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Measurements of the density and viscosity of fluids are required to determine optimal pro-
duction strategies in the exploitation of fossil fuel reservoirs and the monetary value of the
fluid produced. In this work, we consider the analysis of two different designs of Micro
Electrical Mechanical Systems (MEMS) that have been developed to determine both den-

sity and viscosity of fluids in situ.

The first device is a transversely oscillating plate, known as the spider. It is about 1.6
mm wide, 2.4 mm long and 20 pym thick. It is suspended from a 0.4 mm thick support by
24 square cross-section legs each of length 0.5 mm. Mathematical models have been pro-
duced for the plate operating in either forced or transient mode, intended for use in both
Newtonian and non-Newtonian fluids. We only consider the general case of incompressible
fluids, using the one dimensional diffusion equation to model Newtonian fluid motion and

a reduced form of Maxwell’s equations for viscoelastic fluid motion.

The second MEMS device is based on a vibrating plate clamped along one edge, with
dimensions of the order of 1 mm and a mass of =~ 0.1 mg. The plate is set in motion when
an alternating current is passed through the coil mounted on the plate in the presence of
a magnetic field. At resonance, the plate motion is observed using a strain gauge. Math-
ematical models have been used in different limiting cases to analyse the behaviour of the
device. Densities in the range (1 to 1800) kg m~2 and viscosities in the range (10 to 300000)
Pa-s were determined experimentally with the vibrating plate in argon, methane, nitrogen,

n-octane, methylbenzene and heptane.
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Chapter 1

Introduction

The main aim of this thesis is to understand the mathematical modelling behind oscillating
body viscometers and then use this understanding to model new viscometers intended for
use with fluids. In particular, the instruments will be used experimentally in the oil indus-

try, testing the fluids present while drilling for oil.

We begin by describing viscosity and different fluid properties, in particular those of oil,
with a brief discussion of other reservoir fluids. Newtonian and non-Newtonian fluids will be
described and mathematical equations and models will be specified for the use of each. We
will then give a description of some previously modelled viscometer designs ranging chrono-
logically from falling body viscometers, through oscillating bodies, to vibrating wires. The
limits to the success of each will be discussed in an attempt to determine their usefulness

as down-hole in situ viscometers.

We will then consider the analysis of two new viscometer designs that take the form of
oscillating plates, fabricated from silicon using the methods of Micro-Electro-Mechanical-
Systems (MEMS). We will describe oscillating MEMS devices intended for use with down-
hole fluids such as crude oil or brine. The viscometers are needed to measure the thermo-
physical properties of fluids in situ, to determine optimal production strategies and exploit
the value of the fluids in the well. We recognise that a trade-off may have to be made
between accuracy and the ability to withstand hostile environments and measure fluid
properties over a wide range of conditions. It will be shown that conventional viscometers
are currently unsuitable for measurements in situ for a number of reasons, suggesting that
the development of a new viscometer that will both remain sufficiently accurate in hostile

conditions and reflect both Newtonian and non-Newtonian fluid motion would be advanta-



geous in this field.

This work has been carried out in co-operation with Schlumberger Research Cambridge.
Their research into the production of MEMS sensors commenced a number of years before
this thesis was written. With their extensive knowledge of the oil industry, Schlumberger
have provided valuable information regarding down hole drilling, methods of oil analysis,
the production of MEMS sensors and the industry in general. An aim of this work is
to analyse and optimise the performance with respect to uncertainty of Schlumberger’s

existing viscometers and to aid in the design of future MEMS sensors.



Chapter 2
Fluid viscosity

2.1 The properties of oil

The analysis of oil is carried out for a wide range of fuel applications. Industrial hydraulic
oils, turbine oils, and diesel and gasoline engine oils all undergo a series of laboratory tests.
Technological advances in both machinery and instrumentation has made the testing con-
siderably more cost effective. Numerous different tests can be used to evaluate lubricants.
The choice of these is dependent on the information required and a comparison of time, cost
and accuracy necessary to complete each individual test. Testing is required to measure
physical properties of the oil, the most common tested properties being viscosity, acidity

and alkalinity.

~ It is also valuable to know the level of contamination of oil, particularly in determining
machinery wear rates for hydraulic oils. Therefore oil is also tested by particle count, water
content and wear metal analysis. A particle count quantifies the levels of particles at vari-
ous sizes in a fluid sample. The particles can damage machinery components, so high levels
need to be reduced. The presence of metallic elements is determined using a technique
such as Spectrometric Analysis, Infrared Analysis (FT-IR) or Rotrode Filter Spectroscopy
(a spectroscopic method using a rotating carbon disc electrode spectometer). Serious wear
problems can occur from high levels of copper, lead, iron, aluminium or tin. The presence
of water is also not desirable. Excessive amounts destroy lubricity and promote corrosion
of metal parts. Measuring the total acid number (TAN) and total base number (TBN) can
also determine a fault in the oil sample. The total base number is a measure of the oils’
ability to neutralise acid and the total acid number is a measure of the acid and acid-like

material in the oil. Alkalinic additives that enhance lubricity can become depleted or acidic



by-products may be formed that are corrosive to metals.

The effective analysis of oil is extremely beneficial. In the case of hydraulic fuels this
can increase production efficiency and component life, and shorten equipment downtime.
For engine oils the result is prolonged engine life due to extended oil change intervals. This
is increasingly important since the future availability of engine oils is currently being ques-
tioned and the prices continue to rise. Viscosity is undoubtedly the most important of the
lubricant’s physical properties. In the fuel industry it is essential to know an accurate value
for viscosity because this data determines the necessary temperatures for pumping, injec-
tion and storage of the fuel. Residual fuels can be classified by their kinematic viscosity.
Kinematic viscosity is a gauge of the degradation of the lubricant, measured in m2s~! (SI
units) at a specified temperature. The break down of a hydraulic fuel or petroleum based
engine oil is indicated by an increase in viscosity. This is also true to a lesser extent for
synthetic or partially synthetic based engine oils. The viscosity of the lubricant is projected
to increase with use but a rapid jump can indicate a more serious problem such as a cooling
system failure. A decrease in viscosity is often more severe and could be an indication of

contamination or fuel dilution.

The viscometers that we will be modelling are intended for, but not limited to, use with
down-hole fluids such as crude oil or brine. In oil exploration, the viscosity can indicate
the mobility of the reservoir fluid, its flow characteristics and the commercial value of the
reservoir fluid. Currently, samples are collected from the reservoir and later analysed at
the surface in a laboratory. It would be more useful if samples could be taken on a more
frequent basis and the properties determined down-hole. The fluid properties and com-
position of a reservoir will change during its lifetime making it hard to simulate reservoir
conditions in a laboratory. A typical hydrocarbon reservoir exhibits temperatures between
(323 to 448) K at pressures of (10 to 200) MPa [1]. These conditions can be recreated
but it is difficult to replicate other effects such as fluid contamination and solid deposition.
Evidently the production of a small-scale viscometer that can be used down-hole would be

advantageous in this field.



2.2 The Notion of Viscosity

Viscosity describes the internal friction of a moving fluid and its adhesive/cohesive or fric-
tional properties. The internal molecular resistance within the fluid produces a frictional
drag effect. A high viscosity means greater internal friction, so the fluid is more inclined to
resist motion. A low viscosity results in less friction during motion so the fluid flows easily.
Viscosity can also be defined as a transport property because momentum is transported
across a velocity gradient. [2] describes viscosity thus:-

The resistance arising from the want of lubricity in parts of a fluid is, other things being
equal, proportional to the velocity with which the parts of the fluid are separated from one
another
The proportionality constant referred to above is the viscosity. It is a function of molecular
mass, temperature, and collision diameter. This basic idea of absolute viscosity is termed
“dynamic viscosity” however kinematic viscosity, that is the ratio of the absolute viscosity

to the density, may also describe a fluid.

2.3 Viscosity of Newtonian Fluids

For our simple fluid model, we will assume that the fluid does not contain a mix of oil and
non-Newtonian drilling muds. Instead we assume that the fluid is a homogeneous liquid
with one density and one viscosity value. The classical theory of viscous fluids is based upon
two equations, one for momentum and a continuity equation. The principle of conservation
of mass produces the continuity equation [3],

p

5 T V-(pa) =0

where p is the density of the fluid mass and q is the velocity. Under the assumption of

incompressibility, i.e. constancy of mass density (p), this reduces to
V.q=0.

The conservation of momentum equation states that the rate of change of momentum for
any volume V'(¢) of fluid is equal to the force exerted on the fluid in V. Assuming that
the only forces acting on V(¢) are at its boundary due to the viscous forces exerted by

the surrounding fluid, and assuming the viscosity (v) is constant, this equation becomes



(2.1). These two equations combine to give the Navier-Stokes equations for the motion of

an incompressible Newtonian fluid [3]:
1 2
a: +(q-V)g = —;VP +vViq (2.1)

V.q=0 (2.2)

where p is the pressure. Fluids are Newtonian if the first equation holds and thus obey
Newton’s law of viscosity. Such fluids have a constant viscosity and density at a constant
temperature and pressure. The governing equations for stress and velocity distribution in
an incompressible Newtonian fluid can be fixed for any flow system from the values of these

two material constants.

2.4 Non-Newtonian Fluids

Non-Newtonian fluids have a variable viscosity at a constant temperature. The viscosity
can vary with the rate of shear and hence is referred to as “shear-rate dependent” viscos-
ity. Fluids that show decreasing viscosity with increasing shear rate are described as shear
thinning or pseudoplastic. This effect can be quite dramatic and viscosity can reduce by
a factor of 102 to 10® [4]. Some shear thinning fluids are shampoo, slurries, fruit juice
concentrates and ketchup. A fluid is shear thickening or dilatant if viscosity increases with
increasing shear rate, for example wet sand. The viscosity of a viscoplastic fluid increases
proportionally with shear stress and rate of shear but does not start to flow until a certain
critical shear stress called the yield-stress has been exceeded. Below this critical value, flow
becomes negligible. Examples of such fluids would be certain greases. The plastic property
is the fact that the fluid has a so-called yield value. Some plastic fluids are tomato paste,
toothpaste and hand cream. Most fluids can be divided into one of the following three
categories; a viscous fluid, an elastic fluid or a viscoelastic fluid. In a purely viscous fluid
all energy added is dissipated into heat, whereas in a completely elastic fluid all the energy
added is stored in the fluid and stress is directly proportional to strain. Stress is the force
per unit area acting on the fluid causing it to change its dimensions and strain is the per-
centage deformation of the fluid when subjected to a load. A viscoelastic fluid exhibits both
viscous and elastic behaviour. If a stress-strain curve is drawn for a viscoelastic fluid there
are two notable points of interest. The proportional limit is the point where derivation

from a linear relationship occurs. The elastic limit is the point at the maximum stress the



fluid can absorb and still return to its original dimensions.

For each of these types of non-Newtonian fluid, Newton’s law of viscosity is not a suit-
able description. We can measure density in an incompressible non-Newtonian fluid but
we have no analogous equation for the shear stress. Viscosity can no longer be assumed
constant and shear stress must also be measured. Unlike a Newtonian fluid, experiments
yield a number of material functions that can depend on time, frequency, shear rate and a

host of other variables.

When testing is carried out during drilling for oil, it must be recognised that some of
the additives to the drilling fluids are also non-Newtonian. One example is sodium ben-
tonite, added to increase the density of the drilling mud. The properties of such muds can
change after interaction with soil or water, and exhibit different rheological behaviours. One
such behaviour is to reach a yield stress then come into a Bingham phase. Alternatively a
Herschel-Bulkley law is often an adequate description [5]. Increasing the concentration of

bentonite in the suspension in either case seems to lead to an increase in viscosity.

2.5 Herschel-Bulkley Fluids

The Herschel-Bulkley model is a general mathematical model for viscosity that may be used

to express non-Newtonian characteristics. Its formulation is
T =1+ Ky" (2.3)

where 7 is the stress, 7, is the yield stress, ¥ is shear rate, and K and n are constants. In
the special case when n = 1 and 7, = 0, the fluid is Newtonian and K is the Newtonian
viscosity p. For shear-thinning fluids n < 1 and for shear thickening fluids n > 1. When
n =1 (2.3) is reduced to the Bingham model.

F=1,+ K7 (2.4)

In this case, K is constant and represents the plastic viscosity of the fluid. A minimum
application of stress (7) is required to cause a flow and once this has been reached the
fluid behaves as a Newtonian fluid. A plot of shear stress and shear rate for each of the
described models is shown in figure (2.1). Another property of non-Newtonian fluid motion

is its relation with time. Previously mentioned models all apply to the motion of time-
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Figure 2.1: Non-Newtonian fluid behaviour

independent fluids, the viscosity is not influenced by the time of applied shear. In some
fluids a dependency on the time subjected to a shear force can be seen. A fluid whose ap-
parent viscosity decreases with the time of shearing and then recovers its original viscosity
after a period of rest is referred to as ‘thixotropic’ or time thinning. An example would be
yoghurt or paint. Fluids that are time thickening, also known as rheopectic, are less com-
mon. One example of a fluid exhibiting such behaviour is gypsum paste. A fluid is known
as rheopectic if the apparent viscosity increases with time of shearing and again reverts to
the original viscosity after rest. Throughout this work we shall consider time-dependent

non-Newtonian fluid motion.

At present the rheology of reservoir fluids is usually measured at ambient surface con-
ditions. These results are then later extrapolated to down-hole conditions. This requires
a good model of how fluids are affected by temperature and pressure down-hole, an area
which is still not fully understood. This could be due to the inadequacy of using two
parameter equations, such as the Bingham model, to make measurements of shear rheol-
ogy. Some experimental evidence exists that appears to show that down-hole fluids may
be modelled as Bingham fluids. The difficulties involved with Bingham fluid formulation
unfortunately mean that analytical techniques are extremely challenging to pursue. The
rheology of reservoir muds such as bentonite is influenced by many factors such as tem-
perature, pressure, composition and shear history, and it is difficult to isolate the effects of
each. Schlumberger have carried out rheological tests on a number of water-based muds,
such as may be present in an oil reservoir, at temperatures up to 403 K and pressures to

100 MPa [6]. From these results it has been deduced that muds have a largely pressure



independent yield stress with a sensitivity to temperature which increases with increasing
temperature. This yield stress is followed by shear thinning behaviour. It was found that
this behaviour could best be represented by a Herschel-Bulkley model. Many authors have
discussed the possible non-Newtonian nature of down-hole fluids. [6] suggests that it may
be reasonable to treat a fluid/mud mixture as a visco-elastic fluid. As far as this thesis is
concerned, we realise that a full examination of all the downhole properties of drilling muds
should include consideration of both yield stress and shear thinning effects. Unfortunately
the complications involved render this beyond the scope of the current work. However,
since we do not wish to completely ignore the non-Newtonian nature of drilling muds, we
will give some attention to visco-elastic models, which by their nature preserve the linearity

of the governing equations.

2.6 Maxwell Fluids

A visco-elastic fluid possesses both viscous and elastic properties and it is useful to have a
single equation combining the two. We can define visco-elastic fluid motion using Maxwell’s

equations

1
vi+ (v.V)v= -—;Vp +V.o (2.5)
Vv=0 (2.6)

with the stress tensor, o;;, given by

(2.7)

Ot + (V-V)O'zj - O, 3’!)1 1 v (3’1)1 3’1)J)
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where v is the fluid velocity, # = & and G is the shear modulus of the fluid. We can simplify
these equations if we assume that v is of the form v = [u(y,1),0,0] and all of the stresses
are functions of y and t alone, so that motion is thus independent of z. If this is the case,

a number of terms vanish from (2.7) leaving the simplified equations

1
11t — 2uyo91 + 5011 =0 (2.8)
1
oo + 5022 = 0 (2.9)
1 v
T12t ~ UyO22 + 5012 = FUy (2.10)
1 v
o2t — UyOo2 T 5021 = s (2.11)



Since 0;; = 0;; by symmetry of the stress tensor, we have g21 = 012 so equation (2.11) does
not supply any extra information. From (2.9), we find that o995 = A(y)e_%, where A(y)
is an arbitrary function of y. Assuming that g2 = 0 at ¢t = 0, we find that 99 = 0 is a
solution. (2.8) decouples as o117 does not appear elsewhere, so we are left with the single
equation

+igy=" 2.12)
12t + 5012 = Sy (2.

In a similar way, (2.5) is reduced to
Uy = 012y- (2.13)

Differentiating (2.12) with respect to y and substituting (2.13) the resulting equation for

fluid motion is

Pu 1 g

u, 1ou_vdw (2.14)
o2 606t 00y?
We will use this equation further in a later chapter when considering the MEMS in visco-

elastic fluids.

2.7 Stokes flow

With MEMS devices, due to their dimensions, it is typical to find Stokes flow. Stokes flow
is a type of flow where the viscous forces are much larger than the inertial forces. The fiow
is described by the Navier-Stokes equations (2.1) with the inertial and body force terms
equal to zero. The Reynolds number of a flow is a ratio of inertial forces, Up, to viscous
forces, £. If flow has a small Reynolds number (Re << 1) it can therefore be considered
Stokes flow. We can calculate an approximate value of the Reynolds number for the MEMS
sensor by considering the equation

Re = —

v

where L is an appropriate length scale, U a comparable speed and v = % is the kinematic
viscosity of the fluid. In this case we will use the amplitude of the plate oscillations for L,
assuming that they are similar to the oscillations of the fluid close to the plate, and for U

we will use the speed of these oscillations. Taking appropriate values for the sensor gives

1076 x 1072
Re = ——0=—

103

=102<«<1
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so the flow has a small Reynolds number and can be considered stokes flow. In the work of

chapter 6 we will assume stokes flow throughout.

2.8 Viscosity of reservoir fluids

Liquids commonly encountered in oil reservoirs are chemically and compositionally complex.
This means that despite existing correlations that relate viscosity to other fluid properties,
these are not sufficiently accurate. For reservoir fluids there is a third parameter, other
than temperature or pressure, which affects viscosity. This is the amount of gas in solution
in the fluid. A decrease in temperature will cause the liquid viscosity to rise. An increase
in pressure should cause an increase in viscosity however the higher the pressure, the more
gas is in solution. An increase in the amount of gas in solution should cause a decrease in

viscosity [7].

[7] suggests that reservoir fluids are compressible and defines the isothermal compressibility

at constant reservoir temperature as

1 oV

where V is the original volume, P is the pressure and x7 is the compressibility. Gas is
considerably more compressible than the other reservoir fluids such as liquid hydrocarbons

or water. The general order of magnitude of compressibility can be seen below.

Fluid wr /psi~! || Fluid kr [psi~!

Reservoir saline waters 3 x 1076 Gas at 1450 psi | 689 x 10~
Undersaturated black oils | 17 x 107° || Gas at 5800 psi | 172 x 106

These factors affect the volume of liquid collected at the surface. The volume of liquid
will be less at the surface than at reservoir conditions due to changes in the three pa-
rameters. A pressure reduction will increase the volume but a temperature reduction will
decrease the volume. The most significant factor is that a pressure reduction will decrease

the solubility of gas causing a large decrease in fluid volume.
To summarise, for our simple fluid model, we are assuming that the fluid is a homoge-
neous liquid. When modelling non-Newtonian fluid motion we will consider fluids to be

time-dependent such that the viscosity is affected by the time of applied shear. Despite the

11



complexity introduced by gas in the down-hole solution, the compressibility of the fluids are
small so the amount of gas in solution will have negligible effect on viscosity in comparison
to other important parameters such as temperature. For this reason we will be modelling

the general case of incompressible fluids.

TR
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Chapter 3

Viscometers

In the previous chapter, some of the different properties of fluids were considered. We
are now going to discuss the main topic of the thesis, namely the instruments used in
the measurement of viscosity. The main purpose of this chapter is to analyse designs and
methods for the measurement of viscosity that have been tried in the past. Let us start by
briefly mentioning some early viscometer methods. The first set of devices to be discussed
in more detail are torsionally oscillating body viscometers. Here we plan to describe the
development from a cylindrical body to a flat metal disc and then finally to a quartz disc.
From here, the progression to transversely oscillating wire viscometers will be shown. The
chapter will conclude with a summary table in chronological order describing a selection of

previously modelled instrument designs.

3.1 Early Methods

3.1.1 Falling body viscometers

This method mainly uses relative viscosity measurements although absolute measurements
are possible [8]. In these instruments viscosity is determined by allowing a solid of revolution
to fall through a sample fluid [9] [10]. The main assumptions behind the working equations

are:
1. the body falls at constant terminal velocity,
2. the flow is fully developed,
3. the flow is laminar axial,

4. the flow is cylindrically symmetric.
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The ideas behind this method continue to be brought up to date. In recent years a falling-
needle has been used to incorporate the advantages of slender-body theory to simplify
calculations of drag coefficients [11]. Although such methods are quite accurate, the free

moving parts involved in such viscometers make them unsuitable for use down-hole.

3.1.2 Capillary viscometers

This type of instrument can be used as an absolute viscometer [8]. The main body is a
small capillary tube of known length. The fluid is forced through by applying a pressure
differential across the tube. The fluid viscosity (v) is expressed in terms of the tube radius
(r), pressure drop along the tube (P), length of tube (1) and volumetric flow rate (Q). The

working equations are based upon the Hagen-Poiseuille equation of fluid dynamics [12].

wPr

©= S (3-1)

This equation implies that the flow rate is directly proportional to the radius? and is
inversely proportional to the length of the tube, so greater flow is seen in shorter, wider
capillary tubes. The suitability of this type of viscometer for down-hole use is in doubt for
a number of reasons. Firstly there is the need for a device to produce constant fluid flow.
Also, at high pressures, an external pressure will be needed to balance the internal one to
prevent distortions occurring in the tube. In down-hole fluids, scale deposition problems

are also possible.

3.2 Oscillating Body Viscometers

All of the viscometers discussed will contain the basic structural idea of a main oscillating
body though they will all appear in slightly different forms. By evaluating the advantages
and disadvantages of a selection of such devices it is hoped that the limits to the success
of each can be determined. It will also be shown that some of the instruments have been
used successfully in practical applications. However the accuracy is often reduced by as-
sumptions in the mathematical modelling of the instrument or the physical constraints at
non-ambient conditions, such as high temperatures and pressures. The information gath-
ered suggests that a change to both the mechanical design of the viscometer and the math-
ematical equations supporting it is needed to model an accurate instrument for measuring
non-Newtonian fluid viscosity. This suggests the development of a new viscometer that will

both remain precise in hostile conditions and accurately reflect non-Newtonian fluid motion.
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3.3 Torsionally Decaying Oscillators

Torsionally oscillating bodies have been used successfully in a number of viscometer designs.
Accurate measurements are accomplished by observing the decay of oscillations of the
axially symmetric body whilst suspended from an elastic strand. Once immersed in a liquid,
the surrounding fluid causes torque on the body surface that increases the effective moment
of inertia. This can be observed in one of two ways, by an increase in the logarithmic
decrement of the amplitude of angular displacement and by an increase in the period of
oscillation. Various devices have been used experimentally with fluid both internal and
external to the oscillator, see figure (3.1). A typical radius for such a body would be 35
mm [15].

tungsten
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Figure 3.1: Oscillating body viscometer designs: a flat cylindrical disc in an infinite fluid,
a flat cylindrical disc between parallel plates and a hollow cylinder with fluid internal

3.3.1 Theory of Torsional Decay

The motion of a torsionally oscillating body suspended in a sample fluid is described by

the equation [12]

Fal1) L 2022 4 (14 Ag?)a(r)] = m(r) . (34)

2
iyl dr? dr

Here a(7) is angular displacement, wp = %,1—7(: is the natural angular frequency of oscillation

in vacuum, Ty is the period of oscillation in vacuum, 79 = wgt is a dimensionless time,
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Ay is the logarithmic decrement in vacuum, [ is the moment of inertia of the oscillating
system and m(7) is torque exerted by the fluid on the body. The logarithmic decrement
is the logarithm of the ratio of angular amplitudes over a period. Equation (3.2) may be
regarded as a statement of the fact that a torsionally oscillating body moves in a manner
similar to a simple linear spring but with damping provided by both the body itself and the
fluid that surrounds it. It is in the m(7) term that all the fluid dynamics is contained. The
sequential development of this equation for an oscillating disc by Kestin and Persen [13|
and then Newell [14] is briefly explored later in this chapter. The working equation (i.e.
the equation that will be used for calculation purposes) is written

- -A+
R et )) (3.3)
wo
where S and S are two complex roots of the characteristic equation
(S + £g)* + 1+ D(S,u,p) =0 (3.4)

and D(S,u,p) is the Laplace transform of the torque. This will vary according to the
geometric arrangement of the system. The function D(S,u, p) depends parametrically on
the density and the viscosity of the fluid in which the body is submerged. The logarithmic
decrement (A) and frequency (w) of oscillation in the fluid can be found experimentally.
These two known variables are then sufficient to determine S. If the density is known then

we can use these equations to determine the viscosity.

3.3.2 Oscillating Disc

We will now discuss two different forms of the oscillating disc model. The operation of
torsionally oscillating bodies in an assumed infinite space had proved to be fairly inaccurate.
Three-dimensional vortex-like flow patterns would appear to form at the surface of the disc
[16]. An exact theory from first principles was initially derived by Kestin and Person [13]
for a thin disc between two plates, based upon the ideal case of an infinitely thin disc of
infinite radius. The instrument was calibrated in vacuum to find the natural period of

oscillation (7p) of the disc, and the decrement of damping (Ag) using (3.5):

Ly ot ¥n . (3.5)

Np =
0 2rm  Gpgm + Ynim

Here ¢ and v denote the angular amplitudes of motion on the two sides of the position at

rest. Amplitude, is taken n full cycles from an arbitrary zero and amplitude, ., taken m
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full cycles later. With the exception of early transient motion and the last phases at very
small amplitude, the motion is damped harmonically. The motion is isochronous, sequential
oscillations have a constant phase relationship, and the period T in the fluid is larger than
that in vacuum, so that

T

0=—>1 . .
T0> (3.6)

The complex circular frequency, determined using

VAN

o=— , (3.7)

is equal to the complex root (s) of a characteristic equation. The characteristic equation

used by Kestin and Persen took the form:

7rR4p5,sg

(s+ Do)+ 1+ coth(Bsz) =0 . (3.8)

Here 8 = % is a dimensionless separation and I is the moment of inertia of the system.
The density p is found from other sources leaving only one unknown 4§, the boundary layer
thickness. For Newtonian fluids this was shown to be

5= (%)% . (3.9)

From (3.9) the viscosity is extracted. This theory requires the boundary layer to be large
compared to the plate separation, yet assumes that the plate separation and the disc thick-
ness are both small in comparison with the disc radius R. The theory is based on a portion
of the radius R of an infinite, but infinitely thin disc. This assumption ignores the effect of
the finite radius of a real disc and neglects any contribution from the small, finite cylindrical

circumference.

The following characteristic equation introduced by Newell is a result of an expansion of

the hyperbolic cotangent in equation (3.8).

4
(54 B0 + 1+ T puo(Cn + ot — o2 (°(B))6+
2 (BB + ) =0 (3.10)
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Figure 3.2: (a) Kestin and Persen’s model [13] (b) Newell’s model [14]

where
8 b , b, d
Cn=1+ ;E[coshfylog(coshfy + 1) — (coshy — 1) logsin~y] + 2(§) (1+ 33) (3.11)
1 d
v =cosh™ (1 + %) (3.12)

3 assumed small and b is the harmonic mean distance calculated using the distances be-

tween the plates and the disc, b; and bs.

The effects of the disc edges and the finite thickness of the disc is contained in the sec-
tion following unity of (3.11) for Cy. Putting the complex circular frequency values (3.7)
into this characteristic equation and then taking the imaginary part and neglecting terms

of order higher than A?, reduces Cy to the equation

DI A 3A%2-1 A
2 A +aDle+ 22— Lp 2

o [_( AT= 1)
e mpbR4"

0

G° (3.13)

wherea=3[(k+1)+ (3 +1)], f = 5[k + 13+ (3 + 1)?], h = w5 [(k+ 1)° + (3 + 1)
and k = %1;. Cy is independent of fluid properties and depends only on the geometry of the
system. Using the above equations 2 can be determined and using the relation §2 = %; this

value can be substituted into (3.9) for the boundary layer thickness to extract a viscosity.
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The equations produced by Newell [15] are only valid if b + b2 +d < Rand by +by+d < 4.
The use of an expansion means that the equation breaks down for a boundary layer thick-
ness § when g is too large for convergence. Accuracy also suffers due to the limited number
of terms kept in the equation. Numerically, this method involves a lot of work and realisti-
cally should be carried out computationally. Due to the strict dependence on the system’s
geometry, effort is needed to measure the plate separation distances and the disc thickness
accurately. Another difficulty arises in ensuring all the faces of the instrument are perfectly
flat. Good alignment is essential for parallelism. An example of the layout of such an

oscillating disc viscometer can be seen in figure (3.3).

3.3.3 Analysis of the Decay Method

In obtaining the working equations for oscillating-body viscometers certain assumptions

are commonly made:

1. the amplitude and frequency are sufficiently small for secondary flows to be neglected,
2. we can apply the linearised Navier-Stokes equations for an incompressible fluid,
3. the suspension strand is perfectly elastic,

4. the body weight is chosen to keep the axial tension on the strand to a desired mini-

mum.

A common cause of failure of the early design of torsionally oscillating viscometer was its
inability to function at conditions far from ambient such as very high or low temperatures or
in corrosive atmospheres. High pressure environments were particularly problematic. Os-
cillating body viscometers containing fluid are unsuitable for operation at high pressures.
It is inevitable that distortions in the dimensions of the body will occur. Only the disc
form with external fluid is consistent with the volume of sample acceptable for use at high
pressures. However the damping effect on the disc induced by liquids at such conditions is
often so large that the mass of disc required cannot be supported by any available method.
Also, the oscillating disc experiments require careful measurement of the natural decay time
of the system. For the case of the oscillating disc between parallel plates, errors can occur
if the spacing is not sufficiently comparable with the boundary-layer thickness. Gases with
boundary-layer thickness of order 0.1 to 5 cm require that the spacing must not exceed 1 to
5 mm. At high temperatures thermal expansion of the system will influence the magnitude

of this gap.
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For an instrument to be successful at very high pressures it must conform to specific design
criteria. The amplitude and frequency of oscillation must be kept small enough so that
viscous torque is not affected by secondary flows. It is necessary to measure a practical
number of oscillations before the amplitude restricts further observation therefore the log-
arithmic decrement must lie in an appropriate range. This can be improved by increasing
the moment of inertia of the body. Due to the stress on the elastic suspension strand
caused by the weight of the body it is also important to keep this weight to a minimum.
The supporting wire can develop high internal damping such that decrement Ay increases
almost exponentially with temperature [16]. It had been suggested that this problem could
be overcome by replacing the tungsten wire with drawn quartz strands. Generally, these
early devices are unsuitable for operation at the high temperatures and pressures commonly

found in down hole oil wells and so would not be of use in such circumstances.

3.3.4 Quartz-crystal oscillating body

Another variation in instrument design was to use a quartz-crystal oscillating body. Such
an instrument as described by Diller [17] could be made compact enough to measure vis-

cosity at low temperatures and higher pressures, see figure (3.4). Viscosities accurate to 0.5
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Figure 3.4: Quartz crystal oscillator, drawn by hand, reproduced from [17]
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% were determined in temperatures of 14-100 K at pressures up to 35 MPa. No calibration
was necessary so absolute viscosity was measured. The first design used a torsionally oscil-

lating right circular natural quartz cylinder that was 5 ¢cm in length and 0.5 ¢cm in diameter.

Calculations were made using (3.14), relating viscosity with the logarithmic decrement

of the oscillations.

(Vp) fruid = (M/8)?(f/7) D% g (3.14)

where M is the mass, S is the surface area and f is the resonant frequency of the crystal
in the fluid. Ajyq is damping resulting from the fluid and can be found by subtracting

damping that occurs in vacuum from the total.

Afluid = [Atota.l o A'ua.cu.um] (315)

More precise results can be obtained if the crystal is forced to oscillate near its resonant

frequency.

3.3.5 Concentric-cylinder (Couette) viscometer

An alternative form of the oscillating disc viscometer is the concentric-cylinder geome-
try [18], shown in figure (3.5). The first practical coaxial cylinder viscometer was devised
by Couette in 1890. The fluid sample is held in the annulus between the cylinder surfaces.

The laminar flow between the two cylinders is now known as Couette flow.

r”ll

Q

Figure 3.5: Concentric-cylinder viscometer

The design of these viscometers can vary, with either the inner, outer or both cylinders

rotating. They can occur in a number of configurations as shown in figure (3.6), each one
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almed at improving an aspect of the viscosity measurement.
(a) The double gap design has a much larger surface area to measure low viscosity fluids.
(b) The cone ended design is intended to reduce end effects.

(c) The serrated inner cylinder is aimed at reducing slip.

(2) (b) 4 (c)

B2z 7% 227227 77 R e e 7

Figure 3.6: Coaxial cylinder designs: (a) double gap, (b) cone ended and (c) serrated inner
cylinder

The viscosity of a Newtonian fluid is found using the Margules equation [18]:

T Ry— Ry

_ 1 1
27l RoRy> (3.16)

7

where T is the torque, ! is the immersion depth and 2 is the angular velocity.

There are a number of issues that arise with the coaxial cylinders viscometer. One problem
is the dependence of viscosity on temperature. If the fluid tested is very viscous and tests
are carried out at high shear rates, the temperature could rise significantly due to viscous
heating. This means that experimentally it would be necessary to find a way to retain a
known, constant temperature. If the angular velocity reaches too high a speed, turbulent
flow can occur. Above a certain rate of rotation, the faster moving fluid tries to move
from the inner to the outer cylinder due to centripetal force and the flow becomes complex.
Local circulation occurs forming Taylor vortices. Another problem is that the equations
are based on cylinders of infinite length. To be of practical use, the device must contain
cylinders of finite length. As we approach the ends of the inner cylinder the velocity gradi-
ent becomes non-radial so the torque per unit length decreases. The ends themselves will
also produce additional torque, so the equation needs to be changed to allow for this. One
way to overcome this problem would be to perform calibration in a known fluid to negate

the end effects.
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3.3.6 Cone and plate viscometer

The final torsionally oscillating body viscometer that design we will discuss is the “cone
and plate” viscometer. This viscometer is often used for fluids with a high viscosity. In
commercial instruments, the geometry usually involves an angle o of between 0.5 and 8
degrees [4]. When measuring viscosity as a function of shear stress or shear rate, this set up
causes the shear rate to be close to a constant value [18]. In most theoretical models, the
analysis makes use of the fact that « is small enough to allow a lubrication approximation

to be applied to flow in the gap.

Figure 3.7: Cone and plate viscometer, where R is the plate radius, « is the angle between
the cone and the plate, and € is the angular velocity

The cone is rotated about the central axis with angular velocity €2, and the torque T on
the fixed plate is measured. The viscosity can then be found in terms of the diameter R,

angle «, angular velocity {2 and the measured value of torque T' [4], using

3T

H= orm0 P

The cone and plate viscometer also has its problems. It is not particularly useful for
particulate fluids. The particles contained in the suspension can undergo a grinding action
and interfere with the tip of the cone. This can be solved by removing the very end of the
tip. As with the Couette flow viscometer, viscous heating effects mean that the temperature
in the gap between the cone and plate may not be uniform, and secondary flows can occur

for fast rotations and large values of a.

3.4 Vibrating Viscometers

A later step in viscometer design was to use a long cylindrical rod or wire. The idea was

introduced from Stokes theory [19] about a cylinder in fluid undergoing damped oscilla-
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tions. Stokes reasoned that an element of a cylindrical rod oscillating as a pendulum would
experience resistance nearly equivalent to a similar element of an infinite cylinder oscillat-
ing linearly with the same velocity. He derived a set of working equations for the infinite
cylinder oscillating perpendicular to its axis in an infinite mass of fluid. He stated that
near the ends of the finite length rod this representation would lead to errors but argued
that this would be negligible if the diameter of the rod was small in comparison with its
length. This method was developed by Tough et al [20] in 1963. Instead of measuring
torsional oscillations, the body was made to vibrate transversely. The wire is stretched
taut in a magnetic field. An outline of the apparatus used is shown in figure (3.8). A direct
current is passed through the wire to initiate a deflection and is switched off once a steady
deflection is achieved. As the oscillations decay, an alternating voltage is induced. The
usual way of measuring this signal was to magnify it and then display it on an oscilloscope.
The frequency was deduced from photographs of the oscilloscope traces and could be used
in plots to find the decay constant 7. An example of a semilog plot of this type is shown

in figure (3.10).

D.C. Supply N
! Vibrating wire
N
Mercury Relay
Amplifier Filter Scope

Figure 3.8: Equipment set up for vibrating wire viscometer

Inaccuracies appearing in results from using torsionally oscillating bodies at extreme phys-
ical conditions were reduced with this new viscometer design. The simple and compact
measurement cell was much more appropriate for conditions far from ambient. In 1978,
Karnus et al [21] described an instrument that could be used at pressures up to 15 MPa
and temperatures from (14 to 300) K. The accuracy obtained was within £2 % of the true
viscosity. This instrument was only tested in samples of low viscosity, mainly gases. It

was more difficult to obtain results from the oscillogram in a higher viscosity fluid due
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Figure 3.9: An oscilloscope photograph showing the frequency and exponential decay of
the wire. Reproduced directly from [20]
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Figure 3.10: Semi-log plot showing data from (fig 3.9). Reproduced directly from [20]
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to the reduced number of free oscillations of the body. The range of viscosities that the
instruments could measure needed to be widened. Tough et al did not publish any results
for the tests that were claimed to have been in water. In 1980, Charles et al [22] presented
a vibrating wire viscometer for liquids with viscosities up to 0.5 cPa-s. Again the accuracy

recorded was around +2 %.

As developments were made to the physical design of the instrument and new technology
arrived to ease observations and measurements, the accuracy and range of the vibrating
wire viscometer improved yet further. Measuring viscosities of fluids at pressures above
40 MPa while still maintaining an accuracy comparable to that achievable at atmospheric
conditions proved to be extremely problematic. By 1988, Van der Gulik et al [23] had intro-
duced an instrument that produced results for temperatures of (80 to 310) K at pressures
up to 1 GPa. The basic method involved was similar to that described [20] in 1963. A taut
tungsten wire was forced to vibrate close to its resonant frequency by passing through a
DC pulse and then the oscillations were allowed to decay. The oscilloscope was replaced
by a microprocessor to store the signal produced. A photograph was no longer necessary,
this signal could be Fourier transformed and fitted to the Lorentz curve, a function of the
cumulative distribution of ordered data. The wire was attached to an aluminium-oxide
holder using metal clamps. It was able to work in hostile conditions because the vibrating
wire body was electrically insulated from the pressure vessel. The published results [23]

claimed an accuracy of +£0.5 % for the viscosity.

3.4.1 Theory of Vibrating Wire Viscometer

In 1986, the theory of the vibrating-wire viscometer was completely reworked by Retsina
et al. [24]. The theory was subject to a number of newly established instrument design
constraints that enable the viscometer to measure viscosity with a +0.1 % accuracy. The
fluid equations and the mechanical equations for the motion of the wire were considered
separately. In the latter, the parameters k and &’ express the mass and added damping due
to the fluid, combining the two sets of working equations. The mechanics can be analysed
without specifying these parameters. The notation for the dimensions of the model are

shown in figure (3.11).

The mechanical equations follow simple beam theory with the wire being modelled as a solid

cylindrical rod clamped at both ends and subject to a tension T'. Due to the specification
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L

Figure 3.11: Model of vibrating rod

that transverse displacements and amplitude of oscillations will be small, linear theory can
be adopted. The rod motion is described by the equation
oMy o2 &y 0y

EIZY 1yZY | (my+ my) s + (Do + Do) 75

o 7 = F(z,t) (3.18)

where I = %ﬂ'RLl is the second moment of area, ms; = p,wR? is the mass per unit length of
solid rod, my = prR%k is the added mass per unit length of external fluid, Dy = pr R%wk’
is the drag force of the fluid and Dy = 2p,wR?w/\g is the coefficient of internal damping.
E is the Young’s modulus for the rod material, p, is the rod density, p is the fluid density,
w is the angular frequency, /\qg is the logarithmic decrement in vacuo and F represents a

force per unit length acting on the rod, which becomes negligible for large times.

Motion is started by an initial displacement of the rod at time £ = 0. The beam oscil-
lates in one mode in the plane containing the beam axis and perpendicular to it. The rod
and the fluid are both initially at rest. The theory deals with the transient decay of free

oscillations so (3.18) is solved subject to the following boundary and initial conditions [24]

y=0 and y, =0 at z==£L

where g is the maximum initial displacement of the beam and f is an arbitrary function of

z with |f| < 1. The general solution to a non-dimensionalised form of (3.18) in any single
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mode, j is given by

§(Ct) = Ajpi(Qel 21+ N " g (e vmemt (3.19)

m=1

where &; is the displacement of each point at distance ¢ from the origin, g, is the am-
plitude of transient force and ¢;({) are eigenvectors of the normal modes of oscillation.
The first term in (3.19) conveys damped harmonic motion in one mode and the remaining
term represents a simple decaying displacement due to initial transient in the fluid motion.
With further progression [24] this is reduced to a complex working equation which can be

expressed in real and imaginary parts as

_ (p/ps)k’ + 249
21+ (p/ps)k)

(3.20)

wz
w—g{“ +(p/ps)KI[A% — 1] = A((p/ps)K +200)} +1+ A5 =0 . (3.21)

The fluid behaviour is analysed by solving the Navier-Stokes equations subject to the fol-

lowing boundary and initial conditions

vr = (2 — A)weRe(— 2 cosh
vg = —(2 — A)weRel Pt sing
at 7= eRe(=2W 4 R(1 — 2e2-L)wtgin20)3

and v =v9g =0 as T — 00.

These conditions state that the fluid is initially at rest and there is no fluid motion far from

the rod. The geometry used to derive these can be seen in figure (3.12).

The solution is obtained for an infinite volume of an incompressible liquid implying that

the Mach number is small. Thus
Ma=(1+2A%3weR/c <1 . (3.22)

Owing to the assumed small transverse displacements, the non-linear inertial terms are
neglected so that
e pwR2 =0« 1/e? (3.23)
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Figure 3.12: Symbols defined for the r, § plane

where ¢ is the sonic velocity in the fluid, ¢ is the maximum amplitude of the motion and €2
is the Reynolds number of the flow. The motion is also assumed to be isochronous with a
frequency w. From the fluid analysis, Retsina et al [24] derive working equations to express

the parameters k and k' in the form

2K1([(: — A)Q)3)

A=(G-A A - 3.24
- [(2 — 2)Q)2 Ko([(» — £)Q)2) =

k= —1+2Im(A) (3.25)

K = 2Re(A) + 2AIm(A) . (3.26)

Here Ky and K; are modified Bessel functions. If the rod material properties are known
then (3.24), (3.25) and (3.26) combined with either (3.21) or (3.20) provide a complete set
of working equations to find the viscosity of the fluid. Measurement of the frequency of
oscillations and the logarithmic decrement allow either the density or the viscosity of the
fluid to be determined. Equation (3.20) is the preferred choice in practice because it is

more sensitive to the measurement of viscosity.

Assael et al [25] describe two viscometer designs that follow these principles. They op-
erate in a range of pressures from 80 to 300 MPa and at temperatures between 270 and
370 K. Over this range of conditions it is estimated that the accuracy of the reported vis-
cosity is 0.5 %. This is influenced by any inaccuracies in the values of the wire material
properties and the error in the fluid density. The instruments were estimated to measure
the decrement of oscillations to a precision of approximately £0.1 % and the frequency to

+0.01 %.
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3.4.2 Analysis of Vibrating Wire Method

Errors can arise from a host of sources. The value for the decay-time constant will be erro-
neous if the plane of oscillations is not strictly perpendicular to the magnetic field. Decay
in the vibrational motion is also caused by the internal damping of the wire. The wire
used most often is hard-drawn tungsten. The dimensions of the body must be chosen to
emphasise the damping caused by the presence of the fluid. The wire diameter is required
to be small (~ 100 pgm). The maximum amplitude of the oscillations is also specified to be
small relative to the diameter, causing observed motion to be small (= 10 pm). A typical
wire used by Tough et al was 5 cm in length and 25 pym in diameter, and would oscillate
at an amplitude of about four times the diameter. Errors also arise from differences in the
theory of the instrument and its actual physical geometry. The corrections at the ends and
edges of the body can be quite large. In reality, the ends do not follow an ideal case and
are neither perfectly clamped nor hinged so errors occur when a choice of these is made for

the hydrodynamic equations.

The validity of the equations derived by Retsina et al [24] impose necessary instrument
design constraints so that certain conditions are met. For a chosen range of p and u for the
fluid, limits should be placed on the radius of the wire (rod) and the frequency of oscillation.
The conditions given by (3.23), (3.22), and the condition € < 1, require that

w < p)epR® (3.27)
w > pe/pR> (3.28)
w <K c/eR (3.29)

It is apparent from these inequalities that the smallest realistic value for € will be the most
beneficial, where € = (pnqz/R is the maximum amplitude of the wire motion in terms of the

beam radius.

A further restriction is imposed because the Navier-Stokes equations were used to eval-
uate the parameters k and k’. This is only permitted if the fluid tested is Newtonian. A
further assumption made is that the total temperature rise in the fluid sample is negligible.
The temperature near the surface of the beam will differ from that of the surrounding fluid
owing to viscous dissipation. Inaccuracy will also occur as a result of the assumption that

there is an infinite volume of fluid. It has been shown [23] that this error is approximately
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proportional to (a/a,)? where a is the radius of the wire and a, is the radius of the fluid
container. This is said to be less than 0.05 % for a, = 100a. Other corrections need to be

considered for the non-uniformity of the wire, in particular its cross section.

3.5 Summary

This analysis indicates that conventional viscometers are currently unsuitable for measure-
ments in situ for a host of reasons. Falling body viscometers contain free moving parts and
capillary viscometers need not only a device to produce a constant fluid flow but also an
external pressure to balance the internal pressure to prevent distortions occurring in the
tube. Torsional oscillating-body viscometers containing fluid can perform poorly at high
pressures, since it is inevitable that distortions in the dimensions of the body will occur.
The damping effect on the discs of disc viscometers induced by liquids at such conditions is
often so large that the mass of disc required cannot be supported by any available method.
The simple and compact measurement cell used in vibrating wire viscometers is more ap-
propriate for the far from ambient conditions that are found down-hole. It is able to work
in hostile conditions because the wire body is electrically insulated from the pressure vessel
[23]. Unfortunately, the vibrating wire viscometer is limited by the equations used to eval-
uate the parameters in its mathematical model. By applying the Navier-Stokes equations,

the model is only representative if the fluid tested is Newtonian.

The information presented suggests that a change to both the mechanical designs of the
viscometers and the mathematical equations supporting them are needed to model an ac-
curate instrument for measuring fluid viscosity in oil/gas wells in situ. This prompts the
development of a new viscometer that will both remain sufficiently accurate in hostile con-
ditions and reflect both Newtonian and non-Newtonian fluid motion. We recognise that
a trade-off may have to be made between extreme accuracy and the ability to withstand
hostile conditions and measure a wide range of fluids. We conclude that the production of
a novel type of small-scale viscometer that can be used down-hole would be advantageous

in this field.
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Table 3.1: Comparison of past designs in chronological order (For the method of detec-
tion, E:=electromagnetic, P:=piezoelectric, Oo:=optical using oscilloscope photographs and
Op:=optical using photodiodes.)

Geometry Method Det. Freq. Viscosity Pressure Temp Other
/kHz Range Range Range Limitations
/mPa.s /MPa /K
Hollow disc  Torsional free decay. E 02 05-50 Lack of exact
pendulum Resonant frequency -2.3 knowledge of
[26] and damping temperature of
measurement. the pendulum.
Cylindrical  Transverse oscillations. Oo 0.475 0.0013 1.1 Imperfections
wire Free decay, resonant —3.34 —0.0027 -2.5 in the wire.
[20] frequency and damping Claimed
measurement. uncertainty
2.1 %
Quartz Torsional crystal method. P 0.1 14 Claimed
Crystal Resonant frequency and —34.5 —100  uncertainty
cylinder damping measurement. 0.5%
[27]
Immersed Electromagnetic resonant E 01 1-600 283
Plate frequency and resistance —323
[28] measurement.
Cylindrical  Multiple lump resonator. Op 01 05-50 Onset of
multiple Forced torsional oscillations. -8.3 modal coupling
lump Resonant frequency and at high viscosity.
resonator damping measurement Claimed
[29] (bandwidth). uncertainty
0.5 %
Cylindrical Transverse oscillations. E 0.1-15 14 Oscillations
wire Free decay, resonant —300 must be strictly
[21] frequency and damping perpendicular

measurement.

to magnetic
field. Claimed

uncertainty 2 %
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Table 3.2: Comparison continued

Geometry Method Det. Freq. Viscosity Pressure Temp Other
/kHz Range Range Range Limitations
/mPa.s /MPa /K
Cylinder Torsional free decay. Op <1 to  Uncertainty in
[30] Resonant frequency and 1473 cylinder radius.
damping measurement. Claimed
uncertainty
05-1%
Cylindrical Transverse oscillations. E 1 03-053 0.1-280 Uncertainty in
wire Transient decay. wire density.
[31] Resonant frequency and Claimed
damping measurement. uncertainty
0.5 %
Cylindrical Resonant frequency and E 1 0.1-10 0.1 270  Uncertainty in
wire logarithmic decrement -300 —370  wire density.
[25] of free transverse Claimed
oscillations. uncertainty
0.2 %
Cylinder Torsional free decay. P 20 1 - 500
[32] Resonant frequency and —500
damping measurement.
Cylindrical Forced transverse E 5—45 0—100 197 Loss of
wire and oscillations. Resonant, —350  accuracy at
solid sinker  frequency and damping viscosity over
buoy [33] of 1.5 % measurement. 15 mPa.s.
(uncertainty for Claimed
viscosities < 7 mPa-s) uncertainty
max 2.5 %
Rectangular  Vibrational modes E 263 Density Sensitive to
membrane and impedance —1050 only environmental
[34] measurement. influences that
affect membrane
tension.
Immersed Forced transverse P 1400 to 1000 293  Discrepancies
plate oscillations. Resonant, —2400 —303 at higher
[35] frequency, phase shift order modes.
and attenuation
measurement.
Tube Resonant torsional E 56 0.3-500
[36] oscillations.
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Chapter 4

MEMS Fabrication Process

The new vibrating viscometer designs described here are MEMS (Micro-Electro-Mechanical-
Systems). Ultimately the MEMS sensors will be used in situ in oil exploration. The sensors
are intended to be integrated into existing tools used down-hole. This is placed into the
hole, suspended by an electric cable. Its first task is to probe the reservoir formation and
carry out pressure tests at varying depths. This defines the transition zones between the
different fluids in the reservoir. Simultaneously, fluid samples are taken for chemical anal-
ysis. Individually, tools for down-hole use are extremely expensive so an integrated device

will help to minimise costs.

Such tools can be up to 30 m in length and they can travel a few kilometres below the
surface. The temperature at this depth can easily reach 448 K. The tools must be ex-
tremely robust to withstand down-hole conditions. Some oilfields have temperatures as
high as 498 K and in places such as Alaska, storage temperatures at the surface can be
as low as 218 K. The equipment must also be capable of withstanding severe shocks and
vibrations generated during transportation and deployment, and the fluid tested may be
corrosive. If the sensors are to be incorporated into future logging tools, they must reflect

this robustness in their own design.

4.1 Materials

The dimensions of the sensors are extremely small, with both thickness and amplitude of
motion typically being measured in micro-meters [37]. The devices have both electrical and

mechanical components. One viscometer that will be discussed in detail in a later chapter
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employs an oscillating plate which is a mechanical element that can be set in motion by
the force between an electric current flowing through the plate and an externally-applied

magnetic field.

Such devices are produced using integrated circuit techniques, and are fabricated by a
structure of layers, using material deposition and etching onto a silicon wafer. A fusion-
bonded Silicon on Insulator (SOI) wafer is used, with a 4 inch diameter. This is made up
of three layers, 350 um mono-crystalline silicon, 0.5 ym Si0O2 and 20 um mono-crystalline
silicon (Si). An advantage of this wafer is that the thickness of the final plate can be chosen
at will. The bulk of the sensor will be anisotropic single crystal silicon with crystalline
direction < 100 >. We therefore assume that the mass and mechanical properties of the
device will correspond to silicon only. To simplify the model the silicon is considered to
be isotropic. Material properties in certain crystalline directions can be calculated from
basic crystal properties. For silicon in the < 100 > plane, the isotropic values that best
reflect the aniostropic behavior are given by Spiering et al [38] and Petersen [39]. These

are summarised in table (4.1).

Table 4.1: Silicon properties

Young’s modulus /GPa 150
Poisson ratio 0.17
Density /kgm™3 2330
Compression yield strength /MPa | 7000
Tensile yield stress /MPa 300

The device also contains significantly smaller layers of different materials. These are de-
posited and removed from the wafer in a clean room by a series of etching steps using
photolithography. The relative thickness and function of these materials are given in table
(4.2). The final step in the process is to use a back-etching process to remove the 350 um
bulk mono-crystalline silicon layer. Figure (4.1) shows a cross sectional view of the plate,

indicating the various material layers.

The addition of different materials to the top surface of the sensor creates an unevenness
that could affect the fluid flow around the plate. The magnitude of these undulations is
estimated to be equal in magnitude to the viscous penetration depth of the fluid. The
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Table 4.2: Material components of the MEMS sensor

Material Function % total thickness
Silicon Bulk structural material 94.06
Silicon Device 5.37
Silicon oxide | Etch stop layer 0.13
Silicon nitride | Passivation layer 0.11
Aluminium Conductors and wire-bonding pads 0.22
Polysilicon Strain gauges 0.11
Integrated resistance thermometer (RTD)

2mm

2

Vibrating Plate

% — T 0.37m
20um
- T 0.5um
B s34 B Si02
350 1om Poly-silicon (4001m) [0 Monocrystalline silicon
B Protective layer Aluminium

Figure 4.1: Cross section of plate [37] (not to scale)
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viscous penetration depth § = \/?UZ is defined as the depth at which, for the flow of an
unbounded viscous fluid with kinematic viscosity v above an infinite plate oscillating with
frequency w, the fluid velocity falls to % of the original value at the plate surface. This
is explained for the MEMS devices in following chapters. The top surface is covered with
an even protective layer. This layer is approximately 2 um thick. Both the top layer and
the underneath silicon layer are optically polished for a smooth finish, leaving a smooth
but non-level surface. The protective layer is also an important addition in that it helps

prevent corrosion on the plate, an important consideration in the harsh reservoir conditions.

After the wafer has been etched and micro-machined, it is diced to release the individ-
ual sensors. The photograph in figure (4.2) shows a finished MEMS wafer. It contains
approximately 140 individual sensors with dimensions 4 mm x 8 mm, some of which have

been removed.

A
Y

v
O

v

Figure 4.2: Photograph of a finished silicon MEMS wafer

4.2 Actuator and Detector

The motion of the MEMS sensors is activated electromagnetically. The viscometers are

set in motion using an alternating current through a conductor held in a magnetic field.
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This produces a Lorentz driving force. This force can be altered by changing one of two
things, either the current or the intensity of the magnetic field. In a previous chapter, we
discussed earlier viscometers that used different actuator methods. These were considered
for MEMS but were ruled out for various reasons. Thermal excitation, injecting a periodic
current into a resistor, and piezoelectric methods have both proven to be less precise than
measurements electromagnetically. Piezoelectric materials were also considered to pose a

higher contamination risk.

/ Permanent fixed
/ [magnet

Figure 4.3: Electro-magnetic actuation, where B is the constant magnetic field, I is the
alternating current in the coil and F is the force produced

The electromagnetic principle used is shown diagramatically in figure (4.3). An external
electromagnet, or a fixed permanent magnet, holds the plate in a constant magnetic field,
B. The alternating current, I, is injected into the wire coil that is fabricated onto the sensor.
This produces corresponding alternating Lorentz forces, F', that force the plate to oscillate.
When the current reaches the first natural frequency of the sensor, thé plate will oscillate
at the maximum amplitude in the first bending mode at resonant frequency. It was found
experimentally that the modes for both of the MEMS sensors considered are well separated,
both in vacuo and in fluid. These modes differ for each MEMS design and will be discussed

for the individual sensors in a later chapter.

The conductor and magnetic field that together make up the actuator have no interac-
tion with the detector. It was originally suggested that the two should be coupled. This
preferred method would be done by measuring motional EMF. This was not possible due
to the large impedence of the coil on the sensor, roughly 300 2. The detectors used in the
MEMS devices are polysilicon piezoresistive strain gauges. These are placed at the points
where the maximum and minimum strain occur and form a Wheatstone bridge. The op-
timum positioning for each different MEMS design was found using finite element analysis
with the standard finite element package ANSYS [40]. On the cantilever plate this optimum

placement was found to be near to where the plate was clamped.
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Figure 4.4: Schematic of the top surface of a flexural plate MEMS

This is not the same for the transversely oscillating plate sensor, which we will refer to as
the “Spider”. Here, the Wheatstone bridge is formed from the first six wire “legs” on each

side, closed by wire-bonding. There are 24 legs in total on each side.

— 0.0002 m

I0.000Sm

U 1

0.0016 m

I0.000Sm

0.00002 m 7 i \ 0.00004 m
| 0.0024 m 0.00008 m

Figure 4.5: Transversely oscillating MEMS: the “Spider”

There are some problems with the strain gauges. They are not completely stable. Their
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resistance fluctuates with temperature and pressure. This can in part be ignored since we
only need to know a relative resistance rather than an absolute value. The actual measure-
ment taken is the relative voltage drop. A more important problem is their failure at high
temperatures. The piezoresistive gauges are expected to be the first component to break
as temperature increases. They are polysilicon doped with boron and are estimated to fail

at 493 K, restricting the use of the viscometer as a whole.

The gauges detect the varying strains in the sensor as it vibrates and enable one to measure
a resonance frequency f and an associated quality factor (). The resonance characteristics
of the MEMS device, f and Q, will be affected by the addition of a surrounding fluid. Near
to the surface of the vibrating sensor the fluid is moved with the body causing the addition
of effective mass or inertia to the intrinsic mass of the plate. This results in a decrease in
f- Q also decreases from the value in vacuum since viscous energy is lost to the shearing
motion of the fluid around the sides of the plate. Therefore knowing values of f and  for

a sensor in a fluid allows us, in principle, to obtain the viscosity v and density p of the fluid.

4.3 Packaging

During the writing of this thesis, the sensors used during practical experiments were housed
in a 3 mm outside diameter tube. The main elements of the packaging are a stainless steel
tube, a Swagelok ferrules and nut, and a printed circuit board (PCB). The sensor is at-
tached to one end of the PCB and the pads for soldering are positioned at the other. This
packaging was chosen to match the small scale of the sensor, to increase versatility and to

minimize potential production costs.
The packaging for the MEMS devices is designed for use in a multitude of fluids, lig-

uids and gases. The complete housing for the sensor is reliable at pressures up to 70 MPa

and temperatures up to 423 K.
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4.4 Laboratory procedure - Experimental equipment

The MEMS sensors have been undergoing a number of experimental tests. These have been
carried out by myself and others [40] at the Schiumberger Research centre in Cambridge.
Despite carrying out tests on the sensors in tolurene, the results from these tests were not
comprehensive enough to include here. Instead, I will refer to results taken from experiments
carried out by Claire Jakeways. The basic set-up for the experiments can be seen in the
figures (4.6) and (4.7). Some pieces of equipment have been upgraded since the photographs

were taken.

Pressure pump .
controller

Figure 4.6: Heat bath containing the MEMS sensor and fluid sample

The first stage is to check that the sensors resonate correctly in air. The sensors are wired
into the configuration shown in figure (4.8). A sinusoidal current is injected by the wave
generator into the coil on the sensor using a typical voltage of 50 mVp-p. The plate is
vibrated by placing a permanent magnet near the sensor creating a magnetic field of the
order 0.1 T. A dc power supply feeds the Wheatstone bridge with 0.5 V dc. A preamplifier
is attached between the output of the Wheatstone bridge and the lock-in amplifier. This
allows the lock-in amplifier to compare the reference signal from the wave generator with
the signal from the preamplifier. The lock-in amplifier then computes the phase difference

and amplitude for every frequency.
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Figure 4.7: Example of the experimental set-up used at Schlumberger Cambridge

input SENSOR output
Wave generator [ Coil RTD | Multimeter

DC power supply '—9|W’heatstone Bridge |-1>|Preamplifiex |—)|L0 ck-in amplifier |

Figure 4.8: Equipment and wiring schematic [40]

43



Measurements are then taken in vacuum. This is done in the pressure system shown in fig-
ure (4.11). At this stage the structure can break in resonance owing to a dramatic increase
in the quality factor. To prevent this occurring, the amplitude of the voltage in the coil is

reduced.

valve handles
m 7O
¥ 00 &
inlet | outlet
tube tube
R[4+ 1FEn

gauge \ |

.%L
.
pressure ; ) 18 MEMS
D

rd
valve/v ; J‘\

Figure 4.10: Photograph of apparatus in figure (4.9)

44



The MEMS is inserted into an adaptor which fits into the top of a block containing a port
for the pressure gauge and tubes at each end for the fluid to be flushed through, see figure
(4.9). The volume between the two valves is approximately 2 cm®. The electromagnet is
formed in an aluminium bobbin, containing about 700 turns of polyimide coated copper
wire, and is mounted outside the protective tube. A magnetic field, with a flux of 0.1 T, is

produced at the centre of the bobbin when 25 V dc is passed through the copper coil.

The final stage is to test the sensor in different fluids. A syringe pump injects a small
sample of a known fluid into the system used for measurement in vacuum. This system
can carry out measurements on the same sample at a variety of different pressures, begin-
ning at ambient pressure. The temperature is simultaneously measured using a platinum
thermometer close to the sensor. In the case of the cantilever plate sensor, the RTD ther-

mometer is situated on the sensor face.

MEMS sensor

Drain (—N_AN—O Yacuum pump

(R {Ga eyt

Figure 4.11: Fluid handling and piping schematic [40]

Once the required measurements have been obtained, the fluid is drained from the system,
or vented into a fume cupboard in the case of gases. Between samples, the apparatus is
evacuated to a pressure below 13 mPa. The apparatus, set at a temperature of 373 K
between fluids, is then cooled to 323 K and flushed three times with the next fluid to be

measured. The equipment is evacuated for about 12 hours between different fluid samples.

PCwitha
GPIB card

— [

—>| Wave generator II:))l Lock-in amplifier

Figure 4.12: Data acquisition system
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The temperature and pressure of the system is controlled manually using the heat bath
and pressure pump controller, both shown in figure (4.6). The precision thermometer is
accurate to 10 mK. The set-up in figure (4.12) is used for automating the remaining data
acquisition. The PC is installed with an 82350A Agilent GPIB card. The settings for
the wave generator and lock-in amplifier are controlled with a HT-Basic program. This
controls the scanning of frequencies and reads the output of the lock-in amplifier to give

the resonance frequency and the quality factor, as required.
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Chapter 5

The Spider

5.1 The transversely oscillating MEMS device

We model the plate in each of the MEMS devices as an elastic solid oscillating in a fluid.
The spider takes the form of an oscillating plate, fabricated from silicon using the meth-
ods of Micro-Electro-Mechanical-Systems (MEMS). The plate is about 1.6 mm wide, 2.4
mm long and 20 pm thick. It is suspended from a 0.4 mm thick support by 48 square
cross-section legs each of length 0.5 mm with width and depth of 20 pm. The process of
lithography is used to deposit layers atop the silicon that can be formed into resistors and
metallic tracks. The latter traverse the supporting legs to provide connections between the
plate and external electronics. The oscillating plate is a mechanical element that can be set
in motion by the force between an electric current flowing in the plate and an externally
applied magnetic field, producing corresponding alternating Laplace forces, which force the
plate to oscillate. The viscometer can be operated in either forced or transient mode and
is intended for use in both Newtonian and non-Newtonian fluids. The device is named the
“spider” owing to the legs that connect the transversely oscillating plate to the viscometer

support and interconnecting body.

Two different mathematical models for the determination of viscosity will be discussed. The
“forced” model is time-independent, with the plate oscillating at a fixed forced frequency.
We will then analyse the “plucked” problem, considering the transient or time-dependent
behaviour, where the amplitude of oscillation varies in time, decaying gradually after an
initial perturbation. We will consider the general case of incompressible fluids, using the
Navier-Stokes equation to model Newtonian fluid motion and a reduced form of Maxwell’s

equations for viscoelastic fluid motion.
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Figure 5.1: Photograph of the upper surface of the ‘spider’

As discussed previously, the plate will oscillate at the maximum amplitude in the first
bending mode at resonant frequency when the current reaches the first natural frequency
of the sensor. Theoretically an armature will possess an infinite number of modes of vibra-
tion and so give a complex interaction with the surrounding fluid. Generally, several of the
modes will be measurable. To obtain a description of the fluid-armature interaction that
we will be able to model we will assume these modes are well separated and that each mode
may be described by a linear simple harmonic oscillator. The various modes for the spider
sensor are shown in figure (5.2). These diagrams were reproduced from analysis carried out
by Maria Manrique at Schlumberger Research using the finite element package ANSYS.
The mode of interest for this MEMS device is the 3rd, with the plate oscillating in a plane,

reducing the problem to two dimensions.

Figure 5.2: Various modes of oscillation of the ‘spider’: 1st mode at 16.9 kHz, 2nd mode
at 20.6 kHz, 3rd mode at 34.5 kHz and 4th mode at 40 kHz

4th
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5.1.1 Thermal dissipation

It is important to check that the heat transfer caused by dissipation, the internal friction
due to fluid movement, will be negligible. To do this we consider typical sizes of each term
of the heat equation (5.1) separately and determine which terms could become dominant.

We have, for the temperature T of the fluid, that
or 2
pcp(g +(@.V)T) = kV*T + u© (5.1)

with
_ 3(]1 a(h
Oz, Oz,

where ¢, is the specific heat capacity of the fluid, p is the density of the fluid, k is the
thermal conductivity of the fluid and we assume that suitable boundary conditions may be

posed at the surface of the plate.
For this analysis and throughout this work, unless otherwise stated, we will use values

for the variables as given in table (5.1). Here we use them to obtain order of magnitude

estimates for each of the terms in equation (5.1).

Table 5.1: Assumed values for variables

Proprty Symbol | Value Units
viscosity of fluid U 1073 /Pa-s
density of fluid p 103 /Pa
heat capacity at constant pressure cp 103 | /m2?kgs 2. K1
speed of plate U 102 /m-s1
amplitude of oscillation L 1076 /m
thermal conductivity k 1 /m-kg-s73.K~1

The first term, corresponding to advection, can be written

pc, ATU
L

We are using typical experimental values for p and c,. The length scale L is chosen to

represent the amplitude in meters of oscillation of the plate, and U is an approximation
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of the speed of the plate in seconds found experimentally. The temperature T can change
during down-hole drilling and we will consider a change of anywhere up to 300 K. This

gives us an approximate value for the first term of

108 x 103 x 300 x 102
10—6

~ 3 x 10%kg-m~1.s73

The next term in (5.1) is associated with heat diffusion. This term is written as

kAT
L2

with k being of order 1 for most solids. This second term also has an approximate value of

1 x 300

~ 12 -1 .3
W ~ 3 X ].0 kg'm -S

The third term in (5.1) corresponds to heat dissipation. The order of magnitude of this

term is written
pU?
12
where p is the fluid viscosity. This gives a value of order 107, a significantly smaller value

than the contribution from either of the previous two terms. Even in a fluid of greater

viscosity it is extremely unlikely that the dissipation term will ever become dominant.

To accurately analyse the heat balance for the whole of the plate you would also have
to consider heating associated with the electrical energy in the coil of wires on the plate
surface. Experimentally, the current through the wires in liquid, I, has been recorded to
be around 1 x 10~3 A. The resistance in the wires, R, is approximately 300 2. The heating
due to the circuitry will cause a negligible heat increase on the plate and so need not be

worried about.

This analysis shows that the advection term will normally be the most dominant of the
four contributing terms in equation (5.1). Therefore for the purpose of this work we will
assume that temperature change is negligible and as such do not need to worry about a

heating term.
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5.1.2 Introducing viscosity

The spider is a uni-directional device. As the sensor oscillates in a fluid, fluid layers form
around the surface of the moving plate. These layers of fluid must move with the plate
and in effect the mass of the fluid within the layers is added to the mass of the plate (the
so called ”added mass” effect). The plate now has to work harder to oscillate at the same
speed, to compensate for this added mass. This increase in work will be proportional to

the viscosity and density of the surrounding fluid.

The plate itself has extremely small dimensions and its mass reflects this. This means
that the addition of the fluid’s mass will be much more significant than it would be to a
larger sensor, making the device more sensitive to the fluid properties. In theory the plate
could be made even thinner to reduce mass yet further but this will make the device less
robust and more prone to breakage. The sensor must also be able to survive and operate

in down hole conditions.

5.2 Forced oscillations

5.2.1 The mechanics of the infinite plate

For a simplified model, the plate is assumed to be infinite in both the x and z directions
and lie initially in the -z plane. The surface of the plane bounds an incompressible fluid,
at first considered to flow in the region y > 0. The plane is forced to oscillate in the =z
direction with simple harmonic motion, confined to the z-z plane. The velocity of the plate

can thus be defined as q = [Up(y, t), 0, 0] with
Up pas, er—iwt

where w is the frequency of oscillation and Uy is the amplitude.

3 .

A

oz

-t
UP == UDB

Figure 5.3: Plane oscillating in the z-direction, U, is the plate velocity in this direction
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Newtonian viscous Flow

We first consider the plate oscillating in an infinite volume of liquid and then discuss what
happens when there is a second stationary plate at a height ¥y = +h from the first. A
second plate is a practical consideration by Schlumberger as a measure of preventing larger
particles of rock and dirt from reaching the oscillating plate and potentially damaging it.
We assume the viscous fluid bounded by the plane has a plane parallel shear flow [44] with

motion of the form
u(y, t)

For an incompressible fluid, the motion can be described by the equation of continuity and
the Navier-Stokes equations. Acceleration caused by gravity, g = 10, is small in comparisson

to the acceleration of the plate, u; ~ 102, so neglecting gravity these are reduced to

Vv=0 (5.2)

ou 10p &u

o o

9 _ %P _ (5.4)

oy 0z
The first of these is automatically satisfied because u is independent of z hence div(v) =
% = 0. Rearranging (5.3), g‘g is the difference between two terms. Each of these terms is
independent of z therefore p, can be only a function of . We assume there is no applied
pressure gradient and define p to be a linear function of xz with equal pressures at x = Fo0.
Since p, is independent of z, it follows that

op
%—0.

Substituting this into (5.3) we are left with the one-dimensional diffusion equation

ou_ 0

i Vay2 (5.5)

We now need to solve (5.5) subject to certain conditions. When no stationary plate is
present, the only conditions implied are that the fluid velocity at the plate surface will be

equal to the velocity of the plate at each instant and the fluid has zero velocity far from
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the plate. Thus
u=U,=Upe™® on y=0, (5.6)

u—0 as y— oo (6.7)

We assume that the solution will take the form

u= f(y)e ™. (5.8)

This is substituted into (5.5) to obtain

This can be solved for f(y) and has the solution
f=ceM + gt (5.9)

where ¢; and ¢ are constants to be determined and A = ,/# so that

A = \/g(i—l) and ) ='\/g(1—i).

To satisfy the boundary conditions (5.6) and (5.7), we need
a=Up and ¢=0
Substituting f(y) into (5.8) the velocity becomes
u= Re (er"%ei(%—wt)) (5.10)

where § = ‘/sz is the viscous penetration depth. Taking real parts only we reduce (5.10)
to

u = Upe~§ cos (% — wt). (5.11)

The fluid flow (u) can be plotted using known material properties of the plate, figure (5.4).
It can be seen that as the plate oscillates, a corresponding wave is formed in the fluid
propagating from the plate surface. The oscillations of this wave decrease as it moves
further from the plate. This is what we would expect to happen physically, the fluid being

dragged with the plate due to the resistance on the no-slip surface and the viscosity of the
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fluid.
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Figure 5.4: (a) Newtonian viscous flow in an infinite volume of liquid (one complete period)
(b) Newtonian viscous flow bounded by a stationary plate at h = 0.0001 m (In all plots, y
is shown between 0 and 0.0001 m
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Newtonian viscous flow bounded by a stationary plate

When a second stationary infinite plate in the z-z plane is added at a height y = +h, we

-tt
UP = UU =

Figure 5.5: Plane oscillating in the vicinity of stationary top plate

need to introduce a second boundary condition stating that there is no flow at the surface

of the stationary plate. The two boundary conditions become
Fi="1Th and R H )
We can cancel out the constant ¢» by writing it in the form
@ =Uo—q.-
We can now remove all unknown constants in f(y) by writing
¢ = Up(1— e%(i_l)h)_1 and o=U(1-(1- e%(i_l)h)_l).

Substituting f(y) into (5.8) the equation for the fluid velocity becomes

2 2
sk 1 — e~ 5(h—v) g 5ilh—y)
u=Re (er_%el(%_“’t) ( 2.4 2,‘6:,1, ; (5.13)

Thus

(5.14)

2h
1 ~ &5 oas 4k

u = Upe? cos (% + wt) (
5

1 — 3= cos 2(h— y))

When the flow (u) is plotted, figure (5.4), we see a similar propagating wave in the fluid
caused by the oscillations of the plate. As previously mentioned, the second plate is to
protect the oscillating plate from particles of rock and dirt, so for this reason we need h to

be small. With the stationary plate positioned at a height of A = 0.0001 m from the moving
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plate, there appear to be more oscillations than in the infinite fluid case. This makes sense
physically since the wave has less distance in which to decay and must have zero velocity
at the stationary plate due to the no-slip condition applied there. As h increases, the fluid
flow will approach the infinite fluid solution.

5.2.2 Visco-elastic Flow

As discussed in chapter two, we also wish to consider the spider sensor in a non-Newtonian
fluid. For Herschel-Bulkley fluids (including Bingham and shear-thinning fluids), matters
become extremely complicated because the necessary equations are non-linear. For a visco-
elastic fluid, the governing equations are linear and so some analytic progress can be made.

For this reason we chose to model the fluid as a Maxwell fluid.

We first return to the single plate model. In a similar way to the Newtonian case we
substitute the assumed form of the solution (5.8) into the equation for Maxwell fluid mo-

tion (2.14) to produce an equation to be solved for f(y) in the form

Pf w, .
This has the solution
f — wlehy + W2e)\2y (516)

where to; and w9 are constants to be determined and
M =iy [2(1+ w207 [cos(%) + isin(%)]

Ag = i\/g(l + w202)%‘ [cos(% + )+ isin(% + 7r)]

with vy = arctan ;. We require that the real part of X satisfies Re(\) < 0 and to satisfy

the boundary condition (5.6), we need
w1 = Uy and wy = 0.

Substituting f(y) into (5.8) the velocity becomes

w— Re (er—\/?(lﬁ;zez)% sin(izl)yei(\/?(1+w202):li cos(%)y—w‘t)) _ (5.17)
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Taking the real parts only we reduce (5.17) to

w 1.
u = Upe V5 (w209 Tsin()y oo (1 /2(1 + w202)% cos(%)y - wt) . (5.18)
v

When the plate oscillates in the visco-elastic fluid, a corresponding wave will be formed.
By plotting the fluid flow with various values of 0, figure (5.6), it is shown that an increase
in the shear modulus of the fluid (a decrease in ) results in a decrease in the number of

oscillations of the propagating wave.

Visco-elastic flow bounded by stationary plate

It is again of interest to study the problem with the addition of a second stationary infinite

plate in the z-z plane at a height y = +h. We impose two boundary conditions,
f(0)=0p and f(h) =0. (5.19)

The first corresponds to the fluid and plate velocities being equal in the plane y = 0 and
the second states that there is no flow at the surface of the stationary plate. Applying the

boundary conditions as in the previous three examples we achieve the following equation
for f(y):
F) = U™ | (5.20)

where p = i,/2(1+ w262)3 cost —/2(1+ w202)% sin Z.

Substituting f(y) into (5.8) the equation for the fluid velocity becomes
w— er——\/g(l—i-wzﬂz)% sin %yei[ﬁ(l—i-wzﬂz)i cos Fy—wt] x (521)

1 1
i h— w 292 x - w 292 in X
1— e2z(h y)+/2(1+w?6?)4 cos 3o 2(h—y)y/2(14+w?6%)4 sin ]

1 1
1 — e2ihv/ 2 (14w262)7 cos :216—2h, /2 (14+w262)% sin 1

When this fluid velocity is plotted, figure (5.6), we once again see a propagating wave in the
fluid caused by the oscillations of the plate. From the plots we can see that as the stationary
plate comes within 0.00001 m of the oscillating plate, the wave becomes unable to produce
a complete cycle. This tells us that to allow for a reasonable number of oscillations in the

fluid flow we should keep the stationary plate at a height of A > 0.0001 m.
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Figure 5.6: (a) Visco-elastic flow in an infinite volume of liquid, with different values of 8
/GPa and y shown between 0 and 0.0001 m (b) Visco-elastic flow bounded by a stationary
plate at various heights (h /m) (c) Comparisson between Newtonian (dashed lines) and

visco-elastic flow (full lines)
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5.2.3 Frictional force and Power on the plate

The oscillating plate only has a non-zero velocity component in the z-direction therefore
it is clear that the frictional force will also act in this direction. The force S will thus be
equal to the corresponding component of the stress tensor evaluated at the plate surface,
y = 0 [43]. This acts over a surface area of twice the length by the breadth of the plate.
Thus

ou

S = 2aB[oyz)y—0 = 2aB [pgy—] . (5.22)
y=0

We define the power on the plate, using a force x distance/time relation, to be the frictional

force multiplied by the fluid velocity at the plate surface. We can thus write the following

equation for the power at the plate surface:

Pyo = 2aB [#%(u)%(g—;j)] . (5.23)
= R(S)R(w)y—o- (5.24)

Since we are dealing with an oscillating system it is more useful to determine the average

power over the period of oscillation. This is given by

2r
@ —o)dt
Py = % ) (5.25)
w

It is of interest to calculate the frictional force and the power on the plate for each of the

four studied cases.

Newtonian fluid

For the Newtonian fluid case the fluid velocity, u, is given by equation (5.10). Using this

substitution in (5.22) the frictional force per unit area acting on the plate becomes

[Oyzly=0 = 1 [@(i - 1)6_%ei(%_wt)]

= %er—iwt(z‘ —1). (5.26)

Assuming that Up is real we take the real part of (5.26) to obtain

R(Sy) = —2aB+/(wpp)Up cos (wt + %71’) (5.27)
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The velocity of the oscillating plate is U, = Up coswt, hence we observe a phase difference
between this velocity and the frictional force. To find the power we also need to determine
the real part of the fluid velocity at the plate surface, found by evaluating equation (5.11)
at y =0:

R(u)y—o = Uo cos (wt). (5.28)

The relevant substitutions can now be made into equation (5.23) to give

Py—o = —2aBUj cos (wt)+/(wup)Up cos (wt + %) (5.29)

which results in a time averaged power of

1

P,_o|l =
|y0| \/5

aBUW\/wpp. (5.30)

We can now rearrange this formula to get an equation for viscosity or density in terms of

power and initial velocity. )
2 |Py:0| ]
=—|—=== 5.31
M [GBU02 (531

Addition of stationary top plate

With the added top plate at y = h we obtained an equation for u given by (5.13) which

0 141
iy [ SiDE(h —y)
= Upe ™™t | —2 = 5.32
“ 0 ( sin —lj;lh ) ( )

can be rewritten as

In this case the frictional force per unit area on the oscillating plate is given by

ou
y:

Substituting (5.32) into the above we obtain

1 ; I+3
Siy=— (Ewpp)(l + ) Upe™™"* cot ( }_ Z) h. (5.34)

The frictional force per unit area acting on the stationary plate is found using

ou
Spy = u(a—y)y=h
= (%w,u,p)(l +3)Upe *tcosec ( 1 ;_ Z) h. (5.35)
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Assuming Uy is real we take the real part of (5.34) to be

R(Sw) = 4/ w“onh(cos wt sm( ) cos (%) — sinwt sinh (%) cosh (%) (5.36)

. . .1 1 1o 1,
+coswtsmh(6)cosh (3) + smwtsm(6) cos (6))/(cos (6) cosh(6) )-
The real part of (5.35) can be written

R(S2y) = 4/ w”’onh(— coswt sin ( ) cosh ( ) + sinwt sinh ( ) cos (%) (5.37)

_ : : Lo Lo
— cos wtsinh (3) cos (3) sin wt sin (3) cosh (3))/(cos (3) cosh (6) ).
The real part of equation (5.32) when evaluated at the plate surface reduces to
R(u),—o = Uo cos (wt). (5.38)

Equations (5.38) and (5.36) can now be substituted into the equation for average power

over time, evaluated at the plate surface, resulting in the following expression for Py—q

w U2 sin & cos 1 + sinh % cosh %
Ppo= [ “5aBh_ | =2 — 4 | (5.39)
cosh 5~ —cos 3

)

Once again we can rearrange this formula to derive an expression for viscosity or density.

12

2
| Py=o|w? ( cosh— —cosa )J . (5.40)

up—

Uy2aBh smacos +smh cosh 1

Visco-elastic fluid

For the visco-elastic fluids described earlier, the fluid velocity was found to be (5.17). Asin
the Newtonian case, the frictional force per unit area Sy on the oscillating plate is obtained

by the substitution of (5.17) into (5.26) evaluated at y = 0. This gave

Sy — ”’ai |:er iwt i\/z’-(1+w202)71fcos(%)y—\/—%-(1+w202)71[sin(%)y:|

= e ™" [[ (1+w?6%)% cos(Z)—
\/;(1 +wp?)i sin(E)] . (5.41)

y=0
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Assuming Uj is real we take the real part of (5.41), giving
2
R(Sy) = ,ng%(l + w202)% (sinwt cos% — coswtsin g—) . (5.42)

The fluid velocity at the surface of the plate can be found by evaluating equation (5.17) at
y=0. The real part of this gives us the boundary condition

R(u),—o = Uo cos (wt). (5.43)

We can substitute equations (5.42) and (5.43) into (5.23) to give us the average power at
y = 0 in the form

Up? 1
Pyeo = \/(wpp)aB=2- (14 w?6%) Tsin % (5.44)
w
When rearranged this expression gives the following equation for viscosity or density:

2
1 | Py—o|w?
pp=- 2 1.
W aBUp*(1 4+ w?6?)1 sin L

(5.45)

Addition of stationary top plate

With the addition of the top plate at y = +h we can rewrite the fluid velocity equation

(5.21) as .
er—uut

= oo (k¥ — 2hk1e—h1y) (5.46)

u

where k; = 1,/2(1+ w202)21i cos(%) — /2(1+ wzﬂz)% sin(Z).
We can substitute this velocity into the following equations to find the frictional force per

unit area on each of the plates. For the oscillating plate we get

ou
Sly = #(@) o
y=

) 1 + e2h(k1)
— —iwt
For the stationary plate we obtain
ou
o - ()
Y 3y y—h
. 2eh(k1)
— —iwt
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The real component of Sy, can be written

—pUpks
R(S = - -
( ly) 1+ e—4hk2sin 1 _ 9o —2hkzsin z cos (2hk2 coS :21)
[(1 — g 4hkzsin %) sin (wt + %) — 9¢2hk2sin g gin op ko cos % cos (wt + %)]
with
1
ko = 4 [2L(1+ w2625, (5.49)
7

As in each of the previous three cases, the real part of the fluid velocity at the surface of
the plate can be reduced to
R(u)y—p = Up cos (wt). (5.50)

Once again, these expressions can be substituted into equation (5.23) for the average power

at the surface y = 0.

. . in X in X .
Up? sin ¥ — sin %e‘ihkz sin 3 4 ge2hkzsing oog 7 sin hky cos 4 cos hky cos %
inlX in X nX
w2 4 cos (hkz cos :21)262hk2 sing _ 1 _ e4hk2 sind _ 2e2hk2 sin

Py:() = k2 ,uaB
(5.51)
Unfortunately, since kg appears both within and outside the exponential functions in (5.51),

we are unable to isolate pp.

We now have theoretical expressions for the frictional force and power on the oscillat-
ing plate for both the Newtonian and the visco-elastic fluid cases. These are closed form
solutions and for the first three cases can be easily rearranged to give an expression for

viscosity or density in terms of power and the initial velocity of the plate.

5.2.4 Experimental incompatability

The Newtonian inviscid fluid solution that we have found determines viscosity or density
so that one is determined when we know the other. The solution is a function of the initial
plate velocity and the power in the plate. The problem that arises in experimentation
is that these two parameters are not always measured. The functions that are actually
recorded by Schlumberger are the in-phase and quadrature voltage of the system. This
means that we can determine the frequency and the ‘Q’ of the system. Q is defined by the

following expression

— fres
2g

Q
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where f,es is the resonance frequency of the plate in fluid, or the frequency which produced

the highest recorded amplitude of plate motion, Ap,.z, and g is described in diagram (5.7).

90-—-\
0 :fsz

\

g \ + y ﬁ He
0 A Jies

Figure 5.7: Examples of graphs produced from experiments, showing the in-phase and
quadrature voltage respectively.

Plate equation

To find a solution that can be more easily compared to experimental results we need to

define a different modelling strategy. First we re-pose the plate equation:
mé + mk*z = 9 cos(wt) — puy, (5:52)

Here m denotes the mass of the plate and k represents the spring constant, both dependent
on the mechanical properties of the plate. z is the displacement of the plate from its stating
position. On the right hand side of the equation is the external force on the plate, the first
term relating to the uniform driving force and the second term relating to the viscous drag
due to the surrounding fluid. ¥ is the magnitude of the driving, an unknown constant to
be determined. We expand this by assuming that we know the solution after a long time,

which is that the plate is moving at a known velocity.
& = Up cos(wt) t — oo. (3:83)

We know that in this case the viscous drag term per unit area for a Newtonian fluid acting
on the plate is given by equation (5.27). What is not certain is to what extent the driving
force will be in phase with the plate vibrations. We can try to drive it at frequency w, but
as a result the plate may oscillate at a different frequency due to the retarding force of the

surrounding fluid. We introduce a ¢ component into the driving force term to allow for a
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phase difference. Putting these back into the plate equation we obtain:

mi +mk’z = 9cos(wt+ @) — aBUp+/ppw cos(wt + g) (5.54)

= Y cos(wt) cos(¢) — ¥ sin(wt) sin(p)

—aBUy ,t%w cos(wt) + aBUy ,u_gw_ sin(wt).

We substitute the known solution (5.53) back into the plate equation (5.54) and equate
sine and cosine terms. Firstly, equating cosine terms gives:

BU, )
aBUovwpp _ Up _ V2c0s¢ (5.55)

'l9COS¢= .\/i 5 _aB—u)’u,p

Equating sinusoidal terms:

aBUy/onp

U
—mwlUyp + mk2UO = —PJsin¢ +

From (5.55) we have that 9 = EE\/UTO(:BS—— “”:p. Substituting this into (5.56) and applying the
relation cos ¢ tan ¢ = sin ¢, produces the following expression for ¢, our first working equa-
tion:

(5.57)

¢ = arctan (1 + m/ 2 mk*V/2 )

aB\/up  aB,/fipw?
We can now substitute the equation for ¢ back into (5.55) to give us our second working

equation:

U ___v2 . (5.58)

9  aB 2
@ \/W 1+{14+m 2w _ _mk2y/2
aBy/pp aB\/Ww%

The result is thus two working equations which when plotted, correspond to the two graphs
produced experimentally in figure (5.7). k, u and p are now the only unknowns on the right

hand side of equation (5.58).

If we let %Q = H, then the curve defined by (5.58) is found by plotting H against w.
If wy, is the maximum recorded frequency, then this will correspond to the maximum point
on the curve, when % = 0. Differentiating (5.58) with respect to w and then equating this

to zero we can rearrange the result to get:

Jip = $ (—wm%\/ik2 — 3v2uw, % + /340 0kt + 120,,11k2 — 14wm13) (5.59)
m
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We consider the device oscillating in vacuum, ,/up = 0, at a vacuum frequency of w, = f,2.

Substituting this into (5.57) gives

mk2v/2
3

Wy 2

my 2w, =

which simplifies down to

k = wy.

Substituting this value for k and m = aBdp; back into (5.59), we can simplify the solution
to

_ d2p32

Swm3

2
1p (wvz + 3w’ = /1w, + bwm?w,? — Tum?) (5.60)

Having found a solution for the spider forced at a constant driving force, we will now
consider the problem for the sensor without an external driving force so that the oscillations

of the moving plate are allowed to decay.

5.3 Decaying oscillations

We consider the device to be a damped harmonic oscillator with a corresponding decay
rate. When placed in a fluid, the decay in amplitude of oscillation is then hoped to be
proportional to the viscosity and density of the fluid. To allow us to obtain a reasonable
amount of data, we must ensure that the plate can oscillate a number of times in the fluid
before the oscillations decay completely. It is possible we will also need to reject the early
oscillations which could exhibit irregular transient behaviour. In a very viscous fluid this

is made more difficult.

We will consider two cases of the ‘spider’ with decaying oscillations. In the first case,
the experiment is started with the plate transversely oscillating in the x-z plane with a
speed of Upcos (wpt). The plate is first made to oscillate for a length of time to allow the
system to reach a state of steady oscillations at a constant speed. The external power input
and initial frequency (wp) needed to maintain this speed are recorded. To begin the mea-
surements the external power supply is switched off and the plate oscillations are allowed

to decay.

In the second case, which we will consider in more detail and try to solve fully, the plate is

given an arbitrary displacement and held there by an external force. Measurements begin

66



when the external force is removed and the plate is released with an initial velocity of 0. In
effect, the ‘spider’ is ‘plucked’. In both cases it is assumed that the legs around the edge of
the plate provide resistance, r, and that plate motion is also retarded by the shear stress of

the viscous fluid (puy|y=0), acting over the surface area of the plate, top and bottom (2aB).

The fluid flow, u(y, 1), is defined by (5.5)
Up = Viyy (5.61)

We describe the motion of the plate by the following equation

d’z dz
psdBaﬁ + n + k%z = 2Ba(puy|y—0) = F(t) (5.62)

where ps is the plate density, d is the plate depth, a is the plate length, B is the plate
breadth and k is the spring constant. This governing equation is essentially identical to
(5.52) save for the facts that (i) the plate is no longer driven and (ii) the damping of the

plate legs has been included.

5.3.1 Decaying from steady oscillations

At time ¢t = 0 the speed of the plate is Up. It was shown in section (5.2.1) that a plate oscil-
lating with a velocity of Uy, cos (wt) produces a fluid motion u(y,t) = Uye™ cos (ky — wt)

with k = (—‘;ﬁ)% This gives two initial conditions for the fluid motion, namely
v="U, =Up at y=0,t=0 (5.63)

u = Upe %Y cos (koy) with ko = (—)% at y>0,t=0. (5.64)

For our two boundary conditions we have that the fluid velocity is equal to the velocity
of the plate at the oscillating surface and that the fluid velocity will decrease to zero with

increasing y. Thus

u="Up at y=0 (5.65)
u=0 y—oo. (5.66)

As we will now show, (5.61) and (5.62) can be solved using Laplace transforms, coupling
the plate and fluid motion equations into a single equation which may then be solved and

analysed.
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Solving the problem using Laplace transforms

We now recast the partial differential equation for u(y,t) (5.61) as an ODE for 4i(y, s) by

taking a Laplace transform in time. Equation (5.61) becomes
. 1., . . ... .
Ty — (;)[su —u(y, 0)] = Gy, — (;,l [sé — z(0)] = 0. (5.67)

We can also find the Laplace transform of the boundary condition, that the plate motion
equals the fluid motion at the plate surface. We choose to define the initial velocity of the

plate as Uj.
@ = s& — z(0) on y=0. (5.68)

At time t = 0 the plate is assumed to be at zero amplitude and have velocity U; so we can

make the following substitutions:
z(0)=0 and z(0) = Up.

A solution is then

(0, 8) = (Y + pa(s)eVE + 22, (5.69)

where ; and @9 are constants to be determined. Since it is necessary that as real s tends

to 0o, y+/2 also tends to oo, we can simplify (5.69) by defining

p1(s) = 0.
Applying condition (5.68) we find
Ut
Pa(s) = 8 — =,
s
so that the fluid solution can be written
U 3
iy, 8) = (s — 2 VT + % (5.70)

The Laplace transform of the plate equation (5.62) gives

523 — s2(0) — £(0) + sA% — Az(0) + BE = Cuiy|y—o (5.71)
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_ T _ k2 __ _2Ba
where A = B B= B and C = >-Bda"

Since we know the plate amplitude and velocity at time ¢ = 0, we can re-write this as
(s> 4+ As + B)3 — Up = Cury|y—o- (5.72)

To couple our equations we need to differentiate our fluid solution with respect to y and

evaluate this at y = 0.

¥y lyo = [— (s:i - %) \/ge—y\/?] o = —\/g (s:i - %) (5.73)

This can then be substituted back into the plate equation (5.72).

(2 +As+B)E — Uy = —C,u\/g (s.’i — %) (5.74)

We are now left with an equation just in terms of £ and s, so we can take the inverse Laplace
transform of this function to produce the desired solution. Here we make the substitution

v = up. We find that

z=UpL™! (5.75)

1 +C,/,ups_%
s2 4+ C,/,ups% +As+B|

5.3.2 The ‘plucked spider’

In the case of the ‘plucked spider’, the fluid equation (5.61) must be solved subject to the

following boundary conditions:
u(t) = — at y=0 (5.76)

u=0 y— o0 (5.77)

As in the previous example, these correspond to the plate having equal velocity to the fluid
at the plate surface and the fluid having no velocity far from the plate. In this case however,
the initial condition states that both the fluid and the plate are at rest at time ¢ = 0, so
that

u=0 at t=0. (5.78)

Owing to the mutual dependence of the fluid and plate velocities, we again need to couple

the two equations of motion.
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Solving the problem using Laplace transforms

Once again we can use Laplace transforms to define our partial differential equation for

u(y,t) (5.61) as an ODE for 4(y,s). Equation (5.61) and the two boundary conditions

become
8t — Viyy =0 (5.79)
4(0, s) = st — z(0) (5.80)
@(00, s) = 0. (5.81)
The solution is
a(y, s) = T1(s)e¥Vo + Ti(s)e Ve (5.82)

where T, and Y; are constants to be determined. We first apply condition (5.81). In the
same way to the previous case, since it is necessary that as real s tends to oo, y\/g also

tends to oo, we can simplify (5.82) by defining
Ti(s) =0
Applying condition (5.80) we find
To(s) = G(s) = sz — z(0)
so that (5.82) can be written
iy, s) = (s& — 2(0))e¥V+ (5.83)

Since the plate velocity is 0 at time ¢t = 0, we can re-write the Laplace transform of the

plate equation (5.71) as
(s +As+ B)z — (s + A)x(0) = Cuvyly—o (5.84)

We can differentiate our fluid solution (5.83) with respect to y and evaluate this at y = 0

olymo = (— 206 = 50D VE ) lpo =~ 263 -50) 659

to get
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which can then be substituted back into (5.84) to get

(s2 4+ As+B)E — (s + A)z(0) = —Cp,\/g(sa? - z(0)) (5.86)

As in the model starting in motion, we are once again left with an equation just in terms of
z and s, so we can take the inverse Laplace transform of this function to find our required

solution.

z=z(0)L}

s+ A+ C/ups
; (5.87)
s2 + As + B+ C/ups?

Solving the inverse Laplace problem for the plucked model

To find our solution for 2 we could apply the standard formula for inverse Laplace transforms

to (5.87):

T y+ico
=2 / e £(5)ds (5.88)

o 27['7, —ioco
where f(s) = —Mg and E = C,/up. However, this particular problem is complicated
s2+4+As+B+Es?
by the numerous singularities in f(s). To solve the integral we must first analyse these

singularities and then define a contour to integrate along that excludes these points.

<+

Figure 5.8: Contour excluding singular points

By multiplying f(s) by its conjugate, f(s) can be rewritten to give two terms which show

the singularities more clearly.

s+A+E/s s2+As+ B — Es?
f(s) = 3 3
s24+As+B+Esz] [s2+ As+ B — Es2

(s + A)(s% + As + B) — E%s? EB\/s

== 5.89
(s2 4 As + B)2 — E%s3 (s2 4+ As +B)2 — E2s3 5:89)

Here we can see that four pole residues will occur due to the quartic polynomial on the base

of each of the two fractions. It can be assumed that the poles will be complex conjugates
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and must have negative real parts for decay to occur. The poles are determined by finding

the roots of the quartic polynomial equation:
s+ (2A —E3)a® 4 (2B + A%)s® + 2BAs + B2 =0 (5.90)

A further branch cut is introduced by the square root in the second term.

®—

ey poles
branch cut //

e

Figure 5.9: Poles and branch cut

Having multiplied f(s) by its conjugate, we must be careful to rule out any poles resulting
from our analysis which are also roots of the conjugate equation s + As + B — Es2. If we

look back at the original polynomial on the base of f(s),
s2+ As + B + Es2,

we can see that if a real root was to exist, it must be negative since A,B and E are positive
by definition. We can therefore discard any real positive roots from our analyis since they

can not be solutions to the original problem.

The full solution to the inverse Laplace transform should have three main contributing
terms, an exponential term for each complex conjugate pair and an algebraic term due to

the branch cut.

Quartic polynomial analysis

We are now going to investigate the poles involved in our inverse Laplace problem. We do
this by analysing the quartic polynomial (5.90) and then finding the roots. Using A = ¢,
B = %Vz— and E = m—w—m, where W = p,Bda is the weight of the plate, r represents

the damping of the legs and k the simple harmonic motion of the legs, we may write the
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polynomial as

P+ (2A—-E2)s3 + 2B+ A%)s2 +2BAs+ B2 = 0

9 2 2 2 2 4
¢54+(1_M)53+(2&+T_)32+2’* e X

w w2 w o W2 w2 w2
No damping case

In an attempt to simplify the problem we will assume that the interaction with the sur-
rounding fluid provides most of the decay in the motion and that the damping of the legs
is negligible (r = 0). Using this assumption, the polynomial becomes

4(Ba)? 2k? k*
f(S) = 34 — (+)2up53 + W52 + W =0. (591)

We now choose to analyse the curve that would be drawn by plotting the polynomial f(s).
By calculating the derivative of f(s) with respect to s and then equating this to zero, we

can work out where the turning points in the curve f(s) will occur.

2 2
(Ba) BPg2 4 4k—s =0 (5.92)

/ _ 3 _
fi(s) =4s 12—W2 W

One solution will be s = 0. The two remaining turning points are found from the solution

to the quadratic equation
2 2 2 3o
4s* —3E°s+4B=0=s _ZE s+B=0.

Solving the quadratic equation to find the two roots of s we get

3E2 4+ . /2E* 4B

s = 4 16
o 2
3E2 9E* — 64B
=28 = —Ft -
8 8

This leads to three possible cases. First, if 9F* = 64B, there will be repeated roots resulting
in one other turning point, an inflection at s = %. When 9E% — 64B > 0, there will be two
real roots giving an additional two turning points. Finally we could have 9E* — 64B < 0
which gives no real roots so will lead to no extra turning points. In this last case, where

there is only one turning point at s = 0, we would get four complex roots for f(s). We can
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determine the value of k needed for the turning points to be real

9E* -64B > 0 (5.93)
4(Ba)’up\® K
9(Ba)*(up)® o
s~k >0

Since k? and B2 are both strictly positive values, for real h
ince k* and =75~ are both strictly positive values, for real roots to occur we need that

9(Ba)*(up)®

2
W< e

If (5.93) is true, we will get three real turning points at s = 0, s = s; and s = sa. Substi-
tuting known values into the relation (5.93) we can determine the necessary viscosity for

the relation to hold true.

We know that the weight of the plate is W = 1.789 x 10~7 kg, the length is a = 0.0024
m and the breadth is B = 0.0016 m. We assume that a spring constant per unit mass of
k = 1 kg/s? would be a reasonable assumption and that a realistic fluid density could be
p = 1000 kg/m?. For example, an atomic force microscopes cantilever has a spring constant
of 0.1 kg/s? and a Slinky spring has a spring constant of 1 kg/s? [42]. Using these values
the relation is reduced to

p > 5.18 x 107 BPass (5.94)

This is extremely likely and will be true for all fluids we wish to investigate, indicating that

there will in fact be three real turning points.

The next step is to work out the behaviour of the turning points. We can do this by
differentiating (5.92) again with respect to s to get

(Ba)’up | K

——s

+4- =0

1 _ 2
f(s) =12s* — 24 o 7

We now need to evaluate the second derivative at each of the three turning points. At the
point s = 0, we are left with f”(0) = 4B which by definition must be a positive number.
This indicates that this turning point of the curve described by the quartic polynomial f(s)
will be a minimum. Using (5.91) we can also see that when s = 0 the curve f(s) will be at

B2, also a positive value. We have plotted the shape of f(s) for the no damping case with
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Figure 5.10: f(s) with only one turning point

only one turning point at s = 0, see figure (5.10).

. 2 +/9E%4—64B 2 4__
Atthepomtsslzi—l—%and52:%—w,weget

fN81) = %E“ — 8B+ %\/9E4 — 64B

9
i) = gE4 — 8B — g 9E* — 64B

Using the relation (5.93), we know that 3E* — 8B > 0, hence f”(s1) > 0. This means that
the turning point s; is also a minimum. Since we have two minimum points, this implies
that the third turning point sy must be a maximum and must occur between s; and s = 0.

We can determine f(s) for each of the turning points s =0, s = s; and s = sq9.

f(0) = 8
E2
J(s1) = 5 (—27E° —9E"V/9E* — 64B + 288BE” + 64BV/0E" — 64B)
E2
f(s2) = 5 (—27E° +9E"V/9E" — 64B + 288BE” — 64B/9E" - 648)  (5.9)

This tells us that the curve must cross the axis an even number of times, either twice or

not at all and thus will have two or zero real roots respectively.

Simplification using asymptotic analysis

Although it is valuable to have the exact solutions above (and in most cases the expres-
sions may easily be evaluated) some simplifications may occur when the existence of small

parameters is exploited.

Making the substitution s = .S #, (5.91) becomes

B ... ABaYup B o 2t K

= S* L aSP+252+1 = 0 (5.96)
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—4(Ba)?
kW
small. Given W2 = 7.57 x 10~7, o must be large. Using this, we can rewrite (5.96) as

where a = EP  We know that for most fluids up is of order 1 and believe k to be

eS* 4+ 83 +2e5% +e=0 (5.97)

with € = i— « 1. The S® term appears to dominate indicating that the equation will
have three normal roots, found by regular pertubation, and one singular root. To find
approximate roots of this quartic polynomial we will use the fact that € <« 0 and use
asymptotic approximations of S. For the three regular roots we use the following expansion

of S

S = > ebs;

i=0
= So+€58+£38y+eS3+... (5.98)

Substituting (5.98) into the polynomial (5.97), we can evaluate the S; terms by solving the
equation for each order of ¢, starting with €°, until each S; term has been determined. For

example
O(EO) : S()3 =0

So=0

O(e3): 384281 =0
So=0

O(e3) 1 50(2508S2 + S12) + 251250 + S2502 =0
Sp=0

Substituting the values of S; back into (5.98) we get our three regular roots:

1
3 2
—E3 3e+..
jr 1
S=14 e'5es —2e+..
s 1
e tses — 2e +

In a similar way, we can find the singular root by using a different expansion of .S, as follows,
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and substituting this new expansion into (5.97).

S=%+S’o+681+628’2+... (5.99)

This will give us the following equation
S_1 9 nd 51 2a\3 S 202, . _
s(-—;——i—S’o—i—sSl +€°Ss) +(—6“+So+651 +€e%Sy) +2E(T +So+¢eS1+e°S2) +e=0

As before, we can evaluate the S; terms by solving the equation for each order of ¢, this
time starting with O(¢™3), then substitute these S; terms into (5.98) to find our fourth,
singular root:

1
S=——4+2+...
€

. _1 ___ 4(Ba)?up .
Withe = - and o = ——— we can write our four roots together. To find the roots of

the original polynomial (5.91), we need to use the relation s = ~\/%S = kW~28.

4

3 3
( kwf . 2w? , o\ -
4(Ba)*pp 12(Ba)?pp ' " 2
WBaPup) T TBayup T
. 3 3 3 1
2% kW2 4 2kWZ 2% Kt S _2PW
J 4(Ba)?pp 12(Ba)?pp ' J 4(Ba)?pp 12(Ba)?pp * """
S - — 8§ =
3 3 3 21T k4 3 2K°W
3 —2i3
—2%Z { kw32 2kW 2 e 3 (Wr) + BEatu, T
© (4(Ba)zul’) T B(BaPm T (Ba)*up (Ba e
3 ABa)up oKW
4(Ba)?pp _ 2kW3Z 4 . W2 4(Ba)?pp ' "
\ w3 4(Ba’pp ' "

Using possible values of k, p and W, we can see what form the roots will take by plotting
their position as we vary the value of 1 (appendix A). We can compare the roots we would
get from solving the polynomial exactly with the roots found with the asymptotic analysis.
As mentioned earlier, we can discard any positive real roots since they are likely to have
appeared due to the conjugate introduced to simplify f(s) and can not be solutions. As
is shown by the following diagrams, both methods result in a pair of complex conjugate

roots. In both cases the complex roots have negative real parts, necessary for decay to occur.

If r is non-zero, we would expect similar results but with more damping. For example,
we would anticipate the negative real parts of the complex roots to be more negative so

that decay occurs more quickly.
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1500 = Complex conjugate pair - increasing viscosity

1000 ~ Tm(S) —=— 1st complex root
—=— 2nd complex root

500 A ——__
——_‘_‘_‘—‘“_‘_"‘—I—_.__\__.
0 T T T 1 T 1
-453.10286 -428.28519 -310.45299 -257.1_2653—-&‘57.—33—522——126.44013
2500 - e de el
e Re(s)
-1000 - e

-1500 -

Figure 5.11: Roots of the polynomial evaluated exactly using values in table (5.1), with k=1.
Shows a complex conjugate pair with imaginary parts approaching zero with increasing
viscosity.

1500 7 Im(s - 5 = :
(‘)aComplex conjugate pair - Increasing viscosity
1000 - Vi S
500
Re(s
0 T T T T I e(I )
-346.658 -393.948 -308.212 -256.50&;15?.39‘%426
-500 - P
/__.f/ —=— ]st complex root
-1000 - e —=— 2nd complex root
r__f"
-1500 -

Figure 5.12: Roots of the polynomial found with asymptotic analysis, using values in table
(5.1), with k=1. Shows the complex conjugate pair with imaginary parts approaching zero
with increasing viscosity.

We can approximate the solution to our inverse Laplace problem by considering the be-
haviour at different time periods. At small time there will be transient decay. At interme-
diate time there will be regular, measurable oscillations which cross the axis. At large time
the branch cut contribution will dominate and decay will be algebraic. Overall we expect to
see the oscillations decay exponentially but the mean displacement to decay algebraically.
In the next section we consider the behaviour of the solution in each of these time periods

using asymptotic of f(s).
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5.3.3 Large and small time behaviour

In order to gain further understanding of the general properties of the device, we now
determine its behaviour at both large and small times. Though the latter is predictable, we
shall see that the amplitude of motion of the device decays algebraically for large times. This

is significant since the existing engineering theory of many oscillation-decay viscometers

appears to implicitly assume that the decay is always exponential.

Small time approximation

We can investigate any change in behaviour by looking at an asymptotic expansion of f(s)
for short time (large s) or long time (small s). This follows since the behaviour of the time

function f(t) for small ¢ is governed by the behaviour of the Laplace transform sF'(s) for

large s. The initial value theorem states that given a limit exists then

o0 o0

lim sF(s) = lim se St f(t)dt = lim e_”f(g)dv = f(0).

§—r00

S—ro0 0 §—r00 0

Conversely, the final value theorem gives

tim 5P (s) = lim [ s~ )ae = tim [ (o= f(oo).

For the short time behaviour we need to consider the motion of the sensor as t — 0. We

approximate this as being equivalent to the large s behaviour thus take a series expansion

of f(s) about s = co. We have from (5.87)

f(s)

(s+A+Ev3)

52+ Es? + As+B
(s+A+E\/§)[ A E B]_l

(s+A+E\/_)Z( 1)T[ E]r

MZ( 1)T E’ [14.

s+A+E E 7! A B 17
B ﬂg( D 2 o e * )

oo

(s+A+E\/_)Z( 1)TETZ rl AP [l—i-%]p

P'(T - p)! E”sz

A N B ]T
E\/_ Esg
+
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(S+A+E\/—) r ( 1)rE1'ApT' B 1P
Z T+p 14+ —
r=0p=0 S 2 EPpl(r —p)! As

_ (s+A+E¢§)ii (—1)"ET APy i o [B]q

s* =0 p=0 S%BEPP!(T—p)!q:D q'(p —q)! | As

Wiii 1 [ (—1)TE"APrIpIBY ]

< =0 p=0 ¢=0 sT22+a | EPAIDlg!(r — p)!(p — ¢)!

BE A — E2 B E3 — 2EA

z + B 4 + ( ) ) .

2 s R

_ 1 B
s 8

(5.100)

We are now able to take the term by term inverse Laplace transform of f(s) in this new

form.
B 8BE s A — B2 32BEA r
L1 =1— —¢? t2 +B B 5.101
[£(s)] 2 T/ TP 6 10577 (5.101)
Substituting this into equation (5.87) gives us a solution for the small time behaviour of
the motion:
B 8BE s A — E? 32BEA
)=z(0) |1 — =+ ——t2 +B B — 5.102
o) =o(0) 1= S Bk + B2 L (5102

Using this solution we can analyse the behaviour of the plate at £ = 0. The main depen-

spring constant of plate
weight of plate

dence in the first two terms seems to be on the variable B, with B =
This suggests that the small time behaviour only depends on the mechanical properties of
the plate and not on the surrounding fluid. Tt is interesting to note that the viscosity does
not appear at all in the first two terms of the expansion. This implies that experimentally
the oscillations must continue for a more significant length of time to ensure that viscosity

is being measured.

We note also that

4BE 3 A—E? 16BEA s
() = —Bt+-——t2 +B - 12 + ...
' () x(o)[ t+3\/7_rt2+ 5 5/ z 4 ]

thus at ¢ = 0 we have z/(0) = 0, so the slope of the curve is linear. We also find that

” 2BE 1 2., 8BEA 3
= - B(A—E*)t— ——tz +...]|.
z"(t) x(O)[ B+ ﬁt2+ ( )t NG 2 +

At t = 0 we therefore have z”/(t) = —Bz(0). We know that B = % is positive so z”(0) < 0

indicating that the slope at time £ = 0 then approaches the t-axis as time increases.
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Large time approximation

For the large time behaviour, assuming that none of the poles have a positive real part, the
main contribution comes from the integral occurring due to the branch cut. If the poles
have positive real parts, this would result in increasing motion, thus not allowing for the
decaying motion which is expected physically. A requirement for the real parts of the poles
to be negative is that the s3 coefficient in the polynomial (5.90) is negative also. This
corresponds to the sum of the real parts of the polynomial’s roots. Since our poles will be
conjugate pairs this then corresponds to the sum of the roots themselves. In our case this

gives us the following inequality to be satisfied:
(2A —E?) <0

With A =

and E = 2B%P2 yhere B is the breadth of the plate, this reduces to:

_r
psdBa psdBa ?

B psd
- > — Nl
> 5,Ba (5.103)

The branch cut lies on the origin so at large time we look at the end points of the integral

with contributions coming from s = 0. We start be taking a binomial series expansion of

f(s) about s = 0. We find that

 (A+EVs+s) A Es 1,\]"
f&) = —5—— '+ {g*ts” 5
A E B—A?2 2AE : A>-2AB-E’B, 3A%E—2EB ;
+ + +

= §+§\/g+ B2 s — B2 82 53 ] 53 82

This form of f(s) can now undergo an inverse Laplace transform. The first term has no
contribution to the large time behaviour since L™! [4] = §6(t). The delta function §(t)
has a value of zero for all ¢t except at time t = 0, when §(0) = co. Physically this is similar
to the plate getting a big hit at an earlier time. Taking the inverse Laplace of this series
shows us that terms containing integer powers of s will also not contribute to behaviour at

large time since they are multiples of the delta function. This leaves us with

2AE 3 3A%E — 2EB s
M) = 1| Gve- ety PESTR

_ Eym AE\/_ (3A%E — 2EB)3\/_ o (5.104)

B, B? t% B3 443
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Putting this back into equation(5.87) gives us a solution for the large time behaviour of the

motion:

#(t) = 2(0) [Et£ _ %—‘tg (3A E83 2E8) ZF} (5.105)

We can analyse this solution by considering the limit as £ — +o00.

Jim 2(0) = lim lz(o) (“E—\/;T (%)% _g - (%)% N 3(3A2‘|15E; ZEB)\/E(%)% +)

Hence z(t) approaches 0 as time approaches infinity. The approach to 0 represents the

=0

oscillations decaying to a stop. Decay occurs algebraically, like t%, indicating that the os-
cillations decay more slowly than they would for any exponential terms arising from the
poles. As mentioned above this algebraic decay is regarded as somewhat non-standard for

oscillation-decay viscometers, which are normally assumed to decay exponentially.

Also we know that as ¢ — oo, the terms after the first term will converge to 0 much

faster making the first term dominant at large time. The first term is

(0)5 ‘F — o(0)2BVEPT
k2t2

z(t) therefore approaches 0 from the positive direction whenever z(0) > 0.

Exact evaluation of the branch cut

The branch cut provided by the /s term in equation (5.89) has a branch point at s = 0.
The integral around the branch cut will be an algebraic expression as opposed to the expo-
nential terms from the integrals around the poles. Since algebraic terms decay at a much
slower rate than exponentials, the branch cut provides the dominant contribution for the
long time behaviour of the plate motion, so we can evaluate the solution of L~}[f(s)] for

long time by considering only the /s term.

The inverse Laplace of this term can be found by integrating around the branch cut along

the contour ¢ (with ¢ = ¢; + ¢2).
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_r-1 EBVs
Let I, = L [ - AS+B)2_E253}  then

I EB esty/sds
© o 2mi ), (s2+As+B)2 — E2s3
EB st /5d st/5d
- = cTysds +EB/ VA (5.106)
2mi J., (s? + As + B)2 — E*s3 s (82 4+ As+ B)2 — E*s®

Il+]:2 = 0 J . i
:’ I . dominhant
L ., 1 X €y § L~ term
T(_ -_/f s A - )
\\ 12 02 .
~ ] .

Figure 5.13: Contours to exclude the branch cut singularity

We now make a change of variables. Along the contour ¢; we let s = ze'™ and along the

contour ¢y we let s = ze™ ", with —7 < arg(s) < w. Our integral now becomes:

Lo % 00 | dzei”e.zeﬁt(zei”)% |
2mi o ((2€i™)2 4 Azei™ 4 B)2 — E2(zeim)3
+E /0 dze—'hreze_""t(ze—iw)%
218 Joo ((ze=P7)2 4 Aze~im 4 B)2 — E%(ze~i7)3
= R e #z3dz —-ER /°° e Tz3dz
 2m Jy (22—Az+B)24+E%28 27 Jy (22 —Az+B)2+E%28
EB [ e #23dz

= —— 1 5.107
T Jo (22 —Az+ B)24E223 ( )

This shows that the large time solution can be written as an integral in closed form which
although not simple should now be solvable.
5.3.4 Solving the plucked spider problem numerically

Since it is not straightforward to solve the decaying oscillations problem analytically due
to the complications from the pole and branch cut singularities, the next step is to try and
determine a numerical solution. From equation (5.83) we can see that the solution to the

fluid equation in Laplace form is

W(z,y,s) = G(s)e Vo (5.108)
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‘We now consider the convolution theorem:

J(s)K(s) = L(jxk)
L [J(s)K(s)] = / i(s)k(t — 5)ds (5.109)
0

Letting K(s) = e¥V7 so that

2

JE
Ks) =17t [V = s
™

and taking J(s) = G(s) = L[&(t)] such that j(s) = (s), we can use (5.109) to write our

solution as )

—__y
ye 4v(t—s)

u(z,y,t) = / ()2\/ﬁ(t—s)2 (5.110)

The plate equation Wz + rz; + kz = Ptyly=0 can now be combined with this solution

for u(z,y,t) to recast the governing equation as

2

A2z dz t ye wl=9)
Wi g R —u| a2 1 (5111)
dt dt 0 2y/mv(t — s)'
y

Since the limits of integration are not dependent on y we can bring the differentiation (with

respect to y) inside the integral. We have

a2
edv(t—s

ﬁ/ati( )( _H

Uy = — (y —2u(t — s))ds. (5.112)

To evaluate this integral we will try integration by parts.

t 4y T dxX
& —xyy- [ v
/Oxds XYY, /O L

2

oGl

- — ay __

(y?> — 2v(t — 5)). So Y becomes

2

2yeﬁy_s) 21/2erf\/_ (2 ,—V(t_)) 4yze1'f\/_ (2 ) S))
— + —
12/t — s) y3 y

2

4v(t—s)
_ 4ve (5.113)

-9

Y = 29
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We can substitute the expressions for X ,Y,% and %, to give

V(t s)
Ty (2,4, t) = / ()23’e 4

N s) 2
¢ 2
y? ¥
4 ) i 4 4v(t—s) 2
= |- ———— = F2(5) 45 (5.110)

Vi-s) | o Vi) 4

2
But we can see that [XY]§ = 0 since £(0) = 0 and as s — 0, e #{t==) — 0 quicker than

v/(t —s) — 0, hence

2
t que” =9 d2x(s)

—Adv/mvuy(z,y,t) = 5.115
y( Yy ) (t — S) d32 ( )
We now wish to take the limit of u, as y tends to 0.
du 1 te 4"(t—5) d2:r(s)
lim = lim |— 4
y=0 [dy} =0 | dvy/mv v 0o Vt—s ds? ds
¢t d°z(s)
- ds®_ds (5.116)
Vv o Vi—s )
Substituting this back into equation (5.111) we get
d2:1:(s)
&z dx u ot
W— +r— +k*c = &g 5.11
w2 Tt TT T, t—s % (5-117)
which can be simplified using our previous notation to give
dza: dz t d :r s
+A— + Bz = 5.118
@ T NG T T T A / =" (5.118)

It is possible to check to see whether this agrees with our earlier analysis by taking the

Laplace transform of each side.

. . . t d2:1:(s) 14
s2% — £(0) — sz(0) + Asz — Az(0) + Bz = _\/7_rL [/0 (Vt—s)"d
= —iﬁ s2% — £(0) — sz
= 7 \/g( (0) — 52(0)). (5.119)
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If we let £(0) = 0 and z(0) = X then

E
s’ —sX +Ast —AX +Bi = —ﬁ(szi—sX)

#(s2+As+B+Es3) = X(s+A+Eys)

A+E
;»:azx( s+A+EYs 3). (5.120)
s2+ As+ B+ Es?

This is identical to (5.87).

Before solving equation (5.118) numerically it is worth pointing out that it can also be
considered to be a fractional differential equation. This may be done by observing that
the fractional derivative of a suitably well behaved function may be defined for non integer

values of A b
y D@ = rrs | e e
TOI=sa=N )y o a ©

A whole theory exists for such equations (see for example [47]), but we will not pursue

this further here: in particular a suitable specification of boundary conditions depends on

exactly which definition of the fractional derivative is used (see [47]).

We now solve equation (5.118) numerically. We define z; to be the value of z(t) at time
t = t; with ¢ = 1..n, and define At to be the mesh size for ¢t between 0 and t,. The initial
conditions are that the plate starts from a stationary position (with zero velocity) at a

distance X from the origin.

dz(0)
o =0, (5.121)
2(0) = X. (5.122)

We will define the first and second differential of z with respect to ¢ using difference for-
mulae [46]. We use a central difference method since it is more accurate than the forward
or backward difference methods. For a comparison of difference methods and associated

accuracies, see appendix B.

dx rroy  Titl = Ti-1
d’z . Ti11 — 2%; + Ti-1
= ()= as oL : (5.124)
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The left hand side of equation (5.118) may now be written as

Tip1 — 2T + T A($i+1 - mi—l)

(A1)2 2ht oo

We assume that z{ is constant on ¢ = ¢;, so that we can use the trapezium rule to integrate

(8).
t; 1 " + !
" J j—1
/0 zdr = E (—2 ) (At)

=1

For the left hand side we treat the integral as a sum of areas beneath a curve.

__E__/t m”(T) dr = ——I%— 1: 70 IL'”(j) +m”('7—1)dT
\/_ ﬁ j=1 (j—l)At 2m

_ﬁi ”(J)+;”(J 1)[ o/t — 7]

Jj=1

_ _% 3 (" (G) + (G~ DWVAHVi— +1—i— ).
j=1

One can see that due to the summation, we can use an iterative process to find z;; for all
terms from i > 2. We will need to work out 2 independently. We note here that z; = x_;
due to the original condition z'(0) = 0, and our assumption is that z; = z_1 = 2o = X.

Thence

t g (r Tiy1 —2%;+xj1+x; —2xij_1+Tj_2
/0 ()dT:Z] I T B o Wk e Y gy S )

t—T1 o (At)—
_ Z L+l = %) = Tj-1 +Zj2 Vi—j+1-i—7)) (5.125)
ey (At)2
i-1
_ Z%H — T 1+$J—2(\/ —j+1—/i—
| (At)—
ZTjp1 — 5'31 1+ 2
(At)2

Substituting this into (5.118) gives us the right hand side of the equation, so that we can

now rewrite (5.118) as

Tit1 — 2%; + Ti1 Tit1 — E zj411— 03] 1+ T2
A L 4 Bri+—
(At)2 2At NS (At)z
Tit1 — IL‘] 1+ CL']-2(
= i—j+1—+/i—3) (5.126
v Z ( ) Vi Vi )
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We can rearrange equation (5.126) to get a solution for z;y; in terms of z;, z;—1 and z;_o

so that we can use an explicit finite difference method to find all values of z for ¢ > 2.

o ( 2/ (At)? )[x, 2 . E
o 27+ AyTAL 4+ 2EVAL ) T\ (At)? V(A3

+z; £ + AL —x; __E
T\ /Ryl | 2At T (Ar? 2\ VR

-1

E Tit] —Lj —Xi_1 +Ti_ — —

v ](At)]%l EX(imj+1-i—g)]  (5.127)
=1

To allow us to begin calculating each value of z;, we need to know zg, z; and zy. As
previously discussed, zq is known from our first initial condition (5.121). Following from
the second initial condition (5.122), we assume that 1 = z_; = zo. We now evaluate

equation (5.125) with ¢ = 1 to determine the value of 5.

Tip1 — 2T + Ty Tit1 — Ti—1 - _ _E : "y -
a1 +A oA +Bz; = ﬁ;(x (4) +
2"(j = DWVAHi—j+1~+/i—j)
To — 211 + X o — Zg E z9—21—20+2_4
A B = —— —
(At + oAt 4 bxy o/ (At)% (\/_ \/6)
AAt  EVAR AAtL EVAt
1+ —+—=| = 14+ —— — B(At)?
x2(+2+ﬁ) xo(+2 ()+\/7—r)
2

2 = X (1 B 2\/mB(At) )

2/ + Ay/TAt + 2EV/At

We would expect the solution to behave such that z; — 0 as 7 — oo and |z;41]| < |;], since

the plate should have a decaying oscillatory motion which should stop at some time t = 7.
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The complete numerical scheme for z; is thus

r_1 = X
rg = X
ry = X
o X( 2/TB(At)? )
2 27 + AVTAL + 2Ev/AL
o 2/7(At)? 2 E
T (2\/_+A\/_At+2E\/_) s ((A?f)2 o ﬁ(At)%)

e A _ 1\ [ E
' \/_(At)% 26t (B02) T Um(an?

e sz ot SIS TV D) (5.128)

We can also carry out some asymptotic approximations of the original equation (5.118), for
large and small time, to see if they correspond with the pole and branch cut analysis and
our new numerical solution.

Small time solution

The equation to be solved for small time is

2(t) + AL’ (t) + Bz(t) = _T \/g T. (5.129)

We assume a solution of the form

at"+2

)~ i Dmta) T

so that
t'n,+1

; o
1) ~
= (?) n-+1

2’ (t) ~ at™
Using the substitution 7 = tu, the right hand side of the equation may be written as

aT E L athynt
- —dT = ——= ———=du
VT o VE—T VT Jo Vi—tu

1
Eat™t2 (1 u'du

\/7_l‘ 0 1—u
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Substituting this back into equation (5.129) we are left with

at™tl at™t? Eat™ 2 [l udu
at™ + A +B +x0 | =— 5.130

n+1 ((n+1)(n+2) 0) VT o Jo Vi—u ( )
We need to find a balance between the two dominant terms in the equation. Since every
term apart from Bz contains a different power of ¢, there is no n for which these terms
can balance,

n # t'n.+1 # tn+2 # tn+%

hence the balance must involve Bzg.

If Bzy balances %, this would imply that n = —2. However, if n = —2 then

at™ would become the dominant term at small time.

For Bz to balance A‘;‘lt—:rl we would need n = —1. Once again this leads to a contra-

diction, since if n = —1 then at™ would become the dominant term.

e 1 n
If Bz balances —Ea\t/;? fol \’;lf—’; then we would need n = —1, which also leads to a

similar contradiction.

The only remaining possibility therefore is to have Bxy balanced with «t™, such that n = 0.

This means that we would need the following value for a.

at™ = —Buxg

>a = —Bax (5.131)

Substituting n = 0 and (5.131) back into our assumed solution for z(t) gives us the small
time approximation.

B
a(t) ~ —%ﬁ + 20 (5.132)

This corresponds exactly with the first two terms of the small time approximation from the

pole and branch cut analysis (5.102).

We need to check that this small time solution satisfies the boundary conditions at ¢ = 0.
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Figure 5.14: Comparison between numerical solution and small time approximation

Setting ¢t = 0 in (5.132) gives us
Bzo
z(0) ~ —702 +xg = %o

which satisfies the initial condition (5.121). Differentiating z(t) with respect to ¢, then

setting £ = 0 gives

z'(t) ~ —Baxgt

z'(0) ~ —Bzy0=0.
so that the second initial condition (5.122) is also satisfied.

Large time solution

To find the large time solution for (5.129) we first assume a solution of the form
z(t) ~ at™ (5.133)
such that
' (t) ~ not™ "},
2"(t) ~ n(n — 1)at™ 2.
We can rewrite the integral on the right hand side as a sum of two integrals, with 1 < R < ¢.

__i i iE”(T)
vrJo V-1

2 __[R"T)dT tm}

Vit Jr V-7
= —ﬁ[Il—}—Ig]. (5.134)
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Since R < t, we can us the fact that T <1 to expand (t — 7‘)% in L.

R 1 [ T 3 1
I = " R g " T 9T 1
: A ()t — ) hdr VGA z@)F+2{+t2+o<ﬁﬂdT
R

o e R

1, _ _1_ / —zx x
— %[a: (R) —='(0)] + 573 [Re'(R) - 2(R) + 2(0)] + O (

1
5

2

) . (5.135)

.Due to the assumption that R > 1, motion at time ¢ = R is defined as large time behaviour,
hence z(R) = aR" and 2'(R) = naR™!. From our initial conditions we have that z’(0) = 0

and z(0) = zo, simplifying I.

an

1 1
L=t 2D 30 (—) . (5.136)

Vit 23 23 3

In the second integral, I, we can let ”/(7) = a7 since 7 > 1 and ¢ > 1 so the limits of

the integral are both in large time.

3 nd
I, = a/ T"dT
RVEI—T

n+l n _aR
= at™2(1+n)y/7(1+n) 7

mt-1

\ 2
[F(n+g)+ (n+1)I‘(n+%)R+O(I:) ]

(n+2)2t t
This is a general form of I> which holds true when n # —-21 for all j € N # 0, where T" is

the gamma function, see appendix B.

From the analysis of the poles and branch cut, we found that the curve behaved like
z(t) ~ t% at large time. We can check if this holds true here by trying n = —3, so that I

becomes

/t ™dr _ 15a /1t Tidr
I2 = (673 =
R Vt—T 4 JrVt—T1

4 —2/1—7 _ 4/i—7
150 | —2¢/t—T sur2) VT
= 5 +
4 5t(72) ot
R
_ o [2Vt— R(3t* + 4Rt + 8R?)
-4 t3R3
d R ]
o |20-5)7 (34 +5F)
-4 t3 RS
L
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1
R\ 2 1R 1/R\? 1 /R\?
]_—— = —_——_—_—_——— = —_— —_—— —_— —_
( t) 1- 57 8<t) lﬁ(t) (5.137)

| =

)

[N

Iz:als 3+6+16_3_4]+O(

4 |R3t:  R3t: REViI t:vR 43vR VEE ¢
3 5 45 1

- “LR%ﬁ“Lm%t%*mm%]“Lo(E)'

When we sum Iy and I; we see that most of the terms will cancel out leaving us with

1
L+h=2=+0 (—5) . (5.138)
2t2 12
We can now determine the large time approximate solution of (5.129) for n = —%.
15 -
Zat_% +A (%) -3 + Bat™% = —%t-% (5.139)

Here we can see that there is a balance between Bat™2 and —%t_%. In this case, these
two terms are also the dominant terms for large time behaviour so the balance holds true.

This gives us the following value for a.

Ba _Exmo
2,/T
Exq

=0 = -

2B/
Substituting this back into (5.133) gives us a general large time approximation for z(t).

Exo _3
. 14
B (5.140)

z(t) ~ —

This approximation has the same t-behaviour as the analysis done on the poles and branch
cut, thus confirming that after a very long period of time the plate decays algebraically.

This is a bit of a surprise since most viscometers of this sort decay exponentially.
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Non-dimensionalising the problem

We can non-dimensionalise (5.118) in order to simplify the equation and carry out some
simple stability analysis on the numerical solution. First we let z = Xz
&3 7 XE [t LE)

x&2 L xaZ Bx = ——= ds i )
2 T XA + XBx 7 i Esds (5.141)

with A= ¢, B = "f;, E= 2‘/—Ba and W = p;dBa. Next we scale time using t = 3k@£ and

s = Twé, allowing us to re-write (5.141) as

2 2~ 2 ¢ k2 d%3(8) VW
BEE Lk dgf+k—x _ _E [ W E g
W dt? VW dt VT lo VWi -

T(t — S)
Pz v di —2./ipBa [t TED e
—= b r = — .
a2 VW dt vakwi Jo /T -3)

We now choose to write the non-dimensionalised equation in the following form

dza:(s)

d’z
—~+ —— = —
dt? '8/ VA t—s

(5.142)

where « and § are dimensionless variables dependent on the material properties of the plate
and the viscosity and density of the surrounding fluid. To determine the effect @ and g will

have on the solution we can multiply the equation by z’ and then integrate.
/t r | an ’ 'B/t z"(3) ds | d
| +ar +z=— — s|dz
0 Vt—3s

t =t

/ Fi'dz + / Fidz = —a/ (x')2dz~ﬁ/ / (S)
0
L@ + 5 = —a / (#)dz~ 8 / / ﬁ(s{
t—s
1

5(:%’)%%&2 ””(0) / (&')?dz~ B / / ) N ra

Note that we now use the non-dimensional boundary conditions

#(0) =0

#0) =1
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On the left hand side of this equation, 1(#')? is the kinetic energy term, 1(#)? is the
potential energy, and g(g_)z represents the initial potential energy. Since @ > 0 and § > 0,
both terms on the right hand side are dissipating energy from the system, hence o and
B are both damping terms. The sum of these two terms is negative which indicates the
oscillations will decrease as time progresses, as required. We require « and 8 to be small
so that the system is not overdamped to the extent that decay occurs too rapidly for any
oscillations to be seen. We also need a to be much smaller than 3 so that the main damping

is dependent on the term containing viscosity and density, since these are the variables we

wish to measure. For this reason we specify that
I<a<< B<l.

Using (5.123), (5.124), (5.125) and our new boundary conditions, we can rewrite the nu-

merical solution for ;41 in non-dimensionalised form as

Fg = 1

F o= 1

. 2(At)?

2 = - = =
2+ alAt + 26V AL

i = 241" G [ 2. —14 L
LT \2+ani+osvar) o\ (AD2 (AD)3

. ,3 « . 1 — s 'B
+Fi1 ( (2D} t oA (AE)Z) i ((Af)%)

i—1 . ~ = s
—,BZ Tjr1 — X5 '—fTJ:;—l +zj—2(\/z-_j+1_\/z'_j)]_ (5.143)
— (At)2

Numerical Stability Analysis

Although the numerical scheme that has been posed clearly gives credible results, it is
obviously of interest to show if possible that the scheme is numerically stable. If we consider
the exact solution as a sum of our numerical approximation and an error term Zepqc: = Z+€r,
then since (5.142) is a linear equation the numerical solution and the error term (e,) must
both satisfy the same system of equations. This error will also depend on the time step
At. For the numerical solution to be a good approximation we can analyse the absolute
stability of the system, finding when the error term is growing and shrinking. The numerical
solution will be useful when the error term gives a stable solution and is thus converging.

The details of this analysis can be found in appendix D.
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Conclusions

Since 7 is small, we can choose to simplify the non-dimensional numerical scheme (5.143)
further by neglecting terms containing internal damping, thus letting o = 0. Our simplified

non-dimensional numerical solution for Z; is thus
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The key parameter in this system is # and this will let us know how the plate will oscillate.
Using equation (??) to find the vacuum frequency of the plate and comparing this to
plots of the numerical solution with . = 0, we can calculate the spring constant to be
approximately k = 95. This gives us § = 0.051,/pp. Analysis of the numerical solution
shows us that when 3 > 1, the system will be too greatly damped to produce a measurable

amount of oscillations (see figure 5.15). For a reasonable number of oscillations we require
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Figure 5.15: a) numerical solution for 8 = 1; b) numerical solution for 8 = 0.1

0.001 < B8 < 0.1. Hence, using the decaying oscillations method, this MEMS viscometer
would be suitable for fluids in the range 0.01957 < pp/Pa?-s < 1.957.
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5.4 Summary of the Spider

The transversely oscillating MEMS device discussed in this chapter is designed for use as
an in situ viscometer in oil exploration. An advantage of the MEMS sensor is that it is
small and can be integrated into existing tools used down-hole. Amplitude of motion is
typically measured in micrometers. Due to the geometric design of the sensor there will be
a relatively large fluid mass on the small device making it sensitive to fluid properties. The
device is relatively easy to produce, using integrated circuit techniques, fabricated using

material deposition and etching onto a silicon wafer.

The sensor can be modelled for use in Newtonian and non-Newtonian fluids. In the mod-
elling of the viscometer, certain assumptions need to be made. The device oscillates in its
own plane and we assume that oscillation results only in a deformation of the legs con-
necting the vibrating plate to the surrounding stationary frame. Having looked at the heat
equation (5.1) we concluded that thermal dissipation is unimportant in the modelling of

this device.

The viscometer can be operated in two different modes, forced or plucked, and it was of

interest to discover which mode would be the most practical experimentally.

Forced mode

The forced model is time-independent, with the plate driven at a fixed forced frequency.
We can model the sensor in this mode for both Newtonian and viscoelastic fluids. We can
model the device in an infinite volume of liquid and in the presence of a second stationary
plate above the oscillating surface. We can produce theoretical expressions for the frictional
force and power on the oscillating plate for both the Newtonian and non-Newtonian fluid
cases. These are closed form solutions that give us pp as a function of the power driving

the plate and the initial imposed velocity.

There are two main problems with using the sensor in the forced mode. Firstly, we are
unlikely to know the value of the power driving the plate and the initial velocity. In ex-
perimentation, these parameters are not always measured. This means that our theoretical
result will have no practical value. Secondly, the first resonance frequency of the sensor is

at approximately 16.9 kHz. At this frequency the legs of the spider have a tendency to break!
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We can overcome the first of these problems by recasting the model in terms of alternative
parameters. For Newtonian fluids we can determine up as a function of resonance frequency
and quality factor. Both of these parameters are determined from the in-phase and quadra-
ture voltage of the system that are measured experimentally. The second problem is more
serious and can not be overlooked. This implies that the forced mode will never really be
of practical use since the devices are destroyed whenever they reach their first resonance

frequency.

Plucked mode

The plucked model is time-independent, where the amplitude of oscillation varies with time,
decaying gradually after an initial perturbation. When placed in a fluid, the decay in am-
plitude of oscillation allows us to infer the fiuid properties in terms of things that we are
able to measure. Operation in this mode seems a lot more promising, however the solution
is not easily written down and the result is a Laplace transform problem that can not be

solved simply.

There are two ways to tackle this problem. The first is to solve the inverse Laplace transform
problem asymptotically, analysing the poles and branch cut. This allows us to determine
the long and short time behaviours of the plate. This is relatively straightforward but will

not give us a complete time picture for the plate behaviour.

The second way to proceed is to solve the problem numerically. This requires us to recast
the inverse Laplace transform as a differential/integral equation. We can also do some
asymptotic analysis on this form of the problem to find short and long time behaviours.
Solving the problem numerically allows us to identify a parameter that would indicate the
practical value of the sensor. For the sensor to be successful we require a certain number
of measurable oscillations. This means that the oscillations must not decay too quickly or
continue to vibrate at the same amplitude forever. The parameter that will tell us this
is B8 = 0.051,/up, dependent on the fluid properties. For a successful device we require
0.001 < 8 < 0.1.

(B is a dimensionless variable, also dependent on the material properties of the plate,
8= @;. If we know an approximate range of viscosity and density values for a fluid

Vrkwi
then § will allow us to decide on the properties of the sensor needed.
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Experiments have not yet been successfully carried out with the spider in the plucked mode,
but it is clear that the issue of the robustness of the model, with respect to any experimen-
tal errors that might occur, should be considered. It seems most likely that the device will
not be too sensitive to experimental errors since only the decay rate needs to be measured.

However in the absence of experiments this is only conjecture.

The model deals with an infinite plate, therefore assuming that any edge effects are negligi-
ble. This is a reasonable assumption when the viscous penetration depth is small compared
with the dimensions of the plate. For a plate oscillating in the third mode, using dimen-

sions for kinematic viscosity as given in table (5.1), the viscous penetration depth, §, can

2v 2 x 10-6
0 =4/ =4/ —76x107°
Vo =~ V3sxios  6x10

The sensors produced have a width of 1.6 x 1073 and length of 2.4 x 1073, so this would

be calculated as

appear be a reasonable assumption.

In conclusion, the transversely oscillating MEMS device should be operated in the plucked

mode in a fluid satisfying the criteria allowing for a measurable number of oscillations.
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Chapter 6

The Flexion

6.1 The cantilever plate

We will now move on to study a different MEMS sensor produced and tested by Schlum-
berger. As with the spider, the cantilever plate is modelled as an elastic solid oscillating in
a fluid [37]. This device is based on a vibrating plate, with dimensions on the order of 1
mm and a mass of about 0.3 mg, clamped along one edge. The plate is set in motion when
an alternating current is passed through the coil mounted on the plate in the presence of
a magnetic field. At resonance the plate motion is observed using a strain gauge. The in
vacuo resonance frequency of the first bending mode is about 5 kHz, at a temperature of

298 K, with a quality factor of about 2900.

Resistance thermometer

NS PRETHIT
PEHDING

Strain gauge
Figure 6.1: Photograph of the upper surface of the ‘lexion’

The method adopted in the past has been to study the mechanical behaviour of the plate
in a vacuum to obtain the resonance frequencies. The interaction with the fluid is then
carried out once the mechanics is fully understood. Due to the small amplitudes of os-
cillation, the problem can be simplified by applying linear theory. A similar problem has
been solved in [48] for the case of a densitometer plate clamped at both ends in an inviscid
fluid. J.E. Sadar modelled a similar design of sensor [49] describing a cantilever beam of

arbitrary cross section, excited by an arbitrary driving force, immersed in a fluid, regarding
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Figure 6.2: Dimensions of the ‘flexion’

application to the atomic force microscope. The theory is restricted by limitations to the
geometry of the beam, which disagrees with our MEMS design. The equations derived by
Sadar involving viscosity and density rely on three main assumptions. The first is that the
amplitude of oscillation of the beam is considerably smaller than any length scale in the
beam geometry. Due to the dimensions of the flexion, this would mean an amplitude of less
than 2.8 mm, a realistic requirement. The second assumption is that the fluid is incom-
pressible, also assumed in our analysis. Lastly, Sadar’s equations require that the length
of the beam greatly exceeds its breadth. On the flexion sensor, the vibrating portion of
the armature does not satisfy this final condition. Sadar uses impulsive formula, assuming
a high Reynolds number, rather than slow flow, again in disagreement with the analysis
carried out on the flexion. We will look at the plate first in an inviscid fluid, as in the
densitometer case, and then in a viscous fluid where viscosity can be determined. We hope
then to introduce a different method for formulating the fluid flow and the motion of the

plate as a coupled problem to be solved simultaneously.

6.1.1 The mechanics of an oscillating cantilever plate, clamped at one

end

As with other MEMS sensors, the cantilever plate oscillates in a number of different modes,
see figure (6.3). Experimentally Schlumberger have found that the first mode occurs in

vacuum at 5.3 kHz. The second mode is at 11.8 kHz, the third at 30.3 kHz and the fourth
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at 33.6 kHz. We are only interested in the first mode, with the plate oscillating in one
direction only, allowing us to reduce the problem from three dimensions to two. This
means that we can eliminate terms containing x derivatives from the equation for plate

motion.

Figure 6.3: Modes of oscillation for the ‘flexion’ (diagrams reproduced from Maria Manrique
de Lara’s analysis using ANSYS [40])

The plate is initially modelled as a cantilever plate clamped at one end, z = 0, y = 0, as

shown in figure (6.4).

Figure 6.4: Schematic for the ‘flexion’ with a photograph of the clamped plate

The transverse displacement of the plate normal to the x-z plane is given by:

Y =gtz z,1)

We assume that longitudinal strains vary linearly across the plate’s depth and the bending
moment at any cross section is proportional to a local radius of curvature. Given these

assumptions and due to the dimensions of the plate, we can state that the partial differential
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equation for ¢q follows the Bernoulli-Euler bending theory of thin plates:

&
psdgg + DV =F (6.1)

O<z<a
O<zx< B

Where a = length of plate, B = breadth of plate, D = Ed3/12(1 — ¢2) = flexural rigidity
of plate, p; = density of plate material, F = Youngs modulus, o = Poisson ratio of plate,
d = thickness of plate and F' = force per unit area applied normal to plate surface.

We assume the plate is infinitely long in the z direction to simplify the problem to only
two dimensions. It is now necessary to solve (6.1) subject to the following clamped edge
conditions:

no deflection at the clamped edge

g=0 at z=0 (6.2)
no slope at the clamped edge
dq

no bending moment at the free edge (z = a)

0%q

52 = 0 at z=a (6.4)
no shear force at the free edge (z = a)

% =0 at z=a (6.5)

This will give us the equation of motion for the cantilever plate subject to an external force
F. We can define F' to be the retarding force on the plate due to the surrounding fluid so
that we can couple the fluid and plate equations.

6.1.2 Solving equations of the plate in vacuum

Before defining F', the first step is to solve the homogeneous form of (6.1) subject to
conditions (6.2) through to (6.5). At this stage we define that there is no force (external
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driving force or retarding force due to surrounding fluid) acting on the plate which is
assumed to be in vacuum, F = 0. We assume that the plate oscillates with harmonic
motion of the form ¢ = Z(z)e™*? where Z(z) is a function of z only. Using the separation

of variables method [50] this results in the following equation for ¢:

(sinh b,a + sin bya)(cosh b,z — cos byz) — (sinh b,z — sin b, z)(cosh b,a + cos bra)
cosh bpa sin b,a — cos b,a sinh b,,a

0
q= o> COS wnt

(6.6)

where Ay = arbitrary initial amplitude, w, = natural frequency of oscillation of plate
and b, = 1/o.)n(%d)%. This equation satisfies the boundary conditions subject to 1 +
cos(bpa) cosh(bra) = 0.

_ 1.8751

The fundamental value is found to be b, = by -

The solution to the homogeneous form of (6.1) can be plotted to show the position of
the surface of the plate at different times. Here we can see a plot of one complete period
in steps of %, and for values of z across the length of the plate from 0 to a. It is evaluated

with w, =1 and by = 1.87.

Figure 6.5: Plate position through one complete period of vibration

The next step is to find out how the plate acts due to the presence of the fluid as described

by the force, F'. This force will be discussed further in the next section.
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6.2 Densitometer - Inviscid Flow

We will first consider an inviscid fluid, so that the cantilever plate acts as a densitometer
only. This will allow us to see how the plate motion changes in the presence of a fluid
without the added complication of viscosity. Schlumberger have been using the sensors as
densitometers in various gases, where the effects of viscosity are much smaller than that of
density. Experimentally, the fluid surrounding the plate is initially at rest. To simplify our
model we assume the fluid is inviscid and incompressible (V.v = 0) and that the flow is

irrotational. This implies that the fluid velocity v is the gradient of a potential

v=Vaod
where ® satisfies
o 0®
T _ - 6.7
o = Y and 9% v (6.7)
Vi = 0. (6.8)

6.2.1 Slender body theory

Long bodies can be considered to have two naturally occurring length scales and asymp-
totic expansions can be made for each of them. The two scales in this case are the length
of the body and its thickness. On the smaller scale the body can appear to have infinite
length with a quasi-uniform finite cross section, whilst on the larger scale it can appear to

be finitely long with negligible depth.

Taking a two-dimensional representation of the plate, assuming uniformity along the breadth,
it is shown that the thickness of the plate, order 10~® m, is extremely small compared to
the length, order 1072 m. Thus the plate satisfies the slender body criteria. This theory can
also be applied to the oscillations of the plate and the plate boundary. The plate oscillates
harmonically and the boundary is at the surface. The amplitude of this wave is of the
same order as the thickness of the plate. We define that the position of this surface varies
only slightly with the perturbation quantity €. If the plate oscillates around the centre line
] = 0 then since the boundary only moves a small amount we define that any particle on

the surface y = ¢(z, 2,t) is assumed to be at [51]
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with € << 1 and g of order 1. Since ¢ is small, y = €G(z, z,t) gives no order 1 contribution

to the boundary therefore to leading order we can express the boundary conditions on

y =0 [52].
For mvisexd uid
Actual picture: — Reduced to:
{for small escillations)
Ve
. o L
D, = v, on gl t) Vo =)
./_\_//\‘ b, = f; onlinearised boundary ¥ =10
-1 1 . .
. -1 1
normal velocity », has
both u and v components v, to leading order is the vertical velacity = —:E‘-

Figure 6.6: Linearising the boundary for an inviscid fluid

6.2.2 Fluid-plate interaction

We assume that the transverse displacements of the plate are sufficiently small that the
plate surface can be linearised to y = 0. We imply that the normal velocity of the plate is

equal to the fluid velocity in the y-direction at this surface.

Jdqg 0P

Also defined is that the force on the plate, F, is a result of the pressure difference either

side of the plate surface

B =@ —14") (6.10)

where p*~ = fluid pressure at y = 01 .

For an inviscid fluid we can find these pressures using other fluid flow quantities. The
Bernoulli equation, neglecting the gravity and square of velocity term (using standard val-

ues from table 5.1 it can be seen that these terms are negligible), gives

0o
P=—pg (6.11)

where p is the fluid density.
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We should also impose the boundary conditions 3 0 as y — 00 to represent the
pertubations in the fluid decaying to zero far from the plate surface. Here we will need
to approximate because an inviscid solution which also satisfies these conditions will be
much more complicated. Experimentally, the flexion will be positioned inside a tube but
the geometry of this arrangement is difficult to model. Due to the small size of oscillations

of the plate in comparrison with the radius of the tube we choose to ignore the effects of

the tube walls and do not impose the extra boundary conditions.

We can solve (6.8) for ® subject to (6.9) and combine this with (6.11) to find the pressure
at either side of the plate surface. The pressure at y = 07~ can then be substituted into
(6.10) to find F. A solution satisfying both plate and fluid equations can then be obtained
by substituting F' with ¢ into (6.1).

Solving the equations

The first step is to use our homogeneous solution for ¢ (6.6) in (6.9) to get definitions for

&t and &~

+ Ap sin (wt)w cos uin sk (bs
~ 2b(cosh (ba) sin (ba) — cos (ba) sinh (ba)) ((cos (by) (by)) (S cosh (bz)
—C'sinh (bz)) + e~ (C'sin (bz) — S cos (bz))) (6.12)
- Apsin (wt)w o o o
B oo (5a) 5 (b0) o (b s () (0% () 50 () (S cosh ()
—Csinh (bz)) + €% (C'sin (bz) — S cos (b2))) (6.13)

with C' = cosh (ba)+cos (ba) and S = sinh (ba)-+sin (ba). As anticipated from the discussion
above, concerning the tube in which the flexion is placed, ®* and ®~ do not tend to zero
as y — oo respectively. They are however, not exponentially large. ®* and ®~ are now
substituted into (6.11) resulting in two equations for the pressure above and below the

plate, p* and p~.

= - pAp cos (wt)o” cos —sin cosh (bz
o= 2b(cosh (ba) sin (ba) — cos (ba) sinh (ba)) ((cos (by) (by))(S cosh (b2)
—C'sinh (bz)) + e %(C'sin (bz) — S cos (bz))) (6.14)
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Po= 2b(cosh (ba) ;;f(()l)(;(,))sfw(:?: (ba) sinh (ba)) ((cos (by) + sin (by))(S cosh (bz)

—C'sinh (bz)) + €%¥(C'sin (bz) — S cos (bz))) (6.15)

Next we can determine the force, F', using (6.14) and (6.15) in equation (6.10).

_ pAgcos (wt)w?(S(cosh (bz) — cos (bz)) + C(sin (bz) — sinh (bz)))

F 2b(cosh (ba) sin (ba) — cos (ba) sinh (ba))

(6.16)

This new expression for F is substituted, along with our homogeneous solution for ¢, into
our initial equation (6.1) which can now be re-solved. At this stage we redefine the frequency
w to be 2w f and rearrange the solution to get a definition of the fluid density in terms of

frequency f, the determined constant b and plate material constants.
— psdb (6.17)

This equation can be used to determine fluid density in an inviscid fluid. Since D and b
are both positive this tells us that as you increase the density of the surrounding fluid, the

frequency of oscillation of the plate will decrease, as expected physically.

6.2.3 Comparison with data

This is all very well theoretically, but the plate is not pure silicon, so the density of the plate
and its elastic properties are relatively unknown. We re-write equation (6.17) in terms of

two constants, Ko and K7, which can be calibrated from known data.
— K, db (6.18)

with K7 = ps and Ky = Wﬁiag), where F, 0 and p,; are unknown. This equation can be
modified further by adding in a temperature dependence to the length scales to account for
thermal expansion at high temperatures, once again assuming the plate to be pure silicon.

The plate depth, d, is now written as

d(T/K) = d x (1.000002366975533 x (T — 273.16)>

+0.0000000100192 x (T — 273.16))
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and b, which is a function of %, becomes

B(T/K) = b/(1.000002366975533 x (T — 273.16)?
+0.0000000100192 x (T — 273.16))

The parameter representing plate density , K;, becomes
K(T/K) = (K — 0.00002859446 x (T — 273.16)% — 0.016541425 x (T — 273.16))

This gives us a temperature dependent equation for fluid density (6.19).

_ Kob(T)Sd(T)*
= K1(T)db (6.19)

Two sets of experimental data have been analysed using different flexion plates. The first
viscometer was tested in argon at a range of temperatures and pressures. The constants
were calibrated at a temperature of 323 K and resulted in K; = 2130.661146 kg-m 3 anc
Ky = 462902788.8 kg-m .57 2. It was expected that the constant representing silicon den-
sity, Ky, would be lower than the true density for pure silicon due to the layers on the
plate consisting of other materials. These values were then put back into equation (6.19)
and this was used to calculate densities at the other temperatures. This produced density

values accurate to within 2 % of the true value, see graph (6.7).

The second flexion plate was tested in several different fluids at varying temperatures.
Using an uncalibrated model, equation (6.19) with K; = p; and K3 = fg, the density was
determined to within 20 % of the true value over the entire range. Some of the fluids tested
showed an accuracy of less than 2 %, see plot (6.9). All data used in these plots can be

seen in appendix A.
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Figure 6.8: Density error plot for flexion plate in assorted fluids, accurate to 20 %
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Figure 6.9: Density error plot for flexion plate in CgH5CHs and Hy0O, accurate to 2.5 %

6.3 Viscometer - Slow Viscous Flow

The MEMS sensors are intended to measure density and viscosity so we will next consider
oscillations in a viscous fluid to introduce viscosity into the fluid equations. For the more
complicated viscous case the fluid is still defined as incompressible (V.v = 0) but we no
longer assume the fluid to be inviscid. The flow is assumed to have a small Reynolds number
(Re << 1) and is thus considered slow flow. This implies that a stream function ¥ can be
found such that

ov ov

8—y=u and TR (6.20)

where V satisfies the equation

VAT =0 (6.21)

6.3.1 Fluid-plate interaction

To solve the fluid equations for a viscous fluid we impose two conditions at the boundary:

0q 0oV

o 0 at y= (6.23)
Ay
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As in the inviscid fluid case we choose to ignore the boundary conditions O 5 0 as
y —7T o0, that perturbations in the fluid will decay to zero far from the plate surface, to
simplify the equations. Once (6.21) has been solved subject to boundary conditions (6.22)
and (6.23) we can use the resulting stream function ¥ to find » and v applying the relation

(6.20). u and v can then be substituted into the following velocity equations for slow viscous

flow.
ou Ov
= aE a_y =0 (6.24)
Op Py u dp v 0%
=ow, Mm-S e b ek (22

We find that (6.24) is automatically satisfied. (6.25) can be solved with the known u and

v to define a unique pressure.

The stress on the surface of the plate is used to find the total force acting on the plate
due to the presence of the fluid. This is shown diagramatically in figure (6.10).

Stress on the surlaces of the plate

Tnviscidd case

Viscous cuse —

s v v b | o= oy )

Oy ==P I u, + ) T r ‘T:

Figure 6.10: Stress in an inviscid and viscous fluid
We define that the force on the plate, F, is a result of the difference in stress normal to the

surface of the plate top and bottom.

ou- Ov~ out Ovt
F=F F (—p~ + u( B9 + ax) (—p™ + u( By +—ax ) (6.26)
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where p™~ = fluid pressure at y = 07~. F can thus be determined using this unique
pressure and substituted with ¢ into (6.1) in a similar way to the inviscid case. This time

the resulting problem will be a lot harder to solve since F' is likely to be a function of g.

Inviscid fluid analogy

Before we solve the viscous fluid equations it helps to consider the inviscid fluid analogy.
For the inviscid fluid case we could view the plate as a system of sources acting on the fluid.

A fundamental solution to (6.8) exists of the form

1
3=< /_ felog(@ ~ ¢ +17)C (6.27)

which is subject to the boundary condition

of 0% B
5 9y on y=0 (6.28)

where f(z,t) is the function defining the position of a particle at the surface of the plate.
The first term, f;, is equivalent to the source strength. The value of this analogy is that
we are about to perform a very similar calculation which includes the extra complications
of Stokes flow rather than potential flow. However, many of the simplifications that occur
in the potential flow problem may be expected to occur in the full problem. While the
inviscid case is solvable, it does not contain a viscosity term. The next step is to solve

(6.21) subject to boundary conditions (6.22) and (6.23).

There are various methods that can be used to solve Stokes flow problems. One such
method is the use of Mellin transforms. Moon-Uhn Kim [53] uses Mellin transforms to
solve two dimensional slow viscous flow around a fence projecting from a plane. In two
dimensions, the fence protruding from the plane can be considered a similar problem to
the clamped cantilever plate, however Kim considers moving flow around a stationary fence
rather than an oscillating body in a stationary fluid. Complex variable methods can also
be used to solve Stokes flow problems and many authors have used this to analyse the

bi-harmonic equation [54].

Solving the viscous fluid equation

We chose to solve the Stokes flow problem using the method of Stokeslets. Similar methods

have been use to analyse the swimming motions of microscopic organisms such as flagellum.

113



Examples of this can be seen in the work of Lighthill [55] [56], Hancock [57] and Taylor [58].
More recently a numerical method for computing Stokes flows using stokeslets has been ex-
plained in a paper by Cortez [59]. He presents a more general case of Stokes flows driven
by external forcing, allowing the method to be applied to any moving body that interacts
with the fluid.

The main assumption made is that the Reynolds number of the fluid is small enough that
inertial effects on the fluid or the plate can be neglected. The resultant and the moment of

all forces acting on the plate will be zero [56]. The fluid will satisfy the equations
pA*v =Vp—F (6.29)

V=0 (6.30)

where p is the fluid viscosity, v is velocity, and p is pressure. In a similar fashion to the
inviscid case, a fundamental solution of these equations can be found which is called a
stokeslet field. Every flow field at very low Reynolds number can be defined as a superpo-

sition of stokeslet fields distributed along a surface.

Refering back to figure (6.4), we are modelling the sensor as a cantilever plate clamped
at one end. We now chose to introduce an infinite, flat solid wall at the clamped edge,
perpendicular to the sensor plate. This is to more closely represent the true geometry of
the sensor. The equations of motion for the flow are the Stokes equations (6.24) and (6.25),
and the boundary conditions are that the fluid velocity is zero on the wall z = 0 and is

equal to the velocity of the oscillating plate wherever the fluid and the plate are in contact.

6.3.2 The Method of Stokeslets

A stokeslet is the name given to the Stokes flow due to a point force. We will seek to model
the flow around the plate using an infinite regular array of stokeslets all with equal strength.
Techniques for arrays of stokeslets are given by Blake [60] and Liron & Mochon [61].

In this chapter we will begin by considering the equation for a single stokeslet near a

flat plane wall. This idea will then be extended for the modelling of the plate viscometer

by considering three problems.
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N2

Figure 6.11: Flexion with infinite wall at z =y =0

1) Firstly the solution to an infinite continuous distribution of stokeslets on a line above a
flat plane wall.

2) This will lead to the consideration of a double array of stokeslets above the plane, infinite
in one direction and finite in the other, representing the plate itself.

3) Finally the idea of dipoles will be introduced to allow the no-slip condition on the plate
surface to be satisfied.

The culmination of these problems should result in a complete fluid-plate model.

To understand stokeslets in general it is useful to look at them in three dimensions. This
will allow us to pose the full boundary value problem with the plate having finite edges.
Although this is possible, ultimately we will assume the edge effects are negligible to reduce

the problem to equations in only two dimensions.

A Single Stokeslet and the Image System

The equation for a stokeslet in an infinite viscous fluid is found by considering Stokes flow
past a sphere. The fundamental singular solution is given by Lighthill [55] and Blake [62],
obtained using a three dimensional Fourier transform on the equations of motion in an
infinite viscous fluid. The velocity and pressure field components respectively can be written

as

Fi [ 0w (== )@k =) (6.31)

U; =
7 8mp ||x— x — 3
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F -
Ll .} (6.32)
4m [x —v[3
where x = (z,y, 2) is an arbitrary point in the fluid, v = (71,72, 73) is the position of the

stokeslet and |x — -y| is the distance between the two points.

Now consider a stokeslet acting in the y direction situated at -y, a distance y3 = h from
a plane z = 0, see diagram (6.12). A Greens function is constructed for the pressure and
velocity fields associated with this point force, Fj, satisfying the no-slip condition on the
plane boundary.

Uj = uj +vj (G=123) (6.33)
P=p+gq (6.34)

Here u; and p are the fundamental singular solutions (6.31) and (6.32) respectively. The
problem of obtaining the complementary solutions v; and ¢ is carried out by Blake [62].

The terms satisfy the creeping flow equations

Vq=pViv
Vv=0 (6.35)
subject to v = —u at all points in the plane z = 0. The resulting entire velocity field for a

point force in the y-direction near the plane z = 0 can be written

F (1 1 riry ~ R;Rg
=L (2= 2)0ip + L= —
8 [(r R) ik + r3 R3

J

hR; b3 _RiRs

1] (6.36)

0
2h(5ka5al — 5k353l)8—121 {F R R3 )J

and the pressure field as

P:&[Tk Ry

0 [Rs
— — — — 2h(0ra0at — Ok303)) — < —= 6.37
i (o~ G280 5. { 2 ] (6:37
where o assumes the value 1 or 2, r = x -7, R=x—-4/, r = |r| and R = |R|, with

v = (11,72, —h). The term (bxq0ai — dk303:) only has a non-zero value when k = [ and is

positive when k = 1 or 2 but has a negative sign when k = 3.

Blake describes these equations using an image system of singularities below the plane

for two distinct cases, when the stokeslet points normal to the plane and when the axis of
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the stokeslet is aligned parallel to the plane. We are only concerned with the latter and

this system can be seen in diagram (6.12).

N

z &)
stokeslet
@
/R
2h
X rd
7 A
oo+ el o+
'image’ stokes- source-
stokeslet doublet doublet
-F) (2hF) (-2HF)

Image System

Figure 6.12: Image system for a stokeslet aligned parallel to the plane z = (0, with k = 2

This system consists of a stokeslet equal in strength and opposite in sign to the origi-
nal, a stokes-doublet of strength 2hF, and a source-doublet of strength 2h?F}, where k is 1
or 2. We are interested in what happens when k = 2. For this case the stokes-doublet is

defined by the equations

’LLI' = 2hF2 Ti 37‘1'7']'7']9 Y rkéij e 'rjéik
T 8w 73 7o 73

b 2hF2 37‘j’l"k
5

P (6.38)

 8mp T
The stokes-doublet contains two stokeslets pointing normal to the plane boundary, equal
in strength and opposite in direction. The source doublet contains two sources, equal in
strength and opposite in direction, at an infinitessimal distance apart. This image system
is satisfactory for local flow but in the far field the effect of the two stokeslets is to introduce

a far field stokes-doublet. This will be located at (v + ') and will have strength 4hF.

Line of stokeslets above a flat plane

As explained earlier we wish to extend the single stokeslet solution to an array of stokeslets

to begin to construct the model of the plate surface. To do this we consider an infinite line
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array of identical stokeslets situated at points v = (71,0,h), —00 < 71 < co. The radius

vector from the stokeslet v to x is given by
r=(z-m,y,2—h)

and from the image stokeslet v to x is
R=(z—-m,y,2+h)

This problem has been done in the discrete array case by Liron [63].

B Lk * * - . e 1
[ W '3 ] 'y & ¥ w s e W w’ ' o 4 -

/ /
/4

Figure 6.13: Line array of identical k = 2 stokeslets

To obtain the velocity at x due to the infinite line of stokeslets at v we need to integrate

(6.36) with respect to ; in the limits —oo < 1 < oo.

(o o]
= / UF(x,v)dm (6.39)

—O0
Double array of stokeslets above the plane

Once the solutions for a line array have been found, these results are extended to a double
array, infinite in the z direction and finite in the z direction. This will now represent
the basic shape of the oscillating plate. The length of the array in the z direction will
correspond with the length of the oscillating plate viscometer. Again, the discrete case is
covered by Liron [63]. The 2-dimensional array of stokeslets can be seen in diagram (6.14).

In this case the radius vector from the stokeslet v to x is given by

== (1_71,?/,2—73)
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l
finite

length
of plate

Figure 6.14: 2-dimensional array of stokeslets aligned parallel to the plane boundary at
z=0

and from the image stokeslet 4’ to x is

R=(z—m,y,2+73)

W

|~

Figure 6.15: Identifying a stokeslet in the 2-dimensional plate array

To obtain the velocity at x due to the double array of stokeslets at v we need to do a
double integration on (6.36). The first is with respect to y; in the limits —co < 11 < ©

and secondly with respect to 3 in the limits 0 < -y; < a, where a is the length of the MEMS
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device.

U**j = /0 /_ UJI-C(X, "Y)d")’ld"yg (640)

To create the effect of movement in the plate we need to define the force F to be a function
of both time and the distance along the plate, v3. This makes the next step of integration
much more complicated. It will be shown in the working equations that we can write the

components of the array velocity in the form:

UHTZ/"F@ﬂ@B%@JKBM% (6.41)
0

a
U%=/F@M&M%MM3 (6.42)
0

Boundary conditions

We now have an array of stokeslets representing our plate which can be used to model the
fluid motion caused by the oscillating device. The next problem is the boundary condition
on the surface of the plate itself. The fluid must satisfy the no-slip condition on this sur-
face. A similar problem is solved by Lighthill [55] defining flagellum motion. He couples a
stokeslet with a corresponding dipole to create the effect of a solid spherical boundary. In
our case the no-slip condition on the surface of the plate can be incorporated by defining

the force F to act only in the y direction.

Once the working equations for the array of stokeslets have been found (6.40) we can
use this model for the fluid motion to define the two boundary conditions for the motion
of the oscillating MEMS device. The strength of the stokeslets Fj can then be varied

corresponding with the motion of the plate.

6.3.3 The Stokeslets Equations
The single stokeslet

The equation for a single stokeslet with a force acting in the k direction situated at =, a
distance y3 = h from the plane z = 0, was given by equation (6.36). The problem that
we are interested in will eventually be an array of stokeslets each with force in the k = 2
direction. We will first write down the individual stokeslet’s velocity components for k = 2,

with F = (0, F,0). The remaining velocity terms will all be zero since F; = 0 = F3,
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therefore if k is equal to 1 or 3 we will get U7 = Uy = Us = 0. When k = 2 we get

= L y($—71)_y(27—71)+2hg hz—m) (-—m)z+h)
1™ 8rp 3 R3 Oy R3 R3
F [1 1. 4* 42 o [hy y(z+h)
2o y4+ Y Y 9y Y
U2 = 87 [( R) 3 R3 + oy | R3 R3

s = o [HE L - MR g D {2 G4 Lk }

with

r=+(z—m)?+ 9?2+ (2 — h)?

R=+/(z—m)?+y>+ (2 +h)2.

Removing the derivatives we can rewrite these equations as:

87r—’uU1 _ [y(:z: —7)  ylE—m) N 6hyz(z — ’)’1)]

F r3 R3 RS
8T 1 1 92 9
T =[——§+—3~ﬁ+2h—{3y —R}]
8 (z—h) ylz+h) 2
FU—[ - L) an e (R 4 82(z + )

The continuous line of stokeslets

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

To find a line of stokeslets aligned parallel to the plane boundary with force in the k=2

direction we now need to integrate each of (6.46), (6.47) and (6.48) with respect to y; over

the interval —oo < 41 < o0o. For the velocity at a point on this line we need to divide

through by the breadth of the plate, in this case B.

B8mu CTylz—m) yl@—m) 6hyz(z—m)
Ul:/ [ N n

-0

® 1 2 2
U*2=/ [———+—f——y—+2hi{3y2—R2}]dfyl

—0Q

B8 & —h
ﬂU*g :/ y(z 3 ) _ y(z+h’) +2h Yy {R2+3Z Z+h)} d’)’l
F oo T R3

(6.49)

(6.50)

(6.51)

To simplify calculations we break the equations up into smaller integrals to be solved, such

that

B8
; Bu+, = yT2 + 6hayT5
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B8mpu

U*y = T6 + y*T1 + 6hzy®T3 — 2h2T4

F
B ifr“ U*s = (2hy — y(z + h))T4 + 6hyz(z + h)T3 + y(z — h)T7

T1= / - [ ] dy = —2 [a;;ﬁfz] (6.52)

/ ” [ -z ;3”’1] dn =0 (6.53)

T3— /_ ) [%] dy = 33;3—4 (6.54)

T4 = /_ Z [%] dy = % (6.55)

T5 = /_ Z [”” ;5”’1] dy = (6.56)

T6 — /_ Z [; - %] dy = m(a;) (6.57)

T7 = /_ Z [Ti:,,] dy = % (6.58)

with a and g given by the following expressions
o’ =y*+ (2 — h)? and (% =9%+ (2 +h)?

We can now write down equations for the velocity at x due to a continuous, infinite sequence

of stokeslets at ~.

U =0 (6.59)
« _ F 2 5 [a? — 32 8hzy?>  4hz
7= gy [0l 0 ||+ S5 - ] (6:60
«  F [2y(z—h) 2y(z+h)  8hzy(z+h) 4hy
Uty = Brp [ o2 - I + I + 2 ] (6.61)

These expressions are independent of z and hence our problem is reduced to a two dimen-

sional system of equations.

For equations (6.59), (6.60) and (6.61) to be of use they must satisfy the conditions orig-
inally prescribed. They must be a solution of the two-dimensional Stokes equations, they
must satisfy no-slip at the plane boundary z = 0 and the velocities must tend to zero as x

tends to co. The velocities do indeed all tend to zero with increasing x so it just remains
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to check the other two conditions.

The first condition is satisfied since the following expressions hold true

ou*y OU*
2 3 _

Jy oz =0
#P_#P
0ydz 0z8y

It can next be shown that the no-slip condition is satisfied given that

The continuous array of stokeslets

As mentioned in the previous chapter, this step of integration is made more complicated
by the definition that F' is a function of t and h (-y3). To find the velocity due to an array
of stokeslets protruding from the plane boundary with force in the k=2 direction we need
to integrate each of (6.59), (6.60) and (6.61) with respect to h over the interval 0 < h < a.
To find the velocity at a point due to the array we must divide through by the length of
the plate, a. It now helps to write the fluid velocity at x due to the continuous array of

stokeslets, in component form.

u=U" =0 (6.62)
a
v = U™y = / F(t, YK, (y, , h)dh (6.63)
0
a
w=U"3= / F(t,h)Ky(y, 2, h)dh (6.64)
0

with K, and K,, given by the following expressions

__1 2 o [0 —B%]  8hzy® 4hz
Ko = 8aBmp [ln(ﬁ) —2y [ a2 32 ] gt B ] (6.65)
1 [2y(z—h) 2y(z+h)  8hzy(z+h)  4hy
Y™ 8aBmpu [ 2 g ° iz + ] (6.66)
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Boundary conditions

Referring back to the original plate equation (6.1) for the velocity of the plate, ¢, we can

use equations (6.63) and (6.64) to define our two necessary boundary conditions.

a = / aF(t, R)K,(0, z, h)dh (6.67)
0

0= / ’ F(t,h)K,(0, z, h)dh (6.68)
0

The first condition states that the velocity of the plate is equal to the fluid velocity at the

surface y = 0.

(6.69)

“Pt,h) [ z+h,  2hz
a _/0 4aBmp [ (z—h) - (z+h)2] dh

The second condition satisfies the no-slip condition on the surface, hence w =0 on y = 0.
It becomes apparent that for our choice of stokeslets, acting in the k = 2 direction only,
condition (6.68) is automatically satisfied. This can be proven by identifying that the limit

of w is 0 as y tends to 0.

lim () = /0 " P ) T [ Kooy, 0, ) (6.70)

¢ F(t,h 2y(z —h ¢ F(t, h 2 h
:/ (7 ) -m 2y(z ) ]dh_/ (7 ) s y(z+ ) ]dh
o 8aBrpy—0y?+ (2 —h)?2 o 8aBmuy—0y2+ (z+ h)?

¢ F(t,h) .. . 8hyz(z+h) 4 /a F(t,h) .. 4hy
dh dh
o 8aBmp y—>0[(y2 +(z+ h)2) Jdh + o 8aBruy—0y2+ (2+ h)2]

As y approaches 0 the limit of the third and fourth term will be reduced to 0. It is shown
that this is also true for the first two terms using dirac-delta function relationships.

4

e - M

b
[sw—vosthdy = (D) for a<yp<b

=0 for a> 1y or b<1y
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provided f(1) exists at ¥ = 9. If we next define F(t, h) = "t f(h), this allows us to write

the remaining terms in equation (6.70) as

@ wt 2 —h a iwt
/0 &waf (h)gﬂ[?p—%_—zy]dh = /0 8:B7wf(h)2(z-h)7r6(h—z)dh
—9Qeiwt
= G (=2 =0

@ —2y(z+ h)
/0 8aB7rpf( )y—>0[y2 + (2 + h)?

lah = /0 ' 8aBM F(B)2(z + )ms(h + 2)dh

- i f(-2)(z—2)m =0

Hence the velocity component w is zero on the boundary y = 0 for all f(h).
lim(w) =0
y—0

This leaves us with just the single boundary condition (6.67).

Now consider the velocity component v, equation (6.63), on the boundary y = 0. Tak-

ing the first derivative of v with respect to y gives

dv e 16hzy a? — 2
= = — 4 d
dy /0 8aB7r/,Lf( ") [ i a?3? h

B a ezwt 4hz a2—ﬂ2
- v [ gum® | ]‘”‘

Hence g—; — 0 as y — 0, since @ is proportional to y, which shows that there is no

discontinuous jump on the bounda.ry y=0.

Pressure on the plate

As mentioned previously, we define the force, F, in equation (6.1) to be the jump in force
from above to below the vibrating plate. Since the force is only acting in the y direction,
F' is given as the difference in the corresponding component of the stress tensor oy, at the

upper plate surface, y = 07, and at the lower plate surface, y = 0~.

ot

o+
0+ o _ o+ |:3v]
=|-P+ps| =[Pl +p|x
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where P is the pressure. The term %Z— does not produce a discontinuous jump at the
boundary, y = 0, so any difference between ayy0+ and ayyo_ will be as a result only of
pressure differences.

ot ot

[Uyy]o— [—Plo- (6.71)

Equation (6.37) gives us the pressure field for a point force in the k direction. Considering

the force is defined to be F = (0, F,0), we can rewrite this equation in a simpler form.

_ F o (z+h
k=2 Yy Yy
p=p [7”3 R3 2h3y( R3 )] (6.72)

In a similar way to the velocity equations, we now integrate over the breadth of the plate

(assumed infinite for integration) and divide through by B.

=2 [ bl = 5 / Pla-+2ean om

2y Shy(z+h
y_2 y(z )}

B7T |:a2 IBz :64
We now integrate over the length of the plate (0 < h < a) and divide through by a to give
us our pressure for the array of stokeslets. If we write F(t, h) = ¢**f(h) then our equation

for pressure becomes:

/’ ip*]dy _a; / [2y£§h) _2y£2(h) +8hy(z ;411) f(h) b (674

This equation for the pressure (P = p**) is not continuous across the plate boundary at
1y = 0, hence we will have a jump in pressure between the upper and lower surface. To find

the value of [—P]gJ_r we need to find the limits of P as y approaches the boundary from

+

above and below the plate, denoted [—P]® and [-P]° respectively. We can write the

limit of P as y tends to 0" as

twt

e | Jim, (1)~ lim () + im (1) (6.7

_pot — _
[=F] aBr |y—ot

with I, I and I3 defined as

_ [ i)
i

[ 2yf(h)
IZ—/O y2+(z+h)2dh
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o ¢ 8yh(z + h)f(h)
fs = /o W+ G+ e

To find the limits for the individual integrals we need to define new variables, g = h — 2

and ¥ = %. Firstly, making these substitutions into our integral (I;) gives

L 5 yf(z+ ¥y)
lim (h) = lim, (2 /_ . (1+ ), yd\II) (6.76)

z
v

= Jim 2f(z) / : (1+1112)

we can split the integral (6.76) into two parts from which we will be able to take limits.

a—z

. . v 1 -3 1
Jim, (1) = T, 2f(2) l /0 (e /0 md\k] (6.77)

We can now solve this limit, which will vary depending on the value of z.

) = 0o [ e

= 2f(2) [g—(%ﬂ)]:%rf(z) for 0<z<a

0 = 10| e | ke

= 2f(2) [%”-(%”)]:0 for z>a

Also we can see that a singularity occurs at z = a.

0 - 10| ey [ e
= 2f(2) [— (%”)]:wf(z) for z=a

In a similar way we can write

a—z

+ Wy)
lim (I) = tim 2 [ * Y2 d¥ =0 6.78
y—lvltr)l () = y—'I(I)lJr /_Tz y? + (22 + ‘I’y)2y (678)

. /% Y+ ¥f(a+ WQat+ Ty) 0 g (6.79)
o .

(y? + (22 + Uy)?)?

Substituting these limits back into equation (6.75) gives us the pressure at the upper surface
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of the plate.

it
2eB f(2) for 0<z<a

[P = ———[2mf(s) — 0+ 0] = -~

a
=0 for z>a (6.80)

Using the same method we can determine the pressure at the lower plate surface to be

2iwt
eB f(z) for 0<z<a

PP = S [-2n() —0+0] = =

a
=0 for z>a (6.81)

Since [P]gi = [P]®" —[P]°", we can substitute the solutions (6.80) and (6.81) into equation
(6.71). Assuming that f(z) # 0 for all z € [0,a], and that (y*> + (z + h)?%) # 0 for all
z €10,a],y € [0, Ymaz|, we can now write the force F as

2¢™t
aB
=0 for z>a (6.82)

1 1
F:§[ayy]8f:§[—P]3f = - f(z) for 0<z<a

Starting with the equations for a single stokeslet near a flat plane wall, (6.46) to (6.48), we
have extended these results to determine the equations for an infinite continuous distribu-
tion of stokeslets on a line above the wall, (6.61) to (6.61). This led to the equations of a
double array of stokeslets perpendicular to the plane, infinite in one direction and finite in
the other, representing the plate itself, (6.62) to (6.64). By then considering the boundary
conditons on the plate, we used these solutions to define F' such that a complete fluid-plate

model could be determined.

6.3.4 Complete problem

We now consider the original problem (6.1) with the force being defined by the equation
(6.82). This allows us to write the initial problem within the area of the plate, 0 < z < a,

in the form
2 eiwt
aBD

%ZQ(z7 t)tt + Q(z7 t)ZZZZ == f(z) (683)

where f(z) is the known, measurable driving force. If we define q(z,t) = e*%q(z) we can

now write equation (6.83) and the boundary condition (6.69) respectively as

2 V4
Q(z)zzzz - %“I(z) = _%(.D) (684)
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o) = s | [f()( CEh - (22:‘;)2)] dh (6.55)

The remaining conditions specified earlier by the plate movement become

q(0)=0 deflection =0at 2=0
q(0), =0 slope=0at z=0
q(a)z; =0 bending moment =0 at 2z =a
q(a)zzz =0 shear force =0 at z=a

We now introduce a forcing term (per unit area) of the form xe** to represent the external

driving force of the plate so that our equation (6.84) becomes

sdw? 2
Q(z)zzzz - £ D Q(z) = - afo;)) + % (686)

Non-dimensionalising the equations

The next step is to non-dimensionalise the coupled equations (6.85) and (6.86). We define

smie g =RdED)  wmd [ = TP

such that the set of equations and boundary conditions become

Gz — G —&f =1 (6.87)
zZ+h 2zh -
/ f(h)[ (z—h)_(2+h)2] dh—3q=0 (6.88)
g0 = 0
g0); = 0
d(1)zz = 0
Gz = 0

. ) ) 2,4 3
involving two real dimensionless constants £ = ”d‘”% and & = SL‘%&.

6.3.5 Solving the problem numerically

We now need to solve the system of equations numerically. We define ¢; and f; to be the

value of §(2) and f(Z) respectively at a distance 3 = z; from the origin, with ¢ = 0... N.
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We set a mesh size Az for Z between 0 and zy. We define the derivatives of § with respect
to Z using the central difference formulae [46]. The boundary conditions are that the plate

has no deflection at 2 =10

g(0) =0=go=0 (6.89)

no slope at Z =10

q0; =0T T2 =05 g =g with  g1=4(-1) (6.90)

no bending moment at z =1

qN+1 — 29N + qN -1

A2 =0=gnN+1 =298 —gN-1 (6.91)

d1)zz: =0=>

and no shear force at 2 =1

gN+2 — 2qN+41 +29N—1 — gN—2

A3 = 0= gn+2 = 49y — 4gqn-1 + qn—2 (6.92)

d(1)zz: =0=>

Again using the central difference method, the fourth differential in (6.87) is written as

_ qn+2 —4gn+1 1+ 6¢n — 4gn—1 + gn—
Anzzzs = Azt

Combining this with the boundary conditions gives us the numerical solution for equation

(6.87).

n=0: Baet — Qaet + g0z — &) — &afo =1
n=1: GBaer — Qix + @z — &) —Lfi=1
2<n<N-2: Int27et — nd1 77 + Gn(zor — &1) — Q15071 + tn2701 — E2fn =1
n=N-1: —qnaar + an-1(52r — &) — aN-2 71 + AN-3 75t — S2fN—1 =1
n=N: an(zer — &) — av-17 T IN-2 i —&fn =1

In equation (6.88), we assume that f; is constant on Z = z;, so that we can use the trapezium

rule to integrate f (%), treating the integral as a sum of areas beneath a curve.

N
/ Fan— 30 BT
0 =
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Tet Iy — / f(h)[ (”Z)—(;f’;)z] dh (6.93)

bz oy f nAz+h 2nAzh
then  Ip : E / DA [ (fn,Az — h) (nAz + h)2} a

_ Zf]+f] 1/ In nAz+h _ 2nAzh dh
N (i—1)Az nAz —h (nAz + h)?

= Z(fj + f—1)k(j,n)

j=1
with %(j,n) defined by
P ( —1 27 .2 . 2 .
= {—[2n°A Az)In
k(j,n) 2{nAz -l—jAz[ n“Az* + 2nAz(nAz + jAz)In |2nAz*(n + j)|
—(nAz + jA2)? In|nAz + jAz| — (n?Az% — j2A2%) In|nAz — jAz]]
1

2nAA i —1)A2)In 2 P
+nAz TG 1)Az[ nAz(nAz(nAz+ (j —1)Az) In|2nAz*(n + (5 — 1))|
+2n2A2% — (nAz + (j — 1)Az)2ln|nAz + (G —1)Az

—(n2A22 — (j — 1)2Az%) In|nAz — (j — 1)Az|]} (6.94)

which holds for n # j and n # (j — 1). In these two cases we have respectively

'i 2n2Az?
2n2A
k(n+1,n) =k (n) = (ﬁ +Azln|2n+ 1|+ nAz) (6.96)
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This allows us to write the numerical solution for equation (6.88).

n=1 foko(1) + fi(ko(1) + E1(1)) + fa(kr (1) + E(3,1)) +
SN F(RG,1) + k(G +1,1)) + FnE(N, 1) — g =0
n=2: fok(1,2) + fi(k(1,2) +ko(2)) + fo(ko(2) + k1(2)) + fa(k1(2) + k(4,2))
+ 0 kG, 2) + R(G +1,2) + fNE(N,2) — g2 =0
3<n<N-3:

fok(1,n) + 027 (kGG m) + k(5 + 1,n)) + fa-1(k(n — 1,n) + ko(n))
+falko(n) + k1(n) + fata (ki(n) + k(n+2,n))
+ Y0 Fi(k(,m) + k(G +1,n)) + fNE(N,n) — o =0
n=N-2: fok(1, N —2) + 305" f5(k(5, N — 2) + k(j +1,N — 2))
+fn-3(k(N —3,N —2) + k(N — 2)) + fn—2(ko(N —2) + ky (N — 2))
+fN-1(k1(N —2) + k(N, N —2)) + fnk(N,N - 2) —qn_o =0
n=N-1: fok(1, N — 1) + S 73° £5(k(, N = 1) + k(j + 1, N — 1))
+fn—a(k(N —2,N —1) + ko(N — 1)) + fn_1(ko(N — 1) + k1 (N — 1))
+fNE(N,N —1) —gn_1 =0
n=N: » fok(1, N) + 052 £3(k(G, N) + k(G + 1, N))

+fn-1(k(N — 1, N) + ko(N)) + fnko(N) — qn =0

We now have 2N + 1 equations for 2N + 2 unknowns (g;, fi, ¢ = 0...N). As the extra

necessary equation we use the boundary condition gy = 0. We can now solve this system

of equations using matrix operations (carried out in MATLAB, see appendix C)

132



qdo
Q1
q2

é; A ' “fé[ I]

dN-2

dN-1
aN
fo
h
f2

f 1] p

In—2
fva

In

[T e B o I R R R R o R e T T e R S O

where [ I ] is the (N + 1) x (N + 1) identity matrix and C and D are (N +1) x (N +1)

square matrices. We choose to define § = ﬁ;.

133
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) —45 56—-&
I 26 —45
[ 0 0 0 ]
ko(1) (k(5, 1) + k(5 +1,1)) k(N,1)
k(1,2) (k(5,2) + k(G +1,2)) k(N,2)
[p]=| kam kG,m) + G +1,m) R(N,n)
k(1,N —2) (k(,N —2) + k(j +1,N — 2)) k(N,N —2)
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Figure 6.16: Numerical solution for g = 0.04 Pa-s and x = 1 kg-m
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The numerical solution gives an increasing maximum amplitude of oscillation with increased

driving force and a decreasing amplitude with increased viscosity, as expected. A driving

force of zero also gives us no motion as required. Due to inaccuracies brought about by
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the unknown material properties of the plate, calibration will be necessary. Using a fluid
of known viscosity we can set the plate in motion using a fixed driving force and measure
the maximum amplitude achieved by the oscillations. This should give us a value for &

by matching the maximum amplitude to the viscosity in our numerical solution. Keeping
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Figure 6.17: Plot of x against maximum amplitude for p = 0.04, where the red curve shows
the numerical solution and the line of blue circles is a fitted polynomial

this fixed driving force, and x value, we can then use the plate to determine the viscosity
of other fluids. Using the numerical solution, a graph can be plotted of viscosity against

maximum amplitude for a fixed value of k (red line in figure (6.18)). A polynomial can
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Figure 6.18: Plot of u against maximum amplitude for k = 1 kg:-m~!-s~2, where the red
curve shows the numerical solution and the line of blue circles is a fitted polynomial

then be fitted to this curve (blue circles). We can then use the equation of this polynomial

to determine the viscosity.
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We now have a method of determining the viscosity of a fluid using two parameters, the
force driving the plate and the maximum amplitude achieved by oscillations in the fluid.
The constant in the driving force, , can be found from calibration in a known fluid and
an oscilloscope or alternate method of measuring oscillations can be used to determine
the maximum amplitude. Unfortunately we do not have any experimental data for these
parameters to compare the numerical solution with. x can take a large range of values
dependent on the viscosity of the fluid used for calibration. To achieve an amplitude of
0.000001 m in a fluid of viscosity u =0.01 we would use x =1.25, whereas in a fluid of
viscosity u =10 we would use k ~16000. If we were testing a fluid with a viscosity thought
to be of the order of u = 0.1 we can see from figure (6.20) that to use the driving force that
gave us k = 160000 would result in a maximum amplitude of 1 cm, a physical impossibility
for a sensor of the cantilever’s size. To maximise accuracy in fitting the polynomial to the
numerical solution it is therefore beneficial to calibrate in a fluid with viscosity close to that

expected from the unknown fluid being tested.
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Figure 6.19: Determining « for the cantilever driven to a maximum amplitude of 1um in
two fluids with different viscosities
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We can use the numerical solution to investigate which geometric dimensions of the sensor
are optimal for measuring viscosity in the desired range of fluids. By altering one dimension
and leaving the others fixed, we can see what effect this has on the numerical solution. It
is clear from the design of the flexion plate that the two dimensions that would have most
effect are the plate length, a, and the plate thickness, d. Figure (6.21) shows numerical

solutions using different values of @, d and frequency w.
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the red curve shows the numerical solution and the line of blue circles is a fitted polynomial
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Using the actual dimensions of the plate in the numerical solution produces a graph that
is easily readable, as in figure (6.20). The curve illustrates a clear relationship between
maximum amplitude and viscosity that is measurable for a range of viscosities. When we
alter the dimensions of the plate the flexion varies in sensitivity to changes in viscosity
which affects the usability of the device. Intuitively, making the plate thinner (decreasing
d) results in an increased sensitivity to viscosity. A small change in viscosity produces
a large change in maximum amplitude. Conversely, increasing the thickness of the plate
decreases the sensitivity, so that a large increase in viscosity produces minimal change
to maximum amplitude. Similarly, reducing the length of the plate causes a decrease in

sensitivity. Overall, the chosen dimensions of the plate seem to be appropriate.
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6.4 Summary of the Flexion

Similar to the Spider, this MEMS device is also small and relatively easy to make. The
geometry of the sensor results in a large fluid mass on a small oscillating surface, making
it more sensitive to fluid properties. In theory we could increase this sensitivity yet fur-
ther by making the plate even thinner, but this will make the device less robust and more

prone to breakage. The sensor must be able to survive and operate in down hole conditions.

The sensor is modelled as a cantilever plate, clamped at one end. It oscillates in a direction
perpendicular to its own plane. It is driven by passing an alternating current through the

aluminium coil mounted on the surface of the sensor.

We can model the device as a densitometer. Due to the small amplitudes of oscillation, the
problem can be simplified by applying linear theory. For Newtonian fluids, we can get p as
a function of plate properties, frequency and temperature. Two sets of experimental data
have been analysed using flexion sensors. When calibrated to determine plate properties,
the resulting values for p were accurate to within 2 % of the true value. Using an uncali-
brated model, assuming the device is pure silicon, density was determined to within 20%

of the true value over a range of fluids.

We can also model the device as a viscometer although this is more complicated. The
flow around the plate is assumed to have a small Reynolds number (Re << 1) and is thus
considered slow flow. Using the method of stokeslets we can write the viscous fluid problem
as a system of equations in a form that can be solved numerically. The numerical solution
allows us to determine viscosity as a function of driving force and maximum amplitude of
oscillation. This requires us to solve a polynomial equation for y. Whilst the numerical

solution gives us a resulting viscosity term, it appears to be unstable for p < 0.001 Pa-s.
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Chapter 7

Conclusions

Our intention was to model the development of new viscometers that will remain sufficiently
accurate in hostile down-hole conditions and reflect both Newtonian and non-Newtonian
fluid motion. The analysis of past viscometer designs indicated that conventional viscome-
ters were unsuitable for measurements in situ in oil wells. Despite the accuracy of falling
body viscometers such as the falling needle, the free moving parts make it inappropriate
for in situ measurements. A capillary viscometer would need constant fluid flow and could
also suffer problems due to the high pressures. Extreme pressure environments are also
problematic for oscillating body viscometers, often causing distortions in the dimensions
of the body. The vibrating wire viscometer is able to work in the hostile conditions but
is limited to measuring Newtonian fluids due to the use of Navier Stokes equations in the
modelling of the device. The in situ capabilities of the MEMS sensor, due to its small
size and robust design which can be readily integrated into existing tools, will reduce the
time required for analysis, decrease errors caused by transferring fluids from the well to the
testing facilities and give a clearer picture of fluid properties at reservoir conditions. The
geometrical design of the sensors make them particularly sensitive to the added mass of the

fluid during oscillations, due to the large surface to volume ratio of the vibrating armature.

A petroleum reservoir can exhibit temperatures up to 473 K and pressures up to 200 MPa.
The upper operating temperature for the sensor is dependent on two main components,
the strain gauges and the adhesive used in the packaging. The adhesive is predicted to
become unstable at 423 K. Assuming an alternate adhesive could be found, the piezoresis-
tive gauges that make up the wheatstone bridge would be the next thing expected to fail,
at a temperature of 493 K, which is in excess of that required for reservoir measurements.

During laboratory testing of the sensors, an upper operating pressure of 68 MPa was deter-

141



mined by the positive displacement pump which was generating the pressures. The sensors
appear to work consistently at this pressure and there is currently no prediction as to
what pressure the sensors could withstand. Physically the MEMS have proven to be sturdy

and resilient to extreme temperatures and pressures, as required for down-hole viscometers.

For our simple fluid models, we assumed that the fluid was an incompressible homogeneous
liquid. We first considered the “forced” spider, driven with a constant external driving
force. For the “forced” spider model we produced theoretical expressions for the frictional
force and power on the oscillating plate. These were closed form solutions and could be
rearranged to give an expression for viscosity or density in terms of plate properties, power
and the initial velocity of the plate. The oscillating plate will typically have a viscous
penetration depth in the order of micrometers. This small distance means that even in the
presence of the stationary added top plate, as long as h >> § the armature will oscillate as
in an unbounded fluid. For the Newtonian case we also produced equation (5.60) for pp in
terms of maximum recorded frequency, wy,, vacuum frequency, w,,, plate density, ps, and

plate depth, d.

We then moved on to the decaying oscillations model of the spider. In this model the
plate was either plucked or driven to a constant speed and then allowed to decay by remov-
ing the external driving force. Our analysis of the “plucked” spider problem led us to the
key parameter 5 which allowed us to determine how the plate will oscillate. 3 is a function
of the material properties of the plate and the viscosity and density of the surrounding

fluid.
5= 2./upBa
VWkW%

For a reasonable number of oscillations we require 0.001 < 8 < 0.1 and hence it was found
that the viscometer would be suitable for fluids within the range 0.01957 < up/Pa?s <
1.957. Unfortunately we did not have sufficient reliable experimental data for the spider
sensor to enable us to compare the theoretical models with the real physical behaviour of

the plate.

The second MEMS design we considered was the cantilever plate. For the flexion den-
sitometer model, we produced an equation, (6.19), allowing us to find density as a function
of the plate properties, frequency and temperature. When compared with experimental

results, this equation produced density values accurate to within 2 % of the true value.
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Small errors due to the inaccuracy of equipment will lead to uncertainties in our results.
The pressure gauge has an inaccuracy of up to 0.029 MPa and the precision thermometer
is accurate to 3 mK. The sum of these small uncertainties should have a negligible effect
on the viscosity and density values. Unfortunately errors due to the unknown material
properties of the plate, which is not pure silicon as assumed in the theory, cause calibration

to be necessary.

Using the method of stokeslets, we derived a numerical solution for the viscosity of the
fluid. This allowed us to write the viscosity in terms of driving force and maximum ampli-
tude of oscillation as a polynomial to be solved. Once again however, calibration would be
necessary. The numerical solution appears to lose stability for u < 0.001 Pa-s. A petroleum
reservoir can contain liquids with viscosities in the range 0.00005 < p /Pass < 1 so the
viscometer will be useful for a significant part of this range. Unfortunately there are no
experimental results in terms of maximum amplitude of oscillation. An oscilloscope or
alternate method for measuring this amplitude would be needed for future experiments

before comparisons could be made.

The theoretical work behind the two MEMS devices show that it is possible to measure
viscosity and density in a wide range of fluids. The sensors themselves are robust and
resilient to extreme conditions making them suitable for hostile down-hole conditions. The
flexion has been shown to produce reasonable experimental results, a trade off in accuracy

deemed acceptable for the ability to wishstand the harsh conditions of petroleum reservoirs.

Three papers have been written up as a result of this work which should be considered

for further reading on this topic [37], [67] and [68].

Recommendations for future work

The spider sensor could be analysed more thoroughly with the addition of the stationary
top plate, to see whether this would add any practical advantages other than stopping large
particles from reaching the plate surface. More theoretical work can be done considering
the spider in a number of other non-Newtonian fluids such as Bingham fluids, possibly a

more accurate model for reservoir fluids.

A full experimental program is needed for the spider sensor, using the plucked method
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to overcome the problem of breakages in the plate legs which have occurred during previ-
ous experiments. It would also be useful to test the flexion plate in a wider variety of fluids

and gases.

The MEMS designs could both be investigated using computational fluid dynamics soft-
ware. This would produce two dimensional quasi-steady or three dimensional unsteady
full numerical solutions for the problems. Although the software is not simple to use, the

advantage is we would not have any geometrical limitations.
Other MEMS designs have also been produced by Schlumberger. One example is a tor-

sionally oscillating plate. It would be interesting to compare these geometrically different

sensors to see which would be the most efficient viscometer for reservoir fluids.
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appendix A

Data

Spider - Pole analysis data

The following results correspond to the four roots found using exact evaluation and asymp-
totic analysis of the polynomial f = s* — %83 + 2WL232 + %45, with p = 1000 and

W = 1.78944 x 10~ 7. The lines on graphs (5.11) and (5.12) correspond to these roots.

Table 7.1: Polynomial root data found exactly (k=1)

© 1st root 2nd root 3rd root | 4th root

0.005 | —453.10 — 1211.315 | —453.10 + 1211.315 | 2428.86 | 7.69 x 10°
0.01 —428.29 — 997.29: —428.29 + 997.29%: 1490.52 | 1.78 x 10*
0.05 —310.45 — 600.77¢ —310.45 + 600.77¢ 742.46 9.20 x 10*

0.1 —257.20 — 478.28¢ —257.20 + 478.281 575.10 1.84 x 10°
0.5 —-157.79 4 280.312 —157.79 — 280.314 327.81 9.21 x 10°
1 —126.44 — 222 461 —126.44 + 222.461¢ 258.95 1.84 x 10°

Table 7.2: Polynomial root data found with asymptotic analysis (k=1)

n 1st root 2nd root 3rd root | 4th root
0.005 | —346.6577626 — 1301.067466: | —346.6577626 4 1301.067466: | 1906.86 | 1234.50
0.01 | —393.9483906 — 1032.657932: | —393.9483906 4 1032.657932: | 1394.67 | 633.18
0.05 | —308.2116062 — 603.9020225; | —308.2116062 4- 603.9020225z | 737.78 166.51

0.1 —256.508308 — 479.3173527¢ —256.508308 + 479.3173527¢ 573.69 128.65
0.5 —157.7898875 — 280.3064884: | —157.7898875 4 280.30648847 | 327.72 117.57
1 —126.4259762 — 222.4794072; | —126.4259762 4 222.4794072:7 | 258.92 109.43
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| fo=4)] 29 [ p(Pa) | u(Pas) [Q=£))|

31288

31452 | 55 | 33.9349 | 11.6604 x 106 | 571.854
31499 | 61 | 42.3007 | 11.9558 x 106 | 516.377
31572 | 71 | 55.95 | 124879 x 10~ | 444.676
31611 | 76 | 63.999 | 12.8334 x 10~ | 415.934
31657 | 81 | 71.4608 | 13.1683 x 10~ | 300.827
31697 | 90 | 80.3001 | 13.5952 x 10~5 | 391.320
31725 | 96 | 88.2751 | 14.0057 x 10~5 | 330.468
31762 | 105 | 97.438 | 14.5081 x 10~5 | 302.495

Table 7.3: Experimental data for spider in methane
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T P known p fo 2¢ Q p (eq 6.19) | % error
(K) (kPa) | (kg/m®) | (=42 (=£)| (kg/m®)
323.162 | 7005.81 106.48 | 7592.46 | 90.06 | 84.30 107.24 0.72
323.162 | 13877.00 | 212.30 | 5982.62 | 72.93 | 82.03 213.13 0.39
323.162 | 20898.79 | 316.28 | 5116.16 | 62.77 | 81.51 315.76 -0.17
323.162 | 27679.46 | 408.29 | 4594.23 | 56.64 | 81.12 407.47 -0.20
323.162 | 34458.51 | 489.94 | 4243.09 | 52.97 | 80.10 489.11 -0.17
323.162 | 41249.47 | 561.37 | 3993.48 | 50.75 | 78.69 560.69 -0.12
323.162 | 48119.29 | 624.19 | 3806.22 | 49.31 77.20 623.89 -0.05
323.162 | 54885.41 | 678.21 | 3664.06 | 48.37 | 75.74 678.48 0.04
323.162 | 61689.92 | 726.03 | 3551.05 | 47.74 | 74.38 726.63 0.08
323.162 | 68311.73 | 767.42 | 3461.19 | 47.34 | 73.12 768.34 0.12
348.15 | 6977.88 97.41 7802.74 | 95.87 | 81.39 98.04 0.64
348.15 | 17495.87 | 242.66 | 5706.09 | 73.38 77.76 240.88 -0.73
348.15 | 27652.58 | 371.08 | 4799.62 | 61.23 78.38 367.81 -0.88
348.15 | 34469.49 | 447.41 | 4428.44 | 56.77 | 78.01 443.61 -0.85
348.15 | 41287.72 | 515.41 | 4160.31 | 53.85 | 77.26 511.44 -0.77
348.15 | 48153.53 | 576.07 | 3957.12 | 51.93 | 76.21 572.28 -0.66
348.15 | 54879.42 | 628.80 | 3801.96 | 50.66 | 75.05 625.45 -0.53
348.15 | 61689.74 | 676.41 | 3676.29 | 49.72 | 73.95 673.55 -0.42
348.15 | 68529.36 | 719.29 | 3573.40 | 48.72 73.34 716.76 -0.35
373.12 | 7080.44 91.52 7939.69 | 98.32 | 80.75 92.44 1.00
373.12 | 13847.52 | 177.90 | 6392.50 | 85.27 | 74.97 178.49 0.33
373.12 | 20678.94 | 261.52 | 5538.20 | 76.06 72.82 259.79 -0.66
373.12 | 27683.47 | 341.49 | 4966.40 | 69.26 | 71.71 339.17 -0.68
373.12 | 34426.07 | 411.89 | 4585.54 | 64.07 | 71.58 409.30 -0.63
373.12 | 41254.58 | 476.37 | 4303.50 | 59.68 72.11 473.66 -0.57
373.12 | 48098.62 | 534.48 | 4088.39 | 56.33 | T72.57 531.96 -0.47
373.12 | 54892.36 | 586.31 | 3921.77 | 54.27 | 72.26 583.86 -0.42
373.12 | 68432.68 | 675.01 | 3676.23 | 51.39 | 71.54 673.59 -0.21
398.11 7359.81 88.63 8014.97 | 99.04 | 80.93 89.49 0.97
398.11 | 13876.07 | 165.50 | 6560.92 | 84.83 77.34 166.11 0.37
398.11 | 27718.55 | 316.95 | 5107.47 | 67.31 75.88 317.11 0.05
398.11 | 34448.48 | 382.72 | 4718.13 | 62.70 | 75.25 382.96 0.06
398.11 | 41293.58 | 443.88 | 4425.78 | 59.79 | 74.03 444 26 0.08
398.11 | 48139.56 | 499.49 | 4201.61 | 57.26 | 73.37 500.17 0.14
398.11 | 54948.68 | 549.73 | 4025.36 | 55.47 | 72.57 550.85 0.20
398.11 | 61784.51 | 595.59 | 3882.16 | 54.14 | 71.71 597.21 0.27
423.11 7271.58 82.03 8174.18 | 114.68 | 71.28 83.50 1.79
423.11 | 14123.87 | 157.30 | 6657.65 | 97.73 | 68.12 159.43 1.36
423.11 | 21056.11 | 230.05 | 5782.56 | 85.68 | 67.49 232.86 1.22
423.11 | 27785.88 | 296.48 | 5225.75 | 77.38 | 67.53 299.97 1.18
423.11 | 34604.92 | 359.06 | 4825.15 | 71.40 | 67.58 363.28 1.18
423.11 | 41249.24 | 415.32 | 4533.83 | 67.56 | 67.11 420.24 1.18
423.11 | 48197.29 | 469.32 | 4297.79 | 64.51 66.63 475.13 1.24
423.11 | 48188.85 | 469.26 | 4298.06 | 64.35 | 66.79 475.06 1.24
423.11 | 55017.87 | 517.85 | 4114.13 | 62.34 | 65.99 524.53 1.29
423.11 | 61833.70 | 562.30 | 3964.93 | 60.66 | 65.36 569.82 1.34
423.11 | 68620.39 | 603.14 | 3840.91 | 59.50 | 64.56 611.55 1.39

Table 7.4: Experimental data for flexion plate in argon
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Fluid T P known p fo 2g Q p (6.17) | error
(K) (Pa) | (kg/m®) | (=42 =£)| ke/m®) | %

H,0 313.234 | 100.8 992.18 | 3590.16 | 132.66 | 27.06 | 1001.71 | -0.96
313.234 | 100.8 992.18 | 3593.61 | 139.72 | 25.72 999.66 -0.75

323.205 | 100.9 988.01 | 3609.76 | 132.31 | 27.28 990.13 -0.21

323.205 | 100.9 988.01 | 3608.66 | 135.77 | 26.58 990.77 | -0.28

323.205 | 100.9 988.01 | 3609.71 | 136.43 | 26.46 990.16 -0.22

373.115 | 102.7 958.95 | 3622.56 | 122.69 | 29.53 982.72 -2.48

373.115 | 102.7 958.92 | 3622.63 | 122.38 | 29.60 982.65 -2.47

373.115 | 102.7 958.89 | 3622.12 | 123.45 | 29.34 982.95 -2.51

Silicon | 313.234 | 102.7 935.67 | 3442.09 | 503.71 | 6.83 1095.76 | -17.11
oil 313.234 | 102.7 935.67 | 3442.61 | 500.01 | 6.89 1095.41 | -17.07
200-20 | 323.205 | 102.7 926.73 | 3480.05 | 482.81 7.21 1070.51 | -15.51
323.205 | 102.7 926.73 | 3482.45 | 481.38 | 7.23 1068.94 | -15.34

348.172 | 102.6 904.59 | 3562.27 | 390.51 | 9.12 1018.56 | -12.60

348.172 | 102.6 904.59 | 3563.89 | 395.15 | 9.02 1017.57 | -12.49

373.115 | 102.4 882.62 | 3634.65 | 341.51 | 10.64 975.71 | -10.55

373.115 | 1024 882.62 | 3634.93 | 343.38 | 10.59 975.55 | -10.53

313.234 99.8 836.67 | 3613.85 | 549.80 | 6.57 987.73 | -18.06
313.234 99.8 836.67 | 3615.12 | 541.62 | 6.68 986.99 | -17.97

323.205 | 1014 830.27 | 3683.49 | 467.10 | 7.89 948.18 | -14.20

323.205 | 1014 830.27 | 3683.21 | 467.33 | 7.88 948.34 | -14.22

323.205 | 101.4 830.27 | 3681.68 | 465.72 | 7.91 949.18 | -14.32

373.115 | 103.2 798.24 | 3868.06 | 262.80 | 14.72 853.51 -6.92

373.115 | 103.2 798.24 | 3867.24 | 264.34 | 14.63 853.90 -6.97

Silicon | 313.234 99.8 826.55 | 3763.05 | 362.40 | 10.38 905.64 -9.57
oil 313.234 99.8 826.55 | 3759.51 | 357.05 | 10.53 907.48 -9.79
200-10 | 313.234 99.8 826.55 | 3759.39 | 358.98 | 10.47 907.54 -9.80
323.205 101 819.97 | 3793.21 | 325.42 | 11.66 890.23 -8.57

323.205 101 819.97 | 3793.95 | 327.32 | 11.59 889.85 -8.52

373.115 | 103.1 787.01 | 3922.59 | 211.95 | 18.51 828.06 -5.22

373.115 | 103.1 787.01 | 3923.83 | 213.96 | 18.34 827.50 -5.14

Fomblin | 313.234 | 102.2 1834.90 | 2473.50 | 438.78 | 5.64 2186.00 | -19.13
313.234 | 102.2 1834.90 | 2474.87 | 460.63 | 5.37 2183.50 | -19.00

323.205 | 102.3 1815.72 | 2519.95 | 375.52 | 6.71 2103.65 | -15.86

323.205 | 102.3 1815.72 | 2520.77 | 377.20 | 6.68 2102.25 | -15.78

348.172 | 102.3 1767.69 | 2618.99 | 279.16 | 9.38 1942.50 | -9.89

348.172 | 102.3 1767.69 | 2618.73 | 273.40 | 9.58 1942.90 | -9.91

373.115 | 101.7 1719.69 | 2690.41 | 216.09 | 12.45 | 1837.17 | -6.83

373.115 101.7 1719.69 | 2690.44 | 216.98 | 1240 | 1837.13 | -6.83

Nitrogen | 323.205 | 10148.5 | 104.02 | 8751.68 | 70.77 | 123.66 | 111.71 -7.39
323.205 | 10140.9 | 103.94 | 8753.97 | 71.65 | 122.18 | 111.61 -7.38

323.205 | 10137.8 | 103.91 | 8754.77 | 70.87 | 123.53 | 111.58 -7.38

323.205 | 20488.4 | 199.02 | 7156.22 | 64.86 | 110.33 | 200.96 -0.97

323.205 | 20490.3 | 199.04 | 7157.33 | 64.77 | 110.50 | 200.87 -0.92

323.205 | 30311.1 | 274.09 | 6382.24 | 60.12 | 106.16 | 270.24 1.40

323.205 | 30322.2 | 274.17 | 6382.20 | 59.15 | 107.90 | 270.24 1.43

323.205 | 40321.9 | 336.31 | 5909.13 | 56.93 | 103.80 | 326.63 2.88

323.205 | 40330.6 | 336.36 | 5908.54 | 57.63 | 102.53 | 326.71 2.87

323.205 | 50401.3 | 387.44 | 5596.11 | 56.61 | 98.86 372.06 3.97

323.205 | 60476.8 | 429.88 | 5375.68 | 55.20 | 97.39 408.92 4.88

Table 7.5: Experimental data for flexion in different fluids
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Fluid T p known p fo 2g Q p (6.17) | error
(K) (Pa) | (kg/m®) | (=52 =£) | kg/m®) | %

CgH5CHg | 313.23 103.9 848.69 | 3857.40 | 111.80 | 34.50 8568.58 | -1.17
313.232 103.9 848.69 | 3857.34 | 111.82 | 34.50 858.61 | -1.17
313.231 103.9 848.69 | 3858.34 | 112.53 | 34.29 858.13 | -1.11
313.231 104 848.69 | 3857.69 | 111.98 | 34.45 85844 | -1.15
313.231 | 11217.7 857.74 | 3832.94 | 116.11 | 33.01 870.45 | -1.48
313.23 | 11216.8 857.74 | 3833.36 | 115.97 [ 33.05 870.24 | -1.46
313.231 | 11178.8 857.71 | 3833.38 | 116.33 | 32.95 870.23 | -1.46
313.232 | 19593.9 864.07 | 3817.84 | 119.53 | 31.94 877.89 | -1.60
313.23 | 19270.7 863.83 | 3817.84 | 118.81 | 32.13 877.89 | -1.63
313.23 | 29339.5 870.96 | 3802.14 | 123.55 | 30.78 885.72 | -1.69
313.231 29308 870.94 | 3802.21 | 122.34 | 31.08 885.69 | -1.69
313.231 | 39937.6 877.97 | 3785.86 | 127.91 [ 29.60 893.95 | -1.82
313.231 | 39689.5 877.81 | 3785.26 | 126.49 | 29.93 894.25 | -1.87
313.231 49859 884.14 | 3771.71 | 130.18 | 28.97 901.18 | -1.93
313.231 | 50213.5 884.35 | 3771.06 | 130.86 | 28.82 901.51 | -1.94
CeHsCH3 | 323.201 103.6 839.3 3878.82 | 108.03 | 35.91 848.38 | -1.08
323.201 103.6 839.3 3878.03 | 108.08 | 35.88 848.75 | -1.13
323.202 8941 847 3856.09 | 110.23 | 34.98 859.22 | -1.44
323.202 | 9084.2 847.12 | 3855.69 | 110.93 | 34.76 859.41 | -1.45
323.201 | 199998.7 | 855.86 | 3835.71 | 114.26 | 33.57 869.10 | -1.55
323.202 | 20208.5 856.03 | 3835.26 | 114.65 | 33.45 869.32 | -1.55
323.201 29507 862.91 | 3819.10 | 117.40 | 32.53 877.27 | -1.66
323.201 | 29373.7 862.81 | 3818.99 | 117.01 | 32.64 87732 | -1.68
323.201 | 39805.9 870.03 3802.2 | 121.87 | 31.20 885.70 | -1.80
323.201 | 39974.3 870.15 | 3802.15 | 121.13 | 31.39 885.72 | -1.79
323.201 | 50254.3 876.8 3786.03 | 124.87 | 30.32 893.86 | -1.95
323.201 | 50585.9 877.01 | 3787.03 | 125.34 | 30.22 893.35 | -1.86
323.201 | 59628.5 882.52 | 3774.35 | 128.56 | 29.36 899.83 | -1.96
323.201 | 59852.1 882.66 | 3773.89 | 128.76 | 29.31 900.06 | -1.97
CgHsCHg | 348.165 103.8 815.37 [ 3930.85 | 98.58 | 39.88 824.28 | -1.09
348.165 103.8 815.37 | 3931.09 | 97.88 | 40.16 824.17 | -1.08
348.165 103.8 815.37 | 3930.87 | 98.60 | 39.87 824.27 | -1.09
348.165 | 9080.7 824.45 | 3904.10 | 100.68 | 38.78 836.56 | -1.47
348.165 | 9136.2 824.51 | 3904.28 | 100.85 | 38.71 836.47 | -1.45
348.165 | 19988.9 834.45 | 3880.34 | 104.42 | 37.16 847.67 | -1.58
348.165 | 201429 834.59 | 3880.20 | 104.85 | 37.01 847.74 | -1.58
348.165 | 30000.9 842.82 | 3861.22 | 107.78 | 35.83 856.77 | -1.65
348.165 | 30149.4 842.94 | 3860.89 | 108.04 | 35.74 856.92 | -1.66
348.165 | 30315.4 843.07 | 3860.70 | 107.95 | 35.76 857.01 | -1.65
348.165 | 39999.6 850.54 | 3842.86 | 110.98 | 34.63 865.63 | -1.77
348.165 | 39843.7 850.42 | 3842.79 | 110.03 | 34.93 865.66 | -1.79
348.165 | 50469.7 858.04 | 3825.76 | 113.45 | 33.72 873.99 | -1.86
348.165 | 50539.7 858.09 | 3825.67 | 114.92 | 33.29 874.04 | -1.86
348.165 | 50620.4 858.15 | 3825.91 | 113.18 | 33.80 873.92 | -1.84
348.165 | 60456.7 864.74 | 3810.69 | 117.24 | 32.50 881.46 | -1.93
348.165 | 61131.9 865.18 | 3809.76 | 117.8 | 32.34 881.93 | -1.94
348.165 | 60601.2 864.83 | 3810.54 | 117.06 | 32.55 881.54 | -1.93
348.165 | 68295.7 869.72 | 3800.11 | 118.71 | 32.01 886.76 | -1.96

Table 7.6: Continuation of table (7.5)
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appendix B

Bessel Functions

Bessel function of the first kind
(5
(112

T x\2 x\4 x\6 d
first order: Ji(z) = 5 [1 — 2((?1?)2 + 3((22?)2 - 4((%?)2 +.. ] = —E[Jg(:z:)]

3 3° N

T Tepe

zero order: Jo(z) =1—

Modified Bessel function of the first kind

@, G G
zero order: Ko(z) =1+ (12!)2 + (22!)2 + (32!)2 +...
T )2 z\4 z\6
first order: Ki(z) = 5 [1 + 2((?1?)2 + 3((22?)2 + 4((?))?)2 +.. ] = %[K@ (z)]

Modified Bessel function of the second kind

zero order  Io(z) = — [(lng + C) Ko(z) — %Kg(m) - §K4(m) - ;Ks(m) —.. ]

Difference formulae

The difference formula used in the numerics included in this thesis is the 3-point central
difference formula. We will show the error involved in using this formula and will give an
example of some other difference formula for comparison. The forward difference method

follows from rearranging the Taylor series of z(t; + At),

At?
z(t; + At) = z(t;) + L' (L)AL + ::;”(2:)T with X € [t;, t; + At]
/ Tipl —Ti e AL
. = _ = 7.1
= A (7.1)

so it has an error term of order At.

The central difference method comes from combining two Taylor series for z(ti + At) and
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z(t; — At) to give

i1 — Ti At?
o = % —a"()%-  with D€t~ At b+ Al (7.2)

which is more accurate since it has a smaller error term of order At2.

We can increase the accuracy further by increasing the number of points used in the formula.
Equation (7.1) is a two point method and (7.2) is an example of a three point method
(although the central point can not be seen). In a similar way we can use five points to get

a more accurate version of the forward difference method

;L —3%i44 + 162543 — 36z, 9 + 48x; 11 — 25x;
N 12At

Zi

nr At4 3
+x (Z)T with e [ti, ti+4]

and the central difference method.

; —Tipa +8Zip1 —8Ti1 + Tia |y, At .
= ¥)——r h Y€ [tia,t;
T 19A¢ +z ( ) 30 wit € [ i 2at1.+2]

We could have used the forward difference method for the second derivative but again this

would have been less accurate.

nw_ Tip2 — 2Xi41 + X

3 point forward x; AL + 2" (L)At with ¥ € [ti, tiya)
i1 — 2x; i At?
3 point central -Ti” = Tit1 A:z;+ Ti1 + .’L'””(Z)E with e [ti—la t‘H—l]

We chose to use the three point central difference method for both the first and second

derivatives which then both have an error term of order At2.

Binomial series

For |z| < 1, the binomial series expansion [64] of (1 + )" is

(1+z) = 1+rm+T(T2jl)z2+T(T_lgl(r_2)x3+...
_ 1+ir(r—l)(r—27)l'...(r-—n+1)xn (—1<z<1)
n=1 :
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Gamma function
The definition of the gamma function is based on the Euler Intergral
(o 0]
I(n)= / " e Fdr  n>0
0

and converges for positive n, such that

1

M=o TE)=va T)=1 r(g) - g rE) =1

T(z4+1) =2I'(2) z>0
P'(m+1) =m! m>0 meEN

Letting = = st, this function is comparable to Laplace-transform integrals in the following

manner:

( ) —stn—1 — n—1
— dt =
. /0 e St ld = L)
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appendix C

MATLAB code

Non-dimensionalised numerical solution for the plucked spider

N =1000;dt =1; X = 1; k = 1; mu = 0.004; rho = 1000;

a = 0.002; B = 0.004; d = 0.00002;

W = 2330 * a x B x d; beta = (2 * sqrt(mu * rho) * B x a) /(sqrt(pi x k) * W A (3/4));
z = zeros(1,N); s = zeros(1, (N — 4));p = zeros(1,(N — 4)); ¢ = zeros(1, (N — 4));
z(1) = X;2(2) = z(1); z(3) = z(1); z(4) = 1 — ((dt A 2)/(1 + beta * sqrt(dt)));

s(1) = z(4) — =(3) — =(2) + z(1); p(1) = (sqrt(2) — sqri(1)) * s(1);

z(5) = ((dtAN2)/(1+ beta * sqri(dt))) = (z(4) * ((2/(dt A2)) — 1+ ...
(beta/(dt A (3/2)))) + z(3) * ((beta/(dt A (3/2))) — (1/(dt A 2))) ...
—z(2)  (beta/(dt A (3/2))) — (beta/(dt A (3/2))) * p(1));

for  j=2:1:(N—4)

for i=1:1:(j—1)

s(j—i+1)=s(—1); gG—i1+1)=(sqrt(j—i+2)—sgrt(j—i+1)) *xs(j —i+1);
end

s(1) = z(j +3) —z(G +2) —2(j + 1) + z(5); ¢(1) = (sqrt(2) — sqri(1)) * s(1);

p(j) = sum(q(1 : ));

z(j+4) = ((dt A2)/(1+ beta * sqri(dt))) = (z(j +3) * ((2/(dt A 2)) —1+ ...
(beta/(dt A (3/2)))) + z(5 + 2) * ((beta/(dt A (3/2))) ...
—(1/(dt A 2))) — 2(j + 1) * (beta/(dt A (3/2))) — (beta/(dt A (3/2))) x p(7));

end

plot(x)
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Small time solution to plucked spider problem

k = 1;a = 0.002; B = 0.004; d = 0.00002;
W =2330*%axBxd; BB=(kN2)/W;
NN = 0.001; nn = 0.00001;
t=(0:nn:NN);

for 1=1:1:((NN/nn)+1)
zs(i) =1 — (BB/2) = (t(z) A 2);

end

plot(t, zs)
zlabel('time'); ylabel('zs/ X');

Large time solution to plucked spider problem

N =1000;dt = 1; X = 1;k = 1; mu = 0.004; rho = 1000;
a = 0.002; B = 0.004;d = 0.00002; W = 2330 %« a * B * d;
S$S8S5 =100; NNN = 200; nnn = 1;

t=(SSS :nnn: NNN);

for i=1:1:(((NNN —SS8S)/nnn)+1)

zl(i) = (2 * B * a * sqrt(mu * rho = pi)) /((k A 2) * (t(z) A (3/2)));

end

plot(t, xl)
zlabel('time’); ylabel(zl/ X');
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Numerical solution for the vibrating ‘flexion’ plate

N =863;r = 1/N;mu = 0.04; a = 0.00225; B = 0.0028; omega = 5000; d = 0.00002;

rhos = 2330; E = 150; sigma = 0.17; D = (E * (d%))/(12 * (1 — sigma?));

alpha = (Thos * d * (omega?) x (a*))/D; beta = (8 * pi * mu * omega * (a®))/D; k = 1;

z = zeros(2+* N +2,1); s = zeros(1,2* N + 2); Q = zeros(1,N +1); F = zeros(1, N + 1);
= zeros(1, N + 1); f = zeros(1,N + 1);

p=zeros(N + 1, N + 1);pp = zeros(N + 1, N + 1); ppp = zeros(N, N + 1);

pppp = zeros(N, N +1); P = zeros(2+« N+ 2,2+« N + 2); PP = zeros(2* N +2,2x N + 2);

KO0 = zeros(1,N); K1 = zeros(0, N); K = zeros(N, N);

z = zeros(1,N 4+ 1);t = zeros(1, N + 1);

p(1,1) = 6 xr — alpha; p(1,2) = -8 xr;p(1,3) = 2 7,

p(2,2) = 7*71 — alpha;p(2,3) = —4 *7r;p(2,4) =r;

p(N,N—-2)=r;p(N,N —1) = —4xr;p(N,N) =57 — alpha;p(N,N + 1) = -2 xr;
p(N+1,N—-1)=2+r;p(N+1,N)=—4xr;p(N+1,N +1) = 2 xr — alpha;

for j=3:1:N-1

p(4,5—2) =r;p(j,j —1) = —4*7;p(j, ) = 6xr —alpha; p(j, j + 1) = —4x7r;p(4,j +2) = r;
end

for  j=1:1:(N+1)

pp(4, §) = —beta; s(j) = 1;

end

for j=1:1:N

ppp(4,j +1) = -1

end

for j=1:1:N

KO(j) = ((2+72*72) /(2% jxr — 1) + (r x log(abs(2 x j — 1))) — (j *7));

K1(j) = ((—2 % j2 % 7r%) /(2% j * 7 + 1) + (r % log(abs(2 x j + 1)) + (j *7));

for v=1:1:5-2
K(G,v)=((—1/(vxr+j*r))* (2x02 12+ 24 vxrx (V7 + j *x7) * log(abs(2 * v * 72 %
(w+ 7)) — (*r+j*r)2*log(abs(v*r+j*1)) —

(v %72 — 2% 1) xlog(abs(vxr —j*7))) + (1 /(v*xr+ (G —1) *7)) x (2502 xr2 + 25 v *7 %
(wrr+(G—1)*r)*loglabs(2xv* 7% *x (v+j—1))) —

(

vrr+(j—1)*r)2xlog(abs(v¥r+(j—1)*1)) = (v2 %12 — (j—1)2xr2)xlog(abs(vsr—(j—1)*7))));
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end

for v=j+1:1:N
K@G,v)=({(=1/(v*xr+j*7r)) (2% 02 %72 + 24 v*r x (07 + j *7) * log(abs(2 * v x 7% *
(w+37)) —(w*r+j*7)? xlog(abs(v*r+j*7))—...

(W2 %12 — 2 x12) x log(abs(u*r —j* 7))+ (1/(w*T+ (G —1) *7)) % (2% 02 %12 + 2% v x7 %
(wrr+(j—1) x7)xlog(abs(2*xv*r2x (v +j—1))) —...

(vr+(j—1)*1)2 xlog(abs(vr+ (j—1)*7)) — (v? x172— (j—1)2%72)xlog(abs(vr — (j—1)*7))));
end

end

pppp(L, 1) = (i/2) * KO(1); pppp(1, 2) = (i/2) » (KO(1) + K1(1));

pppp(1,3) = (i/2) * (K1(1) + K(3,1));pppp(1, N + 1) = (i/2) x K(N, 1);

for v=4:1:N

pppp(1,v) = (i/2) * (K(v — 1,1) + K(v,1));

end

pppp(2,1) = (i/2) * K(1,2); pppp(2,2) = (i/2) = (K(1,2) + K0(2)); pppp(2,3) = (i/2) *
(K0(2) + K1(2)); pppp(2, 4) = (i/2) * (K1(2) + K(4,2)); pppp(2, N + 1) = (i/2) x K(N, 2);
for v=5:1:N

pppp(2,v) = (1/2) * (K (v — 1,2) + K(v,2));

end

pppp(N — 2,1) = (i/2) * K(1,N — 2);pppp(N — 2,N —2) = (i/2) » (K(N —3,N — 2) +
KO(N —2));pppp(N — 2, N — 1) = (i/2) = (KO(N - 2) + K1(N —2));

pppp(N—2,N) = (i/2)x(K1(N—2)+ K(N, N—2)); pppp(N -2, N+1) = (i/2)*K (N, N —2);
for v=2:1:N-3

pppp(N —2,v) = (i/2) * (K(v— LN — 2) + K(v, N — 2));

end

pppp(N — 1,1) = (i/2) x K(1, N — 1);pppp(N — 1,N — 1) = (i/2)  (K(N — 2,N — 1) +
KO(N —1));pppp(N — 1,N) = (i/2) * (KO(N — 1) + K1(N —1));

pppp(N — 1L, N + 1) = (i/2) * K1(N — 1);

for v=2:1:N—-2

pppp(N —1,v) = (i/2) * (K(v—1,N — 1) + K(v,N — 1));

end

pppp(N, 1) = (i/2)*K (1, N); pppp(N, N) = (1/2)*(K(N—1,N)+KO(N)); pppp(N, N+1) =
(1/2) * KO(N);
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for v=2:1:N-1

pppp(N,v) = (i/2) * (K(v — 1,N) + K(v, N));

end

for j=3:1:N-3

pppp(5, 1) = (1/2)* K (1, 5); pppp(4, ) = (i/2)* (K (5 —1,5) + KO(5)); pppp(s, 5 +1) = (3/2)*
(KO0(5)+K1(4)); pppp(4, §+2) = (i/2)*(K1(7)+K(5+2,7)); pppp(j, N+1) = (i/2)xK(N, j);
for v=2:1:5-1

pppp(j,v) = (i/2) * (K(v — 1,5) + K(v,5));

end

for v=37+3:1:N

pppp(j, v) = (i/2) * (K(v — 1,5) + K(v, 7));

end

end

P(N+2,1) =1;

for v=1:1:N+1

for j=1:1:N+1

P(j,v) =p(4,v); P45, N + 1+ v) = pp(4,v);

end

for j=1:1:N

P(N + 2+ j,v) = ppp(j,v); P(N + 2+ j, N + 1 +v) = pppp(3, v);
end

end

PP =inv(P);z = PP« (s);

for j=1:1:N+1

QW) ==z(); F(4) = z(N +1+j);

z2(j) = jxrxa;t(y) = ( — 1) *r x 2 x pi/omega,

end

for j=1:1:N+1

q(j) = k*a* % Q(§)/D; f(§) = —4 * pi x k * mu x omega * a* * B x F(§)/D;
for v=1:1:(N+1)

qq(j, v) = q(j) * exp(i x omega * t(v));

end

end
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appendix D

Numerical Stability Analysis

No damping

Assuming « and 3 are small, we begin with some simple stability analysis on the numerical

form of (5.142) by taking o = 3 =0.

6-,-” + € = 0

€riy1 — 2er; + €rj

1 —
(A{)2 +eri = 0

Trying the solution e,; = ap®, this becomes
ap® +a((Af)2 —2)p+a=0

which gives us the following value for p

(Ad)? | /(BT —4(AD?
2 2 '

p=1-—

Considering the root in this value, we see that p will be complex when (A#)* —4(Af)? < 0,
hence when At < 2. Alternatively, p will be real when (Af)* — 4(Af)? > 0, hence when
At > 2. The system will be stable when ap* —-0 as i — 0, hence when |p| < 1. We will
consider the stability of the three separate cases, At > 2, At =2 and Af < 2.

lp| < 1 gives

-1

_2- (A2 £ \/2(Af)4 — 4(At)? -1

which reduces to

(AD)? — 4 < £4/(AD)24/(AD)?2 — 4 < (AT)? (7.3)
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For the first case, looking at the positive root, this holds true since At > 2 implies that

V(At)2 > \/(At)? — 4, and rearranging |p| < 1 gives us:

V(D2 - 4/(A82 — 4 < /(a2 /(A12 — 4 < /(a0 /(1)

If we look at the negative root of (7.3), this does not hold true since Af > 2 gives us that
(A1)2 — 4> 0 and —+/(Af)2+/(At)2 — 4 < 0. Hence this leads to the contradiction

(AD? - 4 < —/(AD2/(AD? - 4

The system is therefore unstable when At > 2.

In the second case, when At = 2, the value for |p| becomes

4 /16 —16

pl=fl-gx === |-1=1

Hence |p| = 1 with repeated roots indicating that the system is unstable in this case. If

only one of the roots had been equal to 1 the system would have been marginally stable.

1 / —_ 4
For the third case we need to re-write p in complex form asp=1— (Apz +1 4(A£)22 (%) .

When we take the modulus of p we get

9 = = 2
ol = (1—(At)2> +(:I:\/4(At)22—(At)4)

Hence once again we get |p| = 1 with repeated roots leading to marginal instability, the error
term will neither grow nor shrink. Therefore, this analysis shows that when no damping is
present (@« = = 0), the numerical system is always unstable or marginally unstable for

any choice of time step Af.
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Including the effects of damping

We now try introducing some damping into the system. This time we assume 8 = 0 but
o # 0 which leaves us with

n 1
e +ae +e =0

This will give a solution of the form
er = alepli + aQeF"A’t~

where p; and p, are the two roots of the polynomial p? + ap + 1 = 0. Hence,

—atvaZz—-4
2

For e, to be a stable solution we require the real parts of both p; and p, to be negative so

that e, = a1eP1t + ageP2? — 0 as £ — oo.

When o < —2, we have that o —4 > 0 and Vo2 —4 < @, so both p; and p, are real
and positive. When a > 2, again the roots of p will be real but this time they will both
be negative. When —2 < a < 0, we get o> —4 < 0 and —a > 0, so the roots of p will be
complex. The real part for both roots is * > 0, which is positive. When 0 < a < 2, again

p will have complex roots but this time —a < 0 so the real part will be negative.

This means that the first condition for a stable solution is & > 0, which is as we would

expect. There should be a positive damping term for oscillations to decay.

Now we consider the numerical system again.

e +ae’ +e, = 0
€riy1 — 2€r; + €ri_q aeripr — €ri—1)
= = +e; = 0
(At)2 2A¢ i
,,,2 -~
At" -2 — SAt
= €rit1 + €rj (T%Af) +eri—1 (F%—Af) =0 (7.4)

As in the example with no damping, we assume a solution of the form e,; = ap® so that we
,.2 -~
A" —2 1— %At
2 2
———— | 4+a|—=—=|=0. 7.5
apT+ap (1—!—52"-At) (1—!—%At) (7:5)
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This is a quadratic expression which can be solved for p to give

2-At% 4 At2—2 2_4 1-24
1+ S At 1+5A2 1+2A

2 )>

92— At2 + ATV AP — 4+ o2
— . (7.6)

2+ aAt

I*]

ol oy

NIR

When At << 1, to leading order we get p = % = 1. This tells us that when Af is small the
solution will be neutrally stable for all choices of @. As before, the system will be stable
when ap* — 0 as i — 0, hence when |p| < 1. Once again will consider the stability of the

three separate cases, At =2, 0 < At < 2 and At > 2.

Looking first at At = 2, substituting this value into (7.6) allows us to rewrite p as

o 2-22+2/22-4+a? -lzo

2+ a2 T l4+a

For the positive root
_a-—1
1= a+1

we have that —1 < p; < 1 for all choices of a > 0. The negative root is

_ —(a+1)
a+1

P2

so that p, is only marginally stable. Hence, overall A = 2 gives us an error term which is

marginally stable.

Next we look at 0 < Af < 2. Since AF° — 4 < 0 there will be cases when p will have
complex roots. We therefore need to split this further into two parts:

AP +a? —4 < 0 —> complex p,

AP +0?—4 <0 —> real p-
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For the complex roots, the modulus of p becomes

Pl = 2+ ali (2 + all)z

B \/4—-a2A{2_ 2 — aAt 78
N 2+ alAt 2+ alAt (78)

We know that —1 < %ﬁg <1 for all « > 0 with 0 < At < 2, so |p| < 1 and the complex

2
(2—A£2) AP (4 — AP — o2)

roots of p are stable.

For the real roots of p we write |p| in the following form,

b1l <1 : —aAf<d4— AP +AIWAP + a2 —4< 4+ oA
Ipo] <1 : —aAf<4— AP — AIWAP + a2 —4 < 4+ aAf (7.9)

First considering |p;| < 1, we now use the following inequality relation
Va—b<+ya for a>0 and b>0 (7.10)
Since At? — 4 < 0 we can say that Afy/ AP + a2 — 4 < AfVa? and thus

4 AP+ ARWAP + a2 -4 <4+ and

as required to satisfy the second half of the inequality. Concentrating on the first half of

—alt < 4—At2+A{\/AEZ+a2—4

we can see that the left hand side is negative and, since 4 — A#?> > 0, the right hand side

the inequality

is positive, so the inequality is true. Now we can look at |ps| < 1. The second half of the

4— AP — ATWAP + a2 —4 <4+ aAt

is true due to the fact that v/ A#2 + a2 — 4 > 0. If we subtract 4 from each side we are left

inequality

with a negative left hand side and a positive right hand side. It was shown previously that

Aty/ AP + a2 — 4 < Afa which implies that —Afa < —A#y/ AP + 02— 4. Also using the
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fact that 4 — A#? < 0 we get

—aAT<4— AP+ ARAP + a2 -4

as required to satisfy the remaining half of the inequality.

This confirms that |p| < 1 for the case of real or complex roots, so the error term is

stable for all @ > 0 when 0 < At < 2.

Finally we will analyse At > 2. Due to the fact that vV AP +o2—4 > 0, p will al-
ways have real roots, so once again p; and p, will satisfy the inequalities (7.9). First we

look at |p;| < 1, for the error term to be stable we need

—aAf <4 - AP + ATV AL + a2 — 4

which can be rewritten as

2
—aAf < —(V AT —4 )+ AL (AP — 1) + o2

We can show that this inequality is true by proving that the right hand side is greater than

zero. Using another simple inequality relation

Va+b>+a for a>0 and b>0 (7.11)

we define \/(AZQ —4)+a? > \/Ai)z — 4. Since (7.10) gives us V/A#2 —4 < At we can

therefore say that
2
—(WAPZ —4 )+ ARV (AF —4) + 02 > VAR — 4(AT— VAR - 4) > 0

which completes the proof. Hence p, leads to a stable error term. Now we will look at

Ip,| < 1. Using (7.11) and the knowledge that A2 — 4 > 0, leads to —A#\/ AL + 02 — 4 <
—Ata. The assumption Af > 2 implies that 2 — At?2 < —2. Adding these together results

92— A2 — APV AP+ a2 — 4 < -2 — aAf

which contradicts the original inequality (7.9). Hence p, leads to an unstable error term.

in

This means that the system is unstable when At > 2.
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To summarise:

lp1] <1 real root

Aft=2—
|pg] =1 real root error term marginally stable
lp| <1 complex roots
0<At<2— ¢ |p;| <1 real root error term stable
lp2| <1 real root
. |p1| <1 real root
At>2—

|pg| > 1 real root error term unstable
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