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According to the work by Randol, there exists pairs of closed curves on a surface S for
which the geodesics in their respective homotopy classes have the same hyperbolic length,
irrespective of the hyperbolic structure on S. In this work we look at this result in

connection to hyperbolic 3-manifolds, and in particular the book of I-bundles manifold.

We consider the following problem.

Let G = m (M), where M is a compact hyperbolizable 3-manifold, and consider all
faithful representations of G into SL,(C). Find a topological condition P that can be
imposed on the elements of G so the following is true. If g € G satisfies condition P, and

h € G is any element such that x[h] = x[g] then h is conjugate to g**.

Here x[g] is the character of g, which is defined in terms of the trace of the matrix
representation of g in SLs(C). This problem can be translated into a question about the
lengths of the geodesics in M by utilizing the connection between the character of an
element of G, and the length of its geodesic representative in M. We therefore look for a
property that gives some geometrical information about the manifold. For the purpose of

this work the manifold M is a book of I-bundles.
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Chapter 1

Introduction

The question we are addressing concerns the characters and lengths of closed geodesics in
hyperbolizable 3-manifolds. Let M be a compact hyperbolizable 3-manifold, let

G = m (M) and let F(G) be the space of all faithful representations of G into SLs(C).
For each w € G we can define the character x[p(w)] in terms of the trace of the matrix
representation p in SLs(C). The most general question is to give a characterisation of
elements w and p of G for which the characters are the same. Although some work has
been done towards resolving this question, there is not a complete solution even in the
simpler case when considering hyperbolic surfaces. However, there is more known in
relation to proving almost the converse of this general question. The specific question to
be considered here is to determine a reasonable property P such that if g € G satisfies
condition P and if x[g]=x[h] then h is conjugate to g*'. Equivalently, because there is a
connection between the trace of a group element and the length of the corresponding
geodesic in M, the problem is to look at what criteria ensure that two closed geodesics on
a hyperbolic 3-manifold have the same hyperbolic length. More specifically, we want to
find a natural property on the geodesics of M such that if two geodesics have the same

length then they are essentially the same curve in M (up to orientation).

The initial chapters provide some background to hyperbolic manifolds and characters,

and looks at what is already known in relation to this question.

In chapter two we build a picture of hyperbolic space, giving the basic models we will use,
namely the upper half plane and upper half space models. We introduce the idea of a

general Kleinian group and various properties and relevant results, which will be of use



later.

In chapter three we move on to look at hyperbolic 2- and 3-manifolds and give some
definitions and results from 3-dimensional topology. These become useful when

addressing the questiomn.

In chapter four we give the formal definition of a character of an element of a group, (as
given by Horowitz in his papers as listed), and build the connection between this notion
and the length of the equivalent closed geodesic in the hyperbolizable manifold. At the
end of this section we give 1- and 2-dimensional results in relation to the question,
including their proofs. These are due to Horowitz and McShane respectively. Note that
these are included to show how the problem can be broken down, and elements of these
proofs will be used in connection with the results later on. We also give a slight
modification to one of these results by removing one of the redundant assumptions. There

is an indication of other possible connected questions that may be considered.

In chapter five we look at the main problem in terms of the Book of I-bundles manifold.
We define this manifold in general and then reduce to a specific case, the 3-page book, for

which we consider the following results.

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid
torus binding and three pages. Let g € m(M), such that g is represented by the core
curve of the solid torus in M. Then g is uniquely determined by x[g]. By this we
mean that if h € 7 (M) with x[g] = x[h] then h is conjugate to g*' (so h is also

represented by the core curve in M).

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus
binding and three pages. Let g € m;(M) be represented by a geodesic v that is
contained in a component of the boundary of M (v C S; C OM). Let h € my(M) be
represented by another curve 4 such that x[h] = x[g]. Then v C S; also.

In chapter six we consider these results in connection with the general Book of I-bundles

manifold, looking at how all the elements needed for the proofs extend to the more

general setting.



In chapter seven, we consider the following idea.

Conjecture 7.0.3 Let G = w1 (M) where M is a book of I-bundles with single solid
torus binding and three pages. Let g € G be represented by a geodesic in M which is
uniquely projected onto a simple closed curve on F (where F is the spine of M). Let

h € G such that x[g] = x[h], then h = g*!.



Chapter 2

Hyperbolic Space and Associated
Groups

In this chapter we give the background material needed in the work. As we will be using
both the hyperbolic plane, H?, and hyperbolic 3-space, H?, we give here the particular
models we will use for each dimension, namely the upper half plane model for H?, and the
upper half space model for H3. We will also introduce particular groups associated to H?
and H*, namely Fuchsian Groups and Kleinian groups respectively, and look at their
actions on the boundary of the respective models. There are many references for this
material, in particular, for hyperbolic 2-space and Fuchsian groups the majority of it may
be found in [And99], [Kat92] or [JS87] and for hyperbolic 3-space and Kleinian groups,
the majority may be found in [MT98] and [Mas88].

2.1 Hyperbolic n-space

In this section we will look at hyperbolic space, defining the models that will be used
throughout. As this work is concerned with hyperbolic surfaces and hyperbolic manifolds,
the focus will be on hyperbolic 2-space and hyperbolic 3-space. We will complete this
section by looking at some hyperbolic trigonometry, and derive some results that will be
used in later chapters of this work. In particular we look at hyperbolic triangles,

including the statements of the hyperbolic sine and cosine rules.



2.1.1 The Upper Half Plane model

We start by defining a particular model used for the hyperbolic plane HZ.

Definition 2.1.1 The upper half plane model for H?, consists of all poihts in the top half

of the complex plane, or more formally

={z € C|Im(z) > 0}.

VIR here z = Re(z) and

This is equipped with the hyperbolic metric ds = ~—
y = Im(z).

To measure the length of a given path in this space we integrate along the path over the
metric ds. To be more precise, let f: I = [0,1] — H? be a piece-wise differentiable path
with f(¢) = z(¢) + 7y(t). Then the hyperbolic length is given by

JHEGE [

(1)

The lines in the hyperbolic plane are the geodesics (the paths of shortest length) with
respect to the hyperbolic metric. In the upper half plane model these consist of Euclidean
straight lines and Euclidean semicircles orthogonal to the real axis. Any two points in H?
can be joined by a unique hyperbolic geodesic. If we consider the set of all piece-wise
differentiable paths between two points = and ¥ in H?, then we can define the hyperbolic
distance to be the infimum of the lengths over this set of paths. It is known that this
distance realiziﬁg path is a parameterization of the hyperbolic line segment joining = and
y. Therefore, as a consequence, the hyperbolic distance between two points is the

hyperbolic length of the hyperbolic line segment joining them.

Now consider the boundary of the model, by considering the ‘end points’ of the lines in

H?2. These either lie on the real axis or, in the case of the vertical Euclidean lines, lie at

co. This gives the following definition,



Definition 2.1.2 The boundary at infinity of the upper half plane model, denoted
Ooo(H?), is given by R =R U {co}. (This is the one point compactification of R.)

We refer to the points of O (H?) as the points at infinity of H?. Although this boundary

is important, we must note here that these points are not included in the upper half plane.

The geometry of H? is determined by its congruent transformations, or its isometries, by
which we mean the automorphisms of the model that preserve the hyperbolic distance
and angles. Before we can consider the isometries of the model we must first take a look

at a particular group of transformations called Mobius transformations, which are defined

as follows.

Definition 2.1.3 Mdbius transformations are linear fractional transformations which

map from C to C and have the form z — Zzz:fg where a,b,c,d € C and ad — be # 0.

Here C = CU {oo} and is the Riemann sphere. (This is the one-point compactification of

the complex plane.)

Note that we can normalize any such transformation (by dividing a, b, ¢ and d by
vad — bc) and get another representation of the same Mdobius transformation which has
determinant equal to 1. Therefore, without loss of generality, we may assume that

" ad — be = 1 for all our Mébius transformations.

We can split Mébius transformations up into particular sets by giving a classification. We
classify Mobius transformations by conjugating a given transformation by another
appropriate Mobius transformation that puts it into a standard form. We then classify

these standard forms. This gives the following classification.

Definition 2.1.4 Let m be a Mobius transformation that is not equal to the identity

transformation. Then

e Ifm is conjugate to z — z + 1, then we call m parabolic.

e Ifm is conjugate to z — Az, (A € C\ {0,1}) and |A| = 1, then we call m elliptic.



e If m is conjugate to z — Az, (A € C\ {0,1}) and |A| # 1, then we call m lozodromic.

e Ifm is conjugate to z — Az, (A € C\ {0,1}) and A > 1, A € R, then we call m

hyperbolic.

(Note that from definition 2.1.4 we see that hyperbolic Mobius transformations are a

particular type of loxodromic Mébius transformations. )

The above is a complete classification as these are the only possible standard forms. For a
proof of this see the discussion given in [[And99] section 2.4] which goes through every

possible Mobius transformation and shows that it must be conjugate to one of these

standard forms.

Note that definition 2.1.4 also gives the action of each type of M&bius transformation.
Parabolic elements act as translations, elliptic elements act as rotations about some origin

and loxodromic (and hence hyperbolic elements) are a composition of a dilation and a
rotation in C.

For the purpose of this section, (while considering H?), we will consider the set of Mobius
transformations with real coefficients (i.e. a,b,c,d € R). This particular subset forms a

group under composition of functions. To see this note that the composition of any two

transformations of this kind corresponds to the product of the corresponding matrices

_[a b
9=\ c d
-dz=b_ corresponds

with ad — bc = 1. The inverse transformation, which has the form z — <2 )

with real entries of the form

to the inverse matrix g~!. These matrices form the special linear group denoted SLo(R).
There is a slight ambiguity here as in a given Mobius transformation we can multiply
a,b,c and d by —1 and still have ad — bc = 1. Hence each Mobius transformation as

defined is represented by a pair of matrices £g in SLy(R), and therefore represented by a

unique matrix in PSLy(R) = SLy(R)/{£I}.

This group PSL,(R) acts on H? by homeomorphisms and so maps H? onto H?
continuously. It can be shown that PSL,(R) is a subgroup of Isom(H?) (the set of

isometries of H?), and in fact PSLy(R) is equivalent to the orientation preserving half of



the isometries of H? denoted by I'sormn™(H?). With this in mind, the elements of PSL,(RR)

may be classified as follows.

Definition 2.1.5 An element T # id of PSLy(R) is distinguished by the value of the

square of its trace, tr?(T) = (a + d)?, as follows:

o if 0 < tr*(T) < 4, then T is elliptic.
o if tr?(T) =4, then T is parabolic.

e if tr*(T) > 4, then T is hyperbolic.

(Note that apart from the hyperbolic elements there are not any other loxodromic
elements in PSLy(R). Any loxodromic element that is not a hyperbolic element will have
tr*(T) equal to either a negative or complex number. The trace of a matrix in PSLy(R) is

always real, and hence the square of the trace will always be a non negative real number.)

The elements of P.SLy(R) can also be classified by the number of fixed points that they

have in the hyperbolic plane.
e An elliptic element has a pair of complex conjugate fixed points, so has one fixed
point in HZ.
e A parabolic element has one fixed point in R U {oc} = 8, (H?)
e A hyperbolic element has two fixed points in RU {oo} = 84, (H?), which are joined

by a hyperbolic geodesic called an azis.

The above summary gives a complete classification of the elements of P.SLy(R), as shown

by the following lemma which comes from [[And99] page 25].

Lemma 2.1.6 If an element of PSLy(R) has three or more fized points then it is the

identity transformation and therefore fizes every point of H>.



For a proof of this result see [And99].

To connect these together, let Mb(H?) be the group of all Mobius transformations which
map H? onto itself. Then Méb(H?) can be identified with Isom™ (H?) which as we have
seen can be identified with PSL,(R). Hence the elements of PSLy(IR) give us the

complete group of orientation preserving isometries for the upper half plane model. This

completes the description of the model for HZ.

2.1.2 The Upper Half Space Model

The upper half space model is the 3-dimensional analogue to the upper half plane model

for H2. For completeness we define this model of hyperbolic 3-space.

Definition 2.1.7 The upper half space model is the set
H® = {(2,t) € C x (0,00)} = C x (0,00).

Visually we identify C with the zy-plane in R3 and then this model consists of all points
above the zy-plane. (Note that the Ty-plane itself is not included but forms part of the

boundary at infinity.)

This model is equipped with the following hyperbolic metric

dz|? + di?
gs — Vde* +d?

- ¢

As in the two dimensional model, to measure length in this space we integrate along the
given path over the metric ds as given above. More precisely, let f : I = [0,1] — H?® be

piece-wise differentiable path then we define the hyperbolic length of f to be

lengthys(f) :/ds.

f

The hyperbolic geodesics in this model, or paths of minimal length using the given

hyperbolic metric, are either Euclidean lines or Euclidean semi-circles with centres on C,

9



which are perpendicular to C. In the same way as in the 2-dimensional model, any two
points can be joined by a unique hyperbolic geodesic. We define the hyperbolic distance
in the same way (the infimum of the length over all paths between the two points) and as

a consequence this is realized by the length of the hyperbolic line segment joining the two

points.

By considering the ‘endpoints’ of the geodesics in H®, we see that the boundary at infinity

can be identified with the Riemann sphere, C = C U {oo}.

For this space it is also possible to define the geodesic planes or hyperplanes as either

vertical Euclidean planes or hemi-spheres perpendicular to C.

Considering the isometries of H?, denoted Isom(H?), it is noted that they are generated
by reflections in the geodesic planes of the model. More importantly from this we know
that the orientation preserving isometries of H*, denoted by I'sorn™(H?), are generated by

reflections in an even number of geodesic planes in H?.

These reflections can be extended onto the boundary at infinity in the following way.
First look at how the geodesic planes in H? intersect C. A hyperplane in H? is the
intersection of either a sphere in R* with centre in the zy-plane, or a vertical Euclidean
plane in R®, with H3. The first case gives a circle in C and the second a line, which can
be viewed as a circle through infinity. Hence both types of hyperplane give a circle in C.
Therefore Isom(H?) extends maps from the Riemann sphere to itself which consist of
compositions of reflections in circles in C. Similarly Jsom* (H?3) extends maps which
consist of compositions of reflections in an even number of circles in C. The same is true
in reverse. This extension of an element of PSLy(C) to an element of M6b(H?) is called

the Poincaré ezxtension. (For more details on this see [MT98].)

Each element of T som™(IH?) can be expressed as a Mobius transformation, so has the form
(“Zz:[g, where a,b,c,d € C and ad — bc = 1. Similar to the 2-dimensional case, this can be
identified with PSLy(C). Hence we can view PSL,(C) as either the group of orientation
preserving isometries of H® or as the group of Mobius transformations of C= Ouo(H?). In

the same way as in PSL,(R), we can classify the elements of PSLy(C) by looking at the

number of fixed points they have. They are also distinguished by the value of the square
of the trace of the matrix 7' in PSLy(C). The only difference to the classification is that

10



we have general loxodromic elements in PSLy(C) and not just hyperbolic elements.

A loxodromic element has two fixed points in the boundary of H®, (which can be joined
by a hyperbolic geodesic called an axis), and #r*(T) has either non-zero imaginary part or

it is real and lies in (—co,0) U (4, c0). (Note the overlap with hyperbolic.elements which

have tr?(T) € (4, 0).)

2.1.3 Hyperbolic Trigonometry

To complete this section we now take a brief look at some hyperbolic trigonometry to
highlight the points needed later. As in Euclidean geometry, a polygon is one of the basic

objects in hyperbolic geometry. We will mainly be dealing with hyperbolic triangles, but

we define a hyperbolic polygon as follows.

Definition 2.1.8 A hyperbolic polygon is a closed convex set in the hyperbolic plane that
can be expressed as the intersection of hyperbolic half planes, such that the vertices of the

hyperbolic polygon do not accumulate (so the collection of half planes are locally finite).

As an example of this a hyperbolic triangle is a hyperbolic polygon which can be realized

as the intersection of three half-planes.

As in the case of a Euclidean triangle, there are trigonometric rules for hyperbolic
triangles relating its interior angles to the hyperbolic lengths of its sides. These can be
derived by linking Euclidean and hyperbolic distances between pairs of points and then

making use of the Euclidean trigonometric rules (as the method of measuring angle is the

same in both spaces).

Let T be a hyperbolic triangle with side lengths a, b, ¢ and interior angles «, (3, ¥ such that
the side of length a is opposite angle «, the side of length b is opposite angle 8 and the
side of length ¢ is opposite angle y. The following are three basic trigonometric rules in

the hyperbolic plane.

The hyperbolic law of sines

sin(a)  sin(B)  sin(y)

sinh(a) _ sinh(b) _ sinh(c) (2.1)

11



The hyperbolic law of cosines 1

cosh(a) = cosh(b)cosh{c) — sinh(c)sinh(b)cos(a) (2.2)

The hyperbolic law of cosines 11

cos(y) = —cos(a)cos(B) + sin(a)sin(B)cosh(c) (2.3)

Using these trig rules we can compare the lengths of the sides of a hyperbolic triangle and

consider what happens when side length changes.

Proposition 2.1.9 Let T be a hyperbolic triangle with side lengths a,b, ¢ and interior
angles o, B, as described. Let the sides of length a and b increase at the same rate (so
% = %), and let the angle v between themn be fized. Then the side of length ¢ increases in
length also.

Fig. 2.1: hyperbolic friangles |

Proof:  Let the sides of length a and b increase at the same rate (so assume a,b — oo
evenly, by which we mean that % = % where ¢ is measure of time), and keep the angle «y

between them fixed. Then sinh(a) — oo and sinh(b) — oo (at the same rate).

We also know that o and § will lie between 0 and 7 (as they are angles in a standard

hyperbolic triangle), and so sin{a) > 0 and sin(3) > 0. Therefore,

sinh(a)

sin(a)

and similarly
sinh(b)
sin(0B) -

Therefore by the hyperbolic law of sines (see equation 2.1),

12



sinh(a) _ sinh(c)
sin{a) sin(y)

As « is fixed, sinh(c) — 0o = ¢ — oo0. Therefore the side of length ¢ must be increasing
]

also.

Note that we can get more from the proof of proposition 2.1.9

Corollary 2.1.10 Let T be a hyperbolic triangle with side lengths a,b, c and interior
angles o, B, as described. Let the sides of length a and b increase at the same rate (so
% = %), and let the angle v between them be fized. Then angles § and « must decrease.
Proof:  Asside lengths a and b increase at the same rate, the area of 7' is increasing.
To see this note that at any point in time a piece has been added to 7' (see right hand
picture of figure 2.1). The area of the new triangle will be equal to the area of T plus the
area of this new piece. By the Gauss-Bonnet formula, area(T) = 7 — (a + 8 + 7). As
area(T’) increases and 7 is fixed, then either & or 8 (or both) must decrease. As a and b

are increasing at the same rate then both « and § will decrease by the hyperbolic law of
O

sines.

We can say more than this.

Proposition 2.1.11 Let T be a hyperbolic triangle with side lengths a,b,c and interior
angles «, B,. Let the side of length a increase in length (so a — oo) and let the side of
length b be fized and the angle v between them be fized. Assume that angle B (opposite the
side of length b) be smaller than . Then the side of length ¢ increases.

Fig. 2.2: hyperbalic triangles Il

Proof: =~ We have assumed a — oo, which means that sinh(a) — co. As « will lie

between 0 and 7 (as it is an interior angle of a hyperbolic triangle), then 0 < sin(a) < 1,

13



and so
sinh(a)

sin(a)

— OO

Hence by the hyperbolic law of sines (see equation 2.1),

sinh(a) _ sinh(c)
sin(a) sin(y)

As 7y is fixed, this implies that sinh(c) — oo = ¢ — o0 as required. O

Note that we assume that 3 < 7 here so that c is always increasing. If § > 7 then as the
side of length @ increases in length, the side of length ¢ will decrease until § = 7 and then
increase after that. In the context in which we will be using this result, a will be

increasing arbitrarily, and so this assumption is not necessary. We only require that ¢ will

ultimately increase (i.e. ¢ — oo in the limit).

Hence if you have a hyperbolic triangle with one side length increasing arbitrarily and one
side length fixed, and the angle between them fixed, then (assuming that the length

changes enough) the remaining side length must will ultimately be increasing.

Proposition 2.1.12 Let T be a hyperbolic triangle with side lengths a,b, ¢ and interior
angles a, B,y as described. Let the sides of length a and b increase at the same rate (so
Z—‘t‘ = %). Let the angle v between them tend to an angle 8 (for 8 fized such that

0 < 8 < 7). Then the side of length ¢ increases in length also.

Proof:  As a — oo then sinh(a) — co. We know that 0 < @ < 7 (as « is an interior
angle of a hyperbolic triangle) and so 0 < sin(a) < 1). Therefore (independent of what

happens to «), @
sinh(a

sin(a) B

Hence, by the hyperbolic law of sines,

sinh(a)  sinh(c)
sin(a)  sin(y) -

As v — 8 <, then +y is never equal to 0 or 7, and so sin(-y) # 0 for all v — §. Therefore

sinh(c) — oo and hence ¢ — co as required.

These results will become useful in chapter 5.
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2.2 (zeneral Kleinian Groups

In this section the aim is to consider the groups that can be associated to the two spaces
already described in section 2.1. In the 2-dimensional case these are Fuchsian Groups and
in the 3-dimensional case they are Kleinian Groups. Both groups display very similar

properties which will be described here.

2.2.1 Fuchsian Groups

Fuchsian groups are a kind of group associated to H?, as they comprise of a particular
group of isometries of the hyperbolic plane. They are also the fundamental groups of

hyperbolic surfaces. Most of the material in this subsection may be found in [Kat92] and

JS87].

To define a Fuchsian group, we first require the following definitions.

Definition 2.2.1 A subset of H? is discrete if each point of the subset can be isolated
from all other points in the subset. By this we mean that there exists an open

neighbourhood around each point of the subset that does not contain any other point of the

subset.

A subgroup T' of Mob(H?) is discrete if the set T'(z) = {v(2)|y € T'} is discrete for every
point z € H2.

From section 2.1.1 we know that M¢b(H?) can be identified with PSLy(R), and we have

the following definition for discreteness for a subgroup of this group.

Definition 2.2.2 Let ' be a subgroup of PSLy(R). We call T discrete if there does not
exist a sequence {y,} of distinct elements of I' converging to the identity. This means that
there does not ezist a sequence {ﬂ/n(z) = g:zz—:s:} of elements of PSLy(R) such that

a, — *1,b,—0, ¢, —>0andd, — £1 as n — oc.

We can now give the definition of a Fuchsian group in terms of discrete subgroups.

15



Definition 2.2.3 A Fuchsian group is a discrete subgroup of the orientation preserving

isometries of H?. Equivalently, a Fuchsian group is a discrete subgroup of PSLy(R).

Example:  The following are examples of Fuchsian groups

a) Hyperbolic cyclic subgroups generated by z — Az (A > 0). These subgroups consist of

only hyperbolic elements and the identity.

b) Parabolic cyclic groups generated by a parabolic element, for example the standard
form z — z -+ 1.

c) Elliptic cyclic groups, these subgroups are generated by an elliptic element and are

Fuchsian groups if and only if they are finite. (For proof of this see [[JS87] section 5.7].)

These first three examples are elementary Fuchsian groups, which means that the limit
set A(T") of the Fuchsian group I' consists of at most two points. (The limit set is defined

to be the set of limit points - see definition 2.2.6.) The next example is non-elementary.

d) The Modular group

az+b
cz-+d

PSLQ(Z):{ :a,b,c,dEZ,ad—bc=1}

is a Fuchsian group. This follows from the fact that Z is discrete in R, which implies that
SLy(Z) is a discrete subgroup of SL;(R) and consequently PSL,(Z) is a discrete
subgroup of PSLy(R) as required.

Now consider the action of a Fuchsian group on H?2. Fuchsian groups do not necessarily
behave discontinuously in the normal sense. By ‘discontinuously in the normal sense’ we
mean that every point of H? has a neighbourhood which is carried off itself by all
elements of the group except for the identity. (This definition comes from [JS87] page
232. They look at lattices, which have this discontinuity property.) In particular if a
Fuchsian group contains elliptic elements then these have fixed points in H? around which
the element acts as a rotation. Therefore these fixed points cannot have such a
neighbourhood required for discontinuity. However there does exist a ‘weaker’ notion of

discontinuity that can be applied to Fuchsian groups.
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Definition 2.2.4 Let I' be a subgroup of PSLy(R). We say T" acts

properly discontinuously on H? if, for every compact subset K in HZ, the set

{v eETIV(K)N K # B} is finite.

This is a property that all Fuchsian groups have irrespective of what type of elements
they contain. In fact this is a necessary and sufficient condition for a group to be

Fuchsian as detailed in the following theorem (found in [[Kat92] page 32]).

Theorem 2.2.5 IfI' C PSLy(R), then I" is a Fuchsian group if and only if T’ acts

properly discontinuously on H?2.

(For the proof see [Kat92].)

Theorem 2.2.5 gives another way of defining a Fuchsian group as one that acts properly

discontinuously on H2. Considering the way in which a Fuchsian group acts on H? gives

another important set.

Definition 2.2.6 Let z € H? and let {v,} be a sequence of distinct elements in a
Fuchsian group I' C PSLy(R). Then if {v,(2)} tends towards a point a, this is called a
limit point. The set of all possible limit points is called the limit set of I' and denoted

A(D).

Hence for a Fuchsian group, A(I') CR U {c0} = HAQ, and so from definition 2.1.2 the limit
set is a subset of J, (H?).

We know more than this. The appearance of the limit set of a Fuchsian group depends

upon how many points it contains. The details are given in the following two theorems.

Theorem 2.2.7 If A(T') contains more than one point then it is the closure of the set of

fized points of the hyperbolic transformations of T'.

Theorem 2.2.8 If A(T') contains more than two points, then either
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e A(T) =RU{oo} = 8(H?) (hence a circle) or,

e A(I) is a perfect nowhere dense subset of O.,(H?) (hence a Cantor set).

Here perfect means that every point of A(I') is a limit point of the points in the set A(T").

See [[Kat92] pages 65-67] for complete proofs for both of these theorems.

2.2.2 Kleinian Groups

To define a Kleinian group we need to extend the ideas of discreteness and the group being
properly discontinuous given in section 2.2.1. The definition of a properly discontinuous

subgroup of PSL,(R) extends directly to PSLy(C), so definition 2.2.4 applies here.

The definition of discreteness also extends to PSLy(C), but we give an equivalent

definition here.

Definition 2.2.9 Let I' be a subgroup of PSLy(C), then I' is discrete if there does not
exist a sequence {y,} of distinct elements of I' converging to y for any v € PSLy(C).

Lemma 2.2.10 Let I act on H®, then the notions of discrete and properly discontinuous

are equivalent.

Note that this equivalence does not completely extend to C. Here all subgroups that act
properly discontinuously are discrete, but there are examples that show the converse is
false. For example the group PSL,(Z[i]) is a subgroup of PSLy(C) which is discrete but

not properly discontinuous anywhere on C.
Definition 2.2.11 A Kleinian Group I' is a discrete subgroup of PSLy(C).

Referring back to the description of H? in subsection 2.1.2, it is clear that this is
equivalent to saying that a Kleinian group is a discrete subgroup of the orientation
preserving isometries of H®. With the equivalent notions of discreteness and acting

properly discontinuously on H?, it allows a third definition of a Kleinian group. (As given

in [[MT98] page 26].)
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Definition 2.2.12 A subgroup T’ of Isom™(H?) is called a Kleinian group if T’ acts

properly discontinuously on H3.

The elements of a Kleinian group can be conjugated into standard forms for classification

(in the same way as in definition 2.1.4). They may also be classified by their fixed points.

Lemma 2.2.13 An element of a Kleinian group has finite order if and only if it has a

fized point in H>.

Equivalently an element of a Kleinian group has finite order if and only if it is elliptic.
Visually this is clear as elliptics act as rotations around their fixed points, whereas the

parabolics and loxodromics act as translations and dilations.

Definition 2.2.14 A Kleinian group I is torsion free if it has no elements of finite order
other than the identity.

The types of surfaces and 3-manifolds we will be considering have torsion-free

fundamental groups. Hence they do not contain any elliptic elements (or equivalently any

fixed points in H?).

2.2.3 Action of T on ((A:

A Kleinian group I" acts on ® by splitting it into two parts called the limnit set and the

domain of discontinuity.

Definition 2.2.15 Let UT) be the set of all points z € C such that there exists a
neighbourhood U of z so that v(U)NU # 0 for only finitely many v € T. We call Q(T")

the domain of discontinuity of I'.

Hence Q(I") is the largest open set in C on which T acts properly discontinuously.

This set (I") is open and in general will have many connected components. Since () is

open there are at most countably many connected components, and in fact it is known
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that ©(T") has either 0, 1, 2 or countably infinitely many components. As a subset of C it

is either dense or empty.

In the case when Q(T") is empty, T is called a Kleinian group of the first kind and

otherwise IT" is called a Kleinian group of the second kind.

For a Kleinian group T', consider the orbit of any point p € C under the action of the

group. By this we mean consider the set,

T(p) = {v(»)|y T}

We know that I" acts properly discontinuously on H?®, and so has accumulation points
only in C. (This is because the starting point p is in @, and therefore any other point in

the sequence will remain in C under the action of I)

Definition 2.2.16 The accumulation points described above are called limit points of T,

and the set of all these points is called the limit set of T, and is denoted by A(T).

Note that from definition 2.2.16, the limit set of a Kleinian group appears to depend upon

a base point p, but this is not actually the case.

Lemma 2.2.17 For any two points p and p’ € H3, the set of accumulation points of T'(p)

and T'(p') are the same, and so the limit set does not depend on the choice of base point.

(For proof of the above see [[MT98] page 41].)

From definition 2.2.16 it is clear that we know some of the points which must be
contained in A(T'). Let Fiz(v) be the set of points in C fixed by an element
v € Isom™* (H*). Then by definition 2.1.4, if 7 is a loxodromic or parabolic element then

Fiz(y) C A(T'). We know more than this.

Theorem 2.2.18 Let T be a Kleinian group, then C is the disjoint union of A = A(D)
and @ = Q(T).
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(For the proof of theorem 2.2.18 see [Mas88].)

As a corollary to the above, observe the following.
Corollary 2.2.19 Let I" be a Kleinian group, then A(T) = C— Q).

By definition, A(T) is a closed set of points. From the comments made about Q(I") and
corollary 2.2.19 we know that A(T') is either nowhere dense or everything.

2.2.4 Convex Hulls and Convex Cores

In this subsection we define sets associated to A(T).

Definition 2.2.20 The convez hull of a Kleinian group T, denoted CH(T'), is the

smallest non-empty closed convexr subset of H? that is invariant under T.

For a more visual description take pairs of points in A(I") and join them by hyperbolic

lines with these end points. Then CH(I") of A(T") is the smallest convex set containing all

of the hyperbolic lines.

Definition 2.2.21 The convez core of H*/T", denoted by C(I') = CH(T')/T, is the

smallest convezr submanifold of H®/T' which has a fundamental group isomorphic to

m (HJ/F) .
The convex core of a hyperbolic manifold contains all of its closed geodesics.

2.2.5 Finiteness conditions

To close this chapter we are going to highlight some of the useful properties that a
Kleinian group can possess. These properties make the group easier to handle and to

understand in many cases. For more details on these properties see [MT98] and [Mas88|.
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Kleinian groups were originally studied because of their connections to Riemann surfaces,
and then later with hyperbolic 3-manifolds. More details about hyperbolic manifolds
(including definitions) may be found in the next chapter and the references given there.
For now we are going to define some manifolds to which we directly relate Kleinian

groups, and which we need in order to discuss the finiteness conditions.

Definition 2.2.22 Let T be torsion-free Kleinian group. The complete hyperbolic
3-manifold associated to T' is the quotient space H2 /T with the quotient topology.

Definition 2.2.23 Let T be a torsion-free Kleinian group. The (possibly disconnected)

Riemann surface associated to T is the surface Q(I")/T.

The quotient surface Q(T")/T" has a complex structure induced from Q(T') and hence
Q(T)/T" is a countable union of Riemann surfaces lying at infinity of the complete

hyperbolic manifold H?/T.

Definition 2.2.24 Let T’ be a torsion-free Kleinian group. The topological manifold
associated to T' is the space (H* U Q(T))/T (possibly with boundary). This is called the

Kleinian manifold, and its interior H®/T admits a hyperbolic structure.

Note that if (I") is empty (and so I is a Kleinian group of the first kind) the Kleinian
manifold is just equal to the complete hyperbolic manifold H®/T".

Definition 2.2.25 A Riemann surface S is analytically finite if it has finite topological

type. This means that the surface is closed (compact without boundary) except for a finite

number of punctures.

We say that a non-elementary Kleinian group T' is analytically finite if the Riemann
surface, QI)/T, associated to T is analytically finite. This means that the space consists
of a finite number of surfaces each of which is of finite genus with only a finite number of

punctures. Equivalently T is analytically finite if area(QT)/T") < oo.
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(Note that here the area of Q(T')/T" is induced by the hyperbolic area on Q(I") C @)

Ahlfors proved that if I' was finitely generated then it is analytically finite. The converse
is not true. For a counterexample see ‘Killing a component’ in [[Mas88| page 175]. For a

detailed discussion on Ahlfors finiteness theorem see [[MT98] sections 4.1 and 4.2].

By considering the fundamental polyhedron of T the next property can be considered.

Definition 2.2.26 A Kleinian group I is geometrically finite if it has a fundamental

polyhedron bounded by a finite number of convex sides.

In the 2-dimensional case algebraic finiteness (by which we mean that I' is finitely
generated) is equivalent to geometric finiteness, but the concepts are not coincident in the
3-dimensional case. For more information on finitely generated Kleinian groups and their

geometric properties see [[MT98] chapter 4, pages 102-130).
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Chapter 3

Hyperbolic manifolds

The focus for this chapter is to provide the background to some basic properties of
hyperbolic 2- and 3-manifolds. The initial section looks at hyperbolic surfaces, giving
basic definitions and useful properties including the decomposition into pairs of pants by
the pants decomposition. The most important result is the collar lemma, which is vital to
later chapters. The other two sections concentrate on hyperbolic 3-manifolds, giving some
particular examples and their properties, including the Book of I-bundles which is the

manifold that is central to later chapters.

The material used in this chapter may be found in [Bus92], [Hem?76], [MT98] and [Rat94].

More on Riemann surfaces may be found in [JS87].

3.1 Hyperbolic Surfaces

Primarily the interest is in hyperbolic surfaces (these are surfaces which have the
hyperbolic plane as their universal cover). Initially here though we introduce Riemann

surfaces and will then go on to look at some universal properties of hyperbolic surfaces.

Before hyperbolic 3-manifolds were studied extensively by Thurston, the study of
Kleinian groups was important because of their connection to Riemann surfaces. We have

already encountered the Riemann sphere C, which is a particular example of a Riemann

surface. The following gives the general definition.
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Definition 3.1.1 A Riemann surface R is a connected complex 1-manifold. By this we
mean a connected Hausdorff space R where there exists a family of sets and maps (¢;,

Uj), for 3 =1, 2, ..., called an atlas which satisfies the following conditions.

e {Ujls =1, 2, ...} is an open cover of R (where U, is an open subset in R).
e Each ¢; is a homeomorphism of U; onto an open subset of the complex plane.

o IfU=U;NU; #0 then ¢; 087" : ¢;(U) — ¢:(U) is an analytic map.

To clarify the above definition, the first condition states that the surface R is covered by a
collection of open sets, such that each is homeomorphic to open subsets of C (by the
second condition). It is possible that two of these open sets could overlap, and the
homeomorphisms corresponding to these particular open sets are related by an analytic

homeomorphism (as given in the third condition).

By definition 3.1.1, a Riemann surface does not have a boundary. A Riemann surface
which is homeomorphic to a compact 2-manifold without boundary is closed. We call a

Riemann surface that is homeomorphic to the interior of a compact 2-manifold with or

without boundary topologically finite.

Each end of a topologically finite Riemann surface has a regular neighbourhood which is
conformally equivalent to either a punctured disc or an annulus. If the neighbourhood of
the end c is conformally equivalent to an annulus then we say that ¢ bounds a disc or
corresponds to a removed disc or hole in the surface. If the neighbourhood of the end c is
conformally equivalent to a punctured disc, then we say that ¢ corresponds to a puncture
on the surface or that the surface is punctured at c¢. There does not exist a holomorphic
homeomorphism from a punctured disc onto any annulus. If R is a topologically finite
(possibly disconnected) Riemann surface, then R is analytically finite if each end of R has

a regular neighbourhood conformally equivalent to the punctured disc.

Riemann surfaces, and in particular hyperbolic surfaces, are completely classified as
detailed in the following Uniformization theorem. This theorem is stated in most of the

references given at the start of this chapter, and may also be found in [And99)].

25



Theorem 3.1.2 Any Riemann surface R has the Riemann sphere C = CU {oo}, the

complex plane C or the upper half plane H? as its universal covering.

Hence every simply connected Riemann surface is conformally equivalent to either the
sphere, the complex plane, or the hyperbolic plane. If R has the upper half plane H? as
its covering surface, then we can represent it as H*/F, where F is a Fuchsian group that
is isomorphic to the fundamental group of R. When a Riemann surface is represented in
this form, the surface inherits a natural hyperbolic structure from the covering H?, and

can therefore be regarded as a complete 2-dimensional hyperbolic manifold or hyperbolic

surface.

One way to consider hyperbolic surfaces is by decomposing them into smaller pieces. One
such decomposition, called the pants decomnposition (as given in definition 3.1.3 below),
breaks the hyperbolic surface into genus 0 surfaces with three geodesic boundaries. These
‘pieces’ are called pairs of pants (or a three-holed sphere). These can be obtained by
gluing together two copies of the same right-angled geodesic hexagon in the hyperbolic
plane along every other side. Further descriptions of the pants decomposition may be

found in [Bus92] and [Pau99].

Definition 3.1.3 The pants decomposition of a compact surface S is a decomposition of

the surface along simple closed curves into three-holed spheres.
Such a decomposition is determined by a choice of a mazimal collection P of simple closed
curves on S such that

e the elements of P are pair-wise disjoint

e cach element a of P is homotopically essential and non-peripheral (so a is not

homotopic into the boundary of S)

e no two elements of P are freely homotopic.

In basic terms the pants decomposition involves cutting the surface along a collection of

disjoint closed geodesics (defined according to the hyperbolic metric on the surface) until
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the only simple closed geodesics left are homotopic to the existing collection of closed

geodesics.

Pairs of pants are the building blocks for all compact Riemann surfaces of genus greater
than one, (see [Bus92]). Given any three lengths for the boundary geodesics, a unique
pair of pants is determined, and all pairs of pants may be found in this way. Hence pairs
of pants are uniquely determined by the lengths of their three boundary geodesics. (See
[Pau99] and [[Bus92| theorem 3.1.7 page 65].) By the nature of the decomposition this set
of three boundary geodesics will be equivalent to two or three simple closed curves on our
hyperbolic surface (the number depends on whether the curve in the original surface is
separating or non-separating). As pairs of pants are uniquely defined by their boundary
geodesics, to understand more about them and the decomposition we look at what is
known about simple closed geodesics in hyperbolic 2-manifolds. The following lemma,

with its proof, can be found in [Pau99].

Lemma 3.1.4 The free homotopy class of any homotopically non trivial simple loop in a

hyperbolic surface contains a unique simple closed geodesic.

(Note that this lemma is true for all Riemann surfaces and is stated in all generality in

[Pau99].)

To put this into context, it is along a set of these unique geodesics that the hyperbolic
surface is cut to get the pairs of pants in the decomposition. There is always more than
one way to perform a pants decomposition for a particular compact hyperbolic surface,
but what is common for all decompositions is the number of pieces the surface is
decomposed into and the number of geodesics along which the surface is cut. It can be
shown that a orientable, closed surface of genus g without boundary always contains

3g — 3 disjoint closed curves along which to cut, and the surface decomposes into exactly

2g — 2 pairs of pants. (The proof of this may be found in [Bus92].)

As we may apply the pants decomposition to any Riemann surface, it is possible to apply
it in reverse and build all hyperbolic surfaces by gluing together pairs of pants along their
boundary geodesics. Hence these boundary geodesics determine the complex structure of

the entire surface, therefore parameterizing the hyperbolic surface using the pants
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decomposition. We know that we have 3g — 3 geodesic length functions (one for each
closed curve along which we cut), but we also have to consider how the pairs of pants are
attached to one another. They can be glued together with any amount of twisting, so
there will be 3g — 3 ‘twisting’ parameters (which equate to the angle of the twist). To
perform a twist, remove a collar around a simple closed geodesic that forms the boundary

between two of the constituent pairs of pants. Then glue the collar back into the surface

after rotating one of its boundary components by some angle.

Hence, all hyperbolic surfaces are uniquely determined by the lengths of the boundary
components of their constituent pairs of pants (giving 3g — 3 non-negative real numbers),
as well as the angles of the twists between glued pairs of pants (giving a further 3g — 3
real parameters). These 6g — 6 lengths and angles which parameterize the hyperbolic
surface are known as Fenchel-Nielsen coordinates. We will use the length parameters later
on. In particular utilizing the fact that we can change the length of one of these geodesics
whilst keeping the others fixed and still have a hyperbolic structure on the surface. In
using this fact we note that we are able to deform an arbitrary curve on a hyperbolic
surface by altering the lengths of the curves in the pants decomposition that it intersects.
This uses the fact that the pattern of crossings over the pants decomposition does not
change (for an arbitrary geodesic) as we change the lengths of the pants curves. This

becomes particularly useful in section 5.5, when considering surfaces with boundary.

(We will not explicitly use the twist parameters, but more detail may be found in [[Bus92]

pages 69-75]. For more on the pants decomposition and Fenchel-Nielsen coordinates see

[Bus92], [Pau99] and [Mas01].)

As an aside here, note that although only compact hyperbolic surfaces have been
discussed, the pants decomposition can be performed on non-compact hyperbolic surfaces.
When consideririg non-compact surfaces a new type of neighbourhood occurs called a
cusp. A cusp is an end of the hyperbolic surface which corresponds to a parabolic element
of the fundamental group. (See [MT98] pages 5 and 6].) One of the assumptions made in

the work which follows is that the group does not contain parabolics, so we do not need

to deal with cusps.

There exist several universal properties that hold for every hyperbolic surface. One such

fact is that in the hyperbolic world things are curved in an opposite manner in transversal
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directions. This feature is highlighted in the following collar lemma, which essentially says
that around short geodesics there exist long tubular neighbourhoods called collars whose

width solely depends upon the length of the geodesic.

Lemma 3.1.5 Let m(l) = arcsinh (;m—;@—)—> which tends to co as | — 0 (and which
tends to 0 as | — oco). Then for a simple closed geodesic « of length | in an arbitrary
hyperbolic surface R, the set c(a)={p € R|d(p,a) < m(l)} is an embedded annular
netghbourhood of .

The proof is not included here, but a full detailed proof using the pants decomposition
can be found in [Bus92|. There are many references for the collar lemma. A statement of

it can be found in [MT98] and a different proof can be found in [Hal81].

The collar lemma will become useful later when considering what happens on certain

surfaces as lengths of curves change.

3.2 Hyperbolic 3-manifolds

The purpose of this section is to introduce 3-dimensional hyperbolic manifolds, and to see

how they can be expressed as quotient spaces of H?® by a Kleinian group.

A hyperbolic 8-manifold M is a space which is locally modeled on H®. This means that in
a small neighbourhood of a point on M it looks and behaves like H?. The precise
definition of a hyperbolic 3-manifold follows, and is similar to definition 3.1.1 of a

Riemann surface.

Definition 3.2.1 A connected Hausdorff space M is called a hyperbolic 3-manifold if it
has a family (U;, ¢;), for j = 1, 2, ..., which satisfies the following conditions

e Each U; is an open subset of M and {U,} covers M.

e Each ¢; is a homeomorphism of U; onto an open subset of H3.
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o IfU =U;NUj is non-empty, then it is connected and ¢; 0 g7+ : ¢,(U) — ¢i(U) is

an orientation preserving diffeomorphism which preserves the hyperbolic metric.

For any complete hyperbolic 3-manifold M, we have a torsion-free Kleinian group I' such
that M = H3/T. Any such T is unique up to conjugation by elements of 7som(H?).

Conversely, for any torsion-free Kleinian group I', the manifold M = H?/T" is a complete

hyperbolic 3-manifold.

As mentioned in section 2.2.5, there are two 3-manifolds associated to a torsion-free
Kleinian group I', namely the hyperbolic manifold H3/I" as detailed above, and the
topological manifold (possibly with boundary), namely (H? U Q(T))/T". The latter is the
Kleinian manifold and its interior H?/T" admits a hyperbolic structure. Another way to
view the hyperbolic manifold H?/T" is by constructing it from a fundamental polyhedron

by pasting its sides according to the side-pairing transformations.

The manifolds of interest here are hyperbolizable 3-manifolds. These are defined to be

3-manifolds whose interior admits a hyperbolic structure or can be written as H®/I" where

I' is a torsion-free Kleinian group.

Note that the hyperbolic 3-manifolds given here and in the previous chapter can also be
defined in terms of Kleinian groups with torsion. In this situation the manifold is not

necessarily smooth and the quotient is an orbifold. For more details see [MT98] and

[Rat94].

3.3 Properties of hyperbolic 3-manifolds

In this final section of chapter 3 the focus is to describe some properties that hyperbolic

3-manifolds may possess. Much of what is given here may be found in [Hem?76] and

[MT98].

First we formally define a hyperbolizable 3-manifold as in section 3.2.

Definition 3.3.1 A compact 3-manifold M is hyperbolizable if there exists a Kleinian
group T so that M is homeomorphic to (H® UQ(T"))/T, or alternatively M is uniformized
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by I'. These 3-manifolds have an interior that admits a hyperbolic structure and

int(M) = H3/T.

In this work it will be assumed that the 3-manifolds are hyperbolizable and hence it is
possible to put a hyperbolic structure on the interior. The following set of definitions give

properties of embedded surfaces in hyperbolizable 3-manifolds.

Definition 3.3.2 A surface S in a compact hyperbolizable S-manifold M is
properly embedded if S is compact and orientable and if either S is contained in OM or

SNoM =05.

Definition 3.3.3 Let S be an embedded, orientable and compact surface in a compact
hyperbolizable 3-manifold M (possibly with boundary), such that S is properly embedded in
M. If S satisfies one of the following conditions then S is incompressible:

e S is a topological sphere which does not bound a ball

e S is a topological disk whose boundary is a non-trivial simple closed curve in the

boundary of M

e S is a surface other than a sphere or a disk such that the homomorphism between

fundamental groups induced by the inclusion map is injective.

Otherwise it is compressible.

Definition 3.3.4 A surface S is two-sided in a hyperbolizable 3-manifold M if there is
an embedding h : S x [—1,1] — M such that;

o h(z,0) ==z for any x € S, and

o h(S x [-1,1]) NOM = h(dS x [~1,1]).
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The following definition describes a property which all hyperbolizable 3-manifolds have.

Definition 3.3.5 We say that an orientable, compact, hyperbolizable 3-manifold M is
irreducible if every embedded 2-sphere bounds a 8-ball in the manifold M.

In particular, if M is an irreducible 3-manifold which is not a 3-ball, then every
component of M must have positive genus. As I' acts freely on the space H?* U Q(I') by
orientation-preserving homeomorphisms, the Kleinian manifold (H? U Q(T))/T is

irreducible. For a proof of this see [MT98] page 64]. Hence a hyperbolizable 3-manifold is

necessarily irreducible.

As a corollary to this definition, note that if a topological 3-manifold M is irreducible then
mo(M) is trivial. This follows directly from the sphere theorem. (We have not included

this theorem in our discussion, but a statement may be found in [MT98] theorem 2.37.)

Definition 3.3.6 A compact irreducible 3-manifold M is Haken if it contains a two-sided

incompressible surface.

It is known that a compact hyperbolizable 3-manifold with non-empty boundary is

Haken. For a proof of this see [[Hem76] Lemma 6.8].

Definition 3.3.7 We say that a topological 3-manifold M is aspherical if mo( M) is

trivial.
It follows from this that the Kleinian manifold is aspherical, and as any hyperbolizable

3-manifold is necessarily irreducible they are also aspherical. As a corollary to this it is

known that as mo (M) is trivial then m;(M) for i > 2 is also trivial for these 3-manifolds.

Definition 3.3.8 We say that a topological 3-manifold M is atoroidal if all embedded

incompressible tori are peripheral.

32



Peripheral means that the inclusion map of the torus 7 into the 3-manifold M is
homotopic to a map f : T — M for which f(T) C OM, so any torus can be moved to the
boundary of M by homotopy. (This definition holds for any embedded surface.)

A surface S in a compact hyperbolizable 3-manifold is essential if it is properly

embedded, incompressible and non-peripheral.

Definition 3.3.9 Let S be a properly embedded annulus in a 3-manifold M. Then S is

essential if it is incompressible and not homotopic into the boundary of M.

With all these properties in place, we complete this section by giving two examples of
hyperbolizable 3-manifolds. They can be considered ‘extreme’ cases in terms of the

number of essential annuli they contain.

Example:

e Let Fy, Fy, ..., F, be a collection of compact, orientable surfaces of positive genus
with connected non-empty boundary. Let B; = F;zI and let 8yB; be the annulus
OF; x I. Let T be a solid torus and let A; be a family of disjoint parallel closed
annuli on JT homotopically equivalent to the core curve on 7. Form a manifold M
from T and {B;} by identifying the boundary d,B; with A; for all i by an
orientation-reversing homeomorphism. M is called a Book of I-bundles. A Book of

I-bundles contains lots of essential annuli. This manifold will be considered in

further detail from chapter 5 onwards.

e Let M be a compact hyperbolizable 3-manifold with incompressible boundary, and
let 51, ...,.S, be a collection of components of M. The subset S = 5; U...U S, of
dM is an-annular if each S; is incompressible and if there does not exist an
embedded essential annulus in M both of whose boundary curves lie in S. A
compact hyperbolizable 3-manifold M is acylindrical if its entire boundary M is
an-annular.

Acylindrical hyperbolizable 3-manifolds contain no essential annuli. A specific
example of one of these manifolds is called the Tripos Link (and is equivalent to

S$% — N(G) for G a specific graph). This particular example is easier to draw than
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explain without a picture. (See figure 3.1 below.) Such a family of examples are

constructed by Paoluzzi and Zimmermann in [PZ96].

L

S? - N(G)
Fig 3.1: The Tripos Link
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Chapter 4

Characters of Curves

The aim of this chapter is to lay the foundations and set the scene for the character
problem. In the first section we introduce the idea of the character of an element of a
group as given by Horowitz in [Hor72], including some character relations. We also look
at the particular problem of determining when two elements have the same character. In
section two we look at what is known in connection to this in terms of free groups.
Although it appears to be an algebraic concept as it relates to representations of groups
in SLy(R) and SLy(C), there are connections to the geometrical world. In the third
section this link is described in detail, which provides the information needed for
McShane’s result (as given in [McS93]) for characters of curves on surfaces as given in
section 4.4. We close this chapter by looking at other questions with regard to characters

of curves on surfaces. Most of this material may also be found in [And03] and [Hor75].

4.1 Characters

We begin by giving some definitions, including that of the character of an element of a
group.

Let G be a finitely generated, torsion free group. (We assume G is torsion-free as the

focus is on fundamental groups of hyperbolic 2- and 3-manifolds.)

Let F(G) = {p: G — SLy(C) faithful} be the space of all injective homomorphisms from
G into SLy(C), where SLy(C) is the group of 2 x 2 matrices with complex entries and
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determinant 1.

Definition 4.1.1 For an element w of G, the character associated to w is the function
x[w] : F(G) — C given by x[w]|(p) = tr(p(w)), where p(w) is the 2 x 2 matriz in SLy(C)

that represents w and tr is the usual 2 X 2 matriz trace.

The following character relations come directly from definition 4.1.1 and the trace

relations of 2 x 2 matrices with determinant one.

Proposition 4.1.2 From definition 4.1.1 we have the following character relations.

1) An element w of G and its inverse w™" determine equal characters, so x[w] = x[w™']
2) For elements v,w of G, xw] = x[vwr™!]
3) For elements v,w of G, xwv] = x[w]x[v] — x[wr™].

Proof: Let A and B be arbitrary 2 x 2 matrices in SLy(C). Then the following trace

relations can be verified by direct calculation.
1) tr(A) =tr(A™h)

2) tr(A) =tr(BAB™1)

3) tr(AB) = tr(A)tr(B) — tr(AB™1)

These combined with definition 4.1.1 establish the character relations. D

One possible problem is to try and determine when two distinct non-conjugate elements
in the group G have the same character. An approach to this would be to use the

character relations given in proposition 4.1.2 on distinct elements to show that they have

the same (or different) characters.

If we consider F, = free(a,b) (the free group on two elements), then we have the
following as given in [Hor72].

Proposition 4.1.3 Let w = w(a,b) be any element of Fy. Then

xlw(a,b)] = P(x[a], x[b], x[ab]), where P is a unique polynomial.
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This can be proven using the character relations of proposition 4.1.2. Horowitz proves

this for a free group F,, on n elements in [Hor72].

With this in mind, the following example takes two non-conjugate elements of F5, and

uses the relations from proposition 4.1.2 to show they have the same character.

Example: Let G = F; = free(a,b) and consider the two cyclically reduced words
g =a’b"'ab and h = a?bab™1. As these are cyclically reduced words, it is apparent that

g 2 k%!, and so we apply the character relations to show x[a?b~!ab] = x[a®bab™!].

x[a®vtab] = xla]x[ab T ab] — x[ab" e ba ]

= xla](x[ab™"]x[ad] — x[ab™'b"a™"]) — x[a]
= xla](x[ab]x[ab~"] — x[ab~?a™"]) — x]q]
= xla](x[ab]x[ab™"] — x[b?]) — x[a]

= x[a)(x[ablx[ab™"] — x[ab*a"]) — x[a]

= xla]x[abab™"] — x[q]

= xla]x[abab™"] — x[a™"]

= xla]x[abab™"] — x[aba~'b"'a "]

= x|a®bab™?]

(4.1)

In fact for any representation p : free(a,b) — SLy(C) it is known that

%P = xal0) X () xar-1 (9) — X22(0)] — xalp) = x8(p)-

Note that this example is not just restricted to F3. If (a,b, ...) is a free group on two or

more generators then x[a?b~'ab] = x[a%bab™].

Using proposition 4.1.3, we have a way of constructing such exampies of non-conjugate

elements with the same character, as given in [Hor72].
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Proposition 4.1.4 Let u and v be elements of Fy for which x[u] = x[v] and let w(u,v)

be a word in u and v. Then x[w(u,v)] = x[w(v,u)].

Proof: Let w = w(a,b) be any element of Fy, = free(a,b). Then by proposition 4.1.3,
x[w] may be expressed as a polynomial x[w] = P(xla], x[b], x[ab]).

Hence x[w(u, v)] = P(xlul, x{ol, x[uv]) = P(x[v], x[ul, xou]) = xfw(v, v)]

Here the middle equality comes from the assumptions that x[u] = x[v] and x[uv] = x[vu].

O

Given two non-conjugate elements of a free group, the algorithm given does answer the
question of whether they have the same character. There are two problems with this
method. Firstly, if the words being considered are long it may take a long time to
determine the polynomial and hence whether the two have the same character. Secondly,

and more importantly, the algorithm provides no geometric information.

4.2 Free Group Result

In this section we focus on a result that gives some information in relation to the
character problem for elements of a free group. The main result of this section (see
theorem 4.2.2) is due to Horowitz in [Hor72|, and gives conditions on the group elements
that ensure that if they have the same character then they are conjugate elements. First

the following definition is required.

Definition 4.2.1 An element g of a free group G is primitive if there exists a free basis

S for G containing g.

The following result is due to Horowitz, who gave necessary conditions for an element of

the free group to give rise to the same character as a specified element. (See [theorem 7.1

in [Hor72]].)

Theorem 4.2.2 Let G be a free group of any countable rank, and let g be an element of

G. If a is a primitive element of G and x[g] = x[a™], then g = a®™.
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Before giving the proof of theorem 4.2.2, the following result from [Hor72| is required.

Lemma 4.2.3 Let U and U* be cyclically reduced words in the free group F,, such that
tr(U) = tr(U*). Then every generator of I, occurs evactly the same amount of times in

U and U*, although possibly with 1 in the ezponent.

Proof:  The proof of this result follows by induction on n (the number of generators of

F,). Since F; can be embedded naturally into F3, the lemma will follow for F3 once

solved for Fy.

Let U and U* be cyclically reduced words in Fy = (a, b) with tr(U) = tr(U*). (Note that

as the trace of a matrix is invariant under conjugation, it is possible to cyclically permute
the syllables of U without altering its character, i.e. tr(ujug...usu;r1) = tr(Usp1. Usty..U; ),

hence cyclically permute the syllables until the word is in its simplest form so U is

cyclically reduced.) There are three possibilities for each.

Firstly U could be a power of a alone and so U = a® for some o € Z. Or U could be a
power of b alone, so U = b® for some 8 € Z. Finally U could be a word in both
generators, so U = a®'b1a%2b%2.. q® b for some a;...a5 € Z and B,...0, € Z.

Since we are dealing with free groups we may use the following representation of Fj into

SL,(R) given in [Hor72]. Let p € F(Fy) be defined by

p(a)=<3 /\t_l )p(b)=(/; /ﬁl)

It follows that

(5 5 )=y )

Hence if U = a* then tr(U) = A* + A7, If U = ¥° then ¢r(U) = 1 + P, If U contains
both generators then tr(U) is a function of both a and g.

If U* = a®, as tr(U”) = tr(U), then U must be of the form U = a® otherwise tr(U) would

be a non-constant function of 3 contradicting the equality of the traces. Thus we have
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A%+ A" = X% 4+ A~ for all \. Hence U* = a*® = U*!. Hence the generator a*' occurs
exactly the same amount of times in U and U~.

The case that U* = b®" follows in a similar way. If both @ and b occur non-trivially in U

then they must occur non-trivially in U*. Hence the lemma is provén for. Fs.

To complete the proof, the induction step needs to be put in place, so if the lemma is true

for F,, then this implies it is also true for F,, ;1 (for n > 2). This is done as follows.

Let U and U* be cyclically reduced words in F,; with tr(U) = tr(U*). It is now
necessary to show that if g is any generator of F,,;;, then O(U, g) = O(U*, g), where

O(o, g) denotes the number of times g*! occurs in a given word.

Let a,b # g be two other generators in F,,;;, and let P, Q) be positive integers such that P
is greater than any exponent of a in U or U*. Take the homomorphism 7 : F,,;; — F),

such that ¢ — a©b%a” and every other generator maps to itself.
By assumption tr(U) = tr(U*) in F,4; and so tr(n(U)) = tr(«(U*)) in F,.

Let V and V* be words formed from #(U) and 7(U*) after cyclic reduction. Hence
tr(V) = tr(V*) in F,. This means that V has at least as many syllables as U. Moreover,

V will not contain ¢*!, and b9 will occur in V for each occurrence of g** in U.
Therefore
O(V,b) = O(U,b) + QO(U, g)

and
O(V*,b) =0(U*,b) + QO(U", g)

Hence by rearranging and using O(V, b) = O(V*, b) we get
o(U*,g9) =0(U,9)

as required.

We now use this to prove theorem 4.2.2

Proof:  Choose a free basis for the free group G including a, and let U be the cyclically

reduced word obtained from g. Then U equals a™ or a~™ by lemma 4.2.3. O]

Note that this result only applies to free groups as the definition of primitive is restricted

to these groups only.
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4.3 Connection between characters and lengths of

curves

According to the work by Randol (in [Ran80]) there exists pairs of closed curves on a
surface S for which the geodesics in their respective homotopy classes have the same
hyperbolic length irrespective of the hyperbolic structure on S. This comes from the link
between the length of a curve and the character of the corresponding element of the
fundamental group. It transpires that if two group elements have the same character then
the corresponding geodesics in the surface must have equal length. In this section we
build this geometrical connection between discrete, faithful representations of a group G

into SLy(R) and SLy(C) and the lengths of curves in hyperbolic 2- and 3-manifolds.

First we will solve a minor discrepancy between the definitions given. We will be
considering the fundamental groups of hyperbolic manifolds, and these are defined to be
discrete subgroups of PSLy(R) (for hyperbolic surfaces) and PSL,(C) (for hyperbolic
3-manifolds). From the definition of a character of an element (see definition 4.1.1), the

representation of the group is mapped into SLs(R) or SLy(C).

(Note that the argument given below is for hyperbolic surfaces, but the same result can

be used for hyperbolic 3-manifolds with the appropriate changes.)

Let Q) : SLa(R) — PSLy(R) be the usual quotient map, and let p be a discrete faithful
representation of a finitely generated, torsion-free group G into PSLy(R). Then p can be
lifted to a discrete faithful representation p of G into SLy(R). (See [Kra85] for details of
this lifting.) By this we mean that p= Q o p.

Conversely if G is a finitely generated torsion-free group and p is a discrete faithful
representation of G into SLy(R), then the composition p = @ o p is necessarily a faithful
representation of G into PSLy(R), because the image p(G) of G into SL,(R) cannot

contain -id (the non-trivial element of the kernel of Q).

Hence if we start with a discrete, faithful representation into P.SLs(R) then we can find a
discrete faithful representation into SL,(IR) and vice versa. In particular if we start with
a discrete, faithful representation p of a finitely generated torsion-free group G into

SLy(R), we can compose with ) to find a discrete faithful representation of G into
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PSL,y(R), and this gives rise to an orientable hyperbolic surface H?/p(G).

(Note for hyperbolic 3-manifolds we are mapping from SL,(C) to PSLy(C) and get an
orientable hyperbolic 3- manifold H3/p(G).)

Now this discrepancy has been dealt with, the aim of the rest of this section is to explore
the connection between the character of an element of a fundamental group and the

length of the corresponding geodesic in the manifold.

First we need the following definition.

Definition 4.3.1 An element g of a group G is mazimal if g generates a mazirnal cyclic

subgroup of G. Equivalently g is not a proper power of any other element of the group.

As an aside here, the following shows why it is possible to restrict the attention to

maximal elements of a group. Let w € G be a maximal element of the group G. From the

trace and character relations given in proposition 4.1.2, for m > 2,

tr(u™) = tr(u™ tr(u) — tr{u™?)

Putting tr(u™) = 7 (tr(u)), we can define a family of polynomials. Here 7,,(z) is called

the Chebyshev polynomial and is defined by the recursion
Tm(Z) = TT—1(2) — Trp—2(2)

where 73 (z) = z and 19(z) = 2.
Using the identity x[wu] = x[w]x[u] — x[wu~!] we see that x[w™] = 72, (x[w]), and hence
the character x{w™] is a polynomial in x[w]. Hence we may restrict the focus to maximal

elements of the group.

(Note that for free groups, if an element is primitive then it must be maximal, but the
converse is false. This is only true for free groups as the term primitive does not apply to

other groups, although the notion of maximality of an element of a general group still

holds.)
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The groups being considered are discrete torsion-free subgroups I' of PSLy(R). There is a
one-to-one correspondence between free homotopy classes of closed curves in the quotient
manifold H?/T', and the conjugacy classes of maximal cyclic subgroups of I'. This means

we only need to look at the maximal elements of the group.

Looking at the classification of elements in PSLy(R) (see definition 2.1.4), there are three

cases to consider. Let o be an element of PSL,(R).

e Let a be elliptic. There are no elliptics in our groups by assumption (as the groups

are torsion free).

e Let a be parabolic. Parabolic elements correspond to cusps on the surface, and as a
closed curve moves out along the cusp the length of it gets smaller and smaller.
Hence for a maximal parabolic there are closed curves in the quotient manifold
whose lengths tend to zero. With this in mind, define the length of this homotopy

class of curves, and therefore the conjugacy class, to be 0.

e Let a be loxodromic. Loxodromic elements have two fixed points on OH2. They are
conjugate to z — A%z for some A > 1, A € R. Here A? is called the multiplier of «.
A loxodromic element has a hyperbolic line which joins its two fixed points called
an axis, and the loxodromic acts as a translation along its axis. Without loss of
generality, let the fixed points be at 0 and co. (If they are not then it is possible to
find a Mdbius transformation that takes them there, and these transformations are
distance preserving.) It can be shown that the translation distance is In(A?). For a
maximal loxodromic element, the axis projects to a closed geodesic of length In(A?)
in the quotient manifold and among all closed curves in the free homotopy class
determined by ¢, this closed curve will have minimal length. Hence define this to be

the length of this homotopy class of curves and the equivalent conjugacy class.

The above gives a way of assigning a length to each type of group element, so it remains

to make the connection between this length assignment and the idea of the character of

the group element.

The character of an element of the group was defined in terms of the trace of the matrix

representation of the element in SLs(IR). The trace of an element in SLs(R) determines
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the multiplier A? of the corresponding element in PSLy(R). From the discussion above we
have assigned lengths to free homotopy classes of curves in terms of the multiplier, and

therefore the multiplier of the element in PSL,(R) determines the length of the closed
geodesic in the quotient manifold H?/p(G).

Specifically, if w € G and p(w) is a loxodromic with multiplier A? then ¢ = tr(p(w)) and
tr(plw)) = £(A + A7) and so A? = 1(t? — 2 £ t1/12 — 4) where the sign is chosen so

A2 > 1. Hence if we take two elements w and v of G which satisfy tr(p(w)) = tr(p(v)),
and p(w) is loxodromic, then we know two things. Firstly p(v) must also be loxodromic
(otherwise traces would not be equal). Secondly that p(w) and p(r) must correspond to

closed geodesics of equal length in the quotient manifold.

Being more specific, if G is any finitely generated, torsion-free group and if w and v are
two elements of G which generate non-conjugate maximal cyclic subgroups and which
have the same character, then we know that tr(p(w)) = tr(p(v)) for all p € F(G). Hence
the lengths of the free homotopy classes determined by w and v are equal in H?/p(G)
(where here we remember that p = Q o p and @Q : SLy(R) — PSLy(R)).

Hence our original problem of finding pairs of elements of G that give rise to the same
character over the space of faithful representations of G into SLy(R) (and that generate
non-conjugate maximal cyclic subgroups of G) is equivalent to finding pairs of closed

curves on the quotient manifold whose geodesics have the same hyperbolic length over all

hyperbolic structures.

This connection between character and length will now be used to prove McShane’s

Lemma.

4.4 McShane’s Lemma

In this section we state and prove McShane’s result for surfaces, as given in [McS93]. This
lemma Jooks at fundamental groups of closed orientable surfaces, and says that if the
group element is maximal and represents a simple closed curve on the surface, then it is

uniquely determined by its character. (See [lemma 6.2 in [And03]].)
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Lemma 4.4.1 Let G, be the fundamental group of a closed orientable surface S, of genus
p > 2. Let g € G, be a mazimal element that represents a simple closed curve on S,.

Then x[g] determines g. By this we mean that if there exists another mazimal element h

€ G, with x[h] = x|[g] then h = g**.

The following gives a proof for McShane’s result as given in [And03]. We give this proof

because we will use elements of it in later sections of this work.

Proof: By the discussion in section 4.3 we may restrict attention to discrete faithful
representations of G, into SL(R). We then get hyperbolic structures on S, by taking the
quotient of H2 by Q o p(G,). This uses the fact that p(G,) in SLs(R) is isomorphic to

Q o p(G,) in PSLy(R) because G, is torsion-free and hence has no 2-torsion.

Let g, h € G, and we assume that x[g] = x[h]. Using the discussion in section 4.3 we
know that g and A represent curves on .S, with the same hyperbolic length for every
hyperbolic structure on .5, (i.e. the length of a closed geodesic on .S, determines the

character of the corresponding element of G, and vice versa).

Now we use a result about non-simple curves. If h repreéents a homotopically non-trivial
non-simple curve ¢ on S, then there is a positive uniform lower bound for the length of
the closed geodesic homotopic to ¢ over all hyperbolic structures on .S,. This lower
bounds depends on the number of self-intersections the geodesic has. (See [Bas93]
corollary 1.2.) However if h represents a homotopically non-trivial simple closed curve no
such lower bound is imposed on the length of the closed geodesic homotopic to it. In fact
there exist hyperbolic structures for which the length of the closed geodesic goes to 0.
Using this fact we conclude that as g represents a simple closed curve on S, then s must

also represent a simple closed curve on S,,.

Now we are reduced to considering two simple closed curves on S, so that the lengths of
their corresponding closed geodesics are equal independent of the hyperbolic structure.

We are reduced to three cases.

Firstly the simple curves that g and A represent could intersect. Using the collar lemma
(see lemma 3.1.5), as one of these curves increases in length the other will decrease. By

our assumption that our curves have the same hyperbolic length this cannot occur.
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Secondly the simple curves that g and h represent could be completely disjoint. We can
eliminate this case by using Fenchel-Nielsen coordinates of Teichmuller space (as
described in section 3.1). From the discussion in section 3.1, we are able to change the

length of one of the two curves completely independently of the other. This again cannot

occur by our assumption.

This leaves the final case, which is that the simple curves that g and h represent coincide,

d

which means that they are conjugate, and this is the result we require.

It is possible to remove one of the conditions given for g in lemma 4.4.1.

Lemma 4.4.2 We can remove the mazimal condition from McShane’s lemma. By this

we mean that we can restate the lemma 4.4.1 as follows;

Let G, = m(Sp), where Sy is a closed orientable surface of genus p > 2. Let g € G,
represent a simple closed curve on S,. Then x[g] determines g. By this we mean that if

there ezists another element h € G, with x[h] = x[g] then h = g*'.

Proof:  Let g,h € G, and assume x[g] = x[h]. Let g = ¢** (for k € N) where ¢

represents a simple closed curve on S,.

If £ = 1 then g = ¢ and g is a maximal element representing a simple closed curve and we

are done by lemma 4.4.1. Hence we may assume k& > 2.

Removing the maximality condition on g does not effect the discussion from section 4.3
connecting character and length. Therefore we may still use the connection to length, and
so if x[g] = x[h] then we know that g and h represent curves on S, with the same

hyperbolic length for every hyperbolic structure on S,.

Note also that the fact we used about non-simple closed curves does not rely on the fact
that g is maximal and so as g is a power of a simple closed curve, then A must also

represent a power of a simple closed curve.

We are again reduced to considering powers of simple closed curves in three cases. Firstly
the powers of simple curves that g and h represent could intersect. The collar lemma does

not rely on the maximality condition so we may still rule out this case in the same way as
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before. Secondly the powers of simple curves that g and h represent could be disjoint.
Again we may use Fenchel-Nielsen coordinates and see that we can change the length of
one without effecting the other. Hence the powers of simple curves that g and A represent
must coincide, and so we know that hA must be conjugate to the same simple closed curve -

representing ¢, but h may be equal to ¢*' where | # k. Hence we know that h = gc'q™"! for

some g € Gp.

Therefore x[h] = x[qclq™] = x[c!] (by character relations). Therefore as x[g] = x[h] we
know that x[c*] = x[c].

From the discussion at the start of the chapter, we know that x[c"| may be written as a
polynomial in x[c] of degree n. Therefore we have a polynomial in x[c] of degree k equal

to a polynomial in x[c] of degree I. Hence k = £1. Hence h = g*! as required. Cl

4.5 Other surface problems

There are other conditions for surfaces that may be considered in relation to giving a
partial answer to the original character question. Firstly in section 4.4 we have only
considered closed orientable surfaces of varying genus. Another question would be to find
a similar condition for other hyperbolic surfaces, for example those with holes or possibly
punctures, where the parabolic elements of the fundamental group come into play. We

will be considering surfaces with non-empty boundary in section 5.5.

Alternatively we could look for other conditions. McShane’s result told us that a
condition on the group elements is that they had to be represented by simple closed
curves on the surface. We could therefore consider non-simple closed curves. From the
proof above we know that a simple closed curve and a non-simple closed curve may not
have the same character because there is a lower bound on the length of a non-simple
closed curve and no such lower bound exists for simple closed curves. The following

conjecture says something about non-simple closed curves having the same character.

Conjecture 4.5.1 Let g, h € G, where G, is the fundamental group of a hyperbolic

surface. If x[g] = x[h] then g and h are represented by curves on S, which have the same

number of self-intersections.
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To give an indication as to where the idea for this conjecture comes from, it is known that
there is a universal lower bound for the length of a non-simple closed geodesic on a
hyperbolic surface (as mentioned in the proof of 4.4.1). In [Bas93], Basmajian shows that
this can be improved by considering the self-intersection number of the closed geodesic.
He shows that there exists an increasing sequence M, tending to infinity Yso that if p is a
closed geodesic with self-intersection number & then [, > M. (Here [, denotes the length
of p.) Hence the length of a closed geodesic gets arbitrarily large as its self-intersection
gets large. (See corollary 1.2 of [Bas93].) Note that this result is a consequence of the

stable neighbourhood theorem.

This result only gives a bound on the length, but it may be possible to utilise this to

prove this conjecture.

From the results given in this chapter we have some information in relation to the
character problem in 1- and 2-dimensions. The two theorems given provide conditions
which ensure elements of particular groups have the same character only if they are

conjugate, and so gives a partial solution to the original question.



Chapter 5

Special Books of I-bundles

Chapter 4 gave a summary of some of what is known in relation to the character question
of how to determine when two non-conjugate elements of a group have the same
character. The two results given did not answer this question, but a modified version,
which forms a partial converse. They gave conditions on the group elements that ensured
that if an element of the group satisfied a particular property, then if another element of
the group had the same character then the two elements are conjugate. These results
considered elements of free groups (1-dimensional) and fundamental groups of surfaces
(2-dimensional). It is therefore natural to try and extend to 3-dimensions and look for

possible conditions for elements of fundamental groups of 3-manifolds.

In this chapter we discuss this question in relation to a particular type of 3-manifold called
a Book of I-bundles, reducing to a specific case on which we will build later. We discuss a
construction which ensures the manifold is hyperbolizable and give ideas for possible
properties satisfying the question. We then prove some results on surfaces with boundary
that are required when considering these properties. The most important technical tool is
the projection of geodesics in M onto its spine F'. This is discussed in detail in section

5.6. The chapter closes with the proofs of two of the properties for the specific manifold.

5.1 A three dimensional question

In this section we give the generalized question on which this work is based. The ultimate

aim would be to find a solution to the following problem about hyperbolic 3-manifolds.
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Let G = (M), where M is a compact hyperbolizable 3-manifold. Consider all faithful
representations of G into SL,(C). Find a topological condition P that can be imposed on

the elements of G so that the following statement is true:

If ¢ € G satisfies the condition P and if h € G is any element such that x[h] = x[g], then

h is conjugate to gt*. (If more than one such a condition P exists, then we want to find

the weakest.)

As stated above, this is a difficult problem as the property will need to apply to many
different manifolds. A particular property that fits the assumptions and holds for one
manifold may not be true for another manifold. For this reason we reduce the scale of the
question by considering just one particular family of hyperbolizable 3-manifolds called

Books of I-bundles. (These will be described in detail in the next section.)

Following the example of McShane’s lemma in the previous chapter (see section 4.4), the
sort of properties that are interesting will be those that give some geometrical
information, and hence relate to the geodesics in M. We will utilize the connection
between the length of a geodesic in M and the character of the corresponding group
element in 7 (M), and look for a natural collection of curves in M. We look at examples

of possible properties which fit in section 5.3.

5.2 Books of I-bundles

This section introduces the book of I-bundles manifold, giving the general definition for
the family of manifolds and then reducing to the specific case which will be considered in

relation to the character question in this chapter.

First we give a general definition that comes from [AC96]. To clarify this algebraic

description, a more visual interpretation follows the definition.

Definition 5.2.1 Let {F;:i=1,..,n}, be a collection of surfaces, each of which is a
compact orientable surface minus an open disc (so has a connected non-empty boundary).
Form B; by ‘thickening’ F;, so for each i, let B; = F; x I. Let 0yB; be the annulus

OF; x I. (Note that 0B; = (OF; x I)U (F; x I).)
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Let T be a solid torus and let A; (1 =1,...,n) be a family of disjoint parallel closed annuli
on 0T homotopically equivalent to the core curve on T. Hence the boundary of T is

decomposed into the closed annuli A; and the open annuli 0T — (A3 U ..U A,).

Form a manifold M from T and {B;} by identifying the boundary a(jBi with A; for all 1

by an orientation-reversing homeomorphism.

M s called o Book of I-bundles.

A loose translation of this definition is that M is obtained by gluing a collection of
I-bundles (thickened surfaces) to a solid torus along a family of parallel annuli. To
visualize, think of the solid torus as the binding and the I-bundles as the pages, and hence

M is a ‘book’.

Definition 5.2.1 gives the description of the basic book of I-bundles manifold which has a
single solid torus binding. This can be extended to give more complicated and general
books of I-bundles. The first way to extend the definition given is to consider the case
where M contains multiple solid torus bindings T4, T5, ..., T, The boundary of each T}
(k=1,...,m) is decomposed in the same way as described in definition 5.2.1. To ensure
that this manifold is connected, the I-bundles may be glued to more than one solid torus
(at least one I-bundle must be attached to two or more solid tori in M to ensure M is
connected). Hence M will contain I-bundles with bases consisting of surfaces with
multiple boundary components, so using the terminology given in definition 5.2.1, the

collection of surfaces { F;} will each be compact, orientable minus one or more open discs.

In this more general setting, it is possible for M to contain a ‘loop’. This means that M

comes back and meets itself, so we have a loop of solid tori and I-bundles.

Fig 5.1: M containing a loop
(Figure 5.1 illustrates M containing a loop. Here the vertices represent solid tori and the

edges are I-bundles.)
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This is not possible in the basic book of I-bundles given in definition 5.2.1 as here there

was only one solid torus binding, so would produce a ‘tree-like’ manifold (n-prong

manifold), without any loops.

A further extension would be to remove the compactness condition and allow parabolic
elements in the underlying fundamental group. In this situation a second kind of binding
appears in M (i.e. a thickened torus) which corresponds to the rank 2 parabolic
subgroups in m;(M). The I-bundles are still glued to the thickened tori along a union of
annuli, but only one of the boundaries of the thickened torus participates in the gluing.
This extension is beyond the scope of this work as parabolics are ruled out, but there is

potential for future work in considering M with these bindings in relation to the character

question.

Another consideration is how the gluing annuli are situated on each solid torus binding,
and therefore how the I-bundles are glued to the bindings. We could consider (p, g) curves
along which to glue, so the annuli wrap several times around the torus. For ease of
exposition, in this work we will be gluing along (0, 1) torus curves (as shown in figure
5.2), so the annuli do not wrap around the binding. There is potential here for future

investigation in relaxing this assumption.

Fig 5.2: (0,1} torus curve

In addition to these extensions, two further properties that can differ between Books of
I-bundles is the angles between the I-bundles on the solid torus, and the thickness of the
I-bundles. Although initially it is assumed that the angles between the I-bundles are
equal around the solid torus, this is relaxed in chapter 6 when considering more general

Books of I-bundles.

The most general book of I-bundles manifold will be one that incorporates all the above
extensions combined with the original basic definition. These are the only possibilities, as

can be seen from the following description from [CMT99].
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Definition 5.2.2 A generalized book of I-bundles is a compact irreducible 3-manifold M
with incompressible boundary, such that it is possible to find a disjoint collection A of
essential annuli in M so that each component of M obtained by cutting along A is either

a solid torus, a thickened torus or homeomorphic to an I-bundle.

Considering the most general book of I-bundles which incorporates all of these
components will make it more difficult to find a property to fit the question given in
section 5.1. It may even be the case that such a property will not exist or if one does it

will be very weak.

Initially we will focus on a particular book of I-bundles that fits in with definition 5.2.1.
Let M be the book of I-bundles with one single solid torus binding and three ‘pages’, or
three I-bundles which are attached to the solid torus by the gluing described in definition
5.2.1. For ease of exposition, the gluing occurs along (0, 1) torus curves (so the annuli do
not wrap around the torus). It is possible to draw a picture of this (see figure 5.3 below)
by representing the solid torus by a vertex and the I-bundles by three lines coincident with

the vertex such that they are evenly spaced (so the angle between each pair is the same).

Fig 5.3: 3-prong case

Once the discussion for possible properties for this case is complete, the aim is to extend

to the more general setting.

5.3 Possible properties

In this section the aim is to discuss possible properties that can be imposed on an element
of m (M) so that any other element with the same character is conjugate to it. (Here M is
a general book of I-bundles manifold.) As discussed in section 4.3, there is a relationship

between the character of an element of the fundamental group and the length of the
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corresponding geodesic in M. Note that although this is discussed in terms of surfaces in
section 4.3, it is indicated there that this also applies in 3-dimensions, where the
underlying fundamental group is Kleinian. Hence our problem of finding a property that
ensures that two elements with the same character are conjugate translates to finding two

curves whose geodesic representatives have the same length in the hyperbolic 3-manifold.

When considering potential properties what we are looking for is a natural collection of
curves in M. In the surface case the property consisted of the geodesic being simple, and
these curves form a natural family on any closed surface. We would like to find a similar

property in 3-dimensions for the book of I-bundles manifold.

Let g, h be geodesics in M such that x[g] = x[h]. We want to find a property on g that
implies that ¢ and h are the same curve (up to homotopy and orientation). The following

lists some ideas for such a property, with discussion as to why they may or may not hold

true.

e An initial idea is to let g be a filling curve on one component of the boundary of M.
(Note that g is a filling curve if it crosses every simple closed curve in that
boundary component S, or alternatively if § — g is a union of discs.) In order to
deduce that this property gives the required result, it would first be necessary to
show that any curve A with the same length is in the same boundary component
that g is situated. Once this has been deduced then the situation would be reduced
to a question about surfaces, and therefore it would be hoped that elements of the
proof of the surface result (see lemma 4.4.1) could be used to complete a proof. The
potential problem with this property in relation to the book of I-bundles manifold is
that it has more than one component to its boundary. It would therefore be
necessary to ensure that the two curves are not only both in the boundary of M,
but that they both live in the same component of the boundary. In the paper by
Leininger (see [Lei03]), an example is given of two closed geodesics on a closed
orientable surface of genus g > 1 which both fill the surface and have the same
intersection number with every simple closed curve on the surface, but are not
hyperbolically equivalent. (By not hyperbolically equivalent we mean that the two
curves do not have the same hyperbolic length over all structures on the surface.) In

relation to the book of I-bundles, this shows that if g is a filling curve on one
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component of M (the boundary of M), then even if it is possible to prove that h is
also a filling curve on the same boundary component, it will not be enough to show

g = h*! by the counterexample in [Lei03].

(As an aside in connection to this it may be interesting to consider what properties
would work for surfaces with Fuchsian or quasi-fuchsian fundamental groups, or
even to consider this particular property in relation to these surfaces. This is an

idea for future investigation and is not covered within the scope of this work, as we

will focus on 3-manifold ideas.)

A second possibility for a property considers a slightly different but related question
to the character problem given in section 5.1. Let g be a geodesic contained in a
component of the boundary of M (i.e ¢ C.S C M) and let h be a curve in M such
that x[h] = x[g]. Then an idea would be to show that & is not only contained in the
boundary of M, but is contained in the same component of the boundary as g (i.e.
h C S). This reduces the problem from an unanswered question about 3-manifolds
to an unanswered surface question. This is a problem that can be looked at in
relation to any hyperbolizable manifold. We will look at this question in relation to

the book of I-bundles manifold later (see section 5.8 for details).

A third possible property on the geodesics of M is to let g be the core curve of the
solid torus (or in the general case one of the set of core curves). These curves form a
natural collection of curves in M and this is therefore a desirable property to look
at. As will be seen in the next section, the structure on M only cares about the
lengths of the core curves and each set of lengths generates a family of manifolds.
To show that this property holds means proving that the core curve is uniquely

determined by its length. This property will be considered in more detail in sections

5.7 and 6.3.

An idea for a fourth possible property comes from considering the surface result (see
lemma 4.4.1). Let g be represented by a simple closed curve on the spine F of M.
(The spine of M is the union of the I-bundle bases with their boundaries glued
together inside the solid tori.) Considering the manifold as a whole, the concept of a
closed curve being simple in M is not very useful. Unlike on a surface, there is more

space in a three-dimensional object, and so the majority of the geodesics in M will
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be simple closed curves. The spine of M is constructed from surfaces, and so the
idea of a simple closed curve on F' just involves extending the usual definition.
Hence a simple closed curve on F* will be made up of simple arcs meeting (without
crossing) in the core curves.

There are some technical issues to be resolved when considering thié property. The
connection between the character of an element and the length of a closed curve
applies to the geodesics in M. In general (although there are exceptions) these do
not exist on the spine. It is therefore necessary to find a way of connecting a
geodesic in M to a closed curve on F', and hence a way of projecting that pushes a
geodesic onto F' such that it gives a unique curve on the spine. To prove this
property, a starting point would be to consider the surface result and try to extend

it to fit this situation. This property will be considered in more detail in chapter 7.

It is important to point out that the idea of projecting the geodesics of M onto F'is a

major technical tool in proving any of the above properties. Hence this projection will be

discussed in detail in section 5.6.

In this work the last three of these properties will be considered, first restricting to the
specific 3-prong case, and then for a general book of I-bundles (without parabolics).

Hence we have the following three statements.

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid
torus binding and three pages. Let g € m(M), such that g is represented by the core
curve of the solid torus in M. Then g is uniquely determined by x[g]. By this we
mean that if h € w1 (M) with x[g] = x[h] then h is conjugate to g=' (so h is also

represented by the core curve in M).
This theorem will be discussed in section 5.7.

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus
binding and three pages. Let g € w1 (M) be represented by a geodesic v that is
contained in a component of the boundary of M (v C S; C OM). Let h € m (M) be
represented by another curve v such that x[h] = x[g]. Then v C S; also.

This theorem will be discussed in section 5.8.
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Conjecture 7.0.3 Let G = w1 (M) where M is a book of I-bundles with single solid
torus binding and three pages. Let g € G be represented by a geodesic in M which is
uniquely projected onto a simple closed curve on F (where F is the spine of M). Let

h € G such that x[g] = x[h], then h = g*'.
This conjecture will be discussed in chapter 7.

Before discussing these, we will look more carefully at the book of I-bundles manifold and

the construction which will be used throughout.

5.4 The Canary, Minsky, Taylor construction

In this section we describe a construction for the book of I-bundles manifold that is due to
Canary, Minsky and Taylor and follow the description they give in [CMT99]. In this paper
they show that it is possible to put a family of convex co-compact hyperbolic structures

on the interior of M (denoted int(M)), where M is a general book of I-bundles manifold,
and so int(M) = H?/T for T Kleinian. This construction proves that M is hyperbolizable.

Canary, Minsky and Taylor give the construction for a general book, including
consideration of parabolic elements. In this section we will follow this construction in
general, but will rule out the parabolic case as we require M to be compact. We will then
highlight what is required for the initial 3-prong case. For details on this construction,

including dealing with parabolics, see [[CMT99] section 4].

From the discussion in section 5.2, the general book of I-bundles (with no parabolic
elements in its fundamental group) is comprised of solid tori and thickened surfaces or
‘I-bundles’, which are glued to the solid tori along families of annuli on the boundaries of
the tori. (Equivalently, for each I-bundle, the subbundle over the boundary of its base

surface is a union of annuli which are glued to the boundary of a solid torus.)

The union of the I-bundle bases (i.e. the surfaces which are thickened to make the
I-bundles) with boundaries glued together inside each solid torus, define the ‘spine’ for
M. This spine is a 2-complex around which M is a regular neighbourhood. (N.B. The

spine of M, which will be denoted F, is very important to this work. With reference to
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section 5.3, the property of a curve being simple on F is one which is mentioned and will

be considered later in chapter 7.)

To start describing the construction of M, we begin by constructing F', and look in

particular at the solid tori. For each solid torus in M, the cores of the annuli glued to it

describe some number m of parallel (p, q) curves.

Let L be a geodesic in H? which is also the boundary of mq half-planes, such that these
half-planes are equally spaced around L. (By being equally spaced we mean that the
angles between the planes are equal.) Let 7 be the loxodromic element that has L as its

axis, and such that the translation distance is % (for some small /; > 0) and rotation angle

27p
_q .

Take an e-neighbourhood of L and look at the quotient of this neighbourhood by «y. The
result is a solid torus. The quotients of the mg half-planes meet in a collection of annuli
with boundaries glued together at the core of the solid torus. The intersection of these

annuli with the boundary of the solid torus give the m parallel (p, ¢)-curves required.

We complete this construction for each solid torus in M, and hence get a list of

parameters {/;} (the translation distances of ;) for the solid tori in M.

Each I-bundle has a base surface F; (j = 1, ...,n), which is a compact, orientable surface
of positive genus with non-empty (possibly disconnected) boundary. For each F;, we
choose a hyperbolic structure (so the surface has negative curvature) so that each
boundary component of F; that glues to a solid torus with parameter [; is a geodesic of
length /;. It is important to note here that the lengths of the boundary curves are the
only constraints on the choice of hyperbolic structure on F;. (We highlight this here as we
will use this fact when considering changing the lengths of other curves on Fj, or
alternatively ché,nging the hyperbolic structure, while keeping the length of the boundary
fixed.) (N.B. The union F' of these F; with their boundaries glued together inside the

solid tori comprise the spine described earlier.)

As each I} has a hyperbolic structure, it is possible to find a Fuchsian group associated to
it. The convex core of its quotient will realize the given hyperbolic structure. Note also

that the boundary components of each F}; correspond to pure translations.
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To piece the manifold together, for each solid torus, identify the neighbourhoods of the
corresponding boundaries of the I-bundle bases to the annuli arranged around its core.
This structure extends consistently to the thickenings of the I-bundle bases, so we get a
hyperbolic structure on int(M). Using this construction we obtain a hyperbolic structure
for which each I-bundle base (F}) is totally geodesic, and a set of paraméters {l;} for each
that correspond to the lengths of the core curves of the solid tori in M. Let [, = max{l;}
and 6, = min {ﬁ}, where {m;} and {(p;, g;)} describe the gluings for the solid tori.

To complete this section on the construction, we show M is hyperbolizable and hence
show that N = H?/T is homeomorphic to int(M), where I is discrete. To do this we
consider the lift into H®. Each component of the lift E of a base surface Fj is a totally
geodesic subset called a flat. For a given flat, at each lift of a geodesic boundary of its
base surface, there is a collection of m;q; — 1 other flats equally spaced around it. (By
equally spaced we mean that the angles between the flats are equal and are therefore
evenly spaced around the lift of the geodesic boundary.) The flats are arranged in a tree,

and each flat is contained in a half-plane in H?>.

Fig 5.4: Child of H,

This picture may be normalized as follows. Let Hj be a flat chosen to be the root of the
tree. Normalize so that the plane containing Hy is a hemisphere meeting the complex
plane in the unit circle. Each child H' of H, (i.e. an adjacent flat - these are the only
ones that are not disjoint from Hj - see figure 5.4) meets H, along a geodesic L and is

contained in a half-plane which meets the complex plane in a circle.

Fig 5.5: Tree of circles
59



If we look down on this picture in H® from infinity, this tree of flats maps out a tree of

circles in the complex plane (see figure 5.5). This normalized picture will be used later.

Let z,y be points in the two flats H and H' respectively. Let H = Hy, ..., H,, = H' be the
unique sequence of flats connecting H and H', where H; and H;,, share a geodesic
boundary. Note that the sequence of flats is unique as the flats are arranged in a tree, and
H; # H; for i # j. There is a chain of geodesic arcs {a;} connecting z to y such that

a; C H; and so a; meets a;;1 in the geodesic boundary shared by H; and H;;,. We

denote this chain by 7, ,. The following lemma looks at the uniqueness of this piece-wise

geodesic path 7 .

Lemma 5.4.1 The piece-wise geodesic path vz, from = to y in the tree of flats, of

shortest length is unique.

Proof: Let z and y be points in the two flats H and H' respectively and let
H=HH,, . H,= H' be the unique sequence of flats from H to H'. Each member of
this sequence is contained in a half-plane of H® such that the half-plane containing H; will
intersect the half-plane containing H;,; at angle ¢; for i'——— 1,...,n — 1. (Note that as we

are looking at the general case, all ¢; may be different.)

There will be several possible paths 7, , from z to y, but what they will have in common
is that they all will consist of a chain of geodesic arcs a;, such that a; C H; and o; meets

a4 in the geodesic boundary shared by H; and H;_ ;.

Take any path 7., from z to y. The length of each segment a; of which v, is
constructed, will not be altered if we change the angle between the adjacent planes (i.e. if
we change @), as each q; is contained in a half-plane. Therefore ‘flatten out’ the planes

so that each ¢; = m. We are then considering a piece-wise geodesic path between two

points (z and y) in HZ.

Now consider all possible paths 7, , between = and y in this ‘flattened out’ space, and

find one of shortest length in H?2.

In H?, there is a unique hyperbolic line between any two points, and it is the distance

realizing path. Hence join z and y by the unique hyperbolic line that contains them both,
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and this path will be shortest among all paths between z and y in the ‘flattened out’
space (see figure 5.6).

X
Y
Fig 5.6: other paths in the ‘flattened out’ space

Therefore we have a unique shortest path in HZ2.

Now re-bend the planes back to their original positions. Again this can be done without
altering the lengths of the segments «; which define -y, ,. Then the unique shortest path

found in H? will be the unique shortest piece-wise geodesic path in the tree of flats from =

to y as required (see figure 5.7).

X Y

Fig 5.7: unique shortest path in the tree

(Note that any other path in the tree of flats will not correspond to the hyperbolic line
segment when we bend the planes to angle 7 and hence will be longer in H* and hence

longer in the tree of flats - as the bending of the planes does not alter the lengths.) L

As a summary of the above result, to find the unique shortest path between two particular
points z and y in the tree of flats, take the unique chain of flats between them and flatten
out the hyperplanes containing the flats so the angle between each adjacent pair is 7.
Then join z and y by the unique hyperbolic line that contains them both. Finally re-bend
the hyperplanes back to their original angle, giving the chain +,, of shortest length. Note
that as there is a unique hyperbolic line between any two points, and it is the distance

realizing path, the chain of shortest length between z and y is unique. Note also that this
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result is independent of the angle between the hyperplanes containing the flats, so applies

to any F, and hence any M, where M is a book of I-bundles manifold.

As a brief aside here and in connection to lemma 5.4.1, it should be noted that the
intersection angle of this unique shortest path found between z and y with the bending
lines (along which the hyperplanes are bent) is not necessarily the same at each point of
intersection. In [CMT99] it is stated that the uniqueness of this chain -y, comes from the
assumption that this intersection angle is §. However, as the above result illustrates, this
is not the case. If we make the restriction that each segment of the chain meets the
geodesic boundary at a right-angle then the chain v, , would contain gaps, (i.e. see figure
5.8). These gaps would have to be filled by moving along the geodesic boundary and the
proof of lemma 5.4.1 illustrates that this would not be the shortest path. However, as
Canary, Minsky and Taylor do not use this intersection angle directly, this error does not

effect the results or proofs given in [CMT99).

Fig 5.8: path in tree of flats that contains gaps

The p-thin part of a flat H is defined to be the set of points where some element of the
stabilizer of H acts with translation distance p or less. The p-thick part of a flat H is
defined to be the complement of this. If 4 is sufficiently small (i.e smaller than the
Margulis constant - which we will assume to be the case. The Margulis constant is the
smallest constant 7, such that for each discrete group G and each point z in H?, the
group generated by the elements in G which move z less that 7, is elementary), then the
p-thin part consists of a union of disjoint pieces, each of which is a neighbourhood of an
axis of translation. In terms of the tree of flats, the lift of the p-thin parts will consist of

neighbourhoods of the lifts of the geodesic boundaries of the base surfaces.

In terms of the spine F of the manifold M, the p-thin parts will consist of neighbourhoods
of the core curves of the solid tori, or equivalently of the geodesic boundaries of each F}

(as shown in figure 5.9). Geometrically, the y-thin part of Fj consists of the subset of
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points p on F} such that there is a non-trivial closed curve passing through p whose

length is less than u. (The p-thick part is the complement of this.)

—
o

Fig 5.9: u - thin part of F

Returning to the tree of flats picture, suppose z is in u-thick part of H (so there is
definite spacing between z and the lift of the appropriate geodesic boundaries). Then in
[CMT99|, Canary, Minsky and Taylor state that given any & > 0, each segment of the
geodesic chain 7, , (except possibly the last) has length at least k, with the assumption
that the parameter [, = maz{l;} is sufficiently short. (Note that the first segment of v, ,,
which contains z, will be bounded by the assumption that z is in the p-thick part. The

last segment may or may not dependent on whether y is in the p-thick part of a flat.)

To see this is the case, look back at the spine. As F'is comprised of surfaces F; with
geodesic boundary components, we may use the collar lemma. around each boundary
curve. As [, is small, and as we have control over [,, each geodesic boundary is short and
hence has a wide collar around it. Another consequence of [, being small and the control
we have over [, is that we may assume that u > [, (and hence p > I; for all 7). Hence each

geodesic boundary will be in the u-thin part of the spine F'. (See figure 5.9.)

In [CMT99], the bound stated is ¢ log ({f), assuming [, is sufficiently small. Hence by

making [, small, so p1 > [,, the p-thick part of each F; is separated from its respective

boundaries by at least ¢ log (i%) for a fixed constant c.

Consider a point ' on F such that z is in the u-thick part of F', and consider any closed
curve ¥ through =" on F. Then 7 is comprised of geodesic segments, such that each
segment (apart from the first and last which start and end at z’ respectively) starts and
finishes at a geodesic boundary of one of the F; (i.e. each segment is contained in one Fj
only). As z' is assumed to be in the p-thick part of F, then the length of this first
segment of v will obviously be bounded below by the bound stated above. All other
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segments of 7 must pass into the u-thick part of F' before returning to a geodesic
boundary, otherwise a shorter piece-wise geodesic closed curve could be found by

homotopy back to the corresponding /;. Even the last segment of 4 will be bounded as it

ends in the p-thick part of F, namely at 2.

Referring to the lift to H® and the tree of flats picture, as z is assumed to be in the
p-thick part of a flat, then the length of the first segment of ~,, is bounded below. If we
assume 7, , is a lift of a closed curve ¥ on F (as it will be closed curves on F' that will be
of interest), then y will also be in the u-thick part of a flat. Hence the last segments
length will also be bounded below. All intermediary segments of v, , must cross a flat ’
from the lift of one geodesic boundary to another lift of a geodesic boundary (note the
two lifts may be of the same geodesic boundary of F'). Hence they must pass into the
p-thick part of H', and therefore have length bounded below, (see figure 5.10). Hence

every segment of v, , has length that is bounded below.

i - thick

Fig 5.10: path segment with bounded length

The chain 7, is a broken geodesic in H*. From [lemma 4.2 in [CMT99]] we know more
than this. As 7, is composed of geodesic arcs o; (i = 1, ...,n) each of which has length
bounded below by a constant & > 0 (dependent on the value of [,), then the orthogonal
bisecting planes F; to each a; are all disjoint. Furthermore each plane P; separates F,
from P; and «; from o) whenever i < j < k. (Note that in proving this lemma, Canary,
Minsky and Taylor choose k by the formula cosh? (%) = 1—_;2-5(—0), where 8 is a lower bound
on the angles between the geodesic arcs ;. Furthermore, they show that

dist(P;, Piyy) > %(lai + la,,,) — k, where 1, is the length of «;.)

These P; give us a sequence of planes with definite spacing, and hence non-adjacent «; are
completely disjoint. As each «; is contained in a flat, then these bisecting planes will give
definite spacing between the flats. In particular any two non-adjacent flats in the tree are

completely disjoint. (Note that this also shows that to get from one flat to another there
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is a unique sequence of flats to go through.) Therefore the entire tree is properly
embedded in H2. Since a neighbourhood of this tree embeds it must be the
homeomorphic developing image of a neighbourhood of the lift to the universal cover of
F. Hence N is homeomorphic to int(M), where N = H3/T" for " discrete, and so M is
hyperbolizable. (For more details on this construction and how they use it see [CMT99]

and the references given there.)

This construction establishes that M is hyperbolizable with the only assumption that the
core curves of the solid tori are sufficiently short to give the spacing required. By making
the assumption that the core curves are short, it ensures that around the boundary

components of the I-bundle bases there are long half-collars. This in turn ensures that the

I-bundles do not intersect.

We make the following observation (which we set aside because of how important it is in

this work).

Observation

The only requirement for this construction to hold is that F' is constructed from surfaces
which have short geodesic boundary curves. The lengths of these boundary geodesics
provide the only constraint on both the choice of hyperbolic structure on each F; and
therefore M itself. The details of the construction given show that there are no further
restrictions on both F' and M to be hyperbolizable. In particular (and most importantly
in the context we will use this construction) this implies that what occurs on the rest of
the surface (for example in the p-thick parts of each F;) does not effect the construction
on F, unless what occurs changes the lengths of the boundary geodesics, therefore
maintaining a hyperbolic structure on M. For example, if we altered the lengths of other
curves on I’ (not equal to one of the core curves), but managed to keep {/;} fixed length,

then this would not effect the fact that M is hyperbolizable.

This observation will become important in section 5.5 when we start to manipulate curves

on the F; which are situated away from the core curves.

This completes the discussion on the general CMT construction on M. We now look at a

specific case.
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5.4.1 The 3-prong case

The objective of this part is to consider the CMT construction in terms of a particular
book of I-bundles manifold on which we will initially focus. As described in section 5.2,
the ‘3-prong’ case consists of a single solid torus binding with three I-bundles glued to it.
Hence F' is constructed from three surfaces £}, F5, F3, each of which has a non-empty
connected geodesic boundary of length [,. (N.B. the spine for the 3-prong case will be

referred to as the ‘fanblade’ because of its appearance.)

For the solid torus, the cores of the disjoint annuli glued to it describe three parallel

(0, 1)-curves (so in terms of the variables from section 5.4, m = 3,p =0 and ¢ = 1). When
considering the construction of the solid torus, start with a geodesic L in H* with three
half-planes equally spaced around it, so the angle between them is %’r (see figure 5.11
below). The loxodromic element «y which has L as its axis will act as a pure translation
along L, so will act with translation distance [, (for small [, > 0) and zero rotational
angle. When the quotient of a e-neighbourhood of L is taken, the result is the solid torus

with a collection of three annuli whose boundaries are glued together at the core of the

solid torus.

A

]

Fig 5.11: 3-prong consfruction

Hence for this particular case there is a single parameter [,, which provides the only

constraint imposed on the construction. The rest of the construction is the same as

described in section 5.4.

Note that as lemma, 5.4.1 is independent of the original angle between the planes (which
in this particular case will be ZT"), it will apply to this particular case (and in fact any

book of I-bundles manifold.)
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As per the observation at the end of the previous section, the only requirement to be
within the scope of the construction (and for M to be hyperbolizable) is that the fanblade
is made up of surfaces whose geodesic boundaries are short. Note that there are no
further restrictions. In particular the lengths of other closed curves on each surface
component of F' are not restricted, and hence we may manipulate these curves by

changing their lengths, as long as this does not alter the length of the boundary geodesic.

This is looked at in more detail in section 5.5.

5.5 Surfaces with boundary

Following on from the observations made in section 5.4, this section looks more closely at
the spine of M. In particular, we consider how lengths of closed curves on F' may be
altered within the scope of the construction described. From the comments at the end of
section 5.4, we know the only constraint on the construction is that F' is comprised of
surfaces with short geodesic boundary components. Hence we are working in the space of
hyperbolic structures for which boundary geodesics are short. As long as this remains the
case, then we stay within the construction. For this reason we consider how we may
manipulate the lengths of other curves on F' whilst keeping the lengths of these boundary
geodesics (or equivalently the core curves) fixed, and hence staying within the family of

hyperbolic structures.

To give an indication of why this is important, the reason for looking at this is that as £’
is constructed from surfaces, there is a greater possibility of being able to control the
curves on the spine. If it is possible to manipulate and change the lengths of curves on ¥
without interfering with the structure of the manifold, and we can find a way of
projecting geodesics onto F', then it will provide a method of gaining some control in the
3-manifold. (The projection itself will be considered in section 5.6.) This will then
provide the tools required to consider the character question (as given in section 5.1).

Hence first we consider F' and its component parts.

In section 5.4, we constructed the spine of M out of I-bundle bases. These consisted of
surfaces with non-empty (possibly disconnected) geodesic boundary. For each base surface

F; we found a Fuchsian group such that the convex core of its quotient realized this
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hyperbolic structure (i.e. the space of hyperbolic structures being considered are those
which give short boundary geodesics). Hence each I-bundle base is totally geodesic and
the boundary components correspond to pure translations. (Essentially, we considered
each F; to be the convex core of a surface with ends, giving a surface with boundary - see
figure 5.12. We cut off the end around the geodesic to give a surface with finite volume.)

The spine was created by gluing these surfaces together along these geodesic boundaries.

!
-—
=
o
[

L

5
Fig 5.12: convex core of F T
We can decompose F' into its component parts by applying the latter part of this in
reverse, so we have a set of surfaces with non-empty (possibly disconnected) geodesic
boundary. (In terms of the initial 3-prong case, the spine will be decomposed into three
surfaces with non-empty, connected geodesic boundary.) We now consider these
components, and hence are returning to consider surfaces once more. In the previous
chapter we considered only closed compact surfaces, so the ‘nicest’ possible in some sense.

Now to be considered are surfaces with non-empty boundary.

Take one of the surfaces F; from which F is constructed. Let « be a simple closed curve
on Fj that is not homotopic into 0F;. We want to know that it is possible to change the
length of & while the length(s) of the boundary geodesic(s) of F}; remain constant. We

start by considering the simplest case, and prove the result for a surface of genus 1 with

connected geodesic boundary. This is formalized into the following.

Lemma 5.5.1 Let S be a compact oriented surface of genus 1 with connected non-empty
boundary consisting of a geodesic ¢ of length .. (Here we have assumed that S has
hyperbolic structure with geodesic boundary - so the end has been cut off around this
boundary.) Let hyp(l.) be the space of hyperbolic structures on S with . constant. Let p be
a simple closed geodesic on S with length I,. Then if p 2 ¢t* for some integer k then I, is

non-constant on hyp(l.).
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From this it will be possible to change the length of any simple closed geodesic on S while

keeping the boundary curve at constant length. The proof of this is as follows.

Proof:  Let gq, g5 € m(S) be represented by geodesics a and b on S of lengths [, and [,
respectively, such that a and b generate S. Then, given the correct orientation and

labeling, ¢ = aba™'b~". (See figure 5.13 below.)

Fig 5.13: genus 1 surface

The first thing to show is that the lengths of a and b (denoted [, and [;) can be changed
while the length of ¢ (denoted [.) is kept constant. It is also necessary to know how much
the lengths [, and I, can vary for I, fixed. To do this, we implement the connection
between the length of a geodesic on S and the character of the corresponding
fundamental group element (as given in section 4.3) and look at the character equations.

Using these we show that x[c] can stay constant while x[a], x[b] and x[ab] are variable.

As we know that ¢ = aba™'b™! (so x[c] = x[aba='b™!]), using the character relations given

in chapter 4 we can expand the right hand side to give

xlel = x*[a] + x*[b] + x*[ab] — x[a]x[b]x[ab] — 2

We need to know how much we can vary x|a], x[b] and x[ab] and keep x[c] constant. First
note that x[a], x[b] and x[ab] are independent variables. This independence can be seen
by considering the traces of 2x2 matrices A and B in SLy(R). Although tr(AB) is
dependent on A and B, it is independent of tr(A) and tr(B). To see this, let

=(2a)e=(579)

_( ax+by aB+bs
AB_(ca—i-d’y cﬁ+d5>'

then
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From these matrices we see that tr(A) and tr(B) are each dependent on only two entries
in the corresponding matrix. However tr(AB) is dependent on all eight entries from
matrices A and B. In fact it is easy to construct examples where tr(A) and tr(B) remain

fixed but tr(AB) changes depending on the other entries of A and B.

The above character equation therefore contains three independent variables, and with

the substitutions z = x[a], ¥ = x[b], z = x[ab] and C = x]c], is equivalent to;

PP+ —ryz—2=C (5.1)
for C fixed.

We now use what we know about x,y and z to see that they can take a range of values

while C remains fixed.

The group elements that the curves a,b and ab represent are all loxodromic. Therefore
the value of the trace (and hence the character) must be greater than 2 or less than -2.
(Equivalently the square of the trace must be greater than 4.) Note that these traces can

get arbitrarily close to £2 (i.e. a curve can be shrunk to almost a point) and still be

loxodromic.

We show that for any z and y we can find a value for z that satisfies equation 5.1. To do

this first rearrange equation 5.1 and solve for z using the quadratic formula.

(my + /22y? — 4(z? + 92 — 2 — C)) (5.2)

NN

Z =

As we are considering surfaces and so representatives into SLs(R) we want z,y,z € R.

Hence z will only be well defined if the discriminant is non-negative. First consider where

it is equal to zero.
'y — 4+ P —2-C) =0 & 422 + 49y — 2%y =8+ 4C

As 2% > 4 and 3% > 4, then 422 + 4y — 2%y® > 16 + 16 — 16 = 16, therefore
84+ 4C > 16 = C > 2. (This is true as the geodesic boundary curve is loxodromic,

although it is short so almost parabolic.)
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In this case z = 32y = 2% = x?y® > 4 as required.
Now assume that the discriminant is positive.

o2y — 42 — 4P +8+4C > 0 ‘
8+4C > 42 +4y* —1%y° > 16 (5.3)

(Again this is true as C' > 2.)

. \/.——'T——._ .
In this case z = %:Ey + —d—”—c%’-”—’—"“—m, so for each z and y we have two possible values for z.

However, as z° > 4 and y* > 4 then 3zy > 2 or 32y < —2, and so at least one value will

give z > 2 or z < —2 as required (i.e. if $zy > 2 take the positive square root, and if

sTy < —2 take the negative square root to be certain).

To complete this part of the proof we show that we can make z and y arbitrarily close to

2 or -2 (from appropriate side) and still be able to find a value for z, all with C fixed. We

split into two cases.

First let z and y both approach 2 from above (so z,y > 2), or both approach -2 from
below (so z,y < —2). Then, ‘

Pyt +2—zyz—2=C—4+4+2>—42-2=C
so we get a quadratic in z,
22—4z+(6-C)=0=>z=2VICB - 94 ./C 2

If we take the positive square root (and assume C > 2), then z > 2 as required. Hence we

can always find an appropriate value for z in this case.

Now let z — 2 from above and y — —2 from below (all with C fixed). Then,
P+’ +2—ayz—2=C—-44+4+22+42-2=C

so again we get a quadratic in z,
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P+de+(6-C)=0=z==250CF = _94,/C-2

This time we take the negative square root (and assume C > 2), to guarantee z < —2 as

required.

Therefore for every z and y (such that z%,y? > 4) it is possible to find at least one value

for z in the appropriate range. Hence there is a lot of scope for movement in these

variables.

Referring back to lengths, from this we know that I, and [, can be changed as much as is
required without altering the length of ¢. Now to complete the proof of this lemma, we
need to show that the length of any other simple closed curve on S can vary unless it is

homotopic to the boundary.

Any non-trivial simple closed geodesic p on S must either intersect a or b (or both) at
some point, or will be homotopic to ¢**. (To see this is the case, we use the pants
decomposition on S. Decompose S into a single pair of pants by cutting along b. There
are two possibilities for a simple closed geodesic p on S when considered on the pair of
pants. Either p is a simple closed geodesic on the pair of pants also or it is not. The only
simple closed geodesics on a pair of pants are the boundary curves. Hence in this case
either p is homotopic to ¢ or p is homotopic to b, and hence intersects a. If p is a simple
closed geodesic on S that is not a simple closed geodesic on the pair of pants created from
S, then it must intersect the boundary components of the pair of pants, and hence the
only possibility in this case is that p intersects b.) In the latter case, p will have the same
length as ¢ and [, will be fixed. We need to know that this is the only case where p has
fixed length. Therefore consider the other cases, i.e. where p is a closed curve that

intersects at least one of the two generating curves a and b.

Let p be a simple closed geodesic that intersects b. (The case where it intersects a will
have a similar argument.) From the above analysis [ is variable, and can be made
arbitrarily small whilst keeping ¢ fixed length. Apply the collar lemma (see lemma 3.1.5)
around b. This means that we are putting a collar or topological cylinder around b whose
width w depends only on l;. Any geodesic intersecting b at some point must cross the
entire width of the collar (otherwise a homotopically equivalent curve that does not

intersect b can be found - see figure 5.14). Therefore this collar gives a lower bound on
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the length of the intersecting curve p. This lower bound is 2w (multiplied by the number

of intersection points between b and p.)

=

Fig 5.14: collar around b

Now let b decrease in length. By the collar lemma, the cylinder around b gets wider (as
Iy — 0 w — 00). From the above, b can be made arbitrarily short while /. stays constant.
Hence we can shrink b enough to force [, to increase. (The lower bound will be greater
than the original length of p at some point.) Therefore from this point onwards as we

decrease [, we are increasing l, and hence the length of p can be forced to change without

altering the length of the boundary geodesic.

We use a similar argument if p intersects a. Therefore the only closed curves with fixed

length are those that are homotopic to c* for any integer k. As p is simple, then if p has

fixed length then k = 41 as required. ([l

One thing to note at this point (in line with the observation at the end of section 5.4) is
that the only specification on the hyperbolic structure on S' is that it keeps the boundary
curve short and at constant length. Therefore this result will be valid for all hyperbolic
structures with this constraint, and in particular for the hyperbolic structure imposed on
the surfaces of M by the Canary, Minsky, Taylor construction. The only constraint in the
construction was a requirement for short boundary curves. It is therefore feasible that

this manipulation of curves may be done within the scope of the bigger construction.

This result has so far only been shown for a surface of genus one, but it is necessary to
extend this result to higher genus surfaces with connected non-empty boundary. One
method would be to try and apply a similar idea as in the proof of lemma 5.5.1, but in
higher genus surfaces it is apparent that this method would run into difficulties. Firstly
the character equation for the boundary curve will become far more complicated, and the
resulting equation will have considerably more variables to work with, which would make

it hard to analyse in the same way. There is also the problem of looking at the separating
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geodesics of S, which do not necessarily intersect the generating curves of the surface.
Hence it would be necessary to handle these cases separately. However instead of

proceeding with this method, we find a new proof which tackles both of these problems

and does it all in one.

Lemma 5.5.2 Let S be a compact, oriented surface of genus g > 2 with connected
non-empty boundary consisting of geodesic ¢ of length l.. (Here we have assumed that S
has hyperbolic structure with geodesic boundary, so the end has been cut off around this
boundary.) Let hyp(l.) be the space of hyperbolic structures on S with l. constant. Let p be
a simple closed geodesic on S with length 1,. Then if p 2 ¢* for some integer k, then 1, is

non-constant on hyp(l.).

Fig 5.15: genus g surface -

Proof:  Let aq,b1,a9,bs,...,a4,b, € m(S) generate S. Assume that p is a simple closed

curve on S such that p 2 ¢** for any integer k and show that the length of p (denoted [,,)

can vary while [, is fixed.

We utilise the pants decomposition as given in definition 3.1.3. Decompose S using the
pants decomposition into pairs of pants. This will produce 2g — 1 pieces by cutting along
3g — 2 geodesics on S. Take an exact copy of S called S* and glue the boundaries of S
and S* together. (Effectively reflect S across its boundary geodesic to get S U .S*, so we
are taking the double of S - see figure 5.16.) This gives a closed surface without boundary
with a marked curve ¢, of fixed length (the common boundary of S and S*). Taking the
double (and reflecting) ensures that our new surface has the same structure throughout
(for consistency) and makes sure that no lengths are altered in the process. Complete the
pants decomposition on this new surface (it does not matter what way this is done as the
new half of the surface will not be used directly). Using Fenchel-Nielsen coordinates we

know that we can change the lengths of a subset of these pants curves while keeping
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others of fixed length. In particular we can change the length of all the pants curves
contained in S except ¢, and keep [, fixed.

SuUs*

Fig 5.16: decomposition of the double of S

To complete the proof it is necessary to show that any other simple closed geodesic on S

must vary in length as the curves in the pants decomposition change length.

First note that any simple closed geodesic on S must either intersect the geodesics in the

decomposition or wrap around one of the pants curves.

Ry IX

Fig 5.17: simple closed geodesics on P

To see this, take one pair of pants P in the decomposition and consider a simple closed
geodesic g such that g and P have some points in common. Here there are two options,

either g is contained entirely in P, or only part of ¢ is contained in P (see figure 5.17).

If g 1s contained entirely in P, then g is a simple closed geodesic on a pair of pants, and
the only such curves are equivalent to one of the boundaries of P. Hence g will wrap
around one of the geodesics in the pants decomposition of S. If only part of ¢ is contained
in P, then as g is a simple closed geodesic on S, then it must intersect at least one of the
boundary components of P, and hence will intersect at least one geodesic in the

decomposition. (In fact it will intersect at least two.)

If the geodesic wraps around one of the pants curves, then it is homotopically equivalent

to one of the simple closed geodesics in the decomposition that lies in S. Therefore as
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that pants curve varies in length so will the length of any geodesic homotopic to it or a
power of it. (Note that if the geodesic is homotopic to ¢ then it will have constant length

as ¢ has constant length. We want these to be the only such curves.)

The only simple closed geodesics left to consider are those intersecting at: least one of the
curves in the decomposition. We need to know that if we make small changes in the
lengths of these curves in the decomposition then any curve crossing them will

automatically change length.

(N.B. Geodesic lengths are real analytic in the real analytic structure of Teichmuller

space.)

If we let the length of the geodesics in the decomposition shorten (so length tends to zero)
then the length of any crossing simple closed geodesic will tend to infinity. This is
because p must cross the collars of all of the pants curves it intersects, therefore the
length of p is & non-constant function of the lengths of the geodesics it crosses in the

pants decomposition, and since it is real analytic, then in any neighbourhood it will

actually vary.

Hence if the length of any of the geodesics in the decomposition changes then the length
of the intersecting geodesic will also change in length. This shows that it is possible to
change the length of a simple closed geodesic on S without changing the length of the
boundary geodesic. Ol
Note that this proof in the context in which it will be utilised (i.e. for looking at the spine
of the Book of I-bundles) uses the fact that the pattern of crossings over the pants curves

for a given geodesic does not change as we change the lengths of the boundary curves.

(This was commented on in section 3.1.)

We take a moment here to note a few things from the proof of lemma 5.5.2. Firstly the
new surface created, S U S*, is a closed surface and so it would have been possible to use
elements of McShane’s surface proof on S U S* as follows. In the proof of lemma 4.4 it was
noted that two disjoint simple closed geodesics on a closed surface do not have the same
character because the length of one can be changed independently from the other. (This
result was true for any hyperbolic structure on the surface.) Relating this to the proof of

lemma 5.5.2, it means that the length of any simple closed geodesic p on S U.S* which is
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disjoint from ¢ can be changed while [, remains fixed. Choose p so it is contained entirely

in S. Then the hypotheses are valid and this gives an alternative proof to lemma 5.5.2.

The other thing to note is that the case where g =1 (as covered in lemma 5.5.1) can be

incorporated and proven in the same way. Hence lemma 5.5.1 and lemma 5.5.2 can be

combined into the following.

Lemma 5.5.3 Let S be a compact, oriented hyperbolic surface of genus g with connected
non-empty boundary consisting of geodesic ¢ of length l.. Let hyp(l.) be the space of
hyperbolic structures on S with . constant. Let p be a simple closed curve on S with

length 1,. Then if p 2 c* (k € Z) then 1, is non-constant on hyp(l.).

This result can be extended further, by noting that the condition that the boundary is

connected is a redundant assumption and can be removed.

Lemma 5.5.4 Let S be a compact, oriented surface of genus g > 1 with multiple
boundary components consisting of geodesics ¢, Ca, -.., ¢y Of lengths l.,, 1oy, ...\ e,
respectively. Let hyp(l.) be the space of hyperbolic structures on S with {l.,} (i=1,...,m)
constant. Let p be any simple closed geodesic on S with length l,. Then if p 2 cf

(k€ Z,i=1,2,..,m) then I, is non-constant on hyp(l.).

Fig 5.18: S with multiple boundary components

The proof follows the same method as lemma, 5.5.2.

Proof:  Decompose S using a pants decomposition and then take the double of S. By
this we mean make an exact copy of S called S* and glue it to the original surface along

like boundaries. (Essentially reflect S across its boundaries, this ensures that the
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hyperbolic structure on S and the lengths of the curves are not altered.) The resulting
surface S U S* is closed with m marked curves ¢y, ¢y, ..., ¢, (common boundary geodesics

of S and S*). (See figure 5.19 below for an example of this.)

SUS*

Fig 5.19: the double of S

Complete the pants decormnposition on this new surface. The decomposition on the new
half does not necessarily have to be the same as the first half, all that is required is a
decomposition of the whole surface S U S* which includes the m marked geodesics

€1, C2, ..., G- As before, the lengths of a subset of these pants curves may be changed
while keeping the others constant length. Therefore let ¢, ¢s, ..., ¢, be in the subset of
fixed length geodesics in the decomposition, and let all the other pants curves contained
in S be in the subset of geodesics of variable length. (As the pants curves in 5* are not

required, they can be in either subset.)

Let p be a simple closed geodesic in S such that p 2 ¢f. As p is contained in S, we know
that p does not intersect any ¢; on S U S*. It therefore must be disjoint from all the
boundary components of S. From the previous proof we know that [, may be written as a
non-constant function in the lengths of the pants curves it intersects, and will therefore

have variable length as we change the lengths of the pants curves in the variable subset.

Hence we may vary the length of p and keep [,,1.,, ..., .. fixed as required. Ol

The only hyperbolic surfaces that have been excluded from lemma 5.5.4 are those of
genus 0 with multiple boundary components (m > 3). The same method of proof can be
applied if m > 4 (sphere with at least four holes), and so this case can be incorporated

into lemma 5.5.4. Hence all of the above can be incorporated into the following,

Theorem 5.5.5 Let S be a compact, oriented surface of genus g > 1 with multiple

boundary components consisting of geodesics ci, Ca, ..., ¢, of lengths ., le,, .., 1., , or a

surface of genus 0 with at least four boundary components. Let hyp(l.) be the space of
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hyperbolic structures on S with l., (i = 1,...,m) constant. Let p be any simple closed

geodesic on S with length l,. Then if p % cf (k € Z,i =1,2,..,m) then l, is non-constant

on hyp(l.).

The only other hyperbolic surface is a three-holed sphere. This is a.lreadj); a pair of pants
and so is uniquely determined by its boundary curves. Hence changing the length of a
simple closed curve on this surface will change the length of at least one of the boundary
curves. It is also the case that the only simple closed geodesics on a pair of pants are the
boundary curves themselves. Hence this particular surface does not fit in with these
results. This should not cause a problem for general books of I-bundles, even though they
may contain pair of pants pieces. To see why this is the case consider a book of I-bundles

M that contains an I-bundle base P that is a pair of pants.

Fig 5.20: pair of pantsin M

We will be using the results of this section to manipulate curves on F' in such a way that
it does not interfere with the hyperbolic structure on F' and M. Any closed curve on F
that passes through P must pass from one boundary component to another (see figure
5.20), such that the boundary components are distinct. (In figure 5.20 curve a is such a
curve but curve b cannot occur as this will not be piece-wise geodesic as required, as the
segment in P is trivial.) Hence there will be pieces of the closed curve on other component
parts of F'. We can therefore manipulate the curve there, and by theorem 5.5.5 we can do
this whilst leaving the boundary components of P fixed. Hence if the general book of

I-bundles has a spine containing a pair of pants it should not cause a problem.

For the specific book of I-bundles manifold that is initially to be considered (the 3-prong
case), we only need to concern ourselves with surfaces with connected geodesic boundary.

However the more general case will be required when extending to larger and more

general books.
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In this section we have established that it is possible to change the length of an arbitrary
simple closed geodesic on a surface of genus g with non-empty (possibly disconnected)
boundary, while keeping the length of the boundary geodesics fixed. Associating this to
our manifold, as the spine is constructed from surfaces of this type, theorem 5.5.5 gives a

way of manipulating curves on F. Note that neither of these results depended upon how

long the boundary curve was.

In the CMT construction, what is essentially done is that a hyperbolic structure is put on
each surface so that the ends are defined by geodesics. The ends are then cut off at this
geodesic (so what is left is the convex core of the surface) and these surfaces are then
glued together along these geodesics. As such these boundary geodesics are short, and
this was the only constraint on the construction. Hence we are working in the space of
hyperbolic structures for which boundary geodesics are short. The work in this section
therefore can be applied to the surfaces that make up the spine F' of M without
interfering with the construction of M, or the hyperbolic structure. These results will
therefore be of use later. First we need a way of connecting the geodesics in M to unique

closed curves on F' so that we may use these results about surfaces in relation to the

character question.

5.6 Projecting geodesics onto F

The primary aim of this section is to build a link between the geodesics in M and closed
curves on F'. In particular we need to forge a connection between their lengths, and hence
determining how much the curve on F' needs to be manipulated in order for the geodesics
length to change. Hence we wish to project the geodesics onto F' in such a way that we

get a unique closed curve on the spine.

The reason for building this projection is two-fold. Firstly we want to use the results from
section 5.5, so that we may manipulate the closed curves and change their lengths on F’
without interfering with the family of hyperbolic structures or the construction of M. In
the 3-manifold we do not have the same control over the geodesics, and so this link would
give the ability to manipulate and have some control in M. Secondly, the connection

between the character and the length of the curve in 3-dimensions only applies to the
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geodesics in M, and so (in general) this connection does not apply to closed curves on F'.
This is because any curve which exists on F' and intersects the core curve will have
‘corners’ in M and hence will not be geodesic in the manifold. (There are exceptions, for
example where the curve in F is a geodesic in M.) Therefore we need to build a

connection between the lengths of the geodesic in M and the curve onto which it is

projected on F'.

Hence the projection of geodesics onto F' is an important technical tool when considering
the properties as described in section 5.3. As a starting point, we return to the
description and construction of a book of I-bundles manifold as given in 5.4, and look at
where the geodesics in M exist in relation to its spine. For the purpose of this section, we
will be considering the initial 3-prong case. The projection will be extended to a general

book of I-bundles in section 6.2.

5.6.1 CMT Revisited

Let M be a book of I-bundles manifold with single solid torus binding and three I-bundle
pages. Let F' be the spine of M, which is constructed from three base surfaces Fi, Fy, I3

each of which has connected non-empty boundary.

In section 5.4, we gave a description of the lift of each base surface F; to a totally geodesic
subset or flat in H3. These flats are arranged in a tree such that at each lift of the
geodesic boundary curve ¢ (the core curve of the solid torus), there are two other flats
which are equally spaced, so the angles between them are equal to %” (and hence evenly
spaced around the lift of ¢). We have a tree of flats here as non-adjacent flats are disjoint,

and hence between any two flats there is a unique sequence of flats.

Viewing this picture in the complex plane (or alternatively looking down from infinity),
this gives a tree of circles in C. The limit set of the group I" which determines this lift is
contained in the closure of this tree of circles. (Remember each flat will determine a

surface in ' when moving back to the manifold.)

Normalize the tree so that the root is chosen to be the unit circle. (We may arbitrarily
choose which flat will be the root.) Let Cp and C; be outscribed and inscribed circles on

this tree of circles. (See figure 5.21 for this tree of circles picture.)
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These two circles are determined by the tree as they enclose the whole tree of circles
between them. (As an aside here, note that these circles are not necessarily uniquely
determined. We could force the uniqueness by insisting that both Cp and C; are centred
at (0,0) (or at the centre of the circle chosen to be the root of the tree). However the
purpose of introducing Cy and C7 is to look at the limiting behaviour and monitor what
happens to the tree as the core curve shrinks. This behaviour will be the same

independent of the choice of Cp and C;. Hence this is an arbitrary choice to make.)

Fig 5.21: bounded tree of circles

As the limit set is contained in the closure of the tree of circles, it is sandwiched between
Co and C;. Hence, by definition, the convex hull of the limit set of I' is sandwiched

between the hyperplanes Ho and H; meeting the complex plane in the circles Cp and Cf

respectively.

We now consider what happens to this picture as the length of the core curve is shortened.

Fig 5.22: normalized free

Let Hy be the flat which is chosen to be the root of the tree, and choose a point g in the
p-thick part of Hy. (Remember that u is a constant that is smaller than the Margulis
constant. Hence the p-thin part of a flat consists of the union of disjoint pieces, each of
which is a neighbourhood of the lift of a geodesic boundary. The p-thick part is the

complement of this.) Normalize so that Hy is contained in the hemisphere which
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intersects the complex plane in the unit circle, and z, is the top most point (i.e.
1o = (0,0,1)). Each child H' of H, meets it along a geodesic, and H' is contained in a

half-plane which meets the complex plane in a circle (see figure 5.22).

Let C be one of the circles in the tree, and let r(C) denote the Euclidean diameter of C.
Let S(C) denote the set of children of C (set of adjacent circles). Fix any positive p < 3
and then, assuming c is sufficiently short, (depending on choice of p) then Canary, Minksy
and Taylor (in [CMT99]) prove that the diameters of the circles in the tree are decreasing
from the root outwards. Moreover they show that for any C' and D € S(C) we have,

(5.4)

Fig 5.23: diameter of tree of circles

(Figure 5.23 shows the tree with the biggest overall diameter, as an illustration of how the

circles are decreasing in size.)

We give an outline of part of the proof of equation 5.4 as explained in [CMT99] to

illustrate why this is true.
QOutline proof of equation 5.4

Let P and P’ be hyperbolic planes such that ., (P) = C and 6., (P') = D. (Here 64
denotes the boundary at infinity or equivalently where P and P’ intersect C.) Hence P
and P intersect in a geodesic a. Let thin(P, P') denote the component of the p-thin part

associated to the intersection of P and P’ (so thin(P, P') will consist of a neighbourhood

of ).

Let z be the top most point of P when looking in H?, and assume z is outside of

thin(P, P"). Then the geodesic chain Yz, for any point y € P’ has initial segment with
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length v, which is bounded below by & (which can be made arbitrarily large by shrinking

the length of the core curve - see section 5.4 for details on this bound).

Fig 5.24: proof of equation 5.4

Hence all of P’ is separated from z by the bisecting hemisphere of +;, which is at a

distance at least £ from z. Therefore the diameter of P is at most ae® diam(P) for a

fixed constant a. This gives

r(D) < aeZr(C) (5.5)

and as long as k is chosen so that aes < p then we have the desired bound. We can

ensure k satisfies this by making c sufficiently short.

Canary, Minsky and Taylor go on to complete this proof by showing that the assumption
made that =z is outside thin(P, P') is true. This part of the proof is not included here as

the details are not required for this work, but we refer the reader to [CMT99] for the
details.

This outline proof shows that the diameters of the circles in the tree are getting smaller
the further we move from the root. Moreover as ¢ shrinks (so the core curve shortens),

the diameters get smaller more rapidly. Hence the circles in the tree will become closer

together (but still remaining disjoint if non-adjacent). To see this, look at equation 5.5.
r(D) < ae r(C)
As [, — 0 (here [ denotes the length of ¢), then k — oo (see section 5.4 for this) and so

e — 0. As we also know that ae® <p< %, then this shows that the diameter of the

tree of circles decreases as ¢ shrinks. (As an aside here, note that this will be in contrast to
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the geodesic chain v, discussed in section 5.4. As c shrinks, the lengths of each segment

of 7;,, will have an increasing lower bound, which implies that 7, will get longer.)

Apply this result to the outscribed and inscribed circles picture. As Cp and Cf are
determined by the tree of circles, if the diameter of the tree decreases, then the choice of
Co and C; will become closer to the root of the tree. (Note that this is independent of
the choice of Cp and C;.) The shorter ¢ becomes, the smaller the diameter of the tree

and the closer Cp and C; become to the root of the tree (and consequently to each other

- see figure 5.25).

N—
Fig 5.25: shrinking free of circles

As the convex hull is sandwiched between the hyperplanes determined by Cp and Cj,
then the convex hull is approaching the hyperplane meeting C in the unit circle. (Note
that this limit is never reached as some space is needed for the tree.) The convex hull is
therefore getting ‘thinner’ at the top (although the hyperplanes determining Cp and C;

will still be infinitely far apart where they intersect the complex plane).

The geodesics in M lie in its convex core, which is the quotient of the convex hull by the
group I'. The position of the geodesics in relation to the spine F’ depends upon their
position in this tree of circles/hyperplanes picture. As long as the geodesics stay within a
bounded region of the top of the hyperplane which is determined by the root of the tree,
and therefore lie in a region where the convex hull is thinnest, then sections of the

geodesic will be arbitrarily close to the spine (and will get closer as the length of the core
curve reduces).

The potential problem that will cause this not to be true (i.e. the geodesics staying
within a bounded region of the top of the hyperplane determined by the root of the tree)

is if in the lift to H?3, the end points of the loxodromic axis representing the geodesic are

getting closer together. This would mean that the geodesic is moving away from the top
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of the hyperplane determined by the root of the tree of circles.

Fig 5.26: location of geodesics in M

To see that this cannot happen we return to looking at M and its convex core. A
geodesic 8 in M will not be contained entirely in the thin part of the manifold, and hence
the projection of § onto F' will intersect the thick part of F'. If the geodesic is contained
entirely in the thin part then it will be trivial or will be homotopic to a power of the core
curve. (This applies to a geodesic in M and after projecting onto F.) (Figure 5.26
illustrates the location of geodesic § in M such that § exists partly in the thin part of M.

Note that the converse is false, as a geodesic in M does not have to pass into the thin

part, but such a § will exist on F.)

Consider each base surface F; of F' and what happens as [, — 0 (here [.. is the length of
the core curve c). Each base surface in the limit will be a surface with a puncture (see
figure 5.27). The half collars around ¢ on F' (i.e. on each Fj, for i = 1,2,3) will get wider
by the collar lemma, and this is dependent only on .. Therefore the distance between the
thick part of each F; and the geodesic boundary is getting bigger. Although in the limit
cach F; has an infinite end, the thick part remains bounded (see shaded region in figure

5.27) because of this distance increasing.

D

Fig 5.27: limiting behaviour as ¢ shortens

These regions will contain all the information for m (F').

If we lift back into H3, then we need to ensure that the thick part of the base surface
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lifted to the flat chosen to be the root of the tree, is a region around the top of the
hyperplane H (where H is the hyperplane containing this flat and hence determined by
the root of the tree). This will ensure that the geodesics pass through this part as
required. However if this is not the case, we can conjugate by Mobius transformations

that fix H, but move the interior of H. Pick the Mobius transformation so this region is

moved to the top of H (as in figure 5.28).

Fig 5.28: geodesic in lift

Any loxodromic axis representing a geodesic in M will pass through this shaded region (as
shown in figure 5.28). Hence we can control the geodesics in the sense that we can ensure

that they have sections which are arbitrarily close to F' (i.e. the points in the thick parts).

Note that when looking in the lift to H?2, the convex hull is not only thinnest at the top,
but that this is also the furthest point away from any of the lifts of ¢. Hence an arbitrary
geodesic in M will be closest to F' in the regions furthest away from the neighbourhood of
¢ (and furthest from F within a neighbourhood of ¢). (Figure 5.29 illustrates the convex

core of M in relation to the spine of M.)

We can force a geodesic in M to become arbitrarily close to F' by letting I, — 0, and by

the construction described in section 5.4 we can do this and still have M hyperbolizable.

Fig 5.29: convex core of M
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A final note to make is that a closed curve on F which is totally disjoint from ¢ (so exists
entirely on one surface component F; for ¢ = 1,2, 3) will be a geodesic in M. (Hence these
will be geodesics in M which lie on its spine.) As M is a regular neighbourhood of F', all

geodesics will lie close to F' in the above sense, assuming ¢ is short. -

5.6.2 The projection

From section 5.4 we know that M is a regular neighbourhood of its spine F'. From section
5.6.1 we know that the geodesics of M lie close to the spine in the sense that we can
ensure that they have sections that are arbitrarily close to F' (i.e. in the lift to H?, the
loxodromic axis representing a geodesic will pass within a bounded distance of the top of
the hyperplane determined by the root of the tree). We can control how ‘close’ the
geodesics get to F' by letting the length of the core curve shorten. (In fact they become
arbitrarily close as [. — 0.) Note also that a geodesic in M will be closer to F' the further

away we move from the core curve (as seen in figure 5.29 above).

The aim of this part is to put a measure on this by trying to connect the length of a
geodesic in M to the length of a closed curve on F. To achieve this, we first need to
define a projection from M onto F' so that each geodesic 3 in M may be represented by a
unique closed curve v on F, and then compare the lengths of 8 and v. We have
information on the length of v (and a way of controlling its length) coming from the
change in length of the core curve. We want to relate this to the length of g and show
that if [, — oo then lg -+ 0 (where [, denotes the length of ~y).

< VT VY

% y

A

‘V’
2
£ 2
2
Fig 5.30: unigue shortest path
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In section 5.4, we showed that in the lift to H?, that between any two points Z and ¥ in
any two distinct flats there is a unique shortest path ¥ (i.e. see lemma 5.4.1). Move this
back to the spine F', and let z and y be the points lifted to Z and y respectively, then if
z = in F, then 7 corresponds to a piece-wise geodesic closed curve v on F' that passes
through z = y and intersects the core curve ¢ a specified number of times. (This is
dependent on the number of segments in ¥ - see figure 5.30). Hence lemma 5.4.1 shows
that there is a unique shortest closed curve on F' that passes through a particular point
and intersecting c a specific number of times. (By the nature of the proof of lemma 5.4.1,
this is true for any base point z and any nurber of intersection points with c - i.e. these

are the only two pieces of information required to find the unique shortest path.)

Let 8 be an arbitrary geodesic in M, and let v be a closed curve on F' (so vy is piece-wise
geodesic in M). We want to push § onto 7 such that + is unique to . This would give a

one-to-one correspondence between geodesics in M and closed curves on F' (so only f is

projected onto 7).

As M is a regular neighbourhood of F', we have an inclusion map F' <— M and from this
we get an isomorphism m (F)) — m; (M) between the fundamental groups. Hence for each
element gg € m (M) there is a unique element g, € m (F) such that g, — gs under this
isomorphism. Here both gg and g, represent conjugacy classes in m (M) and m;(F)

respectively.

For each conjugacy class gg in 71 (M) there exists a unique geodesic § in M (so a unique
path of shortest length, so all other curves are homotopic to §). When we lift to H?, the
geodesic # will be represented by a hyperbolic line which corresponds to the axis of the
appropriate loxodromic element gg € I', where I is the group determining the lift.
(Remember we already know that this loxodromic axis can be forced to pass within a

bounded region of the top of the hyperplane determined by the root of the tree of flats by

the discussion in section 5.6.1.)

For each conjugacy class g, in 7 (F') there will be a set of closed piece-wise geodesic
curves on F’. We need to show that there is a unique shortest curve amongst this set. Lift
F to H? as described in section 5.4. Choose a point y in one of the flats and look at all
possible translates under the group action (of both y and the flat containing y). One
potential problem is that we could get a path in the tree of flats which has back-tracking.
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By this we mean that it doubles back on itself (retraces its steps). (See figure 5.31 which

illustrates such a path. The concaternation of the paths zy and yz backtracks along the

arcs py and yp.)

Fig 5.31: back-tracking path in free

However for each path with back-tracking we can find one without back-tracking that is
shorter. To do this we move back to the point before the piece of path that is doubled up
- as marked in figure 5.31, and then look at the translates of that point. In this way we

can eliminate all back-tracking.

Once we have a direct path, we then have two points y and g,(y) in two distinct flats that
represent the end points of y. We then use lemma 5.4.1 to find the unique shortest path
between these two points (i.e. we bend the hyperplanes containing the flats so that the
angle between them is 7, and take the hyperbolic line segment between y and g,(y). Then
re-bend the hyperplanes back to their original position, and this hyperbolic line segment
gives us 7y as required). We can normalize the tree so that a segment of v passes through
the flat chosen to be the root of the tree. Then «y will pass close to the top of the
hyperplane containing this flat. (This mean through the shaded region marked in figure

5.28 in section 5.6.1.)

Let this unique shortest piece-wise geodesic closed curve v on F' be the representative of
B on F. This projection then associates geodesic 3 to a closed curve <y, hence ensuring (3

is mapped onto a unique piece-wise geodesic on F'.

Now we have made an association between geodesics in M and closed curves on the spine,

we want to make a connection between their lengths.
From the argument made in section 5.6.1, it is known that § and consequently -y, must
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have sections in the p-thick part of M and F (otherwise both 4 and - will be homotopic
to the core curve of the solid torus). (Here u is a fixed constant that is smaller than the
Margulis constant, as in section 5.4.) Let 8 — «y via the projection (so 7 is the unique
closed curve on F associated to the geodesic § in M). Choose a base point y on the
plece-wise geodesic v on F' such that y is in the p-thick part of F. This can be done by
taking a point which is furthest away from the core curve ¢. (If there is more than one
such point then an arbitrary choice can be made as the only requirement is that y is in
the p-thick part.) Then by the construction as given in section 5.4, each geodesic segment

of v will have length bounded below by k& which depends only on the length of c.

In the lift to H® we normalize the picture so that the root of the tree contains a lift of the
point y, and then use Mobius transformations to ensure y is within a bounded distance of
the top of the hyperplane determined by the root. (We can do this by the discussion at

the end of section 5.6.1.) This means that the lift of geodesic 8 will be very close to F at

the lift of the point y in ~.

Fig 5.32: orthogonal projection

The shortest distance between y and the geodesic § will be along the line that meets F' at

y orthogonally. Let x be the point where this orthogonal line intersects 8 (see figure 5.32).

Now lift to H? using the developing map given in section 5.4. The closed curve y on F will
lift to a piece-wise geodesic path from ¥ to g,(7) (where g, € I', where I" defines the lift),
and the geodesic § will be represented by a hyperbolic line (the axis of the corresponding
loxodromic element gz € I') with end points Z and gg(Z). As we have an orthogonal

projection from x onto y (8 — ~) then gz(Z) — g,(J) orthogonally also. (See figure 5.33.)
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(Figure 5.33 shows 3 and « lifted to H* and the orthogonal projection from one to the
other. We now use this picture to look at length.)

g{x)

gly)
Y
Fig 5.33: lifted orthogonal projection

As the core curve ¢ shortens, from the discussion in section 5.4 we know that each
segment of v (including the first and last) will have length bounded below and that this
bound increases as c shrinks. Hence [, — 0 = [, — co. We now need to relate this to ls

and show that lg - 0. To do this we find bounds on Iz in terms of [,.

We do this in two stages. First consider the case where § intersects F’ in the u-thick part
(but does not lie on F'). In this situation the points z and y defined above will be
equivalent, and in the lift to H?*, the end points of the hyperbolic line representing 3 will
be coincident with the end points of the broken geodesic path representing y. We

generalize this as follows.

Y

Fig 5.34: case 1 - geodesic infersects F

Let 4, be a broken geodesic in H* with end points = and y, and consider the geodesic

line segment a,,, in H*® with the same end points (as in figure 5.34).

We will compare the lengths of v and «. From the following lemma about broken

geodesics as given in [Bis96] it is known that the two paths are ‘close together’.

Lemma 5.6.1 Given 8 > 0 there are ¢, m < 0o so that the following is true. Suppose 7y s
a piece-wise geodesic path from a to b, by which we mean a union of disjoint (except for

endpoints) geodesic arcs, each of hyperbolic length at least m and such that v; and vy
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meet at an angle > 8. Then v is within hyperbolic distance c of the geodesic arc 0

connecting a and b.

From this we see that the two paths y and a are within a bounded distance of each other,
and in some sense the broken geodesic path  cannot venture too far away from «,
otherwise the end points will not meet up as required. This is not enough, as we require

to know that as [, — oo then I, -» 0. Hence we look at estimating [, in terms of [,.

First relate this to the situation being considered to find more information on 7. We
know from section 5.4 that as the core curve is short, the length of each segment of a
piece-wise geodesic path on F' is bounded below, so has length at least m. As c gets
smaller, the p-thick part of each surface component of F' is pushed away from its
boundary, and so this lower bound m increases. The angle between the segments in the
piece-wise geodesic (when looking in the lift to H?) will remain fixed at § = 2°. (This is
because the flats are evenly spaced around the lift of the geodesic boundary, and the
initial manifold is a book of I-bundles with single solid torus binding and three I-bundle
pages. Hence around each lift of the geodesic boundary will be three flats evenly spaced.)

If we shrink the core curve (and increase m) we will not change this angle.

To start with we will look at what happens to [, as m increases, and for simplicity we will
assume for the moment that each segment of +y is a geodesic arc of length m. (We will

relax this to > m later.)

Hence I, = nm, where n is the number of segments in +. (As an aside note that this also
gives an indication of the number of times the corresponding closed curve on F' intersects

the core curve, i.e. n — 1 times). We start by considering the simplest case.

5.6.3 The case n=2

Lemma 5.6.2 Let vy be a broken geodesic path in H3 with two segments of length m, and

angle 8 = %” between them. Let a be the hyperbolic line segment with the same end points

as y. Then if m — oo, then l, -+ 0.

Proof:  Looking at the picture sideways on, v and « together define a triangle with

93



three hyperbolic line segments, two of length m (with angle fixed at Z* between them),

and one of length [, (see figure 5.35).

Y

Fig 5.35: broken geodesic with n=2 segments

We use the hyperbolic law of cosines I (see equation 2.2 in section 2.1.3) to calculate [, in

terms of [,.

2r

lo = cosh™! {coshQ(m) — sinh®(m)cos (3) }
|

1
= cosh™" |cosh®(m) -I-—sinhQ(m)}

2
(5.6)

From equation 5.6, we see that [, is dependent on m. To see what happens to [, as m

increases we look at the derivative of [, with respect to m.

dly 3cosh(m)sinh(m) (5.7)
dm \/coshQ(m) + sinh?(m) — 14/cosh?(m) + 3sinh?(m) + 1

As m > 0 (measure of length), then cosh(m) > 0 and sinh(m) > 0, and so %« 5 0. Hence

a change in m, however small, will effect I,. All that is left is to determine whether [,

increases or decreases with respect to m.

The numerator of equation 5.7 is always positive. In the denominator there are two
positive square roots, and so the denominator will also be positive for all m > 0, assuming

that the square roots are well defined (i.e. we are in R, so do not want to take a square

root of a negative number).

First consider \/coshQ(m) + 4sinh?(m) — 1. Using cosh*(m) = sinh®(m) + 1,
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1 3
cosh*(m) + §sinh2(m) -1= §sinh2(m) >0 (5.8)
for all m > 0. Hence this is always well defined.

Similarly, the other square root,

1
cosh*(m) + §sinh2(m) +1= gsinhQ(m) +2>0 (5.9)

for all m > Q.

Hence Zl—;l is well defined for all positive m, and moreover %n& > 0. Hence [, is

monotonically increasing with respect to m. Hence if m — oo (and [, — 00) = Iy — co
and more importantly I, - 0 as required. O
From this proof we note that however small an increase in m, [, will increase. (Hence a

change in m gives a change to both [, and /,.)

As an aside here, we are able to calculate how close I, and [, can get by considering the

limit of their difference as m increases. To do this use equation 5.6 and consider how [,

behaves first.

- 1
lo = cosh™ [cosh2(m) + §sinh2(m)J

Now,
m -7 1
cosh(m) = % = cosh?(m) = Z(e”" + e 2™ +2)
Similarly,
; em—e™ 7 2 1 2m —2m
sinh(m) = — = sinh*(m) = Z(e +e —2)

Therefore for m large, e*™ dominates as e™>™ — 0, and so cosh?(m) ~ ;€™ and

sinh?(m) ~ 1€*™. Therefore for m large,

1
cosh?(m) + §sinh2(m) ~ ge?’”
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Using cosh™(z) = In(z + V7% — 1), if 7 is large then 22 — 1 ~ 2% = V2% — 1 ~ V% = 1.
Therefore , In(z + V2?2 — 1) ~ In(z + z) = In(2z) for z large.

Applying all of this to equation 5.6,
3 3
lo — In [Zezm} ={n [Z} + 2m

and hence

1
lim (I, —l,) = lim (2m — cosh™ [coshz(m) + §sinh2 (m)])

m—oo m—00

3

o H (5.10)

Hence for large m, the difference in lengths I, — I,| approaches In[3], and so a and vy get

closer to being the same curve. Note that the limit is non-zero because there is a

restriction in terms of the angle between the segments of ~.

To summarise, if n — oo, then both I, — oo and [, — oo, and in particular I, - 0 as
required. Note that we could have used proposition 2.1.9 to prove this result with a

specified fixed angle of § = 27.

We now look at a more general case, i.e. where v has n segments of length m.

5.6.4 The n segment case

At this point we have only considered the case where the broken geodesic v has two
segments of length m — co. We can apply a similar method to analyse the case where y
has n > 2 segments of length m. However we will need to introduce an induction process

to simplify the proof. As an initial illustration, consider the case where n = 3.

Lemma 5.6.3 Let vy be a broken geodesic path in H® with three segments of length m,
and angle between each pair equal to 8 = %” Let o be the hyperbolic line segment with the

same end points as y. Then if m — oo, then [, » 0.
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Proof:  As in the proof of lemma 5.6.2, viewing the picture sideways on, y and «
together define a hyperbolic polygon with four sides, three sides of length m and one of
length I, (see figure 5.36). Divide this into two triangles as illustrated in figure 5.36, each

of which is made up of three hyperbolic line segments.

; ENaN
m = m RS

m "M

Jo

m

3

Fig 5.36: broken geodesic with n=3 segments

(Figure 5.36 shows this in H? to make it clear. In H?®, the hyperbolic quadrilateral will

not lie in a hyperbolic plane, but each of the two triangles will sit in a hyperbolic plane.

It is these triangles on which we will be working.)

One of these triangles will have two sides of length m, and so will be equivalent to the
n = 2 case. The other will have one side of length [, one of length m and one of length

P. Using the hyperbolic law of cosines I (equation 2.2) we have,

I = cosh™! [ <cosh2(m) + %sinhz(m)> cosh(m) — sinh(P)sinh(m)cos(gﬁ)}

where P = cosh™![cosh?(n) + 1sinh?®(m)] (the length of & in the n = 2 case) and
<=2

3"
As in the proof of lemma 5.6.2, we have an equation for I, which is dependent on m. One
way to complete this proof would be to follow the method of lemma 5.6.2 and calculate
the derivative of [, with respect to m. However the resulting equation will be more
complicated to analyse (and will be increasingly so as we increase n). Hence for this

reason we find another method, utilizing both lemma 5.6.2 and the results from section
2.1.3.

To calculate the equation for /, in terms of m we divided the polygon defined by v aud «
into two triangles. The first is constructed from two sides of length m and one side of

length P (equivalent to the triangle in n = 2 case). The angle between the two sides of

length m is fixed at 8 = %’r (by the construction of the tree). Hence using lemma 5.6.2, it
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is known that P is monotonically increasing with respect to m. Also, using proposition
2.1.9, we know that if we have a hyperbolic triangle with two sides increasing in length at
the same rate, and the angle between them fixed, then the third side will also have

increasing length. Therefore P increases as m increases.

Now consider the other triangle. It is made up of one side of length m, one of length P,
and one of length l,. Both P and m are increasing with respect to m, i.e. as

m — 00, P — 00. The angle between these two sides is equal to ¢ < § = 27“ By corollary
2.1.10 we know that ¢ — 6 as m (and P) increase. Hence by proposition 2.1.12, I, will

increase with respect to m, so %ﬁﬁ > 0, and in fact I, —» 0o as m — oo

O

More importantly, I, - 0 as m — oo as required.

In the proof of lemma 5.6.3, we used the case n = 2 and the results from section 2.1.3 to

prove the case for n = 3. This method of ‘induction’ can be used for the general case.

Lemma 5.6.4 Let vy be a broken geodesic path in H3 with n segments of length m, and
angle § = %” between each pair of adjacent segments. Let o be the hyperbolic line segment

with the same end points as y. Then if m — oo, then lg - 0.

Proof: By lemma 5.6.2 we know that if n = 2 then the result holds (i.e. as m — oo

lo = 0).

Now assume that the result is true when v has n — 1 segments of length m, and consider

the case when < has n segments, so [, = nm.

Fig 5.37: broken geodesic with n segments

Looking sideways on, we have a polygon with n + 1 sides, n of length m and one of length
. We take a hyperbolic line segment that divides this polygon into two pieces. One
piece (A in figure 5.37) is a polygon with n sides (i.e. the n — 1 case) and the second
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(marked B in figure 5.37) is a hyperbolic triangle with one side of length P, one side of
length m and one side of length /.

By assumption that the result is true for v with n — 1 segments, we know that P is
increasing with respect to m (i.e. as m — oo, P — 00). Hence triangle B has two sides
whose length gets arbitrarily large as m — oo with angle ¢ between them. By corollary
2.1.10, we know that as m — oo, ¢ — 6 = 2L, Hence by proposition 2.1.12, [, will

increase with respect to m, so —‘j—% > 0 and in fact I, — oo as m — oco. Hence as m — oo

then I, - 0 as required. i

5.6.5 Segment lengths > m

In the previous sections (5.6.3 and 5.6.4) it was assumed that each segment of the curve
on F' when viewed in the lift had length m. In this section this is relaxed so each segment
has length > m. This allows the curve on F to have segments of different lengths, but
each still has a lower bound which is dependent on the length of the core curve. (As a
reminder, this lower bound m can be made arbitrarily large by making the core curve

short - and this we can do.) The analysis for > m case is as follows.

Lemma 5.6.5 Let v be a broken geodesic in H® with n segments of length m + X;, where
Ai >0 foralli=1,...,n. Let the angle between adjacent segments be 0 = 27“ Let o be the
hyperbolic line segment with the same end points as -y (see figure 5.88). Then if m — oo

then l, - 0.

Fig 5.38: > m case

Proof:  Start by considering the case where n = 2. Hence <y has two segments of
lengths m + A; for ¢« = 1,2. Then [, = 2m + A; + A3, and using the hyperbolic law of

cosines I (as per equation 2.2),
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, 1
lo = cosh™" (cosh(m + A1)cosh(m + Ag) + §sinh(m + \p)sinh(m + )\2)) (5.11)

When n = 2, v and o together comprise a triangle with one fixed angle ¢ = 27" between
the two segments of «v. The difference between this situation and that in lemma 5.6.2 is
that here all three sides of the triangle can have different lengths. However, proposition
2.1.9 does not depend on the lengths of the sides being the same, but on the fact that two

of the sides increase in length at the same rate, with the angle between them fixed. Here

d(";:;\l) = d(”;jn’\2) and so we can apply proposition 2.1.9 here to see that as m — oc, [,

will increase (and hence I, - 0) as required. Hence if n = 2 then [, is an increasing

function in m.

If n > 2 then we can use the same induction argument as in the proof of lemma 5.6.4.
This induction proof did not depend on how long the sides were, but on the fact that each
segment of v had length increasing. This is still the case here, as m — oo. Therefore the
assumption can be relaxed so each segment of 7 is bounded below by m, and so as

m — oo (and I, — oo) then [, increases, and hence I, - 0 as required. O

Before summarizing these results, note that the pictures drawn are in 2-dimensions, but
in general the broken geodesic path and the hyperbolic line segment with the same end
points will not sit in a hyperbolic plane (as we are in 3-dimensions). However, the
induction proof works by decomposing the larger polygon into triangles. Each triangle
will exist in a hyperbolic plane. Hence the only thing that could cause a problem is how
the triangles fit together, and by this we mean the interior angles of the triangles.
Although this highlights a discrepancy in the illustrations it does not effect the results.
To see this note that what we have been showing here is that as the lengths of the
segments of the broken geodesic get arbitrarily large, then the geodesic joining the end
points cannot have length tending to zero, (or equivalently that the geodesic with the
same end points has increasing length also). The only thing that could cause this not to
be true is if the angles between the segments of the broken geodesic are tending towards

zero. This cannot be the case because of the way the tree of flats is constructed.

To surnmarise the results from sections 5.6.3 to 5.6.5, if the geodesic 8 in M intersects F’

at some point (in the p-thick part), then if the broken geodesic path -y on F' representing
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B increases in length (i.e. m — oo, which we can make arbitrarily large by shrinking the

core curve), then 3 will increase in length also. More importantly, [z - 0 as [, — oo.

5.6.6 Comparing lg to [,

To complete the projection analysis, this subsection looks at the geodesics in M which do
not intersect F', or exist on F', and compares their lengths to the length of their

representative v on F' after the projection.

Let 3 be a geodesic in M which is projected onto v on F. We compare lg to l, (where
is the geodesic in the lift to H? with the same end points as -, as in the previous
sections), and hence to [,. The aim is to obtain bounds on Iz in terms of /,, and
consequently in terms of L, (as l, — oo as I, — 00), making them as tight as possible so

that it is clear that {5 -» 0 as [, — oco. This will show that a small change to the length of

v on F' should effect lg in M.

From section 5.6.1 and the nesting argument involving the outscribed and inscribed circles
C, and Cf, it was shown that the convex core of M consists of a neighbourhood close to
F. In the lift to H3, we showed that we could force the lift of a geodesic to get arbitrarily
close to the tree of flats by letting the core curve shrink, giving a way of controlling how
‘close’ the geodesics in M are to F. We did this by showing that the thick parts of F’
have a bounded diameter, and that this remains the case as [, — 0, and then using the
fact that the projection of geodesic 3 onto I’ must intersect the thick part of F'. This is

because if the projection of 3 is in the thin part then it will be homotopic to a power of c.

Therefore in the lift to H?, the end points of the lift of 3 are close to the end points of «
(which are equivalent to the end points of the lift of 7, where - is the closed curve on F
onto which  is projected). By ‘close’, we mean that the distance between the end points

is equal to 6 for some small § > 0, and as [, — 0, we have § — 0. Hence this distance

becomes insignificant as the core curve shortens.
This situation can be summarised as follows.

Consider two long geodesic arcs « and § in H® with end points z;, y; for a and z, ys for

3, such that du(z1,22) = 6 and dg(y,y2) = p for §, p > 0 small. We find bounds on the
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length of 3 in terms of the length of a.

Fig 5.39: geodesics that don't intersect F

Let z; and x4 be joined by the hyperbolic line segment and y; and y, be joined by the

hyperbolic line segment between them, so 1, Z2, 12, y1 determines a hyperbolic rectangle

(see figure 5.39).

Join x5 to y; by a hyperbolic line segment so z2z1y; is a hyperbolic triangle where the
angle at z; is 6,. Let [, denote the length of «, and let I; be the length of the hyperbolic
line zoy;. The length of zyzs is § (see figure 5.40 below).

Fig 5.40: comparing lengths of B and a

Then by the triangle inequality,

lo—0< <, +4 (512)

Now applying similar analysis on the second hyperbolic triangle zoy;y2 with angle at

th = 0,. Let [g denote the length of 3, then again by using the triangle inequality,

b—p<lg<li+p (5.13)

Combining inequality 5.12 with inequality 5.13, we have the following bounds on lg.

la = (64 p) g < Lo+ (5 +p) (5.14)
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Note that the difference between the lower and upper bounds is 2(d + p). As d,p > 0 and
are small, the difference between the lower and upper bounds is small. Relating this to
the situation in mind, note that these bounds are dependent on the distance between 3
and its representative on F' (where this is measured in the thick part of the flat chosen to
be the root of the tree - and hence close to the top of the hyperplane coﬁtaining the flat).

This distance is made arbitrarily small as I, — 0.

These bounds can be improved by making some basic observations from the particular

situation we are considering.

Let 3 be a geodesic in M, which when looking in the lift into H® has endpoints y and Ay
(where X € I' is the loxodromic with axis ). Project 8 onto F so that the end points

map to T and AT on the tree of flats picture, as described in subsection 5.6.2, and let « be

the hyperbolic line segment between these two points.

Firstly observe that as z = Az when looking back in F' and y = Ay when looking back in
M, so dy(Z,v) = du()Z, A\y), and hence 6 = p. (This is stating that dys(8, r) = J, where
Or is the representative of § on F.) Applying this to inequality 5.14, the new bounds are,

lo —20 <1<, +20 (5.15)

A second observation is that the projection from 8 onto F' is orthogonal, so 6, = 5. (Here
0. is the angle as marked in figure 5.40.) Hence looking again at the first triangle and /;,
using the hyperbolic Pythagorean theorem,

cosh(l;) = cosh(d)cosh(ly) (5.16)

Hence I; = cosh™(cosh(0)cosh(l,)). Note here that as 6, = Z, this value for I; is exactly

halfway between the original bounds - see inequality 5.12.

Let 8, be as indicated in figure 5.40. Then looking at the second (upper) triangle,

cosh(lg) = cosh(lr)cosh(8) — sinh(d)sinh(lr)cos(6,) (5.17)
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Note that bounds can be found for cosh(ls) as the right hand side is bounded above and

below dependent on §,. Looking at the extremes,
if cos(,) = —1 then equation 5.17 becomes
cosh(l) = cosh(ly)cosh(8) + sinh(8)sinh(ly) = cosh(ls + )
This is the maximum value for cosh(lg).
If cos(6,) = 1 then equation 5.17 becomes
cosh(lg) = cosh(l;)cosh(8) — sinh(d)sinh(l}) = cosh(l; — d)

This is the minimum value for cosh(lg).

Therefore
cosh(ly — 8) < cosh(lg) < cosh(ly + 6)
:>l]—(5§l3§l1+5
= cosh™"(cosh(8)cosh(ly)) — & < Iz < cosh™(cosh(8)cosh(ly)) + 6 (5.18)

These bounds on Iz are tighter than inequality 5.15.

Note that one more improvement can be made to the upper bound by observing that as

Ay is pushed onto AT orthogonally, then 0 < 8, < 7 and so 0 < cos(f,) < 1.
If cos(6,) = 0 then
cosh(lg) = cosh(l;)cosh(8) = lg = cosh™*(cosh(l,)cosh*(4))

which gives a new maximum value for [z, which is smaller than before. Hence the new

bounds are,
lo — 20 < cosh™(cosh(8)cosh(ly)) — 6 < lg < cosh™(cosh(ly)cosh*(8)) < lo + 26

To complete this projection analysis, it is necessary to know what these bounds mean for
lz. First note that as [, — 0o, lg -+ 0 as required. In fact if [, increases by more than

46 = 4dys (B, ), (where dga(a, b) is the distance from a to b in H®), then s is forced to
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increase. Combining this with the work of subsections 5.6.3 to 5.6.5, if [, — oo then

lp - 0 and in fact I will be forced to increase if there is a big enough change to [,.

The tightness of these bounds is dependent on the parameter of the construction, i.e. the
length of the core curve c. From the discussion at the beginning of this subsection and in
subsection 5.6.1 when considering the nesting of circles C, and CY, as [, — 0, we can
ensure that the geodesic gets close to F (as it is forced to pass through a bounded region
of the top of the hyperplane containing the flat which defined to be the root of the tree in
the lift), and so & gets arbitrarily close to 0 as I, — 0. As § — 0,

cosh™(cosh(l,)cosh?(8)) — cosh™(cosh(ly)) = la

and
cosh™(cosh(8)cosh(ly)) — Lo

and so as expected lg — [, as § — 0 (because § — «).

Using the original bounds found (i.e. inequality 5.15), to ensure a change in g, then [,
needs to increase (or decrease) by at least 4. This is equivalent to four times the distance
between  and Br (where fF is 8 projected onto F'). The tighter bounds imply that an

even smaller change would be sufficient.

Linking this to the previous sections (i.e. sections 5.6.3 to 5.6.5), we know that as

lg,, — oo (where fr is § projected onto F), then I, — oo (where « is the geodesic with
the same end points in the lift as 8r). In fact a small change in lg, gives a change in [,,.
Therefore if the length of fr changes by more than 46, where § = dys(8, Br), then Iz will

also change. More importantly if I3, — oo then [z - 0.

This is all summarized as follows.

Lemma 5.6.6 Let 3 and B be two geodesics in M, where M is the book of I-bundles
manifold with single solid torus binding and three I-bundle pages. Let Br and SBp be the

representatives on F onto which 3 and 3 are projected. Let lg, denote the length of Br.
Then if |lg, — g > dus(8, OF) then lg # Ly and hence x[B] # x[8]-

105



(Note that this lemma includes both the cases where 8 and B intersect and when they
do not. If 3 and Bp intersect (the case considered in sections 5.6.3 to 5.6.5) then the lower

bound on the difference in lengths required will be smaller.)

To rephrase in another way if 3 — Br and 8 s S via the projection, then to show
x[8] # x[F] it is needed to show that |l — lﬁ;| > 4dys (B, Br). As l. — 0 we know that
dps (8, Br) — 0, and hence changing lengths of curves in F is enough to alter lengths of

geodesics in M, and gives the means to determine when two geodesics in M cannot have

the same character.

This projection and lemma 5.6.6 will be used when considering the properties as

discussed in section 5.3.

5.7 Core curve property

In this section we prove the core curve property as given in section 5.3 for the book of
I-bundles with single solid torus and three I-bundle pages, as formalized in theorem 5.7.1.

Sections 5.5 and 5.6 have provided the tools required to do this. We restate the theorem

here.

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid torus
binding and three pages. Let g € m(M), such that g is represented by the core curve of
the solid torus in M. Then g is uniquely determined by x[g]. By this we mean that if
h € m (M) with x[g] = x[h] then h is conjugate to gt (so h is also represented by the

core curve in M).

Proof:  Let g be represented by the core curve v, and let h be represented by another
geodesic v in M such that x[h] = x[g] (and therefore the geodesics v and ' representing
g and h respectively have the same hyperbolic length in M). Project v and v onto F' via
the projection in section 5.6, so -y is represented by the unique closed curve vy and v is
represented by the unique closed curve ’y}; on F' (where both vr and fy}, are piece-wise
geodesic on F'). Note that as v is equivalent to the core curve, this is a geodesic in M

that is already on F, and so v = yr. We now compare v = 7 to vp.
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There are three possibilities for 7. Firstly v, could intersect v in at least one place, or

’y}; could be completely disjoint from 7 or v could coincide with . The aim is to rule

out the first two possibilities.

Fig 5.4%: core curve property : yl‘: intersects y

Let v intersect v (see figure 5.41). As v is a closed curve it must intersect v at least
twice since + separates. From the construction imposed on M (as given in section 5.4), we
know that the core curve of the solid torus is short in length, so that there is a wide
half-collar around the geodesic boundary v on each F; (for ¢ = 1,2, 3). This means that
each segment of 7, (by segment of 7, we mean a geodesic contained entirely in one F})
will have length bounded below by ¢ log (ﬁ) (N.B. This bound comes from section 5.4,
where c is a fixed constant, [, is the length of v, and u > [, is a constant smaller than the
Margulis constant.) This lower bound increases as [, decreases. Therefore if v is short

then any curve intersecting it will be long in comparison.

This means that |lengthr(vy) — lengthg(v)| is large, and by lemma 5.6.6 this implies that
Ly # L, which contradicts the assumption that x[k] = x[g]. Hence v cannot intersect ~.

Fig 5.42: core curve property : y' disjoint fromy

Let 7 be completely disjoint from + (see figure 5.42). Hence vy exists solely on one F;
(for i = 1,2,3) in F. Hence v is a geodesic in M which exists on F, and so v, =7 (so

we do not need to use the projection in this case). From lemma 5.5.3, it is possible to
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change the length of any arbitrary closed curve on F; while keeping the length of the
boundary geodesic -y fixed. Hence, this ensures that I, # L, which contradicts the
assurnption that x[h] = x[g]. Hence < cannot be completely disjoint from 7.

The only possibility left is that v coincides with y and so " = 5 = 1, and so both g
and h are represented by the core curve of the solid torus, and hence

x[h] = x[g] = h = gt as required.

Theorem 5.7.1 says that the core curve of the solid torus in the specific 3-prong case is
uniquely determined by its character (and therefore by its length in M). We will consider

extending this result to more general books of I-bundles in section 6.3.

5.8 The boundary property

Before moving on to consider more general books of I-bundles, in this section we consider
another question that is closely related to the character problem, and therefore worth
considering here. The aim is to show that if one geodesic in M is contained in one
component of 9M, (the boundary of M), then any other curve with the same character
will exist in the same boundary component (but not necessarily that the curves are
homotopic). In this section we consider this in relation to the 3-prong book of I-bundles,

as formalized in theorem 5.8.1.

1

Fig 5.43: Boundary components of F

Let M be a ‘3-page’ book of I-bundles and let F' denote its spine. This spine F' consists of
three pieces, which we denote (for the purpose of this section) Fs,, Fs, and Fs,. The
boundary of M consists of three components, denoted S, 52 and S5, labeled such that Fg,
is the part of I that is ‘disjoint’ from S; (for i = 1,2, 3). (See figure 5.43 for clarification
of this.)
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We have the following.

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus binding
and three pages. Let g € m (M) be represented by a geodesic vy that is contained in a
component of the boundary of M (y C S; C OM ). Let h € m (M) be represented by
another curve v such that x[h] = x[g]. Then v C S; also.

Proof: Let g be represented by a closed curve « such that v C 5;. (If y C .5, or
~ C S; then the argument will be similar, just change the indexing.) This means that -y is

disjoint from F, (so no part of « exists on Fg, - by the notation given above).

Let h be represented by another closed curve v on F', and consider the possibilities for
where « is situated. Either 4 exists partly in Fg, or it has no part in Fg, (and is

therefore disjoint from Fg, ).

Fig 5.44: Possibilities for h

If 7' exists partly in Fg,, then we may find a simple closed curve « that intersects 4" but
is disjoint from v (i.e. let a be a simple closed curve on Fg, ). By lemma 5.5.3, we can
change the length of o while keeping the boundary geodesic of Fg, at constant length.
Hence we may change the length of a without effecting S; or «. Shrink a enough to

ensure [, # [, (where [, denotes the length of ), and hence contradicting the assumption

that x[g] = x[h].

If 4 is disjoint from Fy,, then by the notation given above, 4" C S as required.

As these are the only two possibilities, if x[g] = x[h], then v C S; as required.

A similar method to this could be used in proving the same property for more general

books of I-bundles.
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Chapter 6

(GGeneral Books of I-bundles

In this chapter the focus moves to considering the character question for more general
books of I-bundles. We aim to extend the result from section 5.7 (the core curve
property) to this more general setting. As an initial reminder, the problem is to find a
topological condition on the geodesics in a compact hyperbolizable 3-manifold M, such
that if two curves have the same length over all hyperbolic structures then they are the
same geodesic (up to homotopy and orientation). To start we will briefly look again at

the construction, as given in detail in section 5.4, and then extend the projection as

described in section 5.6.

6.1 Definitions and the general CMT Construction

This section forms a recap of both the general definition and construction for the book of
I-bundles to gather all the information to start extending the results in chapter 5. The

details of the general construction are given in section 5.4, but here are the important

points.

First note that for the purpose of this work, the books of I-bundles only have solid torus

bindings. This is because we have ruled out having parabolics in the fundamental group.

Let M be a general book of I-bundles (without parabolics). The components of M will
consist of a number of solid tori, denoted T; (for j € {1,...,n}), and I-bundles, denoted B;
(for ¢ € {1,...q}). Each solid torus will have a family of disjoint parallel closed annuli that
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are homotopically equivalent to the core curve on its boundary. Each I-bundle B; = F; x
[0,1], where F; is a surface (or I-bundle base) which is a compact, orientable surface
minus p open discs (so has non-empty possibly disconnected boundary). Form M by
identifying the boundary dyB; with the annuli on the solid tori. (Note that if M contains
more than one solid torus binding, then it must contain I-bundle bases with multiple

boundary components, so at least one I-bundle is attached to more than one solid torus.

Otherwise M will be disconnected.)

As for the 3-prong case, the union of the I-bundle bases with boundaries glued together

inside each solid torus comprise a ‘spine’ F' for M around which M is a regular

neighbourhood.

In section 5.4, the CMT construction was given for the general case, which put a family of
hyperbolic structures on M such that each I-bundle base is a totally geodesic surface with
geodesic boundary (so we take the convex core of a surface with ends to give the I-bundle
base). This construction gives a list of parameters {l.,} for the solid tori in M, where [,
corresponds to the length of the core curve ¢; of the solid torus T;. Then each boundary

component (of an I-bundle base) that glues to the solid torus 7}, with parameter /., is a

geodesic of length [, .

Following the description given in [CMT99], these parameters for the solid tori can be
incorporated into a single parameter Iy, where [, = ma:v{lcj}. Then assuming [ is
sufficiently small, the manifold M is hyperbolizable (as seen in section 5.4). As ly > [, for
all j, each core curve ¢; is short. This is the only constraint imposed on M, (and
consequently F'), and the family of hyperbolic structures. (This was set aside as an

important observation at the end of section 5.4.)

As described in-detail in section 5.4, the developing map for this structure lifts the
universal cover of M to H? such that each base surface is mapped to a totally geodesic
subset of H? called a flat. For a specific flat, at each lift of a geodesic boundary ¢; of its
base surface F; there are p; — 1 other flats equally spaced. (Here p; is the number of
annuli glued to the corresponding torus binding 7} - or equivalently the number of
geodesic boundaries glued to the solid torus 7} with parameter I.;.) By equally spaced we
mean that the angles between the half-planes containing the flats are equal around the lift

of ¢; (e.g. in the 3-prong case, this angle was always equal to Z*). Note that unlike the
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3-prong example considered in chapter 5, this angle may be different for each solid torus

binding (and hence for the lifts of each ¢;), as it is dependent on the quantity of I-bundles
that are attached to that specific solid torus.

Fig 6.1: Tree of circles

The lift gives a tree of circles picture (when looking from infinity or considering where the
half planes intersect the complex plane in H? - see figure 6.1), however it is important in
this more general setting to keep a note of which ¢; is being lifted as they are not all

equivalent in M (unlike the 3-prong case), and each distinct ¢; equates to a different solid

g

Fig 6.2: keeping note of the lift of the core curves

torus. (See figure 6.2 below.)

Recall from section 5.4 that the p-thin part of a flat denotes the set of points where some
element of the stabilizer of the flat acts with translation p or less. Set u to be less than

the Margulis constant. Then the u-thin parts consist of a union of disjoint pieces, each of
which is a neighbourhood of an axis of translation - hence will be a neighbourhood of the

lift of a geodesic boundary. (The p-thick part is the complement of the u-thin parts.)

Given any two points z,y in two flats H and H' in the tree, let H = Hy, Hs, ..., H, = H’
be the unique sequence of flats between H and H'. Then there is a geodesic chain v,

from x to y, such that v, , is made up of geodesic arcs {~;} where each v; C H; and ;
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meets ;41 in the geodesic boundary shared by H; and H;y:. By lemma 5.4.1 there is a
unique shortest path amongst all such piece-wise geodesic paths between z and y. (Note
that lemma 5.4.1 was stated and proven in all generality so applies to this more general
setting. The proof is independent of the angles between the planes, and only uses the

tree-like structure of the flats, which we still have in this more general situation.)

Following the work of Canary, Minsky and Taylor (as given in [CMT99] and described in
section 5.4), if z and y are located in the p-thick part of their respective flats, then with
the assumption that ly is small, then each segment of the unique shortest path ., has
length bounded below. This can be seen by looking back to the spine F' of the manifold.
If Iy is small, then around each geodesic boundary of a base surface F; there is a wide
half-collar (by the collar lemma) whose width depends only on ly. Hence the p-thick part
of F; is separated from the geodesic boundary by a distance which is dependent on the

length of the geodesic boundary and p.

According to Canary, Minsky and Taylor in [CMT99], given any k and assuming [y is
small, then each segment has length at least k. They give this bound to be ¢ log (ﬁ)

where c is a fixed constant. Hence the smaller Iy becomes, the larger this lower bound k

becomes.

To summarise, the construction for a general book of I-bundles is the same, except the
result is a set of parameters {l,} for the solid tori, corresponding to the lengths of the
core curves. The only condition imposed to ensure M is hyperbolizable is that I, <l

small for all ¢;.

For more information on this construction see section 5.4 or see Canary, Minsky and

Taylor’s description in [CMT99.

6.2 Extending the projection

The aim of this section is to extend the work in section 5.6 to this more general book of
I-bundles manifold. As with the 3-prong example, it is necessary to find a way of
assoclating each geodesic 4 in M to a unique closed curve Gr on the spine F. Using this

association we may approximate the length of 3, denoted lg, by the length of Br, denoted
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lg., and show that if l5. — oo then Iz = 0.

There are two main differences (that are important) between the general book of I-bundles
and the 3-prong case. Firstly we have a set of core curves ¢; (and hence a set of geodesic
boundaries), each of which is short in length (and can be shortened within the limitations
of the CMT construction). Secondly, when considering the lift to H?, the angles between
the flats may differ from %?, and may be different for each geodesic boundary in the lift.

However, by the nature of the construction of the tree of flats, these angles between

adjacent flats will be fixed (as in the 3-prong case) for a specific book of I-bundles.

In section 5.6, the initial association between a geodesic in M and a closed curve on F

was independent of these angles between the flats (when looking in the lift to H?). In fact
the projection relied on the fact that the geodesics stay within a bounded distance of the
spine. This is still the case, and so we may use the same projection to push the geodesics

onto F as described in section 5.6.

The second stage in section 5.6 was to find bounds on I in terms of lg,. This did depend
upon the angles between the flats, and so we need to consider this in more detail here. As

in subsections 5.6.3 to 5.6.6, this is done in two stages. -

Let 8 be a geodesic in M, and let Br be its representative on F' (so § +— (Fr under the
projection). First assume that (3 intersects I at some point (in the thick part of F').
Choose this point as the base point for G and lift to H3. In the lift 87 is represented by
a broken piece-wise geodesic path ﬁ;, such that each segment of ﬁ; is contained in a
unique flat, and § will be represented by a hyperbolic line segment E with the same end

points as fx. (See figure 6.3.) We compare the length of Br to the length of 3.

Be
Fig 6.3: projection on to F

BEach segment of E; has length bounded below (i.e. > m), where m can be made
arbitrarily large by making ly = mam{lcj} small (where ¢; is the core curve associated to

solid torus T}), hence m — oo. Unlike the 3-prong example, the angles 8; between each
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pair of segments are not all necessarily equal, but they will be fixed as they are equivalent
to the angle between adjacent flats. Hence let 6, 6., ..., 8,_1 be the angles between the n

segments, where 0 < 8; < 7.

Let E}; have n segments of length m + A; where X; > 0 for all i = 1,’...7 n. As in subsection
5.6.5, an equation for lb; could be found in terms of m, X; and 8; (for i =1,...,n and
7=1,...,n— 1), however with far more unknowns to deal with, these equations would
become complicated. Hence we adapt the work from subsection 5.6.5. As a reminder, the

aim is to show that if lé} — 00 then lﬁ - 0.

The hyperbolic line E and the n segments of E}; construct a hyperbolic n 4+ 1-gon. We use

an induction process as in section 5.6.

<>

Fig 6.4: n=2 case

Let n = 2, then B and Er construct a hyperbolic triangle (see figure 6.4). This triangle
has two sides increasing at the same rate (as m — oo) with fixed angle between them. By
proposition 2.1.9, we know that E will increase in length also. Therefore for n = 2 if

m — oo then I; will increase and hence [ » 0 as required. Hence it is solved for n = 2.

Now assume that if @; has n — 1 segments and if m — oo then I3 » 0, and use this to

prove the same for E}; with n segments.

Fig 6.5: ﬁwifh n segments

The hyperbolic line E and the n segments of E}; define a hyperbolic n + 1-gon. We take a
hyperbolic line segment that divides this polygon into two pieces. One piece is a polygon

with n sides (i.e. the n — 1 case which we have assumed has the required result), and the
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second is a hyperbolic triangle with one side of length P, one side of length m + A, and

one of length lﬁ. (See figure 6.5 for illustration of this.)

By the assumption that the result is true for B; with n — 1 segments, we know that P is
not decreasing as m — o0, and in fact using proposition 2.1.9 and proposition 2.1.12
successively we know that P — co. Hence the hyperbolic triangle (marked T in figure
6.5), has two sides increasing in length with respect to m, with angle ¢ between them. By
corollary 2.1.10, we know that as m — oo, ¢ — 6,_, and 6,_, is fixed such that

0 < @,_1 < m. Hence by proposition 2.1.12, ZE will increase with respect to m. Hence as

m — 0o (and lz- — 00), Iz —» 0 as required.

Now assume 3 does not intersect F. The argument from section 5.6.6 extends directly to
this more general setting, as this part of the projection analysis did not depend on the

angles between adjacent flats. Hence

lop — 2dys (B, Br) < lg < g, + 2dys (B, Br) (6.1)

where dys (8, OF) is the distance between 3 and its representative Bz on F.
Hence as g, — 0o =I5 -+ 0.

Hence lemma 5.6.6 extends to this general case.

6.3 The core curve property

In section 5.7 it was shown that in the 3-prong example the core curve was uniquely
determined by its length (and the corresponding group element by its character). In this
section this result is extended to the general setting described. First we comment on the
case where M still has only one solid torus binding, but with n pages (see figure 6.6 for
graphical representation of an example with n = 6). This is an almost direct extension of

theorem 5.7.1.

Lemma 6.3.1 Let G = m (M) where M 1is the Book of I-bundles with single torus
binding and n pages. Let g € G be represented the core curve o of the solid torus. Let

h € G such that x[g] = x[h], then h = g*L.
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To prove this the results on surfaces from section 5.5 and the described projection from
section 5.6 are utilized. (Figure 6.6 illustrates an example of such a book of I-bundles,

where the vertex is the solid tori, and the edges are the I-bundles.)

Fig 6.6 n-prong case
Proof:  Let g be represented by the core curve a with length [,. Then from the
construction given in section 5.4, I, is small (and can be made arbitrarily small within the
limits of the construction - hence around « on each base surface F; there will be a wide

half collar, whose width depends on [, and increases as [, — 0).

Let h be represented by another geodesic 8 in M, with length lz. Use the projection (see
sections 5.6 and 6.2) to push § onto Sr on F. (Note that as « is the core curve, then o

already exists on F' and so ar = a). Now consider the possibilities for Bpg.

Firstly Gr could be completely disjoint from «, or 8¢ could intersect « in at least two

places (as Br is a closed curve on F'), or 8¢ could coincide with @. We rule out the first

two possibilities.

Let B be completely disjoint from «. Then fr is a geodesic in M, and so 8r = 8, (as BF
will lie solely on one base surface F; of F'). Hence f3 is a simple closed curve on a surface
with non-empty connected boundary. By lemma 5.5.3, the length of 3 can be changed
while the length of a remains constant. Hence ensuring that lg # {, = g # lo which

contradicts x[h] = x[g]. Hence Br cannot be completely disjoint from .

Let Op intersect o (this must be in at least two places as Or is a closed curve). From
section 6.2, we know that to ensure lg # [, we need to make sure that

llge — lo| > Adys(Br, B). However, as l, gets smaller, dys (8, Br) — 0. More importantly
the half collars around a on each F; get wider, and so |lg, — l,| gets larger (as [r
intersects o). By making o small enough, we can ensure that |lg, — [,| is large enough to
imply Iz # I, and giving the contradiction to x[h] = x[g] as required. Hence Br cannot

intersect «.
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The only possibility left is @ and Sr coincide, so o« = S = [ as required. ]

Now let M be a book of I-bundles with ¢ solid torus bindings T; for j7 =1, .., g, each with
n; pages. (N.B. some of these pages will be common to two or more of the solid tori.) Let

o; be the set of core curves, one for each solid torus.

Lemma 6.3.2 Let G = m (M) where M 1is the book of I-bundles with q solid tori bindings
T; such that each T; has n; pages (i =1,2,..m). Let g € G be represented by the core

curve a; (of length ly,) of the solid torus Tj. Let h € G be such that x[g] = x[h]. Then

h = gtl

Fig 6.7: example of general case

Proof:  Without loss of generality let g be represented by the core curve «; of torus 7

(if not just re-label the solid tori accordingly). Let h be represented by geodesic 5 in M.

Apply projection to £, so that § — fr on F and then compare lg, to [, over all

possibilities for Gp.

As before we have three possibilities, i.e. S disjoint from «;, B intersecting a;, or Bp

coincident with «;. Take each in turn and break into cases.

First note that as we have the freedom to change the lengths of the core curves

independently (as long as they are short) then for ease of exposition set

oy = loy = oo = L.

Let O intersect o;. Here we have two cases, either S intersects other a; (for 7 =2,...,q)
also, or fr only intersects a; (see figure 6.8). Assume that S intersects a; only. Then Sr
remains on the base surfaces Fj, that are glued to the solid torus 73. As a; is short, then

around it on each Fj, is a wide half collar whose width increases as l,, — 0. Therefore let
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lo, — 080 |lgp — la, | is large (i.e. larger than four times the distance between 8 and Gp,

which is decreasing as [, is decreasing). We can make a7 arbitrarily small, so ensuring

1

that I # l,, and contradicting x[h] = x[g].

Fig 6.8: B, intersecting a,

Now assume that g intersects other a; (for j = 2, ..., q) as well as o;. By the same
argument as above, as [,, — 0, the half collar around «a; gets wider. If we assume
loy = loy, = ... = I, then all the core curves will be shrinking, and so any curve

intersecting one or more of them will have to be very long. Hence |lg, — l,,]| is large,

which implies that Iz # l,, as required. Hence B cannot intersect a;.

Let Oz be disjoint from ;. Then either fr = «; (for j # 1), or fF is disjoint from all «a;
( =1,..,q) or Or intersects at least one c; # a;. (Figure 6.9 illustrates these

possibilities.)

Fig 6.9: B, disjoint from o,

If fr = a; (for j # 1), then we have the freedom to change the lengths of the core curves
independently (as long as they stay short). Hence shrink a; 50 ly; 7# lo, and so lg # ls, a8

required.

If BF is completely disjoint from all o; then Br lies purely on one of the base surfaces £;

of F, and so B = 3. Hence f exists on a surface with non-empty (possibly disconnected)
boundary. Using lemma, 5.5.5, the length of 87 can be changed while the length(s) of the
boundary curve(s) of F; remain constant. If o; corresponds to one of these curves then we

can ensure lg # lo, as required. If a; is not one of these curves, then note that the rest of
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F stays fixed as lg changes, and so @; remains constant length. Therefore Ig 7# l,, as

required.

If Br intersects at least one of a; # o, then, by the construction given in section 5.4, the
length of any closed curve crossing a core curve will be made up of segments which have
length bounded below by a function, which is dependent on the length of that core curve.
As a core curve shrinks, any curve crossing will grow in length as this lower bound
increases. As all core curves are short, any curve crossing them will be long. In fact any
curve intersecting a core curve will be longer than max{a;} for all . Hence in this
situation we know that ls,. # l,, and |lg, — l4,| is bigger than four times the distance

between 3 and B, and so lg # [,, as required.
Hence BF cannot be disjoint from a;.

The only other possibility for 8 is that it coincides with ¢, and hence lg,. = l,, and as

BF = B this implies lg = I,, and so x[h] = x[g] = h = g*' as required. O
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Chapter 7

Simple on F property

This chapter discusses one of the other properties suggested in section 5.3. We will

therefore be considering the following conjecture.

Conjecture 7.0.3 Let G = m (M) where M is a book of I-bundles with single solid torus
binding and three pages. Let g € G be represented by a geodesic in M which is uniquely
projected onto a simple closed curve on F' (where F is the spine of M). Let h € G such

that x[g] = x[h], then h = g*'.

7.1 Extending McShane’s lemma

When looking for possible properties to fit in with the character question, it was
important to find a set of natural curves in the manifold. In the 2-dimensional case, (see
McShane’s lemma in section 4.4 - lemma 4.4.1), the property was being a simple closed
curve. The idea of a simple closed curve on a surface forms a natural divide for the
geodesics (between simple and non-simple). In 3-dimensions, the idea of a geodesic being
simple is not very interesting as the majority of the geodesics will be simple. (To see this
is the case see [BWO03]. In this paper, Basmajian and Wolpert show that for a 3-manifold
which supports a geometrically finite hyperbolic structure, then either the generic
hyperbolic structure has the spd-property or no hyperbolic structure has the
spd-property. Here a hyperbolic 3-manifold is said to have the spd-property if all of its

closed geodesics are simple and pair-wise disjoint. They prove that both cases occur.)
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The spine F' of M is constructed from surfaces, and so the concept of a closed curve on F
being simple will form a natural divide for closed curves on F', and therefore form a

natural set of geodesics in M (those that project onto simple closed curves and those that
do not). This combined with the projection from section 5.6 means that the property of a

geodesic in M being ‘simple on F” is a natural extension to McShane’s lemma.

As a starting point, look back at the proof of McShane’s result (see the proof of lemma
4.4.1). This proof can be broken into two main pieces. Let .S be a closed orientable
surface of genus p > 2. Firstly we show that if g € m,(S) is represented by a simple closed
curve on the surface S and x[h] = x[g] then h € 71(S) must also be represented by a
simple closed curve on S. (The proof of this part uses the fact that non-simple curves on
S have a positive lower bound on their length, whereas sequences of simple curves have
lengths which go to zero in certain hyperbolic structures.) Secondly we use the fact that
both ¢ and h are represented by simple closed curves on S, and shows that they must

coincide (up to orientation).

In order to prove the simple on F' property (for a book of I-bundles M) in relation to the
character problem, the aim would be to extend both of these steps to M. For the purpose
of this work we will assume that M is a book of I-bundles manifold with single solid torus

binding and three I-bundle pages - as described in section 5.4.1.

We start by considering the second step of the McShane’s lemma proof.

7.2 Both simple = Same curve

In this section the aim is to extend the second part of the proof of McShane’s lemma to
M, where M is a book of I-bundles with single solid torus binding and three I-bundle

pages. To do this we will be utilizing the projection described in section 5.6.
Hence the aim is to prove the following,

Lemma 7.2.1 Let g,h € (M) be such that x[h] = x[g] and such that both g and h are

represented by geodesics B and v in M that are projected onto simple closed curves Bg
and yp on F (i.e § — Pr and v — p via the projection in section 5.6). Then h = g**.

122



Note that this will also say that lg = L, (where l5 denotes the length of 3).

In order to prove this lemma we have several intermediate steps to show a chain of

implications which combined will lead to lemma 7.2.1. This chain of implications is as

follows.
xlgl = xlh] = s =1, = i(Br, ;) =i(yr o) = Br=r = B="7

(Note here that i(a, b) is the number of points of intersection between a and b, and ¢; is a

simple closed curve on F'.)

The first implication (i.e. x[g] = x[h] = Ig = [,) follows from the connection between
character and length as described in section 4.3. The last implication (i.e.
Br = vr = [ = ) comes from the uniqueness of the projection as given in section 5.6,

and as f — fr and ¥ — yr uniquely, then 8 — B =yp and v — v = fr and so 8 = 7.

The rest of this section aims to show the other two implications are true (i.e.
ls =1, = i(Br,a;) = i(yr, o ) - see lemma 7.2.7, and i(Br, o) = i(Vr, @j) = Br = VF -

see lemma 7.2.6).

Before proving these we start by considering simple closed geodesics in M which lie on

the spine F' (i.e. these consist of simple closed curves on F' that do not intersect the core
curve, or equivalently that lie solely on one of F}, F; or F3). We show that such a pair of
geodesics with the same length in M are the same curve up to homotopy and orientation.

First we need the following which is based on an idea from the proof of the core curve

property.

Lemma 7.2.2 Let M be a book of I-bundles with single solid torus and three pages, and
let F' be the spine of M. Let ¢ be the core curve of the solid torus, and let ap be a simple
closed curve on F'. Let n.(a) be the number of times ap intersects c. Then if Br is

another simple closed curve on F' such that l,, = lg. then n.(ar) = n.(0r). (Here ly, is

the length of ap.)

Lemma 7.2.2 says that if two simple closed curves on F' that have the same length as

measured on F' then each must intersect the core curve the same number of times. (N.B.
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As ¢ and f are simple closed curves on F' they are not geodesics in M, unless
ne(a) = n.(B) =0.)

Proof: = We proceed by proving the contrapositive, so n.(a) # n.(8) = loy 7 lge-

First note that by the CMT construction (as given in section 5.4), the leﬁgth of the core

curve, which we will denote I, is short and can be made arbitrarily short whilst keeping

M hyperbolizable.

As c is short there is a wide half collar around it on each base surface F; (for i = 1,2, 3)
that determine F', whose width depends only on I.. Consequently any simple closed curve
ar on F' that intersects ¢ (and hence will do so at least twice as it is closed) will have a

lower bound of 2w(n.(ar)), where w is the width of the half collar around ¢ (so w is

dependent only on [,.).

As |, — 0, w will be increasing and hence so will this lower bound. (Note that this lower
bound will also increase the more points of intersection there are between the simple
closed curve on F' and c.) Therefore if n.(ar) > n.(0F) then l,,. has a lower bound which

is greater than the lower bound on lg,., and this will remain so as [, — 0.

As I, — 0, the length of any simple closed curve will be dominated by the thin parts of F'
(i.e. neighbourhoods of the geodesic boundaries, or equivalently c) that it passes through.
Hence if n.(ar) # n.(Br) then one of ar or B will intersect ¢ more times and hence have

to cross the wide collar more times, and spend more time in the thin part of F.

Combining this with the lower bounds we see that if n.(a) # n.(f) then l,, # 3. as
required. (In fact if n.(a) > n.(F) then l,, > lg,.)

Therefore if op and fBr are simple closed curves on F' such that [,, = [, then

d

ne(ar) = n.(Br).
Lemma 7.2.2 allows the problem to be broken down into cases dependent on the number
of points of intersection between a simple closed curve on F' and c. We are considering
those simple closed curves on F that are disjoint from ¢ (so n.(*¥) = 0). Note that such a
closed curve on F' will be geodesic in M. From lemma 7.2.2, if ar is a simple closed curve

on F such that n.(ar) =0, and f is such that n.(Gr) > O then I, # lg,.
We now need to show that if ar and G are simple closed curves on F' such that ., = lg,
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then ar and Sr are equivalent up to homotopy and orientation. We do this in two steps.

First consider the case where ar and B¢ exist on different base surfaces F; (for i = 1,2, 3).

Lemma 7.2.3 Let I, Iy and F3 be compact orientable surfaces of positive genus with
connected non-empty boundary, and let F' be the spine constructed from these surfaces by
connecting along their boundary geodesic ¢ (with length l.). If ar is a simple closed

geodesic on F; and Br is a simple closed geodesic on F;, j # i (for 1,7 = 1,2,3) then
laP 7é lBF“

B

Fig 7.1: simple closed curves on F that do not infersect c

Proof:  Without loss of generality let ar be a simple closed geodesic on Fi. (If not
then just re-label the surfaces accordingly.) Decompose the spine by cutting along c,
giving the three surfaces F;, for i = 1,2,3. As Fj is a compact surface with connected
non-empty boundary apply lemma 5.5.3. Hence it is possible to change the length of af
while keeping /. constant. Reconstruct F’ by gluing the three surfaces back together to see
that changing length of ar does not effect the lengths of the curves on Fy or Fj.

O

Therefore 1, varies while lg,. constant and so l,, # lg, as required.
Lemma 7.2.3 says that two geodesics «, 8 in M that exist on F (so a = ar and 3 = (r)
such that [, = [z must lie on the same base surface F; of F' (for i = 1,2,3). It remains to

show that if ar and BF are on the same F; and ap 2 ﬁ}bl then lo, # lgp.

Note that as both o and fr exist purely on F;, then the other two base surfaces, F; for
J # 1, can be disregarded by lemma 5.5.3, as what happens on F; will not effect F; unless

l. changes. This part is therefore reduced to considering a surface with non-empty

connected boundary.

Lemma 7.2.4 Let Fy, F» and F5 be compact orientable surfaces of positive genus with

connected non-empty boundary of length l., and let F be the spine constructed from these
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surfaces by gluing along their boundaries. If ap and Br are simple closed curves on F.
such that lo, = lg, then ap = fE.

Proof: Let ar and Br be simple closed curves on F; such that l,, = lg,. There are
three possibilities to consider. Either ar and Br intersect one another in at least one

place, or ar and Br are completely disjoint, or ar and Br coincide (so ap = FE").

Let o and Br be such that they intersect. Apply the collar lemma around ar to see that
as l,, — 0 then lg, — co. (Note that by lemma 5.5.3, l,, can be made smaller while
keeping . at constant length and so l,, — 0 does not effect F; and F3.) Hence ly,. # I,

in this case, which gives the contradiction required. Therefore ar and Br do not intersect

on Fj.

Let ar and Br be completely disjoint on F). Take the double of F} (so take another copy
of F; and glue it to F} along the boundary curve ¢, or equivalently reflect F} across its

boundary). The result is a closed surface, and by applying Fenchel-Nielsen coordinates to
this new surface, we see it is possible to change [, and keep lg, constant. Hence we can

ensure that l,, # lg,. as required. Therefore ar and Br are not completely disjoint.

The only other possibility is that ar and fr coincide, and so ap = ,Bfﬂl’ as required. O
In connection to lemma 7.2.4, note that we assumed that both ar and Br were simple

closed curves on F;. We could equally have assumed that both ar and B are simple

closed curves on Fy or F3 and use the same proof (just re-label the base surfaces).

Combining lemma 7.2.3 and lemma 7.2.4 provides a proof of lemma 7.2.1 in the case
where the geodesics in M exist on the spine F' (and hence we do not need to use the

projection). This can be summarised as follows.

Lemma 7.2.5 Let M be the book of I-bundles with single solid torus binding and three
I-bundle pages. Let a and B be geodesics in M such that l, = lg, and let ar and Br be
simple closed curves on F representing o and 8 respectively. Then if ar and Br do not

intersect the core curve ¢ (so a = ar and B = Br), then o = ¥ (up to homotopy and

orientation).

Proof:  Combine lemmas 7.2.3 and 7.2.4 to show the above. (|
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We have therefore proven lemma 7.2.1 for a particular case. The other case to consider is
where geodesics o and 3 are projected (via the projection given in section 5.6) onto
simple closed curves ar and (r respectively, such that ar and G do intersect the core
curve. (Note that as the core curve ¢ separates, ar and Bz have to intersect c at least

twice as they are closed curves.)

To consider this we return to the chain of implications stated earlier, and given again

below as a reminder.
xlgl = x[hl = s =1, = i(Br,0;) =i(yr,05) = Br=yr=> B ="

We start by considering i(8r, ;) = i(yr, ;) = Br = vF

From lemma 7.2.2, two simple closed curves on F’ with the same length both intersect the
core curve the same number of times. We consider whether this is true for any other
curves on F. From a statement made in [[Lei03] section 6], on a closed surface .S, two
simple curves with the same length, must cross a finite set of simple closed curves on S

the same number of times. Now consider this in relation to the spine F.

Let i(e, B) be the number of times geodesics o and 3 intersect (i.e. their intersection

number).

Lemma 7.2.6 Let F, F5 and F3 be compact orientable surfaces of positive genus with
connected non-empty boundary of length l., and let F be the spine constructed from these
surfaces by gluing along their boundaries. If v and v are two simple closed curves on F

and i(7yv, ;) = i(v', @) for all simple closed curves o; on F then vy =7 .

Proof: Let v and 4 be simple closed curves on F such that (7, ;) = i(y, @) for all

simple closed curves ¢; on F.

Let a = +y (this is valid as 7 is a simple closed curve on F), then i(y, ax) = i(y,7) =0 as
7 is simple. This implies that i(y', ax) = i(y’,v) = 0. Hence ~ is either completely

disjoint from + or coincides with v (so v = 7).
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To rule out the possibility that v is completely disjoint, we show that a simple closed

curve on F' can alwavs be found such that it has a different intersection number with «

and v . We have two cases.

Fig 7.2:ily", ap ) = 0

Firstly let v and 4" be disjoint simple closed curves on F, such that v has an arc on Fj,
but v does not have an arc on F; (see figure 7.2). Let o, be a simple closed curve on F;
such that a,, intersects 4. Then i(y', ap) > 0 but i(y, a,) = 0 and therefore giving the

contradiction required.

The second case is where both v and " are disjoint simple closed curves on F' such that
both have segments on the same F;. The aim is to again find a simple closed curve o, on

F such that i(vy, ap) # (7, o). We proceed by finding a proof by contradiction.

v

Fig 7.3: pants decomposition of F;

Let v and v be disjoint simple closed curves on F' and assume i(v, a,) = i(7y , ap) for all
simple closed curves «, on F. Decompose F' using a pants decomposition on each F;

(1 =1,2,3), then each curve in the decomposition is a simple closed curve on F'. We
consider v and « in relation to the set of pants curves {a;}. (Figure 7.3 shows such a

decomposition and possible paths v and v'.)
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We have assumed that i(v, ;) = i(7, a;) for each a; in the pants decomposition.
However this implies that both v and 4 must follow the same route around F. To see

this look at one of the pair of pants pieces P of the decomposition (see figure 7.4).

Fig 7.4: piece of the decomposition

By the assumption + and ' intersect each of a1, az and a3 (as in figure 7.4) the same
number of times (i.e. i(y, 1) = i(y, 1) and i(y, a2) = i(y, @) and (7, a3) = i(Y, a3)).
Hence we have a number associated to each o; which is equal to this intersection number.

Let i(7y,a1) = a,i(y,a2) = b and (v, a3) = ¢ and assume a < b < ¢ (if not then just

reorder labels).

Then a + b+ ¢ = 2n, for n € N (as each segment on P has two end points). We also know

that each arc of v on P must go from one boundary to another (otherwise it is trivial).

Then,

Af(al to az) + N(a1 to a3) =a
N(oy to az) + N{az to az) = b
N(as to az) + N(a; to as)

c

where N(c; to a;) is the number of arcs of v going between «; and a; on P.

Also,

N{ay to ag) < min(a,c) =a = N{a; to az) =a —§;
N(a; to az) < min(a,b) =a = N(o; to as) = a — 0y
N(as to az) < min(b,c) =b= N(as to az) = b— 03

for 81,085,603 > 0 and 6, < a,ds < a and J5 < b.
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Hence we have,

0—514’0,—62 = a (71)
b— 63 +a— 62 = C : (73)

From equations 7.2 and 7.3, we see d; — 0; = b — ¢, and from equations 7.1 and 7.3.

43 — 6; = b — c. Therefore,

8y = s (7.4)

From equation 7.1, a — 6, — 65 = 0, and so

a:51+52$a—52:51 (75)

Combining equations 7.5, 7.3 and 7.4, we have

b—ba+d,=c=>06—0=c—b (76)

Hence combining equations 7.5 and 7.6,

atc—b (7.7)

51: 2

We therefore can uniquely determine 6; (from equation 7.7) and hence d2 (from equation

7.5) and hence d3 (from equation 7.4) by knowing a,b and c.

This will be the case for each pair of pants in the decomposition. Hence the intersection
numbers of v (and equivalently ') with each o in the pants decomposition determines
the route around F. Therefore v and " must follow the same path around F and hence
7" is homotopic to 4. Therefore v and 4" are not disjoint on F. This gives the

contradiction required.

Hence if v and + are disjoint simple closed curves on F, then there exists a simple closed

curve v, on F such that i(7y, o) # (v, ap)-
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Therefore if for all simple closed curves a; on F, i(7y, ap) = i(v, @) then y =+ on F. O
Lemma 7.2.6 shows that the idea of intersection numbers being equal is not restricted to
the core curve, and in fact for two curves on F' to be equal or coincident then they must

intersect every simple closed curve on F' the same number of times.

We now prove the other implication, i.e. Iz =1, = i(8F, @;) = i(yF, ;). This is

formalized into the following.

Lemma 7.2.7 Let M be a book of I-bundles with single solid torus binding and three
pages, and let F be the spine of M. Let B and v be two geodesics in M such that they are
represented by two simple closed curves Br and vp respectively on F. Then if lg = L, then

t(Br, aj) = i(yr, a;) for all simple closed curves a; on F.

Proof: Let § and v be two geodesics in M that are uniquely projected onto simple
closed curves fr and yF respectively on F using the projections described in section 5.6.

Then we have bounds on Iz in terms of lg, and on [, in terms of ,,.. By lemma 5.6.6, if

|lﬁF - l'YF| >4 mCLCL'(dH("y, f)’F)7dH(IB7 /BF))

then Ig # 1,. We also know that maz(du(v, vr), du(8, Br)) is small and decreases as the
length of the core curve shrinks. This we can do within the constraints of the construction

of M (as seen in section 5.4). Therefore even if |lg, — L,,| is small then lg # L,.

To prove the lemma we show the contrapositive, i.e. show that if i(8r, ;) # i(yr,a;) for

at least one simple closed curve a; on F, then |lg, — L,.| can be made arbitrarily large so

that we ensure lg # L,.

Let a, be a simple closed curve on F such that i(8r, o) # i(7r, ap). Without loss of
generality assume (8, a;,) > ¢(vr, @) > 0. (N.B. if ¢(yF, ;) = O then shrinking a, will
not effect vz but will effect fr and so |lg, — I, | will increase, and we shrink ¢, enough so

that this difference is large enough to get a contradiction.)

Note that as (0, o) > i(vF, @), lgr will increase at a faster rate than [, and therefore

llge — Lz | will be increasing. We continue to shrink «, until this difference is large enough
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to get a contradiction. Hence if i(f8F, o) # i(vr, @) for some simple closed curve o, on

F, then lg # L,.

Therefore if I, = lg then i(ar, ;) = i(BF,7;) for all simple closed curves «y; on F'. O

Combining lemma 7.2.6 and lemma, 7.2.7, the chain of implications is shown to be true,

hence giving a proof to lemma 7.2.1, which we restate below.

Lemma 7.2.1 Let g, h € m (M) be such that x[h] = x[g] and such that both g and h are

represented by geodesics B and v in M that are projected onto simple closed curves [r

and vr on F (i.e B — Br and v — r via the projection in section 5.6). Then h = g*'.

Proof: Lemma 7.2.6 and lemma 7.2.7 provide the following chain of implications.

xlg) = xlh = s =1, = i(Br, ;) =i(vr,05) = Br=7r = B=1

Therefore if we have two geodesics in M that have the same length and are both

projected onto simple closed curves on F', then they are the same curve (up to orientation

and homotopy).

To complete the proof of the simple property the first step of showing if « is represented

by a simple closed curve on F and l, = [5 then 3 is also represented by a simple closed

curve on F' needs to be extended.

7.3 Simple = Simple

Let g € m (M) be represented by a geodesic 8, which when projected onto v, on F' is a
simple closed curve. Let h € w1 (M) be such that x[h] = x[g]. We would like to show that

h is also projected onto a simple closed curve on F'.

The problem with extending McShane’s result directly is that all closed curves on F’ that
intersect the core curve have lengths with a positive lower bound. This comes from the
fact that the length of each segment in the broken geodesic path when lifted to H® has
positive lower bound (as seen in section 5.4 and figure 7.5) which is dependent on the

length of the core curve. Hence an alternative method needs to be found.
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As an initial idea, consider what could go wrong, and how 8;, could be projected onto «
non-simple closed curve on F'. For this to happen, the projected curve must either

intersect itself in at least one of the pieces F; of F', or intersect itself on the boundary or

core curve of M.

It is necessary to show that a geodesic that projects onto a non-simple closed curve on F'
can never have the same length as one that projects onto a simple closed curve on F. By
the analysis in section 5.6, it is necessary to show that the difference between the lengths

is bigger than four times the distance between the geodesic and its representative on F'.

F /®<°‘

Fig 7.5: simple closed curve on F with lower bound on its length

As all closed curves on F' have a positive lower bound on length, extending this part of
McShane’s lemma has proven to be extremely difficult, and is the reason that the simple

property is just a conjecture. This part is still open for future work.
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