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Magnetic resonance imaging has many advantages for visualising the process of specch
production, but an important disadvantage is the long scanning acquisition time relative
to the characteristic time of articulator motion of tenth of second. Southampton Dynamic
Magnetic Resonance Imaging is a technique developed in a previous project to solve this
problem. This technique achieves an apparent high temporal resolution suitable for dynamic
studies. Consequently, a large number of images can be generated describing the evolution
of the vocal tract shape. This makes a manual extraction of the vocal tract shape a tedious
and time consuming process. The aim of this project firstly is to improve and extend the
SDMRI method, and secondly, to determine the outline of the vocal tract automatically.
Different feature extraction techniques were analysed and two of them were combined to make
a new automatic shape extraction tool, i.e. the active shape models and the Hough transform.
Active shape models describe the shape of the articulators while the Hough transform locates
it with no initialisation. Initially, the new algorithm was tested analysing isolated magnctic
resonance images for extracting tongue shapes; however, although the results were satisfactory
the algorithm often fails when multiple solutions are present. A global analysis of the imagc
sequence overcomes these difficulties and the dynamic Hough transform was adapted for our
purposes. Experimental results reveals that the algorithm does indeed find the correct shape
and position of the tongue and also that it is robust under noisy conditions. The model

was extended to other articulators, i.e. the lips. This approach leads to a new algorithm for
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automatic extraction of articulatory shape in magnetic resonance image sequences as evident

in the results presented in this thesis.
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Chapter 1

Introduction

1.1 Motivation

An impor‘éant challenge in speech research is the measurement of the vocal tract shape during
real-time speech production. The study of the dynamic behaviour of the speech articulators,
(e.g. the tongue) is important for the full understanding of speech production. It is difficult
to obtain data from the articulators since they are not easily accessible. The vocal tract

shape is complex and time-varying and there is not a model to describe this shape.

Some of the vocal tract articulators are inaccessible for natural speech studies and medical
imaging techniques, such as magnetic resonance imaging (MRI), are the most useful methods
to obtain information of them. MRI has been used by many speech researchers due to its
advantages such as good contrast of soft tissue, of which most of the vocal tract articulators
are formed; and the possibility to scan any orientation. MRI data can be collected for static
and dynamic studies. Static studies generally consists of acquiring data when the subject
is sustaining a sound, a single phone. Images obtained for these studies are usually good,
but these do not provide any information about the movements of the articulators when
they go from the pronunciation of one phoneme to another. This transition is referred as

coarticulation.
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Dynamic studies have been used for studying the dynamic behaviour of the vocal tract
articulators. These studies involved the acquisition of images while the subject is speaking
using different pulse sequences with relatively short acquisition times. However, some specch
articulators move relatively fast, such as the tongue which has occasional fast movements (50-
100Hz) (Perkell et al., 1992; Kiritani, 1986; Horiguchi and Bell-Berti, 1987). Recent advances
in MRI technology have led to the development of real-time imaging with rates of betwcen
5 (Demolin et al., 2002) and 9 (Narayanan et al., 2004) images per second. However, while
these need expensive machines as well as requiring sophisticated imaging techniques, there

are alternatives.

Southampton dynamic magnetic resonance imaging (SDMRI), described by Moliammad
(1999), is one of the approaches for obtaining information of images with an apparent high
temporal resolution. This technique consists of acquiring, simultanecously, MR images aud
the speech data of a subject repeating a nonsense word, i.e. a word that has no meaning hut
is.chosen to demonstrate some phonetic effect. These images and audio data are synchroniscd
to reconstruct multiplanar images of the vocal tract with an apparent sampling rate of 63 I,
which is an increase by a factor of 136 over the rate of the scanner used in the experiments
conducted. This sampling rate combined with the spatial resolution of the images allows
movement velocities of up to 12 cm/sec to be clearly distinguished, which is suitable for
capturing most articulatory movements. However, occasional fast movements of the tongue
exceed this resolution; in such cases, the tongue will appear blurred. Even though the
images were reconstructed from incomplete data, this method was shown to give very good
information about the vocal tract dynamics. The tendency is to achieve a better temporal
resolution in the image acquisition so that the generation of a larger number of images to
describe the vocal tract dynamics as well as possible. The manual labelling and extraction
of the vocal tract shape becomes a more tedious and time consuming process, which can he

overcome with an automatic vocal tract shape extraction.

The aim of this project was firstly, to understand, analyse and reimplement this method and
then to use the resulting images to automatically extract the vocal tract shape to visualise

the vocal tract dynamics in 3D.
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For vocal tract shape extraction, it is necessary to consider that the images obtained from the
SDMRI method are noisy and with it some articulators blurred because their fast movements
exceed the resolution of such a method. The missing data problem related to the SDMRI

technique also contributes.

The automatic extraction of the vocal tract shape requires two conditions to be satisfed.
First, as automatic extraction is desired, the method should need no initialisation; and second,
as the vocal tract shape is a complex non-parametric shape, this is there is no simple model
to describe it, then it is necessary either to generate a model for the vocal tract shape or to

develop a feature extraction method where no model is needed.

Different feature extraction techniques were analysed, but none satisfied both conditions at
the same time. However, the characteristics of the problem suggested that we combine two
cor;iputer vision techniques in a new implementation of the Hough transform, called active
sh'ape Hough transform (ASHT). A model of the vocal tract shape is generated using active
shape fﬁodels (ASMs),(Cootes et al., 1995), which are based on the generation of a modecl
using principal component analysis (PCA). The ASMs will deform according with the main
modes of variation found in the training data set. The Hough transform (Hough, 1962;
Tllingworth and Kittler, 1988) is an evidence-gathering technique based on a voting process
where a model of the shape is required as well. No initialisation is required which makes it

suitable for automatic extraction.

Although this method can achieve a good automatic shape extraction, it fails when multiple
solutions are present. A global analysis of the sequence overcomes this problem. Thereforc,
the dynamic Hough transform (DHT) was adopted to our purposes. Different experiments
were performed to test the algorithm over specific scenarios. The extension of the model, as

information of additional shapes may be included, is relatively straightforward.

Although the data set used initially consists of sequences of MR images in three sagittal
planes, it was considered not enough for fully describing the vocal tract dynamics in 3D,
because these planes did not cover the full body of the articulators. Therefore, data was

collected at the Institute for Biodiagnostics (Atlantic) Neuroimaging Research Laboratory in
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Halifax, Canada, using a 47T scanner. More sagittal planes were collected from 4 different

subjects.

1.2 Thesis Outline

This thesis continues with an introduction of speech production research using MRI in
Chapter 2. A brief introduction to vocal tract anatomy is presented, followed by a review
of different approaches to vocal tract modelling. The most common methods used by speech
researchers are described and the MRI method is presented in more detail, focussing on the

dynamic MRI methods.

In Chapter 3, a review of different feature extraction techniques is presented. This is followed
in Chapter 4 by a description of a new combination of two feature extraction techniques, active
shape models and the Hough transform. This new form of the Hough transform, called the
active shape Hough transform (ASHT), is tested for the extraction of the tongue shape from
MRI sequences. The problem of choosing the optimal solution when multiple candidates arc
present in the accumulator generated during the evidence gathering process is presented in

Chapter 5.

Experimental results of the tongue shape extraction using ground-truth, unseen and synthetic
data sets are presented and discussed in Chapter 6. An evaluation of the algorithin
performance with controlled contaminated images is also presented. The extension of the
model is evaluated as information for the lip is added to the initial tongue shape model. Again

the extended algorithm is tested using ground-truth and unseen tongue shape sequences.

Then, the collection of data performed in Halifax, Canada is described in Chapter 7. The
experimental work and the corresponding analysis and reconstruction of the image sequences
is presented. In Chapter 8, the experimental results of applying the tongue model over the
static and sustained images is presented. The extension of the tongue model is performed
as a set of 15 tongue shapes is included in the set of training images. The evaluation of the

results is presented.
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Finally, the conclusions drawn from this research are discussed in Chapter 9. Possible

directions for future work on this project are presented.




Chapter 2

Speech Production Research Using
MRI

2.1 Introduction

An important aspect of understanding speech production is to know how the vocal tract
articulators deform and interact to produce speech sounds. Shape configurations adopted by
the vocal tract articulators can be modelled for different purposes such as speech synthesis,
study and evaluation of patients with deficit of speech functions and animation applications.
Different methods have been used to collect data from such articulators; the most commonly
used are medical-imaging based, since they overcome articulator inaccessibility. However,
other methods, such as electropalatography and electromagnetic midsagittal articulometer

systems, are also quite popular among speech researchers.

Magnetic resonance imaging (MRI) has been extensively used and different techniques have
been developed to collect information for either static, sustained phonemes, or dynainic
speech. Different techniques are available to collect information for dynamic speech including
dynamic magnetic resonance imaging; real time magnetic resonance imaging; and ciue
magnetic resonance imaging; all with a common aim to collect as many images as possible to

describe the movements and deformation of the articulators during the production of a specch

6
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sequence of interest. Similar techniques, such as retrospective gating, are used to describe
the dynamics of different organs within the human body, such as the heart. Southampton
dynamic magnetic resonance imaging (SDMRI) is a method reported by Mohammad (1999)
as being capable of generating sequences with a rate of 63 Hz; this method has been adopted

with slight modifications and analysed in the present work.

This chapter is intended to describe briefly basic concepts involved in speech production.
Next, different approaches to vocal tract articulator modelling are presented. Then, the most
commonly-used methods for obtaining data about such articulators are introduced; special
emphasis is placed on MRI-based methods, since this work aims to extract automatically the

vocal tract shape from MRI sequences. A brief introduction to this method is presented.

2.2 Speech Production

Speech is generated as a necessity to communicate ideas and the realisation of such ideas into
speech sounds is the subject of the study of speech production. An idea is generated within
the brain; this sends the corresponding information to each body part involved within the
process. First, the lungs provide the airflow and pressure, that is the source of speech; then,
the airflow is modulated by the vocal folds and finally, the vocal tract articulators move and

deform to produce a specific sound (O’Shaughnessy, 2000).

The vocal tract is a duct composed of muscular and bony parts. Figure 2.1 shows a cross
sectional view of the vocal tract. One of the articulators which deforms the most during
speech production is the tongue; its different parts are: (4) the tip, (5) the blade, (6) the
dorsum. It consists of 12 interactive pairs of muscles and some passive tissues. Its position
and deformation is relevant in speech sound production. It is beyond the scope of this
work to discuss in detail the structure of the tongue. For a more detailed reference see for

example, O’Shaughnessy (2000); Fletcher (1992); Hardcastle (1976).

The vocal tract configuration varies according with the sound or phoneme to be pronounced.
The manner of articulation is concerned with the way the airflow is impeded by vocal tract

constrictions, (O’Shaughnessy, 2000). Most of the vowels, for example, are produced with
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FiGURE 2.1: Sagittal view of speech articulators of the vocal tract, (1) lips, (2) teeth, (3)

tooth root, (4) tongue tip, (5) tongue blade, (6) tongue dorsum, (7) epiglottis, (8) vocal

folds, (9) larynx, (10) pharynx, (11) velum, (12) soft palate, (13) hard palate. Reproduced
from O’Shaughnessy (2000).

a relatively open vocal tract while consonants require a more obstructed one (Stone and

Luvndb'erg, 1996). For example, stop or plosive cdnsonants, such as /p/, involve a complcte

closure and a subsequent released of a vocal tract obstruction (O’Shaughnessy, 2000).

2.3 Vocal Tract Modelling

The vocal tract shape can be modelled using different approaches, for example, in some specch
synthesis applications, the vocal tract has been modelled as a group of tubes interconnected
to generate speech sounds, where the vocal tract is defined as a filter and the vocal folds
as a modulator. Models of the vocal tract articulators have been developed using differcnt,
methods such as: principal component analysis (PCA), which is a statistical-based method;
and, area functions, which are sets of cross-sectional areas A4,, (for m =1,..., N) for N short

sections constituting the vocal tract.

Beautemps et al. (1996) reported a model of the vocal tract based on synchronised
cineradiographic pictures, video and audio sequences. They followed a guided principal

component analysis (PCA) procedure, to define tongue parameters. The analysis of the
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complete tongue contour was rejected due to the evidence reported by Gabioud (1994), where
the poor ability to describe the tongue tip from such an approach was shown. Therefore. the
tongue tip shape was isolated for fully describing its shape deformation. Globally, the tonguc
shape was predicted with a variance of 88% followed by a conversion from midsagittal shapes

to area functions.

A catalogue of area functions for 12 vowels, 3 nasals and 3 plosives was presented by Story
et al. (1996) based on MRI data. Using the same imaging method and electropalatography
data, Narayanan et al. {1997) reported the analysis of the vocal tract geometry. Using
ultrasound data collected for 11 English vowels in two consonant context (Stone et al.,
1997) determined the principal components of cross sections of tongue shapes. The [irst
two components covered 93% of the variance of the data. Using the same guided PCA
procedure followed by Beautemps et al. (1996), Badin et al. (1998) reported a 3D statistical
articulatory model of the vocal tract based on MRI data. DeLucia and Kochman (2000)

described a non-iterative algorithm for generating area functions.

In a later work, Beautemps et al. (2001) achieved a tongue variation of 96%. The articulatory
model was controlled by nine parameters: jaw height JH, tongue blade TB, tougue dorsuim
TD, tongue tip TT, tongue advance TA, larynx height LY, lip height LH, lip protrusion LI
and lip vertical position LV. A three-dimensional linear articulatory modelling of the tongue,
lips and face was reported by Badin et al. (2002). They derived this model from sets of
MRI data and profile video sequences, using a 1T MRI scanner to collect the midsagittal
MR images and separate sessions for the video acquisition. Their results revealed that 3D

features can be predicted from midsagittal images.

A different approach based on biomechanical theory was presented by Napadow et al. (2002).
It compares the tongue to a common engineering device, using an analog model. This model
defines what muscular elements are involved in tongue deformation, focussed on sagittal

bending movements of the tongue reaching the hard palate.

Engwall (2003) reported a 3D model of the tongue based on MRI, EMA and EPG data. The
3D MRI data set collected consisted of 54 images of 18 parallel axial, oblique and coronal

image subsets. The model was defined by six linear parameters: jaw height, tongue tip,
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tongue blade, tongue dorsum, tongue advance and tongue width. A total of 78% of the

variance was covered. Models of the palate and teeth were introduced as well.

For animation purposes, models for lips, jaw, cheeks and tongue have been developed. 'I'hc¢
most important aspect in animated speech is to make it look very realistic, so that expressions
and face movements in general should be well synchronised with the actual appearance of the
character as well as with the word or sentence to be pronounced. In this case the touguc is
modelled in a very rough way, because details about its deformation are not that important
because it is not very visible, but the interaction between tongue and lips is quite relevant.
Ma and Cole (2004) include in their research a 3D model for the tongue. Another approach
for modelling is the use of deformable template models. Deformable templates for lips, tonguec
and full mouth were developed by King and Parent (2005) for creating more realistic and
intelligible animated speech, covering coarticulation effects. However, this model was bascd
on muscle contractions, so that effects such as tongue/lips interaction are not fully described.
The tongue model includés information of the tip, dorsum and what they called left and right
wings; however, it does not include information of the root and dorsum, nor interactions with

teeth and lips.

Recently, Takemoto and Honda (2006) calculated vocal tract area functions from sagittal
images collected using a 3D cine-MRI technique. First, a vocal tract midline is calculated,
then, images are sectioned at 2.5mm intervals along the midline; finally, each section is
measured to calculate the corresponding area function. This 3D cine-MRI technique is basel
on a synchronised sampling method presented by Masaki et al. (1999), where a sequence of
trigger pulses synchronise the token repetition and the data acquisition. A total of 20 sagittal
planes and sets of 2D cine-MRI with 56 frames per slice were collected while 640 utterances

were repeated.

2.4 Methods for Acquiring Vocal Tract Data

Different methods for acquiring information of the vocal tract movements have been used.

These methods can be either invasive or non-invasive. Invasiveness refers to the physical
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interaction of the equipment used to collect data with the vocal tract articulators. Non-

invasive methods offer best results for studies for natural speech.

Some examples of invasive methods are those based on transducing, which is a technique
used for registering the articulatory movements. In an early paper, Muller and Abbs (1979)
describes the refinements made in a prototype system for transducing lip and jaw movements

in the midsagittal plane. This prototype is shown in Figure 2.2.

Ficure 2.2: Two dimensional transducer attached to the upper lip, lower lip and jaw.
Reprinted from Muller and Abbs (1979).
Perkell et al. (1992) developed two electromagnetic midsagittal articulometer (EMMA)
systems for transducing articulatory movements in a midsagittal plane on supraglottal
structures, during speech production. The principle of operation is based on the alternating
magnetic field movement transducer system. Magnetic fields pass through transducer coils,
fixed on the midline of the vocal tract articulators, inducing an alternating signal. This
signal is proportional to the distance between the transducer and the transmitter. Figure
2.3(a) shows a schematic midsagittal view of a subject with nine possible measurement points
(indicated by filled circles), corresponding to the interesting areas, in this case the effective
measurement area covers a radius of 75 mm. Figure 2.3(b) shows a three transmitter systen.
Transmitters are labelled with “1I’, side plates with ‘P’, head mount with ‘H’ and circular
collar with ‘C’. Some disadvantages of this method are: the preparing time and care needed
to attach the transducers; the misalignment errors produced; and its limitation to collect
information along the midsagittal plane. However, when the experiment is running the system
is reasonable efficient, providing large amounts of accurate information of the articulators

along the midsagittal plane (Perkell et al., 1992).
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FIGURE 2.3: Electromagnetic midsagittal articulometer. Reprinted from Perkell et al.
(1992).

Electropalatography is another invasive method that can give information about the tongue
and palate interaction. This method consists of an acrylic palate that covers the hard palate
and the inner and outer surfaces of the teeth (Stone and Lundberg, 1996). A specific number
of electrodes are embedded along the surface of this palate and these electrodes give the
information of the contact position of the tongue at different times during speech sound

production.

Most of the examples of non-invasive methods are imaging methods. The most commonly
used are: ultrasound, X-Ray, computer tomography (CT) and magnetic resonance imaging
(MRI). Ultrasound is a medical imaging method based on the application of high frequency
sound waves, typically between 1 and 15 MHz. This method works under the principle of
reflection. When an ultrasound pulse is sent into the body this pulse can either reflect or

penetrate depending on the boundary met. If it reflects then a strong echo is recorded;
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otherwise the pulse penetrates and a weak echo is obtained. An important clhiaracteristic
to consider when working with this method in speech research is the reflection coefficients.
The air-soft tissue boundary has very strong echoes so that imaging beyond air space is
impossible, for example the hard palate in the vocal tract. For imaging other parts of the
vocal tract including the hard palate, some speech researchers can use contrast agents with
different reflection coeflicients such as water while the subject is swallowing (Epstein and
Stone, 2005). Ultrasound machines can collect up to 30 frames per second (Stoue et al.,
1998). This method has some advantages (Pope, 1999): it does not have any known harmful
effect, the equipment is safe and portable and it is cheaper conipared with another medical
imaging methods. On the other hand, the associated drawbacks are: it can not penetrate boue
and it has almost 100% reflection at air interfaces. Thus, the number of speech articulators
that can be imaged by this method is limited, usually the tongue. Clarity of image is poorer
compared with other medical imaging methods. This method has been to study mainly the
tongue, Stone et al. (1998) examined the coronal section of the mid-tongue using ultrasound.
Recently Stone (2005) describes how to collect and analyse tongue ultrasound images in

coronal and sagittal planes to reconstruct 3D tongue surface motion.

X-ray imaging is based on the application of high-frequency electromagnetic radiation to
the human body. These X-rays can either pass through or be absorbed by different body
structures. These rays are exposed to a photographic film (Pope, 1999). This method can
image bones with an excellent resolution, contrary to soft tissues which have poor resolution.
A disadvantage of this method is that these radiations can be hazardous. Another method,
X-ray computed tomography (CT) is based on X-ray application but the attenuated X rays
are collected by detectors and converted to digital information processed by a computing
device for image reconstruction (Cho et al., 1993). This method has the same disadvantagc

of the X-ray imaging technique because of the X-ray application.

Magnetic resonance imaging is a technique commonly used in medicine for imaging the human
body. This technique has been demonstrated to be a safe imaging method with no known
side effects. MRI is based mainly on the application of magnetic fields and radio frequency

(RF) pulses to image a desired slice of the human body. Nowadays, different pulse sequences
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and acquisition techniques have been developed. A more detailed explanation of MRI is
presented in Appendix A. Advantages of using MRI over other imaging methods in speech
research are, first, superior image quality and contrast of soft tissues, whichi includes most of
the vocal tract articulators. In medicine, this advantage means that artificial contrast agents
need not to be used. Although in some special cases, gadolinium can be used as a contrast
agent. Second, the ability to scan any plane of interest at any angle and finally, its safcty
to the subject, although it is necessary to follow some controls and precautions, becausc ol
potential hazards related to foreign magnetic objects within the body. A review of safety of
strong, static magnetic fields is presented by Schenck (2000). Contrarily, this method has

some associated drawbacks in speech research such as:

1. The inability to show bone and teeth, which have a low hydrogen content, so that
interactions between with the vocal tract articulators can not be accurately studicd.
Consequently, air cannot be distinguished from bone or teeth on MRI images. However,
some contrast agents can be used for imaging such parts; for example, the teeth can be

impregnated with gadolinium to obtain MRI signals from them.

2. It has long scanning times; there is a trade-off between spatial and temporal resolutious,

for either static or dynamic studies.

3. The high acoustical noise associated with some scanners; this may confuse the subject
during the token pronunciation; however, different manufacturers, such as Phillips has

reduced the associated noise by 85% (Koninklijke Philips Electronics NV, 2003).

4. The vocal tract articulators are surrounded by air, which makes the MR signal sensitive
to susceptibility problems; these refer to the differences between magnetic propertics
of the air-tissue boundaries; although these differences are small, they may adverscly
distort the image if the magnetic strength of the main magnet is high. Usually scanncrs
with a magnetic strength of 0.5 to 1.5T are used in speech research to reduce these

susceptibility problems.
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2.5 Speech and MRI

MRI has been widely used in speech research due to its ability for imaging soft tissuc at
any orientation plane. It has been used for studying the vocal tract shape during the speech
production by means of static and dynamic studies. Static studies attempt to characterise
the position of the vocal tract shape while a phone is sustained. Baer et al. (1991) presented a
study of the vocal tract shape and its dimensions for vowels using magnetic resonance iimaging,.
This analysis was carried out obtaining vocal tract shapes associated with sustainable specch
sounds. Dynamic studies acquire data while the subject is pronouncing in a natural wayv a

token or sentence of tokens defined to study the vocal tract configuration in specific conditions.

Static and dynamic studies have a trade-off between spatial and temporal resolution. Superior
image quality is achieved in static studies; generally, in dynamic studies blurred images with
possible missing information can be generated. Long scanning times for speech purposes
are involvéd in both studies; sustaining a speech sound for a relatively long time could not
guarantee the fixed position of the articulators; while in dynamic speech, even with low
acquisition times and fast scanning techniques, it can not acquire enough frames to clearty
describe the articulator motion. Information of the deformation of the vocal tract articulators
can not be extracted from static studies. Although the subject is commonly well trained
for dynamic experiments, the exact reproduction of the token is not warranted. Engwall
(2000) presents a comparative study of static and dynamic speech. The differences analyscd
between the two studies, static and dynamic, were focused on jaw position, lip protrusion,

linguopalatal distance and tongue contours.

The term ‘image quality’ is referred in this work as the definition of boundaries on the image,
as well as the contrast between different structures on it, appreciated by visual inspection.

In our case boundaries between air, bone, and tissue should be well defined.
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2.6 Speech and Retrospective Gating

One of the most complex human organs studied in medical imaging research is the heart.
This organ has very specific motion conditions that make it one of the closest cases to specch

research on vocal tract motion.

The retrospective gating imaging technique consists of acquiring data from an imaging
scanner and an electrocardiogram (ECG) at the same time in an interrupted sequence.
A synchronisation stage between the data acquired is carried out. A sequence of inages
of different phases of the heartbeat cycle is the result obtained. Some cardiac imaging
approaches are based on this technique (Albers et al., 2003; Roerdink and Zwaan, 1993).

Some interesting characteristics of the heart motion research are:

1. Tts movement is periodic; a heartbeat is repetitive, approximately constant betwcen
heartbeats. This characteristic can not be completely assured due to different conditions

during the acquisition and mainly of the healthy conditions of the subject used.

2. Its fast movement; this means, the method used for imaging the heart must be fast
enough for reconstructing the complete heart cycle; reconstruction techniques are

required for overcoming technology constraints.
3. The heart is highly deforming, its muscles contract and expand deforming its shapec.
4. Short scanning times are required for a satisfactory reconstruction of heart movements.

5. Artefacts caused for breathing movements must be addressed.

There are many similarities between the heart motion and dynamic speech research. In this
work, a sequence of images for a subject pronouncing a specific nonsense word is desired. For
achieving this, images are acquired while the subject is repeating a selected word. Then, the
token repetition is considered as a periodic movement of the vocal tract articulators similar
to the heart cycle, as the word is the same and the subject is previously trained for achieving

the most constant possible repetition. Speech articulators move relatively fast. Most of the
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speech movements of the tongue have a bandwidth of less than 15 Hz, but occasional fast
movements of the tongue have a bandwidth range of 50-100 Hz (Perkell et al., 1992; Kiritani.
1986; Horiguchi and Bell-Berti, 1987). A satisfactory description of the tongue motion require

a repetition time (Tg) of 10 ms.

2.7 Dynamic MRI in Speech

Different approaches for studying the dynamics of the vocal tract articulators have been
carried out. A dynamic study was reported by Demolin et al. (1997). They adapted an ultra
fast implementation of the Turbo Spin Echo (TSE) sequence to achieve a dynamic continuous
monitoring of the vocal tract with a resolution of 4 images per second, using a 1.5 T Philips
Gyroscan with Tr of 250 ms and a partial Fourier acquisition of 60%, acquiring an image

matrix of 32 x 128.

A sﬁccessful technique for obtaining information of the dynamic behaviour of thie vocal
tré,ct shape was described by Mohammad (1999): the Southampton dynamic MRI method
(SDMRI). This method consists of acquiring, simultaneously, MR images and the speecli data
of a subject repeating a word. Images and audio data are synchronised off-line to reconstruct
multi-planar images of the vocal tract with an apparent sampling rate of 63 Hz, which is an
increase by a factor of 136 over the rate of the scanner used in the experiments conducted.
This sampling rate combined with the spatial resolution of the images allows movement
velocities of up to 12 cm/sec to be clearly distinguished, which is suitable for capturing most
articulatory movements. In addition, the maximum velocity of velar motion is 14.1 cni/sce,
but moderately fast tongue tip motion velocity is 80 cm/sec (Perkell et al., 1992; Engelke
et al., 1996). The subject does not need to be phonetically trained and is not involved in the

measurement procedure of the audio data, providing a more natural speech environment.

The use of tagged cine-magnetic resonance imaging (tMRI), which has tag lines used to view
muscle motion, has been used to create 3D models of the tongue motion during dynamic
speech (Stone et al., 2000; Dick et al., 2000; Stone et al., 2001). A mechanical model, that

represent local, homogeneous, internal tongue deformation during speech was developed by
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Stone et al. (2001). It was used a TR of 14ms, a field of view (FOV) of 24 cm and a slice

thickness of 7 mm.

Real time MRI has been used to study the dynamics of the vocal tract deformation by
Demolin et al. (2002). They used the Turbo Spin Echo Zoom sequence with an actual time
resolution of 4 to 6 images per second, with image matrices of 32 x 128, to show that this
technique could be used to study the relative movements of the main articulators involved in

speech production.

Narayanan et al. (2004) used spiral k-space acquisitions with a low flip-angle gradient ccho
pulse sequence, achieving an acquisition rate of 8-9images per second and reconstruction
rates of 20-24 images per second using a sliding window. They used a total TR of 5.5 ms with
a slice thickness of 5 mm. Complete images were acquired every 110 ms. They proposcd a
possible automatic segmentation and tracking of the real-time data usiﬁg Kalman snakes and

optical flow.

Recently, Takemoto and Honda (2006) repbrted a 3D cine-MRI technique based on a
synchronised sampling method presented by Masaki et al. (1999), where a sequence of
trigger pulses synchronise the token repetition and the data acquisition. This 3D cine-MRI
technique or multiplanar 2D cine-MRI was performed on a Shimadzu-Marconi ECLII’STS
1.5T PowerDrive, scanner capable of collecting 2D cine-MRI, with a multiplanar acquisition
rate of 30 frames per second. A total of 20 sagittal planes and sets of 2D cine-MRI with
56 frames per slice were collected while 640 utterance were repeated. They calculated vocal

tract area functions from such sagittal images.

In this work, to reconstruct the vocal tract shape a large set of data must be acquired.
Multiplanar acquisitions are required to achieve a 3D reconstruction of the vocal tract shape.
Subsequently, a large number of images are expected to be reconstructed. Manual labelling
of those images can be a very time consuming and tedious process. Thus, an automatic
extraction of those features of interest is desired. Hence, it is important to analyse differcut
available techniques for feature extraction and noise reduction. This will be introduced in

the next chapter, where feature extraction techniques are presented.



Chapter 3

Feature Extraction

3.1 Introduction

One of the most challenging task in computer vision is the image analysis. Analysing an
image involves detecting, extracting and understanding features in it according to a specilic
application such as remote sensing, security, medical and sea imaging. In medical imaging,
manual labelling of features is a good approach when the number of features to be extractaod
and the set of images are short. Otherwise this task could be really tedious and time
consuming. The tendency in dynamic speech studies is to collect a large number of images
to describe the dynamics of the vocal tract shape when a specific phoneme or sequence of

phonemes is produced. Hence, the importance of automating this task.

In this project a large number of images can be produced by using the SDMRI methoc.
These images tend to be noisy and blurred, due to the dynamic behaviour of the vocal tract
articulators. The aim of this project is the automatic outlining of the vocal tract shape in
midsagittal SDMRI sequences. As an automatic extraction is desired there are two aspccts
that need to be covered for the feature extraction technique to be used: It most provided
a model of the deforming vocal tract shape and no initialisation is required. This chapter

introduces the most common feature extraction techniques.

19
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3.2 Arbitrary Shape Feature Extraction Techniques

There is an extensive variety of feature extraction techniques. Generally, they need edgce or
binary images to achieve their task. Arbitrary shape extraction involves either the generation
of a parametric model describing such a shape or the deformation of a free contour to
achieve the desired shape. Techniques such as template matching, Hough transform, snakes,

deformable templates and active shape models are introduced in this section.

3.2.1 Template Matching

Template matching is a method of defining the position and pose of a template in an imagc.
This technique is based on finding the best match for a shape. However, this technique is
not suitable for deforming arbitrary shapes. Subsequently, a template is often stored as a
discrete set of points where rotation and scaling may not be optimally implemented. I'he
Mellin transform scales a template but its best performance is achieved with continuous
functions, while the Fourier Mellin transform scales and rotates a template but it has many
problems with discrete implementations (Nixon and Aguado, 2002). A problem using this

technique for the entire vocal tract shape is that this is a deforming shape.

3.2.2 Hough Transform

The Hough transform which was proposed by Hough (1962) is another technique that locates
shapes in images. This technique, originally used for extracting lines, circles and ellipses,
is based on the evidence gathering approach, where a transformation from the image space
into the parameter space (Hough space) is performed. The Hough transform does not require
any initialisation and is robust to noisy and occluded conditions. Although it has ligh
computational requirements, such requirements are much less than those needed by template

matching.

An extension of the Hough transform designed to find arbitrary shapes is the generaliscd

Hough transform (GHT), which was reported by Ballard (1981). This technique is suitable for



Chapter 3 Feature Extraction 21

extracting those shapes that cannot be defined by a parametric model. The shape description
used during the searching process is detailed in a table, called the R-table, which contains
distance and the angle values calculated for each point in the shape to a previously defined

reference point.

Other methods are based on object tracking. The vocal tract shape and even each of its
components can be stated as objects to be tracked along a sequence of images. Different
approaches derived from the Hough transform have been proposed for detecting moving
shapes in sequences of images. Nash et al. (1997) proposed a new technique for dynamic
feature extraction, the velocity Hough transform (VHT). This technique includes motion in
the evidence gathering process to detect moving parametric shapes. A disadvantage is that

it assumes constant linear velocity, which limits its application.

Grant et al. (2002) fused two evidence-gathering techniques, the VHT and the Fouricr-
descriptor template representation. This variant of the VHT was referred as the continuous-
template variant of the VHT or the CVHT. They used Fourier descriptors instead of a
discrete representation of the arbitrary shape, avoiding the effects of discretisation such as
distortions or missing points when the template is scaled or rotated. This technique requires

no initialisation or training, with a good tolerance to noise and occlusion.

The dynamic velocity Hough transform reported by Lappas et al. (2001), is a method for
tracking parametric objects, extending the velocity Hough transform (VHT) so that arbitrary
velocity is allowed. The problem is reformulated as tracking an object which changes its
velocity, scaling or rotating smoothly frame to frame. The problem is reduced to finding an
optimal path of an object within the parameter space. The optimal path is defined by mcans

of a dynamic programming method.

3.2.3 Deformable Templates

Deformable templates are a combination of shapes that are allowed to change in size and
orientation while retaining their spatial relationship. An important disadvantage of this

technique is that a model of the vocal tract cannot be provided. A possible analysis of the
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implementation of this technique could be performed by taking each component of the vocal

tract separately; however, a model of such articulators must be defined.

Deformable templates for lips, tongue and full mouth have been developed by King and Parent
(2005) for animation purposes. More realistic and intelligible animated speech was intended.
covering coarticulation effects. However, this model was based on muscle contractions, so

that effects such as tongue lips interaction are not fully described.

3.2.4 Snakes

An active contour or snake is a commonly used method for extracting flexible shapes. A
snake is an energy-minimizing spline guided by external constraint forces and influenced by
image forces that pull it toward features such as lines and edges (Kass et al., 1988). A
snake is defined as a set of points which aims to enclose a target feature, the feature to be
extracted, and is expfessed as an energy minimization process (Nixon and Aguado, 2002).

The functional energy Fgnqke is defined as follows:

1
Esnake = /:0 Eint('U(S)) + Eima,ge(’U(S)) + Econ(’U(S))dS R (3. 1)

where s € [0,1] is the normalised length around the snake, v(s) is the set of points, F;,,
is the internal energy, which controls the behaviour of the snake, Ejmqqe is image energy,
which attracts the snake to the selected low-level features such edges points and E.,y, is the

constraint energy that allows higher level information to control the snake’s evolution.

Initial approaches refer to closed and shrinking contours. The greedy algorithm (Williains
and Shah, 1992) for snakes gives a simple implementation of a snake that shrinks. I'he
initialisation must contain the shape to be extracted. The greedy method iterates around
the snake finding the local minimum energy at snake points. A problem with this method is

that the local minimum found may not always be the best minimum.

Snakes have two main disadvantages: the initial contour needs to be close enough to the

desired contour and they have poor convergence to concave boundaries. Some extensions of
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the snake algorithm evolve open and expanding contours. Cohen (1991) proposed a model
that makes the curve behave like a balloon, which is inflated by an additional force. These
expanding techniques could be useful for finding the vocal tract shape, considering that
the snake should expand through the lips and down to the larynx. There are many snake
techniques reported for extracting shapes. Geodesic active contours, reported by Casclles
et al. (1997), are based on active contours evolving in time according to intrinsic geomectric
measures of the image. The proposed approach is based on the relation between active
contours and the computation of geodesic or minimal distances. Yezzi (1997) described a
geometric snake model for segmentation of magnetic resonance imaging (MRI), computer
tomography (CT) and ultrasound medical imagery. This method is based on the defining
feature-based metrics on a given image. An interesting method is that presented by Coleu and
Kimmel (1997). This is based on the interpretation of the snake as a path of minimal length,
_orasa path of rninimél cost, between two end points for opened contours and one poiutf, [or
a closed contour. This approach needs two end points as initialisation. If a separate analysis
and detection of the components of the vocal tract is done, this method could be used lor
joining end points of such components. Xu and Prince (1998) developed a new external force
for active contours, called gradient vector flow (GVF), that is computed as a diffusion of the
gradient vectors of a grey-level or binary edge map derived from the image. This approach
largely solves the problem of poor convergence to concave boundaries as reported by ifs
authors. Snake methods have been applied to MR images, as reported by Makowski et al.
(2002), presenting an active contour segmentation method for 2D structures in MR imagcs.
This method cousists of two phases. The first phase, called the balloon phase, is defined to
find an approximate placement of contour vertexes. The second phase, snake phase, fine tuncs
the model obtained in the balloon phase. Anti-tangling features are introduced to improve

segmentation of complex shapes.

3.2.5 Active Shape Models

Cootes et al. (1995) described active shape models (ASMs) as a method for finding shapes in

an image from a model that can vary with global shape constraints making this the principal
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difference of this method with the active contour models (snakes). The technique relies in the
representation of the desired shape by point distribution models (PDMs). A PDM represcnts
an object as a set of labelled points. Applying limits to the parameters of the model enforces
global shape constraints ensuring that any new examples generated are similar to those in
the training set. ASM has been widely implemented in medical imaging segmentation and
shape extraction. In speech research, this method has been implemented by Matthews et al.
(2002) for parameterising lip image sequences. A more detailed explanation of this method

is described in the next Chapter.

3.3 Conclusions

In this Chapter, the most common feature extraction techniques have been introduccd.
Our problem is focused on the automatic extraction of an arbitrary and deforming shape.
However,: none of the techniques presented fully cover the requirements of our problem. The
combination of two feature extraction techniques is proposed in the following Chapter: active
shape models, which are used in the generation of a shape model, and the Hough transform
(HT) which uses the model to find the appropriate parameters and position of the shapc to

be extracted.



Chapter 4
Active Shape Hough Transform

4.1 Introduction

Different techniques can be used to extract arbitrary parametric shapes; most of them require
either some form of initialisation or a parametric model to describe the shape as presented
in the previous chapter. However, they do not satisfy the requirements for an automatic and

arbitrary shape extraction.

The combination of two feature extraction techniques is proposed in this thesis to achicve
such an extraction automatically: the active shape models (ASM’s) and the Hough
transform (HT). The ASM method provides a model of the target, which deforms accordingly

to the training data set, and the HT requires no initialisation whatsoever to locate a model.

This chapter describes the implementation of the ASM method as a shape description in
a new form of the Hough transform. First, a description of the generation of active shape
models is presented, followed by the implementation of this model using a new form of the
HT algorithm. Then, the application of this new feature extraction technique is applied to
magnetic resonance images for tongue shape extraction. Finally, conclusions drawn from this

technique are presented.

25
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4.2 Active Shape Models

The process of generating an active shape model (ASM) is defined as stated
by Cootes et al. (1995). First, a consistent set of landmark points is defined for each shape

in the training set. The vector ¥; denotes the n points of the ith shape in the set as follows:

_ T
Wi = (0, Yi0, Til, Yils - Tin—1, Yin—1)" ,

where the super index T denotes the transpose of the vector. Second, all the shapes must
be aligned. The alignment process between two shapes, consists of rotating, scaling and
translating one shape to align it with another selected shape; this is achieved by minimising

the weighted sum, given by:

E;(%5, ¥;) = (%5 — M(s5,0;)[¥5] — t;)T W (®; — M(s;,0;)[¥;] — t;),

where M denotes the transformation matrix associated with a # rotation, s and t represcnt

the scaling factor and the translating vector respectively. This matrix is defined as follows:
M(s, 8)[zx, yjk]T = ((scos @)z, — (ssin8)y,k, (ssin )z + (s cos G)yjk)T ,

t; = (txj,tyj, ...,tmj,tyj) ,

and W represents a diagonal matrix of weights, wy, for each point. These weights are defined

as follows:

n—1 -1
Wi = (Z VRH) 3
=0
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where Ry; denotes the distance between the points & and ! in a shape and Vg,, represcnts

the variance in the distance of the shapes.

The alignment of all the shapes consists of an iterative process, as defined in Algorithin 1.

The mean shape ¥ of a set of N shapes is defined as:

1 N
‘I’:N;‘I’ia (4.1)
1=

Algorithm 1 Algorithm for aligning the shapes.
Define a reference shape (¥;)
FOR (Shape (¥;))

Calculate the weighted sum Ej(¥j, ¥;)

DO
Calculate the mean ¥ shape as in Equation 4.1.
Mean shape parameters are normalised
FOR (Shape(¥;))
Calculate the weighted sum FE;(¥j, ¥)

WHILE (Process does not converge)

Thirdly, a principal component analysis is performed over the aligned set of shapes. The
covariance matrix S is calculated to capture the variation in the landmark points around the
mean shape as follows: N

S = % > dwidw;T,

i=1

where dW¥; is the deviation from the mean of each shape in the set defined by:

d0; = U; - T,

Then, the decomposition of the S matrix, Spx = A\xPk, defines its principal axes and modes
of variation denoted by the eigenvectors py and the eigenvalues Ay respectively. The number
of eigenvalues and eigenvectors considered in the model will determine the variation coverec.

The total variation is calculated as the sum of the resulting eigenvalues as:
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2n
Ar=) N,
i=1

and the variation of the k eigenvalue ) is defined by:

_ M

Vi =5

The variation desired to be covered by the model to generate new shapes defines the number of
the first N, eigenvectors and eigenvalues to be used. Hence, a matrix P composed by the first
N, eigenvectors and a vector b with N, elements (eigenvalues) weighting the collaboration
of each eigenvector are generated. The variation of these weights is limited, as recommendad

by Cootes et al. (1995), to the range:

~3v/ Ak < bk <3y

Finally, the active shape model is defined as:

T—-T+P - b. (4.2)

In the original formulation, the shape was fitted by an iterative refinement. An initial
estimate, pose and shape parameters are defined. These parameters are updated according
to an adjustment criteria, such as those derived from the image gradient information. In this

new implementation this model is used as a shape description in a new form of HT.

4.3 Combining Active Shape Models and the Hough

Transform

In this section an algorithm to find arbitrary shapes and deforming shapes is proposcd.

This algorithm uses an active shape model to find a target shape using a similar voting
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scheme, which characterises the Hough transform. A voting space is defined to accumulate
the centroid and model parameter information involved in the searching process. At the cend.
the maximum peak, will represent the solution. This solution must provide information not
only of the position of the shape, but also the shape parameters of the model including scaling

and rotating factors if required.

Search consists of performing a voting process over each edge image as described in
Algorithm 2. For each edge pixel, all possible centroids of all possible shapes are added into
a multi-dimensional accumulator space whose dimensions are chosen to represent poteutial
centroid positions, (z,y), plus the involved number of eigenvalues and possibly scaling and
rotating factors as well. Once all edge pixels have been processed, the largest peak in the
accumulator is considered as the solution. The Algorithm 2 addresses the feature extraction
of an active shape model using one eigenvalue, however, the extension to more eigenvalues
is straightforward. Clearly, the size of the accumulator depends on the number of steps into
which the various dimensions are discretised. An odd number of steps is suggested, so that

the mean shape is included in the searching process.

Algorithm 2 Pseudo code implementation of the ASM model implementation in a new form
of generalised Hough transform using one eigenvalue.
FOR (Edge Pixels (eg, ey))
FOR (Landmark point (Iz,{y))
FOR (nStepsEigi (b1))

Generate the model

Calculate centroid (cg,cy)

Accumulator|cg)[cy][b1] + +
Search in Accumulator for Maximum Peak

The voting process is illustrated with the example presented in Figure 4.1. A model with
four landmark points is considered in Figure 4.1(a); the four remaining tongue shapes shown
in Figure 4.1 are defined as the set of all the possible shapes to be considered in the searching
process. In Figure 4.2 the third edge pixel, marked in Figure 4.1(b), is considered as the (a)
landmark point of all the possible shapes, and the centroids of these shapes are added up in

the accumulator space. Here, the centroid is marked with a cross.

An ideal scenario, where the resulting shape in the voting process is examined is presented in

Figure 4.3. The centroid of the target shape is incremented until reach the value of 3, which
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FIGURE 4.1: Landmark and edge points defined to illustrate the voting process shown in

Figure 4.2. In (a) the four landmark points considered in the model definition are shown,

and the remaining images show the shapes and the edge points considered in the searching
process.

(a) (b) (c) (d)

FIGURE 4.2: Voting process. The landmarks and edge points considered in this example are

defined in Figure 4.1. The sequence represents the voting process for the first edge point of

the shape presented in Figure 4.1(b). The first edge point in the shape (outlined with a solid

line) is defined as the fourth ”d” landmark point for all possible shapes in the set, outlined
with dash lines; centroids are represented by a cross mark.

is the same number of the searching points.

The maximum peak is considered as the solution for this voting process. Such a peak will
define centroid position, scaling and rotating factors and the values of the weights for each

eigenvector considered in the model.

4.4 Application to MRI Data

The former algorithm was applied to the SDMRI sequences obtained by Mohammad (1999).
Images from such sequences are very noisy, hence, a noise reduction filter was used before the
algorithm was applied to obtain better results. Then, a model is generated for the tongue,
which is the most deforming articulator; this is used as a shape description for the new ASHT

algorithm. This algorithm was tested and the results obtained are presented.
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FIGURE 4.3: Example of voting process. The landmarks and edge points considered in this
example are defined in Figure 4.1(a),(b). The target is presented with solid outline, while
the dashed outlined shapes represent the matching shape in the process. The first image
represents the matching of the centroid of the target and the shape used, placing the point
(1) as the (a) landmark point. Then, the same edge point in defined as the (b),(c) and (d)
landmark points. In the second row, the edge point (2) is defined as the (a),(b),(c) and (d)
landmark points respectively, incrementing the same centroid position when the edge point
is placed in the (¢) landmark position. Finally, the third row shows the iterative process for
the edge point (3), the centroid, as mentioned before, is incremented in one when the (d)
landmark point is used. The ideal peak will have a value equal to the number of edge points.

4.4.1 Noise Reduction and Edge Detection

A common issue with some noise reduction techniques, such as Gaussian filtering, is the lost
of edge information. The anisotropic filtering technique, introduced by Perona and Malik
(1990), achieves different criteria: causality, immediate localisation and piecewise smoothing.
Consequently, since the preservation of the edge information is paramount, this filter has been

applied to SDMRI images presented in this work as reported by Perona and Malik (1990).

This technique is based on the scale-space technique, where coarser images are generated by

convolving the original image with a Gaussian kernel of variance ¢:

I(z,y,t) = Io(z,y) * G(z,y; ),
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where I(z,y,t) is the image sequence along time (), Iy is the original image, and G(x. y: t) is
the Gaussian function with variance ¢. Larger values of ¢ generate coarser images. ''he
resulting image should not introduce new features to the image, should keep the edge
information and achieve the inter-region smoothing avoiding collapsed regions and features

in the image.

The anisotropic diffusion equation is defined as follows:

I = div(c(z,y,t)VI) = c(z,y,t) Al + Ve - VI,

where div denotes the divergence operator, I; represents the image at scale time ¢, V is the
gradient operator, A is the Laplacian operator and c(z,y,t) is the diffusion coefficient. 'I'his

diffusion coefficient may satisfy the second and third criteria if a suitable choice is done.

The authors have shown that diffusion in which the conduction coefficient is chosen locally

as:

c(z,y,t) = g(IVI{z,y, 1)), (1.3)

will not only preserve, but also sharpen the edges of the image. They showed that Equation

4.3 can be solved iteratively on discrete images leading to:

If}'l = If,j +Aenv - wnI+ces-vel+cg-VEl +cw - VWI];]' (4.4)

where I' is the derived image, and I° is the original image, ) is chosen with an interval wherce
the stability of the numerical scheme is guaranteed as 0 < A < 0.25. N,S,E and W arc
the mnemonic subscripts for North, South, East, West. 57 (not to be confused with V the

gradient operator) is defined as follows:
UnlLij =1 —1Lij,

Vslij = liv1j — Lij,
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Velij =1L —1ij,

vwlij =L i1 -1,
and diffusion coefficients are given by:

¢, = 9l INIE 1),

cs,, =9 vsii; ),

¢, =9 VEll; ),

cly,, = ol VwILy ).

Different functions g can be used, as Perona and Malik (1990) suggested, the function uscd

in this project was:

9(VI) = exp=(IVII/E?) (4.5)

where K, is constant. Perona and Malik (1990) proposed to calculate a histogram of the
absolute value of the gradient throughout the image and set K to the 90% value of its

integral at every iteration.

Comparative results, with Gaussian filtering, are shown in Figure 4.4. By visual inspcction,
the noise reduction seems to be the same in both cases; however, edges in the Gaussian
filtering look more blurred than in the anisotropic one. Sharper edges are observed in the

neck, the larynx, the pharynx and the upper lip of the anisotropic filtered image.

The preservation of the edges is achieved by the c’}vi’j,cfgi‘j, ctEi’j,c%,Vi‘j images. These images
provide the gradient or edge information in the four different directions, north, south, cast
and west; ¢y and cg define the horizontal edges whereas the vertical edges are defincd by
cg and cw as shown in Figure 4.5. Differences between ¢y and cg are almost imperceptible
due to the definition of this coefficients in terms of the ynI; ; and 7gl;; differences. T'his
applies to ¢g and cy. The complete edge image with both, horizontal and vertical cdges

could be defined as:
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FicUure 4.4: Comparison between Gaussian (a) and anisotropic filtering (b). Gaussian

image was obtained using a window size of 4 x 4 and ¢ = 4.5. Anisotropic image was

obtained setting K = 90% and ¢ = 10. The anisotropic filtered image shows sharper edges,
in particular, the neck, the larynx, the pharynx and the upper lip.

H TRl
sdiaehy (sz:)l-cg) n <CE':CM/>

(a) CN (b) cs (L) CE ((l) Cw

FIGURE 4.5: Images ¢y, ¢s, cg and ¢w which contain the edge information in the anisotropic

filtering process. The images cy and cg give the horizontal edge definition whilst vertical

edge information is provided by cgp and cyw. Differences between ¢y and cg are almost

imperceptible due to the definition of this coefficients in terms of the yxJI;; and sl;;
differences. This applies to eg and ¢y .

This edge information is shown in Figure 4.6. As it can be observed, the edges for the hard

and soft palate are not defined; while information for the tongue tip and the tongue blade is

poor as well.

For comparison, results obtained for the application of the Sobel and Canny edge detectors

over the anisotropic filtered images are presented in Figure 4.7. The edges derived form the

filtered images have less spurious details due to the use of the noise reduction filter.



Chapter 4 Active Shape Hough Transform 35

FIGURE 4.6: The complete edge detection image of the first frame.

(a) Original image (b) Sobel edge detector of (¢) Canny edge detector
the original image of the original image
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(d) Anisotropic filtered (e) Sobel edge detector of (f) Canny edge detector
image the filtered image of the filtered image

FI1Gure 4.7: Comparison between Sobel and Canny edge detectors. DBetter results are

obtained with the anisotropic filtered image due to the noise reduction were spurious details

were reduced. Very similar results were obtained using the Sobel and the Canny edge
detectors on the anisotropic filtered image.
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4.4.2 Generation of the Tongue Model

The vocal tract shape is a complex and deforming shape. First, an analysis of the dynamic
behaviour of the vocal tract shape was performed. The vocal tract shape was extracted
from a set of 39 images, previously hand labelled by Mohammad (1999). From these images,
the labelled articulators were: upper lip, hard palate, velum, pharynx, epiglottis, tongue,
lower lip and the tooth root, which is not properly an articulator, but it was labelled in the

midsagittal images as can be observed in Figure 4.8.

Upper lip
Hard palate

Velum
Pharynx
Epiglottis

EEEE

Tongue

i

Lower lip and tooth root

FIGURE 4.8: Hand labelled midsagittal frame of the vocal tract.

A superimposition of the vocal tract shapes was performed in order to analyse the motion of
the articulators, in a visual manner as shown in Figure 4.9. Ior this sequence of images
(generated while a subject was pronouncing the word /pasi/) the upper lip shows less
movement than the lower lip, the hard palate, velum and pharynx appear almost static,
this can be inferred by the thin boundaries. By contrast, the epiglottis, tongue and lower lip
are the most deforming articulators. In fact, the tongue appears to be the most deforming

one.

The tongue, recognised in this sequence as the most deforming articulator, was chosen to be
the first articulator to be modelled. The tongue is formed by several muscles and four main
parts can be identified: the root, the tip, the blade and the dorsum. The set of landmark
points for the tongue shape is defined as the complete set of points describing it. However,
such set of landmark points must be consistent, so that, first, all the points from an specific
region of the shape are selected. These regions are defined by calculating the centroid of the

shape, drawing a vertical line, and defining an aperture angle on both sides of this line; the
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(a) (b)

FIGURE 4.9: Vocal tract shape. (a) Sum of all the vocal tract shapes outlined by Mohammad.

Thicker boundaries indicates motion and/or deformation of the articulators. (b) shows the

average of the sum and with different grey level where the motion and deformation of the
articulators can be observed.

set of points contained within the area delimited by this angle is discarded; thus, the set of
points excluded from the region delimited by these angles are the tongue shape points to be
considered, as illustrated in Figure 4.10. Then, all the shapes are redefined with the same
number of points. This number is defined as the maximum number of points for a shape in
the training set. Interpolation and smoothing operations are applied to each shape in the

set.

FIGURE 4.10: Selection of vocal tract shape points. The centroid of the shape is calculated,
then a vertical line is drawn and the angle 6(45°), on both sides defines the set of points to
be discarded.
Each tongue shape is defined, by 61 points. An example of a tongue shape generated by the

reduction step is shown in Figure 4.11b and the result obtained from a posteriori interpolation

and smoothing is presented in Figure 4.11c.
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The next step is to align the set of shapes. In order to appreciate the difference between
the aligned and non-aligned tongue shapes, the sets of images are superimposed and shown
in Figure 4.12. The aligned shapes, Figure 4.12b, are more compact than the non aligned

shapes Figure 4.12a.

N N N

(a) (b) (c)

FIGURE 4.11: (a) Original tongue shape, extracted from the outlined data set generated by
Mohammad. (b) Reduced tongue shape (c) Interpolated and smoothed tongue shape with
61 points

e o

(a) Original tongue shapes. (b) Aligned tongue shapes.

FI1GURE 4.12: Superimposed tongue shapes.

The principal component analysis is performed on this set of aligned shapes and the covariance
matrix is calculated. The principal axes of the set are described by the eigenvectors and
eigenvalues of this matrix; these describe the most significant modes of variation. The total
number of eigenvalues and eigenvectors calculated were 122, summing a total of 120.39.
According to Table 4.1, the first eigenvalue gives the higher variation with 72% and 90% of

the total variation is covered by the first two eigenvalues.

When varying the contribution of the eigenvectors in the shape generation, it can be

appreciated how each eigenvalue modifies certain characteristics of the shape. For exainple,
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39

‘ A ‘ Eigenvalue | Percentage ‘ Accumulated percentage

M\ | 87.399 72.29 72.29
Xa | 21.854 18.07 90.37
X3 | 2.8542 2.36 92.73
Xi | 1.5748 1.30 94.03
Xs | 1.3519 1.11 95.15
de | 1.1174 0.92 96.07

TABLE 4.1: Eigenvalues of the covariance matrix derived from the aligned tongue shapes.

if tongue shapes are generated using just one eigenvalue the tongue blade is raised toward

the hard palate as shown in the first row in Figure 4.13.
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FIGURE 4.13: Tongue shapes generated using one eigenvalue and 9 different steps. It can

be observed how the tongue blade is raised towards the hard palate.

Figure 4.14 shows the training set of images. According to these results, this algorithm

provides good results since the set of images generated when varying different eigenvalucs fits

satisfactorily the tongue shapes of the training set.

This algorithm was tested using the set of images generated by Mohammad using one mode

of variation with 11 steps. Some results are presented in Figure 4.15. As it can be obscrved,
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FIGURE 4.14: Sequence of training tongue shapes.
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tongue shape for frame 05 was well fitted, however, results for frame 09, as multiple candidates

where present, a wrong one was chosen.

(d) ASHT 01 (e) ASHT 05 (f) ASHT 09

FIGURE 4.15: The ASHT algorithm was tested using one mode of variation model in 11

steps First row shows three edge images selected from the resulting 39 frames of the SDMRI

sequence generated by Mohammad. Second row shows results of the application of the HT

combined with the ASM method in an isolated analysis. The resulting tongue shape is
superimpossed in the edge image.

4.5 Conclusions

Although this new form of the HT gives good results with some images, it can go terribly
wrong, when selecting incorrect positions and tongue shapes due to missing information,
noise or the existence of multiple candidates. In this case, any peak can be chosen, and very
different solutions can be provided, since there is no criteria to chose a specific peak. This
problem arises from the fact that each image in the sequence is considered individually, or
‘locally’, with no regard whatsoever for the globally best solution. Hence, it is necessary
to restrict the search in some appropriate manner. One possibility is to assume that all
the parameters vary smoothly over the sequence. One particular extension of the Hough

transform, the dynamic Hough transform (Lappas et al., 2002) does exactly this, and can be
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used to solve the problem. The adaptation of this technique for our purposes is covered in

the next chapter.




Chapter 5

Active Shape Dynamic Hough

Transform

5.1 Introduction

The active shape Hough transform (ASHT) is a new form of the Hough transform described
in the previous chapter. It uses an active shape model as a shape description to find an object
shape within an image by using a voting process. An accumulator is generated during this
process and the maximum peak generated is selected as the optimal solution. However, this
fails to give the correct solution when multiple peaks are generated since no peak discarding

scheme is defined.

The global analysis of a sequence of images exploits both spatial and temporal information
to achieve a satisfactory shape extraction in the presence of multiple candidates in the voting
space. This analysis is performed by some techniques such as velocity Hough transforin
(VHT) and the dynamic Hough transform (DHT). These techniques provide a good responsc
in noisy environments and good detection of distorted and occluded objects based on an

evidence gathering process.

The VHT technique described by Nash et al. (1997) is an algorithm for tracking paramctric
shapes with linear or constant velocity. Although the VHT can give good results in some

43
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scenarios, usually the object shapes to be tracked cannot be described with a parametric

model or the velocity cannot be modelled.

The DHT technique reported by Lappas et al. (2001), extends the VHT to track objccts
with arbitrary velocity and motion. The problem is reformulated as tracking an object which
changes its velocity, scaling or rotating smoothly frame to frame. The problem is reduced
to finding an optimal path of an object within the parameter space. The optimal path is
defined by means of a dynamic programming method. Although this technique reduces the

computational cost comparing to the VHT, this is still high.

However, an object may vary or deform its shape along a sequence. In this chapter an
extension of the DHT is presented. This algorithm is capable of tracking arbitrary and

deforming shapes on a sequence with no initialisation required.

This chapter presents first, a brief introduction to DHT, followed by the adaptation of this
method for arbitrary shape extraction on image sequences. Finally, the application of the
new algorithm on magnetic resonance images for extracting tongue shapes using one and two

eigenvalue models is described.

5.2 Dynamic Hough Transform

The analysis of image sequences for object boundary tracking has been approached with
different Hough transform extensions. The velocity Hough transform (VHT), reported by
Nash et al. (1997), is a method for tracking parametric shapes with constant or linear velocity
in a sequence. However, this method is limited not only to parametric shapes with constant
velocity but also for its inherent high computational cost. The dynamic Hough transform,
reported by Lappas et al. (2001), is an extension of the VHT with no constant vclocity
constraints. The DHT method is focussed in the global analysis of the image sequence

providing tolerance to noise and detection of disconnected segments of its boundary.

The general process of applying the DHT in a sequence is illustrated in Figure 5.1. The

method works on binary images so that, first, an edge extraction must be performed over
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the image sequence. Then, new Hough transform using an active shape model as shape
description is applied and a set of accumulator spaces is generated for each image. The
dimensionality of these spaces will depend on the number of shape features to consider in
the evidence gathering process, such as centroid position (x,y), rotating and scaling factors
and shape parameters. Then, the DHT is applied considering the appropriate eunergy cost
function and constraints to control the movement of the centroid and the deformation of the

shape. The optimal path is calculated by means a dynamic programming formulation.

Lappas et al. (2001) defined the cost function for this method based on the path cohcrence
function reported by Sethi and Jain (1987). This function is based on smooth changes in
velocity and direction and considering as candidates for the trajectory motion those points
with the maximum peaks. The first constraint adds up the peak values of the accunulator

space as follows:

N
Ey =) Peaks, (5.1)
t=1

where Peak; represents the peak value on the ¢t frame. The second constraint restricts abrupt

changes in direction by:

N—-1
Ey= |0i-1— 64, (5.2)
t=2

where 6; represents the direction between ¢ and ¢ + 1 frames. Finally, the third constraint

limits big changes in velocity by:

N-1
E3 = Z |Vie1 — Vi, (5.3)
t=2

where V; represents the velocity between ¢ and ¢+ 1 frames. These constraints define the cost

function as follows:

E = w1E1 - ’LU2E2 - ’LU3E3 ; (5.4)
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Edge
Extraction
Image Binary
Sequence Image
Sequence

Voting
Space
Image 02

U

Y

FIGURE 5.1: Process to track arbitrary deforming shapes in a sequence using the new form of

the Hough transform and the new adaptation of the DHT. First, binary images are generated;

then, the HT method is applied to generate multidimensional voting spaces for each image.

Finally, the new adaptation of the DHT is applied using a dynamic programming formulation
to generate the optimal path.

Voting
Space
Image 01

)

Optimal path
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which has to be maximised. The wi, ws and w3 values are the corresponding weights defining
the contribution of each energy term. These weights are defined to support changes in velocity

or direction.

The problem is focussed on solving the optimal motion trajectory, which maximise
Equation 5.4 using a time delayed dynamic programming algorithm. This algorithm is applicd
due to the characteristics of smooth changes between frames, where double state variables
are defined to accomplish the second constraint defined by Equation 5.2, and the third one by
Equation 5.3. The relationship of such parameters and constraints is illustrated in Figure 5.2.

Here, two-element state vectors are defined and the energy function F;_; is given by:

Et_l(ut_l,ut,utﬂ) = 'wlPeakt — w2|0t_1 bt 9t| — 'w3|vt_1 et ’U'[;|. (5 5)
v T

t+1
Vi

»
'

U, u, U, u

FIGURE 5.2: Relationship among parameters: peak, velocity and direction, reprinted from

Lappas et al. (2001). Two double element state variables are defined, first variable is

composed by (u¢—1,u;) and the second one by (uy, usy1). The cost function is then based ou

a 3 frame basis with two-element state variables. The cost function for these two variables
is defined by Equation 5.5.

The dynamic programming formulation used by Lappas et al. (2001) is that reported
in Raphael (2001). This introduces the concept of super states as the aggregations of

states. An initial coarser optimisation is performed using these superstates and refining the

optimisation by an iterative process until the optimal path is defined for single states. This
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process is illustrated in Figure 5.3. In Figure 5.3(a) the traditional formulation of dyvnamic
programming is presented, where all the possible paths are considered. In Figure 5.3(h) the
superstates are defined as aggregations of three states. The optimal path for these superstates
is defined and represented by a bold line. Then, the superstates are refined into smaller
aggregations as illustrated in Figure 5.3(c); the advantage is that in the refining process all
the remaining superstates are not considered anymore. This refining process is iterated until

the global optimal solution is determined as shown in Figure 5.3(d).

o]

I

(a) (b)

FIGURE 5.3: Coarse to fine dynamic programming formulation. In (a) the original dynamic
programming scheme is presented. In the remaining graphs, a possible progress of a coarse
to fine formulation is presented. The definition of super states is represented by rectangles
containing different states. First superstates are defined in (b) and the optimal path for
these supervariables is determined and shown with a solid bold line. A finer optimisation is
performed in (c). Finally, the optimal path is determined in (d). The super states defined
in the optimal path are refined iteratively until the optimal path is formed by single peaks.
Reprinted from Raphael (2001).

5.3 Combining Active Shape Models and the Dynamic Hough

Transform

Some Hough transforms are based on tracking geometrical shapes, so that a parametric modecl

can be used. However, the extension for tracking arbitrary shapes has been addresscd by
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some researchers. The generalised Hough transform reported by Ballard (1981), is a mcthod
of tracking arbitrary shapes where the shape description is contained in an R-table. This
table, contains the shape description in terms of the distance and the angle formed between

boundary shape points and a reference point.

Zamora et al. (2003) reported a combination of the GHT with active shape models for
detecting the cervical and lumbar vertebrae using a two step approach: first, the application
of the generalised Hough transform to find an estimate for the position of the desired shape:
and second, the application of the ASM method to refine the extraction, using the estimate
provided by the GHT as initialisation. They used a customised generalised Hough transforn,
as reported by Tezmol et al. (2002), where the characteristic R-table of the shape is gencrataed
using a mean of 50 templates obtained from a manual land marking process. The R-table
contained information for different (r,cr) values, where r and « are the distance and the angle,
respectively, between edge points and a reference point. This approach applied the gencralised
Hough transform with a rigid template and consequently a second stage was needed to deform
such a template to fit it as possible to the target shape. In a later work, Howe et al. (200.1)
reported a three stage process. The first two remain as previously reported in Zamora ct al.
(2003), and the third stage included the isolated application of the active shape model for

each single vertebrae.

In this thesis, a new combination of the dynamic Hough transform and the new form of the
Hough transform using the active shape models as a shape description is presented. 'I'his
technique tracks arbitrary and deforming shapes in image sequences. The complexity of this
method will depend not only on the number of modes of variations considered in the searching

process but also on the scaling, translating and rotating degrees of freedom.

5.4 Application to MRI Sequences

Initially, the searching process for the tongue on MRI sequences is tested. First, the ASHT
algorithm is applied to each edge image in the sequence to generate its corresponding

accumulator space. As it was mentioned in Chapter 4, the first two modes of variation
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comprise the 90% of the variation of the tongue shape. In the formulation presented in this

section two modes of variation are considered in the searching process.

Therefore, the voting space for this sequence is then defined as a multidimensional space
which includes the centroid position (z,y), the first two modes of variation (by, by), and the

scaling factor S. An additional variable required is the time dimension.

The DHT is based on the assumption that changes in the Hough voting parameters such as
position, shape descriptors and scaling factor vary smoothly form frame to frame, so that
constraints for each parameter can be defined. Analysing the MRI sequence generated by
Mohammad, it can be observed that even though the tongue is not suffering a translational
motion, it is deforming. This deformation causes the centroid of the tongue of two consccutive
frames to change its position, since the tongue is deforming smoothly from frame to frame

the centroid position and the shape parameters change smoothly as well.

The cost function is based on smooth changes of the centroid position, the scaling factor and
the first mode of variation for the set of points representing the maximum peaks. The first
constraint considers the maximum peaks in the voting space, as defined in Equation 5.1, as

follows:

N
E; = ZPeakt, (5.6)

t=1

where Peak; represents the peak value on the ¢ frame. The second constraint restricts abrupt

changes in the first mode of variation by:

N-1
Ey= ) |bl;_y —bl4, (5.7)

t=2

where bl; represents the mode of variation between the t and ¢t+1 frames. The third constraint

limits big changes in centroid position or centroid velocity, as defined in 5.3 as:

N-1
E3 = Z Vi1 — V4, (5.8)
t=2
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where V; represents the velocity of the centroid between the ¢t and ¢ + 1 frames. Finally. the

fourth constraint limits big changes in the scaling factor by,

N-1
Eq=) |8-1— 8, (5.9)

t=2

where S; represents the scaling factor between the ¢t and t 4+ 1 frames. These constraints

redefine the cost function as follows,

E = ’LU1E1 - 'U.}2E2 - w3E3 - w4E4, (5.10)

which has to be maximised. The wi, ws, w3 and wy values are the corresponding weights
defining the contribution of each energy term. These weights are defined to support larger

or smaller changes in the corresponding features.

This method was applied on the MRI sequences generated by Mohammad using onc mode
of variation in 11 steps. Initially, the standard dynamic programming formulation was
performed to find the optimal path. Comparative results between the isolated and the glohal
analysis are presented in Figure5.4. As it can be observed, results obtained from the global
analysis improved those obtained by the isolated analysis. This is more evident in results for
frame 09, where in the presence of multiple candidates a wrong one was chosen, while in the

global analysis the correct candidate was selected.

Although results obtained from the ASDHT algorithm were better, the computational cost
due to practical implementations was high. The simulations were performed using a PC with
processor Pentium 4 at 4 GHz and 1.5 GB in RAM. The initial slow version of this algorithin
was implemented in Matlab using the traditional formulation of dynamic programming with
execution times in the order of days; for example, finding the tongue shape in edge images of
128 x 128 pixels with 11 steps for the first eigenvalue was achieved with an execution time of 28
hours. The reimplementation of this algorithm in the C language and using the formulation
of the coarse to fine dynamic programming decrease the computational time of the same

simulation mentioned in just 37 seconds, making the method more practical. Detecting the
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tongue shape in sequences of 39 frames of 56 x 56 pixels using a model of two eigenvalues
and 9 steps for each eigenvalue variable and 9 step for scaling steps was achieved with an

execution time of 2.7 hours.

(g) ASDHT 01 (h) ASDHT 05 (i) ASDHT 09

FIGURE 5.4: Comparative results between the ASHT and the ASDHT algorithms applied
to full edge images. The algorithms were tested using one mode of variation model in 11
steps. First row shows three edge images selected from the resulting 39 frames of the MRI
sequence generated by Mohammad. Second row shows results of the application of the HT'
combined with the ASM method in an isolated analysis. Finally, third row shows the results
of extracting the tongue shape during the global analysis of the sequence by applying the
ASDHT algorithm. The resulting tongue shape is superimpossed in the edge image.

5.5 Conclusions

In this chapter an algorithm to extract arbitrary and deforming shapes in image sequences

with no initialisation required was described. This algorithm performs a global analysis and
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it is focused on the definition of an optimal path. The optimal solution was obtained by
applying a cost function which considers the maximum peaks in the voting space and smooth
in changes in feature parameters such as centroid position, modes of variation of the shape
and scaling factors. The computational cost was greatly reduced when the coarse to fine
dynamic programming formulation was adopted for finding the optimal path. Preliminary
results were presented to show how this method overcome the difficulties to chose the most
appropriate candidate in the voting space. A more extensive evaluation is presented in the

next chapter.




Chapter 6

Experimental Evaluation

6.1 Introduction

In previous chapters the active shape Hough transform (ASHT'), which is a new form of the
Hough transform (HT'), has been described. This method uses an active shape model (ASM)
as a shape description in an evidence gathering process which generates a multidimensional
voting space. This process is performed over an individual edge image where the maximum
peak in the generated accumulator space represents the optimal solution; however, when

multiple solutions are present, any candidate can be chosen.

These difficulties can be overcome by performing a global analysis of the image sequence
using an adaptation of the dynamic Hough transform (DHT). This new adaptation provides
an optimal solution by defining a cost function to track object shapes with smooth changes

in shape, position, and scaling factor.

This algorithm, as many Hough transform extensions, suffers from high computational cost.
In this project, some implementation aspects contributed to increase this cost; for example,
the programming language used to develop the application, the multidimensional voting space
defined and the dynamic programming formulation used. In this project the algorithms were
initially implemented in Matlab, followed by a reimplementation in the C language to improve
the performance. The voting space was large since each analysis was made over sequences of

o4
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more than 20 frames each. Furthermore, it was necessary to consider a represeutative munber

of steps for scaling and eigenvalues which controlled the modes of variation of thie model.

This algorithm was tested using midsagittal MRI sequences of the vocal tract. In these
sequences the subjects were pronouncing the token /pasi/, which requires most of the vocal
tract articulators to move and deform. An analysis of the movements made by the diflerent
articulators has shown that the tongue is the most challenging articulator to be tracked,
therefore, the analysis was initially focused on the tongue. In advance, it can be said that
results demonstrated the ASDHT method does find the tongue shape on MRI scquences aud
the model is shown to be easily extended as information of the lips was included in the tongue

model. The algorithm was tested to find these shapes.

The performance of the ASDHT algorithm was tested on different sets of data: MRI sequences
of seen or training data, unseen data sets and synthetic tongue image sequences. The tests
performed on the training images measure the performance of the method on the ground-
truth data set as it is referred in this document. Unseen images, which are images of a
different subject, were employed to evaluate the performance of the algorithm on unscen
data sets. Synthetic images were generated using the tongue model described in previous
chapters to measure the effectiveness of the algorithm to find the correct shape over a known

set of eigenvalues.

In this chapter the automatic extraction of the deforming tongue shape in midsagittal MR
sequences is evaluated. First, a brief introduction to the chamfer distance metric is given,
this was adopted as a metric to measure the effectiveness of this method. Then a description
of the experiments is detailed, followed by the results for each experiment also including an
evaluation of the algorithm under noisy conditions. Subsequently, the results for the extcnsion
of the model which includes information of the lips are detailed. To conclude, a summary of

the evaluation of the experiments is presented.
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6.2 Chamfer Distance Metric

In terms of evaluation, simply comparing the resulting eigenvalues is not effective, because
the difference between eigenvalues does not give an estimation of the variation in the final
shape. The comparison needs to be made in the image plane, comparing how close the
estimated shape is to the tongue shape. To measure the effectiveness of the algorithms, a
chamfer distance metric was used (Borgefors, 1988). This metric has been demonstrated, as
Thiel and Montanvert (1992), to be a good approximation of the Euclidean distance between
neighbouring pixels with a ‘low computational cost’. This is achieved by placing an estimated
shape over a distance image of the target shape. First, a distance image of the edge image was
generated. In a distance image each position for a non-edge pixel is assigned with a distance
value to the nearest edge pixel and all the edge pixel positions are assigned with a zero value.
For example, Figure 6.1(a) shows an edge image and Figure 6.1(b) its corresponding distance
image, where the edge pixel positions were assigned with zero (in black) and the non-cdge
pixel with a distance value (in grey). The closer to the edge pixels the smaller (darker) the

value.

The distance value was defined sequentially with 3 x 3 forward and backward masks, as
described by Borgefors (1988). The mask was centred on each pixel of the image and its
value will be the minimum of the set of sums of the corresponding pixel in the image and the
mask. Once a distance image has been calculated, the estimated shape is placed over it. The
difference (or deviation) of the estimated shape from the target shape, that will be referred

as the error value, is calculated as the root mean square (rms) average as follows:

where N is the number of points in the resulting tongue shape and d; is the corresponding
distance value in the distance image for the ith pixel. The final division by ¢; is to compensate
the minimum distance value in the mask. In Figure 6.1, a target shape is shown in (a), its

corresponding distance image in (b) and the estimated shape in (¢). The estimated shape
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is placed over the distance image as shown in (d) and the error value is calculated. In this
case the error is 1.59, and the result is superimposed on the target image in (e), to visually
appreciate the difference between both shapes, the target shape is outlined in grey and the

fitted result in black.

(\ . f:’_h\
()

(b) (c) (d) (e)

FIGURE 6.1: Tongue shape of the frame 39 of the training data sequence and it is

corresponding chamfer distance image. The estimated shape (c¢) is superiinposed on the

chamfer distance image (d). The error calculated for this match is 1.59; the difference

between both shapes is appreciated in (e) with the target shape in grey and the fitted result
in black.

6.3 Ground-Truth Data Set

The evaluation of the algorithm on the ground-truth data set was designed to performn
experiments on isolated tongue shapes and full edge images. This set comprises a sequence of
39 images from subject PJ previously labelled by Mohammad (1999). The size of the original
images was 128 x 128 pixels. The first experiment tests the extraction on isolated training
tongue shapes; the second experiment used the full edge images. In general, different scaling
factors were tested using models with one and two eigenvalues covering 72 and 90% of the

tongue variation respectively.

6.3.1 Isolated Tongue Shapes Experiments

In the isolated tongue shape experiments, the tongue shapes were extracted from the isolated
hand-labelled tongue data used for training. The term ‘isolated’ is used to define only the
edge points defining the tongue shapes. Therefore, these experiments will evaluate the fitting
of the tongue model to the target, since the image data set is clean with no noise on it (each

non-tongue edge pixel is considered as noise in these experiments). However, it is important
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to note that each original tongue shape was rotated, scaled and translated to align all the
tongue shapes with the corresponding mean shape, which generated small variations from

the original set of labelled tongue shapes.

In these experiments, the multidimensional voting space was defined as a four dimensional
space with Npgws X Neois X Nge X Nbp where N,gys and Ngops denote the size of the mage.
N, is the number of discrete scaling steps and Nb; denotes the number of discrete steps for

the first eigenvalue.

Instead of employing the whole image, windows of 56 x 56 pixels containing the tonguc
shapes were extracted from the full size images to reduce the size of the accumulator space.
The number of discretisation steps for each parameter was chosen as non prime numibers o
allow the definition of clusters during the dynamic programming stage. The scaling factor
was used with 9 steps over different ranges. Different step values were tested and 0.02 found
to be large enough to vary the tongue shape smoothly. The shape parameter, denoted by b,
was allowed to vary in the range —3v/A; < b1 < 3v/A, as suggested by Cootes et al. (1995),
as suitable limits to generate new shapes. The number of discrete steps for the first eigenvalue
was defined in 9 steps as well, which is an odd number to include the mean shape during

each analysis, and with the same number of steps in both ranges (low and high).

Different ranges for the scaling factor were tested as shown in Table 6.1. In experiment 1.A
no scaling factor was used. As can be observed, the minimum average of error was obtained in
experiment 1.B. The corresponding results for each experiment in a frame by frame basis can
be appreciated in Figure 6.7 and the sequence of results for the experiment 1.3 is presented
in Figure 6.3. The target tongue shapes are outlined in grey and the resulting fitted models
are presented in black. As mentioned in Chapter 4, the first mode of variation of the tongue
shape model controls the blade part of the tongue. Therefore, frames from 27 to 38 where
the main variation of the tongue is in the blade part of the tongue are well fitted. In coutrast,
the tongue tip in frames 15 to 23 cannot be entirely fitted. The minimum error of 0.69 for
this experiment was produced for frame 27 and the maximum error of 1.60 was obtained [or
frame 39. Frame 16 is the second worst match obtained with an error of 1.51 and visually it

can be appreciated how the tip of the tongue cannot be well fitted. It is important to mention
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‘ Experiment ‘ Scaling factor ‘ Error ‘
1.A No scaling 1.16
1.B From 0.92 to 1.08 in steps of 0.02 | 1.05
1.C From 0.96 to 1.12 in steps of 0.02 | 1.12
1.D 1-1.16 in steps of 0.02 1.13

TABLE 6.1: Average rms error (chamfer distance) for different scaling factors used in the
first set of experiments using a one eigenvalue model.

Isolated Tongue Shapes - One Eigenvalue
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FIGURE 6.2: Average rms error (chamfer distance) for each frame using different scaling
factors for experiment on isolated tongue images using a one eigenvalue model. Minimun
error for experiment 1.B was found in frame 27,while the maximum error was found for frame
39.
that the tongue shapes were reduced during the model generation to generate a consistent

set of points to define the tongue shape. For this reason the ends are not well matched.

In experiments for the two eigenvalue model a different testing scheme was adopted. Based on
the evidence that with a one eigenvalue model a very good approximation of the position and
shape of the tongue was obtained, the value of the first eigenvalue was restricted according

with that results as follows:

=3V Ak +stepBi(B1 — 1) < by < =3/ A, + stepBi(B; + 1),

where B is resulting step counter of the first eigenvalue in the fitted model and stepB; is
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FIGURE 6.3: Superimposed results obtained for the sequence of extracted tongues for the
experiment 1.B. The tongue tip is not well fitted by the one eigenvalue model in frames from
15 to 23, while the tongue blade is well fitted in most of the frames.

the step value used in such experiments. The second eigenvalue, bs, is allowed to vary in the

range —3v/ Az < by < 3v/ Mg

A summary of the results obtained for the two eigenvalue model are presented in Table 6.2
and the results in a frame by frame basis for such experiments are shown in Figure 6.4. The
sequence of results for each tongue (grey) with the fitted model (black) superimposed are
presented in Figure 6.5. As can be observed frames from 1 to 3 and from 15 to 20 are fitted
better than in the one eigenvalue experiments shown in Figure 6.3. However, frames from 29
to 38 were fitted better in the one eigenvalue experiments. Although the algorithm produces
better results for some frames using the one eigenvalue model, the error generated for the

sequence 1.H is less than the one obtained for the 1.B.
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Isolated Tongue Shapes - Two Eigenvalues
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FIGURE 6.4: Average rms error (chamfer distance) for each frame using different scaling

factors. The minimum sequence error was calculated for experiment 1.H.
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FIGURE 6.5: Superimposed results obtained for the sequence of extracted tongues for the
experiment 1.H.



Chapter 6 Experimental Evaluation 62

‘ Experiment ‘ Description Error ‘
1.E Scaling model from 1 to 1.16 in steps of 0.02 1.11
1.F Scaling model from 0.92 to 1.08 in steps of 0.02 and Restricting bl | 1.01
1.G Scaling model from 0.96 to 1.12 in steps of 0.02 and Restricting bl | 0.98
1.H Scaling model from 1 to 1.16 in steps of 0.02 and Restricting bl 0.88

TABLE 6.2: Average rms error (chamfer distance) for different scaling factors used in
the first set of experiments 1 for the two eigenvalue model.

‘ Experiment | Scaling factor ‘ Error ‘
2.A From 0.92 to 1.08 in steps 0.02 | 1.93
2.B From 0.96 to 1.12 in steps 0.02 | 1.46
2.C 1 - 1.16 in steps 0.02 1.52

TABLE 6.3: Average rms error (chamfer distance) for different scaling factors used in the
second set of experiments for one eigenvalue model.

6.3.2 Full Edge Images Experiments

In the full edge image experiments, a very similar testing scheme was used using different
scaling factors. However, as the size of the full images were 128 x 128 pixels as shown in
Figure 6.6, the corresponding size of the multidimensional voting space was increased. These
experiments will test the performance of the algorithm on the ground-truth data sct with
some degree of noise defined by the remaining non-tongue edges and the missing pixcls in
the tongue shape. The error was determined by superimposing the fitted model on chamfer
distance images obtained from isolated tongue shapes, so that non-tongue pixels do not affect

the calculation of such error.

The results obtained for the one eigenvalue model are presented in Table 6.3 and in Figurc 6.7.
The experiment 2.B got the minimum error and the corresponding sequence of franes is
presented in Figure 6.8. As can be observed, a good approximation of the tongue shape and
position is provided by this algorithm. The tongue tip is not well fitted in frames from 1 to
9, while in frames from 10 to 19 the tip and dorsum of the tongue of the model do not fit the
target. These parts of the tongue are expected to be partially covered by the two eigenvalue

model.
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FIGURE 6.6: Set of edge images used in the full edge experiments.
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Full Edge Images - One Eigenvalue
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FIGURE 6.7: Average rms error (chamfer distance) for each frame using different scaling

factors.

Experiment ‘ Scaling factor ‘ Error ‘
2.D From 0.92 to 1.08 in steps 0.02 | 1.68
2.E From 0.96 to 1.12 in steps 0.02 | 1.57
2.F - 1-1.16 in steps 0.02 1.54

TABLE 6.4: Average rms error (chamfer distance) for different scaling factors used in
the second set of experiments for one eigenvalue model.

The corresponding experiments on full edge images were performed on the two eigenvalue
model. As can be observed in Table 6.4 and in Figure 6.9 the minimum error was obtained in
experiment 2.F, however, this error is larger than the minimum error obtained in experiment
2.B for the one eigenvalue experiments. The sequence of results are presented in Figure 6.10.
Although the first twelve frames show a better fit than the one eigenvalue model, frames 13
and 15 to 19 seem to be attracted by the edges corresponding to the lower lip. This might
be occasioned by the lack of information of the tongue in such frames. Frames 32 to 34 are

better fitted in experiment 2.F than in the 2.B.

In Figure 6.11 a comparison of the better results obtained using one and two eigenvalues in

isolated images (a) and full edge images are presented.
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FIGURE 6.8: Superimposed results obtained for the sequence of extracted tongues for the
experiment 2.B.
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Full Edge Images - Two Eigenvalues
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FIGURE 6.9: Average rms error (chamfer distance) for each frame using different scaling
factors.

6.4 Unseen Data Set

The tests performed on the unseen data set comprises experiments on isolated tongue shape
images and full edge images. Although not used for training, the tongue shapes of this set
of images were labelled. This was done to give a measure of ground-truth against which to
assess the tongue extraction from unseen data. Hence, in the third experiment the extraction
was tested using the set of unseen (but labelled) tongues, while the fourth experiment used
the unseen full edge images. The parameters for these experiments were set as those used in
the ground-truth data set experiments, except that the scaling factor varied over the range

1.14 < s < 1.30 (mostly) to reflect the anatomical differences between subjects SG and PJ.

Results obtained using one and two eigenvalue models on isolated tongue shapes are presented
in Figure 6.12 and 6.13. The error calculated for these sequences was 1.60 for the one
eigenvalue model and 1.17 for the two-eigenvalue one overall. It can be observed that
frames 3 to 5 are better fitted using a one eigenvalue model while frames 7 to 15 are better
fitted with a two eigenvalue model. In terms of an accurate modelling of the vocal tract

configuration results obtained with the two eigenvalue model are better.

The next experiment was performed on full edge unseen images. This set is presented in
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16 17 18 19 20

FIGURE 6.10: Superimposed results obtained for the sequence of extracted tongues for the

experiment 2.F. The tongue tip is better in this sequence than in the one eigenvalue model.

However, it does not match the correct shape on frames 13, and 15 to 19, where the model
considers part of the lower lip as part of the tip tongue.
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FIGURE 6.11: Average rms error in terms of chamfer distance for tongue extraction using
one and two eigenvalues for training data: (a) isolated tongue data: (b) full edge images.
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FIGURE 6.12: Superimposed results obtained for the sequence of extracted unseen tongue
shapes for the experiment 3 using a one eigenvalue model.
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FIGURE 6.13: Superimposed results obtained for the sequence of extracted unseen tongue
shapes for the experiment 3 using a two eigenvalue model.
Figure 6.14. The original images were filtered using an anisotropic filter followed by the
application of a Sobel edge detector. As mentioned previously, the Sobel edge detector was
chosen by simplicity since the results offered by more sophisticated edge detectors were very
similar. Results obtained using one and two eigenvalue models on these sets of edge images are
presented in Figure 6.15 and 6.16, the errors for this sequence were 1.36 and 1.25 for the one
and two eigenvalue models respectively. It can be observed that frames from 6 to 14 provides
a smaller error in the two eigenvalue results than in the corresponding one eigenvalue. This
comparison frame by frame for both models can be appreciated in Figure 6.17. As can be
seen in Figure 6.17(a), the tongue shape is well detected in the isolated tongue data. The
average rms error for two eigenvalues is not noticeably poorer than for the seen data. This

is very encouraging for practical application.
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FIGURE 6.14: Sequence of full edge images tongues shapes for the experiment 4.

6.5 Synthetic Data

The third set of experiments were conducted over 50 synthetic sequences generated to measurc
the effectiveness of the model to find the correct shape over a know set of eigenvalues, data

for which the ground-truth was known, without the subjectivity of manual labelling.

Experiments were conducted for 50 synthetic sequences of 20 frames each. A three-ecigcuvaluc
model with no scaling factor was used to generate these sequences. The model used for
generating these sequences had three eigenvalues and no scaling factor was used. The first and
second eigenvalues were selected randomly over a defined range. Then the third eigenvaluc
was defined from these two eigenvalues to generate a valid or possible tongue shape. These
sequences were analysed with one and two eigenvalues. Results are presented in Figure 6.18.

The average error obtained for such sequences was of 1.58 using a one eigenvalue model and



Chapter 6 Experimental Evaluation 71

FIGURE 6.15: Superimposed results obtained for the sequence of full edge unseen images
using a one-eigenvalue model.
1.16 using a two eigenvalue model, which confirins that in general better results are obtained

when more eigenvalues are considered in the shape generation.

6.6 Noise Response

The ASDHT algorithm was tested on noisy conditions using a two eigenvalue model. The
ground-truth data set, which consists on the set of training isolated tongue images, was
corrupted with noise using a program to generate random numbers developed in the C
language. The pixels were corrupted by inverting their value, so that pixels in black are set
into white and vice versa. These sequences were corrupted using 11 different combinations of
seed values in the generation of random numbers with 10, 20, 30 and 40% of level of noise. In

Figure 6.19 a sequence of tongue shapes with 10% of noise is presented and Figure 6.20 shows
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FIGURE 6.16: Superimposed results obtained for the sequence of full edge unseen images
using a two-eigenvalue model.
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FIGURE 6.17: Average rms error (chamfer distance) for tongue extraction using one and two
eigenvalues for unseen data: (a) isolated tongue data: (b) full edge images.



Chapter 6 Experimental Evaluation 73

T - T T v T
+ - Two eigenvalues
° o One eigenvalue

o
T

{0}
o))
©
— s
o
>
©
» 1} o
£ by )
— B 4k I
[ i | i
o o
o o
P o = 2 o 6 o
(@] e o Q o ° :
- # i ++t ?
£ 0+ * @, 2 ++' + +4
L T 40 0 A $e k. S
0 Lo ThY e iig L
s+ o4 - ¥ ¥ *
® : T
o + & Bt B ¥
0 5 10 15 20 25 30 a5 <0 45 50
Sequence

FIGURE 6.18: Average rms error (chamfer distance) between extracted shape and ground-
truth using one and two eigenvalues for synthetic data.
the corresponding fitted shapes (black) placed over the corresponding clean tongue images

(grey). In this sequence in frames 15 to 17, 21, 23, 31 and 33 the tongue was not well fitted.

In Figure 6.21 a sequence of tongue shapes with 20% of noise is presented and Figure 6.22
shows the corresponding fitted shapes (black) placed over the corresponding clean tongue
images (grey). The fitted tongue shapes look clearly worst than the ones presented in
Figure 6.20. Frames 2, 13, 28, 30 and 36 show the worst matches in the sequence. Similar
results are presented for the 30% level of noise in Figures 6.23 and 6.24. Although results for

frames 19, 28, 30, 34 and 38 were bad, frames 10 to 12, 21, 27, 29, 31 and 39 were well fitted.

With a 40% of noise augmented to the image sequence, as shown in Figure 6.25, some tongue
shapes were badly fitted. As can be appreciated in Figure 6.26, frames 4, 5, 6, 29 and 32 were
terribly wrong matched, however some tongues such as frame 2, 14, 21, 24, 27, 25, and 26 were
still well fitted. A summary of the results the different levels of noise for the 11 sequences
are presented in Figure 6.27, and the average error and standard deviation for such levels of
noise is presented in Table 6.5. As can be observed the standard deviation from the mean

average error increases from the 30% level of noise onwards.
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FIGURE 6.19: Training data set sequence corrupted with 10% of noise.

| Level of Noise | Average Error | Average Standard Deviation

10 1.04 0.40
20 1.19 0.48
30 1.58 0.80
40 1.85 0.90

TABLE 6.5: Average rms error (chamfer distance) for the data sets used in the experiments
using two eigenvalue models.
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FIGURE 6.20: Results obtained using a two eigenvalue tongue model in a data set sequence
corrupted with 10% of noise. Fitted tongue shapes (black) is placed over the corresponding
clean shape image.

6.7 Extending the Model to Lips

A model for the lips was generated from the original training data set of 39 frames as described
in Chapter 4. The set of training lips, shown in Figure 6.28, was defined by a consistent set
of 67 landmark points for each shape. The most significant modes of variation for this model
are defined in Table 6.6. As can be observed, the first mode of variation for this model is not
as significant as the first mode of variation of the tongue model, as the first one covers only
the 47.77% of the variation. This means that seven eigenvalues should be used in the model

to cover the same variation covered for the tongue model in previous experiments.

Tests were performed over the ground-truth data set for the lips using one and two cigenvalue
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FIGURE 6.21: Training data set sequence corrupted with 20% of noise.

‘ A | Eigenvalue ‘ Percentage | Accumulated percentage

A1 40.8872 47.77 47.77
A2 21.1497 24.71 72.48
A3 3.0984 9.33 81.81
A4 1.6225 3.62 85.43
As 1.3619 1.90 87.33
A6 1.1794 1.59 88.92
A7 0.9625 1.38 90.30

TABLE 6.6: Eigenvalues of the covariance matrix derived from the aligned lip shapes.

-1
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FIGURE 6.22: Results obtained using a two eigenvalue tongue model in a data set sequence
corrupted with 20% of noise. Fitted tongue shapes (black) is placed over the corresponding
clean shape image.
models, the results are presented in Figures 6.29 and 6.30. From visual inspection it can be
appreciated that the two eigenvalue lip model fits better the lips than using one eigenvalue. In
terms of accurate modelling of the vocal tract configuration the results for the two eigenvalue
model are better; as can be observed in frames 1 to 3 and 37 to 39 the lips are configurated to
pronounce the phoneme /p/, such a configuration cannot be appreciated in the corresponding
frames of the results for the one eigenvalue model. The same tests were performed over full

edge images of the ground-truth data set. Results are presented for one eigenvalue model in

Figure 6.31.

The tongue model was extended in order to evaluate how the algorithm works with a model

of more than one articulator. Information for the lips from the original set of 39 frames was



|
v

Chapter 6 Experimental Evaluation

154

s

S

arta

‘4
Foe

2 5 ¥
e L
RCEN D

FIGURE 6.23: Training data set sequence corrupted with 30% of noise.

included and the set of training tongue and lip shapes is shown in Figure 6.32. The modecl
was defined as described previously and the corresponding set of modes of variation for this
model are shown in Table 6.7. As can be observed the variation of the shape increases, so that
in order to cover the 90% of the variation at least 6 eigenvalues must be used. Basically, this
increases the size of the accumulator space in the ASDHT algorithm. However, experiments
were conducted to test the effectiveness of the algorithm for such articulators using a onc
eigenvalue model. Results of testing the lip and tongue model with one eigenvalue over
ground-truth data is presented in Figure 6.33 with an error calculated of 2.48. In general the
shape was very well located and the tongue is fitted better than the lips and the lower lip
achieved better matches than the upper one. The same test were performed over unsecn data
and the error calculated for this sequences is 2.25. The corresponding results are presented

in Figure 6.34. Surprisingly, the error is less than the one for the ground-truth full cdge
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FIGURE 6.24: Results obtained using a two eigenvalue tongue model in a data set sequence
corrupted with 30% of noise. Fitted tongue shapes (black) is placed over the corresponding
clean shape image.
images. In these results can be observed that the tongue shape is not very well fitted in

frames 1 to 6, and 9 to 15. The lips appeared smaller and better fits were obtained for the

lower lip than the upper one.

‘ A ‘ Eigenvalue | Percentage ‘ Accumulated percentage ‘

A1 | 209.5848 53.13 53.13
A2 59.3508 15.05 68.18
A3 42.5836 10.79 78.97
Ad 23.4840 5.95 84.92
A5 11.5390 2.93 87.85
A6 8.0744 2.05 89.9

TABLE 6.7: Eigenvalues of the covariance matrix derived from the aligned tongue and lip

shapes.
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FIGURE 6.25: Training data set sequence corrupted with 40% of noise.

6.8 Summary

In order to measure how successful the ASDHT algorithm is, a chamfer distance metric was
used. In this way, the comparison should be made in the image plane, comparing how closc
the estimated shape is to the tongue shape. To measure the effectiveness of the algorithins,

a chamfer distance metric was used (Borgefors, 1988).

Initial exploratory work with the new algorithm indicated that using just one eigenvaluc was
sufficient to locate an excellent approximation of the tongue shape and position. Obviously,
the computation with just one eigenvalue is much faster than the application of the two-
eigenvalue model. To speed computation, the searching region for the two-eigenvalue modecl

was restricted to (64 x 64) windows and the range of variation of the first eigenvalue was



Chapter 6 Experimental Evaluation 81

1 2 3 4 - - .
| ] \ .
7 8 9 10 11 12
I 4 3 , \ Y
13 14 15 T3 = =
;(‘V_\ (_:f"\‘ ,\\\f"’"\ . (_:_7.-#\ r\_:,_/—\ ‘ "(‘;"’\
' A t ) |
1 20 21 oW 7 -

3 3}\ 33 35 36
¥ [ 1 1 1 4
37 38 39

Oy LN | OY

FIGURE 6.26: Results obtained using a two eigenvalue tongue model in a data set sequence
corrupted with 40% of noise. Fitted tongue shapes (black) is placed over the corresponding
clean shape image.
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FIGURE 6.27: Results of the algorithm using contaminated images with noise.
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FIGURE 6.28: Set of training lip shapes, extracted from the sequence of 39 images outlined
by Mohammad.

=
=
=
2
=
o=

o=
o=
o<
<
e
o=

e
s
o<
e
e
e

19 20 2] 22 23 24

(ﬁ
e
-
-
o
-

25 26 27 28 29 30

rp,:
-
P
-
e
e

31 32 33 34 35 36

&
&
2
2
25
~

37(jr 38L, 39{!
RV VY

FIGURE 6.29: Results obtained (black) using a one eigenvalue model for the lips over isolated
lip images (grey) of the training data set.
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FIGURE 6 30 Results obtained (black) using a two eigenvalue model for the lips over isolated
lip images (grey) of the training data set.
restricted as well to one step before and after the corresponding value estimated in the Hrst

search.

Experiments conducted using the ground-truth data set shown that the average rms error is
typically less than 1 pixel per edge point. Results are generally better when two eigenvalucs

are used to construct the model. The scaling factor did not vary too much from 1.

On the other hand, experimental results achieved on unseen data are encouraged by the fact
that there is only minor deterioration in performance relative to the seen data. This opens up
the possibility of training the ASM on limited data from just one speaker and then applying

the model successfully to a range of other speakers.

In summary, the average error for each data set is given in Table 6.8. In general, the usc
of two eigenvalues is better than using just one and testing on the training data gives the
lowest error but this is not the situation in practice. However, the performance on unscen

data (from a different subject) is not dramatically worse. Using synthetic data gives us a
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FIGURE 6.31: Results obtained (black) using a one eigenvalue model for the lips over full
edge images (grey) of the training data set.
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FIGURE 6.32: Lips and tongue training data set formed by 39 shapes extracted from the
labelled data set of Mohammad.
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FIGURE 6.33: Results obtained using a one eigenvalue model for the tongue and lips over
the full edge images of the training data set.
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FIGURE 6.34: Results obtained using a one eigenvalue model for the tongue and lips over
the full edge images of an unseen data set.

‘ Data set ‘ Error: 1 eigenvalue | Error: 2 eigenvalues

Training 1.05 0.88
Unseen 1.60 e
Synthetic 1.58 1.16

TABLE 6.8: Average rms error (chamfer distance) for the data sets used in the three sets of
data for one and two eigenvalue models.

reference against which to assess the effect of issues like the subjectivity of manual labelling

and ignoring the third eigenvalue.

The algorithm was also tested using a two eigenvalue model on noisy conditions by corrupting
10, 20, 30 and 40% of the images. Although results were presenting major deterioration for

some frames with a 30% of the noise, some were still well fitted.

The model was extended to test the performance of the algorithm over more that one
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articulator. A disadvantage of generating a complex model of the tongue and lip shapes
involves more variation in the data set and consequently more eigenvalues are needed to
cover a major range of variation. A good approximation was obtained using one eigenvalue
model, however, to cover more variation a larger number of eigenvalues should be considered.

Another aspect to consider is that the articulators cannot be scaled independently.

The algorithm demonstrated to detect the tongue and lip shapes with no initialisation
required. The next step is to collect enough multiplanar data of the vocal tract to extend

this model to other sagittal planes. This is covered in the next Chapter.



Chapter 7

Collecting Data in Halifax

7.1 Introduction

The application of the ASDHT algorithm has been applied to midsagittal MRI sequences
to extract the tongue shape. The extension of the model to more articulators such as the
lips was shown to be straightforward. The application of this algorithm to more sagittal
planes was desired to describe the 3D vocal tract shape dynamics, however, the set ol data
inherited from Mohammad include the sequences for three midsagittal planes, which were
not enough. The opportunity of collecting multiplanar images using a 47T scanner was ollcred
by the Institute for Biodiagnostics (Atlantic) Neuroimaging Research Laboratory in Halifax
Canada. Using that facility, data was collected from four subjects pronouncing the nonscuse
word /pasa/ in seven sagittal planes. These seven sagittal planes were considered as sulficient

information to achieve an appropriate 3D representation of the vocal tract dynamics.

This chapter details this experimental work and the corresponding analysis performed
over the collected data. First, the acquisition stage and the parameters used during the
scanning sessions are detailed. Then, the analysis of the data is presented followed by their

synchronisation. Finally, the image reconstruction is described.

89
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7.2 Data Acquisition

During this stage, three different sets of data were collected: speech recordings, MR images
and gating pulses generated by the scanner when each row of the raw matrices is collected.
Four subjects were used: The first and second were native female speakers of Canadian
English (S01) and Mexican Spanish (S502), while the third and fourth were native male
speakers of British English (S03) and French (S04). Images were collected using a Oxford
Instruments 4.0 T scanner and the audio was collected from the intercom using a Soundmac
card while the gating pulse sequences were collected using an IMAQ PCI-1407 acquisition

card using LabView. The data collection is detailed in the following sections.

7.2.1 Speech Recording

The speech recording system was set up as illustrated in Figure 7.1. Inside the magnet roomn,
a fine tube with a diameter of 5 mm was attached to the head coil; it was placed as close as
possible to the mouth position. This tube conducted the speech sounds from the mouth to
the built in microphone inside the magnet room. Then, the audio data was collected [rom
the intercom of the console using a microphone taped to it. The audio was collected nsing a

Soundmac digital audio card with a sampling frequency of 11025 Hz, 16 bits and mono.

Initially, the token to be repeated during the scanning sessions was /pasi/, in order to be
consistent with the set of data generated by Mohammad. However, the range of frequencies
permitted by the intercom was interfering with frequency information of the /s/ and /i/
phonemes; speech frequencies above 2.5 KHZ were cut off by the intercom as can bhe
appreciated in Figure 7.2(b). Consequently, relevant information, defined above this limit,

for phonemes /s/ and /i/ was not present in the spectrograms of the preparatory recordings.

In the other hand, the audio gain was carefully adjusted to avoid clipping effects as illustrated
in Figure 7.2; as can be observed a clipping effect is present in (a) and eliminated in (D)
after some adjustments made on the recording system. Frequency information containcd in
the range marked between the points A and B corresponds to the /a/ phoneme; however,

information about formant frequencies for /s/ and /i/ phonemes is not available. Hence, the
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FIGURE 7.1: Audio recording system. A fine tube was attached to the head coil. Specch
sounds were conducted to the built in microphone inside the magnet room. The speech was
collected for another microphone taped to the intercom built in the console in the control
room. A Soundmac audio digital card digitised the audio which was saved using a LabView
program. This program, collects the pulse gating sequences generated by the scanner and
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token selected to study in these experiments was /pasa/, since the information of the /a/
phoneme was present and easily detected in the spectrograms. During the experiment, the
subject was instructed to repeat the token as regular and constant as possible and to take a

breath and continue whenever the air was running out.
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(b)
FIGURE 7.2: Spectrograms of preliminary /pasi/ recordings example. Clipping effects are
present in (a) and eliminated in (b). Points A and B enclose the spectral information of /a/;

information of /s/ and /i/ is either not sufficient or non existent for achieving a satisfactory
segmentation of the tokens during the synchronisation stage.

7.2.2 TImage Acquisition

Preparatory scans were conducted in order to define the acquisition parameters and achieve
the desired spatial and temporal resolutions. MR images were acquired using an Oxford
Instruments 4.0 T scanner and a gradient echo multi-slice pulse sequence with Tz of 120 ms,

TE of 4.58 ms and an acquisition time (at) of 1.712ms. A coil around the head was used
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with a FOV defined as 340 x 240 mm. Thus, all the vocal tract articulators were covered.
In Figure 7.3 the set of seven sagittal planes acquired from the subject SO2 during a static
position is presented. Seven sagittal planes were collected in approximately 11.5s, with a
thickness of 5mm and a separation of bmm. The image acquisition is illustrated in Figure 7.4.
As can be appreciated, the scanner may start collecting data at any stage of the pronunciation
of a token. The scanning sequence consists of collecting the row 0 for each plane in a T'g time
of 120 ms, which means that each row for each plane was collected in 17.14ms. Then, the
row 1 is collected in the seven planes and the row 2 and so on. Although the time within the
Tr interval for each row is defined as 17.14ms, the actual acquisition time is defined by the
parameter at, which was defined as 1.71 ms, which means that the scanner spends this time

acquiring the data and the remaining time possibly processing it.

FIGURE 7.3: Seven sagittal planes collected during no speech (static position) for subject
02.
The set of images collected for each subject consisted of non speech images, a sustained /a/,
a sustained /s/ and dynamic images. Non speech and sustained images were collected for
reference for the reconstructed dynamic images. Table 7.1 indicates the number of scans

recorded for each subject.

The scanner generates a timing signal when every row is collected. These gating pulses were
recorded using a IMAQ PCI-1407 acquisition card at a sampling rate of 2KHz and saved into

text files using LabView; these were used in the synchronisation stage.
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FIGURE 7.4: Acquisition sequence. Each row for each plane is collected at a time. The
same row for subsequent planes is collected in a sequential order. NP denotes the number of
planes to be collected.

| Subject | Non Speech | Sustained /a/ | Sustained /s/ | Dynamic |

S01 1 1 1 30
S02 2 1 1 40
S03 2 1 1 39
S04 1 2 1 40

TABLE 7.1: Number of scans collected for the experiments conductecd.

7.3 Data Analysis

During this stage, the noise in the audio data is reduced and the segmentation of the audio files
in individual acquisitions, and subsequently, in tokens and phonemes was analysed. There
were two main factors that affected the quality of the audio data, and made complicated the
segmentation of it. First, the noise of the scanner, which was reduced using a noise reduction
filter; and second, the volume the subject was speaking at, since for some subjects the volmmne
was quite low and the phoneme information was poorer. Therefore, in the analysis of the
audio data a special emphasis was made on the data corresponding to the subject 04 since
this set was sufficiently clear to achieve a satisfactory phoneme and token segmentation. The
text files with the information of the timing pulses were analysed. Although, there was not
a written reference to the structure of such sequence, the correspondence with the audio and

the image data was explored.
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7.3.1 Analysis of the Speech Data

In general, the audio data (recorded in wav format) included more that one MRI acquisition,
since the time consumed during the saving process of such files was relatively long within cach
acquisition. A posterior segmentation was performed to generate an audio file per acquisition.
This segmentation was performed using WaveSurfer and PRAAT software to visualise the
spectral information of the phonemes and to hear the audio files. The number of wav files

recorded per subject is specified in Table 7.2.

‘ Subject | Number of Files (wavﬂ Number of Acquisitions ‘

S01 6 27
S02 2 40
S03 2 34
S04 2 40

TABLE 7.2: Number of wav files collected for each subject with the number of scan on them.

The audio files were filtered using a speech enhancement algorithm with minimum mcan
squared error and minimum statistics noise estimation (Ephraim and Malah, 1984; Martin,
2001). Since this algorithm works analysing the data statistically the part of the audio file
which contains the initial burst of noise from the scanner was not cleaned as the remaining
parts of the audio. Therefore, the filter was applied forward and backwards. Results, as
shown in Figure 7.5, were acceptable to measure phone and token durations, since the spectral

information for the /a/ phonemes was clearly presented.

Ideally, phone durations should be measured as shown in Figure 7.6; a preliminary audio file
of the subject S04 is used to illustrate the process. This file does not contain noise and the
spectral information of the phonemes can be clearly appreciated. Since information for /p/
and /s/ phonemes is not available in the collected audio data, the duration of /s/, denoted
by ds.1, was inferred as the interval [b,c] defined between the first /a/ with duration d,; |,
and the second /a/, dap_1. Similarly, the apparent duration of /p/, dp 2, for the second token,
should be inferred as the interval [d,e] defined between the final /a/ of the first token with
duration dgo_1, and the first /a/ of the next one with duration d,;2. The term apparent

is used because real duration of /p/ is in fact shorter. However, d, 5 is relatively long; the
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FIGURE 7.5: Parts of an original (a) and a filtered speech file (b) generated for the first
experiment of the Subject 04. The filter applied was the minimum mean squared error and
minimum statistics noise estimation.

subject is making a small pause before pronouncing the next token. The activity of the
articulators is unpredictable during these pauses, since the subject could be: preparing for
the pronunciation of the next token, holding the position of the ultiinate phone or breathing.
Then, two additional schemes for segmenting the audio information were considered in order
to define the acivity of the articulators during this pause and which segmentation should be
used in this project. In the second segmentation the time to consider in the synchronisation
could be determined by taking an arbitrary time, d,1 2, posterior to the pronunciation of the
ultimate token and a time, dp2 o, previous to the next token as illustrated in Figure 7.7. The
third approach to segment the audio file is presented in Figure 7.8 where a period of time

previous the first /a/ pronunciation is each token is considered as the duration of the /p/.
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FI1GurE 7.6: Audio file segmentation 1. Points mark the starting and ending points of the
/a/ phonemes of the token /pasa/. The first /a/ duration, dg,1_j, is defined by the interval
[a,b], while the second /a/ duration, dy2_1, is defined by the interval [¢,d]. The /s/ duration,
ds.1 , is defined as the interval [b,c] between the first and second /a/’s. Analogously, the
apparent /p/ duration, dp 2, should be defined as the interval [d,e] defined between the end
second /a/ of the last token, (d), and the beginning of the first /a/ of the next token, (e).
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FIGURE 7.7: Audio file segmentation 2.

The interval of time to be considered in the
synchronisation stage, corresponding to the /p/ articulation, could be composed by two
intervals of time: [d,e] posterior to the last token,dp, 2, and [f,g] anterior to the next token,

dpaa.
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FiGURE 7.8: Audio file segmentation 3. The interval of time to be considered in the
synchronisation stage, corresponding to the /p/ articulation, could be composed by the
interval of time [e,f] anterior to the next token, dpz_a.

7.3.2 Analysis of Gating Pulses

The scanner generates a gating pulse when a single row is collected; however, proper
documentation for such sequence of pulses was not available. These gating pulses were
acquired and saved in text files. Values stored in such files can take a value close to 0
or 5; the latter describing a pulse. The total number of pulses should be 672, considering 96

rows per image; however, either 673 or 674 were registered.

During the analysis of these files it was inferred that a sequence of gating pulses is defined
by two initial pulses separated by an interval of 60 ms and a succession of 672 pulses equally
distributed with intervals of approximately 17 ms. Occasionally, the second and third pulses
appeared as a double pulse; this was a consequence of the sampling rate used. This format

is illustrated in Figure 7.9.

The initial 60 ms probably does represent the inversion time in the sequence. Although the
audio files were segmented for each acquisition, the corresponding synchronisation with the

gating pulse sequences was performed over the original audio files.
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the 672 pulses corresponding to each row in the K-space matrix
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7.4 Synchronisation

In this section the audio, images and pulse gating sequences are synchronised. The text
files generated with the pulse information were converted into wav format, using a program
developed in the Python language. The waveform of these pulses could be used to compare it
with the spectrogram of the audio recorded, as shown in Figure 7.10. As can be observed, the
point when the scanner starts making its noise, which was considered as the starting point
for the image acquisition, does not coincide with the first pulse in the sequence; an interval
of 77 ms is observed. This interval, which will be referred as time delay, increases along the
audio file within each scan. These delays were measured and plotted against their occurrence

in the audio file as shown in Figure 7.11.
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FIGURE 7.10: Illustration of the pulse delay between the first pulse in the sequence and the
point when the scanner start the acquisition.

Applying a linear regression model to these data the model is represented as a straight line

determined by
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FI1GURE 7.11: Graph of the audio pulse delays. It shows the delay between the audio data

and the first pulse sent by the scanner in each measurement. The audio files plotted in

the graph were selected randomly; the notation SubjectY.X denotes the audio file X of the
subject Y. The line model is defined by Equation 7.1.

y=1x10"%z 4+ 7.45 x 107* (7.1)

where x represents the time (sec) of the sample and y the resulting delay (sec) on the audio
file. It was assumed that the slope on the line is caused by a slightly different sampling rate.
The initial offset of 74.5 ms could be caused by one or more of the following aspects: a declay
between the row acquisition and the pulse generation by the scanner; the inversion rccovery
time involved in the acquisition pulse sequence, which was defined as 60 ms; and, a delay due
to the velocity of sound. If the inversion recovery time is considered within the initial offsct,
and considering that the first row is collected 63 ms after the initial pulse, then a remaining
delay of 11.5 ms still need to be explained. It can be caused by a delay in the transmission of
the sound. Different sound transmission intervals must be considered: first the one between
the mouth and the microphone inside the magnet room; then the electronic transinission
from inside the magnet to the intercom and finally, the transmission between the microphone
taped in the intercom to the audio acquisition card. If the speed of the sound is considered
to be 343.371m/s and a distance between the speakers mouth and the microphone in the

magnet room is approximately 3m then the time delay is 8.73 ms.
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The next step is to assign a phase value to each row in the raw matrices; this valuc will
represent the moment the row was collected during the pronunciation of the token. Since the
Tr was of 120 ms the phase calculation could not be made as reported by Mohanunad. where
the phase of the first row was calculated and the following row phases were defined as a step

increment. Now, the phase calculation must be performed for each row.

The phase assignment is illustrated in Figure 7.12, where the phase is considered to take
values between 0 and 100% and steps of 25% are used for each phoneme. The phasc of
a row will take a value in the range of the phoneme pronounced at the moment it was
collected. For example row 0 of the plane 0 was collected at the end of the first token during
the pronunciation of the /a/. Then, a value between 75 and 100% will be assigned to it.
Subsequently, new matrices with rows with the same phase are generated. As mentioncd

before matrices will have oversampled and missing rows.

Row0 Row 1l Row2 Row3 Row N-1

Token / Token;3  To Token NT

en 4 see Tokel:h NT-1

et e R

5
=
PR - SO,
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0 25 50 75 100

Phase
Raw Matrix for Plane 0

FIGURE 7.12: Synchronisation stage. The phase is defined for each row. The phase docs
not follow a sequential order due to the acquisition process adopted.

7.5 Reconstruction

The number of frames to be reconstructed, as defined by Mohammad, was defined by the

total average duration of the token and the Tgr. Actually, in the acquisition sequence used
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in his experiments the Tr was the inter-row time, which is the interval of time between the
acquisition of two consecutive rows in the same plane. However, the acquisition scquence
used in the present work is different. As illustrated in Figure 7.13, the T time comprises
the collection of a specific row in all the planes collected. Therefore, the time for collecting a
single row in a single plane is defined as Tr/# Planes in this case 17ms. However, the time
that actually the scanner spend collecting the information is defined by the acquisition time
(at) parameter, which in this case was defined as 1.712ms. The number of expected frames

Ngr was defined by Mohammad as follows:

Ngr = Dior/TR, (7.2)

where Dy, is the token duration. However, the number of reconstructed frames could depend
on: the Tg, the inter-row time or the at parameters. Considering that the average of the
cbmplete duration of the token of 1.14s, which includes the time when the subject is making
a small pause, then if the T parameter is considered in this calculation, the number of
expected frames will be approximately 9. However, a sequence with such a number of frames
will not provide a good tracking of the vocal tract dynamics since the resulting temporal

resolution will be smaller than the velocity of most of the articulators, especially the tongue.

T, =120 ms T, =120 ms
ROW 0 ROW |
— e . "
at at at at at at at at at at at at at at
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TJ7

FIGURE 7.13: Acquisition sequence with a T of 120ms and an acquisition time (at) of

1.7ms. The collection of the corresponding row in the seven planes is done in T intervals.

The actual acquisition time is defined by the parameter at, the remaining time between rows
is assumed to be used for the associated processing of the row.

In the contrary, if the at parameter is considered in this calculation the number of frames
becomes much bigger, around 670. Although this number leads to a temporal resolution
of 1.71 ms, which should be suitable for these purposes, the number of raw matrices necded

to achieve such results must be bigger than 40. The concept of inter-row acquisition timne,
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which is in this case is 17.14 ms, could be then introduced; this leads to a total of expected

frames of 67 frames.

The final matrices generated with rows with the same range of phase will have missing
and oversampled rows. This problem is overcome by using the same criterion reported by
Mohammad (1999) and presented in Appendix B. These criterion involves the average for

the oversampled rows and a borrowing one for the missing rows.

7.6 Summary

In this Chapter the details of the data acquisition performed at the Institute for Biodiagnostics
(Atlantic) Neuroimaging Research Laboratory in Halifax Canada were presented. Different
issues were addressed with the audio recording mechanism and two main problems were
mentioned: the noise generated by the scanner and the range of frequencies transmitted by
the intercom. The noise generated by the scanner was reduced by applying of the mininnumn
mean squared error and minimum statistics noise estimation filter. In the other hand the
limitations imposed by the intercom were sorted out by using a different token for the subject
to repeat, so that instead of collecting data for the pronunciation of the token /pasi/, the

experiments were performed using the token /pasa/.

In comparison with the experiments conducted by Mohammad, a new set of data was
collected. This set corresponds to the timing or gating pulses generated by the scanncr
when each row of the raw matrices is collected. This pulses were synchronised with the
audio data files. However, a delay was found in such synchronisation. Although a proper
documentation of this gating pulse sequence was not provided, the delay was assumed to be

caused by a slightly different sampling rate of such pulse sequences.

In the other hand, the images were acquired using a pulse sequence which collects the same
row for each plane in a Tg interval. Since the acquisition sequence for the experiments uscd
by Mohammad was different, a new scheme to defined the phase for each row is defined. The

number of reconstructed images was also defined in a different manner, because the T; has
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a different interpretation. A detailed comparison of the results obtained for the new sct of

data collected is presented in the following Chapter.




Chapter 8

Evaluating Results

8.1 Introduction

The acquisition of data to generate MRI sequences for extracting the vocal tract dynainics in
seven sagittal planes was detailed in the previous Chapter. Three sets of data were collected:
MR images, audio recordings and gating pulses. The audio data was analysed, segmented
and the phoneme and token durations were measured. The gating pulses were analyscd and
synchronised with the audio data. The synchronisation of this data with the MR images was

performed followed by the corresponding image reconstruction.

In advanced it can be said that the results of the dynamic reconstruction obtained from the
experiments performed in Halifax were not as good as expected. In spite of this fact, the
algorithm ASHT was applied to isolated non-speech and sustained images using the original
tongue model developed in Chapter 4. Considerable anatomical differences led the model
to fail in finding a correct match for this set of unseen images. Therefore, the modcl was
retrained by including into the training data set the tongue shapes extracted from tlic non-

speech and sustained images obtained from the experiments conducted in Halifax.

In this chapter, first, the results obtained from the reconstruction are presented, followed

by the experimental differences compared to the experiments performed by Mohaminad

(1999) and described in Appendix B. Then, the results obtained from the application of the
106
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ASHT algorithm are presented and the subsequent incorporation of the new non-specch and
sustained images in the training data set is detailed followed by the results of the application
of the ASHT algorithm to the new set of unseen tongue shapes. Finally, the conclusions are

presented.

8.2 Results

The reconstruction of midsagittal sequences for the subject 04 was performed considering
three different segmentation schemes. The differences among these schemes rely on the
interval considered for the pronunciation of /p/ , since the interval between the last /a/
of a token and the first one of the next token was relatively long. Therefore, the behaviour
of the vocal tract articulators might not be consistent since the subject may be preparing for
the pronunciation of the next token, breathing or holding the vocal tract articulator position
of the last /a/ phoneme of the token. Although just part of this interval of time corresponds
to the /p/ pronunciation, for purposes of this work this will be denoted as the duration of

/p/ and the corresponding reconstructed frames will be labelled as /p/.

The first audio segmentation scheme, which is illustrated in Figure 8.1, considers the total
time of the token pronunciation, since the interval between last /a/ of one token and the
first /a/ of the next one is labelled as the /p/ duration. Sequences of 5, 15 and 40 frames
were reconstructed and the results are presented in Figures 8.2, 8.3, 8.4 respectively. As
can be observed in all the sequences the top part of the images showing the brain and the
skull, appears very clear in the images, while the bottom part, comprising the vocal tract
articulators, appears blurred. In the sequence of 40 frames, the movement of the vocal tract
articulators must appear with smooth transition between the last frame and the first one, as

the pronunciation of the token was cyclic.

The second audio segmentation considers as /p/ duration the interval of time before and after
the /asa/ pronunciation, as illustrated in Figure 8.5. This consideration is taken in order
to cover possible coarticulation effects between the pronunciation of the last /a/ and the

following /p/, in case the subject is spending this period of time preparing the articulators for
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Fi1GURE 8.1: First audio segmentation scheme which considers the complete token duration
in the reconstruction.

FiGURE 8.2: Sequence of 5 frames reconstructed for the first segmentation scheme. Frames
labelled as /p/ are those reconstructed for the interval of time between the last /a/ of the
token and the first one.

FIGURE 8.3: Sequence of 15 frames reconstructed for the first segmentation scheme. Frames
labelled as /p/ are those reconstructed for the interval of time between the last /a/ of the
token and the first one.



Chapter 8 Evaluating Results 109

FIGURE 8.4: Sequence of 40 frames reconstructed for the first segmentation schene. Frames
labelled as /p/ are those reconstructed for the interval of time between the last /a/ of the
token and the first one.
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the pronunciation of the /p/. Results for intervals of time of 140 ms before and after the /asa/
were calculated for sequences of 5, 15 and 40 frames and presented in Figure 8.6, 8.7, 8.8
respectively. As can be observed, two sets of frames are labelled as /p/ in the beginning and
ending of the sequence, which correspond to the 140 ms considered before and after of the

/asa/ pronunciation.

FIGURE 8.5: Second audio segmentation scheme, where two intervals of time labelled as /p/
duration are considered in the reconstruction. These intervals are defined before and after
the pronunciation of each /asa/ subtoken.

FIGURE 8.6: Sequence of 5 frames reconstructed for the second segmentation scheme. Frames
labelled as /p/ are those reconstructed for intervals of time of 140 ms after the last /a/ of a
token and before the first /a/ of the next one.

Finally, the third segmentation involves the reconstruction of an interval before the /asa/
pronunciation, as shown in Figure 8.9. Results for the reconstruction of sequences of 5, 15 and
40 frames considering an interval of 240 ms previous to the /asa/ pronunciation are presented
in Figures 8.10, 8.11, 8.12. Since an interval of time is discarded during the reconstruction
some noticeable changes in the shape of the articulators may be appreciated between the first
and last frames of the sequences. The evaluation and analysis of these results are presented in
the next section. In all these sequences it can be appreciated that those frames of transition

between the /p/ and the /a/ phonemes were the most blurred and noisy within the sequences.
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FIGURE 8.7: Sequence of 15 frames reconstructed for the second segmentation scheme.
Frames labelled as /p/ are those reconstructed for intervals of time of 140 ms after the last
/a/ of a token and before the first /a/ of the next one.

8.3 Experimental Evaluation

The analysis and evaluation of the image quality is based on visual inspection. Although this
is a subjective method to evaluate the image quality, differences between frames appear to
be sufficiently evident to validate this evaluation criteria. The concept of image quality is
used to refer if the shape and the boundary of the vocal tract articulators are sharp, blurred
or noisy. An example of this evaluation is presented in Figure 8.13. Here, the static image
(Figure 8.13(a)) has the best image quality, since the boundary of the lips and tongue are
clearly defined. The image quality for the reconstructed frame (Figure 8.13(b)) is worse
than the static one, because the image is noisier, the nose and the tongue boundaries are
not very clear and no information of the lower lip is presented. The reconstructed image
is noisy due to motion artefacts, missing information problems during the reconstruction,
susceptibility problems and probably for problems with the reconstruction because the token

was not repeated exactly enough.

If a general visual inspection of the images in the reconstructed sequences is performed, it

can be noticed that most of them have a clear boundary and shape definition of the top part
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FIGURE 8.8: Sequence of 40 frames reconstructed for the second segmentation scheme.
Frames labelled as /p/ are those reconstructed for intervals of time of 140 ms after the last
/a/ of a token and before the first /a/ of the next one.
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FIGURE 8.9: Third audio segmentation scheme, where the interval labelled as /p/ duration
is considered previous to the pronunciation of the /asa/ sub token.

FIGURE 8.10: Sequence of 5 frames reconstructed for the third segmentation scheme. Frames
labelled as /p/ are those reconstructed for an interval of time of 240 ms taken before the
first /a/ of the each token.

FIGURE 8.11: Sequence of 15 frames reconstructed for the third segmentation scheme.
Frames labelled as /p/ are those reconstructed for an interval of time of 240 ms taken before
the first /a/ of the each token.
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F1GURE 8.12: Sequence of 40 frames reconstructed for the third segmentation scheme.
Frames labelled as /p/ are those reconstructed for an interval of time of 240 ms taken before
the first /a/ of the each token.
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(a) Static image (b) Reconstructed frame

FIGURE 8.13: Static and reconstructed images of the Subject 04 of the Halifax

experiments to illustrate noticeable differences in image quality by visual inspection. The

reconstructed image is noisy due to motion artefacts, missing information problems during

the reconstruction, susceptibility problems and probably for problems with the reconstruction
because the token was not repeated exactly enough.

of the head (brain and skull). This is a consequence of the stationary position of this part of
the head, which implies that the synchronisation and reconstruction of the images were done
correctly. However, in most of the images the bottom part, which comprises the nose, the
lips, the tongue, the velum and the jaw appeared blurred and very noisy. This is caused by

the movement of the vocal tract articulators during the pronunciation of the token.

In order to compare images that correspond to the same phoneme, it is necessary to describe
what the images represent in each scheme. In scheme 1, which comprises the complete token
duration, the first set of images marked as /p/ represent the transition form the last /a/ to
the next /p/, since the token continuously repeated. The scheme 2 considers two intervals:
one before and one after of the first and last /a/ pronunciation of a token. The initial and
final frames of these sequences are labelled as /p/, representing the interval before and after
the /a/ pronunciation. The last and first images of these sequences, labelled with /p/, may
not change smoothly, since there is an interval of time ignored in this reconstruction. The
last scheme, which considers an interval of time previous to the first /a/, may suffer from the
same transition effect than those of the second scheme due to the interval of time does not

considered in the reconstruction.

Images of the sequences for the third scheme appeared to be the most blurred. This is

probably caused by the release of the plosive /p/, the airflow caused by this release and
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by the consequent movements of the articulators. The burst may generate distortions, such
as blurriness and noise, in the images. Additionally, when the missing and oversampled
row problem is solved, this noise is drag to other frames in the sequence. This seems not
to happen in other sequences, where the set of frames that suffer from such distortions is
smaller. However, these distortions always appear when the transition between /p/ and /a/

is happening.

If the middle frame for each phoneme is compared to the corresponding sustained phoncime
image presented in Figure 8.17 the tongue shape looks very similar. However, the differences

appreciated may be caused by the coarticulation and dynamic effects.

Essential differences can be noticed comparing the reconstructed image obtained in this
work with the sequence for the token /pasi/ generated by Mohammad. In the /pasa/
sequence: images are noisier, articulators appeared more blurred, and the deformation of

the articulators, specially the tongue, appeared to be minimum.

Factors which affect the image quality are: the dynamic nature of the experiments, the
magnetic strength of the scanner, the field of view, space resolution and the acquisition
sequence. The movement of the articulators causes a band of noise in the phase encoding
(rows) direction. As it can be observed, the band of noise is present only in the region where
the moving articulators are located. Static parts, such as the brain, appear satisfactorily

defined.

Blurring effects may be occasioned by distortions and inhomogeneities of the magnetic ficld
strength. Stronger magnetic fields achieve better spatial resolutions, however, the associated
distortions due to the air-tissue boundaries increase proportionally as well. The air has
no susceptibility to magnetic fields, hence, differences in the magnetic fields at the vocal
tract articulators make the signal decay faster especially when they are moving. This
difference appears to be considerable when raw images obtained from 0.5T and 4 T scanmers
are compared. Raw images obtained with the 0.5T system are presented in Figure 8.14.
Although the images are blurred and a band of noise is presented around the moving parts

in the image, the articulators can be distinguished. A similar band of noise is present in raw
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images obtained with the 4T system as shown in Figure 8.15, however, the articulators are

highly distorted.

(a) PASI 01

(f) PASI 06 (g) PASI 07 (h) PASI 08 (i) PASI 09 (j) PASI 10

FiGURE 8.14: Raw MR images acquired in Southampton for the middle plane of the subject
PJ , while the token /pasi/ is repeated.

(c) PASA 03 (d) PASA 04 (¢) PASA 05

(f) PASA 06 (g) PASA 07 (h) PASA 08 (i) PASA 09 (j) PASA 10

FIGURE 8.15: Raw MR images acquired in Halifax for the middle plane of the subject 04 ,
while the token /pasa/ is repeated.

The FOV and spatial resolution defined by Mohammad permits the appreciation of the vocal

tract articulators in more detail. Consequently, the dynamics of the articulators can be
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traced closely. In order to compare these aspects, images for sustained sounds are presented

in Figures 8.16 and 8.17.

Additionally, the pulse sequence used may be contributing to such effects. The acquisition
pulse sequence used in the present work was the gradient echo multi slice sequence, GEMS;
the pulse sequence used by Mohammad was the fast RF-Spoiled gradient echo. The main
difference is determined by the inter row sampling rate: 16ms for the 0.5T experiments
and 120 ms for the 4T ones. It was assumed that the phase generation could beat the 8Ty
rate, however, it appears that the reconstruction is limited by the Nyquist limit of 8 Hz aund
consequently no articulator movement is detected. As mentioned before, a controversial
aspect in the reconstruction stage is the number of expected frames, since it is delined
considering the Tr and the average duration of the token (Tg is defined as inter-row sampling
time). Considering the Tg of 120 ms, a small number of final frames (approximately 7) should
be reconstructed. In the contrary, considering the acquisition time (at) of 1.7121ms the unmber
of final frames increases around 490. However, the reconstruction of this number of framces

requires a considerable large number of initial raw images.

Another factor contributing to blurred effects is the reduction of the raw data set. Data arc
discarded due to the uncertainty of the articulator behaviour when the subjcct produces a
pause at the end of each token. In the first segmentation scheme the complete token duration
is considered in the reconstruction. In the second scheme 22% of the data is discarded when
two intervals of 140 ms are considered for the transition /asa/. In the third scheme 26% of

the data is discarded with 240 ms considered in the reconstruction.

Sequences correspond to the pronunciation of different tokens. The small differences in (he
articulator motion during the /pasa/ sequence is a consequence of the repeated /a/ phoneme.
The movement required to produced the word /pasi/ involves essentially the movement of
the articulators, specially of the tongue, from the /a/ to the /i/ position. By contrast, the
tongue does not require extreme deformations during the /pasa/ sequence, since the first and

second vowels are the same.
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(a) Sustained /a/ (b) Sustained /s/ (c) Sustained /i/

FIGURE 8.16: Sustained images captured for the Subject PJ in the Southampton
experiments.

(a) Sustained /a/ (b) Sustained /a/ (c) Sustained /s/

FIGURE 8.17: Sustained images captured for the Subject 04 in the Halifax experiments.

8.4 Application of the ASHT Algorithm on Halifax Data

The vocal tract articulators were very blurred within the sequences of images generated
for the data collected in Halifax. The extraction of the tongue shapes using the ASHT
method was then performed over the non-speech and sustained images obtained from the
four subjects, since these were clear enough to perform the extraction. These images were
analysed individually due to anatomical differences from subject to subject. The images could
be treated as a sequence of 3 frames to analyse the whole sequence; however, the ASDHT

was not used since changes from frame to frame does not vary smoothly.

The ASHT algorithm was applied and the tongue was not fitted well as shown in Figure 8.18.
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It is necessary to consider that the algorithm was tested using a model on unseen images
generated with a different scanner, spatial resolution, FOV and collected from male and
female subjects. In addition, these images were collected for the token /pasa/ which is

different from the one used when the images of the original training data set were collected.

F1GURE 8.18: Results obtained for the sustained image subject 04. The algorithm fails
detecting the tongue shape.

Therefore, the tongue model was decided to be retrained as the 15 new tongue shapes were
included in the training data set. The set of 15 non-speech and sustained images is presented

in Figure 8.19 and the corresponding set of tongue shapes are presented in Figure 8.20.

Non speech Sustained /a/  Sustained /s/,

S1
Non speech
S2
Non speech Sustained /a/
S3
Non specch Sustained /a/
S4

FIGURE 8.19: Non-speech and sustained images used to extend the tongue model.
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FIcURE 8.20: Set of 15 tongue shapes extracted from non-speech and sustained images
collected in Halifax.
The process of generating the new tongue model, which will be referenced as extended tongue
model, was the same as previously described. The set of 15 tongue shapes were interpolated
to define a consistent set of landmark points, then the complete set of 54 tongue shapes
was aligned. The set of 54 aligned' shapes is shown in Figure 8.21 and The sum of the
original and aligned data set are shown in Figure 8.22. The principal component analysis
was performed and the new modes of variation were calculated and shown in Table 8.1. As
can be appreciated, the tongue shapes are very irregular, which involve a major variation in

the model, so that to cover the 90% of the variation 6 eigenvalues must be considered.

‘ A ‘ Figenvalue ‘ Percentage ‘ Accumulated percentage ‘

A1 93.2400 03.32 53.32
A2 39.8804 22.80 76.12
A3 11.8115 6.75 82.87
A 5.9045 3.37 86.24
As 4.2196 241 88.65
A6 2.5474 1.45 90.1

TABLE 8.1: Eigenvalues of the covariance matrix derived from the aligned tongue shapes.

The extended tongue model was applied to the original sequence of 39 tongue shapes to
analyse how the results were affected. The tongue shape extraction was performed using
one and two eigenvalues. The one eigenvalue results are presented in Figure 8.23. The
error calculated for this sequence is 1.25. The corresponding results using a two eigenvalue

model is presented in Figure 8.24 and the error calculated for this sequence is 1.20. It can
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FIGURE 8.21: Extended training data set with the tongue shapes aligned. Tlis set includes
the subset of 15 non-speech and sustained tongue shapes collected in Halifax.
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(b)

FIGURE 8.22: Superimposed tongue shapes. (a) Sum of all the 54 original tongue shapes.
(b) Sum of all the 54 aligned tongue shapes

be appreciated that the first frames in the sequence are better fitted in the two eigenvalue
results, however the remaining last frames are better in the one eigenvalue sequence results.

The errors were greater than those obtained with the original tongue model.
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FIGURE 8.23: Results obtained of applying the algorithm ASDHT over the original sequence
of 39 tongue shapes labelled by Mohammad, using the extended model of the tongue with
one eigenvalue.
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1 2 3 4 5 6
7 8 9 10 ' i1 12
13 14 15 16 17 18

FIGURE 8.24: Results obtained of applying the algorithm ASDHT over the original sequence
of 39 tongue shapes labelled by Mohammad, using the extended model of the tongue with
two eigenvalues.
The algorithm was applied over the 15 tongue shapes extracted from the non-speech and
sustained images collected in Halifax. Results using one, two, three and four eigenvalue model
are presented in Figures 8.25, 8.26, 8.27, 8.28 respectively. As can be visually appreciated,
the tongue shapes are better fitter when more eigenvalues are considered in the generation

of the matching shapes. However, spurious details in frames 46, 47, 50 and 51 are not fitted

even with four eigenvalues.

These experimental results lead to the conclusion that the algorithm can fit better any tongue
shape using a model with more eigenvalues. When the algorithm was applied to full edge
images some the tongue shapes were wrongly fitted in the skull edges as shown in Figure 8.29.

Here, although multiple peaks were present the best match was chosen for each edge image to
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FIGURE 8.25: Results obtained of applying the algorithm ASHT over the set of 15 tongue
shapes, extracted from the non-speech and sustained images collected in Halifax, using the
extended model of the tongue with one eigenvalue.

40 41 42 4; " 4
45 46/\ 47 48 49
50 51 52 53 =

F1GURE 8.26: Results obtained of applying the algorithm ASHT over the set of 15 tongue
shapes, extracted from the non-speech and sustained images collected in Halifax, using the
extended model of the tongue with two eigenvalues.
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FI1GURE 8.27: Results obtained of applying the algorithm ASHT over the set of 15 tongue
shapes, extracted from the non-speech and sustained images collected in Halifax, using the
extended model of the tongue with three eigenvalues.
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FIGURE 8.28: Results obtained of applying the algorithm ASHT over the set of 15 tongue
shapes, extracted from the non-speech and sustained images collected in Halifax, using the
extended model of the tongue with four eigenvalues.
be displayed. However, although the best match was selected most of the tongue shapes were
wrongly fitted in the skull boundaries, some tongue shapes for subject 02 and subject 04
were well fitted. The localisation of the tongue shape can be improved if a model of the
vocal tract with one eigenvalue is applied previously to the sequence, this will provide a good
approximation of the tongue shape. Then a window can be defined to restrict the searching
area of the tongue avoiding the skull or some other boundaries with similar shapes. If the
sequences of images are generated under the same conditions an approximation of the position
of the tongue can be predicted or defined in the system. This recommendations avoid any

initialisation step because the aim of this project is an automatic extraction.

8.5 Conclusions

In this chapter the results and evaluation of the reconstruction performed over the data
collected in Halifax were presented. These experimental results reveals less deformation of
the vocal tract articulators than those reported by Mohammad. This could be a result of the
inter row sampling rate of 120 ms (8.3 Hz) and the token pronounced, which does not require
big changes in the vocal tract articulators. By contrast, results presented by Mohammad
shows more variation on the vocal tract shape, with an inter-row sampling rate of 16 ms

(62.5 Hz) and a token forcing large movements of the articulators.

Noisy and blurred effects are more evident in the present results. The magnetic field strength,

the FOV, the spatial resolution and the pulse sequence used were discussed as possible causes.
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FIGURE 8.29: Results obtained of applying the algorithm ASHT over the set of full edge
images for subject 01 (first row) subject 02 (second row), subject 03 (third row) and subject
04 (fourth row).
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Non-speech and sustained images collected by this scanner appeared to be satisfactory for
these studies. However, when these images are collected the magnetic field distortions arc
compensated by an optimisation process to achieve an acceptable image quality. Thesce
magnetic field distortions are altered when the articulators move and the compensation is no

longer adequate for the new conditions.

However, these aspects are still under review. New experiments must be carried out before
concluding that a 4T scanner is not suitable for dynamic speech studies. These experiments
must include the acquisition of data with different pulse sequences, mainly trying to acquire
one plane at a time, i.e. sequential row acquisition. A head and neck coil should be uscd to

define a FOV with more emphasis in the vocal tract articulators.

The use of optical microphones must be considered in the future to avoid limitations in the
audio recording system. A mechanism to achieve a regular token pronunciation should be
implemented as well; for example, recording an audio file with a subject repeating the token
and playing this audio file during the scanning session to guide the subject on a more regular

pronunciation of the token may also be valuable help.

Although dynamic reconstructed images could not be used to test the ASDHT algorithun,
the non-speech and sustained images were used to test the ASHT algorithm. The algoritlun
failed to match the tongue shape due to anatomical differences, therefore, the tongue shapoes
from this set of images were outlined and included in the set of training tongues to train the
model using this new set. The variation of the tongue increased compared to the first modecl

generated.

Using the extended model the ASDHT algorithm was tested on the set of 39 original tongue
shapes. Although results were not as good as those obtained using the first tongue model,
the tongue shape was well fitted. This probably be caused because less variation was covered
with one and two eigenvalues of the extended model. Consequently, the additional set of
15 tongue shapes extracted from the set of non-speech and sustained images collected in
Halifax were fitted. These tongue shapes were analysed with the ASHT algorithm instead
of the ASDHT because the changes in shape and position from one frame to another were

considerably bigger.
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This led to the conclusion that the algorithm can be applied to different sequences and the
model can be retrained as many times as necessary to detect new tongue shapes to cover not

only anatomical and experimental differences but also different movements of the tongue for

different tokens and phonemes.




Chapter 9

Conclusions and Future Work

9.1 Introduction

This thesis has focused on automatic extraction of articulatory shape from magnetic resonance
image sequences of subjects during speech production. A combination of two feature
extraction techniques, active shape models and Hough transform was presented. Active
shape models were used to generate a model which was used as a shape description for the
Hough transform. Images were analysed individually and results were satisfactory, however,
when multiple candidate peaks were present in the accumulator space generated by the new
form of the Hough transform there was no criteria to choose the optimal solution. Then, the
problem was addressed as a global analysis of the sequence was performed. The dyunamic
Hough transform was adapted for our purposes, defining new constraints to limit changes in
centroid position, scaling factor and shape parameters. Section 9.2 discusses the main ideas
derived from the present work and Section 9.3 suggests possible future directions on this

research subject.

130
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9.2 Discussion

The automatic extraction of arbitrary shapes was addressed by combining two feature
extraction techniques. Active shape models were used to generate a shape model which
is used as shape description in a new form of the Hough transform: the active shape Hough
transform (ASHT). In the evidence gathering process that characterises the Hough transform
an accumulator is generated, where the number of parameters to consider in the searching
process depends on the level of invariance required. This algorithm was tested on MRI
sequences obtained by Mohammad (1999) using the SMDRI method. The algorithm was
tested on the extraction of the tongue shape from the MRI sequences using one and two
eigenvalue models. The set of searching parameters was composed by the centroid positiou,

shape parameters (value of parameters for one and two eigenvalue models) and scaling factor.

Although this algorithm shows good results, it can go wrong when selecting the optimal shape
and position due to the existence of multiple candidates, to noise or to missing information.
As a solution a global analysis of the sequence was performed by using the dynamic Hough
transform. This method focuses on the definition of an optimal path solution within the

accumulator space generated by the application of the ASHT to each image in the sequence.

The computational cost was reduced by implementing the algorithms in the C language
and by applying the coarse to fine dynamic programming formulation reported by Raphacl
(2001). However, large accumulator spaces tended to be generated by this algorithm when
the variation in shape deformation involves the use of more than two eigenvalues. This

disadvantage can be reduced by using a parallel implementation.

The tongue was extracted from the so-called ground-truth data set, unseen and syuthctic
sequences using one and two eigenvalue models. In these tests, nine different steps were
used for the shape parameters and the scaling factor. The number of steps will incrcase
the dimensions of the accumulator space. The image sequences of the ground-truth and
unseen data sets correspond to two male native speakers of British English repeating the

same nonsense token /pasi/, and images from both subjects were collected using the same
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scanner. Anatomical differences were covered by using a different range of values for the

scaling factor.

The differences between the target and the fitted shapes were measured using a chamfer
distance metric. Experimental results revealed that tongue shapes were fitted better when
a two eigenvalue model was used. Obviously, the error obtained from tests performed over
the ground-truth data set were less than those obtained from the unseen data set. Howcver,
results obtained from the unseen data were encouraging by the fact that the associated

deterioration in performance does not increase dramatically.

Synthetic sequences were generated using a three eigenvalue model to generate the tonguc
shapes. These experiments were performed to test the algorithm over a known set of shapes.
In general, results obtained with two eigenvalue model were better than those obtained with

a one eigenvalue model.

Then, the sequence of tongue shapes corresponding to the ground truth data set was
contaminated with different levels of noise. The algorithm gave consistent results with 20%
of noise added. Although the algorithm offers good fits for some tongue shape in the sequence

when higher levels of noise are added, it can go terribly wrong in some frames.

Although the algorithm was tested using a model of the tongue shape, it was proven that
the model can be easily extended as information for the lips was included in a new model
which included information for tongue and lips. However, this model offered higher modes
of deformation so that for covering 90% of the variation (as done for the tongue model), a
larger number of eigenvalues must be used. This model for lips and tongue was tested over

the same ground-truth data set and the unseen data sequences referenced before.

The generation of a model which includes information of more than one articulator offers
better results in the localisation of the shape; however, the shape may not be fitted as well as
using a separate model for each articulator. This may be caused by: differences in anatomical
dimensions of the articulators and the higher variation in the composed shape. The scaling
factor employed for each articulator may vary from subject to subject, as it was observed in

the results obtained from fitting the tongue and lip model in the unseen data set. The tonguc
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shape was better fitted that the lips. The relative distance between the lips and the tongue
could not be controlled with the scaling factor, and the range used for scaling was good for

the tongue shape and not good for the lips.

The achievement of a multiplanar vocal tract dynamics demands a suitable multiplanar data
set. Although the sequences of images generated by Mohammad included the information
for three sagittal planes, it was not enough for fully describing the vocal tract dynamics.
Thus, the 4T facilities provided by the Institute for Biodiagnostics (Atlantic) Neuroimaging

Research Laboratory were used to collect more data.

Although information of seven sagittal planes were collected from two males and two
females with different native speaking language using similar procedures to those followed
by Mohammad, the reconstru&ed image sequences were not as good as expected. Three
different sets of data were collected: audio data, MR images and gating pulses. Although
the same nonsense word used by Mohammacd was initially considered in these experiments,
because of some limitations imposed by the intercom of the console room (which was cutting
off audio information for frequency ranges above 2.5 kHz), the non sense token used iu the
experiments was changed to /pasa/. In the audio data recorded the noise generated by the
scanner was reduced by applying a minimum mean squared error and minimum statistics
noise estimation filter. The synchronisation of the gating pulses and the audio data revealed
the existence of a delay between both sets of data and an initial offset of 74.5 ms. The delay
was assumed to be caused by a slightly different sampling rate for the gating pulses and the
initial offset by an inversion recovery time defined in the acquisition process, and a delay in

the transmission of the sound.

The pulse sequence used in the image acquisition was different from that reported by
Mohammad. The number of images to be reconstructed was defined as the number of collccted
images. The number of reconstructed frames was defined by Mohammad as a function of the
Tr value, since this value was the actual inter-row collection time. The new pulse acquisition
sequence defines an inter-row time of 120 ms. However, the actual collection time is that

referred as acquisition time, at. If this value is considered in the number of expected frames,
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this becomes very large. For this reason, the number of expected frames was defined as the

same number of collected raw MR images.

Images reconstructed from the data collected in Halifax were very noisy and blurred. These
images were not as good as expected. In general, information of the vocal tract articulators
was very poor. The best sequence reconstructed corresponds to the subject 04, and even this
sequence has not enough information of the vocal tract articulators to make further work
useful. This may be caused by magnetic field distortions due to air-tissue susceptibility
differences, which were compensated during the static and sustained collections by an
optimisation process. However, this optimisation was altered when the articulators moved.
These distortions become bigger when the magnetic field strength of the scanuer increases.
In our case, the magnetic field increases 8times in comparison with the scanner uscd by
Mohammad. These aspects are still under review and new experiments must be carricd out

before concluding that this 4T scanner is not suitable for dynamic speech studies.

Although the new reconstructed images could not be used to test the ASDHT algorithm,
static and sustained images were used to test the algorithm in an individual analysis using
the ASHT. The tongue shapes from this set were extracted, interpolated and smoothed to
generate a consistent sets of points to be included in the original training set. The variation
of the tongue increased compared to the first model generated and instead of using two
eigenvalues to cover the 90% of the variation a total of 6 eigenvalues must be used for the

extended model to cover the same variation.

The ASDHT algorithm was tested over the set of 39 original tongue shapes. Although results
were not as good as those obtained using the first tongue model, the tongue shape was well
fitted. It may be that the variation covered with one and two eigenvalues was less than in
the previous model. However, the corresponding error did not increase dramatically, so that
this encouraged the idea of including more variation within the tongue model. Consequently,
the additional set of 15 tongue shapes were fitted better than in the previous model results.
The algorithm can be applied to different unseen sequences and the model can be retrained
as many times as necessary to detect new tongue shapes to cover anatomical differences and

different movements of the tongue for different phonemes and tokens.
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Some obvious ways that the method can fail are: the number of eigenvalues used is insuflicient
and the discretisation steps for the eigenvalues may have been too coarse. Although it is
standard practice to use eigenvalues sufficient to cover 90% of the variance in the training

data, our data could be limited or unrepresentative.

A disadvantage of the method is its highly computational cost. This is what prevented us
from using more eigenvalues and less coarse discretisation. Although the resulting shapes
were scaled to fit the target shapes, as the shape is described as a discrete set of points the

rotation and scaling of the shape by larger factors may not be implemented optimally.

First, we have only considered tongue shape in one plane. It would be very useful to extend
the work to extract 3D tongue shape as well as the moving shapes of other articulators.
Ultimately, extraction of full 3D vocal tract shape would be invaluable. Second, our method
has only been applied to SDMRI sequences for the spoken words, /pasi/ and/pasa/. At the
moment, we tested the model developed for the /pasi/ token over /pasa/ images. However,
experimental and anatomical differences were presented to assure this model would generalisce

to other words and speech sounds.

9.3 Future Work

This section presents the possible directions in which this thesis may be continued. Currently,
a new method for the automatic extraction of arbitrary shapes from image sequences lhas
described. Furthermore, the method has been shown immunity to noise and resilience to
missing data using a global analysis. However, there remains plenty of scope for improving
this method and for analysing the collection of data using the SDMRI method with different

scanners and pulse acquisition sequences.

9.3.1 Improving speed

This method has a disadvantage of high computational cost. The use of parallel

computing can improve the performance of this algorithm. Different approaches have
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been reported. Ercan and Fung (2003) described a study of higher-level image processing
algorithms implemented by parallel computing using a standard PC. Improvements in the
HT performance were reported. Using data parallelism Dantas et al. (2001) reported an
implementation of the HT algorithm for a scintillating fibre tracker. A parallel hardware
architecture dedicated for complex two- and three-dimensional video processing was presented
by Meribout et al. (2002). Reduction of the memory cost can be improved by avoiding hold

al the accumulators during the search of the optimal solution.

The tongue model should be tested over sequences of images for different phonemes and
tokens. The extension of these results to multiplanar sequences should be carried out.
However, although this method has been applied to MRI sequences for extracting vocal tract
articulator shapes, i.e.the tongue, this should be applied to other sequences for tracking

arbitrary shapes.

9.3.2 Improving Data Acquisition

The collection of data for reconstructing images using the SDMRI method must be studied

in more detail.

In order to draw some conclusions from the data acquisition performed in Halifax using a
4T scanner further experiments should be performed. These experiments must include the
acquisition of data with different pulse sequences, trying to acquire one plane at a time, which

covers the sequential row acquisition.

A head and neck coil should be used to define a FOV with more emphasis in the vocal tract
articulators since no brain information is needed for these studies. This will provide a hetter

tracking of the vocal tract articulators.

The use of better acoustic microphones with better noise reduction techniques must be
considered in the future to avoid limitations in the audio recording system and distortions

caused by magnetic susceptibility.
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A mechanism to achieve a regular token pronunciation should be implemented as well:
recording an audio file with a subject repeating the token, and playing this audio file during
the scanning session to guide the subject on a more regular pronunciation of the token may

also be valuable help.

Thus several directions for further research have been suggested. Unfortunately due to time

constraints these remain as areas for future work.




Appendix A

Magnetic Resonance Imaging

A.1 Introduction

Magnetic Resonance Imaging (MRI) is a medical imaging modality commonly used not only
for medical purposes but also as a safe method to acquire images with good soft tissue contrast
for research applications. Advances in MRI technology have been oriented to overcome
some of its disadvantages and have lead to an extensive variety of scanners, receiver and
transmitter coils, pulse sequences and software. Its major disadvantage is the long scanning
time, which is critical in research areas involved with the study of the dynamic behaviour
of an organ: for example, the heart in cardiac MRI and the vocal tract articulators in
speech production. Scanners have been designed with different magnetic strength ficlds to
improve their spatial resolution; additionally, pulse sequences have been developed to improve
either spatial or temporal resolutions. Manufacturers offer an extensive variety of rcceiver
and transmitter coils for imaging specific areas of the human body; moreover, a variety of
applications have been developed to address specific research areas, such as cardiac iinaging

which is continuously being developed.

This appendix will give a short introduction to the foundations of MRI theory and it is
divided as follows: first, a general description of the basic principles of MRI is presented:

then, concepts involved in MRI acquisition, such as pulse sequences, are explained; this is

138
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followed by a discussion of the advantages and disadvantages offered by this method: and

finally, artefacts and safety considerations are mentioned.

A.2 Basic Principles

MRI is a medical imaging technique based on the magnetic properties of elements. Within an
atom, each proton possesses a magnetic moment, called a dipole magnetic moment denoted

by u, and an angular moment, which causes it to spin on its axis as shown in Figure A.1(«a).

Hydrogen, which is very abundant within the human body, is the most commonly-intagaed
element. Under normal conditions, the protons are randomly aligned; consequently, if all the
dipole magnetic moments are summed up, the resulting net magnetisation A will be zero.
However, under the presence of an external magnetic field, By, the dipole magnetic nioments
precess either parallel or anti-parallel to this external field. The precessing effect is shown
in Figure A.1(b). This constitutes two different energy states: a low energy state, denoted
by E1, which is associated with the protons aligned parallel to Bp; and a high energy level,
represented by FEs5, which corresponds to the protons aligned antiparallel to this magnetic
field, as shown in Figure A.2(a). Now, if the moments are added up, the net magnetisation
will grow from O to a state of equilibrium, represented by Mp, along the direction of the
external magnetic field By and the protons will precess with a frequency known as Larmor

frequency wq given by:

wp = 7By, (A1)

where v is the gyro-magnetic ratio (Hashemi and Bradley, 1997). For hydrogen protous,
v/2n = 42.6 MHz/T (Pope, 1999).

A schematic representation of a 3D scenario is shown in Figure A.2(b). Here, the external
field By is applied towards the longitudinal axis represented by the z-axis. The protons
precess around By out of phase, and consequently there is not a component of My in the

transversal plane.
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FIGURE A.1l: Proton properties. (a) Single proton spins with a magnetic moment pu, (b)
Precessing effect around the magnetic field By, with a Larmor frequency wg.

The application of RF pulses with the same Larmor frequency excite the protons making them
resonate and consequently generating an electromotive force (emf). This force is regarded
as the MRI signal (Pope, 1999). The application of an RF pulse introduces an additional
magnetic field Bywhich is much smaller than the magnetic field By. When an RF pulse is
applied in the transverse plane (zy), the protons which are still precessing around By will
gradually precess in phase; then, these will sum up a component of the net magnetisation on

the transversal plane Mgy, causing the net magnetisation to flip through an angle #. This

angle is determined by the strength of the RF pulse B; and its duration 7 as follows,

0 =vBT. (A.2)

When the RF pulse is turned off, the protons start to precess out of phase again. Then the
component Mg, will decrease rapidly and the component on the longitudinal axis will slowly
recover. Note that each proton spins much faster on its own axis than when it precessess
around the axis of the external magnetic field (Hashemi and Bradley, 1997). Cousequently,
two concepts are introduced: longitudinal relaxation time or spin lattice relaxation time 77,
and transverse relaxation time or spin spin relaxation time 75. The relaxation time 1}
represents the time for the longitudinal component of My to recover, whereas The decaying
rate for the transversal component M, is characterised be the relaxation time T5. The

protons return to precess out of phase as a result of two important factors and the consequent
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FIGURE A.2: Net magnetisation Mp. (a) Protons align either parallel or antiparallel to the

magnetic field By, constituting two energy states, the higher state, F|, with all the protouns

aligned parallel to By, and the lower state, £5. with all the protons aligned anti-parallel to

Byp. (b) The protons are precessing out of phase, therefore the net magnetisation Ay lies in
the longitudinal axis.

decrease of the transversal magnetisation component M, after the RFE signal is turned oft.
The first factor is the interaction among spins, which is inherent in the properties of the
tissue. The second one is the external magnetic field inhomogeneity, which causes protons
in different ‘locations to precess at slightly different frequencies due to the slightly different
magnetic field strength. 75 decay is inherent in the proximity of spins, as a defined property
of the tissue. There is another 7% time depending not only on the spin-spin interactions but

also in the external magnetic field inhomogeneity (Hashemi and Bradley, 1997).

The transverse magnetic component My, will decay in time inducing a current on the receiver

coil and generating a free induction decay (FID) signal. This is the MRI signal.

A.3 Slice selection

The application of magnetic fields and the generation of the FID signal gives information
about the entire body, making no distinction whatsoever among different parts of the body
and tissues. Hence, the concept of gradient fields is introduced. A gradient field is used to
select a slice of the body by means of exciting this section in such a way that information for

small voxels (volume elements) can be acquired.
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FiGURE A.3: Slice selection. The use of a gradient magnetic field G, determines the

bandwidth of radio frequencies exciting the desired protous. G, varies from 0.3 to 0.7'T

defining the desired slice, the strength of the magnetic field for such a slice (0.59 to 0.61'1")

the radio frequency bandwidth, (25.13 — 25.98 MHz), which is defined by equation A.l.
Reproduced from Hashemi and Bradley (1997)

A gradient coil generates a magnetic field that varies along the body. This magnetic ficld is
applied with a flipped angle so that different intensities of such a field are applied to dillerent
parts of the body; this is denoted by G,. As shown in Figure A.3, the body is magnctiscd
with different magnetic field intensities along it. If the section of interest comprises part
of the chest, the selection of the RF pulses will be based on the range of magnetic hclds
corresponding to such a section. The determination of the range of radio frequencies to bhe
applied is straightforward when the range of intensities of the magnetic field is known by

using the Larmor frequency (Equation A.1).

The slice selection procedure starts with the application of the external magnetic ficld 3.
Consequently, all protons will precess at the Larmor frequency wy as shown in Figure A.4(a).
Then, the gradient magnetic field G, is applied and the bandwidth of radio frequencies
is determined for the slice of interest; the corresponding RF pulse is applied to causc the
longitudinal magnetisation M, to flip into the transversal plane with an angle of 6. I'ls,
the RF pulse and the gradient magnetic field G, are turned off, and all the volumes in the
selected slice will have the same frequency wo as illustrated in Figure A.4(b). Then, the
corresponding gradient magnetic fields are applied to generate information along the 2 and
y directions. The gradient Gy, or phase encoding gradient, is applied to modify the phase on

each row of the selected slice. As shown in Figure A.4(c), all the volumes precess at diffcrent
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frequencies; however, when this gradient is turned off, they go back at the same frequency wy
with a phase shift. The gradient G, or frequency encoding gradient, is used to modifty the
frequency on each column of the selected slice. The resulting matrix of the selected slice
will be composed of voxels with different frequencies and phases. The composite signal is
stored in a row of the K-space. This process is repeated until the matrix is full, following a

sequential row order as illustrated in Figure A.4(e).

The K-space matrix, which is in the Fourier space, is represented by two spatial frequencies
axis, K; and K. The final image is generated when the inverse Fourier transform is applicd

as shown in Figure A.5.
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(c) A phase gradient Gy is applied and then (d) A gradient G5 is applied to vary the precession
is turned off to create a phase shift. frequency. The composite signal is stored in the K-

space.

FIGURE A.4: Procedure for slice selection.

A.4 Fourier Imaging

An example of a pulse sequences for Fourier imaging is shown in Figure A.6; this is a pulse
sequence diagram for a spin echo sequence. This illustrates the application of radio frequency
pulses and gradient magnetic fields, whereby for every rF pulse a flip angle is specified. The

gradient GG, selects the slice of interest. The frequency encoding gradient, G, is assumed to
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FIGURE A.5: Image reconstruction of the sampled K-space matrix.

be the readout gradient. The phase encoding gradient, G, determines the resolution of the
image, according to the phase encoding steps employed. The MRI signal S of the slice 2 = zg

is given by:

Stte, ty) =My // Pz 1 2 = mo) exp [~z G t: + yGyty)| dedy , (A.3)

where My is the equilibrium net magnetisation and p(x,y;z=z¢) is the spin density function
which includes a dependence on Ty and 75 implicitly; ¢, = nAT, and &, = nAT, where AT},
and AT, are the corresponding increments of the z and y gradient pulse lengths. Equation A.3
is very similar to the 2D Fourier transform. Thus, the final image p, can be reconstructed
by applying the inverse Fourier transform to the acquired data S(t,,t,) (Cho et al., 1993,

Chap. 10).

The Fourier transform is used for Cartesian pulse sequences. There are pulse sequences
such as radial, spiral and polar sequences, where the image reconstruction consists of
transforming information towards the Cartesian space and applying the inverse Fourier
transform. A method of transforming from any other coordinate system to the Cartesian

one commonly used is interpolation.
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FIGURE A.6: Pulse sequence diagram for the spin-echo sequence for Fourier imaging.

A.5 Imaging Techniques

There are different categories of imaging techniques, appropriate to suit different applications.
For example, high speed imaging is used to examine or investigate the dynamic behaviour of
an internal organ such as the heart. On the other hand, high spatial resolution techuiques

are used, for example, in spectroscopy research.

A common trade off is between the spatial and temporal resolution. For
dynamic MRI (DMRI) is important not only the acquisition time but also the quality of
the final image. Different techniques have been developed in recent years to improve the

acquisition time with no sacrifice of the spatial resolution whatsoever.

Spin echo (SE) and gradient echo (GE) sequences are the two basic pulse sequences in
MRI acquisition. Variations and extensions of these pulse sequences have been developed
to improve either spatial or temporal resolution and to collect multiplanar or volumctric

images.

Spin echo sequences (SE) are based on the application of at least two RF pulses: one 90°
pulse and one or more 180° pulses. The application of 180° pulses aims to rephase the spins
and to reduce the external magnetic field homogeneities. Hence, SE sequences offer good
spatial resolution. A SE echo sequence is illustrated in Figure A.6. First a 90° RF pulse is

applied to flip the net magnetisation My into the transversal plane. As mentioned before,
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the protons tend to spin out of phase due to the slight differences in the magnetic ficld of
each proton. A 180° RF pulse is applied in order to cause a rephasing. After this pulse is
applied the FID signal is acquired at the echo time Tg. Then, the next sequence is applied

at time Tg.

By contrast, gradient echo (GE) sequences are usually used to reduce the scanning time
using partial flip angles; the Tr time is reduced and consequently the total scanning time. In

general, the scanning time is defined as:

Ts =Tg x P,

where Ty is the total scanning time, Tg is the repetition time, and F. is the number of phasc
encodings (rows) to be acquired. Therefore, if within every Tg period more than one RF
phlse is applied and the associated flip angle is lafge then, the Tr value will be relatively

long. Otherwise, the recovery time 77 will be short and so does will be Tg.

A.6 Scanners

A general scanning system consists mainly of a room where the scanner is sited and a room
with a console to control the process. At this console, images are visualised, stored and
processed. The console room includes an intercom that enables communication with the

patient inside the magnet room.

An MRI scanner usually comprises a main magnet, magnetic field gradients, transmitter
and receiver coils. The main magnet, considered as the heart of the system, defines the
strength of the scanner. This strength is measured in tesla units (T). There are somec
characteristics relating to the nature of the magnet strength. For example, homogencity
defines the uniformity of the magnetic field. Magnetic field gradients are built into the
magnet, and the transmitter and receiver coils are designed according to the region of intcrest,

such as knees, shoulders, head and neck among others (McRobbie et al., 2003).
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A.7 Artefacts

There are extensive classifications of MRI artefacts. Hashemi and Bradley (1997) present
a description of artefacts related to the gradient, external magnetic fields, maguetic
susceptibility among others. McRobbie et al. (2003) present a shorter classification of
motion, inhomogeneity and digital imaging artefacts. Westbrook and Kaut (1998) present a

description of the most common artefacts and the solutions to minimise or eliminate then.

For the purposes of this work, motion, susceptibility and homogeneity artefacts are
introduced. Motion artefacts, may be present for causes such as breathing, involuntary
movement of the head and due to the natural speech process involved during the acquisition.
The result of the movement of the vocal tract articulators is to generate in the final image
a band of distortion along the region where it is located. Ghosts are produced on the phasc
encoding direction since two consecutive phase encoding samples (rows) are acquired within

Tg intervals, which makes it a long interval of time.

Susceptibility refers to the degree of magnetisation of the tissue. Air has no susceptibility
to magnetic fields; susceptibility differences among elements may generate distortions in the
magnetic fields. Such distortions may be reduced by an optimisation process. The magnitude

of these increases as the strength of the applied field increases.

Homogeneity refers to the uniformity of the magnetic field; this can be distorted by
ferromagnetic parts and by the homogeneity properties of the scanner itself; Howcver,

scanners usually have a good correction of inhomogeneities by using of shimming coils.

A.8 Safety

There are many important safety procedures to follow when a patient is taken inside the
magnet room. First, an interview takes place where the subject is questioned about any
possible situation whereby small metallic residues may be trapped inside his or her body.
The more obvious situations are recent surgery, tattoos, metallic implants, or possession

of heart pace makers. Additionally, the questionnaire must determine whether the patient
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suffers from claustrophobia or not. A metal detector is usually passed along the body of the
patient to detect the presence of metallic objects. Some metallic parts, such as screw drivers,
could be attracted with such a force that can convert it into a projectile with dangerous
consequences, while small pieces of metal might move and cause internal damage. Inside
the magnet, the subject should wear a coat and hearing protectors because of the noisy
environment. Additionally, the subject is supplied with microphone and headphones so as to
be all the time in contact with the operator in the console room. This provides security and
support for the patient and a means for reporting any eventuality if necessary. There are
no known hazards or secondary effects from exposure to magnetic fields of MRI scanners. A

review of safety of strong, static magnetic fields is presented by Schenck (2000).

Any concise survey in MRI theory is likely to be incomplete and therefore a list of
complementary readings is recommended. Pope (1999) presents an illustrative introduction
to MRI. Hashemi and Bradley (1997) explain in detail the MRI basics; McRobbic ¢t al.
(2003) present a different approach explaining the process backward, from the final iimage to
the basic MRI principle, introducing the mathematical details of the technique. Cho ct al.

(1993) present a mathematical explanation of the technique.
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Southampton Dynamic Magnetic

Resonance Imaging

B.1 Introduction

Southampton Dynamic Magnetic Resonance Imaging (SDMRI) technique, as described
by Mohammad (1999), is used to obtain information about the dynamic behaviour of the
vocal tract articulators. This method consists of first acquiring MR images and audio data
of a subject repeating a token. These data are then synchronised to reconstruct a sequence
of images of the vocal tract dynamics. This method improves the acquisition rate of the
MRI scanner which is used, similar to those obtained with cardiac gating; however SDMRI
works offline by post-processing the collected data with total control over the reconstruction

procedure.

Information about most of the vocal tract articulators is collected at the same time, non
invasively. This allows a better understanding of the elements involved in the speech
production system and the interaction between them. Furthermore, the subject does not

need to be phonetically trained, thus providing a more natural speech environment.

This appendix will present the basic theory of the SDMRI method and a brief introduction
to the results reported by Mohammad (1999).
149
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B.2 Basic Theory

The SDMRI method is divided into three stages: acquisition, synchronisation aud
reconstruction. Data acquisition involves the acquisition of audio and MR images. During the
synchronisation every row in the raw images, which are defined in the k-space, is associated
with a phase value. Finally, in the reconstruction stage problems of missing and oversaimpled

rows are addressed.

B.2.1 Data Acquisition

During the acquisition stage, audio data and MR images are collected simultaneously. T'he
subject, who does not require to be phonetically trained, is asked to repeat a non-sense word.

This word has no meaning but is chosen to demonstrate a phonetic effect, e.g. /pasi/.

Preliminary tests must be performed to define acquisition procedures and parameters. Auclio
tests are conducted to determine the properties and limitations of the recording mechanisins
and to be certain that the audio information recorded is sufficient to achieve a plionciie
segmentation as accurate as possible. Thus, it is necessary to verify the range of frequencics
transmitted and recorded by the audio recording system. For example, where the console
intercom is used to collect the audio, it is necessary to determine whether the transmitted
frequencies include or not the phoneme formant frequencies. The audioc gain must also he

adjusted so that there is no clipping in the recorded signal.

In order to achieve the desired tissue contrast, field of view (FOV), and scanning timc,
image acquisition tests must be conducted; this will determine the pulse sequence and the

corresponding parameters.

Time is critical in speech research. Experiments must be defined considering the possible
fatigue of the subject due to a large number of repetitions of the token. These may cause
the decay in audio volume and irregular durations in token repetitions. The total time the
subject stays inside the scanner may also be an issue, as it is physically uncomfortable and

noisy.
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During the acquisition the subject is asked to repeat a token as regular as possible, then the

scanning process can start at any time.

The initial collected matrices, called raw matrices, are defined in the Fourier space named as
the k-space. These matrices are composed of rows acquired at different times and phases of
the pronunciation of the token. However, the final images must be composed of rows with
the same phase or range of phases. The phase definition and final matrix arrangement are

addressed in the synchronisation stage.

B.2.2 Synchronisation

The key of SDMRI is the synchronisation of the audio data with the MR images. The
acquisition time of each row is determined and a phase value is assigned according with its
occurrence in the corresponding token pronunciation. The first step consists of manually
measuring the token and phone ‘duration. Then, the acquisition time is determined and

subsequently the phase for each row is defined.

The process of defining the phase for each row is illustrated in Figure B.1. Here a MR image
is shown to illustrated the process; however, as mentioned before, the raw data is a k-space
matrix. Each data acquisition consists of collecting images while a word is repeated, in this
example /pasi/. The scanner may start the image acquisition at any point of the token
pronunciation. In Figure B.1, the scanner starts approximately when 17% of the third token
has been pronounced, and finishes at 65% of the pronunciation of the fifth token. The final

matrix has 128 rows (0 to 127).

Once the phase for each row is defined, synchronised matrices are generated; these will be

composed of rows with the same phase or range of phase as illustrated in Figure B.2.

The number of synchronised matrices or final frames is determined as follows

Ngr = diok/Tr, (B.1)
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Token #3 fa
oKen /S/

i/ 100%
/)

fa/
Token #4 s/

11/ 100%
1o =1
la/

a
Token #5 /S/ Gy SRR Row l27—

Bl oo

FIGURE B.1: Data acquisition. Example of the image acquisition, while the subject is
repeating the word /pasi/. The scanner starts approximately at 17% of the pronunciation of
the third token, and finishes at 65% of the fifth one.

Raw Matrix Synchronised Matrix

15% 5%
35% 5%
55% ‘) 5%
5% [ 5%
95% 5%
8% 5%
200, 0,

0

F1GURE B.2: Data synchronisation. Raw images are composed by rows with different phases.
Matrices with the same phase or range of phases must be defined.



Appendix B Southampton Dynamic Magnetic Resonance Imaging 153
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35% 67% %
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59% 61 % | 38%
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. . | .
Raw matrix | Raw matrix V-1 I Raw matrix ¥V
|
|
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«

15%
15% ow-N-2
15%

|

Synchonised matrix phase 15%
FIGURE B.3: Generation of matrices with the same phase. A matrix for the phase of 15%
is generated. Copying rows from the raw matrices with the phase value of 15%. However,
this process will generate matrices with oversampled rows (Row 0), and missing rows (Row
N -1).

where Ngr is the number of expected frames, dyor is the duration of the token and Ty is the

repetition time.

The synchronisation process will generate a set of Nppr matrices consisting of rows with the
same phase but with missing and oversampled rows. These problems are addressed in the

reconstruction stage.

B.2.3 Reconstruction

Two problems are presented in the reconstruction stage; these concern the missing and
oversampled rows, as can be observed in Figure B.3. Oversampled rows in a synchronised
matrix are characterized by the presence of two or more rows within the same range of phase.

A solution to this problem is to simply average them.

By contrast, the problem concerning the missing data rows is solved using the criterion

of borrowing rows from the immediate neighbours. As presented in Algorithm 3, If both
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neighbours can contribute to the missing row, an average of them is used. Wlen only one
neighbour contributes to the missing row, it is just copied. This process continues until cither

there are no more missing rows or information in such rows is not available.

Algorithm 3 Pseudo code of the borrowing criterion used to overcome the missing row
problem.
do
missing = 0;
for cFrame =1:1:Totallmages
for cRow=1:1:Total Rows
if sum(frame(cRow,:,cFrame)) ==
missing = missing + 1
prev = cFrame — 1;
next = cFrame + 1;
if prev <1
prev = TotalImages;
if next > Totallmages

next = 1;
if sum(frame(cRow,:,prev)) =0 & sum(frame(cRow,:, next)) =0
frame(cRow, :,cFrame) = (frame(cRow, :, prev) + frame(cRow, :, next))./2;
elseif sum(frame(cRow,: prev)) =0
frame(cRow, :, cFrame) = frame(cRow,:, prev);
elseif sum(frame(cRow,: next)) =0

frame(cRow, :,cFrame) = frame(cRow, :, next);
while missing

The generation of the final images is achieved by applying the inverse Fourier transforin. For

more details refer to Appendix A.

B.3 Mohammad Results

Mohammad (1999) reported four experiments using two subjects. First subject SG a 25 year
old man, native speaker of British English was used in the first two experiments; in the last
two experiments were conducted with a 27 year old man, native speaker of British as well. For
analysis and discussion purposes of the present work a special emphasis is made in the fourth
experiment. ITmages were collected using a 0.5T Signa GE scanner and a fast RF-spoiled

gradient echo sequence. Three sagittal planes were acquired with an image resolution of
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128%196 and 5mm thickness with slice separation of 6mm; a total of 24 frantes were acquired

with a Tr of 16 ms. Table B.1 summarises the acquisition parameters.

‘ Parameter | Fourth Experiment ‘
Subject PG
Age 27
Native Language British English
Scanner 0.5T Signa GE scanner
Pulse sequence Fast RF-Spoiled Gradient-Echo
Number of slices 3
Slice thickness 5mm
Number of initial frames 24
Slice separation 6mm
Tr 16ms
Token /pasi/
Phase encodings (rows) 128
Frequency encodings (columns) 196
Plane orientation imaged Sagittal

TABLE B.1: Acquisition parameters used by Mohammad in the fourth experiment.

The acquisition sequence is illustrated in Figure B.4. As can be observed, the collection was
made one plane at a time, where consecutive rows were separated by Tg intervals. Figure B.5
shows an audio file and its spectrogram for a single acquisition. Three sections, which arc
marked as b, ¢ and d, can be easily detected; these represent the collection of the left, mid

and right sagittal planes.

Left Middle Right
Token 1 ; Token 2 T okeri,x 3 Token4 T ol:(en 5 Token 6 i Token 7
J — » Timc
Row 0 Row N-1
Row 1 Row N-2

FIGURE B.4: Acquisition sequence used. Each plane is collected at a time. Rows for a
specific plane are collected in a sequential order on intervals of Tg.

During the synchronisation, a phase value was assigned to each row of the raw matrices.

First, each audio file was segmented so that each token and phoneme duration was measurcd;
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*T "u’ﬁ;&ﬁ“ ,T - &w\'»a ‘ ’ . “a‘x

tkixﬁ"xl‘* |‘t‘\,\““ TR BRI
Ch M.

FicURE B.5: Digitised audio data. In (a) the subject starts to pronounce /pasi/; then, the
scanner starts to collect: (b) the left (c¢) the mid and (d) the left sagittal planes; the image
acquisition finishes in (e).
an average of such durations was computed. Then, the acquisition time for the first row
of each matrix was determined. It was assumed that the acquisition time for this row,
denoted by T7,, was defined by the time the scanner starts emitting its noise; this is marked
as (b) in Figure B.5. Each phoneme had a range of phase assigned in 25% intervals as
shown in Figure B.6. For example, the phase value for those rows collected during the

/p/ pronunciation was defined in the interval of 0 to 0.25. The phase for the first row, phy,,

was then calculated as:

0.25 (va,v = Tstarl,Ph)

B.2
dph ( )

phyr = 0.25(Npn) +

7

where Ny, is the phone number defined as illustrated in Figure B.6; the expression Ny, #0.25
defines the initial value of the range of phases for the /ph/ phone; Tgiaripn is the time when
the phoneme pronunciation starts and dp), is the duration of the phoneme. Subsequent row

phases were defined as increments of the phy, value in phgp steps given by:



-1
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0.25
ph'step = T )

where k is the number of rows per phoneme defined by:

dp

k=—-
Tr’

where dp, is the phoneme duration. Figure B.7 shows an example where the first row is
acquired at 1.41s, during the pronunciation of the /a/ phoneme, and Np, is defined as 1.
Thus, using Equation B.2, the phase value for this row is defined as 0.38. The next stcp was

to compose matrices with the same phase.

N,=0 N,=1 N=2 N3

0 25 50 75 100

FIGURE B.6: Range of phases defined for the token /pasi/. Each range is defined as 25%
and the number of phoneme is defined by N,h.

first row (1.41 s)

l :

>

time (sec)

1.17 1.29 146 1.60 1.76

p | a S i

FIGURE B.7: Example of definition of phase for the first row. When the time the first row
is determined, it can be deduced the phoneme that was pronounced at that time. The phasc
value is calculated using Equation B.2.
Using Equation B.1, the range of frequencies for each final frame was defined; thus, the
matrices were composed with the corresponding rows. These matrices had missing and

oversampled rows; however, this problem was overcome with the borrowing and averaging

criterion mentioned before.
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A reconstruction of multiplannar sagittal images of the vocal tract with an apparent sampling
rate of 63 Hz was reported. This increased by a factor of 136 over the rate of the scanner
and pulse sequence used. The sequence of 39 midsagittal reconstructed frames is presented

in Figure B.8 and a summary of the results in Table B.2.

FIGURE B.8: Sequence of 39 midsagittal frames reconstructed by Mohammad for the subject
PJ in the experiment 4.
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‘ : Parameter ‘ Fourth Experiment
Subject PG
Initial Frames 24
Reconstructed Frames 39
Sampling rate achieved 63 Hz
Image resolution 128 x 128

TABLE B.2: Results‘generated by Mohammad for the fourth experiment.
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