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In this thesis two aspects of the modelling of road accident count data are 
investigated in detail. Under the first investigation the effect of daylight on 
road accidents is considered. Here, daylight is established as a significant 
cause of car occupant casualties in both Scotland and Southwest England 
using linear and log-linear regression models. It is also shown that there is 
a noticeable difference in the level of daylight during morning rush hour in 
December and January between Scotland and Southwest England due to 
the difference in latitude between two regions. Ad hoc methodology is then 
introduced to investigate the possibility that the difference in the level of 
daylight during morning rush hour will result in a significant difference in 
the numbers of car occupant casualties between the two regions during 
December and January. 

The second investigation considers the use of a conditional Bernoulli 
truncated Poisson state space time series model for modelling zero inflated 
count data. Although it is technically complex, its appeal is likely to be 
broader than the daylight investigation as the methods presented here offer 
useful insight into the modelling of any zero inflated time series count data. 
The conditional Bernoulli truncated Poisson model has been used before to 
model zero inflated data, but it has not been used on time series data and 
has not been put into state space form. Difficult issues are raised by 
applying the conditional model to time series data and various methods are 
introduced and compared to overcome these problems. 
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Chapter 1 

Introd uction 

Modelling road accident data is of great interest to many parties such as 

road safety groups, government, motor car manufacturers and transport 

research organisations like the Transport Research Laboratory (TRL). In 

this thesis there are two investigations into the modelling of road accidents 

for which new methodology has been introduced: one into the effect of 

daylight on road accidents and the other into appropriate state space time 

series models for zero inflated count data. However, the new methodology 

has not been conceived in isolation and is very much related to existing 

modelling techniques. As such, together with the new methodology a great 

deal of existing methodology is also presented in this thesis. 

This introduction is divided into three parts: in the first part the data sets 

used in the analysis are briefly described, in the second section an outline is 

given of each chapter and the particular technique investigated therein, and 

in the third section the difficulties encountered during the compilation of 

the data and completion of the thesis are detailed. 

1.1 The data sets used 

Most of the data used in this thesis has been provided by the Transport 

Research Laboratory. The data provided by the TRL is road accident data 
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of various types including car occupant accidents, pedestrian accidents, 

accidents in snowy weather conditions and many more. Each accident type 

is given on three levels of severity: fatal, serious and slight. Also, each 

accident type at each level of severity is given for Scotland, Wales and all of 

the nine government office regions of England, these being: Northern 

England, Northwest England, Yorkshire & Humberside, West Midlands, 

East Midlands, Eastern England, Southwest England, Southeast England 

and Greater London. All the road accident series are monthly aggregated 

time series from January 1979 to December 2000. 

The rest of the data used in this thesis has been obtained from various 

sources and has been primarily used as explanatory variables in chapter 2 

and elsewhere in the thesis. In detail the variables are: 

• National car traffic (Billion vehicle km's travelled); this is the 

estimated volume of car traffic on roads in Great Britain obtained 

from TRL records and originally extracted from DTLR (2000) and 

previous years reports. The data is quarterly adjusted to monthly, 

ranging from January 1987 to December 2001 and adjusted using the 

monthly averages over the five year period from 1996 to 2000. 

• Total rainfall (mm); monthly data for each of the regions of Great 

Britain ranging from January 1987 to December 2000, provided by 

the UK MET Office. 

• Monthly average maximum daily temperature (Celsius); monthly data 

for each of the regions of Great Britain from January 1987 to 

December 2000, provided by the UK MET Office . 

.. Monthly average minimum daily temperature (Celsius); monthly data 

for each of the regions of Great Britain from January 1987 to 

December 2000, provided by the UK MET Office. 

• Cloud cover (oktas); monthly data for each of the regions of Great 

Britain from January 1987 to December 2000, provided by the UK 

MET Office. Here 1 okta = 1/8 cloud cover and 8 oktas is total cloud 

cover. 
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CD National inland deliveries of petroleum (tonnes); monthly data for the 

UK from January 1980 to December 2001, provided by the 

Department of Trade and Industry. 

• National inland deliveries of diesel (tonnes); monthly data for the UK 

from January 1980 to December 2001, provided by the Department of 

Trade and Industry. 

• Monthly average amount of daylight per day (hours); calculated using 

a Visual Basic for Applications (VBA) program translated from a 

Fortran program provided by the TRL. 

Since the shortest range of the variables listed above is January 1987 to 

December 2000, this time span has been used for most of the analysis 

throughout the course of the thesis. It provides 14 years, totaling 168 

observations, of data which provides an adequate time span to perform 

regression or time series analysis. 

The explanatory variables above have been included as it is thought that 

they will have an impact on road accidents; indeed, some of them need no 

explanation. Car traffic makes up the vast majority of traffic on British 

roads and so the car traffic variable is a direct measure of exposure to road 

accidents, i.e., the more kilometers travelled, the more accidents there are 

likely to be. The national petrol and diesel delivery variables are to some 

respect surrogate measures of exposure. It is more common to use fuel sales 

as a surrogate for exposure, but since these data were not available, fuel 

deliveries were used instead. Measures of exposure are generally very 

difficult to obtain and most exposure data is gathered through surveys. For 

this reason it has not been possible to obtain regional exposure data, 

although it is hoped that the national level of traffic will provide a 

reasonable approximation at the regional level. 

Common sense might suggest that increased rainfall would have a similar 

impact on road accidents as increased traffic, i.e., it would lead to an 

increase in road accidents. This would be because vehicles have less control 

3 



when road conditions are wet, and wet weather can affect visibility. 

However, it is not necessarily the case that the effect of higher rainfall will 

result in more road accidents. Studies have shown that adverse weather 

conditions can result in more cautious driving and therefore a reduction in 

accidents; they may also result in people not making journeys unless they 

are competent drivers, thereby reducing exposure and increasing the 

proportion of good drivers on the road at once. Fridstrom et al. (1995) 

found a reduction in overall road accidents in snowy weather due to this 

sort of effect. 

The temperature variables are highly correlated with one another and are 

also, to a certain extent, correlated with exposure since it is known that 

there is generally more traffic on the roads when weather is good. It is 

likely that should one variable be found significant the other is unlikely to 

also be significant, and this may be the case for the exposure variables too. 

It is possible that the minimum daily temperature variable will act as a 

surrogate for adverse weather and road conditions such as frost or snow. 

Again, this could go two ways: either frost and snow will cause drivers to 

more easily lose control of their vehicles, or drivers will act over cautiously 

to compensate and may not even drive at all. 

Daylight and cloud cover have both been included as measures of the 

amount of daylight received. Again, these could go two ways: either 

increased light levels may mean better visibility and thus fewer accidents or 

an increase in light levels will mean more drivers travel and thus more 

accidents due to increased exposure. It is hoped that the presence of the 

exposure variables may counter this effect so that the true effect of daylight 

is revealed. 

1.2 Thesis format 

A variety of methodologies are considered in this thesis. We begin each 

chapter by giving an outline of a technique which can be used to model 
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count data, then give applications of that method. Throughout the course 

of the thesis, the computer program S-Plus together with the S+FinMetrics 

add-on have been used to derive the solutions given to the practical 

examples. 

The thesis begins with a summary of linear and log-linear regression 

modelling in Chapter 2. Both types of regression model are applied to 

Scottish and Southwest English car occupant accident data and conclusions 

are drawn. Along with the familiar residual plots used for examining the 

residuals from regression models, the correlogram is introduced as a means 

for checking the residuals for signs of autocorrelation; that is, serial 

correlation of the residuals. However, autocorrelation and dependence are 

not discussed in detail until the following chapter. 

In chapter 3 we consider ARIMA time series models which can be used in 

the analysis of residuals from regression models or alternatively can be used 

in their own right to analyse time series and make predictions. In this 

chapter an ARIMA model is fitted to the Scottish car occupant deaths and 

injuries data used in chapter 2, with the aid of the correlogram. 

The focus of chapter 4 is on the development of methodology to determine 

the effect of daylight on road accidents. The central idea of the chapter is 

to try to use latitude to examine the effect of daylight on road accidents; it 

was the difficulty in obtaining suitable explanatory variables for the 

regression analysis in chapter 2 which initially inspired this idea. Aspects of 

regression and ARIMA modeling are included in the analysis, and the same 

Scottish and Southwest English car occupant accident series used in chapter 

2 are used to illustrate the methods. 

In chapter 5 and 6 we move on to considering state space time series 

models. In chapter 5 Gaussian state space models are examined and an 

example is given of their successful application in the seat belt study of 

Harvey and Durbin (1986). A Gaussian state space model is then applied to 

the Scottish deaths and injuries data and comparisons are drawn between 

this model and the linear regression model for the same data in chapter 2. 
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In chapter 6 we consider non-Gaussian state space models, specifically the 

Poisson model which is the state space time series analogy of the log-linear 

regression model. This model is applied to the Scottish fatalities data and 

comparisons are drawn with the log-linear model for the same data. 

New methodology concerning the modelling of zero inflated counts, that is 

data with an unexpectedly large number of zero counts, is introduced in 

chapter 7. Here, we consider putting a zero inflated count model - the 

conditional Bernoulli truncated Poisson distribution - into state space form 

to analyse zero inflated count data. While this chapter is entirely 

theoretical, applications of the results are presented in chapter 8. 

1.3 Difficulties encountered in the 

completion of this thesis 

The first difficulty encountered in this thesis was the form in which the 

data from the TRL arrived. Data for each accident type was grouped 

together in individual year groups where months were in columns and 

similar accident types were in rows. To perform statistical analysis on the 

data in this form was not possible. After starting manually to cut and 

paste the data into single columns for each accident type, it became evident 

that this would take too long as there were, in all, 1056 individual data 

series to sort out from one another. Learning Visual Basic for Applications 

(VBA) to write routines to collate the data for each series into single 

columns rectified this problem. Once in column form, each series could 

easily be read into S-Plus where subsequent analysis could be carried out. 

The most common difficulty faced in the early stages of the thesis was the 

lack of explanatory variables for use in the analysis. When performing 

linear or log-linear regression, such as that in chapter 2, it is necessary to 

use several explanatory variables to obtain a reasonable fit as there is only 

so much that fitted ploynomial terms can do. Many of the examples 

6 



involving road accidents used in this thesis include explanatory variables, 

the majority of which have not been easy to obtain. 

To start with, the factor with possibly the most notable impact on the 

incidence of road accidents is the volume of traffic on the roads. This, as we 

noted in chapter 2, has been found to be significant from previous road 

accident studies such as Fridstrom et al. (1995) and Fridstrom and 

Ingerbrigtsen (1991); however, it is surprisingly difficult to come by. After a 

good deal of trying, it was established that we would be able to obtain no 

more than national quarterly data, which we would have to use as a 

substitute for regional monthly data. The Department for Transport and 

other organisations were unable or unwilling to supply any data which was 

not already available on their website. The national quarterly data on the 

DfT website, however, only covered recent years, and was neither regional 

nor monthly nor from 1987. The TRL were eventually able to supply the 

rest of the data back to 1987. 

Another major factor in determining the occurrence of road accidents is 

weather. Weather data, again, is unavailable to the general public in all but 

the most basic highly aggregated form which is of no use to a sensible 

statistical analysis. Eventually, due to lack of success obtaining this data 

from other sources, we were led to purchase the information from the MET 

Office for a considerable fee. The form that the weather data came in also 

needed to be altered to column format in VBA for use in S-Plus. 

Finally, the daylight data, which is vital to much of the analysis carried out 

in chapter 2 and 4, was also only obtained after some time and effort. The 

TRL provided a Fortran program which would calculate the times of 

sunrise and sunset for given a time, latitude and longitude. Without the 

software to run Fortran programs, I converted it into VBA and adjusted it 

to produce monthly output for the regions of the UK we were studying. 

Our experience in trying to obtain data led us to realise that data is an 

expensive commodity and not free of charge even to non-profit making 

organisations and individuals like universities or students. It was partly this 
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that led us to more actively pursue alternative ways of modelling road 

accident data which would give sensible solutions, even without the use of 

explanatory variables. These alternative ways of modelling count data led 

to ARIMA time series models, state space time series models and the 

ad-hoc methodology of chapter 4. 

However, even the use of these models was not without difficulty; S-Plus 

has no feature for the analysis of state space models. After unsuccessful 

attempts to obtain software such as Eviews, TSP, PcGive and Microfit for 

the analysis of state space models from the social sciences faculty, we were 

able to persuade computing services to make available FinMetrics (the 

financial time series analysis add on to S-Plus) for staff and research 

students. FinMetrics contains basic routines for state space analysis such as 

the Kalman filter and smoother and has the added advantage of being 

totally compatible with S-Plus so that no new language or syntax needs to 

be learnt. However, fitting a state space time series model is, as we learnt, 

certainly not a straightforward exercise like fitting a generalised linear 

model. The various functions that are used come piecemeal and need to be 

put together coherently; they do not come so that a state space model may 

be fit using one or two lines of code. Fitting non-Gaussian state space 

models is even more involved. However, due to having made contacts on 

the S-Plus news list, we were able to proceed with the fitting of the Poisson 

and conditional truncated Bernoulli Poisson models by adapting some 

software we were given for the fitting of the stochastic volatility model 

(Zivot et al., 2003). 

It is somewhat telling of the state of advancement in software for the 

analysis of state space time series models, that we found after having fitted 

state space models that there was no way to obtain estimates of standard 

errors on the state error variance parameters (hyperparameters) in these 

models. Software for the calculation of these standard errors became 

available in the next upgrade to FinMetrics which came out in April 2005, 

but the university was unable to obtain this until shortly before Christmas 

that year. 
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In the spring of 2006 a long standing problem that had occurred when 

trying to analyse non-Gaussian state space models was finally solved. The 

problem had been that it was not possible to obtain sensible state estimates 

for non-Gaussian state space models. However, it had been possible to 

obtain the overall fitted mean for the model as well as the state error 

variance estimates for all states along with their associated standard errors. 

Therefore, although a hindrance, for much of the compilation of this thesis 

this problem had not seriously impaired progress on the analysis of 

non-Gaussian state space models since state error variances are most 

important for deciding upon the inclusion or exclusion of states in a state 

space model. But difficulties had arisen when analysing non-Gaussian state 

space models with explanatory variables since these models include constant 

states which are the coefficients of the explanatory variables. These states 

cannot be judged using their state error variance since they are constant 

and thus have no state error variance. Since these states are the coefficients 

of the explanatory variables, it is crucial that sensible estimates are 

obtained for them, as well as their standard errors, so that conclusions can 

be drawn about the effect of the explanatory variables they apply to. As it 

had not been possible to obtain sensible state estimates, it was therefore 

not possible to obtain sensible estimates for the coefficients. In the spring 

of 2006 I eventually isolated the cause of the problem to the SimSmoDraw 

function, which is a function in the FinMetrics software package written to 

implement the simulation procedure in §6.3. It took a long time to find out 

that it was the SimSmoDraw function which was at fault since, generally, 

all possible shortcomings in one's own functions should be examined and 

exhausted before considering that one of the functions provided in the 

software may be at fault. Once the error in the SimSmoDraw function had 

been identified, it was relatively straightforward to create a new amended 

function, SimSmoDrawJames, which could be used in place of SimSmoDraw 

to calculate simulated states and errors for the non-Gaussian log-likelihood 

and fitted model. Reference to the role the SimSmoDrawJames function 

plays in the analysis of non-Gaussian state space time series models can be 

found in appendix A, along with the other functions I wrote to calculate 

the non-Gaussian log-likelihood and fitted model. 
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Chapter 2 

Linear and log-linear regression 

modelling 

In this chapter we investigate the use of linear and log-linear regression 

models with explanatory variables to model the variation in road accident 

counts. The methodology for fitting these models is generally well known, 

but for continuity with the rest of the thesis, where less familiar 

methodologies are presented, a short summary of the linear and log-linear 

modelling techniques is presented in the first two sections. The 

methodology is presented in terms of univariate observations since in the 

examples presented at the end of the chapter, four univariate time series are 

examined, although comparisons are drawn between them when 

appropriate. The examples presented concern linear and log-linear models 

applied to road accident data from Scotland and Southwest England. These 

series shall be re-examined in chapter 4 and provide examples to illustrate 

the modelling techniques elsewhere in this thesis. The primary references 

for this chapter are Neter et al. (1996) for linear models, and McCullagh 

and NeIder (1989) for log-linear models. 
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2.1 Linear regression 

2.1.1 Linear model framework 

Suppose we have univariate data with n observations, Yl, ... , Yn- Under the 

linear model these are modelled as the sum of rn explanatory variables, 

XiI, ... , Xim, multiplied by suitable constants, (3j, plus a random error, Ei, 

which is independently, identically and normally distributed, N(O, a 2 ): 

111 

Yi = L (3j Xij + Ei, 

j=l 

z 1, ... , n. (2.1) 

Most regression models will contain a constant; in the representation above 

the constant can be thought of as the first explanatory variable coefficient, 

(31, where the first explanatory variable XiI = 1, for i = 1, .. , n. Putting (2.1) 

into matrix form, where y = (Yl ... Yn)', f3 = eBl ... Pm)', E (El'" En)' and 

X= 

model (2.1) can be summarised by 

To estimate the coefficients, f3, we choose estimates, j3, so that the model 

fit using these estimates, X /l is as close as possible to the observations, y. 

This is accomplished by minimising the sum of squares of the errors, E( 

m }2 
k,(3jXij = (y - X(3)'(y - X(3). (2.2) 

The sum of squares is minimised by differentiating with respect to (3j and 
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setting to zero, which gives the estimate for f3 as 

~ = (X'X)-l(X'Y). (2.3) 

This estimate can also be derived by maximum likelihood estimation, where 

the log-likelihood of (2.1), 

is maximised by differentiation with respect to (3j and set to zero in the 

same way as the sum of squares. In this way maximum likelihood 

estimation can also be used to derive an estimate of the variance, (}2, which 

is given by 

n ( A2 1 
() = - L Yi 

n i=l 

1 A A 

(y - X(3)'(y - Xf3). 
n 

However, this is a biased estimate and so the unbiased estimate, 

1 A A 

--(y - Xf3)'(y - Xf3), 
n-m 

is generally used instead. 

Note that in the above equations the main part of the estimating equation 

for (j2 is called the deviance, D, and is given by 

n ( m )2 
D = t; Yi - ~~jXij 

The deviance will be of relevance in the following subsection on model 

building and goodness-of-fit. 

Finally, the degree of uncertainty surrounding the coefficient estimates, (3j, 

is given by standard errors which are calculated from the coefficient 

variance-covariance matrix: s.e.(/3j) = {(j2(X'X)j/P/2, where (X'X)j/ 

12 



denotes the diagonal elements of (X' X)-l. The t-ratios (parameter 

estimates divided by corresponding standard errors) are judged for 

significance against a t distribution with n - m degrees of freedom. Where 

a t-ratio lies in the tails of the t n - m distribution, outside the middle 95% of 

the distribution say, then the corresponding coefficient estimate is judged as 

insignificant and the explanatory variable to which it applies is removed 

from the model. For the examples given in this chapter and subsequent 

chapters, n is so much greater than m that the t n - m distribution can be 

approximated by the standard Gaussian distribution. 

2.1.2 Model building and goodness-of-fit 

For exploratory observational studies the task of choosing the best subset of 

explanatory variables to include in the final regression model is not 

straightforward. Generally, if there are m possible explanatory variables 

available in the study then 2m possible combinations of those variables can 

be used as the explanatory variables in the model. Some of the explanatory 

variables, however, will not have a significant effect on the overall fit of the 

model to the response variable, so can be eliminated from the model. 

F-tests are used to compare one model with a competing model and only 

nested models are compared to one another, i.e., the explanatory variables 

of one of the models must be a subset of the explanatory variables of the 

other. If the explanatory variables of model Ho are a subset of the 

explanatory variables of model HI, then the F -statistic is given by 

F = (Do - DI)/(ml - mo) 
Dd(n - ml) , 

where Do and DI are the deviances for models Ho and HI respectively, and 

mo and ml are the numbers of explanatory variables in model Ho and HI 

respectively. The F -statistic follows an ~nl-mo,n-ml distribution, so the 

F-test works on the basis that model Ho will be rejected in favour of HI 

when F is greater than a certain percentage point of the Fml-mo,n-ml 

13 



distribution, typically the 95% point. For a large number of explanatory 

variables, model selection using the F-test can be time consuming and there 

may not be anyone model which offers the best fit to the data. So, an 

analyst should generally pick the most plausible model and use other 

methods to assess the overall fit of the model such as the R2 statistic and 

residual plots. Neter et al. (1996), chapters 8, 9 and 10, gives an exhaustive 

treatment of regression model building methodology which fits the F-test 

into the wider topic of the analysis of variance. 

As far as residual plots are concerned, there are two which can be used to 

assess the fit of practically all linear models, they being the residuals vs 

fitted values plot, which should show a random scatter of residuals, and the 

normal probability plot, which should show that the residuals when plotted 

against their expected values under normality form a virtually straight 

diagonal line. For data which has been collected over a period of time, such 

as the data investigated in this thesis, another residual plot that should be 

examined is a simple plot of the residuals plotted against time. Time series 

data can be highly correlated and if explanatory variables do not account 

for all the variation in the data then some of this correlation may remain in 

the residuals and the simplest way to detect it is by viewing the residual 

series over time. To find out exactly what the pattern of correlation among 

the residuals is, if any, another plot called the correlogram may be used. 

The definition of the correlogram is as follows: For any time series of data 

or residuals, Yl, ... , Yn, the kth sample auto covariance coefficient is defined as 

1 n 

ik = - L (Yt Y)(Yt-k - V), 
n 

t=k+l 

where k is an integer; this leads to the kth sample autocorrelation coefficient 

A {k 
Pk = A • 

{O 
(2.4) 

A plot of the Pk values against k gives the correlogram. The correlogram 

shows how strongly correlated residuals are with one another; a description 
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of how to use the correlogram to tell exactly what the pattern of correlation 

is in a series is given in chapter 3. Also given in chapter 3 is a description of 

autoregressive and moving average terms which can be used to model 

dependencies in the data. Most importantly, for a correlogram which shows 

no sign of dependence structure, all autocorrelations, accept the first, do 

not differ significantly from zero and the first at k = 0 is exactly 1 since any 

observation is totally correlated with itself. 

2.2 Generalised linear models 

In the modelling of data it is common to use non-linear regression methods 

as well as linear methods, depending on the form of the data. Many 

non-linear methods used belong to a class of models known as generalised 

linear models (GLM's). In fact, linear models discussed in the previous 

section also belong to this class of models. The following subsections are a 

summary of the GLM framework, a more detailed description can be found 

in McCullagh and NeIder (1989), chapter 2. 

2.2.1 GLM framework 

In a GLM the observations, Yi, are independent and follow distributions 

which belong to the exponential family, where the exponential family 

density takes the form 

Here, Bi is the canonical parameter and ¢i is the nuisance, or dispersion, 

parameter. A variety of common distributions can be written in 

exponential form such as the Gaussian, Poisson and Binomial distributions. 

For linear models where the observations follow the Gaussian distribution 

we have Bi /-Li, b( Bi) = Bl/2, a( ¢i) = ¢i = (72 and 

C(Yi' ¢i) = -1/2{yl/ (72 + log(27r(72)}. 
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The systematic part of a generalised linear model, i.e., the explanatory 

variables, are expressed through a linear predictor, 'rJi, given by 

m 

'rJi = L (3j X ij. 

j=l 

The linear predictor is then linked to the mean, fli, through a link function, 

g(-), where 

The link function may be any monotonic differentiable function. For the 

linear model the link function is the identity, i.e., 'rJi = fli. For models which 

belong to the exponential family, b'(Bi) = fli = E(Yi), therefore Bi = b'(fli). 

When g(fli) is chosen so that g(fli) = b' (fli) then g(fli) is known as the 

canonical link function. The canonical link is desirable as it leads to the 

simple relationship Bi = 'rJi· 

The coefficient estimates, {3j, are derived using the maximum likelihood 

approach where the log-likelihood is given by 

(2.5) 

Solutions may not be obtainable from maximising the log-likelihood 

analytically, so numerical maximisation procedures such as the Fisher 

scoring algorithm (McCullagh and NeIder (1989), p.42) are usually used to 

find the maximum likelihood estimates, {3j, as well as their associated 

standard errors. 

2.2.2 Model building and goodness-of-fit 

Essentially, as with linear models, for GLM's we need to find the best set of 

the explanatory variables to reasonably accurately explain the variation 

within the observations and then assess the fit of the model once the right 

set of explanatory variables has been found. However, F-tests are not used 
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to compare the suitability of different sets of explanatory variables; instead, 

log-likelihood ratios are used. 

Log-likelihood ratio tests compare one model with a competing model and, 

as with linear models, only nested models are compared to one another. 

.0J ote that a nested model in this context not only means that the 

explanatory variables of one of the models must be a subset of the 

explanatory variables of the other, but it also means that the models 

compared are from the same exponential family distribution and have the 

same link function. If the explanatory variables of model Ho are a subset of 

the explanatory variables of model HI then the log-likelihood ratio test 

statistic is given by 

where e (131 ... 13m (j2)'. LOI has an asymptotic chi-squared distribution 

with Tnl - Tno degrees of freedom, where Tnl and Tno are the numbers of 

explanatory variable coefficients in model HI and Ho respectively. 

Typically, Ho will be rejected in favour of HI when L01 is greater than the 

95% point of the X~l-mo distribution. Again, as for the F-test, for a large 

number of explanatory variables model selection using the log-likelihood 

ratio test procedure can be time consuming and there may not be anyone 

model which offers the best fit to the data. So an analyst should generally 

pick the most plausible model and use residual plots to assess the fit of that 

model. 

For GLM's, residuals are generally not calculated simply by subtracting the 

fit from the observations; instead, usually residual deviances are used, 

which are calculated from the scaled deviance. The scaled deviance is 

calculated in the same way as the log-likelihood ratio statistic, where model 

Ho is the chosen model and model Hs is the alternative model. So the 

scaled deviance is given by 

Here, the S in model Hs stands for saturated, so called because this model 
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has n parameters, as many as there are observations. Because there are as 

many parameters as observations, the saturated model provides a perfect fit 

to the data where the fitted mean for each observation is equal to that 

observation: fli = Yi· This means that the scaled deviance expressed in 

terms of the mean value parameter is 

D(Ylfl) 2log{L(YIY)} - 2log{L(PIY)}· (2.6) 

The residual deviances are given by 

D . ( ri = szgn Yi i = 1, ... ,n, (2.7) 

where L di = D(ylfl)· Other types of residual can be used aside from the 

deviance residuals; the most widely used of these are Pearson residuals: 

Yi - fJi 

ylVar(fli) , 
i = 1, ... ,n. 

When residuals have been calculated, in most cases they can be displayed 

using the same array of plots as given in §2.1.2. Even the normal 

probability plot is often suitable for residual deviances as long as the counts 

are not too small, in this case the half-normal probability plot would be 

more suitable. 

2.2.3 The Poisson model 

A sensible choice for the modelling of count data, like road accident counts, 

is to assume the counts are generated by a Poisson process since Poisson 

random variables can only take non-negative integer values and have no 

upper limit. The Poisson density is given by 

(2.8) 
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Written in exponential family form this is 

where the canonical parameter Bi = 10g(Ai) and the dispersion parameter 

¢i = 1; here, b(Bi) = exp(Bi) and a(¢i) = ¢i. In a Poisson model the 

parameter Ai is the mean, so we have f-li = Ai; also, for the Poisson model 

with the canonical link we have 7]i = Bi . Therefore in a Poisson model with 

the canonical link, the linear predictor relates to the mean by a log-link, 

TJi = g(f-li) = log(f-li). The Poisson model with the log-link is often known as 

the log-linear model. 

The log-linear model log-likelihood is given by 

n 

log{ L(AIY)} = I)ydog(Ai) - Ai}. 
i=l 

Substituting (2.9) into (2.6), we obtain the scaled deviance for the 

log-linear model: 

n 

D(YI~) = 2 L {Yi log(yd ),i) - Yi + ),i}. 
i=l 

Therefore the residual deviance for the log-linear model is 

i = 1, ... ,n. 

(2.9) 

(2.10) 

Although Poisson variation is a logical assumption to apply to count data, 

it is seldom the case that after calculating the mean we find that it is 

exactly equal to the variance. Instead, it is often the case that the variance 

of the data is greater than the mean: Var(Y) > E(Y), which is a 

departure from the Poisson assumption that Var(Y) = E(Y). This could 

occur for a variety of reasons, for road accident counts the main reason is 

likely to be that the explanatory variables do not manage to explain all the 

systematic variation in the data and so some of this systematic variation is 

being interpreted as random and is thus included in the variance. When a 
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log-linear model is such that the variance is significantly greater than the 

mean then the model is said to be over-dispersed. 

The simplest way of formulating the over-dispersion is to assume that 

Var(Y) = 0"2 E(Y) for some constant 0"2. Then 0"2 can be estimated using 

the Pearson statistic, X 2
, divided by the degrees of freedom, n - m, for the 

model with m explanatory variables: 

(2.11) 

Note that the Pearson statistic is the sum of the Pearson residuals: 

X 2 = L rf. In a log-linear model the dispersion parameter is assumed to 

be 1, therefore an over-dispersed log-linear model is one for which the 

estimate 0-2 is found to be significantly larger than one. If a log-linear 

model is found to be over-dispersed then the coefficient variance-covariance 

matrix is multiplied by 0-2 in order to obtain an approximate measure of 

precision for /3. This translates to multiplying the coefficient estimate 

standard errors, s.e(/3), by 0- to take into account the increased uncertainty 

over the coefficient estimates. 

2.3 Regression methods applied to Scottish 

and Southwest English car occupant 

accident data 

In this section we examine Scottish and Southwest English car occupant 

accident data using linear and log-linear regression models. The data 

examined are the number of car occupant fatalities and the total number of 

car occupants killed and injured (fatalities, serious injuries and slight 

injuries) per month in Scotland and Southwest England from 1987 to 2000. 

The four series are given in figure 2.1. Scottish and Southwest English data 

are used here rather than data from any other regions of the UK because 
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Figure 2.1: Car occupant casualty time series from January 1987 to December 
2000: (i) Scottish fatalities, (ii) Scottish deaths and injuries, (iii) Southwest 
English fatalities, (iv) Southwest English deaths and injuries. 

the data and results obtained here will be made use of in the techniques of 

chapter 4 where a large difference in latitude between two regions is 

required. 

2.3.1 Model fitting 

Linear and log-linear models were fitted to all four series and explanatory 

variables were used to model the variation in the data. The linear models 

were fitted to the raw data counts since transformations such as logging or 

taking square roots added unnecessary complexity to the models and 

yielded no improvement in the model fits. The explanatory variables 

examined in the model building were those detailed in § 1.1; thus the 

rainfall variable, temperature variables, cloud cover and daylight were 

specific to each region, but the traffic variable and the two fuel variables 

were national. Note, the daylight variables were taken at the rough 

geographical centres of Scotland and Southwest England, they being 
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respectively: the town of Stirling located at latitude 56.12 and longitude 

-3.94, and the town of Langport located at latitude 51.03 and longitude 

-2.83. A fitted linear trend designed to represent gradual change in the 

response variable not captured by the explanatory variables was also used 

in the analysis; this device was used in a comparable study using log-linear 

models on road accidents in the Scandinavian countries and Finland 

(Fridstrom et al., 1995). The linear trend is designed to represent such 

factors as improvements in the design of safety features in cars, like side 

impact bars and improved tire traction, as well as general improvements in 

legislation and traffic management by government and local authorities. 

Under the linear regression models, tables 2.1 and 2.2, those explanatory 

variables found to have a significant effect on car occupant casualties along 

with their coefficients and coefficient standard errors for the four accident 

series are shown. The residual variance estimates for the models fitted to 

the Scottish and Southwest fatalities data are (j2 = 23.00 and (j2 = 29.17 

respectively; residual variance estimates for the Scottish and Southwest 

deaths and injuries models are (j2 = 10421 and (j2 = 11286 respectively. 

R-squared values are very low for the Scottish and Southwest fatalities 

models at 0.30 and 0.16 respectively; they are better for the Scottish and 

Southwest deaths and injuries models at 0.56 and 0.67. Linear model 

residual plots for the Scottish fatalities and Southwest fatalities data 

(figures 2.2 and 2.4) indicate good fits. However, the time plot of residuals 

for the Scottish and Southwest deaths and injuries linear models show a 

slight variation of residuals about zero through time suggesting that not all 

systematic variation has been eliminated from these series. Also, the 

Southwest correlogram has a significant spike at lag 12, this suggests that 

there may be some seasonal variation in the data which has not been 

accounted for in the model. Despite these problems, overall the Scottish 

and Southwest deaths and injuries models provide reasonable fits as can be 

seen in figures 2.3 and 2.5. 

Tables 2.3 and 2.4 show those explanatory variables found to have a 

significant effect on the observations under the log-linear models fitted to 

the four series. It can be seen that exactly the same variables found 
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significant in the linear models are also significant under the log-linear 

models. Deviance and Pearson residual plots are virtually identical for the 

log-linear models as for their respective linear counterparts and therefore 

have not been shown. The log-linear Scottish and Southwest deaths and 

injuries models again show variation of the residuals around zero through 

time, and the Southwest deaths and injuries model also has a spike at lag 

12 on the correlogram like its linear counterpart. Over-dispersion is present 

in the log-linear Scottish and Southwest fatalities models, the estimated 

dispersion parameters are fJ2 = 1.207 and fJ2 = 1.717 respectively. The 

dispersion estimates for the Scottish and Southwest deaths and injuries 

models are much larger at fJ2 = 9.054 and fJ2 = 9.275 respectively. The 

standard errors on the log-linear model coefficient estimates in tables 2.3 

and 2.4 have been multiplied by the square roots of the dispersion estimates 

to get a better measure of precision for the coefficient estimates, as 

mentioned earlier. Due to the increase in the sizes of standard errors after 

multiplying by the square root of the dispersion estimates, some of the 

explanatory variables originally included were removed from the log-linear 

deaths and injuries models. This made no change to the overall fit of the 

two models and actually had the effect of marginally reducing the 

over-dispersion in these models. 

In all, it can be seen that the linear and log-linear models are virtually 

identical both in terms of the explanatory variables included and the signs 

of their respective coefficients, so linear models provide a very reasonable 

approximation to the count data in this example. It is worth noting that 

the fatality data series in both the linear and log-linear cases are modelled 

with considerably fewer explanatory variables than the deaths and injuries 

series. This is likely to be since the sizes of the monthly observations are 

much smaller for the fatalities data and so the series exhibit more random 

variation which explanatory variables cannot pick up on. 
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Variable Fatal Total 
Coef Std err Coef Std err 

Constant 29.12 1.607 -377.2 179.7 
Linear Trend -0.05345 0.007690 
N at car traffic 53.38 8.675 
N at petrol del ~ 3.841 x 10-4 6.872 X 10-5 

Nat diesel del -5.328 x 10-4 9.851 X 10-5 

Total rainfall ~ 1.398 0.2934 
Max daily temp ~ 11.98 4.025 
Min daily temp 0.8012 0.1574 
Cloud cover 
Daylight -0.8132 0.1561 -36.41 4.138 

Table 2.1: Scottish data explanatory variable coefficients and standard errors 
from fitted linear regression models. 

Variable Fatal Total 
Coef Std err Coef Std err 

Constant -4.575 7.039 182.3 142.0 
Linear Trend -0.09542 0.01773 -

Nat car traffic 1.269 0.3450 45.44 3.505 
N at petrol del -

Nat diesel del 
Total rainfall ~ 1.524 0.2451 
Max daily temp -

Min daily temp 13.41 3.470 
Cloud cover ~ -32.18 16.16 
Daylight -0.5877 0.2120 -22.52 4.539 

Table 2.2: Southwest English data explanatory variable coefficients and stan­
dard errors from fitted linear regression models. 
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Variable Fatal Total 
Coef Std err Coef Std err 

Constant 3.470 0.07552 5.674 0.1615 
Linear Trend -0.002823 3.692 x 10-4 -

Nat car traffic - 0.04793 0.007685 
N at petrol del 3.428 x 10-7 6.042 X 10-8 

Nat diesel del - -4.715 x 10-7 8.603 X 10-8 

Total rainfall 0.001187 2.515 x 10-4 

Max daily temp 0.01023 0.003524 
Min daily temp 0.04243 0.007565 -

Cloud cover - -

Daylight -0.04338 0.007583 -0.03221 0.003644 

Table 2.3: Scottish data explanatory variable coefficients and standard errors 
(over-dispersion included) from fitted log-linear regression models. 

Variable Fatal Total 
Coef Std err Coef Std err 

Constant 1.569 0.4146 6.234 0.1165 
Linear Trend -0.005654 0.001040 
Nat car traffic 0.07423 0.02016 0.03781 0.002928 
N at petrol del - -

Nat diesel del -

Total rainfall - 0.001210 1.979 x 10-4 

Max daily temp - -

Min daily temp 0.01063 0.002825 
Cloud cover - -0.02654 0.01314 
Daylight -0.03462 0.01251 -0.01806 0.003706 

Table 2.4: Southwest English data explanatory variable coefficients and stan­
dard errors (over-dispersion included) from fitted log-linear regression mod­
els. 
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Figure 2.2: Scottish fatalities linear model residual plots: (i) residuals vs 
fitted values, (ii) normal plot, (iii) time chart of residuals, (iv) correlogram. 
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Figure 2.3: Scottish deaths and injuries linear model residual plots: (i) resid­
uals vs fitted values, (ii) normal plot, (iii) time chart of residuals, (iv) cor­
relogram. 
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Figure 2.4: Southwest fatalities linear model residual plots: (i) residuals vs 
fitted values, (ii) normal plot, (iii) time chart of residuals, (iv) correlogram. 
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Figure 2.5: Southwest deaths and injuries linear model residual plots: (i) 
residuals vs fitted values, (ii) normal plot, (iii) time chart of residuals, (iv) 
correlogram. 
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2.3.2 Conclusions and interpretations 

Scottish data 

From the coefficients of table 2.1 we can see that the Scottish fatalities 

linear model shows that ala Celsius rise in the average minimum daily 

temperature contributes to an increase of 0.8 fatalities. Also, an increase in 

the length of day from sunrise to sunset of 1 hour leads to a decrease of 0.8 

fatalities. There is a general downward trend in Scottish car occupant 

fatalities indicated by the negative trend coefficient, albiet rather small. 

The coefficient indicates that each month there are 0.05 fewer fatalities 

than in the previous month due to general factors not covered by the 

explanatory variables such as improvements in road infrastructure and 

improvements in car safety. 

Table 2.1 also gives the coefficients for the total Scottish car occupants 

killed and injured linear model. These coefficients show that an increase in 

travel of 1 billion kilometres nationally leads to an increase of 53.38 deaths 

and injuries in Scotland. An increase in national petrol deliveries of 1000 

tonnes contributes to a rise of 0.3841 deaths and injuries in Scotland. And 

a rise in national diesel deliveries of 1000 tonnes contributes to a fall of 

0.5328 deaths and injuries in Scotland. The regional Scottish explanatory 

variables show that an increase in rainfall of Imm leads to an increase of 

l.398 deaths and injuries, an increase of 10 Celsius in the average maximum 

daily temperature contributes to an increase of approximately 12 deaths 

and injuries, and a 1 hour increase in daylight leads to a fall of 36.4 deaths 

and injuries. 

Table 2.3 indicates a similar story for the Scottish fatalities and Scottish 

total killed and injured log-linear models as is given in the linear models. 

The fatalities model shows that ala Celsius rise in the average minimum 

daily temperature contributes to an increase in fatalities of 4.3% and an 

increase in the length of day from sunrise to sunset of 1 hour leads to a 

decrease in fatalities of 4.25%. The linear trend term again indicates a 
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general downward trend in Scottish car occupant fatalities with the 

coefficient indicating that each month there are 0.28% fewer fatalities than 

in the previous month caused by factors not covered by the explanatory 

variables. 

The Scottish deaths and injuries model from table 2.3 shows that an 

increase in travel of 1 billion kilometres nationally leads to an increase in 

deaths and injuries of 4.9% in Scotland. An increase in national petrol 

deliveries of 1000 tonnes contributes to a 0.034% increase in deaths and 

injuries in Scotland. The annual variation in petrol deliveries is in the 

region of 300,000 tonnes, so such an increase is substantial. A rise in 

national diesel deliveries of 1000 tonnes contributes to a 0.047% decrease in 

deaths and injuries in Scotland. For diesel deliveries, annual variation is 

generally over 10,000 tonnes. The regional Scottish explanatory variables 

show that an increase in rainfall of 1mm leads to an increase in deaths and 

injuries of 0.1188%, an increase of 10 Celsius in the average maximum daily 

temperature contributes to an increase in deaths and injuries of 

approximately 1%, and a 1 hour increase in daylight leads to a fall in 

deaths and injuries of 3.17%. 

Southwest English data 

From the coefficients of table 2.2, the Southwest English fatalities linear 

model shows that an increase in travel of 1 billion kilometres nationally 

leads to an increase of 1.269 fatalities in Southwest England and an 

increase in the length of day from sunrise to sunset of 1 hour in Southwest 

England leads to a decrease of approximately 0.59 fatalities. There is a 

general downward trend in the number of car occupant fatalities in 

Southwest England indicated by the negative trend coefficient, showing 

that each month there are 0.095 fewer fatalities than in the previous month 

due to general factors not covered by the explanatory variables. 

Table 2.2 also gives the coefficients for the total Southwest English car 

occupants killed and injured linear model. These coefficients show that an 
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increase in travel of 1 billion kilometres nationally leads to an increase of 

45.44 deaths and injuries in Southwest England. The regional Southwest 

explanatory variables show that an increase in rainfall of 1mm leads to an 

increase of 1.524 deaths and injuries, an increase of 10 Celsius in the average 

minimum daily temperature contributes to an increase of 13.41 deaths and 

injuries, and a 1 hour increase in daylight leads to a fall of 22.52 deaths and 

injuries. Cloud cover is also a significant variable and an increase of 1 okta 

(1/8 cloud cover) corresponds to a decrease of 32.18 fatalities. 

Table 2.4 indicates a similar story for the Southwest fatalities and 

Southwest deaths and injuries log-linear models as for the linear models. 

The fatalities model shows that an increase in travel of 1 billion kilometres 

nationally leads to an increase in fatalities of 7.7% in Southwest England 

and an increase in the length of day from sunrise to sunset in Southwest 

England of 1 hour leads to a decrease in fatalities of 3.402%. The linear 

trend term again indicates a general downward trend in Southwest English 

car occupant fatalities with the coefficient indicating that each month there 

are 0.56% fewer fatalities than in the previous month caused by factors not 

covered by the explanatory variables. 

The Southwest deaths and injuries model from table 2.4 shows that an 

increase in travel of 1 billion kilometres nationally leads to an increase in 

deaths and injuries of 3.85% in Southwest England. The regional Southwest 

explanatory variables show that an increase in rainfall of 1mm leads to an 

increase in deaths and injuries of 0.121 %, an increase of 10 Celsius in the 

average minimum daily temperature contributes to an increase in deaths 

and injuries of approximately 1%, a 1 hour increase in daylight leads to a 

fall in deaths and injuries of 1.79%, and an increase of 1 okta in cloud cover 

leads to a decrease in deaths and injuries of 2.62%. 

Interpretations of the models 

Generally, the interpretations of the effects of the explanatory variables on 

the data in the various models considered are fairly straightforward. 
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Although there are some exceptions which on the face of it seem to be 

counter intuitive, there are plausible explanations and these are detailed in 

the the following paragraphs. Considering the more obvious explanatory 

variable interpretations firstly though, we have the following: The daylight 

variable features in all models and has the effect that more hours of 

daylight leads to fewer accidents, which seems reasonable as with increased 

daylight hours visibility would be good for a longer period of each day. 

Also, the absolute value of the daylight coefficients are larger for all the 

Scottish models than the Southwest models, implying that daylight has a 

stronger effect on car occupant casualties in Scotland than Southwest 

England. The rainfall variable features in the Scottish and Southwest 

deaths and injuries models, the effect in these models is that increased 

precipitation leads to an increase in accidents; this again seems plausible. 

The national traffic variable features in all but the Scottish fatalities 

models and has the effect that an increase in traffic leads to an increase in 

casualties in whichever model it appears in; the same result has been found 

in all other studies where traffic has been used as an explanatory variable. 

One of the two temperature variables features in all but the Southwest 

fatalities model; they have the same effect in all the models in which they 

appear: that is, an increase in temperature leads to an increase in 

casualties. If the monthly average minimum daily temperature is a proxy 

for adverse weather conditions such as snow and frost, as was suggested in 

the previous chapter, then it appears that the argument that these 

conditions encourage better driving and more skilled drivers is possibly true. 

However, this variable is highly correlated with the average maximum daily 

temperature variable and so could simply be showing that good weather 

encourages more drivers onto the road and so act as a proxy for exposure. 

The two fuel variables: petrol deliveries and diesel deliveries, feature in the 

linear and log-linear Scottish deaths and injuries models. However, it seems 

on the face of it slightly implausible that while an increase in petrol 

deliveries leads to an increase in road accidents, an increase in diesel 

deliveries should lead to a decrease in accidents. But it was decided to keep 

the model as it was rather than try to change things so there was no such 
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discrepancy because there are differences between the types of vehicles that 

use petrol and the type that use diesel and these may explain why higher 

diesel imports seem to decrease road accidents. Diesel, on the whole, tends 

to be used in commercial and goods vehicles such as lorries, trucks, vans 

and taxi's, although an increasing number of private cars also run on diesel. 

For the period under investigation there has been a steady, almost linear, 

increase in the level of diesel deliveries implying that more and more 

vehicles on the road are powered by diesel fuel, and over the same period of 

time there has been an initial rise and then tailing off in the level of petrol 

deliveries. Diesel powered vehicles are generally slower than petrol powered 

vehicles, not only because large slow moving vehicles use diesel fuel, but 

also because diesel powered vehicles of a particular make and model will 

generally not have quite the speed of petrol powered vehicles of the same 

make and model. It is possible that the presence of a higher proportion of 

diesel powered vehicles on the road could generally slow the pace of traffic 

and thereby reduce accidents. 

Another unexpected result is that more cloud cover appears to have the 

effect of decreasing and not increasing car occupant accidents; this variable 

appears in the Southwest deaths and injuries models. It was expected that 

cloud cover would behave in a similar way to daylight since more cloud 

generally reduces light levels and so should lead to an increase in accidents; 

also, more cloud cover generally comes with a higher chance of rain and so, 

again, should lead to more accidents. The fact that cloud cover has been 

found to have an effect in reducing accidents must be due to the fact that 

the rainfall and daylight variables are also present in the models in which 

the cloud cover variable appears, and so must account for all the daylight 

and rainfall effects. Eliminating the effects of rainfall and daylight, it is not 

difficult to see that cloud cover could have a positive effect since cloud cover 

reduces dazzle from the sun, especially at times when the sun is low in the 

sky and also when the sun is shining during or just after rainfall. 
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Chapter 3 

ARIMA time series models 

The topic of Autoregressive Integrated Moving Average (ARIMA) analysis 

is large and has many different aspects. This chapter summarises the most 

important elements of ARIMA processes for data taken at discrete time 

points and then goes on to apply the methods to the Scottish deaths and 

injuries data analysed in chapter 2. A thorough coverage of this topic can 

be found in Hamilton (1994) while a more introductory approach is given 

by Diggle (1990). Other standard texts on this subject are Chatfield (1975) 

and Harvey (1981). The chapter begins with a summary of the concept of 

stationarity which is a key component of ARIMA modelling, then §3.2 

covers the implementation of ARIMA time series modelling from model 

building to parameter estimation. Section 3.3 goes on to apply the theory 

to data. Throughout the chapter, methods are presented in terms of 

univariate observation data. 

3.1 Stationarity 

3.1.1 Definitions 

An important concept when dealing with ARIMA time series models is that 

of stationarity; we shall consider the definitions of stationarity for discrete 
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time processes as these are the subject of this thesis. A time series is said 

to be strictly stationary if the joint probability distribution associated with 

p observations, Ytl' ... , Ytp, made at any set of times, t l , ... , t p , is the same as 

the joint distribution of Ytl+k, ... , Ytp+k, for any value k. In other words, 

shifting the time origin by k has no effect on the joint distributions which 

therefore only depend on the intervals between t l , ... , tp; this definition 

holds for any value p. Generally speaking, this definition implies that a 

stationary time series is one in which there is no systematic change in the 

mean (a trend), no change in the variance (heteroskedasticity) and no 

periodic variations such as seasonal or cyclic effects. So a stationary time 

series will appear to look similar whichever point in time it is observed. 

In practice strict stationarity is often an uncheckable assumption, so the 

weaker assumption of second-order stationarity (weak or covariance 

stationarity), defined by the auto covariance function, is used instead. For a 

sequence of identically distributed time series observations, Yt, each with 

mean E(Yt) = f-lt, the auto covariance function Ik,t is defined as 

Ik,t = E{(Yt f-lt)(Yt-k - f-lt-k)}, 

which is much like the ordinary covariance function except defined for only 

one sequence of observations at two points in time. For the sequence to be 

covariance stationary, or weakly stationary, we have 

E(Yt) 

E{(Yt - f-l)(Yt-k - f-l)} 

for all t, 

for all t. (3.1) 

Therefore, for a process to be weakly stationary, the covariance between Yt 

and Yt-k depends only on k, the length or lag in time separating the 

observations, and not on t, the point in time. In this definition no 

assumption is made about higher moments than those of second order. 

From the definition of the covariance function it can be seen that the 

marginal variance is given by 10. 

A good example of a stationary time series is a white noise process, which 
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is simply a sequence of mutually independent random variables, each with 

mean zero and variance (J2. Its auto covariance function is 

rk,t 
t = k, 

t =I k. 
(3.2) 

Stationarity is an important concept in ARIMA time series analysis since a 

time series needs to be converted to stationarity before analysis can be 

carried out on it. The white noise process is used as a benchmark to asses 

possible serial dependence in an observed time series and is used in the 

formulation of ARMA models shown later. In this context, the white noise 

process is usually Gaussian distributed and will be considered so for the 

rest of the chapter, but it need not be in all cases. 

3.1.2 Converting a time serIes to stationarity 

A time series can be converted to stationarity in a variety of ways. One way 

is to fit a regression model to the series. This should eliminate undesirable 

characteristics such as trend and seasonal variation giving a sequence of 

residuals which are stationary; the use of this method is demonstrated in 

chapter 2. Another way to convert a time series to stationarity is to use 

differencing. Here, elements of the time series are subtracted from one 

another in such a way as to yield a stationary series. In most texts a 

differenced series is usually given by an operator, 6., such that for time 

series data, Yt, 

6.sYt = Yt - Yt-s, (3.3) 

for all integers s. To remove a linear trend from a series for instance, s is set 

to one; in this case we usually write 6.1 6., i.e., without the subscript. To 

remove seasonal variation from a series, s is set to the length of the seasonal 

cycle; so for data collected monthly, for instance, the seasonal is likely to 

arise in a yearly pattern, i.e., we set s = 12. Polynomial trend removal can 

be carried out by differencing to the degree of the polynomial; e.g., if a 
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quadratic trend is present in the time series then it is eliminated as follows: 

This can be extrapolated up to polynomials of any order, d, although it is 

not usual to go above order 3. 

3.2 ARIMA modelling 

3.2.1 The ARIMA model 

ARIMA time series analysis is designed specifically to handle data that has 

been collected over time, in comparison with regression which can be used 

to model the relationships between factors of any sort. Perhaps, more 

specifically, ARIMA analysis is useful since data collected over time can 

exhibit signs of autocorrelation, that is dependence among observations 

within the same time series, which the ARIMA framework can handle. For 

instance, on a small time scale, daily, say, localised temperature readings 

are likely to exhibit signs of autocorrelation, that is, knowing the weather 

yesterday is likely to add to the accuracy of a prediction of today's weather 

compared to not knowing yesterday's weather. 

If a time series is stationary, or has been converted to stationarity, then an 

Autoregressive Moving Average (ARMA) model can be used to model the 

correlation structure of the stationary series. An Autoregressive Integarated 

Moving Average (ARIMA) model is an ARMA model applied to a time 

series which has been converted to stationarity using differencing. However 

stationarity is achieved, the ARM A modelling principle is that the resulting 

time series can be expressed as a function of past observations and past 

error terms such that 

p q 

Yt = ~ ¢iYt-i + ~ ejZt- j + Zt, (3.4) 
i=l j=l 
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where Zt is a white noise term and -1 < ¢i, ej < 1, for a stationary process. 

ARMA processes with only terms in ¢ and none in () are called 

autoreggressive processes, and ARMA processes with only terms in e and 

none in ¢ are called moving average processes. 

3.2.2 Model building 

As with all statistical problems, model building for ARIMA models is a 

process of formulation, estimation and verification. Formulation for 

ARIMA models, however, is not a precise science. An initial model may be 

specified using a mixture of knowledge and examination of the data. 

Looking at the time plot of the data is very helpful, especially for the type 

of road accident data presented in chapter 2. Generally, it can be seen 

whether there is evidence of a trend or seasonal effect in the data so the 

series can then be differenced according to the methods above to hopefully 

reduce it to stationarity. 

The next stage is the identification of a suitable ARMA model from the 

stationary series. Again, this is not a precise science but can be helped with 

the aid of the autocorrelation function, partial autocorrelation function and 

spectrum. For a stationary series the autocorrelation function, Pk, shows 

the correlation structure among the observations. It is derived from the 

auto covariance function for a stationary process, (3.1), and is given by 

Ik 
Pk =-. 

10 

Here, Pk = P-k, 1::; Pk ::; 1 and if Yt and Yt-k are independent then Pk = O. 

For a real set of observed data the autocorrelation function needs to be 

estimated and we have already come across the estimated, or sample, 

autocorrelation function, Pk, in (2.4). Recalling from §2.1.2, the Pk values 

can then be plotted against k to give a plot known as the correlogram. The 

correlogram is interpreted for various features which suggest that 

autoregressive or moving average terms are needed to model the data, and 
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can also be used for judging whether a series has successfully been 

transformed to stationarity. 

From §2.1.2 we know that a correlogram which exhibits virtually no 

significant autocorrelations, except at lag zero, shows that the data or 

residuals from which it has been derived have no dependence structure. If 

the correlogram shows an exponential decay in the autocorrelations, it 

suggests that autoregressive terms are needed to model the dependencies in 

the data. We then use the partial autocorrelation function to asses the 

degree of the autoregression; that is to say, the value of p from (3.4). 

If we consider the following succession of autoregressive models: 

Yt <PnYt-l + Zt, 

Yt <P21Yt-l + <P22Yt-2 + Zt, 

Yt <P31Yt-l + <P32Yt-2 + <P33Yt-3 + Zt, 

then the succession <P11, <P22, <P33, ... , <Pii, ... , is the partial aurocorrelation 

function. So the partial autocorrelation function is constructed from the 

series of last coefficients corresponding to autoregressive processes of 

successively higher orders. It is estimated by fitting successive 

autoregression models to the series. A plot of the estimated partial 

autocorrelations against their lag gives the partial correlogram. The partial 

correlogram of an autoregressive process of order p will show a sharp cut-off 

at lag p. 

The correlogram and partial correlogram can also be used to identify 

moving average processes. A moving average process of order q shows a 

sharp cut-off at lag q on the correlogram and an exponential decay on the 

partial correlogram similar to that shown on the correlogram for an 

autoregressive process. A mixed process with an order p autoregressive 
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component and an order q moving average component will show a mixture 

of exponential and damped sine waves after the first q - p lags on the 

correlogram and a mixture of exponential and damped sine waves after the 

first p - q lags on the partial correlogram. 

A series which has not effectively been reduced to stationarity will also 

exhibit characteristic behavior in the correlogram and partial correlogram. 

A linear trend, for example, will appear as a linear decay in the correlogram 

and partial correlogram, while a seasonal effect which has not been 

accounted for will appear as damped sine wave effects in both the 

correlogram and partial correlogram. 

Sometimes the correlogram might not show up seasonal effects very well, in 

cases like this another graph called the periodogram can be used which is 

more suited to finding unexpected seasonal behavior in a series than the 

correlogram. Generally, with data such as road accident data taken 

monthly over a period of years, there is usually evidence of an annual 

seasonal effect from a time plot of the data and so it would probably not be 

necessary to confirm this from the periodogram. Model identification can 

also be aided via the Akaike Information Criterion (AIC) or with likelihood 

ratio tests similar to those used for explanatory variable selection in 

log-linear regression models. 

Once an AREvlA model has been fitted to the data, the residuals, Zt, from 

(3.4), can again be assessed using the correlogram and partial correlogram 

to see whether the fitted model has successfully eliminated the dependence 

structure in the data. Here, we generally discard Zt for t ~ max(p, q). 

3.2.3 Parameter estimation 

Once a suitable ARIMA model is proposed, the parameter vectors 

¢ = (¢l ... ¢p)' and () = (e1 ... eq), can be estimated by maximising the 

log-likelihood as with regression. When calculating the log-likelihood, the 

initialisation of the ARMA process is important. If we have a simple AR(l) 
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process for instance (a process with one autoregressive term), 

Yt = CPYt-l + Zt, then clearly we cannot easily find E(Y1 ) since there is no 

Yo. For this reason, under the conditional approach, the likelihood would 

only be calculated from observations Y2, ... , Yn conditional on Yl, and more 

generally for an AR(p) process, from Yp+1, ... , Yn conditional on Yl, ... , Yp. 

There is a similar problem for the moving average terms. For instance, if 

we have an MA(l) model (a process with one moving average term), 

Yt BZt - 1 + Zt, then not only can we not calculate E(YiJ easily but we 

cannot calculate E(Y2 ) easily either, unless we know Zl. For this reason it is 

generally assumed under the conditional approach that 

Zl = Z2 = ... = Zq = 0 and the log-likelihood is only calculated for values 

from q + 1 to n. 

For an ARMA model with Gaussian errors the conditional log-likelihood is 

given by 

log{L(¢, 8lyp, ... , Yn, zp = 0, ... , Zp-q+1 = O)} 
n 

n-p n-p 2 1 ""' 2 
= --2- log (27r) - -2- log (J" - 2(J"2 L..t Zt· 

t=p+l 

The conditional log-likelihood provides a way of calculating parameter 

estimates by hand along with their associated standard errors. To calculate 

the exact log-likelihood computer software is needed since initialisation 

methods for the exact log-likelihood depend on simulated draws. Hamilton 

(1994), chapter 5, gives a full explanation of how the exact log-likelihood is 

calculated using a variety of numerical procedures. 

When missing values are present in the data, S-Plus converts the problem 

to state space form (§5.1.2) and the Kalman filter (§5.2.1) is used to 

calculate the log-likelihood and parameter estimates. An example of the 

ARIMA model in state space form can be found in Durbin and Koopman 

(2001), §3.3. A detailed discussion of the relationship between ARIMA time 

series models and structural time series models can be found in Harvey 

(1989), §2.5.3. 
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3.3 ARIMA analysis of Scottish car 

occupant deaths and injuries data 

In this section the use of ARIMA analysis is illustrated by applying an 

ARIMA model to the Scottish deaths and injuries data, i.e., we reduce the 

series to stationarity using differencing rather than using another method 

such as the fitting of explanatory variables, then an ARMA model is 

applied to the resulting series. 

The plot of the Scottish total car occupant accidents data, figure 2.1, 

reveals a possible trend together with a definite 12 monthly seasonal 

pattern. Thus the observations, Yt, should certainly be seasonally 

differenced to eliminate the seasonal pattern and should perhaps be 

differenced to account for trend. Despite the trend having an almost cubic 

polynomial look to it, it is usually not a good idea to difference a series too 

many times since it can introduce spurious autocorrelation structure to the 

resulting series. Usually differencing a series once for trend is enough, 

especially when higher order polynomial effects are not particularly 

pronounced as is the case for the Scottish data. 

Differencing the Scottish data once, .6..1 , and then seasonally differencing, 

.6..12 , reduces the data to stationarity; the resulting differenced series and 

corresponding correlogram is given in figure 3.1. The correlogram reveals 

some signs of autocorrelation in the differenced series. The significant 

auto correlations at lags 1 and 12 suggest that any autoregressive or moving 

average terms fitted to the differenced series should account for the 

autocorrelations at these lags. Both of these auto correlations are isolated 

and do not decay gradually in the lags, so moving average terms are 

suitable to model them. In fact, the form of the correlogram is quite 

distinctive and leads us to choose the well known Airline model (Box and 

Jenkins, 1970) to model the dependencies. The airline model is given by 
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Figure 3.1: (i) Differenced Scottish data, (ii) Correlogram of differenced se­
nes. 

where L is the backward shift operator which has the effect that LYt = Yt-l; 

here, we assume Zt '" N(O, 0-
2

). The form of the airline model is 

mutiplicative so that when multiplied out, the moving average terms not 

only model dependencies at lags 1 and 12 but also at lag 13: 

The airline model was originally used to forecast passenger numbers on 

aeroplanes but has been found to be appropriate in many social and 

economic time series since. 

Fitting the airline model to the Scottish deaths and injuries data gives 

e1 = -0.8019 and e2 = -0.7988, with standard errors 0.04818 and 0.04851 

respectively; the model variance is (5-2 = 12066. When the model is written 

out in full, taking into account the initial differencing, we arrive at 

Yt = Yt-l 0.8019zt- 1 + Yt-12 - 0.7988zt- 12 - Yt-13 + 0.6406zt - 13 + Zt· 

Residual plots for this model look reasonable (fig 3.2); the model seems to 
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have successfully accounted for the correlation structure in the data as 

there are no significant auto correlations in the correlogram. 

Although ARIMA models like the airline model are easy to fit, their 

interpretation is not so clear as models which contain explanatory variables, 

this is especially true of models with moving average terms, i.e., ones that 

use past error terms to explain the current observation, such as the airline 

model. However, ARIMA models are mainly used for predictive purposes 

and in this arena they excel in providing accurate short term predictions. 

The topic of prediction does not really relate to the topics under 

investigation in this thesis and as such it is not covered here. However, the 

referenced texts provide extensive information on predicting with ARIMA 

models. 
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Figure 3.2: Residual plots from airline model fitted to Scottish data: (i) time 
chart of residuals, (ii) correlogram of residuals, (iii) residuals vs fits plot, (iv) 
normal plot of residuals. 

43 



Chapter 4 

Estimating the effect of 

daylight on road accidents 

In chapter 2, one of the explanatory variables used to model the Scottish 

and Southwest English car occupant accident data was the length of day 

from sunrise to sunset. It was found that the length of day was a significant 

predictor for the numbers of car occupant accidents and fatalities in all of 

the models fitted. In this chapter an alternative method for examining the 

effect of daylight on road accidents is investigated based on the difference in 

latitude between Scotland and Southwest England. Aspects of regression 

and ARIMA modelling are used in the presentation and analysis of the idea. 

4.1 Differences in daylight during morning 

rush hour due to latitude 

Latitude is perhaps the most important contributor to the amount of 

daylight an area or region receives throughout the year; the nearer the 

equator one is, the less annual variation in daylight there will be, so that 

the length of a day in one month is much the same as the length of a day in 
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any other month of the year. Nearer the poles, however, there are more 

marked changes in the length of a day throughout the year, so that beyond 

the arctic or antarctic circles there is 24 hours of daylight in mid-summer 

and 24 hours of darkness in mid-winter. The UK is located between 50 and 

60 degrees north and so experiences quite marked seasonal variation in the 

number of daylight hours. Despite its small size, the amount of seasonal 

variation in daylight in the north is noticeably greater than in the south, 

this can mean more than an hours difference in the number of daylight 

hours received in Scotland (the UK's northern most region) when compared 

to the Southwest of England (the UK's southern most region) during 

mid-winter and mid-summer. 

Figure 4.1 shows the Monday to Friday weekday road traffic distribution 

from the year 2000 which shows a bimodal distribution with peaks between 

8 and 9 am, and 5 and 6 pm; this distribution is most likely caused by the 

influence of rush hour times during the average working weekday. 

Broughton et al. (1999) showed that the distribution of vehicle casualties 

throughout the average day of the week also follows a bimodal distribution 

which peaks in the morning between 8 and 9 am, and in the evening 

between 5 and 6 pm. It would seem, therefore, that accidents are more 

likely to occur during times of heavy traffic, which are for the average day 

of the week during the morning and evening rush hours. 

Figure 4.2 shows the monthly average sunrise and sunset times for Scotland 

and Southwest England with the peak morning and evening rush hour 

traffic times marked on as straight lines throughout the year. From this 

graph it can be seen that throughout most of the year there is generally no 

sizeable difference in the amount of daylight received in Scotland and 

Southwest England during the rush hour times. The only potentially 

significant difference occurs during the winter months of December and 

January at morning rush hour time. The graph shows that in Scotland the 

sun has not yet risen during the morning rush hour in December and 

January, and only rises above the horizon at the end of the rush hour 

period at almost 9am. So it is likely that most of the morning rush hour in 

Scotland for these months is spent in what is known as 'civil twilight' when 
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Figure 4.1: Weekday UK traffic distribution by time of day (year 2000), 
average = 100 

the sun's altitude is between -0.83 and -6 degrees; this is the altitude at 

which large terrestrial objects but no detail can be distinguished according 

to Broughton et al. (1999). In Southwest England, however, the sun has 

risen by morning rush hour the whole year round. 

For the accident series investigated in chapter 2 we know that daylight is a 

significant predictor for the total number of car occupant deaths and 

injuries, and also for just car occupant fatalities, in both Scotland and 

Southwest England. It is therefore possible that the darkness in morning 

rush hour in December and January in Scotland has an effect on road 

accidents which does not exist in Southwest England. The following 

sections pursue this idea and attempt to use it as an alternative way of 

measuring the effect of daylight on road accidents. 
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Figure 4.2: Monthly sunrise and sunset times for Scotland and Southwest 
England throughout the year: (i) sunrise, (ii) sunset. 

4.2 Estimating the effect of daylight on road 

accidents using morning rush hour and 

latitude 

4.2.1 The double-differencing proposal 

Here, we use the ideas set out in the previous section to propose an 

alternative method to regression modelling for measuring the effect of 

daylight on road accidents. The method proposed is ad hoc and somewhat 

crude compared to the more sophisticated regression models used in 

chapter 2; also, it can only really be used to assess whether daylight has an 

effect on road accidents rather than how strong that effect is. However, this 

sort of methodology is useful for getting to grips with a problem when no, 

or very few, explanatory variable are available. Indeed, the idea of using 

latitude and rush hour to assess the effect of daylight was initially 

conceived at a time when explanatory variables were proving difficult to 
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obtain for use in this thesis. 

From the ideas in the previous section, if we look at the change in the 

number of road accidents from ~ ovember to December, in theory there 

should be a steeper rise in accidents, or at least a smaller fall in accidents, 

in Scotland than in Southwest England due to the darker morning rush 

hour time in December in Scotland. Similarly, the change from January to 

February in Scotland should show a steeper fall, or at least a smaller rise, in 

accidents than in Southwest England, due to the lighter morning rush hour 

time in February compared to January in Scotland. The change in other 

factors which determine the number of accidents should be minimised by 

comparing December and January with their nearest neighbours, ~ovember 

and February. 

To quantify this idea we can do the following: For Scotland and Southwest 

England, the difference in accident counts from ~ovember to December can 

be measured by subtracting the number of accidents in November from the 

number in December for each of the 14 years of the study; the Scottish 

differences should be larger (more positive) than the Southwest differences. 

Similarly, the difference in accident counts from January to February can 

be measured by subtracting the number of accidents in February from the 

number in January for each of the 14 years of the study; here, too, the 

Scottish differences should be larger than the Southwest differences. To 

assess whether the Scottish differences are larger than the Southwest 

differences we may again difference but this time spatially between the two 

regions; all 28 Southwest differences may be subtracted from the 28 

Scottish differences. Since most covariates should not change much from 

one region to the other, spatially differencing will again reduce the effect 

that they have, hopefully leaving just the morning rush hour effect. The 

spatial differencing should result in 28 mainly positive quantities that could 

be called double-differences as they are a result of differencing twice, first in 

time and then spatially. A t-test could be used to establish whether the 

mean of the double-differences is significantly different from zero. 

Mathematically, the proposal is as follows: let Ys,t be a Scottish observation 
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and Yw,t be a corresponding Southwest English observation. Then the 

quantity 6i , which is differenced in time and spatially, as above, is given by 

t = 12,24, ... , 156, 168, 

t = 2, 14, ... , 146, 158. 
( 4.1) 

Here, we use the .6. notation for differencing from chapter 3. To obtain the 

desired January/February differences using this notation, we subtract the 

January observations from the February observations and then multiply by 

-1. All together there should be 28 values of 6i. If the mean, 6, is 

significantly greater than zero then it would suggest that the numbers of 

accidents in Scotland in December and January are significantly higher 

when compared to the norm (November and February) than in Southwest 

England. This would mean that the darkness in morning rush hour in 

December and January in Scotland significantly adds to the numbers of car 

occupant accidents, which would imply that daylight has a significant effect 

on car occupant accidents. The converse would mean that the darkness in 

morning rush hour in December and January in Scotland does not have a 

strong enough effect to significantly increase accidents; this would not 

imply that there is no daylight effect, as we already know that there is from 

chapter 2. 

4.2.2 Results and analysis of the double-differencing 

method 

Using the Scottish and Southwest fatalities data to calculate the values of 

6i in (4.1), we obtain a mean of 6 = 0.1071, which shows that the Scottish 

differences are larger than the Southwest differences on average. The 

standard error on the mean is s .e. (6) = 1. 760 and therefore a t-test shows 

insufficient evidence that the mean double difference is significantly greater 

than zero. Using the Scottish and Southwest deaths and injuries data to 

calculate the values of 6i in (4.1), we obtain a mean of 6 5.893 with 

standard error s.e.(6) = 24.79, which again shows that although the 
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Scottish differences are larger than the Southwest differences on average; 

the difference is not significant. This evidence shows that the 

double-differencing method based on latitude and the time of morning rush 

hour applied to raw data, as it has been, does not show a significant 

difference between Scotland and Southwest England in the 

November/December and January/February changes in car occupant 

accidents. This would imply that the darkness in morning rush hour in 

December and January in Scotland is not a strong enough effect to make a 

significant impact on casualty numbers. 

Of course, this analysis is quite crude. Although the double-differencing 

technique has been designed to minimise the risk of other factors interfering 

with the estimation of the effect of daylight, it is possible that other factors 

are having an effect on the analysis leading the mean double difference in 

both cases to not be significantly greater than zero. To check whether our 

conclusions are right, we really need to remove the other factors from the 

data and then apply the double-differencing method to what is left. As it is, 

we are already in the position of knowing the explanatory variables which 

determine the means of each car occupant accident series from chapter 2. 

From the linear models of chapter 2, removal of the non-daylight 

explanatory variables from the data is straightforward: we simply subtract 

them from the data and all that remains is the random variation plus 

daylight, upon which double-differencing is performed. For each of the 

models of chapter 2, we have 

rsj,t Ysj,t - 29.12 + 0.05345t 0.8012cs,t, 

rwj,t Ywj,t + 4.575 + 0.09542t 1.269at, 

rst,t Yst,t + 377.2 - 53.38at 0.0003841pt + O.0005328dt 1.398!s,t 

-11.98Cs,t, 

r wt,t = Yst,t - 182.3 - 45.44at - 1.524!w,t - 13.41cw,t + 32.18kw,t. 

Here, Ysj,t denotes Scottish fatalities, Ywj,t denotes Southwest fatalities, Yst,t 

denotes Scottish deaths and injuries, and Ywt,t denotes Southwest deaths 
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and injuries. Also, at is the national car traffic variable, Pt is national petrol 

deliveries and dt is national diesel deliveries. The regional variable, Cs,t, is 

the Scottish maximum temperature variable, while Cs,t and Cw,t are the 

Scottish and Southwest minimum temperature variables respectively. The 

Scottish and Southwest rainfall variables are fs,t and f w,t respectively, and 

the Southwest cloud cover variable is kwt . 

From the two fatalities series, r sl,t and r wl,t, a mean of 5 = -1.481 with 

standard error s.e. (5) = 1.834 is obtained by applying the 

double-differencing method. Similarly, from the two deaths and injuries 

series, rst,t and rwt,t, a mean of 5 = -9.666 with standard error 

s.e.(5) = 28.95 is obtained. Again, after this followup analysis on the 

double-differencing technique, we are led to the same conclusions as before, 

that there is no significant difference between Scotland and Southwest 

England in the November/December and January/February changes in car 

occupant casualties. This implies that the darkness in morning rush hour in 

December and January in Scotland is not a strong enough effect to make a 

significant difference to casualty numbers. 

4.2.3 Further analysis 

A surprising result can be found from testing the double-differencing 

method on the residuals of the regression models of chapter 2. Looking at 

the November/December and January/February differences in the residuals 

of these models shows that, for both Scotland and Southwest England, 

these differences are significantly greater than zero. That is, if we calculate 

t = 12,24, ... , 156, 168, 

t 2,14, ... , 146,158, 

for either Scotland or Southwest England, then d> o. For example, using 

the linear models of chapter 2 we find that for the Scottish deaths and 

injuries model, d 41.39 with s.e.(d) = 19.14, for the Southwest deaths 

and injuries model, d = 81.33 with s.e.(d) = 24.51, and for the Southwest 
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fatalities model, d = 2.517 with s.e.(d) l.224. The only linear model for 

which d is not significantly greater than zero is the Scottish fatalities model 

where d = 0.4647 with s.e.(d) = 0.9927. 

This is a surprising result since the regression models of chapter 2 should 

all contain sufficient explanatory variables, including the daylight variable, 

to eliminate systematic variation like this. More importantly, it shows that 

removing the non-daylight related explanatory variables, as we did in the 

previous subsection, will not leave only the effect of daylight and random 

variation, it may also leave sources of unaccounted for variation. 

Unaccounted for sources of variation are an inevitability with linear or 

log-linear regression modelling, as it is very unlikely that we will have 

explanatory variables for all the possible influencing factors on a data set. 

What is unfortunate about the unaccounted for variation mentioned above 

is that this particular source of variation arises when looking at 

November /December and January /Fe bruary differences and it is therefore 

bound to interfere with the analysis of the double-differencing method. 
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Chapter 5 

Gaussian state space time 

series models 

In this chapter we look at an alternative form of time series modelling, state 

space modelling. The first half of the chapter is a simplified summary of 

state space modelling and gives the key results needed for the examples in 

the second half of the chapter. A thorough treatment of state space 

modelling with the derivation of the Kalman filter and smoother can be 

found in Durbin and Koopman (2001) and Harvey (1989); Hamilton (1994) 

also covers state space modelling in chapter 13. Throughout most of the 

chapter, the presentation is given in terms of multivariate observation data 

since there is so little difference between the presentation of the univariate 

and multivariate cases. Also, some of the expressions will be needed in 

multivariate form for the techniques involving zero inflated data presented 

in chapter 7. 

Two applications of state space time series modelling are presented. Section 

5.3 gives a summary of Harvey and Durbin (1986), the case study on the 

introduction of compulsory seat belt wearing in the front seats of cars in 

1983; and in §5.4 a Gaussian state space model is applied to the Scottish 

deaths and injuries data from chapter 2. 
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5.1 State space modelling overview 

5.1.1 Structural time series models 

Structural time series models are formulated directly in terms of the 

components of interest. If the series being analysed has certain components 

that we wish to include such as a trend, seasonal or explanatory variables, 

then these are modelled as separate components much like an ordinary 

regression model. For this reason, structural time series may have more 

intuitive appeal than say ARIMA models which seek to eliminate the effect 

of trends and seasonals through differencing to obtain a stationary series 

upon which subsequent analysis is performed. 

The simplest formulation for a univariate structural time series, with 

observations Y1, ... , Yn, is the local level model, a good description of which 

is given in Durbin and Koopman (2001), chapter 2: 

Yt 

/-1t+1 

/-1t + Et, 

/-1t + ~t· 
(5.1 ) 

Here, Et is the error or disturbance term and /-1t is the level which varies 

over time and is itself defined as a random walk with its own error term, ~t. 

The error terms, Et and ~t, are independently and identically Gaussian 

distributed, Et I"V N(O, 0";) and ~t I"V N(O, O"l). Since there are no coefficients 

to estimate in this model, the only quantities we need to estimate here are 

the variances, 0"; and O"l-

A time series with all the most common structural components in it and 

observed explanatory variables would be formulated as 

b 

Yt = /-1t + it + Ct + L:PjXj,t + Et, 
j=l 

t = 1, ... ,n, 

where it is a seasonal term, Ct is a cyclic component and there are b 

explanatory variables, Xj,t, with coefficients Pj,t which could themselves 
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vary over time. For this model we could also include a time varying slope 

component, Vt, within the trend, I1t: 

11t+1 
(5.3) 

This would give another random error, (t, which would again be 

independently and identically Gaussian distributed, (t I'V N(O, O"D. This 

formulation for I1t is known as the local linear trend formulation. We can 

see that Vt acts as a slope component since in the deterministic case, where 

(t 0, Vt+1 = Vt = v and 11tH = I1t + v + ~t, so I1t increases by v as t 

increases by 1 providing a linear trend. 

If the coefficients, Pj, are time varying then most commonly they have a 

form just like I1t in the local level model, in that they are defined simply as 

a random walk, 

Pj,t ,OJ,t-1 + {)j,tl 

with {)j,t I'V N(O, 0";,13) for the Gaussian case. Different formulations can be 

found in Harvey (1989), §7.7. In state space time series literature it is 

uncommon to find examples of time varying coefficients for explanatory 

variables. Allowing an explanatory variable coefficient to vary with time is 

only done if we wish to examine the change in the effect the explanatory 

variable has on the observations over time. Usually, however, the purpose of 

modelling is to define a fixed relationship between the observation variable 

and the explanatory variables as is the case for regression modelling. 

Putting the explanatory variables into a structural time series model, we 

have the advantage of being able to use time varying structural terms to 

account for the random variation in the data unaccounted for by the 

explanatory variables. 

The seasonal term can be modelled in two different ways. One way is the 

seasonal dummy form. Here, we suppose there are s seasons per year, so for 

monthly data s = 12, for quarterly, s = 4 and so on. First, assuming the 

seasonal is constant over time, the seasonal values for months 1 to s can be 

modelled by the constants ,r 1 ••• , ,; 1 where 2:;=l,j = o. For the jth month 
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in year i we have It = Ij, where t s(i - 1) + j for i = 1,2, ... and 

j = 1, ... , s. It follows that I:;:::~ IHl-j 0, so IHI = - I:;:::~ IHl-j with 

t = s - 1, s, .... Of course, since we wish to allow all terms to vary over 

time, we can let the seasonal term vary over time by adding an error term, 

Wt, to this relation giving the model 

8-1 

It+l = - L It+l-j + Wt, 
j=1 

t = 1, ... ,n. (5.4) 

A suitable trigonometric form to use for the seasonal term is the 

quasi-random walk model, equation (3.6) in Durbin and Koopman (2001), 

where 

Ij,t+l 

l8/2J 

It = L Ijt, 
j=1 

Ijt cos( Aj) + Ijt sin( Aj) + Wjt, 

-Ijt sin(Aj) + Ijt COS(Aj) wjt, 

8 ' 

j = 1, ... , ls/2J. 

Here, the Wjt and wjt terms are independent N(O, J~) variables. 

(5.5) 

(5.6) 

Cyclic terms are common in economic time series but are not widely used 

in applications such as the analysis of road accidents. However, if it is 

necessary to add a cyclic term, Ct, to the model, the form would be very 

similar to the trigonometric seasonal, (5.6), with 

CHI Ct COS(Ac) + C; sin(Ac) + Wt, 

C;+l -Ct sin(Ac) + c; COS(Ac) + w;, 

where Wt and w; are independent N(O, J~) variables. Here, the Ac can be 

treated as an unknown parameter to be estimated. 
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5.1.2 The state space form 

Once a structural time series model has been specified, the next stage is to 

convert it into state space form. For now, this is what we shall concentrate 

on; the subject of model building and goodness-of-fit will be covered in 

§5.2.3. Converting the structural model to state space form is necessary 

since the Kalman filter and smoother, which are used to find the fitted 

states and fitted model, can only be applied to the state space form of the 

time series. 

The general linear Gaussian state space model can be written in several 

different ways. The form used in this thesis is the form given below and 

used in Durbin and Koopman (2001); the reason for which is that it more 

closely relates to the state space form used in 8-Plus, which has been used 

for all calculations in this thesis. In the general multivariate case, the state 

space equations are given by 

Yt ZtO'.t + tt, 
TtO'.t + Rt'flt, 

tt rv N(O, H t ), 

'fit rv N(O, Qt), 

0'.1 rv N(aI, PI). 

t = 1, ... ,n, (5.7) 

Here, Yt is a p x 1 vector of observations, where p is the number of 

observation variables; and O'.t is an unobserved m x 1 vector called the state 

vector, where m is the total number of states for all p observation variables. 

The matrices, Zt, Tt , Rt, H t and Qt, are known as the system matrices 

and have dimensions p x m, m x m, m x r, p x p and r x r respectively. 

The error terms, tt and 'fit, are assumed to be independent of one another 

and have dimensions p x 1 and r x 1 respectively, where r is the number of 

time varying states. The top line of (5.7) is known as the measurement 

equation, or observation equation, and the bottom line is known as the 

transition equation, or state equation. The terms observation and state are 

somewhat clearer since, after all, Yt is the observation vector and at is the 

state vector, so these terms shall be used in this thesis. 

The form of the matrices, Zt, Tt , H t , Qt and R t , is dictated by the 

components included in the structural time series model. For example, 

57 



consider the state space form of the local linear trend structural model, i.e., 

the model with trend expressed as level and slope: 

Yt {it + et, 

{it + Vt + E.t, 
Vt + (t, 

This model has the state space form 

Yt (1 0) 

( ::: ) [~~ 1 
where 

et I"V N(O, 0";), 

E.t I"V N(O,O"l), (5.8) 

(t I"V N(O,O"Z). 

(5.9) 

The matrix R t is known as the selection matrix since it selects which rows 

of the state equation should have non-zero disturbance terms; it is made up 

from all or some of the columns of the identity matrix. In some 

specifications of the state space model R t is not included and the 

disturbance vector, TJt, has dimensions m x 1 and the variance matrix, Qt, 

has dimensions m x m where errors or error variances which are 

non-time-varying are simply given as zero in TJt and Qt. 

Consider now another example of a state space form where the local linear 

trend model, (5.8), also has a seasonal component. In state space form the 

seasonal state space vectors and matrices are combined with the state space 

vectors and matrices of (5.9) in the following way: 

Zt - (ZJlLl Zhl) t , Qt - ( Q~lLll (iT'll)' 
t , 

Tt diag(T)lLl Thl) t , t , R t diag(Rrl, R~l'l), (5.10) 

TJt (TJllLl1 TJll'l/)', Qt diag( Q~lLl, Q~l'l). 
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Here, the (. )~JL] matrices refer to the various matrices of the local linear 

trend model, (5.9), and the (.)~,] matrices refer to the seasonal parts that 

are combined with them. 

The forms of the (. )~,] matrices vary according to whether we are using a 

trigonometric seasonal component or a seasonal dummy component. For 

the seasonal dummy specification, (5.4), we have 

-1 -1 

1 0 

Thl-t - 0 1 

0 0 

Z~-Yl = (1 o ... 0), 

-1 -1 

0 0 

0 0 

1 0 

7]['] - W t - t, 

a~-Yl = (It It-I ... It-S+2)" 

R hl-
t -

1 

o 

o 

where ai-yl and Ri-yl have dimensions (3 - 1) x 1, Z~-Yl has dimensions 

1 x (3 1) and Ttl has dimensions (3 - 1) x (3 - 1). Recall that 3 is the 

number of seasons. 

For the seasonal trigonometric formulation, (5.5), we have the (3 1) x 1 

t hl ( * )' d hl ( * )' ,AT 1 h vec ors at = lIt lIt 12t··· an TIt = WIt WIt W2t··· . vve a so ave 

the system matrices Ri-yl 1 8- 1 and Qi-yl = (]"~18-1 where 1 8- 1 is the 

(3 - 1) x (3 - 1) identity matrix. However, the matrices Zl-yl and Ttl vary 

according to whether 3 is odd or even. For even 3 we have 

Zl-yl = (1 0 1 0 1 ... 1 0 1), ~hl = diag(C1 , ••• , C 8 *, - 1). 

For odd 3 we have 

ZJ-Yl (1 0 1 0 1 ... 1 0), 
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For both cases the quantities s* and C j are 

s* = C· = [COSAj sinAj 1 
J . \ \' - sm /lj cos /lj 

\ . _ 27fj 
/lJ- ,j=1,···,ls/2J. 

s 

We shall see a full example of the state space form with a trigonometric 

seasonal component in §5.3. Note that any other components, such as 

explanatory variables, are added to the existing state space matrices in the 

same way as the seasonal components are added in (5.10). 

For many applications, such as the cases illustrated above, the system 

matrices do not vary with time and so the subscript t's need not necessarily 

be included with them. In fact, for standard Gaussian state space models 

the matrices H t and Qt are always constant and it is partly the purpose of 

the model estimation process to calculate estimates of the variance 

parameters contained within those matrices. The variance parameters and 

any other unknown parameters are put into a parameter vector, 'l/J, which is 

estimated by the numerical maximisation of the log-likelihood; for example, 

with the local linear trend model, (5.3), 'l/J = (a; al aD'. However, to 

obtain the log-likelihood we must first examine the Kalman filter and 

smoother which are used to find the fitted states and fitted model. Note 

that the coefficients of explanatory variables are not included among the 

parameters to be estimated by maximising the log-likelihood since these are 

expressed as states, even if they are non-time-varying, and so are estimated 

by the Kalman filter and smoother which handle the fitting of states. 

60 



5.2 Model fitting, parameter estimation and 

goodness-of-fit 

5.2.1 The Kalman filter and smoother 

The Kalman filter 

The Kalman Filter (Kalman, 1960) is an important set of recursions which 

provides the basis for calculating the quantities of interest from the state 

space model. The Kalman Filter computes two quantities: at and Pt, 

which are the mean and variance respectively of the state vector, at, given 

the past observations up to time t. Hence, at and P t are given by 

where YT is the stacked vector of past observations up to time t or 

observation vectors (Y~ ... Y~-l)' up to time t in the general multivariate 

case. So, in the case of Gaussian distributed state errors, which we shall be 

dealing with for the rest of this thesis, we have atlYT "" N(at, Pt). Strictly 

speaking, the expressions above should not only be dependent on YT but 

also be dependent on the unknown parameter vector 'ljJ, giving E( atl YT, 'lj;) 

and Var(atIYT' 'lj;). However, since all the expressions in the coming 

chapters depend on 'lj;, we lose nothing by not explicitly expressing this 

dependence; also, not including 'lj; simplifies the notation. 

Below, the Kalman Filter recursions for calculating at and P t are given: 

Vt Yt - Ztat, Ft ZtPtZ~ + H t , 

K t TtPtZ~Ft-1 , L t Tt - KtZt , t = 1, ... ,n. 

at+l Ttat + KtVt, Pt+l TtPtL~ + RtQtR~, 
(5.11) 

The Kalman filter is initialised with the quantities al and PI, the mean 

and variance of the initial state, aI, from (5.7). If al and PI are known, 
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the Kalman filter can simply be run from t = I, ... , T and this case presents 

no complications. In practice, however, al and PI are usually unknown so 

a suitable initialisation technique must be used to start the Kalman filter 

recursions. 

When the initial state vector, aI, is unknown or has unknown mean and 

variance, it is treated as a diffuse random variable, that is, it is assumed to 

have infinite variance. To get round this problem it is possible to make an 

approximation to the variance of al by taking PI = 107 , i.e., a large 

number as an approximation to infinity and here we would take al = o. 
But this method can lead to large rounding errors so special diffuse 

initialisation methods are used. The theory behind diffuse initialisation 

methods is to eliminate the infinite variance problem by changing the form 

of the first few terms of the Kalman filter. The initial state variance 

matrix, PI, is assumed to take the following form: 

where K ----+ 00. Initialisation methods alter the first few terms of the 

Kalman filter so that K does not come into play. 

There are essentially two initialisation methods available, the Exact Initial 

method and the Augmented approach; the exact initial method is the 

technique that S-Plus uses. While initialisation methods are important, 

they do not feature as the subject of investigation in the rest of this thesis 

and so coverage of these methods is not given here since it is impossible to 

give a summary of these methods without going into pages and pages of 

detail; however, chapter 5 of Durbin and Koopman (2001) covers both the 

exact initial and the augmented approach in depth. 

The Kalman smoother 

The Kalman filter can be adapted slightly to give the Kalman smoother. 

The Kalman filter calculates at E(at!YT) and P t = Var(at!YT), the 
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expectation and variance of O'.t given the past observations in the time 

series Y1, ... , Yt-1, up to time t. The Kalman smoother, however, calculates 

the mean and variance of at given all the information in the time series, 

Y1, ... , Yn· If we take Y = (y~ ... Y~)', which is the stacked vector of all the 

observation vectors, then the Kalman smoother calculates E(atIY) and 

Var(atIY)· 

In the literature E( O'.tIY) is often called an optimal estimate and is denoted 

iit. This is because O'.tlY has a Gaussian distribution and so its mean is 

equal to its mode and the mode is in some sense the maximum likelihood 

estimate. However, we try to avoid this notation where possible since it 

would only seem appropriate once we have calculated the maximum 

likelihood estimate of 'ljJ, i.e., one would expect that Cit E(O'.tIY, (j;) and 

not iit = E(atIY, 'ljJ). The fact that the mean of atlY is equal to it's mode 

will be of some importance when dealing with non-Gaussian observations in 

the next chapter. 

The Kalman smoother recursions are given by 

Tt-1 Z~Ft-1Vt + L~Tt, 
at + PtTt-1, 

Z~Ft-1 Zt + L~NtLt, 
Pt - PtN t- 1Pt · 

(5.12) 

The recursions are initialised with Tn = 0 and N n = 0 and the rest of the 

quantities used are obtained from the Kalman filter. Since the Kalman 

smoother moves backwards, ending with TO and No, the Kalman filter must 

always be run first for the whole series to obtain quantities such as Ft , for 

all n, before the smoother can be started. 

In practice it is often the case in analysis, as we shall see in chapter 7, that 

we do not wish to estimate at but rather the response and state 

disturbances: Et and 'fit. These can, of course, be derived from the Kalman 

smoother, but for completeness we give these quantities together with their 

63 



variances below: 

E( Etly) 

Var(Etly) 

E( TJtIY) 

Var(TJtly) 

Ht(Ft-1Vt - K~Tt), 

H t - Ht(Ft-
1 + K~NtKt)Ht, 

QtR~Tt, 

Qt - QtR~NtRtQt. 

5.2.2 The log-likelihood 

(5.13) 

Presented below is the Gaussian log-likelihood used for diffuse initialisation 

via the exact initial approach, and specifically, for the case when F oo,t is 

positive definite as it is for all the models considered in this thesis. 

d 
np 1", 

10g[L(yl~)J = - 2 10g(27r) - "2 ~ log I Foo,t I 
t=l 

~ t (log IFtl + V~Ft-lVt). 
t=d+l 

Here, d is the number of states whose initial variances are unknown. When 

initial conditions are known, the part involving F oo,t can be omitted since 

in this case d = O. The dependence on ~ is expressed in the log-likelihood 

since it is this vector which is to be estimated. 

The log-likelihood is maximised via a numerical optimisation procedure 

which alters the values of ~ for each iteration until convergence whereupon 

the optimal values, {j;, are found. The starting values of ~ before the 

log-likelihood is maximised can essentially be educated guesses unless prior 

knowledge is available. FinMetrics uses the SsfFit function to calculate and 

maximise the Gaussian log-likelihood, given a state space form and initial 

parameter estimates. The numerical hessian and its inverse are also 

calculated by this function in S-Plus version 7 and FinMetrics version 2, 

although not in previous versions. The standard errors of the parameters 

can be calculated in the usual way from the square root of the diagonal 

elements of the inverse hessian. Durbin and Koopman (2001), §7.3.2, gives 

details of maximization procedures upon which the SsfFit function is based. 

A description of the functions I wrote which incorporate the SsfFit function 

for the estimation of Gaussian state space models is given in appendix A. 
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5.2.3 Model building and goodness-of-fit 

Generally, structural models are initially specified after examination of the 

time plot of the data which should point to obvious features such as trends 

and seasonal patterns. \Vhether there are explanatory variables available or 

not, it is probably best to initially specify a model with a full complement 

of structural terms and then refine the model by eliminating terms which 

do not contribute to the model fit. If there is a trend present it is best to 

specify the trend initially to include both level and slope components. Also, 

it is sensible to make all terms in the model time varying to start with, i.e., 

start with the most complex model. Generally, if explanatory variables are 

not included in the model and we are modelling data that does not include 

cycles in it, then model building begins with the following model: 

Yt /-Lt + It + Ct, t = 1, ... ,n, (5.14) 

where /-Lt is the local linear trend of (5.3) and It is either the dummy 

variable seasonal component of (5.4) or the trigonometric seasonal 

component of (5.5). This model is referred to as the basic structural model 

by Harvey (1989) and it shall often be referred to during the course of the 

remaining chapters of this thesis. 

The next stage is the estimation of parameters from the initial model so 

that the model may be fitted and assessed for its appropriateness and 

goodness-of-fit. It is possible to use a likelihood ratio test in exactly the 

same way as for a generalised linear model, using the state space 

log-likelihood in place of the GLM log-likelihood; however, this is usually 

not necessary for the structural terms in the model as, generally, it will be 

fairly clear what changes to the structural components need to be made. 

For instance, if the variance estimate of a seasonal component is 

approximately zero or has a large standard error, a model with a fixed 

seasonal term could simplify the initial specification; or if a series has very 

little trend, a trend term with a time varying level only and without a slope 

component may be adequate. The likelihood ratio test is probably best 

used for explanatory variables although even here it may not be necessary 
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since commonly in time series analysis there are one or two explanatory 

variables available which are known to affect the observed data and we wish 

to examine the effect of these variables, so they are unlikely to be removed 

from the model regardless of fit. However, these explanatory variables are 

not usually enough to explain all the variation in the data and so the 

structural terms are used to model the other features of the time series; the 

structural terms themselves do not have a direct interpretation. 

In terms of assessing the goodness-of-fit of a particular model, we may use 

residual plots; although, for state space time series models there is more 

than one type of residual we may examine. For a Gaussian state space 

model there will always be the residuals from the observation equation, Et, 

but there may also be various residuals from the state equation such as ~t, 

(t and Wt, the level, slope and seasonal residuals respectively. To save 

examination of all of these different residuals, the standardised prediction 

error residuals or standardised innovations may be used. The standardised 

innovations are derived from the Kalman filter and are given by 

The assumptions underlying state space models are that all the residuals, 

whether they be model residuals or level residuals or any other, are iid 

Gaussian. Under these assumptions the standardised innovations are also 

iid Gaussian which is why they are frequently used to measure goodness of 

fit. 

5.3 Harvey and Durbin's seat belt study 

State space time series methods were successfully used in the study of the 

compulsory introduction of seat belt wearing in the front seats of vehicles in 

the UK (Harvey and Durbin, 1986). The aim of the study was to see 

whether there had been a significant change in the numbers of casualties, 

for various road user groups, since the introduction of the law. Of primary 
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interest was the change in the number of car drivers killed or seriously 

injured (KSI) since the seat belt law affected them particularly directly. 

The study was carried out on monthly data from January 1969 to December 

1984 and the compulsory wearing of seat belts in front seats became law on 

31st of January 1983. Harvey and Durbin (1986) investigated a variety of 

formulations for this problem; a fairly straightforward formulation is given 

in Durbin and Koopman (2001) and this is what we shall show here. 

The introduction of the seat belt law was formulated as an explanatory 

variable which takes the value zero from January 1969 to January 1983 and 

then the value one from February 1983 to December 1984. Analysis was 

performed on the log of the data and the log of the price of petrol was 

included as an explanatory variable along with the seat belt introduction 

variable. To explain the rest of the random variation, a time varying level, 

/-It = /-It-l + ~t, was used (as in (5.1)) along with a trigonometric seasonal 

term, (5.5). Thus, the finalized structural time series model for the car 

drivers KSI data was given by 

where Yt is the log of the observations, Pt is the log of the price of petrol, At 

is the seat belt variable and all random variables are Gaussian distributed. 

From the theory of §5.1.2, this model can be written in state space form as 

follows: 

at (/-It rIt r;t r2t ... r;t r6t (31 (32)', 

1 0 0 0 0 0 0 0 

0 0.866 0.5 0 0 0 0 0 

0 -0.5 0.866 0 0 0 0 0 

T t 0 0 0 -0.866 0.5 0 0 0 

0 0 0 -0.5 -0.866 0 0 0 

0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 
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TJt (~t Wlt * WIt , * W2t ... W5t W6t)', 

1 0 0 

0 1 0 (}2 
~ 0 0 

0 (}2 0 
R t Qt 

w 

0 0 1 

0 0 0 0 0 (}2 
w 

0 0 0 

Zt (1 1 0 1 o ... 1 0 1 Pt At), H t 
2 

(}E· 

The state space model was estimated via the Kalman Filter and Smoother 

and the log-likelihood was maximised. To avoid numerical instability in the 

optimisation of the log-likelihood, the parameter estimates calculated by 

the optimisation procedure are actually the logs of the variance parameter 

estimates; it is these log-estimates that the standard errors are calculated 

on. So the table below shows the parameter estimates as well as 

log-parameter estimates and log-parameter standard errors. The variance 

estimates for the three random errors are all small, but since the seasonal 

variance is so small it shows that the seasonal term could probably be 

treated as a constant without loss of model fit. 

parameter log-parameter log-parm Std err 
A2 

(}E 3.788 X 10-3 -5.576 0.1517 
A2 2.676 X 10-4 -8.226 0.6056 ()~ 
A2 1.157 X 10-6 -13.67 1.206 (}w 

Table 5.l: Seat belt study variance parameter estimates, log-parameter esti­
mates and standard errors on log-parameter estimates. 

The coefficient estimate for the log of the price of petrol was found to be 

!Jl = -0.2914 with standard error s.e(!Jl) 0.09832. This indicated a 

reduction in the number of car drivers killed or seriously injured of 0.29% 

for an increase of 1 % in the price of petrol. The seat belt introduction 

coefficient was found to be P2 = -0.2377 with standard error 
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s.e(!J2) = 0.04632. This indicated a reduction in car drivers killed or 

seriously injured of 21% due to the introduction of seat belts. Figure 5.1 

illustrates the effect of the introduction of seat belts by plotting the level 

and seat belt variable over the data; the other plots are residual plots of the 

standardised innovations. 

5.4 Application of state space modelling to 

Scottish deaths and injuries data 

The explanatory variables used in the regression models of chapter 2 for the 

Scottish and Southwest deaths and injuries data do not fully account for all 

the variation in the data since in the log-linear models there is a large 

amount of over-dispersion, and in both the linear and log-linear models 

there is a slight fluctuation of the residuals plotted over time about the zero 

line which has been left unaccounted for. There are several structural time 

(i) (i i) 

" : 

~ ~----------~~ 
50 100 150 -3 -2 

(iii) (iv) 

or---------------, 
"' 

. .... . . . .. .l ..... . ...... . . ..... . . .. .... 1. 

50 100 150 10 15 20 

Figure 5.1: Plots for the seat belt study: (i) estimated level with seat belt 
variable, (ii) normal plot of standardised innovations, (iii) time chart of stan­
dardised innovations, (iv) correlogram of standardised innovations. 

69 



series choices that could be used to tackle this issue. One way could be to 

make some of the coefficients of the explanatory variables time varying; 

this, logically, could be quite sensible since it is quite possible that the 

effect rainfall has on road accidents, for example, could change over time 

due to improvements in tyre grip and traction. However, without a good 

knowledge of tyres we cannot be certain whether this would be so or not. A 

simpler stochastic way of dealing with the unaccounted variation might be 

to include a stochastic term for the level of the series, as in (5.1), rather 

than in one of the explanatory variable coefficients. This would act in a 

similar way as a linear trend term would act, measuring the changes in the 

underlying level of risk but hopefully more effectively. \Vritten as a 

structural time series the model would simply be 

m-1 

Yt = /-It + L PjXj,t + Et, 

j=l 

where the time varying level would replace the constant, which is usually 

present in all regression models, leaving only the exogenous explanatory 

variables. 

Putting the above structural model into state space form, and using the 

Kalman filter and smother to derive the fitted model, then optimising the 

fit using the SsfFit function in S-Plus, gives the parameter and coefficient 

estimates in the tables below. Again, optimisation is carried out using the 

log-parameters in the SsfFit function and so standard errors are calculated 

on the log-parameters. The explanatory variable coefficients in table 5.3 are 

very similar to those of the linear regression model. 

parameter log parameter log-parm Std err 
~2 

eYE 8596 9.059 0.1249 
~2 

eY( 222.9 5.407 0.6928 

Table 5.2: Scottish deaths and injuries state space model variance parame­
ter estimates, log-parameter estimates and standard errors on log-parameter 
estimates. 
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Variable Coefficient Std err 
N at car traffic 51.67 10.52 
Nat petrol del 5.722 x 10-4 1.037 X 10-4 

N at diesel del -1.337 x 10-3 2.198 x10-4 

Total rainfall 1.540 0.2766 
Max daily temp 10.61 4.118 
Daylight -35.47 4.087 

Table 5.3: Scottish deaths and injuries state space model covariate coeffi­
cients and standard errors. 

The time series residuals which are most directly comparable with the 

residuals of the linear model of chapter 2 are the estimated model residuals, 

ft. Figure 5.2 shows that there seems to be a slight improvement in the 

variability of the time chart of model residuals around the zero line, 

compared to figure 2.3 for the linear regression model. 

(i) (ii) 

g 
,~~~--~----~~ 

800 900 1000 1100 1200 1300 1400 ·2 

50 100 150 10 15 20 

Figure 5.2: Scottish model residual, ft, plots: (i) residuals vs fitted values, 
(ii) normal plot, (iii) time chart of residuals, (iv) correlogram 
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Chapter 6 

Non-Gaussian state space 

models 

The methods presented in this chapter are concerned with state space 

models in which the marginal distribution of the observations is 

non-Gaussian and in particular from the exponential family of 

distributions. The Exponential family includes the Poisson distribution and 

so relating the means of counts to structural terms and explanatory 

variables by a log-link gives the state space analogue of the log-linear model 

used in regression. In §6.5 the Scottish car occupant fatality data is 

investigated again and two log-linear state space models are fitted to the 

data, one with only structural terms and the other with a mix of 

explanatory variables and structural terms. Durbin and Koopman (2001) is 

the primary reference for this chapter. 

6.1 The non-Gaussian state space modelling 

approach 

The non-Gaussian state space modelling approach is somewhat more 

involved than that of Gaussian state space modelling. For Gaussian 
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modelling, firstly, a structural time series model is specified, then it is 

written in state space form, next Kalman filtering and smoothing are 

applied to the state space form and the log-likelihood is derived. The 

log-likelihood is maximised by a numerical method which alters the values 

in the parameter vector, 'ljJ. The final parameter estimates are then used in 

the Kalman filter and smoother to derive the fitted states and fitted model. 

Finally, the model is checked using diagnostic tests and if necessary it is 

modified. 

For non-Gaussian state space modelling the specification of the structural 

model and state space form is slightly different and the derivation of the 

log-likelihood is much more complicated and relies on simulation as well as 

Kalman filtering and smoothing. However, once the log-likelihood has been 

obtained, the parameter values in the unknown parameter vector, 'ljJ, are 

updated by a numerical maximisation procedure in the same way as the 

Gaussian log-likelihood. Perhaps the main difference here is that 'ljJ may 

not contain a model variance parameter, J;, such as in the Poisson case. 

6.1.1 The formulation of structural and state space 

models 

The state space structure of the general multivariate non-Gaussian model is 

similar to that of the Gaussian model, (5.7), in that the observations are 

determined by a relationship of the form 

(6.1) 

The state vectors are determined independently of previous observations by 

the relationship 

(6.2) 

for t 1, ... , n, where the TIt'S are serially independent and where either 

f(YtIZtO'.t) or f(Tlt) or both may be non-Gaussian. 
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In this chapter we shall be dealing with observations distributed according 

to the exponential family of distributions, which in the general multivariate 

case is given by 

-00 < Ot < (X). (6.3) 

Rather confusingly, Ot, which always denotes the canonical parameter in 

generalised linear models has a different meaning in non-Gaussian state 

space models; in these models Ot = ZtQt and is known as the signal. In 

this respect Ot in non-Gaussian state space models plays an identical role to 

'f/i, the linear predictor, in generalised linear models. 

Unfortunately, for many non-Gaussian models, including most from the 

exponential family, it is not possible to write down an observation equation 

in quite the straightforward manner that is used for the Gaussian state 

space form, (5.7). So, when writing down the structural model that we wish 

to analyse, we must express the structural terms and explanatory variables 

through the signal. For example, say we are modelling a univariate time 

series using a non-Gaussian state space model with a time varying level and 

seasonal dummy term. The trend and seasonal terms would be expressed 

through the signal, Bt , and then the formulation for the trend and seasonal 

terms themselves would be exactly the same as for the Gaussian model 

except for the possibility of non-Gaussian distributed error terms: 

PHI 

It+1 

J-Lt + It, 

Pt + ~t, 
""s-1 

- Dj=1 It+1-j + Wt, 

f:t '" f(~t), 

Wt C'-) f(Wt). 

Once a time series model has been specified, the fitting and estimation 

procedure is complicated as it involves repeated Kalman filtering and 

smoothing as well as simulation, the details are given in the following 

subsections and sections. 
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6.1.2 Overview of importance sampling 

State space modelling cannot be called straightforward even in the case of 

Gaussian models, but in the non-Gaussian case it is even more involved. As 

with Gaussian models, the idea is to calculate E(atly) and Var(atly), the 

mean and variance respectively of atly. This objective can be achieved by 

finding E{x(a)ly}, the mean of a function, x(a), of a given the 

observation vector y, where in the multivariate case we take 

a = (a~ ... a~)' and y = (y~ ... y~)', i.e., as stacked vectors. We start by 

giving the integral definition for this mean: 

E{x(a)ly} = J x(a)f(aly)da. (6.4) 

The x( a) formulation leads to options such as taking x( a) = at to obtain 

the mean E(atly), or x(a) {at - E(atly)p to obtain the variance 

Var(atly). Note that as for the Gaussian state space models of the 

previous chapter, all quantities are conditional on the unobserved 

parameter vector 'l/;. However, since there is no quantity that is not 

conditional on 'l/;, nothing is lost when comparing one quantity with 

another by not including it in the notation. 

Ideally at this stage we would draw a random sample from the density 

f(aly) and estimate E{x(a)ly} by the sample mean of the values of x(a); 

however, the practice is rather different. The problem is that since f(aly) 

cannot be written in an explicit form, we cannot sample from it. So, the 

trick is to choose a density as close to f(aly) as possible for which random 

draws are available and sample from this instead, making an appropriate 

adjustment to the integral of (6.4). This density is called the importance 

density and the technique of sampling from it is called importance sampling. 

A Gaussian density, g(aly), is chosen as the importance density since 

random draws are available from Gaussian densities. With g(aly), the 

following adjustment to the integral (6.4) is made: 

J f(aly) {f(a1Y)} 
E{x(a)ly} x(a) g(aly)g(a1y)da = Eg x(a) g(aly) , 
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where Eg denotes expectation with respect to the importance density 

g(aJy). The densities f(aJy) and g(aJy) can be algebraically complicated, 

whereas, the corresponding joint densities, f(a, y) and g(a, y), are 

generally straightforward. We therefore put g(aJy) = g(a,y)jg(y) and 

f(aJy) f(a, y)j f(y) into (6.5) giving 

g(y) { f(a,y)} 
E{x(a)Jy} = f(y)Eg x(a) g(a,y) . 

Putting x(a) 1 in (6.6) gives 

l=g(y)E {f(a,y)} 
f(y) 9 g(a,y) . 

Finally, taking the ratio of (6.6) and (6.7) gives 

E{x(a)Jy} = Eg{x(a)w(a, yn, 
Eg{w(a,yn 

f(a,y) 
w(a,y)= ( )" 

9 a,y 

(6.6) 

(6.7) 

(6.8) 

These two equations now provide the basis for a solution. We draw a 

sample of N independent simulated state vectors, 6(1), ... , a(N), where a 
denotes a simulated state vector, from the importance density g(aJy) and 

use them in (6.8) to estimate E{x(a)ly} as follows: 

where, Xi = x(a(i») and Wi = w(a(i), y). Note that the conditional 

variance, V ar{ x( a) Iy}, can simply be estimated by 

(6.9) 

When f(TJt) = g(TJt) in (6.2), i.e., the state errors, ryt, are Gaussian 

distributed, then the states themselves are also Gaussian distributed, so 
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](0.) = g(a). This allows w(a, y) in (6.8) to be expressed as 

( )
_](a,y) 

w a, y - ( ) 
9 a,y 

]( a)](yla) 
g(a)g(yla) 

So instead of using (6.8), we may write 

E{ ( ) I } = Eg{ x( a)w(yIB)} 
x a y Eg{w(yIB)} ' 

](yla) 
g(yla) 

](yIB) 
g(yIB) . 

w(yIB) = ](yIB), 
g(E) 

(6.11) 

where g( E) = g(yIB). The advantage of using this expression over (6.8) is 

that the dimensionality of Band E is usually less than that of a; so we may 

draw a sample of simulated B's or E'S for less computational cost than 

drawing a sample of simulated a's. 

6.1.3 Calculation of the log-likelihood 

The likelihood function, L('if;) , of the unknown parameter vector, 'if; , is 

derived in much the same way as E{x(a)ly} in (6.4): 

L('if;) = j ](0., y)da. (6.12) 

Using the same manipulations as for the calculation of E{x(a)ly} gives 

L('if;) j ](a,y) 
g(aly) g(aly)da 

j ](a,y) 
g(y) ( ) g(aly )da 

9 a,y 
Lg ('if; )Eg{ w( a, y)}, (6.13) 

where Lg ('if;) = g(y) is the likelihood of the linear Gaussian approximating 

model used to obtain the importance density g(aly). When states are 

Gaussian distributed this likelihood can be expressed corresponding to 

(6.11) by L( 'if;) = Lg ('if; )Eg{ w(y IB)}. 
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The estimate of the log-likelihood may then be given as 

10g{L('l,b)} = 10g{Lg('l,b)} + log(w), (6.14) 

where if) = (1/ N) L~l Wi. To calculate an estimate for the unknown 

parameter vector, ,-(j;, log L ( 'l,b) is maximised by a convenient numerical 

optimisation technique. Since the log-likelihood is non-Gaussian it cannot 

be maximised by the SsfFit function in FinMetrics used for the Gaussian 

state space models of the previous chapter; instead, the S-Plus function, 

nlminb, must be employed. The nlminb function is a more general function 

than SsfFit and must be passed a non-Gaussian log-likelihood function, as 

well as state space form, observations and initial parameter estimates, 

before it can calculate estimates for the unknown parameters. The 

calculation of the log-likelihood is rather complex as we shall see from the 

following sections; however, a description of the functions I wrote and the 

way in which they fit together, for the calculation of the log-likelihood and 

fitted model is given in appendix A. 

Both the calculation of E{x(a)IY} and 10g{L('l,b)} depend on w(a, y) 

which in turn depends on the construction of the importance density, 

g(aIY), so that it is as close as possible to j(aIY). In importance sampling 

as close as possible means choosing the importance density, g(aIY), so that 

its mode is equal to that of j ( a I y). In the next section we will see how to 

equate these modes and in the following section we will see how to draw the 

sample of independent simulated vectors, 6:(1), ... , (i(N) , from g( aly). 

6.2 Constructing g(n/y) to be as close as 

possible to f(n/y) 

6.2.1 The linear Gaussian approximating model 

From the previous subsection, g(y) is the likelihood of the linear Gaussian 

approximating model used to obtain the importance density g(aly). The 
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linear Gaussian approximating model referred to here is a linear Gaussian 

state space given by 

Yt ZtO'.t + Et, 

TtO'.t + R t17t, 

Et r'V N( Dt, H t ), 

17t N(O, Qt), t = 1, ... , n, (6.15) 

0'.1 r'V N(a1,P1). 

This model is similar to (5.7) but allows greater flexibility in the errors 

since E(Et) Dt rather than in (5.7) where E(Et) = 0 for all t. Note that 

here Dt has no connection to the double-differencing coefficient, 6i, in 

chapter 4. The extra flexibility in the errors is needed when !(YtIBt) is an 

exponential family distribution but is not needed if !(YtIBt) is a symmetric 

or heavy tailed distribution. There is no similar change to the state error 

term 17t since for most cases in practice! (17t) is a symmetric distribution, 

and for the cases we consider it will be Gaussian. 

Recall that we wish to equate the mode of the importance density, 9 (0'.1 Y), 

with that of ! (0'.1 y) so that the densities will be as close as possible to one 

another. To accomplish this we can at least start by finding the mode of 

g(O'.IY). Applying the Kalman filter and smoother to (6.15) for all values of 

t gives the mean E(O'.IY) of g(O'.IY). But since g(O'.IY) is Gaussian, the 

mean is equal to the mode, so E(O'.IY) is also the mode of g(O'.IY). However, 

the Kalman filter and smoother cannot be appled to (6.15) without 

modification since they only work for state space models where E( Et) = ° 
for all t. To solve this problem the observation equation of (6.15) can be 

modified to look more like the observation equation of (5.7) by transferring 

the term Dt from Et to Yt· Taking E; = Et - Dt and Y; Yt - Dt means 

that E(E;) = 0, as in the standard Gaussian state space model, (5.7). 

Using E; and Y; in the linear Gaussian approximating model gives 

ZtO'.t + Et, 

TtO'.t + Rt17t, 

E; r'V N(O, H t ), 

17t r'V N(O, Qt), 

0'.1 N( aI, PI)' 

t = 1, ... , n, (6.16) 

The two linear Gaussian approximating models, (6.15) and (6.16), are 
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equivalent and so calculating E(aIY*) from (6.16) gives the same as we 

would get if we were able to calculate E(aly) from (6.15). Therefore 

calculating E(aly*) gives the mode of the importance density g(aly). 

However, it is still not possible to derive the mode of the importance 

density since E(aly*) cannot be calculated from model (6.16) untilbt , and 

hence y;, is known. Also, due to the extra flexibility needed to equate the 

modes, H t is no longer constant and Qt may no longer be constant if the 

state errors from the state equation are non-Gaussian. In the following two 

subsections H t and y; are derived so that not only can E( aIY*), the mode 

of the importance density, be calculated, but this mode will also be the 

mode of j(aly). 

6.2.2 Deriving the mode equations for g(aly) and 

f(aly) 

The solution of the vector equation ologg(aly)joa = 0 gives the mode of 

g(aly). As mentioned earlier, however, the function g(aly) is often 

complex algebraically, but since 10g{g(aIY)} = log{g(a,y)} -log{g(y)}, 

the mode of g(aly) is also the solution to ologg(a, y)joa = 0, and it is 

this equation that shall be considered. 

From the linear Gaussian approximating model, (6.16), we see that 

g(a, y) g(a, y*), and therefore log{g(a, y)} may be obtained from the 

unconditional densities of the linear Gaussian approximating model, 

g(al) = N(al' PI)' g(at+l) N(Ttat, Qt) and g(yn = N(Ztat, H t ), as 

follows: 

log{g( a, y)} log{g( a, y*)} 
1 

constant - 2 (al al)' P1-
1 (al - al) 

-~ t(at+1 - Tt a t)'RtQ-;1 R~(at+l - Ttat) 
t=l 

~ t(y; - Zta t)'Ht-
1(y; - Ztat). ( 6.17) 

t=l 
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Differentiating with respect to O'.t and equating to zero gives the equations 

olog{g(O'.,y)} 
oO'.t 

(dt - 1)Pl-l(0'.1 - al) 

-dtRt-lQ-;~lR~_l(O'.t - Tt-10'.t-l) 

+T:RtQ;lR~(O'.t+l - TtO'.t) + Z~Ht-l(y; - ZtO'.t) 

0, 
olog{g(O'., y)} 

OO'.n+l 
0, (6.18) 

where d1 = 0 and dt = 1 for t = 2, ... ,n. 

Equivalently, for the non-Gaussian case we have 

n 

log{J( 0'., y)} = constant + 109{J(O'.l)} - L {qt( 1Jt) + ht(Ytl(h)}. (6.19) 
t=l 

For the above equation ht(YtIBt) -log{J(YtIBt)}, qt(1Jt) = log{J(1Jt)} 

and 1Jt = R~(O'.t+l - TtO'.t). Differentiating with respect to O'.t and 

equating to zero gives the equations 

olog{J(O'., y)} 
oO'.t 

olog{J(O'., y)} 

OO'.n+l 

0, 

R oqn(rJn) 
n orJn 

0, (6.20) 

where, as before, d1 = 0 and dt = 1 for t 2, ... , n. 

Now that we have the mode equations for g(O'., y) and J(O'., y), we need to 

equate the mode of g(O'.,y) with that of J(O'.,y). When the state 

disturbance term, rJt, is Gaussian distributed, as it is in the applications we 

consider, then all but the component involving ht(YtIBt) in (6.20) are 

identical to the components of (6.18). Therefore to equate the modes we 
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just need to choose H t and Y; in (6.18) so that the term 

Z;H;I(y; - ZtQt) provides the best approximation to Z;EJht(YtIOt)/EJOt 

in (6.20). The next subsection will give details of how to linearise ht(YtIOt) 

so that H t and Y; may be derived. 

Although most of the non-Gaussian modelling approach has been kept as 

general as possible so far, we shall not present the details of how to linearise 

ht(YtIOt) when !(YtIOt) is not from the exponential family since the 

linearisation process is quite different in that case. Also, details shall not be 

presented on the linearisation of qt('lJt) since in the coming examples only 

Gaussian distributed state errors are considered. These linearisation 

techniques can be found in §11.5 and §11.6 of Durbin and Koopman (2001) 

respectively. 

6.2.3 Linearisation of ht(YtIOt) for exponential family 

distributions 

There are several methods of linearising ht(YtIOt) in equation (6.20); the 

method considered in this section is applicable to exponential family 

observations as well as observations from the stochastic volatility model, 

(Sandmann and Koopman (1998) and Zivot et al. (2003)). 

Suppose that ii = (iiI ... iin +1 )' is a trial value of a; consequently 

Bt = Ztiit. Also, the following definitions are given 

A Taylor expansion about Ot gives, approximately, 

(6.21) 

Substituting the above into the final term of (6.20) gives the linearised form 
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To put this into the same format as the final term of (6.18) we take 

(6.22) 

thus the final term then becomes Z~Ht-l (ij; - Ot) as required. 

Now at last we have some trial values, H t and jj;, to use in the linear 

Gaussian approximating model, (6.16). The Kalman filter and smoother 

are applied to this model to calculate a new trial iit obtained from 

Ot = E{ Otljj*}. This new iit is then substituted into (6.22) to obtain a new 

H t and jj; and again these updated values are substituted into the linear 

Gaussian approximating model. whereupon Kalman filtering and smoothing 

is carried out to obtain a new Ot. This process is repeated over and over 
- -

until H t and jj; do not change with subsequent iterations. We now use H t 

and jj; for H t and y; in the linear Gaussian approximating model (6.16) 

and apply the Kalman filter and smoother to derive E(nIY*), the mode of 

both the Gaussian importance density, g(nIY), and the non-Gaussian 

density, f( nIY)· 

6.3 Simulation 

The following is a summary of the results from Durbin and Koopman 

(2002) for constructing a sample of simulated state space disturbance 

vectors. This is the simulation smoother used in S-Plus. Recall that we 

wish to draw a sample of simulated state vectors, a(1), """' (x(N), from the 

importance density g( nIY). Drawing simulated state vectors from the 

importance density, g(nIY), is equivalent to drawing simulated disturbance 

vectors, €, from the importance density g(c*IY*), where c* (E*' '11')' from 

the linear Gaussian approximating model (6.16) and IS denotes a simulated 

c* vector. Once a sample of simulated disturbance vectors has been drawn 

they can be substituted back into the linear Gaussian approximating model 

to derive the desired sample of simulated state vectors from g(nIY). 
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The density g(e;*ly*) can be written g(e;*ly*) = N{E(e;*ly*), Var(e;*ly*)}. 

Here, Var(e;*ly*) does not depend on y* because the conditional variance 

matrix of a vector given that a second vector is fixed does not depend on 

the second vector, which can be seen for this particular case from Var( Etly) 

and Var(TJtIY) in (5.13). The simulated € vectors are generated from 

g(e;*ly*) by drawing vectors from N{O, Var(e;*ly*)} independently of y* 

and adding these to the known vector E(e;*ly*). 

Looking at the linear Gaussian approximating model we can see that the 

density of e;* is 

g(e;*) = N(O, 0), 

Let e;+ be a random vector drawn from g(e;*). Then the vector e;+ is used 

to generate a y+ and an a+ vector simply by utilising the state space form 

(5.7). The only issue here is choosing the initial value at. 

Next, E(e;+ly+) is computed using the Kalman filter (5.11) and disturbance 

smoother (5.13). Using the Kalman filter with diffuse initialisation means 

that the issue of initialisation is not a problem; the values of at can be 

chosen arbitrarily. Since Var(e;*ly*) is independent of y*, then 

This leads to 

and therefore 

meaning that e;+ - E(e;+ly+) is the desired draw from N {a, Var(e;*ly*)}· 

Now, if we let € = e;+ - E(e;+ly+) + E(e;*ly*) then E is a draw from 
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density g(c*IY*) by the following argument: 

E(sIY*) 

and 

Var(sIY*) 

E{c+ - E(c+IY+) + E(c*IY*)IY*} 

E{c+ - E(c+IY+)IY*} + E(c*IY*) 

E(c*IY*), 

Var{c+ E(c+IY+) +E(c*IY*)IY*} 

E[{c+ - E(c+IY+)}{c+ - E(c+IY+)}'IY*] 

Var(c+IY+) 

Var(c*IY*)· 

(6.23) 

(6.24) 

As a summary, the algorithm for drawing the simulated s vectors from 

g(c*IY*) is presented below. 

l. Draw a random vector c+ from density g(c*) rv N(O, 0). 

2. Use c+ to generate y+ from the state space form (5.7), where O'.t can 

be arbitrarily chosen. 

3. Compute E(c*IY*) and E(c+IY+) using the Kalman filter and 

disturbance smoother with diffuse initialisation. 

From s we now have random draws, 1] and E, of the state and model errors 

from the Gaussian importance density g(c*IY*). The algorithm is repeated 

over and over to get as many vectors s as are needed to obtain a reasonably 

sized sample; usually N = 10 is sufficient. \\Then states are Gaussian 

distributed, the simulated observation error component of S, E, can be used 

to derive simulated e vectors by taking et = Y; Et from the linear 

Gaussian approximating model. A sample of e vectors can then be used in 

(6.11) to derive E{x(O'.)IY}. 
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6.4 Model building and goodness-of-fit for 

exponential family models 

Most of what is discussed in §5.2.3 about goodness-of-fit in Gaussian state 

space models also applies to non-Gaussian state space models. A visual 

inspection of the data is vital and model building will frequently begin with 

the basic structural model, or at least the non-Gaussian equivalent of it: 

(6.25) 

Here, in accordance with the basic structural model, the trend component, 

JLt, is expressed as a random walk plus trend and we assume that all errors 

are Gaussian distributed. So JLt is given as follows: 

~t '" N(O, O"l), 
(t '" N(O, O"D· 

The seasonal component, It, may be of the trigonometric seasonal variety 

or the seasonal dummy variety. 

As with Gaussian models, likelihood ratio tests may be used to assess the 

effect a particular structural term or explanatory variable has on the model 

fit. However, when it comes to goodness-of-fit there is no equivalent to the 

GLM saturated model that can be used in a likelihood ratio to derive a 

deviance statistic and hence derive deviance residuals. In fact the literature 

is remarkably scant on the subject of residuals for non-Gaussian models; for 

example, of the four examples on non-Gaussian state space models given in 

Durbin and Koopman (2001) ch 14, not one refers to residuals. However, 

there is no reason in principle why Pearson residuals should not be used to 

assess model fit, and therefore these have been used and are referred to in 

the assessment of fit in the non-Gaussian models of this chapter and 

chapter 8. 

Over-dispersion does not feature in the literature on non-Gaussian state 

space models; this is perhaps because the stochastic terms in a state space 
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model will often absorb much of the variation which would usually be left 

unaccounted for in a log-linear regression model, say. However, it is none 

the less interesting to compare the dispersion parameter from a stochastic 

model with that of an ordinary regression model. It can be calculated in 

exactly the same way as the dispersion in a regression model by using the 

Pearson statistic divided by n - m where m is the number of explanatory 

variables. Note that for state space models each state is an explanatory 

variable and the seasonal dummy term has s - 1 states. 

6.5 A Poisson state space model applied to 

the Scottish Fatalities data 

In this section we demonstrate the use of the Poisson state space model in 

the analysis of the Scottish fatalities data of chapter 2. We start modelling 

the Scottish fatality data by specifying the marginal distribution of the 

observations, which in our case is the Poisson distribution; given in 

exponential family form, this is 

The next step is to decide upon the structural terms and explanatory 

variables to be used to model the data. To demonstrate the model fitting 

procedure and the ability of structural terms to fit a model, we shall first 

consider a model with only structural terms in it. 

The plot of the Scottish fatalities data in figure 2.1 (i), shows there is little 

evidence of a trend or indeed a seasonal pattern, but since both the linear 

and log-linear regression models indicated that a linear trend and two 

highly seasonal terms, the minimum temperature and daylight variables, 

were significant, it would be prudent to consider a model with a trend and 

seasonal component to start with. So to begin with we take the 

conservative course of action and express Ot by the non-Gaussian basic 

structural model (5.14). Since the seasonal dummy term is slightly simpler 
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conceptually than the seasonal trigonometric term and there is generally no 

difference between the two in terms of model fit, we shall choose the 

seasonal dummy formulation for our basic structural model: 

8-1 

{HI = - L {Hl-j + Wt, 

j=O 

Wt rv N(O, (J~). 

Next, sensible initial estimates of (JZ, (JZ and (J~ are chosen and put into the 

parameter vector 'If;. The initial estimates can essentially be arbitrary 

although calculation of the maximum likelihood will take longer the further 

the initial estimates are from the final estimates. 

We now move onto the specification of the linear Gaussian approximating 

model. Recall that the term ht(YtJet) must be linearised so that the final 

term of (6.20) is in the same form as the final term of (6.18). An arbitrary 

trial value, ii, of Q is chosen, which leads to et ZtCit. For models from the 

exponential family such as the Poisson distribution, Bt is used in the 

linearisation to obtain 

where the definitions of ht and ht are given in (6.21). In the Poisson case, 

the term ht (Yt Jet) is given by 

which leads to ht = -Yt exp(et) and ht = exp(et ). These then yield 

(6.26) 

The quantities H t and f); are then substituted into the linear Gaussian 

approximating model (6.16). The Kalman filter and smoother are applied 

to this model and from this a new trial value of et is obtained by 

calculating E(etJy*). Substituting this into the linearisation equations 

above gives new trial values H t and f);. These new trial values are then 
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substituted back into the linear Gaussian approximating model which is 

solved with the Kalman filter and smoother to generate a new trial value et. 
This process is repeated over and over until subsequent iterations do not 

alter the values of iIt and iJ;. \Ve may now find the log-likelihood of the 

linear Gaussian approximating model, Lg ('ljJ). 

In the log-likelihood of the the full model, (6.14), an extra term, W, must be 

calculated. The calculation of this term requires simulation. Since we are 

dealing with Gaussian distributed state vectors we may use w(yIO) in 

(6.11) as the basis for calculating W. This means that only a sample of 

simulated E vectors is required, where we take () = Y; - E to generate the 

simulated () vectors. The simulation smoother of §6.3 is used to draw the 

simulated E vectors. 

The log-likelihood (6.14) is maximised with an optimisation procedure such 

as nlminb in S-Plus. Eventually the parameters within the parameter 

vector 'ljJ are estimated, we now have estimates for the state error variance 

parameters, (JZ' (JZ and (J~. Under the basic structural model we obtain: 

O-Z = 6.778 X 10-4
, O-Z = 3.142 X 10-12 and o-~ = 6.371 X 10-5

. As with the 

maximisation of the log-likelihood for Gaussian state space models, the 

parameter estimates calculated by the optimisation procedure are actually 

the logs of the parameter estimates given above to avoid numerical 

instability in the optimisation procedure; it is these log estimates that the 

standard errors are calculated on. So the log estimates are 

log(o-D = -7.297, log(o-Z) = -26.49 and log(o-~) = -9.661, and their 

standard errors are 0.9709, 312.0 and 9.087 respectively. 

Clearly some improvements can be made to the model since the slope 

variance estimate is so small and the standard error for the log of the slope 

estimate is so large. The standard error is also large for the log of the 

seasonal dummy variance estimate. Firstly, a model with fixed slope and 

seasonal components should be tried and then subsequent alterations may 

be made according to the parameter estimates. It happens that, in fact, the 

most parsimonious model with the best fit is a simple local level model, i.e., 
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there is no need for a trend or seasonal component at all. 

(6.27) 

This model gives a parameter estimate of log( aD = -6.304 with standard 

error 1.312, so o-~ = 0.001828. 

With the parameters estimated, we may now calculate the signal estimate, 

at = E(Btlf);, -0), i.e., the mean. Since we have assumed the canonical link 

throughout, the signal estimate is linked to the series mean through the 

log-link, at = 10g{E(Y)}. From this we may calculate the Pearson statistic, 

Pearson residuals and estimate the dispersion. From the Pearson residuals 

for the above model we see from figure 6.1 that the fit of the basic 

structural model is perfectly reasonable. The estimated dispersion is 

0-2 = 1.130, which is less than the dispersion of 1.207 on the log-linear 

regression model fitted to the same data in chapter 2. 

The reason for the improved fit could be that we have only fitted structural 

terms to the data and have excluded explanatory variables; since structural 

terms are usually time varying they tend to fit the data better than just 

explanatory variables which normally have fixed coefficients. However, 

combining structural terms and explanatory variables can result in a better 

fit still. Using a time varying level term in place of the constant and linear 

trend terms of the Scottish fatalities model of chapter 2 but keeping the 

same explanatory variables gives the model 

Bt Pt + (31 Ct + (32£t, 

Pt+} Pt + ~t, 

where (31 and P2 are non time varying coefficients, Ct is the minimum 

temperature variable (in Celsius) and £t is the daylight variable. Fitting 

and estimating this model gives log(o-D = -7.473 with standard error 

0.5858, so o-~ = 0.0005685. The coefficient estimates are fh = 0.03848 and 

P2 = -0.04056 with standard errors 0.007611 and 0.007178 respectively. 

The estimated dispersion is 0-2 = 1.091, which is better than that of the 
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purely structural model. The Pearson residual plots (figure 6.2) are 

perfectly reasonable too. 

This model, unlike the previous one, has a direct interpretation in terms of 

the explanatory variables. The estimates show that a 1 degree Celsius rise 

in the average minimum daily temperature contributes to an increase in 

fatalities of 3.92% and every extra hour of daylight leads to a decrease in 

fatalities of 3.97%. For comparison with the regression model of chapter 2, 

the effects of temperature and daylight there were an increase of 4.3% and 

a decrease of 4.25% respectively in the numbers of Scottish car occupant 

fatalities. 

(i) 
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Figure 6.1: Local level Poisson model residual plots: (i) residuals vs fitted 
values, (ii) normal plot, (iii) time chart of residuals, (iv) correlogram. 
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Figure 6.2: Local level and explanatory variable Poisson model residual plots: 
(i) residuals vs fitted values, (ii) normal plot, (iii) time chart of residuals, (iv) 
correlogram. 
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Chapter 7 

Zero inflated counts 

In the previous two chapters we have seen that road accident counts can be 

modelled using Gaussian state space models, or log-linear state space 

models when the Gaussian modelling assumptions are less valid. However, 

some count data can exhibit a high frequency of zero counts, more than 

would be expected say under ordinary Poisson assumptions, so that when 

we try to model these series with Gaussian or Poisson assumptions the 

model does not provide an adequate fit to the data. High numbers of zero 

counts in data is known as zero-inflation and as well as occurring in some 

road accident count series, can occur in other situations such as measuring 

the abundance or rare animals in a specified region (Dobbie, 2001). In this 

chapter we examine the conditional Bernoulli truncated Poisson 

distribution, or conditional distribution for short, which is particularly well 

suited to the modelling of high numbers of zero counts in data sets. The 

model has been used before with success in a generalised linear model 

context (Welsh et al., 1996) and so it is hoped that for time series data it 

may also prove fruitful. The theory will be presented in terms of univariate 

observations since later a clear distinction will need to be made between the 

dimension of the observations and that of the estimating equations. The 

chapter begins with an overview of the conditional distribution. 
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7.1 The conditional Bernoulli truncated 

Poisson distribution 

7.1.1 The general form 

The conditional model handles zero-inflated count data by separating the 

zero data from the non-zero data. The data is viewed in two ways: firstly 

as a Bernoulli model for the presence or absence of data, i.e., for zero 

counts and greater than zero counts; and secondly as a Poisson distribution 

truncated at zero, hereafter referred to as the truncated Poisson 

distribution, to model the positive integer counts. 

The truncated Poisson density is a modification of the standard Poisson 

density (2.8), and for observations Yt (we shall use subscript t rather than i 

so as to link with the rest of this chapter), for t = 1, ... , n, is given by 

Yt = 1, 2, ... , At > 0 (7.1) 

Here, unlike the standard Poisson density, At is neither the mean nor the 

variance. Deriving the mean and variance from the density (this can be 

seen for the conditional model in appendix B), we find 

At 
E(}t) = -A ' 1 - e t 

The truncated Poisson density is then combined with the standard 

Bernoulli density, 

Yt E {O,l},O< 7rt<l, 

using the function I(Yt). The conditional density is thus given by 
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where the parameter ranges are At > 0 and 0 < 1ft < 1, exactly as for the 

parameters of the truncated Poisson and Bernoulli distributions. The 

function I(Yt) is an indicator function applied according to whether Yt = ° 
or Yt > ° and takes the form 

Yt = 0, 

Yt = 1,2, .... 

Deriving the mean and variance of the conditional density, as shown in 

appendix B, we find 

( 
1ft At ) ( 1ftAt ) Var(yt) = -,\ 1 + At - _,\. (7.3) 

1-e t 1-e t 

7.1.2 The conditional distribution In exponential 

family form 

Like the Bernoulli and Poisson distributions, the conditional distribution 

can also be put into exponential family form so that the methods of 

estimation set out in the previous chapter can be applied with little 

modification. However, it is not possible to express the conditional 

distribution in the standard exponential family form (6.3). Instead the 

general exponential family form must be used. For univariate observations 

this is given by 

J(y,jBt) ~ exp {~Cj(Bt)'Tj(Y,) + d(Bt) + sty,) } , -00 < 8t < 00, 

(7.4) 

where the dimension of the vector 8t is k, where k > 1. 

It is convenient that in the general exponential distribution the dimension 

of 8t can be greater than one even when the dimension of Yt is equal to one 

since the conditional distribution has two parameters, At and 1ft. Putting 
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the conditional distribution into the exponential family form gives 

f(YtI At, 7ft) = exp {I(Yt) [log (I:~t) - At - log{l - exp( -At)}] 

+ I(Yt)Ytlog(At) log(l - 7ft) - I(Yt) log(Yt!)} . 

By noting that I(Yt)Yt log(At) = Yt log(At) and I(Yt) log(Yt!) log(Yt!), due 

to the form of the function I(Yt), the above density can be simplified to 

f(YtI At, 7ft) = exp {I(Yt) [log (I:~t) - At -log{l - exp( -At)}] 

+Yt log(At) + log(l - 7ft) - log(Yt!)} . 
(7.5) 

Taking (}t = (BI,t B2,tY allows for density (7.5) to be expressed in terms of 

(}t. We are now compelled to choose links to relate the parameters At and 

7ft to BI,t and B2,t. As in Welsh et al. (1996), we choose the log link to relate 

Bu to At and the logistic link to relate 7ft to B2 ,t. 

log(At) =? At 

loO'(~) =? 7ft 
b I-7rt 

exp(BI,t), 
exp(rh,t) 

l+exp(e2,t) . 

Then writing (7.5) in terms of Bl,t and B2,t gives the following 

(7.6) 

f(YtIBI,t, B2,t) = exp [I(Yt) {B2,t - exp(BI,t) -log[l - exp{ exp(BI,t)}]} 

+YtBI,t -log{l + exp(B2,t)} -log(Yt!)]. 
(7.7) 

Relating this back to the general exponential family density, (7.4), gives the 

following functions: 

CI ((}t) 

TI (Yt) 

C2((}t) 

T2 (Yt) 

d( (}t) 

S(Yt) 

B2,t - exp( BI,t) - log[l - exp{ - exp( BI,t)}], 

I(Yt), 

BI,t, 

Yt, 
log{l + exp(B2,t)} , 

-log(Yt!). 

Expressing the conditional density, (7.2), in exponential family form, as in 
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(7.5) or (7.7), highlights the orthogonal parameterisation of this 

distribution. This is a feature of the conditional model that other 

distributions used for modelling zero inflated data, such as the zero inflated 

Poisson distribution, do not have. Although philosophically there is no 

intuitive advantage to orthogonal parameterisation in the modelling of road 

accidents, there are practical advantages that will become apparent in the 

following sections. 

Following the procedures of the previous chapter we must generate a 

sample of simulated state vectors, a(1), ... , a(N), from the importance 

density, g(aIY), and the mode of the importance density must be equated 

with the mode of density J(aly). Thus, the first step is to equate the mode 

of g(aly) with that of J(aly), and the next step is to sample from g(aly)· 

7.2 Equating the mode of g(a/y) with the 

mode of f(a/y) 

7.2.1 The linear Gaussian approximating model 

Since g( Q Iy) is a symmetric distribution, its mode is equal to its mean 

which, theoretically, can be obtained by calculating E(aly) from the linear 

Gaussian approximating model, (6.15). The density J(Ytl(}t) in (7.7), used 

to determine the observations for the conditional model, has bivariate (}t 

where (}t = (81,t 82,t)'. Therefore in the linear Gaussian approximating 

model (}t is also bivariate, where (}t = ZtQt. However, in model (6.15) a 

bivariate (}t implies a bivariate Yt and tt, and yet we know that Yt is 

univariate. 

Let us accept the bivariate nature of the linear Gaussian approximating 

model by defining a bivariate observation vector, Yt, in (6.15), where both 

elements of Yt are defined simply by the observation Yt, thus Yt = (Yt Yt)'. 
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In this formulation the two elements of Et are potentially different from one 

another, so we take Et (EI,t E2,tY and H t = diag(HI,t, H2,t). 

The bivariate forms of the vectors and matrices relating to 8t in the linear 

Gaussian approximating model are obtained similarly to adding a seasonal 

term to a state space form as was shown in (5.10); the only exception being 

the matrix Zt. The bivariate state space quantities presented below can 

easily be generalised to any dimension. 

TJt ( I ')' "h,t TJ2 ,t ' 

Recall that we cannot calculate the mean E(aly) of g(aly) from model 

(6.15) using the Kalman filter and smoother since E(Et) =1= O. Therefore we 

must instead calculate E( aIY*) from model (6.16), where y; = (yr,t y~,t)' 

and E; = (Ei,t E;,t)'. The vector E(aly*) = E(aly) and therefore is the 

mean and mode of the importance density g(aIY). 

7.2.2 Linearisation 

For non-Gaussian state space models the states are determined by a 

relationship of the type given in (6.2). If we assume that the distribution of 

the state errors for the conditional model is Gaussian then the states are 

determined exactly by the state equation of the linear Gaussian 

approximating model (6.16). As such we just need to find the quantities y; 
and H t in the linear Gaussian approximating model so that E(aly*) may 

be calculated. 

We find y; and H t by linearising the quantity ht(Yt/flt) using the methods 
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of §6.2.3. For the conditional density we take 

h(Yt I (JI,t, (J2,t) 

-log{f(Ytl(JI,t, (J2,t)} 

-I(Yt) ((J2,t exp((JI,t) -'log[l- exp{-exp((JI,t)}]) 

-Yt(JI,t + log{l + exp((J2,t)} + log(Yt!). 

Evaluating ht = (hl,t h2,tY at the trial value et = (BI,t (j2,tY leads to 

hIt , 

Then from (6.21), evaluating ht at the trial value jj leads to a 2 x 2 matrix 

of the form 

The fact that the off diagonal elements of the above matrix are zero is a 

direct result of the orthogonal parameterisation of (7.7). Finally, 
. . 

differentiating hl,t and h2,t gives 

hl,t 
I(Yt) exp(BI,t)[1 - exp{ - exp((jI,t)} - exp(BI,t) exp{ - exp(B1,t)}] 

[1 - exp{ - exp( (j1,t)} F 

The quantities hl,t and h2,t lead to the trial variance matrix Ht = h;l, 
which has no covariance terms, vastly reducing the complexity of 

subsequent analysis: 
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- -
Below, HI,t and H2,t are given in terms as simplified as possible to avoid 

numerical rounding errors during Kalman filtering. 

I(Yt) exp(Ol,t) [exp{exp(OI,t)} - 1 - exp(OI,t)]' 
(7.8) 

.. 1 
h2,t 

exp( -02,t) + 2 + exp(02,t). (7.9) 

Again, in as simplified a form as possible, the observations iJ; = (f)~,t Y~,t)' 

from the linear Gaussian approximating model are given by the expressions 

(7.10) 

7.3 Overcoming problems with the linear 

Gaussian approximating model 

Closer inspection of (7.8) and (7.10) reveals a difficult issue concerning the 

nature of these quantities when the observations take the value zero. When 

Yt = 0, I(Yt) = 0, and so in the variance HI,t there is problem of the form 

1/0 which implies infinite variance. Similarly, since HI,t features as part of 

the formula for Y~,t> there is a problem of the sort % in Y~,t when Yt = O. 

These problems are caused because the truncated Poisson component of the 

conditional model, representing all observations greater than or equal to 

one, assigns a probability of zero to observations at zero. The truncated 
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Poisson model, however, must continue to playa part in the conditional 

model while observations are zero valued. So the question is what to do 

with H1,t and fR,t while Yt = o. There are conceivably many ways of dealing 

with this problem; the following subsections describe four methods which 

could be used. 

7.3.1 Treating zero observations as missing in the 

truncated Poisson model 

Model formulation 

One way to proceed while Yt = 0 is to treat H1,t and f)tt as missing. If this 

is the assumption then the problem can be dealt with entirely via the 

Kalman filter and smoother, meaning that we do not have to come up with 

alternatives for H1,t and f)r,t. This method has the advantage that the 

treatment of missing observations via the Kalman filter and smoother is 

relatively simple. 

In general, for a series Yt, for t 1, ... , n, with observations missing at times 

t = 7, ... ,7*, the Kalman filter quantities K t , Vt and Ft-
1 simply take the 

value zero for these times. Substituting zero for these quantities into the 

Kalman filter and smoother implies that L t = Tt and the filtering and 

smoothing updating equations become 

TtPtT; + RtQtR~, 
T;NtTt, t = 7, ... ,7*. 

Note that it is quite possible to have a series of multivariate observations 

with obsevations missing from only one of the series and not both. For the 

other series in the multivariate model the Kalman filter quantities would be 

estimated as normal. 

It can be seen from the equations of (5.13) that while the quantities K t , Vt 

and Ft-
1 are equal to zero, E(EtJy) = 0 and Var(EtJy) = H t . However, in 
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the case of the linear Gaussian approximating model for the conditional 

distribution, iI1,t is considered a missing value meaning that Var( Ei,t IY*) is 

still undefined. This problem is shared by some other models when missing 

values are present such as the stochastic volatility model (Zivot et al., 

2003); here iIt is dependent on Yt, which causes it to be undefined when Yt 

is missing. However, the problem does not arise in cases such as the Poisson 

model, where Ht in the linear Gaussian approximating model is only 

dependent on Bt . 

Simulation 

The missing values in H1,t have an effect on how the simulation methods of 

§6.3 are implemented. Recall that we wish to draw a simulated vector, €, 

which is a draw from density g(c*IY*), where 

g(c*IY*) = N{E(c*IY*), Var(c*IY*)}· The vector € is calculated by 

€ = c+ - E(c+IY+) + E(c*IY*)· Therefore we start the process of drawing 

€ by generating a random vector, c+, from the distribution 

p(c*) = N(O, n), where n = diag(Hb """' Hm Ql, """' Qn). However, there 

are missing values in n corresponding to the missing Hl,t values. This 

means that missing Ett values are generated in the vector c+ and 

consequently missing values are generated in € since 

€ = c+ - E(c+IY+) + E(c*IY*)· 

The most sensible option at this stage is to use the Expected values of El,t 

in place of the missing values; E(El,t) = E(Ei,t) = 0 for t = T, ... , T*. If we 

are using a sample of 8 vectors for the calculation of w(8IY) then when we 

have missing values we must take Ol,t E(Yi,t) - E(El,t) = B1,t, for 

t = T, ... , T*, where B1,T, ... , B1,T* are real valued and are calculated from the 

linear approximating model. 

Practically, the effect of missing observations in a Gaussian state space 

model is that when we calculate the model fit, it is interpolated for the 

missing observations. For example, in the case of the univariate local level 

model, (5.1), while observations are missing, the model fit, E(BtIY), takes 

the form of a simple straight line connecting E(BT-1Iy) to E(BT*+lIY). 
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7.3.2 Using continuous time state space models 

In general, continuous time state space models are used when the observed 

series is unevenly spaced. This can, of course, be applied to our case where 

we consider fJr,t to be missing when Yt = 0. Therefore we end up with an 

unevenly spaced series in fJr t and so continuous time methods can be , 
applied. 

The way in which continuous time series are expressed is slightly different 

to discrete time series since the exact time that an observation appears is 

what is important rather than the order of the observation in the series. We 

take y(t) as a continuous function of time, for t in an interval ° ::; t ::; T. 

Observations are taken at time points tl ::; ... ::; tn from this interval. 

First, we consider the local level model, (5.1). In continuous time all 

differences become differentials, so writing the state equation of (5.1) in 

difference form, J-lt+l - J-lt = ~t, where ~t rv N(O, CT€) now leads to its 

conversion to the continuous time process J-l(t) expressed in differential 

form: 
dJ-l( t) 

dt 
dw(t) 

dt ' 
dw(t) 
~ rv N(O, CT~), 

where w(t) is the Brownian motion process or Wiener process. Here, 

w(O) = 0, w(t) rv N(O, tCT€) for ° < t < 00 and increments between 

observation time points W(t2) w(td, w(t4 ) - w(t3), ... , for 

° ::; tl ::; t2 ::; t3 ::; t4 , ... , are independent. Integrating and combining with 

the measurement equation gives the continuous time state space form of 

(5.1): 

y(t) 

J-l(t) 

J-l(t) + E(t), 

J-l(0) + w(t), ° ::; t ::; T, T > 0. 
(7.12) 

It is easy to think of the state equation here as being continuous since it is 

the mean of the observations; the observation equation, however, is defined 

by the observations and therefore cannot in some sense be continuous like 

the state equation since for most applications, and certainly the ones 

considered in this thesis, we only take observations at discrete points in 
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time. To define y(t) in (7.12) we must define E(t); here, Var{E(t)} is allowed 

to vary with time even when we are not dealing with the non-Gaussian 

case, this is to allow for different sized gaps between observations. The 

complete continuous time state space model analogue for (5.1) is, then, 

y(t) 

p,( t) 
p,(t) + E(t), 

p,(O) + w(t), 
t=t1,···,tn, 
o ~ t ~ T, 

E( t i ) 

w(t) 

rv N {O, O";(td}, 

N{O, to"n. 
(7.13) 

Finally, however, the estimation of unknown parameters via the 

log-likelihood leads to a further discretisation of the state space form. The 

log-likelihood depends on p,(t) only at the values t I , ... , tn, so to actually 

estimate parameters, the following model is applied: 

i = 1, ... , n, 
(7.14) 

where Yi = y(ti ), P,i = p,(ti ), Ei E(ti ) and ~i = W(t i +I) - w(ti ). This model 

is different from (5.1) only in that the variances of the E/S can vary. Of 

course, for the models we are using, the variance of the observation equation 

also varies with time because of the non-Gaussian distributed observations. 

The problem with equation (7.14) is that it really is no different to equation 

(5.1) in terms of its estimation. In a bivariate situation, say, there must be 

as many yl,i's as Y2,/S; that is, the YI and Y2 vectors must be the same 

length. If there are missing observations in one of the observation series but 

not the other, as is the case for the observations of the linear Gaussian 

approximating model in the conditional model, then we are back to the 

situation of applying NA's to the missing values and adapting the Kalman 

filter to deal with them. Also, the method above is presented just for the 

local level model; when other states are added, let alone other observation 

series, the system matrices take on more complicated forms than in the 

discrete time case. So, all in all, although continuous time state space 

models are theoretically more intuitively appealing, in practice no 

advantage is gained by their application to the conditional model and a lot 

of unnecessary complexity is added to deal with continuous time series 
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which are actually only observed at discrete time points. Continuous time 

models would, of course, be of great use if the data were unevenly spread or 

if there were missing observations. 

7.3.3 The joint Bernoulli truncated Poisson approach 

There is another way of treating HI,t and fJt,t while Yt = O. For this method 

we do not model the observations Yt; instead, a bivariate series, 

K(Yt) = (I(Yt) J(Yt))', is modelled based on a joint Bernoulli truncated 

Poisson distribution. Here J(Yt) is a function which constrains Yt to be one 

or more: 
Yt = 0, 

Yt = 1,2, .... 

The joint Bernoulli truncated Poisson distribution is simply a Bernoulli 

distribution modelling I(Yt) joined with a truncated Poisson distribution 

modelling J(Yt). Strictly speaking it is not a conditional Bernoulli truncated 

Poisson distribution at all since it has a different distribution function: 

However, I(Yt) and J(Yt) are not independent of one another, and they 

both depend on Yt, so that the form of the distribution is still conditional 

on the presence or absence of data; also, the mean and variance are still the 

same as for the conditional distribution. For simplicity, we shall consider it 

to be a type of conditional distribution. 

Using the same link functions as before, (7.6), we obtain the following 

distribution in exponential form: 

exp [I(Yt)e2,t - exp( BI,t) 

-log[l - exp{ exp(BI,t)}] + J(Yt)el,t 

-log{l + exp(02,t)} -log{ J(Yt)!}]. 

Now, by going through the linearisation process outlined in §6.2.1, but 
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using k(K(Yt) IBI,t, B2,t) rather than !(YtIBI,t, B2,t), we find that the linear 

Gaussian approximating model quantities HI,t and fJr,t are given by 

fJ;,t 

exp{ exp(t\t)} - 2 + exp{ - exp(OI,t)} 

exp(el,t) [exp{ exp(B1,t)} - 1 - exp(el,t)] ' 

e - H [ exp(el,t) - 1 
l,t l,t 1 { (B-)} J(Yt). - exp - exp l,t 

(7.15) 

(7.16) 

These are similar to those given in (7.8) and (7.10) but now do not have 

infinite and undefined values caused by the presence of I(Yt). Note that 

H2,t and fJ~,t remain as they are in equations (7.9) and (7.11). 

It must be stated that, in theory at least, there is a disadvantage to using 

the approach outlined above, which seems to negate the point of using a 

conditional model to begin with. The problem is that by using the function 

J(Yt) to convert zero counts to one, in the truncated Poisson part of the 

model, we end up with a disproportionately large number of 1 counts to be 

modelled by the truncated Poisson state space model and there is no reason 

why a truncated Poisson form should model an inflated number of 1 counts 

any better than a Poisson form can model an inflated number of zero 

counts. We shall see in the following chapter whether this means that the 

joint model cannot give a better fit than the Poisson state space model. 

7.3.4 The conditional model with univariate signal Bt 

Finally, another solution to the problem of infinite and undefined values in 

Hl,t and fJr,t is to take BI,t = B2,t = Bt and thus have a univariate signal, Bt, 

corresponding to a single set of explanatory variables and structural terms. 

Below, the conditional exponential form density (7.5) is restated: 

!(YtIAt,7ft) = exp { I(Yt) [lOg (l:~t) At - log{l exp( -At)}] 

+yt!og(At) + 10g(1 - 7ft) - 10g(Yt!)} . 

Now, again as before, we are compelled to choose links to relate At and 7ft 

to the signal; this time, however, they are linked to the same signal, Bt . We 
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take the same links as before, the log-link for At and the logistic link for 7rt: 

log(At) =? At 

log( I:~J =? 7rt 

exp( Bt), 
exp((h) 

l+exp(Bt ) . 

(7.17) 

In this formulation At and 7rt are not actually separate parameters at all; 

they are merely different functions of Bt . Translating into (7.5) we obtain 

!(Yt!Bt) = exp [I(Yt) {Bt - exp(Bt) -log[l - exp{ - exp(Bt)}]} 

+YtBt log{l + exp(Bt)} -log(Yt!)]. 
(7.18) 

From this density we follow the linearisation process from the theory of 

§6.2.1. We first take ht(Yt!Bt) = -log{!(Yt!Bt)} and then evaluate the 
. .. 

differentials ht and ht; from these, the linear Gaussian approximating model 

quantities iIt and Y; are obtained. In (7.19) we use the link function 

.5:. t exp( et) to fit the equation onto the page. 

it-I 
t 

I(Yt){ exp(.5:.t ) - 1 - .5:.t}{l + .5:.tF + exp(.5:.t ) - 2 exp( -.5:.t ) , 
(7.19) 

It would seem that the individual expressions for iIt and y; in the above 
- -

equations are more complicated than those of HI,t, H 2,t, ytt and y~,t in 

(7.8) to (7.11). This complexity, however, is countered by the fact that 

there are only two equations as opposed to four; and further, when Yt = 0, 

we notice that there are no longer problems with undefined values in either 
- -

H t or y; since these expressions simplify exactly to the forms of H 2,t and 

y~ t in (7.9) and (7.11) respectively. , 

Although this method has no conceptual or technical difficulties associated 

with it, unlike the three outlined in the previous subsections, it does have 
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the disadvantage of being less flexible than the other three. This is because 

the same set of explanatory variables and structural terms must account for 

the Bernoulli and Poisson variation in the data, whereas, in the other three 

methods, different terms may be used to model the Bernoulli and Poisson 

variation meaning that a wider selection of models may be used and in 

theory, therefore, the chances of finding a model which fits the data well are 

higher for those methods. 

In the following chapter we shall apply this method and the methods of 

§7.3.1 and §7.3.3 to various zero inflated data sets where we shall compare 

and contrast the different methods with each other as well as with the 

Poisson state space model. 
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Chapter 8 

Applications of the conditional 

Bernoulli truncated Poisson 

state space model 

In this chapter several data sets which show signs of an inflated number of 

zero counts are investigated; each example highlights different aspects of 

the modelling of zero inflated count data. Three of the four different 

methods presented in the previous chapter for treating the conditional 

model are compared in the analysis, they being the missing observation 

method (§7.3.1), the joint method (§7.3.3) and the univariate signal method 

(§7.3.4). To establish whether it is actually advantageous to use the 

conditional models at all, a Poisson model is also fitted to each series for 

comparison. For all applications the state error terms, rJt) are assumed to 

be Gaussian distributed as has been the case in the theory so far. 

8.1 Goodness of fit for zero inflated count 

data 

Assessing the fit of conditional models is not straightforward since, 

generally, if we are fitting a conditional model it is because there are a large 
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number of zero counts, so the data is sparse. McCullagh and NeIder (1989) 

define sparseness in §4.4.5 to mean that a sizeable proportion of the 

observed counts are small. In the context in which they are writing, they 

apply the term sparseness to binomial models where a large number of 

counts are 5 or less. But whether a binomial, a Poisson or a conditional 

model is being used, extremely sparse data means that generally measures 

of fit, such as the estimated dispersion, do not work well when used to 

assess the fit of the model. In a binomial model, for instance, 

over-dispersion can only occur when the number of trials is greater than 1, 

which means there can be no over-dispersion for Bernoulli models, but this 

does not mean all Bernoulli models fit data equally as well as each other. 

Despite these difficulties, in this chapter we shall attempt to make an 

assessment of the fit of the various models fitted in the following examples 

by estimating the dispersion using the three measures given below, and 

where appropriate comment upon residual plots based on the Pearson 

residuals corresponding to each of the dispersion estimates. 

Firstly, estimating the dispersion for the whole of a conditional model using 

the Pearson statistic gives the following: 

~2 
CYp= 

C n 

where n is the total number of observations and m is the total number of 

states. However, the data used here are going to contain a high proportion 

of zero's, so we know at the outset that the above estimated dispersion is 

unlikely to be a particularly good measure of goodness-of-fit. A better 

statistic to use would be the following: 

where ml is the number of states in the truncated Poisson part of the 

model. It can be seen that this statistic only applies to the truncated 
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Poisson part of the model and cannot be used to asses fit in the Bernoulli 

part. This method of estimating the dispersion follows from the joint 

method of dealing with zero observations, §7.3.3. The only possible 

problem with it is the same problem that the joint method has; that is, it 

will have a disproportionately large number of I-counts due to all the zero 

counts being changed to 1 in the function J(Yt). Perhaps a better model 

still would be to exclude the zero data all together by only summing the 

non-zero data so that the estimated dispersion function is given by 

A2 
(}nz 

This function would ensure that only the counts of 1 or more would be used 

in estimating the dispersion of the truncated Poisson part of the model. 

8.2 Child road fatalities in Southwest 

England 

The first series we examine is road fatalities involving children aged 0 to 11 

years inclusive, in Southwest England from 1987 to 2000. In this example 

all the explanatory variables used in the regression models of chapter 2 are 

considered and the combination of explanatory variables and structural 

terms which provides the best fit to the data is used in the analysis. 

8.2.1 The missing observation method conditional 

model fit 

Under the missing observations method conditional model, the following 

model provides a reasonable fit to the data: 
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Olt , /-11,t + /31,1 Ct + (31,2rt, 

/-11,t+l /-11,t + 6,t, 6,t rv N(O, O"i,~), 

O2 t , /-12,t + (32,1 Ct, 

/-12,t+1 /-12,t + 6,t, 6,t rv N(O, O"~,~). (8.1 ) 

Here, (31,1, (31,2 and (32,1 are non time varying coefficients, Ct is the average 

monthly minimum temperature in degrees Celsius, and rt is the total 

number of millimeters of rainfall per month. With this model there is 

under-dispersion in one of the three dispersion estimates, o-;p = 0.90, the 

other two are slightly over-dispersed, o-;p = 1.12 and o-~z = 1.18. The 

parameter and coefficient estimates and associated standard errors are 

given in the tables below. 

parameter log parameter log-parm Std err 
~2 

0" 1,~ 0.003127 -5.768 1.180 
~2 

0"2,£ 0.008309 -4.790 1.088 

Table 8.1: Missing observation method conditional model parameter esti­
mates, log parameter estimates and standard errors on log parameter esti­
mates for model (8.1). 

Coefficient Std err 

(311 0.06771 0.02252 , 

~1,2 -0.01007 0.003267 

(32,1 0.1245 0.04186 

Table 8.2: Conditional model coefficient estimates and standard errors under 
the missing observations method. 

The coefficient estimates show that the odds of one or more child fatalities 

occurring increases by 13.26% for an increase of 1 degree Celsius in the 

minimum daily temperature. The interpretation of the coefficients in the 

truncated Poisson part of the model is less straightforward because the 
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truncation leads to a complex mean function; however, for small coefficient 

values, a unit increase in one of the explanatory variables will have virtually 

the same effect on the observed data under the truncated Poisson model as 

it would under the Poisson model. Therefore the effect of a unit change in 

an explanatory variable under the truncated Poisson model can be 

interpreted in approximately the same way as under the Poisson model. For 

this example we see that given that one or more child fatalities have 

occurred, the number increases by approximately 7% for an increase of 1 

degree Celsius in the minimum daily temperature; also, given that one or 

more child fatalities have occurred, the number decreases by approximately 

9.6% for every extra 10 millimeters of rainfall. Overall, the model suggests 

that there are fewer child fatalities when the weather is cold and wet. 

Assuming that the majority of child fatalities occur on the school run and 

assuming that children in cars are safer than children on foot or bicycles, 

the result seems reasonable since in cold or wet weather fewer children are 

likely to travel to school by foot or bike. 

8.2.2 The joint method conditional model fit 

Under the joint method conditional model the best fit to the data is 

obtained again by the use of model (8.1). However, unlike the missing 

observations method, under the joint method the same model shows 

over-dispersion using all of the three dispersion estimates: o-~p = 1.55, 

o-;p = 1.21 and o-~z = 1.86. The parameter and coefficient estimates and 

associated standard errors are given in the tables below. 

parameter log parameter log-parm Std err 
A2 
0"1,<; 0.008155 -4.809 0.8671 
A2 
0"2,<; 0.008298 -4.792 1.088 

Table 8.3: Joint observation method conditional model parameter estimates, 
log parameter estimates and standard errors on log parameter estimates for 
model (8.1). 
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Coefficient Std err 

~1,1 0.07826 0.02530 

~1,2 -0.01268 0.003300 

132,1 0.1232 0.04154 

Table 8.4: Conditional model coefficient estimates and standard errors under 
the joint method. 

The coefficient estimates show that the odds of one or more child fatalities 

occurring increases by 13.11% for an increase of 1 degree Celsius in the 

minimum daily temperature. Given that one or more child fatalities have 

occurred, the number increases by approximately 8.14% for an increase of 1 

degree Celsius in the minimum daily temperature; also, given that one or 

more child fatalities have occurred, the number decreases by approximately 

11.9% for every extra 10 millimeters of rainfall. 

Despite the different dispersion estimates, the coefficient estimates for this 

model are remarkably similar to those of the missing observations method 

and the interpretation of the model is therefore the same. Fewer children 

walk or cycle to school in cold or wet weather and as a result the decreased 

exposure leads to a decrease in child fatalities in cold or wet weather. The 

mismatch in dispersion estimates is interesting considering the similarity of 

the parameter estimates; also, there does not appear to be a great 

difference in the model fits when the means are plotted over the data as we 

see in figure 8.1. However, what figure 8.1 does not show is the difference 

between the separate plots, that is to say the plots of the separate Bernoulli 

and truncated Poisson means before being multiplied together in the 

conditional mean. These separate plots can be seen in figures 8.2 and 8.3. 

They suggest that there is no difference between the Bernoulli means in 

either plot, but there is a difference in the truncated Poisson means 

whereby the joint method mean is slightly lower than the missing 

observations mean. The I-counts are the lowest value the truncated Poisson 

part of the models can take, the presence of a lot of I-counts will have the 

effect of reducing the overall mean, despite the presence of a stochastic 

term, which goes to explain why the truncated Poisson mean in the joint 
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method is lower than in the missing values method , which essentially 

interpolates between counts of zero instead of replacing them with one. The 

plot in figure 8.4 shows the actual difference in the truncated means. The 

plot suggests that the means are most different when there are more zeros , 

whereas, at the beginning of the series, where there are very few zero 

counts, the difference is more variable and less one-sided; this is precisely 

what we would expect given the above explanation. Figure 8.10 in the 

following example on fatalities in Scotland in snowy weather shows much 

more clearly the difference in the way the missing observations method and 

the joint method truncated means vary when observarions are zero-valued. 

(i) 

50 100 150 

(ii) 

50 100 150 

Figure 8.1: Conditional model mean plots using (i) the missing observations 
method, (ii) the joint method. 
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'" 

o 

a 50 100 150 

Figure 8.2: Separate Bernoulli and truncated Poisson means for the missing 
observations method conditional Poisson model. 

50 100 150 

Figure 8.3: Separate Bernoulli and truncated Poisson means for the joint 
method conditional model. 
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50 100 150 

Figure 8.4: Difference plot: truncated Poisson joint method mean subtracted 
from truncated Poisson missing observations method mean. 

8.2.3 The univariate signal conditional model fit 

Under the univariate signal conditional model the best fit to the data is 

obtained by the use of a univariate analogue similar to model (8.1). Note 

that here there is not the flexibility to include different explanatory 

variables for the Bernoulli and truncated Poisson parts of the model: 

/It + /31 Ct + /32 r t, 

/It+1 /It + ~t, ~t C'-.J N(O, O"l), 

Here, ,/31 and /32 are non time varying coefficients, and again Ct is the 

minimum temperature variable and rt is the rainfall variable. The 

estimated log-level variance for this model is log( a-D = -5.708 with 

standard error 0.8666, so a-l = 0.003319. Coefficient estimates and 

associated standard errors are given in the table below. 

(8.2) 

It is arguable that we may only use a-~p as a measure of dispersion under 

the univariate signal method since only one et is used to explain the 

variation in the data. However, the mean is still constructed from two 
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Coefficient Std err 

(31 0.05806 0.02362 

(32 -0.007418 0.002461 

Table 8.5: Conditional model coefficient estimates and standard errors under 
the univariate signal method. 

different functions of 8t , one which describes the variation in the presence 

or absence of data, 7ft, and the other which describes the variation in the 

non-zero data, At! (1 - eAt), so it is still valid and interesting to compare the 

three different estimates of dispersion in the univariate signal case. The 

model shows under-dispersion using all of the three dispersion estimates: 
A 2 _ 0 93 A 2 0 78 d A 2 0 94 (YeP - . ,(YtP . an (Ynz .. 

Because the univariate signal conditional model uses the same signal in 

both the Bernoulli and truncated Poisson part of the model, it is not 

necessary to interpret the two parts of the series separately. However, the 

univariate signal conditional mean is a complex function of 8t and does not 

easily lend itself to a simple interpretation. But despite its apparent 

complexity, the univariate signal conditional mean and the Poisson mean 

are actually very similar to one another: 

E(Y) 
[1 

exp(28) 
(8)][ {exp(8)}] ~ exp(8), exp 1 - exp 

v 8. 

This means that we can interpret the coefficient values in the univariate 

signal conditional model in approximately the same way as for a standard 

log-linear Poisson model. So we may say that the number of child fatalities 

increases by approximately 6% for every 1 degree Celsius rise in the 

minimum daily temperature and the number of child fatalities decreases by 

approximately 7.15% for every extra 10 millimeters of rainfall. Again, these 

estimates are in line with those of the previous subsections. 
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8.2.4 The Poisson model fit 

The best fit under the Poisson model is obtained by the use of exactly the 

same model as for the univariate signal conditional model, (8.2). The 

estimated log-level variance for this model is log(o-l) = -5.570 with 

standard error 0.7781, so the estimated level variance is O-Z = 0.003809. For 

the Poisson model there is, of course: only one dispersion estimate using the 

Pearson statistic, but it shows very little over-dispersion with an estimated 

dispersion of o-;p 1.16. The coefficient estimates and associated standard 

errors are given in the table below. 

Coefficient Std err 

PI 0.06762 0.02124 

P2 -0.007176 0.002248 

Table 8.6: Poisson model coefficient estimates and standard errors. 

The coefficient estimates show very similar results to the univariate signal 

conditional model; the number of child fatalities increases by 6.996% for 

every 1 degree Celsius rise in the minimum daily temperature and the 

number of child fatalities decreases by 6.925% for every extra 10 millimeters 

of rainfall. 

Figure 8.5 shows the univariate signal conditional mean and the Poisson 

mean plotted over the data. It is apparent that both these plots appear 

remarkably similar to one another and also to the fitted mean plots of the 

two bivariate conditional models in figure 8.1. Both the Poisson and the 

univariate signal conditional model are based on model (8.2), so we can 

compare the mean of the Poisson and univariate signal models using a 

difference plot as we did for the truncated means of the two bivariate 

models; figure 8.6 shows this difference plot. The pattern of the seasonal 

variation in this plot suggests that the Poisson mean has a consistently 

larger amplitude than the univariate signal conditional mean, i.e., peaks are 

higher and troughs are lower for the Poisson mean. Also apparent in this 

plot is that for the larger valued counts at the beginning of the series, the 

Poisson mean is higher than the univariate conditional mean. 
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Figure 8.5: Fitted means plots using (i) the univariate signal conditional 
model, (ii) the Poisson model. 
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Figure 8.6: Difference plot: univariate signal conditional mean subtracted 
from Poisson mean. 
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8.3 Analysis of Scottish road fatalities 

occurring in snowy weather 

8.3.1 Using a structural model 

This is a somewhat contrived example since the series in question is the 

road fatalities which occurred when it was snowing in Scotland from 

January 1979 to December 2000. Because the data is based upon a highly 

seasonal event, it is no surprise that the nature of the series is highly 

seasonal as illustrated in figure 8.7. In this example the highly regular 

pattern of the data combined with the use of only structural terms are used 

to illustrate a potential pitfall of zero inflated count modelling. 

When fitting a univariate conditional model or a Poisson model to this 

series, a good choice for a structural model would be something which 

50 100 150 200 250 

Figure 8.7: Scottish road fatalities occurring in snowy weather 
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captures the seasonality, such as the following model: 

/1H1 

It+l 

8-1 

- L It+l-j + Wt, 

j=O 

Wt f"V N(O, (J~). (8.3) 

The highly seasonal nature of the series extends to both parts, that is to 

say, the non-zero data, Yt :::: 1, is highly seasonal and the presence-absence 

data, I(Yt), is also highly seasonal. This means that when considering a 

conditional model with bivariate signal, the best choice of model is one with 

a seasonal term in it for both B1,t and B2,t. Thus we might use the bivariate 

signal equivalent to (8.3): 

Bl,t /1l,t + Il,t, 

/1l,Hl 

Il,Hl 

/1l,t + 6,t, 

s-l 

- L Il,H1-j + Wl,t, 

j=O 

B2,t /12,t + 12,t, 

/12,Hl 

12,t+l 

/12,t + 6,t, E,2,t '" N (0, (J~,.; ) , 
s-l 

- L 12,Hl-j + W2,t, 

j=O 

8.3.2 Model estimation failure 

(8.4) 

Models (8.3) and (8.4) contain only structural terms and are therefore not 

particularly informative, in fact the series that they are modelling itself is 

not particularly interesting since it is obvious that fatalities which occur 

during snowy weather will occur during the winter months. However, the 

above models do fit the data very well; in fact it is because the models fit 

the data so well that the fitting process fails before the optimal models are 

found. The reason that the optimisation process fails is that the estimating 
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equations used in the linear Gaussian approximating model become 

numerically unstable. The numerical instability is generally caused by the 
- - -

estimates of the signal, Bt or BI,t and B2,t, becoming so large that the 

computer is no longer able to effectively calculate the linear Gaussian 

approximating model quantities such as HI,t. It is easier to understand 

what is going on if BI,t and B2,t are converted into a form involving trt and 5.t 
using the link functions (7.6). Here it becomes clear that a huge value of 

BI,t or B2 ,t corresponds to trt or 5.t coming too close to its limiting value; 

that is, trt getting too close to 0 or 1 and At getting too close to O. For 

example if we take HI,t in (7.8) and convert the equation into a form using 

5.t and then take 5.t = 0, a problem of the form % occurs regardless of 

whether I(Yt) is zero or one: 

HI,t 
exp{ exp(BI,t)} - 2 + exp{ - exp(BI,t)} 

I(Yt) exp(BI,t) [exp{exp(BI,t)} - 1- exp(BI,t)] 

exp(5.t) 2 + exp( -5.t) 

I(Yt)5.tlexp(5.t ) - 1 - 5.t ]· 
(8.5) 

To avoid these numerical instabilities occurring, upper and lower limits are 
- - -

needed on BI,t and B2 ,t so that HI,t and other linear Gaussian approximating 

model quantities do not become incalculable. However, rather than 

randomly choosing these limits it would be better to make them coincide 

with upper and lower constraints on the values of 7ft and At. For example if 
- -
At is constrained so that At > 0.01, then this corresponds to constraining 

BI,t 2: 10g(0.01); by applying this minor restriction HI,t now becomes a 

calculable quantity. Similarly to the log-link function relating 5.t to BI,t, we 

find from the logistic link function in (7.6) that constraints on trt of 

0.01 ::; trt ::; 0.99 correspond to constraints of -10g(99) ::; B2,t ::; 10g(99) on 

B2,t. 

Applying the above constraints to Bt in the univariate signal conditional 

model is not so straightforward as for the two bivariate signal methods 
- -

because we may derive the constraints from trt or from At, since trt and At 

are simply different functions of Bt . However, the problem is not serious 

since the constraints derived for Bt are very similar whether they have been 
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obtained from ift or from At. It is probably best, however, to apply the 

limits corresponding to ift since ift has upper and lower constraints 

corresponding to upper and lower constraints on et , whereas, ).t is only 

restricted in one direction allowing Bt to become very large in the other. So 

using the logistic link, (7.17), we use the limits of -log(99) ::; et ::; 10g(99) 

on Bt under the univariate signal method corresponding to 0.01 ::; ift ::; 0.99. 

Another cause of model estimation failure with the conditional model 

applies solely to the missing observations method, §7.3.1. The problem here 

is that the Kalman filter used in the calculation of e1,t will not start if any 

of the first few fH,t values are missing. In fact, ml + 1 non missing values 

are needed from fJr,t to fJl"n
l 
+l,t for the Kalman filter to successfully 

initialise, where ml is the total number of states in the truncated Poisson 

part of the model. If fitting a local-level model to the data, this may not 

present a problem as only the first two fJr t must not be missing. However, , 

for a seasonal model with local level trend such as (8.4), the first 13 fJr,t 
must be present for the initialisation of the Kalman filter to work. In the 

missing observations method fJr,t is treated as a missing value when Yt = 0, 

and since there are plenty of months each year when there is no snowy 

weather and thus no road fatalities during snowy weather, we know that 

some of the first 13 fJr,t values must be missing. This amounts to having to 

treat the first few fJr,t as they would be treated in the joint method (§7.3.3), 

that is, using J(Yt) in the calculation of the first 13 fJr,t so that the Kalman 

filter may be initialised. 

8.3.3 The conditional and Poisson model fits 

Applying the constraints in the previous section on the values of BI,t, B2,t 

and Bt, and treating the first 13 fJr,t values in the missing observations 

method as they are treated in the joint method means that models (8.4) 

and (8.3) are now estimable. It can be seen from figure 8.8 and 8.9 that the 

fit is very similar and very good under all three conditional model 

estimation methods, and again we find that the fit of the Poisson model is 
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almost identical to the that of the conditional models. Difference plots have 

not been shown for this example because they indicate an identical story to 

the difference plots of the child fatality example. That is, they show again 

that the truncated mean of the joint method conditional model is lower 

than that of the missing observations method conditional mean; and the 

seasonal amplitude of the Poisson mean is slightly greater than that of the 

univariate conditional mean. Parameter estimates for all four models are 

shown in the tables below. 

parameter log parameter log-parm Std err 
A2 
(J 1,~ 0.01720 -4.063 0.9067 
A2 
(Jl,w 0.1026 -2.277 0.6049 
A2 
(J2,~ 0.003752 -5.585 1.152 
A2 
(J2w ~O -31.54 7098 

Table 8.7: Conditional model parameter estimates, log parameter estimates 
and standard errors on log parameter estimates under the missing observa­
tions method for model (8.4). 

parameter log parameter log-parm Std err 
A2 
(Jl,~ 0.02896 -3.541 0.6764 
A2 
(Jl,w 0.1108 -2.199 0.5517 
A2 0.004364 -5.434 1.160 (J2,~ 
A2 

~O -30.56 3701 (J2 w 

Table 8.8: Conditional model parameter estimates, log parameter estimates 
and standard errors on log parameter estimates under the joint method for 
model (8.4). 

parameter log parameter log-parm Std err 
A2 
(J~ 0.01447 -4.236 0.8062 
A2 
(Jw 0.04919 -3.012 0.8073 

Table 8.9: Conditional model parameter estimates, log parameter estimates 
and standard errors on log parameter estimates under the univariate signal 
method for model (8.3). 
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parameter log parameter log-parm Std err 
A2 
()~ 0.02346 -3.753 0.8123 
A2 
()w 0.1074 -2.231 0.5838 

Table 8.10: Poisson model parameter estimates, log parameter estimates and 
standard errors on log parameter estimates for model (8.4). 

The log-parameter estimate standard errors are all reasonable apart from 

the standard errors on log( o-~ w) in the bivariate method tables, which are , 
large. This either suggests that the terms modelling the seasonal aspect of 

I(Yt) need not be time variable and could be held constant under those two 

methods, or it could suggest that seasonal terms are not needed because 

they do not fit the I(Yt) data very well. However, it can be seen by looking 

at a split plot for those two methods (figure 8.10) that the former reason is 

more likely as the Bernoulli mean is a definite regular seasonal pattern. 

Under the missing observations method there is under-dispersion using all 

three measures of dispersion defined in §8.l: o-;p = 0.56, o-;p 0.57 and 

o-;'z = 0.95. Under the joint method there is over-dispersion in two of the 

measures and under-dispersion for one: o-;p = 1.44, o-;p = 0.54 and 

o-;'z 2.05. The differences in dispersion estimates are again a result of the 

difference in the truncated Poisson means, as was the case in the previous 

example. We find that under the univariate signal method there is more 

under-dispersion in each estimate than either of the other two conditional 

methods: o-;p = 0.50, o-;p = 0.31 and o-;'z = 0.80. 

Under the Poisson state space model using (8.3), we must again use limits 

on et in the linear Gaussian approximating model since here, too, the fitting 

procedure fails due to infinite or undefined values. For consistency, and 

since no advantage is gained by doing otherwise, we choose the same 

constraint on At as before, namely At :::: 0.01, which implies et :::: 10g(0.01) 

under the log-link. The estimated dispersion under the Poisson model is 

0.49 showing a lot of under-dispersion. Note that because of the regularity 

of the seasonal pattern in this series and the models with only structural 

terms fitted to it, it is no surprise that most of the models in this example 

show under-dispersion. 
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Figure 8.8: Fitted conditional model to Scottish snow data using model (8.4) 
under (i) the missing observations method, (ii) the joint method. 

(i) 

50 100 150 200 250 

(ii) 

50 100 150 200 250 

Figure 8.9: Fitted models to Scottish snow data using model (8.3) under (i) 
the univariate signal conditional model, (ii) the Poisson model. 
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(i) 

(ii) 

Figure 8.10: Conditional model split into Bernoulli and truncated Poisson 
parts fitted to the Scottish snow data using model (8.4) under (i) the missing 
observations method, (ii) the joint method. 

8.4 Noticeable differences between 

conditional and Poisson models 

So far in this chapter, although there are differences in dispersion estimates, 

it would appear that the various conditional models and the Poisson model 

all produce fairly similar fits, and it is difficult to tell which offers the best 

model for the data; also, the dispersion estimates are probably unreliable 

due to the sparse nature of the data. However , the similarity of fits could 

be due to the dominance of the explanatory variables in the child fatality 

example and the regularity of the data series in the Scottish snow example. 

'iYhen simple local-level structural models are fitted to zero inflated count 

series there can be more variation in the fits. 

Figures 8.11 and 8.12 show local-level structural models applied to data of 

the monthly total of fatalities on non built-up roads in Greater London 
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from 1979 to 2000 inclusive. The local-level models are applied under all 

three conditional modelling methods as well as the Poisson model. 

Surprisingly, the two models which appear to have the better fit, the joint 

method conditional model and the Poisson model, have worse dispersion 

estimates than the other two models. The joint method dispersion for the 

whole model is &~p = 1.68 and the dispersion for the Poisson model is 

&2 1.36. Comparatively, the dispersion estimates for the missing 

observations method and the univariate signal method are &~p = 1.13 and 

&~p = 1.16 respectively. The non-zero only dispersion estimates for the 

three conditional models also show more over-dispersion for the joint 

method, with &~z = 2.08, than the missing observations method and the 

univariate signal method, with dispersion estimates of &~z = 1.39 and 

&~z = 1.46 respectively. 

It has to be said, though, that if one were to choose between the Poisson 

and conditional models at this point, one would probably choose the 

Poisson model as it has the advantage of simpler modelling equations and a 

simpler interpretation. However, there are some circumstances where the 

conditional model can at least appear to provide a better fit to the data 

than the Poisson model. 

The above example is one in which the Poisson model differs from the 

conditional models by showing more variation in the mean; although, as the 

dispersion estimates suggest, this does not necessarily mean the Poisson 

model provides the better fit. However, for some data sets this situation is 

reversed and the conditional model mean appears to vary more and provide 

the best fit to the data. The number of fatalities on motorways in Northern 

England from 1979 to 2000 is one such series. Figure 8.13 shows that a 

univariate signal conditional local-level model appears to give a better fit to 

the data than a Poisson local-level model. 
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Figure 8.11: Fatalit ies on non built-up roads in Greater London with (i) 
fitted local level missing observations method conditional mean, (ii) fitted 
local level joint method conditional mean. 
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Figure 8.12: Fatalities on non built-up roads in Greater London with (i) 
fitted local level univariate conditional mean, (ii) fitted local level Poisson 
mean. 
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Figure 8.13: Fitted local level models to Northern English motorways data 
using model under (i) the univariate signal conditional model, (ii) the Poisson 
model. 

A curious feature of this example is the large variation in the three 

dispersion estimates for the univariate signal conditional model. The 

dispersion estimates are fJ~p = 1.02, fJ;p = 0.38 and o-';'z = 2.47. For 

comparison, the Poisson dispersion estimate is fJ2 = 1. 71. More generally, 

while it is true that the local-level model is unlikely to be the best fit to 

most data series, the problem with this series is that with only 34 non-zero 

observations out of 264, it is really too zero inflated and there is not enough 

information in the non-zero part of the series to fit any sort of a meaningful 

model. Also, it is only in the case of the univariate signal conditional model 

that a seemingly better fit is achieved for this series; for the other two 

methods there is even less variation than for the Poisson model. 
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Chapter 9 

Conclusion 

It is difficult to draw anyone conclusion from this thesis as it has been as 

much about the application of existing modelling techniques as it has been 

an investigation into new methodology. However, where the new 

methodology is concerned, the thesis is split into two investigations: one 

into the effect of daylight on road accidents and the other into appropriate 

state space time series models for zero inflated count data. As such, the 

conclusion has been divided into two sections which conclude the two 

investigations separately. 

9.1 The investigation into the effect of 

daylight on road accidents 

The analysis of car occupant accidents in chapter 2 showed that daylight, 

as measured from sunrise to sunset, was a significant predictor under linear 

and log-linear regression models for the total number of car occupant deaths 

and injuries, and also the number of fatalities, in Scotland and Southwest 

England. In short, every model for which the daylight variable was tested 

showed that it had a significant effect and that effect was negative such 
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that more daylight corresponded to fewer accidents. It was also evident 

from the daylight coefficients that in all models considered, daylight had a 

stronger effect on accidents in Scotland than in Southwest England, which 

is probably due to the greater seasonal variation in daylight in Scotland. 

The means by which the conclusions in the previous paragraph were drawn 

were, of course, conventional in statistical terms, they being linear and 

log-linear regression models. A cruder, less conventional method of 

assessing the effect of daylight was introduced in chapter 4 based on using 

the difference in latitude between Scotland and Southwest England, the 

northern-most and southern-most regions of the UK respectively. The 

double-differencing method was an ad hoc idea designed to show that 

daylight had a significant effect on road accidents by using the fact that 

morning rush hour in Scotland during the months of December and 

January is spent in darkness while it is light in Southwest England the 

whole year round. Applying the technique to the raw Scottish and 

Southwest data revealed that although there was a weak effect, as the 

means of the double-differences were positive as hoped, they were not 

significantly different from zero. 

Although double-differencing was designed to minimise the effects of other 

factors influencing the level of road accidents, there was always the 

possibility that such factors had not been entirely eliminated. To ascertain 

whether the method would have worked had there not been factors other 

than daylight influencing the numbers of accidents in the two regions, the 

double-differencing method was applied to the Scottish and Southwest data 

which had had all non-daylight variables removed. The idea was that this 

would provide a fairer comparison between the Scottish and Southwest 

English data. However, despite the removal of all non-daylight effects from 

the data, the results showed again that there was no effect on road 

accidents due to the darkness in morning rush hour in December and 

January in Scotland using the double-differencing method. 

Further analysis identified another unknown source of seasonal variation in 

three of the four series under investigation which was conflicting with the 
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darkness in morning rush hour in December and January that the 

double-differencing method was trying to estimate. It is possible that this 

extra variation was the cause of the double-differencing technique not 

showing a significant result. One option for dealing with this problem 

might be to fit a dummy variable to account for the extra unforeseen 

seasonal variation. A simple example would be a variable which takes the 

value 1 for December and January and takes the value zero for all other 

months. However, the drawback with this approach is that the new variable 

may not only account for the unforeseen variation but may also eliminate 

the variation that we are trying to estimate. 

Apart from the unknown source of variation, there are other possible 

reasons why the double-differencing method failed to show that darkness in 

morning rush hour in December and January in Scotland is a strong enough 

effect to make a significant difference to casualty numbers. Firstly, the 

morning rush hour is only one hour during the day and although there is a 

peak in fatalities during this time, it is still only going to account for a 

small proportion of the overall number of road accidents each day, and 

consequently each month. So, any analysis based on differences in total 

monthly accident numbers is not likely to show big differences when the 

only thing influencing these differences is a change in accidents numbers 

during a small part of each day. Comparing one months casualty figures 

with another months is possibly too blunt an instrument to use to analyse 

potentially quite small changes. Secondly, in previous studies on the effect 

of daylight on road accidents, a popular idea has been to use the hour 

change from BST to GMT or vice versa, and measure the numbers of 

accidents for several weeks before the change and several weeks after. The 

idea is that the hour change is abrupt and therefore catches some road 

users by surprise, so it is seen that there is often a sudden jump or sudden 

fall in road accidents after the hour change. The light level in morning rush 

hour in Scotland, despite being noticeably darker than in Southwest 

England for the months of December and January, will nonetheless change 

gradually over the days and weeks from November to December and from 

January to February, giving drivers and other road users time to adjust, to 
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a certain extent. Again, comparing one months data with the next is 

possibly too crude a method to measure this gradual change. 

To improve the chances of the double-differencing method showing 

significant differences between the December and January casualty levels in 

Scotland and Southwest England, it could be refined by the use of higher 

frequency data such as weekly data. In this way there would be more data 

to work with and instead of using the difference between one week and the 

next, the method could be modified to measure the rate of change over a 

period of six weeks or so from November to December and again from 

January to February. This would be a small enough time period for the 

effects of other factors influencing the numbers of casualties to be 

minimised and should show a steeper rate of change in Scotland than 

Southwest England. 

9.2 The investigation into zero inflated 

count data and the conditional model 

From the evidence of the previous chapter it can be concluded that a 

conditional model can provide a satisfactory fit to zero inflated count time 

series data. However, from the examples considered, what is more evident 

is that in all but the most extreme case the conditional models do not seem 

to provide a markedly different or better fit to the data than the Poisson 

model. It also has to be said that the Poisson model has a much simpler 

interpretation than the conditional models, which is evident in the 

interpretation of the coefficient estimates in the child fatality example. 

On the face of it, it does not seem to make sense that the conditional 

model, which is theoretically so well suited to the modelling of zero inflated 

counts, should be no better in practice than the Poisson model, but there 

are various reasons why the Poisson model does well modelling zero inflated 

data. Firstly, none of the data examined in any of the examples actually 
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violate the principal Poisson modelling assumptions, i.e., they are all 

integer valued, all non-negative and theoretically have no upper limit; so 

looking at the situation from this point of view, the Poisson model will 

always be plausible even if the fit is not good. Of course, the other key 

assumption for using a Poisson model is that there should be Poisson 

variation in the data. In a study on the abundance of Leadbeaters possum 

in south east Australia, \Velsh et al. (1996) point out that from the Poisson 

model the predicted number of sites with no animals, for a total of n sites, 

should be n exp{ -).(z)} , where ).(z) is the Poisson mean for the set of 

explanatory variables, z. Since there are typically many more sites with no 

animals than would be expected from this model, the fit is usually poor. 

Figure 9.1 illustrates this point, with regards to the Scottish snow data, 

showing the actual distribution of counts with the idealised Poisson 

distribution of counts for all n = 264 months. However, despite this 

theoretical objection to the Poisson model, the conditional model does not 

seem able to improve upon the fit in the examples we have investigated. 

(i) 

g 

~ 

§ 

g 

10 

(ii) 

~ 

I II 

g 

II 
g 

~ 

g 

Figure 9.1: (i) Distribution of counts in the Scottish snow fatalities data, (ii) 
Idealised Poisson distribution with equal mean to the Scottish snow fatalities 
data. 
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But the fact of the matter is that each observation is a realisation of a 

random variable with a different mean dictated by explanatory variables 

and structural terms; so, if under the Poisson model the mean is near to 

zero then a zero observation is quite probable. In other words, the 

explanatory variables and structural terms which make up the mean may 

soak up the apparent zero inflation in the data, leaving us without any at 

the end. 

If the Poisson model does not provide a good fit to the data, at least in 

theory, then perhaps the similarity in fits between the Poisson and 

conditional models may instead be due to some inadequacy in the 

conditional models, meaning that they also do not provide a good fit. 

According to the Leadbeaters possum study, the conditional model 

provided a good fit to the data in that instance; however, there are two 

differences between the examples in chapter 8 and the Leadbeaters possum 

study. Firstly, the data used in the possum study was not time series data 

and secondly, a generalised linear model, rather than a state space time 

series model, was fitted to it. 

The first point is a key difference between the two studies. The fact that 

the data is time series means that difficulties arise with the conditional 

model which would not arise from a conditional model applied to non time 

series data. Specifically, the difficulties relate to the treatment of the 

truncated Poisson part of the model while the data is zero. Four methods 

for dealing with this problem were introduced in chapter 7 and three of 

those methods were tested in chapter 8. Although there were differences in 

the fits using the three methods, such as the difFerences in the dispersion 

estimates due to the different way in which the truncated Poisson part of 

the model was dealt with, none of the three methods seemed to yield a 

markedly different or better fit to the data than the Poisson model. 

With regards to the second point, it is not so obvious why the type of 

model fitted to the data should make a difference to the performance of the 

conditional model in relation to the Poisson model. After all, if a state 

space time series Poisson model compares similarly to a state space time 
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series conditional model, then one would assume that a generalised linear 

Poisson regression model would also compare similarly to a generalised 

linear conditional regression model. But the difference is that the state 

space time series models can contain structural terms and not just 

explanatory variables, and those structural terms can behave differently in 

Poisson and conditional state space models. The Northern motorways 

example illustrates this difference well, but for some less extremely zero 

inflated data there can still be a discernible difference between Poisson and 

conditional models. 

It is difficult to establish anyone factor as the main reason why the 

conditional model does not seem to provide a better fit to the data than the 

Poisson model. Even establishing what a good fit means for zero inflated 

data modelled by a state space model is not straightforward and it cannot 

conclusively be said that the conditional model is definitely not as good as 

the Poisson model. But, it would be useful to more thoroughly investigate 

the relative merits of the Poisson and conditional state space models. For 

instance, it would certainly be informative to test Poisson and conditional 

state space models on different sources of time series data, not road 

accident data. It would also be useful to examine the performance of state 

space models in general, which do not necessarily assume Gaussian 

distributed state errors. Another possibility would be to find alternatives to 

the rather ad hoc procedures developed in chapter 7 for treating the zero 

observations in the truncated Poisson part of the conditional model. Also, 

it would be informative to compare generalised linear Poisson and 

conditional regression models for the data in this study, to see if the better 

fit achieved in the Leadbetter's possum study was a result of the type of 

model used rather than the nature of the data analysed. Finally, another 

possibility still would be to try a different approach to the modelling of zero 

inflation all together, such as using the zero inflated Poisson model. 

138 



Appendix A 

Descriptive summary of the 

state space modelling code used 

for the examples in this thesis 

This appendix gives a summary of the code I wrote and used for the 

analysis of state space time series models. Presenting the code in its 

entirety here is overly cumbersome and takes up some 35 pages when shown 

using the script size in the extracts of code that are presented, therefore 

only the key points are drawn to the readers attention. The first section 

outlines the code used for the Gaussian state space models and the second 

section outlines that used for the non-Gaussian state space models. 

A.I Gaussian state space modelling code 

The key function in FinMetrics for calculating the optimal error variance 

parameter estimates for Gaussian state space models is the SsfFit function. 

The SsfFit function must be supplied the initial log-parameter estimates, 

the data and a state space model; from these it will calculate and maximise 

the log-likelihood and when it has done so, will output the optimised 
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parameter estimates. In S-Plus version 7 and FinMetrics version 2, it will 

also calculate the standard errors on the parameter estimates. 

From the basis of the SsfFit function I wrote two functions. The 

SsfGaussAnalysis function took any data, stochastic components and 

explanatory variables the user wished to use and created from them a 

structural time series model. The functional form of SsfGaussAnalysis is 

shown below to illustrate what information is needed to create Gaussian 

state space analysis function flexible enough to handle the majority of 

structural time series. 

SsfGaussAnalysis = function(mY, covar=NULL, covar.split=rep(O,ncol(mY», 

irregular=rep(O.Ol,ncol(mY», level=rep(O.Ol,ncol(mY», 

slope=rep(NA,ncol(mY», seasonalDummy=rep(NA,ncol(mY», 

seasonalTrig=rep(NA,ncol(mY», seasons=12) 

{ 

## mY = input data (matrix for multivariate) 

## covar = explanatory variables matrix 

## covar.split = which covar's are associated with which input data vector 

## irregular = model error variance (epsilon) 

## level = level error variance (xi) 

## slope = slope error variance (zeta) 

## seasonalDummy/seasonalTrig = seasonal error variance (omega) 

## seasons = number of seasons, i.e. 12 per year, 7 per week, etc 

The SsfFit function takes the components of a structural time series model 

and puts them into a state space form, which must also be provided. The 

Kalman filter and smoother are run on this state space form and from them 

a log-likelihood is calculated which is maximised with subsequent 

iterations. The SsfFit function will, of course, change parameter estimates 

with each iteration, so the state space form must be able to handle this. 

FinMetrics provides a routine called GetSsfStsm, which will convert 

Gaussian structural models into state space form, but this routine cannot 

handle explanatory variables or time varying error variance parameters 

such as are used in the linear Gaussian approximating models of chapters 6, 

7 and 8. As such, the GetSsfStsm routine is far too limited for the purposes 

of this thesis. So I wrote my own state space form function, S sfExfS sf, 
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which could convert almost any structural time series model from any 

exponential family distribution into state space form; this allowed me to use 

the same function for non-Gaussian state space analysis. 

Once the optimal error variance parameter estimates had been calculated, 

the SsfGaussAnalysis function then put them back into the state space 

form function, SsfExfSsf, which was then passed to the FinMetrics routines: 

SsfCondDens and Ss:f1'v10mentEst. These would calculate the final Kalman 

smoothed state estimates, E(atly), and state variances, Var(atly), which 

would hence give the model fit, coefficients and associated standard errors 

for the explanatory variables. 

A.2 Non-Gaussian state space modelling 

code 

FinMetrics does not have a function for calculating and maximising 

non-Gaussian state space log-likelihoods; instead, the S-Plus function 

nlminb (non-linear minimisation subject to box-constraints) must be used. 

Like the SsfFit function used for Gaussian state space models, the nlminb 

function is the key function upon which the model fitting process hinges. 

The difference between the SsfFit function and the nlminb function is that 

nlminb does not calculate the log-likelihood to be maximised, so the 

log-likelihood along with the other information such as the data, initial 

parameter estimates and the state space form must be passed to it for it to 

be able to proceed with optimisation. 

The non-Gaussian log-likelihood, (6.14), is somewhat complicated to 

calculate; it has two parts: the linear Gaussian approximating model 

likelihood, Lg('ljJ) , and the weight, iiJ. I wrote a non-Gaussian log-likelihood 

function, SsfExfLoglike, which comprised of two routines: SsfExfLgam and 

SsfExfLoglikeCalc. The SsfExfLgam routine calculated the linear Gaussian 

approximating model quantities iJ; and fit, and the SsfExfLoglikeCalc 
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function calculated the linear Gaussian approximating model log-likelihood, 

10g{Lg('l/J)} , and added this to log(w) to get the overall log-likelihood. 

These routines in turn required other routines which are outlined below. 

The SsfExfLgam routine was a procedure which updated the values of iJ; 
and Ht until they did not change with subsequent iterations. In the 

SsfExfLgam routine, initial guesses were made of the values of iJ; and Ht 

and these were put into vectors of the form fI* = (iJ~ ... iJ~)' and 

H (HI ... Hn)'; these were matrices in the case of the bivariate models. 

The vectors were then fed into the S-Plus function SsfCondDens, which 

performd Kalman filtering and smoothing, and produced a fitted mean, 

Ii = (el ... en)'. The signal vector was then fed into another routine I wrote, 

SsfLgamExpansion, which updated the values of fI* and iI according to 

the linear Gaussian approximating model updating equations (6.22) for 

various different exponential family distributions. This process was then 

repeated for as many times as it took until the values of fI* and iI did not 

change with subsequent iterations. 

Once fI* and H were fixed, the SsfExfLoglike function passed them to the 

SsfExfLoglikeCalc routine. Here, H was put into the state space form 

routine, SsfExfSsf, which was now a complete Gaussian state space form 

with state error variances from the initial parameter vector, 'l/J, and time 

varying model error variances from H. The linear Gaussian approximating 

model state space form, along with the linear Gaussian approximating 

model observations, fI*, were then fed into the FinMetrics function, 

SsfLoglike, which calculates Gaussian state space log-likelihoods given data 

and a state space form. Hence the linear Gaussian approximating model 

log-likelihood, log{ Lg( 'l/J)}, was obtained. 

The next stage was to calculate the weight, w, so that the complete 

non-Gaussian log-likelihood could be obtained. The first step here was to 

draw a sample of simulated 8's and E'S to be used in (6.11) to calculate w. 
As noted in the introduction, the simulation smoother provided by 

FinMetrics, SimSmoDraw, was faulty such that it could not calculate 

simulated a's or E'S properly. The fault I found in the function was that in 
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step 4 of the algorithm for calculating simulated errors, the SimSmoDraw 

function was calculating € = E(c*IY*) - E(c+IY+) rather than 

€ = E(c*IY*) - E(c+IY+) + c+ as it should have been. Also, incidentally, 

it did not recognise that the square root of zero is zero and failed whenever 

it tried this operation. So I created my own amended version of the 

function, SimSmoDrawJames, and I used it to calculate the sample of 

simulated E'S and obtained the simulated 8's by taking (j y* - E. 

Once the sample of simulated E'S and 8's had been obtained, they were fed 

into another of my routines, the SsfLogDensity routine, which used 

equation (6.11) to calculate Wi values, where Wi = w(yl(j(i»). Then 

calculating 1/ N L Wi from the N simulated 8's gave w as required. 

As well as the data, the initial parameter estimates, the state space form 

and the log-likelihood function, the nlminb function must also be supplied a 

function to calculate the hessian matrix for the parameter estimates. In the 

absence of a hessian function being supplied, the nlminb function is 

supposed to calculate a numerical hessian; unfortunately, as I found, it does 

not actually do this. However, I eventually found that simply inputting just 

a single number into the field where a hessian function should be supplied, 

seemed to induce a numerical hessian function to be displayed in the S-Plus 

report window. So I copied and adapted this function to work with my 

routines. If any reader of this thesis has difficulty trying to induce nlminb 

to produce a numerical hessian then I recommend this course of action. 

The graphics routine I wrote, SsfExfGraphics, for calculating the fitted 

mean and fitted states, used many of the same functions as for the 

calculation of the log-likelihood. In (6.9) the calculation of E{ x( a) IY} 
relies on simulation in exactly the same way as above to obtain the wi's. 

Also, depending on the function x(a), accurately simulated a vectors are 

needed so that the constant states, which are the coefficients of the 

explanatory variables, may be obtained; this was another good reason for 

amending the faults of the SimSmoDraw function. 
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Appendix B 

Derivation of the conditional 

mean and variance 

The mean and variance of the conditional Poisson density (7.2) are derived 

below. Firstly, for convenience of notation, we shall drop the subscript t 

from Yt, 1ft and At. Now the mean E(Y) may be calculated as follows, 

where the range of Y is Y 0,1,2, ... : 

E(Y) = L yj(YI1f, A) 
y=o 

00 {-A AY }I(Y) 
"y{l - 1f }(l-I(y)) 1f_e __ _ 
~ y!(l - e-A) 
y=o 

Now, for y 0, we get 0, and for y 1,2, ... , we have {I - 1f }(1-I(y)) 1 

and I(y) 1, so we may therefore simplify the equation to 
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\iVe may now treat the equation in much the same way as we would to 

derive the mean of a Poisson distribution: 

E(Y) = 

,\ '" ClO ,\ y Now, since e L..y=o 17' we therefore have 

E(Y) = 
1 

\iVe start calculation of the variance by finding E(y2) so that we may then 

derive Var(Y) = E(y2) - {E(Y) p. 
ClO 
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Now, when y = 0 we have that y~~ = 0, so we can start the summation 

from y 1 without affecting the result. 

The variance is therefore given by 

Var(Y) 

The mean and variance of the truncated Poisson model may be found by 

similar means to the above method. 
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