,ak P (Gar,ar) = MaanPr(far) € Gk k-

by (u/2)%~*®) we obtain (u/2)%#~®) 2y = Ay 5 Pe((u/2)2%720 f,,), which

lies in Gak—2a(k)k, by the discussion of §3.5. Therefore, in Ggr_oa(k)r ® Q2
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we have the relation
E—1

(u/2)% "W 24 = Mg an (u/2)% 70 fyp + Z Nagai (1) 2)% 72 gy gy

=0

Since the left hand side of the equation lies in Ggr_aa(k)x, the Qo coefficients

must all be 2-adic integers once we re-write the right hand side in terms of

the basis of §3.6.

Fori=0,1,...,k—1

( w2k—a(k)+2k—dita(i)+2i—ali) f4¢ lf 42 —&(Z) S 2]€,

22k—a(k)—2i—a(i)
(U/Q)Qk—a(k)gzxk,zu =

w2k— a(k)+2k 24 f4l 1f 42 _ a( ) > 2]§

22k a(k)—2k—2¢

( o Fu if 4 — o(i) < 2k,

22k+2i—a(k)—af

e fuif 4i—a(i) > 2k.

24k Ak —2i—a(k)

Now we shall write (u/Z)Zk“’(k)gM,M as a power of 2 times a generator de-
rived from fy in §3.6 (since we did not define any generators called gari24i

the generator in question will be ggg_oa(k) 4 only when (k) is even).

Assume that 47 — (1) < 2k so that 2¢ — a(i) < 4k — 20 — a(k) and

utk—2i— a(k) 1

o2k+2i—a(k)—ali) fai = 92k—al(k)

yAk—di—alk)+a(i) (U/Q)Zi—a(i) fai

which implies that 5\4;974{ is divisible by 2%—*(¥) in the 2-adic integers, as re-
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quired.

Finally assume that 4i—a(i) > 2k. We have 2i—a(i) < 4k—2i—a(k) also. To
see this observe that a(i) +a(k—i) —a(k) > 0 because, by Proposition A.0.4,

this equals the 2-adic valuation of the binomial coefficient (’:) Therefore
alk) —a(i) <alk—1) <k—1i<4(k—1).

Then, as before,

yik—2i—a(k) 1

- g Ak —di—a(k)+a(i)y, 2i—al(i) £
24k—2i—alk) fu= 24k—4i—a(k)+a('i)u o (U/Q) T fa

which implies that ;\4;{,4,; is divisible by 2#~4~a(k)+e() in the 2-adic integers,

as required. O

Theorem 3.8.2. (1) In the collapsed Adams spectral sequence and the no-

tation of Lemma 8.7.1 Zy, may be chosen to be represented in ES"““

(11) In fact, Zy may be taken to be the smash product of the unit n of the

bu-spectrum with the inclusion of the bottom cell jy into Fyp/Fak—1

SO AN S4k m bu A F4k/F4k_1.

Proof. For part (i), suppose that Z is represented in E;’4k+1. By Lemma

3.7.1 we must show that this leads to a contradiction. From [24] we know

that on the s = 1 line the non-trivial groups are precisely E;‘Akﬂ, E’;AHS, .

,E’;’SHS-M(’C) which are all of order two. From the multiplicative structure
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of the spectral sequence, if a homotopy class w is represented E§’4k+2j_1

and E§’4k+2j+l is non-zero then there is a homotopy class w’ represented in
E§’4k+2j+l such that 2w’ = ww. Applied to Zy this implies that the homo-
topy element u?—2)*1z,, is divisible by 2%~*)+1 Hence u2k~2k)tlz,, is

divisible by 22#-¢(®+! in @G, ., which contradicts the proof of Theorem 3.8.1.

For part (ii) consider the Adams spectral sequence
EY' = Exty (H*(Fu/Far-1,72/2),2/2) = mi_o(bu A Fur) Fip_1) ® Zo.

We have an isomorphism

Ht(F4k/F4k—1;Z/2)

JZ/2).
Sq*H*=Y(Fyx ) Fag—1; Z/2) + SqO Y H'=3(Fyp ) Fap—1; Z/2)’ /3

E% = Hom(

The discussion of the homology groups H.(Fu/Fuy._1;Z/2) given in ([4]
p.341; see also §3.9) shows that EY* = Z/2 generated by the Hurewicz
image of 7 A jx. Therefore the generator of E%‘““ represents n A jg. Since
there is only one non-zero element in Eg’4k it must also represent Z4, by part

(i), which completes the proof. O

3.9 The effect of ¥ on basis elements

In this section we wish to calculate the effect of the induced map (1 A %3), :
Gy« — G on the basis elements guy 4 introduced in §3.6 and the effect of
the induced maps (14,1)« : Gakx — Gax, on the basis elements zy introduced

in §3.7. In order to do this we first need to recall the multiplicative pairing
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of Adams spectral sequences due to [3] and [20]. Let E**(1) denote the r-th

page of the spectral sequence (3.2) with & = [, i.e. the spectral sequence
E;’t(l) = EZ‘tSBt(bu A F4l/F4l—1) — wt_s(bu A F4[/F41_1) R Zsg.

Theorem 3.9.1. There exists an associative pairing between the spectral

sequences (3.1) and (8.2) of the form
Bt @ By (k) — B

such that

(1) for r=2 the pairing agrees with the Yoneda composition pairing on Ext’s

(ii) the pairings commute with the isomorphisms E,,1 = H(E,, d,) and

Er—frl = (E’H dr)

(111) the pairings converge to a composition pairing of homotopy groups of

the form
(7o (D(Far/ Fax—1) A (Fa/Fu—1) Abu) ® Zy) ® Guxp — Gay,

In particular, the pairing of tx; € Tu(D(Fax/Fag-1) A (Fu/Fu_1) Nbu)®
Z,, represented by the generator of E;l(k_l)—a(k)w(l)’4(k_l)_°‘(k)+°‘(l), and
Zax € Gag, represented by the generator of Eg’4k(k), gies the image of

the induced homomorphism vy 4 (Zax) € G, represented by the genera-

a(k=l)—alk 1),8k—4l—alk l
tor of EAk-D=attral) sk-ai=a(k)+at) ()

Proof. This is a particular case of the more general Theorem 9.27 of [18]. O
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Proposition 3.9.2.

For Il < k, in the notation of §85.8, the homomorphism
(Lk,l)* : G4k,k - G4k,l

satisfies (1 1)x(zar) = pap 22k~ A-0BFelly 262, for some 2-adic unit pax 4.

Proof. Let Zy € é4k7k be as in §3.7 so that, proved in a similar manner to

Lemma 3.7.1, 22y, is represented in E§’4k+1 in the spectral sequence

ES' = Ext3 (H*(Fu/Far-1;,2/2),7./2)

= M_s(bu A (Fa/Fix-1)) ® Zs.

where, from §3.9, we have

E%,4k+1 ~ Extjl;—Zk—a(k),4k+1—2k—a(k)(Z/Q’ 7)2) = 7/2 = <a2k+1—a(k)>.

The multiplicative pairing between these spectral sequences shows that

(k1) (224) € Gax; is represented in the spectral sequence

B3t = Baty (H*(Fy/Fu_1;7/2),2./2)

= T (bu A (Fy/Fy_1)) ® Zs.

2k+1-a(k) p2k—21

l+-4k—-4l—alk 1),1+8k—4l— l
E2+ a(k)+a(l),1+ alk)+a(l) because a

by the generator of
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is the generator of

E;+4k-4l—a(k)+a(l),1+8k—4l—a(k)+a(l) ~ Ext;+4k—2l—a(k),1+8k—6l—a(k)(Z/Q, 7/2).
Since multiplication by a and b in the spectral sequence corresponds to mul-
tiplication by 2 and u respectively on homotopy groups we have the following

table of representatives in 7, (bu A (Fy/Fy_1)) ® Za.

homotopy element | representative | dimension

2241 a2l—a(l)+1 4l
(u/2)(2z4) a?—eWp 4l + 2
(u/2)?(2zy) a2-elh=1p2 4+ 4

(u/2)2=o0(224) ab el 8] — 2a(1)

u(u/2)%20(2zy) pA-e+l 8l —20(l) +2

u?(u/2)27eW(2zy) | b2oB+2 181 2a(l) + 4

Therefore there are two cases for ()« (224%). If 2k — 21 > 2] — (1) + 1 then
b2k=2 represents u2k2-(2l=e(D)(y /2)2~0b 5, — y2%k—4+al)(y/2)2%-e0) 5, and,
up to multiplication by 2-adic wunits, (t41)«(224%) is equal to
1t 2k—alk)y 2k—dl+al)(y /2)2—al) 7, as required. On the other hand, if
2k —21 < 21— a(l) then @-oO+1-(k=2Dp2k=21 _ (a-2k-a()+1j2k~2 represents
(u/2)*-2(2z,) which shows that, up to 2-adic units, (c;)«(2Z4x) is equal to
QU 2k—a(k)~(4-2k—0(l+1) (1 /9)2k~21 (3, ) = g¥k-a(kl—al+all) (y /9)2k~2(27,). as

required. O
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Proposition 3.9.3.

Let ¢® : bo — bo denote the Adams operation, as usual. Then, in the

notation of §3.5,

( P gupar + 95712208 g if k>3,
92gg,8 +9- 23g8,4 if k= s
(1A 11/)3)*(9419,419) = ﬁ
9944 + 2940 if k=1,
90,0 if k=0.

\

Proof. The effect of the homomorphism (1A%%), on u and v is well known,
being given in [8] Chapter 7, for example. (1 A +®), multiplies v by 9, fixes

u and is multiplicative. Therefore

(LAYD)a(e) = TIE) (282

— gk-1 ( (902 —9Fu24-0%u2 —uYITE , (v2—9P 24 2) )
TE (9F-9-1)

— gk-1 (9v2—9ku)IIE_, (v2~91—242) gk—1 (Qku2—u2)Hf=2(v2—9i_2u2))
- ( Tk, (9F—9i-1) ) + ( e, (9% —9i-1)

— gk (P9 NI, (v2 -0 2u?) k—1 ( (9Fu2—uP)ITE, (12— 9%~ 202)
i 9 ( H{pzl(gkjgi—l) ) + 9 ( Hf:l(gﬁf—gi—l) )

o 3 W2 (02 —0im102)
= 9kc4k‘ + 9 1(9k - 1)((gk_1)1}_[71§1(gk_9i—1))
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= 9k64k + 9k_1u264k_4.
Hence, for &k > 1, we have

(A (far) = 2%7B (1 AY3).(car)

= Q2k—alk) gk, 1 gk=1y292k—alk)-2k+2+alk-1)¢

— 9kf4k + 9k—1u222—a(k)+a(k—1)f4k_4

— 9kf4k + 9k_1U22u2(k)+1f4k_4,
which yields the result, by the formulae of §3.6. O

Proposition 3.9.4.

When & > |
9 gagar + 9" gar.a1-a if 4 — a(l) < 2k,
9194&4[ + 9l_124l_a(l)_2kg4k,4l—4 if 4] — a(l) _ l/g(l) -3
(IAE). (gar ) = < < 9% < 41 — a(l),

O gy y + 9128 Mg, gy 2k <4l —a(l) — () -3
< 4l — a(l)
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Proof. Suppose that 41 — a(l) < 2k then, by Proposition 3.9.3 (proof),

(1A Y*)i(gana)

_ o w2l—a()
— (1 /\77113)*(”% 4l+a(l) [_ﬁm_(%ﬂ])

_ 2kt [“21_'1(1)(91f4t+91_1u22"2(Z)"lf4zf4):I
- 92l—all)

2l—a(l),,29ua (1)+1
_q! 1-1, 2k—4l+a(l) [ @ us2v2 far—s
9 g4k‘,4l 9 U +a( ) |: 922l—a(l) :I

_ gl 11, 2k—dl+a() [u22-oBom®+1s, 4
= 9 Gara + 9 u o0 [ 22l—a(l) } :

Then, since () =1+ a(l — 1) — a(l),
Al-D—a(l-1)=dl—a)+a)—a(l-1)—4=4l—a(l) -3—1n(l) < 2k

so that

—2_a(l—
:u2k—4l+4+a(l—1)[”2l 2—al 1)f4174}

Gak,al—4 YR e (e

_ ok—dita() |: u21+2—a(l)f4l_4 ]
= —2—a(lj+a(l—a(l=1)

L Ok—Alta) [uHF2eD
=u ® [221_:——a(l)—l/2(l)—-1':|

so that, for 0 < [ < k suppose that 4] — a(l) < 2k,

(1A 1/)3)*(94;9741) = 9194;9,41 + 91—194k,4l—4-
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Similarly, for 0 < I < k if 41 — a(l) > 2k then, by Proposition 3.9.3 (proof)

(LA Y*)u(gar.at)

= (1A% ([Egemft])

- [uz(k'l) 9 fa9t T tu2ora (e, ) :|
= 22(k=T)

u2k*2l+22u2(k)+1f4k_4:|

= 9194;:,41 + 91-1[ 20D

This situation splits into two cases given by
(1) 4l —a(l) = () —3 <2k <4l —a(l) or
(i) 2k <4l —a(l) —wa(l) — 3 < 4l — afl).

In case (i) 4l —4—a(l—1) =4l — a(l) —,(l) — 3 < 2k and so again we have

— 2k—dlrdto(-1) [u2l'2‘°(l‘1)f4z_4}

Gak.al—4 o2—2—a(l-1)

y2k—2l+2 f4l—4

 p2=1-vy(h-a(l)

u?k—?l+221+u2 ) f4l—4
SEk—2lral—a(l)—2k

so that

(LAY (gapar) = Vgapa +97224720=2kg 0 04

In case (ii)

u?k—21+2 f4k—4
Gakal-4 = [_W]
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so that
(1A (ganar) = V' gapa + 971252 W g 0.

O
3.10 What is the matrix?
In the notation of §3.1, suppose that A € U, Z, satisfies
AATY) = [1AY°) € Auty gy moq(bu A bo).
Therefore, by definition of A and the formula of Theorem 3.8.1
Dok Ak« (zae) = (1A Y?)(2ax)
= D 200N e i (LA Y®) 4 (Gak i)

On the other hand

> i<k Auk(tr)« (2ar)

= Appzae + oy Avpliag 22 H-eBray2k=2,

= AppZE 02 FDN 0 gigap ai

2k Thog Avgk pag g2 2R Tal)y 229800 Ny 4 gy gi.

In order to determine the Ag,’s it will suflice to express u2k—2lg4lﬁ4i as a
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multiple of gar 4; and then to equate coeflicients in the above expressions. By

definition
220y, 2l—dita(i) [UZ_L{;S?{)M] if 44 — a(i) <21,
WAy =
L 2E-2 [u;(;(-liflm] if 4i — a(i) > 21.
( u2k’_2if4i . . - 97
e if 40— a(d) < 21,
Ut if 40— a(i) > 21
while
uh—ita® [L20 ] if 45 a(s) < 2k,
Gak 4i =
[u;’”(:_)if;h] if 4i — a(i) > 2k.

From these formulae we find that

{ 94k 4 if 4i —a(i) < 21 < 2k,

gy 4 = J 24-el)=2g, 4 if 21 < 4i — a(i) < 2k,

g2k-2lg, if 20 < 2k < 4i — o).

Now let us calculate A; .

When k = 0 we have zp = (1 A ¢*).(20) = Aopo(to0)«(20) = Aopzo so that

Ago = 1.
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When k = 1 we have

e Ana(t)a(zs) = (LA YD%).(20)

= Aa(LAY3)(gaa) +2X00(1 A 3)u(ga0)

= X4,4(994,4 + 2940) + 2240940

and

Zzgl Arr(t1,)«(2e) = Ar124 4+ Ao 11,0290

= A11(2X4094,0 + Aaa94,4) T Ao1141,02940

which implies that A;; =9 and Ag; = ,ul_:é(/\474 — 8X4p0) so that Ag; € Z3.

When &£ = 2 we have

Yica A2(t20)x(28) = (1AY°)u(25)

= (LAY)(Nssgss + 2°As.495.4 + 2° X5 05,0

= X s(9gss +9-23gs4) + 2°Xs5.4(9gs.4 + gs.0) + 2°Xs.098,0

and

lez Ao(to)s(28) = Agpzg + A12(12,1)x(28) + Ao2(L2,0)«(28)

= Ass(Nssgss + 23X8,408.4 + 2°X8,098,0)
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+A1,2(#s,422u224) + Ao,2(#8,023u420)

= Ago(Assgss + 23/\8,49874 + 23/\8,098,0)

+A1,0018,42*(2X4098,0 + Aa,au?gaa) + Ao 218,02 gs 0

= Aso(Nssgss + 2%Xs 4984 + 23 s 08.0)

+ A1 2118,42* (2010980 + A1.4298.4) + Ao,2118,02% g8 0-

Therefore we obtain

Mes(920s8 +9-2%g54) + 2°Xe 4(99s.4 + gs0) + 2% Xs09s.0

= Asa(Xssgss + 2°Xs 4984 + 2% s 09s.0)

+ A1 218422 (2210980 + Ma,4208.4) + Ao ots 023750

which yields

92 = A2,27

Asg -9+ Asa(9 — 9%) = Arausadaa,

Asa+ Aso(l —9%) = A1 ous shao0 + Ao2is o

Hence A, 5 € Z3.
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Now assume that k£ > 3 and consider the relation derived above

EfZOQﬁ(k’i) Age,ai (1A 103)*(94&41')

= App S5 2P®D N 4y 13 Gak 0i

+ 3 ek Siog Avg fhag, 22k~ alk)+all)y 262060 3 ) 1iga 4.

The coeflicient of gsx4x on the left side of this relation is equal to )\4kﬁ4k9k
and on the right side it is A xAgeax S0 that Agx = 9* for all £ > 3. From

the coefficient of gax 4x—4 We obtain the relation

/\4k74k9k712u2(k)+3 + 23+U2(k)/\4k,4k—49k_1

= 9k23 M) Ay gy

S IR TITTIY L R CatOl o) WINPTV s LD VISR L

= 0k23r2 M)\ o s

34ua(k
+ Ap1 ke Parak—a23T2 O N4 454

which shows that Ax_1, € Zj for all £ > 3. This means that we may
conjugate A by the matrix D = diag(1, A1, A1 9423, A12A423434,...) €

UxZs to obtain
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11 a3z s cagp
0 9 1 62’4 6275

D‘AD”1 =C = 00 92 1 C3,5

In the next section we examine whether we can conjugate this matrix further

in UyxZs to obtain the matrix
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3.11 Conjugating the matrix

Let B,C € UyZ, denote the upper triangular matrices which occurred in

§3.10
11 0 0 0 ... 11 1,3 Ci4 Ci1p5
609 1 0 0 ... 0 9 1 coa cop
B=|009 10 .. ¢c=[00 9 1 cs
00 0 9 1. 00 0 9 1

The following result is the main result of this section. Along with the dis-
cussion of §3.10 it completes the proof of Theorem 3.4.2 by explicitely con-

structing a matrix U € U,Z, which satisfies UCU~! = B.

Theorem 3.11.1. Let U = (u; ;)i >1 be the upper triangular matriz whose

entries satisfy

1 ifj=1orj=2

ULy =
0 ifj>2
and
j—2
Uinng = () irCin) + tigo1 + (971 =9 uyy.
r=i

Then (3). U is invertible, (7). UC = BU.

Proof. (i). We shall prove, by induction, that u;; € Z3 for 4 > 1, which is

sufficient to prove that U is invertible.



3.11. Conjugating the matrix 76

For i = 1, uy; = 1 which is clearly in Z5. Now assume wu;; € ZJ for all
1 <i < n where n € Z*. We wish to show that this implies u,, € Z. By

definition

— n—1 n—2
Un,n - un—l,n—l + (9 -9 )Un—l,n-

Since 97! — 9% = 9"72(9 — 1) € 2Z, and, by the induction hypothesis,
Un—1n—1 € Z5 it follows that u,, € Z5 + 2Zy C Z;. Hence, by induction,
ui; € Z; for ¢ > 1, and therefore, U is invertible.

(7). Since we have defined U to be upper triangular it is trivial to show that
(UC);; = (BU),; for j > 1. The entries of UC and BU, for i > j are given

below:

(UC)ij = wiiCij T UigriCivrg + o+ tijaCiaj + Uij1 + Ui
_ Jj=2 i1
= (2oroi YirCir) + Uig-1 + UiV

(BU)ij = 97w + Uiy

We shall now prove that these are equal for all 4,7 > 1 and 7 > j:

_ -2 -
— . L i—1 _ qi—1\,,. . ai-1
= Uiry — (¥ 9 Nuiy + ;59

— U: L gj—l .. + 97;—1 ., + A ‘9]’—1
= Uit Ui Usj T Uij

= Uirly Ui,

= (BU);

as required.



Chapter 4

Applications

The following Chapter contains two applications of the results of Chapter 3.
The first application concerns using knowledge of the left bu-module auto-
morphism 1A% : bu Abo — buAbo to explicitly describe the left bu-module
automorphism 1 A% : bu Abu — bu A bu. In the second application we use
Theorem 3.4.2 to study the ring Endiesi—py—moa(btt A bo) of left bu-module
endomorphisms of bu A bo. Both of these applications come from collabora-
tive work of the author and his PhD supervisor Prof. V. Snaith. They are
published in [11]. They are not presented here as original work of the author,
but the déscription given here by the author serves to illustrate possible uses

for the original results of Chapter 2.

4.1 buAbu

In this section we wish to use the knowledge of 1 A 42 : bu A bo — bu A bo

from Theorem 3.4.2 to explicitly describe the left bu-module automorphism

7
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1A% bu Abu — bu A bu, in terms of the morphisms Lk -1 of §3.3.

Recall that the group isomorphism A of §3.4 determines the matrix corre-
sponding to an element of Aut], 4, _..q(bu Abo) upto inner automorphism.
Therefore, Theorem 3.4.2 implies that, in the 2-local stable homotopy cate-

gory there exists an equivalence C' € Auty, ;,_p,_moa(bu A bo) such that

C'(1Ap*C ™t = Z OFupp + Z Lkk—1

k>0 k>1

where 4, is as in §3.1, considered as left bu-endomorphism of bu A bo via the
equivalence L of §3.1.

In [24] use is made of a homotopy equivalence of spectra of the form bu ~
bo A ©—2CP?, first noticed by Reg Wood (as remarked in [4] pg. 206) and
independently by Don Anderson (both unpublished), where £~2C P? denotes

the 27¢ desuspension of CP? as given in §2.2.1.

Proposition 4.1.1. In the 2-local stable homotopy category there is a mor-

phism
T ¥72CP? — L 2CP?

which satisfies U*(z) = ¥3(2) for all z € bu’(X2CP?).
Proof. A construction of this morphism is given by Snaith in [23]. O

There is a commutative diagram in the 2-local stable homotopy category of

the form
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SAT
bo A ¥ 2C P? v bo A X2C P?
l . |
bu Ld bu

in which the vertical morphisms are equal, given by the Anderson-Wood

equivalence.

Now suppose that we form the smash product with X~2CP? of the 2-local
left bu-module equivalence bu A bo ~ Visobu A (Fu/Fux—-1) to obtain a left

bu-module equivalence of the form
bu A bu = Visobu A (Fa/ Fap_1) A 72CP2,
For | <k set
Kieg = g AVt bu A (Fag/Fag—1) A YT2CP? — bu A (Fy/Fy-1) A X 72CP?

then we obtain the following result.

Theorem 4.1.2.

In the notation of §4, in the 2-local stable homotopy category, there exists

C’" € Auty,y_y,_moq(bu A bo) such that

1AV bu Abu — bu A bu
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satisfies

(CADAALNC AT =" Frpp+ > Ko,

k>0 k>1

4.2 Endleft—bu—mod(bu AN bO)

In this section we shall apply Theorem 3.4.2 to study the ring of left bu-
module homomorphisms of bu A bo. As usual we shall work in the 2-local
stable homotopy category. Let U,Zs denote the ring of upper triangular,
infinite matrices with coefficients in the 2-adic integers. Therefore the group
UsoZy is the multiplicative group of units of UsZs. Choose a left bu-module

homotopy equivalence of the form
ﬁ : szobu AN (F4k/F4k—1) =, bu A bO,

as in §3.1. For any matrix A € Uy,Z, we may define a left bu-module endo-

morphism of bu A bo, denoted by A4, by the formula

=L ( Z Al,klzk,l) . IA/_

0<i<k

Incidentally here and throughout this section we shall use the convention
that a composition of maps starts with the right-hand map, which is the
opposite convention used in the definition of the isomorphism A of §3.1 and

[24]. When A € UyZy we have the relation Ay = A(A™). For A, B € UnZs



4.2. Endleft_bu_mod(bu AN bO) 81

we have

Aa-Ap = (ﬁ : (Zogzgk Avtrg) - f/_l) ) (f/ : (ZOStSs By stsy) - L Y

=1L (X o<icics At Brsts) - L

By Theorem 3.4.2 there exists H € UyZs such that

LAY = Aypr—

for

Hence, for any integer u > 1, we have 1 A (¥3 — 9%71) = Ayp y-1 where
B, = B—9*"1 € U, 7, and 9! denotes 9*! times the identity matrix.
Following [19] write ¢, : bo — bo for the composition ¢, = (¥ — 1)(¥* —

9)...(¢° — 9" 1). Write X, = B1B,... B, € UsZs.
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Theorem 4.2.1. (i) In the notation of §4.2 1 A ¢, = Agx, g-1 forn > 1.
(11) The first n-columns of X, are trivial.

(?/L’L) Let Cn = COTL@([A/ : vOSkSn—lbu AN (F4k/F4k_1) i‘r bu A bO, which 18 a
left bu-module spectrum. Then in the 2-local stable homotopy category there

exists a commutative diagram of left bu-module morphisms of the form

bu A bo LA &n bu A bo

~

Tn ¢n

Chn

where T, is the cofibre of the restriction of L. Also qgn 1§ determined up to

homotopy by this diagram.

(w) Forn > 1 we have

(Xn)sstj =0if j<Qorj>n

and the other entries are given by the formula

(Xn)s,s+t - Z A(kl)A(kQ) - A(kt)

1<ki<ka<...<ki<n

where ‘
Alkr) =TI} cpo gy a (9571 = 9270),

Alk) = [T, 00k (9° = 92270,

Ja=n—ka+1

Alks) = T2k (971 = 9271,

ja=n—ka+1
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Alk) = T HO ! = 977),
Proof. Part (i) follows immediately from the discussion of §4.2. Part (ii)
follows from part (iii), but it is simpler to prove it directly. For part (ii)
observe that the B; commute, being polynomials in the matrix B so that
X, = X, 1B,. Since (B,)s is zero except when t = s, s+ 1 so that (X, )i; =
(Xn-1)ij(Bn)j; + (Xn-1)ij-1(Bn)j-1;, which is zero by induction if j < n.
When j = n by induction we have (X,.);; = (Xn-1)in(Bn)n,n which is trivial
because (By)nn, = 9" 1 — 9"71. In view of the decomposition of bu A bo,
part (iii) amounts to showing that H X,,H~! corresponds to a left bu-module
endomorphism of Vo< bu A (Far/Fax—1) which is trivial on each summand
bu A (Fur/Fur—1) with k£ < n — 1. The (i,7)-th entry in this matrix is the
multiple of ¢j_1-1 : bu A (Faj—a/Faj_5) — bu A (Fii—a/Fa_5) given by the
appropriate component of the map. The first n columns are zero if and only
if the map has no non-trivial components whose domain is bu A (Fyj—a/Fuj—s)
with 7 < n. Since H is upper triangular and invertible, the first n columns of
X, vanish if and only if the same is true for HX,H~!. Finally the formulae
of part (iv) result from the fact that B; has 9™~ — 99~ in the (m,m)-th

entry, 1 in the (m, m + 1)-th entry and zero elsewhere. O

Remark 4.2.2. Theorem 4.2.1 is closely related to the main result of [19].
Following [19] let bo™ — bo denote the map of 2-local spectra which is
universal for all maps X — bo which are trivial with respect to all higher

7Z/2-cohomology operations of order less than n. Cf with [19] Theorem B.
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Milgram shows that ¢q, factorises through a map of the form 6,, : bo —
Y87po2n—(n) and that ¢o,., factorises through a map of the form g, :
bo —> T8 F4psp(n—e) and then uses the 6,,’s to produce a left-bo-module
splitting of bo A bo. Using the homotopy equivalence bu =~ bo A £~2CP?
mentioned in [24] one may pass from the splitting of bu A bo to that of bo Abo
(and back again). In the light of this observation, Theorem 4.2.1 should be
thought of as the upper triangular matrix version of the proof that the 6,’s
exist. The advantage of the matrix version is that Theorem 4.2.1(iv) gives

us every entry in the matrix X, not just the zeroes in the first n columns.



Appendix A

2-adic valuation results

The main result from this appendix is Proposition A.0.4. The proof requires

Lemmas A.0.1-A.0.3.

Lemma A.0.1. For any integer n > 0, 92" — 1 = 27"*3(2s + 1) for some

s EZ.

Proof. We prove this by induction on n, starting with 9 — 1 = 23, Assuming

the result is true for n, we have

92" —1 = (97" — 1)(9%" + 1)
= (9" - 1)(9" -1+2)
=2"3(2s + 1)(2" 3 (25 + 1) + 2)

=225 + 1) (2" 2(2s + 1) + 1)

L /

A

odd

85
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as required. O

Lemma A.0.2. For any integer | > 1, 9" — 1 = 22(0+3(25 4 1) for some

s € Z, where (1) denotes the 2-adic valuation of L.

Proof. Write | = 281 4-2%2 + .. + 2% with 0 < e; < ey < ... < g; so that

v3(l) = e;. Then, by Lemma A.0.1,

R

= (28, +1)29F3 + 1)) . (285 + 123 + 1)) — 1

= (251 + 1)2273 (modulo24+*)

= 2943(25 4 1)

as required. O

Lemma A.0.3. For any integer | > 1, T['_, (9 — 971) = 2724325 4 1)

for some s € Z.

Proof. By Lemma A.0.2 we have
Hi=1 (91 _ 91‘—1) — Hézl (9l—i+1 _ 1)91’—1

= [Tie, 2207032t + 1)97

—_ (2t + 1)21/2([!)-%3[7

as required. O
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Proposition A.0.4. For any integer [ > 0, 2220530 = 98=al) yypere a(]) is

equal to the number of 17s in the dyadic expansion of I.

Proof. Write [ =2 422 + . +2% with 0 < o) < ag < ... < o so that
a(l) =k 9 —1=220+325 + 1) for some s € Z, where v5(l) denotes the

2-adic valuation of [. Then

V2(l‘) — 2(!1—1 + 2&2-1 + . + 2ak—1
+ 1+ 2ee Ly g
+ 1 s

+ 1

because the first row counts the multiples of 2 less than or equal to [, the
second row counts the multiples of 4, the third row counts multiples of 8 and

so on. Adding by columns we obtain

() =2 —14+2% —14+...42% —1=]—k

which implies that 2372 = 23l+l-all) — 9dli=all) " a5 required. O
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