
UNIVERSITY OF SOUTHAMPTON

Parameter Optimisation for Search

Heuristics via a Barrier Tree Markov

Model

by

William Benfold

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

February 2007

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by William Benfold

The quality of solution provided by a search heuristic on a particular problem is by no

means an absolute value. Most heuristics are controlled by a set of parameters, upon

which the performance is heavily dependent. We construct Markov models for search

heuristics on specific problem instances, and model the relationship between the quality

of search and the choice of parameters.

For any problem instance of nontrivial size, the state space for this model is large enough

so as to make computation infeasible. Our solution is to use a reduced-state model of the

search space, by amalgamating many similar points. We use a model based on a level­

accessible barrier tree, grouping regions of the search space according to the reachability

of minima.

Optimal annealing and mutation schedules are produced, minimising either "where-you­

are" or "best-so-far" cost, over binary perceptron, spin-glass and Max-SAT problems.

The predictions of the model are found to be consistently over-optimistic; we discuss

reasons for this and suggest some possible refinements to the model.

A population-based variant of simulated annealing is briefly examined, where annealing

temperature is adjusted according to performance. We later optimise the average first­

passage time for several special-case heuristics, comparing the minimal times across a

range of problems.

Contents

Nomenclature

Acknowledgements

1 Introduction
1.1 Overview
1.2 Existing Work.

1.2.1 Models of Search Spaces
1.2.2 Models of Search Heuristics
1.2.3 Summary

1.3 Roadmap

2 Background
2.1 Cost Landscapes

2.1.1 Minimisation Problems
2.1.2 Landscape Terminology

2.2 Search Heuristics
Descent 2.2.1

2.2.2
2.2.3

Descent with Variable Mutation
Simulated Annealing .

2.2.4 Termination Criteria
2.3 Linear Algebra 101

2.3.1 Eigenvalue Decomposition.
2.3.2 Stochasticity
2.3.3 Ergodicity.

2.4 Markov Models . . .

3 Markov Models of Search Heuristics
3.1 Search Heuristics

3.1.1 Descent
3.1.2 Simulated Annealing
3.1.3 Descent with Variable Mutation

3.2 Cost of a Search Heuristic
3.2.1 Where-You-Are (WYA) Cost
3.2.2 Best-So-Far (BSF) Cost
3.2.3 Other Measures of Cost

3.3 Coarse-Grained Schedules ...

11

viii

ix

1
2
3
3
5
7
7

10
10
11
12
13
14

15
15
16

17
18
19
20
20

22
22
24

24

25
26
27
28
29
29

CONTENTS

4 Test Problems
4.1 Hurdle Problem.
4.2 Real Problems .

4.2.1 Max-SAT
4.2.2
4.2.3

Binary Perceptron
Spin Glass

4.3 Reducing State Space for Large Problems
4.3.1 Barrier Trees
4.3.2 Constructing a Markov Model .. .

4.4 Accessibility Graphs for Search Space Visualisation .
4.4.1 Accessibility Graphs
4.4.2 Connectivity Observations.

5 Optimal Parameter Schedules
5.1 Optimisation Methodology

5.1.1 Uniqueness of Solution ..
5.1.2 Evidence of Convergence.
5.1.3 Computational Limitations
5.1.4 Schedule length
5.1.5 Coarse-Grained Schedules .

5.2 WYA and BSF Schedules for the Hurdle Problem.
5.3 Models of Real Problems
5.4 Features Observed in Optimised Annealing Schedules for Max-SAT Prob-

III

31
32
33
34
35
35
36
36
39
41
41
42

46
46

46

47
51
52
53
55
57

lems 61
5.4.1 Cold Start
5.4.2 Gradual Cooling
5.4.3 End-of-Search Behaviour
5.4.4 Overlapping schedules

5.5 Periodic Schedules
5.6 Variable Mutation

61
61
62
62
66
69

5.7 A verage-Optimal Schedules . 71
5.8 Reduced-parameter optimal schedules without search space modelling 73

6 Parallel Simulated Annealing 16
6.1 Motivation 77
6.2 Model ...
6.3 Results...
6.4 Conclusions

1 Optimal Heuristics
7.1 Introduction ...
7.2 First Passage Time.

7.2.1 Derivation ..
7.2.2 Numerical Instability in Optimisation

7.3 Lower Bound Algorithm
7.3.1 Definition
7.3.2 Minimising FPT Using Dijkstra's Algorithm.

77
78
83

85
85
86
87
88
89
89
90

CONTENTS

7.4 Cost-Dependent Algorithm
7.5 Single-Parameter Heuristics
7.6 Results............

8 Conclusions
8.1 Evaluation of the Model 0 ••• 0 • 0 •••••• 0

8.1.1 Possible Refinements to the Search Space Model
8.1.2 Population-based Models o. 0

8.2 Alternative Schedule Parameterisation
8.3 Schedule Extrapolation

A Miscellaneous Proofs
A.1 The Fixed Point for Constant-Temperature Annealing is a Boltzmann

IV

93
94
96

98
98
99

.100

. 101

. 101

103

Distribution . 0 0 0 0 0 • • • • 0 •• 103
A.2 An Upper Bound for the Number of Minima on a Cost Landscape with

Hypercubic Connectivity. 0 104
A.3 Number of possible populations over a finite search space 104
A.4 A Guarantee of Convergence is not a Guarantee that FPT Exists . 105
A.5 FPT on Direct Search Space Models . 107

A.5.1 Optimal Walk. . 107
A.5.2 Random Walk . 107

B Defective Matrices
B.1 Examples ... 0

B.l.1 A Non-Triangular Example
B.1.2 An Ergodic Example.

B.2 Impact on Calculations

C Supplementary Data
Col Barrier Tree Statistics
C.2 Optimal Annealing Schedules

C.2.1 Convergence
C.2.2 Max-SAT Schedules .
C.2.3 Binary Percept ron Schedules
C.2.4 Spin-Glass Schedules .
C.2.5 Schedule Performance .

C.3 Short Schedules 0 • •

C.4 Constrained Periodic Schedules

Bibliography

109

· 109
· 110
· 111
.112

114
.114
.116
.116
.118
.118

· 121
· 122
· 123
· 126

129

List of Figures

1.1 Overview of search parameter optimisation 3

2.1 A one-dimensional cost landscape with several minima. Locations of min-
ima and the associated basins are marked, as is a plateau region. 13

3.1 Cost of the points visited by a search heuristic vs iteration number (time).
The three measures of search cost indicated are "Where-You-Are", "Best­
So-Far" and First Passage Time (defined later in §7.2). The FPT label
is conditional on the cost indicated being the global minimum, otherwise
FPT is unknown (and potentially undefined). 27

4.1 Hurdle function cost vs hamming distance from goal string, for a 16-bit
hurdle problem . 32

4.2 Barrier tree (lower right) and accessibility digraph for level-connected
sets (lower left) for a one-dimensional cost landscape (top). The digraph
nodes 'a' and 'k' are each connected to all nodes of the graph (including
each other); the edges from these nodes are omitted for clarity. Similarly,
'e' and 'i', which have identical connectivity (and are connected to each
other) are shown as a single point. .. 37

4.3 An example of a barrier tree for a 20-variable Max-SAT problem. Only
the area of the tree containing the global minimum is shown. 38

4.4 A barrier tree for an L-bit hurdle problem. Note that every point in the
search space is either a local minimum or maximum. Because every local
maximum is accessible from all other maxima of the same cost, the vast
majority of the nodes correspond to local minima. 39

4.5 In the situation shown, the chance of reaching c or d is heavily dependent
on which of the higher states a, b one begins in. Information about this
correlation is lost however, as a and b form a single level-accessible set. 40

4.6 Barrier tree connectivity for a 20-variable Max-SAT problem. 42
4.7 Barrier tree connectivity for a 17-variable Spin-Glass problem. 43
4.8 Barrier tree connectivity for a 12-variable Binary Perceptron problem. 44
4.9 Barrier tree connectivity for a 12-variable Binary Percept ron problem. 45

5.1 An optimised schedule for temperature (,8-1) against time (top), followed
by first and second derivatives of average WYA cost, with respect to the
inverse temperature (3. The second derivatives shown are the non-mixed
derivatives, i.e. the main diagonal of the Hessian. 48

5.2 Temperature and first derivative of cost of a schedule perturbed by re-
moving the "cold start". 49

5.3 The first and second derivatives of a constant schedule sum to zero. 50

v

LIST OF FIGURES vi

5.4 Coarse-grained WYA schedules for a hurdle problem, various block sizes.. 54
5.5 Coarse-grained BSF schedules for a Max-SAT problem, various block sizes. 54
5.6 Example WYA and BSF-optimised schedules for a 15-bit hurdle problem. 55
5.7 Predicted vs. measured performance of a WYA schedule; measured results

averaged over 100000 runs. .. 56
5.8 Predicted vs. measured performance of a BSF schedule; measured results

averaged over 100000 runs. 56
5.9 Predicted vs observed performance of a WYA-optimal schedule for a SAT

problem .. 57
5.10 Predicted vs observed performance of a BSF-optimal schedule for a SAT

problem. .. 58
5.11 WYA and BSF-optimal schedules for a 20 variable Max-SAT problem. 58
5.12 Predicted vs observed performance of a WYA-optimal schedule for a spin-

glass problem .. 59
5.13 Predicted and actual costs for an annealing schedule optimised (for WYA

cost) over the digraph of level-connected sets (instead of the barrier tree)
for a 20-variable Max-SAT problem. 60

5.14 An annealing schedule optimised for WYA cost a 40-variable Max-SAT
problem, produced from a sampled barrier tree model with 85 states. .. 60

5.15 WYA hurdle schedules show a very good overlap 63
5.16 BSF hurdle schedules of differing lengths are of similar shape, but do not

overlap. .. 64
5.17 BSF schedules on a Max-SAT problem were sometimes found to have a

slightly periodic behaviour. Note that the amplitude of the oscillation is
greatest for smaller schedules, and almost vanishing for the longest. . . 65

5.18 WYA schedules of various lengths for a 20-variable Max-SAT problem.. 65
5.19 A Max-SAT BSF schedule with three similarly-shaped peaks. 66
5.20 A BSF-optimised binary perceptron schedule (problem '10-12-2'), alter-

nating between high and low temperatures. 67
5.21 A BSF-optimised schedule for binary perceptron problem '10-12-1'. A

series of high-temperature spikes is interleaved with a series of lower­
temperature humps. 68

5.22 WYA-optimised schedule for binary perceptron problem '10-12-1'. An
oscillating temperature is followed by a gradual cooling. 69

5.23 Comparison between performance of WYA-optimised annealing and mu-
tation schedules, on a 54-bit hurdle problem. '" 70

5.24 Example WYA-optimised mutation schedules for two problems. 70
5.25 Comparison between an average-optimal schedule and the average of all

the individually-optimal schedules. Schedules produced for WYA cost of
simulated annealing on a set of twelve Max-SAT problems; 100 (constant-
temperature) blocks of 16 iterations. 71

5.26 When tested against the actual problems, the average-optimal schedule
gives better performance than schedules specifically optimised for those
problem instances. 72

5.27 Comparison between a schedule freely optimised on a barrier tree model,
and a four-parameter schedule optimised directly; schedule length is 400.
Also shown is the starting point for the latter optimisation, with tl = 20,
t2 = 360, A = 0.5 and B = 0.002. 74

LIST OF FIGURES vii

6.1 Optimised (3 (t) -1 for hurdle problem . . 79

6.2 Optimised a(t) for hurdle problem . . . 79
6.3 Optimised (3(t)-l for Max-SAT problem 80
6.4 Optimised a(t) for Max-SAT problem . 80
6.5 Predicted and actual performance of optimised PSA schedules on a 16-bit

hurdle problem. .. 81
6.6 Predicted and actual performance of optimised PSA schedules on a 20-

variable Max-SAT problem. ., 82
6.7 Minimum cost from a PSA population using the schedules of figs. 6.1, 6.2

on a 20-variable hurdle problem. 82

7.1 FPT for four different algorithms on (barrier trees of) a variety of test
problems. Within each category, problems are sorted by number of barrier
tree states. On a small number of problems, the optimisation for the cost­
dependent algorithm consistently diverged, hence the occasional missing
points from this series. The other absent data points are those few results
with times exceeding 500 iterations. 97

C.1 Max-SAT: barrier tree statistics. . . . 115
C.2 Spin glass: barrier tree statistics ., . 115
C.3 Binary perceptron: barrier tree statistics. . 115
C.4 Snapshots of a WYA Max-SAT schedule at various iterations of the SCG

optimisation. 116
C.5 Snapshots of a BSF Max-SAT schedule at various iterations of the SCG

optimisation. 117
C.6 Superimposed WYA schedules (length 400) for a series of Max-SAT prob-

lems 117
C.7 Superimposed BSF schedules (length 400) for a series of Max-SAT problems118
C.8 WYA-optimal schedules for binary perceptron problems in 10 (left) and

12 (right) variables 119
C.g BSF-optimal schedules for binary perceptron problems in 10 (left) and 12

(right) variables. 120
C.10 WYA-optimal schedules for spin-glass problems in 10 (left) and 15 (right)

variables. 0 0 0 • 0 •••••• 0 • • • • • • • •• 0 •••••••••• 121
Co11 BSF-optimal schedules for spin-glass problems in 10 (left) and 15 (right)

variables. 122
C.12 Performance of WYA-optimised schedules 0 •••••••••••••• 123
C.13 Performance of BSF-optimised schedules. 124
C.14 Superimposed WYA schedules (length 100) for a series of Max-SAT prob-

lems 125
C.15 Superimposed WYA schedules (length 100) for a series of binary percep-

tron problems 0 ••••••••• 125
C.16 Superimposed WYA schedules (length 100) for a series of spin-glass prob-

lems 0 ••••••••• 0 •••••••••••••• 126
C.17 A "square wave" periodic schedule with maximum temperature 0.8, min-

imum 0.2, peak width 6 and trough width 14 127
C.18 Results of BSF optimisation with "square wave" form, temperature peaks

adjustable and included in schedule length. 128

Nomenclature

lxJ
fxl
[a, bJ
[predJ

JPl (X)

(X)
P(S)
MT

A0B

The set of reals

The set of strictly positive reals

The set of integers

The set of strictly positive integers (equivalently N)

A (column) vector of zeros (number of elements to be inferred from context)

A (column) vector of ones

The "floor" function, given by max {y E Z : y ::; x}

The "ceiling" function, given by min {y E Z : y ;:: x}

The closed interval {x : x E lR, a ::; x ::; b}

Evaluates to 1 if pred is true, 0 otherwise

The probability of event X occurring

The arithmetic mean of the random variable X

The power set of S

The transpose of the matrix M

The element-wise product of the matrices A and B

viii

Acknowledgements

The Max-SAT, binary perceptron and spin-glass problem sets, and associated Barrier

Tree data (state sizes, costs and transition probabilities) used in this thesis were kindly

contributed by Jonathan Hallam. §4.3 provides a brief overview of the process, which is

described in full in Hallam's thesis (Hallam, 2006).

ix

Chapter 1

Introduction

The efficiency of search heuristics when applied to real-world problems is of considerable

importance, both to the practitioners, who wish to maximise the return on invested re­

sources, and to theorists interested in studying the difficulty of the problems themselves.

A practitioner is faced with the task of applying search heuristics in such a way as to

produce solutions of highest quality, whilst minimising resource consumption (usually

execution time). Since these two objectives will almost always conflict, one variable is

usually predetermined, while the other is optimised; one is usually interested in either

the best solution produced within some time limit, or the time required to reach a

solution of at least a certain quality.

Regardless of the exact specification of the goal, the behaviours of all but the simplest of

search heuristics are determined in part by a set of parameters l . For instance, Simulated

Annealing is controlled by a set of real-valued parameters known as the "annealing

schedule". A genetic algorithm may have such parameters as "mutation rate", "crossover

probability", "population size", and some more structured information, such as the

choice of selection method and crossover operator, whether a generational or steady­

state GA is used, and so on.

From the point of view of one analysing the complexity of hard problems, optimised

heuristics can be used to measure the difficulty of the problems themselves. The perfor­

mance of optimised heuristics on various problems can give a quantitative measure of

the relative difficulties of the problems.

Finding the best choice of parameters for a given heuristic is usually a task considerably

more difficult than solving the problem to optimality; the chief benefits are indirect,

10£ course, unparameterised search heuristics do exist, with first-improvement descent and exhaustive
(or even random) search being common examples. In fact, the size of the parameter set of any algorithm
may be increased or decreased arbitrarily via generalisation, specialisation, or various other mechanisms.
Our description of the parameter set for any algorithm is merely intended to describe the "natural
parameterisation", and is of course not derived from any inherent property of that algorithm.

1

Chapter 1 Introduction 2

through application to related problems. It is not unreasonable to expect that when a

series of search problems are constructed in a similar manner (e.g. a set of 20-variable

Max-3-SAT problems, a set of 15-variable spin-glass problems, or a set of 30-node TSP

problems), some aspects of the structure of the problem landscape (e.g. the size, depth,

number or clustering of minima, plateaus and barriers) are common to, or at least corre­

lated amongst, that series of similar problems. If a set of problems have some similarity

of structure, one could expect that heuristic behaviour, and thus the best choice of

heuristic parameters, might be similar across those problems. Optimal parameters for

one problem in such a set, while unlikely to be optimal for the other problems, may

provide improved performance over parameter settings chosen without this analysis. It

is possible that the benefits might outweigh the additional resource expenditure required

for the optimisation, particularly in scenarios where "training problems" are made avail­

able in advance of the real problem set.

It is also possible that, given a problem with a search space too large to analyse, a smaller

problem from the same class may be generated (or the original problem projected in some

way onto a smaller space2), with the intention that applying the search to the reduced

problem may provide some insight into the original problem. Even if the smaller problem

bears no semblance to the original, the results of applying a given heuristic on the two

may be related, and the relationship possibly predicted through analysis of the way the

difficulty of the problem scales with size.

1.1 Overview

Fig. 1.1 outlines the process. Given a search problem, a model of the corresponding

cost landscape is produced. This model represents the landscape as a number of states,

each with a single cost, and with transition probabilities reflecting the probability of

moving between them under a random walk. This is the output of a state-amalgamation

process, produced either through knowledge of the structure of the space gleaned from

the problem definition, or by constructing a specific set of equivalence classes known

as a barrier tree (§4.3) for the landscape (the steps involved are general enough that

they may be applied to arbitrary cost functions over finite, discrete spaces). The cost

landscape model is intended to be transparently substituted in many situations where

one would normally require a complete model of the search space.

The behaviour of a search heuristic can be defined independently of the landscape on

which it is searching, provided obviously that no representation-specific operations are

performed (e.g. computing directions between points). We also restrict the choice of

heuristics to those for which the state space is identical to the search space, i.e. those

where the algorithm can be said to be "at" a particular point in the search space after

2In fact, we do exactly this when we use state amalgamation to reduce the size of a problem (§4.3).

Chapter 1 Introduction

[Search Heuristic

Parameter
Schedule

1--------,

A

Search Model

: Optimise Search cost
......... .. '.0.. . ..

(+gradient)

Problem
Specification

Cost Landscape
Model

Cost Definition
(for search)

I

FIGURE 1.1: Overview of search parameter optimisation

3

each iteration. Notably, this excludes most GAs; for a population of size P, with each

individual represented by L bits, the size of the state vector would be O(2LP).

Combined with a cost landscape model, this description of a heuristic's behaviour can

be used to model the path taken through the search space as a Markov process, and to

compute the expected cost. The behaviour of the search is dependent upon the search

parameters (e.g. an annealing schedule), as is, by extension, the average cost. Our work

centres around the optimisation of search cost through the parameters of the heuristic.

1.2 Existing Work

1.2.1 Models of Search Spaces

The idea of representing a search space as a hierarchy of states is certainly not new,

but the method of decomposition according to accessibility was recently introduced by

Flamm et a1. (2002). Further exploration of barrier tree construction was performed in

Hallam and Priigel-Bennett (2003, 2005b); Hallam (2006), with barrier trees constructed

Chapter 1 Introduction 4

for several NP-hard problems. Hallam used Markov models constructed from the barrier

tree data to predict the final distribution and average search time for first-improvement

descent, and in Hallam and Priigel-Bennett (2005a) attempted to produce a barrier­

tree based model for crossover, using the average Hamming distance between states to

calculate the probability distribution for offspring.

(Our results for the Max-SAT, binary perceptron and spin glass problems are based on

barrier tree data contributed by Jonathan Hallam, consisting of transition probabilities,

state sizes and costs for a series of problem instances from each class.)

Blaudeck and Hoffmann (2003) modelled SA on a continuous problem (minimum-energy

arrangements of carbon atoms) by partitioning the landscape into local minima (further

grouped according to energy level), and measuring the escape time and distribution of

destination states for each minimum at a variety of temperatures.

Courtois (1985) provides a useful discussion on modelling nearly-decomposable complex

systems. Our model could be seen as a simple two-level hierarchical system; having

divided the landscape into equivalence classes, we model the intra- and inter-class prob­

ability flow separately. The inter-class model is the Markov model we construct for the

search; the intra-class model is that used by Hallam to predict the distribution of exit

points and average length of a random walk within each class.

Courtois produced bounds for the steady-state probabilities of Markov "sub chains" ,

reasoning that the behaviour complex hierarchical systems is often dominated by that

of a small number of subsystems. A variety of approaches for modelling the interaction

between these critical subsystems and the rest of the system are presented in Courtois

and Semal (1986); the more information available on these interactions, the better the

approximation.

Prior to state-aggregation, to apply Courtois' methods to our system would be difficult.

There are many (e.g. 220) states to consider, and no convenient way to determine which

subset should be considered "critical". Indeed, there is no reason to assume that there

exists a subset of states with substantially greater influence on a heuristic, nor that such

a set would be small enough to model directly.

After the search space has been reduced to a barrier tree model (or even to the inter­

mediate collection of level-connected sets: §2.1.2), the system may be more amenable

to Courtois' form of analysis. The barrier tree model groups search points according to

their reachability (via descent) from each other; it is not unreasonable to assume that

the resulting groups interact particularly weakly. The problem is that the connectivity

of the state-aggregated system is much less regular than that of the original. Although

the number of states is substantially reduced, the transitions between states cannot (in

the general case) easily be modelled en masse, and must be considered individually.

Chapter 1 Introduction 5

State aggregation methods need not be confined to the search space model; Spears and

De J ong (1997) applied several aggregation schemes to a model of a GA. The states of the

GA model (i.e. the possible populations) were grouped according to fitness, homogeneity

(the degree of correlation between members of a population) and probability mass, with

low-probability states being discarded. The results showed showed a 90% reduction in

the number of model states, with as little as a 1 % loss in accuracy.

Our approach differs in that the aggregation is applied directly to the search space,

producing a heuristic-independent model of the problem. This has the advantage of

clearer mapping between model states and landscape features. The downside is that

the problem of rapid growth in the state space of models of population-based heuristics

is left unaddressed, leaving our models restricted mostly to "single point" heuristics

such as SA and variable mutation search. Our search space reduction is also much

more extreme, with over a million states reduced to between twenty and two hundred.

This has undoubtedly cost us much accuracy (§5.3), but has allowed us, along with

our choice to look only at heuristics with minimal state, to model significantly larger

problems, based on 20 and even 40 bit strings, compared with the 2 and 3 bit strings

used by Spears and De Jong (1997).

1.2.2 Models of Search Heuristics

Hajek (1988) studied annealing schedules which were optimal in the sense of maximising

probability of reaching the global minimum in the infinite time limit. Hajek proved a

condition (necessary and sufficient) for an annealing schedule to reach the optimum with

certainty in this limit.

Hoffmann and Salamon (1990) modelled SA on a four-state problem, producing schedules

with optimal final energy (equivalent to WYA cost: §3.2.1). This was followed by

a scaling analysis (Christoph and Hoffmann, 1993) of optimal annealing schedules on

two fifteen-state problems, where rescaled schedules of increasing length were found to

converge.

Strenski and Kirkpatrick (1991) found a similar relationship, with annealing schedules

optimised for a five-state graph bisection problem following a "decreasing envelope which

is relatively independent of the length". Strenski also compared the performance of sev­

eral commonly used schedule types (linear, geometric, inverse logarithmic) on a 200-state

1D random energy problem. It was found that the inverse logarithmic schedule, whilst

having the theoretically attractive property of maximising the probability of traversing

the highest barrier, was outperformed on this problem by the other two schedule types.

Boese and Kahng (1994) introduced a model for "best-so-far" cost (BSF), which we use

in §3.2.2. Their results also demonstrated (on a six-node TSP problem and on the same

graph bisection problem used by Strenski.) that optimising "where-you-are" (WYA)

Chapter 1 Introduction 6

cost is not sufficient to provide a good quality BSF schedule. We confirm their results

for a 16-bit hurdle problem in §5.2.

Recognising that "convergent" schedules were often impractical for application to real

problems, Cohn and Fielding (1999) compared a variety of non-convergent schedule

types on instances of the TSP problem (containing between 48 and 442 cities). The best

choice of parameters for each schedule was found experimentally (the schedules were

each controlled by only two or three parameters); the performance of each schedule was

then evaluated using various cost measures (BSF, FPT, probability of reaching (or of

achieving a cost within 1 % of) the global minimum).

White and Mayne (2000) looked at a kinetic system with a small (two, three, four)

number of energy levels, with transitions between levels requiring a barrier to be over­

come. In each case, the goal was to maximise the probability of being at the ground

state on the final iteration. For the two-level system, an optimal annealing schedule for

the problem was found analytically. On all problems, a series of optimal schedules (for

different model parameters and time limits) were produced using a GA; the two-level

GA schedules were found to match the analytical result.

White's choice of representation for the GA deserves further comment. Schedules were

assumed to be monotonically decreasing, and were permitted only a finite set of tem­

perature values. Rather than having each site of the GA chromosome represent the

temperature at a particular iteration (Le. optimising across finitely many real valued

parameters, as we do in §5), the chromosome had one (boolean) site for each possi­

ble temperature, indicating whether that temperature should appear in the schedule or

should be skipped. This representation has the advantage of allowing a mutation to

"insert" a series of steps at arbitrary points in the schedule. Unfortunately this schedule

form is not suitable in every case; we shall see in §5 that, as several others have noted,

the optimal schedules for some problems are non-monotonic.

Optimal schedules may of course be produced for arbitrary problems, without a model

of the search space, if one is willing to use sampling to determine schedule performance.

The penalty is an increase in execution time, as even a single sample of the search space

may be more computationally expensive than evaluating a well-chosen model. In fact,

not only is each iteration of the schedule optimise more time-consuming, but the num­

ber of iterations is likely to increase too, due to the noisy evaluation provided by the

sampling. Nonetheless, the prospect of producing optimal schedules for arbitrary prob­

lems is tempting. Bolte and Thonemann (1996) attempted to use Genetic Programming

to optimise schedules for quadratic assignment problems in up to 50 variables. Several

types of schedules resulted, some showing oscillating or periodically spiking temperature.

The variable mutation search we later model (§3.1.3) could be described as a (1 + 1)

Evolutionary Algorithm, i.e. an EA with a population of one, producing one mutated

Chapter 1 Introduction 7

offspring per generation3 , with the best of the two surviving to the next generation. The

(1 + 1) EA has also been analysed in some depth, with expectation (or upper bounds

thereof) calculated by Droste et a1. (2002) for the average FPT of this algorithm on a

variety of problems.

1.2.3 Summary

Modelling (and optimising parameters for) heuristics on real problems is a difficult task.

In most of the existing work, this difficulty is overcome by reducing one aspect of the

problem to near triviality. In some cases the heuristic parameters are constrained by as­

suming a particular form of schedule; sometimes the search performance is not modelled,

but sampled experimentally and optimised directly. In some cases the problems exam­

ined are extremely small, or are structured so as to simplify analysis. Indeed, much time

has been devoted to problem landscapes chosen chiefly for their analytical properties.

Our work is an attempt to apply some of the existing methodology to models of small

(but nontrivial) instances of "real" (e.g. NP-hard) problems. In §5, we produce "freely

optimised" annealing and mutation schedules; artificial constraints on the schedules

values are kept to a practical minimum4. We produce closed-form expressions for the

search cost, mostly through necessity, as the high dimensionality of the parameter space

makes optimisation difficult without an accurate gradient. The simplifications we choose

to make all this practical are the state-aggregation we apply to the search space (§4.3),

and our choice to concentrate on "single-point" heuristics, i.e. those with a state space

identical to the search space.

1.3 Roadmap

In §2, we shall properly explain such terms as "cost landscape" and "search problem" ,

and formally specify the simulated annealing and descent with variable mutation algo­

rithms.

In §3, we construct Markov models for these heuristics. The states of the models rep­

resent points (or collections thereof) in the search space, while each transition matrix

represents one iteration of the algorithm, and will vary depending on the search param­

eters used. The model itself is therefore best described not a Markov chain, but as a

series of Markovian transformations. We also introduce two different measures of cost

for a search (§3.2), both specified in terms of the output of the Markov model. Thus we

3The attentive reader will later note that our definitions produce a slightly different distribution of
offspring than the usual formulation.

4In most cases, the only constraint is that temperature changes may only occur every fourth iteration.

Chapter 1 Introduction 8

have the cost of a search as a function of the search parameters. Both simulated anneal­

ing and descent with variable mutation have sufficiently structured parameter sets that

each transition matrix depends on exactly one parameter, which influences no other it­

erations. As a result, the derivative of cost with respect to the entire parameter set may

be computed without too much extra effort, thus enabling the use of a gradient-based

method to solve the continuous optimisation problem of finding the best parameters.

We take advantage of the simplicity of the parameter space once again in §3.3, where

we introduce coarse-grained schedules. A parameter schedule may be approximated

by grouping the parameters into fixed-siz~ blocks (the approximation is later tested

(§5.1.5), and appears to be valid, with the optimised coarse-grained schedules resembling

"sampled" versions of a non-coarse-grained optimised schedule).

A collection of "test problems" is defined in §4, comprising one "toy" problem and three

sets of small instances of NP-hard problems. The former is a problem with a large

(in fact, maximal) number of local minima, known as the "hurdle problem" (defined in

Prugel-Bennett (2004b)). We exploit the high degree of symmetry in the search space

for the hurdle problem to produce an abstracted representation with only a handful of

states. Despite this reduction, the model is still "exact" insofar as the predicted cost can

be proven to be identical to that of the original model. Without this reduction in size,

the matrices in the Markov model would be so large as to make manipulation infeasible.

The other problems are small instances of traditional "hard problems" , which do not pos­

sess such obvious structural symmetry, and thus cannot be reduced so trivially. Again,

the transition matrices in the Markov model become unmanageably large for all but

the tiniest of problems; the state vector for the Markov model still contains the same

number of elements as the search space for the problem. Thus each transformation of

the state vector requires 0(22L) ope~ations to compute. We combat this by construct­

ing a smaller model of the search space from a "barrier tree" model (Hallam (2006),

summarised in §4.3); this reduced model has significantly fewer states. The barrier tree

data (state sizes, costs, transition probabilities) used in our experiments was generated

by Jonathan Hallam.

The complexity (and computational cost) of our minimisation therefore depends on the

size of the barrier tree of the problem. Although the size of the barrier tree will grow

with that of the problem, the reduction in the number of states is quite significant: a 20-

variable Max-SAT problem is typically reduced from a state space of over a million points

to a 30-40 node barrier tree. Although this is still only a very small Max-SAT problem

by the standards of those who specialise in solving Max-SAT, it is considerably larger

than the typical problems for which optimal annealing schedules are usually constructed.

Optimised annealing and mutation schedules for two cost functions and a variety of

problems are compared in §5. The performance of these schedules on the actual problems

shows qualitative agreement with the predictions of the model, but with a consistent

Chapter 1 Introduction 9

over-optimism which we attribute to the loss of information in substituting a barrier tree

model for the problem. In §5.7 we present results for an annealing schedule optimised

over a set of Max-SAT problems.

§6 explores a population-based variant of Simulated Annealing, where a group of "an­

nealers" explore a search space independently, but each have a temperature influenced

by performance relative to the rest of the population. Unfortunately, experiments show

no improvement to the search other than that which would be gained by having an

equal number of annealers with identical fixed annealing schedules. Reasons for this and

possible modifications and extensions to the model are discussed in §6.4.

Finally, in §7, we introduce a series of "toy algorithms" - heuristics which operate with a

priori knowledge of the search space. For these, we compare the average First-Passage

Times (§7.2) with those of single-parameter versions of simulated annealing and mutation

search (§7.5). By looking at the performance of these special-case algorithms, we hope to

gain some insight as to the features of a problem which present a challenge to heuristics.

Parts of this thesis have been submitted to Theoretical Computer Science (Benfold et al.,

2005b), and have been presented at the IEEE CEC 2005 (Benfold et al., 2005a).

Chapter 2

Background

This chapter is intended to provide formal definition of (and limited discussion on)

items of terminology which will be used later. Most of the definitions (with the probable

exception oflevel-connectedness (§2.1.2)) are sufficiently commonplace that most readers

may skip to the next chapter.

2.1 Cost Landscapes

We start by considering the generalised idea of a "problem". In order for a problem to

be well-defined, there must be some criterion for establishing whether a given object is

the "solution", and this criterion must itself be well-defined. We describe this formally

by saying that any problem can be represented by a function of the form J : S -+

{true,false}. S is known as the search space; an element 8 E S is said to be a solution

of J iff J(8) = true.

We shall be concerned only with decidable problems; that is, those for which J may

be computed algorithmically. For instance, the question "Does there exist a proof of

theorem X?" has a trivially small search space of {yes, no}, but the test for a solution

is clearly not decidable in the general case. By common convention, a solution to the

problem without proof that J is satisfied would not be considered to be a complete

solution. Roughly speaking, a problem is said to be a search problem if the task of

proving that J is satisfied is trivial compared to that of finding the correct value 8.

For example, NP-hard problems fall into this category, as instances are (generally) not

solvable in polynomial time1 , yet the correctness of a proposed solution to any instance

can be checked in polynomial time.

1 Assuming P f= NP

10

Chapter 2 Background 11

2.1.1 Minimisation Problems

A minimisation problem is a search problem with a solution criterion of the form f (s) =

("It E 5, c(s) ::; c(t)), for some function c : 5 ----t C, known as the cost function; C may be

any ordered set. Although any problem could be trivially reformulated as a minimisation

problem, through a substitution of {O, I} for {true, false}, we shall reserve the term for

those problems with solution criteria defined "naturally" in terms of a minimisation.

We define a neighbourhood function on the space to be a function n : 5 ----t P (S), where

P (5) denotes the power set of 5. The neighbourhood of a point s is given by n(s), which

is required to be "reciprocal" insofar as x E n(y) -¢::=} y E n(x); thus n may be used to

construct an undirected graph of the connectivity of 5.

It is usually taken forgranted that a class of problems presented as minimisation problems

have cost and neighbourhood functions with a sufficiently structured relationship so

that there exists an algorithm for finding the minimum which requires (on average)

fewer iterations than an exhaustive search. However, the "No Free Lunch Theorem"

(Wolpert and Macready, 1995) tells us that this seemingly-modest condition cannot

always hold; averaging over all possible cost functions for a search space, even the

cleverest neighbourhood definition (or even an algorithm for choosing a neighbourhood

definition) cannot possibly yield any net benefit.

One could say that in the general case, no neighbourhood is useful, all heuristics are

futile, and all problems are difficult. The performance of a search depends on cost

function, neighbourhood and heuristic, and it is not usually possible to say anything

useful about the optimality/difficulty of one parameter unless the other two have been

fixed (or at least specialised). In this thesis, we concentrate on the third, the heuristic; we

look at problem instances individually, and assume that neighbourhoods are described as

part of the problem specification. The practical reality is that most "real-world" search

problems are defined over spaces on which there already exist neighbourhood definitions

which are both familiar and lend themselves easily to machine representation.

Let a maximisation problem be defined in a similar way, and let an optimisation problem

be the union of the two classes. Since any maximisation problem can, without loss of

structure, be rewritten as a minimisation problem, we will assume that all optimisation

problems are in fact minimisation problems.

Chapter 2 Background 12

2.1.2 Landscape Terminology

A set of points is said to be connected iff, for any two points in that set, there exists a

path between those two points. Formally, XeS is connected iff

(Vx, Y E X) (3L E z+ U {O}) (3p : Z -+ X)

s.t. p(O) = x 1\ p(L) = Y

and Vi,j E Z, 0:::; i < j :::; L =} p(i) E n(p(j))

Two points are said to be level-connected if there exists a path between them on which all

points (including the start and endpoints) have identical cost; the definition above may

be modified for level-connectedness by adding the extra condition (Vi) c(p(i)) = c(p(0)).

It is not difficult to see that level-connectedness is an equivalence relation on S. Re­

flexivity is given by the trivial path, symmetry is inherent in the definition (as n is

reciprocal, x and y may be exchanged without consequence), and transitivity results

from path concatenation (two uniform-cost paths sharing a node must possess the same

cost).

The equivalence classes for level-connectivity are known as level-connected sets; the cost

of each such set is simply that of any of its elements (since they will all be of equal cost).

We can extend the idea of a neighbourhood to level-connected sets: two level-connected

sets are neighbours if at least one point in one set is a neighbour of at least one point

in the other. So

X E N(Y) ¢=} (3x E X) (3y E Y) (x E n(y)).

Observe that no level-connected set can have a neighbour2 of equal cost; if this were so,

there would exist a (trivially short) path between the sets with constant cost, and thus

a pair of points, one from each set, would be equivalent. By transitivity, all points in

the union of the two classes would be equivalent, and thus the two classes could not be

distinct.

A level-connected set for which all the neighbours are of higher cost is known as a

minimum. A minimum with the lowest cost is known as a global minimum, with all

others being local minima. There will always exist a global minimum, although there is

no requirement that it be unique.

We use the term "plateau region" to describe a level-connected set of non-trivial size

which is not a minimum. Traversal of plateau regions can be awkward, as the points in

the set are indistinguishable; the behaviour on a plateau can usually be modelled as a

2We adopt the convention that a neighbour of a point x is any point y such that x E n(y) and x =I=- y.
A point mayor may not be included in its own neighbourhood, but will not be said to be a neighbour
of itself.

Chapter 2 Background

Plateau
region

i
Global Local Local ~

minimum <: minimum minimum

Cost ==s: <
Basins of attraction

FIGURE 2.1: A one-dimensional cost landscape with several mlmma. Locations of
minima and the associated basins are marked, as is a plateau region.

13

random walk (§A.5). This effect is greatest when the shape of the set is such that the

internal connectivity is maximised, especially when interior points are created (those for

which all neighbours are members of the set).

We shall occasionally speak of the "basin" around a minimum; by this we mean the set

of points from which no other minima may be reached along a path of non-increasing

cost. Equivalently, this is the region from which a descent (§2.2.1) is guaranteed to

(eventually) reach that minimum. Note that no two basins intersect; a search point may

be contained within at most one basin. A search point which is not within any basin is

called a saddle point.

Basins, plateaus and minima are illustrated in fig. 2.1 using a one-dimensional cost

landscape.

2.2 Search Heuristics

A search heuristic is an algorithm for solving optimisation problems which has no a

priori information about the structure of the problem, or of any specific properties it

may have. The following basic actions are typically available to a search heuristic:

Cost evaluation: For any s E S, the cost c(s) may be computed

Neighbour selection: A point may be randomly3 chosen from n(s)

3The distribution is usually assumed to be uniform, although we do not assert that this must be the
case - all we require is that the heuristic is not able to influence the distribution in any way. In some
situations, a non-uniform neighbour selection scheme may aid the search; we shall simply assume that
this is implemented transparently (if at all).

Chapter 2 Background 14

The heuristic is supplied with one starting point and is expected to move towards the

global optimum. The exact goal often varies; in some scenarios (§7.2), the optimum

must be reached at all costs, in others (§3.2.2) the heuristic should attempt to arrive at

a reasonably low-cost point as soon as possible. A key point is that the behaviour of

the heuristic is completely abstracted from the representation of the problem. The two

actions described above are the only valid operations which may be performed upon an

element of the search space.

In some problem domains, extra operations may be added which make explicit use of

properties of the representation. For instance, genetic algorithms use a "crossover" op­

erator, allowing two points to be combined in some way to produce a single "child"

point. This operation is usually implemented by randomly choosing an element from a

subspace described by the two "parent" points; the relationship between this subspace

and the parents is invariably tied to the neighbourhood connectivity of the search space,

and thus encompasses problem-specific assumptions. Where available, a good recombi­

nation operator can result in a more efficient search, but it cannot easily be generalised

to arbitrary problems.

Typically, performing one or both of the actions above will implicitly consume some

resource, usually execution time. The performance of a heuristic is therefore based on

a comparison of solution quality versus "time" taken. We shall assume that the time

taken for cost evaluation dominates that of neighbour selection. The former shall be

said to take one unit of time, the latter takes no time at all. Since most of the heuristics

we consider perform exactly one cost evaluation per iteration, the terms "time unit" and

"iteration" shall often be used interchangeably.

2.2.1 Descent

First-improvement descent (which we shall refer to simply as "descent") is amongst the

simplest of practical minimisation algorithms. Each iteration of the algorithm (alg. 1)

involves choosing a random neighbour of the "current" point, and moving to it if it

has cost no worse than the current point. Note that requiring a new point to have a

strictly lower cost in order to be adopted would cause the algorithm to become stuck

at "plateau" points, for which all neighbours are of equal cost. Allowing same-cost

transitions permits escape from these points.

Note that the number of cost evaluations is equal to the number of iterations, as c(x) is

always known from the previous iteration (or given from the initial conditions).

A variation on this algorithm is "best-improvement" descent, where all the neighbours of

the search point are evaluated, with the lowest-cost neighbour being selected as the new

search point. The obvious disadvantage is the increase in the number of cost evaluations

required, but there is also the more subtle effect of decreasing variation over different

Chapter 2 Background

Algorithm 1: First-improvement descent

Assumption: x is a random point in S, c(x) is known
while termination criterion not satisfied do

tmp +-- random-neighbour(x);
if c(tmp) ::; c(x) then

x+-- tmpi
end

end

15

runs. Two best-improvement descents started from the same point will travel along

identical paths, except for where several neighbours share the lowest cost, in which case

one of these will be chosen at random. Where a neighbour point is a local minimum, and

is the lowest-cost neighbour, it will be chosen every time. Thus the chance of eventually

reaching the global minimum might be reduced in favour of maximising the immediate

improvement in cost.

Various modifications are also possible, with the results sometimes overlapping with

other types of algorithm. History information may be used to prevent repetition (reduc­

ing the time spent in plateau regions); this falls into the broad category of Tabu Search

(Glover, 1986). Because it is possible to detect when a descent has reached a local

minimum (and is therefore unable to offer any further improvement), it is not unusual

to either restart the algorithm ("iterated descent"), or to give the search a "kick" to a

point some distance away from the current one. Doing so allows descent to make use of

all the time available.

2.2.2 Descent with Variable Mutation

Descent is prone to becoming "stuck" at local minima; if a point is reached where

all neighbours have higher cost, the search will progress no further. One modification

which prevents this "stagnation" is the introduction of transitions to states outside of

the local neighbourhood. Instead of selecting a random neighbour of the current point,

the current point is "mutated" a number of times. Each mutation is simply a transition

to a random neighbour. The multiply-mutated point is then adopted if it has a cost no

worse than that of the original point. The number of mutations is Poisson-distributed,

with the expectation controlled by a "mutation rate" parameter; a mutation rate equal

to one therefore does not give the same behaviour as first-improvement descent.

2.2.3 Simulated Annealing

Simulated Annealing (Kirkpatrick et al., 1983; Cerny, 1985) is a heuristic inspired by

the physical process of annealing, in which some material (usually a metal) is heated

and then gradually cooled. Increasing the thermal energy allows bonds to be broken

Chapter 2 Background

Algorithm 2: Descent with variable mutation

Assumption: x is a random point in S, c(x) is known
t t- 1;
while termination criterion not satisfied do

tmp t- x;
m t- a Poisson deviate with expectation u(t);
for it-I to m do

tmp t- random-neighbour(tmp);
end
if c(tmp) ::; c(x) then

x t- tmp;
end
t t- t + 1;

end

16

and reformed easily enough that any regular structure disappears. A slowly decreasing

temperature allows time for the least-energy arrangements to form; this usually produces

localised crystalline growth. By contrast, a sudden decrease in temperature (known as

a "quench") removes the energy before it can be used to free the defects, resulting in

crystalline regions with dislocations. The combination of structural properties desired

is used to determine the function of temperature against time, known as the "annealing

schedule" .

The algorithm (alg. 3) can be thought of as a version of descent which sometimes per­

mits uphill steps, depending on "temperature", with higher temperatures relaxing the

usual prohibition on uphill moves. Where a higher-cost point is found, it may be ac­

cepted with a probability dependent upon the cost difference from the current point,

and a parameter (3. The usual4 formulation of a simulated annealing algorithm uses

a Boltzmann-distributed acceptance probability, inspired by the model of Metropolis

et al. (1953) for the motion of atoms in a fluid under the effects of a heat bath. The

Boltzmann parameter (3 is known as the "inverse temperature" by analogy to physical

annealing, and is usually varied over time; the set of values for (3 is known as the an­

nealing schedule. If the temperature is reduced to zero ((3 -+ 00), uphill transitions are

never accepted, and the algorithm reduces to descent. When temperature is very large

((3 -+ 0), all neighbours are accepted indiscriminately, producing a random walk.

2.2.4 Termination Criteria

In most cases, one chooses to terminate a search either after a specified number of iter­

ations have been performed, or when a solution of sufficiently low cost has been found.

4 An alternative acceptance strategy known as "Threshold Annealing" was introduced by Dueck and
Scheuer (1990), whereby an uphill transition is permitted iff the energy (cost) difference is below some
threshold.

Chapter 2 Background

Algorithm 3: Simulated Annealing

Assumption: x is a random point in S, c(x) is known
t +- 1;
while termination criterion not satisfied do

tmp +- random-neighbour(x);
if c(tmp) ~ c(x) then

x+- tmp;
else

1* Selected point was uphill, so randomise decision
Let p be chosen randomly from [0,1);
if p < exp ((3(t) (c(x) - c(tmp))) then

x+- tmp;
end

end
t+-t+l;

end

17

We shall be mostly interested in fixed-length parameter schedules (the first case), al­

though in §7.2, we examine the average first passage time to the global minimum. In

practical situations, the termination criterion need not be so simple, and could incorpo­

rate any available information about the search. For instance, the solution quality from

previous iterations may be used to estimate the likelihood (and magnitude) of future

improvement.

2.3 Linear Algebra 101

Let M be a square matrix of size n x n. Then a vector v is said to be a (right-handed5)

eigenvector of M if Mv = AV for some scalar A, known as the eigenvalue associated

with v. Rearranging this definition, we can produce

(M - AI) v = 0

where I is the n x n identity matrix. From this it can be seen that (M - AI) is not

invertible6 , and thus 1M - All = O. Evaluating this determinant for a general matrix

M will produce a polynomial of degree n in A (known as the characteristic equation of

M), and thus there are at most n distinct eigenvalues for M. The number of times an

eigenvalue A appears as a root of the characteristic equation is known as the "algebraic

multiplicity" of A. A repeated eigenvalue will often have multiple linearly independent

eigenvectors associated with it. The space of all possible eigenvectors of A is known as the

eigenspace of A; the dimension of this space is referred to as the "geometric multiplicity"

of A, and is always at least one, and no greater than the algebraic multiplicity. Where it

sunless specified otherwise, we take the term "eigenvector" to mean "right-handed eigenvector"
6Consider v = (M - >"1)-1 0 . The zero vector remains unchanged when multiplied by any matrix,

so no choice of inverse satisfies the equation (except for the degenerate case where v = 0).

Chapter 2 Background 18

is less, the eigenvalue (and the matrix itself) are said to be defective (§B); in this case,

an eigenvector basis for the space on which the matrix acts cannot be found.

If the eigenvectors of a matrix have no repeated eigenvalues, then they are linearly

independent. This may be demonstrated by induction on the size of the eigenvector set

(the base case is trivial, a single vector is clearly a linearly independent set of vectors).

Let VI ... Vk be a set of k linearly independent eigenvectors of M, with corresponding

eigenvalues AI ... Ak. Now suppose vk+l is an eigenvector with eigenvalue Ak+I' but is

also a linear combination of VI·· . Vk:

o = (M - Ak+II) vk+1

k

= (M - Ak+lI) L (Xivi
i=1

k

= L (Xi (M -- Ak+II) Vi

i=1

k

= L (Xi (Ai - Ak+d vi·
i=1

If Ak+l is a unique eigenvalue, then (Ai - Ak+l) will always be nonzero, and thus the

vectors VI ... ilk cannot be independent, violating the inductive assumption. Thus vk+l

must be independent of the other eigenvectors.

The "left-handed" eigenvectors are defined similarly, with u being a LH eigenvector

if u T M = AuT. The LH and RH eigenvectors share the same eigenvalues, as the

polynomial defining them is identicaL Observe that left- and right-handed eigenvectors

are orthogonal unless they share eigenvalues:

(uJ M)vj

=? (AiUnVj

=? (Ai - Aj)UJ Vj

2.3.1 Eigenvalue Decomposition

T
ui (Mvj)

uJ (AjVj)

o

Given an nxn matrix M and n linearly-independent eigenvectors VI, ... , V n , we produce

a matrix V where each column is an eigenvector, i.e.

Chapter 2 Background 19

Let A be a diagonal matrix of the Ai (i.e. Aij = [i = j]Ai); we observe that

and M can be rewritten as VA V-I. Thus, once a full set of eigenvectors has been

computed, powers of M may be computed efficiently through powers of the eigenvalues:

M a = (VAV-It

= (VAV-I) (VAV-l) ... (VAV-I)

= VA (V-IV) A (V-IV) ... (V-IV) AV- I

= VAaV- I .

Matrix exponentials may be computed in a similar way, using exponents of the eigen­

values:

2.3.2 Stochasticity

00 Mt
exp(M) = L-, t. t=o

00 At
= ""' V _V-I

D t!
t=o
Vexp(A)V-1

A stochastic matrix is a square matrix of non-negative values, where each column sums

to 1. The latter condition is satisfied for some matrix M iff the vector of ones 1 is a

left-handed eigenvector of M with eigenvalue 1 (Le. if 1 T M = IT). It is not difficult to

see that the product of two stochastic matrices is itself a stochastic matrix, as

the non-negativity constraint is satisfied for XY, as each entry of the product is a sum of

products of the (non-negative) entries of X and Y, and must therefore be non-negative

itself.

We use stochastic matrices to represent linear transformations of probability distribu­

tions which respect conservation of probability. If an n x n stochastic matrix is applied

to a column vector of n non-negative elements, then the elements of the result will also

be non-negative, and will have the same sum.

Chapter 2 Background 20

2.3.3 Ergodicity

A stochastic matrix M is said to be ergodic if there exists some power kmin such that for

all k > kmin, every element of Mk is nonzero. When M is interpreted as a transformation

on probability distributions (§2.4), this may be specified equivalently in terms of the

paths between pairs of states: if there exists kmin such that for every k > k min , and

for pair of states Si, Sj, there is a nonzero chance of producing Sj from Si in exactly k

transformations.

Ergodic matrices have exactly one eigenvalue equal to one, with all others falling within

the unit circle. As a result, there exists a unique fixed point (the right-handed eigenvector

corresponding to the eigenvalue 1) of M to which the columns of Mk approach as k tends

to infinity. To see this, consider the product Mkp(O). The vector p(O) may be written

in terms of the eigenvectors (since they form a basis for lRn), so we have

Mkp(O) = Mk (CIVI + ... + cnvn)

= (CIA~Vl + ... + CnA~Vn)

where the Ai are the eigenvalues, and the Vi are the corresponding eigenvectors. Without

loss of generality, let Al be the (only) eigenvalue equal to one. Then limk-roo Mkp(O) =

Cl VI, as all other eigenvalues have modulus less than one and therefore disappear as

k ---7 00. The eigenvector VI is therefore the unique fixed point, subject to normalisation

by the constant Cl.

2.4 Markov Models

Let X be some set. A probability distribution on X is a function P : X ---7 [0, 1], such

that 'ExEx p(x) = 1. If I X I is finite, then P may be described more concisely as a column

vector p of length lXI, such that Pi = p(Xi).

Now, suppose X and X' are random variables with states in X, with X' being the result

of applying some Markovian transformation to X. By definition, such a process has

the Markov property, i.e. IP' (X') depends only on X, and thus IP' (X' = xilX = Xj) is a

constant. We now take the identity

IP' (X' = Xi) = LIP' (X' = xilX = Xj) IP'(X = Xj)
j

and rewrite using vector notation for the probability distributions, with symbols p and

pi for the distributions of X and X' respectively:

p~ = LMijpj.
j

Chapter 2 Background 21

where M is a matrix of constants in [0,1]' such that Mij = lfD (XI = xijX = Xj). Of

course, this is just an element-wise description of matrix multiplication, and thus pi =

Mp. Note that from conservation of probability, I:ilfD(XI = xijX = Xj) = 1, and thus

each column of M sums to one and M is therefore stochastic.

Chapter 3

Markov Models of Search

Heuristics

The heuristics we described in §2.2 possess some common features which simplify anal­

ysis. If the parameter schedule is considered an external input, then the state of any

of these algorithms is determined entirely by the last point visited; the state space of

the algorithm is identical to the search space of the problem. Hence each algorithm can

be described as a Markov process, albeit subject to parameters (such as the annealing

schedule). This unfortunately precludes the use of either history information (e.g. Tabu

search) or populations of search agents as in a genetic algorithm, although we later (§6)

adapt the model to consider a population-based variant of Simulated Annealing.

In fact, we usually do not model the search space so directly, for probability distributions

over the entire search space are, for any nontrivial problem, too large to manipulate.

Instead, a state amalgamation process (§4.3) is applied to divide the search space into

groups of points; these groups are then used as the states for the Markov model. The

models described below refer without assumption to a search space which may be either

the original search space or some abstraction of it.

3.1 Search Heuristics

The behaviour of a search heuristic at any given iteration will often depend on the

number of iterations performed previously, a quantity which we will simply refer to as

"time". This is true of both simulated annealing and descent with variable mutation; in

both cases the dependency is indirect, via a parameter which itself depends on time.

For a model of a search to be produced, three objects relating to the search space need

be supplied:

22

Chapter 3 Markov Models of Search Heuristics 23

m - A stochastic matrix describing the connectivity of the space

p(O) - A vector of the probabilities of starting at each point in the space

c - A vector of the costs of each point in the space

As discussed earlier (§2.1.1), the connectivity (i.e. the neighbourhood definition) for a

search space is usually derived from the definition of the cost function in such a way as to

"help" a heuristic by providing some systematic non-uniformity in the cost distribution

of the neighbourhoods, which the heuristic may then exploit to guide the search. In some

cases, the neighbourhood definition may be designed so as to work well with a specific

search heuristic; otherwise the usual choice is the simplest (or perhaps least arbitrary)

definition which produces a connected search space. The matrix m is assumed to be

normalised so that the columns sum to unity (Le. m is stochastic); since m represents

the transformation caused by mutation to a random neighbour, we will often refer to m

as the mutation matrix.

The initial distribution, p(O), gives the probability of the search starting at any given

state. One usually assumes that all points in the search space are equally likely to be

chosen for a starting point, so for a direct model, we usually have p(O) ex: 1, while the

probabilities for the states of an indirect search space model are usually proportional

to the size (i.e. the number of search points represented) of the states. Non-uniform

initial distributions may be appropriate when external information suggests particular

points of interest; if there were some means of producing an approximation to the global

minimum, it would not be unreasonable to favour particular starting points.

Where state amalgamation is used, the entries of the cost vector c usually 1 equal the

costs of the search points represented by each state. A state is a global minimum if the

corresponding entry in the cost vector is the minimum entry; we do not require this to

be unique.

In §3.2, we will use the transition matrices for these search algorithms to produce expres­

sions for the average cost of a search. For simulated annealing and variable mutation,

these costs will be minimised (over the schedule parameters (3) using the Scaled Conju­

gate Gradient algorithm (we use the implementation from Nabney (2001)). Since SCG

is gradient based, we must also compute the gradient of the cost function with respect

to the schedule parameters; due to the linearity of the model this is not too difficult.

The cost gradient is a vector of the derivatives taken with respect to each element of

the schedule. Since each schedule parameter (3(t) only affects only the corresponding

1 Although this is true for our experiments, one could easily divide the search space in such a way
that the groups contain a mix of costs, in which case the average, or perhaps the minimum or maximum
could reasonably be taken as the cost for the state. As with the neighbourhood definition, the entries of
cost vector could be adjusted to reflect some externally obtained knowledge which would otherwise be
unavailable to the heuristic.

Chapter 3 Markov Models of Search Heuristics 24

• • () (. .../.. I 8w(t) - 0) h . 1 d' t' transitlOn matnx w t I.e. t r t ===?- 8f3(t') - ,t ere IS on y one enva lVe

to compute for each transition matrix. Additionally, the elements of the transition

matrices for both simulated annealing and variable mutation have derivatives which can

be expressed in terms of (and partially computed from) the elements themselves.

3.1.1 Descent

Although we will make very little use of basic descent, we describe a model here for

completeness, and as a foundation for models of other heuristics. For each iteration of

the algorithm (§2.2.1), a random neighbour is chosen, and is adopted as the new point

if it has cost no worse than that of the current point. We define an acceptance matrix A

to encode information about which transitions are permitted; the element Aji gives the

probability that a proposed transition from state i --7 j will be accepted. For descent,

we simply have Aji = [Cj :::; Ci].

For any i I- j, the transition probability is the product of that of selecting j, and that of

accepting j; we write]fD (i --7 j) = (m @ A) ji' Note that we use the symbol'@' to denote

element-wise matrix multiplication, so that (X @ Y)ij = X ij Xij.

The probability of a self-transition (i.e. from i --7 i) is slightly more complicated, as

this can come about not only through selecting the same state, but also through the

rejection of any other proposed transition. Let w be the transition matrix for a single

iteration of descent. We know that Wji = (m ® A)ji except when i = j. Since W must

be a stochastic matrix, we can compute the correct values for the diagonal terms by

choosing them such that the columns sum to 1. We therefore have

W = m ® A + diag (1 T - sum (m ® A))

where sum and diag are given by

sum(M) = lTM

(diag (v))ij = [i = j] Vi·

3.1.2 Simulated Annealing

Simulated annealing can be described in a very similar way to descent, the only difference

being the contents of the acceptance matrix. From our definition (§2.2.3), the acceptance

probabilities are given by

Cj :::; Ci

Cj ~ Ci

Chapter 3 Markov Models of Search Heuristics 25

where fJ is the annealing schedule. Unlike descent, the transition matrix for simulated

annealing depends on the time t.

Omitting the parameter t for brevity, the derivative (of w(t) w.r.t. fJ(t)) is given by

where

~;. = :fJ (m @ A + diag (1 T - sum (m @ A)))

8A . ((8A)) = m @ 8 fJ - dlag sum m @ 8 fJ

(~:) ji = { ~Ci - Cj) eNt)(c;-eJ:

= min (0, (Ci - Cj)) Aji .

Cj :::; Ci

Cj ::::: Ci

Note that the values min (0, (Ci - Cj)) are independent of (3, and thus may be precom­

puted.

The transition matrix for simulated annealing at a given temperature is ergodic (so

long as the matrix m produces a connected graph of states2), and therefore has a unique

fixed point, which is Boltzmann distribution over the costs of the states, weighted by the

state sizes (§A.1). For very high temperatures, the Boltzmann parameter is small, so the

distribution is near-uniform; as the temperature decreases, the probability mass becomes

concentrated around the minima, with the fraction assigned to the global minimum

slowly approaching one.

An attractive property of the heuristic is the idea that convergence on the global opti­

mum can be achieved with arbitrarily high certainty, so long as the temperature decreases

sufficiently slowly to allow the equilibrium to be reached at each stage (Hajek, 1988);

the global minimum can be reached with certainty only as the length of the annealing

schedule approaches infinity.

3.1.3 Descent with Variable Mutation

For descent with variable mutation, we replace the mutation matrix m with a matrix

M(t), representing the result of performing a Poisson-distributed number of mutations,

2 Additionally, ergodicity requires that the graph of w be aperiodic. This follows if either m is
aperiodic, or if there is nonzero probability of a self-transition in w. The latter is almost always satisfied,
requiring only that (3-1 be nonzero and that the search space contain at least two distinct costs.

Chapter 3 Markov Models of Search Heuristics 26

with mean determined by (3(t). We compute M by averaging over the number of muta­

tions:

00 (3n
M - ~ n -(3_ . -L..t me ,

n=O n.

= e-(3 f (m~)n
O

n.
n=

= e-(3 e m (3

= e(3(m-I)

Note that the matrix exponential em - I may be computed efficiently from the eigen­

value decomposition of (m - I). If D is a diagonal matrix containing the eigenvalues of

(m - J), and v is matrix of the corresponding eigenvectors, then em - I = veDv-l, with

eD being simply the diagonal matrix composed of the exponents of the eigenvalues.

The derivative (again, omitting the parameter t) is given by

where

8w 8M . ((8M)) 8 (3 = 8(3 ® A - dlag sum 8(3 ® A

8M = (m _ J) e(3(m-I)
8(3

3.2 Cost of a Search Heuristic

Equipped with the above descriptions of search heuristics, we are now in a position to

describe the possible paths through the search space taken by a heuristic, as

peT) ~ (D W(t)) prO) = weT) . weT - 1) ... w(2) . w(l) . prO)

with p(T) giving the probability of being at various points at time T, averaged over

all possible histories of points for t < T. Note that we are adopting the convention

that a product denoted by the 'IT symbol is evaluated as shown above, with each term

pre-multiplying the product of all previous multiplicands.

We now consider various measures of search performance, each of which calculates a

"cost" for a heuristic, based on p(T). Here, we examine two common definitions of cost

(Where-You-Are and Best-So-Far); in §7.2 we also consider a third measure, the average

first passage time. The three cost measures are illustrated in fig. 3.1. In all three cases, it

is assumed that the only relevant statistics are execution time and solution quality, and

thus knowing the solution quality as a function of time is sufficient. Since our heuristics

Chapter 3 Markov Models of Search Heuristics 27

are permitted only one cost evaluation per iteration, the "time" is effectively the number

of evaluations. We assume that the computational expense of cost evaluation dominates

that of all other operations performed by a heuristic.

Cost

FPT?

BSF WYA

Time

FIGURE 3.1: Cost ofthe points visited by a search heuristic vs iteration number (time).
The three measures of search cost indicated are "Where-You-Are", "Best-So-Far" and
First Passage Time (defined later in §7.2). The FPT label is conditional on the cost
indicated being the global minimum, otherwise FPT is unknown (and potentially un-

defined).

We also assume that each cost evaluation takes approximately equal time; in reality,

the evaluation time may vary considerably. For many problems, the cost function is

sufficiently structured that the cost of a search point may be partially computed from

that of a neighbour; such time-saving strategies are assisted by the tendency of most

search heuristics to make decisions based only on cost differences between search points.

In reality the computation time for a cost evaluation may even vary as a function of the

set of points previously visited by the heuristic.

3.2.1 Where-You-Are (WYA) Cost

The "Where-You-Are cost" of a heuristic is simply the average cost of the last point

visited. If T iterations are performed, this is simply given by Cwya C T p(T). The

derivative of Cwya with respect to the schedule ;3(t) is given by

8Cwya T . 8w(t) .
(

T) (t) 8;3(t) = C ilt w(z) 8;3(t) g w(z) p(O).

WYA cost has the advantage that both the cost and the derivative are quite straightfor­

ward to compute. However, it is not directly relevant to the solution of real problems;

Chapter 3 Markov Models of Search Heuristics 28

one would expect any practical implementation of a heuristic to record any particularly

good solutions, and output these in preference to whichever solution happened to be the

last visited. This behaviour can of course 'be modelled directly as part of the heuristic,

but doing so effectively squares the number of possible states. A much more practical

alternative is to measure BSF cost.

3.2.2 Best-So-Far (BSF) Cost

The BSF cost represents the cost of the best state reached at any iteration of the

algorithm; the final state is of no extra importance, as all visited states are considered.

The implementation is more complex than WYA; we use a method introduced by Boese

and Kahng (1994), where the transition matrices are modified to "absorb" particular

fitness values.

We compute the average BSF cost by summing over the possible costs. Let LY be an

ordered list of the k distinct costs in c, such that

LYi = LYj ~ i J

LYi < LYj ~ i < j

Vi, ei ELY

Va E LY, 3j s.t. ej = a

then the average BSF cost is given by

Cbs] = L lP' (b(T) a)
aEa

where b(T) is a random variable representing the minimum of all the costs up to time

T. Note that b(T) is not simply the minimum of c T p(t) over all t :S: T; the average BSF

cost is not the same as the BSF average cost.

We define rna to be a "mask vector" picking out all costs of a or better; thus (ma)i =

[ei :S: a]. We now replace the transition matrices w(t) with a set of matrices da(t), given

by

da(t) = w(t) + ImJ ® (I - w(t)) .

The matrix da(t) is identical to w(t), except in the columns selected by m(a), which

correspond to the states of cost a or better; these columns are replaced with the cor­

responding columns of the identity matrix. The effect is that once a state of cost a or

better is entered, the search will be trapped there. When the matrices are applied to

simulate a search, the sum of the probabilities from the "trapped" costs gives the prob­

ability that a cost of a or better was reached during the search. Thus the cumulative

Chapter 3 Markov Models of Search Heuristics 29
--~---

distribution of b(T) is given by

with the probabilities for individual values being computed by comparing adjacent terms

(with the boundary case given by JlD (b(T) = ak) = 1).

The derivative of Cbs! can be computed in a similar manner to that used for C wya , with

the derivatives of da being given by

8da (t
/
) = [= '] (8w(t) _ 1 T 8W(t))

8(3(t) t t 8(3(t) rna ® 8(3(t) ,

which is again similar to w(t), but with the columns for costs of a or better replaced

with zeros.

3.2.3 Other Measures of Cost

Other measures of search cost are of course possible. The average first passage time,

defined in detail in §7.2, is the average time taken to reach a global minimum (one

could similarly measure the average time taken to reach a state with cost below some

threshold, as in Cohn and Fielding (1999)). The probability of reaching (or finishing in

- Franz and Hoffmann (2002)) the global optimum is also a candidate for study.

We assumed earlier (§3.2) that the number of cost evaluations and the solution quality

are the only pertinent statistics for evaluating the performance of the search; in reality,

the time taken for each cost evaluation may be non-uniform (or the evaluation may

require consumption of some resource other than time), and thus the cost of the search

might depend on which points were evaluated.

There exist problem domains where the cost of a point is the output of some noisy process

controlled by a "certainty" parameter; exact cost evaluation may be very expensive, but

an approximation may be calculated with far less resource consumption. A heuristic

able to use partial cost evaluations (perhaps requiring only an upper or lower bound on

the cost) should obviously not be judged on the number of evaluations taken. In such

situations, the parameter schedule may need to be a continuous function of "time" (or

whatever resource is consumed).

3.3 Coarse-Grained Schedules

Producing an optimal schedule involves minimising cost (e.g. BSF or WYA) over the

parameter set. Thus the task of producing an optimal schedule of length T is itself a

Chapter 3 Markov Models of Search Heuristics 30

T-dimensional continuous optimisation problem. Although the availability of gradient

information aids the search, the optimisation becomes increasingly difficult as T grows,

both in terms of running time and maintaining numerical accuracy. One approach for

circumventing this problem is to use parameter schedules which are "coarse-grained" in

time; that is, schedules for which several adjacent search iterations are controlled by a

single parameter.

In using such schedules, our intent is mostly to reduce the computational effort required,

by reducing the dimensionality of the problem. Although we shall accomplish this by

controlling equal-size "blocks" of iterations using a single parameter, there do exist

alternative ways to describe the schedule. For instance, where we assume a constant

parameter for each block; an alternative model could use a linearly varying parameter,

or perhaps variable-length blocks.

Care must be taken however to avoid a parameterisation which is preconditioned to­

wards describing a particular type of schedule. Our coarse-graining is not immune to

such effects: the implicit assumption that the schedules are locally smooth is not uni­

versally true (optimal BSF schedules for graph bisection problems featured periodically

spiking temperatures (Boese and Kahng, 1994)). However, any artifacts produced by

our intuitively simple coarse-graining scheme are likely to be noticed more readily.

If {J(t) is a coarse-grained schedule of length T, with block size b, then we require that

the elements of {J(t) are described entirely by a schedule aCt) with length Tlb, via the

relationship

{J(t) = a (ftlbl)·

Chapter 4

Test Problems

We shall employ several types of problem as test applications for our heuristics, all of

which are specified in terms of binary strings; the search space for each is the set of all

binary strings with some fixed length L, i.e. the space {O,l}L.

It is common to define the neighbourhood around a search point to be all those points

which can be reached through a minimal modification to that point. Thus it is a natural

choice to use a "single-bit mutation" (by which we mean the inversion of a single bit of

a bit-string) as our minimal modification. The least number of such mutations required

to transform one string to another is known as the Hamming distance, defined formally

as

H: {O, l}L X {O, l}L -7 [O,L] n Z
L

H(x, y) = L [Xi i= Yi]
i=l

thus the set of neighbours for a given bitstring X is

n(x) {y: H(x, y) I}.

For sake of convenience, we reserve the term "neighbourhood" for situations where the

point itself is included. We would say that x is inside the neighbourhood of x, but not

that x is a neighbour of itself, and thus x does not lie within its own neighbour set.

Each bitstring will therefore have exactly L neighbours.

Problems based on binary strings have been chosen for convenience of implementation;

no part of our analysis assumes a particular connectivity of the search space.

31

Chapter 4 Test Problems 32

4.1 Hurdle Problem

The hurdle problem was introduced in Prugel-Bennett (2004b) as an example of a land­

scape on which a population-based algorithm, through use of recombination, gains a

significant advantage over a purely local search heuristic. The landscape features a series

of deceptive "hurdles" which must be overcome in order to reach the global minimum.

The cost function for the kth order hurdle problem is defined to be

c(x) = fH(x,g)/kl - (H(x,g) mod k) /k

where g is some arbitrarily chosen "goal string". Since the details of representation are

hidden from search heuristics, all possible choices for the goal string produce identical

problems; thus we choose that the goal string be the string containing only zeros, which

we shall denote here by O.

Note that the cost depends only on the distance from the goal string; the cost is essen­

tially a linear function of this distance, but with a spike in cost (a "hurdle") every k

steps. We use a hurdle problem of order 2, where the cost can be described more simply

by

c(x) = H(x, 0)/2 + [H(x, 0) is odd] ;

the relationship between cost and Hamming distance is shown in (fig. 4.1).

10"-----r-----.-----.-----.----,-----~----_r----_,,

9

8

7

6

5

4

3

2

o~-L __ ~ ____ _L ____ _L ____ _L ____ _L ____ _L ____ _L ____ ~

o 2 4 6 8

H(x,g)

10 12 14 16

FIGURE 4.1: Hurdle function cost vs hamming distance from goal string, for a 16-bit
hurdle problem

With our chosen neighbourhood function, the connectivity of the search space (the

equivalent to that of the vertices of the L-dimensional hypercube) forms a bipartite

Chapter 4 Test Problems 33

graph, with the two vertex sets being the sets of points of odd and even distance from

the goal string. Every even-distance point has only odd-distance neighbours, all of which

will be of higher cost, and so every even-distance point is a local minimum. (In fact,

no cost function can be defined on this space to produce a higher number of minima:

§A.2).

The abundance of local minima is thought to make the hurdle problem challenging for

search heuristics. In particular, descent performs very poorly, as it is able to take at most

one step before terminating, and even that one step is (at least for first-improvement

descent) an indiscriminate selection of a random neighbour.

The search space is of size 2L; for any L of non-trivial size, this space is too large to use

as the state space for a Markov model. Fortunately, the high degree of symmetry present

in the cost function allows the state space to be reduced without loss of (significant)

information.

For any search point, the only pieces of information directly observable to a heuristic are

the cost of that point, and the set of neighbours surrounding that point. However, the

cost of a point uniquely identifies the hamming distance, and thus also determines the

cost distribution of the neighbours. Thus instead of modelling the path of a heuristic

through the search space, we can model the path through cost space; the behaviour of

the cost at each iteration is itself a markov process, and can be modelled independently

of the actual search points visited. Thus a Markov model for the L-bit hurdle problem

need have only L + 1 states.

The effect of applying a random single-bit mutation to a bit string of length L will be to

increase or decrease the number of ones (and thus the hamming distance from the goal

string) by one, with probabilities depending on the number of ones and zeros already

present. Thus the probability of a string with i ones mutating to have j ones is given by

{

ilL

l? (i -7 j) = ~ - i/ L

if j=i 1

if j = i + 1

otherwise

The initial probability distributions, in terms of the hamming distances from the goal

string, are given by a binomial distribution (L trials of probability 1/2), and thus

(p(O))i = 2-i (f)·

4.2 Real Problems

The hurdle problem is a rather artificial construct, designed with ease of analysis in mind.

The local minima, despite being plentiful in number, all have very similar structure; the

Chapter 4 Test Problems 34

uphill jumps required to escape them are all of identical size. Real problems have a much

more irregular structure, with minima consisting of nontrivial subsets of the search space.

For this reason, we shall also test our heuristics against a set of "real" problems. The

Max-SAT, binary perceptron and spin glass problems are all known to be NP-hard

(Garey and Johnson, 1979)(whereas a solution to the hurdle problem (with unknown

goal string) can be found in 0 (L) operations). The problem instances we use will be

mostly 20-variable problems (search space of approximately a million states). Although

considered trivially-sized by those specialising in producing such problems, they are

rather large from the point of view of one who wishes to model the behaviour of a

heuristic on a problem.

4.2.1 Max-SAT

The boolean satisfiability problem "SAT" was the first problem for which NP-complete­

ness was proved; (Cook, 1971) demonstrated that any NP-complete problem could be

reduced to an instance of a SAT problem in polynomial time. Thus far, no polynomial­

time solution has been found for SAT, with most of the best approaches (Hansen and

Jaumard,1990) being variations on Davis and Putnam (1960).

A SAT problem consists of a set of clauses defined over L boolean variables, which we

represent using a bit-string of length L. Each clause is the logical disjunction of a series

of k terms, each of which is a variable or its negation; the problem is then said to be

a k-SAT problem. For instance, the expression (X30 V X7 V --X19 V X42) is a valid clause

for a 4-SAT problem. The difficulty of a randomly generated SAT problem is known

to exhibit "phase transition" behaviour when the ratio of clauses to variables reaches a

critical point (the whereabouts of which depends on k); the likelihood of a randomly­

generated set of clauses being satisfiable drops very sharply at this point (Mitchell et al.,

1992; Monasson et al., 1999).

A Max-k~SAT problem has a similar form, but the goal is to find an assignment of the

variables which satisfies the greatest possible number of clauses, with the cost of a bit­

string given by the number of unsatisfied clauses. Unlike SAT, where the most difficult

problems are those around the phase transition (Braunstein et al., 2005), Max-SAT

remains difficult when a large number of clauses are used. We mostly use Max-3-SAT

problems with 20 variables, and between 120 and 160 clauses. The variables appearing

in each clause are chosen randomly and independently; no attempt is made to prevent

the occurrence of degenerate clauses such as (xn V --Xn V X6).

4 Test Problems 35

4.2.2 Binary Percept ron

The binary perceptron (Krauth and Mezard, 1989) is one of the simplest possible linear

classifier systems, with all inputs and weights taking only values in {-I, +1}. The task

of determining the weight vector for a single perceptron to best classify a given set of

patterns is known to be NP-hard in the general case (Pitt and Valiant, 1988). In a

manner similar to Max-SAT, the problem undergoes a phase transition when the ratio

of the size of the classification set to the number of variables grows large enough, at

which point the problem becomes more difficult, owing to the introduction of many false

optima. These extra optima result from a "shattering" of the search space (Derrida

et al., 1991; Priigel-Bennett, 2004a); as the number of patterns increases, each minimum

shrinks, until the discreteness of the search space forces it to become disconnected,

creating several distinct minima at the same cost.

An L-variable binary perceptron problem consists of a set of data points V, each a vector

of length L, containing elements chosen from { -1, + 1 }. Each vector v E V is assigned

a label l (v), again chosen from { -1, + 1 }. A bit-string x of length L is interpreted as a

vector x of this form, and is said to correctly classify a data point v if the sign of x T v

matches that of l(v). The cost of x is then the number of misclassified points, i.e.

c(x) = L [xTvl(v) < 0].
vEV

The data points can be thought of as representing vertices of the L-cube with edge length

2, centred on the origin. The bit-string then represents the normal to a hyperplane

dividing the cube (passing through the origin); the data points may be assigned a label

[' (v) E {-I, + I} according to which half of the cube they fall into. The solution of

lowest cost is the one which minimises the number of data points for which l'(v) =1= l(v).

We use binary perceptron problems where the data points and the labels are randomly

chosen.

4.2.3 Spin Glass

Spin glass models (Mezard et al., 1987) describe the magnetic spins of a disordered

collection of atoms under an external magnetic field of varying strength. The weaker

the external field, the more the spins are dominated by local influences (either posi­

tive or negative correlation) due to the physical arrangement of neighbouring atoms.

When these influences are randomly chosen, they frequently contradict one another,

producing a "frustrated" system. Models of frustrated spin glasses have been stud­

ied both for lattice-like structures (Edwards and Anderson, 1975) with neighbourhood­

only influences, and for the generalised case with arbitrary correlations (Sherrington

and Kirkpatrick, 1975; Parisi, 1980). The task of determining the ground state (i.e.

Chapter 4 Test Problems 36

the minimum-cost configuration when no external field is applied) is known to be NP­

complete.

A bit-string is used to represent the spins of a set of atoms; the cost of a string can

be thought of as a sum of correlations between the bits within the string. As with

the binary perceptron problem, a bit-string is interpreted as a vector in {-I, +1} L.

A random L x L correlation matrix J is created, with Jij E {-I, + I}. The cost of a

bit-string x is then given by

c(x) = L JijXiXj'

i<j

4.3 Reducing State Space for Large Problems

Even for 20-variable binary string problems, the search space is too large to make a direct

model practical. A search space of size 220 usually requires a mutation matrix with 240

elements, which is beyond the storage (let alone manipulation) capacity of most current

computer hardware1 . Unfortunately, most "hard" problems do not exhibit the kind of

obvious symmetry that we were able to exploit with the hurdle problem. There are,

however, alternative ways to constrnct a reasonably-sized model for a problem; we shall

use a barrier tree model, as in Hallam and Priigel-Bennett (2005a,b); Hallam (2006).

Note that we are constructing barrier trees as models of problems, rather than defining

problems by randomly creating barrier trees; the intention is that the trees produced

capture the structure of the underlying problems.

This section describes the work carried out by Jonathan Hallam, who also generated the

barrier tree data (state sizes, costs and transition probabilities) used for all our work

with the Max-SAT, binary perceptron and spin-glass problems.

4.3.1 Barrier Trees

A cost landscape may be described as the disjoint union of a number of level-connected

sets (§2.1.2). A neighbourhood relation can be described on these sets, such that two

level-connected sets X, Yare neighbours if for some x EX, Y E y, x is a neighbour

of y. The connectivity between these sets can be represented as a graph, providing

an abstraction to the original search space. While this graph may be used directly

to model the search space, the number of level-connected sets is typically very large.

Level-accessibility provides a way to group level-connected sets into equivalence classes.

Let 8 be a search space, with neighbourhood function n : 8 ---t P (8), and cost function

c : 8 -7 IR:. An element y is said to be accessible from an element x if there exists a

IThe author is quite aware that this statement will inevitably become a source of future amusement.

Chapter 4 Test Problems

5

4

3
h

2
9

c

0

5 a,k

~ ,1J 4 e,i

3 b h

l 9
2 d 9

"C
c

0

FIGURE 4.2: Barrier tree (lower right) and accessibility digraph for level-connected sets
(lower left) for a one-dimensional cost landscape (top). The digraph nodes 'a' and 'k'
are each connected to all nodes of the graph (including each other); the edges from these
nodes are omitted for clarity. Similarly, 'e' and 'i', which have identical connectivity

(and are connected to each other) are shown as a single point.

37

path between them which does not visit any node of higher cost than that of x; we may

express this formally as a predicate on pairs of elements in S:

acc(x,y) ~ 3L E Z+,3p: Z -+ S

s.t. 1:::;, i :::; L ===? p(i) E n(p(i - 1))

and Vi E [0, L] ,c(p(i)) :::; c(x)

and p(O) = x,p(L) = y

We now define an equivalence relation on S with

X rv y ~ acc(x, y) 1\ (c(x) = c(y))

These equivalence classes (known as level-accessible sets) are to be the states for the

Markov modeL As with level-connected sets, they may be represented as nodes on a

graph, with classes Si and Sj, C(Si) > c(Sj), connected if Sj is the lowest-cost state to

Chapter 4 Test Problems 38

satisfy::lx E Si,::Iy E Sj,acc(x,y)2. In fact, this graph is the same as that of the level­

connected sets, but with nodes corresponding to level-accessible pairs of level-connected

sets identified.

Since each state may only be connected to at most one state of higher cost, no cycles are

possible, and thus we have a tree. Although the structure of the tree is not of direct use

to the Markov model, it has utility as a tool for visualising the structure of local minima

and saddle points within the search space (§4.4). Each leaf node of the tree represents

a minimum, while non-leaf nodes are saddle points.

Fig. 4.2 illustrates the relationship between the graphs of level-connected and level­

accessible sets. For the one-dimensional cost landscape shown, there are almost as

many level-accessible sets as there are level-connected sets; this is atypical of actual

cost landscapes, which tend to have a much higher ratio of states to distinct costs, and

greater connectivity between those states due to higher dimensionality. A barrier tree

for a Max-SAT problem is shown in fig. 4.3.

c
8

7

6

5

4

3

FIGURE 4.3: An example of a barrier tree for a 20-variable Max-SAT problem. Only
the area of the tree containing the global minimum is shown.

We note that the 16-bit hurdle problem studied earlier has 215 saddle points (all strings

of odd distance from the goal string). However, all saddle points at a given cost are

2Note that if accessibility holds for anyone pair from 5i x 5j, then it holds for all such pairs. If there
exists such a state, it is guaranteed to be unique; otherwise there would be two equal-cost states 5j, 5k
connected via a lower-cost state 5 i , and thus we would have 5 j == 5k.

Chapter 4 Test Problems 39

accessible from all others. To see this, observe that constructing a path from the goal

string to any saddle point with Hamming distance from the goal string increasing at

every step will produce a path with maximum cost at the saddle point; any two equal­

cost saddle points may be connected through the concatenation of two such paths.

Thus there are only 8 non-leaf nodes in the barrier tree for the 16-bit hurdle problem,

corresponding to the tops of the "hurdles" in the hurdle function (fig. 4.1). However,

each local minimum is a separate state, so the number of children belonging to each

of these saddle-point nodes becomes exponentially large as the "denser" states (those

corresponding to many saddle points of equal cost) are reached; this is illustrated by

fig. 4.4.

(L+l)12

L12

(L-l)12

(L-2)/2

(L-3)/2

(L-4)12

(L-S)/2

3.S

3

2.S

2

1.5

0

Cost

L-l

L

L-3

L-2

L-S

L-4

L-7

S

6

3

4

2

0

Hamming distance
from solution

(~)

(~)

(~)

(~)

(~)

Number of barrier
tree states

FIGURE 4.4: A barrier tree for an L-bit hurdle problem. Note that every point in the
search space is either a local minimum or maximum. Because every local maximum
is accessible from all other maxima of the same cost, the vast majority of the nodes

correspond to local minima.

4.3.2 Constructing a Markov Model

The barrier tree provides a set of states for our Markov model; however, this is of little

value unless we know the mutation probabilities between the states (the matrix m), and

Chapter 4 Test Problems 40

the distribution of initial states (the vector p(O)). The latter is produced simply by

taking the cardinality of each set, divided by that of the search space. The former is

approximated by examining the boundary of each set: enumerating all possible muta­

tions of all elements of a set provides a list of neighbour elements (which is permitted

to contain duplicate elements). The probability of transition to any other set is then

assumed to be equal to the proportion of the neighbour elements which belong to that

set.

The probability of a mutation from a uniformly random element in state i to any element

in state j is given exactly by mji. However, the result of the mutation will not be a

random element in state j; the distribution is known to be non-uniform. As a result, the

transition probabilities depend on the previous nodes visited (fig. 4.5 gives an example),

and we do not have a true Markov process; in assuming that this dependency can be

ignored, we are making an approximation.

a b

a,b

/
c

d

d
Level-connected sets Level-accessible sets

FIGURE 4.5: In the situation shown, the chance of reaching c or d is heavily dependent
on which of the higher states a, b one begins in. Information about this correlation is

lost however, as a and b form a single level-accessible set.

It is sometimes possible to construct a barrier tree for problems where the state space

is too large to search exhaustively. A modified branch and bound algorithm is used to

enumerate all points in the search space below some specified cost; in many cases this

limited search will uncover the vast majority of local minima (it is of course guaranteed

to find the global optimum). The remainder of the search space is then assumed to

contain one level-accessible set per distinct cost; the transition probabilities for these

extra states may be estimated through random sampling of the search space (Hallam and

Priigel-Bennett, 2005b), allowing models of problems as large as 40-variable Max-SAT

instances to be constructed with ease.

Chapter 4 Test Problems 41

4.4 Accessibility Graphs for Search Space Visualisation

Our use of (level-accessible) barrier trees is motivated by the belief that, despite losing

information through state amalgamation, they preserve much of the structure of the

original problem. Ideally, the behaviour of a heuristic on a barrier tree model could

be used to predict the behaviour on the real problem. In §5.3 we discover that such

predictions tend to be inaccurate, leading us to believe that some information significant

to the search is lost in the transformation. Despite this, we will see in this section that the

barrier tree abstraction has independent value as a means for visualising the connectivity

between various regions (specifically, the level-accessible sets) of the search space.

While we have repeatedly spoken of a "barrier tree model" , the part of this model which

we have made use of is the decomposition of the search space into a relatively small

number of regions (the level-accessible sets). The fact that it is possible to impose a

(partial-) ordering upon these regions is somewhat incidental. Furthermore, the arrange­

ment of these regions in the search space does not directly respect this ordering: the

adjacency of two sets in the search space (and thus the possibility of moving directly

between them) is neither necessary nor sufficient for their representative barrier tree

nodes to be connected.

4.4.1 Accessibility Graphs

It is perhaps more appropriate to use a visualisation which emphasises those aspects

of the representation upon which our model depends most fundamentally, namely the

transition probabilities. In fig. 4.6, we show a graph of the level-accessible sets of a

Max-SAT problem. The graph nodes represent those sets, and are labelled by cost. The

edges represent transition probabilities, with darker3 (and thicker) edges corresponding

to more probable transitions. Since every edge has a dua14 , we choose to draw only the

downhill edges, believing these to be the most important to the analysis.

We arrange the nodes on an arc (in fact a spiral) for ease of viewing, with the angle

and radius determined by the cost of corresponding state; to have them laid out linearly

would make most of the connections between higher states invisible. Nodes with equal

cost are aligned radially; those from which the global minima are accessible are part of

the main spiral, nodes which lead only to (or are) local minima are separated from these

with a little spacing.

3The range of shades has been adjusted to exclude those too light to be visible
4We actually have a digraph, but with the property that for any edge with nonzero weight, the reverse

edge also has nonzero weight. The ratio of the two weights is the same as that of the perimeters of the
two sets; while thusly related, they result in subtly different graphs.

Chapter 4 Test Problems

11'\'. @
3

o @
@ @

FIGURE 4.6: Barrier tree connectivity for a 20-variable Max-SAT problem.

4.4.2 Connectivity Observations

42

From fig. 4.6, we see that the minima are concentrated in the lower-cost areas of the

search space (although the proportion of the search space associated with each cost could

be such that these areas account for most of the search space). This distribution appears

to be typical of Max-SAT problems; for each of the higher costs, there is usually just a

single level-accessible set. This can also be seen in fig. C.1; the range of costs at which

the minima may be found is in each case within the lowest 25% of the cost range. We

also see that the range of costs is covered by the non-minimum states without repetition

(the number of distinct costs of states is equal to the number of (integer) costs within the

cost range); by deduction, the upper 75% of the cost range, being free of local minima,

must consist of a single state per cost.

Connections between sets are generally strongest for sets with consecutive costs; however,

transitions between nodes with a large cost difference are still possible up to a point.

The maximum number of nodes which may be bypassed in this fashion is bounded

by (in the case of Max-SAT problems) the maximum number of clauses any variable

appears in (Le. the maximum number of clauses for which the satisfaction may change

in response to a change in anyone variable). In terms ofthe cost landscape, we see that

the high-cost regions are rough but easily traversable, while the low-cost area is much

more fractured. While the global minima are reachable from nodes of non-consecutive

cost, this is equally true of the local minima, which are much greater in number. Further,

the nodes from which the global minima are accessible appear to be connected with no

greater preference than the local minima.

Chapter 4 Test Problems 43

--. @)

@ .,

~ ':" ~\ ~

rI:"~
45

87

FIGURE 4.7: Barrier tree connectivity for a 17-variable Spin-Glass problem.

The spin glass graphs (fig. 4.7) are not dissimilar to those for the Max-SAT problems.

It appears that, at least within our data set, spin glass problems tend to have a simpler

landscape than Max-SAT problems of a similar number of variables (the reader should

note that the two graphs are for problems of slightly different size); this is corroborated

by the lower spin glass first passage times in §7. As with Max-SAT, the minima are

concentrated at lower costs; this is consistent with the observations of broken ergodicity

in Anderson (1986). The numerical data in fig. C.2 however shows that repeated costs

in non-minimum states do occur here, with the number of distinct costs being less than

the number of non-minimum states in six of the problems. This could be interpreted

as evidence that spin-glass problems are more likely to have minima with non-trivial

basins of attraction. It is also possible however that this is due to the smaller problem

size (compared to Max-SAT). Increasing the dimension of the problem allows for greater

connectivity, but results in a larger number of level-connected sets; since the two effects

may grow at different rates, it is difficult to extrapolate to larger problems.

Binary percept ron graphs however have a very different structure. Firstly, local minima

are much more common, with problems in fewer than 20 variables frequently having in

excess of a hundred level-accessible sets. Larger problems generally had larger numbers

of minima (fig. C.3), but the variation at each problem size was quite significant, with

figs. 4.8 and 4.9 both representing instances generated using the same parameters.

The distribution of local minima with respect to cost is much more uniform than for

the Max-SAT or spin glass problems. In particular, there are local minima at almost

every cost, except for the top three or four costs, and the average cost for the minima

Chapter 4 Test Problems 44

is close to the centre5 of this range (fig. C.3. This could be interpreted either as an

indication that the minima in this case are distributed more evenly, or alternatively that

the distribution of the costs themselves over the landscape is more uniform. Regardless,

the result is a landscape which is considerably more difficult for our heuristics (to which

only cost information is available) to traverse, as at almost every stage in the search,

a transition to a local minimum is indistinguishable from one which leads towards the

global optimum.

CD '

\v
, '
, '. ' ~ '. .

, ,
\.

o
o
o

0 '"

0)

CD

CD

CD

FIGURE 4.8: Barrier tree connectivity for a 12-variable Binary Perceptron problem.

SIt is interesting to note that the average cost of the minima appears to be determined more by the
problem size, and appears to be independent of the minimum cost.

Chapter 4 Test Problems

" " " "

..

" " " "

..
'"
~

"

e

" " .,
" ..
.,

,, '
"

"
G

" "

"

" "

e
e

a e "
"

"

••• • •••• • •••••

Q gggQgQQgQQQQgggQgQggggQgQQQ9Q9

9 ",
G , .,

FIGURE 4.9: Barrier t ree connectivity for a 12-variable Binary Perceptron problem.

45

Chapter 5

Optimal Parameter Schedules

In §3, we produced an expression for the average cost of applying a search heuristic on a

given problem. In this context, the cost of a search is simply a quantitative measure of

performance, derived in some way from the costs of the points visited during the search.

In this chapter we produce search parameters chosen in such a way as to minimise the

search cost (i.e. maximise performance).

5.1 Optimisation Methodology

The simulated annealing and descent with variable mutation algorithms are similar

insofar as their parameters take the form of a "schedule" - a function (J(t) which defines

the value of a parameter at a given iteration t. For both WYA and BSF cost, the cost

of the search is defined in terms of the costs of the points reached over some finite, fixed

number of iterations T. The parameter schedule must provide a single value for each

iteration, and thus the space over which we must optimise is]RT.

Fortunately, the derivatives of search cost with respect to the parameter schedule are

not difficult to compute efficiently (see §3), enabling a gradient-based search to be used.

The schedules shown in this chapter were optimised using the Scaled Conjugate Gradient

method (we use the implementation from Nabney (2001)), starting from a random, log­

normally distributed set of values. In most cases, the optimisation was repeated several

times, from different starting points; the resulting schedules were not found to differ

significantly.

5.1.1 Uniqueness of Solution

There is certainly no guarantee that, for a given search problem, the space of all param­

eter schedules contains only a single optimum, but repeated optimisation runs (starting

46

Chapter 5 Optimal Parameter Schedules 47

from different random schedules) show that we converge on the same schedules (dis­

carding very minor differences which are less significant than the numerical error in the

evaluation of schedule cost). It is of course not impossible that the schedules reached are

simply local minima of the schedule space, with basins of attraction much larger than

the global minimum.

Additionally, the floating-point representation of parameters necessarily discretises both

the parameter space and the output of the cost function. The discretising of the cost

has the effect of equating near-identical cost values, causing minima to become regions

of the space, rather than point values. The discretising of the parameter space itself

produces a sampled view of these regions, artifacts of which will cause the minimal

regions to become disconnected. While it is very likely that numerous extra minima will

be produced in this way, they will of course be distributed around the "true" minimum,

and will be of such similar cost that they will be equally acceptable.

5.1.2 Evidence of Convergence

It is quite reasonable to check for some confirmation that the optimised schedules do in

fact represent minimum points in the space of all schedules. Computing the gradient

of an optimised annealing schedule (fig. 5.1) shows that almost all components of the

gradient have magnitude no larger than 10-6 ; the gradients of non-optimal schedules

(e.g. figs. 5.2, 5.3) typically have components at least an order of magnitude larger. For

comparison, the actual costs involved are integers in the approximate range [0,30] for

the Max-SAT problems, [0,11] for the spin-glass problems, and [10,90] for the binary

percept ron problems (details can be found in §C.1). Furthermore, much of the variation

in the gradient at different times resembles noise; in short, the schedule is sufficiently

close to the minimum that the error in the computation of the cost gradient is comparable

to the gradient itself. We also note that the second derivative is strictly positive (another

condition we seek when searching for a minimum); the regions where it appears to be

zero are actually slightly positive, with values around 5 x 10-8 .

The optimisation over the schedules was performed with a limit of 500 iterations of the

Scaled Conjugate Gradient algorithm; increasing this figure produced schedules with

very little discernible difference (§C.2.1), as did using a different optimisation algorithm

(the NeIder-Mead Simplex Algorithm (NeIder and Mead, 1965)). From this we conclude

that the schedule is as close to the optimum (for our model of the problem) as can be

reasonably reached using SCG, and is not significantly far from that optimum.

Fig. 5.2 shows a schedule produced from the optimised one by removing the initial

low-temperature region, setting all temperatures before the maximum to be equal to the

maximum. The associated derivative suggests, as we would expect, that the temperature

in that region should be lowered in order to improve the search. Note that the derivative

Chapter 5 Optimal Parameter Schedules

0.4 r---r-----,---;----r----,-----r---_---~

0.35

0.3

0.25

0.2

0.15

0.1 L
0.05 L-_---' __ --' __ __'_ __ --'-__ __'_ ___ -'-__ --'-__ ---1

o 50 100 150 200 250 300 350 400

1.2e-06 r---,--_---~--~--~--_-__ -~

1e-06

8e-07

6e-07

4e-07

~~: ~ II I A A ~ '--------I
::: 1I1II V V N
-6e-07 r

-8e-07 L-_--' __ --"-__ --'-__ -'--__ -'--__ L-_---' __l
o 50 100 150 200 250 300 350 400

0.0001 ,------,----,----,-----,---r----,----r-------,

ge-05

8e-05

7a-05

6e-05

5e-05

4e-05

3e-05

2e-05 !
1e-05

OL-_~~ _ __'_ __ __'_ __ _L __ __'_ __ ~ __ ~_~

o 50 100 150 200 250 300 350 400

FIGURE 5_1: An optimised schedule for temperature ((3-1) against time (top), followed
by first and second derivatives of average \VYA cost, with respect to the inverse tem­
perature (3. The second derivatives shown are the non-mixed derivatives, Le. the main

diagonal of the Hessian_

48

Chapter 5 Optimal Parameter Schedules

0.4 ,------r-----,---,---,----.----,----,---,

0.35

0.3

0.25

0.2

0.15

0.1

0.05 '--_--'-__ -'-__ -'-__ -'--__ '--_---' __ .---' __ .-l

o 50 100 200 250 300 350 400

1e-05 r----,------,---,-----,-----,----,-----,-----,

5e-06

-5e-06

-1e-05

-1.5e-05

-2e-05

-2.5e-05

-3e-05

-3.Se-05 '--_--'-__ -'-__ .l........_---"-__ -'-__ -'--__ -'---_---'

o 50 100 150 200 250 300 350 400

FIGURE 5_2: Temperature and first derivative of cost of a schedule perturbed by re­
moving the "cold start" .

49

is taken with respect to the inverse temperature (3; thus a negative derivative indicates

that the search cost is lowered by increasing (3, thus lowering the temperature.

While measuring higher derivatives, we observe an interesting phenomenon: for large

enough n, we seem to find that 8t~~l+l Cwya ::::; -k (8~:))n Cwya , for all t. In other words,

each derivative resembles a scaled and reflected version of the previous. For the special

case where derivatives are evaluated for a constant-temperature schedule (i.e. one for

which r1ji 0), it seems that the rule is satisfied precisely, with k = 1, as shown in

fig. 5.3.

The relationship we observe can be expressed in terms of the matrix products:

'lit, T (t-l .) (8
n

+1W(t) 8nW(t)) (T .)
c II w(~) n+1 + k 8(3(t)n II w(~) p(O) = 0

i=O 8(3(t) i=t+l

Chapter 5 Optimal Parameter Schedules 50

18-05

58-06

0

-58-06

-18-05

-1.58-05

-28-05

-2.58-05

-38-05
0 50 100 150 200 250 300 350 400

38-05

2.58-05

2e-05

1.58-05

18-05

58-06

0

-58-06

-18-05
0 50 100 150 200 250 300 350 400

FIGURE 5.3: The first and second derivatives of a constant schedule sum to zero.

For this equation to be satisfied, it is sufficient (but not necessary) for the central

parenthesised factor to be a matrix of zeros. For brevity we shall omit the parameter t,

and indicate the nth derivative of a quantity by writing n as a parenthesised superscript.

Our expression is now

From §3.1.2 we have (for strictly positive n)

A(n) ® m - sum (diag (A(n) i8l m))
[. 'J "A(n)
2 = J L-. ki mki,

k

from which we note that, since every term on the right-hand side has exactly one element

of the acceptance matrix A as a factor, it is sufficient (but again, not necessary) to show

Chapter 5 Optimal Parameter Schedules 51

that
A(n+l) + kA(n) = 0

JZ JZ'

The nth derivative of A can be described element-wise by

where the matrix P is given by

we now have

A(n+l) + kA(n) = Fn,+lef3Fji + kF'n.ej3Fji
P J2 J2 J2

= PIief3Fji (Fji + k).

For Max-SAT problems (and in fact also for the binary perceptron and spin glass prob­

lems), the state costs are integer-valued; this restricts the elements of P to the non­

positive integers. If we set k to one (so as to match our observation for the constant

schedule), the right hand side is zero when Pji is 0 or -1. Further, we note that for

strictly positive (3, the RHS shrinks exponentially as Pji decreases; thus the elements

for which the rule does not hold (i.e. where Pji < -1) contribute less to the gradient

calculation. This suggests that the relationship between the derivatives may be caused

of the dominance of those transitions with smallest cost difference.

5.1.3 Computational Limitations

The time taken to produce an optimal schedule depends chiefly on three variables:

N: The number of states in the model; this is usually the number of nodes in the

barrier tree for the problem.

T: The length of the schedule. For simplicity, we shall assume at this point that no

coarse-graining is used.

R: The number of iterations of the optimiser (usually SeG) required for satisfactory

convergence.

Each transition matrix consists of N 2 elements; with the exception of the leading diag­

onal, these may all be computed in constant time. The leading diagonal consists of N

elements, each of which requires a sum of N elements to compute (the probability of a

self transition includes those of the rejected non-self transitions), and thus each transi­

tion matrix may be computed in 0 (N2) operations, and the complete set of matrices

Chapter 5 Optimal Parameter Schedules 52

requires 0 (N2T) operations. (The derivatives of these matrices are the same order of

complexity to compute.)

Having produced a set of transition matrices, the average WYA cost is computed by

applying each of the transition matrices to an initial state vector. This is a series of

T multiplications between N x N matrices and a vector, and thus requires 0 (N2T)

multiplications. Each of the T components of the gradient is computed via a cost

evaluation with one transition matrix replaced by a derivative, thus the gradient is even

more costly, at 0 (N2T2) operations.

BSF cost effectively requires these steps to be repeated with sets of modified transition

matrices. The modification itself is not difficult, but the extra repetition increases the

computation time. The number of repetitions is equal to the number of distinct costs

assigned to the states in the model. In practise, this seems to scale roughly with N, so

the BSF cost and gradient require 0 (N3T) and 0 (N3T2) operations respectively.

Finally, the optimisation process requires R iterations, the time for each of which is

dominated by that of the gradient calculations. However, R is an unknown quantity,

being largely influenced by the structure of the cost landscape, the choice of search

heuristic and cost function, the peculiarities of whichever algorithm is used to optimise

the schedule, and the choice of termination criterion. Observations suggest that the

changes which increase the computation required for each iteration (e.g. BSF instead

of WYA cost, larger problems, longer schedules) tend also to increase the number of

iterations required.

Our implementation limits the number of iterations to 500. For larger problems, this

limit was frequently exceeded, but it appears that the convergence in those cases had

slowed to the point where further iterations produced schedules which were almost in­

distinguishable from the 500th iteration.

5.1.4 Schedule length

For most problems, schedules of length 200 and longer were used. When a range of

schedule lengths is examined (e.g. in §5.4.4), those below a certain length appear to be

qualitatively different, typically with such a low temperature that the resulting behaviour

is effectively a descent, with the ability to escape local minima sacrificed in return for

improved results in the cases where escape is not necessary. Examples of this may be

seen in figs. 5.17, 5.18 and in §C.3; in each set of schedules, the shortest temperature

schedule (length 100) does not have the same shape as the others, being approximately

linear, but having similar starting and finishing temperatures to the longer schedules.

The temperatures of both schedules never exceed 0.08; given a temperature this low, the

probability of accepting an uphill transition of cost difference 1 (all Max-SAT problems

Chapter 5 Optimal Parameter Schedules 53

have integer costs) is given by e-ljO.08 ~ 3.727 x 10-6 , a probability small enough to

ignore in the context of a schedule of length 100.

Experiments with the average first passage time show that the average time taken to

reach the optimum may be around 100 to 150 iterations (§7.6) on our problems (ex­

cluding the hurdle problem). Given that this is average time before the minimum is

first reached, it seems sensible that schedule lengths of approximately the same order

of magnitude should be of greatest interest. Generally speaking, WYA schedules on

20-variable problems reverted to descent when number of iterations fell below 120 or so.

BSF schedules tended to maintain the same form until the number of iterations became

trivially small.

5.1.5 Coarse-Grained Schedules

Without coarse-graining, a schedule of length T requires an optimisation over a set of

T variables. Because the effect of perturbing individual variables becomes very small,

and may be compensated for almost entirely by adjusting "adjacent" variables in the

schedule, the optimisation tends to become very slow, and the schedule produced ap­

pears to be locally noisy. Unsurprisingly, sufficient coarse-graining avoided this problem,

producing a schedule very similar to an averaged version of the noisy original.

Additionally, coarse-graining reduces the computational effort required for each cost

evaluation the number of variables involved, thus decreasing the number of iterations

(i.e. cost evaluations) required for convergence. Due to the improvements to execution

time, most of the results in the section show coarse-grained schedules. Comparisons

between non-coarse-grained schedules and coarse-grained schedules of various lengths

can be seen in figs. 5.4 and 5.5; observe that in both cases, the coarse-grained schedules

are good approximations to the originals.

The most significant problem introduced by coarse-graining is that any features which

persist for only a few iterations are likely to be distorted or omitted altogether from a

coarse-grained schedule. Such features are not thought to be common, with the exception

of the rapid end-of-schedule cooling (§5.4.3). Additionally, it is difficult to verify that

longer coarse-grained schedules are good approximations in all situations, especially in

the case of BSF schedules, where the computational effort associated with optimisation

is considerably higher than for WYA cost.

Regardless of the degree of accuracy with which coarse-grained schedules approximate

the originals, it should be noted that the coarse-graining is simply an alternative way of

parameterising the annealing schedule, the object being to reduce the number of degrees

of freedom. It is not necessary to consider coarse-grained schedules solely as a means of

approximation; annealing with a coarse-grained schedule is a viable heuristic in its own

right. Other parameterisations are of course possible; we discussed this briefly in §3.3.

Chapter 5 Optimal Parameter Schedules

0.8
b=1 --
b=2 -------
b=4 ~ ... " ~"~

0.7 b=8 , ...

b=16 _.-.,--->

b=32 -'~'-'-

0.6

0.5 -.

~
::>

~ 0.4 Q)
Q.
E
.$

0.3

0.2

0.1 -1
0

0 200 400 600 800 1000 1200

FIGURE 5.4: Coarse-grained WYA schedules for a hurdle problem, various block sizes.

0.45

0.4

0.35

0.3

~
::>

~ 0.25 Q)
Q.
E
.$

0.2

0.15

0.1

0.05
0 50 100 150 200 250

b=1-­
b=2 ------­
b=4···· .. ··
b=8 .

300

FIGURE 5.5: Coarse-grained BSF schedules for a Max-SAT problem, various block sizes.

54

Chapter 5 Optimal Parameter Schedules

0.8

0.7

0.6

0.5

l!!
.'3
m
Q; 0.4
c.
E

J!J

0.3

0.2

0.1

0
0 50 100 150 200 250 300

WY A schedule -­
BSF schedule ---.-- .. -

350 400

FIGURE 5.6: Example WYA and BSF-optimised schedules for a 16-bit hurdle problem

5.2 WYA and BSF Schedules for the Hurdle Problem

55

Schedules were produced for a 16-bit hurdle problem, optimised separately for WYA

and BSF cost (fig. 5.6). Note that there is little similarity between the schedules except

for during the first 20 or so iterations, after which the WYA schedule continues to cool,

but the BSF schedule eventually begins to increase temperature, rising to a peak at the

end of the schedule. While we know that the significance of the final iterations of a BSF

schedule decreases towards zero, possibly making the end of the schedule very noisy, we

would not have expected the temperature to increase.

In contrast to WYA cost, convergence of a BSF search is counter-productive; for the

search to spend a large number of iterations in or around a local minimum is of no

additional value. The strategy which appears to be favoured in our BSF hurdle schedules

is a best-effort attempt to get close to the global minimum (using about half of the

available time), followed by a local search. The rapidly increasing temperature towards

the end is a way of maximising exploration of the surrounding region, at the cost of

potentially straying away from it.

These two optimised schedules were tested on the hurdle problem by running a simulated

annealing algorithm with the suggested temperature schedules. For each schedule, the

annealing process was repeated 100000 times, with each run beginning at a point chosen

randomly from the search space. The average WYA and BSF costs were computed for

both schedules, and are shown in figs. 5.7 and 5.8.

Chapter 5 Optimal Parameter Schedules

FIGURE 5.7: Predicted vs. measured performance of a WYA schedule; measured results
averaged over 100000 runs.

11)
0
0
OJ
0>

'" OJ
>
ttl

5

4.5

4

3.5

3

2.5

2

1.5

BSF prediction -­
BSF observed ------­

BSF cost of WYA sched -----.--

0.5 '--__ -'--__ --'--__ ----1 ___ -'---__ -'--__ --'--___ -'---__ ---'-__ --'

o 50 100 150 200 250 300 350 400 450

FIGURE 5.8: Predicted vs. measured performance of a ESF schedule; measured results
averaged over 100000 runs.

56

Chapter 5 Optimal Parameter Schedules

16,------------,------------,------------,-----------,
WY A prediction --
WY A observed -------

WY A cost of BSF sched

14

12

'" 10 0

" Q)

'" f!:'
Q)

iU 8

6

4

2
0 50 100 150 200

FIGURE 5.9: Predicted vs observed performance of a WYA-optimal schedule for a SAT
problem

57

Most notably, we see that the average costs observed from the simulation exactly match

those predicted by the model, at least up to the effects of coarse-graining. This is however

not so surprising, as the reduced model for the hurdle problem is an exact model of the

original problem (§4.1).

For comparison, we show also the WYA evaluation of the BSF schedule, and vice versa.

The WYA schedule does not give unreasonable BSF performance, but the converse is

not so. Due to the increasing temperature towards the end of the BSF schedule, the

WYA performance produced is rather poor.

5.3 Models of Real Problems

Aside from the hurdle problem, optimised schedules were also produced for state-amalg­

amated models of instances of the Max-SAT, spin glass and binary perceptron problems,

using barrier tree data produced by Jonathan Hallam. Various sizes of problem were

used, mostly with search spaces of between 215 and 220 points, represented by barrier

tree models. On all of these problems (results summarised in §C.2.5), it was found that

the predicted costs were under-estimates; the optimised schedules did not perform so

well in practise as the predictions of the model suggested. Figures 5.9 and 5.10 compare

the predicted and actual cost of WYA- and BSF-optimised schedules (themselves shown

in fig. 5.11) for a 20-variable Max-SAT problem.

Chapter 5 Optimal Parameter Schedules

16

14

12

Ui 10
0

" QJ
OJ

~
QJ
> 8
'"

6

4

2

"''-''
',,-

0

BSF prediction -­
BSF observed ------­

BSF cost of WYA sched «--<--<

'~ .. '~--,---,
50 100 150 200 250

FIGURE 5.10: Predicted vs observed performance of a BSF-optimal schedule for a SAT
problem

0.4 r----,----,-----,-----.,-----=~-==c--,_--.__--_r_-_.,

0.3

~ 0.25

~
QJ
C.
E
2 0.2

WYA schedule -­
BSF schedule -------

0.05 L-_---.J'--_......-l __ --L __ -L __L __ -'-__ -'-__ -'-__ ...L..._---1

o 20 40 60 80 100 120 140 160 180 200

FIGURE 5.11: WYA and BSF-optimal schedules for a 20 variable Max-SAT problem

58

Chapter 5 Optimal Parameter Schedules

70,----,-----,-----,-----,----,-----,-----,-----,----.

65

60

Cii 8 55

50

45

predicted <-­
observed -------

40L---~-----~----~-----L----~----J-----J_ ____ ~ __ ~
o 200 400 600 800 1000 1200 1400 1600 1800

FIGURE 5.12: Predicted vs observed performance of a WYA-optimal schedule for a
spin-glass problem

59

The fact that the observed results differ from those predicted by the model is no real

surprise, as the barrier tree representation is an approximation to the actual problem

(§4.3.2). However, the fact that the predicted performance is always over-estimated is

worthy of investigation, as it suggests the presence of a systematic effect which causes

the model problems to become easier to solve than the problems themselves. This

under-estimation of cost occurred also for the binary perceptron and spin-glass problems

(fig. 5.12), and is therefore unlikely to be peculiar to our chosen set of problems.

Aside from the approximation inherent in using a barrier tree (instead of the actual

search space), all other aspects of the model are "exact", capturing accurately every

detail of the heuristic's behaviour; this assertion is supported by the accuracy of the

model in predicting the costs for the hurdle problem (§5.2). It therefore seems logical

to conclude that the error we see is a product of the barrier tree approximation. Sub­

stituting the digraph of level-connected sets in place of the tree of level-accessible sets

provides a similar result (fig. 5.13), suggesting that the harmful approximation lies at

least partly in the grouping of search points into level-connected sets, rather than the

further amalgamation of those sets into barrier tree states.

Although most of the test problems used were based on 20-bit binary string represen­

tations, for which the barrier tree model was constructed through exhaustive mapping

of the cost landscape, it is possible to produce approximate models through random

sampling of the search space. The schedule shown in fig. 5.14 was produced in this way,

but has a very similar structure to those produced for the smaller problems.

Chapter 5 Optimal Parameter Schedules

16
predicted --
obseNed

14

12

10

tl
0
()

8

6

4

2
0 50 100 150 200 250

FIGURE 5.13: Predicted and actual costs for an annealing schedule optimised (for WYA
cost) over the digraph of level-connected sets (instead of the barrier tree) for a 20-

variable ::.vIax-SAT problem

0025 ,-----,------,,------,,------r-----r------;,-----,

02

001

0005

o L-____ L-__ ~ ___ ~_0 ___ ~ ___ ~ ___ ~L_ __ ~

o 500 1000 1500 2000 2500 3000 3500

FIGURE 5.14: An annealing schedule optimised for WYA cost a 40-variable Max-SAT
problem, produced from a sampled barrier tree model with 85 states.

60

Chapter 5 Optimal Parameter Schedules 61

5.4 Features Observed in Optimised Annealing Schedules

for Max-SAT Problems

The optimised schedules vary considerably depending on the cost function, the search

heuristic, and the type of problem. The main points of variation appear to be the

behaviour in relatively small regions at the beginning and end of the schedule, the rest

of which (with a few exceptions) usually resembles either some form of decay curve

(WYA schedules), or a convex curve, occasionally oscillating slightly (BSF schedules).

The WYA and BSF Max-SAT schedules shown already (figs. 5.5, 5.11 and 5.14) show

typical behaviour. Optimal WYA and BSF schedules for all of the Max-SAT problems

are shown in §C.2.2; in most cases, the Max-SAT schedules for the same cost function

have a similar form. The exception is discussed in §5.5.

5.4.1 Cold Start

For the Max-SAT schedules, an initial period of low temperature was common, effectively

reducing the start of the search to a descent; this was observed for both WYA and BSF

schedules. Since this behaviour does not appear to occur with the hurdle problem

it is likely that this effect is caused by the structure of the cost landscapes for the

Max-SAT problems. It is likely (especially given the observations in §4.4) that the

local minima are concentrated around the global minimum, causing large regions of the

landscape to be easily traversable by descent. The length of this "cold start" is likely

to represent the number of iterations before uphill steps become useful, i.e. the average

number of iterations of descent required to move from a randomly chosen point to a

local minimum. We do not see this behaviour on the hurdle problem, probably due to

the very uniform distribution of minima. On average, half an iteration is sufficient to

move from a randomly chosen point to a minimum of the hurdle problem.

This feature was also observed in optimal schedules for graph partitioning problems by

Strenski and Kirkpatrick (1991), who provide an insightful alternative explanation in

terms of the temperature of the initial distribution. The gradual cooling seen in many

annealing schedules gives the system time to equilibrate at each temperature; however,

this cannot begin immediately when the initial distribution is effectively at the infinite­

temperature limit. To remedy this, the optimal schedule dedicates the first few iterations

to bringing the distribution reasonably close to an equilibrium state, and the fastest way

to do this is by setting the temperature to zero.

5.4.2 Gradual Cooling

Excluding short sections at the beginning and end, all of the WYA annealing sched­

ules provided an asymptotically decreasing temperature; taken in isolation, this feature

Chapter 5 Optimal Parameter Schedules 62

matches "traditional" annealing schedules, which use a strictly decreasing temperature.

The usual justification is that if the temperature is reduced slowly enough, then the

global minimum can be reached with certainty arbitrarily close to one (Hajek, 1988).

5.4.3 End-of-Search Behaviour

When optimising a schedule for WYA cost, the goal is to minimise the cost of the last

state reached. This usually coincides with the goal of approaching the global minimum,

however the two interests diverge at the end of the schedule. When the number of re­

maining iterations becomes very small, minimising the cost of the current state becomes

much more important than exploring the landscape, and thus the annealing temperature

drops rapidly.

The extreme case is the final iteration of the algorithm. An uphill transition on the final

iteration of a WYA schedule should never occur, as this would reduce the final solution

quality; it is therefore no surprise that the final-iteration temperature is roughly 1 zero.

For a BSF annealing schedule, the last temperature in the schedule has no effect at all

on the search; the point tested on the last iteration will affect the solution quality only

if it has cost lower than that of the penultimate point, in which case it is guaranteed

to be accepted, regardless of temperature. Thus the last temperature value in a BSF

schedule is entirely irrelevant, and should be disregarded.

In the case of the hurdle problem, the final period of rapid cooling is limited to a single

iteration. This is because the bipartite structure of the cost landscape (§4.1) is such that

every point in the search space is either a minimum, or has a neighbour set composed

entirely of minima. A single iteration at zero temperature is therefore sufficient to ensure

that the search has terminated at a minimum. All of these effects a:re of course masked

somewhat when coarse-grained schedules are used.

5.4.4 Overlapping schedules

So far, we have compared optimised schedules in various scenarios, discussing both

features of the schedules and their actual performance. One aspect not yet covered is

the relationship between schedules of different lengths, optimised for the same problem.

The behaviour in this regard was found to be largely problem-specific.

The most surprising result was the similarity between WYA hurdle problem schedules,

with schedules of differing lengths "overlapping" almost perfectly (fig. 5.15). With the

exception of the final iteration of each schedule, for which the usual drop in temperature

lIn our experiments, this temperature was slightly nonzero. \Vhen temperature is sufficiently small
that the acceptance probability for any possible uphill transition is negligible, the effect of further
modifying that temperature is greatly diminished. This effect, combined with the decision to optimise
inverse (i.e. reciprocal) temperature, prevents the SCG optimiser from actually reaching zero.

Chapter 5 Optimal Parameter Schedules 63

O.S
T=100 --
T =200 -------
T=300

0.7 T=400
T=500 -.---

0.6

0.5

[ll
2
~ 0.4 Q)
0-
E
JB

0.3

0.2

0.1

0
0 50 100 150 200 250 300 350 400 450 500

FIGURE 5.15: WYA hurdle schedules show a very good overlap

occurred (§5.4.3), the schedules match so well that they appear almost coincident. We

note that a similar form of overlap was seen in Hoffmann and Salamon (1990), but with

the ends of the schedules (instead of the beginning) sharing the common behaviour.

Schedules of various lengths have also been seen to rescale onto the same curve in

Christoph and Hoffmann (1993).

This is of particular interest; if a short, optimised schedule may be used in some way to

extrapolate a longer schedule, or indeed, schedules of arbitrary length, then not only do

we have a computational shortcut, but the nature of the relationship between the sched­

ules may be correlated with properties of the landscape, potentially allowing schedules

to be produced for other problems based only on measurements of those properties.

Unfortunately, this phenomenon appears to be confined to WYA hurdle schedules, and is

thus more likely to be connected with the self-similar2 structure of the hurdle landscape,

rather than an inherent dependency between schedules of differing lengths.

An equivalent comparison for BSF hurdle schedules (fig. 5.16) does not show the same

effect. Although the BSF schedules are very similar to each other, they are clearly

distinct, departing within the first 50 iterations. Despite this, they each seem to follow

the same general 'U' shape, and it is quite possible that they may be scaled onto each

other in some way, or approximated by a general formula.

2 At each minimum, the size of the uphill step (i.e. the cost difference) required to move towards
the global minimum is identical, only the number of possible "correct" neighbours changes. At each
non-minimum point, all neighbours are of lower cost, so Simulated Annealing effectively chooses one at
random.

Chapter 5 Optimal Parameter Schedules

T=100 --
T =200 -------
T=300

0.9 T=400
T =500 -_._._.

0.8

0.7

l'!

~ 0.6 OJ
c.
E
.gJ

0.5

OA

0.3

0.2
0 50 100 150 200 250 300 350 400 450 500

FIGURE 5.16: BSF hurdle schedules of differing lengths are of similar shape, but do
not overlap

64

For certain problems, BSF schedules displayed a slight oscillatory behaviour (fig. 5.17).

It is possible that the periodic behaviour effectively causes restarts in the search, repro­

ducing the effect of an iterated descent algorithm. The small amplitude of the fluctuation

suggests that a full restart is not being performed, but rather a backtrack to a higher

barrier state. Periodically spiking schedules have been seen before in Boese and Kahng

(1994), while Bolte and Thonemann (1996) produced optimised schedules which included

a cosine component.

Finally, fig. 5.18 shows a series of Max-SAT schedules. Here we observe that the low­

temperature regions towards the end of the schedules are very similar; despite being of

different lengths, these regions seem to have approximately the same slope. Although the

initial temperatures differ somewhat, all ofthe schedules appear to peak at the same time

(t ~ 60), adding some weight to our assertion (§5.4.1) that the initial low-temperature

period represents a problem-specific period of descent, after which the landscape becomes

more difficult to navigate. The peaks are of differing height however, and while the

graphs do appear to have the same gradient shortly after, the cooling process eventually

slows down, giving the longer schedules a concave shape. Thus despite not overlapping,

the schedules do share some similar properties, and longer optimal schedules are likely

to follow a predictable form.

Chapter 5 Optimal Parameter Schedules

0.6
T=100 --
T =200 -------
T=300
T=400

0.5 T =500 _._._-

0.4

~

"" ['! 0.3 '" CI.
E
.i'l

0.2

0.1

0
0 50 100 150 200 250 300 350 400 450 500

FIGURE 5.17: BSF schedules on a Max-SAT problem were sometimes found to have a
slightly periodic behaviour. Note that the amplitude of the oscillation is greatest for

smaller schedules, and almost vanishing for the longest.

FIGURE 5.18: WYA schedules of various lengths for a 20-variable Max-SAT problem.

65

Chapter 5 Optimal Parameter Schedules 66

0.9

0.8

0.7

0.6
I~

:!! 0.5 .a
~
Q)

"-
E 0.4 .$

0.3

0.2

0.1

0
0 50 100 150 200 250 300 350 400

FIGURE 5.19: A Max-SAT BSF schedule with three similarly-shaped peaks.

5.5 Periodic Schedules

Several of the BSF -optimised schedules showed particularly interesting periodic be­

haviour. Over the Max-SAT problems, this was limited to a single instance (fig. 5.19),

in which there are three distinct temperature spikes. The three peaks have similar (but

not identical) height and width; in each case the increase is visibly steeper than the

subsequent decrease. Except for the three peaks, the temperature is very low.

The problem on which this schedule was optimised (number 18, fig. C.1) is unremarkable

except for the relatively small number of minimum states; in fact it has fewer than any of

our other Max-SAT instances. This suggests the possibly explanation that the problem

is easy enough that descent performs very well. The first 100 iterations of descent should

provide enough time to for at least one visit to the global minimum, provided the search

has not become "snagged" on any local minima.

As the probability of visiting the global minimum increases, the expected benefit of

performing further iterations of descent diminishes. Since there is a non-zero chance

that the descent may have become trapped at a local optimum, there will come a point

(at t = 110 in this case) where attempting to free the "trapped" probability mass (by

increasing the temperature) offers a better return on invested iterations than continued

descent. Of course, not all of the probability mass is freed (i.e. there is a nonzero chance

that an annealer was stuck in the minimum, and fails to permanently escape it even

with the aid of the temperature increase); thus the process is repeated until insufficient

time remains for another complete cycle.

Chapter 5 Optimal Parameter Schedules

1.4 r----,------,.----,-------r---,-------,---,---,

1.2

0.8

0.6

0.4

0.2

r
j

~ I
I

o L-__ ~ __ ~ ___ ~ __ -L ___ L_ __ -L ____ L_ __ ~

o 50 100 150 200 250 300 350 400

FIGURE 5.20: A BSF-optimised binary perceptron schedule (problem '10-12-2'), alter­
nating between high and low temperatures.

67

Periodic behaviour was also seen in several binary perceptron schedules. The most ex­

treme example is shown in fig. 5.20. On first inspection, the schedule may look like

random noise; note however that the temperature values which appear are very well

clustered into three groups. There is a set of near-identical "low" values around 0.1, a

set of "medium" values close to 0.8, and a more varied "high" range between 1 and 1.3.

For the vast majority of the schedule, there are no two adjacent temperatures from each

group (up to the effects of coarse-graining of course). Further, the "medium" tempera­

tures only occur occasionally (ignoring the endpoints of the schedule) as intermediates

between a low-high transition.

This supports our earlier speculation (§4.4.2) that the binary perceptron problems con­

tain a large number of shallow3 minima; under this assumption, the best strategy could

well be to oscillate between descent and random walk. This schedule was produced with

a coarse-graining block size of 4. Ignoring for a moment the occasional intermediate

temperatures, the schedule effectively performs four iterations of descent, followed by

four steps with temperature around 1.2, giving around a 40% chance of accepting an

uphill step of size 1. This could give a reasonable chance of escaping the minimum

(depending on the various costs of the neighbour states), after which the descent would

provide a chance to progress lower.

3The "depth" of a minimum could be described as the minimum increase in cost required to escape
the basin of attraction of that minimum. In this discussion, we take "shallow" to mean "has only a
trivial basin of attraction", with all neighbours being non-minima.

Chapter 5 Optimal Parameter Schedules

3.5 ,----,----r----r---,-----,----,..---,-----,

3

2.5

2

1.5

0.5

~
II

I

O~---~---L-_~ ____ L-___ ~ __ ~ ___ ~ __ ~

o 50 100 150 200 250 300 350 400

FIGURE 5.21: A BSF-optimised schedule for binary perceptron problem '10-12-1'. A se­
ries of high-temperature spikes is interleaved with a series of lower-temperature humps.

68

A further interesting example is given by fig. 5.21, in which the schedule contains a

repeated pattern of approximately 50 iterations in length. This pattern contains four

iterations at very high temperature (four is the coarse-graining block size, and hence

the minimum width for such a spike), followed by a much smaller "hump". This hump

varies in shape (this is likely due to noise in the SCG optimisation), but in almost every

case begins with a sharp increase, then cools slowly, then more rapidly, then more slowly

again, until the next spike.

It is interesting that the temperature immediately after each spike drops very low, then

rises before cooling. This temperature drop is reminiscent of that seen in the non­

periodic Max-SAT BSF schedules, as is the maximum temperature of the humps (0.5

compared to 0.4). The similarity might not be coincidental; each temperature spike pro­

vides four iterations during which an uphill transition of size 1 is accepted with between

50% and 70% probability. These spikes may well be enough to induce a periodic back­

track of several steps, causing the probability distribution to disperse a little. That the

behaviour between spikes is not a descent suggests that avoiding local minima is a non­

trivial task; the shape of these subsections may be the optimal schedule for traversing

some particular subspace of the problem.

In several cases, WYA-optimised perceptron schedules began with periodic spikes of

decreasing magnitude, followed by a gradual cooling phase, similar to that seen in Max­

SAT WYA schedules. The two phases to this distribution could correspond to groups

of minima at different temperatures; the periodic spikes may be intended to push the

search into the deepest branch of the tree at an early stage, while the slower cooling then

Chapter 5 Optimal Parameter Schedules

1,8 rrr--,------,-----,---,------,------r---,--------,

1.6

1,4

1,2

0,8

0,6

0,4

0,2

- -
O~---~--~--~~--~---~--~---~--~

o 50 100 150 200 250 300 350 400

FIGURE 5.22: WYA-optimised schedule for binary perceptron problem '10-12-1'. An
oscillating temperature is followed by a gradual cooling.

69

attempts to ensure that, whichever branch was eventually chosen, the search finishes in

the lowest state of that branch.

5.6 Variable Mutation

The variable mutation search was found to produce considerably better performance

than simulated annealing on the hurdle problem (fig. 5.23), although this advantage

disappeared when the two were compared on Max-SAT problems. This is largely due

to the structure of the hurdle problem, which causes transitions towards the global

optimum to become increasingly difficult. Variable mutation search benefits from a

"ratchet effect", as it will never move to a state of higher cost. On many problems

this would make traversal of barriers very difficult, requiring many mutations in one

step. However, all local minima on the hurdle problem are very small and shallow,

and can be escaped with a double mutation. Simulated annealing, however, is likely to

take backward steps when close to the global optimum, simply because they outnumber

by far the opportunities for steps towards the optimum; this is in agreement with the

observations in Priigel-Bennett (2004b).

Fig. 5.24 shows a large qualitative difference between the mutation schedules for the

hurdle and Max-SAT problems. Both begin with a high mutation rate, reflecting the

idea that a small period of random search can rapidly provide an improvement over the

starting point. Afterwards, the mutation schedules roughly resemble the corresponding

annealing schedules.

Chapter 5 Optimal Parameter Schedules

18

16

14

12

tl
10 0

" a>
OJ
i':'
a> 8 >

'"
6

4

2

0
0 200 400 600 800 1000 1200

Simulated Annealing --­
Variable Mutation -------

1400 1600 1800

FIGURE 5.23: Comparison between performance ofWYA-optimised annealing and mu­
tation schedules, on a 64-bit hurdle problem.

5.5

5

4.5

4

§ 3.5
c
0

~
:5
E

3

2.5

2

L5

1

t
0 200 400 600 800

16-bit hurdle problem --
20-variable Max-SAT problem -------

1000 1200 1400 1600

FIGURE 5.24: Example WYA-optimised mutation schedules for two problems.

70

Chapter 5 Optimal Parameter Schedules

OA5

OA

0,35

0,3

i'! 0,25 ::J

'§
Q)
0.
E 0.2 JB

0,15

0,1

0,05

° ° 200 400 600 800

average of schedules -­
average-optimal schedule -------

1000 1200 1400 1600

FIGURE 5.25: Comparison between an average-optimal schedule and the average of
all the individually-optimal schedules. Schedules produced for WYA cost of simulated
annealing on a set of twelve Max-SAT problems; 100 (constant-temperature) blocks of

16 iterations.

5.7 Average-Optimal Schedules

71

In this section we explore the possibility of optimising the parameters of a heuristic for

a class of problems rather than for a specific instance.

Thus far, our method for producing optimal schedules has been dependent on prior

knowledge of the structure of the search space. Disregarding toy problems where the

structure (and usually the location of the optimum) can be derived directly from the

problem specification, the gathering of this information usually requires an exhaustive

enumeration of the search space. Optimising a search heuristic for a problem to which

one already has a solution is useful for theoretical study of the quality of the model, but

is of very little direct practical use.

However, it may be the case that a heuristic optimised for one instance in a class of

problems may also perform well on other instances of that class; ideally, one could hope

to find a parameter set which is optimal for a class of problems. Although it is very

unlikely that a particular set of parameters will be optimal for every instance in a class,

it is possible to find parameters optimal for a randomly-chosen instance, by minimising

the cost when averaged over all possible instances.

Shown in fig. 5.25 is an annealing schedule optimised (for WYA cost) over a set of

twelve Max-SAT problems; we shall refer to this as the average-optimal schedule. For

comparison, the average of the twelve individually optimised schedules is shown; we

Chapter 5 Optimal Parameter Schedules

3r_----,---~.-,---_.----_.------r_----._----_.----_,

2.9

2.B

U;
2.7 0

0

2.6

2.5

2.4
0 200 400 600

average-optimal schedule -­
average of schedules

average performance of individual schedules -

BOO 1000 1200 1400 1600

FIGURE 5.26: When tested against the actual problems, the average-optimal sched­
ule gives better performance than schedules specifically optimised for those problem

instances.

72

observe that the averaging has produced a schedule which is qualitatively different from

the individual schedules, with a visible "step" effect caused by the different times at

which the schedules enter the final rapid cooling stage. In contrast, the average-optimal

schedule bears much resemblance to the individual schedules.

Since the "stepping" effect is an artifact of the way we have averaged the schedules

(directly, by separately averaging each j3(t)), it is possible that the average-optimal

schedule may be better approximated by the construction of a schedule with various

properties (e.g. time of final cooling, maximum temperature, average rate of decay)

chosen to represent the average of those of the individual schedules. Obviously such a

construction makes assumptions about the general shape of the schedules, and may be

difficult to produce automatically.

Results for the performance of the average-optimal schedule on the real problem were

somewhat surprising; although we were aware that the behaviour predicted by the model

was subject to a consistent inaccuracy (§5.3) and that the schedules were unlikely to

be optimal, it was nonetheless unexpected that the average-optimal schedule should

outperform the individual schedules (fig. 5.26) in the majority of cases (ten out of twelve

test problems).

Since the differences between predicted and observed performance stem from the loss of

information inherent in adopting a reduced-size approximation to the search space, we

propose the possible explanation that our optimal schedules are maximising predicted

Chapter 5 Optimal Parameter Schedules 73

performance by exploiting problem-specific artifacts of the the barrier-tree representa­

tion. When minimising the average cost, the benefits of exploiting such an artifact are

outweighed by the detrimental effect on the performance on all other problem instances.

5.8 Reduced-parameter optimal schedules without search

space modelling

In §5.3, we established that the behaviour of a heuristic on a barrier tree model of a

problem differs somewhat from that of the same heuristic on the original problem, with

the difference being attributed to the differences between the barrier tree model and the

actual search space. Having accepted that the predictions of the model are likely to be

inaccurate for this reason, it would still be useful to know whether features such as the

"cold start" (§5.4.1) still exist in the "true" optimal schedule (i.e. that schedule which

is optimal for the original search space rather than the model).

Of course, finding an optimal schedule on the real search space is too difficult a task;

indeed, avoiding this problem was a large part of our motivation for reducing the search

space to a barrier tree model. Cost evaluation requires averaging over many runs, with

the accuracy increasing only with the square root of the number of runs. Further, the

gradient is not directly available, although it may be computed (expensively) through

finite difference methods. For these reasons, a schedule with a large number of parame­

ters will (with gradient information being unavailable) take too many steps to optimise,

but a very restrictive parameterisation may have a reasonable optimisation time.

We assume that the WYA-optimal schedule for a Max-SAT problem is of the same form

as that produced by our model, having an initial low temperature, then a sudden spike

followed by gradual cooling, then a final low temperature period. Specifically, we assume

that the temperature schedule is of the form

where A is the maximum temperature and B is the rate of (linear) decay. The times

tl and t2 are the points at which the initial temperature spike and the final cooling

occur; outside the interval [tb t2), the temperature is zero4 • The modulus operation

ensures the temperature is always non-negative, without rendering t2 ineffectual (as

would sometimes be the case if we simply replaced negative temperatures with zero).

The four parameters were optimised for a Max-SAT problem with a schedule length

of 400, using the NeIder-Mead Simplex Algorithm. The optimisation was found to be

very sensitive to sampling noise, with millions of runs needed before the average was

4In fact, we use a slightly positive temperature, to avoid division by zero.

Chapter 5 Optimal Parameter Schedules

0.7 r---,-----,-----,-------,---,-----,----,-----,

i'!
::J

~
'" 0..
E
.l!l

0.6

0.5

0.4

0.3

0.2

0.1

initial-­
optimised -------

model-optimised

FIGURE 5.27: Comparison between a schedule freely optimised on a barrier tree model,
and a four-parameter schedule optimised directly; schedule length is 400. Also shown
is the starting point for the latter optimisation, with tl = 20, t2 = 360, A = 0.5 and

Initial point
Real-optimal

Model-optimal (est.)

7.326
9.018
40.00

B = 0.002.

363.6
284.6
305.0

A
0.500
0.654
0.385

B
0.00200
0.00128
0.00045

Real cost
2.9424
2.7842
3.7010

Model cost
2.1092
2.1759
2.0788

TABLE 5.1: Costs and parameters for schedules optimised on the model and directly.
The (arbitrarily chosen) starting point for the latter optimisation is also listed for

comparison.

74

sufficiently accurate. In response to this, an "exact" simulation was implemented, where

the probability distribution over all 220 states was transformed at each iteration.

The resulting directly optimised schedule (fig. 5.27) bears some resemblance to the

barrier-tree-optimised schedule, although much of this is of course induced by the choice

of parameterisation. The "cold start" is still present, but to a much smaller degree,

suggesting that while the beneficial effect may have been exaggerated, it does indeed

generate a small improvement on the real problem, or at the very least does the search

no harm. Similarly, while the cooling period at the end of the schedule does not begin

at the same time as for the model-optimised schedule, the difference is only around 20%

the length of the cooling period.

The costs of the schedules (table 5.1) show again that the model usually under-estimates

cost. The apparent lack of correlation between predicted and obtained cost is disap­

pointing, with the initial point for the search (chosen somewhat arbitrarily) receiving a

Chapter 5 Optimal Parameter Schedules 75

superior cost from the model than was given to the directly optimised schedule. Sim­

ilarly, the real cost of the model-optimised schedule was highest of the three, by quite

some margin.

We note that the temperature for the directly-optimised schedule is generally much

higher than that of the model-optimal schedule. That the model is suggesting tem­

peratures which are too low is an indication that the mobility of the search is being

over-estimated, or equivalently that the difficulty of escaping minima and plateaus is

being under-estimated. This is in agreement with the consistent under-estimation of

cost (§5.3, also observed by Hallam (2006) when modelling descent), and is discussed

further in §8.1.

Chapter 6

Parallel Simulated Annealing

In this section we will describe a population-based variant of simulated annealing, "Paral­

lel Simulated Annealing" (PSA for brevity). Several instances ofthe simulated annealing

algorithm run concurrently, with the temperature schedules for each being determined

in part by performance compared to the rest of the group.

With the current popularity of parallel computing architectures, much attention has

been directed at reformulating existing algorithms to best exploit concurrent process­

ing. As with many algorithms, there are a variety of ways in which the workload may

be shared among a number of processors (Greening, 1990). One can also attempt to

directly take advantage of the concurrency (Ram et al., 1996) by using a population of

SA algorithms. The most popular approach is to introduce evolution by interleaving

iterations of annealing with GA operations such as selection and crossover (Boseniuk

et al., 1987; Boseniuk and Ebeling, 1991; Lin and Kao, 1991; Mahfoud and Goldberg,

1995); this is facilitated by the occurrence of the Boltzmann distribution in both the SA

acceptance probabilities and as a GA selection operator. GA operators have also been

applied to the temperatures (rather than the intermediate solutions) of a population

of annealing algorithms; experimental results for GA-controlled-temperature PSA were

obtained by Miki et al. (2002).

Earlier (§3), we provided models for several heuristics, but noted that population-based

algorithms such as GAs did not fit well into the model. While the transformation describ­

ing each generation of a GA satisfies the Markov condition (i.e. transition probabilities

are independent of all previous states save the current one), a model must consider every

possible population as a separate state. For a population P distributed over a search

space S, there are (ISI1~I-l) possible populations (§A.3), and thus the size of the state

vector for the model grows very quickly with the population size. A model for this algo­

rithm must take some shortcut to avoid this state space growth; our choice is to assume

that the distribution of states occupied by annealers within the population is equal to

the average of the ensemble of all possible distributions.

76

Chapter 6 Parallel Simulated Annealing 77

6.1 Motivation

Although the PSA algorithm is in many ways simpler than a GA, we hope to take

advantage of concurrent exploration in a similar way, allowing individuals to be guided

by the rest of the population. The advantage over a series of consecutive runs is that

any statistic measured for an individual need not be absolute, but can be described

relative to the population average. Such statistics have some invariance against simple

transformations of the cost landscape; an individual's cost, rate of accepted transitions,

or time since last improvement can all be described relative to (and normalised against)

the population average for that statistic. This could potentially produce a specification of

behaviour which is incorporates less a priori information from the search space, instead

gathering it as the algorithm runs.

6.2 Model

We shall model a population of "annealers". Each annealer explores the search space

independently, but has a temperature determined partially by the performance relative

to that of the rest of the population. Specifically, the temperature for each annealer

varies according to the difference between that annealer's cost and the average cost for

the whole population, with this difference being scaled by the standard deviation of the

cost across the population. Formally, if there are n annealers, with costs Cl ... Cn, then

the temperatures Tl ... Tn are given by

(T,(t)) -1 ~ #(t) + art) .j Ci - (c)
(c2) - (c)2

where the averages are taken over the costs of all members of the population. This

expression is indeterminate when the standard deviation is zero, i.e. all members have

identical costl; when this occurs, we replace the second term with zero.

The parameter ex controls the degree to which the individual temperatures depend on

the average population cost. A positive ex will cause the temperature to decrease for the

better members of the population, while a negative value will cause an increase. The

magnitude of the change is scaled by the standard deviation of costs of the annealers.

In the case where ex = 0, the temperature depends only on /3, and the annealers behave

completely independently.

The state of the PSA algorithm at anyone time is exactly described by the population;

therefore the state vector for the markov model should represent a probability distri­

bution defined over all possible populations, an object we shall refer to as an ensemble.

lThis of course includes the particular case when n = 1.

78 Chapter 6 Parallel Simulated Annealing
----------~--

The obvious difficulty is that the information content of the ensemble grows very rapidly

with population size, making direct modelling impractical.

To solve this problem, we take an approximation. We produce an "ensemble average"

population, where the number of members at each search point is averaged across all

possible ensembles. This average population is a small enough structure to used as

the state for the model; in fact, we combine the averaging with the PSA algorithm, so

that each iteration transforms one averaged population to another. We do not model

finite population sampling effects; these leave the average population unchanged, and

could therefore only be introduced if we were to expand the model state to include more

information from the ensemble. Note also that we do not need the averaged population

to have integral numbers of members at each search point; we therefore normalise the

values, so that our model transforms a probability distribution rather than a population.

6.3 Results

Due to the nonlinear dependence of the temperature T on the schedule parameters 0;,

(3, we are unable to produce a closed-form expression for the search cost in terms of

the parameters, and we cannot compute the gradient efficiently. Cost evaluation must

instead be performed by repeated transformation of the initial distribution p(O), and

the search for optimal parameters is conducted using a non-gradient method, namely

the NeIder-Mead Simplex Algorithm.

WYA-optimised 0; and {3 schedules were produced for both a 16-bit hurdle problem

and a 20-variable Max-SAT problem. Populations were initialised as sets of random

points from the search space (i.e. distributed in proportion to the state sizes). The {3

schedule for the former (fig. 6.1) is indistinguishable from a "normal" hurdle schedule.

The corresponding 0; schedule (fig. 6.2) is near-uniform for the most part, with a sharp

increase at the last iteration; doing so reduces the final-iteration temperature for the

best members of the population. Note that while these members may be overtaken

by those of higher cost on the final iteration, this can only happen if the higher-cost

members take a downhill transition, and thus a higher final-iteration temperature is of

no benefit to any member of the population (this is why the (3 schedule still has a drop

in temperature for the final iteration).

The schedules shown in figs. 6.3, 6.4 are those produced for a Max-SAT problem. While

{3 schedule retains a few of the features observed in §5.4 (such as the "cold start", and the

general range of temperatures), the schedule rapidly departs from the norm around half

way through, with a sudden decrease to (approximately) the initial temperature, and

then a slow increase for the rest of the search. At the same time, the 0; schedule has a

sudden increase, giving a larger difference in temperature between the high- and low-cost

Chapter 6 Parallel Simulated Annealing 79

0.9

0.8

0.7

0.6

~ 0.5 .a
l:'
'" "-
E 0.4 2

0.3

0.2

0.1

0
0 10 20 30 40 50 60 70 80 90 100

FIGURE 6.1: Optimised (3(t)-l for hurdle problem

0.4

0.2~

O~--~----~----L---~----~----~--~----~----~--~
o 10 20 30 40 50 60 70 80 90 100

FIGURE 6.2: Optimised a(t) for hurdle problem

Chapter 6 Parallel Simulated Annealing 80

0.35 r---,--,----r--,----,---,-----,---,-----,--,

0.3

0.25

'"
0.2

B
!'!
'" 0.
E
.$ 0.15

0,1

0.05

OL-_-L __ L-_-L ____ ~_~ __ ~_~ __ -L ___ L-_~

o 20 40 60 80 100 120 140 160 180 200

FIGURE 6.3: Optimised /3(t)-l for Max-SAT problem

9r---,---,----,---,---,----,---.--.---,--~

8

7

6

5

4

3

2

o

FIGURE 6.4: Optimised a(t) for Max-SAT problem

population members. The effect on the population should be that the best individuals

are refused uphill transitions, while the worst are permitted much more freedom.

Figs. 6.5 and 6.6 show the average costs (plotted against time) predicted by the PSA

modeL These are compared against results obtained by using the optimised schedules

in a PSA algorithm, averaged over 20000 runs. For populations of size 5 and 100, the

cost of the best member of the population is shown. Also plotted is the equivalent result

Chapter 6 Parallel Simulated Annealing

Ui
0

" OJ
Ol
~
Q)

r;;

5,---------,---------,---------,----------.---------.

4.5

4

3.5

3

2.5

2
0 40 60

predicted -­
observed (pop 5) - -----­

independent (pop 5)
observed (pop 100)

independent (pop 100)

80 100

FIGURE 6.5: Predicted and actual performance of optimised PSA schedules on a 16-bit
hurdle problem.

81

for a population of "independent" annealers with no communication, i.e. 'it, a(t) = O.

Unfortunately, it appears that this independent population (equivalent to annealing a

number of times and taking the best result) produced a lower cost than PSA; the effect of

adding (this form of) communication between the annealers was to retard their progress.

This is particularly evident in the case of the Max-SAT results, where the cost begins

to rise shortly after the schedules depart from (an approximation to) their non-PSA

equivalents.

The predictions made by the model are of course influenced by the same factors which

affected our previous optimised schedules on barrier tree models (§5.3); here we have an

additional contribution to error. The model assumes a very large population, while the

results were obviously produced with finite and relatively small populations. Based on

this, and our earlier observations that the predicted costs were consistently lower than

actual costs, it is unsurprising that here also the predictions provide lower bounds for

the actual results.

In fig. 6.7, the minimum cost in the population is plotted against time, instead of the

average cost. The minimum is clearly of greater practical importance, but the average is

simpler to model. The relationship between the two is somewhat analogous to that

between BSF and WYA cost, and indeed we have reason to believe that schedules

producing a good average cost will also produce a reasonably good minimum cost, simply

because the average is an upper bound for the minimum.

Chapter 6 Parallel Simulated Annealing

16

14

12

ti 10
0

" Q)
Cll
~
Q)

> 8
'"

6

4

2
0

predicted -­
observed (pop 5) -------

independent (pop 5)
observed (pop 100)

independent (pop 100) •. - .••.

////--

~---_ .c/·,·/·//····

------~.z~~=-____ _
50 100 150 200

FIGURE 6.6: Predicted and actual performance of optimised PSA schedules on a 20-
variable Max-SAT problem.

ti
o

" E
" E
'E
E

5 ,----------,-----------,-----------,-----------,----------,

4.5

4

3.5

3

2.5

2

1.5

0.5

predicted avg cost -­
observed (pop 5) ---.--­

independent (pop 5)
observed (pop 100) -- .

independent (pop 100) ...•.•.

o ~ ________ ~ __________ ~ __________ -L __________ -L __________ ~

o 20 40 60 80 100

FIGURE 6.7: Minimum cost from a PSA population using the schedules of figs. 6.1, 6.2
on a 20-variable hurdle problem.

82

Chapter 6 Parallel Simulated Annealing 83

We should note that the optimised schedules for the Max-SAT problem both show some

irregularity towards the end. This is a little unusual for a WYA schedule, as the end of

the schedule usually has the largest effect on the cost; one would expect to find noise

nearer the beginning of the schedule, where the effect of a small perturbation upon

the final cost is likely to be minimal. A possible explanation is that the length of the

schedule and the advantage from multiple annealers is such that the model predicts

near-certain convergence on the global optimum long before the end of the schedule,

although the cost predicted by the model does not appear to support this. It may be

that there is a sudden change in strategy, with the first part of the schedule designed to

reach a distribution from which a descent (the second part) is most likely to reach the

optimum. This would make the final cost less sensitive to the later parts of the schedules,

because all that matters is that the probability of an uphill move is negligible. It may

well be that the temperature is sufficiently low, and the probability of the population

being in a minimum is so high, that the effect of these fluctuations in temperature is

insignificant. The fact that these fluctuations appear some time after the sudden drop in

(3-1 supports this explanation, as does their appearing slightly sooner in the a schedule;

as the population converges, the variance reduces, and thus the effect of a decreases.

6.4 Conclusions

We have seen already that schedules optimised for the PSA model do not produce good

results when used with the "real" PSA algorithm. The differences between the barrier

tree models and the actual search spaces do not provide adequate explanation, as these

differences should be absent in the case of the hurdle problem. That the optimisation of

the model selects schedule pairs worse than the trivial "independent" schedules suggests

that an important detail is missing from the model.

The most likely cause is the fact that the model equates the probability distribution

to the average of the ensemble of distributions, discarding all other information about

the ensemble; approximations of this kind are necessary for populations of nontrivial

size, in order that the state space of the model should not become too large. A better

representation of the true behaviour might be possible if the model were to include

further statistics, such as the variance either within the population, or of the distribution

of populations in ensemble space.

Where we currently optimise schedules to minimise the average cost in the population,

it would be useful to instead minimise the minimum cost, i.e. to measure the cost

of a population as that of its lowest-cost member. In the large population limit, this

minimum cost approaches the minimum for the whole search space, thus the results

would only be meaningful if computed for a more detailed model, such as described

above, parameterised by the population size.

Chapter 6 Parallel Simulated Annealing 84

The foundation stone of the PSA algorithm is the assumption that communication be­

tween annealers, in the form we prescribed, can be used to improve the search signifi­

cantly. It may be the case that the cost of one annealer relative to the average is not

a good indicator of the best behaviour. If one annealer is at higher cost than the rest

of the population, then it could be stuck in a local minimum, or it could be searching

for a descent; in one case the temperature should be raised, in the other it should be

lowered. Restricting the inverse temperature to a linear function of the (normalised)

cost difference also constrains the behaviour: an adjustment to help the worst part of

the population cannot be made without also applying the opposite adjustment to the

best part.

Some improvement may perhaps be gained by adjusting the temperature according to

other factors. The proportions of downhill, uphill and rejected transitions in the recent

history of the annealer could be used. It seems reasonable that an annealer with a

large proportion of rejected transitions is both in a minimum, and has temperature

too low to escape, while one with many recent downhill transitions should probably

continue moving downhill. While any of these measurements could be used to control

a single annealer, adjusting them according to the population average gives a way to

automatically calibrate them according to the landscape, specifically that part of the

landscape which the population currently occupies.

An interesting future experiment would be to look at, or even attempt to control, the

spatial correlation between the annealers on the landscape. In comparison to a con­

ventional GA, this algorithm has no crossover, but also lacks any other mechanism for

replacing poorer individuals (e.g. replication of the best through selection and sam­

pling). An annealer which finds a better region to explore has no way to encourage

others to join it. On many landscapes, a distance metric can be specified in terms of the

number of mutations (i.e. transitions to a neighbour) required to travel from one point

to another. It may be of some use to attempt to control the degree of spatial correla­

tion by adjusting acceptance probabilities according to the position of the annealer, and

whether the proposed transition moves it toward or away from the rest of the population

(i.e. reduces or increases correlation). The goal would be to reduce duplication within

the population, and encourage movement towards better regions.

Chapter 7

Optimal Heuristics

So far, we have been mostly concerned with producing optimal parameters for heuristics,

with the focus being on understanding and improving the search. In this chapter we

take a new stance, and produce optimal heuristics as a means to study the difficulty of

our problem instances.

The difficulty of a problem has traditionally been measured in terms of the time taken

to reach a solution. For discrete, finite search spaces such as ours, this idea can be

formalised easily as the average first passage time (§7.2), i.e. the number of steps taken

to reach the global optimum from a randomly chosen starting point.

We generalise the decision process (i.e. the acceptance probabilities) of simulated an­

nealing to cover arbitrary functions of the "to" and "from" states (§7.3); we then find

the assignment of acceptance probabilities which minimises the average first passage

time (§7.2). Effectively, the heuristic has full information about the search space, but

is only able to control its own movement by accepting or rejecting randomly proposed

neighbours. For comparison, the experiment is repeated in §7.4 with the heuristic having

access only to cost (rather than exact state) information, and also with single-parameter

variants of simulated annealing and variable mutation search (§7.5). Results and dis­

cussion for the four algorithms follow in §7.6.

7 .1 Introduction

Simulated annealing, variable mutation search and descent are members of a class of

algorithms which have a similar underlying structure: each consists of a series of distinct

iterations, between each of which the only information preserved is the current position

of the search. Within each iteration, one neighbouring search point is examined, and

accepted with a probability dependent on the costs of the old and new points, and the

search parameters.

85

Chapter 7 Optimal Heuristics 86

As we saw earlier (§3), each iteration of an algorithm of this form may be represented by

a transition matrix, computed from the costs of the states and the search parameters,

We now take this one step further, and allow the acceptance matrix to contain arbitrary

values in [0,1]. Since any algorithm of the iterated select/accept form described above

may be represented in this way, the set of all such matrices encompasses all possible

algorithms of that form. Considering the entries of these matrices as the parameter set

for the search, we may optimise across all possible series of acceptance matrices, with

the result being a series of matrices representing the optimum heuristic for the problem

(again, subject to the restrictions described above).

An obvious practical difficulty is that the number of parameters involved is enormous; if

there are n states and T iterations, then there are n(n - l)T independent parameters to

optimise. This problem is largely avoided when FPT cost (average number of iterations

before the optimum is reached) is used. Associated with WYA and BSF cost was an

implicit dependency on "time"; because the number of iterations was limited, any choices

made by the heuristics were influenced by the number of iterations remaining. This is

because the goal of the heuristic (to use the next (T - t) iterations in such a way as to

minimise the final search cost) is itself parameterised by the current time t. FPT cost

differs in this respect, as the task presented to the heuristic at each iteration (to reach

the global optimum as soon as possible) is identical.

The result is that the transition matrix for an FPT -optimal heuristic will be time­

independentl, and thus only n(n - 1) parameters need be optimised. It is also worth

noting that FPT optimisation for a time-dependent heuristic would be considerably

more difficult, and only possible for specific types of time-dependence; we give a little

more thought to this matter in §7.5.

FPT is in some sense a more "absolute" measure than BSF or WYA cost; the absence of a

controlling parameter (such as the number of iterations) allows for cleaner comparisons

between search heuristics. Given a search algorithm with optimised parameters (or

described without any parameters), the FPTs for various problems can give hints about

their relative difficulty.

7.2 First Passage Time

The average "first passage time" Tfp is the average number of iterations before the

optimum is reached for the first time. For any algorithm where entering a particular

state causes the global minima to become unreachable, Tfp is infinite. The simplest

1 By "FPT -optimal heuristic", we mean a heuristic where the transition probabilities may be chosen
freely, and have been done so to minimise FPT. "\iVhen a parameterisation is used which constrains
the heuristic (in the case of simulated annealing, for example), the optimal parameters may be time­
dependent.

Chapter 7 Optimal Heuristics 87

example of this is descent, which is unable to reach any global minima after entering the

basin associated with a local minimum. The criterion that the global minimum should

always be reachable is a weaker constraint than ergodicity (which requires that all states

be reachable from all others), and is necessary but not sufficient (§A.4) for Tfp to exist.

A verage first passage time is most easily calculated by modifying the transition matrices

in a similar way to the method used for BSF cost (Boese and Kahng (1994) and §3.2.2).

When calculating BSF cost, we produced a transition matrix which "trapped" costs

below a certain threshold by replacing the appropriate columns of the matrix with those

of the identity; the probability of having ever entered at least one of those states was

given by the sum of the probabilities corresponding to the trapped states. For first

passage time we shall use a similar method, with the matrix columns corresponding to

the global minima being replaced with zeros. The transition matrix is of course no longer

stochastic, with the probabilities corresponding to transitions from the global minima

being "leaked" at each iteration.

7.2.1 Derivation

Let e be a vector of values in {O, I}, with each ei = [Vj, Ci :::; Cj] (with j indexing all

states), i.e. the elements of e corresponding to global minimum states are set to one, all

others are zero. Then the modified transition matrix w is given by Wij = (1 - ej)wij.

Suppose W is applied n times to an initial vector p(O), to produce p(l)". p(n). Each

element Pi(t) is a sum of the probabilities of all trajectories of length t from state j

to state i, weighted by Pj(O). All trajectories which visit a global minimum state have

probability zero, and thus Pi(t) is the probability of being at state i, given that no

global minimum has ever been visited. The probability that no global minimum has

been visited thus far must then be the sum over i of these values, so we have

JIll (Tfp 2: t) = 1 T wtp(O)

JIll (Tfp = t) = JIll (Tfp 2: t) - JIll (Tfp 2: t + 1)

= 1 T (w t _ wH1) p(O)

= IT (1 - w) wtp(O).

Note that IT (I - w) is identical to e T; this makes sense, as it is the probabilities

corresponding to the global optimum states which disappear on every iteration, and

premultiplying by e T effectively sums over those states.

Chapter 7 Optimal Heuristics 88

Expressing the average first passage time in terms of these probabilities, we have

00

(Tfp) = L tlP' (Tfp = t)
t=O
00 00

= L (t + 1) lP'(Tfp = t) - LlP'(ljp = t)
t=O t=O

~ IT (1 -,b) (~(t+ I)W') p(O)-1

where the identity I:~o lP' (Tfp = t) = 1 arises from conservation of probability. The

summation may be simplified by expressing the terms as derivatives of powers of 11;:

which simplifies2 to (1 - 11;)-2, leaving us with

(Tfp) = IT (1 - 11;) (I - 11;)-2p(O) - 1

= IT (1 - 11;)-1 p(O) - l.

If 11; is dependent on some parameter /3, then the gradient of the FPT is given by

d~ (Tfp) = I Td~ (1 - 11;)-1 p(O)

= IT (1 - 11;)-1 ~~ (1 - 11;)-1 p(O).

7.2.2 Numerical Instability in Optimisation

Optimisation of average FPT cost is hampered somewhat by a numerical instability

arising from the frequent near-singularity of the matrix expression (1 11;). Evaluation

of FPT cost requires the inverse of this matrix, and is therefore sensitive to any noise

introduced from the inversion. The gradient is affected to a greater extent, as this inverse

appears twice in the product, thus multiplying the error.

The benefit to the speed of optimisation attained through using gradient information

must be weighed against the chance of the search failing to converge due to an inaccurate

gradient. Our decision is influenced mostly by the number of parameters involved in the

2Since 0 =

Chapter 7 Optimal Heuristics 89

optimisation; for algorithms involving only a single parameter, we elect to discard the

gradient information and instead use the NeIder-Mead Simplex Algorithm (although this

is not the ideal choice, the 1D case is not too difficult to optimise anyway). Where a

large number of parameters are involved (§7.4), we retain this information and use the

Scaled Conjugate Gradients algorithm.

Difficulties in inverting (I w) can be sidestepped to some extent by optimising on

approximations to this matrix. We substitute (J - (1 + 8)w) for this expression, with

18/ « 1. The optimum parameters may now be reached through a series of optimisations

with successively smaller values of 8, with the exact result being produced when 8 = O.

The advantage of this approach is that the search is more stable for the earlier iterations,

as the error from matrix inversion is traded for inaccuracy in the finished result. Each

time 8 is reduced, the search begins anew from the result of the previous iteration; the

error is increased, but the distance to the new optimum is small. Although eventually

the error will likely become large enough to make this improvement insignificant, the

iterative optimisation fails more gracefully than a direct approach, as the result can be

taken to be the best point reached before the optimisation begins to fail, instead of the

best point reached during a failed optimisation run.

7.3 Lower Bound Algorithm

For a given problem, the set of all possible search heuristics (with the "select/accept"

form described above) has a global optimum, the average FPT of which is a lower

bound for that of all other heuristics in the set. This heuristic effectively has full a

priori knowledge of the search space, and is fully aware of its own state, insofar as it

can choose behaviour based on which search point it is at, rather than just the cost at

that point.

The FPT for this algorithm is not hampered by "deceptive" features of the landscape

such as local minima, and thus it may be used as measure of the intrinsic difficulty of

traversing a search space, from a random point to a global minimum.

7.3.1 Definition

Formally, the "lower bound algorithm" for any problem is, of those heuristics which

satisfy the following constraints, the one which produces the minimum FPT:

If The state of the heuristic must be representable as a single point in the search

space (this precludes the use of any history information)

If Once per iteration, a randomly-chosen neighbour of the current position may be

examined, and optionally adopted as the new position

Chapter 7 Optimal Heuristics 90

.. Only the neighbour itself is observable; direction information may not be used

(Note that optimality for this heuristic is defined in terms of the search space presented

to the heuristic, not of any underlying space of which it may be an abstraction. For

example, when applied to a barrier tree model of a problem, only the performance on

the model is of concern.)

Thus each iteration shall consist of a neighbour being proposed, and optionally selected,

with no other useful actions being possible. Any such algorithm is entirely specified

by a decision function lP' A (i -t j), giving the probability of accepting a transition from

state i to state j. Note that having full information about the search space and the

current position removes any advantage associated with time-dependent heuristics and

randomisation. The current position is known precisely, and thus there is no need to

use "time" to make inferences about the current state, nor to use randomised behaviour

to compensate for uncertainty.

Our lP' A (i -t j) will therefore only ever take values from {O, I}, and our "lower bound

algorithm" may be reduced to an acceptance matrix, similar to those used for the heuris­

tics in §3.1. The optimal acceptance matrix is found using Dijkstra's algorithm for the

shortest path to the optimal state, with a small complication in the calculation of dis­

tance labels. Helpfully, this method also simultaneously computes the average FPT from

each state; the FPT from a random starting state can then be calculated trivially.

7.3.2 Minimising FPT Using Dijkstra's Algorithm

The problem of choosing the acceptance probabilities so as to minimise the average first

passage time is similar to that of finding shortest paths on a digraph. Representing

the states of our model as graph nodes, and labelling edges according to transition

probability, we must find paths from each state to a global minimum, minimising a

value which is a function of the edges traversed.

However, FPT differs from the usual distance measure associated with graph pathfinding

problems, as the FPT from some node to the optimum is not determined solely by that

of the "best" adjoining node and the weight of the associated edge; the FPT depends

on that of all neighbouring nodes to which transitions are acceptable (i.e. have an

acceptance probability of 1) from the starting node. Although it may at first seem

reasonable that only one neighbour should ever be acceptable to a node, this is only

the case if neighbours are to be freely chosen. In reality, the fact that neighbours are

proposed in a random order means that there is a probabilistic cost associated with

waiting for a transition to any particular neighbour. Should a neighbour with FPT less

than that of the current node be suggested, it should always be accepted.

Chapter 7 Optimal Heuristics 91

The FPT from state i is given by

where Twait(i) and Tnext(i) are respectively the time spent waiting for an acceptable

transition, and the FPT for the new node after an accepted transition. For nodes

corresponding to global minima, T is zero, otherwise it is the sum of these two times.

Let the transition probabilities from node i to j be given by mji, and the acceptance

probabilities by Aji. If a(i) is the probability of accepting a randomly (according to

mji) chosen neighbour of state i, so that a(i) = 'Lj=l Ajimji, then the distribution of

Twait(i) is given by lP(Twait(i) = t) = a(i) (1- a(i))t-l, which is a geometric distribution

with mean a(i)-l.

The time Tnext(i) is given by an average over the acceptable nodes, weighted by their

(normalised) transition probability:

n

Tnext(i) = a(i)-l LAjimjiT(j).
j=l

Thus for states other than the global minima, we have

and
n

Tfp = LT(i)p(Ok
i=l

The optimal strategy could in theory be found through exhaustive search over all possible

acceptance matrices. However, this is very inefficient (and indeed impractical) as it is

possible to shortcut this process with a little thought.

Any acceptance strategy implicitly assigns a first passage time to each node, thus defin­

ing an ordering over the nodes. The optimal strategy has the property that each node

must accept transitions to a neighbour with lower FPT, and must refuse neighbours with

higher FPT. If a so-called "optimal" strategy required rejection of a lower-FPT neigh­

bour, or acceptance of a higher-FPT neighbour, then the strategy could be improved by

reversing that preference (the FPT for the current node would decrease, as would that of

all higher-FPT nodes), and thus the original strategy could not have been optimal. The

behaviour for equal-FPT nodes does not matter, and values of Aji for which mji = 0

are likewise irrelevant. Effectively, the acceptance matrix for (a strategy equivalent to)

Chapter 7 Optimal Heuristics 92

the optimal strategy has the form

0 1 1 1

0 0 1 1

A=P 0 0 0 1 p- 1

0 0 0 0

where P is a permutation matrix (i.e. in every row or column of P, there is a single 1

and n - 1 zeros).

For any node, we can find the minimum FPT assigned to it by any possible strategy;

the set of minimal FPTs for the nodes is an intrinsic, strategy-independent property of

the problem. We use the ordering induced by these FPTs to construct a strategy which

assigns these intrinsic minimal FPTs to every node, thus guaranteeing optimality.

We construct the strategy progressively. Suppose we have an optimal strategy on the

first k nodes (counting from the global minima, with FPT increasing). The FPT for

each of these nodes is independent of nodes (k + 1) ... n, all of which have higher FPT

and are therefore not acceptable to the lower nodes. We take each of the n - k remaining

nodes in turn, and calculate the FPT assuming only the first k nodes are acceptable;

the (k + l)th node is the one which to which the smallest FPT is assigned. To see

why this is valid, consider the possibility that this selection is incorrect; suppose there

exists another node which, with an appropriate choice of acceptance rules, could have

lower cost. This would require that the FPT of the other node could be improved in

some way by increasing the set of accepted nodes, which would require that there exist

another node between that and the kth, precluding that from being the (k + l)th. All

that remains is to produce a starting point for the algorithm, consisting of a set of points

and an optimum acceptance matrix; the efficient choice is the set of global minima (for

which the acceptance matrix is irrelevant), the elegant choice is the empty set.

This algorithm is specified formally in alg. 4; it has running time 0 (n3) if implemented

exactly as specified, or 0 (n2) if optimised to adjust FPT labels when a node is fixated,

rather than calculating them anew. A little care may be necessary to avoid division

by zero; this happens when no neighbours of a node are fixated (because the transition

probabilities to the fixated nodes are all zero). Treating the result of the division as

infinity is suitable, if the numerical representation permits this, otherwise an arbitrary

FPT may be assigned so long as the node is marked ineligible for fixation.

Chapter 7 Optimal Heuristics

Algorithm 4: Dijkstra's algorithm modified for FPT optimisation

input : m, c, n: neighbourhood matrix, state costs, number of states
output: A, T: Optimal acceptance matrix and first passage times

93

/* Begin with optimum states fixated, with FPT of 0 */
fixed +- {i: Vj,ci ::;: Cj};
remaining +- {I ... n} \ fixed;
Vi, j, Aji +- 0;
Vi, Ti +- 0;
while remaining -:f 0 do

/* Update upper bounds for FPT. Efficiency could be improved by
updating the previous FPTs to reflect the newly-fixated nodes,
rather than starting from scratch.

foreach i E remaining do
Ti +- 0;
total +- 0;
foreach j E fixed do

Aji +- 1;
total +- total +mjii

Ti +- Ti + mjiTj;

end
Ti +- (Ti + 1) / total;

end
/* Of the remaining nodes, fixate those with the lowest FPT bound */
best +- {i : j E remaining ===} Ti::;: Tj};

fixed +- fixed U best ;
remaining +- remaining \ best ;

end
return (A,T);

7.4 Cost-Dependent Algorithm

Our "lower bound" algorithm is just that - an algorithm whose performance should be

a lower bound for the set of heuristics meeting the criteria in 7.3.1. However, these

criteria allow access to information not used by simulated annealing; where our lower

bound algorithm is free to make an acceptance decision based on the originating and

neighbouring state, SA is only able to use the costs of these states3 . We fully expect that

the lower bound algorithm should produce lower FPTs than SA or similar heuristics,

but it would be useful to know how much of the difference may be attributed to lack of

ability to identify states, and how much is due to the other constraints on the acceptance

probabilities.

Let a cost-dependent algorithm be an algorithm which operates within the criteria of

7.3.1, but with the further restriction that the identity of any state is hidden from the

algorithm; only the cost is visible. Again, the algorithm may be described entirely by an

30f course, SA is further restricted, as (for "uphill" transitions) the log of the acceptance probabilities
must be linear in the cost difference.

Chapter 7 Optimal Heuristics 94

acceptance matrix, this time with rows and columns labelled by costs instead of states.

This matrix will usually be smaller, with size given no longer by the number of states,

but by the number of distinct costs those states possess. For some classes of problems,

there may be no states (or a very small proportion) with equal cost, in which case

the cost-dependence criterion provides no restriction, and the optimal cost-dependent

algorithm is simply the lower bound algorithm.

For our test problems (Le. those described in §4) however, costs are frequently repeated,

and this affects the optimal strategy: if we are presented with a randomly chosen neigh­

bour, about which we know only the cost, then it may be one of several possible states,

and we are unable to tell whether it leads to the global optimum (and should be ac­

cepted) or leads to a local minimum (and should be rejected). When equal-cost states

can no longer be distinguished, the algorithm must accept the possibility that an in­

correct decision could be made. Our earlier assumptions about time-independence and

determinism no longer hold: a heuristic with no variation in behaviour is more likely

to repeat the same mistakes and stay trapped in the same region of the space. We

now permit noninteger probabilities, but to simplify the calculations we assume that the

optimal heuristic is still time-independent.

We have no way to construct algorithmically the acceptance matrix for the optimal

cost-dependent algorithm, and we must instead treat it as a matrix of parameters over

which the FPT must be optimised. On account of the high dimensionality of the search

space, we use the Scaled Conjugate Gradient algorithm to do so.

By comparison to the lower bound algorithm and to simulated annealing, we intend to

determine (in §7.6) whether it is the loss of information about individual states, or the

lack of freedom in choosing the acceptance probabilities, that is of greater detriment to

the heuristic's performance.

7.5 Single-Parameter Heuristics

Finally, we will compute first-passage times for simulated annealing and variable muta­

tion. We will use constant parameter schedules for each, referring to the algorithms as

"constant-temperature annealing" and "fixed-rate mutation" respectively. As with the

cost-dependent algorithm, there is no reason to expect that the optimum annealing/mu­

tation schedule should be independent of time, but we again make this approximating

assumption so that the optimisation remains feasible.

It is of course possible to describe non-terminating annealing schedules with finitely many

parameters, but to do so in such a way that the FPT may be calculated efficiently is more

difficult. As a last resort, one could substitute measurement for explicit calculation, by

Chapter 7 Optimal Heuristics 95

evaluating the sum

00

(Tfp) = L tJED (Tfp = t)
t=o

~= (t) ~ ~ 1 T (1 - w(t + 1)) !J w(i) p(O)

for sufficiently large T max' This method was in fact used to verify the results of §7.2.1.

This calculation requires 0 (Tmax) multiplications of a vector by a matrix (the sum can

be accumulated as the product is calculated), compared to the normal constant-time

method. Difficulty arises when this less efficient computation is combined with a search

space of increased dimensionality (due to a larger number of parameters); not only are

there many more iterations required for optimisation, but the time taken to perform

each iteration is increased too.

Furthermore, a parameterisation which retains reasonable computational efficiency is

not enough; one must also design it in such a way as to minimise the impact of the

artificial constraints introduced. The problem is surely not intractable, but shall remain

an avenue for future work.

We intend to find the optimal annealing temperature and mutation rate for each problem,

in order that we may draw some (admittedly simplistic) conclusions from the comparison

of the FPTs. The variable mutation heuristic suffers from a somewhat artificial handicap

insofar as it will sometimes waste an iteration by considering a self-transition. This

possibility arises because the number of mutations applied to generate a neighbour is

Poisson-distributed (§2.2.2), and can therefore potentially be zero. It is reasonable to

expect that in any sensible implementation of the algorithm, this case will be avoided,

with Poisson deviates drawn (a procedure with assumedly insignificant running time)

until a nonzero value is produced. The new distribution JED (nIA) is adjusted by setting

JED (OIA) = 0, and renormalising the remainder of the distribution:

Chapter 7 Optimal Heuristics 96

The "average mutation matrix" is now

n=O

Note that the purpose of this adjustment is not to prevent self-transitions altogether,

but just to refuse any decision which is guaranteed to waste an iteration by performing

no action. Self-transitions are still possible, either through a series of mutations which

produce no net effect, or through a mutation leading to the same state4 .

7.6 Results

Average first passage times were computed for each algorithm on a set of barrier tree

problems, and are shown in fig. 7.1. For the single-parameter algorithms, the FPT

optimisations were repeated ten times, from different initial conditions, with obvious

erroneous results discarded (the optimisation occasionally diverged, producing nega­

tive, infinite, or indeterminate FPT). The filtered results were then consistent, usually

matching to at least four significant figures.

Single-temperature annealing is a special case of the cost-dependent algorithm, which

itself is a special case of the lower bound algorithm. Thus it is no surprise that of

these three, the lower bound algorithm is always best, and single-temperature annealing

always worst. The mutation search falls outside of this scale, as the ability to move to

a point outside the immediate neighbourhood violates the constraints of §7.3. While it

is of course possible for an algorithm with this freedom to outperform the others, this

particular example is hampered by the inability to make uphill moves; any jump past a

barrier must take place in a single move.

We might have expected a correlation between FPT and the number of barrier tree states.

The problems may be thought of as graphs on which the heuristics perform various types

of random walk, and thus the number of states in the tree (i.e. the number of nodes on

the graph) would seem to be a reasonable indicator of the difficulty of the problem. At

a glance, it appears that no such relationship can be inferred, at least not on the the

scale of the problems we examined.

4Such mutations are frequent for barrier-tree models, where the expected length of a random walk
through the points represented by a state is effectively encoded in the self-transition probability.

Chapter 7 Optimal Heuristics

500

450 *

400

350 x

OJ
E 300

1=
* OJ

en
ttl 250 (J)
(J)

ttl
Il..

~ 200 u::

150

100

11\

50

0
Perceptron

x

Max-SAT

best strategy ----r-
best annealing temp x

best mutation rate *
best strategy with only cost info ---D---

Spin glass

FIGURE 7.1: FPT for four different algorithms on (barrier trees of) a variety of test
problems. Within each category, problems are sorted by number of barrier tree states.
On a small number of problems, the optimisation for the cost-dependent algorithm
consistently diverged, hence the occasional missing points from this series. The other

absent data points are those few results with times exceeding 500 iterations.

97

The difference between the FPT for lower bound and cost-dependent algorithms varies

considerably across the problem set. On those problems where the two are identical,

one would expect to find that the behaviour of the two algorithms is very similar. In

fact, differences between the two are only possible where there exist a number of states

with the same cost, in which case the state may still sometimes be uniquely determined

by the magnitude of the cost difference of the neighbour selected by the algorithm.

An obvious feature of the results is the apparent superiority of simulated annealing

over the mutation search. One can imagine instances of plateau or barrier traversal

where constant-temperature annealing would be expected to behave as a random walk

(or worse, in the case of the barrier), but where the mutation search could, at least

in theory, pass the obstacle in less time through multiple mutations. In fact, we have

observed this already for variable mutation search on the hurdle problem (§5.6, Priigel­

Bennett (2004b)). However, it may be that in the case of large barriers, the inability of

mutation search to move to an intermediate point outweighs the "wandering" tendency

of fixed-temperature annealing.

Chapter 8

Conclusions

We have produced and studied a model for the performance of a search, parameterised

by the problem instance and the search parameters. Where previous work was limited to

modelling very small instances of problems, we use barrier trees as a tool for aggregating

search space states, allowing consideration of much larger problems (220 states and

above), through a relatively small (typically 20-200) number of model states.

Construction of a barrier tree is possible for any optimisation problem with a finite

number of states, although it is most useful for those with discrete cost. As the number

of distinct costs increases, the number of barrier tree states will increase, reducing the

effectiveness of the state aggregation, although this could be countered by artificially

grouping similar costs together. The ability to apply the model to a vast array of

problems is a definite strength, although an unfortunate consequence of the generality

appears to be a loss of some information about the structure of the space.

8.1 Evaluation of the Model

The most obvious use for such a model is to assist in understanding the connection

between the search parameters and the cost produced, with the eventual goal of pro­

ducing improved search parameters for a problem based on either a brief sampling of

the problem, or detailed study of a few representative problems from the same class, the

computational cost of which can be amortised across a comparatively large number of

problems requiring solution.

However, discrepancies between the predictions of the model and the results obtained

through running the search result in model-optimal parameters being substantially sub­

optimal on the actual problems. Given that the model is mostly exact, the source of the

error is easily identified as the one part which uses an approximation: the aggregation

98

Chapter 8 Conclusions 99

of search points into level-connected sets, and their further amalgamation into level­

accessible sets. Where this aggregation was not used, results for the actual problem

matched the predictions of the model very closely (§5.2).

Results produced using only the first stage of aggregation (level-connected sets) showed

a similar deviation from predictions (end of §5.3), with predicted cost being strictly

lower than actual cost. Using the level-connected sets (or any grouping thereof) as

the states for a Markov model implicitly assumes that the transitions between these sets

possess the Markov property, i.e. that each transition depends only on the current state,

and is not otherwise correlated with previous transitions. Of course, we know that this

is not the case, but we assume it is so as an approximation, as incorporating history

information into the model would cause rapid expansion of the state space.

This assumption is at fault because the "exit point" from a level-connected set is usually

correlated with the "entry point". The path through the set of points is in effect a

random walk, with a chance of moving to a neighbour from any point on the boundary of

the set; neighbouring sets which are spatially close to the entry point are more likely to be

chosen. This also applies to self-transitions; where a neighbour is rejected by Simulated

Annealing, our model assumes that the next neighbour is chosen independently, whilst

the truth is that the rejected neighbour has a greater chance of selection.

Furthermore, the length of time spent within any level-connected set (reflected in the

model as a component to the self-transition probability) is itself correlated with the

entry point. When the temperature is such that the probability of an uphill transition is

significantly reduced, the entry point for a set is most likely to be one of those perimeter

points with a large proportion of higher-cost neighbours (as it is more likely that the

set is reached via a downhill transition than an uphill one). However, such a site is

also likely to have fewer downhill transitions available, reducing the probability that the

search leaves via that same point. For similar reasons, the grouping of level-connected

sets according to accessibility is also a source of error (§4.3.2).

8.1.1 Possible Refinements to the Search Space Model

It is possible to add further detail to the barrier tree model by partitioning the boundaries

of level-accessible sets according to the reachable neighbours, in an effort to preserve

some of the structure within the sets, at the cost of an increased number of states. This

was attempted in Hallam (2006), with the boundaries of level-accessible sets divided

according to whether or not a downhill transition was possible. This barrier tree was

used to model descent, but was found to provide only a very small increase in accuracy.

An alternative may be to incorporate limited "history" information into the model.

The resulting increase in state size would be undesirable, but might be reasonable if

Chapter 8 Conclusions 100

extra "sub-states" were added selectively to those sets with the highest entry-exit cor­

relation. This would not directly improve the SA rejection/self-transition situation de­

scribed above, as only a (very brief) history of visited sets would be available; previous

algorithm choices could not (and for sake of generality should not) be encoded in the

state representation. However, our model of the SA heuristic could be adjusted to take

advantage of the connection between these sub-states, with the rejection probability

for a neighbour contributing to a sub-state specific to that neighbour, rather than a

self-transition to the same sub-state.

8.1.2 Population-based Models

Direct models of population-based search methods (such as GAs) are usually impracti­

cal, as the state of a population grows exponentially with the population size. In §6 we

introduced a "Parallel Simulated Annealing" algorithm, effectively a population-based

variant of SA. The approach used in this case was to assume that the population distri­

bution is equal to its own ensemble average, allowing the population to be represented

as a single distribution over the search space. This model has several shortcomings

which we noted in §6.4, the most significant of which is that there is no adjustment for

population size; the model implicitly assumes that the population is large enough that

finite-population effects disappear.

The population model used for the PSA algorithm was the simplest possible repre­

sentation of a population; it is likely that an improved model may be constructed by

incorporating more information about the ensemble distribution than just the average.

Obviously some balance must be struck between the preservation of information and

the size of the model; preserving all information about the ensemble would produce too

large a model. It is important however to note that the PSA model transformed the

state nonlinearly, preventing (or at least adding significant complication to) the calcu­

lation of a gradient with respect to the search parameters; it is likely that models of

other population-based searches will be similar in this regard, greatly increasing the time

required for parameter optimisation.

A population with recombination (such as a GA) presents the additional problem of

modelling crossover. Given two parent sets, the distribution of child sets can be defined

in terms of the child distribution for a pair of parents, averaged over all possible pairs

from the parent set. While this would not be too difficult for an exact model of the search

space, any form of state aggregation complicates the issue somewhat. A simple crossover

model for barrier tree states, based on the average Hamming distance between points

from each parent set, was explored in Hallam (2006), but unfortunately produced poor

predictions of the actual crossover probabilities. Other, more sophisticated approxima­

tions are certainly possible, although the nonlinearity typical of crossover models is likely

Chapter 8 Conclusions 101

to make analysis more difficult (particularly the calculation of a gradient for parameter

optimisation) .

8.2 Alternative Schedule Parameterisation

In §6.4 we touched upon the idea of adjusting schedule parameters according to some

variable other than time. Many statistics are available for use as input to such a param­

eter generator, with examples including cost, cost difference of most recent transition,

last decision (accept/reject), time since last uphill (or downhill, rejected, accepted) step;

some of these may also be measured over more than one iteration (averaging over some

number of iterations, or an exponentially-weighted average over the whole history).

Since arbitrarily complex combination of these measures are possible, optimising their

influence on the search parameters is likely to be difficult, and very sensitive to any

predetermined form chosen for the relationship.

Most of these cannot be incorporated into a model without either destroying the Markov

property, or expanding the state vector to include history information. The exception

is cost, which can be computed for any state in isolation. In fact, if cost is the only

statistic controlling the search parameters, the model is simplified greatly by the time­

independence of the transition matrices. This was exploited in §7.4, where we optimised

FPT over all such transition matrices.

The chief advantage of directly linking parameters to the state of the search is that be­

haviour may be prompted according to the actual performance, rather than being based

solely on a prediction of the heuristic's likely positions. This prospect is particularly

attractive in such situations as ours, where a model tends to consistently over-estimate

progress.

8.3 Schedule Extrapolation

The ability to construct a parameter schedule optimised for a specific problem is of little

practical use if the optimisation process requires enumeration of the entire search space,

as is usually the case with the barrier tree model. Ideally, one would like to be able

to construct a good schedule from either a limited sampling of the search space, or full

analysis of a small sample of problems.

By "limited sampling" of the search space, we mean a sampling so brief that the asso­

ciated cost might be outweighed by the benefit from optimised parameters. Modelling

navigation across small regions of the search space may provide hints as to the size,

depth and frequency of local optima. However, the applicability of this information to

Chapter 8 Conclusions 102

the entire problem requires careful consideration, as locally observed properties of the

cost landscape may give a misleading impression of the whole.

Where there is a need to solve a large number of similar problems, it may be feasible

to produce a barrier tree model of a few representative problem instances, on which

the search parameters may be optimised (§5. 7). Search space models need not be built

through exhaustive search; our model of the hurdle problem (§4.1) is an example of a

model built directly from the problem specification. By their very nature, hard problems

do not have cost landscapes with structure so transparently visible as for the hurdle

problem. Nonetheless, for particular classes of problems there may be shortcuts allowing

the construction or estimation of a barrier tree model (or some similar abstraction)

without the need for exhaustive enumeration of all search points.

Appendix A

Miscellaneous Proofs

A.I The Fixed Point for Constant-Temperature Annealing

is a Boltzmann Distribution

We begin with the observation that our neighbour matrix m satisfies a detailed balance

constraint; if s is a vector of the sizes of the states, then

This applies to both barrier tree transition probabilities, and the mutation probabilities

for the underlying search space. Given any undirected graph, transition probabilities

produced from normalised edge weights will satisfy this criterion.

For a random walk (i.e. with m as the transition matrix), the fixed point is given by s,

as
Vi 2: j mijSj 2:j mjisi·

===? Vi (ms)i Si

===? ms s

This is exactly what we would expect: for a random walk, the equilibrium distribution

weights each state according to size.

We now apply the same process for the transition matrix for simulated annealing. As­

sume i =I j (when i = j, the detailed balance criterion is satisfied trivially); then

Wij = mijAij . We can describe Aij in terms of Aji, as

Aij { e-f3 (Ci- Cj) Ci > Cj

1 c' < c' Z _ J

ef3 (Ci- C j) Aij { 1 Ci > Cj

e-f3 (Cj- Ci) c' < C 2 - J

ef3(ci-Cj)Aij A ji ,

103

Appendix A Miscellaneous Proofs 104

giving us Aije-PCj = Ajie-PCi. It is then trivial to verify that WijSje- f3Cj = WjiSie-PCij

through the same calculation as for the random walk, we have the vector s ® e-Pc as a

fixed point for w.

A.2 An Upper Bound for the Number of Minima on a Cost

Landscape with Hypercubic Connectivity

If S is a connected search space, with points and neighbourhood connectivity isomorphic

to the vertices and edges of the L-cube (with L > 0), then 2L - 1 is an upper bound for

the number of local minima in S.

The search space may be divided equally in two by making a cut through the centre

of the L-cube, parallel to one pair of opposite faces; equivalently, the set of all possible

bit-strings of length L may be divided according to the value at one arbitrarily selected

bit-position. Consider pairs of opposite points (bit-strings identical save for the selected

bit-position); each point is the opposite to exactly one other point (to which it is also

connected), and the relationship is symmetric. The entire search space must then be the

disjoint union of 2L - 1 such pairs, each of which can contain no more than one minimum

(if the costs are equal, then both points belong to the same minimum). Therefore a

landscape with connectivity graph isomorphic to the L-cube can have no more than

2L - 1 minima.

A.3 Number of possible populations over a finite search

space

Given a search space of size S, the number of possible (distinct) populations of size P

is given by (S+;-l).

To demonstrate that this is so, we introduce an alternative representation for popu­

lations. Choosing any arbitrary ordering of the points in the search space, such that

an agent may traverse the space from "start" to "finish", passing through every state.

Suppose that such an agent may place any number of population members at each step,

so long as the total placed equals P. The behaviour of the agent may be described as

a list of the symbols {move, place}, indicating whether the agent should next move on­

ward or place a population member. The list must therefore contain exactly P "place"

symbols, and (asserting that the agent must finish traversing the space even after the

whole population has been placed) exactly S-l "move" symbols.

The inverse mapping (from populations to lists) may be defined through a reversal of the

algorithm. Suppose now that the agent traverses a populated space, writing a "move"

Appendix A Miscellaneous Proofs 105

symbol for every step in the walk, and writing a "place" symbol for every population

member encountered.

Since the inverse is well-defined, the mapping between instruction lists of this form and

populations must therefore be bijective, with the number of possible populations equal

to the number of possible instruction lists, i.e. the binomial coefficient (S+:-l).

AA A Guarantee of Convergence is not a Guarantee that

FPT Exists

The average FPT, given by 2::~o tf? (Tfp = t) is not well-defined for every algorithm, as

the infinite sum could potentially diverge. Perhaps the most notable example of this is

the FPT for descent, which is convergent iff the search space contains no local minima.

If there is at least one minimum other than the global optimum, then there is a nonzero

probability that descent will visit it (averaging over all possible starting points and all

possible random neighbour selections). If the minimum is visited, the search will remain

there indefinitely, and thus the FPT from that point will be infinite. Regardless of

how small the minimum may be, the contribution from this possibility will dominate

the FPT calculation for the search. In fact, we can clearly see that a necessary (but

not sufficient) condition for the average FPT to converge is that the algorithm itself is

capable of converging to the optimum from any state

This criterion does not however guarantee that the average FPT will converge to a finite

value; it is possible to construct a combination of algorithm and problem instance such

that the average FPT diverges.

Let S = {Sl,S2} be a search space, with n(sl) = {S2}, n(s2) = {sd, and C(Sl) > C(S2)'

Consider the following (extremely contrived) algorithm:

Algorithm 5: An "exponentially slow" algorithm
state +- Sl;
t +- 1;
while termination criterion not satisfied do

next +- state if t > 1 and t is a power of two then
if A uniformly random number from [0,1) is less than ~ then

state +- random-neighbour (state);
end

end
if c(next) :::; c(state) then

state +- next;
end
t +- t + 1;

end

Appendix A Miscellaneous Proofs 106

If the algorithm is in state s1 at time t, then the probability of moving to the optimum

is IfD (S1 -7 S2, t) = ~ [log2 t E Z+], i.e. a half if t is a power of two, otherwise zero. Let

IfD (Tfp = t) denote the probability that the first transition to the optimum occurs at time

t. Clearly this is zero when t is not a power of two. We have:

2k_l

IfD(TfP=2k) =IfD(Sl-7S2,2k) II (1-IfD(Sl-7S2,2i))
i=O

The non-power-of-two terms in the product equal unity, and thus may be discarded,

producing a product over powers of two. We shall employ a similar trick for summation

over the probabilities. The probability of reaching the global optimum before time T

approaches 1 as T -7 00, as

T T

lim \;"""' Tfp = lim \;"""' rl [log2 t E Z+]
T-too L....t T-too L....t

t=1 t=l

Llog2 TJ

= lim \;"""' 2-i
T-too L....t

i=l

= lim 1 - Tl1og2 TJ
T-too

=1.

The average FPT however is divergent, as

T

(Tfp) = lim 2: tTfp
T-too

t=l

T

= lim 2: a-I [Iog2 t E Z+J
T-too

t=1

T

= lim 2: t [log2 t E z+]
T-too

t=1

Llog2 TJ

= lim 2: 1
T-too

i=1

= lim llog2 T J
T-too

does not exist. Hence we have evidence that, perhaps counterintuitively, it is possible

for an algorithm to be guaranteed to converge in the infinite-time limit, whilst having a

Appendix A Miscellaneous Proofs 107

divergent FPT.

A.5 FPT on Direct Search Space Models

If a heuristic is to operate directly on the search space, then structure or symmetries of

that space can often be used to compute FPT without the slightly cumbersome procedure

in §7.3.2. For bitstring search spaces with Hamming-neighbourhood connectivity, we

can easily produce expressions for the FPT of several particularly simple special-case

algorithms. The average FPT for random sampling is trivially given by 2L - 1 - ~; note

that for consistency with our other results, we do not count the starting point as a cost

evaluation.

A.5.l Optimal Walk

The decision function is intuitively obvious: a neighbour should be accepted if and only

if it is closer (as measured by Hamming distance) to the global optimum. For a point

at distance k from the optimum, there will be k acceptable transitions. The probability,

on each iteration, of an acceptable neighbour being selected is kj L, and therefore the

average time before a transition is Ljk. The average FPT from a point at distance k

from the optimum is therefore I:~=1 Lji; averaging over the entire search space gives a

binomially weighted sum of these FPTs:

A.5.2 Random Walk

Let the average FPT from a point at distance k from the optimum be denoted by Tk.

Then the FPTs are related by a series of equations:

{

o k=O
Tk = 1 + TL-l k = L

1 + !TL-l + (1 !) TL+l 0 < k < L

Writing these constraints in matrix form gives t = Mt + 1, where M is of the form

1
M=­

L

o L-1

2 0 L-2

L-1 0 1

L 0

Appendix A Miscellaneous Proofs

L Random sampling Optimal walk Random walk
0 0.0 0.000000 0.000000
1 0.5 0.500000 0.500000
2 1.5 1.750000 2.500000
3 3.5 3.500000 7.250000
4 7.5 5.604167 17.166667
5 15.5 7.973958 36.958333
10 511.5 22.359034 1171.894841
15 16383.5 39.376254 35598.583146
20 524287.5 58.091850 1111387.767063

TABLE A.I: Average FPT for several simple algorithms on search spaces for bitstrings
of various length.

108

and t is a column vector of Tl ... TL, which can then be found by simply evaluating

(1 - M)-ll. The average FPT is given by a binomial sum over To ... Tk.

Note that for L > 2, a random walk is more than twice as slow as random sampling

(table A.l); this is why memoryless searches such as Simulated Annealing sometimes

struggle to escape plateau regions.

Appendix B

Defective Matrices

A matrix is said to be defective if it has at least one eigenvalue Ad whose algebraic and

geometric multiplicity do not match (Lanczos, 1957; Golub and Loan, 1983; Horn and

Johnson, 1985). The former is the multiplicity with which the factor (A - Ad) occurs in

the characteristic polynomial of the matrix, the latter is the dimension of the associated

eigenspace, and is therefore equivalently the maximum number of linearly independent

eigenvectors one can find with eigenvalue Ad-

Common operations implemented through eigenvalue decomposition may fail if naIvely

applied to defective matrices; this is demonstrated to occur in the popular numerical

computation environments "MatLab" and "Octave", both of which can produce incor­

rect results, often without warning.

B.l Examples

The simplest possible defective matrix is probably the matrix

which has characteristic equation (1 - A)2 = 0, and therefore has 1 as a repeated eigen­

value. However, (A - J) x = 0 has a solution space of dimension 1; all eigenvectors of

A are multiples of [1 0 f.

109

Appendix B Defective Matrices 110

A slightly less trivial example is provided by any matrix of the form

1 (1 - a)
a (1 - a)

a

(1 - a)
a

(with all omitted entries being zero). Any such matrix is triangular, and therefore has

eigenvalues equal to the entries on the main diagonal. Thus for an n x n matrix, 1

appears once as an eigenvalue, and a appears n - 1 times. When we attempt to find

the eigenspace associated with a, we solve (M - aJ) x = O. Of course, the diagonal of

(M - aJ) disappears (except for the '1'), giving us constraints of the form (1 - a)xi = 0

for i = 3 ... n, and (1 - a)xl + (1 - a)x2 = 0. All Xi for i > 2 are therefore zero, with

the remaining two entries summing to zero; thus all eigenvectors for a are of the form

[a, -a, 0, ... ,OJ T
, and the eigenspace has dimension 1.

B.1.l A Non-Triangular Example

Matrices of the form described above are nonsingular and stochastic (for 0< a ::; 1), and

could therefore represent the state transitions for some process, although the obvious

structure would likely not go unnoticed. A matrix need not be triangular (or capable of

being permuted to a triangular matrix through reassignment of row and column indices)

in order to be defective. Listing B.1 shows a MatLab session exploring a (stochastic,

nonsingular) defective matrix which merely contains a triangular sub-matrix.

» M

M =

0.4352 0.0425 0.1000 0.0500 0.1709 0.0093

0.0815 0.0098 0.1000 0.0500 0.2495 0.4535

0 0 0.7000 0.1000 0 0

0 0 0 0.7000 0 0

0.3144 0.3270 0.0500 0.0500 0.3349 0.2830

0.1688 0.6207 0.0500 0.0500 0.2446 0.2542

» det(M)

ans =

-0.0029

» sum(M)

ans

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Appendix B Defective Matrices

» [evecs , evalsJ eig(M)

evecs =

-0.2245 -0.8041 -0.3396 0.0162 0.0658 -0.0658

-0.4542 0,3540 -0.0952 -0.7466 -0,2257 0.2257

0 0 0 0 0,8427 -0.8427

0 0 0 0 0 0.0000

-0.5949 -0,0267 0,8423 0.0689 -0.3151 0,3151

-0.6240 0,4768 -0.4075 0.6615 -0.3677 0.3677

evals =

1,0000 0 0 0 0 0

0 0.4166 0 0 0 0

0 0 0.0343 0 0 0

0 0 0 -0.4168 0 0

0 0 0 0 0.7000 0

0 0 0 0 0 0.7000

» (W,5)-2 - M

ans =

-0,0000 -0.0000 -0,0000 -0.0263 + 0,0005i -0.0000 -0.0000

-0.0000 -0,0000 -0.0000 -0.0211 + 0.0110i -0.0000 -0.0000

0 0 -0.0000 -0.1000 0 0

0 0 0 -0.0000 0 0

-0.0000 -0.0000 -0.0000 -0.0842 + 0.0024i -0.0000 -0.0000

-0.0000 -0.0000 -0.0000 0.0357 + 0.0013i -0.0000 -0.0000

LISTING B.1: MatLab session demonstrating incorrect behaviour for a calculation in­
volving a defective matrix.

111

The eigenvalue 0.7 is repeated, but has only one eigenvector, and so the MatLab function

"eig" does not return a full set of linearly independent eigenvectors: observe that the

fifth is the negation of the sixth.

B.1.2 An Ergodic Example

The defective matrix

[

0.3129

D = 0.4098

0.2772

0.3348

0.3973

0,2679

0.
1848 1 0.4942

0.3210

is stochastic (the columns sum to 1) and is clearly ergodic, as all entries are strictly

positive. Aside from 1, the only eigenvalue is 2-6 , which is repeated but has only a

single eigenvector. D was constructed by arbitrarily choosing by assuming a non-trivial

Appendix B Defective Matrices 112

Jordan normal form (Golub and Loan, 1983; Horn and Johnson, 1985)1, with Jordan

block matrix J, and then finding (largely by trial and error) a matrix S and an integer k

such that S Jk S-l was stochastic and ergodic. In this case, D was given by D = S J6 S-l ,

where

S = [~ ~8 -~o]
2 2 10

and

B.2 Impact on Calculations

Any computation requiring the eigenvalue decomposition of a matrix is only well-defined

so long as that decomposition exists, which in the case of defective matrices is not so.

Raising a matrix to a noninteger power is an example of one such operation, which if

attempted within MatLab will sometimes produce an incorrect result with no warning

at all. In Listing B.l, we see that even the simple identity M = (Ml/at will sometimes

fail to hold, with the nonzero entries of the difference being comparable to the entries in

M. In fact, this also happens for the trivial defective matrix A described earlier, with

all noninteger powers of that matrix producing the identity.

In the examples given above, MatLab produced correct results when raising the ergodic

matrix to a noninteger power, but produced large inaccuracies when this test was re­

peated with the other matrices. For some defective matrices, MatLab will warn that a

computation involved a singular (or near-singular) matrix (the matrix of eigenvectors is

singular for a defective matrix), but this warning was not given for any of our examples.

One possibility is that inaccuracies occur because the matrix of eigenvectors is, due to

imperfect machine representation, computed to be near-singular (and ill-conditioned), a

condition which may be difficult to detect. It is nonetheless still a little unsettling that

the absence of a warning is not sufficient to ensure the validity of the result.

Defective matrices can be considered to be something of a rarity, as having a repeated

eigenvalue is obviously a prerequisite for defectiveness. If the eigenvalues of a matrix

are chosen randomly, the probability of a value being repeated is only nonzero when one

takes machine representation into account. However, the distribution of eigenvalues over

the set of "matrices likely to occur in calculations" is very different; if one is restricted to

a particular class of random matrices, then the probability of defectiveness may become

1 All matrices can be reduced to a form A -1 J A where J is a matrix of Jordan blocks. For non-defective
matrices, J is a diagonal matrix.

Appendix B Defective Matrices 113

significant. In summary, the output of a process is very unlikely to be defective unless

there is some mechanism causing it to be so.

In this thesis, there is just a single occasion where an operation sensitive to this problem

is used: in §3.1.3 a matrix exponential is used to compute the effect of applying a Poisson­

distributed number of mutations. A selection of matrices involved were tested and

verified to be non-defective. The acceptance matrix in §7.3 is defective2 , but eigenvalue­

dependent operations are not performed (and would likely be of very little significance).

In the case of the ergodic matrix described earlier, a small error was present in each of the

eigenvalues found by MatLab, causing them to be regarded as inequal. As a result, the

diagonalisation represented a (very close) approximation to the actual matrix. Although

unintentional, this small perturbation prevented the matrix of eigenvectors from being

singular (or very close to singular), providing a greater accuracy in the final result. This

effect cannot be relied upon, but does at least seem to suggest that the conditions under

which a calculation may become corrupted are very strict.

2 Although defective in the form specified, the elements along the main diagonal may be chosen
arbitrarily (as there is no difference in our model between rejection and acceptance of a self-transition),
and thus the eigenvalues may chosen at will.

Appendix C

Supplementary Data

C.l Barrier Tree Statistics

This section provides some statistics for the barrier tree structures of each of the test

problems. All models were produced from level-accessible barrier trees, with the excep­

tion of the Max-SAT 'LeS' problem, for which the states were instead taken to be the

level-connected sets.

For the binary perceptron and spin-glass problems, the number of variables (also 10g2

of the number of points in the search space) is the number preceding the first hyphen

in the problem name. The Max-SAT problems were all 20-variable problems, with the

exception of '40v', which was a 40-variable problem.

For each problem instance, statistics are (where appropriate) provided separately for

the (local or global) minimum states ('M') and for all states (Le. including the non­

minimum states) CA'). These statistics are the number of states, the number of distinct

costs possessed by those states, and the average, minimum and maximum costs of those

states. Additionally, the 'propMinima' column shows the proportion of the search space

which is occupied by minima.

Only integer costs are possible for our problems (excluding the hurdle problem, not listed

here). Spin-glass problems with an odd number of variables are a special case. In such

a problem, inverting a single bit-position affects the correlations with all other states,

of which there will be an even number. The sum over an even number of elements

in {-I, +1} will always produce an even number, so a single-bit mutation (and by

extension, any series of such mutations) will always adjust the total cost by a multiple

of two. For this reason, all of the spin-glass problems with an odd number of variables

(i.e. all but the first three) have the property that all possible costs have identical residue

modulo 2.

114

Appendix C Supplementary Data

Name States prop Min Dist costs Average Cost
AM A M AM

1 36 8 1.907e-05 28 3 14.125 2.950
10 43 15 3.147e-05 28 6 14.375 4.667
11 40 11 2.098e-05 29 6 14.000 3.909
12 48 16 3.338e-05 32 5 14.750 5.086
13 40 10 2.480e-05 29 3 14.750 2.962
14 38 8 2.956e-05 30 2 14.250 2.613
15 37 8 1. 240e-05 29 3 15.750 3.462
16 35 9 2.098e-05 26
17 42 14 2.956e-05 29
18 34 5 1.04ge-05 28
19 38 8 1.621e-05 30
40v 85 36 4.575e-10 50
LCS 92 7 5.245e-05 32
orig 38 7 5.245e-05 32

3 14.125 3.000
5 15.375 4.710
2 15.125 2.455
3 15.250 2.471
5 23.375 2.628
3 15.750 3.545
3 15.750 3.545

Min C Max Cost
A M

2.0 29.0 4.0
2.0 29.0 7.0
1.0 29.0 6.0
3.0 34.0 7.0
2.0 30.0 4.0
2.0 3l.0 3.0
2.0 30.0 4.0
2.0 27.0 4.0
3.0 31.0 8.0
2.0 29.0 3.0
2.0 31.0 5.0
1.0 50.0 5.0
3.0 34.0 5.0
3.0 34.0 5.0

FIGURE C.l: Max-SAT: barrier tree statistics

Name States prop Min Dist costs Average Cost Min C Max Cost
AM A M A M AM

10-1 25 2 1.953e-03 20
10-2 29 6 5.85ge-03 19
10-3 33 12 l.172e-02 20
15-1 23 4 6.714e-04 19
15-2 24 4 1.831e-04 20
15-3 19 2 3.052e-04 18
17-1 31 6 4.578e-05 24
17-2 31 4 7.62ge-05 25
17-3 29 8 l.984e-04 22

1 22.500 12.000
2 22.500 13.667
4 22.500 15.333
2 52.500 36.545
1 52.500 35.000
1 52.500 35.000
2 68.000 46.333
2 68.000 45.200
2 68.000 48.154

12.0 3l.0 12.0
13.0 31.0 14.0
14.0 33.0 17.0
36.0 72.0 38.0
35.0 73.0 35.0
35.0 69.0 35.0
45.0 91.0 47.0
44.0 92.0 46.0
48.0 90.0 50.0

FIGURE C.2: Spin glass: barrier tree statistics

Name States prop Min Dist costs A verage Cost
A M A M A M

10-12-1 36 27 2.637e-02 10
10-12-2 106 99 9.863e-02 9
10-12-3 72 65 6.738e-02 9
12-11-1 134 124 3.027e-02 12
12-11-2 lIS 106 2.8S6e-02 10
12-11-3 26 16 3.906e-03 11
13-10-1 220 212 3.247e-02 9
13-10-2 319 309 3.894e-02 11
13-10-3 112 103 1.S75e-02 9
14-11-1 211 202 l.37ge-02 10
14-11-3 464 4S3 2.78ge-02 12

5 7.477 S.l11
5 7.477 5.S94
6 7.477 S.OOO
9 6.741 3.323
5 6.741 3.829
7 6.741 3.S00
6 S.OOO 2.635
7 5.000 2.301
S 5.000 2.403
6 6.652 4.142
9 6.6S2 4.031

Min C Max Cost
A M

2.0 1l.0 9.0
3.0 11.0 7.0
3.0 11.0 8.0
0.0 1l.0 8.0
2.0 1l.0 6.0
l.0 11.0 7.0
l.0 9.0 6.0
0.0 10.0 6.0
1.0 9.0 S.O
2.0 11.0 7.0
0.0 1l.0 8.0

FIGURE C.3: Binary perceptron: barrier tree statistics

115

Appendix C Supplementary Data

0.4 ,-----,--.,------,--.,----,---,---,----,-----,---,

0.35

0.3

0.25

20--
50 -------

100 --_.
200
300 -.---...
400 ----
500

0.05 '---_-'-__ .L--_-'-__ .L--__ -"-__ -'--_---'-__ -1-_---"c.:..::.;c="-'

o 10 20 30 40 50 60 70 80 90 100

FIGURE C.4: Snapshots of a WYA Max-SAT schedule at various iterations of the SCG
optimisation.

C.2 Optimal Annealing Schedules

C.2.1 Convergence

116

It was found that by the 500th iteration, the SCG algorithm had not converged entirely,

but produced very small improvements in the low-temperature regions at the beginning

and end of the schedules. This is most likely due to the choice of parameterisation; for

the temperature to reach zero, the inverse temperature must become infinite. Where

the temperature appears to take increasingly small steps, the value seen by the SCG

algorithm may be growing constantly or even divergent, confusing the optimisation

process.

Figures C.4 and C.5 illustrate this with a series of "snapshots" of a schedule after 20,

50, and then every 100 iterations of the SCG optimisation. Excluding the initial and

final low-temperature regions, the shape of the final schedule is visible, albeit with

some random noise, after only 20 iterations; after 50 iterations the noise has almost

disappeared, and the central section of the schedule is already indistinguishable from

that of the final (500th iteration) schedule.

Appendix C Supplementary Data

OA5

0.4

0.35

0.3

~

" ~ 0.25 Q)
Co
E
.2l

0.2

0.15

0.1

0.05
0 10 20 30 40 50 60 70 80 90 100

FIGURE C.5: Snapshots of a ESF Max-SAT schedule at various iterations of the SCG
optimisation.

OA5 ,----,---,.------,-----,.-----,----..,.-------,----,

0.25

0.2

0.15

0.1

0.05

o L-__ -L ___ L-__ -L ____ L-__ ~ ___ J-__ ~L_ __ ~

o 50 100 150 200 250 300 350 400

FIGURE C.6: Superimposed WYA schedules (length 400) for a series of Max-SAT prob­
lems

117

Appendix C Supplementary Data

0.55 r---,----::-,---,---,----,----,------,------,

0.5

OA5

OA

0.35

0.3

0.25

0.2

0.15

0.1

0.05 '--__ -'--___ -'--__ --'--__ --L. __ --L. __ --L __ ---..lL. __ ---'

o 50 100 150 200 250 300 350 400

FIGURE C.7: Superimposed BSF schedules (length 400) for a series of :vIax-SAT prob­
lems

C.2.2 Max-SAT Schedules

118

WYA-optimal schedules for all of the Max-SAT problems shared a common shape

(fig. C.6), although the maximum temperature and the time at which the final cool­

ing stage was entered varied considerably. This is also approximately true of most of the

BSF schedules (fig. C.7), although several also showed some oscillation in temperature,

with varying amplitude.

Amongst the BSF-optimised Max-SAT schedules was one significant exception to the

rule, featuring three prominent peaks; this is shown and discussed in §5.5.

C.2.3 Binary Perceptron Schedules

The WYA perceptron schedules (fig. C.8) resemble the WYA Max-SAT schedules, but

with the initial low-temperature region replaced by one of oscillating temperature. In

three of the graphs shown, this oscillation is trivial, with a single spike preceding the

rest of the schedule. Two graphs show a series of oscillations (eight, ten cycles), with

amplitude decreasing toward the height of the remainder of the schedule.

Each of the BSF perceptron schedules shown in fig. C.9 is worthy of comment:

Top left: A repeated four-stage cycle containing alternate high, narrow spikes and

lower, wider peaks, each delimited by a brief region of very low temperature.

Appendix C Supplementary Data

:: I
I

"

I!
0.7

'.2

,

I ~II"
0.5

0.8

! I 1IIIIil ~ , 0'

0.6

I llll~~~!~!~---~'
0.3

04
0.2

0.2 U J ~ ~u ~
0 0

0 50 "0 200 250 350 0 WO "0 250 350

0.9

0.6 '.6

0.7
'.6

Ii

" 'I 0.6

!! [I i2

0.5

IIII ~ 04
0.6 U 111.

I :U~~~~~~~ 0' 0.2 l
0 0

0 50 ''0 200 300 0 50 ,so 200 250 350

'.4 i4

'.2 i2

0.6 0.6

06 0.6

0.2

FIGURE C.8: WYA-optimal schedules for binary perceptron problems in 10 (left) and
12 (right) variables.

119

400

Centre left: What may appear at first glance to be random noise is actually fairly

structured. The schedule alternates between very high and very low temperatures,

occasionally visiting an intermediate temperature during a transition. From every

low-temperature point, a high temperature is reached within at most two steps.

Bottom left: This schedule has unfortunately failed to converge after 500 iterations of

SCG.

Top right: Unusually, this schedule has a only a central section of oscillating temper­

ature; it is possible that this may not be the final form of the schedule (i.e. that

further optimisation is possible).

Appendix C Supplementary Data 120

3"Sr--~~~-~--'-~~_

~ ~ [II ~
2: II /1 I II il il II

II
II [II /1 ' ,

I [' , r II I I /1

I Ii lill'l I, I ,I ,. Ii" Ii :1 I I

1 ~ I II i / Ii III I
05 NN~~~~~ JlrJ ~J~\j,

o~~~~-~~~~~
o 50 150 200 250 300 350 400

1.2 ~ ~~~ ~~ ~ ~~ q I r ~ ~ ~ ~

04 : I1111 " 111I i 1111"/IIII/I! 'III ILl [III ! 'Iii, I

"' ~ I~ II~ I ~ ~i~ I~~ ~~~JI Ji ~I MI ml ~ ~ I ~III~·
o

o 50 100 150 200 250 SOD 350 400

7

~~,
02"-0 ~-'~OO ~'S<l-2~OO ~250-·30~0 ~3",----.J400 0 0 50 150 200 250 300 350 400

FIGURE e.g: BSF-optimal schedules for binary perceptron problems in 10 (left) and
12 (right) variables.

Centre right: A series of high spikes approximately 30 - -50 iterations apart, be­

tween which some smaller spikes are emerging. The combination of spike sizes

and to some extent the spacing between them may be an artifact of the choice

of schedule parameterisation, which makes it difficult for the optimiser to "shift"

features with respect to time. Given a partially-optimised schedule with a set of

pre-existing spikes, adjusting the period requires many temperature values to be

manipulated gradually, if less efficient intermediate schedules are to be avoided.

Inserting smaller spikes between the larger ones is an alternative requiring fewer

modifications, and with less deceptive gradient information.

Appendix C Supplementary Data 121

\\ 025

02

0.15

0.1 ~
0.05 O'--~-~1O-0 -·~,50-~20-0 --2~50-~300--35~0 ~

-2.5

·3 '--~-.~-~_~~_~_~_____"
a 50 100 150 200 2SO 300 350 400

02

015

.25 0 L --=50----:"':---:::,50-:---:2'.,-00 --:::250-:-----:"':---:::350--""0

0.22

0.2

0.18

0.2

014

0.1

0.08 '--~-~-~-~~-~-~---"
o 50 loa 250 300 350 400

FIGuRE C.10: WYA-optimal schedules for spin-glass problems in 10 (left) and 15
(right) variables.

Bottom right: It is difficult to tell whether this schedule is "genuine" or is the result

of a divergent optimisation process.

C.2.4 Spin-Glass Schedules

Of the WYA spin-glass schedules (fig. C.10), only three converged fully. Two of these

are monotone-decreasing, one (lower left) has the same form as the Max-SAT schedules.

Two of the BSF schedules (fig. C.ll) have a similar 'U' shape to that seen for BSF

hurdle problem schedules in §5.2; the reasons for this are unclear, as there is no obvious

similarity between the hurdle and spin-glass problems.

Appendix C Supplementary Data

0.65

O~ ~ ~ ~
~ ~ All I [j

04 II I ~ I ~\ ~ n r ~ \ j ~ i

0' ~ ~ I I U ~

6

,

~ ~
2

~
I!

i
0

II
~

II II I[Ii
II II 'II

,I
I i 'i

Ji /'

I I [i

ilJ
,I

,I I /1
o

o 50 150 200 250 350

J
07 (

0,27

0.6

0.26
0.5

OA

0.'

0.2

0.23
0.'

0
0 100 150 200 250 300 0.22, L --::-50 ---:':100=---,':::---=200=----::250::----c'=-OO --=350=-----:'-

FIGURE C.ll: BSF-optimal schedules for spin-glass problems in 10 (left) and 15 (right)
variables.

C.2.5 Schedule Performance

122

Figures C.12 and C.13 show the predicted and actual performance of each optimised

schedule. To aid comparison, each schedule was evaluated for both WYA and BSF cost,

regardless of which the schedule was optimised for. The "predicted" costs are those

output by the Markov model; the "observed" costs were obtained experimentally by

passing the schedule to a simulated annealing algorithm running on the appropriate test

problem; the observed costs were averaged over 100000 runs.

On a few problems, the SCG algorithm repeatedly diverged, consistently producing

schedules containing (negative temperatures. In these cases, the transition matrices

Appendix C Supplementary Data 123

Name Pred Obs WYA Obs BSF
hurdle16 1.182 1. 179640e+00 1.017270e+00
hurdle64 7.8659 7.865425e+00 7.534280e+00
satlO 2.0788 2.868930e+00 2.838230e+00
satl1 1.2956 2.099270e+00 2.052590e+00
satl2 3.1077 3.82161Oe+00 3.793990e+00
satl3 2.0537 2.4 71860e+00 2.427450e+00
satl4 2.0706 2.356970e+00 2.328830e+00
satl5 2.2947 2.915820e+00 2.831150e+00
sat16 2.1172 2.781220e+00 2.741950e+00
satl7 3.1243 3.875160e+00 3.848270e+00
sat18 2.038 2.362180e+00 2.338840e+00
satl9 2.0012 2.048130e+00 2.041160e+00
sat1 2.0291 2.331700e+00 2.302990e+00
satorig 3.0582 3.361760e+00 3.338550e+00
perlO-12-1 2.0115 2.030550e+00 2.015340e+00
perlO-12-2 4.13 4.310290e+00 4.136370e+00
per10-12-3 3.6339 3.727340e+00 3.569900e+00
per12-11-1 0.79338 9.171900e-0l 7.107000e-0l
per12-11-2 2.1018 2.150240e+00 2.075470e+00
perl2-11-3 1.0449 1.105370e+00 1.063060e+00
spin10-1 12 1.200000e+01 1.200000e+0l
spin10-2 -66.641 1.332244e+0l 1.311715e+01
spin10-3 14.172 1.428116e+01 1.421167e+0l
spin15-1 36.046 3.629676e+0l 3.610986e+0l
spin15-2 35 3.503212e+01 3.503208e+0l
spin15-3 35 3.508466e+01 3.508464e+01
spin17-1 45.188 4.575586e+0l 4.553988e+0l
spin17-2 44.454 4.472656e+01 4.451492e+01
spin17-3 48.008 4.811398e+01 4.802330e+Ol

FIGURE C.12: Performance of WYA-optimised schedules.

were no longer stochastic, and the predicted costs were divergent. These results may

be identified easily in figs. C.12 and C.13; they are included for completeness only and

should not be compared to the others.

C.3 Short Schedules

Particularly short WYA annealing schedules were sometimes (particularly on Max-SAT

problems) found to have a different form (fig. C.14 vs. fig. C.6).

In §5.4.4 it was noted that, regardless of length, the optimised schedules for a particular

Max-SAT problem had initial and final low-temperature regions of approximately equal

length. As the schedule length is reduced, the width of the central higher-temperature

Appendix C Supplementary Data 124

Name Pred Obs WYA Obs BSF
hurdle16 0.8607 2.224110e+00 8.531700e-Ol
hurdle64 7.3506 8.676795e+00 7.328350e+00
satlO 2.016 2.946990e+00 2.733690e+00
satll -2.0104e+30 2.744940e+00 2.052840e+00
sat12 3.041 3.851480e+00 3.707040e+00
satl3 2.0067 2.599710e+00 2.355550e+00
satl4 2.009 2.489990e+00 2.263970e+00
satl5 2.123 3.133550e+00 2.730100e+00
sat16 2.0227 2.954480e+00 2.634680e+00
satl7 3.0299 3.927800e+00 3.740370e+00
satl8 2.0055 2.450040e+00 2.273000e+00
sat19 -2.9067e+21 2.204590e+00 2.030210e+00
satl 2.0038 2.450800e+00 2.257060e+00
satorig 3.0028 3.49441Oe+00 3.242300e+00
perl0-12-1 2 2.441930e+00 2.000270e+00
perl0-12-2 3.6867 5.279460e+00 3.846240e+00
perl0-12-3 3.3746 3.905360e+00 3.478690e+00
perI2-11-1 0.32747 2.211320e+00 4.202700e-Ol
perI2-11-2 2.0004 2.676760e+00 2.006640e+00
per12-11-3 1.0023 1.458960e+00 1.028790e+00
perI3-10-1 1 1.524460e+00 1.000860e+00
per13-10-2 0.80929 1.162720e+00 8.537600e-01
perI3-10-3 1.0002 1.522470e+00 1.009390e+00
spinl0-1 12 1.218840e+Ol 1.200000e+Ol
spinl0-2 13.001 1.357022e+Ol 1.300626e+01
spinl0-3 14.004 1.478525e+Ol 1.402481e+01
spinl5-1 36.14 3.636950e+Ol 3.633886e+Ol
spinl5-2 35 3.505144e+Ol 3.503370e+Ol
spin15-3 35 3. 508482e+0 1 3.508236e+Ol
spinl7-1 -13071 4.647802e+01 4.549686e+Ol
spin17-2 -1.0061e+80 4.482928e+Ol 4.445966e+01
spinl7-3 46.137 4.834804e+Ol 4.800984e+Ol

FIGURE C.13: Performance of BSF-optimised schedules.

region reduces also. The non-existence of this region for sufficiently short schedules is

consistent with this behaviour.

Of six spin-glass schedules produced (fig. C.16), three showed similar behaviour to the

short Max-SAT schedules; one diverged during optimisation, and the remaining two

produced "normal" Max-SAT-like schedules. The binary perceptron schedules (fig. C.15)

either diverged during optimisation (in three cases), or produced normal Max-SAT-like

schedules.

From §C.1 we see that the binary perceptron and spin-glass problems had smaller search

spaces than the Max-SAT problems (10-15 variables vs. 20 variables), but did not have

significantly fewer states, and had minima covering a greater proportion of the search

Appendix C Supplementary Data

0.075 ~--,------,,-----r----r---,----,----r---_--~--

0.07

0.065

0.06

0.055

0.05 '--_---'L-_--' __ --'-__ -L __ -'-__ -'-__ -'-__ -'-__ -'-__ --'

o 10 20 30 40 50 60 70 80 90 100

FIGURE C.14: Superimposed WYA schedules (length 100) for a series of Max-SAT
problems

0.8

0.6

OA

0_2

per/10-12-1 -­
per/10-12-2 ------­
per/10-12-3 -.. ----­
per/12-11-1
per/12-11-2
per/12-11-3 -.----

OL-~___'_~_i~ _ _'_ __ -'-__ ~ ___ ~ __ L_ __ ~ ____ L__---'

o 10 20 30 40 50 60 70 80 90 100

FIGURE C.15: Superimposed WYA schedules (length 100) for a series of binary per­
ceptron problems

125

Appendix C Supplementary Data

0.8

0.6

0.4

0.2

O~---L----~--~----~----~--~----~ _____ ~ __ ~ ____ ~
o 10 20 30 40 50 60 70 80 90 100

FIGURE C.16: Superimposed WYA schedules (length 100) for a series of spin-glass
problems

126

space. This suggests that state transitions, including those to or from local minima,

might occur less frequently when traversing Max-SAT problems, or might be clustered

in one region of the space. The schedules in fig. C.14 could resemble descent simply

because the probability of reaching any local minima within 100 iterations is very small.

CA Constrained Periodic Schedules

Schedules with a series of evenly-spaced square peaks and troughs (fig. C.17) were stud­

ied. The shape of the schedule is determined by four parameters; the maximum and

minimum temperature, the peak width and the trough width.

For each problem, BSF cost was optimised over these parameters, with a schedule length

of 400. The two widths were represented by real-valued parameters, with first iteration of

each peak or trough being interpolated according to the fractional part of the previous

width. For example, a peak width of 1.5 would be interpreted as a peak of width

1, with the first value of the following trough being half way between the peak and

trough heights. Strictly speaking, this allows our imposed schedule form to be broken,

as the optimisation process is able to exploit this leeway. It is necessary however as

a practical measure to provide the optimiser with some hints as to which direction

to follow; applying a floor function would produce a series of featureless plateaus. An

alternative solution would be to find an optimiser designed to be applied to a combination

of continuous and discrete parameters.

Appendix C Supplementary Data

0.8

r 0.6
~
.3 I

!:'
OJ
Q

E
.$

0.4

0.2

o~----------~----------~------------~----------~
o 50 100 150 200

FIGURE C.17: A "square wave" periodic schedule with maximum temperature 0.8,
minimum 0.2, peak width 6 and trough width 14.

127

The results (fig. C.18) are quite consistent in having very narrow peaks; for all but two

problems, the peak width was between 1 and 2. Note that the peak width was artificially

constrained to prevent it being reduced below 1; this was accomplished by reporting a

very high cost for those schedules. Again, this was to prevent the creation of plateaus

in the parameter space (this time for peak widths less than zero). Note that the effect

of zero-width peaks (i.e. a fiat schedule) could still be obtained by equating the peak

and trough temperatures; there are several cases where this appears to have occurred,

including both of the exceptions to the peak width rule described above.

The trough widths are comparatively wide, varying from around ten iterations to a

hundred. Two spin-glass runs had troughs which were very large, but both peak and

trough temperatures were very small; this is a fiat schedule as described above, with

temperature low enough to effectively be a descent.

Comparing the freely optimised and constrained periodic schedules, we see a substantial

difference between performance on the binary percept ron and Max-SAT problems. On

the latter, the freely optimised schedules have better performance in every case, as we

would expect. The binary perceptron results however show the constrained periodic

schedules performing better than the free schedules.

One possible explanation is that the very narrow spikes seen in the periodic schedules

are crucial to performance. The "free" schedule is unable produce these spikes due to the

effect of coarse-graining; the block size for these results was four iterations. The heights

of the temperature peaks in both cases are consistent with this theory, with the narrow

Appendix C Supplementary Data 128

Name Free cost Per cost 10Len hiLen 10 hi
hurdle16 0.8607 1.731 14 1 0.643045 3.30404
hurdle64 7.3506 8.256 25 1 0.474766 6.85918
per10-12-1 2 2 14.048 1.0029 0.0515013 6.33473
perl 0-12-2 3.6867 3.6201 8 1.0704 0.149533 454.36
per10-12-3 3.3746 3.1171 7 1.4306 0.172167 6.56556
perl2-11-1 0.32747 0.25734 12.988 1 0.0577868 2.04344e+ 11
per12-11-2 2.0004 2.0001 13 1 0.0902201 7.32332
perl2-11-3 1.0023 1.0019 25 1 0.139548 3.23593
per13-10-1 1 1 11.592 1.0454 0.0414921 6.53467
sat1 2.0038 2.0041 100 1.6645 0.350508 0.575043
satlO 2.016 2.0168 105.84 1.4562 0.382629 0.551329
satl1 -2.0104e+30 1.2167 81 1.4566 0.361755 0.726058
satl2 3.041 3.0434 57 1 0.289461 1.11564
sat13 2.0067 2.0077 69 1.0351 0.414233 0.964413
sat14 2.009 2.0098 57 1.6309 0.359932 0.949758
satl5 2.123 2.1294 99 1.176 0.441638 0.510569
satl6 2.0227 2.0245 58 1.736 0.383715 1.00465
sat17 3.0299 3.0336 40 1.4959 0.345985 1.50013
satl8 2.0055 2.0067 39 1.6025 0.295186 1.31146
satl9 -2.9067e+21 2.0001 93.996 1.2724 0.339443 0.29215
satorig 3.0028 3.0031 34 2.7888 0.445831 0.473059
spin10-1 12 12 52.493 1.1174 0.0725374 0.889521
spinlO-2 13.001 13.001 16 1.9816 0.0590772 10.8147
spin10-3 14.004 14.004 18.837 1.0034 0.729661 2.91494
spin15-1 36.14 36 13.517 1.1659 0.0817394 5.34474
spinl5-2 35 35 326.86 1.5289 0.0371789 0.083022
spin15-3 35 35 283.53 11.526 0.0321626 0.0813273

FIGURE C.18: Results of BSF optimisation with "square wave" form, temperature
peaks adjustable and included in schedule length.

spikes of the constrained periodic schedules being higher than the four-iteration-wide

peaks of the free schedules.

Bibliography

P. W. Anderson. What statistical mechanics has to say to computer scientists. Physica

A: Statistical and Theoretical Physics, 140:405-409, 1986.

W. Benfold, J. Hallam, and A. Priigel-Bennett. Optimal annealing schedules for larger

problems. In IEEE Congress on Evolutionary Computation, volume 2, pages 1119-

1126, Sept. 2005a. ISBN 0-7803-9363-5.

W. Benfold, J. Hallam, and A. Priigel-Bennett. Optimal parameters for search using a

barrier tree markov model. Submitted to Theoretical Computer Science, 2005b.

P. Blaudeck and K. H. Hoffmann. Ground states for condensed amorphous systems:

Optimizing annealing schemes. Computer Physics Communications, pages 293-299,

Feb. 2003.

K. Boese and A. Kahng. Best-so-far vs. where-you-are: Implications for optimal finite­

time annealing. Systems and Control Letters, 22(1):71-8, 1994.

A. Bolte and U. W. Thonemann. Optimizing simulated annealing schedules with genetic

programming. European Journal of Operational Research, 92:401-416, 1996.

T. Boseniuk and W. Ebeling. Boltzmann-, Darwin- and Haeckel-strategies in optimiza­

tion problems. Lecture Notes in Computer Science: Parallel Problem Solving from

Nature, 496:430-444, 1991.

T. Boseniuk, W. Ebeling, and A. Engel. Boltzmann and Darwin strategies in complex

optimization. Physics Letters A, 125:307-310, 1987.

A. Braunstein, M. Mezard, and R. Zecchina. Survey propagation: an algorithm for

satisfiability. Random Structures and Algorithms, 27:201-226, 2005.

V. Cerny. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41-51,

1985.

M. Christoph and K. H. Hoffmann. Scaling behaviour of optimal simulated annealing

schedules. J. Phys. A: Math. Gen., 26:3267-3277, 1993.

129

BIBLIOGRAPHY 130

H. Cohn and M. Fielding. Simulated annealing: Searching for an optimal temperature

schedule. SIAM Journal on Optimization, 9:779-802, April 1999.

S. A. Cook. The complexity of theorem proving procedures. In Proceedings of Third

Annual ACM Symposium on Theory of Computing, pages 151-158, May 1971.

P.-J. Courtois. On time and space decomposition of complex structures. Communications

of the ACM, 28(6):590-603, June 1985.

P.-J. Courtois and P. Semal. Computable bounds for conditional steady-state probabil­

ities in large markov chains and queueing models. IEEE Journal on Selected Areas in

Communications, 4(6):926-937, Sept. 1986.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of

the ACM, 7:201-215, 1960.

B. Derrida, RB. Griffiths, and A. Prugel-Bennett. Finite-size effects and bounds for

perceptron models. Journal of Physics A, 24:4907-4936, 1991.

S. Droste, T. Jansen, and 1. Wegener. On the analysis of the (1+1) evolutionaryalgo­

rithm. Theoretical Computer Science, 276(1-2) :51-82, 2002.

G. Dueck and T. Scheuer. Threshold accepting: a general purpose optimzation algorithm

appearing superior to simulated annealing. Journal of Computational Physics, 90:161-

175, 1990.

S. F. Edwards and P. W. Anderson. Theory of spin glasses. Journal of Physics F, 5:

965-974, 1975.

C. Flamm, 1. L. Hofacker, P. F. Stadler, and M. T. Wolfinger. Barrier trees of degenerate

landscapes. Z. Phys. Chem., 216:155-173, 2002.

A. Franz and K. H. Hoffmann. Optimal annealing schedules for a modified tsallis statis­

tics. Journal of Computational Physics, 176:196-204, 2002.

M. R Garey and D. S. Johnson. A Guide to the Theory of NP-Completeness. W. H.

Freeman, 1979. ISBN 0716710447.

F. Glover. Future paths for integer programming and links to artificial intelligence.

ComputeT's fj Operations Research, 13:533-549, 1986.

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press,

1983. ISBN 0-946536-05-8.

D. R Greening. Parallel simulated annealing techniques. Physica D, 42:293-306, 1990.

B. Hajek. Cooling schedules for optimal annealing. Mathematics of Operations Research,

13(2):311-329, 1988.

BIBLIOGRAPHY 131

J. Hallam. Barrier Trees for Studying Search Landscapes. PhD thesis, School of Elec­

tronics and Computer Science, University of Southampton, Feb. 2006.

J. Hallam and A. Priigel-Bennett. Barrier trees for search analysis. In GECCO, pages

1586-1587, 2003.

J. Hallam and A. Priigel-Bennett. Crossover and barrier based markov models. In

Proceedings of CEC 2005, volume 2, pages 1661-1666, 200,Sa.

J. Hallam and A. Priigel-Bennett. Large barrier trees for studying search. IEEE Trans­

actions on Evolutionary Computation, 9 (4): 385-397, 2005 b.

P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Com­

puting, 44(4):279-303, Dec. 1990.

K. H. Hoffmann and P. Salamon. The optimal simulated annealing schedule for a simple

model. J. Phys. A: Math. Gen., 23:3511-3523, 1990.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

ISBN 0-521-38632-2.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchio Optimization by simulated annealing.

Science, 220(4598):671-680, 1983.

W. Krauth and M. Mezard. Storage capacity of memory networks with binary couplings.

Journal de Physique, 50:3057-3066, 1989.

C. Lanczos. Applied Analysis. Sir Isaac Pitman & Sons, Ltd., 1957.

F. T. Lin and C. Y. Kao. Incorporating genetic algorithms into simulated annealing. In

Proceedings of the Fourth International Symposium on Articifial Intelligence, pages

290-297, 1991.

S. W. Mahfoud and D. E. Goldberg. Parallel recombinative simulated annealing: a

genetic algorithm. Parallel Computing, 21:1-28, Jan. 1995.

N. Metropolis, A. Rosenbluth, M.Rosenbluth, A. Teller, and E. Teller. Equation of

state calculations by fast computing machines. Journal of Chemical Physics, 21(6):

1087-1092, 1953.

M. Mezard, G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond. World Scientific,

Nov. 1987. ISBN 9971-50-115-5.

M. Miki, T. Hiroyasu, T. Yoshida, and T. Fushima. Parallel simulated annealing with

adaptive temperature determined by genetic algorithm. In Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, volume 3, pages 257-261,

2002.

BIBLIOGRAPHY 132

D. Mitchell, B, Selman, and H. Levesque. Hard and easy distributions of sat problems.

In Proceedings of the Tenth National Conference on Artificial Intelligence, pages 459-

465, July 1992.

R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and 1. Troyansky. Determining

computational complexity from characteristic 'phase transitions'. Nature, 400:133-

137, July 1999.

1. T. Nabney. Netlab: Algorithms for Pattern Recognition. Advances in Pattern Recog­

nition. Springer, 2001. ISBN 1-85233-440-1.

J.A. NeIder and R. Mead. A simplex method for function minimization. Computer

Journal, 7:308-313, 1965.

G. Parisi. Magnetic properties of spin glasses in a new mean field theory. J. Phys. A,

13:1887-1895, 1980.

L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal

of the ACM, 35:965-984, 1988.

A. Priigel-Bennett. Symmetry breaking in population-based optimization. IEEE Tran­

sations on Evolutionary Computation, 8(1):63-79, Feb. 2004a.

A. Priigel-Bennett. When a genetic algorithm outperforms hill-climbing. Theoretical

Computer Science, 320(1):135-153, 2004b.

D. Janaki Ram, T. H. Sreenivas, and K. Ganapathy Subramaniam. Parallel simulated

annealing algorithms. Journal of Parallel and Distributed Computing, 37:207-212,

Sept. 1996.

D. Sherrington and S. Kirkpatrick. Solvable model of a spin glass. Physics Review E,

35:1792-1796, 1975.

W. M. Spears and K. A. De Jong. Analyzing GAs using markov models with semantically

ordered and lumped states. In Richard K. Belew and Michael D. Vose, editors, Foun­

dations of Genetic Algorithms 4, pages 85-100. Morgan Kaufmann, San Francisco,

CA,1997.

P. N. Strenski and S. Kirkpatrick. Analysis of finite length annealing schedules. Alga­

rithmica, 6:346-366, 1991.

R. P. White and H. R. Mayne. Optimal annealing schedules for two-, three-, and four­

level systems using a genetic algorithm approach. Journal of Chemical Physics, 112

(18):7964-7978, July 2000.

David H. Wolpert and William G. Macready. No free lunch theorems for search. Tech­

nical Report SFI-TR-95-02-010, Santa Fe, NM, 1995.

