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by Jonathan Edward Barker 

In the 2-local stable homotopy category the group of left bu-module automor­

phisms of bu /\ bo which induce the identity on mod 2 homology is isomorphic 

to the group of infinite, invertible upper triangular matrices with entries in 

the 2-adic integers. After giving a survey of the required background material 

from stable homotopy theory, we identify the conjugacy class of the matrix 

corresponding to 1 /\ 1jJ3, where 1jJ3 is the Adams operation. \lve conclude by 

giving two applications of having knowledge of the identity of this matrix. 
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Chapter 1 

Introduction 

1.0.1 Summary 

I would like to begin by giving a very general summary of the results of 

this thesis aimed at a general mathematical audience. In [24] Snaith defined 

an isomorphism of groups which relates an automorphism group of a purely 

stable homotopy theoretic construction and a certain matrix group. The 

motivation for defining this isomorphism was to be able to turn difficult ho­

motopy theoretic problems into simpler problems of matrix algebra. Within 

this automorphism group there exists an element which is particularly im­

portant in algebraic topology and in [24] a footnote was printed predicting 

the identity of the matrix corresponding to this automorphism. The bulk of 

the original work contained in this thesis proves this prediction, which turned 

out to take more work than expected. The final chapter of this thesis goes 

on to give two applications of the results obtained in proving the identity of 

the matrix. 

8 
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1.0.2 Overview 

I now wish to give a more detailed summary of the structure of this thesis 

aimed at an audience with some knowledge of algebraic topology and homo­

topy theory. In 1966 Boardman [7] introduced the stable homotopy category 

of spectra, which we denote Y. The objects in this category are spectra, 

introduced by Lima, which are sequences of topological spaces along with 

maps from the suspension of one space in the sequence to the next. The 

morphisms are complicated to define, but importantly are homotopy classes, 

in some appropriate sense, of maps of spectra. After giving a few topological 

preliminaries in §2.1, we give details of the construction of Y in §2.2. In 

this thesis we work with a localisation of the category Y, with respect to 

mod 2 singular homology, in the sense of Bousfield [9]. The details of this 

localisation are given in §2.7. 

The notion of spectra is very natural if one starts with a generalised coho­

mology theory, as every such cohomology theory defines a spectrum which 

represents it. Conversely, to every spectrum we can associate a generalised 

cohomology theory. The relationship between generalised (co ) homology the­

ories and spectra is discussed in §2.5. In this thesis we are particularly 

interested in the spectra bu and bo which represent 2-local complex and real 

connective K-theory respectively. After defining a suitable product of spec­

tra we can introduce the notion of a ring spectrum and a module spectrum 

over a ring spectrum. The smash product of spectra 1\, once correctly de­

fined, makes bu 1\ bo a left module spectrum over the ring spectrum bu. Ring 

and module spectra, and in particular bu and bo, are introduced in §2.6. Af­

ter describing how to calculate the mod 2 singular homology of a spectrum 



10 

(§2.5) we can consider the set of left bu-module automorphisms of bu !\ bo 

which induce the identity map on mod 2 singular homology. This set actually 

forms a group, which we denote Aut?eft-bu-mod(bu!\ bo). The main result of 

[24], Theorem 1.2, is a group isomorphism of the form 

where U,x,'ll-2 represents the group of infinite upper triangular matrices with 

2-adic integer entries. This isomorphism is defined up to inner automor­

phism in Ux,'ll-2. As introduced in §2.8, by far the most important element in 

Aut?eft_bu_moAbu!\ bo) is the automorphism 1 !\ Vi, where ?jJ3 : bo ---+ bo is 

the Adams operation on the real connective K-theory spectrum. The obvious 

question to ask is, what is the conjugacy class of matrices which represents 

1 !\ ?jJ3. In [24] a footnote appeared (page 1273) predicting that the matrix 

representing 1 !\?jJ3 is conjugate in Uoc 7L2 to the matrix 

1 1 0 0 0 

o 9 1 0 0 

B = 0 0 92 1 0 

o 0 0 93 1 

The main result of this thesis, Theorem 3.4.2, is a proof of this prediction. 

This result and its proof have been published in the collaborative paper [11]. 

As discussed in §3.5, an element of the group Aut?eft-bu-mod(bu !\ bo) is de-



11 

termined by its effect on 7f*(;~~:;~~Z2, the homotopy group of the spectrum 

bu /\ bo tensored with the 2-adic integers and modulo torsion. The homotopy 

groups of spectra are introduced in §2.3.1. As explained in §3.1, Snaith's 

group isomorphism mentioned above makes use of a decomposition of the 

spectrum bu /\ bo given by Mahowald. We therefore find that if we wish to 

determine the effect of the map induced on homotopy by 1 /\ 'ljJ3 we need to 

work out its effect on basis elements, for the homotopy group as a module 

of the 2-adic integers, given in terms of this decomposition. These basis ele­

ments are discussed in §3.5. To enable us to do this we make use of a second, 

far more convenient, basis for the homotopy group shown above given by 

Clarke, Crossley and Whitehouse in [12] and described here in §3.6. The 

advantage of this basis is that the effect of the map induced by 1 /\ 'ljJ3 is well 

known. We therefore proceed to find the relationship between the two bases 

and translate the effect of the map induced by 1/\ 'ljJ3 from Clarke, Crossley 

and Whitehouse's basis to the basis coming from Mahowald's decomposition. 

Once this relationship of bases is established we are able to use Snaith's iso­

morphism to calculate the matrix corresponding to 1/\ 'ljJ3. We find that this 

matrix is 

1 1 C1,3 C1,4 C1,5 

0 9 1 C2,4 C2,5 

c= 0 0 92 1 C3,5 

0 0 0 93 1 

where the Ci,j are arbitrary 2-adic integers. We conclude Chapter 3 by 
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proving that the matrix B is in fact conjugate in UooZ2 to the constructed 

matrix C, as predicted in [24]. 

In Chapter 4 we present two applications of the main results of Chapter 

3. The first application (§4.1) describes how knowledge of the matrix corre­

sponding to 1!\?j;3 : bu!\bo --7 bu!\bo allows us to explicit ely describe the left 

bu-module automorphism 1!\?j;3 : bu!\ bu --7 bu!\ bu in terms of morphisms 

arising from the Mahowald splitting of bu!\ boo The second application (§4.2) 

investigates the ring of left bu-module endomorphisms of bu!\ boo In particu­

lar the main result of this section reproves and slightly extends a 1974 result 

of Milgram ([19], Theorem B). Both of these applications are the result of 

the collaborative work of the author and his PhD supervisor Prof. V. Snaith 

being published in [11]. They are not presented as the original work of the 

author but they are included here as immediate examples of how knowledge 

of the matrix corresponding to 1 !\ ?j;3 can be put to good use. 

1.0.3 Prerequisites and assumptions 

The required knowledge to begin original research in stable homotopy the­

ory is vast. There are certain substantial assumptions that needed to be 

made in the preparation of this thesis, as a complete account of the rele­

vant background material would be impossible. We therefore assume a basic 

general knowledge of algebraic topology, specifically CW-complexes, basic 

singular (co )homology theory, generalised homology theories and basic ho­

motopy theory. We also assume a basic working knowledge of homological 

algebra. Possibly our biggest assumption though is knowledge of the basic 

theory of spectral sequences and, in particular, the Adams spectral sequence. 



Chapter 2 

Background material 

The aim of the following chapter is to provide the reader with enough back­

ground material, at an appropriate level of detail, so that they may feel 

comfortable with the concepts required to understand the original research 

contained in this thesis. References are given for more comprehensive ac­

counts and the reference chosen usually reflects the publication the author 

found most useful in understanding the concept. 

2.1 Topological preliminaries 

Let g denote the category of topological spaces with basepoint. In this 

category the morphisms are base-point preserving continuous maps of topo­

logical spaces. Let ce1f/ denote the category of CW-complexes with base­

point. In this category morphisms are base-point preserving cellular maps of 

CW -complexes. 

Definition 2.1.1. Given (X, xo), (Y, Yo) E g, we define the smash product 

13 
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(X A Y, *) E !Y to be the quotient space 

X y=XxY 
A XvY 

with basepoint * = p(X V Y), where p : X X Y ---7 X A Y is the projection. 

Definition 2.1.2. Given (X, xo) E !Y we define the suspension (~X, *) E !Y 

of X to be the smash product (Sl A X, *) of X with the I-sphere. 

Definition 2.1.3. Given (X, xo) E !Y, we define the n-th suspension of X 

(~n X, *) inductively as the smash product (Sl A ~n-1 X, *) of ~n-1 X with 

the I-sphere, for n 2:: 1. 

Definition 2.1.4. (X, xo) E !Y is called n-connected if and only if 1ik(X, x) = 

o for 0 :::; k :::; n and all x EX. 

Let (J denote the homomorphism induced on homotopy groups by suspension. 

Theorem 2.1.5. Freudenthal Suspension Theorem For every n-connected 

CW-complex XJ n 2:: OJ the homomorphism (J : 1ir(X, xo) ----7 1ir+l(~X, *) is 

an isomorphism for 1 :::; r :::; 2n. 

Definition 2.1.6. Given (Y, Yo) E !Y, we define the loop space (nY, wo) E !Y 

of Y to be the function space 

with the constant loop wo(s) = Yo for all s E Sl as base-point. 

Definition 2.1. 7. Given (Y, Yo) E !Y we define the n-th loop space (nny, wo) E 

!Y inductively as the loop space n(nn-1y), for n 2:: 1. 
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Proposition 2.1.8. The suspension and loop space functors are adjoint. 

For the remainder of this chapter we shall use the word space to mean an 

element of g and map of spaces to mean a morphism in g. We shall omit 

basepoints unless explicitely required. 

2.2 The stable homotopy category of spectra 

In this section we shall describe the stable homotopy category of CW-spectra 

introduced by Boardman in his 1966 Warwick preprint [7]; but our description 

is due to Adams ([4]). We shall denote this category by Y. The account 

given here largely follows Adams's account but also includes explanations of 

some concepts inspired by the explanations given in [26] and [13]. 

2.2.1 Objects 

Definition 2.2.1. A CW-spectrum E is a sequence of pointed CW-complexes 

En provided with structure maps 

such that each structure map En is a homeomorphism from '2',En to a sub­

complex of En+l' 

It is equivalent to define a spectrum in terms of structure maps E' : En -----. 

DEn+l as '2', and D are adjoint functors. 

We could define a more general notion of spectra which drops the requirement 
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that the sequence of spaces be CW-complexes, but for the purposes of this 

thesis this is unnecessary as all the spectra we will be using are CW-spectra. 

There is no loss in generality by restricting to CW-spectra in any case since 

it can be shown that any spectrum in the more general sense is weakly 

equivalent to some C\V-spectrum. Therefore from this point on we shall 

simply say spectrum to mean CW-spectrum. 

Example: Given a CW-complex X, we define the suspension spectrum 2::00 X 

to be the spectrum with 

and structure maps the obvious maps En : 2::(2:: 00 X)n = 2::2::n X ----+ (2:: 00 X)n+l = 

2::n+l X. In particular· if we take X = So we obtain a spectrum S called the 

sphere spectrum. 

Example: \Ve may also define a spectrum representing the n-th desuspension 

of a space X as 

O:S:m<n 

with the obvious maps. 

Example: As is usual, let U(n) denote the n x n unitary group. This is the 

group of n x n complex matrices U satisfying the condition U*U = UU* = In, 

where In is the n x n identity matrix and U* is the conjugate transpose 

of U. The group operation is matrix multiplication. Let BU denote the 
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classifying space of the infinite unitary group (i.e. a K(U, 1) space where 

U = Un:::>: 1 U (n) ). Most proofs of the Bott Periodicity Theorem actually 

prove a stronger result, that there is a homotopy equivalence 

This result allows us to define the complex K-theory spectrum, denoted KU, 

by 

Z x BU if n is even, 

O(Z x BU) if n is odd. 

The structure maps En 

E(Z x BU) -----+ O(Z x BU) 

and 

EO(Z x BU) -----+ Z x BU 

are given by the adjoints of the Bott periodicity homotopy equivalence and 

the identity map, 

and 

O(Z x BU) -----+ O(Z x BU), 

respectively. It is easy to see that all the structure maps E~ : En -----+ OEn+l 

are weak equivalences. This property means that we call the spectrum KU 

an O-spectrum. 
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Example: Let EO and ESp denote the classifying spaces of the infinite 

orthogonal and symplectic groups respectively. The proof of the Bott Peri­

odicity Theorem also yields the homotopy equivalences 

and 

These results allow us to define the real K-theory spectrum, denoted KO. 

The spectrum KO is of period 8 (i.e. KOn =KOn+8) and is defined by 

KOs 

II 

The structure maps E~n : KOsm ---7 nKOSm+1 are given by the first of the 

homotopy equivalences given above. Similarly the structure maps E~m+4 : 

K OSm+4 ---7 nK OSm+5 are given by the second of the homotopy equivalences 

given above. All other structure maps are given by the identity map. 

The following definitions relating to the objects will be required when we 

come to define the morphisms in 9. 

Definition 2.2.2. A subspectrum E' of a spectrum E consists of sub com­

plexes E~ c En for each n such that the structure map En : L-En ---7 En+l 

maps L-E~ into E~+l' 

Definition 2.2.3. A subspectrum E' of a spectrum E is said to be cofinal 
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in E if for each n and each finite subcomplex KeEn there is an m, which 

depends on nand K, such that r,m K maps into E~+n under the map 

Intuitively, this definition says that given enough suspensions any cell in En 

gets mapped into E'. 

2.2.2 Morphisms 

We now wish to complete the construction of Y by defining morphisms be-

tween spectra. Unfortunately the obvious definition, which we call a function 

of spectra, turns out to be inadequate. It can be shown that many reason-

able morphisms you may expect to have in Y cannot exist using this na'ive 

definition. See [4] pages 141-2 for an example of such a morphism. Therefore 

we define the morphisms in a series of steps. 

Definition 2.2.4. A function f : E ---? F of CW-spectra of degree r is a 

collection of cellular maps fn : En ---? Fn- r, n E :E, such that the following 

diagram is strictly COnlmutative for each n: 

r,En 
En 

) En+l 

Bin] 
E~_r 

]in+1 
r,Fn- r ) Fn- r +1 

Remark 2.2.5. The grading of functions given here is designed to eventually 

give 7rr(F) = [8, F]r. 
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\Ve now define an equivalence relation rv which will allow us to define maps 

of spectra. 

Definition 2.2.6. Let E, F be spectra. Consider the set S of all pairs (E', 1') 

such that E' c E is a co final subspectrum and l' : E' ----7 F is a function of 

spectra. Vve introduce an equivalence relation rv on S by (E', 1') rv (E", 1") 

if and only if there is a pair (EI!!, 1"') with E"' c E' n E", EIII cofinal and 

1'1 EIII = 1'" = 1" I EI!!. 

The proof that rv is an equivalence relation follows from the facts that in­

tersections and arbitrary unions of cofinal subspectra are cofinal, and that if 

G c FeE are subspectra such that F is cofinal in E and G is cofinal in F, 

then G if cofinal in E. 

Definition 2.2.7. We call equivalence classes of rv maps from E to F 

This definition of rv in terms of cofinal subspectra allows us to define a map 

on the suspension 2:;nc E Em+n of a cell c E Em rather than having to define 

the map on c itself. 

A morphism in :7 will be defined as a homotopy class of maps, therefore we 

require the notion of a homotopy of maps of spectra. 

Definition 2.2.8. Let J+ denote the union of the unit interval [0,1] and a 

disjoint base-point. A homotopy is a map of spectra 9 : E /\ J+ ----7 F, where 

E/\J+ is defined to be the spectrum with (E/\J+)n = En/\J+. There are two 

obvious morphisms of spectra io : E ----7 E /\ J+, i 1 : E ----7 E /\ J+ induced 

by the inclusions of 0, 1 in J+. \iVe say two maps of spectra fo, h : E ----7 F 

are homotopic if there is a homotopy h : E /\ J+ ----7 F with h 0 io = fo, 

hoi1=h· 
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Homotopy as defined here is an equivalence relation, which leaves us in a 

position to finally define the morphisms in our category. If E, F are spectra 

we write [E, F]r for the set of homotopy classes of maps of degree r from E 

to F. 

Definition 2.2.9. A morphism of degree r in 9 is a homotopy class of maps 

of degree r. 

Given the notion of homotopy we may define fibre and cofibre sequences for 

spectra in exactly the same way as on the space level so that they will enjoy 

all the same homotopical properties. In fact, for the CW-spectra we are 

considering the notion of fibre sequence and cofibre sequence coincide. 

2.3 Homotopy groups of spectra 

We shall now define homotopy groups of spectra in such a way that the 

homotopy groups of a suspension spectrum L.;oo X will coincide with the stable 

homotopy groups of the space X. 

Given any spectrum E E 9 we have the following homomorphisms of ho­

motopy groups of spaces 

given by the Freudenthal suspension homomorphism ([26] Theorem 15.46) 

and the map induced by the structure map En in the spectrum E. If we 

consider all such homomorphisms for n E Z we obtain a direct system and 

hence we can take the direct limit of such a system, which leads us to the 
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following definition: 

Definition 2.3.1. The r-th homotopy group of the spectrum E is defined to 

be 

Definition 2.3.2. A spectrum E is called connective if :3no E Z such that 

1iq(E) = 0 for q < no. 

Recall that a standard definition of a homotopy group of a space is given 

in terms of homotopy classes of maps by 1in(X) = [sn, XL obviously we are 

omitting writing base-points here. Therefore we may rewrite the homomor-

phisms above as 

Restating Definition 2.3.1 in this notation gives rise to the following propo-

sition: 

Proposition 2.3.3. 

1ir(E) = lim [sn+r, En] = [S, E]r. 
n->x 

For a proof of this proposition see [4] Proposition 2.8. 

Clearly we have yet to show that [E, F]r has the structure of a group for 

any spectra E, F. In fact it is possible to prove the stronger result that 

[E, F]r has the structure of an abelian group. For a proof of this fact see [26] 

Corollary 8.27. 
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When considering homotopy groups of suspension spectra it is important to 

make the distinction between the homotopy group of the space X and the 

homotopy group of its suspension spectrum as they may be quite different. 

Definition 2.3.4. Any morphism of spectra f : E ---+ F induces a homo­

morphism f* : 7in (E) ---+ 7in (F) , n E Z. If f* is an isomorphism for all n E Z 

we call f a weak homotopy equivalence. 

We state, without proof, the following propositions which give the relation­

ship between weak homotopy equivalences of spectra, homotopy equivalences 

of spectra and homotopy classes of morphisms of spectra: 

Proposition 2.3.5. A morphism of spectra is a weak homotopy equivalence 

if and only if it is a homotopy equivalence. 

Proposition 2.3.6. If f : E ---+ F is a morphism of spectra which is a 

weak homotopy equivalence, then f* : [G, E]r ---+ [G, F]r is a bijection for 

any spectrum G. 

For proofs of these propositions see [26] pages 140 and 141 respectively. 

Definition 2.3.7. Two spaces S, T are said to be stably homotopy equivalent 

if there exists a homotopy equivalence of spectra s : 'BooS ----+ "BooT. 

In the spectra we are going to study it will sometimes be convenient to 

work only with the spaces E2n to represent the spectrum E. There is no 

loss of generality in doing this providing we are given all the maps E2n+l 0 

'BE2n : 'B2 E 2n ---+ E 2n+2 as from this we may define a spectrum E' with 

E~n = E 2n , E~n+1 = 'BE2n and structure maps E;n = 1, E;n+l = E2n+1 0 'BE2n. 

Let fm : E' ---+ E be the degree 0 function of spectra which is Em for m odd 
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and equality for m even. The morphism of spectra obtained from fm is a 

homotopy equivalence of spectra. 

2.4 The smash product of spectra 

We now wish to introduce a smash product of spectra which is compatible 

with the smash product we already have for CW-complexes and, given spec­

tra E, F, G E Y, satisfies the following properties, with each equivalence 

natural in E, F, G: 

(i) E /\ F is a functor in two variables from Y to Y 

(ii) associativity, i.e. ::J a homotopy equivalence a : (E /\ F) /\ G ---+ 

E /\ (F /\ G) 

(iii) commutativity, i.e. ::J a homotopy equivalence c: E /\ F ---+ F /\ E 

(iv) the sphere spectrum S is a two sided unit, i.e. ::J homotopy equivalences 

l : S /\ E ---+ E and r : E /\ S ---+ E 

The above list is not intended to be a complete list of the desired properties 

of such a product. 

The basic strategy in constructing such a product is that we want E /\ F to 

be the spectrum you obtain from some limit of the spaces Em /\ Fn as m, n 

tend to infinity. A na"ive way to construct such a product would be to take 

(E /\F)n = Er(n) /\Fs(n) for some functions r(n) and s(n) with r(n) +s(n) = n 

and such that r(n) ---+ CXl and s(n) ---+ CXl as n ---+ 00. Unfortunately 

constructing smash products in this way requires the choice of functions r(n) 
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and s(n) to be made and it is not immediately clear what is the correct choice 

as there are many such possibilities. Making a particular choice for r(n) and 

s(n) gives what Boardman [7] referred to as a "handicrafted smash product". 

Adams ([4] Theorem 4.1) proved that these different choices of product are 

in fact related by natural homotopy equivalences. I have chosen to omit the 

details of this proof here as they are unecessary for the rest of this thesis and 

instead direct the reader to [4] Part 3 Chapter 4 and [26] Chapter 13. In these 

references complete constructions are given of the smash product although it 

requires a significant amount of work to do so. The important point to note 

for the purposes of this thesis is that we only wish the smash product to be 

defined upto homotopy, hence any such "handicrafted" product will do. 

2.5 Generalised homology theories 

Given any spectrum E E 9, we now show how to define the (reduced) 

homology and cohomology theories associated to E. 

Definition 2.5.1. Let E, F be spectra. For each n E Z we define the E­

homology and E-cohomology to be 

and 

respectively. 

We shall now list the properties that E-homology and E-cohomology are 
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required to satisfy in order to be called a generalized (co ) homology theory 

defined on spectra. These are the analogues for spectra of the Eilenberg­

Steenrod axioms for spaces. Proofs that these properties are satisfied may 

be found in [26] §8.33. 

1. E* (F) is a covariant functor of two variables from 9 to the category 

of graded abelian groups. 

2. E* (F) is also a functor between 9 and the category of graded abelian 

groups but it is covariant in E and contravariant in F. 

3. Given a cofiber sequence 

then 

and 

are exact. 

4. Given a cofiber sequence 

then 
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and 

are exact. 

5. We have natural isomorphisms 

and 

Given a spectrum E and a CW-complex X we may also define the E­

homology and E-cohomology, En(X) and En(x) respectively, for n E Z 

by the E-homology and E-cohomology of ~oo X, the suspension spectrum of 

X. Exactly the same properties as above are satisfied. 

Example: An Eilenberg-Mac Lane spectrum for the group 7r is a spectrum 

H 7r with nth space the Eilenberg-Mac Lane space of type (7r, n) and structure 

maps as described in [26] §1O.2. In this case, (H7r)* applied to the suspension 

spectrum of a complex X coincides with the ordinary singular homology of 

X with coefficients in 7r (see [4] Part 3, Chapter 6). 

The above example motivates the following definition: 

Definition 2.5.2. The (co)homology with coefficients in 7r of a spectrum 

E E Y is defined to be the H7r-(co)homology of E. 
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Example: Consider the spectra KU and KO defined in §2.2.1. The (co)homology 

theories associated to these spectra are called the complex and real K­

(co )homology respectively. If X is a finite-dimensional CW -complex, [X, Z x 

BU] and [X, Z x BO] agree with the classical definitions of complex and real 

topological K-theory (see [4] Part 3, Chapter 6). 

2.6 Ring and module spectra 

With a smash product defined on Y we can define spectra with further 

structure in the following way: 

Definition 2.6.1. A ring spectrum is a spectrum R with product, i.e. a 

morphism of spectra, f-L : R 1\ R ----7 R and identity rJ : S ---t R such that 

the diagrams 

RI\RI\R 
f-L1\1 )RI\R SI\R 

rJl\l )RI\R 

1 A Mj jM 
:::::::t 

1 
tf-L 

R )R 
:::::::t 11\'17 tf-L 

RI\R f-L )R RI\S >RI\R 

commute. The product f-L is commutative if 

RI\R 

also commutes. 
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Given the notion of a ring spectrum we have the following obvious notion of 

a module spectrum: 

Definition 2.6.2. Let R be a ring spectrum. Then a spectrum M is called 

a left R-module spectrum if there is a morphism v : R /\ M --+ M of degree 

0, which we will sometimes refer to as the action morphism, such that the 

following diagrams commute upto homotopy 

R /\ R /\ M _-'v=-.:....:/\-=l=----+) R /\ M 
'1]/\1 

S /\ M -----+) R /\ M 

R /\ M __ ---"v __ --+) M 

~l lv 
M ___ -=1:c..-.-__ -+> M 

1 A vi lv 

It is in fact true that all the spectra we have already mentioned, and will 

mention, in this thesis are ring spectra. Explicit constructions of the products 

are given in [26] Chapter 13. 

Example: Following the account of [4] there exists a spectrum bu, the uni-

tary connective K-theory spectrum, which comes provided with a morphism 

bu ........-,. KU and which is characterized by the following properties: 

1. nAbu) = 0 for r < o. 

2. The induced map 

is an isomorphism for r 2:: o. 

The structure maps of bu are constructed using obstruction theory so as to 
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make the following diagram commute upto homotopy. 

'L,2bu2m C2m 
) bU2m+2 

hmj jhm+2 

'L,2KU2m 
C2m ) KU2m+2 

This diagram defines a canonical morphism of spectra bu ----+ KU 

In a similar way we can define bo, the orthogonal connective K-theory spec-

trum. 

Proposition 2.6.3. bu and bo are ring spectra. 

Proof. The product morphisms giving bu and bo their ring structure are 

pulled back from the ring spectrum structure of KU and KO respectively. 

The products in KU and KO, as shown in [26] Chapter 13, are defined at 

the level of vector bundles. D 

Let fJ, denote the product fJ, : bu A bu ~ bu then bu A bo is a left bu-module 

spectrum with left bu action defined by 

fJ, AI: bu A (bu A bo) ~ bu A bo. 

Definition 2.6.4. Let E be a ring spectrum and F, G be E-module spectra. 

A left-E -module spectrum morphism is a morphism of spectra f : F ~ G 
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of degree 0 such that the following diagram commutes: 

E !\ F ___ ,,-v __ -+) F 

1 All 11 
E !\ G __ --=v __ -+) G 

Definition 2.6.5. A left-E-module spectrum endomorphism of F is a left-

E-module morphism g : F --'T F. 

Proposition 2.6.6. The set Endzejt-E-mod(F) of endomorphisms of the left­

E-module spectrum F has the structure of a ring. 

Proof. The fact the set of endomorphisms of a spectrum F has the struc­

ture of a ring comes from the fact that :7 is an additive category, which is 

proven in [4] Part 3 Chapter 3. Composition of morphisms gives the multi­

plicative structure and Adams gives addition in [4] Part 3 Chapter 3. It is 

straightforward to show that EndZejt-E-mod(F) is a sub ring. o 

Definition 2.6.7. A left-E-module spectrum endomorphism g : F --'T F 

is a left-E-module spectrum automorphism if there exists a left-E-module 

spectrum endomorphism h : F --'T F such that hg C::' IF and gh C::' IF. 

Remark 2.6.8. By definition, a left E-module automorphism is the same as 

a homotopy equivalence of left E-module spectra. 

Proposition 2.6.9. The set of AutZejt-E-mod(F) of automorphims of the 

left-E-module spectrum F is the group of units of EndZejt-E-mod(F). 
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2.7 Bousfield localisation 

Recall from §2.5 that H7L/2 represents the Eilenberg-Maclane spectrum re­

lated to the group 7L/2. A morphism f : X ---+ X/ in ,9 is a (H7L/2).­

equivalence if the induced homomorphism f. : (H7L/2).(X) ~ (H7L/2).(X/) 

is an isomorphism. 

In 1979, Bousfield ([9]) introduced a functor L m :'j2 from,9 to a new category, 

which we shall denote 9 2 , in which we do not attempt to distinguish between 

two spectra if there is an (H7L/2).-equivalence between them. The objects 

of 9 2 are the same as those of 9 and LH'£/2 is the identity on objects. If 

e : X ---+ Y is an (H7L/2).-equivalence in 9, then LHZj2 (e) is an actual 

equivalence in 9 2 , i.e. it has an inverse. L HZ / 2 is universal with respect 

to this property. To be more precise, we give the following definition and 

theorem. 

Definition 2.7.1. A spectrum Y E 9 is said to be (H7L/2).-local if each 

(H7L/2).-equivalence f : X ---+ X/ induces a bijection 1* : [X', Y]. ---+ 

[X, Yk This is equivalent to saying that Y is (H7L/2).-local if [X, Y]. = 0 

whenever (H7L/2).(X) = o. 

Theorem 2.7.2. (Bousfield Localisation Theorem) There exists a functor 

LH7l,/2 : 9 ---+ 9 2 , called the (H7L/2).-localisation, such that LHZ / 2 (X) is 

(H7L/2).-local. LHZj2 (X) is functorial in X. 

Proof. See [9] o 

Localisation with respect to H7L/2 may also be referred to as localisation 

with respect to mod 2 singular homology as this is the homology theory 
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associated to H71,j2. 

In particular, we will be interested in the case of connective spectra. In this 

case Bousfield proved that localisation of X E :/ with respect to H71,j2 is 

equivalent to taking the 2-adic completion of X, which we shall not define 

here. But for this reason throughout this thesis we shall use the terms "2-adic 

completion" and "localisation with respect to H7/.,j2" synonymously, and we 

shall refer to spectra which have undergone this process to be 2-local. 

As described in [9], :/2 has a smash product which enjoys all the same prop­

erties as the smash product in:/. (H71,j2)*-localisation does not necessarily 

preserve smash products, but there is a canonical map X WZj2 /\ YWZj2 ---7 

(X /\ Y)m.:j2 with the expected properties. 

Proposition 2.7.3. If R is a commutative ring spectrum, then so is R HZj2. 

Proposition 2.7.4. If R is a 2-local ring spectrum, then any module spec­

trum over R is 2-local. 

Both propositions are discussed in [9]. 

If the homotopy of a spectrum E E :/ is finitely generated in every dimension 

then the n-th homotopy group of the (H71,j2)*-localisation of E is isomorphic 

to 7in (E) 0 71,2, the n-th homotopy group of E tensored with the 2-adic 

integers. This is precisely the case for the spectra bu and bo (See [21] Chapter 

3). 
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2.8 Cohomology Operations 

2.8.1 1 /\ 'ljJ3 : bu /\ bo ---+ bu /\ bo 

Definition 2.8.1. Given a spectrum E E Y and the corresponding coho­

mology theory E* a cohomology operation of type (p, q) is a natural transfor­

mation e : EP( -) ----+ Eq( -) between cofunctors regarded as taking values 

in sets. 

Example: Let X be an element of!Y. Recall the spectrum KU and the 

corresponding cohomology theory KU*(X), KU-cohomology. Adams showed 

([5]) there exist cohomology operations (originally defined at the level of vec­

tor bundles for topological K-theory) of the form 'ljJk : KUO(X) ----+ KUO(X) 

for k E Z with the following properties: 

l. 'ljJk is a ring homomorphism KUO(X) ----+ KUO(X) 

3. If ~ is a line bundle then 'ljJk(O = e 
4. If p is a prime then 'ljJP(x) == xP mod p 

- ° 5. On the reduced cohomology theory KU (S2n) = Z, 1jJk acts as multi-

plication by k n 

These operations are defined on KUO(X) = [X, Z x BU] by composition with 

a map 'ljJk : Z x BU ----+ Z x BU. 

We wish to construct a morphism of spectra 'ljJ3 : KU ----+ KU which extends 

the map 'ljJ3 : Z x BU ----+ Z x BU. For reasons related to the fifth property 
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above, it is only possible to do this if we first 2-adically complete the spectrum 

KU, as discussed in §2.7, and work with the spectrum (KU)HZ/2. The 

morphism'ljJ3 : (KU)Hll/2 --t (KU)HZ/2 is induced by the function of spectra 

which is 3-m 'ljJ3 : Z x BU --t Z x BU on the 2m-th space of the spectrum for 

m 2: O. The maps on the spaces of the spectrum (KU)HZ/2 which form the 

morphism 'ljJ3 induce maps on the spaces of the 2-adically complete spectrum 

(bU)HZ/2' Hence, we obtain a morphism of 2-adically complete spectra 'ljJ3 : 

(bU)HZ/2 --t (bU)HZ/2 so that the following diagram commutes: 

'ljJ3 
(bU)HZ/2 --'------+) (bU)HZ/2 

1 ~3 1 
(KU)HZ/2 ---'------+) (KU)HZ/2 

In the case of the real connective K-theory spectrum bo we can obtain a 

morphism 'ljJ3 : (bO)HZ/2 --t (bO)HZ/2 of 2-adically complete spectra in a 

similar way. 

The homorphisms induced by 'ljJ3 : (bo) HZ/2 --t (bo) HZ/2 and 1 A 'ljJ3 : 

(bU)HZ/2 A (bO)HZ/2 --t (bU)HZ/2 A (bO)HZ/2 on mod 2 singular homology 

are the identity homomorphisms. 

The significance of the left (bu)Hz/2-module automorphism 1A'ljJ3 : (bU)HZ/2A 

(bO)HZ/2 --t (bU)HZ/2 A (bO)HZ/2 is shown by results given in [1] §6.3. 
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2.8.2 The mod 2 Steenrod Algebra 

Definition 2.8.2. Given a spectrum E E Y and the corresponding coho­

mology theory E*, a stable cohomology operation of degree q is a sequence 

of cohomology operations en : En( -) ---+ En+q( -), which commutes with 

the suspension isomorphisms given in §2.5 which we denote here by 0', i.e. 

en 0 0' = 0' 0 en+ 1 . 

Let A(E)q denote the set of all stable cohomology operations of degree q for 

the cohomology theory E*. A(E)q can be made into an abelian group by 

taking (e + ¢)(x) = e(x) + ¢(x) for operations e and ¢, all x E E*(X). Via 

composition of operations we can construct a pairing A(E)q ® A(EY ---+ 

A(E)q+r. This makes A(E)* = EBq A(E)q a graded ring. 

Proposition 2.8.3. For any X, E*(X) is a graded module over A(E)*. 

Example: The mod 2 Steenrod Algrebra is defined to be the algebra of op­

erations for singular homology with Z/2 coefficients. We denote this algebra 

by d. d is an incredibly complicated algebra but, although it is highly 

non-trivial to prove, it can be expressed in terms of generators and relations 

in the following way: the generators are the Steenrod Squares, stable coho­

mology operations of the form Sqi : Hn(x; Z/2) ---+ Hn+i(X; Z/2) and the 

relations are the Adem relations, which we omit here as their explicit detail is 

unnecessary for this thesis. Following [4] Part 3 Chapter 16 let SqO,l denote 

the operation Sq1Sq2 + Sq2Sql. 

Proposition 2.8.4. The operations Sql and SqO,l generate a subalgebra of 

d, denoted B. 
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Proof. See [4] Part 3 Chapter 16. o 

For the purposes of this thesis, B can be thought of as the following algebra 

over Z/2: 

Z/2[Sql, Sq°,l] / / 1 / 01 1 0.1 
B= ((Sq1)2,(SqO,1)2) =Z 2EBZ 2·Sq EBZ 2·Sq' EB7L/2·Sq ·Sq· 

2.9 A 2-local Adams spectral sequence 

In this section we wish to merely introduce a particular case of the Adams 

spectral sequence. The details of this spectral sequence are well known, and 

the author recommends [18],[21] and [15] for full expositions. 

The Adams spectral sequence was originally invented as a method of com-

puting the stable homotopy groups of spheres, but in its full generality the 

Adams spectral sequence computes [X, Y] for spectra X and Y. We specialise 

to a version of the spectral sequence which computes 1f"*(Y) for a spectrum Y. 

This version of the spectral sequence is the classical Adams spectral sequence 

first introduced in [3]. 

Let X be a 2-local connective spectrum with finitely generated homotopy 

in every dimension. Note that, bu and bo, and bu 1\ X for any other such 

spectrum X, satisfy this property (see [4] Part 3 Chapter 16). Recall from 

§2.8.2 that H*(X; Z/2) is a module over the mod 2 Steenrod algebra. Adams 

([3]) proved the following theorem: 



2.9. A 2-local Adams spectral sequence 38 

Theorem 2.9.1. There is a spectral sequence with E2 term given by 

E~,t = Ext;;(H*(X; 71,/2); 71,/2) 

and converging to 71* (X) ® 71,2 where 71,2 denotes the 2-adic integers. 

Remark 2.9.2. ExtS,t is defined in the following way. A projective resolution 

of X is taken and Ext;)(H*(X; 71,/2); 71,/2) = HS(H om~(P*, 71,/2)fors'2 0, 

t E 71,. 

Adams ([4] Proposition 16.1) also showed that the E2 term of this spec­

tral sequence is isomorphic to Ext~t(H*(X; 71,/2); 71,/2). Therefore the main 

spectral sequence used in this thesis takes the form 

Proposition 2.9.3. Let f : E --? F be a morphism of spectra which induces 

an isomorphism in mod 2 homology. Then f induces an isomorphism (from 

the E2 page onwards) of Adams spectral sequences. 

Proof. See [21] Corollary 2.1.13 o 



Chapter 3 

'ljJ3 as an upper triangular 

matrix 

Throughout the remainder of this thesis we shall only consider the 2-adically 

complete spectra (bU)HZ/2 and (bO)HZ/2' and their smash product in 5"'2· 

Therefore, for clarity we shall omit the completion notation and simply de­

note them by bu and boo 

3.1 A stable splitting of bu 1\ bo 

We shall begin by recalling the 2-local homotopy decomposition of bu /\ boo 

This is one of a number of similar results discovered by Mahowald in the 

1970's ([17]). We are referring to a proof of the result given in 2002 by 

Snaith in [24]. 

Consider the second loop space of the 3-sphere, [22S3. In the 1970's the work 

of Brown and Peterson ([10]) and separately Snaith ([22]) showed that there 

39 
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exists a filtration of 0 2 S3 of the form 

Sl = Fl C F2 C F3 C ... C 0 2 S3 = U Fk 
k:;:'l 

40 

where each Fi is a finite complex. Snaith also showed there is a stable 

homotopy equivalence, an example of the so-called Snaith splitting, of the 

form 

There is a 2-local homotopy equivalence of left bu-module spectra (see [24] 

Theorem 2.3(ii)) of the form 

The important fact about this homotopy equivalence is that its induced ho-

momorphism on mod 2 homology is a specific isomorphism which is described 

in [24] §2.2. 

If we wish to study 2-localleft bu-module morphisms of bu 1\ bo, the splitting 

L leads us to study 2-localleft bu-module morphisms of the form 

for all k, l. A 2-local left bu-module morphism of this form is determined 

by its restriction to SO 1\ (F4k/ F4k-d. To see this, consider the following 
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homotopy commutative diagram: 

bu /\ (SO /\ (F4k/ F4k-d) 

1111.qlll 

41 

1/\ cPk,1 
bu /\ bu /\ (F4k/ F4k- 1 ) --------'------+) bu /\ bu /\ (F4z/ F41- 1 ) 

11' II 1 11' II 1 

bu /\ (F4k/ F4k- 1 ) ______ cP_k..c..,I ____ ---7-) bu /\ (F4z/ F41- 1 ) 

where the composition of the left hand vertical morphisms is homotopic to the 

identity morphism, J1 is the product J1 : bu /\ bu ----+ bu and '17 is the unit mor­

phism'17 : So ----+ bu. This diagram implies cPk,1 c:::: (J1/\ 1) (1 /\ (cPk,liso/\F4k/ F4k-J 

and hence cPk,1 is completely determined by its restriction to SO /\ F4k / F4k- 1 . 

Following the account of [26] §14.19, let X be any finite spectrum, then there 

exists a spectrum DX called the S-dual of X, characterized by the property 

that for any spectra U, V there exist isomorphisms of groups 

D/l : [U, V /\ DX]* --=-. [U /\ X, V]* 

and /lD: [U, X /\ V]* --=-. [DX /\ U,V]* 

Hence, letting D(F4k/ F4k- 1 ) denote the S-dual of F4k / F4k- 1 , this means that 

the restriction of a 2-local morphism of the form cPk,1 : bu /\ (F4k/ F4k- 1 ) ----+ 

bu /\ (F4z/ F41- 1 ) to So /\ F4k / F4k- 1 is equivalent to a 2-local morphism cP~,1 : 

So ----+ D(F4k/ F4k- 1 ) /\ (F4z/ F41- 1 ) /\ bu. A morphism of this form is a 
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homotopy element 

This homotopy group is calculated using the (collapsed) Adams spectral 

sequence 

(3.1) 
Ext~t(H*(D(F4k/ F4k- 1 ; Z!2) ® H*(F4l/ F4l - 1 ; Z/2); Z/2) 

===? 1ft-s(D(F4k/ F4k- 1 ) 1\ (F4d F4l - 1 ) 1\ bu) ® Z2 

Proposition 3.1.1. The spectral sequence 3.1 has all differentials zero. 

Proof. A clear, concise proof that this spectral sequence collapses is given 

by Adams in [4] (Lemma 17.12). We follow his proof in the next section to 

show that a different spectral sequence, (3.2), collapses. o 

3.2 The structure of B-modules 

The following section uses techniques devised by Adams and Margolis ([6]) 

to study the structure of modules over exterior algebras. The notation used 

is from [4] Part 3 Chapter 16. 

Definition 3.2.1. Two left B-modules M, N are said to be stably isomorphic 

if there exist free B-modules F, G such that M EB F ~ N EB C. 

Proposition 3.2.2. In this sense, stable isomorphism is an equivalence re­

lation. Furthermore, for s > 0 the groups Ext~t(M, Z/2) depend only on the 

stable isomorphism class of M. 
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Proof. See [4] Part 3 Chapter 16 o 

Therefore, we may simplify the calculation of the E2 term in the Adams 

spectral sequence (3.1) 

E~,t Ext~t(H*(D(F4k/ F4k- 1 ; Z/2) @ H*(F4z/ F41- 1 ; Z/2); Z/2) 

===} 1It-s(D(F4k / F4k- 1) 1\ (F41/ F41 - 1) 1\ bu) @ Z2 

by changing the B-module H*(D(F4k/ F4k- 1)) ® H*(F4z/ F41 - 1 ) for some sim­

pler stably isomorphic module. Since B is a Hopf algebra we can define the 

tensor product of 1\;1 and N by giving M ® N the diagonal action. The sum 

and product pass to stable isomorphism classes and the product has a unit 

given by the module 1 with Z/2 in degree O. A stable class P is invertible if 

there is a stable class Q such that P @ Q ~ 1. 

Recall from [4] p.332 that ~a is the B-module given by Z/2 in degree a and 

~-a = H om(~a, Z/2). ~a and ~-a are inverse modules, i.e. I:;a~-a ~ 1. I is 

the augmentation ideal, I = ker(E : B ---+ Z/2) with inverse module given 

by I-b = Hom(Ib,Z/2), where Ib is the b-fold tensor product of I, for b > O. 

In [4] (p.334 Theorem 16.3) Adams shows how to calculate the stable class 

of a B-module M in the form ~a Ib for unique a, b E Z. He then goes on to 

show (p.341) that the B-module given by 

is stably equivalent to ~2r-l+1 I2r
-

1
-l when 0 < 4k = 2T. Therefore 

H*(D(F4k/ F4k-d: Z/2) is stably equivalent to ~_(2r-l+l) J1-2
r
-

1 when 0 < 

4k = 2T. If k is not a power of two we may write 4k = 2T1 + 2T2 + ... + 2Tt 
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with 2 :::; rl < r2 < ... < rt. In this case 

which is stably equivalent to ~2k+a(k) 12k - a (k), where a( k) equals the num­

ber of l's in the dyadic expansion of k, as in Proposition A.0.4. Similarly, 

H*(D(F4k/ F 4k- 1); 71,/2) is stably equivalent to ~-2k-a(k) l a (k)-2k. 

Now, following the account of [24] p.1268, Ext~\LJa M, 71,/2) r"V Ext~t-a(M, 71,/2). 

The short exact sequence 

o ---+ 1 Q9 M ---+ B @ M ---+ A1 ---+ 0 

induces a long exact sequence of the form 

so that, for s > 0, there is an isomorphism 

Finally, for s > 0 we obtain an isomorphism of the form 

~ Ext~+21-2k-a(I)+a(k),t-21+2k-a(l)+a(k) (71,/2, 71,/2). 
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3.3 Spectral sequence structure 

A standard calculation shows there is also an algebra isomorphism of the form 

Ext~*(Z/2, Z/2) ~ Z/2[a, b] where a E Ext~\ b E Ext~3. Clearly in the 

spectral sequence (3.1) the contributions to the groups 1fo(D(F4k/F4k-l) /\ 

(F4dF41-1) /\ bu) 129 Z2 come from the groups {E~,Sls 2: O}. These groups 

correspond to Ext~T (Z/2, Z/2) with S = s + 2l - 2k - a(l) + a(k) and 

T = s - 2l + 2k - a(l) + a(k), which implies that T - S = 4(k -l). 

Clearly for k < l, E~'s = Ext~T (Z/2, Z/2) = O. Therefore 1fo(D(F4k/ F4k- 1) /\ 

(F4d F41 - 1) /\ bu) 129 Z2 = 0 for k < l. 

For k 2: l, as shown in [24] p.1268, ExtS,T(Z/2, Z/2) is non-zero only for 

s 2: 0 if k = l or for s 2: 2(k -l) + 1 if k > l. If this group is non-zero then it 

is cyclic of order two generated by a(3S-T)/2b(T-S)/2 = as+41-4k-Q(l)+Q(k)b2(k-I). 

In [4] Part 3 Lemma 17.11(i) Adams showed that multiplication by a in the 

spectral sequence, which maps the generator of E~,t to E~+l,t+l corresponds 

to left multiplication by 2 on 1ft-s(D(F4k/ F4k- 1) /\ (F4d F41 - 1) /\ bu) 129 Z2 and 

multiplication by b, which maps the generator of E~,t to E~+l,t+3, corresponds 

to left multiplication by the generator u of 1f*(bu) @ Z2 r-..J Z2[U]. 

;.,row again consider, for k > l, a non-trivial homotopy class of left bu-module 

morphisms 

In the spectral sequence these morphisms are represented by elements of 

E~'s = E;;,s for s 2: O. In order that we can use the Adams-Margolis structure 

theory we shall restrict to such morphisms which also induce the zero ho-

momorphism on mod 2 singular homology, as any morphism detected by the 
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induced map on mod 2 homology is represented in E~*. Any such morphism 

¢%,l is represented by the generator of a group E~4(k-l)+o:(l)-o:(k),E+4(k-l)+o:(l)-o:(k) 

for some c 2: O. The generator of this group is a E times the generator of 

E~k-l)+o:(I)-o:(k),4(k-l)+o:(l)-o:(k). Since multiplication by a in the spectral se-

quence corresponds to multiplication by 2 on 1ro(D(F4k/ F 4k - 1 ) /\ (F41/ F 41- 1 ) /\ 

bu) 0 Z2 we find that 

A," 2E 
'Pk,l = "! Lk,l 

for some 2-adic unit"! and c 2: 0, where 

. db h f E' 4(k-l)+o:(I)-o:(k).4(k-l)+o:(I)-a(k) 
IS represente y t e generator 0 00 . . 

Similarly if k = l 
A," 2E 
'Pk,l = "! Lk,k 

where Lk,k denotes the identity map of bu 1\ (F4k/ F 4k-r). 

3.4 An isomorphism of groups 

Recall from §2.6 that Autlejt-bu-mod(bu 1\ bo) the set of left bu-module auto­

morphisms of bul\bo, which are precisely the left bu-module homotopy equiv­

alences of bu 1\ bo, has the structure of a group. Let Aut?eft-bu-mod(bu /\ bo) 

denote the set of left bu-module automorphisms of bu 1\ bo which induce the 

identity map on mod 2 singular homology. 

Proposition 3.4.1. Aut?ejt_bu_mod(bul\bo) is a subgroup of AUtlejt-bu-mod(bu/\ 

bo). 
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Proof. See [24]. o 

Let Uoo 71,2 denote the group of infinite, invertible upper triangular matrices 

with entries in the 2-adic integers. That is, X = (Xi,j) E Uoo 71,2 if Xi,j E 71,2 

for each pair of integers 0 ::; i, j and Xi,j = 0 if j > i and Xi,i is a 2-adic 

unit. This upper triangular group is not equal to the direct limit limn Un 71,2 

of the finite upper triangular groups. The main result of [24] is the existence 

of an isomorphism of groups 

By the Mahowald decomposition of bu A bo the existence of A is equivalent 

to an isomorphism of the form 

If we choose Lk,l to satisfy Lk,l = Ll+l,ILl+2,1+1 ... Lk,k-l for all k - l 2: 2 then, 

for X E Uoo 71,2 , we define ([24] §3.2) 

A(X-1
) = L X1,kLk,1 : bu A (Vk?oF4k/ F 4k- 1) ---+ bu A (Vk?oF4k/ F 4k- 1). 

l<5.k 

The ambiguity in the definition of the Lk,I'S implies that A is defined up to 

inner automorphism in Uoo 71, 2 , i.e. conjugation by a matrix. 

The obvious question to ask is, given an element of Aut?eft-bu-mod(bu A bo) 

what is the corresponding conjugacy class of matrices in Uoo 712 . As discussed 

in §2.8, by far the most important such element is 1 A 'ljJ3. The main result 

of this thesis is the following theorem: 
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Theorem 3.4.2. Under the isomorphism A the automorphism 1 /\?jJ3 E 

Aut?eft-bu-moAbu /\ bo) corresponds to a matrix in the conjugacy class of 

1 1 0 0 0 

o 9 1 0 0 

o 0 92 1 0 

o 0 0 93 1 

3.5 The 2-adic homotopy of bu 1\ bo 

The key observation in deducing the identity of the matrix corresponding to 

1/\ ?jJ3 under the isomorphism A is the following proposition: 

Proposition 3.5.1. An automorphism in Aut?eft-bu-mod(bu /\ bo) is deter­

mined by its effiect on 1i".(bu!\bO)02',2. 
Torston 

Proof. See [4] pg.355 et seq. o 

We begin by calculating 1i"*(~u!\bO)02',2 via the :vlahowald decomposition of bu /\ 
orston 

bo of §3.l. 

Let Gs,t denote the 2-adic homotopy group modulo torsion 

G
s 

t = nAbu /\ F4t! F4t- 1 ) ® Z2 
, Torsion 
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so 

This group is calculated by means of the Adams spectral sequence 

(3.2) 
Bs,t 

2 Ext~t(H*(F4k/ F4k- 1 ; Z/2); Z/2) 

~ 1it-s(bu 1\ (F4k/ F4k- 1 )) ® Z2 

49 

From the discussion of §3.2, H*(F4k/ F4k- 1 ; Z/2) IS stably isomorphic to 

I;2k+a(k) 12k-a(k) therefore , 

B~,t Ext~t(I;2k+(X(k) 12k-a(k); Z/2) 

~ Ext~T (Z/2; Z/2) 

where S = s + 2k - cx(k), T = t - 2k - cx(k). 

Since Ext~* (Z/2; Z/2) ~ Z/2[a, b] with a E Ext11 and b E Ext13 we must 

. "st have T - S = t - s - 4k ;?: 0 otherwIse E 2' = O. Hence, the only non-zero 

.. st· . .. 
E 2' 's are III the reglOn t - s ;?: 4k, s ;?: O. Therefore we find that the E2 page 

of the spectral sequence looks as follows: 
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uNm • • C'. Bk-2a(k)+6 

N 
C'. 

+ 
:Q" 

]' 
'".0 Bk-2a(k)+4 • • • C'. 

C'. 

~ 
'0 
.,:, 
N.o 

Bk-2a(k)+2 • • • • • C'. 

:!' 
'0 .,:, 
N", 

4k+2 • • • C'. 

C'. 

l 
'0 
.,:, 
N", 

4k • • • C'. 

CIl 
..!. 

0 0 

L!) N 0 

0( 

CIl 
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Summarising, above the s = 0 line we have vertical towers of groups 7l.,/2 

connected vertically by multiplication by a. The foot of each of these towers 

is given in the following table: 

Generator s t t-s 

a2k-a(k)+1 1 4k + 1 4k 

a2k-a(k)b 1 4k+3 4k+ 2 

a2k-a(k)-lb2 1 4k+5 4k+ 4 

ab2k- a(k) 1 8k 2a(k) + 1 8k - 2a(k) 

b2k- a(k)+1 1 8k - 2a(k) + 3 8k - 2a(k) + 2 

b2k- a(k)+2 2 8k - 2a(k) + 6 8k - 2a(k) + 4 

b2k- a(k)+s S 8k - 2a(k) + 3s 8k - 2a(k) + 2s 

Recall that the differentials in the Adams spectral sequence are of the form 

d . E" s,t E" s+r,t+r-I 
r' 2 ---+ 2 . 

Proposition 3.5.2. The spectral sequence 3.2 has all differentials zero 

Proof. The following proof is a specific case of the proof of [4] Lemma 17.12. 
.. t .. 

Since E~' = 0 for s > 0 and t - s odd, the same must hold for E;,t, r > 2. 

Hence there can be no non-zero differentials with domain E;,t for s > O. 

Therefore it is sufficient to check dr(e) = 0, where e E E;,t and s = 0, t - s 

odd. We proceed by induction. First consider r = 2, any non-zero differential 

.. t .. +2 HI 
would be of the form d2 : E~' ---+ E~' for s = 0, t odd, i.e. in the spectral 

sequence it would map the generator of a group on the s = 0 line with t-s odd 
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to a copy of 71.,/2 two places up and one place to the left. Since multiplication 

by a in the spectral sequence is a monomorphism from jj;~,t to E~+1,Hl we 

must have that ad2(e) = d2 (ae) = 0 ==? d2 (e) = o. Now suppose that 

dm = 0 for m < r so that E:,t S=! E~,t. Again, any non-zero differential in 

E;,* would have to be of the form dr : E:,t ---7 E;+r,r+r-l for s = 0, todd, 

i.e in the spectral sequence it would map the generator of a group on the 

s = 0 line with t - s odd to a copy of 71.,/2 r places up and one place left. As 

before, since multiplication by a in the spectral sequence is a monomorphism 

a : E;,t ---7 E;+l,Hl we must have that adr(e) = dr(ae) = 0 ==? dr(e) = O. 

This completes the induction. o 

Proposition 3.5.3. 

71.,2 if seven, s 2: 4t, 

o otherwise 

is a finite, elementary abelian 2-group. 

Proof. Adams ([4] Lemma 17.1 (i)) showed that H*(buI\F4k/F4k-d is a direct 

sum of a finite number of groups 71." 71.,/2 and Zip for p > 2. He then went 

on to show ([4] Proposition 17.2 (i)) that the Hurewicz homomorphism 

is a monomorphism. Hence, it follows that '7r* (bu 1\ F4k / F4k - 1 ) is a direct sum 

of a finite number of groups 71." 71.,/2 and Zip for p > 2. Therefore G*,k is a 
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direct sum of a finite number of groups 2:2 and 2:/2. Since 

Gs,t must be a direct sum of a finite number of groups 2:2 and 2:/2. Therefore, 

when we work with homotopy modulo torsion we find Gs,t is at most a direct 

sum of a finite number of copies of 2:2. 

Recall from the construction of the Adams spectral sequence 3.2 there exists 

a filtration 

... C ps+1 C ps C ps-I C ... C pI C pO = Gt-s,k 

such that 

Es,t ~ psG~_s.k 
x ps IG t-s,k 

By passing from the Ex page of the spectral sequence to the filtration quo­

tients, multiplying the generator of E~ by a corresponds to multiplication 

PC by 2 on s 1 ~-s,k . For 5 > 0 we only have non-zero entries in the spectral 
F - Gt-s,k 

sequence for t - 5 ::::: 4k and t - 5 even. In this case we have an infinite tower of 

2:/2' 5 connected by multiplication by a, which corresponds to multiplication 

by 2 on homotopy elements. The foot of each tower is on or above 5 = 1. 

Any homotopy element represented at the foot of such a tower is of infinite 

order since, for all j > 0, 2] times this element is non-zero. This element 

therefore either represents the generator of a copy of 2:2, as a module over 2:2, 

or if the foot of the tower is on 5 = 1 it may represent 2 times the generator 

of a copy of 2:2 which is represented on 5 = O. Gt-s,k can in fact contain at 
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most one copy of Z2 as a direct summand. This is due to the fact that at 

no point in the tower of Z/2's do we have a direct sum of more than one 

copy of Z/2. Similarly, any 2-torsion in Gt - s .k must be represented on the 

s = 0 line. Hence, modulo torsion, Gs,t ~ Z2 for t - s 2: 4k and t - seven. 

To see that Gs,t = 0 otherwise the same arguments show that Gs,t can be at 

most a direct sum of a finite number of copies of Z/2 being represented on 

s = o. 

3.6 A basis for 7i'*(bul\bo)&;Z2 
Torsion 

o 

In [12] a Z2-basis is given for G*,* consisting of elements lying in the subring 

Zdu/2, v2 
/ 4] of Q2 [u/2, v2 

/ 4]. One starts with the elements 

k = 1,2, ... 

and "rationalises" them, after the manner of ([4] p.358), to obtain elements of 

Z2 [u/2, v2 
/ 4!. In order to describe this basis we shall require a few well-known 

preparatory results about 2-adic valuations. These results are Proposition 

A.O.4 and Lemmas A.O.1 to A.O.3 in Appendix A. 

N 'd h 1 - rrk (v2
_g

i
-

1u2
) f . 1 k - 1 2 'ow conSl er tee ements C4k - i=l gk_gi 1 or a parhcu ar - , , .... 

For completeness write Co = 1 so that C4k E Qdu/2, v2 / 4]. Since the degree 

of the numerator of C4k is 2k, Proposition A.O.4 implies that 

2 gi-l 2 

f = 24k- a (k)-2k c = 22k- a (k)rrk (v - u ) 
4k 4k t=l gk _ gi-l 
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so on. This process is the "rationalisation yoga" referred to in §3.5. One 

forms UJC4k and then multiplies by the smallest positive power of 2 to obtain 

By Proposition A.O.4, starting with f41 = 241-a(l)-2Ic41 this process produces 

the following set of elements of Z2 [u/2, v2 
/ 4] 

As explained in ([4] p.352 et seq), the Hurewicz homorphism defines an in­

jection of graded groups of the form 

which, by the main theorem of [12], induces an isomorphism between '7C*(~:~:i~n0Z2 

and the free graded Z2-module whose basis consists of the elements of 

Z2[u/2, v2 / 4] listed above for l = 0, 1,2,3, .... 

From this list we shall be particularly interested in the elements whose degree 

is a multiple of 4. Therefore denote by 94m.41 E Z2 [u/2, v 2 / 4] for l :::; m the 

element produced from f41 in degree 4m. Hence, for m 2:: l, 94m,41 is given by 



the formula 

94m,41 = 

U 2m - 41+c>(l) [U
21

-
a

(l) f4l] if 4l - a(l) < 2m 
2~ a(l) - , 

[ 
U2(m-l) f4l] 

22(m I) if 4l - a(l) > 2m. 

Lemma 3.6.1. Let Pk denote the projection 

56 

Proof. Since Gm,k is torsion free it suffices to show that Pk (94k,4i) vanishes 

in G*,k ® Q2. When i < k, by definition 

2k-2i 1r 4i (bu 1\ bo) ® Z2 rrl\ 1r4k (bu 1\ bo) ® 22 rrl\ 

94k,4i E u T' ® ~2 CT' ® ~2' orslOn orSlOn 

However Pk projects onto 8
8 

1rs(bUAik/F4k-l)0Z2 and commutes with mul-
orSlon 

tiplication by u so the result follows from the fact that the homotopy of 

bu 1\ F4k / F 4k- 1 is trivial in degrees less than 4k (see [24] § 3) . o 

3.7 

Recall from §3.5 that G 4k ,k ~ Z2 for k = 0,1,2,3, ... so we may choose a 

generator Z4k for this group as a module over the 2-adic integers (with the 

convention that Zo = fo = 1). Let Z4k be any choice of an element in the 

2-adic homotopy group G4k ,k ~ G 4k ,k EB W4k,k whose first coordinate is Z4k· 
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Lemma 3.7.1. Let B denote the exterior subalgebra of the 7/.,/2 Steenrod 

algebra generated by Sql and Sq°,l. In the collapsed Adams spectral sequence 

(see !4J or !24)) 

.. ° 4k .. 1.4k+l 
the homotopy class Z4k is represented either in E 2' or E 2' . 

The following behaviour of the filtration coming from the spectral sequence 

is well-known, being explained in [4]. The group G4k ,k has a filtration 

i2 1 ° -.. , c Fe . .. F c F c F = G 4k k - , 

with Fi / Fi+l ~ E;,4k+i and 2Fi ~ Fi+I. Also 2· W4k ,k = 0, every non-trivial 

. . "04k element of W4k,k bemg represented m E 2' . Furthermore for i = 1,2,3, ... 

we have 2Fi = Fi+1 and Fl ~ 7/.,2, 

N ow suppose that Z4k is represented in E~,4k+J for j ~ 2 then Z4k E FJ. From 

the multiplicative structure of the spectral sequence there exists a generator 

Z4k of pI such that 2j Z4k generates FJ+l and therefore 2jiz4k = 2Z4k for some 

2-adic integer '/, Hence 2(2j - I ,/Z4k - Z4k) = 0 and so 2j-1iz4k - Z4k E W4k ,k 

which implies the contradiction that the generator Z4k is divisible by 2 in 

o 
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3.8 Relating the bases 

Theorem 3.8.1. In the notation of §3.5 and §3. 7 

_"k 2 J3 (k.i) \ 1i4k(bul\bo)0Z2 
Z4k - Lii=O . /\4k,4ig4k,4i E T' orSlOn 

4(k - i) - o:(k) + o:(i) if 4i - o:(i) > 2k, 

(3(k, i) = 

2k - o:(k) if 4i - o:(i) :::; 2k. 

Proof. From [12], as explained in §3.5, a Z2-module basis for G4k,* is given 

by {g4k,41}o::;Z::;k. Hence there is a relation of the form 

- -
Z4k = A4k,4kg4k,4k + A4k,4(k-l)g4k,4(k-l) + ... + A4k,og4k,o 

where A4k,4i and A4k,4k are 2-adic integers. Applying the projection 

Pk : G4k ,* --+ G4k,k we see that Z4k = P k (Z4k) = A4k,4kPk(g4k,4k), by Lemma 

3.6.1. Hence, if A4k,4k is not a 2-adic unit, then Z4k would be divisible by 2 

in G4k ,k and this is impossible since Z4k is a generator, by definition. 

]\lultiplying the relation 

by (U/2)2k-a.(k) we obtain (U/2)2k-a.(k)Z4k = A4k,4kH((u/2)2k-a.(k)f4k), which 

lies in G8k- 2a (k),kl by the discussion of §3.5. Therefore, in G8k- 2a.(k),k 0 «:b 
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we have the relation 

k-l 

(U/2)2k-CY.(k) Z4k = A4k,4k (U/2)2k-CY.(k) 14k + L )..4k,4i( U/2)2k-CY.(k) g4k,4i' 

i=O 

Since the left hand side of the equation lies in GSk - 2CY.(k),b the QJ2 coefficients 

must all be 2-adic integers once we re-write the right hand side in terms of 

the basis of §3.6. 

For i = 0,1, ... ,k - 1 

(U/2)2k-CY.(k) g4k,4i 

U2k-a(k)+2k-4i+a(i)+2i-a(i) f' 'f 4' - (') < 2k 
22k ark) 2i Q(i) 4t 1 'l a 'l _ , 

U2k - a (k)+2k-2i 

22k ark) 2k 2i 14i if 4i - a( i) > 2k 

u4k-2i-a(k) f 'f 4' (.) < 2k 
22k ; 2; ark) a(i) 4i 1 Z - a z _ , 

U4k-2i-a(k) 

24k-2i-a(k) 14i if 4i - a(i) > 2k. 

Now we shall write (U/2)2k-CY.(k)g4k,4i as a power of 2 times a generator de­

rived from 14i in §3.6 (since we did not define any generators called g4k+2,4i 

the generator in question will be gSk-2CY.(k),4i only when a(k) is even). 

Assume that 4i - a(i) ::; 2k so that 2i - a(i) S 4k - 2i - a(k) and 

4k-2i-CY.(k) 1 
U f ' - 4k-4i-CY.(k)+CY.(i) ( /2)2i-n(i) f ' 

22k+2i-n(k)-n(i) 4t - 22k-n(k) U U 4t 

which implies that )..4k,4i is divisible by 2 2k-CY.(k) in the 2-adic integers, as re-
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quired. 

Finally assume that 4i-a(i) > 2k. We have 2i-a(i) ::; 4k-2i-a(k) also. To 

see this observe that a(i) +a(k-i) -a(k) 2': 0 because, by Proposition A.O.4, 

this equals the 2-adic valuation of the binomial coefficient (7). Therefore 

a(k) - a(i) ::; a(k - i) ::; k - i < 4(k - i). 

Then, as before, 

4k-2i-a(k) 1 
u j " _ 4k-4i-a(k)+a(i) ( /2)2i-a(i)j" 
24k-2i-a(k) 42 - 24k-4i-a(k)+a(i) U U 42 

which implies that ).4k,4i is divisible by 24k-4i-a(k)+a(i) in the 2-adic integers, 

as required. o 

Theorem 3.8.2. (i) In the collapsed Adams spectral sequence and the no­

tation of Lemma 3.7.1 Z4k may be chosen to be represented in E~,4k. 

(ii) In fact, Z4k may be taken to be the smash product of the unit 17 of the 

bu-spectrum with the inclusion of the bottom cell jk into F4k / F4k- 1 

SO S4k ryAjk b F /F 1\ --7 u 1\ 4k 4k-l. 

Proof. For part (i), suppose that Z4k is represented in E~,4k+l. By Lemma 

3.7.1 we must show that this leads to a contradiction. From [24] we know 

tl t th 1 1· th . . 1 . 1 E" 1.4k+1 E" 1.4k+3 la on e s = me e non-tnVIa groups are preCIse y 2" '2" , ... 

,E~,8k+3-2a(k) which are all of order two. From the multiplicative structure 
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of the spectral sequence, if a homotopy class w is represented E~,4k+2j-1 

... 4k+2 +1 
and E~' J is non-zero then there is a homotopy class w' represented in 

E~,4k+2j+l such that 2w' = uw. Applied to Z4k this implies that the homo­

topy element u 2k- a (k)+l Z4k is divisible by 22k-a(k)+l. Hence u 2k- a (k)+1 Z4k is 

divisible by 2 2k- a (k)+1 in G*,*, which contradicts the proof of Theorem 3.8.1. 

For part (ii) consider the Adams spectral sequence 

We have an isomorphism 

The discussion of the homology groups H*(F4k / F4k- 1; '2/2) gIven m ([4] 

.. 0 4k . 
p.341; see also §3.9) shows that E 2' ~ 7l/2 generated by the Hurewlcz 

image of 7] /\ jk. Therefore the generator of E~,4k represents 7] /\ jk' Since 

there is only one non-zero element in E~,4k it must also represent Z4k, by part 

(i), which completes the proof. o 

3.9 The effect of w3 on basis elements 
I 

In this section we wish to calculate the effect of the induced map (1/\ 'ljJ3)* : 

G*,* --+ G*,* on the basis elements g4k,41 introduced in §3.6 and the effect of 

the induced maps (~k,l)* : G 4k ,k --+ G 4k,1 on the basis elements Z4k introduced 

in §3.7. In order to do this we first need to recall the multiplicative pairing 
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of Adams spectral sequences due to [3] and [20]. Let E:,t(l) denote the r-th 

page of the spectral sequence (3.2) with k = l, i.e. the spectral sequence 

Theorem 3.9.1. There exists an associative pairing between the spectral 

sequences {3.1} and {3.2} of the form 

such that 

{i} for r=2 the pairing agrees with the Yoneda composition pairing on Ext's 

{ii} the pairings commute with the isomorphisms Er+l rv H(Ero dr) and 

Er+l ~ H(Er) dr) 

{iii} the pairings converge to a composition pairing of homotopy groups of 

the form 

In particular, the pairing of Lk,l E 7r*(D(F4k/ F 4k - 1 ) 1\ (F4d F 41- 1 ) Abu) 0 

Z2, represented by the generator of Ei(k-l)-a(k)+a(I),4(k-l)-a(k)+a(I), and 

Z4k E G*,k, represented by the generator of E~,4k(k), gives the image of 

the induced homomorphism Lk,I*(Z4k) E G*,l, represented by the genera­

tor of E~(k-l)-a(k)+a(I),8k-41-a(k)+a(l) (l). 

Proof. This is a particular case of the more general Theorem 9.27 of [18]. 0 
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Proposition 3.9.2. 

For l < k, in the notation of §3.3, the homomorphism 

Proof. Let Z4k E G4k .k be as in §3.7 so that, proved in a similar manner to 

Lemma 3.7.1, 2Z4k is represented in E~,4k+l in the spectral sequence 

where, from §3.9, we have 

The multiplicative pairing between these spectral sequences shows that 

(ik,l)*(2z4k ) E G4k ,l is represented in the spectral sequence 

b th t f E""1+4k-4l-a(k)+a(l),1+Sk-4l-a(k)+a(l) b 2k+l-a(k)b2k-2l y e genera or 0 2 ecause a 
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is the generator of 

E~+4k-41-cx(k)+cx(I),1+8k-41-CX(k)+CX(l) ~ Ext1+4k-21-cx(k),1+8k-61-CX(k) (Z/2, Z/2). 

Since multiplication by a and b in the spectral sequence corresponds to mul­

tiplication by 2 and u respectively on homotopy groups we have the following 

table of representatives in 1i*(bu /\ (F4z/F41 - 1)) 0 Z2. 

homotopy element representative dimension 

2Z41 a 21 - cx (I)+1 4l 

(u/2)(2z41 ) a21 - cx (l) b 4l + 2 

(u/2)2(2z41 ) a21 - cx(I)-lb2 4l + 4 

(U/2)21-cx(l) (2Z41 ) ab21 - cx(l) 8l - 2Ct(l) 

u( u/2)21-cx(l) (2Z41 ) b21 - cx(l)+l 8l - 2o:(l) + 2 

u 2 (U/2)21-cx(l) (2Z41 ) b21 - cx(l)+2 8l - 2o:(l) + 4 

Therefore there are two cases for (~k,I)*(2z4k)' If 2k - 2l ~ 2l- o:(l) + 1 then 

b2k- 21 represents u 2k- 21 -(21-cx(l» (U/2)21-cx(l) Z41 = u 2k- 41+cx(l) (u/2)2z-cx(l) Z41 and, 

up to multiplication by 2-adic units, (Lk,Z)*(2z4k) IS equal to 

21+2k-cx(k)u2k-41+cx(l) (U/2)21-cx(l) Z41, as required. On the other hand, if 

2k - 2l :s: 2l- o:(l) then a21-cx(I)+I-(2k-21)b2k-21 = a41-2k-cx(I)+lb2k-21 represents 

(U/2)2k-21(2z4Z ) which shows that, up to 2-adic units, (~k,I)*(2z4k) is equal to 

21+2k- cx(k)-(41-2k-cx(I)+I) (U/2)2k-2Z (2Z41 ) = 24k- cx(k)-41+cx(l) (U/2)2k-21 (2Z41), as 

required. o 
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Proposition 3.9.3. 

Let 1jJ3 : bo ----* bo denote the Adams operation, as usual. Then, zn the 

notation of § 3.5, 

92 
g8,8 + 9 . 23 

g8,4 if k = 2, 

if k = 1, 

go,o if k = O. 

Proof. The effect of the homomorphism (1/\1jJ3)* on u and v is well known, 

being given in [8] Chapter 7, for example. (1/\ 1jJ3)* multiplies v by 9, fixes 

u and is multiplicative. Therefore 
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Hence, for k :::::: 1, we have 

which yields the result, by the formulae of §3.6. 

Proposition 3.9.4. 

When k > l 

gl + gl-l 
g4k,41 g4k,41-4 

gig + gl-1241-a(I)-2kg 
4k,41 4k,41-4 

gl + gl-123+v2(k) 
g4k,41 g4k,41-4 
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o 

if 4l - a(l) :S 2k, 

if 4l - a(l) - v2(l) - 3 

:S 2k < 4l - a(l), 

if.2k < 4l - a(l) - v2(l) - 3 

< 4l - a(l) 
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Proof. Suppose that 4l - a(l) :::; 2k then, by Proposition 3.9.3 (proof), 

= (1/\ 01. 3 ), (u2k-41+a(l) [U21
-

a
(l) f41 J) 

'f/ " 221 a(l) 

_ 91 91-1 2k-41+a(l) [u21-a(l)u22V2(l)+lf41_4J 
- g4k,41 + U 22l - a (l) 

- 9 1 9 1- 1 2k-41+a(l) [u2l+2-a(l)21/2(l)~1 f41-4 J 
- g4k,41 + U 221 a(l) . 

Then, since v2(l) = 1 + a(l - 1) - a(l), 

4(l-l) - a(l-l) = 4l- a(l) + a(l) - a(l-l) - 4 = 4l- a(l) - 3 - v2(l) < 2k 

so that 
_ 2k-41+4+a(I-1) [U21 - 2- a(l-1) f41-4J 

g4k,41-4 - U 221 2 a(l 1) 

- 2k-41+a(l) [ U
2l

+2-
n (l) f41-4 J 

- U 221 2 a(IHa(l) a(l 1) 

- 2k-41+a(l) [ U
21 +2

-
n

(l) f4l-4 J 
- U 221 -c>(l)-V2(l)-1 

so that, for 0 < l < k suppose that 4l - a(l) :::; 2k, 
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Similarly, for 0 < l < k if 4l - o:(l) > 2k then, by Proposition 3.9.3 (proof), 

This situation splits into two cases given by 

(i) 4l - o:(l) - 1/2(l) - 3 ::; 2k < 4l - o:(l) or 

(ii) 2k < 4l - o:(l) - 1/2(l) - 3 < 4l - o:(l). 

In case (i) 4l- 4 - o:(l- 1) = 4l- o:(l) -1/2(l) - 3::; 2k and so again we have 

so that 

In case (ii) 

- 2k-41+4+oc(l-1) [U
2/

-
2

-<>(/-1) f4/-4 ] 
g4k,41-4 - U 221 2 ",(I 1) 

U2k-2/+2 f4/-4 

- 22/ - 1 - v 2(/)-",(/) 

U2k-2/+221+V2(l) f4/-4 

22k-2/+4/-",(I) 2k 

(1/\ 0/,3) ( ) 9 1 91-1241-oc(I)-2k 
'f/ * g4k,41 = g4k,41 + g4k,41-4· 

[
U2k-2/+2 f4k-4 ] 

g4k,41-4 = 22(k /+2) 



3.10. What is the matrix? 69 

so that 

o 

3.10 What is the matrix? 

In the notation of §3.1, suppose that A E Ux Z2 satisfies 

Therefore, by definition of A and the formula of Theorem 3.8.1 

On the other hand 

- A z + '" A /I 22k-21-a.(k)+a.(l)U2k-21 Z 
- k,k 4k ul<k l,k/""'4k,41 41 

+ '" I;l A II. 22k-21-a.(k)+a.(I)U2k-212(3(I,i). -g . 
ul<k i=O l,k /""'4k,41 41,42 41,42' 

In order to determine the Ak,I'S it will suffice to express u2k
-

21
g41,4i as a 
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multiple of g4k,4i and then to equate coefficients in the above expressions. By 

definition 

while 

U
2k - 21 g 41,4i 

g4k,4i = 

2k-21 [U2(l-i)!4i] 
U 22(1 i) 

U2k - 2i f4i 
22i a(i) 

U2k - 2i f4i 
221 2i 

if 4i - a(i) ::; 2[, 

if 4i - a( i) > 2l 

if 4i - o:(i) > 2l. 

[
U 2 (k-i)!4i] 

22(k-i) if 4i - a(i) > 2k. 

From these formulae we find that 

2k-21 
U g41,4i = 

N ow let us calculate Al,k. 

g4k,4i if 4i - 0:( i) ::; 2l ::; 2k, 

24i - cx(i)-21 g . if 2l < 4i - o:(i) < 2k 4k,4t _ , 

22k - 21 g 4k,4i if 2l < 2k < 4i - o:(i). 

When k = 0 we have Zo = (1/\ 1j;3)*(zO) = Ao,o(~o,o)*(zo) = Ao,ozo so that 

Ao,o = 1. 
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When k = 1 we have 

and 

which implies that A1,1 = 9 and Ao,1 = iL1,6()'4,4 - 8A4,0) so that AO,l E Z;. 

\\Then k = 2 we have 

and 
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+Al,2!-Ls,422(2A4,OgS,O + A4,42gS,4) + Ao,2!-Ls,023gs ,O' 

Therefore we obtain 

which yields 

Hence A1,2 E Z;. 
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N ow assume that k :::::: 3 and consider the relation derived above 

The coefficient of g4kAk on the left side of this relation is equal to A4k,4k gk 

and on the right side it is Ak,kA4k,4k so that Ak,k = gk for all k :::::: 3. From 

the coefficient of g4k,4k-4 we obtain the relation 

\ gk-12v2(k)+3 + 23+V2(k) \ gk-l 
/\4k,4k /\4k,4k-4 

_ 9k23+ V2 (k) \ 
- /\4k,4k-4 

_ 9k23+ V2 (k) \ 
- /\4k,4k-4 

which shows that Ak-1,k E Z; for all k :::::: 3. This means that we may 

conjugate A by the matrix D = diag(l, A 1,2, A1,2A2,3, A1,2A2,3A3,4, ... ) E 

Uoo Z2 to obtain 
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1 1 Cl,3 Cl,4 Cl,5 

0 9 1 C2,4 C2,5 

DAD-1 = C = 0 0 92 1 C3,5 

0 0 0 93 1 

In the next section we examine whether we can conjugate this matrix further 

in Ux;7l2 to obtain the matrix 

1 1 0 0 0 

o 9 1 0 0 

B = 0 0 92 1 0 

o 0 0 93 1 
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3.11 Conjugating the matrix 

Let B, C E Ux ,'1l2 denote the upper triangular matrices which occurred in 

§3.1O 

1 1 0 0 0 1 1 Cl,3 C1,4 Cl,5 

o 9 1 0 0 0 9 1 C2,4 C2,5 

C= 0 0 92 1 C3,5 , B = 0 0 92 1 0 

o 0 0 93 1 0 0 0 93 1 

The following result is the main result of this section. Along with the dis-

cussion of §3.10 it completes the proof of Theorem 3.4.2 by explicitely con­

structing a matrix U E Ucx:'1l2 which satisfies UCU- 1 = B. 

Theorem 3.11.1. Let U = (ui,jkj~l be the upper triangular matrix whose 

entries satisfy 

and 
j-2 

1 if j = 1 or j = 2 

o if j > 2 

Ui+1,j = (~= Ui,rCi,r) + Ui,j-l + (9 j
-

1 
- 9i

-
1 
)Ui,j' 

r=i 

Then (i). U is invertible, (ii). UC = BU. 

Proof. (i). We shall prove, by induction, that Ui,i E Z; for i 2: 1, which is 

sufficient to prove that U is invertible. 
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For i = 1, Ul,1 = 1 which is clearly in Z;. Now assume Ui,i E Z; for all 

1 ::; i < n where n E Z+. We wish to show that this implies un,n E Z;. By 

definition 

(gn-l gn-2) un,n = Un-l,n-l + - Un-l,n' 

Since gn-l - gn-2 = gn-2(g - 1) E 2Z2 and, by the induction hypothesis, 

Un-l,n-l E Z; it follows that un,n E Z; + 2Z2 C Z;. Hence, by induction, 

Ui,i E Z; for i 2:: 1, and therefore, U is invertible. 

(ii). Since we have defined U to be upper triangular it is trivial to show that 

(UC)i,j = (BU)i,j for j > i. The entries of UC and BU, for i 2:: j are given 

below: 

(UC)< < 
~,J 

(BU)< < 
~,J 

gi-l + Ui,j Ui+ 1,j· 

We shall now prove that these are equal for all i, j 2:: 1 and i 2:: j: 

(UC)< < 2,J 

(gJ<-l gi-l) + 9J<-1 U+l < - - U< < U< < 2 ,J 2,J 2,J 

U<+l < - gj-l u < . + gi-1U< < + U< <gj-l 
~ ,J 2,J ~,J 2,J 

(BU)< < 2,J 

as required. o 



Chapter 4 

Applications 

The following Chapter contains two applications of the results of Chapter 3. 

The first application concerns using knowledge of the left bu-module auto­

morphism 1!\ 'lj;3 : bu!\ bo ----+ bu!\ bo to explicitly describe the left bu-module 

automorphism 1 !\ 'lj;3 : bu!\ bu ----+ bu!\ bu. In the second application we use 

Theorem 3.4.2 to study the ring Endleft-bu-mod(bu !\ bo) of left bu-module 

endomorphisms of bu !\ boo Both of these applications come from collabora­

tive work of the author and his PhD supervisor Prof. V. Snaith. They are 

published in [11]. They are not presented here as original work of the author, 

but the description given here by the author serves to illustrate possible uses 

for the original results of Chapter 2. 

4.1 bu /\ bu 

In this section we wish to use the knowledge of 1 !\ 'lj;3 : bu !\ bo ----+ bu!\ bo 

from Theorem 3.4.2 to explicitly describe the left bu-module automorphism 
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1/\ 1jJ3 : bu /\ bu ----+ bu /\ bu, in terms of the morphisms Lk,k-l of §3.3. 

Recall that the group isomorphism A of §3.4 determines the matrix corre­

sponding to an element of AutPeft-bu-moAbu /\ bo) upto inner automorphism. 

Therefore, Theorem 3.4.2 implies that, in the 2-1ocal stable homotopy cate­

gory there exists an equivalence C' E Aut?eft-bu-mod(bu /\ bo) such that 

C'(l /\ 1jJ3)C,-1 = ~ gkLk,k + ~ Lk,k-l 

k~O k~l 

where Lk,l is as in §3.1, considered as left bu-endomorphism of bu /\ bo via the 

equivalence L of §3.1. 

In [24] use is made of a homotopy equivalence of spectra of the form bu c::: 

bo /\ 2:-2([::JF2
, first noticed by Reg Wood (as remarked in [4] pg. 206) and 

independently by Don Anderson (both unpublished), where 2:-2CP2 denotes 

the 2nd desuspension of CP2 as given in §2.2.1. 

Proposition 4.1.1. In the 2-local stable homotopy category there is a mor­

phism 

Proof. A construction of this morphism is given by Snaith in [23]. 0 

There is a commutative diagram in the 2-1ocal stable homotopy category of 

the form 



4.1. bu A bu 79 

'ljJ3 
bu ------'--------+) bu 

in which the vertical morphisms are equal, given by the Anderson-Wood 

equivalence. 

Now suppose that we form the smash product with I;-2CIfD2 of the 2-local 

left bu-module equivalence bu A bo c:::' Vk?obu A (F4k/ F4k- 1 ) to obtain a left 

bu-module equivalence of the form 

For l :S k set 

then we obtain the following result. 

Theorem 4.1.2. 

In the notation of §4, in the 2-local stable homotopy category, there exists 

C f 
E Aut?eft-bu-mod(bu A bo) such that 

1 A 'ljJ3 : bu A bu ---'t bu A bu 
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satisfies 

(C' /\ 1)(1 /\ ?j})(C' /\ 1)-1 = L gk,,"k,k + L Kk,k-l· 

k2:0 k2:1 

4.2 EndZejt-bu-mod(bu 1\ bo) 

In this section we shall apply Theorem 3.4.2 to study the ring of left bu-

module homomorphisms of bu /\ boo As usual we shall work in the 2-local 

stable homotopy category. Let Ucx,'1l2 denote the ring of upper triangular, 

infinite matrices with coefficients in the 2-adic integers. Therefore the group 

Ucx,'1l2 is the multiplicative group of units of Uoc/1l2. Choose a left bu-module 

homotopy equivalence of the form 

as in §3.1. For any matrix A E Uoo Z2 we may define a left bu-module endo-

morphism of bu /\ bo, denoted by AA, by the formula 

AA = 1· (L AZ,kik,Z)· 1-1. 
O~Z~k 

Incidentally here and throughout this section we shall use the convention 

that a composition of maps starts with the right-hand map, which is the 

opposite convention used in the definition of the isomorphism A of §3.1 and 

[24]. When A E Uoo Z2 we have the relation AA = A(A-1 ). For A, B E UooZ 2 
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we have 

By Theorem 3.4.2 there exists H E Uoo 712 such that 

for 

1 1 0 0 0 

o 9 1 0 0 

B = 0 0 g2 1 0 

o 0 0 g3 1 

Hence, for any integer u 2:: 1, we have 1 1\ (1/;3 - gU-l) = AHBuH-l where 

Bu = B - gu-l E Uoo 712 and gu-l denotes gu-l times the identity matrix. 

Following [19] write rPn : bo ----+ bo for the composition cPn = (1/;3 - 1) (1/;3 -

g) ... (1/;3 - gn-l). Write Xn = B1B2 ... Bn E Uoo 712. 
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Theorem 4.2.1. (i) In the notation of §4.2 1/\ ¢n = AHXnH-l for n 2: 1. 

(ii) The first n-columns of Xn are trivial. 

(iii) Let Cn = Cone(£ : VO-:;.k5,n-1bu /\ (F4k/ F4k- 1) ~ bu 1\ bo, which is a 

left bu-module spectrum. Then in the 2-local stable homotopy category there 

exists a commutative diagram of left bu-module morphisms of the form 

bu /\ bo 
1/\ ¢n 

• bu /\ bo 

~ /" 
Cn 

where 7rn is the cofibre of the restriction of 1. Also ¢n is determined up to 

homotopy by this diagram. 

(iv) For n 2: 1 we have 

(Xn)s,S+j = 0 if j < 0 or j > n 

and the other entries are given by the formula 

where 

A(k ) = nn-k1 -1 (9 S _ 912 - 1) 
2 )2=n- k2+ 1 , 
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Proof. Part (i) follows immediately from the discussion of §4.2. Part (ii) 

follows from part (iii), but it is simpler to prove it directly. For part (ii) 

observe that the Bi commute, being polynomials in the matrix B so that 

Xn = Xn-1Bn· Since (Bn)s,t is zero except when t = s, s+ 1 so that (Xnkj = 

(Xn-1)i,j(Bn)j,j + (Xn-1)i,j-1(Bn)j-1,j, which is zero by induction if j < n. 

When j = n by induction we have (Xnkj = (Xn-1)i,n(Bn)n,n which is trivial 

because (Bn)n,n = 9n
-

1 - 9n
-

1 . In view of the decomposition of bu /\ bo, 

part (iii) amounts to showing that H XnH- 1 corresponds to a left bu-module 

endomorphism of VO<k bu /\ (F4k/ F4k- 1) which is trivial on each summand 

bu /\ (F4k/F4k-l) with k :::; n - 1. The (i,j)-th entry in this matrix is the 

multiple of Lj-1,i-1 : bu /\ (F4j - 4/ F4j - 5 ) ----* bu /\ (F4i- 4/ F4i- 5 ) given by the 

appropriate component of the map. The first n columns are zero if and only 

if the map has no non-trivial components whose domain is bu/\ (F4j - 4/ F4j - 5 ) 

with j :::; n. Since H is upper triangular and invertible, the first n columns of 

Xn vanish if and only if the same is true for H XnH- 1. Finally the formulae 

of part (iv) result from the fact that Bj has 9m -
1 - 9j - 1 in the (m, m)-th 

entry, 1 in the (m, m + 1)-th entry and zero elsewhere. 0 

Remark 4.2.2. Theorem 4.2.1 is closely related to the main result of [19]. 

Following [19] let bo(n) ----* bo denote the map of 2-local spectra which is 

universal for all maps X ----* bo which are trivial with respect to all higher 

Z/2-cohomology operations of order less than n. Cf with [19] Theorem B. 
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YI:ilgram shows that (P2n factorises through a map of the form e2n : bo ---+ 

L;8nbo(2n-t:>(n)) and that (P2n+1 factorises through a map of the form e2n+1 : 

bo ---+ L;8nHbsp(2n-t:>(n)) and then uses the em's to produce a left-bo-module 

splitting of bo 1\ boo Using the homotopy equivalence bu ::::::: bo 1\ L;-2CJ[D2 

mentioned in [24] one may pass from the splitting of bu 1\ bo to that of bo 1\ bo 

(and back again). In the light of this observation, Theorem 4.2.1 should be 

thought of as the upper triangular matrix version of the proof that the en's 

exist. The advantage of the matrix version is that Theorem 4.2.1(iv) gives 

us every entry in the matrix X n , not just the zeroes in the first n columns. 



Appendix A 

2-adic valuation results 

The main result from this appendix is Proposition A.0.4. The proof requires 

Lemmas A.0.1-A.0.3. 

Lemma A.D.1. For any integer n 2:: 0, g2n - 1 = 2n+3(2s + 1) for some 

s E Z. 

Proof. We prove this by induction on n, starting with 9 - 1 = 23 . Assuming 

the result is true for n, we have 

= 2n+4(2s + 1) (2n+2(2s + 1) + 1) 
\, V .I 

odd 
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as required. o 

Lemma A.O.2. For any integer l 2: 1, gl - 1 = 21/2(1)+3(28 + 1) for some 

s E Z, where v2(l) denotes the 2-adic valuation of l. 

Proof. Write l = 2e1 + 2e2 + ... + 2ek with 0 ~ el < e2 < . " < ek so that 

v2(l) = el. Then, by Lemma A.O.l, 

as required. o 

Lemma A.O.3. For any integer l 2: 1, Il~=l (gl - gi-l) = 21/2(1!)+31(28 + 1) 

for some s E Z. 

Proof. By Lemma A.O.2 we have 

as required. o 
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Proposition A.OA. For any integer l 2: 0, 2v2 (1!)+31 = 241 - CY (I) where a(l) is 

equal to the number of 1 's in the dyadic expansion of l. 

Proof. Write l = 2CY1 + 2CY2 + ... + 2CYk with 0 :::; a1 < a2 < ... < ak so that 

a(l) = k. 91 - 1 = 2v2 (l)+3(2s + 1) for some s E Z, where 1/2(l) denotes the 

2-adic valuation of l. Then 

1/2(l!) 2CY1 - 1 + 2CY2 - 1 + + 2 CYk - 1 

+ 1 + 2CY2 -CY1 + + 2CYk -CY1 

+ 1 + + 2CYk -CY2 

+ 1 

because the first row counts the multiples of 2 less than or equal to l, the 

second row counts the multiples of 4, the third row counts multiples of 8 and 

so on. Adding by columns we obtain 

which implies that 231+v2 (l!) = 231+1-0:(1) = 241 - CY (l) , as required. o 
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