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Measurements of the density and viscosity of fluids are required to determine optimal pro­

duction strategies in the exploitation of fossil fuel reservoirs and the monetary value of the 

fluid produced. In this work, we consider the analysis of two different designs of Micro 

Electrical Mechanical Systems (MEMS) that have been developed to determine both den­

sity and viscosity of fluids in situ. 

The first device is a transversely oscillating plate, known as the spider. It is about 1.6 

mm wide, 2.4 mID long and 20 J.Lm thick. It is suspended from a 0.4 mID thick support by 

24 square cross-section legs each of length 0.5 mm. Mathematical models have been pro­

duced for the plate operating in either forced or transient mode, intended for use in both 

Newtonian and non-Newtonian fluids. We only consider the general case of incompressible 

fluids, using the one dimensional diffusion equation to model Newtonian fluid motion and 

a reduced form of Maxwell's equations for viscoelastic fluid motion. 

The second MEMS device is based on a vibrating plate clamped along one edge, with 

dimensions of the order of 1 mm and a mass of ~ 0.1 mg. The plate is set in motion when 

an alternating current is passed through the coil mounted on the plate in the presence of 

a magnetic field. At resonance, the plate motion is observed using a strain gauge. Math­

ematical models have been used in different limiting cases to analyse the behaviour of the 

device. Densities in the range (1 to 1800) kg m-3 and viscosities in the range (10 to 300000) 

Pa·s were determined experimentally with the vibrating plate in argon, methane, nitrogen, 

n-octane, methylbenzene and heptane. 
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Chapter 1 

Introduction 

The main aim of this thesis is to understand the mathematical modelling behind oscillating 

body viscometers and then use this understanding to model new viscometers intended for 

use with fluids. In particular, the instruments will be used experimentally in the oil indus­

try, testing the fluids present while drilling for oil. 

We begin by describing viscosity and different fluid properties, in particular those of oil, 

with a brief discussion of other reservoir fluids. Newtonian and non-Newtonian fluids will be 

described and mathematical equations and models will be specified for the use of each. We 

will then give a description of some previously modelled viscometer designs ranging chrono­

logically from falling body viscometers, through oscillating bodies, to vibrating wires. The 

limits to the success of each will be discussed in an attempt to determine their usefulness 

as down-hole in situ viscometers. 

We will then consider the analysis of two new viscometer designs that take the form of 

oscillating plates, fabricated from silicon using the methods of Micro-Electro-Mechanical­

Systems (MEMS). We will describe oscillating MEMS devices intended for use with down­

hole fluids such as crude oil or brine. The viscometers are needed to measure the thermo­

physical properties of fluids in situ, to determine optimal production strategies and exploit 

the value of the fluids in the well. We recognise that a trade-off may have to be made 

between accuracy and the ability to withstand hostile environments and measure fluid 

properties over a wide range of conditions. It will be shown that conventional viscometers 

are currently unsuitable for measurements in situ for a number of reasons, suggesting that 

the development of a new viscometer that will both remain sufficiently accurate in hostile 

conditions and reflect both Newtonian and non-Newtonian fluid motion would be advanta-
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geous in this field. 

This work has been carried out in co-operation with Schlumberger Research Cambridge. 

Their research into the production of MEMS sensors commenced a number of years before 

this thesis was written. With their extensive knowledge of the oil industry, Schlumberger 

have provided valuable information regarding down hole drilling, methods of oil analysis, 

the production of MEMS sensors and the industry in general. An aim of this work is 

to analyse and optimise the performance with respect to uncertainty of Schlumberger's 

existing viscometers and to aid in the design of future MEMS sensors. 
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Chapter 2 

Fluid viscosity 

2.1 The properties of oil 

The analysis of oil is carried out for a wide range of fuel applications. Industrial hydraulic 

oils, turbine oils, and diesel and gasoline engine oils all undergo a series of laboratory tests. 

Technological advances in both machinery and instrumentation has made the testing con­

siderably more cost effective. Numerous different tests can be used to evaluate lubricants. 

The choice of these is dependent on the information required and a comparison of time, cost 

and accuracy necessary to complete each individual test. Testing is required to measure 

physical properties of the oil, the most common tested properties being viscosity, acidity 

and alkalinity. 

It is also valuable to know the level of contamination of oil, particularly in determining 

machinery wear rates for hydraulic oils. Therefore oil is also tested by particle count, water 

content and wear metal analysis. A particle count quantifies the levels of particles at vari­

ous sizes in a fluid sample. The particles can damage machinery components, so high levels 

need to be reduced. The presence of metallic elements is determined using a technique 

such as Spectrometric Analysis, Infrared Analysis (FT-IR) or Rotrode Filter Spectroscopy 

(a spectroscopic method using a rotating carbon disc electrode spectometer). Serious wear 

problems can occur from high levels of copper, lead, iron, aluminium or tin. The presence 

of water is also not desirable. Excessive amounts destroy lubricity and promote corrosion 

of metal parts. Measuring the total acid number (TAN) and total base number (TBN) can 

also determine a fault in the oil sample. The total base number is a measure of the oils' 

ability to neutralise acid and the total acid number is a measure of the acid and acid-like 

material in the oiL Alkalinic additives that enhance lubricity can become depleted or acidic 
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by-products may be formed that are corrosive to metals. 

The effective analysis of oil is extremely beneficial. In the case of hydraulic fuels this 

can increase production efficiency and component life, and shorten equipment downtime. 

For engine oils the result is prolonged engine life due to extended oil change intervals. This 

is increasingly important since the future availability of engine oils is currently being ques­

tioned and the prices continue to rise. Viscosity is undoubtedly the most important of the 

lubricant's physical properties. In the fuel industry it is essential to know an accurate value 

for viscosity because this data determines the necessary temperatures for pumping, injec­

tion and storage of the fuel. Residual fuels can be classified by their kinematic viscosity. 

Kinematic viscosity is a gauge of the degradation of the lubricant, measured in m2s-1 (81 

units) at a specified temperature. The break down of a hydraulic fuel or petroleum based 

engine oil is indicated by an increase in viscosity. This is also true to a lesser extent for 

synthetic or partially synthetic based engine oils. The viscosity of the lubricant is projected 

to increase with use but a rapid jump can indicate a more serious problem such as a cooling 

system failure. A decrease in viscosity is often more severe and could be an indication of 

contamination or fuel dilution. 

The viscometers that we will be modelling are intended for, but not limited to, use with 

down-hole fluids such as crude oil or brine. In oil exploration, the viscosity can indicate 

the mobility of the reservoir fluid, its flow characteristics and the commercial value of the 

reservoir fluid. Currently, samples are collected from the reservoir and later analysed at 

the surface in a laboratory. It would be more useful if samples could be taken on a more 

frequent basis and the properties determined down-hole. The fluid properties and com­

position of a reservoir will change during its lifetime making it hard to simulate reservoir 

conditions in a laboratory. A typical hydrocarbon reservoir exhibits temperatures between 

(323 to 448) K at pressures of (10 to 200) MPa [1]. These conditions can be recreated 

but it is difficult to replicate other effects such as fluid contamination and solid deposition. 

Evidently the production of a small-scale viscometer that can be used down-hole would be 

advantageous in this field. 
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2.2 The Notion of Viscosity 

Viscosity describes the internal friction of a moving fluid and its adhesive/cohesive or fric­

tional properties. The internal molecular resistance within the fluid produces a frictional 

drag effect. A high viscosity means greater internal friction, so the fluid is more inclined to 

resist motion. A low viscosity results in less friction during motion so the fluid flows easily. 

Viscosity can also be defined as a transport property because momentum is transported 

across a velocity gradient. [2] describes viscosity thus:-

The resistance arising from the want of lubricity in parts of a fluid is, other things being 

equal, proportional to the velocity with which the parts of the fluid are separated from one 

another 

The proportionality constant referred to above is the viscosity. It is a function of molecular 

mass, temperature, and collision diameter. This basic idea of absolute viscosity is termed 

"dynamic viscosity" however kinematic viscosity, that is the ratio of the absolute viscosity 

to the density, may also describe a fluid. 

2.3 Viscosity of Newtonian Fluids 

For our simple fluid model, we will assume that the fluid does not contain a mix of oil and 

non-Newtonian drilling muds. Instead we assume that the fluid is a homogeneous liquid 

with one density and one viscosity value. The classical theory of viscous fluids is based upon 

two equations, one for momentum and a continuity equation. The principle of conservation 

of mass produces the continuity equation [3], 

op 
at + V.(pq) = 0 

where p is the density of the fluid mass and q is the velocity. Under the assumption of 

incompressibility, i.e. constancy of mass density (p), this reduces to 

V.q = O. 

The conservation of momentum equation states that the rate of change of momentum for 

any volume V(t) of fluid is equal to the force exerted on the fluid in V. Assuming that 

the only forces acting on V(t) are at its boundary due to the viscous forces exerted by 

the surrounding fluid, and assuming the viscosity (v) is constant, this equation becomes 
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(2.1). These two equations combine to give the Navier-Stokes equations for the motion of 

an incompressible Newtonian fluid [3]: 

(2.1) 

\7.q = 0 (2.2) 

where p is the pressure. Fluids are Newtonian if the first equation holds and thus obey 

Newton's law of viscosity. Such fluids have a constant viscosity and density at a constant 

temperature and pressure. The governing equations for stress and velocity distribution in 

an incompressible Newtonian fluid can be fixed for any flow system from the values of these 

two material constants. 

2.4 Non-Newtonian Fluids 

Non-Newtonian fluids have a variable viscosity at a constant temperature. The viscosity 

can vary with the rate of shear and hence is referred to as "shear-rate dependent" viscos­

ity. Fluids that show decreasing viscosity with increasing shear rate are described as shear 

thinning or pseudoplastic. This effect can be quite dramatic and viscosity can reduce by 

a factor of 102 to 103 [4]. Some shear thinning fluids are shampoo, slurries, fruit juice 

concentrates and ketchup. A fluid is shear thickening or dilatant if viscosity increases with 

increasing shear rate, for example wet sand. The viscosity of a viscoplastic fluid increases 

proportionally with shear stress and rate of shear but does not start to flow until a certain 

critical shear stress called the yield-stress has been exceeded. Below this critical value, flow 

becomes negligible. Examples of such fluids would be certain greases. The plastic property 

is the fact that the fluid has a so-called yield value. Some plastic fluids are tomato paste, 

toothpaste and hand cream. Most fluids can be divided into one of the following three 

categories; a viscous fluid, an elastic fluid or a viscoelastic fluid. In a purely viscous fluid 

all energy added is dissipated into heat, whereas in a completely elastic fluid all the energy 

added is stored in the fluid and stress is directly proportional to strain. Stress is the force 

per unit area acting on the fluid causing it to change its dimensions and strain is the per­

centage deformation of the fluid when subjected to a load. A viscoelastic fluid exhibits both 

viscous and elastic behaviour. If a stress-strain curve is drawn for a viscoelastic fluid there 

are two notable points of interest. The proportional limit is the point where derivation 

from a linear relationship occurs. The elastic limit is the point at the maximum stress the 
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fluid can absorb and still return to its original dimensions. 

For each of these types of non-Newtonian fluid, Newton's law of viscosity is not a suit­

able description. We can measure density in an incompressible non-Newtonian fluid but 

we have no analogous equation for the shear stress. Viscosity can no longer be assumed 

constant and shear stress must also be measured. Unlike a Newtonian fluid, experiments 

yield a number of material functions that can depend on time, frequency, shear rate and a 

host of other variables. 

When testing is carried out during drilling for oil, it must be recognised that some of 

the additives to the drilling fluids are also non-Newtonian. One example is sodium ben­

tonite, added to increase the density of the drilling mud. The properties of such muds can 

change after interaction with soil or water, and exhibit different rheological behaviours. One 

such behaviour is to reach a yield stress then come into a Bingham phase. Alternatively a 

Herschel-Bulkley law is often an adequate description [5]. Increasing the concentration of 

bentonite in the suspension in either case seems to lead to an increase in viscosity. 

2.5 Herschel-Bulkley Fluids 

The Herschel-Bulkley model is a general mathematical model for viscosity that may be used 

to express non-Newtonian characteristics. Its formulation is 

(2.3) 

where T is the stress, Ty is the yield stress, l' is shear rate, and K and n are constants. In 

the special case when n = 1 and Ty = 0, the fluid is Newtonian and K is the Newtonian 

viscosity J..L. For shear-thinning fluids n < 1 and for shear thickening fluids n > 1. When 

n = 1 (2.3) is reduced to the Bingham modeL 

T = Ty + Ki' (2.4) 

In this case, K is constant and represents the plastic viscosity of the fluid. A minimum 

application of stress (Ty) is required to cause a flow and once this has been reached the 

fluid behaves as a Newtonian fluid. A plot of shear stress and shear rate for each of the 

described models is shown in figure (2.1). Another property of non-Newtonian fluid motion 

is its relation with time. Previously mentioned models all apply to the motion of time-
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Figure 2.1: Non-Newtonian fluid behaviour 

independent fluids, the viscosity is not influenced by the time of applied shear. In some 

fluids a dependency on the time subjected to a shear force can be seen. A fluid whose ap­

parent viscosity decreases with the time of shearing and then recovers its original viscosity 

after a period of rest is referred to as 'thixotropic' or time thinning. An example would be 

yoghurt or paint. Fluids that are time thickening, also known as rheopectic, are less com­

mon. One example of a fluid exhibiting such behaviour is gypsum paste. A fluid is known 

as rheopectic if the apparent viscosity increases with time of shearing and again reverts to 

the original viscosity after rest. Throughout this work we shall consider time-dependent 

non-Newtonian fluid motion. 

At present the rheology of reservoir fluids is usually measured at ambient surface con­

ditions. These results are then later extrapolated to down-hole conditions. This requires 

a good model of how fluids are affected by temperature and pressure down-hole, an area 

which is still not fully understood. This could be due to the inadequacy of using two 

parameter equations, such as the Bingham model, to make measurements of shear rheol­

ogy. Some experimental evidence exists that appears to show that down-hole fluids may 

be modelled as Bingham fluids. The difficulties involved with Bingham fluid formulation 

unfortunately mean that analytical techniques are extremely challenging to pursue. The 

rheology of reservoir muds such as bentonite is influenced by many factors such as tem­

perature, pressure, composition and shear history, and it is difficult to isolate the effects of 

each. Schlumberger have carried out rheological tests on a number of water-based muds, 

such as may be present in an oil reservoir, at temperatures up to 403 K and pressures to 

100 MPa [6J. From these results it has been deduced that muds have a largely pressure 
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independent yield stress with a sensitivity to temperature which increases with increasing 

temperature. This yield stress is followed by shear thinning behaviour. It was found that 

this behaviour could best be represented by a Herschel-Bulkley model. Many authors have 

discussed the possible non-Newtonian nature of down-hole fluids. [6] suggests that it may 

be reasonable to treat a fluid/mud mixture as a visco-elastic fluid. As far as this thesis is 

concerned, we realise that a full examination of all the downhole properties of drilling muds 

should include consideration of both yield stress and shear thinning effects. Unfortunately 

the complications involved render this beyond the scope of the current work. However, 

since we do not wish to completely ignore the non-Newtonian nature of drilling muds, we 

will give some attention to visco-elastic models, which by their nature preserve the linearity 

of the governing equations. 

2.6 Maxwell Fluids 

A visco-elastic fluid possesses both viscous and elastic properties and it is useful to have a 

single equation combining the two. We can define visco-elastic fluid motion using Maxwell's 

equations 
1 

Vt + (v.V)v = --Vp+ V.() 
p 

V.v = 0 

with the stress tensor, (}ij, given by 

(2.5) 

(2.6) 

(2.7) 

where v is the fluid velocity, e = -tJ and G is the shear modulus of the fluid. We can simplify 

these equations if we assume that v is of the form v = luCy, t), 0, 0] and all of the stresses 

are functions of y and t alone, so that motion is thus independent of x. If this is the case, 

a number of terms vanish from (2.7) leaving the simplified equations 

(2.8) 

1 
(}22t + (j(}22 = 0 (2.9) 

1 v 
(}12t - Uy (}22 + (j(}12 = jjUy (2.10) 

1 v 
(}21t - U y (}22 + (j(}21 = jjUy . (2.11) 
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Since O"ij = O"ji by symmetry of the stress tensor, we have 0"21 = 0"12 so equation (2.11) does 

not supply any extra information. From (2.9), we find that 0"22 = A(y)e-~, where A(y) 

is an arbitrary function of y. Assuming that 0"22 = 0 at t = 0, we find that 0"22 == 0 is a 

solution. (2.8) decouples as 0"11 does not appear elsewhere, so we are left with the single 

equation 

(2.12) 

In a similar way, (2.5) is reduced to 

Ut = 0"12y· (2.13) 

Differentiating (2.12) with respect to y and substituting (2.13) the resulting equation for 

fluid motion is 

(2.14) 

We will use this equation further in a later chapter when considering the MEMS in visco­

elastic fluids. 

2.7 Stokes flow 

With MEMS devices, due to their dimensions, it is typical to find Stokes flow. Stokes flow 

is a type of flow where the viscous forces are much larger than the inertial forces. The flow 

is described by the Navier-Stokes equations (2.1) with the inertial and body force terms 

equal to zero. The Reynolds number of a flow is a ratio of inertial forces, Up, to viscous 

forces, Z. If flow has a small Reynolds number (Re < < 1) it can therefore be considered 

Stokes flow. We can calculate an approximate value of the Reynolds number for the MEMS 

sensor by considering the equation 

Re= LU 
v 

where L is an appropriate length scale, U a comparable speed and v = ~ is the kinematic 

viscosity of the fluid. In this case we will use the amplitude of the plate oscillations for L, 

assuming that they are similar to the oscillations of the fluid close to the plate, and for U 

we will use the speed of these oscillations. Taking appropriate values for the sensor gives 

10-6 X 10-2 

Re = 10-3 = 10-2 « 1 
103 
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so the flow has a small Reynolds number and can be considered stokes flow. In the work of 

chapter 6 we will assume stokes flow throughout. 

2.8 Viscosity of reservoir fluids 

Liquids commonly encountered in oil reservoirs are chemically and compositionally complex. 

This means that despite existing correlations that relate viscosity to other fluid properties, 

these are not sufficiently accurate. For reservoir fluids there is a third parameter, other 

than temperature or pressure, which affects viscosity. This is the amount of gas in solution 

in the fluid. A decrease in temperature will cause the liquid viscosity to rise. An increase 

in pressure should cause an increase in viscosity however the higher the pressure, the more 

gas is in solution. An increase in the amount of gas in solution should cause a decrease in 

viscosity [7]. 

[7] suggests that reservoir fluids are compressible and defines the isothermal compressibility 

at constant reservoir temperature as 

(2.15) 

where V is the original volume, P is the pressure and "'T is the compressibility. Gas is 

considerably more compressible than the other reservoir fluids such as liquid hydrocarbons 

or water. The general order of magnitude of compressibility can be seen below. 

Fluid "'T /psi-1 Fluid "'T /psi-1 

Reservoir saline waters 3 x 10-6 Gas at 1450 psi 689 x 10-6 

Undersaturated black oils 17 x 10-6 Gas at 5800 psi 172 x 10-6 

These factors affect the volume of liquid collected at the surface. The volume of liquid 

will be less at the surface than at reservoir conditions due to changes in the three pa­

rameters. A pressure reduction will increase the volume but a temperature reduction will 

decrease the volume. The most significant factor is that a pressure reduction will decrease 

the solubility of gas causing a large decrease in fluid volume. 

To summarise, for our simple fluid model, we are assuming that the fluid is a homoge­

neous liquid. When modelling non-Newtonian fluid motion we will consider fluids to be 

time-dependent such that the viscosity is affected by the time of applied shear. Despite the 
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complexity introduced by gas in the down-hole solution, the compressibility of the fluids are 

small so the amount of gas in solution will have negligible effect on viscosity in comparison 

to other important parameters such as temperature. For this reason we will be modelling 

the general case of incompressible fluids. 

" (' 
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Chapter 3 

Viscometers 

In the previous chapter, some of the different properties of fluids were considered. We 

are now going to discuss the main topic of the thesis, namely the instruments used in 

the measurement of viscosity. The main purpose of this chapter is to analyse designs and 

methods for the measurement of viscosity that have been tried in the past. Let us start by 

briefly mentioning some early viscometer methods. The first set of devices to be discussed 

in more detail are torsionally oscillating body viscometers. Here we plan to describe the 

development from a cylindrical body to a flat metal disc and then finally to a quartz disc. 

From here, the progression to transversely oscillating wire viscometers will be shown. The 

chapter will conclude with a summary table in chronological order describing a selection of 

previously modelled instrument designs. 

3.1 Early Methods 

3.1.1 Falling body viscometers 

This method mainly uses relative viscosity measurements although absolute measurements 

are possible [8]. In these instruments viscosity is determined by allowing a solid of revolution 

to fall through a sample fluid [9] [10]. The main assumptions behind the working equations 

are: 

1. the body falls at constant terminal velocity, 

2. the flow is fully developed, 

3. the flow is laminar axial, 

4. the flow is cylindrically symmetric. 
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The ideas behind this method continue to be brought up to date. In recent years a falling­

needle has been used to incorporate the advantages of slender-body theory to simplify 

calculations of drag coefficients [11]. Although such methods are quite accurate, the free 

moving parts involved in such viscometers make them unsuitable for use down-hole. 

3.1.2 Capillary viscometers 

This type of instrument can be used as an absolute viscometer [8]. The main body is a 

small capillary tube of known length. The fluid is forced through by applying a pressure 

differential across the tube. The fluid viscosity (v) is expressed in terms ofthe tube radius 

(r), pressure drop along the tube (P), length of tube (l) and volumetric flow rate (Q). The 

working equations are based upon the Hagen-Poiseuille equation of fluid dynamics [12]. 

(3.1) 

This equation implies that the flow rate is directly proportional to the radius4 and is 

inversely proportional to the length of the tube, so greater flow is seen in shorter, wider 

capillary tubes. The suitability of this type of viscometer for down-hole use is in doubt for 

a number of reasons. Firstly there is the need for a device to produce constant fluid flow. 

Also, at high pressures, an external pressure will be needed to balance the internal one to 

prevent distortions occurring in the tube. In down-hole fluids, scale deposition problems 

are also possible. 

3.2 Oscillating Body Viscometers 

All of the viscometers discussed will contain the basic structural idea of a main oscillating 

body though they will all appear in slightly different forms. By evaluating the advantages 

and disadvantages of a selection of such devices it is hoped that the limits to the success 

of each can be determined. It will also be shown that some of the instruments have been 

used successfully in practical applications. However the accuracy is often reduced by as­

sumptions in the mathematical modelling of the instrument or the physical constraints at 

non-ambient conditions, such as high temperatures and pressures. The information gath­

ered suggests that a change to both the mechanical design of the viscometer and the math­

ematical equations supporting it is needed to model an accurate instrument for measuring 

non-Newtonian fluid viscosity. This suggests the development of a new viscometer that will 

both remain precise in hostile conditions and accurately reflect non-Newtonian fluid motion. 
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3.3 Torsionally Decaying Oscillators 

Torsionally oscillating bodies have been used successfully in a number of viscometer designs. 

Accurate measurements are accomplished by observing the decay of oscillations of the 

axially symmetric body whilst suspended from an elastic strand. Once immersed in a liquid, 

the surrounding fluid causes torque on the body surface that increases the effective moment 

of inertia. This can be observed in one of two ways, by an increase in the logarithmic 

decrement of the amplitude of angular displacement and by an increase in the period of 

oscillation. Various devices have been used experimentally with fluid both internal and 

external to the oscillator, see figure (3.1). A typical radius for such a body would be 35 

mm [15]. 

-----r---- - - - - - - - - ----r---

fluid fluid 

fluid 
fluid 

flat cylindrical disc 

tungsten 
f-( ___ supporting __ ---;.) 

WIre 

fluid 

hollow cylinder 

Figure 3.1: Oscillating body viscometer designs: a flat cylindrical disc in an infinite fluid , 
a flat cylindrical disc between parallel plates and a hollow cylinder with fluid internal 

3.3.1 Theory of Torsional Decay 

The motion of a torsionally oscillating body suspended in a sample fluid is described by 

the equation [12] 

(3.2) 

Here a(T) is angular displacement, Wo = ~: is the natural angular frequency of oscillation 

in vacuum, To is the period of oscillation in vacuum, TO = wot is a dimensionless time, 
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.60 is the logarithmic decrement in vacuum, I is the moment of inertia of the oscillating 

system and m(T) is torque exerted by the fluid on the body. The logarithmic decrement 

is the logarithm of the ratio of angular amplitudes over a period. Equation (3.2) may be 

regarded as a statement of the fact that a torsionally oscillating body moves in a manner 

similar to a simple linear spring but with damping provided by both the body itself and the 

fluid that surrounds it. It is in the m(T) term that all the fluid dynamics is contained. The 

sequential development of this equation for an oscillating disc by Kestin and Persen [13] 

and then Newell [14] is briefly explored later in this chapter. The working equation (i.e. 

the equation that will be used for calculation purposes) is written 

S S = w( -.6 ± ~) , 
wo 

(3.3) 

where S and S are two complex roots of the characteristic equation 

(3.4) 

and D( S]/-L, p) is the Laplace transform of the torque. This will vary according to the 

geometric arrangement of the system. The function D(S]/-L, p) depends parametrically on 

the density and the viscosity of the fluid in which the body is submerged. The logarithmic 

decrement (.6) and frequency (w) of oscillation in the fluid can be found experimentally. 

These two known variables are then sufficient to determine S. If the density is known then 

we can use these equations to determine the viscosity. 

3.3.2 Oscillating Disc 

We will now discuss two different forms of the oscillating disc model. The operation of 

torsionally oscillating bodies in an assumed infinite space had proved to be fairly inaccurate. 

Three-dimensional vortex-like flow patterns would appear to form at the surface of the disc 

[16]. An exact theory from first principles was initially derived by Kestin and Person [13] 

for a thin disc between two plates, based upon the ideal case of an infinitely thin disc of 

infinite radius. The instrument was calibrated in vacuum to find the natural period of 

oscillation (To) of the disc, and the decrement of damping (.60 ) using (3.5): 

.6
0 

= _I_In <Pn + 'l/Jn 
27fm <Pn+m + 'l/Jn+m 

(3.5) 

Here <P and 'l/J denote the angular amplitudes of motion on the two sides of the position at 

rest. Amplituden is taken n full cycles from an arbitrary zero and amplituden+m taken m 
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full cycles later. With the exception of early transient motion and the last phases at very 

small amplitude, the motion is damped harmonically. The motion is isochronous, sequential 

oscillations have a constant phase relationship, and the period T in the fluid is larger than 

that in vacuum, so that 
T 

0=->1 
To 

The complex circular frequency, determined using 

(3.6) 

(3.7) 

is equal to the complex root (s) of a characteristic equation. The characteristic equation 

used by Kestin and Persen took the form: 

(3.8) 

Here (3 = £ is a dimensionless separation and I is the moment of inertia of the system. 

The density p is found from other sources leaving only one unknown 8, the boundary layer 

thickness. For Newtonian fluids this was shown to be 

(3.9) 

From (3.9) the viscosity is extracted. This theory requires the boundary layer to be large 

compared to the plate separation, yet assumes that the plate separation and the disc thick­

ness are both small in comparison with the disc radius R. The theory is based on a portion 

of the radius R of an infinite, but infinitely thin disc. This assumption ignores the effect of 

the finite radius of a real disc and neglects any contribution from the small, finite cylindrical 

circumference. 

The following characteristic equation introduced by Newell is a result of an expansion of 

the hyperbolic cotangent in equation (3.8). 

(3.10) 
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Figure 3.2: (a) Kestin and Persen's model [13] (b) Newell's model [14] 

where 

13 assumed small and b is the harmonic mean distance calculated using the distances be­

tween the plates and the disc, bl and b2 . 

The effects of the disc edges and the finite thickness of the disc is contained in the sec­

tion following unity of (3.11) for CN. Putting the complex circular frequency values (3.7) 

into this characteristic equation and then taking the imaginary part and neglecting terms 

of order higher than 6 2 , reduces C N to the equation 

C = [ 2I (6 _ 6 ) 6]132 /36
2 

-1.04 h 6(6
2 

-1)136 
N npbR4 f) 0 + a f) + f)2 fJ + f) (3.13) 

where a = i[(k + 1) + (t + 1)], / = 7~O [(k + I? + a + 1)3], h = 7160 [(k + 1)5 + a + 1)5] 

and k = ~. CN is independent of fluid properties and depends only on the geometry of the 

system. Using the above equations 132 can be determined and using the relation 02 = '* this 

value can be substituted into (3.9) for the boundary layer thickness to extract a viscosity. 
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The equations produced by Newell [15] are only valid if bl +b2 +d« Rand bl +b2 +d« o. 

The use of an expansion means that the equation breaks down for a boundary layer thick­

ness 0 when f3 is too large for convergence. Accuracy also suffers due to the limited number 

of terms kept in the equation. Numerically, this method involves a lot of work and realisti­

cally should be carried out computationally. Due to the strict dependence on the system's 

geometry, effort is needed to measure the plate separation distances and the disc thickness 

accurately. Another difficulty arises in ensuring all the faces of the instrument are perfectly 

flat. Good alignment is essential for parallelism. An example of the layout of such an 

oscillating disc viscometer can be seen in figure (3.3). 

3.3.3 Analysis of the Decay Method 

In obtaining the working equations for oscillating-body viscometers certain assumptions 

are commonly made: 

1. the amplitude and frequency are sufficiently small for secondary flows to be neglected, 

2. we can apply the linearised Navier-Stokes equations for an incompressible fluid, 

3. the suspension strand is perfectly elastic, 

4. the body weight is chosen to keep the axial tension on the strand to a desired mini­

mum. 

A common cause of failure of the early design of torsionally oscillating viscometer was its 

inability to function at conditions far from ambient such as very high or low temperatures or 

in corrosive atmospheres. High pressure environments were particularly problematic. Os­

cillating body viscometers containing fluid are unsuitable for operation at high pressures. 

It is inevitable that distortions in the dimensions of the body will occur. Only the disc 

form with external fluid is consistent with the volume of sample acceptable for use at high 

pressures. However the damping effect on the disc induced by liquids at such conditions is 

often so large that the mass of disc required cannot be supported by any available method. 

Also, the oscillating disc experiments require careful measurement of the natural decay time 

of the system. For the case of the oscillating disc between parallel plates, errors can occur 

if the spacing is not sufficiently comparable with the boundary-layer thickness. Gases with 

boundary-layer thickness of order 0.1 to 5 cm require that the spacing must not exceed 1 to 

5 mm. At high temperatures thermal expansion of the system will influence the magnitude 

of this gap. 
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Figure 3.3: Instrument with disc between parallel plates, drawn by hand, reproduced from 
[15] 
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For an instrument to be successful at very high pressures it must conform to specific design 

criteria. The amplitude and frequency of oscillation must be kept small enough so that 

viscous torque is not affected by secondary flows. It is necessary to measure a practical 

number of oscillations before the amplitude restricts further observation therefore the log­

arithmic decrement must lie in an appropriate range. This can be improved by increasing 

the moment of inertia of the body. Due to the stress on the elastic suspension strand 

caused by the weight of the body it is also important to keep this weight to a minimum. 

The supporting wire can develop high internal damping such that decrement ,0,0 increases 

almost exponentially with temperature [16]. It had been suggested that this problem could 

be overcome by replacing the tungsten wire with drawn quartz strands. Generally, these 

early devices are unsuitable for operation at the high temperatures and pressures commonly 

found in down hole oil wells and so would not be of use in such circumstances. 

3.3.4 Quartz-crystal oscillating body 

Another variation in instrument design was to use a quartz-crystal oscillating body. Such 

an instrument as described by Diller [17] could be made compact enough to measure vis­

cosity at low temperatures and higher pressures, see figure (3.4). Viscosities accurate to 0.5 
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Teflon 
Supporting 
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Figure 3.4: Quartz crystal oscillator, drawn by hand, reproduced from [17] 
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% were determined in temperatures of 14-100 K at pressures up to 35 MPa. No calibration 

was necessary so absolute viscosity was measured. The first design used a torsionally oscil­

lating right circular natural quartz cylinder that was 5 cm in length and 0.5 cm in diameter. 

Calculations were made using (3.14), relating viscosity with the logarithmic decrement 

of the oscillations. 

(3.14) 

where M is the mass, S is the surface area and f is the resonant frequency of the crystal 

in the fluid. /:::,. fluid is damping resulting from the fluid and can be found by subtracting 

damping that occurs in vacuum from the total. 

/:::,. fluid = [/:::,.total - /:::"vacuuml (3.15) 

More precise results can be obtained if the crystal is forced to oscillate near its resonant 

frequency. 

3.3.5 Concentric-cylinder (Couette) viscometer 

An alternative form of the oscillating disc viscometer is the concentric-cylinder geome­

try [18], shown in figure (3.5) . The first practical coaxial cylinder viscometer was devised 

by Couette in 1890. The fluid sample is held in the annulus between the cylinder surfaces. 

The laminar flow between the two cylinders is now known as Couette flow. 

r--

Rl R2 

r 

1 

I I 

Figure 3.5: Concentric-cylinder viscometer 

The design of these viscometers can vary, with either the inner, outer or both cylinders 

rotating. They can occur in a number of configurations as shown in figure (3.6), each one 
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aimed at improving an aspect of the viscosity measurement. 

(a) The double gap design has a much larger surface area to measure low viscosity fluids. 

(b) The cone ended design is intended to reduce end effects. 

(c) The serrated inner cylinder is aimed at reducing slip. 

(b) (c) \ - ~ 
1-

~ I I 

Figure 3.6: Coaxial cylinder designs: (a) double gap, (b) cone ended and (c) serrated inner 
cylinder 

The viscosity of a Newtonian fluid is found using the Margules equation [18]: 

(3.16) 

where T is the torque, l is the immersion depth and n is the angular velocity. 

There are a number of issues that arise with the coaxial cylinders viscometer. One problem 

is the dependence of viscosity on temperature. If the fluid tested is very viscous and tests 

are carried out at high shear rates, the temperature could rise significantly due to viscous 

heating. This means that experimentally it would be necessary to find a way to retain a 

known, constant temperature. If the angular velocity reaches too high a speed, turbulent 

flow can occur. Above a certain rate of rotation, the faster moving fluid tries to move 

from the inner to the outer cylinder due to centripetal force and the flow becomes complex. 

Local circulation occurs forming Taylor vortices. Another problem is that the equations 

are based on cylinders of infinite length. To be of practical use, the device must contain 

cylinders of finite length. As we approach the ends of the inner cylinder the velocity gradi­

ent becomes non-radial so the torque per unit length decreases. The ends themselves will 

also produce additional torque, so the equation needs to be changed to allow for this. One 

way to overcome this problem would be to perform calibration in a known fluid to negate 

the end effects . 
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3.3.6 Cone and plate viscometer 

The final torsionally oscillating body viscometer that design we will discuss is the "cone 

and plate" viscometer. This viscometer is often used for fluids with a high viscosity. In 

commercial instruments, the geometry usually involves an angle Q of between 0.5 and 8 

degrees [4]. When measuring viscosity as a function of shear stress or shear rate, this set up 

causes the shear rate to be close to a constant value [18]. In most theoretical models, the 

analysis makes use of the fact that Q is small enough to allow a lubrication approximation 

to be applied to flow in the gap. 

n R 

Figure 3.7: Cone and plate viscometer, where R is the plate radius, Q is the angle between 
the cone and the plate, and n is the angular velocity 

The cone is rotated about the central axis with angular velocity n, and the torque T on 

the fixed plate is measured. The viscosity can then be found in terms of the diameter R, 

angle Q, angular velocity n and the measured value of torque T [4], using 

(3.17) 

The cone and plate viscometer also has its problems. It is not particularly useful for 

particulate fluids. The particles contained in the suspension can undergo a grinding action 

and interfere with the tip of the cone. This can be solved by removing the very end of the 

tip. As with the Couette flow viscometer, viscous heating effects mean that the temperature 

in the gap between the cone and plate may not be uniform, and secondary flows can occur 

for fast rotations and large values of Q. 

3.4 Vibrating Viscometers 

A later step in viscometer design was to use a long cylindrical rod or wire. The idea was 

introduced from Stokes theory [19] about a cylinder in fluid undergoing damped oscilla-
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tions. Stokes reasoned that an element of a cylindrical rod oscillating as a pendulum would 

experience resistance nearly equivalent to a similar element of an infinite cylinder oscillat­

ing linearly with the same velocity. He derived a set of working equations for the infinite 

cylinder oscillating perpendicular to its axis in an infinite mass of fluid. He stated that 

near the ends of the finite length rod this representation would lead to errors but argued 

that this would be negligible if the diameter of the rod was small in comparison with its 

length. This method was developed by Tough et al [20] in 1963. Instead of measuring 

torsional oscillations, the body was made to vibrate transversely. The wire is stretched 

taut in a magnetic field. An outline of the apparatus used is shown in figure (3.8). A direct 

current is passed through the wire to initiate a deflection and is switched off once a steady 

deflection is achieved. As the oscillations decay, an alternating voltage is induced. The 

usual way of measuring this signal was to magnify it and then display it on an oscilloscope. 

The frequency was deduced from photographs of the oscilloscope traces and could be used 

in plots to find the decay constant T. An example of a semilog plot of this type is shown 

in figure (3.10). 

D.C. Supply 

Vibrating wire 

Mercury Relay 

Amplifier Filter Scope 

Figure 3.8: Equipment set up for vibrating wire viscometer 

Inaccuracies appearing in results from using torsionally oscillating bodies at extreme phys­

ical conditions were reduced with this new viscometer design. The simple and compact 

measurement cell was much more appropriate for conditions far from ambient. In 1978, 

Karnus et al [21] described an instrument that could be used at pressures up to 15 MPa 

and temperatures from (14 to 300) K. The accuracy obtained was within ±2 % of the true 

viscosity. This instrument was only tested in samples of low viscosity, mainly gases. It 

was more difficult to obtain results from the oscillogram in a higher viscosity fluid due 
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Figure 3.9: An oscilloscope photograph showing the frequency and exponential decay of 
the wire. Reproduced directly from [20] 
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Figure 3.10: Semi-log plot showing data from (fig 3.9). Reproduced directly from [20] 

26 



to the reduced number of free oscillations of the body. The range of viscosities that the 

instruments could measure needed to be widened. Tough et al did not publish any results 

for the tests that were claimed to have been in water. In 1980, Charles et al [22] presented 

a vibrating wire viscometer for liquids with viscosities up to 0.5 cPa·s. Again the accuracy 

recorded was around ±2 %. 

As developments were made to the physical design of the instrument and new technology 

arrived to ease observations and measurements, the accuracy and range of the vibrating 

wire viscometer improved yet further. Measuring viscosities of fluids at pressures above 

40 MPa while still maintaining an accuracy comparable to that achievable at atmospheric 

conditions proved to be extremely problematic. By 1988, Van der Gulik et al [23] had intro­

duced an instrument that produced results for temperatures of (80 to 310) K at pressures 

up to 1 GPa. The basic method involved was similar to that described [20] in 1963. A taut 

tungsten wire was forced to vibrate close to its resonant frequency by passing through a 

DC pulse and then the oscillations were allowed to decay. The oscilloscope was replaced 

by a microprocessor to store the signal produced. A photograph was no longer necessary, 

this signal could be Fourier transformed and fitted to the Lorentz curve, a function of the 

cumulative distribution of ordered data. The wire was attached to an aluminium-oxide 

holder using metal clamps. It was able to work in hostile conditions because the vibrating 

wire body was electrically insulated from the pressure vessel. The published results [23] 

claimed an accuracy of ±0.5 % for the viscosity. 

3.4.1 Theory of Vibrating Wire Viscometer 

In 1986, the theory of the vibrating-wire viscometer was completely reworked by Retsina 

et al. [24]. The theory was subject to a number of newly established instrument design 

constraints that enable the viscometer to measure viscosity with a ±0.1 % accuracy. The 

fluid equations and the mechanical equations for the motion of the wire were considered 

separately. In the latter, the parameters k and k' express the mass and added damping due 

to the fluid, combining the two sets of working equations. The mechanics can be analysed 

without specifying these parameters. The notation for the dimensions of the model are 

shown in figure (3.11). 

The mechanical equations follow simple beam theory with the wire being modelled as a solid 

cylindrical rod clamped at both ends and subject to a tension T. Due to the specification 
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Figure 3.11: Model of vibrating rod 

that transverse displacements and amplitude of oscillations will be small, linear theory can 

be adopted. The rod motion is described by the equation 

(3.18) 

where I = ~1fR4 is the second moment of area, ms = Ps1rR2 is the mass per unit length of 

solid rod, mb = p7r R2 k is the added mass per unit length of external fluid, Db = p7r R 2wk' 

is the drag force of the fluid and Do = 2Ps1rR2w/'::,.0 is the coefficient of internal damping. 

E is the Young's modulus for the rod material, Ps is the rod density, p is the fluid density, 

w is the angular frequency, /'::,.0 is the logarithmic decrement in vacuo and F represents a 

force per unit length acting on the rod, which becomes negligible for large times. 

Motion is started by an initial displacement of the rod at time t = O. The beam oscil­

lates in one mode in the plane containing the beam axis and perpendicular to it. The rod 

and the fluid are both initially at rest. The theory deals with the transient decay of free 

oscillations so (3.18) is solved subject to the following boundary and initial conditions [24] 

y = 0 and Yz = 0 at z = ±L 

y{z, t) = yof{z) 

Yt = 0 at t=O 

where Yo is the maximum initial displacement of the beam and f is an arbitrary function of 

z with ifi s 1. The general solution to a non-dimensionalised form of (3.18) in any single 
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mode, j is given by 

00 

~j((, t) = AA)j(()e(~-6)Wjt + L 9m<Pm((,)e-Vmwmt (3.19) 
m=l 

where ~j is the displacement of each point at distance (, from the origin, 9m is the am­

plitude of transient force and <Pj (() are eigenvectors of the normal modes of oscillation. 

The first term in (3.19) conveys damped harmonic motion in one mode and the remaining 

term represents a simple decaying displacement due to initial transient in the fluid motion. 

With further progression [24] this is reduced to a complex working equation which can be 

expressed in real and imaginary parts as 

6. = (pi Ps)k' + 26.0 

2(1 + (pi Ps)k) 
(3.20) 

(3.21) 

The fluid behaviour is analysed by solving the Navier-Stokes equations subject to the fol­

lowing boundary and initial conditions 

Vr = (z - 6.)wERe(~-6)wtcose 

V() = -(z - 6.)wERe(~-6)wtsine 

at r = ERe(~-6)wt + R(l- E2e2(~-6)wtsin2e)~ 

and Vr = V() = 0 as r -* 00. 

These conditions state that the fluid is initially at rest and there is no fluid motion far from 

the rod. The geometry used to derive these can be seen in figure (3.12). 

The solution is obtained for an infinite volume of an incompressible liquid implying that 

the Mach number is small. Thus 

(3.22) 

Owing to the assumed small transverse displacements, the non-linear inertial terms are 

neglected so that 

(3.23) 
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Figure 3.12: Symbols defined for the r, () plane 

where c is the sonic velocity in the fluid, f. is the maximum amplitude of the motion and d1 

is the Reynolds number of the flow. The motion is also assumed to be isochronous with a 

frequency w. From the fluid analysis, Retsina et al [24J derive working equations to express 

the parameters k and k' in the form 

(3.24) 

k = -1 + 2Im(A) (3.25) 

k' = 2Re(A) + 2.6.Im(A) (3.26) 

Here Ko and Kl are modified Bessel functions. If the rod material properties are known 

then (3.24), (3.25) and (3.26) combined with either (3.21) or (3.20) provide a complete set 

of working equations to find the viscosity of the fluid. Measurement of the frequency of 

oscillations and the logarithmic decrement allow either the density or the viscosity of the 

fluid to be determined. Equation (3.20) is the preferred choice in practice because it is 

more sensitive to the measurement of viscosity. 

Assael et al [25] describe two viscometer designs that follow these principles. They op­

erate in a range of pressures from 80 to 300 MPa and at temperatures between 270 and 

370 K. Over this range of conditions it is estimated that the accuracy of the reported vis­

cosity is ±0.5 %. This is influenced by any inaccuracies in the values of the wire material 

properties and the error in the fluid density. The instruments were estimated to measure 

the decrement of oscillations to a precision of approximately ±0.1 % and the frequency to 

±0.01 %. 
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3.4.2 Analysis of Vibrating Wire Method 

Errors can arise from a host of sources. The value for the decay-time constant will be erro­

neous if the plane of oscillations is not strictly perpendicular to the magnetic field. Decay 

in the vibrational motion is also caused by the internal damping of the wire. The wire 

used most often is hard-drawn tungsten. The dimensions of the body must be chosen to 

emphasise the damping caused by the presence of the fluid. The wire diameter is required 

to be small (R:: 100 /-lm). The maximum amplitude of the oscillations is also specified to be 

small relative to the diameter, causing observed motion to be small (R:: 10 /-lm). A typical 

wire used by Tough et al was 5 cm in length and 25 /-lm in diameter, and would oscillate 

at an amplitude of about four times the diameter. Errors also arise from differences in the 

theory of the instrument and its actual physical geometry. The corrections at the ends and 

edges of the body can be quite large. In reality, the ends do not follow an ideal case and 

are neither perfectly clamped nor hinged so errors occur when a choice of these is made for 

the hydrodynamic equations. 

The validity of the equations derived by Retsina et al [24] impose necessary instrument 

design constraints so that certain conditions are met. For a chosen range of p and /-l for the 

fluid, limits should be placed on the radius of the wire (rod) and the frequency of oscillation. 

The conditions given by (3.23), (3.22), and the condition E « 1, require that 

w» wlpR2 

W« c/ER 

(3.27) 

(3.28) 

(3.29) 

It is apparent from these inequalities that the smallest realistic value for E will be the most 

beneficial, where E = (maxi R is the maximum amplitude of the wire motion in terms of the 

beam radius. 

A further restriction is imposed because the Navier-Stokes equations were used to eval­

uate the parameters k and k'. This is only permitted if the fluid tested is Newtonian. A 

further assumption made is that the total temperature rise in the fluid sample is negligible. 

The temperature near the surface of the beam will differ from that of the surrounding fluid 

owing to viscous dissipation. Inaccuracy will also occur as a result of the assumption that 

there is an infinite volume of fluid. It has been shown [23] that this error is approximately 
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proportional to (alav )2 where a is the radius of the wire and av is the radius of the fluid 

container. This is said to be less than 0.05 % for av = 100a. Other corrections need to be 

considered for the non-uniformity of the wire, in particular its cross section. 

3.5 Summary 

This analysis indicates that conventional viscometers are currently unsuitable for measure­

ments in situ for a host of reasons. Falling body viscometers contain free moving parts and 

capillary viscometers need not only a device to produce a constant fluid flow but also an 

external pressure to balance the internal pressure to prevent distortions occurring in the 

tube. Torsional oscillating-body viscometers containing fluid can perform poorly at high 

pressures, since it is inevitable that distortions in the dimensions of the body will occur. 

The damping effect on the discs of disc viscometers induced by liquids at such conditions is 

often so large that the mass of disc required cannot be supported by any available method. 

The simple and compact measurement cell used in vibrating wire viscometers is more ap­

propriate for the far from ambient conditions that are found down-hole. It is able to work 

in hostile conditions because the wire body is electrically insulated from the pressure vessel 

[23]. Unfortunately, the vibrating wire viscometer is limited by the equations used to eval­

uate the parameters in its mathematical model. By applying the Navier-Stokes equations, 

the model is only representative if the fluid tested is Newtonian. 

The information presented suggests that a change to both the mechanical designs of the 

viscometers and the mathematical equations supporting them are needed to model an ac­

curate instrument for measuring fluid viscosity in oill gas wells in situ. This prompts the 

development of a new viscometer that will both remain sufficiently accurate in hostile con­

ditions and reflect both Newtonian and non-Newtonian fluid motion. We recognise that 

a trade-off may have to be made between extreme accuracy and the ability to withstand 

hostile conditions and measure a wide range of fluids. We conclude that the production of 

a novel type of small-scale viscometer that can be used down-hole would be advantageous 

in this field. 

32 



Table 3.1: Comparison of past designs in chronological order (For the method of detec­
tion, E:=electromagnetic, P:=piezoelectric, Oo:=optical using oscilloscope photographs and 
Op:=optical using photodiodes.) 

Geometry Method Det. Freq. Viscosity Pressure Temp Other 

1kHz Range Range Range Limitations 

ImPa.s IMPa IK 

Hollow disc Torsional free decay. E 0.2 0.5 - 50 Lack of exact 

pendulum Resonant frequency -2.3 knowledge of 

[26] and damping temperature of 

measurement. the pendulum. 

Cylindrical Transverse oscillations. 00 0.475 0.0013 1.1 Imperfections 

wire Free decay, resonant -3.34 -0.0027 -2.5 in the wire. 

[20] frequency and damping Claimed 

measurement. uncertainty 

2.1 % 

Quartz Torsional crystal method. P 0.1 14 Claimed 

Crystal Resonant frequency and -34.5 -100 uncertainty 

cylinder damping measurement. 0.5 % 

[27] 

Immersed Electromagnetic resonant E 0.1 1- 600 283 

Plate frequency and resistance -323 

[28] measurement. 

Cylindrical Multiple lump resonator. Op 0.1 0.5 - 50 Onset of 

multiple Forced torsional oscillations. -8.3 modal coupling 

lump Resonant frequency and at high viscosity. 

resonator damping measurement Claimed 

[29] (bandwidth). uncertainty 

0.5 % 

Cylindrical Transverse oscillations. E 0.1 - 15 14 Oscillations 

wire Free decay, resonant -300 must be strictly 

[21] frequency and damping perpendicular 

measurement. to magnetic 

field. Claimed 

uncertainty 2 % 
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Table 3.2: Comparison continued 

Geometry Method Det. Freq. Viscosity Pressure Temp Other 

1kHz Range Range Range Limitations 

ImPa.s IMPa IK 

Cylinder Torsional free decay. Op <1 to Uncertainty in 

[30] Resonant frequency and 1473 cylinder radius. 

damping measurement. Claimed 

uncertainty 

0.5 - 1 % 

Cylindrical Transverse oscillations. E 1 0.3 - 0.53 0.1 - 80 Uncertainty in 

wire Transient decay. wire density. 

[31] Resonant frequency and Claimed 

damping measurement. uncertainty 

0.5 % 

Cylindrical Resonant frequency and E 1 0.1 - 10 0.1 270 Uncertainty in 

wire logarithmic decrement -300 -370 wire density. 

[25] of free transverse Claimed 

oscillations. uncertainty 

0.2 % 

Cylinder Torsional free decay. P 20 1- 500 

[32] Resonant frequency and -500 

damping measurement. 

Cylindrical Forced transverse E 5- 45 0-100 197 Loss of 

wire and oscillations. Resonant -350 accuracy at 

solid sinker frequency and damping viscosity over 

buoy [33] of 1.5 % measurement. 15 mPa.s. 

(uncertainty for Claimed 

viscosities < 7 mPa·s) uncertainty 

max 2.5 % 

Rectangular Vibrational modes E 263 Density Sensitive to 

membrane and impedance -1050 only environmental 

[34] measurement. influences that 

affect membrane 

tension. 

Immersed Forced transverse P 1400 to 1000 293 Discrepancies 

plate oscillations. Resonant -2400 -303 at higher 

[35] frequency, phase shift order modes. 

and attenuation 

measurement. 

'lUbe Resonant torsional E 5.6 0.3 - 500 

[36] oscillations. 
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Chapter 4 

MEMS Fabrication Process 

The new vibrating viscometer designs described here are MEMS (Micro-Electro-Mechanical­

Systems). Ultimately the MEMS sensors will be used in situ in oil exploration. The sensors 

are intended to be integrated into existing tools used down-hole. This is placed into the 

hole, suspended by an electric cable. Its first task is to probe the reservoir formation and 

carry out pressure tests at varying depths. This defines the transition zones between the 

different fluids in the reservoir. Simultaneously, fluid samples are taken for chemical anal­

ysis. Individually, tools for down-hole use are extremely expensive so an integrated device 

will help to minimise costs. 

Such tools can be up to 30 m in length and they can travel a few kilometres below the 

surface. The temperature at this depth can easily reach 448 K. The tools must be ex­

tremely robust to withstand down-hole conditions. Some oilfields have temperatures as 

high as 498 K and in places such as Alaska, storage temperatures at the surface can be 

as low as 218 K. The equipment must also be capable of withstanding severe shocks and 

vibrations generated during transportation and deployment, and the fluid tested may be 

corrosive. If the sensors are to be incorporated into future logging tools, they must reflect 

this robustness in their own design. 

4.1 Materials 

The dimensions of the sensors are extremely small, with both thickness and amplitude of 

motion typically being measured in micro-meters [37]. The devices have both electrical and 

mechanical components. One viscometer that will be discussed in detail in a later chapter 
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employs an oscillating plate which is a mechanical element that can be set in motion by 

the force between an electric current flowing through the plate and an externally-applied 

magnetic field. 

Such devices are produced using integrated circuit techniques, and are fabricated by a 

structure of layers, using material deposition and etching onto a silicon wafer. A fusion­

bonded Silicon on Insulator (SOl) wafer is used, with a 4 inch diameter. This is made up 

of three layers, 350 /-tm mono-crystalline silicon, 0.5 /-tm Si02 and 20 /-tm mono-crystalline 

silicon (Si). An advantage of this wafer is that the thickness of the final plate can be chosen 

at will. The bulk of the sensor will be anisotropic single crystal silicon with crystalline 

direction < 100 >. We therefore assume that the mass and mechanical properties of the 

device will correspond to silicon only. To simplify the model the silicon is considered to 

be isotropic. Material properties in certain crystalline directions can be calculated from 

basic crystal properties. For silicon in the < 100 > plane, the isotropic values that best 

reflect the aniostropic behavior are given by Spiering et al [38] and Petersen [39]. These 

are summarised in table (4.1). 

Table 4.1: Silicon properties 

Young's modulus /GPa 150 

Poisson ratio 0.17 

Density /kgm -3 2330 

Compression yield strength /MPa 7000 

Tensile yield stress /MPa 300 

The device also contains significantly smaller layers of different materials. These are de­

posited and removed from the wafer in a clean room by a series of etching steps using 

photolithography. The relative thickness and function of these materials are given in table 

(4.2). The final step in the process is to use a back-etching process to remove the 350 /-tm 

bulk mono-crystalline silicon layer. Figure (4.1) shows a cross sectional view of the plate, 

indicating the various material layers. 

The addition of different materials to the top surface of the sensor creates an unevenness 

that could affect the fluid flow around the plate. The magnitude of these undulations is 

estimated to be equal in magnitude to the viscous penetration depth of the fluid. The 
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Table 4.2: Material components of the MEMS sensor 

I Material I Function I % total thickness I 
Silicon Bulk structural material 94.06 

Silicon Device 5.37 

Silicon oxide Etch stop layer 0.13 

Silicon nitride Passivation layer 0.11 

Aluminium Conductors and wire-bonding pads 0.22 

Polysilicon Strain gauges 0.11 

Integrated resistance thermometer (RTD) 

K 
2mm 

~ 

Coil 

20f-OYl I IO.3nm 
"ibratingPlate 

I O.5jJm 

• Si3N4 III Si02 

350pm D Poly-silicon (400nm ) D Monocrystalline silicon 

Protective layer D Aluminium 

Figure 4.1: Cross section of plate [37] (not to scale) 
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viscous penetration depth fJ = ~ is defined as the depth at which, for the flow of an 

unbounded viscous fluid with kinematic viscosity l/ above an infinite plate oscillating with 

frequency w, the fluid velocity falls to ~ of the original value at the plate surface. This 

is explained for the MEMS devices in following chapters. The top surface is covered with 

an even protective layer. This layer is approximately 2 J-Lm thick. Both the top layer and 

the underneath silicon layer are optically polished for a smooth finish, leaving a smooth 

but non-level surface. The protective layer is also an important addition in that it helps 

prevent corrosion on the plate, an important consideration in the harsh reservoir conditions. 

After the wafer has been etched and micro-machined, it is diced to release the individ­

ual sensors. The photograph in figure (4.2) shows a finished MEMS wafer. It contains 

approximately 140 individual sensors with dimensions 4 mID x 8 mID, some of which have 

been removed. 

Figure 4.2: Photograph of a finished silicon MEMS wafer 

4.2 Actuator and Detector 

The motion of the MEMS sensors is activated electromagnetically. The viscometers are 

set in motion using an alternating current through a conductor held in a magnetic field. 
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This produces a Lorentz driving force. This force can be altered by changing one of two 

things, either the current or the intensity of the magnetic field. In a previous chapter, we 

discussed earlier viscometers that used different actuator methods. These were considered 

for MEMS but were ruled out for various reasons. Thermal excitation, injecting a periodic 

current into a resistor, and piezoelectric methods have both proven to be less precise than 

measurements electromagnetically. Piezoelectric materials were also considered to pose a 

higher contamination risk. 

Permanent fixed 
magnet 

Figure 4.3: Electro-magnetic actuation, where B is the constant magnetic field, I is the 
alternating current in the coil and F is the force produced 

The electromagnetic principle used is shown diagramatically in figure (4.3). An external 

electromagnet, or a fixed permanent magnet, holds the plate in a constant magnetic field, 

B. The alternating current, I, is injected into the wire coil that is fabricated onto the sensor. 

This produces corresponding alternating Lorentz forces, F, that force the plate to oscillate. 

When the current reaches the first natural frequency of the sensor, the plate will oscillate 

at the maximum amplitude in the first bending mode at resonant frequency. It was found 

experimentally that the modes for both of the MEMS sensors considered are well separated, 

both in vacuo and in fluid. These modes differ for each MEMS design and will be discussed 

for the individual sensors in a later chapter. 

The conductor and magnetic field that together make up the actuator have no interac­

tion with the detector. It was originally suggested that the two should be coupled. This 

preferred method would be done by measuring motional EMF. This was not possible due 

to the large impedence of the coil on the sensor, roughly 300 O. The detectors used in the 

MEMS devices are polysilicon piezoresistive strain gauges. These are placed at the points 

where the maximum and minimum strain occur and form a Wheatstone bridge. The op­

timum positioning for each different MEMS design was found using finite element analysis 

with the standard finite element package ANSYS [40]. On the cantilever plate this optimum 

placement was found to be near to where the plate was clamped. 
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Figure 4.4: Schematic of the top surface of a flexural plate MEMS 

This is not the same for the transversely oscillating plate sensor, which we will refer to as 

the "Spider". Here, the Wheatstone bridge is formed from the first six wire "legs" on each 

side, closed by wire-bonding. There are 24 legs in total on each side. 

0.0002 m 

0.0016m 

0.00002 m 
0.0024 m 0.00008m 

Figure 4.5: Transversely oscillating MEMS: the "Spider" 

There are some problems with the strain gauges. They are not completely stable. Their 
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resistance fluctuates with temperature and pressure. This can in part be ignored since we 

only need to know a relative resistance rather than an absolute value. The actual measure­

ment taken is the relative voltage drop. A more important problem is their failure at high 

temperatures. The piezoresistive gauges are expected to be the first component to break 

as temperature increases. They are polysilicon doped with boron and are estimated to fail 

at 493 K, restricting the use of the viscometer as a whole. 

The gauges detect the varying strains in the sensor as it vibrates and enable one to measure 

a resonance frequency f and an associated quality factor Q. The resonance characteristics 

of the MEMS device, f and Q, will be affected by the addition of a surrounding fluid. Near 

to the surface of the vibrating sensor the fluid is moved with the body causing the addition 

of effective mass or inertia to the intrinsic mass of the plate. This results in a decrease in 

f. Q also decreases from the value in vacuum since viscous energy is lost to the shearing 

motion of the fluid around the sides of the plate. Therefore knowing values of f and Q for 

a sensor in a fluid allows us, in principle, to obtain the viscosity v and density p of the fluid. 

4.3 Packaging 

During the writing of this thesis, the sensors used during practical experiments were housed 

in a 3 mm outside diameter tube. The main elements of the packaging are a stainless steel 

tube, a Swagelok ferrules and nut, and a printed circuit board (PCB). The sensor is at­

tached to one end of the PCB and the pads for soldering are positioned at the other. This 

packaging was chosen to match the small scale of the sensor, to increase versatility and to 

minimize potential production costs. 

The packaging for the MEMS devices is designed for use in a multitude of fluids, liq­

uids and gases. The complete housing for the sensor is reliable at pressures up to 70 MPa 

and temperatures up to 423 K. 
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4.4 Laboratory procedure - Experimental equipment 

The MEMS sensors have been undergoing a number of experimental tests. These have been 

carried out by myself and others [40] at the Schlumberger Research centre in Cambridge. 

Despite carrying out tests on the sensors in tolurene, the results from these tests were not 

comprehensive enough to include here. Instead, I will refer to results taken from experiments 

carried out by Claire Jakeways. The basic set-up for the experiments can be seen in the 

figures (4.6) and (4.7). Some pieces of equipment have been upgraded since the photographs 

were taken. 

Figure 4.6: Heat bath containing the MEMS sensor and fluid sample 

The first stage is to check that the sensors resonate correctly in air. The sensors are wired 

into the configuration shown in figure (4.8). A sinusoidal current is injected by the wave 

generator into the coil on the sensor using a typical voltage of 50 m Vp-p. The plate is 

vibrated by placing a permanent magnet near the sensor creating a magnetic field of the 

order 0.1 T. A dc power supply feeds the Wheatstone bridge with 0.5 V dc. A preamplifier 

is attached between the output of the Wheatstone bridge and the lock-in amplifier. This 

allows the lock-in amplifier to compare the reference signal from the wave generator with 

the signal from the preamplifier. The lock-in amplifier then computes the phase difference 

and amplitude for every frequency. 
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Figure 4.7: Example of the experimental set-up used at Schlumberger Cambridge 

output 

Wave generator IMultimeter I 

DC power supply I Preamplifier ~rIL-o-c-k_-in-am-p-lifi-· -e"""r I 

Figure 4.8: Equipment and wiring schematic [40] 
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Measurements are then taken in vacuum. This is done in the pressure system shown in fig­

ure (4.11). At this stage the structure can break in resonance owing to a dramatic increase 

in the quality factor. To prevent this occurring, the amplitude of the voltage in the coil is 

reduced. 

inlet 
tube 

pressme 
gauge 

valve handles 

outlet 
tube 

Figure 4.9: Schematic of apparatus submerged in fluid bath. Reproduced directly from [37] 

Figure 4.10: Photograph of apparatus in figure (4.9) 
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The MEMS is inserted into an adaptor which fits into the top of a block containing a port 

for the pressure gauge and tubes at each end for the fluid to be flushed through, see figure 

(4.9). The volume between the two valves is approximately 2 cm3 . The electromagnet is 

formed in an aluminium bobbin, containing about 700 turns of polyimide coated copper 

wire, and is mounted outside the protective tube. A magnetic field, with a flux of 0.1 T , is 

produced at the centre of the bobbin when 25 V dc is passed through the copper coil. 

The final stage is to test the sensor in different fluids. A syringe pump injects a small 

sample of a known fluid into the system used for measurement in vacuum. This system 

can carry out measurements on the same sample at a variety of different pressures, begin­

ning at ambient pressure. The temperature is simultaneously measured using a platinum 

thermometer close to the sensor. In the case of the cantilever plate sensor, the RTD ther­

mometer is situated on the sensor face. 

MEMS sensor 

Pressme sensor 

Vacuum pump 

~1)(I---1Gas cylinder 

Figure 4.11: Fluid handling and piping schematic [40] 

Once the required measurements have been obtained, the fluid is drained from the system, 

or vented into a fume cupboard in the case of gases. Between samples, the apparatus is 

evacuated to a pressure below 13 mPa. The apparatus, set at a temperature of 373 K 

between fluids, is then cooled to 323 K and flushed three times with the next fluid to be 

measured. The equipment is evacuated for about 12 hours between different fluid samples. 

D PC with a 
GPIB card 

11111111111111111 

l 
~I Wave generatorL:::;1 Lock-in amplifier r 

Figure 4.12: Data acquisition system 
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The temperature and pressure of the system is controlled manually using the heat bath 

and pressure pump controller, both shown in figure (4.6). The precision thermometer is 

accurate to 10 mK. The set-up in figure (4.12) is used for automating the remaining data 

acquisition. The PC is installed with an 82350A Agilent GPIB card. The settings for 

the wave generator and lock-in amplifier are controlled with a HT-Basic program. This 

controls the scanning of frequencies and reads the output of the lock-in amplifier to give 

the resonance frequency and the quality factor, as required. 

: ') ; 
" 
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Chapter 5 

The Spider 

5.1 The transversely oscillating MEMS device 

We model the plate in each of the MEMS devices as an elastic solid oscillating in a fluid. 

The spider takes the form of an oscillating plate, fabricated from silicon using the meth­

ods of Micro-Electro-Mechanical-Systems (MEMS). The plate is about 1.6 mID wide, 2.4 

mm long and 20 j.tm thick. It is suspended from a 0.4 mm thick support by 48 square 

cross-section legs each of length 0.5 mID with width and depth of 20 j.tm. The process of 

lithography is used to deposit layers atop the silicon that can be formed into resistors and 

metallic tracks. The latter traverse the supporting legs to provide connections between the 

plate and external electronics. The oscillating plate is a mechanical element that can be set 

in motion by the force between an electric current flowing in the plate and an externally 

applied magnetic field, producing corresponding alternating Laplace forces, which force the 

plate to oscillate. The viscometer can be operated in either forced or transient mode and 

is intended for use in both Newtonian and non-Newtonian fluids. The device is named the 

"spider" owing to the legs that connect the transversely oscillating plate to the viscometer 

support and interconnecting body. 

Two different mathematical models for the determination of viscosity will be discussed. The 

"forced" model is time-independent, with the plate oscillating at a fixed forced frequency. 

We will then analyse the "plucked" problem, considering the transient or time-dependent 

behaviour, where the amplitude of oscillation varies in time, decaying gradually after an 

initial perturbation. We will consider the general case of incompressible fluids, using the 

Navier-Stokes equation to model Newtonian fluid motion and a reduced form of Maxwell's 

equations for viscoelastic fluid motion. 
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Figure 5.1: Photograph of the upper surface of the 'spider ' 

As discussed previously, the plate will oscillate at the maximum amplitude in the first 

bending mode at resonant frequency when the current reaches the first natural frequency 

of the sensor. Theoretically an armature will possess an infinite number of modes of vibra­

tion and so give a complex interaction with the surrounding fluid. Generally, several of the 

modes will be measurable. To obtain a description of the fluid-armature interaction that 

we will be able to model we will assume these modes are well separated and that each mode 

may be described by a linear simple harmonic oscillator. The various modes for the spider 

sensor are shown in figure (5.2). These diagrams were reproduced from analysis carried out 

by Maria Manrique at Schlumberger Research using the finite element package ANSYS. 

The mode of interest for this MEMS device is the 3rd, with the plate oscillating in a plane, 

reducing the problem to two dimensions. 

4th 

Figure 5.2: Various modes of oscillation of the 'spider': 1st mode at 16.9 kHz, 2nd mode 
at 20.6 kHz, 3rd mode at 34.5 kHz and 4th mode at 40 kHz 
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5.1.1 Thermal dissipation 

It is important to check that the heat transfer caused by dissipation, the internal friction 

due to fluid movement, will be negligible. To do this we consider typical sizes of each term 

of the heat equation (5.1) separately and determine which terms could become dominant. 

We have, for the temperature T of the fluid, that 

(5.1) 

with 

8 = oqt oqt 
ox] ox] 

where Cp is the specific heat capacity of the fluid, p is the density of the fluid, k is the 

thermal conductivity of the fluid and we assume that suitable boundary conditions may be 

posed at the surface of the plate. 

For this analysis and throughout this work, unless otherwise stated, we will use values 

for the variables as given in table (5.1). Here we use them to obtain order of magnitude 

estimates for each of the terms in equation (5.1). 

Table 5.1: Assumed values for variables 

Proprty I Symbol I Value I 

viscosity of fluid J.t 10-3 

density of fluid p 103 

heat capacity at constant pressure Cp 103 

speed of plate U 10-2 

amplitude of oscillation L 10-6 

thermal conductivity k 1 

The first term, corresponding to advection, can be written 

pCp£::,.TU 

L 

Units 

IPa·s 

IPa 
Im2.kg.s-2 .K-1 

Im·s-1 

1m 
I k -3 K-1 m· g·s . 

We are using typical experimental values for p and Cp. The length scale L is chosen to 

represent the amplitude in meters of oscillation of the plate, and U is an approximation 
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of the speed of the plate in seconds found experimentally. The temperature T can change 

during down-hole drilling and we will consider a change of anywhere up to 300 K. This 

gives us an approximate value for the first term of 

103 
X 103 

X 300 X 10-2 3 1012k -1-3 
------::----- ~ X g·m·s 

10-6 

The next term in (5.1) is associated with heat diffusion. This term is written as 

k6T 
L2 

with k being of order 1 for most solids. This second term also has an approximate value of 

The third term in (5.1) corresponds to heat dissipation. The order of magnitude of this 

term is written 

where J.L is the fluid viscosity. This gives a value of order 107, a significantly smaller value 

than the contribution from either of the previous two terms. Even in a fluid of greater 

viscosity it is extremely unlikely that the dissipation term will ever become dominant. 

To accurately analyse the heat balance for the whole of the plate you would also have 

to consider heating associated with the electrical energy in the coil of wires on the plate 

surface. Experimentally, the current through the wires in liquid, I, has been recorded to 

be around 1 x 10-3 A. The resistance in the wires, R, is approximately 300 O. The heating 

due to the circuitry will cause a negligible heat increase on the plate and so need not be 

worried about. 

This analysis shows that the advection term will normally be the most dominant of the 

four contributing terms in equation (5.1). Therefore for the purpose of this work we will 

assume that temperature change is negligible and as such do not need to worry about a 

heating term. 
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5.1.2 Introducing viscosity 

The spider is a uni-directional device. AB the sensor oscillates in a fluid, fluid layers form 

around the surface of the moving plate. These layers of fluid must move with the plate 

and in effect the mass of the fluid within the layers is added to the mass of the plate (the 

so called "added mass" effect). The plate now has to work harder to oscillate at the same 

speed, to compensate for this added mass. This increase in work will be proportional to 

the viscosity and density of the surrounding fluid. 

The plate itself has extremely small dimensions and its mass reflects this. This means 

that the addition of the fluid's mass will be much more significant than it would be to a 

larger sensor, making the device more sensitive to the fluid properties. In theory the plate 

could be made even thinner to reduce mass yet further but this will make the device less 

robust and more prone to breakage. The sensor must also be able to survive and operate 

in down hole conditions. 

5.2 Forced oscillations 

5.2.1 The mechanics of the infinite plate 

For a simplified model, the plate is assumed to be infinite in both the x and z directions 

and lie initially in the x-z plane. The surface of the plane bounds an incompressible fluid , 

at first considered to flow in the region y > O. The plane is forced to oscillate in the x 

direction with simple harmonic motion, confined to the x-z plane. The velocity of the plate 

can thus be defined as q = [Up(Y, t), 0, OJ with 

where w is the frequency of oscillation and Uo is the amplitude. 

y 

Figure 5.3: Plane oscillating in the x-direction, Up is the plate velocity in this direction 
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Newtonian viscous Flow 

We first consider the plate oscillating in an infinite volume of liquid and then discuss what 

happens when there is a second stationary plate at a height y = +h from the first. A 

second plate is a practical consideration by Schlumberger as a measure of preventing larger 

particles of rock and dirt from reaching the oscillating plate and potentially damaging it. 

We assume the viscous fluid bounded by the plane has a plane parallel shear flow [44] with 

motion of the form 

For an incompressible fluid, the motion can be described by the equation of continuity and 

the Navier-Stokes equations. Acceleration caused by gravity, 9 ~ 10, is small in comparisson 

to the acceleration of the plate, Ut ~ 102 , so neglecting gravity these are reduced to 

V.v = 0 

8u 1 8p ~u 
- =---+1I­at p8x 8y2 

8p = 8p =0. 
8y 8z 

(5.2) 

(5.3) 

(5.4) 

The first of these is automatically satisfied because u is independent of x hence div(v) = 

g~ = O. Rearranging (5.3), ~ is the difference between two terms. Each of these terms is 

independent of x therefore Px can be only a function of t. We assume there is no applied 

pressure gradient and define p to be a linear function of x with equal pressures at x = ±oo. 

Since Px is independent of x, it follows that 

8p =0 
8x . 

Substituting this into (5.3) we are left with the one-dimensional diffusion equation 

(5.5) 

We now need to solve (5.5) subject to certain conditions. When no stationary plate is 

present, the only conditions implied are that the fluid velocity at the plate surface will be 

equal to the velocity of the plate at each instant and the fluid has zero velocity far from 
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the plate. Thus 

U TT -iwt 
U = P = uOe on y=O, 

as y --+ 00. 

We assume that the solution will take the form 

u = f(y)e-iwt . 

This is substituted into (5.5) to obtain 

{)2f iwf=O 
{) 2 + . Y v 

This can be solved for f(y) and has the solution 

where <;'1 and <;2 are constants to be determined and A = V -;: so that 

If · Al = -(1, -1) 
2v 

and A2 = . fw(1- i). v 2;; 

To satisfy the boundary conditions (5.6) and (5.7), we need 

and 

Substituting f(y) into (5.8) the velocity becomes 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

where <5 = ~ is the viscous penetration depth. Taking real parts only we reduce (5.10) 

to 

u = Uoe-t cos (J -wt). (5.11) 

The fluid flow (u) can be plotted using known material properties of the plate, figure (5.4). 

It can be seen that as the plate oscillates, a corresponding wave is formed in the fluid 

propagating from the plate surface. The oscillations of this wave decrease as it moves 

further from the plate. This is what we would expect to happen physically, the fluid being 

dragged with the plate due to the resistance on the no-slip surface and the viscosity of the 
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fluid. 
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Figure 5.4: (a) Newtonian viscous flow in an infinite volume of liquid (one complete period) 
(b) Newtonian viscous flow bounded by a stationary plate at h = 0.0001 m (In all plots, y 
is shown between 0 and 0.0001 m 
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Newtonian viscous flow bounded by a stationary plate 

When a second stationary infinite plate in the x-z plane is added at a height y = +h, we 

Figure 5.5: Plane oscillating in the vicinity of stationary top plate 

need to introduce a second boundary condition stating that there is no flow at the surface 

of the stationary plate. The two boundary conditions become 

f(O) = Uo and f(h) = O. (5.12) 

We can cancel out the constant <;"2 by writing it in the form 

We can now remove all unknown constants in f (y) by writing 

11 (1 1(i-l)h)-1 <;"l=UO -eo and 

Substituting f(y) into (5.8) the equation for the fluid velocity becomes 

(5.13) 

Thus 
11. Y (1- ei(h-y) cos j(h - y)) 

u = Uoe 0 cos ( "£ + wt) 2h . 

U 1- eT cos 2h 
{} 

(5.14) 

When the flow (u) is plotted, figure (5.4), we see a similar propagating wave in the fluid 

caused by the oscillations of the plate. As previously mentioned, the second plate is to 

protect the oscillating plate from particles of rock and dirt, so for this reason we need h to 

be small. With the stationary plate positioned at a height of h = 0.0001 m from the moving 
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plate, there appear to be more oscillations than in the infinite fluid case. This makes sense 

physically since the wave has less distance in which to decay and must have zero velocity 

at the stationary plate due to the no-slip condition applied there. As h increases, the fluid 

flow will approach the infinite fluid solution. 

5.2.2 Visco-elastic Flow 

As discussed in chapter two, we also wish to consider the spider sensor in a non-Newtonian 

fluid. For Herschel-Bulkley fluids (including Bingham and shear-thinning fluids), matters 

become extremely complicated because the necessary equations are non-linear. For a visco­

elastic fluid, the governing equations are linear and so some analytic progress can be made. 

For this reason we chose to model the fluid as a Maxwell fluid. 

We first return to the single plate model. In a similar way to the Newtonian case we 

substitute the assumed form of the solution (5.8) into the equation for Maxwell fluid mo­

tion (2.14) to produce an equation to be solved for f(y) in the form 

This has the solution 

[Pf w . 
- - -(-'t - w(})! = O. 
oy2 v 

where WI and W2 are constants to be determined and 

A2 = iV¥(l + w2(}2)~ [cos(~ + 7r) + iSin(~ + 7r)] 

(5.15) 

(5.16) 

with I = arctan w\. We require that the real part of A satisfies Re(A) < 0 and to satisfy 

the boundary condition (5.6), we need 

and W2 =0. 

Substituting f(y) into (5.8) the velocity becomes 

(5.17) 
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Taking the real parts only we reduce (5.17) to 

(5.18) 

When the plate oscillates in the visco-elastic fluid, a corresponding wave will be formed. 

By plotting the fluid flow with various values of 0, figure (5.6), it is shown that an increase 

in the shear modulus of the fluid (a decrease in 0) results in a decrease in the number of 

oscillations of the propagating wave. 

Visco-elastic flow bounded by stationary plate 

It is again of interest to study the problem with the addition of a second stationary infinite 

plate in the x-z plane at a height y = +h. We impose two boundary conditions, 

f(O) = Uo and f(h) = O. (5.19) 

The first corresponds to the fluid and plate velocities being equal in the plane y = 0 and 

the second states that there is no flow at the surface of the stationary plate. Applying the 

boundary conditions as in the previous three examples we achieve the following equation 

for f(y): 

(
1 - e2P(h-Y») 

f(y) = Uoe?Y 1 _ e2ph (5.20) 

Substituting f(y) into (5.8) the equation for the fluid velocity becomes 

(5.21) 

[ 

1 - e2i(h-Y)~(l+w2fJ2)! cos t e -2(h-Y)~(l+w2(}2)! sin t 1 
1 l ' 

1 _ e2ih~(l+w2(}2) 4" cos t e -2h~(l+w2(}2) 4" sin t 

When this fluid velocity is plotted, figure (5.6), we once again see a propagating wave in the 

fluid caused by the oscillations of the plate. From the plots we can see that as the stationary 

plate comes within 0.00001 m of the oscillating plate, the wave becomes unable to produce 

a complete cycle. This tells us that to allow for a reasonable number of oscillations in the 

fluid flow we should keep the stationary plate at a height of h > 0.0001 m. 
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Figure 5.6: (a) Visco-elastic flow in an infinite volume of liquid, with different values of () 
jGPa and y shown between 0 and 0.0001 m (b) Visco-elastic flow bounded by a stationary 
plate at various heights (h j m) (c) Comparisson between Newtonian (dashed lines) and 
visco-elastic flow (full lines) 
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5.2.3 Frictional force and Power on the plate 

The oscillating plate only has a non-zero velocity component in the x-direction therefore 

it is clear that the frictional force will also act in this direction. The force S will thus be 

equal to the corresponding component of the stress tensor evaluated at the plate surface, 

y = 0 [43]. This acts over a surface area of twice the length by the breadth of the plate. 

Thus 

S = 2aB[ayx]y=o = 2aB [J.l aa
U

] • 
y y=o 

(5.22) 

We define the power on the plate, using a force x distance/time relation, to be the frictional 

force multiplied by the fluid velocity at the plate surface. We can thus write the following 

equation for the power at the plate surface: 

2aB [J.l~( U )~( ~~) ] y=o 

~(S)~(u)y=o. 

(5.23) 

(5.24) 

Since we are dealing with an oscillating system it is more useful to determine the average 

power over the period of oscillation. This is given by 

(5.25) 

It is of interest to calculate the frictional force and the power on the plate for each of the 

four studied cases. 

Newtonian fluid 

For the Newtonian fluid case the fluid velocity, u, is given by equation (5.10). Using this 

substitution in (5.22) the frictional force per unit area acting on the plate becomes 

[
Uo (. 1) _1L i(1L-wt)] J.l-'t- e 6 e 6 

~ y=o 
J.l TT -iwt(. 1) Juoe 't - . 

Assuming that Uo is real we take the real part of (5.26) to obtain 
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The velocity of the oscillating plate is Up = Uo cos wt, hence we observe a phase difference 

between this velocity and the frictional force. To find the power we also need to determine 

the real part of the fluid velocity at the plate surface, found by evaluating equation (5.11) 

at y = 0: 

R(u)y=o = Uo cos (wt). (5.28) 

The relevant substitutions can now be made into equation (5.23) to give 

Py=o = -2aBUocos (wt).J(WJ.Lp)Uocos (wt + ~) (5.29) 

which results in a time averaged power of 

(5.30) 

We can now rearrange this formula to get an equation for viscosity or density in terms of 

power and initial velocity. 

(5.31) 

Addition of stationary top plate 

With the added top plate at y = h we obtained an equation for u given by (5.13) which 

can be rewritten as 
_ -iwt (Sin lti(h - y)) 

u - Uoe . 1+" Slll-rh 
(5.32) 

In this case the frictional force per unit area on the oscillating plate is given by 

Sly = J.L (~u) . 
y y=O 

(5.33) 

Substituting (5.32) into the above we obtain 

(5.34) 

The frictional force per unit area acting on the stationary plate is found using 

(5.35) 
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Assuming Uo is real we take the real part of (5.34) to be 

.j w~p Uoh( cos wt sin (}) cos (}) - sin wt sinh (}) cosh (}) (5.36) 

1 1 .1 1 1 1 
+ cos wt sinh (8) cosh (8) + sinwtsm (8) cos (8))/(cos (8)2 - cosh (8)2). 

The real part of (5.35) can be written 

.jwp.p . 1 1 . . 1 1 
-2-Uoh( - cos wt sm (8) cosh (8) + smwtslnh (8) cos (8) (5.37) 

1 1 .1 1 1 1 
- coswtsinh (8) cos (8) - sinwtsm (8) cosh (8))/(cos (8)2 - cosh (8)2). 

The real part of equation (5.32) when evaluated at the plate surface reduces to 

~(U)y=o = Uocos (wt). (5.38) 

Equations (5.38) and (5.36) can now be substituted into the equation for average power 

over time, evaluated at the plate surface, resulting in the following expression for Py=o 

_ .jwp.p Uo
2 

(sin * cos * + sinh * cosh *) Py=o - --aBh-2 12 12 . 
2 w coshX -cosX 

(5.39) 

Once again we can rearrange this formula to derive an expression for viscosity or density. 

(5.40) 

Visco-elastic fluid 

For the visco-elastic fluids described earlier, the fluid velocity was found to be (5.17). As in 

the Newtonian case, the frictional force per unit area Sy on the oscillating plate is obtained 

by the substitution of (5.17) into (5.26) evaluated at y = O. This gave 

p.~ [uoe-iwtei~(1+w2e2)i cos(~)Y-~(1+w2e2)i Sin(~)y] 
By y=O 

p.Uoe-iwt [i.j¥(l + W
2

(J2) 1 cos(~)-

.j¥(1+W2(J2)1sin(~)] . (5.41) 
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Assuming Uo is real we take the real part of (5.41), giving 

(5.42) 

The fluid velocity at the surface of the plate can be found by evaluating equation (5.17) at 

y=O. The real part of this gives us the boundary condition 

R{ u)y=o = Uo cos (wt). (5.43) 

We can substitute equations (5.42) and (5.43) into (5.23) to give us the average power at 

y = 0 in the form 

(5.44) 

When rearranged this expression gives the following equation for viscosity or density: 

(5.45) 

Addition of stationary top plate 

With the addition of the top plate at y = +h we can rewrite the fluid velocity equation 

(5.21) as 

(5.46) 

where kl = i~(1 + w2fP)i cos(~) - ~(1 + w2e2)~ sinG). 

We can substitute this velocity into the following equations to find the frictional force per 

unit area on each of the plates. For the oscillating plate we get 

(5.47) 

For the stationary plate we obtain 

(5.48) 
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The real component of Sly can be written 

1 + e-4hk2sin~ - 2e-2hk2sin~ cos (2hk2 cos i) 

[(1 - e -4hk2 sin ~) sin (wt + '1 ) - 2e -2hk2 sin ~ sin 2hk2 cos '1 cos (wt + '1)] 
2 2 2 

with 

(5.49) 

As in each of the previous three cases, the real part of the fluid velocity at the surface of 

the plate can be reduced to 

~(U)y=o = Uo cos (wt). (5.50) 

Once again, these expressions can be substituted into equation (5.23) for the average power 

at the surface y = o. 

(5.51) 

Unfortunately, since k2 appears both within and outside the exponential functions in (5.51), 

we are unable to isolate Mp. 

We now have theoretical expressions for the frictional force and power on the oscillat­

ing plate for both the Newtonian and the visco-elastic fluid cases. These are closed form 

solutions and for the first three cases can be easily rearranged to give an expression for 

viscosity or density in terms of power and the initial velocity of the plate. 

5.2.4 Experimental incompatability 

The Newtonian inviscid fluid solution that we have found determines viscosity or density 

so that one is determined when we know the other. The solution is a function of the initial 

plate velocity and the power in the plate. The problem that arises in experimentation 

is that these two parameters are not always measured. The functions that are actually 

recorded by Schlumberger are the in-phase and quadrature voltage of the system. This 

means that we can determine the frequency and the 'Q' of the system. Q is defined by the 

following expression 

Q = ires 
2g 
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where ires is the resonance frequency of the plate in fluid, or the frequency which produced 

the highest recorded amplitude of plate motion, Amax, and 9 is described in diagram (5.7). 

0+-----\---- -7' f I Hz 

----------~I ----------~»)0Hz 
Ires 

Figure 5.7: Examples of graphs produced from experiments, showing the in-phase and 
quadrature voltage respectively. 

Plate equation 

To find a solution that can be more easily compared to experimental results we need to 

define a different modelling strategy. First we re-pose the plate equation: 

mx + mk2x = '!9cos(wt) - p'Vy (5.52) 

Here m denotes the mass of the plate and k represents the spring constant, both dependent 

on the mechanical properties of the plate. x is the displacement of the plate from its stating 

position. On the right hand side of the equation is the external force on the plate, the first 

term relating to the uniform driving force and the second term relating to the viscous drag 

due to the surrounding fluid. '!9 is the magnitude of the driving, an unknown constant to 

be determined. We expand this by assuming that we know the solution after a long time, 

which is that the plate is moving at a known velocity. 

i; = Uo cos(wt) t~ 00. (5.53) 

We know that in this case the viscous drag term per unit area for a Newtonian fluid acting 

on the plate is given by equation (5.27). What is not certain is to what extent the driving 

force will be in phase with the plate vibrations. We can try to drive it at frequency w, but 

as a result the plate may oscillate at a different frequency due to the retarding force of the 

surrounding fluid. We introduce a ¢ component into the driving force term to allow for a 
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phase difference. Putting these back into the plate equation we obtain: 

1r 
1Jcos(wt + ¢) - aBUoJppwcos(wt + 4") 

1J cos(wt) cos( ¢) - 1J sin(wt) sin( ¢) 

V ppw V ppw . -aBUo -2- cos{wt) + aBUo -2- sm{wt). 

(5.54) 

We substitute the known solution (5.53) back into the plate equation (5.54) and equate 

sine and cosine terms. Firstly, equating cosine terms gives: 

1J cos ¢ = aBUoy'Wii]J ===> Uo = ..,fi cos ¢ . 
..,fi 1J aBJwpp 

(5.55) 

Equating sinusoidal terms: 

2 Uo . aBUoy'Wii]J 
-mwUo + mk - = -1Jsm¢ + M 

w v2 
(5.56) 

From (5.55) we have that 1J = a~oc~. Substituting this into (5.56) and applying the 

relation cos ¢ tan ¢ = sin ¢, produces the following expression for ¢, our first working equa­

tion: 

'" (1 m.../2W mk2..,fi) 'I' = arctan + - 3 

aB VfiJJ aB.JILpw"2 
(5.57) 

We can now substitute the equation for ¢ back into (5.55) to give us our second working 

equation: 
Uo 
1J aBJwpp 

1 
(5.58) 

1 + (1 + mV2W _ mk2.j'i)2 
aB IIiflp 3 

vt-"P aBffpw'1 

The result is thus two working equations which when plotted, correspond to the two graphs 

produced experimentally in figure (5.7). k, p and p are now the only unknowns on the right 

hand side of equation (5.58). 

If we let ~ = H, then the curve defined by (5.58) is found by plotting H against w. 

If Wm is the maximum recorded frequency, then this will correspond to the maximum point 

on the curve, when ~ = O. Differentiating (5.58) with respect to wand then equating this 

to zero we can rearrange the result to get: 
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We consider the device oscillating in vacuum, ..JiiP = 0, at a vacuum frequency of Wv = fv21r. 

Substituting this into (5.57) gives 

which simplifies down to 

k=wv ' 

Substituting this value for k and m = aBdps back into (5.59), we can simplify the solution 

to 
£l2 2 2 

- Ps ( 2 3 2 V17 4 6w 2 2 7, 4) /-LP - --3 Wv + Wm - Wv + m Wv - Wm 
8wm 

(5.60) 

Having found a solution for the spider forced at a constant driving force, we will now 

consider the problem for the sensor without an external driving force so that the oscillations 

of the moving plate are allowed to decay. 

5.3 Decaying oscillations 

We consider the device to be a damped harmonic oscillator with a corresponding decay 

rate. When placed in a fluid, the decay in amplitude of oscillation is then hoped to be 

proportional to the viscosity and density of the fluid. To allow us to obtain a reasonable 

amount of data, we must ensure that the plate can oscillate a number of times in the fluid 

before the oscillations decay completely. It is possible we will also need to reject the early 

oscillations which could exhibit irregular transient behaviour. In a very viscous fluid this 

is made more difficult. 

We will consider two cases of the 'spider' with decaying oscillations. In the first case, 

the experiment is started with the plate transversely oscillating in the x-z plane with a 

speed of Uo cos (wot). The plate is first made to oscillate for a length of time to allow the 

system to reach a state of steady oscillations at a constant speed. The external power input 

and initial frequency (wo) needed to maintain this speed are recorded. To begin the mea­

surements the external power supply is switched off and the plate oscillations are allowed 

to decay. 

In the second case, which we will consider in more detail and try to solve fully, the plate is 

given an arbitrary displacement and held there by an external force. Measurements begin 
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when the external force is removed and the plate is released with an initial velocity of O. In 

effect, the 'spider' is 'plucked'. In both cases it is assumed that the legs around the edge of 

the plate provide resistance, r, and that plate motion is also retarded by the shear stress of 

the viscous fluid (jLuyly=o), acting over the surface area of the plate, top and bottom (2aB). 

The fluid flow, u(y, t), is defined by (5.5) 

Ut = l/Uyy (5.61) 

We describe the motion of the plate by the following equation 

J2x dx 2 
psdBa dt2 + r dt + k x = 2Ba(jLuyly=o) = F(t) (5.62) 

where Ps is the plate density, d is the plate depth, a is the plate length, B is the plate 

breadth and k is the spring constant. This governing equation is essentially identical to 

(5.52) save for the facts that (i) the plate is no longer driven and (ii) the damping of the 

plate legs has been included. 

5.3.1 Decaying from steady oscillations 

At time t = 0 the speed of the plate is Uo. It was shown in section (5.2.1) that a plate oscil­

lating with a velocity of Up cos (wt) produces a fluid motion u(y, t) = Upe-ky cos (ky - wt) 
1 

with k = (~)2. This gives two initial conditions for the fluid motion, namely 

U = Up = Uo at y = O,t = 0 (5.63) 

U = Uoe-koy cos (koy) with at y> 0, t = O. (5.64) 

For our two boundary conditions we have that the fluid velocity is equal to the velocity 

of the plate at the oscillating surface and that the fluid velocity will decrease to zero with 

increasing y. Thus 

at y=O (5.65) 

U=O Y -t 00. (5.66) 

As we will now show, (5.61) and (5.62) can be solved using Laplace transforms, coupling 

the plate and fluid motion equations into a single equation which may then be solved and 

analysed. 
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Solving the problem using Laplace transforms 

We now recast the partial differential equation for u(y, t) (5.61) as an ODE for u(y, s) by 

taking a Laplace transform in time. Equation (5.61) becomes 

Uyy - (~)[su - u(y, 0)] = Uyy - (~)[su - x(O)] = O. 
v v 

(5.67) 

We can also find the Laplace transform of the boundary condition, that the plate motion 

equals the fluid motion at the plate surface. We choose to define the initial velocity of the 

plate as Uo. 

u = sx - x(O) on y=O. (5.68) 

At time t = 0 the plate is assumed to be at zero amplitude and have velocity Ui so we can 

make the following substitutions: 

x(O) = 0 and x(O) = Uo. 

A solution is then 

(5.69) 

where ip! and ip2 are constants to be determined. Since it is necessary that as real s tends 

to 00, y~ also tends to 00, we can simplify (5.69) by defining 

Applying condition (5.68) we find 

( ) 
~ Uo 

ip2 s = sx --, 
s 

so that the fluid solution can be written 

~ ( ) (~ Uo) _y IT Uo u y, s = sx - - e V v +-. 
s s 

The Laplace transform of the plate equation (5.62) gives 

S2X - sx(O) - ±(O) + sAx - Ax(O) + Bx = C/LVyly=o 
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h A rB k 2 d ( 2Ba were = psBda' = psBda an = psBda. 

Since we know the plate amplitude and velocity at time t = 0, we can re-write this as 

(5.72) 

To couple our equations we need to differentiate our fluid solution with respect to y and 

evaluate this at y = o. 

(5.73) 

This can then be substituted back into the plate equation (5.72). 

(S2 + As + B)x - Uo = -(/-LVI (sx _ ~o) (5.74) 

We are now left with an equation just in terms of x and s, so we can take the inverse Laplace 

transform of this function to produce the desired solution. Here we make the substitution 

l/ = /-Lp. We find that 

(5.75) 

5.3.2 The 'plucked spider' 

In the case of the 'plucked spider', the fluid equation (5.61) must be solved subject to the 

following boundary conditions: 

dx 
u(t) = dt 

u=o 

at y=o (5.76) 

y -+ 00. (5.77) 

As in the previous example, these correspond to the plate having equal velocity to the fluid 

at the plate surface and the fluid having no velocity far from the plate. In this case however, 

the initial condition states that both the fluid and the plate are at rest at time t = 0, so 

that 

u=o at t = O. (5.78) 

Owing to the mutual dependence of the fluid and plate velocities, we again need to couple 

the two equations of motion. 
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Solving the problem using Laplace transforms 

Once again we can use Laplace transforms to define our partial differential equation for 

u(y, t) (5.61) as an ODE for u(y, s). Equation (5.61) and the two boundary conditions 

become 

su - l/Uyy = 0 

U(O, s) = sx - x(O) 

u(oo, s) = O. 

The solution is 

(5.79) 

(5.80) 

(5.81) 

(5.82) 

where Tl and Tl are constants to be determined. We first apply condition (5.81). In the 

same way to the previous case, since it is necessary that as real s tends to 00, y~ also 

tends to 00, we can simplify (5.82) by defining 

Applying condition (5.80) we find 

T2(S) = G(s) = sx - x(O) 

so that (5.82) can be written 

U(y, s) = (sx - x(O))e-yy'I (5.83) 

Since the plate velocity is 0 at time t = 0, we can re-write the Laplace transform of the 

plate equation (5.71) as 

(S2 + As + 8)x - (s + A)x(O) = Cpvy!y=o (5.84) 

We can differentiate our fluid solution (5.83) with respect to y and evaluate this at y = 0 

to get 
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which can then be substituted back into (5.84) to get 

(S2 + As + B)x - (s + A)x(O) = -C/L!f;(SX - x(O)) (5.86) 

As in the model starting in motion, we are once again left with an equation just in terms of 

x and s, so we can take the inverse Laplace transform of this function to find our required 

solution. 

( ) 
-1 [ S + A + CJ /Lps ] x=xOL 3 

S2 + As + B + Cms 2 
(5.87) 

Solving the inverse Laplace problem for the plucked model 

To find our solution for x we could apply the standard formula for inverse Laplace transforms 

to (5.87): 
x(O) jY+iOO 

x(t) = -. estf(s)ds 
27r'l. y-ioo 

(5.88) 

where f(s) = s+A+Ev'S 3 and E = Cm. However, this particular problem is complicated 
s2+As+B+Es'1 

by the numerous singularities in f(s). To solve the integral we must first analyse these 

singularities and then define a contour to integrate along that excludes these points. 

® 

Figure 5.8: Contour excluding singular points 

By multiplying f(s) by its conjugate, f(s) can be rewritten to give two terms which show 

the singularities more clearly. 

f(s) [ 
s+A+Ey's ] [S2+AS+B-ES!] 

s2 + As + B + Es! s2 + As + B - Es! 

(s+A)(s2+As+B)-E2s2 EBy's 
~--~~------~~----+--------~----~ 

(s2 + As + B)2 - E2s3 (s2 + As + B)2 - E2s3 
(5.89) 

Here we can see that four pole residues will occur due to the quartic polynomial on the base 

of each of the two fractions. It can be assumed that the poles will be complex conjugates 
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and must have negative real parts for decay to occur. The poles are determined by finding 

the roots of the quartic polynomial equation: 

(5.90) 

A further branch cut is introduced by the square root in the second term . 

• 

branch cut 

• 

Figure 5.9: Poles and branch cut 

Having multiplied f(s) by its conjugate, we must be careful to rule out any poles resulting 
3 

from our analysis which are also roots of the conjugate equation s2 + As + B - Es"2. If we 

look back at the original polynomial on the base of f (s ) , 

S2 + As + B + Es ~ , 

we can see that if a real root was to exist, it must be negative since A,B and E are positive 

by definition. We can therefore discard any real positive roots from our analyis since they 

can not be solutions to the original problem. 

The full solution to the inverse Laplace transform should have three main contributing 

terms, an exponential term for each complex conjugate pair and an algebraic term due to 

the branch cut. 

Quartic polynomial analysis 

We are now going to investigate the poles involved in our inverse Laplace problem. We do 

this by analysing the quartic polynomial (5.90) and then finding the roots. Using A = ~, 

B = ~ and E = 2B~, where W = psBda is the weight of the plate, r represents 

the damping of the legs and k the simple harmonic motion of the legs, we may write the 
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polynomial as 

No damping case 

In an attempt to simplify the problem we will assume that the interaction with the sur­

rounding fluid provides most of the decay in the motion and that the damping of the legs 

is negligible (r = 0). Using this assumption, the polynomial becomes 

(5.91) 

We now choose to analyse the curve that would be drawn by plotting the polynomial f(s). 

By calculating the derivative of f (8) with respect to 8 and then equating this to zero, we 

can work out where the turning points in the curve f(8) will occur. 

(5.92) 

One solution will be 8 = O. The two remaining turning points are found from the solution 

to the quadratic equation 

Solving the quadratic equation to find the two roots of 8 we get 

8 
2 

=*8 
3E2 V9E4 

- 648 
-±-----

8 8 

This leads to three possible cases. First, if 9E4 = 648, there will be repeated roots resulting 

in one other turning point, an inflection at 8 = 3f. When 9E4 - 648 > 0, there will be two 

real roots giving an additional two turning points. Finally we could have 9E4 
- 648 < 0 

which gives no real roots so will lead to no extra turning points. In this last case, where 

there is only one turning point at 8 = 0, we would get four complex roots for f(8). We can 
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determine the value of k needed for the turning points to be real 

9E4 - 64B > 0 (5.93) 

,*9(4(B~:JLP)2 -64~ > 0 

9(Ba)4(p.p)2 k2 '* 4W3 - > 0 

Since k 2 and (Ba~~p)2 are both strictly positive values, for real roots to occur we need that 

If (5.93) is true, we will get three real turning points at 8 = 0, 8 = 81 and 8 = 82. Substi­

tuting known values into the relation (5.93) we can determine the necessary viscosity for 

the relation to hold true. 

We know that the weight of the plate is W = 1.789 X 10-7 kg, the length is a = 0.0024 

m and the breadth is B = 0.0016 ffi. We assume that a spring constant per unit mass of 

k = 1 kg/s2 would be a reasonable assumption and that a realistic fluid density could be 

p = 1000 kg/m3 . For example, an atomic force microscopes cantilever has a spring constant 

of 0.1 kg/s2 and a Slinky spring has a spring constant of 1 kg/s2 [42]. Using these values 

the relation is reduced to 

p. > 5.18 x 1O-13Pa·s (5.94) 

This is extremely likely and will be true for all fluids we wish to investigate, indicating that 

there will in fact be three real turning points. 

The next step is to work out the behaviour of the turning points. We can do this by 

differentiating (5.92) again with respect to 8 to get 

f"(8) = 1282 - 24 (B~:P.P 8 + 4~ = 0 

We now need to evaluate the second derivative at each of the three turning points. At the 

point 8 = 0, we are left with 1"(0) = 4B which by definition must be a positive number. 

This indicates that this turning point ofthe curve described by the quartic polynomial f(8) 

will be a minimum. Using (5.91) we can also see that when 8 = 0 the curve f(8) will be at 

B2, also a positive value. We have plotted the shape of f(s) for the no damping case with 
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res) 

s 
o 

Figure 5.10: f(8) with only one turning point 

only one turning point at 8 = 0, see figure (5.10) . 

"() 9 4 3 v' 4 f 81 = - E - 8B + - 9E - 64B 
8 8 

"() 9 4 3 v' 4 f 82 = - E - 8B - - 9E - 64B 
8 8 

Using the relation (5.93), we know that *E4 - 8B > 0, hence !"(81) > O. This means that 

the turning point 81 is also a minimum. Since we have two minimum points, this implies 

that the third turning point 82 must be a maximum and must occur between 81 and 8 = O. 

We can determine f(8) for each of the turning points 8 = 0, 8 = 81 and 8 = 82. 

f(O) B2 

f(81) 5~22 (-27E6 
- 9E4J9E4 - 64B + 288BE2 + 64BJ9E4 - 64B) 

f(82) 5~: ( -27E6 + 9E4J9E4 - 64B + 288BE2 - 64BJ9E4 - 64B) (5.95) 

This tells us that the curve must cross the axis an even number of times, either twice or 

not at all and thus will have two or zero real roots respectively. 

Simplification using asymptotic analysis 

Although it is valuable to have the exact solutions above (and in most cases the expres­

sions may easily be evaluated) some simplifications may occur when the existence of small 

parameters is exploited. 

Making the substitution 8 = S jW, (5.91) becomes 

o 

o (5.96) 
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where a = -4(Ba~2j.£p. We know that for most fluids MP is of order 1 and believe k to be 
kW2 

small. Given W~ = 7.57 X 10-7 , a must be large. Using this, we can rewrite (5.96) as 

(5.97) 

with E = ~ «1. The S3 term appears to dominate indicating that the equation will 

have three normal roots, found by regular pertubation, and one singular root. To find 

approximate roots of this quartic polynomial we will use the fact that E « 0 and use 

asymptotic approximations of S. For the three regular roots we use the following expansion 

of S 

i=O 

(5.98) 

Substituting (5.98) into the polynomial (5.97), we can evaluate the Si terms by solving the 

equation for each order of E, starting with EO, until each Si term has been determined. For 

example 

G(eO
): S03 = 0 

So=O 

1 
G(E3): 3S02S1 = 0 

So =0 

G(Ei): SO(2S0S2 + S12) + 2S12S0 + S2S02 = 0 

So =0 

Substituting the values of Si back into (5.98) we get our three regular roots: 

In a similar way, we can find the singular root by using a different expansion of S, as follows, 
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and substituting tbis new expansion into (5.97). 

(5.99) 

This will give us the following equation 

As before, we can evaluate the Si terms by solving the equation for each order of E, this 

time starting with O(c3 ), then substitute these Si terms into (5.98) to find our fourth, 

singular root: 
1 

S= -- +2E+ ... 
E 

With E = ~ and a = - 4(Ba):J.Lp we can write our four roots together. To find the roots of 
kW2 

the original polynomial (5.91), we need to use the relation 8 = Jws = kW-~S. 

s= 

1 

( 
kW~)3 2kW~ 

4(Ba)2J.Lp + 12(Ba)2J.Lp + ... 

e2ii kW2 2kW2 ( 3)! 3 
4(Ba)2J.Lp + 12(Ba)2J.Lp + '" 

4(Ba)2J.Lp 

kW~ 

3 
2kW2 

4(BapJ.Lp + ... 

--t8= 

Using possible values of k, p and W, we can see what form the roots will take by plotting 

their position as we vary the value of J.L (appendix A). We can compare the roots we would 

get from solving the polynomial exactly with the roots found with the asymptotic analysis. 

As mentioned earlier, we can discard any positive real roots since they are likely to have 

appeared due to the conjugate introduced to simplify f(8) and can not be solutions. As 

is shown by the following diagrams, both methods result in a pair of complex conjugate 

roots. In both cases the complex roots have negative real parts, necessary for decay to occur. 

If r is non-zero, we would expect similar results but with more damping. For example, 

we would anticipate the negative real parts of the complex roots to be more negative so 

that decay occurs more quickly. 
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1500 Complex conjugate pair - increasing viscosity 

1000 Im(S) 
-- 1 st complex root 

-- 2nd complex root 
500 

o +--------.-------.--------.-------.--------.------~ 

-500 
-453.10286 -428.28519 -310.45299 -257.19u'L;'---' 2 -126.44013 

Re(S) 

-1000 

-1500 

Figure 5.11: Roots of the polynomial evaluated exactly using values in table (5.1), with k=l. 
Shows a complex conjugate pair with imaginary parts approaching zero with increasing 
viscosity. 

1500 Im(S) Complex conjugate pair - increasing viscosity 

1000 

500 

o 
-346.658 -393.948 -308.212 

Re(s) 

-12~426 
-500 

---- 1 st complex root 
-1000 ---- 2nd complex root 

-1500 

Figure 5.12: Roots of the polynomial found with asymptotic analysis, using values in table 
(5.1), with k=l. Shows the complex conjugate pair with imaginary parts approaching zero 
with increasing viscosity. 

We can approximate the solution to our inverse Laplace problem by considering the be­

haviour at different time periods. At small time there will be transient decay. At interme­

diate time there will be regular, measurable oscillations which cross the axis. At large time 

the branch cut contribution will dominate and decay will be algebraic. Overall we expect to 

see the oscillations decay exponentially but the mean displacement to decay algebraically. 

In the next section we consider the behaviour of the solution in each of these time periods 

using asymptotic of f (s ). 
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5.3.3 Large and small time behaviour 

In order to gain further understanding of the general properties of the device, we now 

determine its behaviour at both large and small times. Though the latter is predictable, we 

shall see that the amplitude of motion of the device decays algebraically for large times. This 

is significant since the existing engineering theory of many oscillation-decay viscometers 

appears to implicitly assume that the decay is always exponential. 

Small time approximation 

We can investigate any change in behaviour by looking at an asymptotic expansion of f(s) 

for short time (large s) or long time (small s). This follows since the behaviour of the time 

function f(t) for small t is governed by the behaviour of the Laplace transform sF(s) for 

large s. The initial value theorem states that given a limit exists then 

lim sF(s) = lim se-8t f(t)dt = lim e-Vf(-)dv = f(O). 
1

00 100 v 
8->00 8->00 0 8->00 0 S 

Conversely, the final value theorem gives 

limsF(s) = lim se-8t f(t)dt = lim e-Vf(-)dv = f(oo). 
1

00 100 v 
8->0 8->0 0 8->0 0 S 

For the short time behaviour we need to consider the motion of the sensor as t -t o. We 

approximate this as being equivalent to the large s behaviour thus take a series expansion 

of f(s) about s = 00. We have from (5.87) 

f(s) (s+A+EVs) =( A Er;,)~( 1 ) 
3 s+ + V S 2 A E B 

s2 + Es 2 + As + B s 1 + s + VB + "? 

(s+A+EVs) [ A E B]-l 1+-+-+-
s2 s Vs s2 

(s + A + EVs) I:oo 
( )r [ E A B] r -1 -+-+-s2 Vs s s2 

r=O 

(s + A + EVs) ~(_ )r E
r 

[ ~ ~] r 
2 ~ 11: l+ E r;,+ 3 

S r=O S 2 V s Es 2 

(s+A+EVs)~_lrEr~ r! [~+~]P 
S2 f::o( S~ ~ p!(r - p)! EVs Es~ 

(s+A+EVs) ~(-lrE: ~ r! APE [1+ ABS]P 
s2 ~ S2 ~ p!(r - p)! EPS2 r=O p=o 
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f(8) 

(5.100) 

We are now able to take the term by term inverse Laplace transform of f ( 8) in this new 

form. 

(5.101) 

Substituting this into equation (5.87) gives us a solution for the small time behaviour of 

the motion: 

[ 
B 8BE 5 A - E2 32BEA 7 ] 

x(t) = x(O) 1 - _t2 + [;;;t2 + B t3 
- V7rt'i + . .. . 

2 15y 11" 6 105 11" 
(5.102) 

Using this solution we can analyse the behaviour of the plate at t = O. The main depen­

dence in the first two terms seems to be on the variable B, with B = Sprin!e~~~:t:;~l~~tate 

This suggests that the small time behaviour only depends on the mechanical properties of 

the plate and not on the surrounding fluid. It is interesting to note that the viscosity does 

not appear at all in the first two terms of the expansion. This implies that experimentally 

the oscillations must continue for a more significant length of time to ensure that viscosity 

is being measured. 

We note also that 

[ 
4BE 3 A - E2 16BEA 5 ] 

x'(t) = x(O) -Bt + 3V7rt'i + B 2 t2 
- 15V7r t'i + ... 

thus at t = 0 we have x'(O) = 0, so the slope of the curve is linear. We also find that 

[ 
2BE 1 2 8BEA 3 ] 

x"(t) = x(O) -B + V7r t'i + B(A - E )t - 3V7r t'i + .... 

At t = 0 we therefore have x"(t) = -Bx(O). We know that B = ~ is positive so x"(O) < 0 

indicating that the slope at time t = 0 then approaches the t-axis as time increases. 
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Large time approximation 

For the large time behaviour, assuming that none of the poles have a positive real part, the 

main contribution comes from the integral occurring due to the branch cut. If the poles 

have positive real parts, this would result in increasing motion, thus not allowing for the 

decaying motion which is expected physically. A requirement for the real parts of the poles 

to be negative is that the 8 3 coefficient in the polynomial (5.90) is negative also. This 

corresponds to the sum of the real parts of the polynomial's roots. Since our poles will be 

conjugate pairs this then corresponds to the sum of the roots themselves. In our case this 

gives us the following inequality to be satisfied: 

With A = ps;Ba and E = 2!~'fJ:!, where B is the breadth of the plate, this reduces to: 

J.L Psd ->-­
r 2pBa 

(5.103) 

The branch cut lies on the origin so at large time we look at the end points of the integral 

with contributions coming from 8 = O. We start be taking a binomial series expansion of 

f(8) about 8 = O. We find that 

f(8) 

This form of f (8) can now undergo an inverse Laplace transform. The first term has no 

contribution to the large time behaviour since L-1 [~] = ~<5(t). The delta function <5(t) 

has a value of zero for all t except at time t = 0, when <5(0) = 00. Physically this is similar 

to the plate getting a big hit at an earlier time. Taking the inverse Laplace of this series 

shows us that terms containing integer powers of 8 will also not contribute to behaviour at 

large time since they are multiples of the delta function. This leaves us with 

(5.104) 
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Putting this back into equation(5.87) gives us a solution for the large time behaviour of the 

motion: 

(5.105) 

We can analyse this solution by considering the limit as t ---* +00. 

[ ( 

3 5 7 )] E 1 2 AE 1 2 3(3A2E - 2EB) 1 2 
lim x(t) = lim x(O) B../if (-) - -2../if (-) + 3 ../if (-) +... = O. 

t-+oo t-+oo t B t 4B t 

Hence x(t) approaches 0 as time approaches infinity. The approach to 0 represents the 
3 

oscillations decaying to a stop. Decay occurs algebraically, like t 2 , indicating that the os-

cillations decay more slowly than they would for any exponential terms arising from the 

poles. As mentioned above this algebraic decay is regarded as somewhat non-standard for 

oscillation-decay viscometers, which are normally assumed to decay exponentially. 

Also we know that as t ---* 00, the terms after the first term will converge to 0 much 

faster making the first term dominant at large time. The first term is 

( ) E-J1f _ () 2BaJ J-LfYTr xO 3 -xo 3· 

Bt2 k2t2 

x(t) therefore approaches 0 from the positive direction whenever x(O) > O. 

Exact evaluation of the branch cut 

The branch cut provided by the yIS term in equation (5.89) has a branch point at 8 = o. 
The integral around the branch cut will be an algebraic expression as opposed to the expo­

nential terms from the integrals around the poles. Since algebraic terms decay at a much 

slower rate than exponentials, the branch cut provides the dominant contribution for the 

long time behaviour of the plate motion, so we can evaluate the solution of L-1[/(8)] for 

long time by considering only the yIS term. 

The inverse Laplace of this term can be found by integrating around the branch cut along 

the contour c (with c = q + C2). 
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dominant 
term 

Figure 5.13: Contours to exclude the branch cut singularity 

(5.106) 

We now make a change of variables. Along the contour C! we let s = zein and along the 

contour C2 we let s = ze- in , with -1f < arg( s) < 1f. Our integral now becomes: 

(5.107) 

This shows that the large time solution can be written as an integral in closed form which 

although not simple should now be solvable. 

5.3.4 Solving the plucked spider problem numerically 

Since it is not straightforward to solve the decaying oscillations problem analytically due 

to the complications from the pole and branch cut singularities, the next step is to try and 

determine a numerical solution. From equation (5.83) we can see that the solution to the 

fluid equation in Laplace form is 

u(x,y,s) = G(s)e-Y~ (5.108) 
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We now consider the convolution theorem: 

J(s)K(s) 

=> L-1 [J(s)K(s)] 

Letting K(s) = e-Y~ so that 

L(j * k) 

lot j(s)k(t - s)ds (5.109) 

and taking J(s) = 6(s) = L[x(t)] such that j(s) = xes), we can use (5.109) to write our 

solution as 
~ 

it ye - 4v(t-s) 

u(x,y,t) = xes) 3ds 
o 2y1W(t - S)2 

(5.110) 

The plate equation WXtt + rXt + k2
x = pUyly=o can now be combined with this solution 

for u(x, y, t) to recast the governing equation as 

[ ~ 1 d2x dx t ye - 4v(t-s) 

Wd 2 +r-
d 

+k2x=p [x(s) 3 ds Iy=o 
t t Jo 2y1W(t - S)2 

Y 

(5.111) 

Since the limits of integration are not dependent on y we can bring the differentiation (with 

respect to y) inside the integral. We have 

~ 
1 it e 4v(t-s) 

U y = - 4 y1W xes) 5 (y2 - 2v(t - s))ds. 
v 1[1/ 0 (t-S)2 

(5.112) 

To evaluate this integral we will try integration by parts. 

{t xdY = [Xym _ (t y dX ds 
Jo ds Jo ds 

2 

with X = xes) and ~y = e~ (y2 - 2v(t - s)). So Y becomes 
s (t-s) 2" 

y 
[ 

_y2 2v~erf..(if( y )] 4v~erf..(if( y ) 
2 2ve 4v(t-s) 2~ 2~ 

2y - + - -----'----~ 
y2J(t - s) y3 Y 

~ 4ve 4v(t-s) 

J(t - s) 
(5.113) 
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We can substitute the expressions for X,Y, ~~ and ~~, to give 

-4vJ1j=VUy(x, y, t) 
~ 

l
t ye - 4v(t-s) 

±(s) 3 ds 
o 2J1W(t - S)2 

[
. 4ve-~] t lt -x(s) -

.fit-s) 0 
o 

-~ 
But we can see that [Xy]g = 0 since ±(O) = 0 and as s -t 0, e 4v(t-s) -t 0 quicker than 

J(t - s) -t 0, hence 

~ 

lt 4ve - 4v(t-s) d2x( s) 
-4vJ1j=Vuy (x, y, t) = d 2 ds. 

o V(t - s) s 
(5.115) 

We now wish to take the limit of u y as y tends to o. 

li [dU] 
y~ dy 

lim - 4v ds . [ 1 lt e -~ ~x(s) ] 
y=o 4vJ1W o...;t=S ds2 

1 t tPx(s) ___ r ds2 ds 
J1WJo ~ . 

(5.116) 

Substituting this back into equation (5.111) we get 

d2 d lt tPx(s) x X 2 J.L """""ifS2 
Wd 2 +r-

d 
+ k x = - r,;;;; ~ds, 

t t y1rY 0 yt-s 
(5.117) 

which can be simplified using our previous notation to give 

d2 d E lt d
2
x(s) X x """""ifS2 

d 
2 +A-

d 
+ Bx = - r,;; ~ds. 

t t y7r 0 t - s 
(5.118) 

It is possible to check to see whether this agrees with our earlier analysis by taking the 

Laplace transform of each side. 

S2X - ±(O) - sx(O) + Asx - Ax(O) + Bx 
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If we let X(O) = 0 and x(O) = X then 

This is identical to (5.87). 

_~(S2X-SX) 
y's 

X(s + A + Ey's) 

==r- x = X ( s + A + Ey's 3). 
s2 + As + B + Es"2 

(5.120) 

Before solving equation (5.118) numerically it is worth pointing out that it can also be 

considered to be a fractional differential equation. This may be done by observing that 

the fractional derivative of a suitably well behaved function may be defined for non integer 

values of A by 
). 1 r 1 df(e) 

D [f(x)] = r(1 - A) io (x - e). ~ ~. 
A whole theory exists for such equations (see for example [47]), but we will not pursue 

this further here: in particular a suitable specification of boundary conditions depends on 

exactly which definition of the fractional derivative is used (see [47]). 

We now solve equation (5.118) numerically. We define Xi to be the value of x(t) at time 

t = ti with i = l..n, and define b:..t to be the mesh size for t between 0 and tn. The initial 

conditions are that the plate starts from a stationary position (with zero velocity) at a 

distance X from the origin. 

dx(O) = 0 
dt ' 

(5.121) 

x(O) = X. (5.122) 

We will define the first and second differential of x with respect to t using difference for­

mulae [46]. We use a central difference method since it is more accurate than the forward 

or backward difference methods. For a comparison of difference methods and associated 

accuracies, see appendix B. 

dx '(.) _ Xi+l - Xi-l 
dt ==r- x '/, - 2b:..t ' (5.123) 

~x 1/(.) _ Xi+! - 2Xi + Xi-l 
dt2 ==r- x '/, - (b:..t)2 . (5.124) 
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The left hand side of equation (5.118) may now be written as 

We assume that x? is constant on t = ti, so that we can use the trapezium rule to integrate 

x"(t). 

{to i (x" + x" ) 10 . x" dr =} ~ j 2 j-l (.D.t) 
o J=l 

For the left hand side we treat the integral as a sum of areas beneath a curve. 

_~ (t x"(r) dr = _~ t jjf).t x"(j) + x"(j -1) dr 
y'1r 10 vt - r y'1r j=l (j-l)f).t 2Vi.D.t - r 

_~ ~ x"(j) + x"(j - 1) [-2Vi.D.t _ r]\j-l)f).t 
y'1r L...J 2 J f).t 

j=l 

E i 

- y'1r L(x"(j) + x"(j - l))VM( Ji - j + 1 - Ji - j). 
j=l 

One can see that due to the summation, we can use an iterative process to find xH 1 for all 

terms from i 2: 2. We will need to work out X2 independently. We note here that Xl = x-I 

due to the original condition x'(O) = 0, and our assumption is that Xl = X-I = Xo = X. 

Thence 

lo
t x"(r) 

--======dr 
o vt-r 

i 
'" Xj+! - 2xj + Xj-l + Xj - 2Xj-l + Xj-2 (> /. . 1 r::--:) L...J -"--'---------:!..--"------,3;;-"---"---~- V Z - J + - V Z - J 
j=l (.D.t) 2 

(5.125) 

i-I 

L Xj+! - Xj - X{-l + Xj-2 (Ji - j + 1 - Ji _ j) 
j=l (.D.t) 2 

Xj+I - Xj - Xj-l + Xj-2 
+ 3 

(.D.t) 2 

Substituting this into (5.118) gives us the right hand side of the equation, so that we can 

now rewrite (5.118) as 

X';+l - 2Xi + Xi-l AXi+l - Xi-l E XJ'+l - XJ' - XJ'-l + XJ'-2 
-" '-------:-:---:-c::---- + + BXi + - 3 

~~2 2~ y'1r ~~2 
i-I 

_ E '" Xj+l - Xj - Xj-l + Xj-2 (J' . + 1 r::--:) - -- L...J 3 Z - J - V Z - J 
y'1r j=l (.D.t) 2 

(5.126) 
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We can rearrange equation (5.126) to get a solution for Xi+! in terms of Xi, xi-l and Xi-2 

so that we can use an explicit finite difference method to find all values of X for i 2: 2. 

Xi+l ( 2y'1r(Llt)2 ) [x- (_2 __ B + E ) 
2y'1r + Ay'1rLlt + 2Ev'Kt l (Llt) 2 y'1r(Llt)~ 

+Xi-l (,;;r(:t)~ + 2~t - (ll~)' ) - Xi-2 (,;;r(:t)~ ) 
i-I 

E "Xj+l - Xj - Xj-l + Xj-2 (J- -+ 1 ~)l 
--~ 3 ~-J - V~-J 

y'1r j=l (Llt) 2 

(5.127) 

To allow us to begin calculating each value of Xi, we need to know xo, Xl and X2. As 

previously discussed, Xo is known from our first initial condition (5.121). Following from 

the second initial condition (5.122), we assume that Xl = X-I = Xo. We now evaluate 

equation (5.125) with i = 1 to determine the value of X2. 

X2 - 2XI + Xo A X2 - Xo B 
(Llt)2 + 2Llt + Xl 

X2 1+--+--( 
ALlt Ev'Kt) 

2 y'1r 

i 

-~ L(x"(j) + 
y'1r j=l 

x"(j -l))VM( Ji - j + 1 - Ji - j) 

_~ X2 - Xl - x~ + X-I (Vl- v'o) 
y'1r (Llt) 2 

( 
ALlt 2 Ev'Kt) Xo 1 + -2- - B(Llt) + y'1r 

X (1 2y'1rB(Llt)2 ) 
2y'1r + Ay'1r Llt + 2Ev'Kt 

We would expect the solution to behave such that Xi ---+ 0 as i ---+ 00 and IXi+11 < lXii, since 

the plate should have a decaying oscillatory motion which should stop at some time t = T. 
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The complete numerical scheme for Xi is thus 

Xo 

x 

x 

X 

X ( 2y'1fB(~t)2) 
1 - 2y'1f + Ay'1f ~t + 2EJKt 

( 
2y'1f(~t)2 ) [x" (_2 __ B + E ) 

2y'1f + Ay'1f~t + 2EJKt t (~t)2 J7r(~t)~ 

+X" 1 ( E + ~ __ 1_) _ x" 2 ( E ) 
t- y'1f(~t)~ 2~t (~t)2 t- y'1f(~t)~ 

i-I 
E ~ Xj+! - Xj - Xj-l + Xj-2 (J" "+ 1 ~)l 
--~ 3 'I,-J -y'l,-J. 

y'1f j=l (~t)2 
(5.128) 

We can also carry out some asymptotic approximations of the original equation (5.118), for 

large and small time, to see if they correspond with the pole and branch cut analysis and 

our new numerical solution. 

Small time solution 

The equation to be solved for small time is 

E lot X"(T) x"(t) + Ax'(t) + Bx(t) = -- dT. 
y'1f 0 Vt - T 

We assume a solution of the form 

so that 

atn+2 

x(t) rv (n + l)(n + 2) + Xo 

atn+1 

x'(t) rv-­

n+1 

x" (t) rv atn 

(5.129) 

Using the substitution T = tu, the right hand side of the equation may be written as 
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Substituting this back into equation (5.129) we are left with 

(5.130) 

We need to find a balance between the two dominant terms in the equation. Since every 

term apart from Bxo contains a different power of t, there is no n for which these terms 

can balance, 

hence the balance must involve Bxo. 

f ~~~ h I Bxo balances (n+I)(n+2) ' this would imply t at n -2. However, if n -2 then 

atn would become the dominant term at small time. 

For Bxo to balance A~~:l we would need n = -1. Once again this leads to a contra­

diction, since if n = -1 then atn would become the dominant term. 

If Bxo balances 
1 

Eat
n
+2 rl undu then we would need n 

y7r Jo v'l-u 

similar contradiction. 

-!, which also leads to a 

The only remaining possibility therefore is to have Bxo balanced with atn , such that n = O. 

This means that we would need the following value for a. 

-Bxo (5.131) 

Substituting n = 0 and (5.131) back into our assumed solution for x(t) gives us the small 

time approximation. 
Bxo 2 x(t) rv --t +xo 

2 
(5.132) 

This corresponds exactly with the first two terms of the small time approximation from the 

pole and branch cut analysis (5.102). 

We need to check that this small time solution satisfies the boundary conditions at t = O. 
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Figure 5.14: Comparison between numerical solution and small time approximation 

Setting t = 0 in (5.132) gives us 

Bxo 2 
x(O) rv --0 + Xo = Xo 

2 

which satisfies the initial condition (5.121). Differentiating x(t) with respect to t , then 

setting t = 0 gives 

x'(t) -Bxot 

x'(O) -BxoO = O. 

so that the second initial condition (5.122) is also satisfied. 

Large time solution 

To find the large time solution for (5.129) we first assume a solution of the form 

(5.133) 

such that 

x'(t) rv natn- 1 , 

x"(t) rv n(n _1)atn-2. 

We can rewrite the integral on the right hand side as a sum of two integrals, with 1 « R < t. 

(5.134) 
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1 
Since R < t, we can us the fact that f « 1 to expand (t - r) 2" in h. 

lR 1 1 lR [ r 3r
2 

( 1 )] x"(r)(t - r)2dr =;-;. x"(r) 1 + - + -2 + 0 3" dr 
o vt ° 2t 8t t 

~ [x'(r) + ~ (rx'(r) - t x'(r)dr) r +0 C~) 
1 1 ( 1 ) ;-;.[x'(R) - x'{O)] + -3 [Rx'{R) - x(R) + x{O)] + 0 5 . 
vt 2t2 t2 

(5.135) 

Due to the assumption that R» 1, motion at time t = R is defined as large time behaviour, 

hence x{R) = aRn and x'{R) = naRn- 1 . From our initial conditions we have that x'(O) = 0 

and x{O) = xo, simplifying h. 

I - an Rn-1 a{n - 1) Rn Xo 0 (~) 
1-;-;. + 3 + 3+ 5· 

vt 2t2" 2t2 t2" 
(5.136) 

In the second integral, 12, we can let x"{r) = arn since r » 1 and t » 1 so the limits of 

the integral are both in large time. 

This is a general form of h which holds true when n i- - ~ for all j E N i- 0, where r is 

the gamma function, see appendix B. 

From the analysis of the poles and branch cut, we found that the curve behaved like 

x{t) '" r~ at large time. We can check if this holds true here by trying n = -~, so that 12 

becomes 
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1 

We can now use a binomial expansion on (1 - ~)"2 so that 

(5.137) 

This can be substituted into (5.137) to give 

a [8 3 6 16 3 4 1 ( 1 ) - ~-~+-5-+-5--- 5 ---5 +0 -., 
4 R"2t"2 R'it"2 R'i Vt t'i VR 4t'i VR VRt"2 t'i 

[ 
3 5 45 1 ( 1 ) a 5 + 33+ 5 +0 -.,. 

2R'iVt 4R'it'i 16VRt'i t'i 

When we sum 12 and II we see that most of the terms will cancel out leaving us with 

Xo (1) h+h=-3 +0 5" . 
2t'i t"2 

(5.138) 

We can now determine the large time approximate solution of (5.129) for n = -~. 

(5.139) 

3 Ex 3 
Here we can see that there is a balance between BaC'i and -~C'i. In this case, these 

two terms are also the dominant terms for large time behaviour so the balance holds true. 

This gives us the following value for a. 

Ba Exo 
---

2VJF 
Exo 

- 2BVJF· 

Substituting this back into (5.133) gives us a general large time approximation for x(t). 

Exo 3 
x(t) rv ---C"2. 

2BVJF 
(5.140) 

This approximation has the same t-behaviour as the analysis done on the poles and branch 

cut, thus confirming that after a very long period of time the plate decays algebraically. 

This is a bit of a surprise since most viscometers of this sort decay exponentially. 
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Non-dimensionalising the problem 

We can non-dimensionalise (5.118) in order to simplify the equation and carry out some 

simple stability analysis on the numerical solution. First we let x = X X 

d2x dx XE 1t rP!~s) 
X d 2 + XA-

d 
+ XBx = - t;;; ...;t=Sds. 

t t y7r 0 t - s 
(5.141) 

with A = ~, B = ~, E = 2~Ba and W = psdBa. Next we scale time using t = qi and 

s = "T's, allowing us to re-write (5.141) as 

k 2 ~i k dx k 2 _ --_- + A---= + -x 
W dt2 JW dt W 

__ w~ k ds 
E 1t k

2 
d

2
x(s) VW 

~ 0 JVf(i-s) 
2!07.B 1t d

2
x(s) = - y/-LP 3

a ~ ds. 
v;;:kW4 0 V(t - s) 

We now choose to write the non-dimensionalised equation in the following form 

(5.142) 

where a and f3 are dimensionless variables dependent on the material properties of the plate 

and the viscosity and density of the surrounding fluid. To determine the effect a and f3 will 

have on the solution we can multiply the equation by x' and then integrate. 

1t -, (-" + -, + - f3lt x"(s) d-) d x x ax x=- ~ s z 
o 0 yt-s 

1t 1t 1t 1t 1t -'C) i'i"dz + x'idz = -a (i,)2dz - f3 i ~dSdZ 
o 0 0 0 0 t-s 

1(_')2 1_2 x(O? _ It(-')2d f3lt -It 
i'(s) d-d - x + -x - -- - -a x z - x s z. 

2 2 2 0 0 0 vi - s 
Note that we now use the non-dimensional boundary conditions 

x'(O) = 0 

x(O) = 1 
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On the left hand side of this equation, ~(x')2 is the kinetic energy term, ~(x)2 is the 

potential energy, and x(~)2 represents the initial potential energy. Since a > 0 and 13 > 0, 

both terms on the right hand side are dissipating energy from the system, hence a and 

13 are both damping terms. The sum of these two terms is negative which indicates the 

oscillations will decrease as time progresses, as required. We require a and 13 to be small 

so that the system is not overdamped to the extent that decay occurs too rapidly for any 

oscillations to be seen. We also need a to be much smaller than 13 so that the main damping 

is dependent on the term containing viscosity and density, since these are the variables we 

wish to measure. For this reason we specify that 

0< a« 13 < 1. 

Using (5.123), (5.124), (5.125) and our new boundary conditions, we can rewrite the nu-

merical solution for Xi+I in non-dimensionalised form as 

Xo 1 

1 

1- 2(~i? 
2 + a~i + 2f3...[!;l 

( 
2(~i)2 ) [x. (~ _ 1 + _13_) 

2 + a~i + 2f3...[!;l 2 (~t)2 (~i)~ 

+X'-1 ((,:;)~ + 2~i - (:iJ2 ) - ""-2 ((,:;)~ ) 
i-I _ _ _ _ 

-f3L Xj+!- Xj - ~{-I +Xj-2(Vi - j + 1- Vi - j)]. 
j=I (~t)2 

(5.143) 

Numerical Stability Analysis 

Although the numerical scheme that has been posed clearly gives credible results, it is 

obviously of interest to show if possible that the scheme is numerically stable. If we consider 

the exact solution as a sum of our numerical approximation and an error term xexact = x+er , 

then since (5.142) is a linear equation the numerical solution and the error term (er ) must 

both satisfy the same system of equations. This error will also depend on the time step 

~i. For the numerical solution to be a good approximation we can analyse the absolute 

stability of the system, finding when the error term is growing and shrinking. The numerical 

solution will be useful when the error term gives a stable solution and is thus converging. 

The details of this analysis can be found in appendix D. 
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Conclusions 

Since r is small, we can choose to simplify the non-dimensional numerical scheme (5.143) 

further by neglecting terms containing internal damping, thus letting a = O. Our simplified 

non-dimensional numerical solution for Xi is thus 

Xo 1 

1 

1- 2(~i)2 

2 + 2f3.Ji:t 

(2~~~~) [Xi ((~)2 -1+ (~~) 
_ (f3 1) _ (f3) 

+Xi-I (~i)~ - (~i)2 - Xi-2 (~i)~ 
i-I _ _ _ _ 

- f3 2: Xj+! - Xj - ~{-I + Xj-2 (Vi - j + 1 - Vi - j)] 
j=1 (~t)2 

(5.144) 

The key parameter in this system is f3 and this will let us know how the plate will oscillate. 

Using equation (??) to find the vacuum frequency of the plate and comparing this to 

plots of the numerical solution with J.L = 0, we can calculate the spring constant to be 

approximately k = 95. This gives us f3 = 0.051.JILP. Analysis of the numerical solution 

shows us that when f3 > 1, the system will be too greatly damped to produce a measurable 

amount of oscillations (see figure 5.15). For a reasonable number of oscillations we require 

a) 0.8 b) 

0.6 

0.4 
0.5 

0.2 
X 

X 0 

.0.2 
0 

.0.4 

.0.6 

.o.B 

.0.5 ·1 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 0 0.5 1.5 2 2.5 3 3.5 4 4.5 

t x 10-4 (sees) t x 10'" (sees) 

Figure 5.15: a) numerical solution for f3 = 1; b) numerical solution for f3 = 0.1 

0.001 < f3 < 0.1. Hence, using the decaying oscillations method, this MEMS viscometer 

would be suitable for fluids in the range 0.01957 < J.Lp/Pa2 ·s < 1.957. 
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5.4 Summary of the Spider 

The transversely oscillating MEMS device discussed in this chapter is designed for use as 

an in situ viscometer in oil exploration. An advantage of the MEMS sensor is that it is 

small and can be integrated into existing tools used down-hole. Amplitude of motion is 

typically measured in micrometers. Due to the geometric design of the sensor there will be 

a relatively large fluid mass on the small device making it sensitive to fluid properties. The 

device is relatively easy to produce, using integrated circuit techniques, fabricated using 

material deposition and etching onto a silicon wafer. 

The sensor can be modelled for use in Newtonian and non-Newtonian fluids. In the mod­

elling of the viscometer, certain assumptions need to be made. The device oscillates in its 

own plane and we assume that oscillation results only in a deformation of the legs con­

necting the vibrating plate to the surrounding stationary frame. Having looked at the heat 

equation (5.1) we concluded that thermal dissipation is unimportant in the modelling of 

this device. 

The viscometer can be operated in two different modes, forced or plucked, and it was of 

interest to discover which mode would be the most practical experimentally. 

Forced mode 

The forced model is time-independent, with the plate driven at a fixed forced frequency. 

We can model the sensor in this mode for both Newtonian and viscoelastic fluids. We can 

model the device in an infinite volume of liquid and in the presence of a second stationary 

plate above the oscillating surface. We can produce theoretical expressions for the frictional 

force and power on the oscillating plate for both the Newtonian and non-Newtonian fluid 

cases. These are closed form solutions that give us J.LP as a function of the power driving 

the plate and the initial imposed velocity. 

There are two main problems with using the sensor in the forced mode. Firstly, we are 

unlikely to know the value of the power driving the plate and the initial velocity. In ex­

perimentation, these parameters are not always measured. This means that our theoretical 

result will have no practical value. Secondly, the first resonance frequency of the sensor is 

at approximately 16.9 kHz. At this frequency the legs of the spider have a tendency to break! 
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We can overcome the first of these problems by recasting the model in terms of alternative 

parameters. For Newtonian fluids we can determine J.LP as a function of resonance frequency 

and quality factor. Both of these parameters are determined from the in-phase and quadra­

ture voltage of the system that are measured experimentally. The second problem is more 

serious and can not be overlooked. This implies that the forced mode will never really be 

of practical use since the devices are destroyed whenever they reach their first resonance 

frequency. 

Plucked mode 

The plucked model is time-independent, where the amplitude of oscillation varies with time, 

decaying gradually after an initial perturbation. When placed in a fluid, the decay in am­

plitude of oscillation allows us to infer the fluid properties in terms of things that we are 

able to measure. Operation in this mode seems a lot more promising, however the solution 

is not easily written down and the result is a Laplace transform problem that can not be 

solved simply. 

There are two ways to tackle this problem. The first is to solve the inverse Laplace transform 

problem asymptotically, analysing the poles and branch cut. This allows us to determine 

the long and short time behaviours of the plate. This is relatively straightforward but will 

not give us a complete time picture for the plate behaviour. 

The second way to proceed is to solve the problem numerically. This requires us to recast 

the inverse Laplace transform as a differential/integral equation. We can also do some 

asymptotic analysis on this form of the problem to find short and long time behaviours. 

Solving the problem numerically allows us to identify a parameter that would indicate the 

practical value of the sensor. For the sensor to be successful we require a certain number 

of measurable oscillations. This means that the oscillations must not decay too quickly or 

continue to vibrate at the same amplitude forever. The parameter that will tell us this 

is f3 = 0.051ffp, dependent on the fluid properties. For a successful device we require 

0.001 < f3 < 0.1. 

f3 is a dimensionless variable, also dependent on the material properties of the plate, 

(3 = 2MB:. If we know an approximate range of viscosity and density values for a fluid 
MW4 

then f3 will allow us to decide on the properties of the sensor needed. 
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Experiments have not yet been successfully carried out with the spider in the plucked mode, 

but it is clear that the issue of the robustness of the model, with respect to any experimen­

tal errors that might occur, should be considered. It seems most likely that the device will 

not be too sensitive to experimental errors since only the decay rate needs to be measured. 

However in the absence of experiments this is only conjecture. 

The model deals with an infinite plate, therefore assuming that any edge effects are negligi­

ble. This is a reasonable assumption when the viscous penetration depth is small compared 

with the dimensions of the plate. For a plate oscillating in the third mode, using dimen­

sions for kinematic viscosity as given in table (5.1), the viscous penetration depth, 8, can 

be calculated as 

2 X 10-
6 

= 7.6 X 10-6 
35 X 103 

The sensors produced have a width of 1.6 x 10-3 and length of 2.4 x 10-3 , so this would 

appear be a reasonable assumption. 

In conclusion, the transversely oscillating MEMS device should be operated in the plucked 

mode in a fluid satisfying the criteria allowing for a measurable number of oscillations. 
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Chapter 6 

The Flexion 

6.1 The cantilever plate 

We will now move on to study a different MEMS sensor produced and tested by Schlum­

berger. As with the spider, the cantilever plate is modelled as an elastic solid oscillating in 

a fluid [37]. This device is based on a vibrating plate, with dimensions on the order of 1 

mm and a mass of about 0.3 mg, clamped along one edge. The plate is set in motion when 

an alternating current is passed through the coil mounted on the plate in the presence of 

a magnetic field . At resonance the plate motion is observed using a strain gauge. The in 

vacuo resonance frequency of the first bending mode is about 5 kHz, at a temperature of 

298 K, with a quality factor of about 2900. 

Resistance thermometer 

Figure 6.1: Photograph of the upper surface of the 'flexion' 

The method adopted in the past has been to study the mechanical behaviour of the plate 

in a vacuum to obtain the resonance frequencies. The interaction with the fluid is then 

carried out once the mechanics is fully understood. Due to the small amplitudes of os­

cillation, the problem can be simplified by applying linear theory. A similar problem has 

been solved in [48] for the case of a densitometer plate clamped at both ends in an inviscid 

fluid. J.E. Sadar modelled a similar design of sensor [49] describing a cantilever beam of 

arbitrary cross section, excited by an arbitrary driving force, immersed in a fluid, regarding 
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Figure 6.2: Dimensions of the 'flexion' 

application to the atomic force microscope. The theory is restricted by limitations to the 

geometry of the beam, which disagrees with our MEMS design. The equations derived by 

Sadar involving viscosity and density rely on three main assumptions. The first is that the 

amplitude of oscillation of the beam is considerably smaller than any length scale in the 

beam geometry. Due to the dimensions of the flexion, this would mean an amplitude of less 

than 2.8 mm, a realistic requirement. The second assumption is that the fluid is incom­

pressible, also assumed in our analysis. Lastly, Sadar's equations require that the length 

of the beam greatly exceeds its breadth. On the flexion sensor, the vibrating portion of 

the armature does not satisfy this final condition. Sadar uses impulsive formula, assuming 

a high Reynolds number, rather than slow flow, again in disagreement with the analysis 

carried out on the flexion. We will look at the plate first in an inviscid fluid, as in the 

densitometer case, and then in a viscous fluid where viscosity can be determined. We hope 

then to introduce a different method for formulating the fluid flow and the motion of the 

plate as a coupled problem to be solved simultaneously. 

6.1.1 The mechanics of an oscillating cantilever plate, clamped at one 

end 

As with other MEMS sensors, the cantilever plate oscillates in a number of different modes, 

see figure (6.3). Experimentally Schlumberger have found that the first mode occurs in 

vacuum at 5.3 kHz. The second mode is at 11.8 kHz, the third at 30.3 kHz and the fourth 
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at 33.6 kHz. We are only interested in the first mode, with the plate oscillating in one 

direction only, allowing us to reduce the problem from three dimensions to two. This 

means that we can eliminate terms containing x derivatives from the equation for plate 

motion. 

Figure 6.3: Modes of oscillation for the 'flexion' (diagrams reproduced from Maria Manrique 
de Lara's analysis using ANSYS [40]) 

The plate is initially modelled as a cantilever plate clamped at one end, z = 0, y = 0, as 

shown in figure (6.4). 

YvCx 

/ "/ 
a 

Figure 6.4: Schematic for the 'flexion' with a photograph of the clamped plate 

The transverse displacement of the plate normal to the x-z plane is given by: 

y = q(x, z, t) 

We assume that longitudinal strains vary linearly across the plate's depth and the bending 

moment at any cross section is proportional to a local radius of curvature. Given these 

assumptions and due to the dimensions of the plate, we can state that the partial differential 
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equation for q follows the Bernoulli-Euler bending theory of thin plates: 

fPq 4 
Psd f}f;2 + DV q = F (6.1) 

O<z<a 

O<x<B 

Where a == length of plate, B = breadth of plate, D = Ed3 /12(1 - 0-
2

) == flexural rigidity 

of plate, Ps _ density of plate material, E == Youngs modulus, 0- == Poisson ratio of plate, 

d = thickness of plate and F = force per unit area applied normal to plate surface. 

We assume the plate is infinitely long in the x direction to simplify the problem to only 

two dimensions. It is now necessary to solve (6.1) subject to the following clamped edge 

conditions: 

no deflection at the clamped edge 

no slope at the clamped edge 

q=O 

8q = 0 
8z 

no bending moment at the free edge (z = a) 

no shear force at the free edge (z = a) 

at z=O (6.2) 

at z = 0 (6.3) 

at z=a (6.4) 

at z =a (6.5) 

This will give us the equation of motion for the cantilever plate subject to an external force 

F. We can define F to be the retarding force on the plate due to the surrounding fluid so 

that we can couple the fluid and plate equations. 

6.1.2 Solving equations of the plate in vacuum 

Before defining F, the first step is to solve the homogeneous form of (6.1) subject to 

conditions (6.2) through to (6.5). At this stage we define that there is no force (external 
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driving force or retarding force due to surrounding fluid) acting on the plate which is 

assumed to be in vacuum, F = o. We assume that the plate oscillates with harmonic 

motion of the form q = Z(z)e-iwt where Z(z) is a function of z only. Using the separation 

of variables method [50J this results in the following equation for q: 

where Ao == arbitrary initial amplitude, Wn == natural frequency of oscillation of plate 

and bn = Fn(~)t This equation satisfies the boundary conditions subject to 1 + 
cos(bna) cosh(bna) = O. 

The fundamental value is found to be bn == b f = 1.8:51 

The solution to the homogeneous form of (6.1) can be plotted to show the position of 

the surface of the plate at different times. Here we can see a plot of one complete period 

in steps of i, and for values of z across the length of the plate from 0 to a. It is evaluated 

with Wv = 1 and bf = 1.87. 

A 

-A 

Figure 6.5: Plate position through one complete period of vibration 

The next step is to find out how the plate acts due to the presence of the fluid as described 

by the force, F. This force will be discussed further in the next section. 
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6.2 Densitometer - Inviscid Flow 

We will first consider an inviscid fluid, so that the cantilever plate acts as a densitometer 

only. This will allow us to see how the plate motion changes in the presence of a fluid 

without the added complication of viscosity. Schlumberger have been using the sensors as 

densitometers in various gases, where the effects of viscosity are much smaller than that of 

density. Experimentally, the fluid surrounding the plate is initially at rest. To simplify our 

model we assume the fluid is inviscid and incompressible (V'.v = 0) and that the flow is 

irrotational. This implies that the fluid velocity v is the gradient of a potential 

v = V'<I> 

where <I> satisfies 
a<I> 
-=U ax and 

a<I> 
-=V ay (6.7) 

(6.8) 

6.2.1 Slender body theory 

Long bodies can be considered to have two naturally occurring length scales and asymp­

totic expansions can be made for each of them. The two scales in this case are the length 

of the body and its thickness. On the smaller scale the body can appear to have infinite 

length with a quasi-uniform finite cross section, whilst on the larger scale it can appear to 

be finitely long with negligible depth. 

Taking a two-dimensional representation of the plate, assuming uniformity along the breadth, 

it is shown that the thickness of the plate, order 10-6 m, is extremely small compared to 

the length, order 10-3 m. Thus the plate satisfies the slender body criteria. This theory can 

also be applied to the oscillations of the plate and the plate boundary. The plate oscillates 

harmonically and the boundary is at the surface. The amplitude of this wave is of the 

same order as the thickness of the plate. We define that the position of this surface varies 

only slightly with the perturbation quantity E. If the plate oscillates around the centre line 

y = 0 then since the boundary only moves a small amount we define that any particle on 

the surface y = q(x, z, t) is assumed to be at [51] 

y = Eij(x, z, t) 
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with E < < 1 and ij of order 1. Since E is small, y = Eij(X, z, t) gives no order 1 contribution 

to the boundary therefore to leading order we can express the boundary conditions on 

y = 0 [52]. 

For in v~ f:.id Ani,() 
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Figure 6.6: Linearising the boundary for an inviscid fluid 

6.2.2 Fluid-plate interaction 

We assume that the transverse displacements of the plate are sufficiently small that the 

plate surface can be linearised to y = o. We imply that the normal velocity of the plate is 

equal to the fluid velocity in the y-direction at this surface. 

aq aib 
at ay at y = 0 (6.9) 

Also defined is that the force on the plate, F, is a result of the pressure difference either 

side of the plate surface 

(6.10) 

where p+- == fluid pressure at y = 0+- . 

For an inviscid fluid we can find these pressures using other fluid flow quantities. The 

Bernoulli equation, neglecting the gravity and square of velocity term (using standard val­

ues from table 5.1 it can be seen that these terms are negligible) , gives 

where p is the fluid density. 

aib 
p=-p­at 

106 

(6.11) 



+ 
We should also impose the boundary conditions <1>- ----* 0 as y ----* ~ 00 to represent the 

pertubations in the fluid decaying to zero far from the plate surface. Here we will need 

to approximate because an inviscid solution which also satisfies these conditions will be 

much more complicated. Experimentally, the flexion will be positioned inside a tube but 

the geometry of this arrangement is difficult to model. Due to the small size of oscillations 

of the plate in comparrison with the radius of the tube we choose to ignore the effects of 

the tube walls and do not impose the extra boundary conditions. 

We can solve (6.8) for <1> subject to (6.9) and combine this with (6.11) to find the pressure 

at either side of the plate surface. The pressure at y = 0+- can then be substituted into 

(6.10) to find F. A solution satisfying both plate and fluid equations can then be obtained 

by substituting F with q into (6.1). 

Solving the equations 

The first step is to use our homogeneous solution for q (6.6) in (6.9) to get definitions for 

<1>+ and <1>-. 

<1>+ Ao sin (wt)w . 
2b(cosh (ba) sin (00) - cos (ba) sinh (ba» ((cos (by) - sm (by»(S cosh (bz) 

-C sinh (bz» + e-by(C sin (bz) - S cos (bz») (6.12) 

Aosin(wt)w 
2b(cosh (ba) sin (ba) _ cos (ba) sinh (ba» ((cos (by) + sin (by»)(S cosh (bz) 

-C sinh (bz» + eby(C sin (bz) - S cos (bz») (6.13) 

with C = cosh (ba)+cos (ba) and S = sinh (ba)+sin (ba). As anticipated from the discussion 

above, concerning the tube in which the flexion is placed, <1>+ and <1>- do not tend to zero 

as y ----* ±oo respectively. They are however, not exponentially large. <1>+ and <1>- are now 

substituted into (6.11) resulting in two equations for the pressure above and below the 

plate, p+ and p-. 

pAo cos (wt )w2 • 

2b(cosh (ba) sin (ba) _ cos (00) sinh (00» ((cos (by) - sm (by»(S cosh (bz) 

-C sinh (bz» + e-by(C sin (bz) - S cos (bz») (6.14) 
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p 
pAo COS (wt)w2 • 

2b(cosh (ba) sin (ba) _ cos (ba) sinh (ba)) ((cos (by) + sm (by))(S cosh (bz) 

-Csinh(bz)) + eby(Csin(bz) - Scos(bz))) (6.15) 

Next we can determine the force, F, using (6.14) and (6.15) in equation (6.10). 

F = pAo cos (wt)w2 (S(cosh (bz) - cos (bz)) + C(sin (bz) - sinh (bz))) 
2b(cosh (ba) sin (ba) - cos (ba) sinh (ba)) 

(6.16) 

This new expression for F is substituted, along with our homogeneous solution for q, into 

our initial equation (6.1) which can now be re-solved. At this stage we redefine the frequency 

w to be 21r f and rearrange the solution to get a definition of the fluid density in terms of 

frequency f, the determined constant b and plate material constants. 

(6.17) 

This equation can be used to determine fluid density in an inviscid fluid. Since D and b 

are both positive this tells us that as you increase the density of the surrounding fluid, the 

frequency of oscillation of the plate will decrease, as expected physically. 

6.2.3 Comparison with data 

This is all very well theoretically, but the plate is not pure silicon, so the density of the plate 

and its elastic properties are relatively unknown. We re-write equation (6.17) in terms of 

two constants, K2 and K 1 , which can be calibrated from known data. 

(6.18) 

with Kl == Ps and K2 = 12(1~u2)' where E, (Y and Ps are unknown. This equation can be 

modified further by adding in a temperature dependence to the length scales to account for 

thermal expansion at high temperatures, once again assuming the plate to be pure silicon. 

The plate depth, d, is now written as 

d(TjK) d x (1.000002366975533 x (T - 273.16)2 

+0.0000000100192 x (T - 273.16)) 
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and b, which is a function of ~, becomes 

b(T/K) = b/(1.000002366975533 x (T - 273.16)2 

+0.0000000100192 x (T - 273.16)) 

The parameter representing plate density, Kl, becomes 

K1(T/K) = (Kl - 0.00002859446 x (T - 273.16)2 - 0.016541425 x (T - 273.16)) 

This gives us a temperature dependent equation for fluid density (6.19). 

(6.19) 

Two sets of experimental data have been analysed using different flexion plates. The first 

viscometer was tested in argon at a range of temperatures and pressures. The constants 

were calibrated at a temperature of 323 K and resulted in Kl = 2130.661146 kg·m-3 and 

K2 = 462902788.8 kg·m-1 ·s-2. It was expected that the constant representing silicon den­

sity, K 1 , would be lower than the true density for pure silicon due to the layers on the 

plate consisting of other materials. These values were then put back into equation (6.19) 

and this was used to calculate densities at the other temperatures. This produced density 

values accurate to within 2 % of the true value, see graph (6.7). 

The second flexion plate was tested in several different fluids at varying temperatures. 

Using an uncalibrated model, equation (6.19) with Kl = Ps and K2 = ~, the density was 

determined to within 20 % of the true value over the entire range. Some of the fluids tested 

showed an accuracy of less than 2 %, see plot (6.9). All data used in these plots can be 

seen in appendix A. 
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Figure 6.7: Density error plot for flexion plate in argon, accurate to 2 % 
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Figure 6.8: Density error plot for flexion plate in assorted fluids, accurate to 20 % 
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Figure 6.9: Density error plot for flexion plate in C6H5CH3 and H20, accurate to 2.5 % 

6.3 Viscometer - Slow Viscous Flow 

The MEMS sensors are intended to measure density and viscosity so we will next consider 

oscillations in a viscous fluid to introduce viscosity into the fluid equations. For the more 

complicated viscous case the fluid is still defined as incompressible (\l .v = 0) but we no 

longer assume the fluid to be inviscid. The flow is assumed to have a small Reynolds number 

(Re« 1) and is thus considered slow flow. This implies that a stream function W can be 

found such that 
oW 
- =u ay 

oW 
--=V ax (6.20) and 

where W satisfies the equation 

(6.21) 

6.3.1 Fluid-plate interaction 

To solve the fluid equations for a viscous fluid we impose two conditions at the boundary: 

aq oW 
at ax 

oW =0 
ay 

and 

at y = 0 
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+ 
As in the inviscid fluid case we choose to ignore the boundary conditions w- -----t 0 as 

y -----t ~ 00, that perturbations in the fluid will decay to zero far from the plate surface, to 

simplify the equations. Once (6.21) has been solved subject to boundary conditions (6.22) 

and (6.23) we can use the resulting stream function W to find u and v applying the relation 

(6.20). u and v can then be substituted into the following velocity equations for slow viscous 

flow. 

(6.24) 

and (6.25) 

We find that (6.24) is automatically satisfied. (6.25) can be solved with the known u and 

v to define a unique pressure. 

The stress on the surface of the plate is used to find the total force acting on the plate 

due to the presence of the fluid. This is shown diagramatically in figure (6.1O). 

Stre. ou the L lltf3Jec..~ of t Iw p1a.liC 

y 
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LtUL,!.+~ 
Figure 6.10: Stress in an inviscid and viscous fluid 

We define that the force on the plate, F, is a result of the difference in stress normal to the 

surface of the plate top and bottom. 

(6.26) 
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where p+- == fluid pressure at y = 0+-. F can thus be determined using this unique 

pressure and substituted with q into (6.1) in a similar way to the inviscid case. This time 

the resulting problem will be a lot harder to solve since F is likely to be a function of q. 

Inviscid fluid analogy 

Before we solve the viscous fluid equations it helps to consider the inviscid fluid analogy. 

For the inviscid fluid case we could view the plate as a system of sources acting on the fluid. 

A fundamental solution to (6.8) exists of the form 

E 11 ~ = - ft log[(x - (Y + y2]d( 
1r -1 

(6.27) 

which is subject to the boundary condition 

of o~ 

at oy on y=O (6.28) 

where f(x, t) is the function defining the position of a particle at the surface of the plate. 

The first term, it, is equivalent to the source strength. The value of this analogy is that 

we are about to perform a very similar calculation which includes the extra complications 

of Stokes flow rather than potential flow. However, many of the simplifications that occur 

in the potential flow problem may be expected to occur in the full problem. While the 

inviscid case is solvable, it does not contain a viscosity term. The next step is to solve 

(6.21) subject to boundary conditions (6.22) and (6.23). 

There are various methods that can be used to solve Stokes flow problems. One such 

method is the use of Mellin transforms. Moon-Uhn Kim [53] uses Mellin transforms to 

solve two dimensional slow viscous flow around a fence projecting from a plane. In two 

dimensions, the fence protruding from the plane can be considered a similar problem to 

the clamped cantilever plate, however Kim considers moving flow around a stationary fence 

rather than an oscillating body in a stationary fluid. Complex variable methods can also 

be used to solve Stokes flow problems and many authors have used this to analyse the 

bi-harmonic equation [54]. 

Solving the viscous fluid equation 

We chose to solve the Stokes flow problem using the method of Stokeslets. SiInilar methods 

have been use to analyse the swimIning motions of Inicroscopic organisms such as flagellum. 
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Examples of this can be seen in the work of Lighthill [55] [56], Hancock [57] and Taylor [58]. 

More recently a numerical method for computing Stokes flows using stokeslets has been ex­

plained in a paper by Cortez [59]. He presents a more general case of Stokes flows driven 

by external forcing, allowing the method to be applied to any moving body that interacts 

with the fluid. 

The main assumption made is that the Reynolds number of the fluid is small enough that 

inertial effects on the fluid or the plate can be neglected. The resultant and the moment of 

all forces acting on the plate will be zero [56]. The fluid will satisfy the equations 

(6.29) 

'V.v = 0 (6.30) 

where f.L is the fluid viscosity, v is velocity, and p is pressure. In a similar fashion to the 

inviscid case, a fundamental solution of these equations can be found which is called a 

stokeslet field. Every flow field at very low Reynolds number can be defined as a superpo­

sition of stokeslet fields distributed along a surface. 

Refering back to figure (6.4), we are modelling the sensor as a cantilever plate clamped 

at one end. We now chose to introduce an infinite, flat solid wall at the clamped edge, 

perpendicular to the sensor plate. This is to more closely represent the true geometry of 

the sensor. The equations of motion for the flow are the Stokes equations (6.24) and (6.25), 

and the boundary conditions are that the fluid velocity is zero on the wall z = 0 and is 

equal to the velocity of the oscillating plate wherever the fluid and the plate are in contact. 

6.3.2 The Method of Stokeslets 

A stokeslet is the name given to the Stokes flow due to a point force. We will seek to model 

the flow around the plate using an infinite regular array of stokeslets all with equal strength. 

Techniques for arrays of stokeslets are given by Blake [60] and Liron & Mochon [61]. 

In this chapter we will begin by considering the equation for a single stokeslet near a 

flat plane wall. This idea will then be extended for the modelling of the plate viscometer 

by considering three problems. 
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Figure 6.11: Flexion with infinite wall at z = y = 0 

1) Firstly the solution to an infinite continuous distribution of stokeslets on a line above a 

flat plane wall. 

2) This will lead to the consideration of a double array of stokeslets above the plane, infinite 

in one direction and finite in the other, representing the plate itself. 

3) Finally the idea of dipoles will be introduced to allow the no-slip condition on the plate 

surface to be satisfied. 

The culmination of these problems should result in a complete fluid-plate model. 

To understand stokeslets in general it is useful to look at them in three dimensions. This 

will allow us to pose the full boundary value problem with the plate having finite edges. 

Although this is possible, ultimately we will assume the edge effects are negligible to reduce 

the problem to equations in only two dimensions. 

A Single Stokeslet and the Image System 

The equation for a stokeslet in an infinite viscous fluid is found by considering Stokes flow 

past a sphere. The fundamental singular solution is given by Lighthill [55] and Blake [62], 

obtained using a three dimensional Fourier transform on the equations of motion in an 

infinite viscous fluid. The velocity and pressure field components respectively can be written 

as 

(6.31) 
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(6.32) 

where x = (x,y,z) is an arbitrary point in the fluid, i = ('YI,,2,,3) is the position of the 

stokeslet and Ix -il is the distance between the two points. 

Now consider a stokeslet acting in the y direction situated at i, a distance ,3 = h from 

a plane z = 0, see diagram (6.12). A Greens function is constructed for the pressure and 

velocity fields associated with this point force, Fk, satisfying the no-slip condition on the 

plane boundary. 

(j = 1,2,3) (6.33) 

P=p+q (6.34) 

Here Uj and p are the fundamental singular solutions (6.31) and (6.32) respectively. The 

problem of obtaining the complementary solutions Vj and q is carried out by Blake [62]. 

The terms satisfy the creeping flow equations 

'V.v = 0 (6.35) 

subject to v = -u at all points in the plane z = o. The resulting entire velocity field for a 

point force in the y-direction near the plane z = 0 can be written 

(6.36) 

and the pressure field as 

(6.37) 

where a assumes the value 1 or 2, r = x -i, R = x - i', r = Irl and R = IRI, with 

i' = (,1,,2, -h). The term (l5ka15al -l5k3 153l ) only has a non-zero value when k = l and is 

positive when k = 1 or 2 but has a negative sign when k = 3. 

Blake describes these equations using an image system of singularities below the plane 

for two distinct cases, when the stokeslet points normal to the plane and when the axis of 
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the stokeslet is aligned parallel to the plane. We are only concerned with the latter and 

this system can be seen in diagram (6.12). 
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doublet 
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Figure 6.12: Image system for a stokeslet aligned parallel to the plane z = 0, with k = 2 

This system consists of a stokeslet equal in strength and opposite in sign to the origi­

nal, a stokes-doublet of strength 2hFk and a source-doublet of strength 2h2 Fk where k is 1 

or 2. We are interested in what happens when k = 2. For this case the stokes-doublet is 

defined by the equations 

u' _ - __ _----=- + 2 J + 2J J 2 2hF2 [r- 3r-r -rk r k8- - - r -8-k ] 
2 - 8np, r3 r 5 r3 

(6.38) 

The stokes-doublet contains two stokeslets pointing normal to the plane boundary, equal 

in strength and opposite in direction. The source doublet contains two sources, equal in 

strength and opposite in direction, at an infinitessimal distance apart. This image system 

is satisfactory for local flow but in the far field the effect of the two stokeslets is to introduce 

a far field stokes-doublet. This will be located at !h + ,') and will have strength 4hF2 . 

Line of stokeslets above a Hat plane 

As explained earlier we wish to extend the single stokeslet solution to an array of stokeslets 

to begin to construct the model of the plate surface. To do this we consider an infinite line 
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array of identical stokeslets situated at points, = (')'I, 0, h), -00 < 11 < 00. The radius 

vector from the stokeslet , to x is given by 

r = (x -,I, y, Z - h) 

and from the image stokeslet " to x is 

This problem has been done in the discrete array case by Liron [63]. 

h 

--~----~----------~--------~--~x 

Figure 6.13: Line array of identical k = 2 stokeslets 

To obtain the velocity at x due to the infinite line of stokeslets at , we need to integrate 

(6.36) with respect to 11 in the limits -00 < 11 < 00. 

(6.39) 

Double array of stokeslets above the plane 

Once the solutions for a line array have been found, these results are extended to a double 

array, infinite in the x direction and finite in the z direction. This will now represent 

the basic shape of the oscillating plate. The length of the array in the z direction will 

correspond with the length of the oscillating plate viscometer. Again, the discrete case is 

covered by Liron [63] . The 2-dimensional array of stokeslets can be seen in diagram (6.14). 

In this case the radius vector from the stokeslet , to x is given by 

r = (x -,I, y, z -,3) 
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--~----~~----------------~~--4 X 

finite 
length 
of plate 

Figure 6.14: 2-dimensional array of stokeslets aligned parallel to the plane boundary at 
z=O 

and from the image stokeslet " to x is 

R = (x - 'Yl, y, z + (3) 

x 
y I 

/ 

J r 

z 

x 

Figure 6.15: Identifying a stokeslet in the 2-dimensional plate array 

To obtain the velocity at x due to the double array of stokeslets at , we need to do a 

double integration on (6.36). The first is with respect to 11 in the limits -00 < 11 < 00 

and secondly with respect to 13 in the limits 0 < 11 < a, where a is the length of the MEMS 
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device. 

U**j = rl°O U;(x,/)d'Y1d'Y3 io -00 

(6.40) 

To create the effect of movement in the plate we need to define the force F to be a function 

of both time and the distance along the plate, "13. This makes the next step of integration 

much more complicated. It will be shown in the working equations that we can write the 

components of the array velocity in the form: 

(6.41) 

(6.42) 

Boundary conditions 

We now have an array of stokeslets representing our plate which can be used to model the 

fluid motion caused by the oscillating device. The next problem is the boundary condition 

on the surface of the plate itself. The fluid must satisfy the no-slip condition on this sur­

face. A similar problem is solved by Lighthill [55] defining flagellum motion. He couples a 

stokeslet with a corresponding dipole to create the effect of a solid spherical boundary. In 

our case the no-slip condition on the surface of the plate can be incorporated by defining 

the force F to act only in the y direction. 

Once the working equations for the array of stokeslets have been found (6.40) we can 

use this model for the fluid motion to define the two boundary conditions for the motion 

of the oscillating MEMS device. The strength of the stokeslets Fk can then be varied 

corresponding with the motion of the plate. 

6.3.3 The Stokeslets Equations 

The single stokeslet 

The equation for a single stokeslet with a force acting in the k direction situated at /, a 

distance "13 = h from the plane z = 0, was given by equation (6.36). The problem that 

we are interested in will eventually be an array of stokeslets each with force in the k = 2 

direction. We will first write down the individual stokeslet's velocity components for k = 2, 

with F = (0, F, 0). The remaining velocity terms will all be zero since Fl = 0 = F3 , 
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therefore if k is equal to 1 or 3 we will get Ul = U2 = U3 = O. When k = 2 we get 

U1 = ~ [y(x - 11) _ y(x - 11) + 2h~ {h(X - 11) _ (x - 11)(Z + h)}] (6.43) 
8np, r3 R3 8y R3 R3 

U2 = ~ [(~ _ ~) + y2 _ i... + 2h~ {hY _ y(z + h)}] (6.44) 
8n/-L r R r3 R3 8y R3 R3 

U3 = ~ [y(z - h) _ y(z + h) + 2h~ {h(Z + h) _ ~ _ (z + h)2}] (6.45) 
8np r3 R3 8y R3 R R3 

with 

r = v(x - 11)2 + y2 + (z - h)2 

Removing the derivatives we can rewrite these equations as: 

8n/-Lu = [y(x - 11) _ y(x - 11) 6hyz(x - 11)] 
F 1 r3 R3 + R5 (6.46) 

8n /-L [ 1 1 y2 y2 Z 2 2] 
-U2= ---+---+2h-{3y -R} 
F r R r3 R3 R5 

(6.47) 

8n/-Lu = [y(z - h) _ y(z + h) + 2hJL {R2 + 3z( + h)}] 
F 3 r3 R3 R5 z (6.48) 

The continuous line of stokeslets 

To find a line of stokeslets aligned parallel to the plane boundary with force in the k=2 

direction we now need to integrate each of (6.46), (6.47) and (6.48) with respect to 11 over 

the interval -00 < 11 < 00. For the velocity at a point on this line we need to divide 

through by the breadth of the plate, in this case B. 

B81r/-LU* = lex:> [y(x - 11) _ y(x - 11) 6hyz(x - 11)] d 
F 1 -ex:> r3 R3 + R5 11 (6.49) 

B81r/-L * lex:> [1 1 y2 y2 Z 2 2] --U 2 = - - - + - - - + 2h- {3y - R} d11 F -ex:> r R r3 R3 R5 
(6.50) 

(6.51) 

To simplify calculations we break the equations up into smaller integrals to be solved, such 

that 
B81r/-L 
-pU* 1 = yT2 + 6hzyT5 
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B81rJ-t 
-----y-U*3 = (2hy - y(z + h»T4 + 6hyz(z + h)T3 + y(z - h)T7 

T2=1°O [X-,1 _ X-,I] d =0 
3 R3 ,I 

-00 r 

T3 = L: [~5] d,1 = 3;4 

T4 = L: [~3 ] d,1 = ;2 

100 [x - 'I] T5 = -00 R5 d,1 = 0 

100 [1 1] (p T6 = - - - d,1 = In( 2" ) 
-00 r R a 

T7 = 100 

[13] d,1 = 22 
-00 r a 

with a and (3 given by the following expressions 

and 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

We can now write down equations for the velocity at x due to a continuous, infinite sequence 

of stokeslets at ,. 

(6.59) 

U*2 = ~ [In((32) _ 2y2 [a2 
- (32] + 8hzy2 _ 4hZ] 

B81rJ-t a2 a2(32 (34 (32 
(6.60) 

U* _ ~ [2Y(Z - h) _ 2y(z + h) 8hzy(z + h) 4hY] 
3 - B81r J-t a 2 (32 + (34 + (32 (6.61) 

These expressions are independent of x and hence our problem is reduced to a two dimen­

sional system of equations. 

For equations (6.59), (6.60) and (6.61) to be of use they must satisfy the conditions orig­

inally prescribed. They must be a solution of the two-dimensional Stokes equations, they 

must satisfy no-slip at the plane boundary z = 0 and the velocities must tend to zero as x 

tends to 00. The velocities do indeed all tend to zero with increasing x so it just remains 
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to check the other two conditions. 

The first condition is satisfied since the following expressions hold true 

fPP [J2p 
-----=0 
8y8z 8zay 

It can next be shown that the no-slip condition is satisfied given that 

on z=O 

The continuous array of stokeslets 

As mentioned in the previous chapter, this step of integration is made more complicated 

by the definition that F is a function of t and h (,3). To find the velocity due to an array 

of stokeslets protruding from the plane boundary with force in the k=2 direction we need 

to integrate each of (6.59), (6.60) and (6.61) with respect to h over the interval 0 < h < a. 

To find the velocity at a point due to the array we must divide through by the length of 

the plate, a. It now helps to write the fluid velocity at x due to the continuous array of 

stokeslets, in component form. 

u = U**l = 0 

v = U**2 = loa F(t, h)Kv(y, z, h)dh 

w = U**3 = loa F(t,h)Kw(y,z,h)dh 

with Kv and Kw given by the following expressions 

Kw = 1 [2Y(Z - h) _ 2y(z + h) + 8hzy(z + h) + 4hY] 
8aB1fJ-L 0 2 (32 (34 (32 

123 

(6.62) 

(6.63) 
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(6.65) 
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Boundary conditions 

Referring back to the original plate equation (6.1) for the velocity of the plate, q, we can 

use equations (6.63) and (6.64) to define our two necessary boundary conditions. 

(6.67) 

0= loa F(t, h)Kw(O, z, h)dh (6.68) 

The first condition states that the velocity of the plate is equal to the fluid velocity at the 

surface y = O. 

qt= rF(t,h) [In(Z+h)_ 2hz Jdh 
io 4aB7rJ-L Z - h (z + h)2 

(6.69) 

The second condition satisfies the no-slip condition on the surface, hence w = 0 on y = O. 

It becomes apparent that for our choice of stokeslets, acting in the k = 2 direction only, 

condition (6.68) is automatically satisfied. This can be proven by identifying that the limit 

of w is 0 as y tends to O. 

lim(w) = r F(t, h) lim [Kw(y, 0, h)jdh 
y->O io y->O 

(6.70) 

= fa F(t, h) lim [ 2y(z - h) jdh _ r F(t, h) lim[ 2y(z + h) jdh 
io 8aB7rJ-Ly->o y2 + (z - h)2 io 8aB7rJ-L y->O y2 + (z + h)2 

+ r F(t, h) lim[ 8hyz(z + h) )2jdh + r F(t, h) lim[ 4hy jdh 
io 8aB7rJ-L y->O (y2 + (z + h)2 io 8aB7rJ-L y->O y2 + (z + h)2 

As y approaches 0 the limit of the third and fourth term will be reduced to O. It is shown 

that this is also true for the first two terms using dirac-delta function relationships. 

lim 'lj;2 'lj; 2 = 7rl)(X) 
'I/J->O + X 

lb 5('lj; - 'lj;o)!(t, h)d'lj; ( -l)!('lj;o) for a<'lj;o<b 

o for a>'lj;o or b<'lj;o 
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provided J('ljJ) exists at 'ljJ = 'ljJo. If we next define F(t, h) = eiwt J(h), this allows us to write 

the remaining terms in equation (6.70) as 

l
a eiwt 2y(z - h) 

8 B J(h)Iim[ 2 ( h)2Jdh o a 7rJ.L y->o y + z-

a iwt r e f(h) Ii [-2y(z + h) Jdh 
10 8aB7rJ.L y!!5 y2 + (z + h)2 

r 8 e;t f(h)2(z - h)7r5(h - z)dh 10 a 7rJ.L 

-2eiwt 
8 B J(z)(z - z)7r = 0 
a 7rJ.L 

r 8-~iwt f(h)2(z + h)7r5(h + z)dh 10 a 7rJ.L 

2eiwt 
8 B f(-z)(z - z)7r = 0 
a 7rJ.L 

Hence the velocity component w is zero on the boundary y = 0 for all J (h). 

lim(W) = 0 
y->o 

This leaves us with just the single boundary condition (6.67). 

Now consider the velocity component v, equation (6.63), on the boundary y = O. Tak­

ing the first derivative of v with respect to y gives 

dv 
dy 

Hence ~~ -+ 0 as y -+ 0, since ~~ is proportional to y, which shows that there is no 

discontinuous jump on the boundary y = o. 

Pressure on the plate 

As mentioned previously, we define the force, F, in equation (6.1) to be the jump in force 

from above to below the vibrating plate. Since the force is only acting in the y direction, 

F is given as the difference in the corresponding component of the stress tensor O"yy at the 

upper plate surface, y = 0+, and at the lower plate surface, y = 0- . 

0+ [ Ov] 0+ 0+ [BV] 0+ 
[O"yyJ o- = -p + J.L By 0- = [-PJo- + J.L By 0-
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where P is the pressure. The term g~ does not produce a discontinuous jump at the 

boundary, y = 0, so any difference between (Jyy 0+ and (Jyy 0- will be as a result only of 

pressure differences. 

(6.71) 

Equation (6.37) gives us the pressure field for a point force in the k direction. Considering 

the force is defined to be F = (0, F, 0), we can rewrite this equation in a simpler form. 

(6.72) 

In a similar way to the velocity equations, we now integrate over the breadth of the plate 

(assumed infinite for integration) and divide through by B. 

1100 

p* = - [Pld'Yl = 
B -00 

! 100 

F [JL _.JL 6hy(z + h)] d 
B -00 7r r3 R3 + R5 II (6.73) 

F [2Y _ 2y + 8hy(z + h)] 
B 7r a 2 (32 (34 

We now integrate over the length of the plate (0 < h < a) and divide through by a to give 

us our pressure for the array of stokeslets. If we write F(t, h) = eiwt f(h) then our equation 

for pressure becomes: 

p** =.!. fa [P*ld
I1 

= e
iwt fa [2Yf (h) _ 2yf(h) + 8hy(z + h)f(h)] dh 

a Jo aB7r Jo a 2 (32 (34 
(6.74) 

This equation for the pressure (P = p**) is not continuous across the plate boundary at 

y = 0, hence we will have a jump in pressure between the upper and lower surface. To find 

the value of [-Plg= we need to find the limits of P as y approaches the boundary from 

above and below the plate, denoted [-Plo+ and [-Plo- respectively. We can write the 

limit of P as y tends to 0+ as 

(6.75) 

II = r 2yf(h) dh 
Jo y2 + (z - h)2 

12 = r 2yf(h) dh 
Jo y2 + (z + h)2 
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I = (a 8yh(z + h)J(h) dh 
3 Jo (y2 + (z + h)2)2 

To find the limits for the individual integrals we need to define new variables, 9 = h - z 

and W = ~. Firstly, making these substitutions into our integral (h) gives 

lim (h) 
y->o+ 

lim (
2j

a;z yJ(z + Wy) YdW) 
y->o+ _~ (1 + W2)y2 

y 

(6.76) 

lim 2J(Z)ja;z ( 1W2)dW 
y->o+ _~ 1 + 

y 

we can split the integral (6.76) into two parts from which we will be able to take limits. 

lim (h) = lim 2J(z) [{a;z ( 1 W2) dw - {-~ (1 1 W2) dW] (6.77) 
y->o+ y->o+ Jo 1 + Jo + 

We can now solve this limit, which will vary depending on the value of z. 

2J(z) [100 

(1: W2) dw -1-00 

(1: W2) dW] 

2J(z) [~- (-2
1f

)] = 21fJ(z) for 0 < z < a 

lim (h) 
y->o+ 

Also we can see that a singularity occurs at z = a. 

lim (h) 
y->o+ [ 

{o 1 (-OO 1 ] 
2J(z) Jo (1 + W2) dw - Jo (1 + W2) dw 

2J(z) [- (-;1f)] = 1fJ(z) for z = a 

In a similar way we can write 

. . Ja;z yJ(z + Wy) 
hm (12) = lim 2 2 (2 W)2 ydW = 0 y->o+ y->o+::2. y + z + y 

y 

(6.78) 

lim (13) = lim 8 Ja;z y(z + Wy)J(z + wy)(2z + Wy) ydW = 0 
y->o+ y->o+::2. (y2 + (2z + Wy)2)2 

y 

(6.79) 

Substituting these limits back into equation (6.75) gives us the pressure at the upper surface 
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of the plate. 

eiwt 2eiwt 

-- [21rJ(z) - 0 + 0] = --J(z) 
aB1r aB 

for 0 < z < a 

o for z> a (6.80) 

Using the same method we can determine the pressure at the lower plate surface to be 

eiwt 2eiwt 

-- [-21rJ(z) - 0 + 0] = -J(z) 
aB1r aB 

for 0 < z < a 

o for z > a (6.81) 

Since [P]g::: = [P]o+ - [P]O-, we can substitute the solutions (6.80) and (6.81) into equation 

(6.71). Assuming that J(z) =J 0 for all z E [0, a], and that (y2 + (z + h)2) =J 0 for all 

z E [0, a], y E [0, Ymax], we can now write the force F as 

1 0+ 1 0+ 
F = 2[ayy]0- = 2 [-P]o-

2eiwt 
J(z) for 0 < z < a - aB 

o for z > a (6.82) 

Starting with the equations for a single stokeslet near a flat plane wall, (6.46) to (6.48), we 

have extended these results to determine the equations for an infinite continuous distribu­

tion of stokeslets on a line above the wall, (6.61) to (6.61). This led to the equations of a 

double array of stokeslets perpendicular to the plane, infinite in one direction and finite in 

the other, representing the plate itself, (6.62) to (6.64). By then considering the boundary 

conditons on the plate, we used these solutions to define F such that a complete fluid-plate 

model could be determined. 

6.3.4 Complete problem 

We now consider the original problem (6.1) with the force being defined by the equation 

(6.82). This allows us to write the initial problem within the area of the plate, 0 < z < a, 

in the form 

(6.83) 

where J(z) is the known, measurable driving force. If we define q(z, t) = eiwtq(z) we can 

now write equation (6.83) and the boundary condition (6.69) respectively as 

psdw2 2J(z) 
q(z)zzzz - ---n-q(z) = - aBD (6.84) 
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1 ra 
[ ( z + h 2hZ)] 

q(z) = 4aB7r/-LiwJo f(h) In(z_h)- (z+h)2 dh 

The remaining conditions specified earlier by the plate movement become 

q(O) = 0 

q(O)z = 0 

q(a)zz = 0 

q(a)zzz = 0 

deflection = 0 at z = 0 

slope = 0 at z = 0 

bending moment = 0 at z = a 

shear force = 0 at z = a 

(6.85) 

We now introduce a forcing term (per unit area) of the form Ybeiwt to represent the external 

driving force of the plate so that our equation (6.84) becomes 

(6.86) 

Non-dimensionalising the equations 

The next step is to non-dimensionalise the coupled equations (6.85) and (6.86). We define 

z=za and 

such that the set of equations and boundary conditions become 

qzzzz - 6q - 6f = 1 (6.87) 

. r1 
- [ (z + h) 2Zh] _ '/, Jo f(h) In z _ h - (z + h)2 dh - q = 0 (6.88) 

q(O) 0 

q(O)z 0 

q(l)zz 0 

q(l)zzz 0 

involving two real dimensionless constants 6 = ps~2a4 and 6 = 8'Jr(~p.a3 • 

6.3.5 Solving the problem numerically 

We now need to solve the system of equations numerically. We define qi and Ii to be the 

value of q(z) and l(z) respectively at a distance z = Zi from the origin, with i = 0 ... N. 
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We set a mesh size b.z for z between 0 and ZN. We define the derivatives of q with respect 

to z using the central difference formulae [46]. The boundary conditions are that the plate 

has no deflection at z = 0 

q(O) = 0 => qo = 0 (6.89) 

no slope at z = 0 

with (6.90) 

no bending moment at z = 1 

(6.91) 

and no shear force at z = 1 

Again using the central difference method, the fourth differential in (6.87) is written as 

Combining this with the boundary conditions gives us the numerical solution for equation 

(6.87). 

n=O: 

n= 1: 

2snsN-2: 

n=N-1: 

n=N: 

q2 /:;.:4 - ql /:;.~4 + qO(/:;.~4 - 6) - 6fo = 1 

q3 /:;.~4 - q2 /:;.;4 + ql (/:;.:4 - 6) - 6!I = 1 

qn+21z4 - qn+1 /:;.;4 + qn(/:;.~4 - 6) - qn-l /:;.;4 + qn-2 /:;.~4 - 6fn = 1 

-qN /:;.~4 + qN-l(/:;.~4 - 6) - qN-2/:;.;4 + qN-3/:;.~4 - 6fN-l = 1 

qN(/:;.:4 - 6) - qN-l /:;.;4 + qN-2 /:;.~4 - 6fN = 1 

In equation (6.88), we assume that fi is constant on z = Zi, so that we can use the trapezium 

rule to integrate j(z), treating the integral as a sum of areas beneath a curve. 
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Let i t j(h) [In (~ + h) _ _2ih ] dh 
Jo z-h (z+h)2 

(6.93) 

then 
N .6. 

i L 1J 
z Ii + Ii-I [In (nb.Z + h) _ 2nb.zh ] dh 

j=I (j-I)6.z 2 nb.z - h (nb.z + h)2 

N "6. 
i L Ii + Ii-I 1J 

z [In (nb..Z + h) _ 2nb.zh ] dh 
j=I 2 (j-I)6.z nb..z - h (nb.z + h)2 

N 

LUj + Ii-I)k(j, n) 
j=I 

with k(j, n) defined by 

k(j,n) = 
i -1 
-{ b.. "b.. [2n2b.z2 + 2nb.z(nb.z + jb.z) In 12nb..z2(n + j)1 
2 n z+J z 

-(nb.z + jb.z)2In Inb.z + jb.zl - (n2 b.z2 - i b.z2) In Inb.z - jb.zll 

1 + b.. (" )b. [2nb.z(nb..z(nb..z + (j -l)b.z) In 12nb.z2(n + (j -1))1 
n z+ J -1 z 

+2n2 b.z2 - (nb.z + (j - 1)b.z)2Zn lnb.z + (j - l)b.zl 

-(n2b.z2 - (j -1)2b.z2)Inlnb.z- (j -l)b.zlJ} (6.94) 

which holds for n =I- j and n =I- (j - 1). In these two cases we have respectively 

_ _ i ( 2n 2 b.z2 ) 
ken, n) = ko(n) ="2 2nb..z + b.z + b..z In 12n - 11- nb.z (6.95) 

(6.96) 
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This allows us to write the numerical solution for equation (6.88). 

N 1 - - -L:j =3 h(k(j, 1) + k(j + 1,1)) + fNk(N, 1) - ql = 0 

n = 2: fok(1,2) + h(k(l, 2) + ko(2)) + h(ko(2) + k1 (2)) + !3(k1 (2) + k(4, 2)) 

N 1 - - -+ L:j =4 fj(k(j, 2) + k(j + 1,2)) + fNk(N, 2) - q2 = 0 

- 2 - - - -
3::; n::; N - 3: fok(l,n) + L:j:::l fj(k(j,n) + k(j + 1,n)) + fn-l(k(n -l,n) + ko(n)) 

n=N-2: 

n=N-1: 

n=N: 

+fn(ko(n) + k1(n)) + fn+l(k1(n) + ken + 2, n)) 

N 1 - - -
+ L:j~+2h(k(j, n) + k(j + 1, n)) + fNk(N, n) - qn = 0 

- N 4 - -
fok(l, N - 2) + L:j =l h(k(j, N - 2) + k(j + 1, N - 2)) 

+fN-3(k(N - 3, N - 2) + ko(N - 2)) + fN-2(ko(N - 2) + kl(N - 2)) 

+ fN-l(kl (N - 2) + keN, N - 2)) + fNk(N, N - 2) - qN-2 = 0 

- N 3 - -
fok(l, N - 1) + L:j =l h(k(j, N - 1) + k(j + 1, N - 1)) 

+fN-2(k(N - 2,N -1) + ko(N -1)) + fN-l(ko(N -1) + k1(N -1)) 

+fNk(N,N -1) - qN-l = 0 

- N 2 - -
fok(l, N) + L:j =l h(k(j, N) + k(j + 1, N)) 

+ fN-l(k(N - 1, N) + ko(N)) + fNkO(N) - qN = 0 

We now have 2N + 1 equations for 2N + 2 unknowns (qi, Ii, i = 0 ... N). As the extra 

necessary equation we use the boundary condition qo = O. We can now solve this system 

of equations using matrix operations (carried out in MATLAB, see appendix C). 
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-I 

qo 1 

ql 1 

q2 1 

1 

qn A -6 [I ] 1 

1 

qN-2 1 

qN-I 1 

qN 1 

10 0 

h 0 

h 0 

0 

In -[I] D 0 

0 

IN-2 0 

IN-I 0 

IN 0 

where [ I ] is the (N + 1) x (N + 1) identity matrix and C and D are (N + 1) x (N + 1) 

square matrices. We choose to define J = 1
Z
4' 
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66 - 6 -88 28 

76-6 -46 6 

6 -46 66 - 6 - 48 8 

8 -46 66-6 -48 8 

[A]= 
6 -48 66-6 - 48 8 

8 -48 68 - 6 -48 6 

8 -48 56-6 -26 

[D]= 

28 - 48 

0 0 0 
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F igure 6.16: Numerical solution for J-L = 0.04 P a·s and K, = 1 kg·m- 1 ·s-2 

26 - 6 

The numerical solution gives an increasing maximum amplitude of oscillation with increased 

driving force and a decreasing amplitude with increased viscosity, as expected . A driving 

force of zero also gives us no motion as required. Due to inaccuracies brought about by 
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the unknown material properties of the plate, calibration will be necessary. Using a fluid 

of known viscosity we can set the plate in motion using a fixed driving force and measure 

the maximum amplitude achieved by the oscillations. This should give us a value for K, 

by matching the maximum amplitude to the viscosity in our numerical solution. Keeping 

Figure 6.17: Plot of K, against maximum amplitude for J.L = 0.04, where the red curve shows 
the numerical solution and the line of blue circles is a fitted polynomial 

this fixed driving force, and K, value, we can then use the plate to determine the viscosity 

of other fluids. Using the numerical solution, a graph can be plotted of viscosity against 

maximum amplitude for a fixed value of K, (red line in figure (6.18)). A polynomial can 

X 10-7 

9r---.----.---.----r---.----.---.----r---.---~ 

8 

E7 

~4 
:~ 
0.. 

~ 3 
x 

'" E 2 

OL-__ ~ __ -L __ ~ ____ L-__ ~ __ -L __ ~ __ ~L-__ ~ __ ~ 

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
viscosity I Pa.s 

Figure 6.18: Plot of J.L against maximum amplitude for K, = 1 kg-m-1 ·s-2 , where the red 
curve shows the numerical solution and the line of blue circles is a fitted polynomial 

then be fitted to this curve (blue circles)_ We can then use the equation of this polynomial 

to determine the viscosity. 
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We now have a method of determining the viscosity of a fluid using two paramet ers , the 

force driving the plate and the maximum amplitude achieved by oscillations in the fluid. 

The constant in the driving force, /'i" can be found from calibration in a known fluid and 

an oscilloscope or alternate method of measuring oscillations can be used to determine 

the maximum amplitude. Unfortunately we do not have any experimental data for these 

parameters to compare the numerical solution with. /'i, can take a large range of values 

dependent on the viscosity of the fluid used for calibration. To achieve an amplitude of 

0.000001 m in a fluid of viscosity JL =0.01 we would use /'i, ::::::1.25, whereas in a fluid of 

viscosity JL =10 we would use /'i, ::::::16000. If we were testing a fluid with a viscosity thought 

to be of the order of JL = 0.1 we can see from figure (6.20) that to use the driving force that 

gave us /'i, :::::: 160000 would result in a maximum amplitude of 1 cm, a physical impossibility 

for a sensor of the cantilever's size. To maximise accuracy in fitting the polynomial to the 

numerical solution it is therefore beneficial to calibrate in a fluid with viscosity close to that 

expected from the unknown fluid being tested. 
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Figure 6.19: Determining /'i, for the cantilever driven to a maximum amplitude of 1JLm in 
two fluids with different viscosities 
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Figure 6.20: Plot of j.t against maximum amplitude for K, = 1.25 and K, = 160000, where the 
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We can use the numerical solution to investigate which geometric dimensions of the sensor 

are optimal for measuring viscosity in the desired range of fluids. By altering one dimension 

and leaving the others fixed, we can see what effect this has on the numerical solution. It 

is clear from the design of the flexion plate that the two dimensions that would have most 

effect are the plate length, a, and the plate thickness, d. Figure (6.21) shows numerical 

solutions using different values of a, d and frequency w. 
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Figure 6.21: Plots of J.L against maximum amplitude varying dimensions of the plate, where 
the red curve shows the numerical solution and the line of blue circles is a fitted polynomial 
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Using the actual dimensions of the plate in the numerical solution produces a graph that 

is easily readable, as in figure (6.20). The curve illustrates a clear relationship between 

maximum amplitude and viscosity that is measurable for a range of viscosities. When we 

alter the dimensions of the plate the flexion varies in sensitivity to changes in viscosity 

which affects the usability of the device. Intuitively, making the plate thinner (decreasing 

d) results in an increased sensitivity to viscosity. A small change in viscosity produces 

a large change in maximum amplitude. Conversely, increasing the thickness of the plate 

decreases the sensitivity, so that a large increase in viscosity produces minimal change 

to maximum amplitude. Similarly, reducing the length of the plate causes a decrease in 

sensitivity. Overall, the chosen dimensions of the plate seem to be appropriate. 
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6.4 Summary of the Flexion 

Similar to the Spider, this MEMS device is also small and relatively easy to make. The 

geometry of the sensor results in a large fluid mass on a small oscillating surface, making 

it more sensitive to fluid properties. In theory we could increase this sensitivity yet fur­

ther by making the plate even thinner, but this will make the device less robust and more 

prone to breakage. The sensor must be able to survive and operate in down hole conditions. 

The sensor is modelled as a cantilever plate, clamped at one end. It oscillates in a direction 

perpendicular to its own plane. It is driven by passing an alternating current through the 

aluminium coil mounted on the surface of the sensor. 

We can model the device as a densitometer. Due to the small amplitudes of oscillation, the 

problem can be simplified by applying linear theory. For Newtonian fluids, we can get p as 

a function of plate properties, frequency and temperature. Two sets of experimental data 

have been analysed using flexion sensors. When calibrated to determine plate properties, 

the resulting values for p were accurate to within 2 % of the true value. Using an uncali­

brated model, assuming the device is pure silicon, density was determined to within 20% 

of the true value over a range of fluids. 

We can also model the device as a viscometer although this is more complicated. The 

flow around the plate is assumed to have a small Reynolds number (Re < < 1) and is thus 

considered slow flow. Using the method of stokeslets we can write the viscous fluid problem 

as a system of equations in a form that can be solved numerically. The numerical solution 

allows us to determine viscosity as a function of driving force and maximum amplitude of 

oscillation. This requires us to solve a polynomial equation for J.L. Whilst the numerical 

solution gives us a resulting viscosity term, it appears to be unstable for J.L < 0.001 Pa·s. 
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Chapter 7 

Conclusions 

Our intention was to model the development of new viscometers that will remain sufficiently 

accurate in hostile down-hole conditions and reflect both Newtonian and non-Newtonian 

fluid motion. The analysis of past viscometer designs indicated that conventional viscome­

ters were unsuitable for measurements in situ in oil wells. Despite the accuracy of falling 

body viscometers such as the falling needle, the free moving parts make it inappropriate 

for in situ measurements. A capillary viscometer would need constant fluid flow and could 

also suffer problems due to the high pressures. Extreme pressure environments are also 

problematic for oscillating body viscometers, often causing distortions in the dimensions 

of the body. The vibrating wire viscometer is able to work in the hostile conditions but 

is limited to measuring Newtonian fluids due to the use of Navier Stokes equations in the 

modelling of the device. The in situ capabilities of the MEMS sensor, due to its small 

size and robust design which can be readily integrated into existing tools, will reduce the 

time required for analysis, decrease errors caused by transferring fluids from the well to the 

testing facilities and give a clearer picture of fluid properties at reservoir conditions. The 

geometrical design of the sensors make them particularly sensitive to the added mass of the 

fluid during oscillations, due to the large surface to volume ratio of the vibrating armature. 

A petroleum reservoir can exhibit temperatures up to 473 K and pressures up to 200 MPa. 

The upper operating temperature for the sensor is dependent on two main components, 

the strain gauges and the adhesive used in the packaging. The adhesive is predicted to 

become unstable at 423 K. Assuming an alternate adhesive could be found, the piezoresis­

tive gauges that make up the wheatstone bridge would be the next thing expected to fail, 

at a temperature of 493 K, which is in excess of that required for reservoir measurements. 

During laboratory testing of the sensors, an upper operating pressure of 68 MPa was deter-
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mined by the positive displacement pump which was generating the pressures. The sensors 

appear to work consistently at this pressure and there is currently no prediction as to 

what pressure the sensors could withstand. Physically the MEMS have proven to be sturdy 

and resilient to extreme temperatures and pressures, as required for down-hole viscometers. 

For our simple fluid models, we assumed that the fluid was an incompressible homogeneous 

liquid. We first considered the "forced" spider, driven with a constant external driving 

force. For the "forced" spider model we produced theoretical expressions for the frictional 

force and power on the oscillating plate. These were closed form solutions and could be 

rearranged to give an expression for viscosity or density in terms of plate properties, power 

and the initial velocity of the plate. The oscillating plate will typically have a viscous 

penetration depth in the order of micrometers. This small distance means that even in the 

presence of the stationary added top plate, as long as h > > 8 the armature will oscillate as 

in an unbounded fluid. For the Newtonian case we also produced equation (5.60) for J.£p in 

terms of maximum recorded frequency, W m , vacuum frequency, wv , plate density, Ps, and 

plate depth, d. 

We then moved on to the decaying oscillations model of the spider. In this model the 

plate was either plucked or driven to a constant speed and then allowed to decay by remov­

ing the external driving force. Our analysis of the ''plucked'' spider problem led us to the 

key parameter f3 which allowed us to determine how the plate will oscillate. f3 is a function 

of the material properties of the plate and the viscosity and density of the surrounding 

fluid. 

For a reasonable number of oscillations we require 0.001 < f3 < 0.1 and hence it was found 

that the viscometer would be suitable for fluids within the range 0.01957 < J.£p/Pa2 .s < 

1.957. Unfortunately we did not have sufficient reliable experimental data for the spider 

sensor to enable us to compare the theoretical models with the real physical behaviour of 

the plate. 

The second MEMS design we considered was the cantilever plate. For the flexion den­

sitometer model, we produced an equation, (6.19), allowing us to find density as a function 

of the plate properties, frequency and temperature. When compared with experimental 

results, this equation produced density values accurate to within 2 % of the true value. 
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Small errors due to the inaccuracy of equipment will lead to uncertainties in our results. 

The pressure gauge has an inaccuracy of up to 0.029 MPa and the precision thermometer 

is accurate to 3 mK. The sum of these small uncertainties should have a negligible effect 

on the viscosity and density values. Unfortunately errors due to the unknown material 

properties of the plate, which is not pure silicon as assumed in the theory, cause calibration 

to be necessary. 

Using the method of stokeslets, we derived a numerical solution for the viscosity of the 

fluid. This allowed us to write the viscosity in terms of driving force and maximum ampli­

tude of oscillation as a polynomial to be solved. Once again however, calibration would be 

necessary. The numerical solution appears to lose stability for J.L < 0.001 Pa·s. A petroleum 

reservoir can contain liquids with viscosities in the range 0.00005 < J.L /Pa·s < 1 so the 

viscometer will be useful for a significant part of this range. Unfortunately there are no 

experimental results in terms of maximum amplitude of oscillation. An oscilloscope or 

alternate method for measuring this amplitude would be needed for future experiments 

before comparisons could be made. 

The theoretical work behind the two MEMS devices show that it is possible to measure 

viscosity and density in a wide range of fluids. The sensors themselves are robust and 

resilient to extreme conditions making them suitable for hostile down-hole conditions. The 

flexion has been shown to produce reasonable experimental results, a trade off in accuracy 

deemed acceptable for the ability to wishstand the harsh conditions of petroleum reservoirs. 

Three papers have been written up as a result of this work which should be considered 

for further reading on this topic [37], [67] and [68]. 

Recommendations for future work 

The spider sensor could be analysed more thoroughly with the addition of the stationary 

top plate, to see whether this would add any practical advantages other than stopping large 

particles from reaching the plate surface. More theoretical work can be done considering 

the spider in a number of other non-Newtonian fluids such as Bingham fluids, possibly a 

more accurate model for reservoir fluids. 

A full experimental program is needed for the spider sensor, using the plucked method 
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to overcome the problem of breakages in the plate legs which have occurred during previ­

ous experiments. It would also be useful to test the flexion plate in a wider variety of fluids 

and gases. 

The MEMS designs could both be investigated using computational fluid dynamics soft­

ware. This would produce two dimensional quasi-steady or three dimensional unsteady 

full numerical solutions for the problems. Although the software is not simple to use, the 

advantage is we would not have any geometrical limitations. 

Other MEMS designs have also been produced by Schlumberger. One example is a tor­

sionally oscillating plate. It would be interesting to compare these geometrically different 

sensors to see which would be the most efficient viscometer for reservoir fluids. 
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appendix A 

Data 

Spider - Pole analysis data 

The following results correspond to the four roots found using exact evaluation and asymp­

totic analysis of the polynomial f = 84 - 4(B~: J.Lp 83 + ~ 82 + ~, with p = 1000 and 

W = 1.78944 X 10-7 . The lines on graphs (5.11) and (5.12) correspond to these roots. 

Table 7.1: Polynomial root data found exactly (k=l) 

J.L 1st root 2nd root 3rd root 4th root 

0.005 -453.10 - 1211.31i -453.10 + 1211.31i 2428.86 7.69 x 103 

0.01 -428.29 - 997.29i -428.29 + 997.29i 1490.52 1.78 x 104 

0.05 -310.45 - 600.77i -310.45 + 600.77i 742.46 9.20 x 104 

0.1 -257.20 - 478.28i -257.20 + 478.28i 575.10 1.84 x 105 

0.5 -157.79 + 280.31i -157.79 - 280.31i 327.81 9.21 x 105 

1 -126.44 - 222.46i -126.44 + 222.46i 258.95 1.84 x 106 

Table 7.2: Polynomial root data found with asymptotic analysis (k=l) 

J.L 1st root 2nd root 3rd root 4th root 

0.005 -346.6577626 - 1301.067466i -346.6577626 + 1301.067466i 1906.86 1234.50 

0.01 -393.9483906 - 1032.657932i -393.9483906 + 1032.657932i 1394.67 633.18 

0.05 -308.2116062 - 603.9020225i -308.2116062 + 603.9020225i 737.78 166.51 

0.1 -256.508308 - 479.3173527i -256.508308 + 479.3173527i 573.69 128.65 

0.5 -157.7898875 - 280.3064884i -157.7898875 + 280.3064884i 327.72 117.57 

1 -126.4259762 - 222.4794072i -126.4259762 + 222.4794072i 258.92 109.43 
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I /o(=~) I 2g I p (Pa) p, (Pa·s) 

31288 
31452 55 33.9349 11.6604 x 10-6 571.854 
31499 61 42.3007 11.9558 x 10-6 516.377 
31572 71 55.95 12.4879 x 10-6 444.676 
31611 76 63.999 12.8334 x 10-6 415.934 
31657 81 71.4608 13.1683 x 10-6 390.827 
31697 90 80.3001 13.5952 x 10-6 391.320 
31725 96 88.2751 14.0057 x 10-6 330.468 
31762 105 97.438 14.5081 x 10-6 302.495 

Table 7.3: Experimental data for spider in methane 
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T p known p fo 2g Q p (eq 6.19) % error 
(K) (kPa) (kg/m3 ) (= ~) (-k) - 2q (kg/m3 ) 

323.162 7005.81 106.48 7592.46 90.06 84.30 107.24 0.72 
323.162 13877.00 212.30 5982.62 72.93 82.03 213.13 0.39 
323.162 20898.79 316.28 5116.16 62.77 81.51 315.76 -0.17 
323.162 27679.46 408.29 4594.23 56.64 81.12 407.47 -0.20 
323.162 34458.51 489.94 4243.09 52.97 80.10 489.11 -0.17 
323.162 41249.47 561.37 3993.48 50.75 78.69 560.69 -0.12 
323.162 48119.29 624.19 3806.22 49.31 77.20 623.89 -0.05 
323.162 54885.41 678.21 3664.06 48.37 75.74 678.48 0.04 
323.162 61689.92 726.03 3551.05 47.74 74.38 726.63 0.08 
323.162 68311.73 767.42 3461.19 47.34 73.12 768.34 0.12 
348.15 6977.88 97.41 7802.74 95.87 81.39 98.04 0.64 
348.15 17495.87 242.66 5706.09 73.38 77.76 240.88 -0.73 
348.15 27652.58 371.08 4799.62 61.23 78.38 367.81 -0.88 
348.15 34469.49 447.41 4428.44 56.77 78.01 443.61 -0.85 
348.15 41287.72 515.41 4160.31 53.85 77.26 511.44 -0.77 
348.15 48153.53 576.07 3957.12 51.93 76.21 572.28 -0.66 
348.15 54879.42 628.80 3801.96 50.66 75.05 625.45 -0.53 
348.15 61689.74 676.41 3676.29 49.72 73.95 673.55 -0.42 
348.15 68529.36 719.29 3573.40 48.72 73.34 716.76 -0.35 
373.12 7080.44 91.52 7939.69 98.32 80.75 92.44 1.00 
373.12 13847.52 177.90 6392.50 85.27 74.97 178.49 0.33 
373.12 20678.94 261.52 5538.20 76.06 72.82 259.79 -0.66 
373.12 27683.47 341.49 4966.40 69.26 71.71 339.17 -0.68 
373.12 34426.07 411.89 4585.54 64.07 71.58 409.30 -0.63 
373.12 41254.58 476.37 4303.50 59.68 72.11 473.66 -0.57 
373.12 48098.62 534.48 4088.39 56.33 72.57 531.96 -0.47 
373.12 54892.36 586.31 3921.77 54.27 72.26 583.86 -0.42 
373.12 68432.68 675.01 3676.23 51.39 71.54 673.59 -0.21 
398.11 7359.81 88.63 8014.97 99.04 80.93 89.49 0.97 
398.11 13876.07 165.50 6560.92 84.83 77.34 166.11 0.37 
398.11 27718.55 316.95 5107.47 67.31 75.88 317.11 0.05 
398.11 34448.48 382.72 4718.13 62.70 75.25 382.96 0.06 
398.11 41293.58 443.88 4425.78 59.79 74.03 444.26 0.08 
398.11 48139.56 499.49 4201.61 57.26 73.37 500.17 0.14 
398.11 54948.68 549.73 4025.36 55.47 72.57 550.85 0.20 
398.11 61784.51 595.59 3882.16 54.14 71.71 597.21 0.27 
423.11 7271.58 82.03 8174.18 114.68 71.28 83.50 1.79 
423.11 14123.87 157.30 6657.65 97.73 68.12 159.43 1.36 
423.11 21056.11 230.05 5782.56 85.68 67.49 232.86 1.22 
423.11 27785.88 296.48 5225.75 77.38 67.53 299.97 1.18 
423.11 34604.92 359.06 4825.15 71.40 67.58 363.28 1.18 
423.11 41249.24 415.32 4533.83 67.56 67.11 420.24 1.18 
423.11 48197.29 469.32 4297.79 64.51 66.63 475.13 1.24 
423.11 48188.85 469.26 4298.06 64.35 66.79 475.06 1.24 
423.11 55017.87 517.85 4114.13 62.34 65.99 524.53 1.29 
423.11 61833.70 562.30 3964.93 60.66 65.36 569.82 1.34 
423.11 68620.39 603.14 3840.91 59.50 64.56 611.55 1.39 

Table 7.4: Experimental data for flexion plate in argon 
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Fluid 

H2O 

Silicon 
oil 

200-20 

Silicon 
oil 

200-10 

Fomblin 

Nitrogen 

T p known p fo 2g Q p (6.17) 
(K) (Pa) (kgjm3 ) (= ~) (- k) - 2g (kgjm3 ) 

313.234 100.8 992.18 3590.16 132.66 27.06 1001.71 
313.234 100.8 992.18 3593.61 139.72 25.72 999.66 
323.205 100.9 988.01 3609.76 132.31 27.28 990.13 
323.205 100.9 988.01 3608.66 135.77 26.58 990.77 
323.205 100.9 988.01 3609.71 136.43 26.46 990.16 
373.115 102.7 958.95 3622.56 122.69 29.53 982.72 
373.115 102.7 958.92 3622.63 122.38 29.60 982.65 
373.115 102.7 958.89 3622.12 123.45 29.34 982.95 
313.234 102.7 935.67 3442.09 503.71 6.83 1095.76 
313.234 102.7 935.67 3442.61 500.01 6.89 1095.41 
323.205 102.7 926.73 3480.05 482.81 7.21 1070.51 
323.205 102.7 926.73 3482.45 481.38 7.23 1068.94 
348.172 102.6 904.59 3562.27 390.51 9.12 1018.56 
348.172 102.6 904.59 3563.89 395.15 9.02 1017.57 
373.115 102.4 882.62 3634.65 341.51 10.64 975.71 
373.115 102.4 882.62 3634.93 343.38 10.59 975.55 
313.234 99.8 836.67 3613.85 549.80 6.57 987.73 
313.234 99.8 836.67 3615.12 541.62 6.68 986.99 
323.205 101.4 830.27 3683.49 467.10 7.89 948.18 
323.205 101.4 830.27 3683.21 467.33 7.88 948.34 
323.205 101.4 830.27 3681.68 465.72 7.91 949.18 
373.115 103.2 798.24 3868.06 262.80 14.72 853.51 
373.115 103.2 798.24 3867.24 264.34 14.63 853.90 
313.234 99.8 826.55 3763.05 362.40 10.38 905.64 
313.234 99.8 826.55 3759.51 357.05 10.53 907.48 
313.234 99.8 826.55 3759.39 358.98 10.47 907.54 
323.205 101 819.97 3793.21 325.42 11.66 890.23 
323.205 101 819.97 3793.95 327.32 11.59 889.85 
373.115 103.1 787.01 3922.59 211.95 18.51 828.06 
373.115 103.1 787.01 3923.83 213.96 18.34 827.50 
313.234 102.2 1834.90 2473.50 438.78 5.64 2186.00 
313.234 102.2 1834.90 2474.87 460.63 5.37 2183.50 
323.205 102.3 1815.72 2519.95 375.52 6.71 2103.65 
323.205 102.3 1815.72 2520.77 377.20 6.68 2102.25 
348.172 102.3 1767.69 2618.99 279.16 9.38 1942.50 
348.172 102.3 1767.69 2618.73 273.40 9.58 1942.90 
373.115 101.7 1719.69 2690.41 216.09 12.45 1837.17 
373.115 101.7 1719.69 2690.44 216.98 12.40 1837.13 
323.205 10148.5 104.02 8751.68 70.77 123.66 111.71 
323.205 10140.9 103.94 8753.97 71.65 122.18 111.61 
323.205 10137.8 103.91 8754.77 70.87 123.53 111.58 
323.205 20488.4 199.02 7156.22 64.86 110.33 200.96 
323.205 20490.3 199.04 7157.33 64.77 110.50 200.87 
323.205 30311.1 274.09 6382.24 60.12 106.16 270.24 
323.205 30322.2 274.17 6382.20 59.15 107.90 270.24 
323.205 40321.9 336.31 5909.13 56.93 103.80 326.63 
323.205 40330.6 336.36 5908.54 57.63 102.53 326.71 
323.205 50401.3 387.44 5596.11 56.61 98.86 372.06 
323.205 60476.8 429.88 5375.68 55.20 97.39 408.92 

Table 7.5: Experimental data for flexion in different fluids 
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error 

% 

-0.96 
-0.75 
-0.21 
-0.28 
-0.22 
-2.48 
-2.47 
-2.51 
-17.11 
-17.07 
-15.51 
-15.34 
-12.60 
-12.49 
-10.55 
-10.53 
-18.06 
-17.97 
-14.20 
-14.22 
-14.32 
-6.92 
-6.97 
-9.57 
-9.79 
-9.80 
-8.57 
-8.52 
-5.22 
-5.14 

-19.13 
-19.00 
-15.86 
-15.78 
-9.89 
-9.91 
-6.83 
-6.83 
-7.39 
-7.38 
-7.38 
-0.97 
-0.92 
1.40 
1.43 
2.88 
2.87 
3.97 
4.88 



Fluid T p known p fo 29 Q P (6.17) error 

(K) (Pa) (kg/m3) (= ~) (- k) - 2Q (kg/m3) % 

C6H5CH3 313.23 103.9 848.69 3857.40 111.80 34.50 858.58 -1.17 
313.232 103.9 848.69 3857.34 111.82 34.50 858.61 -1.17 
313.231 103.9 848.69 3858.34 112.53 34.29 858.13 -1.11 
313.231 104 848.69 3857.69 111.98 34.45 858.44 -1.15 
313.231 11217.7 857.74 3832.94 116.11 33.01 870.45 -1.48 
313.23 11216.8 857.74 3833.36 115.97 33.05 870.24 -1.46 
313.231 11178.8 857.71 3833.38 116.33 32.95 870.23 -1.46 
313.232 19593.9 864.07 3817.84 119.53 31.94 877.89 -1.60 
313.23 19270.7 863.83 3817.84 118.81 32.13 877.89 -1.63 
313.23 29339.5 870.96 3802.14 123.55 30.78 885.72 -1.69 
313.231 29308 870.94 3802.21 122.34 31.08 885.69 -1.69 
313.231 39937.6 877.97 3785.86 127.91 29.60 893.95 -1.82 
313.231 39689.5 877.81 3785.26 126.49 29.93 894.25 -1.87 
313.231 49859 884.14 3771.71 130.18 28.97 901.18 -1.93 
313.231 50213.5 884.35 3771.06 130.86 28.82 901.51 -1.94 

C6H5CH3 323.201 103.6 839.3 3878.82 108.03 35.91 848.38 -1.08 
323.201 103.6 839.3 3878.03 108.08 35.88 848.75 -1.13 
323.202 8941 847 3856.09 110.23 34.98 859.22 -1.44 
323.202 9084.2 847.12 3855.69 110.93 34.76 859.41 -1.45 
323.201 199998.7 855.86 3835.71 114.26 33.57 869.10 -1.55 
323.202 20208.5 856.03 3835.26 114.65 33.45 869.32 -1.55 
323.201 29507 862.91 3819.10 117.40 32.53 877.27 -1.66 
323.201 29373.7 862.81 3818.99 117.01 32.64 877.32 -1.68 
323.201 39805.9 870.03 3802.2 121.87 31.20 885.70 -1.80 
323.201 39974.3 870.15 3802.15 121.13 31.39 885.72 -1.79 
323.201 50254.3 876.8 3786.03 124.87 30.32 893.86 -1.95 
323.201 50585.9 877.01 3787.03 125.34 30.22 893.35 -1.86 
323.201 59628.5 882.52 3774.35 128.56 29.36 899.83 -1.96 
323.201 59852.1 882.66 3773.89 128.76 29.31 900.06 -1.97 

C6H5CH3 348.165 103.8 815.37 3930.85 98.58 39.88 824.28 -1.09 
348.165 103.8 815.37 3931.09 97.88 40.16 824.17 -1.08 
348.165 103.8 815.37 3930.87 98.60 39.87 824.27 -1.09 
348.165 9080.7 824.45 3904.10 100.68 38.78 836.56 -1.47 
348.165 9136.2 824.51 3904.28 100.85 38.71 836.47 -1.45 
348.165 19988.9 834.45 3880.34 104.42 37.16 847.67 -1.58 
348.165 20142.9 834.59 3880.20 104.85 37.01 847.74 -1.58 
348.165 30000.9 842.82 3861.22 107.78 35.83 856.77 -1.65 
348.165 30149.4 842.94 3860.89 108.04 35.74 856.92 -1.66 
348.165 30315.4 843.07 3860.70 107.95 35.76 857.01 -1.65 
348.165 39999.6 850.54 3842.86 110.98 34.63 865.63 -1.77 
348.165 39843.7 850.42 3842.79 110.03 34.93 865.66 -1.79 
348.165 50469.7 858.04 3825.76 113.45 33.72 873.99 -1.86 
348.165 50539.7 858.09 3825.67 114.92 33.29 874.04 -1.86 
348.165 50620.4 858.15 3825.91 113.18 33.80 873.92 -1.84 
348.165 60456.7 864.74 3810.69 117.24 32.50 881.46 -1.93 
348.165 61131.9 865.18 3809.76 117.8 32.34 881.93 -1.94 
348.165 60601.2 864.83 3810.54 117.06 32.55 881.54 -1.93 
348.165 68295.7 869.72 3800.11 118.71 32.01 886.76 -1.96 

Table 7.6: Continuation of table (7.5) 
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appendix B 

Bessel Functions 

Bessel function of the first kind 

zero order: 

first order: 

Modified Bessel function of the first kind 

zero order: 
(i)2 (i)4 (i)6 

Ko(x) = 1 + (1!)2 + (2!)2 + (3!)2 + ... 

first order: 

Modified Bessel function of the second kind 

zero order Io(x) = - [(ln~ + c) Ko(x) - IK2 (x) - ~K4(X) - ~K6(X) - ... J 

Difference formulae 

The difference formula used in the numerics included in this thesis is the 3-point central 

difference formula. We will show the error involved in using this formula and will give an 

example of some other difference formula for comparison. The forward difference method 

follows from rearranging the Taylor series of X(ti + flt), 

X(ti + flt) with 

'* X'i (7.1) 

so it has an error term of order flt. 

The central difference method comes from combining two Taylor series for x(ti + flt) and 
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X(ti - flt) to give 

, _ Xi+l - Xi-l 111("') flt2 
x-- -x LJ--

~ 2flt 6 
with (7.2) 

which is more accurate since it has a smaller error term of order flt2. 

We can increase the accuracy further by increasing the number of points used in the formula. 

Equation (7.1) is a two point method and (7.2) is an example of a three point method 

(although the central point can not be seen). In a similar way we can use five points to get 

a more accurate version of the forward difference method 

with 

and the central difference method. 

XJ _ -Xi+2 + 8Xi+l - 8Xi-l + Xi-2 X"III(I:) flt
4 

~ - 12flt + 30 with 

We could have used the forward difference method for the second derivative but again this 

would have been less accurate. 

3 point forward xi" = Xi+2 - ~:~+1 + Xi + XliII (I:)flt with 

.I' _ Xi+l - 2Xi + Xi-l 1111("') flt
2 

Wl.th 
3 point central X~ - flt2 + x LJ 12 

We chose to use the three point central difference method for both the first and second 

derivatives which then both have an error term of order flt2. 

Binomial series 

For Ixi < 1, the binomial series expansion [64] of (1 + xt is 

r(r - 1) 2 r(r - l)(r - 2) 3 
1 + rx + 2! x + 3! x + ... 
~ r{r - l){r - 2) ... (r - n + 1) n 

1+L.,., , x (-l<x<l) 
n. 

n=l 
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Gamma function 

The definition of the gamma function is based on the Euler Intergral 

n>O 

and converges for positive n, such that 

reO) = 00 reI) = 1 r(2) = 1 

r(z+ 1) = zr(z) z> 0 

r(m+ 1) = m! m>O mEN 

Letting x = st, this function is comparable to Laplace-transform integrals in the following 

manner: 

'.: ' , 
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appendix C 

MATLAB code 

N on-dimensionalised numerical solution for the plucked spider 

N = 1000; dt = 1; X = 1; k = 1; mu = 0.004; rho = 1000; 

a = 0.002; B = 0.004; d = 0.00002; 

W = 2330 * a * B * d; beta = (2 * sqrt(mu * rho) * B * a)/(sqrt(pi * k) * W 1\ (3/4)); 

x = zeros(l, N); s = zeros(l, (N - 4));p = zeros(l, (N - 4)); q = zeros(l, (N - 4)); 

x(l) = X; x(2) = x(l); x(3) = x(l); x(4) = 1 - ((dt 1\ 2)/(1 + beta * sqrt(dt))); 

s(l) = x(4) - x(3) - x(2) + x(l);p(l) = (sqrt(2) - sqrt(l)) * s(l); 

x(5) = ((dt 1\ 2)/(1 + beta * sqrt(dt))) * (x(4) * ((2/(dt 1\ 2)) - 1 + ... 

(beta/(dt 1\ (3/2)))) + x(3) * ((beta/(dt 1\ (3/2))) - (l/(dt 1\ 2))) ... 

-x(2) * (beta/(dt 1\ (3/2))) - (beta/(dt 1\ (3/2))) * p(l)); 

for j = 2 : 1 : (N - 4) 

for i = 1 : 1 : (j - 1) 

s(j - i + 1) = s(j - i); q(j - i + 1) = (sqrt(j - i + 2) - sqrt(j - i + 1)) * s(j - i + 1); 

end 

s(l) = x(j + 3) - x(j + 2) - x(j + 1) + x(j); q(l) = (sqrt(2) - sqrt(l)) * s(l); 

p(j) = sum(q(l : j)); 

x(j + 4) = ((dt 1\ 2)/(1 + beta * sqrt(dt))) * (x(j + 3) * ({2/{dt 1\ 2)) -1 + ... 

(beta/edt 1\ (3/2)))) + x{j + 2) * {{beta/edt 1\ {3/2))) ... 

-(l/(dt 1\ 2))) - x(j + 1) * (beta/(dt 1\ (3/2))) - (beta/edt 1\ (3/2))) * p(j)); 

end 

plot(x) 
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Small time solution to plucked spider problem 

k = 1; a = 0.002; B = 0.004; d = 0.00002; 

W = 2330 * a * B * d; BB = (k /\ 2)/W; 

N N = 0.001; nn = 0.00001; 

t = (0: nn: NN); 

fori = 1 : 1 : (( N N /nn) + 1) 

xs(i) = 1- (BB/2) * (t(i) /\ 2); 

end 

plot(t,xs) 

xlabel('time'); ylabel(' xs/ X'); 

Large time solution to plucked spider problem 

N = 1000;dt = I;X = l;k = l;mu = 0.004; rho = 1000; 

a = 0.002; B = 0.004; d = 0.00002; W = 2330 * a * B * d; 

SSS = 100;NNN = 200;nnn = 1; 

t = (SSS : nnn: NNN); 

for i = 1 : 1 : (((NNN - SSS)/nnn) + 1) 

xl(i) = (2 * B * a * sqrt(mu * rho * pi))/((k /\ 2) * (t(i) /\ (3/2))); 

end 

plot(t, xl) 

xlabel('time'); ylabel(' xl/X'); 

154 



Numerical solution for the vibrating 'flexion' plate 

N = 63; r = l/N; mu = 0.04; a = 0.00225; B = 0.0028; omega = 5000; d = 0.00002; 

rhos = 2330; E = 150; sigma = 0.17; D = (E * (d3 ))/(12 * (1 - sigma2)); 

alpha = (rhos * d * (omega2) * (a4
))/ D; beta = (8 * pi * mu * omega * (a3 ))/ D; k = 1; 

x = zeros(2 * N + 2, 1); s = zeros(l, 2 * N + 2); Q = zeros(l, N + 1); F = zeros(l, N + 1); 

q = zeros(l, N + 1); f = zeros(l, N + 1); 

p = zeros(N + 1, N + l);pp = zeros(N + 1, N + l);ppp = zeros(N, N + 1); 

pppp = zeros(N, N + 1); P = zeros(2 * N + 2, 2 * N + 2); PP = zeros(2 * N + 2, 2 * N + 2); 

KO = zeros(l, N); K1 = zeros(O, N); K = zeros(N, N); 

z = zeros(l,N + l);t = zeros(l,N + 1); 

p(l, 1) = 6 * r - alpha;p(l, 2) = -8 * r;p(l, 3) = 2 * r; 
p(2,2) = 7 * r - alpha;p(2, 3) = -4 * r;p(2, 4) = r; 

p(N, N - 2) = r;p(N, N - 1) = -4 * r;p(N, N) = 5 * r - alpha;p(N, N + 1) = -2 * r; 
p(N + 1,N -1) = 2 *r;p(N + 1,N) = -4*r;p(N + 1,N + 1) = 2 *r - alpha; 

for j = 3: 1 : N - 1 

p(j,j -2) = r;p(j,j -1) = -4*r;p(j,j) = 6*r-alpha;p(j,j +1) = -4*r;p(j,j +2) = r; 

end 

for j = 1 : 1 : (N + 1) 

pp(j, j) = -beta; s(j) = 1; 

end 

for j = 1: 1: N 

ppp(j,j + 1) = -1; 

end 

for j = 1: 1: N 

KO(j) = ((2 * j2 * r2)/(2 * j * r - r) + (r * log(abs(2 * j -1))) - (j * r)); 

K1(j) = ((-2 * j2 * r2)/(2 * j * r + r) + (r * log(abs(2 * j + 1))) + (j * r)); 

for v = 1 : 1 : j - 2 

K(j, v) = ((-1/( v * r + j * r)) * (2 * v2 * r2 + 2 * v * r * (v * r + j * r) * log( abs(2 * v * r2 * 

(v + j))) - (v * r + j * r)2 * log(abs(v * r + j * r)) - ... 

(v2 * r2 - j2 * r2) * log(abs( v * r - j * r))) + (1/( v * r + (j - 1) * r)) * (2 * v2 * r2 + 2 * v * r * 

(v * r + (j -1) * r) * log(abs(2 * v * r2 * (v + j - 1))) - ... 

(v*r+(j -1) *r)2 *log(abs( v*r+(j -1) *r)) - (v2 *r2 - (j -1)2*r2)*log(abs( v*r- (j -l)*r)))); 
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end 

for v = j + 1: 1 : N 

K(j, v) = (( -1/(v * r + j * r)) * (2 * v2 * r2 + 2 * v * r * (v * r + j * r) * log(abs(2 * v * r2 * 

(v + j))) - (v * r + j * r)2 * log(abs(v * r + j * r)) - ... 

(v2 * r2 - j2 * r2) * log( abs( v * r - j * r))) + (1/ (v * r + (j - 1) * r)) * (2 * v2 * r2 + 2 * v * r * 

(v * r + (j - 1) * r) * log(abs(2 * v * r2 * (v + j -1))) - ... 

(v*r+(j-l)*r? *log(abs( v*r+(j-l)*r ))-( v2 *r2_ (j -1)2*r2)*log(abs( v*r- (j -1)*r)))); 

end 

end 

pppp(l, 1) = (i/2) * KO(I);pppp(l, 2) = (i/2) * (KO(I) + Kl(I)); 

pppp(I,3) = (i/2) * (Kl(l) + K(3, 1));pppp(l, N + 1) = (i/2) * K(N, 1); 

for v = 4: 1: N 

pppp(l, v) = (i/2) * (K(v -1,1) + K(v, 1)); 

end 

pppp(2,1) = (i/2) * K(I, 2);pppp(2, 2) = (i/2) * (K(I,2) + KO(2));pppp(2, 3) = (i/2) * 
(KO(2) + Kl(2));pppp(2, 4) = (i/2) * (Kl(2) + K(4, 2));pppp(2, N + 1) = (i/2) * K(N, 2); 

for v = 5: 1: N 

pppp(2, v) = (i/2) * (K(v - 1,2) + K(v, 2)); 

end 

pppp(N - 2,1) = (i/2) * K(I, N - 2);pppp(N - 2, N - 2) = (i/2) * (K(N - 3, N - 2) + 

KO(N - 2));pppp(N - 2, N - 1) = (i/2) * (KO(N - 2) + Kl(N - 2)); 

pppp(N -2, N) = (i/2)*(Kl(N -2)+K(N, N -2));pppp(N -2, N +1) = (i/2)*K(N, N -2); 

for v = 2 : 1 : N - 3 

pppp(N - 2, v) = (i/2) * (K(v - 1, N - 2) + K(v, N - 2)); 

end 

pppp(N - 1,1) = (i/2) * K(I, N - 1);pppp(N - 1, N - 1) = (i/2) * (K(N - 2, N - 1) + 

KO(N -1));pppp(N - 1, N) = (i/2) * (KO(N - 1) + Kl(N - 1)); 

pppp(N - 1, N + 1) = (i/2) * Kl(N -1); 

for v = 2 : 1 : N - 2 

pppp(N -1, v) = (i/2) * (K(v - 1, N -1) + K(v, N -1)); 

end 

pppp(N, 1) = (i/2)*K(I, N);pppp(N, N) = (i/2)*(K(N -1, N)+KO(N));pppp(N, N +1) = 

(i/2) * KO(N); 
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for v = 2 : 1 : N - 1 

pppp(N, v) = (i/2) * (K(v - 1, N) + K(v, N)); 

end 

for j = 3: 1 : N - 3 

pppp(j,l) = (i/2)*K(I,j)jpppp(j,j) = (i/2)*(K(j-l,j)+KO(j))jpppp(j,j+l) = (i/2) * 
(KO(j)+Kl(j));pppp(j,j+2) = (i/2)*(Kl(j)+K(j+2,j))jpppp(j,N+l) = (i/2)*K(N,j); 

for v = 2 : 1 : j - 1 

pppp(j,v) = (i/2) * (K(v -1,j) + K(v,j)); 

end 

for v = j + 3: 1 : N 

pppp(j, v) = (i/2) * (K(v - l,j) + K(v,j))j 

end 

end 

P(N + 2, 1) = 1; 

for v = 1: 1 : N + 1 

for j = 1 : 1: N + 1 

P(j, v) = p(j, v); P(j, N + 1 + v) = pp(j, v); 

end 

for j = 1: 1: N 

P(N + 2 + j, v) = ppp(j, v); P(N + 2 + j, N + 1 + v) = pppp(j, v); 

end 

end 

PP = inv(P)jx = PP * (s'); 
for j = 1 : 1 : N + 1 

Q(j) = x(j); F(j) = x(N + 1 + j); 
z(j) = j * r * a; t(j) = (j -1) * r * 2 * pi/omega; 

end 

for j = 1 : 1: N + 1 

q(j) = k * a4 * Q(j)/ Dj f(j) = -4 * pi * k * mu * omega * a4 * B * F(j)/ D; 

for v = 1 : 1 : (N + 1) 

qq(j, v) = q(j) * exp(i * omega * t(v)); 

end 

end 
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appendix D 

Numerical Stability Analysis 

No damping 

Assuming a and f3 are small, we begin with some simple stability analysis on the numerical 

form of (5.142) by taking a = f3 = o. 

er" + er 

eri+l - 2er i + eri-l 
=?- (Lli) 2 + eri 

Trying the solution eri = api, this becomes 

ap2 + a{{Llii - 2)p + a = 0 

which gives us the following value for p 

o 

o 

Considering the root in this value, we see that p will be complex when {Lli)4 - 4{Lli)2 < 0, 

hence when Lli < 2. Alternatively, p will be real when {Lli)4 - 4{Lli? 2: 0, hence when 

Lli 2: 2. The system will be stable when api -+-0 as i -+ 0, hence when Ipi < 1. We will 

consider the stability of the three separate cases, Lli > 2, Lli = 2 and Lli < 2. 

Ipi < 1 gives 

which reduces to 

(7.3) 
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For the first case, looking at the positive root, this holds true since 6.t > 2 implies that 

)(6.£)2 > )(6.t)2 - 4, and rearranging Ipi < 1 gives us: 

If we look at the negative root of (7.3), this does not hold true since 6.t> 2 gives us that 

(6.£)2 - 4 > 0 and _)(6.t)2)(6.t)2 - 4 < O. Hence this leads to the contradiction 

The system is therefore unstable when 6.£ > 2. 

In the second case, when 6.t = 2, the value for Ipi becomes 

1 

4 v'16 - 16 1 Ipi = 1 - - ± = I - 11 = 1 2 2 . 

Hence Ipi = 1 with repeated roots indicating that the system is unstable in this case. If 

only one of the roots had been equal to 1 the system would have been marginally stable. 

(~t)2 v' 4(~t)L(~t)4 
For the third case we need to re-write p in complex form as p = 1 - 2 ± i 2 . 

When we take the modulus of p we get 

Ipi C -~Llt)2)' + (±V4(Ll~L (Ll1)4), 

(6.t)4 (6.£)4 
1 - (6.£)2 + -- + (6.t)2 - --

4 4 
1. 

Hence once again we get Ipi = 1 with repeated roots leading to marginal instability, the error 

term will neither grow nor shrink. Therefore, this analysis shows that when no damping is 

present (0 = (3 = 0), the numerical system is always unstable or marginally unstable for 

any choice of time step 6.t. 
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Including the effects of damping 

We now try introducing some damping into the system. This time we assume j3 = 0 but 

a # 0 which leaves us with 

e/' + ae/ + er = 0 

This will give a solution of the form 

where PI and P2 are the two roots of the polynomial p2 + ap + 1 = O. Hence, 

-a±Ja2 -4 
P= 

2 

For er to be a stable solution we require the real parts of both PI and P2 to be negative so 

that er = al ePl t + a2eP2t -+ 0 as i -+ 00. 

When a < -2, we have that a 2 - 4 > 0 and Ja2 - 4 < a, so both PI and P2 are real 

and positive. When a > 2, again the roots of P will be real but this time they will both 

be negative. When -2 < a < 0, we get a 2 - 4 < 0 and -a> 0, so the roots of P will be 

complex. The real part for both roots is -2a > 0, which is positive. When 0 < a < 2, again 

p will have complex roots but this time -a < 0 so the real part will be negative. 

This means that the first condition for a stable solution is a > 0, which is as we would 

expect. There should be a positive damping term for oscillations to decay. 

Now we consider the numerical system again. 

e/' + ae/ + er 0 

o 

o (7.4) 

As in the example with no damping, we assume a solution of the form eri = api so that we 

can write (7.4) as 

2 b.t - 2 1 - 2b.t 
(

-:-2 ) (a-) 
ap +ap l+~b.i +a l+~b.i =0. (7.5) 
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This is a quadratic expression which can be solved for P to give 

P 
( 

2-Llt2_ ± 
l+~Llt 

2 - ~t2 ± ~iJ ~f - 4 + a 2 

2+a~i 
(7.6) 

When ~i < < 1, to leading order we get P = ~ = 1. This tells us that when ~i is small the 

solution will be neutrally stable for all choices of a. As before, the system will be stable 

when api --+ 0 as i --+ 0, hence when Ipi < 1. Once again will consider the stability of the 

three separate cases, ~i = 2, 0 < ~i < 2 and ~i > 2. 

Looking first at ~i = 2, substituting this value into (7.6) allows us to rewrite p as 

For the positive root 

2+a2 

a-1 
PI=a+1 

-l±a 

l+a 

we have that -1 < PI < 1 for all choices of a > O. The negative root is 

-(a + 1) 
P2 = =-1 

a+1 

(7.7) 

so that P2 is only marginally stable. Hence, overall ~i = 2 gives us an error term which is 

marginally stable. 

Next we look at 0 < ~i < 2. Since~:f - 4 < 0 there will be cases when P will have 

complex roots. We therefore need to split this further into two parts: 

~:f + a 2 - 4 < 0 ~ complex p, 

~f + a2 - 4 < 0 ~ real p. 

161 



For the complex roots, the modulus of P becomes 

(
2- a~~) 
2+a~t 

(7.8) 

We know that -1 < ~~~~~ < 1 for all a > 0 with 0 < ~t < 2, so Ipi < 1 and the complex 

roots of p are stable. 

For the real roots of p we write Ipi in the following form, 

-a~t < 4 - ~f + ~tJ ~f + a2 - 4 < 4 + a~t 
-a~l < 4 - ~f - ~lJ ~f + a2 - 4 < 4 + a~t (7.9) 

First considering I PI I < 1, we now use the following inequality relation 

for a>O and (7.10) 

Since ~f2 - 4 < 0 we can say that ~tJ ~f + a2 - 4 < ~t~ and thus 

as required to satisfy the second half of the inequality. Concentrating on the first half of 

the inequality 

we can see that the left hand side is negative and, since 4 - ~f2 > 0, the right hand side 

is positive, so the inequality is true. Now we can look at Ip21 < 1. The second half of the 

inequality 

is true due to the fact that J ~t2 + a 2 - 4 > O. If we subtract 4 from each side we are left 

with a negative left hand side and a positive right hand side. It was shown previously that 

~tJ ~f + a2 - 4 < ~ta which implies that -~ta < -~tJ ~f + a2 - 4. Also using the 
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fact that 4 - b..f2 < 0 we get 

- 72 -.j 72 -ab..t < 4 - b..t + b..t b..t + a 2 - 4 

as required to satisfy the remaining half of the inequality. 

This confirms that Ipi < 1 for the case of real or complex roots, so the error term is 

stable for all a > 0 when 0 < b..t < 2. 

Finally we will analyse b..t > 2. Due to the fact that V b..C + a 2 - 4 > 0, P will al­

ways have real roots, so once again PI and P2 will satisfy the inequalities (7.9). First we 

look at IPII < 1, for the error term to be stable we need 

- 72 -.j 72 -ab..t < 4 - b..t + b..t b..t + a 2 - 4 

which can be rewritten as 

We can show that this inequality is true by proving that the right hand side is greater than 

zero. Using another simple inequality relation 

for a>O and (7.11) 

we define V(b..C - 4) + a 2 > V t::..C - 4. Since (7.10) gives us V b..t2 - 4 < b..t we can 

therefore say that 

,..---'2 

-C.j b..C - 4 ) + b..tV(b..C - 4) + a 2 > V b..t2 - 4(b..t - V b..t2 - 4) > 0 

which completes the proof. Hence PI leads to a stable error term. Now we will look at 

Ip21 < 1. Using (7.11) and the knowledge that b..f2 - 4 > 0, leads to -t::..tV b..C + a 2 - 4 < 

-b..ta. The assumption t::..t> 2 implies that 2 - t::..f2 < -2. Adding these together results 

in 

which contradicts the original inequality (7.9). Hence P2 leads to an unstable error term. 

This means that the system is unstable when b..t > 2. 
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To summarise: 

IPII < 1 real root 

I P21 = 1 real root error term marginally stable 

I
'P' < 1 complex roots 

o < D..t < 2 ---7 I PI I < 1 real root error term stable 

Ip21 < 1 real root 

IPII < 1 real root 

I P21 > 1 real root error term unstable 
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