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Abstract 

Auditory Evoked Potentials (AEPs) measure the responses from the auditory nervous 
system structures following presentation of an acoustic stimulus (clicks or tone-burst). 
Usually, the responses are interpreted subjectively, by visual inspection. However, 
this requires well trained professionals, and is strongly dependent on the experience 
of the observer. Objective, automated methods for detecting responses are clearly 
desirable, especially for screening (e.g. neonatal hearing tests) and monitoring (e.g. 
during surgery). The aim of this work is to investigate new methods to objectively 
detect the responses. 

A novel bootstrap technique was proposed, allowing the statistical significance (p­
value) to be estimated for a wide range of different signal parameters, and detect 
the response in an easy and very flexible manner. The bootstrap method is based 
on randomly resampling (with replacement) the original data and gives an estimate 
of the probability that the response obtained is due to random variation in the data 
rather than a physiological response. Furthermore, the bootstrap technique provides 
a simple way to compare different methods for response detection using p-values. 
Even though existing methods have proved to be effective in detecting a response, 
comparing them is usually a problem because different approaches have different 
criteria. The proposed method helps to solve that problem. 

A modified bootstrap method with three artefact rejection schemes was then proposed 
and they can efficiently eliminate the effect of stimulus and/or movement artefacts. 
This modification makes the bootstrap procedures more effective to deal with 'real 
data' from patients, where artefacts are often present. 

The performance of the bootstrap method was evaluated on simulated signals by 
receiver operating characteristic (ROC) analysis and compared with other methods. 
On data recorded from normal-hearing volunteers, the techniques provided similar 
hearing thresholds to those obtained by visual inspection of the auditory brainstem 
response (ABR). The flexibility of this approach allows the method to be used with 
a range of parameters, numbers of sweeps, and with user-defined false positive rates. 
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Chapter 1 

Introduction 

1.1 Outline and motivation 

Auditory Evoked Potentials (AEPs) (Katz, 2001; Hall, 1992b) measure the responses 

from the auditory nervous system structures following presentation of an acoustic 

stimulus, which ranges from clicks (very brief, sharp sounds) to tone-bursts, or more 

complex sounds, such as speech. The response is an electrical activity in the cochlea, 

auditory nerve, and various structures in the auditory brainstem, through to the 

cortex, which are captured by recording the electroencephalogram (EEG). AEPs can 

be divided into two categories: transient or onset potentials and sustained potentials. 

Transient potentials represent a single response that results from presentation of a 

single stimulus. Neural units generating these responses are onset-sensitive, thus 

responding to the onset of a stimulus. In contrast, sustained potentials are responses 

that reflect either repeated or continual stimulation. Typical transient potentials are 

the eighth nerve action potential (AP) seen in electrocochleography (ECochG), the 

auditory brainstem response (ABR) , the middle latency response (MLR),and cortical 

potentials such as the N1-P2 (vertex) response and the P300 response. Sustained 

potentials include the cochlear microphonic (CM) and the 40-Hz response, which is 

referred to as a steady state potential because of its repetitive nature (Hood, 1998). 

AEPs are widely and successfully used in clinical practice. ABR is primarily utilized 

in (a) identification of neurological abnormalities in the eighth cranial nerve and 

auditory pathways of the brainstem and (b) estimation of hearing sensitivity based 

on the presence of a response at various intensity levels. A potential application of 
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the MLR is as indicators of depth of anesthesia in patient undergoing surgery (Beer 

et al., 1996). 

Of several AEPs, the potential generated in the brain stem provides the most ac­

curate information about the integrity of the auditory system. Unlike the cortical 

evoked potentials, the auditory brainstem response (ABR) is unaffected by a variety 

of psycho-physiological parameters, e.g. sleep (Amadeo and Shagass, 1973), attention 

and arousal (Picton and Hillyard, 1976), or anesthetic agents (Bobbin et al., 1979; 

Stockard et al., 1978). Its low variability has led to wide applications for neurology, 

otology, and audiology. One of the primary application of ABR is to determine hear­

ing thresholds in patients that are unable or unwilling to cooperate with behavioural 

testing. 

The conventional way to analyze and interpret the ABR is visual inspection by expe­

rienced audiologists, who usually identify significant peaks (the most important are 

denoted with roman numerals I, III and V - see Figure 1.11
). However, this identifi­

cation is subjective, and considerable inconsistency has been found between different 

experienced professionals in estimating hearing thresholds (Vidler and Parker, 2004; 

Arnold, 1985) from the ABR. As a result of this, a number of methods and algo­

rithms for automated ABR identification and detection have been described in the 

literature. Some of these identify the highest amplitudes in latency regions where 

peaks are expected to occur in the normal ABR (Mason, 1984; Ozdamar et al., 1994; 

Pool and Finitzo, 1989). Others are based on different statistical properties, either in 

the time-domain (e.g. Cross-correlation (Weber and Fletcher, 1980; Ozdamar et al., 

1990), Fsp (Elberling and Don, 1984), ± difference (Wong and Bickford, 1980), Fried­

man test (Cebullar et al., 2000), and Cochran's Q-test (Cebullar et al., 2000)), or in 

the frequency domain (e.g. magnitude-squared coherence (MSC) (Dobie and Wilson, 

1989), phase coherence (Jerger et al., 1986), spectral F-test (Zurek, 1992), q-sample 

uniform scores test (Sturzebecher et al., 1999), Rayleigh test (Cebullar et al., 1996; 

Lutkenhoner, 1991; Sturzebecher and Cebullar, 1997), Hotelling's T2 (Picton et al., 

1987), modified Hotelling's T2 (Valds-Sosa et al., 1987), and circular T2 (Victor and 

Mast, 1991)). Some of these methods provide an exact statistical criterion (p-value) 

when a response can be considered to be significant, others do not. The advantage 

1 In common with other publications, the unit microvolt is presented as u V due to the lack of the 
symbol J1-V in many graphics software packages. 
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of the former is that the false-positive-rate provides a clearly defined criterion for 

detecting responses, whereas for the latter empirically derived threshold criteria are 

used, so it becomes difficult to compare techniques based on the trade-off between 

sensitivity and specificity. These difficulties motivated the current work to improve 

the available techniques and explore new methods. 

v [O.2~tlV . 

I. 2ms 

Figure 1.1: ABR waveform labelled by Roman numerals. The figure is drawn based 
on Figure 2-1 in Hood (1998) . 

We will describe the proposed methods, based on the statistical bootstrap technique, 

for which we give some detail on its performance in ABRs. However, the technique 

proposed could also readily be applied in other modalities of AEPs, as well as visual, 

somatosensory, and other event-related evoked potentials. 

1.2 Original contributions 

There are three main contributions in this work: 

One is that a novel method, a bootstrap technique to detect the response based on 

the statistical p-values, is proposed. The bootstrap method is based on randomly 

resampling (with replacement) the original data and gives an estimate of the proba­

bility that the response obtained is due to random variation in the data rather than a 

physiological response. Furthermore, the bootstrap technique provides a simple way 

to compare different methods for response detection using p-values. Even though ex­

isting methods have proved to be effective in detecting a response, comparing them is 
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usually a problem because different approaches have different criteria. This proposed 

method solves the problem. 

The second contribution is to evaluate the performance of the bootstrap method for 

detecting the response in well-controlled simulations and recordings from normal­

hearing subjects. 

The third contributions are three 'plug-in' artefact rejection schemes for the boot­

strap method, that can efficiently eliminate the effect of stimulus or/and movement 

artefacts. This modification makes the bootstrap procedures more effective to deal 

with 'real data' from patients, where artefacts are often present. 

1.3 Publications 

Journal papers: 

1. Lv, J, Simpson, D. M, Bell, S. 1. A modified bootstrap method for the detection 

of auditory brainstem responses, submitted to Biomedical Signal Processing and 

Control on 12/12/2006. 

2. Lv, J, Simpson, D. M, Bell, S. L. 'Objective Detection of Evoked Potentials 

Using a Bootstrap Technique,' Medical Engineering and Physics, 29, p.191-198, 

2007. 

Conference papers: 

1. Lv, J, Simpson, D. M, Bell, S. L. A modified bootstrap test for the detection of 

evoked responses, with artefact rejection. World congress on Medical Physics 

and Biomedical Engineering (WC2006), Seoul, Korea, 27 August - 1 September, 

2006. 

2. Lv, J, Simpson, D. M, Bell, S. L. Detection of evoked responses by bootstrap 

methods: new parameters and ROC analysis. Proceedings of MEDSIP 2006 

(Advances in Medical Signal and Information Processing), Glasgow, UK, 17-19, 

July, 2006. 
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3. Lv, J, Simpson, D. M, Bell, S. L. A new approach in the automated detection of 

evoked potentials. Proceedings of Faculty of Medicine, Health and Life Sciences 

Postgraduate Conference, Southampton, UK, 6-7, June, 2006. 

4. Lv, J, Simpson, D. M, Bell, S. 1. Application of the bootstrap technique to 

detect auditory evoked potentials. Proceedings of the 2nd Life Science Interfaces 

Conference, Southampton, UK, 1, December, 2005. 

5. Lv, J, Simpson, D. M, Bell, S. L. A novel statistical test to detect auditory 

evoked potentials. The 3rd European Medical and Biological Engineering Con­

ference, Prague, Czech Republic, 20-25, November, 2005. 

6. Lv, J, Simpson, D. M, Bell, S. L. A Statistical Approach to Measuring Hear­

ing Thresholds from Auditory Brainstem Responses. International Evoked Re­

sponse Audiometry Study Group (IERASG), Havana, Cuba, 13-16, June, 2005. 

7. Lv, J, Simpson, D. M, Bell, S. L. Objective tests for the detection of auditory 

evoked potentials. Pages: 1-2 Proceedings of PGBIOMED04 (The 3rd IEEE 

EMBSS UK and RI Postgraduate Conference in Biomedical Engineering and 

Medical Physics), Southampton, UK, 9-11 August 2004. 

8. Lv, J, Simpson, D. M, Bell, S. L. A statistical test for the detection of auditory 

evoked potentials. Proceedings of the Institute of Physics and Engineering in 

Medicine (IPEM) Meeting on Signal Processing Applications in Clinical Neu­

rophysiology, York, UK, 10 February 2004. 

1.4 Structure of the thesis 

Chapter 1 has provided an introduction to outline the problem and motivations. Then 

the main contributions of this study were briefly described, and the publications listed. 

Chapter 2 is a literature review which includes an overview of the auditory brain­

stem response (ABR), automated assessments of the ABR, overview of the bootstrap 

technique and its applications, and some of the statistical analysis used in this work. 
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Chapter 3 is a summary of the signal acquisition carried out, which contains the ex­

perimental work such as the equipment configuration, calibration, and the procedures 

of recording the ABR. 

Chapter 4 investigates the properties of the background EEG which is present when 

recording ABRs. Simulations of the background EEG by an autoregressive model, 

which is used in testing the bootstrap method, are then described. 

Chapter 5 describes the procedures of the bootstrap method in detail. The evalua­

tion of the method is then performed based on Monte-Carlo simulations. Following 

that, the bootstrap technique is employed on real recordings to estimate the hearing 

threshold, and investigate the minimal number of sweeps required for detection of a 

response. 

In Chapter 6, three artefact rejection schemes are proposed and investigated to remove 

the effect of stimulus and movement artefacts. Then these schemes, combined with the 

bootstrap technique, are applied to both simulations and recordings, in the presence 

or absence of the artefacts. The results demonstrates the improvement of sensitivity 

achieved by the artefact rejection schemes, in the presence of artefacts. 

Chapter 7 compares the bootstrap technique with other methods which were proposed 

by other authors, and used in detecting the response. 

Finally, Chapter 8 summarizes the findings and suggests future work leading on from 

the investigations that have been performed. 



Chapter 2 

Literature Review 

2.1 Introduction 

In this chapter, we will summarize background knowledge related to the problem men­

tioned in the previous chapter. Auditory brainstem response (ABR) are the subject 

of all the remaining chapters and therefore a good understanding of them is impor­

tant. We provide an overview including how to obtain the ABR, the characteristics 

of a normal ABR, neural generators of it, and factors that influence it, as well as ap­

plications of the ABR. Then we will list the objective approaches for their detection 

available in the literature, with a brief description of the principles behind them and 

the algorithms. The first five methods are applied in time domain and another nine 

are applied in the frequency domain. Following those, we will introduce the bootstrap 

technique, including its principles and some applications. Finally we will introduce 

some statistical analysis methods used in this study. Some are well-known but others 

are more complex and not as often applied, particularly in this field. This background 

should provide a sound basis fot the following investigations. 
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2.2 Overview of auditory brainstem response 

2.2.1 Estimating the ABR 

The ABRs are usually impossible to recognize in the background scalp-recorded EEG. 

Averaging methods help to estimate the ABR and three most popular approaches will 

be introduced in the following. 

Coherent Averaging 

Coherent averaging is a method that is conventionally used to improve the signal-to­

noise ratio so that the signal of interest can be extracted. An important principle 

of coherent averaging is that the measured signal (EEG, including both ABR and 

background EEG) is acquired in epochs (sweeps) that are exactly time-locked to the 

repeated stimulus. In the recordings, normally hundreds (at high stimulus intensities), 

and often thousands (at low intensities) epochs are acquired. Under the assumption 

that: (1) the ABR is deterministic and the same in response to a constant stimulus, 

(2) the background EEG is random (Le., it is not correlated with the stimuli) (Robert 

and Carrie, 2001); the process of coherent averaging is shown in Figure 2.1 and 2.2. 

This process leads to a signal that remains the same size as the ABR, while the 

background EEG tends to cancel and become smaller. Thus the SNR increases as the 

number of averaged epochs increases. 

When the background EEG is stationary with zero mean and equal variance, co­

herent averaging method reduces the standard deviation of the background EEG in 

the coherently averaged signal by the square root of the number of sweeps, ..jK (K 

represents the number of sweeps in the recording), and correspondingly increases the 

SNR by the same rate. 

In order to investigate this relationship from theory point of view, the background 

EEG signal can be written in a matrix: 
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Figure 2.1: In order to show the process of coherent averaging clearly, only a part 
of a typical raw EEG data is plotted. In the bottom plot , the peaks represent the 
repeated stimuli. ' Corresponding to each stimulus, the top figure shows the EEG 
including both the ABR and the background EEG. The signal is then segmented into 
many epochs whose starting point is exactly the onset of the stimuli. The ensemble 
of the different sweeps is shown in the Figure 2.2 (time range is 0-30 ms). 

Xu 

X = (2.2.1) 

Xnl 

XKl 

where Xk,m represents one sample, k = 1,2, ... , K, where K is the number of the 

epochs (sweeps) , and m = 1, 2, ... , M, where M is the number of the samples in each 



Chapter 2. Literature Review 

> 
:::J 

o 0.005 

10 

0.01 0.015 0.02 0.025 
time (5) 

Figure 2.2: Corresponding to the repeated stimuli, the coherent average of the selected 
synchronized epochs is calculated. The seven solid lines represent the epochs of raw 
EEG following each stimulus (an offset has been added to show them more clearly) , 
and the dotted line is the result of the averaging of the seven signals. That is usually 
called the coherently averaged signal. 

epoch, and N = M * K. The variance of all the components in the matrix is: 

1 ~~ 2 2 
var(X) = N ~ ~xk,m = O"x (2 .2.2) 

M K 

And the variance of the coherently averaged signal is calculated from the following 

equations, with the assumption of signals being zero mean and with equal variance, 

uncorrelated between sweeps. 
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var(x) 

(2.2.3) 

This relationship will be further investigated on the recorded signals in Chapter 4. 

Coherent averaging thus provides an efficient solution for improving the SNR. 

Median Averaging 

Coherent averaging has some inherent problems that make it a less than desirable 

tool, although it has many desired characteristics. Coherent averaging is founded 

on the principle that the signal in a response is constant and phase locked to the 

stimulus, whereas the noise is stationary and random with no phase locking to the 

stimulus. In the real world, however, noise is nonstationary. Thus, coherent averag­

ing may produce suboptimal extraction of the signal from noise. Coherent averaging 

is highly sensitive to nonstationary noise. An alternative method, median averaging 

(Ozdamar and Kalayci, 1999) was investigated for reducing the deleterious effects of 

noise. The median may provide a more reliable representation of a group than the 

mean, especially, when there are extreme values in the group. Borda and Frost (1968) 

first suggested the use of a median averaging method for reducing the sensitivity of 

conventional coherent averaging to noise fluctuations in small samples. After experi­

ments, Ozdamar and Kalayci (1999) demonstrated that the median averaging of the 
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ABR is a feasible and reliable method. The responses obtained with median averag­

ing of 512 sweeps showed somewhat better characteristics in terms of wave detection 

and SNR than coherent averaging of the same data using visual identification of the 

ABR waves. 

Weighted Averaging 

The well-established coherent averaging technique presupposes that the physiological 

background noise is stationary, but as discussed in the previous section that is not 

always the case especially when the test subject or the patient changes his or her 

state of relaxation. The high level background noise introduces larger uncertainty in 

the ABR estimate than those from low levels. Aware of this problem, Elberling and 

Wahlgreen (1985) proposed a weighted averaging technique with the only assumption 

that the physiological background noise has a Gaussian distribution. The data is split 

into sub-blocks of say 250 sweeps. The average of each block is weighted according to 

the reciprocal of the variance of the block (an estimate of the noise level of the block) 

before being included in the overall average. Bayesian statistics were applied to the 

ABR estimate in the following way. Let 8 i and Vi indicate the mean waveform of 

the ith block, including 250 sweeps, and the estimated variance of the corresponding -background noise, respectively. ABRi denotes the Bayesian estimate of the ABR 

after the ith block: 

After the first block, calculate: 

(2.2.4) 

After the second block, 

~ = (81 + 82
) 

1 1 1 
C2 

, C2 =- + 
112 Vi 112 Vi 

(2.2.5) 

Likewise, after the nth block, calculate: 

- 81 82 8n) 1 1 1 1 
ABRn=(Vi + - + ... -' Cn=- + + ... 

112 Vn Cn 
, 

Vi 112 Vn 
(2.2.6) 
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Equation 2.2.6 describes how the Bayesian inference is used to produce an ABR esti­

mate. In this study, Elberling and Wahlgreen demonstrated the weighted averaging 

technique was more efficient in recovering the ABR from the background noise than 

the classic coherent averaging technique. 

2.2.2 The normal ABR waveform and its characteristics 

A normal ABR waveform is characterized by five to seven vertex-positive peaks that 

occur in the time period from 1.4 to 10 ms after the onset of a stimulus (Hood, 1998) 

as shown in Figure 1.1. The peaks of the ABR represent sums of neural activity from 

one or more sources at various discrete points in time. 

Responses are displayed with positive peaks reflecting activity toward the vertex of 

the head (vertex-positive), and the peaks are labelled by Roman numerals I through 

VII (Figure 1.1) following recommendations of Jewett and Williston (Jewett et al., 

1970). 

In normal individuals, the absolute latency of Wave I usually occurs approximately 

1.6 ms after stimulus onset, Wave III at about 3.7 ms and Wave V at about 5.6 

ms for click presented at 75 dB above the normal hearing threshold (Hood, 1998). 

The latency of the ABR is consistent and repeatable in normal individuals, and peak 

latencies should replicate1 within 0.1 ms. A normal ABR ranges in amplitude from 

0.1 to 1.0 f-l V. As the stimulus intensity decreases, the amplitude decreases, and the 

latency increases. 

2.2.3 Neural generators of the ABR in humans 

The usefulness of ABR in making otoneurological diagnoses depends upon knowledge 

of the anatomical origins of the various components of the ABR that can be identified 

and how different pathologies change these potentials. 

In the early 1980s, some of the first published systematic studies of neural gener­

ators of ABRs in neurosurgical patients, using simultaneous near-field,and far-field 

1 In visual inspection of the ABR, two recordings in the same conditions are collected and called 
replicates. 
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recordings, appeared in the literature. The near-field recording is situated close to the 

source of an electrical potential. And the far-field occurs when recording electrodes 

are at a distance from the source of the electrical potential. Moller et al. (1981) and 

Hashimoto et al. (1981) did a series of studies and identified the origins of different 

peaks (Figure 1.1): 

• Wave I of the ABR occurred with the same latency as Nl of the ECoG poten­

tials, which suggested that peak I was generated by the auditory nerve. 

• Wave II is generated by the proximal (brainstem) portion of the eighth nerve. 

• Wave III is generated by auditory pathways and structures in the pons (e.g., 

trapezoid body, superior olivary complex). 

• The origin of wave IV is controversial, and it has been difficult to ident~fy specific 

anatomical structures that generate this peak. 

• Wave V is generated by the lateral lemniscus, where it terminates in the con­

tralateral inferior colliculus. 

Wave I and II arise on the side of the auditory system ipsilateral to the stimulus, 

whereas wave III and later components probably receive bilateral contributions. The 

response presumably reflects synchronous activation primarily of onset-type neurons 

within the auditory system. Wave I and II are action potentials, whereas later waves 

may reflect post-synaptic activity in major brainstem auditory regions. 

2.2.4 Factors affecting the ABR 

A number of patient, stimulus, and recording factors influence the ABR. These fac­

tors may affect the amplitude and latency of the waveform. So it is very important 

to understand these effects and consider them in recording procedures and interpre­

tations. 
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Patient factors 

Patient factors may influence the outcome of the ABR recordings in any subject, 

even those with a normal peripheral and central auditory system. These include age, 

gender, medication, attention, body temperature, and muscle activity. 

1. Age 

The ABR changes as a function of age, particularly during the first 12 to 18 

months of life, as the central auditory system continues to mature. However, 

the effect of age in adults is less clear (Fria and Doyle, 1984). 

2. Gender 

Females usually have shorter latency and higher amplitude ABRs than males 

(Allison et al., 1983; Jerger and Hall, 1980; Michalewski et al., 1980). These 

differences may be related to shorter cochlea response times in females than 

males (Don et al., 1994). 

When gender and age in adults are considered together, the shortest latencies 

are obtained from younger females, with latency increasing for older females, 

then young males, and finally the longest latencies are obtained from older males 

(Don et al., 1994). 

3. Medication 

Sanders et al. (1979) and Starr et al. (1977) suggested that the ABR is not 

affected by sedative, relaxants, barbiturates, or anesthesia. However, abnormal 

ABRs have been found in conjunction with medications such as phenytoin (anti­

convulsants agents to control seizure activity), lidocaine (antiarrhythmic agents 

to control heart activity), and diazepam (antianxiety drug) (Hood, 1998). 

4. Attention 

ABRs are not affected by sleep (Jewett and Williston, 1971), do not change by 

metabolic or toxic coma (Starr et al., 1977), and do not differ as a function of 

attention (Picton and Hillyard, 1974). 
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5. Body Temperature 

A correlation between rises in body temperature and decreases in latency in 

cats has been reported by Jones et al. (1980). 

6. Muscle artefact 

In theory, the ABR is hardly influenced by myogenic potentials (muscle activ­

ity), although it is well-known that a quiet patient facilitates detection of the 

response, particularly at stimulus intensity near threshold. 

Stimulus factors 

Stimulus properties, such as intensity, rate, polarity, duration and rise time, mode 

of stimulus presentation (monaural and binaural), exert significant and interrelated 

effects on the ABR measurement. 

1. Stimulus Intensity 

All waves of the ABR show the tendency to increase in latency and decrease 

in amplitude as stimulus intensity decrease from 70 or 80 nHL to the threshold 

of the normal-hearing subjects (Picton and Hillyard, 1974; Starr and Achor, 

1975). 

2. Stimulus Rate 

The stimulus rate influences both the latency and the amplitude of the ABR. 

Generally, with a stimulus rate over 30/ s, the latency of all waves of the ABR 

increases and the amplitude of the earlier waveforms decreases (Don et al., 1977; 

Fowler and Noffsinger, 1983). 

3. Stimulus Polarity 

Three types of stimulus polarity are available rarefaction, condensation, and 

alternating between rarefaction and condensation, and these can be selected in 

recording the ABR. They have different effects on the waveforms of the ABR. 

For a rarefaction stimulus, latency is slightly shorter and the amplitude is higher 

for the earlier waves than for condensation stimuli. 
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4. Stimulus Duration and Rise Time 

The standard pulse duration in ABR testing is 100 f-ts. Because the ABR is an 

onset response, the stimulus duration should not alter the response. 

The rise time of the stimulus affects the ABR significantly. Slower rise time is 

related to reduced synchrony in that fewer neurons are firing simultaneously. As 

rise time increases, latency increases, amplitude decreases and the morphology 

deteriorates (Hood, 1998). 

5. Monaural versus Binaural stimulus 

ABRs to binaural stimuli show an average of 60% increase in amplitude over 

those by monaural stimulation (Blegvad, 1975). Latencies of the ABRs by 

monaural and binaural stimulation are similar. 

Recording factors . 

An understanding of recording factors, such as electrode placement, filter, time win­

dow, one-channel or two-channel recording, number of sweeps, is essential for success­

ful clinical applications of the ABR. 

1. Electrode Placement 

Placement of electrodes at the forehead (Fz) and the mastoids (AI and A2 ) 

(Figure 2.3) is optimum for recording the ABR in most conditions (Martin and 

Moore, 1977). Wave I, II, III are most prominent in ipsilateral recording, and 

wave IV and V are better isolated in contralateral recordings (Mizrahi et al., 

1983). 

2. Filter Settings 

The filtering aims to reduce the internal noise (e.g. unrelated muscle poten­

tials) and the external electrical interferences (e.g. mains noise). Changes in 

frequency band affect the latency and amplitude. Increasing the high-pass filter 

cut-off frequency (Le., reducing the low-frequency energy) from 30 Hz to 100 Hz 

results in decreases in the amplitude and latency of the ABR. Allowing more 
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Figure 2.3: The positions of the three electrodes for recording the ABR. 

low-frequency information into the average generally leads to increased ampli­

tude, especially for the later components, and slightly longer latencies. De­

creasing the cut-off frequency of the low-pass filter (e.g., from 3000 Hz to 1500 

Hz) has less effect on amplitude and latency. When the interference from elec­

trical sources and muscle activity (mainly low frequencies) are included, wave 

V amplitude increases because it is dependent on the amount of low-frequency 

energy. Very narrow-band filters are not recommended because phase shifting 

may appear in frequency regions near the cut-off frequencies. 

3. Time Window 

The time window for analysis of the ABR should be set to cover all the waves 

of the ABR. The length of the window will vary with the age of the patient 

and the intensity and type of the stimulus. For click stimulus in adult, a time 

window from stimulus onset to 10-12 ms is adequate for ABR recording because 

wave V for normal individuals occurs at 5 or 6 ms at high stimulus intensity 

and 8 or 9 ms for intensities close to the threshold. Insert earphones will delay 

the response less than 1 ms but 10 ms still can guarantee the inclusion of all 

the components. 
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4. N umber of Sweeps 

The number of sweeps required varies due to the inherent amplitude of the 

response and the amount of background noise, such as muscle activity, mains 

noise (50 Hz), spontaneous EEG, and so on. For ABR recording, 1000-2000 

are usually sufficient to obtain a clear response in a quiet patient fairly without 

movement, at high stimulus intensity. At low intensity near threshold more 

sweeps may be required to get an adequate signal-to-noise ratio. 

5. Artefacts 

When collecting ABR data, many sources of noise, also called artefacts, mainly 

classified as physiological and non-physiological noise will interference the qual­

ity of the data. Physiological sources here refer to muscle activity, often arising 

from neck and jaw muscles (Hall, 1992b). These signals have a low frequency and 

a large amplitude, and can be eliminated by instructing the patient to relax or 

sleep, or raising the high-pass filter. Non-physiological sources of noise include 

electrostatic potentials, eletromagnetic interference, internal instrument noise, 

power line radiation (50 Hz, UK) and stimulus transducer radiation (Hyde, 

1985). Among these non-physiological artefacts, the 50 Hz electrical power can 

be reduced by setting up a notch filter, the stimulus interference (excessively 

early artefacts) can be eliminated by moving transducer (earphone) away from 

the electrode, and others can be removed by verifying a good 'ground', electrode 

impedance and etc. In the Chapter 6, the artefact rejection will be focused on 

the stimulus and movement artefacts (muscle and any randomly occurring arte­

facts). 

2.2.5 Applications of the ABR 

Assessment of hearing sensitivity and hearing screening 

The primary audiologic application of the ABR is the assessment of hearing sensitivity, 

which is the determination of the ABR threshold. This is known to correlate well 

with behavioral hearing thresholds for mid- and high-frequency stimuli (Gorga et al., 

1985). In particular, the ABR is used to predict the hearing sensitivity for difficult­

to-test populations, such as infants and children. Nowadays, ABR is often applied in 
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infant hearing screening (Kileny, 1988; Herrmann et al., 1995; Mason and Herrmann, 

1998). 

The early detection and treatment of hearing impairment has become an increasingly 

important component of pediatric care, as their importance in the prevention and 

treatment of speech and language disorders and ear disease in children is recognized 

(Ozdamar et al., 1990). For preterm infants, newborns, infants less than 6 months old, 

and multiply-handicapped people, electrophysiologic methods are used to evaluate 

auditory function. ABR is used as an infant hearing screening tool for four main 

reasons: (1) Near-threshold stimuli can be used, allowing for the detection of even mild 

hearing impairments; (2) Each ear is tested separately; (3) It is a neurophysiological 

response not influenced by state (attention or sleeping) and anesthetic agents; and (4) 

The ABR are affected by maturation and neurological status, and provides additional 

diagnostic information. 

The above indicates the importance and justifies the popularity of the ABR applica­

tion for hearing screening. The question may arise, why not use Otoacoustic Emis­

sion (OAE) which is also widely used in hearing screening tasks. One of the main 

advantages of ABR screening is that it provides information not only on conductive 

hearing loss and cochlear pathology, as OAE screening does, but also on the more 

central auditory pathology up to the midbrain. The ABR technology tests the entire 

hearing pathway from ear to, and including the brainstem (see Figure 2.4). However, 

OAE technology (Transient Evoked Otoacoustic Emissions (TEOAE) and Distortion 

Product Otoacoustic Emissions (DPOAE)) only tests a portion of the hearing path­

way from the outer ear to the cochlear (inner ear) (van Straaten, 1999). Thus the 

ABR is accepted as an accurate means of infant hearing screening. 

Differential diagnosis 

Another application of the ABR is for differential diagnosis of diseases of the eighth 

nerve and brainstem. The ABR is composed of several voltage deflections (peaks and 

troughs) which represent far-field synchronous activity produced by onset responses 

of neural elements and abrupt bends in the neural fiber tracts of the eighth nerve and 

the auditory brainstem pathway (Stegeman et al., 1987; Deupree and Jewett, 1988). 

The determination of ABR component latencies, amplitudes and wave shapes are used 
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BRAINSTEM 

Figure 2.4: The pathway of ABR and OAE. The solid line indicates the entire hearing 
pathway of ABR from outer ear to brainstem. The dashed line shows the OAE's 
pathway from outer ear to the cochlea (inner ear). This figure is drawn based on the 
figure in the product brochure of echo-screen produced by Natus (US) . 

in indicating types of hearing loss and neurological problems. The abnormal ABR 

is correlated with structural brain lesions (brainstem tumors, vascular dysfunction, 

multiple sclerosis, and demyelination) (Starr and Achor, 1975; Starr and Hamilton, 

1976; Stockard and Rossiter, 1977). For example, the lesions can result in prolongation 

of interpeak latencies (e.g., I-V delay) and abnormal peak amplitude.ratios (V /1). The 

procedure is sensitive enough to detect mild loss due to-otitis media with effusion 

(Mendelson et al., 1979) . ABR is used to monitor changes in hearing sensitivity 

that may relate to the recovery from meningitis (Ozdamar et al., 1983; Ozdamar and 

Kraus, 1983) or hydrocephalus (Kraus et al., 1984). 
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Intraoperative monitoring 

A third clinical application of the ABR is intraoperative monitoring which is a useful 

tool for the surgeon when anticipating the possibility of damage to auditory struc­

tures during a surgical procedure. Monitoring does reduce postoperative morbidity by 

providing the surgeon with additional information about the functional status which 

could not be achieved otherwise. This application is especially used during posterior 

fossa surgery (Katz, 2001). In intraoperative monitoring, the patient's baseline re­

sponse is taken as the basis to monitor the changes during surgery. The degradation 

of a specific peak provides information for surgeons that damage may be occurring 

in the auditory system and warns the surgeon to adapt the surgery procedures. 

2.3 Objective detection of responses 

With the recognition of the importance of the ABR, more interest has been shown in 

developing automated assessments of the ABR. Since the traditional ABR screening 

is based on visual inspection, which is very costly in terms of personnel and admin­

istration time, various automated methods have been described in the time domain 

and the frequency domain, in the literature. In the following, the first five methods 

are carried out in the time domain and the other nine methods are applied in the 

frequency domain. 

2.3.1 Cross-Correlation 

Cross-correlation has been used for the quantitative assessment of the degree of sim­

ilarity between two waveforms. Its applications to response detection fall into quite 

distinct classes: replicate cross-correlation and template cross-correlation. 

For replicate cross-correlation, two independent averages are obtained for any partic­

ular stimulus condition. The well-known Pearson product-moment correlation coef­

ficient is calculated. Perfect correlation (r=l) means that the two waveforms have 

identical shape. An r of -1 would be obtained if the two averages were mirror im­

ages. Values of r close to zero lead to acceptance of the null hypothesis of no response 
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whereas values approaching 1 suggest response presence. One of the earliest reports of 

replicate cross-correlation methods for objective detection of the ABR was by Weber 

and Fletcher (1980). 

A detailed analysis of how to use the template cross-correlation techniques was re­

ported by Ozdamar et al. (1990). The template cross-correlation technique differs 

from replicate cross-correlation in that one of the waveform is pre-established, usu­

ally from prior normative data regarding the expected or desired response waveform. 

Since the mechanics of calculation are the same as replicate cross-correlation, this 

method is highly directed toward determining the extent to which the observed data 

resemble the desired target. Thus the template is very important. If the template 

is correct, the method will be more powerful than replicate cross-correlation method 

which makes less use of response information. However, if the template is wrong, 

great loss of power of this method may occur. 

2.3.2 PSP 

Fsp technique is a well-known response detection algorithm based on statistical prin­

ciples (Elberling and Don, 1984). This technique quantifies the noise contribution 

in the recording by specifying a single digitized point (or small number of points) in 

the response window and calculating the sweep-to-sweep variance of the amplitude 

measured at that point. Because the contribution from the evoked potentials at any 

fixed point in time should be the same for each sweep, the only contribution to the 

sweep-to-sweep variance should be the noise. The variance across successive points in 

the average is also measured. This value represents the overall energy in the average, 

which includes signal and noise. In a large response with good resolution of peaks, 

this variance across the window would be large. The Fsp statistic is then defined as: 

F _ var(AIJl't) 
sp - var(SP)/ K (2.3.1) 

where var (ABR) is the variance within the averaged ABR between say 5 and 15 

ms after the onset of the stimulus and var(SP) is the variance of a single point, say 

10 ms, after stimulus onset calculated across all the segments recorded and K is the 

number of segments. As the averaging process reduces the noise, the denominator of 
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the ratio is reduced more quickly than the numerator, if a response is present. When 

no response is present, the Fsp will be close to 1.0, and the growth curve will be fiat 

because both numerator and denominator contain only noise. In fact, the slope of 

the growth curve has been shown to be correlated to the number of sweeps and the 

click level. With the increase of the number of sweeps and click level, the P sp value 

grows. 

2.3.3 ± difference 

Wong and Bickford (1980) suggested a technique called ± difference. For this tech­

nique, when an ABR is averaged, alternate sweeps are put into different buffers to 

generate two averages (alternatively the ABR can be acquired twice to produce two 

averages). Then, noise is estimated and quantified by subtracting one averaged wave­

form from the other, and the ABR is estimated as the sum of the two averages. ± 
difference is defined as: 

. . var(Sum) 
± d1,j jerence = ('j f) var D1, 

(2.3.2) 

where var is the variance, Sum and Diff are found by addition and subtraction of the 

two averages respectively. In terms of their experience, Wong and Bickford indicated 

that if ± difference> 2, an ABR is likely present at or near threshold stimuli. 

2.3.4 Friedman test 

Cebullar et al. (2000) proposed a q-sample test, based on Friedman's two way analysis 

of variance (Friedman, 1937; Altman, 1991) to objectively detect the ABR. In order 

to understand the definition of the test statistic, the data could be considered as a 

matrix as described in equation 2.2.1. 

Where K is the number of sweeps, M is the number of samples in each sweep. Each 

row in the matrix represents one sweep. In the q-sample test, the M amplitudes of 

each row of the data matrix are ranked and the amplitudes are replaced by their 

ranks. Then the test statistic is: 

(2.3.3) 



Chapter 2. Literature Review 25 

where Ri is the sum of the ranks in the ith sample (ith column). The null hypothesis 

. is that the amplitudes in all columns are same, i.e., there is no significant difference 

between samples. Under the null hypothesis, the statistic has a chi-squared distri­

bution with M - 1 degrees of freedom. According to the significance level (a), the 

decision can then be made to accept or reject the null hypothesis. 

2.3.5 Cochran's Q-test 

Cochran's Q-test was originally proposed in (Cochran, 1950). In the data matrix 

(equation 2.2.1), for this test the amplitude values are replaced by their signs (+/-) 
of the amplitude values. The test statistic is: 

(2.3.4) 

where Ln is the sum of the number of '+' signs in the nth row of the data matrix and 

Ti is the sum of the number of '+' signs in the ith column. Under the null-hypothesis 

Ho of no signal added (no response), the probability functions is estimated by the 

histogram of the Q statistic values on Monte-Carlo simulations. Based on the choice 

of the significance level, the critical value of Q is determined. 

Now nine approaches used in the frequency domain will be introduced. Some of the 

methods only considered the phase, and others are based on both the phase and 

amplitude. Some statistics are calculated based on polar coordinates, and others on 

Cartesian coordinates as shown in Figure 2.5. 

2.3.6 Magnitude-squared coherence (MSC) 

The magnitude-squared coherence function (MSC) is formally defined as a squared, 

normalized cross-spectral density function relating input and output time series (Do­

bie and Wilson, 1994). MSC is estimated, for a given frequency, as the ratio between 

the power in the grand average (power of the mean denoted by PM) and the mean 
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x = Re[X(f)] 

= A(f) cosS (f) 

Figure 2.5: The amplitude and phase of a single frequency component (J) of a signal 
X(f) are shown in polar coordinates (A(f) and e(f)). This vector can be equivalently 
represented by its Cartesian coordinates, the real (x) and imaginary (y) parts of X(f). 

power in the sub aver ages (mean power is written as MP). The subaverages are ob­

tained by breaking up a single evoked potential average, e.g., 16 subaverages of 256 

responses each instead of a single average of 4096. MSC is defined as (Dobie and 

Wilson, 1989): 
PM L_y2 

MSC = __ = grand 

MP ~ 2 L-Yi 
i=l 

(2.3.5) 

where Ygrand is the Fourier (complex) representation of the grand average at the 

frequency of interest, Yi is the complex representation of ith subaverage, and L is 

the number of the subaverages. The MSC ranges from 0 to I, and makes use of 
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both amplitude and phase information. Given L and the desired false positive (a) 
rate, critical values are available to determine whether or not a response is present 

at the stimulus frequency (or its harmonics) (Dobie and Wilson, 1996). The MSC 

identifies those frequencies contributing significantly to an evoked potential. This 

information can also be useful in specifying analog and/or digital filter parameters 

and sampling frequencies for improving evoked potential detection in time domain 

waveforms (Dobie and Wilson, 1989). 

2.3.7 Phase coherence (PC) 

The phase coherence method also used grand average and subaverage data, and was 

originally proposed by Jerger et al. (1986) for evaluating the effects of sleep on the 

auditory steady state evoked potential (SSEP). Similar to MSC, the raw signal was 

broken into L subaverages and these subaverages were then Fourier transformed. At 

the frequency of interest, i.e., 40 Hz, the phases of each subaverage was considered. 

These phase angles were then projected onto a unit circle, and their sines and cosines 

were separately averaged. For this frequency, PC is calculated from the sine and 

cosine values (see Figure 2.5) in the sub averages (L is the number of subaverages) 

(Dobie and Wilson, 1994; Jerger et al., 1986): 

(2.3.6) 

where Bi is the phase angle of the Fourier component of the ith subaverage. The PC 

value varies from 0 to 1 and quantifies the degree to which the phases of the frequency 

of interest are dispersed. Since the sine and cosine of an angle can vary from -1 to 

1, randomly dispersed angles of the subaverages will have sines and cosines whose 

averages approach zero (PC=O, no response present). Conversely, a group of nearly 

identical angles will lead to average of sines and cosines forming a right triangle with 

hypotenuse approaching 1 (PC=l, a response present). 

For a given number of phase values (subaverages), Mardia (1972) gave critical values 

for the PC. For sets of 16 phase values, the critical values of PC are 0.429 and 0.525 
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respectively for a = 5% and a = 1%. This was validated by Dobie and Wilson (Dobie 

and Wilson, 1994). 

In fact, if the amplitudes of all subaverages are set to a constant prior to analysis, 

i.e., if the amplitude information is ignored, the relationship between MSC and PC 

will be: 

PC=VMSC (2.3.7) 

Champlin (1992) used MSC and PC to detect 40 Hz auditory steady-state potentials 

in normal human subjects and MSC was only slightly superior to PC. Similar inves­

tigation was performed by Dobie and Wilson (1994), who did not find any difference 

in the response detection performance between MSC and PC. 

2.3.8 Rayleigh test 

The Rayleigh test was originally described in Mardia (1972) and used to evaluate 

the null hypothesis that a sample of angular observations has arisen from the uniform 

circular distribution. For each frequency of interest, the degree of dispersion or aggre­

gation of the phase is taken as a measure of noise (random) versus genuine response 

(clustered). The test statistic of the Rayleigh method is written as (the meanings of 

the variables are the same as those defined in PC method): 

(2.3.8) 
.L L 

with C = t 2:: cos ei ; and S = t 2:: sin ei 
i=l i=l 

When substituting C and S into 2.3.8, R = PC is obtained and the Rayleigh test is 

identical to PC method. Therefore in the literature, these two methods are mentioned 

together. 

2.3.9 Modified Rayleigh test 

In addition to the phase information, a modified modified Rayleigh test was proposed 

by Jervis et al. (1983), taking the spectral amplitude information into account. And 
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Moore (1980) offered an alternative modification of the Rayleigh test by considering 

the ranks of the spectral amplitudes and this modified test statistic was: 

(2.3.9) 

L L 

with em = t I: ri cos Bi and 8m = t I: ri sin Bi. 
i=l i=l 

where ri=rank of the amplitude A (see Figure 2.5), 1 ~ r ~ L. The critical value 

of the test statistic was determined from Monte-Carlo simulations. Cebullar et al. 

(1996) and Sturzebecher and Cebullar (1997) reported that the use of the ranks 

(Moore, 1980) instead of the spectral amplitudes themselves (Jervis et al., 1983) was 

more advantageous in that ranking reduces the influence of non-stationary noise and 

the artefacts as well. But the detection performances of both modifications of the 

Rayleigh test were similar when non-stationary noise was absent. And both methods 

were superior to the Rayleigh test (Cebullar et al., 1996; Sturzebecher and Cebullar, 

1997), when applying on the near-hearing threshold ABR signals. 

2.3.10 Hotelling's T2 

Rotelling's T2, like the MSC and modified Rayleigh test, considers both amplitude 

and phase information and is the multivariate analogue of the well-known t test 

(Rotelling, 1931). It was applied to frequency domain ABR detection by Valds-Sosa 

et al. (1987) and 40 Rz steady-state evoked potentials by Picton et al. (1987). Similar 

to the above frequency methods, the subaverages were Fourier transformed. For each 

frequency of interest, the multiple subaverage spectral estimates (L estimates on L 

subaverages which were obtained as the way described in the MSC method) can be 

displayed in the complex plane as a swarm of points, or a group of vectors. 

Since the T2 statistic is related the statistic of t distribution, thus description will 

start with a univariate distribution and its t statistic. If a univariate distribution is 

sampled L 2 times to give a sample mean of x and a sample standard deviation of 

2 L used here is in accordance with the number of the subsaverages spectral estimates. 
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s, the actual mean of the population occurs within the limits of x described by the 

inequality: 

_VL_L-,-(x_-_X--,-) < t 
s - (2.3.10) 

where t is taken from the two-tailed Student's t distribution with L - 1 degrees of 

freedom. For a multivariate distribution, the confidence region for the mean vector 

is given by the equation (Anderson, 1984): 

(2.3.11 ) 

where S-l is the inverted variance-covariance matrix of the sample and TJ is derived 

from F distribution by: 

T,2 = (L - 1) k F 
o L-k (2.3.12) 

where k is the dimension of the multivariate vector and the degrees of freedom of F 

are k and L - k. The spectral estimates of the ABR are a two-dimensional vector, 

the confidence region for the mean of this vector is plotted as an ellipse. If this ellipse 

does not include zero (origin (0,0)), the ABR recording can be considered significantly 

different from zero at the probability for which the ellipse is determined. 

The great advantage of using Hotelling's T2 is that it is convenient and straightfor­

ward. The Rayleigh test, as also PC, is essentially an amplitude-free version of the 

Hotelling's T2 test. 

2.3.11 Circular T2 

The Hotelling's T2 method ignores relationships between the real and imaginary parts 

of the Fourier components. With recognition of this, Victor and Mast (1991) pro­

posed a new circular T2 (T~rc) test which is specifically designed for the analysis of 

variability of Fourier components, with an assumption of equal variances for the real 

and imaginary components of the Fourier vectors. 
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The Fourier components of the L subaverages are written as the cartesian represen­

tation Z = x + iy as described in Figure 2.5, and the real quantities x and y represent 

the cosine and sine components of the response. The L estimates of the complex 

Fourier components are denoted by Zl, Z2, ... , ZL, and their mean value is denoted by 

(x) est = (2: Zj) / L and the population mean 3 is denoted by C. If the set of experimen­

tal estimates are indeed drawn from a population whose mean is equal to C, there are 

two independent estimates of the population variance V of real and imaginary parts 

(Victor and Mast, 1991). One is Vindiv, derived from the scatter of the individually 

determined components Zj about their mean. There are 2(L -1) degrees of freedom, 

since the means of the XjS are constrained to be (x) est and the means of the YjS are 

constrained to be (Y)est. Thus, one estimate of the population variance V is: 

Vindiv 

L 

2(L 1_1) ~ [(Xj - (x)est)2 + (Yj - (Y)est)2] 

1 L 2 

2(L _ 1) ~ IZj - (z)estl (2.3.13) 

The other estimate of the population variance is based on the assumed population 

mean C. As (x)est' the sample mean, is the mean of L independent estimates, both its 

real and imaginary parts have variance V / L about the population mean C. Therefore, 

the second estimate of V: 

Vgroup ~[((X)est - 0 2 + ((Y)est _1])2] 

L 2 
il(Z)est-CI (2.3.14) 

Under the hypothesis that the experimental data Zj are samples of a population 

whose mean is C, each of Vindiv and Vgroup are estimates of the variance V derived 

from independent quantities. Therefore, the ratio of Vgroup/Vindiv is an F distribution 

(Sokal and Rohlf, 1995), with 2 and 2(L - 1) degrees of freedom for numerator and 

3 A population is any collection of individuals of interest, where these individuals may be anything, 
and the number of individuals may be finite or infinite (Bland, 2000). The population mean is 
the mean from these individuals (population), and here refers to the mean of all possible Fourier 
components. 
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denominator, respectively. In order to make a close analogy with the Hotelling's T2 

statistic, T~rc is defined as the variance ratio Vgroup/Vindiv normalized by the number 

of the samples L (Victor and Mast, 1991): 

(2.3.15) 

Since L . T~rc is distributed according to F[2,2L-2], under the null hypothesis that no 

signal is present (assumed population mean ( = 0), the critical value of T~rc at the 

pre-set significance level (a) can be obtained by: 

2 1 
Tcirc(a) = L F(a)[2,2L-2] (2.3.16) 

Looking at Figure 2.5, graphically, the T2 statistic considers the cluster of estimates of 

Fourier components to form an ellipse whose axes and orientation are unknown. For 

T~rc> the assumption of equal variances and zero covariance are made and those corre­

spond to that the cluster of estimates of Fourier components is circularly symmetric. 

This increases the number of degrees of freedom from L - 2 (degree of freedom in T2) 

to 2L - 2 (that in T~rc)' and the more information of the variances and covariances 

make circular T2 a more precise statistical test. 

Victor and Mast (1991) applied both T2 and T~rc on the steady-state evoked po­

tentials, and demonstrated that circular T2 performed better than T2; T~rc detected 

signals earlier than the Hotelling's T2 (Hotelling, 1931) and the confidence regions 

derived from T~rc are consistently smaller than those derived from T2; and the cal­

culation of the critical value by T~rc is simpler than that for T2. 

Dobie and Wilson (1993) reported that the circular T2 was a simple algebraic trans­

form of the MSC, with identical statistical power as MSC, and was superior to PC 

for response detection. 
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2.3.12 F test for power spectral density 

Zurek (1992) pointed out that power estimates at both fs (known frequency) and 

neighbouring frequencies are distributed as a chi-square distribution. Thus their ratio 

can be tested as an F statistic. At each frequency, measured power is the sum of two 

independent squared variables (real and imaginary components); thus, at fs, the power 

estimate is a chi-square variable with two degrees of freedom ( df = 2). If noise power 

is estimated by averaging across m neighbouring frequencies, this unbiased estimate 

( ?n, power of background noise) is a chi-square variable with df = 2m (Dobie and 

Wilson, 1996). The power ratio is calculated as: 

F = P(SA+n ) 

Pn 

(2.3.17) 

where ?(s+n) is an unbiased estimate of the sum of signal power and noise power at 

the stimulus frequency or its harmonics. The statistical significance of F can then 

be tested using standard tables or statistical software programs with df = 2,2m. 

Furthermore an unbiased estimate of SNR can be calculated: 

(2.3.18) 

(2.3.19) 

SNR=~F-1 (2.3.20) 

For a selected significance level (1% or 5%, false positive rate), the critical value for 

SNR estimates can be obtained. If it is smaller than the SNR, a 'significant' response 

is detected. 

Detection performance for the F test increases rapidly with the number of neighbour­

ing frequencies used to estimate noise power (a range between 3 and 7 was tested 

in Zurek (1992)). However, using large numbers of neighbouring frequencies adds 

computational time without improving performance; indeed, performance may even 

be degraded if the background noise is not white. 
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The F test was applied in another way by Simpson et al. (2000) who defined the 

spectral F test (SFT) as the ratio of the power spectra obtained from the EEG during 

(with stimuli) and before or after stimulation (without stimuli). By comparing the 

performance of MSC, phase-'synchrony measure (PSM), which is related to phase 

coherence (PC) and SFT, Simpson concluded that the SFT showed much poorer 

results, requiring a far higher number of data segments (K) or SNR in order to 

achieve the same detection rate as the MSC or PSM. 

2.3.13 q-sample uniform scores test 

The q-sample uniform scores test is to check the null hypothesis Ho that q samples 

are taken from populations with the same continuous distribution. The q-sample 

uniform scores test was first proposed for auditory evoked potential detection by 

Mardia (1972), considering the phase angle in the form of their ranks whereas the 

amplitude information is neglected. 

Let X mk ; 1 ~ m ~ F M, 1 ~ k ~ L be a collection of phase angles; L is the number 

of samples with the sample size F M (in order to differ from the sample size M in the 

time domain). There are FN = L x FM phase angle values, which are ranked in a 

signal sequence. Let rmk, m = 1,2, ... , F M, be the ranks of the phase angles in the 

kth sample. 

The phase angles are then replaced by the uniform scores 

The test statistiC used is 

2· 7r . rmk 
!3mk = FN 

FM FM 

with Ck = 2: cos!3mk; and Sk = 2: sin!3mk' 
m=l m=l 

(2.3.21) 

(2.3.22) 

W is distributed as Chi-squared with 2(L - 1) degrees of freedom. The critical value 

is obtained from the Chi-squared distribution. 
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2.3.14 Modified q-sample uniform test 

Additional to the phase angles, a modified q-sample uniform test was developed by 

Sturzebecher et al. (1999), taking the amplitude information into account. Similar to 

the phase angles, the spectral amplitudes Amk are ranked in a single sequence. amk is 

the rank of the amplitude Amk in the kth sample. The phase angles are also replaced 

by the uniform scores (Equation 2.3.21). 

The test statistic for the modified q-sample uniform test is 

2 L 
W* 2 120 ~ (C*2 8*2) 

= P(L+1)2FMB. k + k 

FM FM 

with Ck = L: amk cos f3mk; 8k = L: amk sin f3mk 

and 

m=l m=l 

2·1f . 1'mk 

f3mk = FN 

(2.3.23) 

The modification is not derived mathematically (Sturzebecher et al., 1999). The 

amplitude in the form of the ranks of the spectral amplitudes was introduced analogy 

to the modification of the Rayleigh test proposed by Moore (1980). The critical values 

are derived from Monte Carlo simulations. 

2.4 Overview of the bootstrap technique and its 
applications 

2.4.1 Introduction 

Bootstrap methods are computer-intensive methods of statistical analysis that use 

simulation to calculate standard errors, confidence intervals and significance tests 

(Davison and Hinkley, 1997). Bootstrap technique received considerable attention 

and were initially introduced by Efron (1979a) due to the availability of affordable 

and powerful computers. Bootstrap is a statistical method for estimating the sampling 
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distribution of an estimator by sampling with replacement from the original sample. 

Particularly when conventional methods cannot be applied, the bootstrap technique 

can be used to derive robust estimates of standard errors and confidence intervals 

(Efron and Gong, 1983) of a population parameter like a mean, median, proportion, 

odds ratio, correlation coefficient or regression coefficient, and it can also be used to 

construct hypothesis tests. 

Efron investigated and discussed the connections between the various nonparametric 

methods, and also the relationship to familiar parametric techniques (Efron, 1979a,b, 

1981b,a). The bootstrap method is shown to be successful in many situations. In 
fact, it is better than some other asymptotic methods, such as the traditional normal 

approximation. 

In this study, the most important contribution is to apply the bootstrap technique in 

a significance test to detect the auditory evoked potentials. To the best of our knowl­

edge, the bootstrap technique has not been used for this purpose before. Therefore 

understanding the bootstrap principles and theorem is important and we will briefly 

describe these in the next section. Since it was introduced in 1979, bootstrap methods 

have been widely used in statistics, life sciences, medical sciences, social sciences and 

business (Davison and Hinkley, 1997). As the fields exceed the scope of the current 

work, the focus will be on previous applications in biomedical signal processing, in 

the final section of this chapter. 

2.4.2 Principles and theorem 

Suppose we observe Xi = Xi, i = 1,2, ... , n, where Xi is independent and identically 

distributed (Li.d.) according to some probability function P (X1,X2 ,... ,Xn rv 

P). The sample is studied in order to estimate a certain parameter, maybe the 

mean, median, correlation, and so on, generally denoted as B(P), associated with the 

distribution P. The estimate is then given by e = B(F), where F is the empirical 

distribution function putting mass lin at each observed value Xi. 

A way to obtain the distribution of e or its characteristics is to repeat the experiment 

a sufficient number of times and approximate the distribution of e by the empirical 

distributions. However, in many practical situations, this method is inapplicable for 

cost reasons or because the experimental conditions are not reproducible. 
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The bootstrap method suggests that a distribution, i.e. the sample (or empirical) dis­

tribution, ft, could be resampled, and the distribution can approximate F as sample 

size n -----t 00. 

There are two situations to distinguish, the parametric and non parametric. When 

there is a particular mathematical model, with an adaptive constants or parameter 

'l/J which fully determine F, such a model is called parametric and statistical methods 

based on this model are parametric methods. In this case the parameter of interest 

e is a component of or function of 'l/J. When no such, mathematical model is applied, 

the statistical analysis is nonparametric, and uses only the fact that the random 

variables Xi are Li.d (Davison and Hinkley, 1997). Even if a parametric model could 

be applied, a nonparametric analysis is still useful and helpful to assess the robustness 

of conclusions drawn from a parametric analysis. 

Therefore the choice of ft is not unique, any distribution that can approach F as 

n -----t 00, can be used. The parametric bootstrap method is a particular case with 

partial information on F. But in most cases F is unknown, and we will concentrate 

on the principles of nonparametric bootstrap. 

The basic bootstrap principle 

The nonparametric bootstrap procedures could be performed as the following steps. 

Step 1. Conduct the experiment to obtain the random sample x = {Xl, X 2 , ... , Xn} 
and calculate the estimate e from the sample x. 

Step 2. Construct the empirical distribution, ft, which puts equal mass, lin, at each 

observation, Xl = Xl, X 2 = X2, ... , Xn = X n. 

Step 3. From the empirical distribution, ft, draw a random sample of size n with 

replacement. This is a resample. Calculate the statistic of interest, e, for this 

resample, yielding e*. 
Step 4. Repeat step 3 B times, where B is a large number, in order to create B 

samples. The practical size of B depends on the tests to be run on the data. 

This will be discussed later. 
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Step 5. Construct the relative frequency histogram from the B number of ()* by 

putting a probability of 1/ B at each point, Bi, B2, ... , BE' The distribution ob­

tained is the bootstrapped estimate of the sampling distribution of B. This 

distribution can now be used to make inferences about the parameter e, which 

is to be estimated bye. 

Example 1: The bootstrap principle for calculating a confidence interval 
for the mean 

Let Xl, X 2 , ... , Xn be n Li.d. random variables from some unknown distribution, and 

suppose an estimator and a (1 - 0:)100% interval for the mean f.1 are to be found. 

Traditionally, f.1 is estimated by the sample mean p, 

~ Xl + ... +Xn 
f.1=----­

n 
(2.4.1) 

A confidence interval for f.1 can be found by determining the distribution of p, by 

drawing repeated samples of size n from the underlying distribution (if the experiment 

can be repeated), and calculating the upper and lower limit of p, to meet 

The distribution of p, depends on the distribution ofthe Xi, i.e. F, which is unknown. 

When n is large enough, the distribution of p, could be approximated by the normal 

distribution, but in many cases n is small and this approximation is not valid. 

The nonparametric bootstrap provides a way to estimate the confidence interval. The 

principles of that is described as follows: 

Step 1. Experiment. Perform the experiment. The size of random variables is nand 

the estimated mean (p,) is calculated by Equation 2.4.1. 

Step 2. Resampling. Using a pseudo-random number generator with a uniform dis­

tribution, draw a random sample of n values, with replacement. Thus some of 

the original sample values appear more than once, and some not at all. Denote 

this as x*. 
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Step 3. Calculation of the bootstrap estimate. Calculate the mean of all values in x*. 

Step 4. Repetition. Repeat step 2 and 3 B times and obtain B bootstrap estimates 

of the mean {ti, {tz, ... , {tB· 

Step 5. Approximation of the distribution of ft. Sort the bootstrap estimates into 

incre-asing order to obtain {ttl) :::; {t(2) :::; ... :::; {t(B)' where {t(k) is the kth smallest 

of {ti, {tz, ... , {tB· 

Step 6. Confidence interval. The desired (1- a)100% bootstrap confidence interval 

is ({t(ql) , Jt(q2)) , where ql = Ba/2, and q2 = B - ql + 1. Note ql, q2 must be 
integers and the selection of B should consider this point. 

Example 2: The bootstrap principle for estimating standard errors 

n 

The sample mean {t = ~ L Xi is an estimate of jt and has expectation jt and variance 
i=l 

cr2 In. The standard error (se({t)) of the sample mean {t is the square root of its 

variance, 

se(p,) = J var(p,) = cr I Fn (2.4.2) 

Standard error is a general term for the standard deviation of a summary statistic 

and is the most common way of indicating statistical accuracy (Efron, 1993). 

The bootstrap estimate of se( e) is the standard error of e for data sets of size n 

randomly sampled from ft, which is defined by sefr(e*). The bootstrap procedures 

for estimating standard error are very similar as those for calculating the confidence 

interval and are therefore described by five steps: (1) Experiment; (2) Resampling; 

(3) Calculation of the bootstrap estimate; (4) Repetition; and finally (5) Estimating 

the standard error as the sample standard deviation of the B replications, 

leB = (2.4.3) 
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Example 3: The bootstrap principle for testing a hypothesis 

The use of bootstrap technique for hypothesis testing is the key application in the 

current work. This work is based on the application of bootstrap technique for testing 

a specific hypothesis, i.e. that there is no significant response present and rejecting the 

null-hypothesis at a known significance level (the false positive rate). The parameters 

representing particular features of the signal are calculated and tested against the 

null-hypothesis. For this, the sample distribution of the parameter is required, but 

it may be difficult to derive from theory or conventional experiment procedures (e.g. 

repeated experiment on the same condition for many times), because of the large 

inter and intra-subject variability, and time variation. 

For detecting the auditory brainstem responses, the parameters (e) are chosen to 

represent the strength of the response, such as the power of the signal or the dynamic 

range. First of all, the parameter e is obtained from the coherent average (described 

in the previoils section), it is then tested against the null-hypothesis that there is 

no response present, using the bootstrap technique. If no response is present in the 

coherent average, one could expect the parameter e and estimated parameter (denoted 

by e*) from bootstrap resampling to be of compatible value. However, if e is greater 

than any of the e*, there should be something special about the response following 

the onset of the stimuli, compared to the data randomly selected within bootstrap 

process. The detailed procedures of the bootstrap method based on ABR will be 

introduced in Chapter 5. 

2.4.3 Applications 

The bootstrap method is an attractive tool for assessing the accuracy of estimators 

and testing hypothesis for parameters in small data-sample situations. From its in­

troduction by Efron (1979a), it has been developed intensively and also applied in 

many fields: biomedical engineering , radar signal processing, geophysics, control, 

vibration analysis, and artificial neural networks. A review of the application in some 

areas will be given in the following, and the focus will be placed on the applications 

in biomedical engineering, particularly for the signals from the brain, as there are of 

most concern in the current work. 
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Biomedical engineering 

The bootstrap methods have been used to compared evoked responses in psychophysi­

ological experiments, such as to compare the difference of the cerebral response (even­

related potentials, ERP) to 'old' and 'new' words (Nocera and Ferlazzo, 2000). In 

this case, the mean value of responses is found to be different in the latency range 

of 400-800 ms after presenting the words. In order to test whether this difference is 

significant, the bootstrap significance test was applied under the null-hypothesis of 

'no difference present'. The procedures will be further described in Chapter 7 and will 

then be employed on the ABR data. Similar methods were used to compare measures 

other than the mean of the coherent averages, such as the maximum (N eelon et al., 

2006a, b ). The maximum is less amenable to traditional statistical analysis than the 

mean. 

Event-related changes of energy in different EEG frequency bands are an important 

indicator of the underlying brain processes. Sensory processing and motor behavior 

are connected with the localized decrease of power in certain frequency bands and 

this phenomenon is called event-related desynchronization (ERD). On the other hand, 

the increase in the power is named event-related synchronization (ERS) (Graimann 

et al., 2002). These effects relate to movement planning, and the ERDjERS is de­

fined as the change in power in particular frequency range. Identifying significant 

such changes in multi-channel EEG recordings has provided a further application of 

bootstrap methods (Graimann et al., 2002; Zygierewicz et al., 2005). They used the 

t-percentile method in which the data was converted into a 't-statistic' by subtracting 

the mean and dividing by the standard deviation, and then determined the bootstrap 

distribution. A similar approach was utilized on spectral estimators (parameters) 

based on Matching Pursuit (Durka et al., 2004). This parameter produced highly 

non-normal distributions, which can not be assessed by conventional parametric sta­

tistical analysis. 

The applications above considered single channel of EEG signals. A number of prob­

lems in the brain research is localizing the source of cerebral activity within the skull, 

on non-invasive multi-channel electroencephalography and magneto encephalography 

(EEG and MEG) signals. Bootstrap methods have been proposed to assess the un­

certainty of the localization (Gross et al., 2003; Darvas et al., 2004; Rodriguez-Rivera 
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et al., 2006) by computing the confidence interval for example of local maxima of 

activation in Gross et al. (2003). The assignment of the local maxima of activation to 

specific anatomical structures can be used to test the differences in source localization 

in different experimental situations. The estimation of the location area from surface 

recordings is of course prone to estimation errors (Darvas et al., 2004). In order to es­

timate these errors, a process similar to that described in Graimann et al. (2002) can 

be adopted: the 'bootstrap' resamples are obtained by selecting the data epoch by 

epoch with replacement, and then average these to get new coherent averages. These 

then provide new estimates of the source localization, and their scatter of an estimate 

of estimation errors. The main benefit of the bootstrap method is that it takes the 

characteristics of the source localization algorithm and of the signals into account. 

The assumption for this is that each individual stimulus-response is 'typical', and any 

random combination of these responses 'may have occurred'. 

The correlation and coherence between the EEG signals recorded from different lo­

cations have been extensively used to investigate the functional interactions between 

different brain regions, and bootstrap methods have been employed in Menon et al. 

(1996). Spatio-temporal correlations were calculated in the 20-50 Hz range of the sig­

nals recorded from the surface of the cerebral cortex. Bootstrap methods were used 

to test for significance and to investigate the spatial distance over which the recorded 

signals were significantly correlated. Whitcher et al. (2005) proposed the bootstrap 

method for testing the significance of the time-varying coherence between the local 

field potential picked up from the subthalamic nucleus and the EEG recorded over 

motor areas of the cerebral cortex. 

The analysis of relationships between recording sites in intracranial EEG is essential to 

reveal active abnormal couplings and to detect possible causal relationships between 

signals. Here bootstrapping was also proposed (Chavez et al., 2003) in order to test 

the null-hypothesis of non-causality between two time series. One of the signals was 

randomly resampled and the other was left unchanged, and thus in accordance with 

the null-hypothesis, any temporal relationship between them was destroyed. They 

used the 'stationary bootstrap' (Politis and Romano, 1994) by resampling in blocks 

and block lengths follow a random geometric distribution. The stationary bootstrap 

was applied to recordings made within different regions of the brain and to identify the 

direction of casual origin between different cerebral regions during particular periods 
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in the seizures. 

The relationship between slow eye movement (SEM) and EEG was assessed by means 

of product-moment correlations which has been analyzed by a bootstrap significance 

test (Gennaro et al., 2000). Conventional measures of the wake-sleep transition (i.e. 

slow eye movement) present some weaknesses. These include their variable rate in 

different subjects, discontinuity of the sleep onset process and the subject's position 

on the wakefulness/sleep continuum. Therefore in order to reduce the effect of the 

variability of the subjects, the estimate of the correlation coefficients between SEM 

percentages and power of EEG was performed for each subject separately. The small 

number of not-statistically independent signals for each subject may make conven­

tional estimates unreliable. The bootstrap method provides an efficient solution to 

solve the problem. 

Kannurpatti and Biswal (2005) introduced an application of bootstrap resampling in 

conjunction with cross-correlation to estimate the confidence intervals of activation­

induced blood flow recorded over an area of the cortex. Bootstrap analysis can take 

the variability of noise between pixels in the blood flow image into account. Another 

application on blood flow was to assess the inter-relationship between blood flow 

(using Doppler Ultrasound) and arterial blood pressure in order to investigate the 

blood flow control system in the brain (Simpson et al., 2004). Constrained system 

identification, selecting one from a set of ten possible impulse responses (models) was 

used and bootstrapping applied for determining the empirical sampling distribution 

for the selected models. 

Other applications 

Nagaoka and Amai (1991) discuss a bootstrap application in which the distribution 

of the estimated 'close approach probability' is derived to be used as an index of 

collision risk in air traffic control. 

Fisher and Hall applied the bootstrap in Geophysics to the problem of deciding 

whether or not paleomagnetic specimens sampled from a folded rock surface were 

magnetized before of after folding occurred (Fisher and Hall, 1989, 1990, 1991) . 

They conclude that the bootstrap method provides the only feasible approach in this 
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common paleomagnetic problem (Zoubir and Boashash, 1998). Another application 

in paleomagnetism has been reported in (Tauxe et al., 1991). 

Kukreja et al. (2004) developed a bootstrap structure detection algorithm as a means 

of determining the structure of highly over-parameterized models of the system. It 

provides accurate estimates of parameter statistics without depending on assumptions 

made by traditional procedures and yields a parsimonious description of the system. 

Zoubir and Bohme (1995) use bootstrap technique to construct multiple hypothesis 

tests for finding optimal sensor locations for knock detection in spark ignition engines. 

Recently, bootstrap techniques were also applied in artificial neural networks. Tib­

shirani (1996) discussed a number of approaches for estimating the standard error of 

predicted values from a multi-layered perception. He found the bootstrap performed 

best, to some extent because they capture variability due to the choice of starting 

weights. 

From a range of applications outlined above, the main benefits of the bootstrap 

method can be highlighted. First, bootstrap methods are very flexible, and can be 

easily applied to the study of unusual signal parameters. Second, bootstrap meth­

ods can be applied on small data sets. Finally, bootstrap methods make minimal 

assumptions about the data. 

2.5 Statistical Analysis 

Some of the statistical analysis methods using in this work will now be outlined. 

2.5.1 Binomial distribution 

Binomial distribution is the distribution followed by the number of successes in n 

independent trials when the probability of any single trial being a success is p (see 

Figure 2.6). The probability of r successes is 

n! 
PROB(r successes) = I ( _ )Ipr(l- p)<n-r) 

r. n r. 
(2.5.1) 
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Figure 2.6: Binomial distributions with different number of independent trials (n = 
5,10,25,100), p = 0.3. The probability is obtained by setting different success rates 
r. 

The binomial distribution is used in this study to estimate the acceptable range of 

false positive cases in 500 independent trials, with a single trial having a success rate 

of 0.05. Figure 2.7 shows the binomial distribution based on the above success rate 

and the number of independent trials. With a chosen confidence interval as containing 

95% of this probability distribution, the success number could be in the range between 

16 and 34, which represents the percentage of 3.2% and 6.8% respectively, as seen in 

the Figure 2.7. This means in 500 simulations (as used later in this work), the false 

positive rate in the range between 3.2% and 6.8% can be accepted as a reasonable 

rate. 

2.5.2 Normal distribution 

The reason we mention the normal distribution is that some of the following work is 

based on the normal distribution, which often provides a convenient approximation. 
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Figure 2.7: Binomial distribution with n=500 and p=O.05. The embedded figure is 
partly enlarged to emphasize the acceptable range (95% confidence intervals). 

The Normal distribution, also known as the Gaussian distribution, is a family 

of distributions of the same general form, differing in their location and scale para­

meters: the mean ('average') and standard deviation ('variability'), respectively. The 

standard normal distribu t ion is the normal distribution with a mean of zero and 

a standard deviation of one (the solid curves in the plots of Figure 2.8). It is often 

called the bell curve because the graph of its probability density resembles a bell. 

Probability density function (PDF) of the normal distribution with mean jJ, and vari­

ance cr2 (equivalently, standard deviation cr) is given by, 

J(x; jJ" cr) 

(2.5.2) 
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Figure 2.8: Normal distributions with different means and different variances. 

where 
<p(x) = _ 1_ e- x2

/ 2 

v'2i 
is the PDF of standard normal distribution with f.L = 0 and 0- = 1. T his P DF has a 

number of general properties. As with all PDFs, the total area under the curve must 

be one, since this is t he total probability of all possible events. The mean will be in 

the middle of t he curve and most of the area under the curve will be between the 

mean minus two standard deviations and the mean plus two standard deviations. 

The binomial distribution with parameters nand p may be approximated by the 

normal distribution when both np and n( l - p) exceed 5. 

In this study, the background EEG (BEEG) is assumed to follow a Gaussian distrib­

ution and its corresponding statistical properties are used for further analysis. More­

over, many probability distributions can be derived for functions of Normal variables, 

for example, Chi-squared, t, and F distributions. And those will be described in the 

following and their applications in this study will be mentioned as well. 
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2.5.3 F distribution 

The F distribution is defined as that of the ratio of two independent Chi-squared 

variables divided by their degrees of freedom (Bland, 2000): 

R _ x~/m 
m,n - x~/n 

(2.5.3) 

where m and n are degrees of freedom. The Chi-squared distribution is defined as 

follows. Suppose Z is a standard normal variable, so having zero mean and unit 

variance. The variable formed by Z2 follows the Chi-squared distribution with 1 

degree of freedom. The variable formed by n such independent standard normal 

variables, Zl, Z2, ... , Zn: 
2 Z2 Z2 Z2 X = 1+ 2+"'+ n 

is defined to be the Chi-squared distribution with n degrees of freedom. 

This distribution is used for comparing variances. If we have two independent es­

timates of the same variance calculated from Normal data, the variance ratio will 

follow the F distribution. 

In this study, we will mention two widely used objective methods (Fsp and ± differ­

ence) for detecting the response. Those are based on estimates of variances and the 

F distribution. 

2.5.4 Sign-test 

The Sign test is used to test the null hypothesis that two methods have the same 

effect on the event (no difference). This hypothesis implies that given a random pair 

of methods (x, y), then both x and yare equally likely to be larger than the other. 

Suppose that r+ is positive difference and r- is negative difference. Under the null 

hypothesis, the number of r+ and r- follow a binomial distribution with p = 0.5 

and n = equal to the total number of r+ and r-. The test is performed by finding 

the maximum number (NM) of r+ and r-, and then using the table of binomial 

distribution to find the probability of observing this value of N M. Depending on 

that value, the null-hypothesis is accepted or rejected. 
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The sign test will be used to estimate whether different bootstrap techniques have 

the same ability to detect the response. 

2.5.5 The kappa statistic 

The Kappa statistic (written K,) is regarded as a measure of inter-observer agreement 

(reliability). The calculation is based on the difference between how much agreement 

is actually present ('observed' agreement) compared to how much agreement would 

be expected to be present by chance alone ('expected' agreement) (Viera and Garrett, 

2005). Table 2.1 is used to explain the definitions and the procedures of calculation. 

Observerl - Results 

Yes No Total 

Observer2 - Results Yes a b m1 

No c d mO 

Total n1 nO n 

Table 2.1: Definition of components for calculating the Kappa value. 

The observed agreement is 

and expected agreement is 

Ae = [n1 • mIl + [nO. mOl 
n n n n 

Therefore Kappa is defined as: 

(2.5.4) 

It has a maximum of 1 when agreement is perfect, a value of zero indicates no agree­

ment better than chance, and negative values show worse than chance agreement, 

which is unlikely in this context (Altman, 1991). In order to interpret a value be­

tween 0 and 1, Landis and Koch (Landis and Koch, 1977) gave a rough guideline 

as: 



Chapter 2. Literature Review 50 

Value of /'i, Strength of agreement 

< 0.20 Poor 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Good 

0.81-1.00 Perfect 

The Kappa statistic is used in the current work to estimate the agreement between 

subjective inspections (inter-observer) in determining hearing thresholds. Further 

details for applying Kappa will be given in section 5.4.2. 

2.5.6 ROC curve and its area 

To compare the response detection performance of different methods investigated, the 

sensitivity of the tests is calculated. The sensitivity characterizes the performance 

of a test to detect a response, when present. It is defined as the number of correct 

positive decisions (CPD) divided by the sum of CPD and the number of false negative 

decisions (FND) (Cebullar et al., 1996): 

o 0 0 CPD 
sens~t'W~ty = C P D + F N D 

Specificity is defined as the number of correct negative decisions (CND) divided by 

the sum of CND and the number of false positive decisions (FPD). 

'j0 0t CND 
spec~ ~c~ y = CND + FPD 

The sensitivity and false positive rate (l-specificity) are the main issues in the detec­

tion task and can be obtained at any cutoff threshold. When comparing two or more 

tests, these two characteristics at one cutoff threshold are not enough to determine 

the performance of the tests, since it is possible that at one cutoff threshold the sen­

sitivity of test A is greater than that of test B, but at another cutoff threshold, the 

sensitivity of test A is smaller than test B. Therefore, a receiver operating char­

acteristic (ROC), defined as a graphical plot of the sensitivity vs. (1 - specificity) 
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(see an example in Figure 2.9) as its discrimination threshold is varied, is desirable 

to investigate the sensitivity and false positive rate at different cutoff thresholds. 

A point in the ROC curve only represents one cutoff. In order to estimate the overall 

performance of one or more tests, all the points in the ROC curve should be taken 

into account. The accuracy of the test is defined as how well the test separates the 

group being tested into those with and without the responses in question, and it is 

measured by the area under the ROC curve (Massof and Emmel, 1987). The area 

is calculated as the sum of the area of many small trapezoids which are obtained by 

dividing the area according to the points on the curve (an example is shown in Figure 

2.9). 
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Figure 2.9: An example of ROC curve for four different detection methods and ap­
proximation of the area under the ROC curve by dividing the area into many small 
trapezoids. 

An area of 1 represents a perfect test, that is when the curve follows the left and upper 

axes (see Figure 2.9), such that sensitivity is one for all possible cutoff thresholds. 

An area of 0.5 means no discrimination exists, and the curve lies along the major 
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diagonal, where the sensitivity and false positive rate are always equal. A rough 

guide for classifying the accuracy of a diagnostic test is given below (Egan, 1975): 

Value of area Power of test 

0.50-0.60 Fail 

0.60-0.70 Poor 

0.70-0.80 Fair 

0.80-0.90 Good 

0.90-1.00 Excellent 

ROC and its area are used here is to compare the performance of different ABR 

detection methods and will be applied in Chapter 6. 



Chapter 3 

Signal Acquisition 

3.1 Introduction 

Now the experimental work, calibration of equipment and recording procedures are 

introduced in the followi~g three sections. 

In this study, two sets ofrecordings of ABR (defined as Set A and Set B) were used for 

testing the proposed methods. Set A was collected by colleagues (Bell, 2003; Cane, 

2002) in 2002 from 12 normal-hearing adults stimulated at 0 to 50 dB sensation level 

(SL) in steps of 10 dB. Set B was recorded by myself in 2004 in order to obtain 

signals both with and without stimulation under the same experimental conditions. 

The equipment settings between data Set A and B were similar with differences shown 

in Table 3.1. This chapter will focus on the procedures and parameter settings for 

set B. 

3.2 Experimental work 

3.2.1 Equipment configuration 

For this experiment, click stimuli were generated and EEG signals recorded using a 

computer controlled Cambridge Electronic Design (CED, UK) micro 1401 laboratory 

interface (consisting of Analogue-to-Digital (AD) and Digital-to-Analogue (DA) con­

verters) and CED 1902 isolated biological amplifier. This equipment was controlled 
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using an ABR program able to get and individually store (for later analysis) different 

number of epochs of EEG signal including ABR, which was developed by Prof. Mark 

Lutman in the ISVR (University of Southampton) and run on a PC. The equipment 

configuration for this project is shown in Figure 3.1. 

CED 1902 EEG amplifier 

Sound proof booth 

CED micro 1401 
(AID and D/A converter) 

Figure 3.1: Equipment configuration. 

computer 

The computer (PC) loads an appropriate sound stimulus waveform into the memory of 

the micro1401, which reads out the buffer from the digital to analogue (DA) converter 

to generate a repeating stimulus such as a click. This analogue signal is sent to a 

Kamplex KC50 audiometer, and the input level of the stimulus can be amplified and 

adjusted in accordance with specific requirements. Finally it is sent to the subject 

via insert earphones (Etymotic, USA). 

The ABR is picked up by electrodes place on the subject 's scalp and is sent to the CED 

1902 biological amplifier via an isolated EEG 'headbox' . The CED 1902 then amplifies 

and filters the signal. After that the signal is sent to the micro1401 analogue to digital 

(AD) converter and then is in digital format, to be transmitted to the computer. The 
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signal is averaged by the ABR program, after applying artefact rejection. This allows 

on-line verification of signal quality. As the raw EEG (including ABR, spontanous 

EEG, and possibly artefacts) is required for the various statistical analysis, it is also 

exported to disk by the ABR software. The raw EEG can then be imported to other 

programs such as MATLAB for further analysis. 

3.2.2 Click generation 

The click is generated by a 5 V square wave with duration of 0.1 ms output from the 

CED micro1401. The number of samples depends on the sample rate. For example, 

the internal 1 MHz clock of the micro1401 is divided by 100 to give a sample frequency 

of 10 kHz which corresponds to one sample every 0.1 ms. Therefore a click is one 

sample long at this sampling rate. 

3.2.3 Sampling rate 

From the above example, a sampling rate of 10 kHz is adequate for generating click 

stimulation of 0.1 ms. The sampling rate, at which the analogue responses are digi­

tized, was 20 kHz. The signals are then downsampled to 5 kHz for further analysis, 

after anti-alias filtering at 2100 Hz. 

3.2.4 Transducer-headphone selection 

When choosing the transducers to generate the auditory evoked potentials, two fac­

tors should be considered: the frequency response of the transducer and the amount 

of stimulus artefact the headphones generate. E-A-RTONE 5A (E-A-R Auditory Sys­

tems, USA) insert earphones are used here to deliver the sound signal. The major 

benefit of this earphone is the reduction of background noise that might interact with 

the presented sound and influence threshold determination. The stimulus artefact 

also is greatly reduced in two ways: (1) The earphone box can be placed far away 

from the electrode leads; the greater the separation, the less likely the artefact will 

be. (2) The .tube produces a time delay between stimulus and response. Even if the 

stimulus artefact is present, the delay actually eliminates the interference with the 



Chapter 3. Signal Acquisition 56 

early components (e.g. wave I). The insert earphone has the advantage of reducing 

the stimulus artefact, compared to supraaural earphones (e.g. TDH-39 or TDH-49). 

3.2.5 Filters and mains noise 

Choosing an appropriate filter is very important to record a clear ABR waveform. 

There is a compromise in the choice of high and low pass filters, so as to exclude as 

much background EEG as possible and including the maximum frequency content of 

the ABR. The CED 1902 amplifier contains a limited number of 12 dB/octave filter 

settings. For ABR studies, Hall (1992b) recommended the filter settings as 30-3000 

Hz with a notch filter at 50 Hz, to remove the influence of mains noise (50 Hz in UK). 

For recording data Set B, the recommended filter settings were applied. 

3.2.6 Electrodes 

Electrode placement refers to the 10-20 International system (Jasper, 1958). The 

conventional locations of the electrodes in recording the ABR are a noninverting 

electrode on the high forehead (close to Fz) and an inverting electrode on the mastoid. 

The low forehead is the position of the ground electrode. The specific locations of 

the electrodes are shown in Figure 2.3. 

Inter-electrode electrical impedance is another important factor for data quality. Low 

and balanced electrode impedances contribute to higher quality ABR recordings by 

(1) limiting the internal noise of the amplifiers, (2) reducing the effects of external 

electrical interference (noise) and (3) maintaining higher common mode rej ection ra­

tios. The convention for maximum inter-electrode impedance is 5 kO (Hall, 1992a). 

In this experiment, before recording the signals, inter-electrode impedance was tested 

in each subject. If the requirement was satisfied with less than 5 kO, the following 

procedure was carried out. Otherwise, the problems were found and solved, e.g. by 

changing the electrode, cleaning the skin, etc., until impedance reached the require­

ment. 

The above parameter settings for data Set B are summarized in Table 3.1. For 

comparison, those for Set A are placed in the Table as well. 
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Parameter Set A Set B 

Transducer ER-2A ER-5A 

Type Click Click 

Duration 0.1 ms 0.1 ms 

Polarity Rarefaction Rarefaction 

Rate 33.3/s 33.3/s 

Intensity o to 50 dB SL o to 60 dB nHL 

Without stimulation No Yes 

Electrode arrays 

Channell Vertex (Cz) Forehead (Fz) 

Channel 2 Nape of neck Mastoid (Right) 

Ground High forehead Lower forehead 

Bandpass filter 30-3000Hz 30-3000 Hz 

Notch filter Yes (50 Hz) Yes (50 Hz) 

Amplification 30,000 10,000 

Analysis window 5-15 ms 5-15 ms 

Sweeps 2000 2000 

Table 3.1: Acquisition parameters for two data sets. 
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3.3 Calibration of equipment 

There were three calibration procedures carried out. The amplification of the CED 

biological amplifier was checked, and the click stimulus was calibrated according to 

peak-equivalent SPL. Normal hearing level (nHL) was calibrated in order to determine 

o dB nHL, relative to which stimuli were then applied. 

3.3.1 Calibration of the CED 1902 biological amplifier 

It is necessary to determine the gain of the CED 1902 amplifier in order to calculate 

the magnitude of the ABR. The gain may shift over time, so the calibration was 

carried out for each experiment. 

The relationship between the voltage input to the micro 1401 A-D converter and the 

scale in MLS-MLR software was calculated. A 5 V peak-to-peak sine-wave burst was 

generated by MLS-MLR and this was delivered from the analogue output of the micro 

1401 back to the input. The level of the sine burst was displayed on an oscilloscope 

for verifying the actual value. The sine burst was averaged by the MLS-MLR over 100 

sweeps and the peak-to-peak amplitude was read. For the condition where the ABR 

was collected, the peak-to-peak amplitude was 32767 scale units, which means that 1 

V corresponds to 6553 MLS-MLR scale units, or 1 scale unit corresponds to 0.153 m V 

at the input to the micro 1401. The recorded ABR from a subject is normally less 

than ±lp'v, therefore before feeding into the micro 1401, the CED 1902 amplifies the 

ABR amplitude with a gain of 10,000. Actually 1 f.L V of the ABR from the subject 

was 1O-2V on the input of the micro 1401, and this corresponds to 65.53 scale units 

shown on the PC. 

3.3.2 Input level of the audiometer 

The stimulus signals from the micro 1401 went through the input of the audiometer 

and then were attenuated by the audiometer before reaching the earphone connected 

to the subject. A change of the gain of the input of the audiometer leads to a change 

of stimulus levels. So the gain of the input of the audiometer was set before any 

measurements were made on the subject and calibrations of the equipment. 
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A 5 V peak-to-peak sine wave generated by the micro 1401 was used to set the input 

of the audiometer. Before any measurements, the setting of the input was checked 

using this calibration signal and adjusted so that the LCD display for the input level 

on the audiometer read 0 dB on the dial. 

3.3.3 Calibration of clicks in dB pe SPL 

The insert earphone was connected to a Bruel and Kjffir 2112 spectrometer and an 

oscilloscope via alEC 126 '2cc' coupler to a 1 inch microphone as specified by In­

ternational Standard ISO 389. The scale of the spectrometer was set up using a 

reference calibration piston. The piston generates a fixed SPL and the input gain of 

the spectrometer was adjusted until the spectrometer dial gave the same reference 

level. The output of the spectrometer was fed back to the AD input of the micro 

1401. A clear click response was then recorded by averaging the spectrometer output 

over 100 clicks using the MLS-MLR software. The peak-to-peak amplitude and the 

half period of the first positive going cycle of the click were estimated. 

For calibration, the frequency of the click is assumed to be lover twice the half 

period measured. A sine wave is adjusted until its peak-to-peak amplitude is equal 

to the peak-to-peak value of the click estimated above. The value then read on the 

spectrometer is the peak-equivalent SPL (pe SPL) of the click. That was 88 dB pe 

SPL here. 

3.3.4 Calibration of normal hearing level 

Normal hearing level (dB nHL) is the most common reference for describing stimulus 

intensity for a short duration stimulus. Behavioral hearing tests are performed for a 

relatively small group of normal-hearing adult subjects, the lowest sound level heard 

of each subject is then defined as his/her behavioral threshold level. The average 

behavioral hearing thresholds from 10 subjects (both ears) is calculated and this is 

defined to be 0 dB nHL. In this case, 35 dB p.e.SPL on the KC50 audiometer (see 

Figure 3.2) was estimated as 0 dB nHL. 
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Figure 3.2: Audiometer (KC50). 

3.4 Pre-assessment and recording 

Since data are collected from human beings, strict adherence to the protocol is re­

quired, in order to guarantee the safety of the experiment1 . Before setting up the 

equipment, the procedure was explained and a consent form (Appendix B) signed by 

each subject. Then each subject completed a questionnaire (Appendix A), in order 

to identify any ear problems or previous treatment. The following complementary 

tests were carried out before recording. 

3.4.1 Otoscopy 

Otoscopy is an examination that involves looking into the ear with an instrument 

called an otoscope (Figure 3.3). This is performed in order to examine the 'external 

ear canal' - the tunnel that leads from the outer ear (pinna) to the eardrum. Inspection 

IThis experiment is approved by the school's safety and ethics committee and adheres to the 
18060601 standard. 
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of the eardrum can give much information on the condition of the middle ear. This 

test is carried out to make sure the external ear canal and middle ear structure is 

normal. In this experiment, almost all the subjects were identified as normal at this 

stage. One subject had a lot of wax in the ear canal and was asked to clean this, 

before carrying on with the following test. 

Figure 3.3: Otoscope 

3.4.2 Tympanometry 

Tympanometry is an audiological procedure for measuring the acoustic admittance 

of the middle ear, allowing abnormal conditions of the eardrum and middle ear to 

be identified. A tympanometer (Figure 3.4) provides a tympanogram, which shows 

acoustic complia~ce as a function of air pressure in the external ear. Figure 3.5 gives 

an example from a 19 year old female. The shape of an inverted-U indicates normality. 

Furthermore, the middle ear pressure of 15daPa, compliance of 0.5 ml eqV, and ear 

canal volume of 0.9 ml eqV are all in the normal ranges (-100 to +50 daPa for pressure 
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Figure 3.4: Tympanometer: measuring the compliance of the eardrum. 

and 0.3 to 1.5 ml eqV for compliance) recommended in the literature. On the other 

hand, an abnormal tympano.gram may reveal any of the following problems: 

• Fluid in the middle ear; 

• Perforated ear drum; 

• Impacted ear wax:; 

• Scarring of the tympanic membrane; 

• Lack of contact between the conduction bones of the middle ear; 

• A tumor in the middle ear. 

3.4.3 Pure-tone audiometry 

Pure-tone audiometry (PTA) is a manual subjective audiometry technique, which 

aims to establish an individual's sensitivity to single-frequency tones. PTA is applied 
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here to determine first if the individual is within the normal-hearing range or not. 

Hearing threshold level (HTL) of 20 dB HL or less is defined as normal hearing. That 

more than 20 dB HL is defined as hearing impairment: (1) mild loss: 20-40 dB HL; 

(2) moderate loss: 40-60 dB HL; (3) severe loss: 60-90 dB HL; (4) profound loss: over 

90 dB HL. 

3.4.4 EEG recordings 

There were 27 subjects involved in the experiments. One was identified as having 

moderate hearing loss, and not suitable for ABR recording. Ten cases were required 

for calibrating 0 dB nHL. Another 16 subjects thus provided ABR recordings. For 

each subject, 2 replicates at each stimulus level (0 , 10, 20, 30, 40, 50, 60 dB nHL) 

are carried out with 2000 sweeps (stimulus rate of 30/sec) . Under the condition of no 

stimulus, four replicates were acquired, each recording with 4000 sweeps (2 minutes). 

The raw EEG data were saved on disk for further' analysis. 



Chapter 4 

Simulation of EEG by AR 
modelling 

4.1 Introduction 

When collecting ABR data, many sources of noises may interfere with the quality 

of the data (Chapter 2). If non-physiological sources of noise are eliminated, the 

residual artefacts will be background EEG and movement. An artefact rejection 

scheme (MAR) has been developed and will be introduced in Chapter 6, particularly 

to remove the movement artefact. The background EEG (BEEG) thus becomes the 

main source of noise affecting ABR recordings. 

In this chapter, the common assumptions for BEEG in most measurements for evoked 

potentials, i.e., BEEG is a stationary and ergodic process, will be introduced. Then 

characteristics of the BEEG will be analysed, in order to assess how accurate the 

assumptions are for recorded BEEG. Finally, we will present the method for carrying 

out the Monte Carlo simulations. 
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4.2 Assumptions for EEG and their statistical prop­
erties 

At present, almost all methods of EEG analysis are based on certain implicit as­

sumptions regarding the statistical properties of the underlying random process, par­

ticularly with respect to the extent of stationarity and Gaussianity of the process 

(Elberling and Don, 1984; Wong and Bickford, 1980; Cebullar et al., 2000; Sturze­

becher et al., 1999). In this work, it is necessary to recognize and understand the 

statistical properties of assumptions in order to investigate if these are satisfied in 

practice. In this section, we will concentrate on the statistical properties of station­

arity and ergodicity signals. These properties relate to the specific definitions of the 

characteristics of random signals. We thus begin this section with an introduction of 

random signals and then refer to the specific properties. 

4.2.1 Random signals 

A random signal is a signal from a random phenomenon (Bendat and Piersol, 1986). 

The essential feature of random signals is that one cannot precisely predict the sig­

nals in advance, since each 'realization' of the experiment may result in a different 

signal. Therefore in order to describe such signals, we can use probability theory and 

statistical descriptors (mean, variance/standard deviation, and autocorrelation). 

The statistical properties are defined from the ensemble ofrecordings (see Figure 4.1). 

The mean of the ensemble of signals x(n) is given by 

____ 1 M 

I-l(k) = M L xj(k) 
j=l 

(4.2.1) 

where M is the number of signals xj(k) in the ensemble. The mean at a time-instant 

k is calculated as the mean of all the signals at this sample. This is not necessarily ----the same as the mean of each signal. It is also clear that the mean I-l(k) may vary 

over time. 

Similarly, the variance of the process can be estimated at a time-instant k down the 

ensemble as shown in Figure 4.1. 
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(4.2.2) 

X1 en) 

X2 en) 

X3 en) 

X4 en) 

K Time 

Figure 4.1: An ensemble of random signals. 

Another property commonly used to describe the random signals is the autocorre­

lation. This is related to the correlation coefficient between different samples of the 

same signal, and can be estimated as follows: 

(4.2.3) 

where T is the time-delay between samples xj(k) and xj(k + T). 

4.2.2 Stationary and ergodic signals 

Random signals can be divided into stationary and non-stationary signals (Bendat 

and Piersol, 1986) depending on whether or not these statistical properties change 
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with time. Since all biomedical signals change as time evolves, the assumption of 

stationarity can only be an approximation, but is often useful for further analysis. 

In stationary signals, the mean, variance and autocorrelation are constant over time. 

---/-l(k) = /1 

---()"2(k) = ()"2 

R::c(k, k + T) = Rxx( T) 

(4.2.4) 

( 4.2.5) 

(4.2.6) 

A stationary random signal is considered to be ergodic if it is possible to compute its 

statistics (mean, variance, etc) using the time average over any single signal instead 

of an average down the ensemble. 

(4.2.7) 

where M is the number of signals in the ensemble and N is the number of samples 

in each signal. 

In summary, the properties of an ergodic signal are: 

---/-l(k) = /1 = /-l(Xj) --- -()"2(k) = ()"2 = ()"2(Xj) 

Vk (instants) and VXj(sample functions). 

4.3 Assessing characteristics of the EEG 

(4.2.8) 

( 4.2.9) 

With the knowledge of the statistical properties of stationary and ergodic signals 

from a theory point of view, the assessment of those on the recorded background 

EEG follows. EEG in this chapter specifically refers to background EEG (BEEG). 
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4.3.1 EEG components and properties 

In order to remove the influence of background EEG from evoked potentials, e.g. the 

ABR, it is very important to have some knowledge of the frequency distribution of 

the BEEG. The frequency content of BEEG lies primarily between 0 and 100 Hz, 

although most typical waves are in the frequency between 1 to 20 Hz. Four major 

types of BEEG activity are recognized (alpha, beta, delta and theta). 

Delta (0) wave is the frequency range up to 4 Hz and is often associated with the 

young and certain encephalopathies and underlying lesions. It is seen in stage 3 and 

4 of sleep. The frequency range of theta (e) waves is from 4 Hz to 8 Hz and it is 

associated with drowsiness, childhood, adolescence and young adulthood. Alpha (a) 
is the frequency range from 8 Hz to 13 Hz. It is characteristic of a relaxed, alert 

state of consciousness. Alpha rhythms can be best detected when the eyes are closed. 

Beta ({3) is the frequency range between 13 to 22 Hz. Low amplitude (3 waves with 

multiple and varying frequencies are often associated with active, busy or anxious 

thinking and active concentration. 

In this study, a band-pass filter of 30-3000 Hz was applied, in order to analyse domi­

nant wave V of the ABR, and thus the above low frequency waves were filtered out. 

There is an example of a BEEG during 3 seconds in Figure 4.2. 

Furthermore, an estimate of power spectral density (PSD) was performed by the 

Welch method (Hayes, 1996). The PSD in Figure 4.3 was obtained by averaging the 

PSDs of 8 raw background EEG segments, each of which had 15 second duration. A 

strong trough at 50 Hz, derives from the notch filter. The magnitude of the PSD at 

high frequencies over 500 Hz are very small at about 10-3 [Il'v] 2 
/ H z. This indicates 

that the spectrum of the ABR waves would not be affected by the background EEG. 

Particularly for our interest in wave V, its energy is mainly at about 500 Hz (Boston, 

1981). 

4.3.2 The effect of averaging 

Averaging (in this work coherent averaging) is the most commonly used technique 

to make the evoked potentials visible. In principle, the standard deviation (SD) of 
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Figure 4.2: A typical raw background EEG data, recorded without stimulation. 
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the average decreases by the square root of the number of sweeps in the average 

(Schimmel et al., 1974). This was investigated from mathematical point of view in 

Chapter 2, and is shown by the equations 2.2.2 and 2.2.3. 

The effect of averaging is demonstrated for both white noise with a normal distribution 

and mean zero, variance one and a typical background EEG from a subject without 

stimulation. Figure 4.4 shows the effect on the SD of averaging for white noise (solid 

line) and that of the real recording as a dashed line. Both are normalized by the 

SD of the first sweep. A plot based on the theory that SD decreases as the square 

root of the number of sweeps is also shown in the figure as a dotted line. By visual 

inspection, the SD for both white noise and recording are very similar to the 'theory' 

line. 
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Figure 4.3: Power spectral density of background EEG via Welch method. At 50 Hz, 
a strong trough appears which derives from the notch filter. 

4.4 Autoregressive model for EEG simulation 

The background EEG is viewed as a stationary random process and usually is mod­

elled as the output of a linear system, e.g. Autoregressive Moving Average (ARMA), 

driven by white noise (Isaksson et al., 1981; Cerutti et al., 1985; Liberati et al., 1992; 

Rossi et al., 2007). 

A general form of the ARMA model is that an input signal x( n) is filtered by a system 

to give an output y(n), where n is the sample index. The response of the system to 

any input is described by the parameters a and b. The number of a and b parameters 

(p and q) is defined as the order of the filter. The relationship between input and 

output is (Marple, 1987): 

p q 

y(n) = Laky(n - k) + Lbkx(n - k) (4.4.1) 
k=l k=O 
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Figure 4.4: The effect of coherent averaging on the standard deviation of white noise 
and raw EEG data. 

The current output y(n) is a a weighted sum of previous outputs, y(n - k) and a 

sum of filtered previous inputs x(n - k). If all the b[k] coefficients except b[O] are set 

to zero, this process is strictly an autoregressive (AR) process of order p. The AR 

model is used here to simulate the background EEG signals following the procedures 

in Figure 4.5. The two important factors, namely a reference signal for estimating 

the AR parameters, and a suitable order should be determined, before employing the 

AR model. 

I 

Simulated background 
White noise --~.,---__ A_R_m_O_d_e_I_:--.. EEG signal 

Figure 4.5: The procedures of simulating EEG signals through an AR model. White 
noise is acting as input and simulated background EEG signal is the output. 
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4.4.1 Selection of a reference signal 

An appropriate reference signal is very important in the AR process and used for 

estimating the AR parameters. In order to simulate the background EEG signals, a 

'typical' signal should be chosen as a reference signal and usually a signal without 

stimuli is more desirable than that with stimuli, because of the aim for simulating 

background EEG. As mentioned before, two data sets (A and B) were collected under 

the different conditions in the current work, and the selection of a reference signal 

will be described separately. 

For data Set A, the reference signal was selected from 12 recordings with stimulation 

at 0 dB SL, since there were no signals without stimuli. The power spectral density 

(PSD) of each recording was estimated by the Welch method and then a median PSD 

among the 12 spectra was obtained. The absolute values of the difference between the 

median PSD and each of the 12 recordings at each frequency were summed and the 

minimal summation value was found and its corresponding recording was taken as 

the reference signal. The reason behind that is that the properties of the signals from 

different subjects can vary considerably and some randomly occurring artefacts are 

possibly present. The above procedure aims to find the most 'typical' recording. The 

simulations in Chapter 5 were all based on this reference signal (denoted as RSA). 

With the development of the artefact rejection schemes which will be introduced in 

Chapter 6, more simulations were required and at that moment we had obtained the 

second set of recordings (Set B), under conditions with and without the stimulation. 

Therefore, a second reference signal (here denoted by RSB) was chosen from record­

ings without stimulation, using a procedure equivalent to that described above. All 

simulations of background EEG in Chapter 6 and 7 were based on RSB. 

4.4.2 Determination of AR model order 

The order selection is another issue for the AR model. Too low values for model 

order will result in a highly smoothed spectral estimates, whereas too high values 

will increase the resolution and introduce spurious detail into the spectrum. There 

are three standard methods to estimate the order (Haykin, 1986): Final Prediction 

Error (FPE), Akaike information criterion (AIC) and criterion autoregressive transfer 
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(CAT) function. In this work, the FPE was chosen as as the selection criterion of the 

order. FPE is defined by the following equation: 

FPE[P] = Pp {N + (p+ I)} 
N-(p-1) 

( 4.4.2) 

where N is the number of data samples, p is the order, and Pp is the estimated white 

noise variance. The term in parentheses increases as the order increases, reflecting 

the increase in the uncertainty of the estimated Pp of the prediction error variance. 

The order p to be selected is the one for which the FPE is minimum. The exact value 

of the order differs for different reference signals, thus this will be given in Chapter 5 

and Chapter 6, respectively. 

4.4.3 Autocorrelation (Yule-Walker) method for AR para­
meter estimation. 

The Yule-Walker method is also called the autocorrelation method to fit a pth order 

autoregressive (AR) model to the input signal, by minimizing the forward prediction 

error in the least-squares sense. This formulation leads to the Yule-Walker equations, 

which are solved by Levinson-Durbin recursion (Akay, 1994) and then the AR para­

meters (prediction coefficients) can be obtained. In the Levinson-Durbin recursion 

algorithm, the prediction coefficients of the AR model at the current stage can be 

obtained recursively from those calculated at the previous stage. The relationship 

between the new prediction-error filter and the old prediction-error filter is known as 

the equation of Levinson-Durbin recursion. The Yule-Walker method was used both 

to estimate the FPE, and hence to determine the model order, and then with this 

method, to estimate the model parameters from the reference signal (see Figure 4.6). 

4.4.4 Summary of EEG simulation 

Following the procedures showing in Figure 4.6, the AR parameters could be obtained. 

Then white noise was input to the AR model and the output of AR model is a 

simulated background EEG signal. 
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Figure 4.6: The procedures for simulating the background EEG. The power spectral 
density analysis is aimed at choosing a reference signal. AR model order matrix refers 
a number of values of the order. FPE is to determine the order of the AR model. 

In order to show that the simulations looks like the raw EEG (a reference signal), an 

example for the PSDs of three simulated signals are shown in Figure 4.7. The PSDs 

for the simulations are similar to those from the raw EEG (in the same figure as a 

dashed line). 
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Figure 4.7: The PSDs for an EEG signal and three different simulations. 
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Chapter 5 

A bootstrap technique to detect 
the ABR 

5.1 Introduction 

In this chapter, we describe a bootstrap technique, which allows the statistical sig­

nificance of evoked responses to be estimated for objective detection, and does so in 

an easy and very flexible manner. The bootstrap method was introduced by Efron 

(Efron, 1979a, b, 1981 b) as an approach to calculate confidence intervals for para­

meters in circumstances where standard methods are not easily be applied. The 

bootstrap has subsequently become well established as a powerful statistical tool, in 

which complex mathematical analysis is replaced by intensive computational load. 

In recent years bootstrap methods have also been extensively used in biomedical sig­

nal processing (Raynor and Woods, 1989; Simpson et al., 2004). To the best of our 

knowledge this technique has not previously been used in the detection of evoked po­

tentials, though other uses of the bootstrap in evoked potentials have been reported 

(Darvas et al., 2005; Adams and Kunz, 1996; Fortune et al., 2004). 

In the following, we first the bootstrap approach. We then provide the results from 

a Monte-Carlo study carried out to evaluate the performance of the technique in 

well-controlled conditions using simulated signals as described in Chapter 4, with 

no stimulus response. Rearing thresholds are then found in 12 subjects using the 

bootstrap method on ABRs, and compared to those determined by experienced pro­

fessionals through visual analysis of the evoked potentials. Finally, we discuss the 
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results, and other potential applications of the proposed method, and some of its 

limitations. 

5.2 Data 

ABRs were recorded from 12 normal-hearing adults subjects (6 males and 6 females), 

who were aged between 18 and 30 years following the procedure outlined in Chapter 

3. The ABR was recorded between the vertex and the nape of neck, with a frontal 

electrode serving as ground. The auditory stimulation was a rectangular click stimulus 

with a duration of lOOILS delivered by ER-2 insert phones (Etymotic, USA), at a click 

rate of 33.3 Hz. Stimulation started at 50 dB sensation level (SL), decreasing in 10 

dB steps to 0 dB SL. Here, 'dB SL' refers to the stimulus level above the auditory 

threshold level of the subject, as determined from conventional audiometry. At each 

stimulus level, two replicates were collected for every subject. The insert phones and 

associated cables were screened to minimize electromagnetic artefacts. The number of 

stimuli contributing to each coherent averaged response was K~2000. Two recordings 

were made at each stimulus intensity, in each subject. The acquired raw signals were 

band-pass filtered between 30 and 2100 Hz in order to emphasize wave V - which is 

the most important feature of ABRs (Figure 5.1). In addition a notch filter (50 Hz) 

was applied to remove mains noise. The signal was sampled at 5 kHz. The ABR was 

then obtained by coherently averaging the ensemble of data segments following each 

stimulus. The bootstrap method then uses both the averaged waveforms and the raw 

recorded signal, prior to averaging. The latter, containing spontaneous background 

cerebral activity, and noise as well as the ABR, will be referred to as the 'EEG'. 

5.3 Bootstrap technique for detecting the ABR 

5.3.1 Overview of algorithm 

The bootstrap technique is widely used in assessing the confidence interval, estimating 

standard errors and testing hypotheses. The bootstrap method proposed here for 

detecting the response is actually a significance test of the null-hypothesis that 'no 
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response is present', and applied to some parameters representing the main features 

of the signal. First we will introduce the parameters chosen here. Then the detailed 

bootstrap process will be described. 

5.3.2 Parameters used in detecting ABRs 

For click stimuli in adults, a time window of 10 ms or 15 ms is usually sufficient to 

record the ABR, because wave V occurs in normal individuals within 5 to 6 ms of 

the stimulus at high intensities and within 8 to 9 ms for intensities near the auditory 

threshold (Hood, 1998). We kept the analysis window from 5 to 15 ms, which should 

in all cases include wave V. The four parameters described below were then calculated 

from the ABRs. Each of these provides a measure of the strength of the stimulus 

response, and is calculated over the time-interval 5 -15 ms. 

• diff (Lv et al., 2004a,b), is the difference between the maximum and minimum 

value of the ABR, as shown in Figure 5.1; 

• power is the mean power of the ABR: 

1 M 
power = M L x[i]2 

i=l 

(5.3.1) 

where xli] is the amplitude of each sample in the coherently averaged ABR 

signal and M is the number of samples in the time window 5-15 ms (M=50) at 

5 kHz sampling rate. Clearly, when a strong stimulus response is present, the 

power of the coherent average will increase. 

• Fsp is an estimate of the signal-to-noise ratio of the evoked potential, which has 

been used extensively in detecting ABRs (Elberling and Don, 1984; Don et al., 

1984) (see section 3.3.2): 
F _ var(ABR) 

sp - var(SP)/ K 
(5.3.2) 

where var(ABR) is the variance of the coherently averaged signal between 5 

and 15 ms after the onset of the stimulus, and var(SP) is the variance of the 

ensemble of K (2000 in our application) stimulus-responses at a single point (10 
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Figure 5.1: The ABR for one subject (click stimulation at 30 dB SL). The vertical 
lines at 5 and 15 ms show the region of the response that was used in analysis. 
The parameter diff gives the range of the ABR within this interval. The symbol * 
indicates wave V. 

ms after stimulus onset was chosen in this work). Thus var(SP) is obtained 

from the ensemble of signals before averaging, and represents the power of the 

noise (background activity), and var(ABR) is found from the coherent average 

and corresponds to the power of the ABR. 

• ±difference (see 2.3.3) is an alternative estimate of the signal-to-noise ratio 

(Wong and Bickford, 1980) and is found by first allocating the even-numbered 

stimulus responses to one ensemble, and the odd-numbered ones to another. 

The coherent average of each of these two ensembles is then found. Hence, 

. var(Sum) 
± d'/,f ference = var(Dif f) (5.3.3) 

where the numerator refers to the variance of the sum of the two averages, 

calculated over the time-window from 5 -15 ms following the stimuli, and the 
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denominator to the variance of the difference of the two averages. Clearly, 

if there is a strong stimulus-response, the sum of the averages will be much 

larger than their difference (where stimulus responses are cancelled), leading to 

relatively large ±differences. 

Following the calculation of these parameters, the statistical significance of each 

is tested against the null-hypothesis (Ho) of :no stimulus-response'. 

5.3.3 Bootstrap test 

The bootstrap method (Zoubir and Boashash, 1998; Efron and Gong, 1983; Efron, 

1979a,b, 1981b) is based on repeatedly drawing random samples (with replacement) 

from the original data. The parameter of interest is then calculated from these 're­

samples', building up an estimate of the sampling distribution of the estimated para­

meter (we use symbol e to denote any of the four parameters described above). The 

bootstrap method allows confidence limits of the estimate to be determined, or the 

statistical significance (with respect to the null hypothesis) to be tested - as in the 

current application. 

First the coherent average of the EEG is calculated by averaging the K stimulus­

responses, from which e is found. We then apply the bootstrap test, by selecting 

K random points (the bottom plot of Figure 5.2) anywhere throughout the recorded 

raw signal, and use these as starting points in obtaining an ensemble of K randomly 

selected segments. Thus, at this step we ignore the actual timing of the stimuli and 

use random 'trigger points'. A uniform distribution of starting points covering the 

entire length of the recorded data is used. The new ensemble is averaged to form 

an 'incoherent average' (because it is not synchronized with the stimulus-timing- see 

Figure 5.3), for which the parameter e is again calculated. The parameter, from the 

'bootstrap' resample, will be denoted as e*. The bootstrap resampling process is 

then repeated L = 499 times, and a 'bootstrap distribution' of e* is obtained. This 

provides an estimate of the sampling distribution of the parameter e* as would be 

expected if there is no stimulus responses present (Ho). By comparing e with the 

distribution of e* (see Figure 5.4), the fraction of e* that are larger than e is found: 

this is the estimated p-value. If this is smaller than some chosen significance level a 

(say a = 5%), we reject the null-hypothesis of no response (Figure 5.4, right) and 
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Figure 5.2: Similar to Figure 2.1, this figure shows the process of randomly selecting 
the segments of the signal. With the random starting points indicated in the lower 
part, we obtain the random segments of the AEP. The segments correspond to the 
random starting points and are not time-locked to the stimuli. 

consider the value of e to be statistically significant, i.e. a response has been detected. 

If all e < e* , we say p < 1/ L (i .e. p < 0.002 in our case of L = 499). If p > a and e 
is towards the left of the distribution of e* (Figure 5.4, left plot) we accept the null 

hypothesis of no response. 

5.4 Evaluation of the bootstrap method 

The bootstrap method was evaluated by applying the technique to different simu­

lated signals, e.g. background EEG (noise) only and background EEG plus ABR, 

and recorded signals. Simulations only containing background EEG were used to es­

timate the false positive rates, and then determine whether the rates were close to the 

expected a = 5%. Simulations with both background EEG and ABR were employed 

for testing the power ef the bootstrap technique, as a function of the signal-to-noise 
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Figure 5.3: Similar to Figure 2.2, the randomly selected segments (6 thin lines) are 
averaged at each time point. The result of the averaging is shown by the thick line. 
For the ABR, usually 2000 responses are included. 

(SNR) ratios. Finally, the bootstrap technique was also applied to the recordings to 

estimate the hearing threshold and investigate minimal number of sweeps required 

for detection. 

5.4.1 Monte-Carlo simulations 

In order to test the proposed methods, first a Monte-Carlo study on simulated signals 

with no stimulus response, was carried out. The aim was to determine whether 

the selected false positive rate (a = 5%) is actually obtained, when no response is 

present. The method to simulate these signals was described in section 4.4, and the 

specific order here was found to be 16 (Figure 5.5), according to the FPE. It was 

found that the FPE did not give a minimum but showed an initial sharp decrease, 

and after a 'knee' an almost flat section, where higher orders would lead to minimal 

improvements in FPE. The order chosen corresponds to the point just after the 'knee'. 
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Figure 5.4: Bootstrap distribution of difi'* from one subject at two different stimulus 
intensities. The p-value gives the fraction of cases (out of L=499) which were larger 
than a given value of diff. The x marks the value of diff obtained from the original 
data, and the corresponding p-value gives the statistical significance of that value. 
The example on the left did not give a statistically significant response (p=0.65), but 
for the one on the right, a response is detected (p < 0.002). 

Then 500 simulated EEG signals were generated. All four parameters (diff, power, Fsp , 

±difference) were calculated from the coherent average of these signals (with trigger 

points at 30 ms intervals, and analysing the time-interval from 5 - 15 ms following 

each stimulus) and tested the significance (with a = 5%) using the bootstrap method. 

Since this signal does not contain a stimulus response, false-positive detection of a 

stimulus response is expected in approximately 5% of cases. 

Then the power of the proposed method to detect responses when present was inves­

tigated. To this end, simulated ABR data was generated by adding a 'response' to 

a random background EEG signal. The stimulus response used corresponds to the 

coherent average from one of the signals recorded in a normal subject at 40 dB SL, 

which was then multiplied by a gain factor to obtain the desired SNR. This process 
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was carried out for nine different signal-to-noise ratios (SNR= -20 dB to 20 dB in the 

steps of 5 dB, calculated on the averaged signals, corresponding to -53 to -13 dB in the 

raw data). The background EEG signals were obtained by the same AR process used 

above. At each SNR, 500 simulated ABR data were generated. As before, the four 

parameters were calculated and their significance tested using the bootstrap method. 

The fraction of these 500 signals, at which p < 0.05 was obtained, indicate the power 

of the method. 
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Figure 5.5: The relationship between order and Final Prediction Error (FPE) using 
a recording with stimulation at 0 dB SL. 

5.4.2 Application to recorded signals 

The bootstrap tests were then applied to the data recorded from the normal subjects, 

and hearing thresholds were found for each of the four parameters. The threshold was 

defined as the minimum stimulus intensity at which p < 0.05 (with p < 0.05 for all 

higher stimulus intensities also). We also show the change in hearing threshold when 
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p < 0.01 is used. These thresholds were compared to those determined by three expe­

rienced audiologists, who independently inspected the ABRs visually. Furthermore, 

inter-observer reliability for the visual inspections in this experiment was measured 

by Cohen's Kappa statistic (Altman, 1991). Kappa is defined as the 'proportion of 

observed agreement after correction for chance agreement'. Its value is between 0 and 

1, which accounts for the range from poor to excellent reliability. 

Finally, in order to show how the bootstrap method can be applied with varying 

numbers of stimuli, and how this affects the detection of responses, we broke each 

recording (roughly 2000 stimuli) into blocks of n =100 stimuli with no overlaps be­

tween blocks. Then we extracted the parameters and applied the bootstrap test to 

every block, and thus obtained a p-value for each. We then found the fraction of 

blocks (over all 12 recordings) in which the response could be detected, at each of 

the six stimulus levels (0 dB to 50 dB SL in steps of 10 dB). We then repeated this 

process for n=200, 300" .. , 2000 stimuli. This provides a quantitative measure of the 

improvement in performance, as more stimuli are averaged. 

5.5 Results 

5.5.1 Simulation 

False positive rate tested by Monte-Carlo simulation 

The percentages of false positives in the simulated data without a stimulus-response 

were 4.0% for diff, 3.4% for power, 4.4% for Fsp and 6.0% for ± difference. These 

values are all close to the expected value of a = 5%, and within the acceptable range of 

3.2 - 6.8% given by the binomial probability distribution of 500 trials with probability 

of 'success' equal to 5% (95% confidence limits). Note that the four parameters were 

all calculated from the same set of 500 simulated signals. 

Sensitivity in presence of response 

The results of the simulation with added responses are shown in Figure 5.6. As 

expected, the percentage of detected responses consistently increases with the increase 
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of the SNR levels for all four parameters. For all parameters (diff, power, FlOp and 
± difference) results converge to 100% detection at high SNR, and to the expected 

a = 5% at low SNR. At mid-range SNRs (from -38 dB to -23 dB), there is no 

significant difference between results for Fsp and powe'/" (t-test, p > 0.05) , but diff 

and ± difference are better and worse, respectively (t-test, p < 0.05). 
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Figure 5.6: Percentage of responses detected as a function of signal-to-noise ratio 
(SNR) of the raw data. Results correspond to K= 2000 averages (SNR= -20 to 20 dB 
in the coherent average). 

5.5.2 Recorded data 

Hearing threshold by subjective inspection 

Three experienced audiologists determined the hearing thresholds by comparing the 
two replicate coherent averages of ABR data at the same stimulus intensity, and then 
finding the minimal stimulus level at which a consistent response was obtained. The 

. results are given in Figure 5.7, showing quite large variations between raters, consis­

tent with the observations in (Mason, 1984), and underlining the need for objective 
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methods for response detection. 
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Figure 5.7: Hearing thresholds for 12 normal hearing subjects, as determined from 
the ABR by three experienced audiologists (A, B, and C) through visual inspection. 
For each subject, the three bars represent the hearing threshold estimate of A, Band 
C respectively. 

Inter-observer reliability was measured by the Kappa statistic (Altman, 1991). The 

values of Kappa for all three pairs of judges are shown in Table 5.1. The common 

interpretation of the reliability is that Kappa should be no less than 0.90 to be 

regarded as high (Arnold, 1985), i.e. for there to be a good agreement between 

judges. Clearly this is not the case in Table 5.1. 
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Judges Kappa 

A and B 0.70 

Band C 0.63 

C and A 0.81 

Table 5.1: Kappa values for all possible pairs of the judges 

Hearing threshold by the bootstrap technique 

The hearing threshold was then estimated for each subject, using the bootstrap tech­

nique. The p-values calculated for each of the four parameters, at each of the stimulus 

intensities are shown in Table 5.2 for one subject. The minimum stimulus intensity 

at which a significant response (p < 0.05) is consistently obtained, is considered 

the hearing threshold. For example, for diff, a response was detected from 10 dB 

(p < 0.05) upward. For higher stimulus-intensities, the results are also significant. 

So the hearing threshold for diff, Fsp and ± difference is considered to be 10 dB in 

this case, and that of power 0 dB. In general the higher stimulus intensities provide 

stronger responses and lower p-values. However, there were a number of exceptions to 

this (not shown), and visual inspection of responses confirms that in some recordings 

the responses are somewhat less evident at slightly higher stimulus intensities. Note 

that for these cases we define hearing threshold to be the lowest stimulus intensity 

at which p < a and for which all higher stimulus intensities also showed a significant 

response. 

Comparisons between different methods 

In order to compare the difference of hearing threshold between subjective inspections 

and objective bootstrap approach based on the four parameters, we calculated the 

average hearing threshold (AHT) (Table 5.3) of 12 subjects. The parameter power 

appears to be the most sensitive in detecting a response. 

The median value of the three (A, B, C) subjectively evaluated hearing thresholds 

(MHT) of each of the 12 subjects were calculated and compared to the hearing thresh­

olds for each of the four parameters (HT) obtained by the bootstrap method (p < 5%). 
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Stimulus intensity difLp power_p Fsp_p ± difference_p 

(dB) 

0 0.236 0.006 0.144 0.744 

10 0.002 0.004 <0.002 0.026 

20 <0.002 <0.002 <0.002 0.004 

30 <0.002 <0.002 <0.002 <0.002 

40 <0.002 <0.002 <0.002 <0.002 

50 <0.002 <0.002 <0.002 0.002 

Table 5.2: Examples of p-values for the four parameters at different stimulus inten-
sities, for one subject. p-values are obtained from the bootstrap test using roughly 
2000 stimuli. The p-values marked in bold indicate the hearing threshold. 

dB Subjective Objective 

SL A B C diff power Fsp ±difference 

ART 20* 25* 15 13.8 10.8 15.8 17.3* 

Table 5.3: Average hearing threshold by subjective inspection and objective bootstrap 
technique. * Significantly different to the threshold found with parameter power (sign­
test, p < 0.05). 

Results are shown in Figure 5.8. For power and diff, these are lower or equal to MRT 

in 11 of the 12 subjects; for Fsp and ±dif ference, this is the case in 10 subjects. 

Significance level 

Figure 5.9 shows the hearing thresholds obtained with a = 1% rather than a = 5% 

used in the previous results. For the 12 subjects, the hearing threshold remains the 

same in most cases, and increases by 10 or 20 dB in three cases for diff, two cases for 

power, one case for Fsp , and four cases for ± difference. 
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Figure 5.8: Comparison between median hearing threshold (MHT - median"of A, B 
and C, solid line), and hearing thresholds from the four parameters (the bars from 
left to right correspond to the parameters diff, power, Fsp , ± difference). In most 
cases, the latter are smaller than, or equal to the corresponding MHT. 

Minimal number of stimuli for detection 

We also investigated the effect of the number of epochs (stimulus responses) recorded, 

on the ability to detect a response using the bootstrap approach. We therefore ap­

plied t he bootstrap tests to progressively increasing numbers of stimuli. Figure 5.10 

illustrates the results for the parameter power. As expected, the fraction of cases in 

which the ABR is detected increases with increasing stimulus intensity and also with 

the number of sweeps. At 40 and 50 dB 8L, 800 stimuli were enough to detect the 

response in all of the 12 subjects with the parameter power (see Figure 5.10); 1100 

stimuli were required for diff and Fsp . For ± difference, 2000 stimuli at 50 dB were 

required to achieve 100% detection. As the other three figures are very similar to 

Figure 5. 10, they are not shown here. 
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I iii diff-5% • diff-1% 

Figure 5.9: Comparison of the hearing threshold of a = 5% with that of a = 1%. Here 
the hearing thresholds were estimated by parameter diff (other parameter showed a 
similar pattern of results. 

5.6 Discussion 

The need for objective methods to detect evoked responses was clearly illustrated 

by the example of the ABR presented here. There was considerable disagreement 

between the subjectively selected hearing thresholds given by the three experienced 

audiologists (A, B, C) and this was reflected in the relatively low values of Kappa. 

Techniques for the automated detection of evoked responses usually involve the calcu­

lation of a parameter, for which a threshold is then selected, above which the response 

is deemed to have occurred. The selection of this threshold may be based on expe­

rience and experimental work e.g.(Ozdamar et al. , 1990). The bootstrap technique 

presents a very attractive and flexible alternative, by providing a simple means of 

estimating the statistical significance (p-value) of a parameter. It does so by com­

paring the parameter-value to that expected under the null-hypothesis of no stimulus 

response. 
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Figure 5.10: The fraction of cases in which the ABR was detected is shown as a 
function of number of epochs (stimuli) and the parameter power. The bootstrap 
method (p < 0.05) was applied with increasing numbers of stimuli, and stimulus 
intensities between 0 and 50 dB SL. Note that for this result the signals were broken 
down into non-overlapping blocks of K stimuli, such that for example at K=100 each 
of the 12 subjects provided 20 blocks, but at K=2000, only a single block. 

The use of the bootstrap method circumvents potentially intractable statistical analy­

sis, which would otherwise have to be carried out, in order to obtain a closed-form 

solution for each case. Such analyses would also usually involve assumptions regard­

ing signal statistics, which it may be difficult to justify or test, for each recording. 

Conventional statistical analysis is also complicated in this work by the autocorre­

lation of the signals, such that successive samples are not independent. This, for 

example is the reason why the Fsp does not correspond to the F-statistic, with the 

degrees of freedom corresponding to the number of samples analysed (Elberling and 

Don, 1984). 

The bootstrap method makes few assumptions about the data, which is one of its 

main benefits. A 'significant' response to stimulation may be considered to be one 

in which the parameter () of the coherent average has 'surprisingly' large values . 
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The bootstrap method allows this to be tested directly, by comparing the e from 

the coherent average, to the e* of the incoherent averages obtained from the same 

data. If there is nothing 'special' about the signal segments following the stimulation, 

e and e* would be similar; if e is very different to e*, there is clear evidence of 

a signal component that is time-locked to the stimulus. The bootstrap method is 

thus intuitive in testing for a significant response, and does so without assuming a 

statistical distribution for the samples in the signals. It does assume that the signal is 

ergodic, such that samples drawn randomly from the recording represent the 'random 

process' generating the data. 

In using the bootstrap method, the significant level (a) has to be chosen. In this 

work we used a = 5%. When this is reduced to 1%, the hearing threshold for 

the case illustrated in Table 5.2 remained the same for diff, power and Fsp , but 

increase to 20 dB for ±difference. Overall, the increase in threshold is small. Clearly 

the drawback of reducing the false-positive rate is the concomitant increase in false­

negatives. Which of these errors is more important depends on the application: 

for example, in monitoring depth of anaesthesia (Aceto et al., 2003) a significant 

mid-latency auditory evoked responses may indicate that the patient is awakening, 

which might require prompt intervention by the anaesthetist. Thus high sensitivity 

to the presence of a response (and hence higher a) is desirable. On the other hand, 

in screening tests for hearing loss, a false positive response may lead to missing a 

hearing impairment, and a lower false-positive rate is desirable. 

The bootstrap technique can deal with varying numbers of stimuli, while maintaining 

pre-defined false-positive rates. In Figure 5.10, it is evident that at 40 and 50 dB 8L, 

800 stimuli were enough to detect the response, which is rather less than the 2000 

recommended in the literature. Thus in normal hearing subjects, at these levels of 

stimulus the duration of the test could be considerably reduced, as already indicated 

by Don et al. (Don et al., 1984). 

Although we obtained the encouraging results, some limitations are evident. In­

evitably, movement artefact and stimulus artefact are present with the raw recorded 

EEG. Therefore, a scheme to remove them is desirable. In Chapter 6, we will provide 

more details about the methods of artefact rejection. 



Chapter 6 

Artefact Rejection 

6.1 Introduction 

The bootstrap method was proposed and tested on the recordings and simulated sig­

nals in the last chapter. Reasonable false positive rates and detection fractions were 

obtained, as expected. While very encouraging results were obtained, it became ev­

ident that a clinically useful method would need to be able to deal adequately with 

artefacts (mainly those due to movement and stimuli) in the signals. It is the purpose 

of this chapter to address this issue, and propose three artefact rejection schemes and 

evaluate them. They are: movement artefact rejection (called MAR-bootstrap, some­

time MAR in brief), stimulus artefact rejection (SAR), and a combination of MAR 

and SAR named as SMAR-bootstrap. The previous bootstrap technique without any 

artefact rejection scheme will be called Basic-bootstrap, in order to distinguish this 

from the three modified bootstrap methods. 

In this chapter, first the three artefact rejection schemes will be introduced. The 

simulated components to generate the simulated data, and the acquisition of the 

EEG recordings (data Set B) are described. In addition to the parameters described 

in the Chapter 5, two alternative parameters are investigated and will be employed 

in the Basic and the modified bootstrap methods. Following that, MAR, SAR and 

SMAR bootstrap methods will be applied to the different types of simulated data 

and on data Set B, and their results and evaluations will be provided. Finally, a 

discussion of some points on the artefact rejection scheme will be given. 
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6.2 Methodology 

6.2.1 Movement artefact rejection 

Movement artefacts (MA) here refer to the muscle artefacts mainly originated from 

neck and jaw muscles, and any sudden or randomly occurring artefacts. As the muscle 

artefact is in the same frequency range as the ABR, the detection of the ABR by 

filtering technique becomes difficult (Pantev and Khvoles, 1984). Random artefacts 

may appear in any time of the recording. A rejection scheme is desirable to deal with 

this data. In the literature, a widely used rejection method called amplitude threshold 

(or limit) excludes any sweep with samples exceeding a certain pre-set level (Cebullar 

et al., 2000; Elberling and Don, 1984; Wong and Bickford, 1980; Ozdamar and Kalayci, 

1999; James and Lowe, 2003). However, for different sets of the recordings on the 

different equipments and depending on the experience of the experts, the thresholds 

chosen differ in the range between ±10,uV and ±30,uV. In the current work, ±30,uV 

was chosen, based on the suggestion of an audiologist who has more experience on 

auditory evoked potential and are familiar with the recording system. 

In general, this rejection threshold is simply applied to the raw EEG signals and 

the unwanted sweeps are then eliminated. However, for the bootstrap method, the 

process of randomly resampling is included, and requires a continuous signal. Re­

moving entire sweeps in the raw data, prior to bootstrap resampling would generate 

additional artefacts because the removal of some undesirable sweeps breaks the sig­

nal for resampling into separate blocks (having one or more sweeps). The rejection 

scheme presented here is called movement artefact rejection (MAR), and overcomes 

this problem. 

Before coherently averaging the raw EEG signal, the threshold is applied to all the 

sweeps and the unwanted sweeps were removed. Then the remaining sweeps ('good') 

are used for coherent averaging, and the number of the 'good' sweeps is recorded. The 

signal parameter based on the coherent average is estimated. With the MAR scheme, 

similar to the Basic bootstrap, the resampling is on the raw signal and bootstrap 

resamples exceeding the threshold are again rejected. The resampling is repeated 

until the number of 'good' sweeps matches that of the coherent average. These 'good' 

sweeps of a 'bootstrap' signal are then used to calculate the 'incoherent' average. The 
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p-values are then found in the same manner as for the Basic bootstrap. 

6.2.2 Stimulus artefact rejection 

The sources of stimulus artefacts (SA) have been identified due to capacitive and 

inductive coupling of the transducer and its electrode leads (Cooper and Parker, 

1981). In the current work, the insert earphone was used and can reduce SA greatly, 

compared to the supraaural earphones. However, there is a possibility that SA is 

present in the recording, and for other earphones the SA could be a major problem. 

In order to make the bootstrap method be able to used in many conditions, the 

stimulus artefact rejection scheme should be developed. 

For the bootstrap method, in estimating the coherent average, the stimulus artefact 

(SA) can be largely avoided, by an appropriate selection of the time-window. However 

this is not possible in bootstrap res amp ling because in the resampling procedures all 

the samples have the same chance of being selected. In the presence of strong stimulus 

artefacts, the bootstrap method may overestimate the p-value for the following reason. 

The randomly selected segments will sometimes include the stimulus artefact, and 

this may provide larger than expected values of e*. Consequently (see Figure 5.4), 

increased values of p may be obtained, thus reducing the probability of rejecting the 

null hypothesis, decreasing the sensitivity of the test. An adaptation of the bootstrap 

method is thus required, in order to overcome this problem. An approach akin to 

that employed in the ± difference is proposed, as illustrated in the two blue boxes of 

Figure 6.1. 

Firstly the signal is split in the middle, to ,obtain two segments, each corresponding 

to K/2 stimulus-responses. Then these are added to give a new signal (x+) right 

branch in Figure 6.1 from which the coherent average and e are obtained. Next, the 

two halves are subtract from each other (sample by sample), giving the signal x_ (left 

branch in Figure 6.1). Since the stimulus artefact and stimulus-response is cancelled 

in x_, this signal conforms to the null-hypothesis of no response (ABR or artefact) to 

the stimulus. This signal is then resampled to give the bootstrap distribution of e*. 
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6.2.3 Stimulus and movement artefact rejection 

SA and MA can both contaminate the ABR recordings simultaneously and therefore 

it is desirable to develop a scheme to remove both, within a bootstrap method. Such 

a method, combining both SAR and MAR is therefore proposed as SMAR-bootstrap, 

and its complete procedures are shown in Figure 6.1. 

There are two considerations behind the idea of combining the two schemes. One 

is the order, i.e. SAR before MAR or the opposite, and the other is the value of 

the threshold of MAR. As regards the first, it is necessary to apply SAR before 

MAR. The reason is that the MAR procedures will remove samples and make the 

data discontinuous, as mentioned earlier (section 6.2.1). That will generate errors 

in the calculation of the parameters, and further provide poor results in detection. 

The second issue is the threshold value for MAR. The procedures of addition and 

subtraction within the SAR scheme results in the increase of the variance of the 

random component of the signal. When the signal is split into two halves, these are 

regarded as two random signals assumed to have the same mean and variance. If the 

two variables are independent, the mean of their sum is the sum of the means, and 

the variance of the sum is the sum of their variances; when we subtract one random 

variable from another, the mean of the difference is again the difference of the means, 

and the variance of the difference is the sum of their variances. Therefore, following 

the assumption that the two random variables have the same variance, the standard 

deviation of x_ is V2 times that of the raw signals. The rejection threshold of SMAR 

is then increased by the same amount, in our case, ±30fi'v x V2 = ±42.43fi'v. 

6.2.4 Evaluation by area under the ROC curve 

The receiver operating characteristics (ROC) curve is an effective method of evaluat­

ing the performance of diagnostic tests (DeLong et al., 1988; Park et al., 2004). The 

curve is constructed by varying the cut-off points for detection of a response (here the 

significance level a), and plotting the sensitivity against I-specificity. Good perfor­

mance of the detector would be indicated by high sensitivity and specificity, and thus 

a curve running close to the top-left corner of the graph. The area under the ROC 

curve (AROC) is often used to assess discrimination or accuracy of detection methods 
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(Margolis et al., 2002). ROC curves will be estimated from 1000 simulated signals as 

described above, 500 of which contain stimulus responses, and the remainder do not. 

In order to assess differences in the AROC of different methods, a bootstrap technique 

will be used to compare pairs of AROCs (Margolis et al., 2002; Ramos et al., 2006). 

First, the absolute value of the difference in AROCs between two methods (diff­

power, diff-Fsp, diff-cc, power-Fsp, power-cc, Fsp-cc) is calculated. Then, based on 

the null-hypothesis that there is no difference in the performance of two techniques, 

two new ROC curves are built up by: (1) combining the 500 p-values from one 

method estimated for 500 signals with a response with the 500 p-values from the 

other method on 500 signals with a response; (2) from this new set of 1000 p-values, 

two new datasets of 500 p-values are randomly selected, with replacement, and these 

p-values will be used to estimate the sensitivity in accordance with the bootstrap 

method and the null hypothesis that there is no difference between two methods; (3) 

in the same manner, another two new datasets of 500 p-values from simulated signal 

without stimulus-responses (BEEG only) are then obtained, for estimating the false 

positive rates (and thus specificity). Then based on the two new ROC curves, the 

absolute difference of the two AROCs are calculated. This process is repeated 499 

times, giving an estimate of the sampling distribution for the estimated difference 

in AROC under the null-hypothesis that the two methods have equal AROCs. If 

less than 5% of these differences exceeded those initially observed between the two 

methods, the difference is considered to be significant. 

6.3 Simulations 

The method was tested on simulations first, by adding different components which 

are possibly present in the real recordings. In principle, simulation work should mimic 

the real situation, in order to provide as realistic results as possible. Therefore under­

standing the characteristics of the data in the real world and choosing an appropriate 

way to generate data are a major issue for simulation studies. 

Signals with 2000 sweeps (as for the recorded signals) were simulated, in order to test 

the methods in terms of sensitivity and specificity (false-positives). The signals were 

made up of four components (Figure 6.2): stimulus response (ABR) (upper-left plot), 
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stationary random noise simulating background (spontaneous) EEG (BEEG - upper­

right plot)(James and Lowe, 2003), movement artefact (MA) (bottom-left plot), and 

stimulus artefact (SA) (bottom-right plot). 
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Figure 6.2: The four components of the simulated signals. The x-axis is sample 
number and y-axis corresponds to magnitude of the signals in f-t V. 

6.3.1 ABR 

The ABR included in the simulations is to test the sensitivity, i.e., in what percentage 

of cases does the X-bootstrap ('X' represents anyone of the four methods) detect the 

response. Simulations without ABR are used to investigate false positive rates. 

In order to approximate the real ABR recorded from the human brain more closely, 

ABR simulation was carried out in accordance with an assumption of a 40 dB SL or 

higher stimulus level. In this case, K = 2000 sweeps are usually sufficient to recover 

the ABR by coherent averaging. Thus, first the coherent average for recordings from 
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all normal hearing subjects stimulated at 40 and 50 dB SL, were calculated. Then 

by visual inspection of all coherent averages, one with a typical wave-shape , and 

in particular a clear wave V, was chosen. This provided the template ABR, and 

was periodically repeated K times to represent the ABR component of the simulated 

signal. The amplitude of this 'ABR' was then adjusted to provide the desired SNR 

level for different investigations. 

6.3.2 Background EEG 

The procedures for generating BEEG have been described in Chapter 4. In this chap­

ter, the recording without a stimulus in Set B was used, and the Yule-Walker method 

employed to estimate the AR parameters. Five hundred Monte-Carlo simulations of 

BEEG were carried out to synthesize different simulated signals. 

6.3.3 Movement artefacts 

Movement artefacts are random and possibly appear any time in the recordings with 

large amplitudes. For simulated signals, the amount of the movement artefacts is 

of concern. In practice, if too many MA contaminate the ABR, this signal will be 

discarded. Bell (2003) proposed an algorithm of artefact rejection with a rejection 

level which would exclude about 10% of the sweeps from the data, and this was 

considered a realistic level. Therefore signals of K sweeps with 10% (in our case, 

2000 x 10% = 200 sweeps) having MA were generated. 

Another issue is how to select the shape and amplitude of the MA. The random timing 

of the MA refers to two aspects: one is the location of MA in one sweep and the other 

is which sweep of the recording might be contaminated with the MA. Independent 

uniformly distributed random numbers were used for both and the standard deviation 

of the MA was set to ±100J.L V (see Figure 6.2).· Considering MA are usually not 

present for long periods of time, each MA lasted 3 ms (15 samples of one sweep). 



Chapter 6. Artefact Rejection 102 

Aim to test No. Type of simulations Basic MAR SAR SMAR 

False Positive 1 BEEG y' y' y' y' 

2 BEEG+MA y' y' 

3 BEEG+SA y' y' 

4 BEEG+MA+SA y' y' 

Sensitivity 5 BEEG+ABR y' y' y' y' 

6 BEEG+ABR+MA y' y' 

7 BEEG+ABR+SA y' y' 

8 BEEG+ABR+MA+SA y' y' 

Table 6.1: Eight types of simulations containing different components were applied 
on four bootstrap methods for testing false positives or sensitivity. 'y" indicates the 
X-bootstrap method carried out in that simulation. 

6.3.4 Stimulus artefacts 

Stimulus artefacts (SA) usually occur at an early latency (Hood, 1998) and can show 

a larger amplitude than the stimulus response. In the current study, the SA is repre­

sented by a square wave located in the first 2 ms of each sweep. As mentioned before, 

the rejection threshold for the MAR is ± 30 pY, and in order not to be removed by 

the MAR, the amplitude of the square wave was set to ± 20 /-LV. Therefore the MAR 

and SAR only have an effect on the corresponding artefacts. 

6.3.5 Types of simulations 

The simulations were mainly classified into two groups in terms of the aim for testing. 

The signals without ABR are BEEG, BEEG with MA, BEEG with SA, and BEEG 

plus MA and SA. These were used to test the false positives. Those with ABR are 

BEEG plus ABR, BEEG plus ABR and MA, BEEG plus ABR and SA, and BEEG 

plus ABR plus MA and SA. These are used to calculate the sensitivity. Then the four 

bootstrap methods Basic, MAR, SAR and SMAR were applied to the simulations, as 

given in Table 6.1. Each type of simulations included 500 signals. 
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6.4 Recorded ABR-Set B 

The artefact rejection schemes (MAR, SAR and SMAR) and the Basic-bootstrap 

were tested on recorded ABR as well as the simulations. In this section, the data Set 

B will be described. 

Sixteen normal-hearing adults (11 Males and 5 females), aged from 18 to 34 years 

old (mean 25.6 years), participated in this experiment, following ethical approval by 

the appropriate Institutional Committee. No subjects had a history of ear disease 

or unsuitable noise exposure, as confirmed by questionnaire. The hearing thresholds 

(pure-tone audiogram) were all better than 20 dB throughout the frequency range of 

250-8000 Hz in both ears, all had normal-shaped tympanograms, and were further 

checked by otoscopy. The subjects lay comfortably on an examination couch in a 

sound-proof and electrically shielded booth throughout the tests. The stimuli set­

tings and recording parameters have described in Chapter 3. The signals containing 

both the background EEG and stimulus-responses will be denoted as 'EEG', those 

containing only background EEG (under the no-stimulus condition) as 'BEEG'. 

6.5 Additional parameters 

In addition to the four parameters introduced in the Chapter 5, two more parameters 

are investigated and will be tested by the four bootstrap methods on all simulated 

signals and the real recordings (Set B). They will be evaluated in the coherently 

averaged ABR over the time-window from 5-15 ms after the stimulus. 

6.5.1 Parameter abs 

abs is the mean of the absolute value of the amplitude over the time-window, and 

obtained similarly to power, by replacing x[iJ2 with Ix[ill. The reason for choosing 

this is that when a sample with a large amplitude is present in the signal, the power 

is very sensitive, but abs is able to reduce the effect of this sample. 
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6.5.2 Parameter cc 

The correlation coefficient (cc) is calculated between two replicates which are formed 

from the coherent averages of the even and odd numbered sweeps in the recording. 

6.6 Application of movement artefact rejection scheme 

The MAR will be tested on both simulations and recordings. Simulations without 

ABR components will give the false positive rates and those with ABR will provide 

the sensitivity. Set B of the recordings will be used for testing the sensitivity in 

hearing threshold estimation, and the false positive rates will be evaluated on 'real 

data' based on the recordings under the no-stimulus condition. 

6.6.1 False positives for MAR in simulations 

False positive rates were tested based on the well-controlled simulations which in­

cluded background EEG and background EEG plus movement artefacts (MA), and 

results are shown in Figure 6.3. For the background EEG simulations, the MAR 

scheme provided similar false positive rates as the Basic bootstrap method, as ex­

pected. When no artefacts were present, MAR did not affect the results. When MA 

was added to the background EEG, the false positive rates of the Basic bootstrap 

still stayed in the range of 3.2%-6.8% according to the binomial distribution, how­

ever, those of the MAR scheme with parameter power and abs decreased beyond 

the range. The lower false positive rate is of less concern, compared to greater rate 

(beyond 6.8%), because in hearing screening, with the latter more than the expected 

5% of subjects with impairment may be missed. For the MAR scheme with the other 

four parameters, the false positive rates were in the expected range. 

The results suggest that the false positive rate is not greatly affected by the MAR 

scheme. In the next section, the sensitivity will be considered. 
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Figure 6.3: False positive rates for simulations with and without MA measured by 
Basic and MAR algorithms, respectively. The a = 5% significance level was used. 
Noartefacts refer to simulations without artefacts, and MA to those with movement 
artefact. 

6.6.2 Sensitivity for MAR in simulations 

Here two types of simulations differing by adding movement artefact or not, were 

employed on MAR and Basic bootstrap methods, respectively. The results in Figure 

6.4 show that MAR and Basic bootstrap methods provide similar sensitivities (left 

two bars in Figure 6.4) when movement artefacts are not added to background EEG 

and ABR. This was in accordance with our expectations and meant that MAR scheme 

did not influence (in particular, did not reduce) the sensitivity when MA was absent. 

However, a statistically significant difference (p < 0.05, t-test) between these two 

methods (MAR and Basic) was present when artefacts were added (right two bars in 

Figure 6.4). The sensitivity of the Basic bootstrap method dramatically decreased, 

and that of MAR was much closer to that calculated from simulations without MA. 

The difference of sensitivity between 'MAR-noartefact' and 'MAR-MA' identified in 

the Figure, resulted from the increase of p-values related to the values of the parameter 
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(e) calculated from the coherent average and the distribution of the parameter e*. 
The increase of the p-value might come from the fact that some sweeps contaminated 

with MA were not eliminated as expected, and thus these sweeps contributed to the 

coherent average and also the 'incoherent' average, affecting the distribution of the 

parameter. The e increased, and the distribution of e* increased, if the degree of the 

increase for the latter was greater, p-value would increase and the sensitivity increase. 

Il!il Basic-noartefacts • MAR-noartefacts D Basic-MA D MAR-MA 

Figure 6.4: Sensitivity for simulations with and without MA measured using Basic 
and MAR algorithms, respectively. . 

In order to compare the results for these four conditions, an example for diff and its p­

values are shown in Figure 6.5(a) and 6.5(b) which were obtained from 50 simulations 

with and without MA. When MA was present, the values of diff from the Basic 

bootstrap were always greater than those from MAR and their p-values from the 

Basic were greater as well. 

When MA was present, the MAR scheme helped to recover the sensitivity lost with 

Basic bootstrap. These results therefore suggested that the MAR scheme was effective 

for signals with MA and furthermore that in the absence of MA, it did not reduce 

the sensitivity. 
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Figure 6.5: An example for parameter diff and its p-values on 50 simulations with 
a stimulus response and with and without MA using the Basic and MAR bootstrap 
methods. The simulations were sorted in order of increasing p-values (for Basic­
noartefact) . 
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6.6.3 ROC analysis for MAR 

In the previous sections, all analysis was based on false positive rate of ex = 5%. In 

order to consider the effect of the full range of false positive rates, ROC analysis was 

performed on well-controlled simulations (Types 1, 2, 5 and 6 in Table 6.1). Fourteen 

false positive rates or cutoff points (ex) were chosen as 0.01, 0.03, 0.05, 0.07, 0.09, 

0.11, 0.13, 0.15, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 in the bootstrap test. The sensitivity 

was estimated from 500 Monte-Carlo simulated signals with a stimulus response at 

a SNR of -30 dB in the raw data (corresponding to an SNR of 3 dB in the averaged 

signal from 2000 sweeps of the raw data), and specificity was evaluated from 500 

simulations without a stimulus responses. ROC curves were plotted as 1-specificity 

against sensitivity for Basic and MAR bootstrap by two paired simulations without 

(Figure 6.6(a) for Basic and 6.6(b) for MAR) and with (Figure 6.6( c) for Basic and 

6.6( d) for MAR) MA, respectively. 

Figure 6.6(a) and 6.6(b) show that ROCs from the same parameters using the Basic 

and MAR were, as expected, almost the same, when movement artefacts were absent. 

These two figures also demonstrate that the parameter power and abs, as well as ± 
difference and cc gave almost identical curves, i.e., the same performance. This was 

further investigated through the bootstrap significance tests on the area under the 

ROC curve (AROC). As Figure 6.7 shows, the parameter power and abs were the 

most sensitive (bootstrap tests on AROC), as indicated by the largest AROo. ROC 

curves and AROCs provided further evidence for comparison of different parameters 

and again demonstrate that when MA was absent, the MAR bootstrap did not make 

any improvement (nor cause significant worsening), compared to the Basic bootstrap, 

as expected. 

However, once the MA contaminated the signals, the ROC curves of Basic and MAR 

became very different as shown in Figure 6.6(c) and 6.6(d). Basic bootstrap gave 

lower sensitivity (Figure 6.6(c)) compared to Figure 6.6(a), and AROCs dramatically 

decreased, i.e., the power of the Basic bootstrap reduced. The MAR however provided 

similar curves as those obtained with no MA. Consistently, for the six parameters 

(Figure 6.6(d)), the AROC went back to the higher values and this meant that, when 

MA was present, great benefits from MAR scheme could be obtained. 
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Simulations without artefacts 

(a) ROC curves for Basic bootstrap method on 
500 simulations without artefacts . 

Simulations with MA 

(c) ROC curves for Basic bootstrap method on 
500 simulations with movement artefacts . 
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Simulations without artefacts 

(b) ROC curves for MAR bootstrap method on 
500 simulations without artefacts . 

Simulations with MA 

(d) ROC curves for MAR bootstrap method on 
500 simulations with movement artefacts. 

Figure 6.6: ROC curves estimated by Basic and MAR bootstrap methods on simula­
tions with and without movement artefacts (MA) for the six parameters introduced 
in this study. 
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Figure 6.7: AROCs (bars and table) for the Basic method and MAR estimated from 
two types of paired simulations: one pair includes BEEG and BEEG plus ABR, the 
other BEEG plus MA and BEEG, ABR, plus MA. On the left of the table, '0' indicates 
no significant difference between Basic and MAR as indicated by the bootstrap test 
on AROC (a = 5%); '*' indicates a significant difference of AROCs between Basic 
and MAR. 

6.6.4 MAR-bootstrap on recorded Set B 

The MAR bootstrap method was also applied on the Set B data because they included 

not only the signals (112, each with 2000 sweeps) with a stimulus response, but also 

signals (128, each with 2000 sweeps) without stimulations, i.e., background EEG only. 

This was used to estimate the false positive rates based on real data. 

The false positive rates for the six parameters by the MAR in Figure 6.8 were con­

sistently within the range of 1.56%-8.59% as is given by the binomial distribution for 

128 trials with a probability of 'success' of 5%. The values observed with MAR were 

slightly lower than those from the Basic bootstrap. 

The sensitivities with MAR (assuming that there is a response present in signals) are 

shown in Figure 6.9 and do not change greatly compared to those from the Basic 

bootstrap method. A slight drop observed may be because some sweeps with large 
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Figure 6.8: False positive rates estimated from Set B using Basic, MAR, SAR and 
SMAR-bootstrap methods. A range of 1.56%-8.59% is given by binomial distribution 
for 128 trials with a probability of 'success' of 5%. 

aIr?-plitudes are wrongly regarded as a stimulus response by the Basic bootstrap, but 

removed when employing the MAR. Overall, no great effect with MAR is obtained. 

6.6.5 Summary of MAR 

The simulation studies for false positive rates and sensitivity indicated that when 

artefacts were present, MAR scheme should be applied in order to improve sensitivity. 

The MAR scheme did not provide the expected improvement for the recorded ABRs of 

Set B; in fact, p-values increased slightly, reducing our ability to detect the response. 

Visual inspection of the signals indicated that there were not, in fact, large movement 

artefacts present in the data, and this may explain why the benefit of the MAR scheme 

was not evident here in the recorded data. 

The rejection threshold can also be used for checking the quality of the recordings 

when collecting data. If a great number of the sweeps (e.g. 50%) exceeded the 

threshold, this recording would not be used and would need to be re-collected again 

because of the unreliable parts of the artefacts. 
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Figure 6.9: Sensitivity estimated from Set Busing J?asic, MAR, SAR and SMAR­
bootstrap methods. 

Another aspect should be considered is that for different recordings, the rejection 

level of ± 30 f.L V may need to be changed, because of the differences in amplitudes 

of the signals recorded from different individuals. Too large rejection level will lead 

to poor data being included in the analysis. On the other hand, if the number of the 

sweeps was fixed, too low rejection levels will increase the acquisition time because 

many sweeps would be excluded by the threshold. 

6.7 Application of stimulus artefact rejection scheme 

Similarly to the work presented on the MAR bootstrap, stimulus artefact rejection 

(SAR) was applied to both simulations and recorded signals of Set B. 

6.7.1 False positives for SAR in simulations 

First, the false positive rates of SAR on two types of simulations (No. 1 and 3 in 

Table 6.1) were investigated. For comparison, the results from the Basic bootstrap for 

these simulations are also shown. The two left bars for each parameter in Figure 6.10 
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show the results for Basic and SAR on simulations without stimulus artefacts (SA) , 

and as expected, all false positive rates were within the range of 3.2%-6.8%. But once 

SA was present, results identified as 'Basic-SA' in Figure 6.10 were no longer within 

the range, except for the parameter Fsp , i.e., Basic bootstrap could not deal with the 

influence of SA by giving excessively high (±difference, cc) or low (difJ, power) false 

positive rates. However , SAR bootstrap efficiently corrected the rates (see the last 

bars in the Figure) . Thus the SAR scheme showed good performance when SA was 

present. 
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Figure 6.10: False positive rates for simulations with and without SA achieved by 
Basic and SAR algorithms, respectively. 

6.7.2 Sensitiv ity for SAR in simulations 

The estimation of sensit ivity with the SAR bootstrap was performed on two types of 

simulations including ABR: one with contamination by SA and another without: The 

sensitivities obtained by both Basic and SAR are shown in Figure 6.11. The results 

are similar to those for the MAR bootstrap: there were no significant difference 
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between Basic and SAR when SA was absent. But great differences between these 

two methods existed when adding SA to the simulations. Basic bootstrap based on 

parameter diff, power, and abs consistently gave extremely low sensitivities and that 

based on the other three parameters provided high sensitivities, similar to those from 

simulations without SA. The reason for these will now be investigated further. 

I B[J Basic-noartefacts • SAR-noartefacts 0 Basic-SA 0 SAR-SA I 
100.00% .,--------- ----.-----.---.--.-... ---------, 

80.00% -l----

60.00% 

40.00% 

20.00% 

0.00% 

diff power Fsp 
± 

difference 
abs cc 

Figure 6.11: Sensitivity for simulations with and without SA achieved by Basic and 
SAR algorithms, respectively. 

Considering the opposite directions in the tendency of sensitivities for different pa­

rameters for the Basic bootstrap method when the SA is present (see the results of 

the third line in table 6.11) , two groups are identified: group 1 (very low sensitivities 

on parameter diff, power, and abs) and group 2 (high sensitivities on remaining three 

parameters). First group 1 will be considered, based on the example of diff. 

The sensitivity is determined by the p-values which are influenced by the value of 

parameter calculated from the coherent average and the probability density of the 

parameter from the incoherent averages in bootstrap resampling. The very low sensi­

t ivity from the Basic bootstrap with the parameters in Group 1 can be explained by 
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the Figure 6.12. The parameter estimate (diff, vertical line) remains the same with 

and without SA. However, the distribution from the Basic bootstrap on the signals 

with SA will shift to the right of the distribution on the signals without SA, because 

the SA makes an increase of dif 1* which results in the shift of the distribution. 

Therefore, using the Basic bootstrap, the p-value with SA is larger than that without 

SA, and the sensitivity decreases. 
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Figure 6.12: The estimation of the p-values with and without SA for the parameter 
diff. The vertical line is diff calculated from the coherent average, and the curve is 
the probability density of the 499 dif 1* from incoherent averages of the 'bootstrap' 
signals. The p-value is given by the area in the tail of curve. This will change when 
the parameter estimate (vertical line) and the density function are shifted relative to 
each other. This example shows the parameter estimate does not change, but the 
density function (dotted line) shifts to the right when the SA is present. This results 
in an increase of the p-value. 

The parameter ±difference in group 2 could be taken as an example: here the value 

of the parameter from coherent averaging again remained the same because SA was 

out of the time-window for analysis and was not taken into account for parameter 

calculation, but the probability density function tended to shift to the left, i.e., the 
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bootstrapped ± difference from incoherent averaging decreased. This occurs because 

the influence of SA on the numerator and denominator are different, increasing the 

numerator slightly and the denominator more strongly. This leads to the value of 

±difference decreasing and makes the probability density function of ±difference 

shift to the left. Thus p-values become smaller and sensitivity increases. 

The results from the Basic bootstrap on signals with SA were not acceptable and 

in cases with SA, only SAR should be considered. The sensitivities with SAR for 

all six parameters on signals with SA (identified as 'SAR-SA' in Figure 6.11) were 

similar to those from simulations without SA (identified as 'SAR-noartefact'), and 

the results for the Basic bootstrap where then also similar. The results indicate that 

SAR bootstrap worked well in the presence of SA and gave similar sensitivities to the 

Basic bootstrap in the absence of SA. 

The investigation of sensitivity indicated that in the presence of SA, it is necessary 

to apply SAR bootstrap rather than Basic bootstrap. 

6.7.3 ROC analysis for SAR 

The following ROC analysis (ROC curve and its area) gives further evidence of the 

advantage of SAR bootstrap. Figure 6.13 shows ROC curves for Basic and SAR on 

simulations with and without SA (Basic-noartefact, SAR-noartefact, Basic-SA, and 

SAR-SA). Here the movement of ROC-curve away from the top-left corner (see Figure 

6.13( c)) for the Basic bootstrap in the presence of SA, is evident. This was consistent 

with the previous results, indicating the Basic bootstrap failed when SA was present. 

Thus the analysis of AROC for the Basic bootstrap was no longer useful. Therefore 

AROC analysis will perform for other three cases. 

The AROCs in Figure 6.14 provide two main results. Firstly, they show that the 

performances of Basic and SAR in the absence of SA were similar; this was confirmed 

by the bootstrap significance test on the AROC (p > 0.05). Secondly, it shows that 

in the presence of SA, SAR gives similar results to the SAR and the Basic bootstrap 

in the absence of SA. 
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(a) ROC curves for Basic bootstrap method on 
500 simulations without artefacts. 
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(c) ROC curves for Basic bootstrap method on 
500 simulations with stimulus artefacts. 
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Simulations without artefacts 

(b) ROC curves for SAR bootstrap method on 
500 simulations without artefacts. 

Simulations with SA 

1-specificity 

(d) ROC curves for SAR bootstrap method on 
500 simulations with stimulus artefacts. 

Figure 6.13: ROC curves estimated by Basic and SAR bootstrap methods on simula­
tions with and without stimulus artefacts (SA) for the six parameters introduced in 
this study. 
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Figure 6. 14: AROCs (bars and table) for the Basic method and SAR estimated from 
two types of paired simulations: one pair includes BEEG and BEEG plus ABR, the 
other BEEG, SA and BEEG, ABR, SA. On the left of the table, '0' indicates no 
significant difference between Basic and SAR as indicated by the bootstrap test on 
AROC (a = 5%) . As the AROC for the Basic when SA is present, can not be 
calculated and presented by '-' . 

6.7.4 SAR-bootstrap on recorded Set B 

The SAR bootstrap was then applied on data Set B. The false positive rate of the 

five parameters are shown in Figure 6.8 and lie within the range of 1.56% - 8.59% 

(except ±difference wit h the SAR). The value of 9.38% for ±difference exceeded the 

range by 0.79%, which corresponds to 1 case out of 128. 

The sensitivity is shown in Figure 6.9. The results for SAR bootstrap were similar 

as those obtained by the Basic bootstrap. This might be for either of two reasons: 

one there was no SA present and the other that even if the SA was present, SAR 

bootstrap could remove them efficiently and keep the sensitivity at a high level. In 

the current case, by visual inspection, we found that the quality of the signals was 
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good and they were not notably contaminated by SA. 

6.7.5 Summary of SAR 

From the above investigations, it can be summarized that in the presence of SA, 

the SAR bootstrap should be applied rather than the Basic bootstrap, because SAR 

provided acceptable false positive rates and high sensitivity. In the absence of SA, the 

SAR method performed similarly to the Basic method and this suggests that SAR is 

acceptable in this case also. 

While the SAR method was designed to remove the stimulus artefact, it could also 

be useful in improving sensitivity in detecting some of the smaller waves in auditory 

evoked potentials. Similar to the motivation for applying SAR, at the latency of 

smaller waves there will be no contribution from the larger waves (such as wave V in 

the ABR) in the coherent average, but this wave would contribute to the incoherent 

average, potentially degrading the sensitivity in a similar manner (but to a lesser 

extent), than the SA. The SAR scheme would remove this contribution, and thus 

increase sensitivity. 

6.8 Application of stimulus and movement arte­
fact rejection scheme 

Following the encouraging results with MAR and SAR, these methods were combined. 

The SMAR was designed to deal with the presence of either or both stimulus and 

movement artefacts. Similar analysis to the presented above will be carried out, that 

takes into account possible interactions between the schemes and the effects of the 

artefacts. 

6.8.1 False positives for SMAR in simulations 

False positive rates were tested in two simulations (500 signals for each). One only 

included BEEG and the other BEEG, movement artefact (MA) and stimulus artefact 

(SA). As expected, false positive rates ('Basic-noartefact' and 'SMAR-noartefact' 
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in Figure 6.15) were similar for Basic and SMAR with all six parameters, since no 

artefacts were involved. All results are within t he expected range of 3.2% - 6.8%. But 

when MA and SA were added, rates decreased beyond the range (especially for diD, 

power and abs ), and SMAR clearly provides an improvement . False positive rates 

higher than the expected a = 5%, as occurred with F sp using the Basic bootstrap 

method, were however of greater concern than low rates. The latter may even be 

considered desirable. On the other hand, they may also be associated with low 

sensit ivity in detecting responses when present, and this is investigated in the next 

set of simulations. 
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Figure 6. 15: False positive rates for simulations with and without MA plus SA 
achieved by Basic and SMAR algorithms, respectively. 

6.8.2 Sensitivity for SMAR in simulations 

Stimulus responses were added first to the BEEG and then to BEEG, MA and SA. 

Bootstrap tests were carried out with a = 5%, and results are shown in Figure 

6. 16. In the absence of artefacts , the Basic and SMAR methods showed very similar 
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performance, with the highest sensitivity for power and the lowest for ± difference 

and cc. However, in the presence of artefacts, the Basic method ('Basic-MASA') 

showed low sensitivity, and SMAR achieved much better results. 

III Basic-noartefacts • SMAR-noartefacts 0 Basic-MASA 0 SMAR-MASA I 
100.00% ,------------------------, 

Figure 6.16: Sensitivity for simulations with and without MA plus SA achieved by 
Basic and SMAR algorithms, respectively. 

By comparing the sensitivities of 'SMAR-noartefact' with 'SMAR-MASA', it was 

found that the six parameters from the latter were always smaller than those of the 

former. This might be explained as the influence of MAR, which may not have 

removed all sweeps with MA and also reduced the number of sweeps included in the 

averaging process (from 2000 to approximately 1800- considering that 10% of sweeps 

had artefacts added). However, SMAR still clearly provided better results in the 

presence of MA and SA than the Basic bootstrap method. 

6.8.3 ROC analysis for SMAR 

Further investigation of SMAR was carried out by ROC analysis. ROC curves are 

shown in Figure 6.8.3 and only the curves in Figure 6.17(c) show reduced sensitivity. 
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SMAR overcame the limitation of the Basic bootstrap and this was again demon­

strated by the higher value of AROC in Figure 6.18. 

0.2 

Simulations without artefacts 

0.4 0.6 
1-specificity 

O.B 

(a) ROC curves for Basic bootstrap method on 
500 simulations without artefacts. 

Simulations with MA and SA 

(c) ROC curves for Basic bootstrap method on 
500 simulations with stimulus and movement 
artefacts. 

Simulations without artefacts 

(b) ROC curves for SMAR bootstrap method 
on 500 simulations without artefacts. 

Simulations with MA and SA 

0.2 0.4 0.6 O.B 
1-specificity 

(d) ROC curves for SMAR bootstrap method 
on 500 simulations with stimulus and move­
ment artefacts . 

Figure 6.17: ROC curves estimated by Basic and SMAR bootstrap methods on sim­
ulations with and without stimulus and movement artefacts (SA and MA) for the six 
parameters introduced in this study. 

The values of AROC in the absence of MA and SA (,Basic-noartefact' and 'SMAR­

noartefact') were similar (p > 0.05, bootstrap significance test) and those in the 

presence of artefacts were significantly different (p < 0.05). SMAR did improve the 

results when artefacts were present. 
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Figure 6.18: AROCs (bars and table) for the Basic method and SMAR estimated from 
two types of paired simulations: one pair includes BEEG and BEEG plus ABR, the 
other BEEG, SA, MA and BEEG, ABR, SA,MA. On the left of the table, '0' indicates 
no significant difference between Basic and SMAR as indicated by the bootstrap test 
on AROC (a = 5%); '*' indicates a significant difference of AROCs between Basic 
and SMAR. 

6.8.4 SMAR-bootstrap on recorded Set B 

The application of SMAR on recorded data Set B indicated similar false posit ive 

rates (Figure 6.8) and sensitivity (Figure 6.9) as Basic, SAR or MAR. The reason is 

probably again that there was no obvious MA and SA present, as evident from visual 

inspection. 

6.8.5 Summary of SMAR 

In the presence of artefacts, SMAR greatly increases the sensitivity with all six para­

meters tested. In the absence of the artefacts, the results from simulation provided 

similar sensitivity and false positive rates for the Basic bootstrap method and SMAR. 
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In the recorded data, Basic and SMAR bootstraps provided similar hearing thresh­

olds. Visual inspection indicated that there were no strong artefacts present in these 

recordings. It may therefore be concluded that SMAR can be employed without 

degrading results, even in the absence of artefacts. 

6.9 Minimal number of sweeps 

The bootstrap method applied here is an off-line process and in many conditions an 

on-line procedure is desirable because at a higher stimulus intensity, e.g., 50 dB SL, 

the recommended 1000 or 2000 sweeps are more than necessary for detecting the 

response and therefore stopping the recording as soon as the response is obtained, 

would save time for recording and further processing. 

Previous work discussed in Chapter 5 provided an investigation of the minimal number 

of sweeps, and this indicated that a relatively smaller number of sweeps are adequate 

for detection at higher stimulus levels. Here further investigation is carried on in order 

to identify the required number for different subjects at different stimulus intensities. 

For each subject at each stimulus intensity, first the bootstrap methods were applied 

to K =2000 sweeps of this signal, and if p > 0.05, the minimal number for. this signal 

was obtained to be 2000, otherwise p ~ 0.05. When p ~ 0.05, the methods were then 

applied to 1000 sweeps (half of the previous number of sweeps), and this procedures 

were continued until p > 0.05, the smallest number of sweeps for which p ~ 0.05 gave 

the minimal value required for detection. 

The results in Figure 6.19 demonstrate great variability in the minimum number of 

sweeps between subjects and at the same stimulus intensity. There was no consistent 

tendency in the minimum number of sweeps required with increasing stimulus inten­

sity. However, it is found that the minimum of the minimal number of the sweeps 

among the recorded Set B at 30 to 60 dB nHL is 12 sweeps. This means the bootstrap 

technique still works even with a few sweeps of the recording. Furthermore, the false 

positive rates are tested on 500 simulated background EEG signals, and each of them 

only including 12 sweeps. The results are shown in Table 6.2 and most rates are 

within the range of 3.2% - 6.8%, except those for parameter power and abs by the 

Basic and MAR bootstrap methods. 
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Figure 6. 19: Minimal number of sweeps estimated from SMAR based on parameter 
diff Bars show t he minimal number for each subject and the solid line gives the mean 
value for all t he subjects at that stimulus intensity. 

The results are encouraging, if K=12 sweeps are applied in clinical settings, a great 

benefit of the recording and testing time from the bootstrap technique, can be ob­

tained. However, this does not indicate K=12 sweeps are adequate for any individual, 

according to the variability of the EEG for different individuals. 

6 .10 Computational time 

The computational t ime required is also of concern, as has been mentioned by other 

authors (Ozdamar et al. , 1990). The program ran on a PC-Pentium (256 MHz) using 

matlab 7.0 software. The results here only provide a rough indication of the time 
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Parameters /Methods diff power Fsp ±difference abs cc 

Basic 3.60% 3.00% 3.80% 4.80% 2.60% 5.00% 

MAR 3.80% 2.80% 4.80% 5.00% 2.40% 4.60% 

SAR 5.20% 3.60% 4.60% 4.20% 4.00% 4.60% 

SMAR 5.40% 4.00% 4.80% 4.40% 4.20% 5.00% 

Table 6.2: False positive rates estimated from 500 simulated background EEG signals, 
and each signal has K = 12 sweeps. 

taken to run the bootstrap technique, and could be reduced by a more efficient PC 

or software. 

The computational time of the bootstrap method also might vary with different indi­

vidual parameter, the number of the sweeps participating in the calculation and the 

number of repeats in the bootstrap process. 

The investigation was therefore performed in three steps. First, the program was 

run for each parameter individually by varying the number of the sweeps (50, 125, 

250, 500, 1000, 2000), in order to measure the time taken for different parameters. 

The results are shown by the bars in Figure 6.20. The paired t-test for any two 

parameters indicates that there is no significant difference of the computational time 

between different parameters (p > 0.05, t-test). As expected, the computational time 

increases with the increase of the number of sweeps. 

Second, the computational time of the bootstrap methods when simultaneously cal­

culating all six parameters is investigated on the different number of sweeps. This 

is shown by the dotted line with marks '0' in Figure 6.20. It is noticed that the 

computational time for all parameters is slightly longer than that for any individual 

testing and the average of all individuals (the solid line with mark 'D'). 

Finally, the investigation of the influence of the number of repeats of the bootstrap 

process on the computational time, is performed using 99, 199, 299, 399, and 499, for 

the bootstrap methods with six parameters and each signal with 2000 sweeps. The 

results in Table 6.3(b) demonstrates the testing time increases as expected, with the 

increase of the number of repeats which is determined by the algorithm of bootstrap 

technique itself. However, there is no accurate indications in the literature for the 
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Figure 6.20: Computational time of bootstrap method against the number of sweeps. 
Bars show the time of bootstrap process based on any individual parameter and the 
solid line marked by ' 0' is the average of six individual parameters. Dotted line 
marked by '0' shows the testing time when using six parameters simultaneously in 
the bootstrap process. 

criterion of choosing a suitable number of repeats and more frequently, values between 

499 and 999 appear to have been used (Efron and Gong, 1983; Efron, 1993; Zoubir 

and Boashash, 1998). 

6.11 Discussion 

The proposed three artefact rejection schemes for the bootstrap method, i.e. , MAR, 

SAR and SMAR consistently demonstrated their benefit in the presence of the cor­

responding artefacts (MA for MAR, SA for SAR, and MA plus SA for SMAR). 
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Table 6.3: Testing time varies with the number of sweeps and repeats in the bootstrap 
process. 

( a) Testing time (s ) against the 
number of sweeps, repeats=499. 

Sweeps Mean ± 2SD 
2000 19.810 ± 1.582 
1000 8.977 ± 0.910 
500 4.493 ± 0.820 
250 1.893 ± 0.738 
125 1.022 ± 0.366 
50 0.488 ± 0.418 

(b) Testing time (s) against repeats 
number in the bootstrap process, 
sweeps=2000. 

Repeats 
499 
399 

Mean ± 2SD 
19.180 ± 1.582 
16.021 ± 1.284 

299 11.979 ± 1.003 
199 7.950 ± 0.699 
99 3.948 ± 0.338 

Furthermore, these schemes did not degrade the results in the absence of artefacts. 

The applications on the recorded data did not provide evidence for improved per­

formance of MAR, SAR and SMAR. In additional to the results reported above, 

these three schemes were also applied to recorded data Set A and provided similar 

results (see Appendix D) to those on Set B. However, visual inspection suggested 

that the recorded data was of high quality, and did not include artefacts. In future 

research, more recordings containing stimulus and/or movement artefacts should be 

investigated. 

The comparison of the three artefact rejection schemes and the Basic bootstrap was of 

concern in the above discussion. Now the comparison of the six parameters will also 

be considered. From the above results, the parameter cc showed poor performance 

in detecting ABRs in the recorded signals (Set B) and in simulations. The reason 

for this is probably that it only takes the shape of the two sub-averages (from the 

even and the odd-numbered sweeps) into account. As the size of the responses is 

disregarded, randomly occurring small, but consistent sub-averages in the bootstrap 

resampling, can lead to relatively high cc values, which will increase the p-values for 

this parameter. 

The parameter cc quantifies the similarity of the two sub-averages, which would seem 

an appropriate criterion for the detection of a response, especially when the exact 

shape of the response is unknown, as it may be in some applications of auditory 

evoked responses. However, to be more effective, it should be modified to take the 
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amplitude of the sub-averages also into account, which could be achieved by using the 

covariance between the two sub-averages, which corresponds to the numerator of ee, 

i.e. without normalizing by the variances. As an alternative to the current approach, 

the correlation coefficient has been used in comparing coherent averages against a 

template (Ozdamar et al., 1990). The bootstrap method could readily be adapted to 

carry out the significance test, but again we would suggest that normalizing by the 

amplitude of the signals could degrade results. 

In addition to the parameter ee, a related parameter (ee') was also tested on simula­

tions and recorded data in set A. ee' is the maximum of the cross-correlation function 

between two replicate estimates of the ABRs (Figure 6.21). The two replicates cor­

respond to the coherent average of the first and second half of the stimulation period 

(i. e. 1000 stimuli each). The cross-correlation function corresponds to the correlation 

coefficient between these replicates, with varying time-lag between the signals, and is 

again calculated over the analysis window of 5-15 ms. 

For recording set A, the hearing thresholds from ee' were higher than those from other 

parameters (e.g. power, Fsp). The parameter ec' again measures the consistency be­

tween ABR replicates, and follows the approach taken in the visual analysis of ABRs, 

where two replicates are often compared in order to ascertain the presence of a re­

sponse. For ee' to provide high values, well defined features in the signal are required, 

However, these are not always evident, as the two examples in Figure 6.22 (stimula­

tion at 50 and 30 dB SL, respectively) illustrate, and in which no significant response 

was detected. While some consistency in the replicate responses is evident, the slow 

underlying trend and the evident random variation (noise) lead to peak ee' ~ 0.7 and 

p=0.078 and p=0.076, respectively. Such values of ec' would be highly significant 

(p < 0.001) if the signal analysed were Gaussian white noise (no serial correlation 

between samples), but with the band-limited signals considered here the degrees of 

freedom are reduced, and hence increase the p-values. Conventional statistical analy­

sis of this, especially since we are considering the maximum of cross-correlation over a 

range of lags, would be highly complex, and the bootstrap method provided a robust 

and simple alternative. 

Furthermore, the results for parameter ±differenee and ee were always very similar. 

For the recorded data, they estimated high hearing thresholds and for simulations, 

gave low sensitivity. This motivates the investigation of the relationship between these 
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Figure 6.21: An example for calculating the parameter ce'. The top plot shows two 
replicates of the ABR from the same recording (each obtained by coherently averaging 
1000 stimulus responses). The bottom plot gives the cross-correlation function. '0' 
indicates the maximum cross-correlation-ce'. 
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Figure 6.22: T he two examples where non-significant cc' was obtained. The top plots 
show the two replicates, and the bottom plots the corresponding cross-correlation 
function. '0' marks the maximum ce'. 

two parameters, since both were extracted from even and odd-numbered sweeps. The 

parameter cc is the correlation coefficient of the two coherent averages, with one 

average (denoted by Xi) from the even-numbered sweeps, and the other (Yi) from 

odd-numbered sweeps, where i is the number of the samples in the coherent average. 

Then 

where x and yare average of those coherent averages. The parameter ±difference is 

the ratio of the variance of the coherent average of overall sweeps and the variance of 

the ± average of the even-numbered and odd-:numbered sweeps. This ratio could also 

be expressed by: 
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~ ( )2 L.J X'+y' 
±dif ference = t t 2 

L (Xi - Yi) 

because the background EEG is assumed to be a random process with zero mean, 

x ~ y ~ 0, and equal variance, i.e., LX2 ~ Ly2. Then, 

(6.11.1) 

and 

(6.11.2) 

based on equation 6.11.1, L XiYi ~ CC L x2 obtained and replacing the L XiYi in 

equation 6.11.2 as: 

~ x? + cc ~ X2 1 + cc 
±di f f erence ~ L.J t L.J t ~--

L X! - cc L X! 1 - cc 
(6.11.3) 

This relationship is illustrated in Figure 6.23: ±difjerence monotonically increases 

with the increase of cc. When the bootstrap method is applied to these two parame­

ters, this relationship is present both for the parameter values from coherent average 

and the incoherent averages, and thus the p-values are similar. This further leads to 

similar false positive rates and sensitivities. 

In order to compare the performances of the six parameters, ROC analysis was em­

ployed. The ROC curve shows the compromise between sensitivity and specificity in 

detecting the ABRs. The ideal is of course unity values for both sensitivity and speci­

ficity. However, usually, when increasing sensitivity (increasing false positive rates in 

the bootstrap method), some specificity is lost. The optimal operating point depends 

on the application: in some tasks high sensitivity is required (e.g. in detecting a 

mid-latency auditory response in depth of anaesthesia monitoring), for others high 

specificity is essential (e.g. in hearing s?reening, where false ABR detection may mean 

that a hearing impairment is missed). The overall performance of the detector was 

then assessed by the area under the ROC curve (AROC). The bootstrap technique 

was used here to test the difference between AROCs and indicated parameter power 
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Figure 6.23: The relationship between parameter ±difference and the correlation 
coefficient (cc). 

and abs were always very similar in all simulations and in the recordings, and they 

were the most sensitive parameters compared to the other four. ROC analysis is very 

simple and useful means to make comparisons between different methods. 



Chapter 7 

Comparison of Bootstrap with 
other methods 

7.1 Introduction 

In the previous two Chapters, the bootstrap method was applied to both simula­

tions and the recorded data and comparative work was carried out on a range of 

parameters. Among the bootstrap parameters, the widely used methods of Elber­

ling and Don's Fsp (Elberling and Don, 1984) and Wong and Bickford's ± difference 

(Wong and Bickford, 1980), were investigated, and following the bootstrap resam­

pIing process, the estimated distribution of the parameters under the null hypothesis 

of 'no response present' was obtained. Then the statistical significance of these pa­

rameters was compared against this distribution. The detailed procedures on how to 

use them as parameters within the bootstrap technique was described in section 5.3.2. 

The Fsp and ± difference methods were initially proposed (Elberling and Don, 1984; 

Wong and Bickford, 1980) for analysis of evoked potentials and threshold (critical 

value) for determining whether a response was present or absent was given based on 

the statistical analysis of the ratio of the variance of the signal and 'noise'. In this 

chapter, the focus will be placed on the comparison between the bootstrap-Fsp (the 

bootstrap method with the parameter Fsp) and Fsp as originally proposed (Elber­

ling and Don, 1984) (section 7.2), and the bootstrap-±difference and the original ± 

difference (Wong and Bickford, 1980)(section 7.3). 
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The bootstrap method proposed and applied here uses resampling of the raw data (sig­

nal). Nocera and Ferlazzo (2000) proposed an alternative bootstrap method to assess 

the within-subject reliability of event-related potentials (ERP). This was achieved by 

resampling the ensemble instead of the whole signal. This bootstrap was also tested 

in current work on ABR data and a comparison of the results from the two boot­

strap approaches is then made (section 7.4). In order to distinguish between these 

approaches, our bootstrap method is called 'signal bootstrap' and the other is called 

'ensemble bootstrap'. 

7.2 Bootstrap method and conventional Fsp 

The bootstrap-Fsp method was described in the Chapter 5 and 6, and the conventional 

Fsp was introduced in section 2.2.5. However, the derivation of the formula of the 

conventional Fsp was not mentioned before. Considering some issues related to the 

derivation of the formula, an introduction to the theoretical background of the Fsp 

will be given first. Then the comparison of critical values, and detection rates is 

made. 

7.2.1 Theoretical background 

Consider the EEG at time t following each stimulus (e.g. click or tone-burst), denom­

inated EEG(t), as consisting of the evoked potential 1, EP (t), and the background 

noise, usually spontaneous/background EEG, BEEG (t). For each sweep, 

EEG(t) = EP(t) + BEEG(t) (7.2.1) 

After N sweeps, the averaged response (coherent average) is 

EEG(t) = EP(t) + BEEG(t) (7.2.2) 

The assumptions for the two components are (Elberling and Don, 1984): 

1 It could represent any evoked potentials, e.g. auditory evoked potential, visual evoked potential, 
etc. 
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• EP(t) - is a deterministic signal and has constant latency, amplitude and phase 

with respect to the stimulus (Wong and Bickford, 1980). Therefore in the 

normal coherent averaging process, EP(t) remains unchanged. 

• BEEG( t) - is a stationary, ergodic random process. These statistical properties 

were explained in Chapter 4. 

In order to derive the statistical distribution of Fsp , first the variance of both sides of 

equation 7.2.2 is calculated. The EP and BEEG are regarded as being uncorrelated, 

which means when a stimulus is presented, an evoked potential does not change the 

statistical properties of the background EEG. The EP and BEEG may however (by 

chance) show a non-zero estimate for the correlation coefficient, R(EP, BEEG) or a 

covariance, COV(EP, BEEG), different from zero. 

V AR(EEG) = V AR(EP) + V AR(BEEG) + 2. COV(EP, BEEG) (7.2.3) 

which can be rewritten by inserting the signal-to-noise ratio, SNR 2: 

V AR(EEG) = [SNR2 + 1 + 2. R(EP, BEEG). SNR] • V AR(BEEG) (7.2.4) 

The background EEG distribution can be approximated by collecting the values in 

one single point of each individual sweep and its variance is then calculated from those 

values. With an increase in the number of the sweeps, the distribution of the sample of 

single point values converges to the statistical distribution (probability distribution) 

of the background EEG. The variance, V AR(SP), of the single pointsample will be 

a measure of the variance of the background EEG, V AR(BEEG). The estimated 

variance, V AR(SP), of the averaged background EEG can be represented as: 

2SNR is defined as the RMS-value (root mean square) of the EP divided by the RMS-value of 
the averaged background EEG, BEEG: 

SNR = RMS(EP) 
RMS(BEEG) 
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V AR(SP) = V AR(SP) 
K 

where K represents the number of sweeps in the signal (see Chapter 5). 

Then a variance ratio related to the F-distribution is defined as: 

VAR(EEG) 

VAR(SP) 

[SN R2 + 1 + 2R(EP, BEEG)SN R] V AR(~EE~) 
VARSP 
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(7.2.5) 

(7.2.6) 

The variance ratio, V AR(BEEG)/V AR(SP), under certain conditions (i.e., Gaus­

sian/N ormal distribution of the signal) follows the F distribution, F(V1,1-'2) ' with III and 

112 being the degrees of freedom for the numerator and denominator, respectively. For 

the Fsp method, a critical value was then determined (Elberling and Don, 1984) based 

on worst-case assumptions regarding the correlation between samples in the signal. 

This assumption affects the number of degrees of freedom for the numerator which is 

less than the number of samples. The value given for 250 sweeps was Fsp - crit = 2.25 

for a = 5% and Fsp - crit = 3.09 for a = 1%. 

7.2.2 Critical values 

In addition to providing the p-values in testing for a response in each recording, 

the bootstrap method can also readily provide the critical values for each parameter 

for the rejection of the null-hypothesis. This can be obtained from the bootstrap 

sampling distribution by finding the values of the parameter at a = 5%( or any other 

desired significance level). Figure 7.1 showed the critical values from the bootstrap­

Fsp at a = 5% (upper plot) and a = 1% (bottom plot), respectively. At each stimulus 

intensity, the boxplot was obtained from the 16 subjects in data Set B. The mean value 

for all the critical values was 1.46 for a = 5% and 2.08 for a = 1% when averaging 

250 sweeps. With an increase in the number of sweeps to 2000, these decrease to 

1.43 and 1.97, respectively. The results also show a considerable variation of critical 

values between individuals. 
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Figure 7.1: Crit ical values of Fsp from the bootstrap cumulative probability distri­
bution with a = 5% (upper) and a = 1% (lower). These were obtained with 250 
sweeps. For different stimulus intensit ies, the crit ical values did not vary greatly. For 
different subjects, these varied greatly. 

This figure lead us to investigate further the reason for the variation among critical 

values. One-way ANOVA analysis provided a statistical tool to test the two possible 

influencing factors of subject and stimulus intensity. ANOVA analysis was performed 

on critical values grouped by 16 subjects and by 7 stimulus intensities, respectively. 

The results from ANOVA analysis for both 250 sweeps and 2000 sweeps consistently 

indicated that the critical values varied between subjects (p < 10- 8 in Table 7.1(a)) 

and did not vary with stimulus intensity (p> 0.05, Table 7.1(b)). 

From the bootstrap method (with SMAR) , the critical values were found to be gener­

ally lower than those given previously by Elberling and Don (1984) (see Figure 7.1), 

and furthermore, they differed considerably between individuals, ranging from 0.76 
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Table 7.1: One-way ANOVA analysis on critical values obtained from bootstrap­
Fsp. p < 5% indicates a significant difference between subjects (a), but there is no 
difference by stimulus intensity (b). 

(a) P-values from ANOVA analysis on critical values, grouped by 16 subjects. 

Parameter Significance level (a) p value (one-way ANOVA analysis) 

K=250 sweeps K=2000 sweeps 

Fsp 5% 4.20E-12 2.55E-15 

1% 6.83E-08 4.86E-12 

(b) P-values from ANOVA analysis on critical values, grouped by 7 stimulus intensities. 

Parameter Significance level (a) p value (one-way ANOVA analysis) 

K=250 sweeps K=2000 sweeps 

Fsp 5% 0.225 0.229 

1% 0.312 0.110 

to 2.07 for a = 5% and from 1.16 to 3.57 for a = 1%. The critical values given by 

Elberling and Don (1984) are similar to the maximum critical values determined here 

by the bootstrap method for the sample of subjects investigated, and thus appear to 

represent a valid 'worst case' value. It is clear that there is no single Fsp - crit is 

valid for all recordings. From theory (Elberling and Don, 1984) it is clear that this 

critical value depends on the signal characteristics of each recording (in particular 

the spectrum of the signal), and this differs between subjects. It is therefore also not 

surprising that the critical value was approximately constant in the repeated record­

ings from the same subject (see ANOVA analysis), since different stimulus intensities 

would not greatly change the spectrum of the recorded signals. Similar to the results 

presented here for SMAR, we also found that the critical values obtained with the Ba­

sic bootstrap technique were generally lower than those given previously by Elberling 

and Don (1984), and also differed considerably between individuals. A critical value of 

Fsp - crit = 2.0 was suggested by Lutman and Sheppard (1990) based on click-evoked 

otoacoustic emission. Thus while previous methods based their estimates of critical 

values either on worst-case assumptions for the signals (Elberling and Don, 1984) 

or a large sample of subjects (Lutman and Sheppard, 1990), the bootstrap method 
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allows the critical value to be determined subject by subject, with and without the 

implementation of artefact rejection. Another implication of the current work is that 

a fixed critical value will lead to differing false-positive rates and sensitivities for dif­

ferent subjects. Thus while the alternative methods of Elberling and Don (1984) and 

Lutman and Sheppard (1990) may provide the expected average false positive rates 

over a group of subjects, they cannot ensure these in each individual. 

7.2.3 Pass and Refer rate 

In this section, 'pass' and 'refer' rates are investigated. If parameter (Fsp) exceeds the 

selected threshold (criterion) value, a response is considered to have been detected 

from the recording and this is denoted as 'pass'. Otherwise the clinician would 'refer' 

the patient for further investigation. For the bootstrap-Fsp method, the statistical 

significance p-value provides the criterion, and the null-hypothesis is rejected at p <= 
0.05, and a significant response and 'pass' is recorded. According to Elberling and 

Don (1984) the criteria recommended are those shown in Table 7.2. 

Pass Refer 

K=250 sweeps K=2000 sweeps K=250 sweeps K=2000 sweeps 

Fsp Fsp ~ 2.25 Fsp ~ 3.09 Fsp < 2.25 Fsp < 3.09 

Bootstrap - Fsp p ::; 0.05 p > 0.05 

Table 7.2: Criteria for conventional Fsp and bootstrap-Fsp under different conditions, 
for K=250 sweeps and K=2000 sweeps. 

Table 7.3 shows that for K=250 sweeps, there is 75% agreement (the pass rate where 

both methods agree, plus the refer rate for both) between the Fsp and Bootstrap­

Fsp. Disagreements ,are, as expected, all in the direction of over-referral by Fsp. In 28 

cases, there were significant responses detected by the Bootstrap-Fsp and not detected 

via the conventional Fsp. When K increased from 250 to 2000 sweeps (Table 7.4), 

agreement between Fsp and Bootstrap-Fsp increased to 90.18%. Even though the 

Fsp threshold increased, i.e., the criterion for detection became tighter as expected, 

the 'pass' rate dramatically improved mainly because of the larger number of sweeps 
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which make the stimulus response clearer by reducing the effect of the background 

EEG. 

K=250 Fsp 

Bootstrap_Fsp Pass Refer 

Pass 23 (20.54%) 28 (25%) 

Refer 0 (0%) 61 (54.46%) 

Table 7.3: The performance of Fsp and Bootstrap-Fsp ('pass' and 'refer' rates) esti­
mated from the first 250 sweeps of the recordings. 

7.2.4 Discussion 

In selecting the critical value for the Fsp based on theory, the problem lies in identify­

ing the degrees of the freedom VI (Elberling and Don, 1984). If the background EEG 

were truly white noise, the degrees of freedom, VI would approximate the number of 

samples within the analysis window. However, the narrower the band of dominant 

frequencies, the lower the degrees offreedom, VI. Elberling and Don (1984) evaluated 

VI experimentally in the no-stimulus condition. V2 was determined by the number of 

sweeps (e.g., 250 in the original work), considering each sweep being independent. 

In order to investigate the effect of VI, it was increased from the suggested value of 5 

to the number of samples in the analysis window (5-15 ms), 51 in our study. For each 

value of VI, a threshold exceeding 95% (a = 5%) of the samples from an F distribution, 

was determined. Figure 7.2 shows the degree of freedom of the numerator, VI against 

K=2000 Fsp 

Bootstrap-Fsp Pass Refer 

Pass 81 (72.32%) 11 (9.82%) 

Refer o (0%) 20 (17.86%) 

Table 7.4: The performance of Fsp and Bootstrap-Fsp ('pass' and 'refer' rates) esti­
mated from 2000 sweeps of the recordings. 
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the threshold values at 95%. With the increase of VI, the values decrease. The 

'true' degree of freedom for the numerator cannot readily be obtained. Therefore, the 

bootstrap method again shows its benefit for estimating the critical value. 
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Figure 7.2: Degrees of freedom in the numerator against the values that should exceed 
95% of the samples from an F distribution with VI degrees of freedom in the numerator 
and V2 degrees of freedom in the denominator. Here in order to demonstrate the 
influence of the degree of freedom in the numerator on that value, VI varied from 
5 (assumed worst case) to 51 (number of samples in the analysis window) and V2 

remained as 250 (number of sweeps). 

7.3 Bootstrap method and conventional ±difference 

The ± difference method is an alternative popular method (Wong and Bickford, 1980) 

in the detection of the ABR. The critical values of the bootstrap-±difference will again 

be compared with those suggested in the literature (Wong and Bickford, 1980). The 

latter were identified based on the assessment of the ratio of the variance of the signal 

to the variance of the noise. In addition, the pass and refer rates will be compared. 
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7.3.1 Theoretical background 

Similarly to the Fsp , the theory of ±difference method will first be considered. The 

description of the signal and the assumptions are the same as those described for the 

conventional Fsp. EEG'(t) is defined as: 

EEG'(t) = ~[L {EEGi(t). (_1)i}] 
i 

(7.3.1) 

i=1 to K, Keven 

An alternative variance ratio is then formed and denoted as ± difference: 

VAR(EEG) 
±difference = ---====­

VAR(EEG') 
(7.3.2) 

Wong and Bickford (1980) suggested that for human data, the empirical value of 

±difference > 2, based on the experimental results, might be used as a criterion in 

the detection of the ABR. 

7.3.2 Critical values 

Following the same methods as for the bootstrap-Fsp , the critical value of bootstrap­

±difference was obtained in each recording from the bootstrap sampling distribution, 

by finding the values of the ±difference at a = 5% (or other desired significance level, 

e.g., a = 1%). Figure 7.3 shows the critical values from the bootstrap-±difference 

at a = 5% and a = 1%, respectively, based on 250 sweeps. The critical values 

were obtained from 16 subjects (x-axis) and each marked line corresponded to one 

stimulus intensity. One-way ANOVA was again performed on critical values grouped 

by 16 subjects and by 7 stimulus intensities, respectively. The results from ANOVA 

for both 250 sweeps and 2000 sweeps consistently indicated that the critical values 

varied between subjects (Table 7.5(a)) and did not vary by stimulus intensity (Table 

7.5(b)). 
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Figure 7.3: Critical values of ± difference from the bootstrap cumulative probability 
distribution with a = 5% (upper) and a = 1% (lower). These were obtained with 
250 sweeps. 

Therefore the critical value of ± difference method empirically determined as 2 byex­

perts (Wong and Bickford, 1980), might not be suitable in all cases. Because ANOVA 

analysis (see Table 7.1(a)) indicated a significant difference between individuals, and 

also from theory, it is clear that this critical value depends on the signal character­

istics (in particular the spectrum of the signal) and this differs between individuals 

(subjects) . 

7.3.3 Pass and Refer rate 

The criteria of the bootstrap-± difference and ± difference are shown in Figure 7.6. 

Tables 7.7 and 7.8 show that agreement between the bootstrap-±difference and ± 
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Table 7.5: One-way ANOVA analysis on critical values obtained from bootstrap-± 
difference. p < 5% indicates a significant difference between subjects (a), but there 
is no difference by stimulus intensity (b). 

(a) P-values from ANOVA analysis on critical values, grouped by 16 subjects. 

Parameter Significance level (a) p value (one-way ANOVA analysis) 

K=250 sweeps K=2000 sweeps 

± difference 5% 5.07E-10 2.15E-09 

1% 1.78E-07 2.60E-08 

(b) P-values from ANOVA analysis on critical values, grouped by 7 stimulus intensities. 

Parameter Significance level (a) p value (one-way ANOVA analysis) 

K=250 sweeps K=2000 sweeps 

± difference 5% 0.158 0.163 

1% 0.590 0.256 

difference was 86.61% for K=250 sweeps and 90.18% for K=2000 sweeps, respec­

tively. The improvement in 'pass' rates with both methods is very evident. This 

again demonstrates that the increase in the number of sweeps greatly increased the 

probability of detecting the response. 

Table 7.6: Criteria for ±different and bootstrap-±difference methods under different 
conditions, K=250 sweeps and K=2000 sweeps. 

Pass Refer 

K=250 I K=2000 K=250 I K=2000 

±difference ±difference > 2 ±difference :S 2 

Bootstrap - ±difference p :S 0.05 p> 0.05 
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K=250 ±difference 

Bootstrap-±difference Pass Refer 

Pass 22 (19.64%) 0 (0%) 

Refer 15 (13.39%) 75 (66.96%) 

Table 7.7: Pass and refer rate for K=250 sweeps. 

K=2000 ±difference 

Bootstrap-±difference Pass Refer 

Pass 72 (64.29%) 0 (0%) 

Refer 11 (9.82%) 29 (25.89%) 

Table 7.8: Pass and refer rate for K=2000 sweeps. 

7.3.4 Discussion 

The results from the above showed that when K=250 sweeps, there were 15 cases 

referred by the bootstrap-±difference and passed by ±difference and 11 cases when 

K=2000 sweeps. This means that ± difference method is more sensitive than bootstrap­

± difference. This is not surprising, given that the threshold is lower. However, 

the determination of the criterion for the ± difference might be not reliable. The 

means for estimating the degree of the freedom of V AR(BEEG), 1I1 can also be 

used in the statistical evaluation of the ±difference, which was defined as a ratio 

of V AR(BEEG) to V AR(BEEG'). From the expressions of the conventional Fsp 

and ±difference, it is clear that the difference between them is the denominator of 

the expressions, as the numerators are the same. Therefore for the ±difference, the 

degree of the numerator under the worst case assumptions suggested in Elberling 

and Don (1984) could be 1I1 = 5, and that of the denominator, an alternative es­

timates of the background EEG, V AR(BEEG') should have the same degrees of 

the freedom as the normal averaged background EEG, BEEG. As mentioned be­

fore, the ratio, V AR(BEEG)jV AR(BEEG') follows the F-distribution. Similarly 

to estimating critical values for the Fsp , that for ±difference can be estimated from 

the F distribution with 1I1 = 1I2 = 5 (the smallest degrees of freedom for 1I1)' The 
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corresponding upper 95% percentile is F(5,5) = 5.05. Elberling and Don (1984) dis­

cussed that in estimation of the response quality, this means that compared with 

the single point method, the use of the ±difference would increase the uncertainty 

approximately by a rate of 2 (5.05/2.25) (Elberling and Don, 1984). From the above 

analysis, the critical value of 5.05 might be more reliable for the ±difference. 

The comparison of the experimental results between K=250 sweeps and K=2000 

sweeps show that the pass rates increase greatly. These were as expected, since larger 

number of sweeps will help to recover the evoked potentials and make them easier to 

detect. 

7.4 Signal bootstrap and ensemble bootstrap 

In the bootstrap method proposed and applied in previous chapters, the raw data 

(signal) is randomly resampled with replacement such that the 'sweeps' are no longer 

synchronized with the stimuli. 

Nocera and Ferlazzo (2000) proposed an alternative bootstrap process to assess the 

within-subject reliability of experimental modulation effects on event-related poten­

tials (ERPs). Basically, the bootstrap method was then used to resample the sweeps 

of the ensemble, and thus each res ample was synchronized with the stimuli, unlike 

the bootstrap method proposed in this thesis. The latter will now be referred to as 

the 'signal bootstrap', and the former as 'ensemble bootstrap'. 

Considering the principles of the ensemble bootstrap method, it may provide an 

alternative in detecting the ABR. An introduction of the initial ensemble bootstrap 

will be given. Then two ensemble bootstrap methods will be introduced for detecting 

the ABR. The false positive rate will be tested and problems with the ensemble 

bootstrap will then be discussed. Finally, a discussion based on the problems and a 

comparison of the ensemble bootstrap and the signal bootstrap will be provided. 
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7.4.1 Introduction to the ensemble bootstrap 

The ensemble bootstrap was originally proposed to compare the difference of event­

related potentials (ERPs) in response to 'old' and 'new' words (old/new effect) (No­

cera and Ferlazzo, 2000). In memory tasks, ERPs have been reported to differ in 

terms of whether the stimuli evoking them had been previously presented or not 

(Rugg, 1995). The old/new effect refers to a larger positive peak at about 400 ms 

after stimulation shown by the ERPs to old items relative to the ERPs to new items. 

The mean value of ERPs is different after the presentation of the words. In order 

to test whether the difference in the ERPs is significant or not in each subject, the 

ensemble bootstrap method was applied. 

In accordance with the null-hypothesis, it was supposed there was no difference be­

tween the responses to the new and old words. In the ensemble bootstrap method 

first the responses to the new and old words are pooled together, and from this pool 

two groups with the same number of stimuli are randomly selected, and coherently 

averaged. The difference in mean amplitude of these averages provides an estimate 

of this difference under the null-hypothesis of 'no difference present'. This process 

was repeated 1000 times, and the distribution of this difference was then estimated. 

By comparing this with the difference obtained between 'old' and 'new' words, the 

significance value (p-value) could be found in accordance with the usual bootstrap 

procedure. That will indicate the acceptance or rejection of the null-hypothesis at 

the pre-defined significance level (e.g. a = 5%). 

7.4.2 Ensemble bootstrap for ABR detection 

In order to apply the ensemble bootstrap method for detecting the ABR, two points 

should be considered: the null-hypothesis and the parameter. As for the signal boot­

strap method, the null-hypothesis is 'no response present' (Ho). The parameter under 

this null-hypothesis can be estimated from the no-stimulus signal or the stimulus sig­

nal. For the former, the basic principle of the ensemble bootstrap is to compare the 

ensemble followirig stimuli and one acquired without stimulation, thus two signals are 

actually needed for each subject. For the alternative approach, the signal without 

stimuli is no longer required, and the parameter under the null-hypothesis should be 
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estimated from the signal acquired during stimulation. 

As already discussed, when presenting acoustic stimulation (clicks or tone-burst) to 

the normal-hearing ear, there should be a dominant peak (wave V) at the latency 

of 5-10 ms after the onset of the stimulus in the ABR recording. A parameter is 

therefore required to represent this feature, and considering that power was found 

to be the most powerful one in previous chapters, here it is again used to test the 

ensemble bootstrap method. When the parameter under the null-hypothesis (denoted 

by eo) is estimated from the no-stimulus signal, the method is called 'two-ensemble 

bootstrap' and the alternative 'one-ensemble bootstrap'. 

The procedures for the two-ensemble bootstrap are: firstly, eo is calculated from the 

coherent average of the no-stimulus recording under the null-hypothesis. Then the 

signal obtained during stimulation is coherently averaged to calculate the observed 

value of e. Following the ensemble bootstrap method, a 'new' ensemble is then 

generated by randomly resampling the sweeps of the observed signal with the same 

number as in the original signal, and is averaged to obtain an estimated parameter 

(e*). This bootstrap process is repeated 499 times (the same as in the signal bootstrap 

method). Finally a distribution of e* is achieved. By calculating the percentage 

of eo greater than e*, the significance value (p-value) is found. Again, choosing a 

significance level·(a), if p S; a, a significant response is considered to be present. 

The two-ensemble bootstrap method was tested on 500 simulated signals (as in Chap­

ter 6) without stimulation and a = 5%, in order to evaluate the false positive rate. 

This rate was 22.2% and outside the range given by the binomial distribution with 

500 trials and a success rate of 5%. The reason leading to this was an inherent 'error' 

resulted from the ensemble bootstrap resampling process with replacement, as can be 

explained from theory. 

A no-stimulus or stimulus signal can be written in a matrix as described in equation 

2.2.1 and Xk,m represents one sample value. k = 1,2, ... , K, where K refers to the 

number of the sweeps, and m = 1,2, ... , M, where M is the number of the sample in 

each sweep. The mean power of the ensemble (Px ) can be calculated as: 

(7.4.1) 
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where N = K x M. The mean power of the coherently averaged signal (Px) can be 

estimated as: 

(7.4.2) 

Then expand the components in the parentheses, separately. The square of the sum 

includes the sum of the square and the product of two sweeps. 

K 

(L Xk,m)2 - (Xl,m + X2,m + X3,m + ... + XK,m)(Xl,m + X2,m + X3,m + ... + XK,m) 

k=l 
2 2 2 2 = x1,m + x 2,m + x 3,m + ... + xK,m 

+Xl,mX2,m + Xl,mX3,m + ... + Xl,mXK,m + ... + XK-l,mXK,m (7.4.3) 

Since each sweep in the ensemble is approximately uncorrelated, the products of any 

two sweeps (Xl,mX2,m, Xl,mX3,m, ... ) in equation 7.4.3 are zero. When calculating 

the value of power from the no-stimulus signal (P-xo under the null-hypothesis of 'no 

response present'), and the power (Px) from the coherently averaged signal of the 

stimulus signal, are zero. However, the cross-terms for the estimated power from the 

resamples will be a positive value, since a sweep is possibly selected more than once, 

and the part of Xl,mX2,m becomes xI,m. Therefore, the distribution of the estimated 

power will be consistently greater than the expected values as shown in Figure 7.4. 

For the values of P-xo (dotted vertical line in Figure 7.4) and P-x (solid vertical line), the 

shift of the estimated distribution to the right of the expected (realistic) distribution 

leads to a decrease of the p-value. Decreased p-value will increase the false positive 

rate. However, in detecting a response (when present), that will also increase the 

sensitivity (detection rate). For the parameter power, the ensemble bootstrap thus 

provides a 'biased' result, because the parameter involves second order terms that 
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use the correlation between samples. Resampling with replacement in this ensemble 

bootstrap form thus has an inherent problem. 
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Figure 7.4: An illustration of the cumulative distribution of the power as estimated 
from the ensemble bootstrap method and as expected from theory (usually not avail­
able) under the null-hypothesis. The estimated distribution is shifted to the right of 
the expected one because of the influence of the resampling process. 

The one-ensemble bootstrap method was then considered. Under the null-hypothesis 

(no stimulus response), the power can be estimated from Px based on the following 

derivation. Again the product of the samples from two different sweeps is zero (ex­

pected value), as successive sweeps are considered uncorrelated as in equation 7.4.2 

and 7.4.3. 

K 

(2: Xk,m)2 = 2: x%,m (7.4.4) 
k=l K 
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K
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Thus, for the parameter power, the value under Ho can be predicted from the recording 

during stimulation. For other parameters, such a relationship might be more difficult 

to derive. However, in deriving Pxo , the assumption of zero correlation between 

successive members of the ensemble was again required. Again, ensemble resampling 

will isolate this assumption (as for the two-ensemble bootstrap). This again leads 

to excessive false positive rates, as was experimentally verified in 500 Monte Carlo 

simulations without additive stimulus responses. For a = 5%, the false positive rate 

was 20.4%. 

7.4.3 Discussion 

The two ensemble bootstrap methods demonstrated an inherent problem deriving 

from the resampling process with replacement, for the parameter power. That para­

meter was selected, because it quantifies the main feature of the signal and is easily 

evaluated. 

However, there are two significant advantages of the ensemble bootstrap. First, the 

testing time was fairly short: 2s for each signal (2000 sweeps), whereas that for the 

signal bootstrap was about 198 on the same PC. There is a big difference between 

these, because the ensemble res amp ling is done sweep by sweep, but signal resampling 

is carried out on the signal. In clinical applications, the reduction of the testing time 

is clearly desirable. 

Another advantage of the ensemble bootstrap is related to the artefact rejection 

scheme. For the ensemble bootstrap method, stimulus artefact rejection does not 

need to be considered because the stimulus artefact is never involved in the calcu­

lation of the parameter when setting an analysis window to exclude the stimulus 
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artefact, say 5-15 ms. The stimulus artefact always appears during the first 2 ms 

after the onset of the stimuli. The movement artefact rejection scheme (MAR) is also 

much easier to apply in the ensemble bootstrap than in the signal bootstrap. In the 

signal bootstrap, at the stage of estimating the observed parameter, MAR is applied 

to the raw signal, and sweeps exceeding the rejection threshold are removed from 

the signal. In the bootstrap process, this procedure has to be applied again to each 

resampled signal. Thus prolonging the testing time. 

In assessing a method from the detection task, the false positive rate is a core factor. 

Thus, even though the benefits from the ensemble bootstrap method are evident, the 

ensemble bootstrap method can not replace the signal bootstrap method for detecting 

the ABR, when the parameter power is employed. For other parameters (e.g. first 

order such as difference), the ensemble bootstrap may work, though mathematical 

analysis would be more complex. 

\ .{'. 

, " 



Chapter 8 

Conclusions and Future Work 

8 .1 Conclusions 

Bootstrap methods have become a very widely used tool for statistical analysis. They 

have also been extensively exploited in many areas of signal processing, as introduced 

in Chapter 2. To the best of our knowledge, this is the first proposed use of the 

bootstrap method for detecting evoked potentials. 

Conventionally, the statistical analysis of a signal parameter is performed on repeated 

signals to establish the distribution of the parameter, or based on some assumptions 

about the signal (i.e., Gaussian distributed) or the parameter. However, in this appli­

cation, it is not feasible to repeat the experiment many times, because the recording 

time would be too long for the patients to tolerate. Moreover, intra-subject variability 

is present and thus makes the estimates more unreliable. The bootstrap method al­

lows the statistical significance of arbitrary signal parameters to be assessed and thus 

provides a very powerful tool for the future development of evoked-response analysis, 

including the selection of new and optimized parameters for response detection. It 

allows responses to be detected at a user-defined false-positive rate, for an arbitrary 

number of stimuli, and takes the statistical characteristics of each individual recorded 

signal into account. In the current work, the results on six parameters were presented, 

but the bootstrap method could be applied to other parameters. 

Bootstrap methods facilitate the analysis of data subject-by-subject. Thus, rather 

than performing comparison between groups of subjects, it is often possible to perform 
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statistical tests on each case individually. This avoids the requirement for the often 

questionable assumption such as that signals recorded from different subjects have 

similar statistical characteristics. In the investigation of the critical values (discussed 

in Chapter 7), the variations between subjects are present. Therefore independent 

analysis for individual case is a great benefit of the bootstrap method. 

In Chapter 5, the Basic bootstrap was tested on simulations and recorded data Set 

A. The results for 500 simulated background EEG signals provided acceptable false 

positive rates (within the range of 3.2% - 6.8%), and those for 500 simulated signals 

with a 'stimulus response' gave a sensitivity function for a range of SNR levels. The 

results on the recorded Set A indicated that the Basic bootstrap method provided 

slightly lower hearing thresholds than those from audiologists using traditional visual 

inspection. 

In this work, the bootstrap method was tested on the ABRs. It also can be applied in 

other modalities (e.g. visual, somatosensory, and event-related). Bootstrap methods 

have been used previously in finding confidence limits for the SNR and inter-ocular 

amplitude ratio in visual evoked potentials (Fortune et al., 2004), and various para­

meters in somatosensory evoked potentials (Adams and Kunz, 1996), as well as in 

assessing ROC curves (Valdes et al., 1997) for steady-state auditory evoked potentials. 

However, it does not appear to have been used previously for detecting the presence 

of an evoked response. In the current work we are not proposing that the bootstrap 

method should replace established statistical criteria for detecting responses (Mauri­

cio et al., 2001; Simpson et al., 2000). However, the bootstrap method can be applied 

in testing the significance of parameters that are not readily analysed by conventional 

statistical approaches, such as the Fsp or ±difference. 

In order to overcome the limitations of the Basic bootstrap method, three artefact 

rejection schemes MAR, SAR and SMAR were proposed in Chapter 6. The results on 

the simulated signals showed that MAR, SAR and SMAR can eliminate the influence 

of the corresponding artefacts and provide higher sensitivity and acceptable false 

positive rates. There was no significant improvement when employing MAR, SAR 

and SMAR on the recorded data Set A and B, but neither did these techniques 

degrade results, compared to the Basic bootstrap method. 

The Basic bootstrap method provided similar false positive rates and sensitivity for 
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the recorded data Set B, compared to MAR, SAR and SMAR, since visual inspec­

tion indicated that no obvious artefacts were present. However, when artefacts were 

present (e.g. in simulated data), the Basic bootstrap method performed poorly. In 
particular, greatly reduced or unreasonably increased sensitivity was observed (Figure 

6.4, 6.11 and 6.16). The false-positive rate (in the absence of a stimulus response) 

was too low or too high compared to the nominal 5%. Too high false positive rate 

is of some concern, as in hearing screening more than the expected 5% of subjects 

with impairment may be missed. This might harm the subject, because he/she may 

not receive suitable treatment as quickly as possible. Therefore the conclusion can be 

drawn that the modified bootstrap method (SMAR) should replace the Basic method. 

Of course the benefits of the bootstrap method come at a cost. These approaches 

usually cost a few seconds, and this might prevent them from some real-time appli­

cations. However, compared to the time of data acquisition or pre-processing, this 

may be negligible and the computational cost is no longer a good reason to discard 

bootstrap methods. More efficient implementation of the algorithm could greatly re­

duce computational time. The other limitation associated with the random feature 

of the bootstrap process, is that results are not precise: repeat runs will provide 

slightly different results. But this variation can be reduced by using a large number 

of resamples. This variation can be considered in context: when the experiment and 

data acquisition were repeated, even conventional methods would possibly produce 

different results to some extent. 

In this study, the detected fraction of the simulated signals with different SNR (Figure 

5.6 in Chapter 5), and ROC analysis demonstrated the good performance of bootstrap 

technique for detecting the response. But bootstrap estimates, like all statistical 

methods, have inherent errors (Efron, 1993) shown in Figure 8.1. These errors come 

from two distinct sources: sampling variability, due to the fact that only a sample 

of size n rather than the entire population, is available, and bootstrap resampling 

variability, due to the fact that only B bootstrap samples rather than an infinite 

number, are taken. In the current work, 2000 sweeps contributed to the calculation 

of the coherent average from which the parameters were extracted. Thus the sample 

size of 2000 is fairly big to approximate the population and greatly avoid the sampling 

variability. And 499 repeats used here to estimate the distribution of the parameter 

might not lead to a great resampling variability. 
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Figure 8.1: The schematic shows the sampling and resampling variability. The sam­
ple variability is due to the finite sample size n which can not represent the entire 
population. The resampling variability results from the finite number of bootstrap 
resamples which can not ideally demonstrate the sample data x. 

Independence between observational units is often an important assumption in data 

analysis and is usually present in bootstrap-based inferences. Lack of independence 

can reduce the accuracy of interference: see Hampel et al. (1986) for discussion of this. 

In this work, the parameter ±difference and cc always worked poorly, compared to 

other four parameters. A contributing factor could be the dependence of the signals. 

For example, when calculating the correlation coefficient of the two signals, they are 

assumed to be independent. When the bootstrap resampling process performs, one 

sample may be selected many times for different sweeps, and this sample can be 

possible in any position of a signal. Thus the 'incoherent' average of these sweeps 

will not be independent between samples, and correlation coefficient of these two 

'incoherent' averages will be biased. 
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8.2 Future work 

Issues arising from the current work deserve further study. In this section, firstly, 

two possible alternative implementations of bootstrap methods will be introduced, 

in order to improve the efficiency in computation time. Secondly, a more specific 

protocol for determining the hearing threshold will be described. Thirdly, bootstrap 

methods could be applied to additional parameters, which can be extracted from 

both time or Fourier (frequency) presentations of the signal. Fourthly, the further 

investigation of bootstrap methods on other signals will be mentioned. Finally, some 

considerations on bootstrap methods applied in clinical applications will be given. 

8.2.1 Efficiency in computation time 

In the work described here, analysis was carried out off-line. On a PC-Pentium based 

computer, it took approximately 19s to analyse a recording containing 2000 sweeps, 

when programmed in Matlab@. A more efficient implementation would considerably 

reduce this time. Using an extended form of this approach, on-line methods for 

could also be developed, in which the p-value could be continuously updated, and 

the recording stopped, once a threshold p-value was reached. Such a procedure could 

considerably shorten the time required for hearing tests, and follows the suggestions 

of Don and Elberling (1996). 

Alternatively, a critical value of the interested parameter can be estimated from boot­

strap resamples (based on one recording) under the null-hypothesis of 'no response 

present'. Then this parameter of any recording, calculated from the coherent aver­

aged signal, is compared with the critical value. If this is greater than the critical 

value, a response is considered to be present. In addition, two points should be con­

sidered. As known that characteristics of recordings from different subjects vary and 

affect the critical value, and thus different critical values for different subjects should 

be considered. In addition, the critical value is influenced by the number of sweeps. 

Therefore, a suggestion is that for each subject, the critical value is determined with a 

known (or fixed) number of sweeps and 'test' recordings should have the same number 

of sweeps. 
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8.2.2 Protocol of hearing threshold 

In the current work, the hearing threshold was determined by finding the minimal 

stimulus intensity at which p < 0.05 (with p < 0.05 for all higher stimulus intensities). 

There are some cases where the responses in the recordings from stimulations at 10 

dB, 30 dB or higher stimulus intensities can be detected, however, no response is found 

in the 20 dB-recording, with p-value slightly greater than 0.05 (threshold p-value). 

Following the current protocol, the hearing threshold would then be determined as 

30 dB. It is possible that the bootstrap method on the replicate 20 dB-recording 

provides p < 0.05, and a response might have been detected. Then 10 dB will be the 

hearing threshold. According to this, a more specific protocol can be proposed. For 

example, for the same case, bootstrap methods on more recordings at 20 dB stimulus 

intensity are performed, and then it is determined whether the 20 dB-recording has 

a significant response, by statistical analysis. This further test may give a relatively 

lower hearing threshold than the current approach. 

8.2.3 Other parameters 

Bootstrap methods are tested mainly on six parameters extracted from the represen­

tation of the signals in the time domain. In the future, additional parameters can be 

built up in the time or frequency domain. 

It was already discussed in Chapter 6 that the parameter ee always performs poorly 

because only the shape of the two sub-averages is taken into account. Therefore, a 

modified parameter ee can be made by taking the amplitude information into account 

by using un-normalized coefficient, i.e., the covariance between the sub-averages. Al­

ternatively, a modification of ee' can performed as follows: firstly, a 'template' (typ­

ical) signal is obtained by averaging recordings at higher stimulus intensity, e.g. 60 

dB from many subjects. Then ee' (as discussed in Chapter 6) would be calculated be­

tween the 'template' and the coherent average from a new recording. Following that, 

ces are computed between the 'template' and 'incoherent' averages obtained from 

bootstrap resamples. The significance p-value is again used to determine whether a 

response is present or absent. 

Furthermore, the parameters can be extracted from the Fourier representations of 
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the signal, using the amplitude and/or phase information at one or more frequencies. 

The selection of parameters can take MSC, PC (or Rayleigh test), circular T2 etc., 

as references. 

8.2.4 Bootstrap methods on other signals 

The proposed bootstrap methods can be readily applied on other signals, such as 

middle latency response (MLR), steady-state evoked potentials, visual evoked poten­

tials and so on. The issue is to select suitable parameters which can appropriately 

represent the signal. For example, if the bootstrap method is used for detecting 40 

Hz steady-state evoked potentials, the parameter may come from the Fourier repre­

sentation at a frequency of 40 Hz, where the amplitude should be dominant and the 

phase is clustered. 

Moreover, when developing new applications, it is strongly recommended that the 

techniques are first tested in Monte Carlo simulations to generate data that is as 

realistic as possible but has known and well-controlled characteristics. The poor 

performance on the simulations can reveal shortcomings in the implementation or 

the underlying principle, e.g. the definition of the null-hypothesis. 

8.2.5 Considerations of clinical application 

A long-term aim based on the current work is to apply bootstrap methods in clinical 

application, e.g. hearing screening, surgical monitoring. Although the evaluation of 

the method has been made on both Monte Carlo simulations and recordings from 

normal-hearing subjects, it is also desirable to be further evaluated on recordings 

collected in hospitals, from different subjects (adults, children), with and without 

hearing loss and audiological pathologies, and possibly with artefacts. With a com­

plete evaluation including sensitivity and false positive rate and an indication of the 

good performance, bootstrap methods may be used in commercial products which 

will be applied in clinical settings. 
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Screening Questionnaire 

Do you think that your hearing is normal? 

Have you ever had any persistent problems with your ears or hearing, for example 

discharging ears or earache? 

Do you suffer from troublesome tinnitus? 

Have you been exposed to loud noises, for example at work, gunfire or explosives? 

Are you suffering from or recently had a cold? 

Have you ever had attacks of dizziness or loss of balance related to vestibular (balance) 

disorder (if known)? 

Have you ever suffered from high or low blood pressure? 

Have you ever had an epileptic attack with convulsions or loss of consciousness? 

Have you ever suffered with heart trouble? 

Are you receiving any medical treatment or medication that may affect your hearing? 



Appendix B 

Consent Form 

Consent form to be completed by adult subjects taking part in an exper­

iment (Adults are 18 years of age or older) 

Exposure Number: 

University of Southampton 

Institute of Sound and Vibration Research 

Before completing this form, please read the objectives of the experiment which has 

been provided by the experimenter on the next page of this form. 

This consent form applies to a subject volunteering to undergo an experiment for 

research purposes. The form is to be completed before the experiment commences. 

I, .................................................................................................................................. . 

of ................................................................................................................................. . 

(address or department) consent to take part in 'Recordings of auditory brain­

stem response (ABR) with different stimulus levels and without stimula-

tion' to be conducted by Miss Jing Lv in ....... , November, 2004. 

The purpose and nature of this experiment have been explained to me. I understand 

that the investigation is to be carried out solely for the purposes of research. I 
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am willing to act as a volunteer for that purpose on the understanding that I shall 

be entitled to withdraw this consent at any time, without giving any reasons for 

withdrawal. My replies to the above questions are correct to the best of my belief, 

and I understand that they will be treated by the experimenter as confidential. I also 

agree that the data obtained in this experiment can be used in the research and PhD 

thesis of Miss Jing Lv. 

Date: .................................... Signed: 

(Subject) 

I confirm that I have explained to the subject the purpose and nature of the inves­

tigation which has been approved by the Human Experimentation Safety and Ethics 

Committee. 

Date: .................................... Signed: ......................................................................... . 

(Researcher in charge of experiment) 

This form must be submitted to the Secretary of the Human Experimentation Safety 

and Ethics Committee on completion of the experiment. 



Appendix C 

Formulae Derivation 

Correlation coefficiEmt 

The different formulae for correlation coefficient (r) are derives as follow: 

In order to explain the procedures of transformation clearly, the nominator is denoted 

as A, the first sum of the denominator about variable x is denoted as B and the last 

sum of denominator about variable Y is denoted as C. Let us calculate step by step 

in the order of A, Band C. 

Because x has the same value of each of the n observations and could be taken as a 

constant and put outside the sign of sum. 

A = L: (Xi - X)(Yi - y) 

= L: (XiYi - XiY - XYi + xy) 

= L:XiYi - YL:Xi - xL: Yi+XY L: 1 

" 2Jli " ~ " ~~ = ~ XiYi - n' ~ Xi - n' ~ Yi - n' n' n 

= L: XiYi - L: x~ "£ Yi 
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Equivalently, 

B = 2: (Xi -x)2 
, = 2: (x; - 2XiX + x2

) 

= 2: x; - 2x2: Xi+X2 2: 1 

= 2: x; - 2 2:n
xi 2: Xi + (EnXi )2n 

= ""'x? - ~ U t n 

c = 2: (Yi - y)2 ' 

= 2: YT - (2: ~i)2 

165 

Therefore, correlation coefficient could be represented in another expression by re­

placing the original A, B, and C by the new formulae as follows: 
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Sensitivity for data Set A 
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Figure D.l: Sensit ivity estimated from Set A by Basic, MAR, SAR and SMAR­
bootstrap methods. 
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