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According to the work by Randol, there exists pairs of closed curves on a surface S for 

which the geodesics in their respective homotopy classes have the same hyperbolic length, 

irrespective of the hyperbolic structure on S. In this work we look at this result in 

connection to hyperbolic 3-manifolds, and in particular the book of I-bundles manifold. 

We consider the following problem. 

Let G = 1fl(M), where M is a compact hyperbolizable 3-manifold, and consider all 

faithful representations of G into SL2(C). Find a topological condition P that can be 

imposed on the elements of G so the following is true. If 9 E G satisfies condition P, and 

h EGis any element such that X[h] = X[g] then h is conjugate to g±l. 

Here X[gJ is the character of g, which is defined in terms of the trace of the matrix 

representation of gin SL2(C). This problem can be translated into a question about the 

lengths of the geodesics in M by utilizing the connection between the character of an 

element of G, and the length of its geodesic representative in M. We therefore look for a 

property that gives some geometrical information about the manifold. For the purpose of 

this work the manifold M is a book of I-bundles. 
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Chapter 1 

Introduction 

The question we are addressing concerns the characters and lengths of closed geodesics in 

hyperbolizable 3-manifolds. Let M be a compact hyperbolizable 3-manifold, let 

G = 1fl(M) and let F(G) be the space of all faithful representations of G into SL2(C). 

For each w E G we can define the character X[p(w)] in terms of the trace of the matrix 

representation p in SL2(C), The most general question is to give a characterisation of 

elements wand f..l of G for which the characters are the same. Although some work has 

been done towards resolving this question, there is not a complete solution even in the 

simpler case when considering hyperbolic surfaces. However, there is more known in 

relation to proving almost the converse of this general question. The specific question to 

be considered here is to determine a reasonable property P such that if 9 E G satisfies 

condition P and if X[g]=X[h] then h is conjugate to g±l. Equivalently, because there is a 

connection between the trace of a group element and the length of the corresponding 

geodesic in M, the problem is to look at what criteria ensure that two closed geodesics on 

a hyperbolic 3-manifold have the same hyperbolic length. More specifically, we want to 

find a natural property on the geodesics of M such that if two geodesics have the same 

length then they are essentially the same curve in M (up to orientation). 

The initial chapters provide some background to hyperbolic manifolds and characters, 

and looks at what is already known in relation to this question. 

In chapter two we build a picture of hyperbolic space, giving the basic models we will use, 

namely the upper half plane and upper half space models. We introduce the idea of a 

general Kleinian group and various properties and relevant results, which will be of use 
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later. 

In chapter three we move on to look at hyperbolic 2- and 3-manifolds and give some 

definitions and results from 3-dimensional topology. These become useful when 

addressing the question. 

In chapter four we give the formal definition of a character of an element of a group, (as 

given by Horowitz in his papers as listed), and build the connection between this notion 

and the length of the equivalent closed geodesic in the hyperbolizable manifold. At the 

end of this section we give 1- and 2-dimensional results in relation to the question, 

including their proofs. These are due to Horowitz and McShane respectively. Note that 

these are included to show how the problem can be broken down, and elements of these 

proofs will be used in connection with the results later on. We also give a slight 

modification to one of these results by removing one of the redundant assumptions. There 

is an indication of other possible connected questions that may be considered. 

In chapter five we look at the main problem in terms of the Book of I-bundles manifold. 

We define this manifold in general and then reduce to a specific case, the 3-page book, for 

which we consider the following results. 

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid 

torus binding and three pages. Let g E 7f1(M), such that g is represented by the core 

c'Urve of the solid torus in M. Then g is uniquely determined by X[g]. By this we 

mean that if h E 7f1(M) with X[g] = X[h] then h is conjugate to g±l (so h is also 

represented by the core curve in M). 

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus 

binding and three pages. Let g E 7fl(M) be represented by a geodesic "I that is 

contained in a component of the boundary of M (ry ~ Si ~ 8M). Let h E 7f1(1\I1) be 

represented by another curve "If such that X[h] = X[g]. Then "I' ~ Si also. 

In chapter six we consider these results in connection with the general Book of I-bundles 

manifold, looking at how all the elements needed for the proofs extend to the more 

general setting. 
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In chapter seven, we consider the following idea. 

Conjecture 7.0.3 Let G = 7fl(M) where M is a book of I-bundles with single solid 

torus binding and three pages. Let g E G be represented by a geodesic in M which is 

uniquely projected onto a simple closed curve on F (where F is the spine of M). Let 

hE G such that X[g] = X[hJ, then h ~ g±l. 
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Chapter 2 

Hyperbolic Space and Associated 
Groups 

In this chapter we give the background material needed in the work. As we will be using 

both the hyperbolic plane, lHI2 , and hyperbolic 3-space, lHI3 , we give here the particular 

models we will use for each dimension, namely the upper half plane model for lHI2 ) and the 

upper half space model for lHI3 . We will also introduce particular groups associated to lHI2 

and lHI3 , namely Fuchsian Groups and Kleinian groups respectively, and look at their 

actions on the boundary of the respective models. There are many references for this 

material, in particular, for hyperbolic 2-space and Fuchsian groups the majority of it may 

be found in [And99]' [Kat92] or [JS87] and for hyperbolic 3-space and Kleinian groups, 

the majority may be found in [MT98] and [Mas88]. 

2.1 Hyperbolic n-space 

In this section we will look at hyperbolic space, defining the models that will be used 

throughout. As this work is concerned with hyperbolic surfaces and hyperbolic manifolds, 

the focus will be on hyperbolic 2-space and hyperbolic 3-space. We will complete this 

section by looking at some hyperbolic trigonometry, and derive some results that will be 

used in later chapters of this work. In particular we look at hyperbolic triangles, 

including the statements of the hyperbolic sine and cosine rules. 
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2.1.1 The Upper Half Plane model 

We start by defining a particular model used for the hyperbolic plane JHI2. 

Definition 2.1.1 The upper half plane model for JHI2) consists of all points in the top half 

of the complex plane, or more formally 

JHI2 = {z E <CIlm(z) > O}. 

This is equipped with the hyperbolic metric ds = V dx
2
+d

y2
, where x = Re( z) and 

y 

y = Im(z). 

To measure the length of a given path in this space we integrate along the path over the 

metric ds. To be more precise, let f : I = [0, 1] -7 JHI2 be a piece-wise differentiable path 

with f(t) = x(t) + iy(t). Then the hyperbolic length is given by 

j /C!lf)2 + (~)2 dt = (_l_/dz /. 
I yet) if Im(z) 

The lines in the hyperbolic plane are the geodesics (the paths of shortest length) with 

respect to the hyperbolic metric. In the upper half plane model these consist of Euclidean 

straight lines and Euclidean semicircles orthogonal to the real axis. Any two points in JHI2 

can be joined by a unique hyperbolic geodesic. If we consider the set of all piece-wise 

differentiable paths between two points x and y in JHI2, then we can define the hyperbolic 

distance to be the infimum of the lengths over this set of paths. It is known that this 

distance realizing path is a parameterization of the hyperbolic line segment joining x and 

y. Therefore, as a consequence, the hyperbolic distance between two points is the 

hyperbolic length of the hyperbolic line segment joining them. 

Now consider the boundary of the model, by considering the 'end points' of the lines in 

JHI2. These either lie on the real axis or, in the case of the vertical Euclidean lines, lie at 

00. This gives the following definition, 
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Definition 2.1.2 The boundary at infinity of the upper half plane model, denoted 

000 (JHI2) , is given by i. = JR U {oo}. (This is the one point compactification of JR.) 

We refer to the points of 000 (JHI2) as the points at infinity of JHI2. Although this boundary 

is important, we must note here that these points are not included in the upper half plane. 

The geometry of JHI2 is determined by its congruent transformations, or its isometries, by 

which we mean the automorphisms of the model that preserve the hyperbolic distance 

and angles. Before we can consider the isometries of the model we must first take a look 

at a particular group of transformations called Mobius transformations, which are defined 

as follows. 

Definition 2.1.3 Mobius transformations are linear fractional transformations which 

map fmm it to it and have the form z ->- ~:1~ where a, b, c, dEC and ad - be =1= o. 

Here it = C U {oo} and is the Riemann sphere. (This is the one-point compactification of 

the complex plane.) 

Note that we can normalize any such transformation (by dividing a, b, e and d by 

vad - bc) and get another representation of the same Mobius transformation which has 

determinant equal to 1. Therefore, without loss of generality, we may assume that 

ad - be = 1 for all our Mobius transformations. 

We can split Mobius transformations up into particular sets by giving a classification. We 

classify Mobius transformations by conjugating a given transformation by another 

appropriate Mobius transformation that puts it into a standard form. We then classify 

these standard forms. This gives the following classification. 

Definition 2.1.4 Let m be a Mobius transformation that is not equal to the identity 

transformation. Then 

Ell If m is conjugate to z ->- z + 1, then we call m parabolic . 

• If m is conjugate to z ->- AZ, (A E C \ {a, I}) and IAI 1, then we call m elliptic. 
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8 If m is conjugate to Z -+ AZ, (A E <C \ {O, I}) and IAI i= 1, then we call m loxodromic. 

4} If m is conjugate to Z -+ AZ, (A E <C \ {O, I}) and A > 1, A E lR, then we call m 

hyperbolic. 

(Note that from definition 2.1.4 we see that hyperbolic Mobius transformations are a 

particular type of loxodromic Mobius transformations.) 

The above is a complete classification as these are the only possible standard forms. For a 

proof of this see the discussion given in [[And99] section 2.4] which goes through every 

possible Mobius transformation and shows that it must be conjugate to one of these 

standard forms. 

Note that definition 2.1.4 also gives the action of each type of Mobius transformation. 

Parabolic elements act as translations, elliptic elements act as rotations about some origin 

and loxodromic (and hence hyperbolic elements) are a composition of a dilation and a 

rotation in C. 

For the purpose of this section, (while considering JH[2), we will consider the set of Mobius 

transformations with real coefficients (i.e. a, b, c, dE lR). This particular subset forms a 

group under composition of functions. To see this note that the composition of any two 

transformations of this kind corresponds to the product of the corresponding matrices 

with real entries of the form 

g=(~ ~) 
with ad - bc = 1. The inverse transformation, which has the form Z !:z-:a' corresponds 

to the inverse matrix g-l. These matrices form the special linear group denoted S L2 (lR). 

There is a slight ambiguity here as in a given Mobius transformation we can multiply 

a, b, c and d by -1 and still have ad - bc = 1. Hence each Mobius transformation as 

defined is represented by a pair of matrices ±g in SL2 (JR), and therefore represented by a 

unique matrix in PSL2 (JR) = SL2(lR)/{±I}. 

This group PSL2 (JR) acts on JH[2 by homeomorphisms and so maps JH[2 onto JH[2 

continuously. It can be shown that P S L2 (JR) is a subgroup of I som(JH[2) (the set of 

isometries of JH[2), and in fact PSL2 (JR) is equivalent to the orientation preserving half of 
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the isometries of JHI2 denoted by Isom+(JHI2). With this in mind, the elements of PSL2C~ .. ) 

may be classified as follows. 

Definition 2.1.5 An element T =1= id of PSL2(Ift) is distinguished by the value of the 

squar-e of its tmce, tr-2 (T) = (a + d?, as follows: 

• if 0 :::; tr-'2(T) < 4, then T is elliptic. 

• iftr-2(T) = 4, then T is pambolic. 

• if tr-2(T) > 4, then T is hyper-bolic. 

(Note that apart from the hyperbolic elements there are not any other loxodromic 

elements in PSL2 (Ift). Any loxodromic element that is not a hyperbolic element will have 

tr-2(T) equal to either a negative or complex number. The trace of a matrix in PSL2(Ift) is 

always real, and hence the square of the trace will always be a non negative real number.) 

The elements of P S L2 (Ift) can also be classified by the number of fixed points that they 

have in the hyperbolic plane. 

• An elliptic element has a pair of complex conjugate fixed points, so has one fixed 

point in JHI2 . 

• A parabolic element has one fixed point in Ift U {oo} = Ooo(JHI'2) 

• A hyperbolic element has two fixed points in Ift U {oo} = ooo(JHI2), which are joined 

by a hyperbolic geodesic called an axis. 

The above summary gives a complete classification of the elements of PSL2 (Ift), as shown 

by the following lemma which comes from [[And99j page 25J. 

Lemma 2.1.6 If an element of PS~(Ift) has thr-ee or more fixed points then it is the 

identity tmnsformation and therefore fixes every point of JHI2 . 
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For a proof of this result see [And99J. 

To connect these together, let Mob(JHI2
) be the group of all Mobius transformations which 

map JHI2 onto itself. Then Mob(JHI2 ) can be identified with I som+(JHI2
) which as we have 

seen can be identified with PSL2 (IR). Hence the elements of PSL2 (IR) give us the 

complete group of orientation preserving isometries for the upper half plane model. This 

completes the description of the model for JHI2. 

2.1.2 The Upper Half Space Model 

The upper half space model is the 3-dimensional analogue to the upper half plane model 

for JHI2. For completeness we define this model of hyperbolic 3-space. 

Definition 2.1.7 The upper half space model is the set 

JHI3 = Hz, t) E C x (0, oo)} = C x (0, (0). 

Visually we identify C with the xv-plane in IRs and then this model consists of all points 

above the xv-plane. (Note that the xv-plane itself is not included but forms part of the 

boundary at infinity.) 

This model is equipped with the following hyperbolic metric 

Jldzj2 + dt2 

ds = -'-'---'----
t 

As in the two dimensional model, to measure length in this space we integrate along the 

given path over the metric ds as given above. More precisely, let f : I = [0, 1 J ----+ JHI:3 be 

piece-wise differentiable path then we define the hyperbolic length of f to be 

lengthH'H3 (f) = 1 ds. 

The hyperbolic geodesics in this model, or paths of minimal length using the given 

hyperbolic metric, are either Euclidean lines or Euclidean semi-circles with centres on C, 
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which are perpendicular to C. In the same way as in the 2-dimensional model, any two 

points can be joined by a unique hyperbolic geodesic. We define the hyperbolic distance 

in the same way (the infimum of the length over all paths between the two points) and as 

a consequence this is realized by the length of the hyperbolic line segment joining the two 

points. 

By considering the 'endpoints' of the geodesics in IBI3, we see that the boundary at infinity 

can be identified with the Riemann sphere, C = C U {oo}. 

For this space it is also possible to define the geodesic planes or hyperplanes as either 

vertical Euclidean planes or hemi-spheres perpendicular to C. 

Considering the isometries of IBI3, denoted I som(IBI3), it is noted that they are generated 

by reflections in the geodesic planes of the model. More importantly from this we know 

that the orientation preserving isometries of IBI'\ denoted by I som + (IBI3), are generated by 

reflections in an even number of geodesic planes in IBI3. 

These reflections can be extended onto the boundary at infinity in the following way. 

First look at how the geodesic planes in IBI3 intersect C. A hyperplane in IBI3 is the 

intersection of either a sphere in IR3 with centre in the xy-plane, or a vertical Euclidean 

plane in IR3, with IBI3. The first case gives a circle in C and the second a line, which can 

be viewed as a circle through infinity. Hence both types of hyperplane give a circle in C. 

Therefore I som(IBI3
) extends maps from the Riemann sphere to itself which consist of 

compositions of reflections in circles in C. Similarly I som+(IBI3) extends maps which 

consist of compositions of reflections in an even number of circles in C. The same is true 

in reverse. This extension of an element of PSL2(C) to an element of Mob(IBI3
) is called 

the Poincare extension. (For more details on this see [MT98].) 

Each element of I som+(IBI3
) can be expressed as a Mobius transformation, so has the form 

~::~, where a, b, c, dEC and ad - bc = 1. Similar to the 2-dimensional case, this can be 

identified with PSL2(C), Hence we can view PSL2(C) as either the group of orientation 

preserving isometries of IBI3 or as the group of Mobius transformations of C ooo(IBI3). In 

the same way as in PSL2(IR), we can classify the elements of PSL2(C) by looking at the 

number of fixed points they have. They are also distinguished by the value of the square 

of the trace of the matrix T in PSL2(C), The only difference to the classification is that 
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we have generalloxodromic elements in PSL2 (C) and not just hyperbolic elements. 

A loxodromic element has two fixed points in the boundary of lHI3 , (which can be joined 

by a hyperbolic geodesic called an axis), and tr2 (T) has either non-zero imaginary part or 

it is real and lies in (-00,0) U (4,00). (Note the overlap with hyperbolic. elements which 

have tr2(T) E (4, (0).) 

2.1.3 Hyperbolic Trigonometry 

To complete this section we now take a brief look at some hyperbolic trigonometry to 

highlight the points needed later. As in Euclidean geometry, a polygon is one of the basic 

objects in hyperbolic geometry. We will mainly be dealing with hyperbolic triangles, but 

we define a hyperbolic polygon as follows. 

Definition 2.1.8 A hyperbolic polygon is a closed convex set in the hyperbolic plane that 

can be expressed as the intersection of hyperbolic half planes, such that the vertices of the 

hyperbolic polygon do not accumulate (so the collection of half planes are locally finite). 

As an example of this a hyperbolic triangle is a hyperbolic polygon which can be realized 

as the intersection of three half-planes. 

As in the case of a Euclidean triangle, there are trigonometric rules for hyperbolic 

triangles relating its interior angles to the hyperbolic lengths of its sides. These can be 

derived by linking Euclidean and hyperbolic distances between pairs of points and then 

making use of the Euclidean trigonometric rules (as the method of measuring angle is the 

same in both spaces). 

Let T be a hyperbolic triangle with side lengths a, b, c and interior angles a, (3" such that 

the side of length a is opposite angle a, the side of length b is opposite angle (3 and the 

side of length c is opposite angle ,. The following are three basic trigonometric rules in 

the hyperbolic plane. 

The hyperbolic law of sines 

sinh(a) 

sin(a) 
sinh(b) 
sin((3) 

11 

sinh(c) 

sine,) 
(2.1) 



The hyperbolic law of cosines I 

cosh (a) = cosh(b)cosh(c) - sinh(c)sinh(b)cos(a) (2.2) 

The hyperbolic law of cosines II 

cos ( "I) = -cos( a ) cos ({3) + sine a )sin({3)cosh( c) (2.3) 

Using these trig rules we can compare the lengths of the sides of a hyperbolic triangle and 

consider what happens when side length changes. 

Proposition 2.1.9 Let T be a hyperbolic triangle with side lengths a, b, c and inter'ior 

angles a, {3, I as described. Let the sides of length a and b increase at the same rate (so 

~; '!!t), and let the angle "I between them be fixed. Then the side of length c increases in 

length also. 

Fig. 2,1: hyperbolic triangles I 

Proof: Let the sides of length a and b increase at the same rate (so assume a, b ---+ 00 

evenly, by which we mean that ~; = ~~ where t is measure of time), and keep the angle "I 

between them fixed. Then sinh(a) ---+ 00 and sinh(b) ---+ 00 (at the same rate). 

We also know that a and {3 will lie between 0 and 1f (as they are angles in a standard 

hyperbolic triangle), and so sin(a) > 0 and sin({3) > O. Therefore, 

sinh(a) 
---+ 00 

sin (a) 

and similarly 
sinh(b) 

---+ 00 
sin({3) 

Therefore by the hyperbolic law of sines (see equation 2.1), 
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sinh(a) sinh(c) ---,-:"""':- = --+ 00 
sin (a) sin(r) 

As, is fixed, sinh(c) --+ 00 =}- c --+ 00. Therefore the side of length c must be increasing 

~oo. 0 

Note that we can get more from the proof of proposition 2.1.9 

Corollary 2.1.10 Let T be a hyperbolic triangle with side lengths a, b, c and interior 

angles a, (3" as described. Let the sides of length a and b increase at the same rate (so 

~~ = C;;), and let the angle, between them be fixed. Then angles (3 and a must decrease. 

Proof: As side lengths a and b increase at the same rate, the area of T is increasing. 

To see this note that at any point in time a piece has been added to T (see right hand 

picture of figure 2.1). The area of the new triangle will be equal to the area of T plus the 

area of this new piece. By the Gauss-Bonnet formula, area(T) = 1f - (a + (3 + ,). As 

area(T) increases and, is fixed, then either a or (3 (or both) must decrease. As a and b 

are increasing at the same rate then both a and (3 will decrease by the hyperbolic law of 

smes. o 
We can say more than this. 

Proposition 2.1.11 Let T be a hyperbolic triangle with side lengths a,b,c and interior 

angles a, (3". Let the side of length a increase in length (so a --+ 00) and lei the side of 

length b be fixed and the angle, between them be fixed. Assume that angle (3 (opposite the 

side of length b) be smaller than ~. Then the side of length c increases. 

Fig. 2.2: hyperbolic triangles II 

Proof: We have assumed a --+ 00, which means that sinh( a) --+ 00. As a will lie 

between 0 and 1f (as it is an interior angle of a hyperbolic triangle), then 0 < sin(a) < 1, 
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and so 
sinh(a) 
sin(a) 

00 

Hence by the hyperbolic law of sines (see equation 2.1), 

sinh(a) sinh(c) ---,-'-:-'- = --7 00 
sin(a) sine,) 

As, is fixed, this implies that sinh(c) --7 00 =? c --700 as required. o 

Note that we assume that (3 < ~ here so that c is always increasing. If (3 ~ ~ then as the 

side of length a increases in length, the side of length c will decrease until (3 = ~ and then 

increase after that. In the context in which we will be using this result, a will be 

increasing arbitrarily, and so this assumption is not necessary. We only require that c will 

ultimately increase (i.e. c --+ 00 in the limit). 

Hence if you have a hyperbolic triangle with one side length increasing arbitrarily and one 

side length fixed, and the angle between them fixed, then (assuming that the length 

changes enough) the remaining side length must will ultimately be increasing. 

Proposition 2.1.12 Let T be a hyperbolic triangle with side lengths a, b, c and interior 

angles a, (3" as described. Let the sides of length a and b increase at the same rate (so 

: = ~n. Let the angle , between them tend to an angle e (Jor e fixed such that 

o < e < 7["). Then the side of length c increases in length also. 

Proof: As a --7 00 then sinh(a) --700. We know that 0 < a < 7[" (as a is an interior 

angle of a hyperbolic triangle) and so 0 < sin (a) ::s; 1). Therefore (independent of what 

happens to a), 
sinh(a) 
-_'-..:.. --+ 00 
sin(a) 

Hence, by the hyperbolic law of sines, 

sinh(a) sinh(c) 
= --700 

sin(a) sinh) 

As, --+ e < 7[", then, is never equal to 0 or 7[", and so sinh) ::J 0 for all, --7 e. Therefore 

sinh(c) --+ 00 and hence c --+ 00 as required. 

o 
These results will become useful in chapter 5. 
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2.2 General Kleinian Groups 

In this section the aim is to consider the groups that can be associated to the two spaces 

already described in section 2.1. In the 2-dimensional case these are Puchsian Groups and 

in the 3-dimensional case they are Kleinian Groups. Both groups display very similar 

properties which will be described here. 

2.2.1 Fuchsian Groups 

Fuchsian groups are a kind of group associated to JHI2, as they comprise of a particular 

group of isometries of the hyperbolic plane. They are also the fundamental groups of 

hyperbolic surfaces. Most of the material in this subsection may be found in [Kat92] and 

[J887]. 

To define a Fuchsian group, we first require the following definitions. 

Definition 2.2.1 A subset of JHI2 is discrete if each point of the subset can be isolated 

from all other points in the subset. By this we mean that there exists an open 

neighbourhood around each point of the subset that does not contain any other point of the 

subset. 

A subgroup r of Mob(JHI2
) is discrete if the set r(z) = {'Y(z)h E r} is discrete for every 

point z E JHI2. 

From section 2.1.1 we know that Mob(JHI2) can be identified with PSL2(JR), and we have 

the following definition for discreteness for a subgroup of this group. 

Definition 2.2.2 Let r be a subgroup of PSL2(JR). We call r discrete if there does not 

exist a sequence bn} of distinct elements ofr converging to the identity. This means that 

there does not exist a sequence {'Yn(z) = ~::~,t} of elements of PSL2(JR) such that 

an -t ±1, bn -t 0, en -t 0 and dn -t ±1 as n -t 00. 

We can now give the definition of a Fuchsian group in terms of discrete subgroups. 
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Definition 2.2.3 A Fuchsian group is a discrete subgroup of the orientation preserving 

isometries ofJH[2. Equivalently, a Fuchsian group is a discrete subgroup of PSL2(IR). 

Example: The following are examples of Fuchsian groups 

a) Hyperbolic cyclic subgroups generated by z -+ ..\.Z (..\. > 0). These subgroups consist of 

only hyperbolic elements and the identity. 

b) Parabolic cyclic groups generated by a parabolic element, for example the standard 

form z -+ z + 1. 

c) Elliptic cyclic groups, these subgroups are generated by an elliptic element and are 

Fuchsian groups if and only if they are finite. (For proof of this see [[JS87] section 5.7].) 

These first three examples are elementary Fuchsian groups, which means that the limit 

set A(r) of the Fuchsian group r consists of at most two points. (The limit set is defined 

to be the set of limit points - see definition 2.2.6.) The next example is non-elementary. 

d) The Modular group 

{
az + b } 

PSL2(71) = cz+d: a,b,c,dE 7l,ad- bc= 1 

is a Fuchsian group. This follows from the fact that 7l is discrete in IR, which implies that 

SL2(71) is a discrete subgroup of SL2(IR) and consequently PSL2(71) is a discrete 

subgroup of PSL2(IR) as required. 

Now consider the action of a Fuchsian group on JH[2. Fuchsian groups do not necessarily 

behave discontinuously in the normal sense. By 'discontinuously in the normal sense' we 

mean that every point of JH[2 has a neighbourhood which is carried off itself by all 

elements of the group except for the identity. (This definition comes from [JS87] page 

232. They look at lattices, which have this discontinuity property.) In particular if a 

Fuchsian group contains elliptic elements then these have fixed points in JH[2 around which 

the element acts as a rotation. Therefore these fixed points cannot have such a 

neighbourhood required for discontinuity. However there does exist a 'weaker' notion of 

discontinuity that can be applied to Fuchsian groups. 
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Definition 2.2.4 Let r be a subgroup of PSL2Cfft). We say r acts 

properly discontinuously on JHI2 if, for every compact subset K in JHI2, the set 

{, E rbCK) n K =f 0} is finite. 

This is a property that all Fuchsian groups have irrespective of what type of elements 

they contain. In fact this is a necessary and sufficient condition for a group to be 

Fuchsian as detailed in the following theorem (found in [[Kat92] page 32]). 

Theorem 2.2.5 Ifr c PSL2(JR), then r is a Fuchsian group if and only ifr acts 

properly discontinuously on JHI2. 

(For the proof see [Kat92].) 

Theorem 2.2.5 gives another way of defining a Fuchsian group as one that acts properly 

discontinuously on JHI2. Considering the way in which a Fuchsian group acts on JHI2 gives 

another important set. 

Definition 2.2.6 Let Z E JHI2 and let {Tn} be a sequence of distinct elements in a 

Fuchsian group r c PSL2(JR). Then if {,nez)} tends towards a point Q, this is called a 

limit point. The set of all possible limit points is called the limit set of r and denoted 

A(r). 

Hence for a Fuchsian group, A(r) ~ JR U {oo} = JR, and so from definition 2.1.2 the limit 

set is a subset of 000 (1H[2). 

We know more than this. The appearance of the limit set of a Fuchsian group depends 

upon how many points it contains. The details are given in the following two theorems. 

Theorem 2.2.7 If Acr) contains more than one point then it is the closure of the set of 

fixed points of the hyperbolic transformations of r. 

Theorem 2.2.8 If A(r) contains more than two points, then either 
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• A(r) = lR U {oo} = 8oo (IE:J[2) (hence a circle) or, 

• A(r) is a perfect nowhere dense subset of 8oo (W) (hence a Cantor set). 

Here perfect means that every point of A(r) is a limit point of the points in the set A(r). 

See [[Kat92] pages 65-67] for complete proofs for both of these theorems. 

2.2.2 Kleinian Groups 

To define a Kleinian group we need to extend the ideas of discreteness and the group being 

properly discontinuous given in section 2.2.1. The definition of a properly discontinuous 

subgroup of PSL2(lR) extends directly to PSL2(C), so definition 2.2.4 applies here. 

The definition of discreteness also extends to PSL2(C), but we give an equivalent 

definition here. 

Definition 2.2.9 Let r be a subgroup of PSL2(C), then r is disCTete if there does not 

exist a sequence {Tn} of distinct elements ofr converging to 'Y for any 'Y E PS~(C). 

Lemma 2.2.10 Let r act on IE:J[3, then the notions of discrete and properly discontin'uous 

are equivalent. 

Note that this equivalence does not completely extend to C. Here all subgroups that act 

properly discontinuously are discrete, but there are examples that show the converse is 

false. For example the group PSL2(Z[i]) is a subgroup of PSL2(C) which is discrete but 

not properly discontinuous anywhere on C. 

Definition 2.2.11 A Kleinian Group r is a discrete subgroup of PSL2(C), 

Referring back to the description of IE:J[3 in subsection 2.1.2, it is clear that this is 

equivalent to saying that a Kleinian group is a discrete subgroup of the orientation 

preserving isometries of IE:J[3. With the equivalent notions of discreteness and acting 

properly discontinuously on IE:J[3, it allows a third definition of a Kleinian group. (As given 

in [[MT98] page 26].) 

18 



Definition 2.2.12 A subgroup r of Isom+(JH[3) is called a Kleinian group if r acts 

properly discontinuously on JH[3. 

The elements of a Kleinian group can be conjugated into standard forms for classification 

(in the same way as in definition 2.1.4). They may also be classified by their fixed points. 

Lemma 2.2.13 An element of a Kleinian group has finite order if and only if it has a 

fixed point in JH[3. 

Equivalently an element of a Kleinian group has finite order if and only if it is elliptic. 

Visually this is clear as elliptics act as rotations around their fixed points, whereas the 

parabolics and loxodromics act as translations and dilations. 

Definition 2.2.14 A Kleinian group r is torsion free if it has no elements of finite order 

other than the identity. 

The types of surfaces and 3-manifolds we will be considering have torsion-free 

fundamental groups. Hence they do not contain any elliptic elements (or equivalently any 

fixed points in JH[3). 

-'"' 

2.2.3 Action of r on <C 

~ 

A Kleinian group r acts on <C by splitting it into two parts called the limit set and the 

domain of discontinuity. 

Definition 2.2.15 Let ncr) be the set of all points z E <C such that there exists a 

neighbourhood U of z so that ry(U) n U =1= 0 for only finitely many "'I E r. We call ncr) 
the domain of discontinuity of r. 

Hence ncr) is the largest open set in C on which r acts properly discontinuously. 

This set nCr) is open and in general will have many connected components. Since ncr) is 

open there are at most countably many connected components, and in fact it is known 
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that D(f) has either 0, 1, 2 or countably infinitely many components. As a subset of C it 
is either dense or empty. 

In the case when D(f) is empty, f is called a Kleinian group of the first kind and 

otherwise f is called a Kleinian group of the second kind. 

For a Kleinian group f, consider the orbit of any point p E C under the action of the 

group. By this we mean consider the set, 

rep) = {l'(p)h' E f}. 

We know that f acts properly discontinuously on JH[3, and so has accumulation points 

only in C. (This is because the starting point p is in C, and therefore any other point in 

the sequence will remain in C under the action of f.) 

Definition 2.2.16 The accumulation points described above are called limit points of f, 

and the set of all these points is called the limit set off, and is denoted by A(f). 

Note that from definition 2.2.16, the limit set of a Kleinian group appears to depend upon 

a base point p, but this is not actually the case. 

Lemma 2.2.17 For any two points p and p E JH[3, the set of accumulation points of r(p) 

and f(p') are the same, and so the limit set does not depend on the choice of base point. 

(For proof of the above see [[MT98] page 41].) 

From definition 2.2.16 it is clear that we know some of the points which must be 

contained in A(f). Let Fixb) be the set of points in C fixed by an element 

l' E Isom+(JH[3). Then by definition 2.1.4, if l' is a loxodromic or parabolic element then 

Fixb) c A(r). We know more than this. 

Theorem 2.2.18 Let f be a Kleinian group, then C is the disjoint union of A = A(r) 

and D = D(r). 
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(For the proof of theorem 2.2.18 see [Mas88].) 

As a corollary to the above, observe the following. 

Corollary 2.2.19 Let r be a Kleinian group, then A(r) = it - ncr). 

By definition, A(r) is a closed set of points. From the comments made about ncr) and 

corollary 2.2.19 we know that A(r) is either nowhere dense or everything. 

2.2.4 Convex Hulls and Convex Cores 

In this subsection we define sets associated to A(r). 

Definition 2.2.20 The convex hull of a Kleinian group r, denoted CH(r), is the 

smallest non-empty closed convex subset of JHI3 that is invariant under r. 

For a more visual description take pairs of points in A(r) and join them by hyperbolic 

lines with these end points. Then CHCr) of A(r) is the smallest convex set containing all 

of the hyperbolic lines. 

Definition 2.2.21 The convex core of lAP jr, denoted by Ccr) = CH(r)jr, is the 

smallest convex submanifold of JHI3 jr which has a fundamental group isomorphic to 

1f1 (JHI3 jr). 

The convex core of a hyperbolic manifold contains all of its closed geodesics. 

2.2.5 Finiteness conditions 

To close this chapter we are going to highlight some of the useful properties that a 

Kleinian group can possess. These properties make the group easier to handle and to 

understand in many cases. For more details on these properties see [MT98] and [Mas88]. 
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Kleinian groups were originally studied because of their connections to Riemann surfaces, 

and then later with hyperbolic 3-manifolds. More details about hyperbolic manifolds 

(including definitions) may be found in the next chapter and the references given there. 

For now we are going to define some manifolds to which we directly relate Kleinian 

groups, and which we need in order to discuss the finiteness conditions. 

Definition 2.2.22 Let r be torsion-free Kleinian group. The complete hyperbolic 

3-manifold associated to r is the quotient space lHI3/r with the quotient topology. 

Definition 2.2.23 Let r be a torsion-free Kleinian group. The (possibly disconnected) 

Riemann surface associated to r is the surface nCr) Ir. 

The quotient surface ncr) Ir has a complex structure induced from ncr) and hence 

ncr) Ir is a countable union of Riemann surfaces lying at infinity of the complete 

hyperbolic manifold lHI3/r. 

Definition 2.2.24 Let r be a torsion-free Kleinian group. The topological man~fold 

associated to r is the space ClHI3 u n(r))/r Cpossibly with boundary). This is called the 

Kleinian manifold, and its interior lHI3/r admits a hyperbolic structure. 

Note that if ncr) is empty (and so r is a Kleinian group of the first kind) the Kleinian 

manifold is just equal to the complete hyperbolic manifold lHfl Ir. 

Definition 2.2.25 A Riemann surface S is analytically finite if it has finite topological 

type. This means that the surface is closed (compact without boundary) except for a finite 

number of punctures. 

We say that a non-elementary Kleinian group r is analytically finite if the Riemann 

s'urface, ncr) Ir, associated to r is analytically finite. This means that the space consists 

of a finite number of surfaces each of which is of finite genus with only a finite number of 

punctures. Equivalently r is analytically finite if area( ncr) Ir) < 00. 
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(Note that here the area of n(r)/r is induced by the hyperbolic area on nCr) c C.) 

Ahlfors proved that if r was finitely generated then it is analytically finite. The converse 

is not true. For a counterexample see 'Killing a component' in [[Mas88] page 175]. For a 

detailed discussion on Ahlfors finiteness theorem see [[MT98] sections 4.1 and 4.2]. 

By considering the fundamental polyhedron of r the next property can be considered. 

Definition 2.2.26 A Kleinian group r is geometrically finite if it has a fundamental 

polyhedron bounded by a finite number of convex sides. 

In the 2-dimensional case algebraic finiteness (by which we mean that r is finitely 

generated) is equivalent to geometric finiteness, but the concepts are not coincident in the 

3-dimensional case. For more information on finitely generated Kleinian groups and their 

geometric properties see [[MT98] chapter 4, pages lO2-130]. 
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Chapter 3 

Hyperbolic manifolds 

The focus for this chapter is to provide the background to some basic properties of 

hyperbolic 2- and 3-manifolds. The initial section looks at hyperbolic surfaces, giving 

basic definitions and useful properties including the decomposition into pairs of pants by 

the pants decomposition. The most important result is the collar lemma, which is vital to 

later chapters. The other two sections concentrate on hyperbolic 3-manifolds, giving some 

particular examples and their properties, including the Book of I-bundles which is the 

manifold that is central to later chapters. 

The material used in this chapter may be found in [Bus92J, [Hem76], [MT98] and [Rat94]. 

More on Riemann surfaces may be found in [JS87]. 

3.1 Hyperbolic Surfaces 

Primarily the interest is in hyperbolic surfaces (these are surfaces which have the 

hyperbolic plane as their universal cover). Initially here though we introduce Riemann 

surfaces and will then go on to look at some universal properties of hyperbolic surfaces. 

Before hyperbolic 3-manifolds were studied extensively by Thurston, the study of 

Kleinian groups was important because of their connection to Riemann surfaces. We have 

already encountered the Riemann sphere C, which is a particular example of a Riemann 

surface. The following gives the general definition. 
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Definition 3.1.1 A Riemann surface R is a connected complex I-manifold. By this we 

mean a connected Hausdorff space R where there exists a family of sets and maps (<pj! 

Uj )! for j = 1, 2, ... , called an atlas which satisfies the following conditions. 

• {Uj Ij = 1, 2, ... } is an open cover of R (where Uj is an open subset in R) . 

• Each <Pj is a homeomorphism of Uj onto an open subset of the complex plane. 

To clarify the above definition, the first condition states that the surface R is covered by a 

collection of open sets, such that each is homeomorphic to open subsets of C (by the 

second condition). It is possible that two of these open sets could overlap, and the 

homeomorphisms corresponding to these particular open sets are related by an analytic 

homeomorphism (as given in the third condition). 

By definition 3.1.1, a Riemann surface does not have a boundary. A Riemann surface 

which is homeomorphic to a compact 2-manifold without boundary is closed. We call a 

Riemann surface that is homeomorphic to the interior of a compact 2-manifold with or 

without boundary topologically finite. 

Each end of a topologically finite Riemann surface has a regular neighbourhood which is 

conformally equivalent to either a punctured disc or an annulus. If the neighbourhood of 

the end c is conformally equivalent to an annulus then we say that c bounds a disc or 

corresponds to a removed disc or hole in the surface. If the neighbourhood of the end c is 

conformally equivalent to a punctured disc, then we say that c corresponds to a puncture 

on the surface or that the surface is punctured at c. There does not exist a holomorphic 

homeomorphism from a punctured disc onto any annulus. If R is a topologically finite 

(possibly disconnected) Riemann surface, then R is analytically finite if each end of R has 

a regular neighbourhood conformally equivalent to the punctured disc. 

Riemann surfaces, and in particular hyperbolic surfaces, are completely classified as 

detailed in the following Uniformization theorem. This theorem is stated in most of the 

references given at the start of this chapter, and may also be found in [And99]. 
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Theorem 3.1.2 Any Riemann surface R has the Riemann sphere C = C U {oo}, the 

complex plane C or the upper half plane IH(2 as its universal covering. 

Hence every simply connected Riemann surface is conformally equivalent to either the 

sphere, the complex plane, or the hyperbolic plane. If R has the upper half plane JH[2 as 

its covering surface, then we can represent it as JH[2 / F, where F is a Fuchsian group that 

is isomorphic to the fundamental group of R. When a Riemann surface is represented in 

this form, the surface inherits a natural hyperbolic structure from the covering JH[2, and 

can therefore be regarded as a complete 2-dimensional hyperbolic manifold or hyperbolic 

surface. 

One way to consider hyperbolic surfaces is by decomposing them into smaller pieces. One 

such decomposition, called the pants decomposition (as given in definition 3.1.3 below), 

breaks the hyperbolic surface into genus 0 surfaces with three geodesic boundaries. These 

'pieces' are called pairs of pants (or a three-holed sphere). These can be obtained by 

gluing together two copies of the same right-angled geodesic hexagon in the hyperbolic 

plane along every other side. Further descriptions of the pants decomposition may be 

found in [Bus92] and [Pau99]. 

Definition 3.1.3 The pants decomposition of a compact surface S is a decompos'ition of 

the surface along simple closed curves into three-holed spheres. 

Such a decomposition is determined by a choice of a maximal collection P of simple closed 

c'urves on S such that 

.. the elements of P are pair-wise disjoint 

III each element a of P is homotopically essential and non-peripheral (so a is not 

homotopic into the boundary of S) 

III no two elements of P are freely homotopic. 

In basic terms the pants decomposition involves cutting the surface along a collection of 

disjoint closed geodesics (defined according to the hyperbolic metric on the surface) until 
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the only simple closed geodesics left are homotopic to the existing collection of closed 

geodesics. 

Pairs of pants are the building blocks for all compact Riemann surfaces of genus greater 

than one, (see [Bus92]). Given any three lengths for the boundary geodesics, a unique 

pair of pants is determined, and all pairs of pants may be found in this way. Hence pairs 

of pants are uniquely determined by the lengths of their three boundary geodesics. (See 

[Pau99] and [[Bus92] theorem 3.1.7 page 65].) By the nature of the decomposition this set 

of three boundary geodesics will be equivalent to two or three simple closed curves on our 

hyperbolic surface (the number depends on whether the curve in the original surface is 

separating or non-separating). As pairs of pants are uniquely defined by their boundary 

geodesics, to understand more about them and the decomposition we look at what is 

known about simple closed geodesics in hyperbolic 2-manifolds. The following lemma, 

with its proof, can be found in [Pau99]. 

Lemma 3.1.4 The free homotopy class of any homotopically non trivial simple loop in a 

hyperbolic surface contains a unique simple closed geodesic. 

(Note that this lemma is true for all Riemann surfaces and is stated in all generality in 

[Pau99].) 

To put this into context, it is along a set of these unique geodesics that the hyperbolic 

surface is cut to get the pairs of pants in the decomposition. There is always more than 

one way to perform a pants decomposition for a particular compact hyperbolic surface, 

but what is common for all decompositions is the number of pieces the surface is 

decomposed into and the number of geodesics along which the surface is cut. It can be 

shown that a orientable, closed surface of genus 9 without boundary always contains 

3g - 3 disjoint closed curves along which to cut, and the surface decomposes into exactly 

2g - 2 pairs of pants. (The proof of this may be found in [Bus92].) 

As we may apply the pants decomposition to any Riemann surface, it is possible to apply 

it in reverse and build all hyperbolic surfaces by gluing together pairs of pants along their 

boundary geodesics. Hence these boundary geodesics determine the complex structure of 

the entire surface, therefore parameterizing the hyperbolic surface using the pants 
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decomposition. We know that we have 3g - 3 geodesic length functions (one for each 

closed curve along which we cut), but we also have to consider how the pairs of pants are 

attached to one another. They can be glued together with any amount of twisting, so 

there will be 3g - 3 'twisting' parameters (which equate to the angle of the twist). To 

perform a twist, remove a collar around a simple closed geodesic that forms the boundary 

between two of the constituent pairs of pants. Then glue the collar back into the surface 

after rotating one of its boundary components by some angle. 

Hence, all hyperbolic surfaces are uniquely determined by the lengths of the boundary 

components of their constituent pairs of pants (giving 3g - 3 non-negative real numbers), 

as well as the angles of the twists between glued pairs of pants (giving a further 3g - 3 

real parameters). These 6g - 6 lengths and angles which parameterize the hyperbolic 

surface are known as Fenchel-Nielsen coordinates. We will use the length parameters later 

on. In particular utilizing the fact that we can change the length of one of these geodesics 

whilst keeping the others fixed and still have a hyperbolic structure on the surface. In 

using this fact we note that we are able to deform an arbitrary curve on a hyperbolic 

surface by altering the lengths of the curves in the pants decomposition that it intersects. 

This uses the fact that the pattern of crossings over the pants decomposition does not 

change (for an arbitrary geodesic) as we change the lengths of the pants curves. This 

becomes particularly useful in section 5.5, when considering surfaces with boundary. 

(We will not explicitly use the twist parameters, but more detail may be found in [[Bus92] 

pages 69-75]. For more on the pants decomposition and Fenchel-Nielsen coordinates see 

[Bus92]' [Pau99] and [MasOl].) 

As an aside here, note that although only compact hyperbolic surfaces have been 

discussed, the pants decomposition can be performed on non-compact hyperbolic surfaces. 

When considering non-compact surfaces a new type of neighbourhood occurs called a 

cusp. A cusp is an end of the hyperbolic surface which corresponds to a parabolic element 

of the fundamental group. (See [[MT98] pages 5 and 6].) One of the assumptions made in 

the work which follows is that the group does not contain parabolies, so we do not need 

to deal with cusps. 

There exist several universal properties that hold for every hyperbolic surface. One such 

fact is that in the hyperbolic world things are curved in an opposite manner in transversal 
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directions. This feature is highlighted in the following collar lemma, which essentially says 

that around short geodesics there exist long tubular neighbourhoods called collars whose 

width solely depends upon the length of the geodesic. 

Lemma 3.1.5 Let m(l) = arcsinh ( . Ie)) which tends to 00 as l -+ 0 (and which 
smh '2 

tends to 0 as l -+ 00). Then for a simple closed geodesic a of length l in an arbitrary 

hyperbolic surface R, the set c(a)={p E Rld(p,a) < m(l)} is an embedded annular 

neighbourhood of a. 

The proof is not included here, but a full detailed proof using the pants decomposition 

can be found in [Bus92]. There are many references for the collar lemma. A statement of 

it can be found in [MT98] and a different proof can be found in [HaI81]. 

The collar lemma will become useful later when considering what happens on certain 

surfaces as lengths of curves change. 

3.2 Hyperbolic 3-manifolds 

The purpose of this section is to introduce 3-dimensional hyperbolic manifolds, and to see 

how they can be expressed as quotient spaces of IHI3 by a Kleinian group. 

A hyperbolic 3-manifold M is a space which is locally modeled on IHI3. This means that in 

a small neighbourhood of a point on M it looks and behaves like IHI3. The precise 

definition of a hyperbolic 3-manifold follows, and is similar to definition 3.1.1 of a 

Riemann surface. 

Definition 3.2.1 A connected Hausdorff space M is called a hyperbolic 3-manifold if it 

has a family (Uj , ¢j), for j = 1, 2, ... , which satisfies the following conditions 

.. Each Uj is an open subset of M and {Uj } covers M . 

.. Each ¢j is a homeomorphism of Uj onto an open subset of IHI3. 
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• If U = Ui n Uj is non-empty, then it is connected and ¢i 0 ¢jl : ¢j(U) ---+ ¢i(U) is 

an orientation preserving diffeomorphism which preserves the hyperbolic metric. 

For any complete hyperbolic 3-manifold M, we have a torsion-free Kleinian group f such 

that M = IHI3 If. Any such f is unique up to conjugation by elements of I som(JBI3). 

Conversely, for any torsion-free Kleinian group f, the manifold M = JBI3 If is a complete 

hyperbolic 3-manifold. 

As mentioned in section 2.2.5, there are two 3-manifolds associated to a torsion-free 

Kleinian group f, namely the hyperbolic manifold JBI3 If as detailed above, and the 

topological manifold (possibly with boundary), namely (JBI3 U D(r))/f. The latter is the 

Kleinian manifold and its interior JBI3 If admits a hyperbolic structure. Another way to 

view the hyperbolic manifold JBI3 If is by constructing it from a fundamental polyhedron 

by pasting its sides according to the side-pairing transformations. 

The manifolds of interest here are hyperbolizable 3-manifolds. These are defined to be 

3-manifolds whose interior admits a hyperbolic structure or can be written as JBI3 If where 

f is a torsion-free Kleinian group. 

Note that the hyperbolic 3-manifolds given here and in the previous chapter can also be 

defined in terms of Kleinian groups with torsion. In this situation the manifold is not 

necessarily smooth and the quotient is an orbifold. For more details see [MT98] and 

[Rat94]. 

3.3 Properties of hyperbolic 3-manifolds 

In this final section of chapter 3 the focus is to describe some properties that hyperbolic 

3-manifolds may possess. Much of what is given here may be found in [Hem76] and 

[MT98]. 

First we formally define a hyperbolizable 3-manifold as in section 3.2. 

Definition 3.3.1 A compact 3-manifold M is hyperbolizable if there exists a Kleinian 

group f so that M is homeomorphic to (JBI3 U D(r))/f, or alternatively M is uniformized 
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by r. These 3-manifolds have an interior that admits a hyperbolic structure and 

int(M) = lHI3 /r. 

In this work it will be assumed that the 3-manifolds are hyperbolizable and hence it is 

possible to put a hyperbolic structure on the interior. The following set of definitions give 

properties of embedded surfaces in hyperbolizable 3-manifolds. 

Definition 3.3.2 A surface S in a compact hyperbolizable 3-manifold M is 

properly embedded if S is compact and orientable and if either S is contained in 8M or 

Sn 8M = 8S. 

Definition 3.3.3 Let S be an embedded, orientable and compact surface in a compact 

hyperbolizable 3-manifold M (possibly with boundary), such that S is properly embedded in 

M. If S satisfies one of the following conditions then S is incompressible: 

• S is a topological sphere which does not bound a ball 

• S is a topological disk whose boundary is a non-trivial simple closed curve in the 

boundary of M 

• S is a surface other than a sphere or a disk such that the homomorphism between 

fundamental groups induced by the inclusion map is injective. 

Otherwise it is compressible. 

Definition 3.3.4 A surface S is two-sided in a hyperbolizable 3-manifold M if there is 

an embedding h : S x [-1, 1 J --7 M such that; 

• h(x,O) = x for any XES, and 

• h(S x [-1,1]) n 8M = h(8S x [-1,1]). 
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The following definition describes a property which all hyperbolizable 3-manifolds have. 

Definition 3.3.5 We say that an orientable, compact, hyperbolizable 3-manifold M is 

irreducible if every embedded 2-sphere bounds a 3-ball in the manifold M. 

In particular, if ./'vI is an irreducible 3-manifold which is not a 3-ball, then every 

component of 8M must have positive genus. As r acts freely on the space JH[3 U O(r) by 

orientation-preserving homeomorphisms, the Kleinian manifold (JH[3 U O(r))/r is 

irreducible. For a proof of this see [[MT98] page 64]. Hence a hyperbolizable 3-manifold is 

necessarily irreducible. 

As a corollary to this definition, note that if a topological 3-manifold M is irreducible then 

7f'2(M) is trivial. This follows directly from the sphere theorem. (We have not included 

this theorem in our discussion, but a statement may be found in [MT98] theorem 2.37.) 

Definition 3.3.6 A compact irreducible 3-manifold M is Haken if it contains a two-sided 

incompressible surface. 

It is known that a compact hyperbolizable 3-manifold with non-empty boundary is 

Haken. For a proof of this see [[Hem76] Lemma 6.8]. 

Definition 3.3.7 We say that a topological 3-manifold M is aspherical if 7f'2(M) is 

trivial. 

It follows from this that the Kleinian manifold is aspherical, and as any hyperbolizable 

3-manifold is necessarily irreducible they are also aspherical. As a corollary to this it is 

known that as 7f'2(M) is trivial then 7f'i(M) for i 2:: 2 is also trivial for these 3-manifolds. 

Definition 3.3.8 We say that a topological 3-manifold M is atoroidal if all embedded 

incompressible tori are peripheral. 
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Peripheral means that the inclusion map of the torus T into the 3-manifold M is 

homotopic to a map f : T -t M for which f(T) C oM, so any torus can be moved to the 

boundary of M by homotopy. (This definition holds for any embedded surface.) 

A surface S in a compact hyperbolizable 3-manifold is essential if it is properly 

embedded, incompressible and non-peripheraL 

Definition 3.3.9 Let S be a properly embedded annulus in a 3-manifold M. Then S is 

essential if it is incompressible and not homotopic into the boundary of M. 

With all these properties in place, we complete this section by giving two examples of 

hyperbolizable 3-manifolds. They can be considered 'extreme' cases in terms of the 

number of essential annuli they contain. 

Example: 

fj) Let F l , F2 , ••. , Fn be a collection of compact, orientable surfaces of positive genus 

with connected non-empty boundary. Let Bi = FixI and let OOBi be the annulus 

oFi x I. Let T be a solid torus and let Ai be a family of disjoint parallel closed 

annuli on oT homotopically equivalent to the core curve on T. Form a manifold M 

from T and {Bi} by identifying the boundary OOBi with A for all i by an 

orientation-reversing homeomorphism. lV[ is called a Book of I-bundles. A Book of 

I-bundles contains lots of essential annuli. This manifold will be considered in 

further detail from chapter 5 onwards. 

6) Let M be a compact hyperbolizable 3-manifold with incompressible boundary, and 

let Sl, ... , Sp be a collection of components of oM. The subset S = Sl U ... U Sp of 

olll is an-annular if each Si is incompressible and if there does not exist an 

embedded essential annulus in M both of whose boundary curves lie in S. A 

compact hyperbolizable 3-manifold M is acylindrical if its entire boundary oNI is 

an-annular. 

Acylindrical hyperbolizable 3-manifolds contain no essential annuli. A specific 

example of one of these manifolds is called the Tripos Link (and is equivalent to 

S3 - N(G) for G a specific graph). This particular example is easier to draw than 
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explain without a picture. (See figure 3.1 below.) Such a family of examples are 

constructed by Paoluzzi and Zimmermann in [PZ96]. 

S3 - N(G) 

Fig 3.1: The T ripos Link 
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Chapter 4 

Characters of Curves 

The aim of this chapter is to lay the foundations and set the scene for the character 

problem. In the first section we introduce the idea of the character of an element of a 

group as given by Horowitz in [Hor72], including some character relations. We also look 

at the particular problem of determining when two elements have the same character. In 

section two we look at what is known in connection to this in terms of free groups. 

Although it appears to be an algebraic concept as it relates to representations of groups 

in S L2 (JR) and S L2 (C), there are connections to the geometrical world. In the third 

section this link is described in detail, which provides the information needed for 

McShane's result (as given in [McS93]) for characters of curves on surfaces as given in 

section 4.4. We close this chapter by looking at other questions with regard to characters 

of curves on surfaces. Most of this material may also be found in [And03] and [Hor75]. 

4.1 Characters 

We begin by giving some definitions, including that of the character of an element of a 

group. 

Let G be a finitely generated, torsion free group. (We assume G is torsion-free as the 

focus is on fundamental groups of hyperbolic 2- and 3-manifolds.) 

Let F(G) = {p : G -7 SL2 (C) faithful} be the space of all injective homomorphisms from 

G into SL2(C), where SL2(C) is the group of 2 x 2 matrices with complex entries and 
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determinant 1. 

Definition 4.1.1 For- an element w of G, the chamcter- associated to w is the function 

x[w] : F(G) -t C given by X[w](p) = tr-(p(w)), wher-e p(w) is the 2 x 2 matr-ix in SL2(<C) 

that r-epr-esents wand tr- is the usual 2 x 2 matrix tmce. 

The following character relations come directly from definition 4.1.1 and the trace 

relations of 2 x 2 matrices with determinant one. 

Proposition 4.1.2 Fmm definition 4.1.1 we have the following chamcter- r-elations. 

1) An element w of G and its inver-se w-1 deter-mine equal chamcter-s, so X[w] = X[w- 1
] 

2) For- elements v, w of G, x[w] = x[vwv-1
] 

3) For- elements v, w of G, x[wv] = x[w]x[v] - x[wv-1
]. 

Proof: Let A and B be arbitrary 2 x 2 matrices in SL2(<C)' Then the following trace 

relations can be verified by direct calculation. 

1) tr-(A) = tr-(A-1 ) 

2) tr-(A) = tr-(BAB-l) 

3) tr-(AB) = tr-(A)tr-(B) - tr-(AB-1
) 

These combined with definition 4.1.1 establish the character relations. o 
One possible problem is to try and determine when two distinct non-conjugate elements 

in the group G have the same character. An approach to this would be to use the 

character relations given in proposition 4.1.2 on distinct elements to show that they have 

the same (or different) characters. 

If we consider F2 = fr-ee(a, b) (the free group on two elements), then we have the 

following as given in [Hor72]. 

Proposition 4.1.3 Let w = w(a, b) be any element of F2. Then 

X[w( a, b) J = P(x[a], X[b], X [ab]) , wher-e P is a unique polynomial. 
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This can be proven using the character relations of proposition 4.1.2. Horowitz proves 

this for a free group Fn on n elements in [Hor72]. 

With this in mind, the following example takes two non-conjugate elements of F2 , and 

uses the relations from proposition 4.1.2 to show they have the same character. 

Example: Let G = F2 = free(a, b) and consider the two cyclically reduced words 

9 = a2b-1ab and h = a2bab-1. As these are cyclically reduced words, it is apparent that 

9 ~ h±l, and so we apply the character relations to show x[a2b-1ab] = x[a2bab-1]. 

x[a]x[ab-1ab]- x[ab-1a-1ba-1] 

x[a]x[ab-1ab] - x[a-1] 

x[a]x[ab-1ab] - x[a] 

- x[a](x[ab-1]x[ab] - x[ab-1b-1a-1]) - x[a] 

x[aJ(x[abJx[ab- 1
] - x[ab-2a-1J) x[a] 

x[a](x[ab]x[ab-1J - X[b2
]) - x[a] 

- x[a](x[ab]x[ab-1]- x[ab2a-1
]) - x[aJ 

x[aJx[abab-1
] - x[a] 

x[a]x[abab-1] x[a-1] 

x[aJx[abab-1J - x[aba-1b-1a-1
] 

x[a2bab-1
]. 

In fact for any representation p : free(a, b) ---+ SL2(I.C) it is known that 

(4.1) 

Note that this example is not just restricted to F2 • If (a, b, ... ) is a free group on two or 

more generators then x[a2b-1ab] = x[a2bab-1]. 

Using proposition 4.1.3, we have a way of constructing such examples of non-conjugate 

elements with the same character, as given in [Hor72]. 
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Proposition 4.1.4 Let u and v be elements of F2 for which X[u] = xlv] and let w( u, v) 

be a word in u and v. Then x[w(u, v)] = X[w(v,u)]. 

Proof: Let w = w(a, b) be any element of F2 = free(a, b). Then by proposition 4.1.3, 

X[w] may be expressed as a polynomial X[w] = P(x[a], X[b], x[ab]). 

Hence X[w(u, v)] = P(X[u], x [v], X[uvJ) = P(X[v], X[u], X[vuJ) = X[w(v, u)]. 

Here the middle equality comes from the assumptions that X[u] = xlv] and X[uv] = X[vu]. 

o 
Given two non-conjugate elements of a free group, the algorithm given does answer the 

question of whether they have the same character. There are two problems with this 

method. Firstly, if the words being considered are long it may take a long time to 

determine the polynomial and hence whether the two have the same character. Secondly, 

and more importantly, the algorithm provides no geometric information. 

4.2 Free Group Result 

In this section we focus on a result that gives some information in relation to the 

character problem for elements of a free group. The main result of this section (see 

theorem 4.2.2) is due to Horowitz in [Hor72], and gives conditions on the group elements 

that ensure that if they have the same character then they are conjugate elements. First 

the following definition is required. 

Definition 4.2.1 An element 9 of a free group G is primitive if there exists a free basis 

S for G containing g. 

The following result is due to Horowitz, who gave necessary conditions for an element of 

the free group to give rise to the same character as a specified element. (See [theorem 7.1 

in [Hor72]].) 

Theorem 4.2.2 Let G be a free group of any countable rank, and let 9 be an element of 

G. If a is a primitive element of G and X[g] = x[am], then 9 rv a±m. 
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Before giving the proof of theorem 4.2.2, the following result from [Hor72) is required. 

Lemma 4.2.3 Let U and U* be cyclically reduced words in the free group Fn such that 

tr(U) = tr(U*). Then every generator of Fn occurs exactly the same amount of times in 

U and U*, although possibly with ± 1 in the exponent. 

Proof: The proof of this result follows by induction on n (the number of generators of 

Fn). Since Fl can be embedded naturally into F2, the lemma will follow for Fl once 

solved for F2 . 

Let U and U* be cyclically reduced words in F2 = (a, b) with tr(U) = tr(U*). (Note that 

as the trace of a matrix is invariant under conjugation, it is possible to cyclically permute 

the syllables of U without altering its character, i.e. tr(ulu2 ... UiUi+1) = tr(ui+1 .. UsUl .. Ui), 

hence cyclically permute the syllables until the word is in its simplest form so U is 

cyclically reduced.) There are three possibilities for each. 

Firstly U could be a power of a alone and so U = aa for some a E Z. Or U could be a 

power of b alone, so U = {fJ for some fJ E Z. Finally U could be a word in both 

generators, so U = aaI{fJI aa2{fJ2 .. . aas {fJs for some al .. . a s E Z and fJl .. . fJs E Z. 

Since we are dealing with free groups we may use the following representation of F2 into 

SL2(~) given in [Hor72]. Let p E F(F2) be defined by 

It follows that 

Hence if U = aa then tr(U) = Aa + A-a. If U = {fJ then tr(U) = p,t3 + p,-t3. If U contains 

both generators then tr(U) is a function of both a and fJ. 

If U* = aa*, as tr(U*) = tr(U), then U must be of the form U = aa otherwise tr(U) would 

be a non-constant function of fJ contradicting the equality of the traces. Thus we have 
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NY + A -a = Aa* + A -a* for all A. Hence U* = a±a = U±l. Hence the generator a±l occurs 

exactly the same amount of times in U and U*. 

The case that U* = lJ3* follows in a similar way. If both a and b occur non-trivially in U 

then they must occur non-trivially in U*. Hence the lemma is proven for, F2 • 

To complete the proof, the induction step needs to be put in place, so if the lemma is true 

for Fn then this implies it is also true for Fn+1 (for n ~ 2). This is done as follows. 

Let U and U* be cyclically reduced words in Fn+1 with tr(U) = tr(U*). It is now 

necessary to show that if 9 is any generator of Fn +1, then O(U,g) = O(U*,g), where 

O(o,g) denotes the number of times g±l occurs in a given word. 

Let a, b =1= 9 be two other generators in Fn +1 , and let P, Q be positive integers such that P 

is greater than any exponent of a in U or U*. Take the homomorphism 7f : Fn+ 1 -t Fn 

such that 9 -t aPbQaP and every other generator maps to itself. 

By assumption tr(U) = tr(U*) in Fn+1 and so tr(7f(U)) = tr(7f(U*)) in Fn. 

Let V and V* be words formed from 7f(U) and 7f(U*) after cyclic reduction. Hence 

tr(V) = tr(V*) in Fn- This means that V has at least as many syllables as U. Moreover, 

V will not contain g±l, and bQ will occur in V for each occurrence of g±l in U. 

Therefore 

O(V, b) = O(U, b) + QO(U, g) 

and 

O(V*,b) = O(U*,b) + QO(U*,g) 

Hence by rearranging and using O(V, b) = O(V*, b) we get 

O(U*, g) O(U, g) 

as required. 0 

We now use this to prove theorem 4.2.2 

Proof: Choose a free basis for the free group G including a, and let U be the cyclically 

reduced word obtained from g. Then U equals am or a-m by lemma 4.2.3. o 
Note that this result only applies to free groups as the definition of primitive is restricted 

to these groups only. 
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4.3 Connection between characters and lengths of 
curves 

According to the work by Randol (in [RanSO]) there exists pairs of closed curves on a 

surface S for which the geodesics in their respective homotopy classes have the same 

hyperbolic length irrespective of the hyperbolic structure on S. This comes from the link 

between the length of a curve and the character of the corresponding element of the 

fundamental group. It transpires that if two group elements have the same character then 

the corresponding geodesics in the surface must have equal length. In this section we 

build this geometrical connection between discrete, faithful representations of a group G 

into SL2(lR) and SL2(C) and the lengths of curves in hyperbolic 2- and 3-manifolds. 

First we will solve a minor discrepancy between the definitions given. We will be 

considering the fundamental groups of hyperbolic manifolds, and these are defined to be 

discrete subgroups of PSL2(lR) (for hyperbolic surfaces) and PSL2(C) (for hyperbolic 

3-manifolds). From the definition of a character of an element (see definition 4.1.1), the 

representation of the group is mapped into SL2(lR) or SL2(C). 

(Note that the argument given below is for hyperbolic surfaces, but the same result can 

be used for hyperbolic 3-manifolds with the appropriate changes.) 

Let Q: SL2(lR) -t PSL2(JR) be the usual quotient map, and let p be a discrete faithful 

representation of a finitely generated, torsion-free group G into PSL2(JR). Then p can be 

lifted to a discrete faithful representation p of G into SL2CJR). (See [KraS5] for details of 

this lifting.) By this we mean that p = Q 0 p. 

Conversely if G is a finitely generated torsion-free group and p is a discrete faithful 

representation of G into SL2 (lR), then the composition p = Q 0 p is necessarily a faithful 

representation of G into PSL2(lR), because the image peG) of G into SL2(JR) cannot 

contain -id (the non-trivial element of the kernel of Q). 

Hence if we start with a discrete, faithful representation into PSL2(JR) then we can find a 

discrete faithful representation into SL2 (lR) and vice versa. In particular if we start with 

a discrete, faithful representation p of a finitely generated torsion-free group G into 

SL2 (lR), we can compose with Q to find a discrete faithful representation of G into 
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PSL2 (lR), and this gives rise to an orientable hyperbolic surface JHI2jp(G). 

(Note for hyperbolic 3-manifolds we are mapping from SL2 (C) to PSL2 (C) and get an 

orientable hyperbolic 3- manifold JHI3 jp(G).) 

Now this discrepancy has been dealt with, the aim of the rest of this section is to explore 

the connection between the character of an element of a fundamental group and the 

length of the corresponding geodesic in the manifold. 

First we need the following definition. 

Definition 4.3.1 An element 9 of a group G is maximal if 9 generates a maximal cyclic 

subgroup of G. Equivalently 9 is not a proper power of any other element of the group. 

As an aside here, the following shows why it is possible to restrict the attention to 

maximal elements of a group. Let w E G be a maximal element of the group G. From the 

trace and character relations given in proposition 4.1.2, for m 2:: 2, 

Putting tr(um) = Tm(tr(u)), we can define a family of polynomials. Here Tm(X) is called 

the Chebyshev polynomial and is defined by the recursion 

where Tl(X) = x and TO(X) = 2. 

Using the identity X[wu] = X[wJX[uJ X[wu- 1
] we see that X[wmJ = Tm(X[W]), and hence 

the character X[wmJ is a polynomial in X[wJ. Hence we may restrict the focus to maximal 

elements of the group. 

(Note that for free groups, if an element is primitive then it must be maximal, but the 

converse is false. This is only true for free groups as the term primitive does not apply to 

other groups, although the notion of maximality of an element of a general group still 

holds.) 
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The groups being considered are discrete torsion-free subgroups r of PSL2C1P1.). There is a 

one-to-one correspondence between free homotopy classes of closed curves in the quotient 

manifold JH[2 jr, and the conjugacy classes of maximal cyclic subgroups of r. This means 

we only need to look at the maximal elements of the group. 

Looking at the classification of elements in PSL2("1P1.) (see definition 2.1.4), there are three 

cases to consider. Let Q be an element of P S L2 ("1P1.) . 

• Let ex be elliptic. There are no elliptics in our groups by assumption (as the groups 

are torsion free). 

• Let ex be parabolic. Parabolic elements correspond to cusps on the surface, and as a 

closed curve moves out along the cusp the length of it gets smaller and smaller. 

Hence for a maximal parabolic there are closed curves in the quotient manifold 

whose lengths tend to zero. With this in mind, define the length of this homotopy 

class of curves, and therefore the conjugacy class, to be O. 

• Let ex be loxodromic. Loxodromic elements have two fixed points on 8JH[2. They are 

conjugate to z ----+ A2
Z for some A > 1, A E R Here A2 is called the multiplier of Q. 

A loxodromic element has a hyperbolic line which joins its two fixed points called 

an axis, and the loxodromic acts as a translation along its axis. Without loss of 

generality, let the fixed points be at 0 and 00. (If they are not then it is possible to 

find a Mobius transformation that takes them there, and these transformations are 

distance preserving.) It can be shown that the translation distance is In(A2). For a 

maximalloxodromic element, the axis projects to a closed geodesic of length In(A2) 

in the quotient manifold and among all closed curves in the free homotopy class 

determined by Q, this closed curve will have minimal length. Hence define this to be 

the length of this homotopy class of curves and the equivalent conjugacy class. 

The above gives a way of assigning a length to each type of group element, so it remains 

to make the connection between this length assignment and the idea of the character of 

the group element. 

The character of an element of the group was defined in terms of the trace of the matrix 

representation of the element in SL2("1P1.). The trace of an element in SL2("1P1.) determines 
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the multiplier A? of the corresponding element in PSL2(JR). From the discussion above we 

have assigned lengths to free homotopy classes of curves in terms of the multiplier, and 

therefore the multiplier of the element in PSL2(JR) determines the length of the closed 

geodesic in the quotient manifold JHI2 fpC G). 

Specifically, if wE G and pew) is a loxodromic with multiplier ,\2 then t = tr(p(w)) and 

tr(p(w)) = ±(,\ + ,\-1) and so ,\2 = ~(t2 - 2 ± tv't2 - 4) where the sign is chosen so 

,\2 > 1. Hence if we take two elements wand v of G which satisfy tr(p(w)) = tr(p(v)), 

and pew) is loxodromic, then we know two things. Firstly p(v) must also be loxodromic 

(otherwise traces would not be equal). Secondly that pew) and p(v) must correspond to 

closed geodesics of equal length in the quotient manifold. 

Being more specific, if G is any finitely generated, torsion-free group and if wand v are 

two elements of G which generate non-conjugate maximal cyclic subgroups and which 

have the same character, then we know that tr(p(w)) = tr(p(v)) for all p E F(G). Hence 

the lengths of the free homotopy classes determined by wand v are equal in JHI2 fp( G) 

(where here we remember that p = Q 0 p and Q : S L2 (JR) --+ P S L2 (JR)). 

Hence our original problem of finding pairs of elements of G that give rise to the same 

character over the space of faithful representations of G into SL2 (JR) (and that generate 

non-conjugate maximal cyclic subgroups of G) is equivalent to finding pairs of closed 

curves on the quotient manifold whose geodesics have the same hyperbolic length over all 

hyperbolic structures. 

This connection between character and length will now be used to prove McShane's 

Lemma. 

4.4 McShane's Lemma 

In this section we state and prove McShane's result for surfaces, as given in [McS93]. This 

lemma looks at fundamental groups of closed orient able surfaces, and says that if the 

group element is maximal and represents a simple closed curve on the surface, then it is 

uniquely determined by its character. (See [lemma 6.2 in [And03]].) 
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Lemma 4.4.1 Let Gp be the fundamental group of a closed orientable surface Sp of genus 

p 2:: 2. Let 9 E Gp be a maximal element that represents a simple closed curve on Sp. 

Then X[g] determines g. By this we mean that if there exists another maximal element h 

E Gp with X[h] = X[g] then h ~ !II. 

The following gives a proof for McShane's result as given in [And03]. We give this proof 

because we will use elements of it in later sections of this work. 

Proof: By the discussion in section 4.3 we may restrict attention to discrete faithful 

representations of Gp into SL2(~)' We then get hyperbolic structures on Sp by taking the 

quotient of IH[2 by Q 0 p(Gp). This uses the fact that p(Gp) in SL2(~) is isomorphic to 

Q 0 p(Gp) in PSL2(~) because Gp is torsion-free and hence has no 2-torsion. 

Let g, hE Gp and we assume that X[g] = X[h]. Using the discussion in section 4.3 we 

know that 9 and h represent curves on Sp with the same hyperbolic length for every 

hyperbolic structure on Sp (Le. the length of a closed geodesic on Sp determines the 

character of the corresponding element of Gp and vice versa). 

Now we use a result about non-simple curves. If h represents a homotopically non-trivial 

non-simple curve c on Sp then there is a positive uniform lower bound for the length of 

the closed geodesic homotopic to c over all hyperbolic structures on Sp. This lower 

bounds depends on the number of self-intersections the geodesic has. (See [Bas93] 

corollary 1.2.) However if h represents a homotopic ally non-trivial simple closed curve no 

such lower bound is imposed on the length of the closed geodesic homotopic to it. In fact 

there exist hyperbolic structures for which the length of the closed geodesic goes to O. 

Using this fact we conclude that as 9 represents a simple closed curve on Sp then h must 

also represent a simple closed curve on Sp. 

Now we are reduced to considering two simple closed curves on Sp so that the lengths of 

their corresponding closed geodesics are equal independent of the hyperbolic structure. 

We are reduced to three cases. 

Firstly the simple curves that 9 and h represent could intersect. Using the collar lemma 

(see lemma 3.1.5), as one of these curves increases in length the other will decrease. By 

our assumption that our curves have the same hyperbolic length this cannot occur. 
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Secondly the simple curves that 9 and h represent could be completely disjoint. We can 

eliminate this case by using Fenchel-Nielsen coordinates of Teichmuller space (as 

described in section 3.1). From the discussion in section 3.1, we are able to change the 

length of one of the two curves completely independently of the other. This again cannot 

occur by our assumption. 

This leaves the final case, which is that the simple curves that 9 and h represent coincide, 

which means that they are conjugate, and this is the result we require. 

It is possible to remove one of the conditions given for 9 in lemma 4.4.1. 

Lemma 4.4.2 We can remove the maximal condition from McShane's lemma. By this 

we mean that we can restate the lemma 4.4.1 as follows; 

Let G p = 11"1 (Sp), where Sp is a closed oTientable surface of genus p ~ 2. Let 9 E G p 

represent a simple closed CUTVe on Sp. Then X[g] determines g. By this we mean that if 

there exists another element h E Gp with X[h] = X[g] then h rv !II. 

Proof: Let g, hE Gp and assume X[gJ = X[hJ. Let 9 C±k (for kEN) where c 

represents a simple closed curve on Sp. 

o 

If k = 1 then 9 = c and 9 is a maximal element representing a simple closed curve and we 

are done by lemma 4.4.1. Hence we may assume k ~ 2. 

Removing the maximality condition on 9 does not effect the discussion from section 4.3 

connecting character and length. Therefore we may still use the connection to length, and 

so if X[g] = X[h] then we know that 9 and h represent curves on Sp with the same 

hyperbolic length for every hyperbolic structure on Sp. 

Note also that the fact we used about non-simple closed curves does not rely on the fact 

that 9 is maximal and so as 9 is a power of a simple closed curve, then h must also 

represent a power of a simple closed curve. 

We are again reduced to considering powers of simple closed curves in three cases. Firstly 

the powers of simple curves that 9 and h represent could intersect. The collar lemma does 

not rely on the maximality condition so we may still rule out this case in the same way as 
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before. Secondly the powers of simple curves that 9 and h represent could be disjoint. 

Again we may use Fenchel-Nielsen coordinates and see that we can change the length of 

one without effecting the other. Hence the powers of simple curves that 9 and h represent 

must coincide, and so we know that h must be conjugate to the same simple closed curve 

representing c, but h may be equal to C±l where l =1= k. Hence we know that h = qc1q-l for 

some q E Gp . 

Therefore X[h] = X[qdq-l] = X[c l ] (by character relations). Therefore as X[g] = X[h] we 

know that X[ck
] = X[c1]. 

From the discussion at the start of the chapter, we know that X[cTL
] may be written as a 

polynomial in X[c] of degree n. Therefore we have a polynomial in X[c] of degree k equal 

to a polynomial in X[c] of degree l. Hence k = ±l. Hence h rv g±l as required. 0 

4.5 Other surface problems 

There are other conditions for surfaces that may be considered in relation to giving a 

partial answer to the original character question. Firstly in section 4.4 we have only 

considered closed orientable surfaces of varying genus. Another question would be to find 

a similar condition for other hyperbolic surfaces, for example those with holes or possibly 

punctures, where the parabolic elements of the fundamental group come into play. We 

will be considering surfaces with non-empty boundary in section 5.5. 

Alternatively we could look for other conditions. McShane's result told us that a 

condition on the group elements is that they had to be represented by simple closed 

curves on the surface. We could therefore consider non-simple closed curves. From the 

proof above we know that a simple closed curve and a non-simple closed curve may not 

have the same character because there is a lower bound on the length of a non-simple 

closed curve and no such lower bound exists for simple closed curves. The following 

conjecture says something about non-simple closed curves having the same character. 

Conjecture 4.5.1 Let g, hE Gp where Gp is the fundamental group of a hyperbolic 

surface. If x[g] = X[h] then 9 and h are represented by curves on Sp which have the same 

number of self-intersections. 
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To give an indication as to where the idea for this conjecture comes from, it is known that 

there is a universal lower bound for the length of a non-simple closed geodesic on a 

hyperbolic surface (as mentioned in the proof of 4.4.1). In [Bas93], Basmajian shows that 

this can be improved by considering the self-intersection number of the closed geodesic. 

He shows that there exists an increasing sequence Mk tending to infinity so that if p is a 

closed geodesic with self-intersection number k then lp > M k . (Here lp denotes the length 

of p.) Hence the length of a closed geodesic gets arbitrarily large as its self-intersection 

gets large. (See corollary 1.2 of [Bas93J.) Note that this result is a consequence of the 

stable neighbourhood theorem. 

This result only gives a bound on the length, but it may be possible to utilise this to 

prove this conjecture. 

Ftom the results given in this chapter we have some information in relation to the 

character problem in 1- and 2-dimensions. The two theorems given provide conditions 

which ensure elements of particular groups have the same character only if they are 

conjugate, and so gives a partial solution to the original question. 
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Chapter 5 

Special Books of I-bundles 

Chapter 4. gave a summary of some of what is known in relation to the character question 

of how to determine when two non-conjugate elements of a group have the same 

character. The two results given did not answer this question, but a modified version, 

which forms a partial converse. They gave conditions on the group elements that ensured 

that if an element of the group satisfied a particular property, then if another element of 

the group had the same character then the two elements are conjugate. These results 

considered elements of free groups (I-dimensional) and fundamental groups of surfaces 

(2-dimensional). It is therefore natural to try and extend to 3-dimensions and look for 

possible conditions for elements of fundamental groups of 3-manifolds. 

In this chapter we discuss this question in relation to a particular type of 3-manifold called 

a Book of I-bundles, reducing to a specific case on which we will build later. We discuss a 

construction which ensures the manifold is hyperbolizable and give ideas for possible 

properties satisfying the question. We then prove some results on surfaces with boundary 

that are required when considering these properties. The most important technical tool is 

the projection of geodesics in M onto its spine F. This is discussed in detail in section 

5.6. The chapter closes with the proofs of two of the properties for the specific manifold. 

5.1 A three dimensional question 

In this section we give the generalized question on which this work is based. The ultimate 

aim would be to find a solution to the following problem about hyperbolic 3-manifolds. 

49 



Let G = 1l"l(M), where M is a compact hyperbolizable 3-manifold. Consider all faithful 

representations of G into SL2(C). Find a topological condition P that can be imposed on 

the elements of G so that the following statement is true: 

If g E G satisfies the condition P and if hE G is any element such that X[hj = X[g], then 

h is conjugate to g±l. (If more than one such a condition P exists, then we want to find 

the weakest.) 

As stated above, this is a difficult problem as the property will need to apply to many 

different manifolds. A particular property that fits the assumptions and holds for one 

manifold may not be true for another manifold. For this reason we reduce the scale of the 

question by considering just one particular family of hyperbolizable 3-manifolds called 

Books of I-bundles. (These will be described in detail in the next section.) 

Following the example of McShane's lemma in the previous chapter (see section 4.4), the 

sort of properties that are interesting will be those that give some geometrical 

information, and hence relate to the geodesics in M. We will utilize the connection 

between the length of a geodesic in M and the character of the corresponding group 

element in 1l"l(M), and look for a natural collection of curves in M. We look at examples 

of possible properties which fit in section 5.3. 

5.2 Books of I-bundles 

This section introduces the book of I-bundles manifold, giving the general definition for 

the family of manifolds and then reducing to the specific case which will be considered in 

relation to the character question in this chapter. 

First we give a general definition that comes from [AC96j. To clarify this algebraic 

description, a more visual interpretation follows the definition. 

Definition 5.2.1 Let {Fi : i = 1, .. , n}, be a collection of surfaces, each of which is a 

compact orientable surface minus an open disc (so has a connected non-empty boundary). 

Form Bi by 'thickening' Fi, so for each i, let Bi = Fi X I. Let OOBi be the annulus 

oFi x I. (Note that OBi = (oFi x 1) U (Fi x (1).) 
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Let T be a solid torus and let Ai (i = 1, ... , n) be a family of disjoint pamllel closed annuli 

on aT homotopically equivalent to the core curve on T. Hence the boundary ofT is 

decomposed into the closed annuli Ai and the open annuli aT - (AI U ... U An). 

Form a manifold M from T and {Bi} by identifying the boundaryaoBi with A for all i 

by an orientation-reversing homeomorphism. 

M is called a Book of I-bundles. 

A loose translation of this definition is that M is obtained by gluing a collection of 

I-bundles (thickened surfaces) to a solid torus along a family of parallel annuli. To 

visualize, think of the solid torus as the binding and the I-bundles as the pages, and hence 

A1 is a 'book'. 

Definition 5.2.1 gives the description of the basic book of I-bundles manifold which has a 

single solid torus binding. This can be extended to give more complicated and general 

books of I-bundles. The first way to extend the definition given is to consider the case 

where M contains multiple solid torus bindings TI , T2 , ••• , Tm. The boundary of each Tk 

(k = 1, ... , m) is decomposed in the same way as described in definition 5.2.1. To ensure 

that this manifold is connected, the I-bundles may be glued to more than one solid torus 

(at least one I-bundle must be attached to two or more solid tori in M to ensure M is 

connected). Hence M will contain I-bundles with bases consisting of surfaces with 

multiple boundary components, so using the terminology given in definition 5.2.1, the 

collection of surfaces {Pi} will each be compact, orientable minus one or more open discs. 

In this more general setting, it is possible for M to contain a 'loop'. This means that ]1;1 

comes back and meets itself, so we have a loop of solid tori and I-bundles. 

Fig 5.1: M containing a loop 

(Figure 5.1 illustrates M containing a loop. Here the vertices represent solid tori and the 

edges are I-bundles.) 
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This is not possible in the basic book of I-bundles given in definition 5.2.1 as here there 

was only one solid torus binding, so would produce a 'tree-like' manifold (n-prong 

manifold), without any loops. 

A further extension would be to remove the compactness condition and allow parabolic 

elements in the underlying fundamental group. In this situation a second kind of binding 

appears in M (i.e. a thickened torus) which corresponds to the rank 2 parabolic 

subgroups in 7f1 (1l1). The I-bundles are still glued to the thickened tori along a union of 

annuli, but only one of the boundaries of the thickened torus participates in the gluing. 

This extension is beyond the scope of this work as parabolics are ruled out, but there is 

potential for future work in considering M with these bindings in relation to the character 

question. 

Another consideration is how the gluing annuli are situated on each solid torus binding, 

and therefore how the I-bundles are glued to the bindings. We could consider (p, q) curves 

along which to glue, so the annuli wrap several times around the torus. For ease of 

exposition, in this work we will be gluing along (0,1) torus curves (as shown in figure 

5.2), so the annuli do not wrap around the binding. There is potential here for future 

investigation in relaxing this assumption. 

Fig 5.2: (0,1) torus curve 

In addition to these extensions, two further properties that can differ between Books of 

I-bundles is the angles between the I-bundles on the solid torus, and the thickness of the 

I-bundles. Although initially it is assumed that the angles between the I-bundles are 

equal around the solid torus, this is relaxed in chapter 6 when considering more general 

Books of I-bundles. 

The most general book of I-bundles manifold will be one that incorporates all the above 

extensions combined with the original basic definition. These are the only possibilities, as 

can be seen from the following description from [CMT99J. 
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Definition 5.2.2 A generalized book of I-bundles is a compact irreducible 3-manifold 1\11 

with incompressible boundary, such that it is possible to find a disjoint collection A of 

essential annuli in M so that each component of M obtained by cutting along A is either 

a solid torus, a thickened torus or homeomorphic to an I-bundle. 

Considering the most general book of I-bundles which incorporates all of these 

components will make it more difficult to find a property to fit the question given in 

section 5.1. It may even be the case that such a property will not exist or if one does it 

will be very weak. 

Initially we will focus on a particular book of I-bundles that fits in with definition 5.2.1. 

Let M be the book of I-bundles with one single solid torus binding and three 'pages', or 

three I-bundles which are attached to the solid torus by the gluing described in definition 

5.2.1. For ease of exposition, the gluing occurs along (0, 1) torus curves (so the annuli do 

not wrap around the torus). It is possible to draw a picture of this (see figure 5.3 below) 

by representing the solid torus by a vertex and the I-bundles by three lines coincident with 

the vertex such that they are evenly spaced (so the angle between each pair is the same). 

Fig 5.3: 3-prong case 

Once the discussion for possible properties for this case is complete, the aim is to extend 

to the more general setting. 

5.3 Possible properties 

In this section the aim is to discuss possible properties that can be imposed on an element 

of 1f'l(M) so that any other element with the same character is conjugate to it. (Here 1\11 is 

a general book of I-bundles manifold.) As discussed in section 4.3, there is a relationship 

between the character of an element of the fundamental group and the length of the 
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corresponding geodesic in M. Note that although this is discussed in terms of surfaces in 

section 4.3, it is indicated there that this also applies in 3-dimensions, where the 

underlying fundamental group is Kleinian. Hence our problem of finding a property that 

ensures that two elements with the same character are conjugate translates to finding two 

curves whose geodesic representatives have the same length in the hyperbolic 3-manifold. 

When considering potential properties what we are looking for is a natural collection of 

curves in M. In the surface case the property consisted of the geodesic being simple, and 

these curves form a natural family on any closed surface. We would like to find a similar 

property in 3-dimensions for the book of I-bundles manifold. 

Let g, h be geodesics in M such that X[g] = X[h]. We want to find a property on 9 that 

implies that 9 and h are the same curve (up to homotopy and orientation). The following 

lists some ideas for such a property, with discussion as to why they mayor may not hold 

true. 

• An initial idea is to let 9 be a filling curve on one component of the boundary of M. 

(Note that 9 is a filling curve if it crosses every simple closed curve in that 

boundary component S, or alternatively if S - 9 is a union of discs.) In order to 

deduce that this property gives the required result, it would first be necessary to 

show that any curve h with the same length is in the same boundary component 

that 9 is situated. Once this has been deduced then the situation would be reduced 

to a question about surfaces, and therefore it would be hoped that elements of the 

proof of the surface result (see lemma 4.4.1) could be used to complete a proof. The 

potential problem with this property in relation to the book of I-bundles manifold is 

that it has more than one component to its boundary. It would therefore be 

necessary to ensure that the two curves are not only both in the boundary of M, 

but that they both live in the same component of the boundary. In the paper by 

Leininger (see [Lei03]), an example is given of two closed geodesics on a closed 

orient able surface of genus 9 > 1 which both fill the surface and have the same 

intersection number with every simple closed curve on the surface, but are not 

hyperbolically equivalent. (By not hyperbolically equivalent we mean that the two 

curves do not have the same hyperbolic length over all structures on the surface.) In 

relation to the book ofl-bundles, this shows that if 9 is a filling curve on one 
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component of aM (the boundary of M), then even if it is possible to prove that his 

also a filling curve on the same boundary component, it will not be enough to show 

9 c:,,; h±l by the counterexample in [Lei03j. 

(As an aside in connection to this it may be interesting to consider. what properties 

would work for surfaces with Fuchsian or quasi-fuchsian fundamental groups, or 

even to consider this particular property in relation to these surfaces. This is an 

idea for future investigation and is not covered within the scope of this work, as we 

will focus on 3-manifold ideas.) 

• A second possibility for a property considers a slightly different but related question 

to the character problem given in section 5.1. Let 9 be a geodesic contained in a 

component of the boundary of M (i.e 9 ~ S ~ aM) and let h be a curve in M such 

that X[hJ = X[gJ· Then an idea would be to show that h is not only contained in the 

boundary of M, but is contained in the same component of the boundary as 9 (i.e. 

h ~ S). This reduces the problem from an unanswered question about 3-manifolds 

to an unanswered surface question. This is a problem that can be looked at in 

relation to any hyperbolizable manifold. We will look at this question in relation to 

the book ofI-bundles manifold later (see section 5.8 for details). 

.. A third possible property on the geodesics of M is to let 9 be the core curve of the 

solid torus (or in the general case one of the set of core curves). These curves form a 

natural collection of curves in M and this is therefore a desirable property to look 

at. As will be seen in the next section, the structure on M only cares about the 

lengths of the core curves and each set of lengths generates a family of manifolds. 

To show that this property holds means proving that the core curve is uniquely 

determined by its length. This property will be considered in more detail in sections 

5.7 and 6.3 . 

.. An idea for a fourth possible property comes from considering the surface result (see 

lemma 4.4.1). Let 9 be represented by a simple closed curve on the spine F of M. 

(The spine of M is the union of the I-bundle bases with their boundaries glued 

together inside the solid tori.) Considering the manifold as a whole, the concept of a 

closed curve being simple in M is not very useful. Unlike on a surface, there is more 

space in a three-dimensional object, and so the majority of the geodesics in M will 
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be simple closed curves. The spine of M is constructed from surfaces, and so the 

idea of a simple closed curve on F just involves extending the usual definition. 

Hence a simple closed curve on F will be made up of simple arcs meeting (without 

crossing) in the core curves. 

There are some technical issues to be resolved when considering this property. The 

connection between the character of an element and the length of a closed curve 

applies to the geodesics in M. In general (although there are exceptions) these do 

not exist on the spine. It is therefore necessary to find a way of connecting a 

geodesic in M to a closed curve on F, and hence a way of projecting that pushes a 

geodesic onto F such that it gives a unique curve on the spine. To prove this 

property, a starting point would be to consider the surface result and try to extend 

it to fit this situation. This property will be considered in more detail in chapter 7. 

It is important to point out that the idea of projecting the geodesics of M onto F is a 

major technical tool in proving any of the above properties. Hence this projection will be 

discussed in detail in section 5.6. 

In this work the last three of these properties will be considered, first restricting to the 

specific 3-prong case, and then for a general book of I-bundles (without parabolics). 

Hence we have the following three statements. 

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid 

torus binding and three pages. Let g E 1rl(M), such that g is represented by the core 

curve of the solid torus in M. Then g is uniquely determined by X[g]. By this we 

mean that if hE 1rl(M) with X[g] = X[h] then h is conjugate to g±l (so h is also 

represented by the core curve in M). 

This theorem will be discussed in section 5.7. 

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus 

binding and three pages. Let g E 1rl(M) be represented by a geodesic "( that is 

contained in a component of the boundary of M b ~ Si ~ 8M). Let hE 1rl(M) be 

represented by another curve "(' such that X[h] = X[g]. Then "/ ~ Si also. 

This theorem will be discussed in section 5.8. 
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Conjecture 7.0.3 Let G = 1fl(M) where M is a book of I-bundles with single solid 

torus binding and three pages. Let g E G be represented by a geodesic in M which is 

uniquely projected onto a simple closed curve on F (where F is the spine of M). Let 

h E G such that X[g] = X[h], then h ~ g±l. 

This conjecture will be discussed in chapter 7. 

Before discussing these, we will look more carefully at the book of I-bundles manifold and 

the construction which will be used throughout. 

5.4 The Canary, Minsky, Taylor construction 

In this section we describe a construction for the book of I-bundles manifold that is due to 

Canary, Minsky and Taylor and follow the description they give in [CMT99]. In this paper 

they show that it is possible to put a family of convex co-compact hyperbolic structures 

on the interior of M (denoted int(M)), where M is a general book ofT-bundles manifold, 

and so int(M) = JH[3 /r for r Kleinian. This construction proves that M is hyperbolizable. 

Canary, Minsky and Taylor give the construction for a general book, including 

consideration of parabolic elements. In this section we will follow this construction in 

general, but will rule out the parabolic case as we require M to be compact. We will then 

highlight what is required for the initial 3-prong case. For details on this construction, 

including dealing with parabolics, see [[CMT99] section 4]. 

From the discussion in section 5.2, the general book of I-bundles (with no parabolic 

elements in its fundamental group) is comprised of solid tori and thickened surfaces or 

'I-bundles', which are glued to the solid tori along families of annuli on the boundaries of 

the tori. (Equivalently, for each I-bundle, the subbundle over the boundary of its base 

surface is a union of annuli which are glued to the boundary of a solid torus.) 

The union of the I-bundle bases (i.e. the surfaces which are thickened to make the 

I-bundles) with boundaries glued together inside each solid torus, define the 'spine' for 

M. This spine is a 2-complex around which M is a regular neighbourhood. (N.B. The 

spine of M, which will be denoted F, is very important to this work. With reference to 
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section 5.3, the property of a curve being simple on F is one which is mentioned and will 

be considered later in chapter 7.) 

To start describing the construction of M, we begin by constructing F, and look in 

particular at the solid tori. For each solid torus in M, the cores of the annuli glued to it 

describe some number m of parallel (p, q) curves. 

Let L be a geodesic in JH[3 which is also the boundary of mq half-planes, such that these 

half-planes are equally spaced around L. (By being equally spaced we mean that the 

angles between the planes are equal.) Let I be the loxodromic element that has L as its 

axis, and such that the translation distance is I:.i (for some smallli > 0) and rotation angle q 

Take an E-neighbourhood of L and look at the quotient of this neighbourhood by I. The 

result is a solid torus. The quotients of the mq half-planes meet in a collection of annuli 

with boundaries glued together at the core of the solid torus. The intersection of these 

annuli with the boundary of the solid torus give the m parallel (p, q)-curves required. 

We complete this construction for each solid torus in M, and hence get a list of 

parameters {li} (the translation distances of Ii) for the solid tori in M. 

Each I-bundle has a base surface Fj (j = 1, ... , n), which is a compact, orient able surface 

of positive genus with non-empty (possibly disconnected) boundary. For each Fj , we 

choose a hyperbolic structure (so the surface has negative curvature) so that each 

boundary component of Fj that glues to a solid torus with parameter li is a geodesic of 

length li. It is important to note here that the lengths of the boundary curves are the 

only constraints on the choice of hyperbolic structure on Fj . (We highlight this here as we 

will use this fact when considering changing the lengths of other curves on Fj , or 

alternatively changing the hyperbolic structure, while keeping the length of the boundary 

fixed.) (N.B. The union F of these Fj with their boundaries glued together inside the 

solid tori comprise the spine described earlier.) 

As each Fj has a hyperbolic structure, it is possible to find a Fuchsian group associated to 

it. The convex core of its quotient will realize the given hyperbolic structure. Note also 

that the boundary components of each Fj correspond to pure translations. 
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To piece the manifold together, for each solid torus, identify the neighbourhoods of the 

corresponding boundaries of the I-bundle bases to the annuli arranged around its core. 

This structure extends consistently to the thickenings of the I-bundle bases, so we get a 

hyperbolic structure on int(M). Using this construction we obtain a hyperbolic structure 

for which each I-bundle base (Fj ) is totally geodesic, and a set of parameters {li} for each 

that correspond to the lengths of the core curves of the solid tori in M. Let la = max{li} 

and Oa = min { q;:J, where {mi} and {(Pi, qi)} describe the gluings for the solid tori. 

To complete this section on the construction, we show M is hyperbolizable and hence 

show that N = lHI3 jr is homeomorphic to int(M), where r is discrete. To do this we 

consider the lift into lHI3 . Each component of the lift Fj of a base surface Fj is a totally 

geodesic subset called a fiat. For a given flat, at each lift of a geodesic boundary of its 

base surface, there is a collection of miqi - 1 other flats equally spaced around it. (By 

equally spaced we mean that the angles between the flats are equal and are therefore 

evenly spaced around the lift of the geodesic boundary.) The flats are arranged in a tree, 

and each flat is contained in a half-plane in lHI3 . 

Fig 5.4: Child of H, 

This picture may be normalized as follows. Let Ho be a flat chosen to be the root of the 

tree. Normalize so that the plane containing Ho is a hemisphere meeting the complex 

plane in the unit circle. Each child H' of Ho (i.e. an adjacent flat - these are the only 

ones that are not disjoint from Ho - see figure 5.4) meets Ho along a geodesic L and is 

contained in a half-plane which meets the complex plane in a circle. 

Fig 5.5: Tree of circles 
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If we look down on this picture in JH[3 from infinity, this tree of fiats maps out a tree of 

circles in the complex plane (see figure 5.5). This normalized picture will be used later. 

Let x, y be points in the two fiats H and HI respectively. Let H = HI, ... , Hn = HI be the 

unique sequence of fiats connecting H and HI, where Hi and Hi+1 share a geodesic 

boundary. Note that the sequence of fiats is unique as the fiats are arranged in a tree, and 

Hi =1= Hj for i =1= j. There is a chain of geodesic arcs {(Xi} connecting x to y such that 

(Xi C Hi and so (Xi meets (Xi+1 in the geodesic boundary shared by Hi and Hi+1. We 

denote this chain by /x,y. The following lemma looks at the uniqueness of this piece-wise 

geodesic path /x,y. 

Lemma 5.4.1 The piece-wise geodesic path /X,Y1 from x to y in the tree of flats, of 

shortest length is unique. 

Proof: Let x and y be points in the two fiats H and HI respectively and let 

H = HI, H2 , ••• , Hn = HI be the unique sequence of fiats from H to HI. Each member of 

this sequence is contained in a half-plane of JH[3 such that the half-plane containing Hi will 

intersect the half-plane containing Hi+1 at angle ¢i for i = 1, ... , n - 1. (Note that as we 

are looking at the general case, all ¢i may be different.) 

There will be several possible paths /x,y from x to y, but what they will have in common 

is that they all will consist of a chain of geodesic arcs (Xi, such that (Xi C Hi and (Xi meets 

(Xi+I in the geodesic boundary shared by Hi and Hi +1. 

Take any path /x,y from x to y. The length of each segment (Xi of which /x,y is 

constructed, will not be altered if we change the angle between the adjacent planes (i.e. if 

we change ¢i), as each (Xi is contained in a half-plane. Therefore 'fiatten out' the planes 

so that each ¢i = 1r. We are then considering a piece-wise geodesic path between two 

points (x and y) in JH[2. 

Now consider all possible paths /x,y between x and y in this 'fiattened out' space, and 

find one of shortest length in JH[2. 

In JH[2, there is a unique hyperbolic line between any two points, and it is the distance 

realizing path. Hence join x and y by the unique hyperbolic line that contains them both, 
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and this path will be shortest among all paths between x and y in the 'fiattened out' 

space (see figure 5.6). 

y 

Fig 5.6: other paths in the 'flattened out' space 

Therefore we have a unique shortest path in IHI2. 

Now re-bend the planes back to their original positions. Again this can be done without 

altering the lengths of the segments Q:i which define "Ix,Y' Then the unique shortest path 

found in IHI2 will be the unique shortest piece-wise geodesic path in the tree of fiats from x 

to y as required (see figure 5.7). 

x I y 

Fig 5.7: unique shortest path in the tree 

(Note that any other path in the tree of fiats will not correspond to the hyperbolic line 

segment when we bend the planes to angle 'if and hence will be longer in IHI2 and hence 

longer in the tree of fiats - as the bending of the planes does not alter the lengths.) D 

As a summary of the above result, to find the unique shortest path between two particular 

points x and y in the tree of fiats, take the unique chain of fiats between them and fiatten 

out the hyperplanes containing the fiats so the angle between each adjacent pair is 'if. 

Then join x and y by the unique hyperbolic line that contains them both. Finally re-bend 

the hyperplanes back to their original angle, giving the chain "Ix,Y of shortest length. Note 

that as there is a unique hyperbolic line between any two points, and it is the distance 

realizing path, the chain of shortest length between x and y is unique. Note also that this 
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result is independent of the angle between the hyperplanes containing the fiats, so applies 

to any F, and hence any M, where M is a book of I-bundles manifold. 

As a brief aside here and in connection to lemma 5.4.1, it should be noted that the 

intersection angle of this unique shortest path found between x and y with the bending 

lines (along which the hyperplanes are bent) is not necessarily the same at each point of 

intersection. In [CMT99j it is stated that the uniqueness of this chain 'Yx,y comes from the 

assumption that this intersection angle is ~. However, as the above result illustrates, this 

is not the case. If we make the restriction that each segment of the chain meets the 

geodesic boundary at a right-angle then the chain 'Yx,y would contain gaps, (Le. see figure 

5.8). These gaps would have to be filled by moving along the geodesic boundary and the 

proof of lemma 5.4.1 illustrates that this would not be the shortest path. However, as 

Canary, Minsky and Taylor do not use this intersection angle directly, this error does not 

effect the results or proofs given in [CMT99J. 

Fig 5.8: path in tree of flats that contains gaps 

The f-t-thin part of a fiat H is defined to be the set of points where some element of the 

stabilizer of H acts with translation distance f-t or less. The f-t-thick part of a fiat H is 

defined to be the complement of this. If f-t is sufficiently small (i.e smaller than the 

Margulis constant - which we will assume to be the case. The Margulis constant is the 

smallest constant r a such that for each discrete group G and each point x in IBI3, the 

group generated by the elements in G which move x less that r a is elementary), then the 

f-t-thin part consists of a union of disjoint pieces, each of which is a neighbourhood of an 

axis of translation. In terms of the tree of fiats, the lift of the f-t-thin parts will consist of 

neighbourhoods of the lifts of the geodesic boundaries of the base surfaces. 

In terms of the spine F of the manifold M, the f-t-thin parts will consist of neighbourhoods 

of the core curves of the solid tori, or equivalently of the geodesic boundaries of each Fj 

(as shown in figure 5.9). Geometrically, the f-t-thin part of Fj consists of the subset of 
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points p on Fj such that there is a non-trivial closed curve passing through p whose 

length is less than f-L. (The f-L-thick part is the complement of this.) 

Fig 5.9: f.I. - thin part of F 

Returning to the tree of flats picture, suppose x is in f-L-thick part of H (so there is 

definite spacing between x and the lift of the appropriate geodesic boundaries). Then in 

[CMT99], Canary, Minsky and Taylor state that given any k > 0, each segment of the 

geodesic chain /x,y (except possibly the last) has length at least k, with the assumption 

that the parameter Lo = max{Li} is sufficiently shori. (Note that the first segment of /x,y, 

which contains x, will be bounded by the assumption that x is in the f-L-thick part. The 

last segment mayor may not dependent on whether y is in the f-L-thick part of a flat.) 

To see this is the case, look back at the spine. As F is comprised of surfaces Fj with 

geodesic boundary components, we may use the collar lemma around each boundary 

curve. As Lo is small, and as we have control over lo, each geodesic boundary is short and 

hence has a wide collar around it. Another consequence of Lo being small and the control 

we have over lo is that we may assume that f-L > lo (and hence f-L > Ii for all i). Hence each 

geodesic boundary will be in the f-L-thin part of the spine F. (See figure 5.9.) 

In [CMT99], the bound stated is clog (f), assuming lo is sufficiently small. Hence by 

making to small, so f-L > lo, the f-L-thick part of each Fj is separated from its respective 

boundaries by at least clog ( f) for a fixed constant c. 

Consider a point x' on F such that x' is in the f-L- thick part of F, and consider any closed 

curve ;Y through x' on F. Then ;Y is comprised of geodesic segments, such that each 

segment (apart from the first and last which start and end at x' respectively) starts and 

finishes at a geodesic boundary of one of the Fj (i.e. each segment is contained in one Fj 

only). As x' is assumed to be in the f-L-thick part of F, then the length of this first 

segment of;Y will obviously be bounded below by the bound stated above. All other 
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segments of;Y must pass into the j.t-thick part of F before returning to a geodesic 

boundary, otherwise a shorter piece-wise geodesic closed curve could be found by 

homotopy back to the corresponding li' Even the last segment of;Y will be bounded as it 

ends in the j.t-thick part of F, namely at x'. 

Referring to the lift to IBI3 and the tree of flats picture, as x is assumed to be in the 

j.t-thick part of a flat, then the length of the first segment of I'x,y is bounded below. If we 

assume I'x,y is a lift of a closed curve ;Y on F (as it will be closed curves on F that will be 

of interest), then y will also be in the j.t-thick part of a flat. Hence the last segments 

length will also be bounded below. All intermediary segments of I'x,y must cross a flat H' 

from the lift of one geodesic boundary to another lift of a geodesic boundary (note the 

two lifts may be of the same geodesic boundary of F). Hence they must pass into the 

j.t-thick part of HI, and therefore have length bounded below, (see figure 5.10). Hence 

every segment of I'x,y has length that is bounded below. 

Fig 5.10: path segment with bounded length 

The chain I'x,y is a broken geodesic in IBI3. From [lemma 4.2 in [CMT99lJ we know more 

than this. As IX,y is composed of geodesic arcs Qi (i = 1, ... , n) each of which has length 

bounded below by a constant k ~ 0 (dependent on the value of lo), then the orthogonal 

bisecting planes ~ to each Qi are all disjoint. Furthermore each plane Pj separates Pi 

from Pk and Qi from Qk whenever i < j < k. (Note that in proving this lemma, Canary, 

Minsky and Taylor choose k by the formula cosh2 (~) = l-C;S(O) ' where () is a lower bound 

on the angles between the geodesic arcs Qi. Furthermore, they show that 

dist(~, ~+l) ~ !(lai + lai+J - k, where lai is the length of Qd 

These Pi give us a sequence of planes with definite spacing, and hence non-adjacent Q'i are 

completely disjoint. As each Qi is contained in a flat, then these bisecting planes will give 

definite spacing between the flats. In particular any two non-adjacent flats in the tree are 

completely disjoint. (Note that this also shows that to get from one flat to another there 
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is a unique sequence of flats to go through.) Therefore the entire tree is properly 

embedded in IBI3. Since a neighbourhood of this tree embeds it must be the 

homeomorphic developing image of a neighbourhood of the lift to the universal cover of 

F. Hence N is homeomorphic to int(M), where N = IBI3 jr for r discrete, and so M is 

hyperbolizable. (For more details on this construction and how they use it see [CMT99] 

and the references given there.) 

This construction establishes that M is hyperbolizable with the only assumption that the 

core curves of the solid tori are sufficiently short to give the spacing required. By making 

the assumption that the core curves are short, it ensures that around the boundary 

components of the I-bundle bases there are long half-collars. This in turn ensures that the 

I-bundles do not intersect. 

We make the following observation (which we set aside because of how important it is in 

this work). 

Observation 

The only requirement for this construction to hold is that F is constructed from surfaces 

which have short geodesic boundary curves. The lengths of these boundary geodesics 

provide the only constraint on both the choice of hyperbolic structure on each Fj and 

therefore M itself. The details of the construction given show that there are no further 

restrictions on both F and M to be hyperbolizable. In particular (and most importantly 

in the context we will use this construction) this implies that what occurs on the rest of 

the surface (for example in the fL-thick parts of each Fj) does not effect the construction 

on F, unless what occurs changes the lengths of the boundary geodesics, therefore 

maintaining a hyperbolic structure on M. For example, if we altered the lengths of other 

curves on F (not equal to one of the core curves), but managed to keep {li} fixed length, 

then this would not effect the fact that M is hyperbolizable. 

This observation will become important in section 5.5 when we start to manipulate curves 

on the Fj which are situated away from the core curves. 

This completes the discussion on the general CMT construction on M. We now look at a 

specific case. 
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5.4.1 The 3-prong case 

The objective of this part is to consider the CMT construction in terms of a particular 

book of I-bundles manifold on which we will initially focus. As described in section 5.2, 

the '3-prong' case consists of a single solid torus binding with three I-bundles glued to it. 

Hence F is constructed from three surfaces F I , F2 , F3 , each of which has a non-empty 

connected geodesic boundary of length lo. (N.B. the spine for the 3-prong case will be 

referred to as the 'fanblade' because of its appearance.) 

For the solid torus, the cores of the disjoint annuli glued to it describe three parallel 

(0, I)-curves (so in terms of the variables from section 5.4, m = 3,p = ° and q = 1). When 

considering the construction of the solid torus, start with a geodesic L in lHP with three 

half-planes equally spaced around it, so the angle between them is 2; (see figure 5.11 

below). The loxodromic element 'Y which has L as its axis will act as a pure translation 

along L, so will act with translation distance lo (for smalllo > 0) and zero rotational 

angle. When the quotient of a €-neighbourhood of L is taken, the result is the solid torus 

with a collection of three annuli whose boundaries are glued together at the core of the 

solid torus. 

Fig 5.11: 3-prong construction 

Hence for this particular case there is a single parameter lo, which provides the only 

constraint imposed on the construction. The rest of the construction is the same as 

described in section 5.4. 

Note that as lemma 5.4.1 is independent of the original angle between the planes (which 

in this particular case will be 2;), it will apply to this particular case (and in fact any 

book ofI-bundles manifold.) 
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As per the observation at the end of the previous section, the only requirement to be 

within the scope of the construction (and for M to be hyperbolizable) is that the fanblade 

is made up of surfaces whose geodesic boundaries are short. Note that there are no 

further restrictions. In particular the lengths of other closed curves on each surface 

component of F are not restricted, and hence we may manipulate these curves by 

changing their lengths, as long as this does not alter the length of the boundary geodesic. 

This is looked at in more detail in section 5.5. 

5.5 Surfaces with boundary 

Following on from the observations made in section 5.4, this section looks more closely at 

the spine of M. In particular, we consider how lengths of closed curves on F may be 

altered within the scope of the construction described. From the comments at the end of 

section 5.4, we know the only constraint on the construction is that F is comprised of 

surfaces with short geodesic boundary components. Hence we are working in the space of 

hyperbolic structures for which boundary geodesics are short. As long as this remains the 

case, then we stay within the construction. For this reason we consider how we may 

manipulate the lengths of other curves on F whilst keeping the lengths of these boundary 

geodesics (or equivalently the core curves) fixed, and hence staying within the family of 

hyperbolic structures. 

To give an indication of why this is important, the reason for looking at this is that as F 

is constructed from surfaces, there is a greater possibility of being able to control the 

curves on the spine. If it is possible to manipulate and change the lengths of curves on F 

without interfering with the structure of the manifold, and we can find a way of 

projecting geodesics onto F, then it will provide a method of gaining some control in the 

3-manifold. (The projection itself will be considered in section 5.6.) This will then 

provide the tools required to consider the character question (as given in section 5.1). 

Hence first we consider F and its component parts. 

In section 5.4, we constructed the spine of M out of I-bundle bases. These consisted of 

surfaces with non-empty (possibly disconnected) geodesic boundary. For each base surface 

Fj we found a F'uchsian group such that the convex core of its quotient realized this 
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hyperbolic structure (i.e. the space of hyperbolic structures being considered are those 

which give short boundary geodesics). Hence each I-bundle base is totally geodesic and 

the boundary components correspond to pure translations. (Essentially, we considered 

each Fj to be the convex core of a surface with ends, giving a surface with boundary - see 

figure 5.12. We cut off the end around the geodesic to give a surface with finite volume.) 

The spine was created by gluing these surfaces together along these geodesic boundaries. 

Fig 5.12: convex core of FJ 

We can decompose F into its component parts by applying the latter part of this in 

reverse, so we have a set of surfaces with non-empty (possibly disconnected) geodesic 

boundary. (In terms of the initial 3-prong case, the spine will be decomposed into three 

surfaces with non-empty, connected geodesic boundary.) We now consider these 

components, and hence are returning to consider surfaces once more. In the previous 

chapter we considered only closed compact surfaces, so the 'nicest' possible in some sense. 

Now to be considered are surfaces with non-empty boundary. 

Take one of the surfaces Fj from which F is constructed. Let ex be a simple closed curve 

on Fj that is not homotopic into 8Fj . We want to know that it is possible to change the 

length of ex while the length(s) of the boundary geodesic(s) of Fj remain constant. We 

start by considering the simplest case, and prove the result for a surface of genus 1 with 

connected geodesic boundary. This is formalized into the following. 

Lemma 5.5.1 Let S be a compact oriented surface of genus 1 with connected non-empty 

boundary consisting of a geodesic c of length lc. (Here we have assumed that S has 

hyperbolic structure with geodesic boundary - so the end has been cut off around this 

boundary.) Let hyp(lc) be the space of hyperbolic structures on S with lc constant. Let p be 

a simple closed geodesic on S with length lp. Then if p ~ C±k for some integer k then lp is 

non-constant on hyp( lc). 
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From this it will be possible to change the length of any simple closed geodesic on 8 while 

keeping the boundary curve at constant length. The proof of this is as follows. 

Proof: Let ga, gb E 1rl (8) be represented by geodesics a and bon 8 of lengths la and If, 

respectively, such that a and b generate 8. Then, given the correct orient.ation and 

labeling, c = aba-1b-1. (See figure 5.13 below.) 

0/
\ "fr \ 
11/ 

b 

Fig 5.13: genus 1 surface 

c 

The first thing to show is that the lengths of a and b (denoted la and lb) can be changed 

while the length of c (denoted Ie) is kept constant. It is also necessary to know how much 

the lengths la and lb can vary for le fixed. To do this, we implement the connection 

between the length of a geodesic on 8 and the character of the corresponding 

fundamental group element (as given in section 4.3) and look at the character equations. 

Using these we show that X[c] can stay constant while x[a], X[b] and x[ab] are variable. 

As we know that c = aba-1b-1 (so X[c] = x[aba-1b-1)), using the character relations given 

in chapter 4 we can expand the right hand side to give 

We need to know how much we can vary X [a], X[b] and x[ab] and keep X[c] constant. First 

note that x[a], X[b] and x[ab] are independent variables. This independence can be seen 

by considering the traces of 2x2 matrices A and B in 8L2(JR). Although tr(AB) is 

dependent on A and B, it is independent of tr(A) and tr(B). To see this, let 

then 

AB = ( aa + fry a{3 + M ) 
ca + d, c{3 + dJ . 
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From these matrices we see that tr(A) and tr(B) are each dependent on only two entries 

in the corresponding matrix. However tr(AB) is dependent on all eight entries from 

matrices A and B. In fact it is easy to construct examples where tr(A) and tr(B) remain 

fixed but tr(AB) changes depending on the other entries of A and B. 

The above character equation therefore contains three independent variables, and with 

the substitutions x = x[a], y = X[b], z = x[ab] and C = X[c], is equivalent to; 

(5.1) 

for C fixed. 

We now use what we know about x, y and z to see that they can take a range of values 

while C remains fixed. 

The group elements that the curves a, band ab represent are all loxodromic. Therefore 

the value of the trace (and hence the character) must be greater than 2 or less than -2. 

(Equivalently the square of the trace must be greater than 4.) Note that these traces can 

get arbitrarily close to ±2 (Le. a curve can be shrunk to almost a point) and still be 

loxodromic. 

We show that for any x and y we can find a value for z that satisfies equation 5.1. To do 

this first rearrange equation 5.1 and solve for z using the quadratic formula. 

z = ~ (Xy ± J x 2y2 - 4(x2 + y2 - 2 - C») (5.2) 

As we are considering surfaces and so representatives into SL2 (lR) we want x, y, z E R 

Hence z will only be well defined if the discriminant is non-negative. First consider where 

it is equal to zero. 

As x 2 > 4 and y2 > 4, then 4x2 + 4y2 - x 2y2 > 16 + 16 - 16 = 16, therefore 

8 + 4C > 16 =? C > 2. (This is true as the geodesic boundary curve is loxodromic, 

although it is short so almost parabolic.) 

70 



In this case z = !xy =? Z2 = ~x2y2 > 4 as required. 

Now assume that the discriminant is positive. 

x2y2 _ 4x2 - 4y2 + 8 + 4C > 0 

8 + 4C > 4x2 + 4y2 - x 2y2 > 16 (5.3) 

(Again this is true as C> 2.) 

In this case z = !xy ± v'discr;minant, so for each x and y we have two possible values for z. 

However, as x 2 > 4 and y2 > 4 then !xy > 2 or !xy < -2, and so at least one value will 

give z > 2 or z < - 2 as required (Le. if !xy > 2 take the positive square root, and if 

!xy < -2 take the negative square root to be certain). 

To complete this part of the proof we show that we can make x and y arbitrarily close to 

2 or -2 (from appropriate side) and still be able to find a value for z, all with C fixed. We 

split into two cases. 

First let x and y both approach 2 from above (so x, y > 2), or both approach -2 from 

below (so x, y < -2). Then, 

x 2 + y2 + Z2 - xyz - 2 = C --l- 4 + 4 + Z2 - 4z - 2 = C 

so we get a quadratic in z, 

Z2 - 4z + (6 - C) = 0 =? z = 4±~ = 2 ± viC - 2 

If we take the positive square root (and assume C> 2), then z > 2 as required. Hence we 

can always find an appropriate value for z in this case. 

Now let x --l- 2 from above and y --l- -2 from below (all with C fixed). Then, 

x2 + y2 + Z2 - xyz - 2 = C --l- 4 + 4 + Z2 + 4z - 2 = C 

so again we get a quadratic in z, 
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Z2 + 4z + (6 - C) = 0 =? z = -4±~ = -2 ± .,jC - 2 

This time we take the negative square root (and assume C > 2), to guarantee z < -2 &'3 

required. 

Therefore for every x and y (such that x2, y2 > 4) it is possible to find at least one value 

for z in the appropriate range. Hence there is a lot of scope for movement in these 

variables. 

Referring back to lengths, from this we know that la and Ib can be changed as much as is 

required without altering the length of c. Now to complete the proof of this lemma, we 

need to show that the length of any other simple closed curve on S can vary unless it is 

homotopic to the boundary. 

Any non-trivial simple closed geodesic p on S must either intersect a or b (or both) at 

some point, or will be homotopic to c±k. (To see this is the case, we use the pants 

decomposition on S. Decompose S into a single pair of pants by cutting along b. There 

are two possibilities for a simple closed geodesic p on S when considered on the pair of 

pants. Either p is a simple closed geodesic on the pair of pants also or it is not. The only 

simple closed geodesics on a pair of pants are the boundary curves. Hence in this case 

either p is homotopic to c or p is homotopic to b, and hence intersects a. If p is a simple 

closed geodesic on S that is not a simple closed geodesic on the pair of pants created from 

S, then it must intersect the boundary components of the pair of pants, and hence the 

only possibility in this case is that p intersects b.) In the latter case, p will have the same 

length as c and Ip will be fixed. We need to know that this is the only case where p has 

fixed length. Therefore consider the other cases, i.e. where p is a closed curve that 

intersects at least one of the two generating curves a and b. 

Let p be a simple closed geodesic that intersects b. (The case where it intersects a will 

have a similar argument.) From the above analysis h is variable, and can be made 

arbitrarily small whilst keeping c fixed length. Apply the collar lemma (see lemma 3.1.5) 

around b. This means that we are putting a collar or topological cylinder around b whose 

width w depends only on lb- Any geodesic intersecting b at some point must cross the 

entire width of the collar (otherwise a homotopically equivalent curve that does not 

intersect b can be found - see figure 5.14). Therefore this collar gives a lower bound on 
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the length of the intersecting curve p. This lower bound is 2w (multiplied by the number 

of intersection points between band p.) 

Fig 5.14: (ollar around b 

N ow let b decrease in length. By the collar lemma, the cylinder around b gets wider (as 

hOw -+ (0). From the above, b can be made arbitrarily short while le stays constant. 

Hence we can shrink b enough to force lp to increase. (The lower bound will be greater 

than the original length of p at some point.) Therefore from this point onwards as we 

decrease lb we are increasing lp and hence the length of p can be forced to change without 

altering the length of the boundary geodesic. 

We use a similar argument if p intersects a. Therefore the only closed curves with fixed 

length are those that are homotopic to ck for any integer k. As p is simple, then if p has 

fixed length then k ±1 as required. 0 

One thing to note at this point (in line with the observation at the end of section 5.4) is 

that the only specification on the hyperbolic structure on S is that it keeps the boundary 

curve short and at constant length. Therefore this result will be valid for all hyperbolic 

structures with this constraint, and in particular for the hyperbolic structure imposed on 

the surfaces of M by the Canary, Minsky, Taylor construction. The only constraint in the 

construction was a requirement for short boundary curves. It is therefore feasible that 

this manipulation of curves may be done within the scope of the bigger construction. 

This result has so far only been shown for a surface of genus one, but it is necessary to 

extend this result to higher genus surfaces with connected non-empty boundary. One 

method would be to try and apply a similar idea as in the proof of lemma 5.5.1, but in 

higher genus surfaces it is apparent that this method would run into difficulties. Firstly 

the character equation for the boundary curve will become far more complicated, and the 

resulting equation will have considerably more variables to work with, which would make 

it hard to analyse in the same way. There is also the problem of looking at the separating 
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geodesics of S, which do not necessarily intersect the generating curves of the surface. 

Hence it would be necessary to handle these cases separately. However instead of 

proceeding with this method, we find a new proof which tackles both of these problems 

and does it all in one. 

Lemma 5.5.2 Let S be a compact, oriented surface of genus g ~ 2 with connected 

non-empty boundary consisting of geodesic c of length lc. (Here we have assumed that S 

has hyperbolic structure with geodesic boundary, so the end has been cut off around this 

boundary.) Let hyp(lc) be the space of hyperbolic structures on S with lc constant. Let p be 

a simple closed geodesic on S with length lp. Then if p ~ C±k for some integer k, then lp is 

non-constant on hyp(lc). 

~/_ a2/_ 

(w' (w' 
\..u. J \..u. J 

IIb1 I/~ 

Fig 5.15: genus g surface 

Proof: Let aI, b1, a2, b2, ... , ag , bg E 11"1 (S) generate S. Assume that p is a simple closed 

curve on S such that p ~ C±k for any integer k and show that the length of p (denoted lp) 

can vary while lc is fixed. 

We utilise the pants decomposition as given in definition 3.1.3. Decompose S using the 

pants decomposition into pairs of pants. This will produce 2g - 1 pieces by cutting along 

3g - 2 geodesics on S. Take an exact copy of S called S* and glue the boundaries of S 

and S* together. (Effectively reflect S across its boundary geodesic to get S U S*, so we 

are taking the double of S - see figure 5.16.) This gives a closed surface without boundary 

with a marked curve c, of fixed length (the common boundary of Sand S*). Taking the 

double (and reflecting) ensures that our new surface has the same structure throughout 

(for consistency) and makes sure that no lengths are altered in the process. Complete the 

pants decomposition on this new surface (it does not matter what way this is done as the 

new half of the surface will not be used directly). Using Fenchel-Nielsen coordinates we 

know that we can change the lengths of a subset of these pants curves while keeping 
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others of fixed length. In particular we can change the length of all the pants curves 

contained in S except c, and keep lc fixed. 

sus ... 

/I II 

* * /I II 
c 

Fig 5.16: decomposition of the double of S 

To complete the proof it is necessary to show that any other simple closed geodesic on S 

must vary in length as the curves in the pants decomposition change length. 

First note that any simple closed geodesic on S must either intersect the geodesics in the 

decomposition or wrap around one of the pants curves. 

Fig 5.17: simple closed geodesics on P 

To see this, take one pair of pants P in the decomposition and consider a simple closed 

geodesic 9 such that 9 and P have some points in common. Here there are two options, 

ei ther 9 is contained entirely in P, or only part of 9 is contained in P (see figure 5.17). 

If 9 is contained entirely in P, then 9 is a simple closed geodesic on a pair of pants, and 

the only such curves are equivalent to one of the boundaries of P. Hence 9 will wrap 

around one of the geodesics in the pants decomposition of S. If only part of 9 is contained 

in P, then as 9 is a simple closed geodesic on S, then it must intersect at least one of the 

boundary components of P, and hence will intersect at least one geodesic in the 

decomposition. (In fact it will intersect at least two.) 

If the geodesic wraps around one of the pants curves, then it is homotopically equivalent 

to one of the simple closed geodesics in the decomposition that lies in S. Therefore as 
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that pants curve varies in length so will the length of any geodesic homotopic to it or a 

power of it. (Note that if the geodesic is homotopic to c then it will have constant length 

as c has constant length. We want these to be the only such curves.) 

The only simple closed geodesics left to consider are those intersecting at. least one of the 

curves in the decomposition. We need to know that if we make small changes in the 

lengths of these curves in the decomposition then any curve crossing them will 

automatically change length. 

(N.B. Geodesic lengths are real analytic in the real analytic structure of Teichmuller 

space.) 

If we let the length of the geodesics in the decomposition shorten (so length tends to zero) 

then the length of any crossing simple closed geodesic will tend to infinity. This is 

because p must cross the collars of all of the pants curves it intersects, therefore the 

length of p is a non-constant function of the lengths of the geodesics it crosses in the 

pants decomposition, and since it is real analytic, then in any neighbourhood it will 

actually vary. 

Hence if the length of any of the geodesics in the decomposition changes then the length 

of the intersecting geodesic will also change in length. This shows that it is possible to 

change the length of a simple closed geodesic on S without changing the length of the 

boundary geodesic. o 
Note that this proof in the context in which it will be utilised (Le. for looking at the spine 

of the Book of I-bundles) uses the fact that the pattern of crossings over the pants curves 

for a given geodesic does not change as we change the lengths of the boundary curves. 

(This was commented on in section 3.1.) 

We take a moment here to note a few things from the proof of lemma 5.5.2. Firstly the 

new surface created, S U S*, is a closed surface and so it would have been possible to use 

elements of McShane's surface proof on S U S* as follows. In the proof of lemma 4.4 it was 

noted that two disjoint simple closed geodesics on a closed surface do not have the same 

character because the length of one can be changed independently from the other. (This 

result was true for any hyperbolic structure on the surface.) Relating this to the proof of 

lemma 5.5.2, it means that the length of any simple closed geodesic p on S U S* which is 
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disjoint from c can be changed while lc remains fixed. Choose p so it is contained entirely 

in S. Then the hypotheses are valid and this gives an alternative proof to lemma 5.5.2. 

The other thing to note is that the case where g = 1 (as covered in lemma 5.5.1) can be 

incorporated and proven in the same way. Hence lemma 5.5.1 and lemma 5.5.2 can be 

combined into the following. 

Lemma 5.5.3 Let S be a compact, oriented hyperbolic surface of genus g with connected 

non-empty boundary consisting of geodesic c of length lc. Let hyp(lc) be the space of 

hyperbolic structures on S with lc constant. Let p be a simple closed curve on S with 

length lp. Then if p ~ cf (k E Z) then lp is non-constant on hyp(lc). 

This result can be extended further, by noting that the condition that the boundary is 

connected is a redundant assumption and can be removed. 

Lemma 5.5.4 Let S be a compact, oriented surface of genus g ~ 1 with multiple 

boundary components consisting of geodesics Cll C2, ..• , Cm. of lengths lq, lC2' ... , ICrrt 

respectively. Let hyp(lc) be the space of hyperbolic structures on S with {i"J (i = 1, ... , m) 

constant. Let p be any simple closed geodesic on S with length lp. Then if p ~ c7 
(k E Z, i = 1,2, .. , m) then lp is non-constant on hyp(lc). 

Fig 5.18: S with multiple boundary components 

The proof follows the same method as lemma 5.5.2. 

Proof: Decompose S using a pants decomposition and then take the double of S. By 

this we mean make an exact copy of S called S* and glue it to the original surface along 

like boundaries. (Essentially reflect S across its boundaries, this ensures that the 
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hyperbolic structure on S and the lengths of the curves are not altered.) The resulting 

surface S U S* is closed with m marked curves CI, C2, .•. , em (common boundary geodesics 

of Sand S*). (See figure 5.19 below for an example of this.) 

sus'" 

~ Q ~ 

~ ~ ~ ~ I/c2 

~ Q ~ 
c3 

Fig 5.19: the double of S 

Complete the pants decomposition on this new surface. The decomposition on the new 

half does not necessarily have to be the same as the first half, all that is required is a 

decomposition of the whole surface S U S* which includes the m marked geodesics 

CI, C2, ... , Crr~· As before, the lengths of a subset of these pants curves may be changed 

while keeping the others constant length. Therefore let Cll C2, ... , em be in the subset of 

fixed length geodesics in the decomposition, and let all the other pants curves contained 

in S be in the subset of geodesics of variable length. (As the pants curves in S* are not 

required, they can be in either subset.) 

Let p be a simple closed geodesic in S such that p ~ cf. As p is contained in S, we know 

that p does not intersect any Ci on S U S*. It therefore must be disjoint from all the 

boundary components of S. From the previous proof we know that lp may be written as a 

non-constant function in the lengths of the pants curves it intersects, and will therefore 

have variable length as we change the lengths of the pants curves in the variable subset. 

Hence we may vary the length of p and keep lCI' lC2' ... , Ierr, fixed as required. o 
The only hyperbolic surfaces that have been excluded from lemma 5.5.4 are those of 

genus 0 with multiple boundary components (m ~ 3). The same method of proof can be 

applied if m ~ 4 (sphere with at least four holes), and so this case can be incorporated 

into lemma 5.5.4. Hence all of the above can be incorporated into the following, 

Theorem 5.5.5 Let S be a compact, oriented surface of genus g ~ 1 with multiple 

boundary components consisting of geodesics Cll C2, ... , em of lengths ICI' IC21 ... , ICrn' or a 

surface of genus 0 with at least four boundary components. Let hyp(lc) be the space of 
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hyperbolic structures on S with lei (i = 1, ... , m) constant. Let p be any simple closed 

geodesic on S with length lp. Then if p ;£ cf (k E Z, i = 1,2, .. , m) then lp is non-constant 

on hyp(Zc). 

The only other hyperbolic surface is a three-holed sphere. This is already a pair of pants 

and so is uniquely determined by its boundary curves. Hence changing the length of a 

simple closed curve on this surface will change the length of at least one of the boundary 

curves. It is also the case that the only simple closed geodesics on a pair of pants are the 

boundary curves themselves. Hence this particular surface does not fit in with these 

results. This should not cause a problem for general books of I-bundles, even though they 

may contain pair of pants pieces. To see why this is the case consider a book of I-bundles 

M that contains an I-bundle base P that is a pair of pants. 

M 

Fig 5.20: pair of pants in M 

We will be using the results of this section to manipulate curves on F in such a way that 

it does not interfere with the hyperbolic structure on F and M. Any closed curve on F 

that passes through P must pass from one boundary component to another (see figure 

5.20), such that the boundary components are distinct. (In figure 5.20 curve a is such a 

curve but curve b cannot occur as this will not be piece-wise geodesic as required, as the 

segment in P is trivial.) Hence there will be pieces of the closed curve on other component 

parts of F. We can therefore manipulate the curve there, and by theorem 5.5.5 we can do 

this whilst leaving the boundary components of P fixed. Hence if the general book of 

I-bundles has a spine containing a pair of pants it should not cause a problem. 

For the specific book of I-bundles manifold that is initially to be considered (the 3-prong 

case), we only need to concern ourselves with surfaces with connected geodesic boundary. 

However the more general case will be required when extending to larger and more 

general books. 
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In this section we have established that it is possible to change the length of an arbitrary 

simple closed geodesic on a surface of genus g with non-empty (possibly disconnected) 

boundary, while keeping the length of the boundary geodesics fixed. Associating this to 

our manifold, as the spine is constructed from surfaces of this type, theorem 5.5.5 gives a 

way of manipulating curves on F. Note that neither of these results depended upon how 

long the boundary curve was. 

In the CMT construction, what is essentially done is that a hyperbolic structure is put on 

each surface so that the ends are defined by geodesics. The ends are then cut off at this 

geodesic (so what is left is the convex core of the surface) and these surfaces are then 

glued together along these geodesics. As such these boundary geodesics are short, and 

this was the only constraint on the construction. Hence we are working in the space of 

hyperbolic structures for which boundary geodesics are short. The work in this section 

therefore can be applied to the surfaces that make up the spine F of M without 

interfering with the construction of M, or the hyperbolic structure. These results will 

therefore be of use later. First we need a way of connecting the geodesics in M to unique 

closed curves on F so that we may use these results about surfaces in relation to the 

character question. 

5.6 Projecting geodesics onto F 

The primary aim of this section is to build a link between the geodesics in M and closed 

curves on F. In particular we need to forge a connection between their lengths, and hence 

determining how much the curve on F needs to be manipulated in order for the geodesics 

length to change. Hence we wish to project the geodesics onto F in such a way that we 

get a unique closed curve on the spine. 

The reason for building this projection is two-fold. Firstly we want to use the results from 

section 5.5, so that we may manipulate the closed curves and change their lengths on F 

without interfering with the family of hyperbolic structures or the construction of M. In 

the 3-manifold we do not have the same control over the geodesics, and so this link would 

give the ability to manipulate and have some control in M. Secondly, the connection 

between the character and the length of the curve in 3-dimensions only applies to the 

80 



geodesics in M, and so (in general) this connection does not apply to closed curves on F. 

This is because any curve which exists on F and intersects the core curve will have 

'corners' in M and hence will not be geodesic in the manifold. (There are exceptions, for 

example where the curve in F is a geodesic in M.) Therefore we need to build a 

connection between the lengths of the geodesic in M and the curve onto which it is 

projected on F. 

Hence the projection of geodesics onto F is an important technical tool when considering 

the properties as described in section 5.3. As a starting point, we return to the 

description and construction of a book of I-bundles manifold as given in 5.4, and look at 

where the geodesics in M exist in relation to its spine. For the purpose of this section, we 

will be considering the initial 3-prong case. The projection will be extended to a general 

book of I-bundles in section 6.2. 

5.6.1 CMT Revisited 

Let M be a book of I-bundles manifold with single solid torus binding and three I-bundle 

pages. Let F be the spine of M, which is constructed from three base surfaces FI , F2 , F3 

each of which has connected non-empty boundary. 

In section 5.4, we gave a description of the lift of each base surface Fi to a totally geodesic 

subset or flat in JH[3. These flats are arranged in a tree such that at each lift of the 

geodesic boundary curve c (the core curve of the solid torus), there are two other flats 

which are equally spaced, so the angles between them are equal to 2; (and hence evenly 

spaced around the lift of c). We have a tree of flats here as non-adjacent flats are disjoint, 

and hence between any two flats there is a unique sequence of flats. 

Viewing this picture in the complex plane (or alternatively looking down from infinity), 

this gives a tree of circles in C. The limit set of the group r which determines this lift is 

contained in the closure of this tree of circles. (Remember each flat will determine a 

surface in F when moving back to the manifold.) 

Normalize the tree so that the root is chosen to be the unit circle. (We may arbitrarily 

choose which flat will be the root.) Let Co and C1 be outscribed and inscribed circles on 

this tree of circles. (See figure 5.21 for this tree of circles picture.) 
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These two circles are determined by the tree as they enclose the whole tree of circles 

between them. (As an aside here, note that these circles are not necessarily uniquely 

determined. We could force the uniqueness by insisting that both Co and C1 are centred 

at (0,0) (or at the centre of the circle chosen to be the root of the tree). However the 

purpose of introducing Co and C1 is to look at the limiting behaviour and monitor what 

happens to the tree as the core curve shrinks. This behaviour will be the same 

independent of the choice of Co and C1 . Hence this is an arbitrary choice to make.) 

/" 

'" / \ 
! \ 
\ / 
\ 

""- --- -Fig 5.21: bounded tree of circles 

As the limit set is contained in the closure of the tree of circles, it is sandwiched between 

Co and C1 . Hence, by definition, the convex hull of the limit set of r is sandwiched 

between the hyperplanes Ho and HI meeting the complex plane in the circles Co and C1 

respectively. 

We now consider what happens to this picture as the length of the core curve is shortened . 

• 
Xo 

Fig 5.22: normalized tree 

Let Ho be the flat which is chosen to be the root of the tree, and choose a point Xo in the 

jJ,-thick part of Ho. (Remember that jJ, is a constant that is smaller than the Margulis 

constant. Hence the jJ,-thin part of a flat consists of the union of disjoint pieces, each of 

which is a neighbourhood of the lift of a geodesic boundary. The jJ,-thick part is the 

complement of this.) Normalize so that Ho is contained in the hemisphere which 
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intersects the complex plane in the unit circle, and Xo is the top most point (i.e. 

Xo = (0,0,1)). Each child H' of Ho meets it along a geodesic, and H' is contained in a 

half-plane which meets the complex plane in a circle (see figure 5.22). 

Let C be one of the circles in the tree, and let r( C) denote the Euclidean diameter of C. 

Let S(C) denote the set of children of C (set of adjacent circles). Fix any positive p < ~ 

and then, assuming c is sufficiently short, (depending on choice of p) then Canary, Minksy 

and Taylor (in (CMT99]) prove that the diameters of the circles in the tree are decreasing 

from the root outwards. Moreover they show that for any C and D E S(C) we have, 

reD) :::; pr(C) (5.4) 

c 

Fig 5.23: diameter of tree of circles 

(Figure 5.23 shows the tree with the biggest overall diameter, as an illustration of how the 

circles are decreasing in size.) 

We give an outline of part of the proof of equation 5.4 as explained in [CMT99] to 

illustrate why this is true. 

Outline proof of equation 5.4 

Let P and p' be hyperbolic planes such that 6=(P) = C and 6=(p') = D. (Here 6= 

denotes the boundary at infinity or equivalently where P and p' intersect C.) Hence P 

and p' intersect in a geodesic a. Let thin(P, p') denote the component of the p-thin part 

associated to the intersection of P and p' (so thin(P, p') will consist of a neighbourhood 

of a). 

Let x be the top most point of P when looking in lHI3 , and assume x is outside of 

thin(P, p'). Then the geodesic chain "Yx,y for any point y E p' has initial segment with 
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length /1 which is bounded below by k (which can be made arbitrarily large by shrinking 

the length of the core curve - see section 5.4 for details on this bound). 

Fig 5.24: proof of equation 5.4 

Hence all of pI is separated from x by the bisecting hemisphere of /1, which is at a 

distance at least ~ from x. Therefore the diameter of pI is at most ae -/ diam(P) for a 

fixed constant a. This gives 

and as long as k is chosen so that ae -:} ~ p then we have the desired bound. We can 

ensure k satisfies this by making c sufficiently short. 

(5.5) 

Canary, Minsky and Taylor go on to complete this proof by showing that the assumption 

made that x is outside thin(P, pI) is true. This part of the proof is not included here as 

the details are not required for this work, but we refer the reader to [CMT99] for the 

details. 

This outline proof shows that the diameters of the circles in the tree are getting smaller 

the further we move from the root. Moreover as c shrinks (so the core curve shortens), 

the diameters get smaller more rapidly. Hence the circles in the tree will become closer 

together (but still remaining disjoint if non-adjacent). To see this, look at equation 5.5. 

As lc -+ 0 (here lc denotes the length of c), then k -+ 00 (see section 5.4 for this) and so 

e -:/ -+ O. As we also know that ae -:/ ~ p ~ ~, then this shows that the diameter of the 

tree of circles decreases as c shrinks. (As an aside here, note that this will be in contrast to 
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the geodesic chain {X,y discussed in section 5.4. As c shrinks, the lengths of each segment 

of {X,y will have an increasing lower bound, which implies that {X,y will get longer.) 

Apply this result to the outscribed and inscribed circles picture. As Co and Cr are 

determined by the tree of circles, if the diameter of the tree decreases, then the choice of 

Co and Cr will become closer to the root of the tree. (Note that this is independent of 

the choice of Co and Cr.) The shorter c becomes, the smaller the diameter of the tree 

and the closer Co and CJ become to the root of the tree (and consequently to each other 

- see figure 5.25). 

Fig 5.25: shrinking tree of circles 

As the convex hull is sandwiched between the hyperplanes determined by Co and C1 , 

then the convex hull is approaching the hyperplane meeting <C in the unit circle. (Note 

that this limit is never reached as some space is needed for the tree.) The convex hull is 

therefore getting 'thinner' at the top (although the hyperplanes determining Co and C J 

will still be infinitely far apart where they intersect the complex plane). 

The geodesics in M lie in its convex core, which is the quotient of the convex hull by the 

group r. The position of the geodesics in relation to the spine F depends upon their 

position in this tree of circles/hyperplanes picture. As long as the geodesics stay within a 

bounded region of the top of the hyperplane which is determined by the root of the tree, 

and therefore lie in a region where the convex hull is thinnest, then sections of the 

geodesic will be arbitrarily close to the spine (and will get closer as the length of the core 

curve reduces). 

The potential problem that will cause this not to be true (I.e. the geodesics staying 

within a bounded region of the top of the hyperplane determined by the root of the tree) 

is if in the lift to lHI3 , the end points of the loxodromic axis representing the geodesic are 

getting closer together. This would mean that the geodesic is moving away from the top 
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of the hyperplane determined by the root of the tree of circles. 

Fig 5.26: location of geodesics in M 

To see that this cannot happen we return to looking at M and its convex core. A 

geodesic f3 in !VI will not be contained entirely in the thin part of the manifold, and hence 

the projection of f3 onto F will intersect the thick part of F. If the geodesic is contained 

entirely in the thin part then it will be trivial or will be homotopic to a power of the core 

curve. (This applies to a geodesic in M and after projecting onto F.) (Figure 5.26 

illustrates the location of geodesic f3 in M such that f3 exists partly in the thin part of M. 

Note that the converse is false, as a geodesic in M does not have to pass into the thin 

part, but such a f3 will exist on F.) 

Consider each base surface Fi of F and what happens as le -t 0 (here lc is the length of 

the core curve c). Each base surface in the limit will be a surface with a puncture (see 

figure 5.27). The half collars around con F (i.e. on each Fj, for i = 1,2,3) will get wider 

by the collar lemma, and this is dependent only on lc. Therefore the distance between the 

thick part of each Fi and the geodesic boundary is getting bigger. Although in the limit 

each Fi has an infinite end, the thick part remains bounded (see shaded region in figure 

5.27) because of this distance increasing. 

Fig 5.27: limiting behaviour as c shortens 

These regions will contain all the information for 1rl (F). 

If we lift back into lH[3, then we need to ensure that the thick part of the base surface 
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lifted to the flat chosen to be the root of the tree, is a region around the top of the 

hyperplane H (where H is the hyperplane containing this flat and hence determined by 

the root of the tree). This will ensure that the geodesics pass through this part as 

required. However if this is not the case, we can conjugate by Mobius transformations 

that fix H, but move the interior of H. Pick the Mobius transformation so this region is 

moved to the top of H (as in figure 5.28). 

Fig 5.28: geodesic in lift 

Any loxodromic axis representing a geodesic in M will pass through this shaded region (as 

shown in figure 5.28). Hence we can control the geodesics in the sense that we can ensure 

that they have sections which are arbitrarily close to F (Le. the points in the thick parts). 

Note that when looking in the lift to JH[3, the convex hull is not only thinnest at the top, 

but that this is also the furthest point away from any of the lifts of c. Hence an arbitrary 

geodesic in Jl.1{ will be closest to F in the regions furthest away from the neighbourhood of 

c (and furthest from F within a neighbourhood of c). (Figure 5.29 illustrates the convex 

core of M in relation to the spine of M.) 

We can force a geodesic in M to become arbitrarily close to F by letting le -+ 0, and by 

the construction described in section 5.4 we can do this and still have M hyperbolizable. 

Fig 5.29: convex (ore of M 

87 



A final note to make is that a closed curve on F which is totally disjoint from c (so exists 

entirely on one surface component Fi for i = 1,2,3) will be a geodesic in M. (Hence these 

will be geodesics in M which lie on its spine.) As M is a regular neighbourhood of F, all 

geodesics will lie close to F in the above sense, assuming c is short. 

5.6.2 The projection 

From section 5.4 we know that !vI is a regular neighbourhood of its spine F. From section 

5.6.1 we know that the geodesics of M lie close to the spine in the sense that we can 

ensure that they have sections that are arbitrarily close to F (Le. in the lift to lHF~, the 

loxodromic axis representing a geodesic will pass within a bounded distance of the top of 

the hyperplane determined by the root of the tree). We can control how 'close' the 

geodesics get to F by letting the length of the core curve shorten. (In fact they become 

arbitrarily close as lc -7 0.) Note also that a geodesic in M will be closer to F the further 

away we move from the core curve (as seen in figure 5.29 above). 

The aim of this part is to put a measure on this by trying to connect the length of a 

geodesic in M to the length of a closed curve on F. To achieve this, we first need to 

define a projection from M onto F so that each geodesic f3 in lVf may be represented by a 

unique closed curve Ion F, and then compare the lengths of f3 and I' We have 

information on the length of 1 (and a way of controlling its length) coming from the 

change in length of the core curve. We want to relate this to the length of f3 and show 

that if l"f -7 00 then lo ---f+ 0 (where l"f denotes the length of I)' 

~ - y -x y 

Fig 5.30: unique shortest path 
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In section 5.4, we showed that in the lift to !HI3 , that between any two points x and y in 

any two distinct flats there is a unique shortest path -;:y (i.e. see lemma 5.4.1). Move this 

back to the spine F, and let x and y be the points lifted to X and y respectively, then if 

x = y in F, then -;:y corresponds to a piece-wise geodesic closed curve "( on F that passes 

through x = y and intersects the core curve c a specified number of times. (This is 

dependent on the number of segments in -;:y - see figure 5.30). Hence lemma 5.4.1 shows 

that there is a unique shortest closed curve on F that passes through a particular point 

and intersecting c a specific number of times. (By the nature of the proof of lemma 5.4.1, 

this is true for any base point x and any number of intersection points with c - i.e. these 

are the only two pieces of information required to find the unique shortest path.) 

Let /3 be an arbitrary geodesic in M, and let "( be a closed curve on F (so "( is piece-wise 

geodesic in M). We want to push /3 onto "( such that "( is unique to /3. This would give a 

one-to-one correspondence between geodesics in M and closed curves on F (so only /3 is 

projected onto "(). 

As M is a regular neighbourhood of F, we have an inclusion map F "-----t M and from this 

we get an isomorphism 1r1(F) --+ 1r1(M) between the fundamental groups. Hence for each 

element g{3 E 1rl(M) there is a unique element g'Y E 1rl(F) such that g'Y --+ g{3 under this 

isomorphism. Here both g{3 and g'Y represent conjugacy classes in1r1(M) and 1r1(F) 

respectively. 

For each conjugacy class g{3 in 1rl(M) there exists a unique geodesic /3 in M (so a unique 

path of shortest length, so all other curves are homotopic to /3). When we lift to !HI3 , the 

geodesic /3 will be represented by a hyperbolic line which corresponds to the axis of the 

appropriate loxodromic element g{3 E r, where r is the group determining the lift. 

(Remember we already know that this loxodromic axis can be forced to pass within a 

bounded region of the top of the hyperplane determined by the root of the tree of flats by 

the discussion in section 5.6.1.) 

For each conjugacy class g'Y in 1r1 (F) there will be a set of closed piece-wise geodesic 

curves on F. We need to show that there is a unique shortest curve amongst this set. Lift 

F to !HI3 as described in section 5.4. Choose a point y in one of the flats and look at all 

possible translates under the group action (of both y and the flat containing y). One 

potential problem is that we could get a path in the tree of flats which has back-tracking. 
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By this we mean that it doubles back on itself (retraces its steps). (See figure 5.31 which 

illustrates such a path. The concaternation of the paths xy and yz backtracks along the 

arcs py and yp.) 

Fig 5.31: back-tracking path in tree 

However for each path with back-tracking we can find one without back-tracking that is 

shorter. To do this we move back to the point before the piece of path that is doubled up 

- as marked in figure 5.31, and then look at the translates of that point. In this way we 

can eliminate all back-tracking. 

Once we have a direct path, we then have two points y and g"((y) in two distinct flats that 

represent the end points of /- We then use lemma 5.4.1 to find the unique shortest path 

between these two points (i.e. we bend the hyperplanes containing the flats so that the 

angle between them is Jr, and take the hyperbolic line segment between y and g"((y). Then 

re-bend the hyperplanes back to their original position, and this hyperbolic line segment 

gives us 1 as required). We can normalize the tree so that a segment of 1 passes through 

the flat chosen to be the root of the tree. Then 1 will pass close to the top of the 

hyperplane containing this flat. (This mean through the shaded region marked in figure 

5.28 in section 5.6.1.) 

Let this unique shortest piece-wise geodesic closed curve 1 on F be the representative of 

(3 on F. This projection then associates geodesic (3 to a closed curve I, hence ensuring f3 
is mapped onto a unique piece-wise geodesic on F. 

Now we have made an association between geodesics in M and closed curves on the spine, 

we want to make a connection between their lengths. 

From the argument made in section 5.6.1, it is known that f3 and consequently I, must 
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have sections in the p-thick part of M and F (otherwise both j3 and I will be homotopic 

to the core curve of the solid torus). (Here p is a fixed constant that is smaller than the 

Margulis constant, as in section 5.4.) Let j3 --7 I via the projection (so I is the unique 

closed curve on F associated to the geodesic j3 in J'v1). Choose a base point y on the 

piece-wise geodesic I on F such that y is in the p-thick part of F. This can be done by 

taking a point which is furthest away from the core curve c. (If there is more than one 

such point then an arbitrary choice can be made as the only requirement is that y is in 

the p-thick part.) Then by the construction as given in section 5.4, each geodesic segment 

of I will have length bounded below by k which depends only on the length of c. 

In the lift to JH[3 we normalize the picture so that the root of the tree contains a lift of the 

point y, and then use Mobius transformations to ensure y is within a bounded distance of 

the top of the hyperplane determined by the root. (We can do this by the discussion at 

the end of section 5.6.1.) This means that the lift of geodesic j3 will be very close to F at 

the lift of the point y in "I. 

F 

Fig 5.32: orthogonal pro jection 

The shortest distance between y and the geodesic j3 will be along the line that meets F at 

yorthogonally. Let x be the point where this orthogonal line intersects j3 (see figure 5.32). 

Now lift to JH[3 using the developing map given in section 5.4. The closed curve I on F will 

lift to a piece-wise geodesic path from y to g-y(Y) (where g-y E f, where f defines the lift), 

and the geodesic j3 will be represented by a hyperbolic line (the axis of the corresponding 

loxodromic element g(3 E r) with end points x and g(3(X). As we have an orthogonal 

projection from x onto y (j3 --7 I) then g(3(X) --7 g-y(Y) orthogonally also. (See figure 5.33.) 
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(Figure 5.33 shows f3 and '{ lifted to JH[3 and the orthogonal projection from one to the 

other. We now use this picture to look at length.) 

x 

y 

y 

g(x) 

g(y) 

Fig 5.33: lifted orthogonal projection 

As the core curve c shortens, from the discussion in section 5.4 we know that each 

segment of'{ (including the first and last) will have length bounded below and that this 

bound increases as c shrinks. Hence Ie -----* 0 =?- l-y -----* 00. We now need to relate this to l{3 

and show that 1{3 ---1-7 O. To do this we find bounds on l{3 in terms of l'Y' 

We do this in two stages. First consider the case where f3 intersects F in the p,-thick part 

(but does not lie on F). In this situation the points x and y defined above will be 

equivalent, and in the lift to JH[3, the end points of the hyperbolic line representing f3 will 

be coincident with the end points of the broken geodesic path representing T We 

generalize this as follows. 

0: 

x 
y 

y 

Fig 5.34: case 1 - geodesic intersects F 

Let '{x,y be a broken geodesic in JH[3 with end points x and y, and consider the geodesic 

line segment ax,y in JH[3 with the same end points (as in figure 5.34). 

We will compare the lengths of'{ and a. From the following lemma about broken 

geodesics as given in [Bis96] it is known that the two paths are 'close together'. 

Lemma 5.6.1 Given e > 0 there are c, m < 00 so that the following is true. Suppose'{ is 

a piece-wise geodesic path from a to b, by which we mean a union of disjoint (except for 

endpoints) geodesic arcs, each of hyperbolic length at least m and such that '{i and '{HI 
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meet at an angle .2: e. Then "I is within hyperbolic distance c of the geodesic arc 5 

connecting a and b. 

From this we see that the two paths "I and a are within a bounded distance of each other, 

and in some sense the broken geodesic path "I cannot venture too far away from a, 

otherwise the end points will not meet up as required. This is not enough, as we require 

to know that as l-y -+ 00 then la ---1-'7 O. Hence we look at estimating la in terms of IT 

First relate this to the situation being considered to find more information on "I. We 

know from section 5.4 that as the core curve is short, the length of each segment of a 

piece-wise geodesic path on F is bounded below, so has length at least m. As c gets 

smaller, the j.t-thick part of each surface component of F is pushed away from its 

boundary, and so this lower bound m increases. The angle between the segments in the 

piece-wise geodesic (when looking in the lift to JHI3) will remain fixed at e = 2;. (This is 

because the flats are evenly spaced around the lift of the geodesic boundary, and the 

initial manifold is a book of I-bundles with single solid torus binding and three I-bundle 

pages. Hence around each lift of the geodesic boundary will be three flats evenly spaced.) 

If we shrink the core curve (and increase m) we will not change this angle. 

To start with we will look at what happens to la as m increases, and for simplicity we will 

assume for the moment that each segment of "I is a geodesic arc of length m. (We will 

relax this to .2: m later.) 

Hence l-y = nm, where n is the number of segments in "I. (As an aside note that this also 

gives an indication of the number of times the corresponding closed curve on F intersects 

the core curve, Le. n - 1 times). We start by considering the simplest case. 

5.6.3 The case n = 2 

Lemma 5.6.2 Let "I be a broken geodesic path in JHI3 with two segments of length m, and 

angle e = 2; between them. Let a be the hyperbolic line segment with the same end points 

as "I. Then ifm -+ 00, then la ---1-'7 O. 

Proof: Looking at the picture sideways on, "I and a together define a triangle with 
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three hyperbolic line segments, two of length m (with angle fixed at 2; between them), 

and one of length lo: (see figure 5.35). 

l a 

y 

Fig 5.35: broken geodesic with n=2 segments 

We use the hyperbolic law of cosines I (see equation 2.2 in section 2.1.3) to calculate lo: in 

terms of Ly• 

lo: cosh-1 [COSh2(m) _ sinh2(m)cos (2;) ] 
cosh-1 [cosh2(m) + ~sinh2(m)] 

(5.6) 

From equation 5.6, we see that lo: is dependent on m. To see what happens to lo: as m 

increases we look at the derivative of lo: with respect to m. 

3cosh(m)sinh(m) 
(5.7) 

As m > ° (measure of length), then cosh(m) > ° and sinh(m) > 0, and so 'f}::; # 0. Hence 

a change in m, however small, will effect lo:. All that is left is to determine whether lo: 

increases or decreases with respect to m. 

The numerator of equation 5.7 is always positive. In the denominator there are two 

positive square roots, and so the denominator will also be positive for all m > 0, assuming 

that the square roots are well defined (i.e. we are in lR, so do not want to take a square 

root of a negative number). 

First consider .jcosh2(m) + ~sinh2(m) - 1. Using cosh2(m) = sinh2(m) + 1, 

94 



(5.8) 

for all m > O. Hence this is always well defined. 

Similarly, the other square root, 

(5.9) 

for all m > O. 

Hence ~ is well defined for all positive m, and moreover ~ > O. Hence la is 

monotonically increasing with respect to m. Hence if m -7 00 (and l{ -7 00) '* la -7 00 

and more importantly la --f-t 0 as required. 

From this proof we note that however small an increase in m, la will increase. (Hence a 

change in m gives a change to both l{ and la.) 

As an aside here, we are able to calculate how close la and l{ can get by considering the 

limit of their difference as m increases. To do this use equation 5.6 and consider how la 

behaves first. 

Now, 
em + e-m 1 

cosh(m) = '* cosh2(m) = _(e2m + e-2m + 2) 
2 4 

Similarly, 

Therefore for m large, e2m dominates as e-2m -70, and so cosh2(m) I'V ~e2m and 

sinh2(m) rv ~e2m. Therefore for m large, 
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Using COSh-l(X) = In(x + JX2 - 1), if x is large then x2 - 1 f"'V x2 :::::? JX2 - 1 f"'V v'X2 = 1;, 

Therefore, In(x + JX2 - 1) f"'V In(x + x) = In(2x) for x large. 

Applying all of this to equation 5.6, 

and hence 

2~ (2m - cosh-l [cosh
2
(m) + ~sinh2(m)]) 

2m-ln [1] -2m 

In [~] (5.10) 

Hence for large m, the difference in lengths Ila - l1'l approaches In[1]' and so Q and, get 

closer to being the same curve. Note that the limit is non-zero because there is a 

restriction in terms of the angle between the segments of ,. 

To summarise, if m -+ 00, then both L-y -+ 00 and La -+ 00, and in particular La --f+ 0 as 

required. Note that we could have used proposition 2.1.9 to prove this result with a 

specified fixed angle of e = 2;. 

We now look at a more general case, i.e. where, has n segments of length m. 

5.6.4 The n segment case 

At this point we have only considered the case where the broken geodesic, has two 

segments of length m -+ 00. We can apply a similar method to analyse the case where, 

has n > 2 segments of length m. However we will need to introduce an induction process 

to simplifY the proof. As an initial illustration, consider the case where n = 3. 

Lemma 5.6.3 Let, be a broken geodesic path in JH[3 with three segments of length m, 

and angle between each pair equal to e = 2;. Let Q be the hyperbolic line segment with the 

same end points as ,. Then if m -+ 00, then la --f+ O. 
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Proof: As in the proof of lemma 5.6.2, viewing the picture sideways on, 'Y and a 

together define a hyperbolic polygon with four sides, three sides of length m and one of 

length La (see figure 5.36). Divide this into two triangles as illustrated in figure 5.36, each 

of which is made up of three hyperbolic line segments. 

Fig 5.36: broken geodesic with n=3 segments 

(Figure 5.36 shows this in JHI2 to make it clear. In lHe, the hyperbolic quadrilateral will 

not lie in a hyperbolic plane, but each of the two triangles will sit in a hyperbolic plane. 

It is these triangles on which we will be working.) 

One of these triangles will have two sides of length m, and so will be equivalent to the 

n = 2 case. The other will have one side of length lw one of length m and one of length 

P. Using the hyperbolic law of cosines I (equation 2.2) we have, 

la = cosh-1 
[( cosh2(m) + ~Sinh2(m)) cosh(m) - Sinh(p)Sinh(m)COS(<fJ)] 

where P = COSh-l [cosh2(m) + ~sinh2(m)] (the length of a in the n = 2 case) and 

<fJ < () 2;. 

As in the proof of lemma 5.6.2, we have an equation for la which is dependent on m. One 

way to complete this proof would be to follow the method of lemma 5.6.2 and calculate 

the derivative of la with respect to m. However the resulting equation will be more 

complicated to analyse (and will be increasingly so as we increase n). Hence for this 

reason we find another method, utilizing both lemma 5.6.2 and the results from section 

2.1.3. 

To calculate the equation for la in terms of m we divided the polygon defined by 'Y and a 

into two triangles. The first is constructed from two sides of length m and one side of 

length P (equivalent to the triangle in n = 2 case). The angle between the two sides of 

length m is fixed at () = 2; (by the construction of the tree). Hence using lemma 5.6.2, it 

97 



is known that P is monotonically increasing with respect to m. Also, using proposition 

2.1.9, we know that if we have a hyperbolic triangle with two sides increasing in length at 

the same rate, and the angle between them fixed, then the third side will also have 

increasing length. Therefore P increases as m increases. 

Now consider the other triangle. It is made up of one side of length m, one of length P, 

and one of length lOt. Both P and m are increasing with respect to m, i.e. as 

m -;. 00, P -;. 00. The angle between these two sides is equal to ¢ < () = ~;. By corollary 

2.1.10 we know that ¢ -;. () as m (and P) increase. Hence by proposition 2.1.12, lOt will 

increase with respect to m, so ~ > 0, and in fact lOt -;. 00 as m -;. 00 

More importantly, lOt -1+ 0 as m -;. 00 as required. o 
In the proof of lemma 5.6.3, we used the case n = 2 and the results from section 2.1.3 to 

prove the case for n = 3. This method of 'induction' can be used for the general case. 

Lemma 5.6.4 Let, be a broken geodesic path in JH[3 with n segments of length m, and 

angle () = 2; between each pair of adjacent segments. Let a be the hyperbolic line segment 

with the same end points as ,. Then if m -;. 00, then lOt -1+ O. 

Proof: By lemma 5.6.2 we know that if n = 2 then the result holds (i.e. as m -;. 00 

lOt -1+ 0). 

Now assume that the result is true when, has n - 1 segments of length m, and consider 

the case when, has n segments, so Ly = nm. 

p 
B 

A 

m 

Fig 5.37: broken geodesic with n segments 

Looking sideways on, we have a polygon with n + 1 sides, n of length m and one of length 

lOt. We take a hyperbolic line segment that divides this polygon into two pieces. One 

piece (A in figure 5.37) is a polygon with n sides (Le. the n - 1 case) and the second 
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(marked B in figure 5.37) is a hyperbolic triangle with one side of length P, one side of 

length m and one side of length La· 

By assumption that the result is true for 'Y with n - 1 segments, we know that P is 

increasing with respect to m (i.e. as m --t 00, P --t 00). Hence triangle B has two sides 

whose length gets arbitrarily large as m --t 00 with angle 4> between them. By corollary 

2.1.10, we know that as m --t 00, 4> --t () = 2;. Hence by proposition 2.1.12, La will 

increase with respect to m, so ~ > 0 and in fact la --t 00 as m --t 00. Hence as m --t 00 

then la -f+ 0 as required. 0 

5.6.5 Segment lengths > m 

In the previous sections (5.6.3 and 5.6.4) it was assumed that each segment of the curve 

on F when viewed in the lift had length m. In this section this is relaxed so each segment 

has length 2': m. This allows the curve on F to have segments of different lengths, but 

each still has a lower bound which is dependent on the length of the core curve. (As a 

reminder, this lower bound m can be made arbitrarily large by making the core curve 

short - and this we can do.) The analysis for 2': m case is as follows. 

Lemma 5.6.5 Let'Y be a broken geodesic in IHI3 with n segments of length m + Ai, where 

Ai 2': 0 for all i = 1, ... , n. Let the angle between adjacent segments be () = 2;. Let a be the 

hyperbolic line segment with the same end points as 'Y (see figure 5.38). Then if m -r 00 

then La -f+ O. 

Fig 5.38: ~ m case 

Proof: Start by considering the case where n = 2. Hence 'Y has two segments of 

lengths m + Ai for i = 1,2. Then l"( = 2m + Al + A2, and using the hyperbolic law of 

cosines I (as per equation 2.2), 
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(5.11) 

When n = 2, 1 and 0:' together comprise a triangle with one fixed angle (} = ~; between 

the two segments of I' The difference between this situation and that in lemma 5.6.2 is 

that here all three sides of the triangle can have different lengths. However, proposition 

2.1.9 does not depend on the lengths of the sides being the same, but on the fact that two 

of the sides increase in length at the same rate, with the angle between them fixed. Here 

d(~~),l) = d(~~),2) and so we can apply proposition 2.1.9 here to see that as m -t 00, lex 

will increase (and hence lex -+7 0) as required. Hence if n = 2 then lex is an increasing 

function in m. 

If n > 2 then we can use the same induction argument as in the proof of lemma 5.6.4. 

This induction proof did not depend on how long the sides were, but on the fact that each 

segment of 1 had length increasing. This is still the case here, as m -t 00. Therefore the 

assumption can be relaxed so each segment of 1 is bounded below by m, and so as 

m -t 00 (and II -t 00) then lex increases, and hence la -+7 0 as required. o 

Before summarizing these results, note that the pictures drawn are in 2-dimensions, but 

in general the broken geodesic path and the hyperbolic line segment with the same end 

points will not sit in a hyperbolic plane (as we are in 3-dimensions). However, the 

induction proof works by decomposing the larger polygon into triangles. Each triangle 

will exist in a hyperbolic plane. Hence the only thing that could cause a problem is how 

the triangles fit together, and by this we mean the interior angles of the triangles. 

Although this highlights a discrepancy in the illustrations it does not effect the results. 

To see this note that what we have been showing here is that as the lengths of the 

segments of the broken geodesic get arbitrarily large, then the geodesic joining the end 

points cannot have length tending to zero, (or equivalently that the geodesic with the 

same end points has increasing length also). The only thing that could cause this not to 

be true is if the angles between the segments of the broken geodesic are tending towards 

zero. This cannot be the case because of the way the tree of flats is constructed. 

To summarise the results from sections 5.6.3 to 5.6.5, if the geodesic j3 in M intersects F 

at some point (in the p-thick part), then if the broken geodesic path 1 on F representing 
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(3 increases in length (i.e. m ---+ 00, which we can make arbitrarily large by shrinking the 

core curve), then (3 will increase in length also. More importantly, l{:J -fi 0 as l-y ---+ 00. 

5.6.6 Comparing 1f3 to la 

To complete the projection analysis, this subsection looks at the geodesics in M which do 

not intersect F, or exist on F, and compares their lengths to the length of their 

representative 'Y on F after the projection. 

Let (3 be a geodesic in M which is projected onto 'Y on F. We compare 1{:J to Ia (where ex 

is the geodesic in the lift to lHI3 with the same end points as 'Y, as in the previous 

sections), and hence to IT The aim is to obtain bounds on 1{:J in terms of la, and 

consequently in terms of I-y (as La ---+ 00 as l-y ---+ (0), making them as tight as possible so 

that it is clear that l{:J -fi 0 as l-y ---+ 00. This will show that a small change to the length of 

'Y on F should effect l{:J in M. 

From section 5.6.1 and the nesting argument involving the outscribed and inscribed circles 

Co and C], it was shown that the convex core of M consists of a neighbourhood close to 

F. In the lift to lHI3 , we showed that we could force the lift of a geodesic to get arbitrarily 

close to the tree of fiats by letting the core curve shrink, giving a way of controlling how 

'close' the geodesics in M are to F. We did this by showing that the thick parts of F 

have a bounded diameter, and that this remains the case as Ie ---+ 0, and then using the 

fact that the projection of geodesic (3 onto F must intersect the thick part of F. This is 

because if the projection of (3 is in the thin part then it will be homotopic to a power of c. 

Therefore in the lift to lHI3 , the end points of the lift of (3 are close to the end points of ex 

(which are equivalent to the end points of the lift of 'Y, where 'Y is the closed curve on F 

onto which (3 is projected). By 'close', we mean that the distance between the end points 

is equal to 0 for some small 0 > 0, and as le ---+ 0, we have 0 ---+ O. Hence this distance 

becomes insignificant as the core curve shortens. 

This situation can be summarised as follows. 

Consider two long geodesic arcs ex and (3 in lHI3 with end points Xl, YI for ex and X2, Y2 for 

(3, such that dllll(Xl, X2) = 0 and dllll(yr, Y2) = P for 0, p > 0 small. We find bounds on the 
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length of (3 in terms of the length of 0:. 

y 

Fig 5.39: geodesics that don't intersect F 

Let Xl and X2 be joined by the hyperbolic line segment and Yl and Y2 be joined by the 

hyperbolic line segment between them, so Xl, X2, Y2, Yl determines a hyperbolic rectangle 

(see figure 5.39). 

Join X2 to YI by a hyperbolic line segment so X2XIYl is a hyperbolic triangle where the 

angle at Xl is Bx. Let la denote the length of (x, and let II be the length of the hyperbolic 

line X2Yl. The length of XIX2 is 8 (see figure 5.40 below). 

Fig 5.40: comparing lengths of 13 and a 

Then by the triangle inequality, 

(5.12) 

Now applying similar analysis on the second hyperbolic triangle X2YIY2 with angle at 

Yl By. Let 1{3 denote the length of (3, then again by using the triangle inequality, 

(5.13) 

Combining inequality 5.12 with inequality 5.13, we have the following bounds on l{3. 

(5.14) 
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Note that the difference between the lower and upper bounds is 2(6 + p). As 6,p > 0 and 

are small, the difference between the lower and upper bounds is smalL Relating this to 

the situation in mind, note that these bounds are dependent on the distance between (3 

and its representative on F (where this is measured in the thick part of the fiat chosen to 

be the root of the tree - and hence close to the top of the hyperplane containing the flat). 

This distance is made arbitrarily small as lc -+ o. 

These bounds can be improved by making some basic observations from the particular 

situation we are considering. 

Let (3 be a geodesic in M, which when looking in the lift into ]HI3 has endpoints yand AY 
(where A E r is the loxodromic with axis (3). Project (3 onto F so that the end points 

map to x and AX on the tree of fiats picture, as described in subsection 5.6.2, and let a be 

the hyperbolic line segment between these two points. 

Firstly observe that as x AX when looking back in F and y = AY when looking back in 

M, so dH(x, Jj) = dH(AX, AJj), and hence 6 = p. (This is stating that dH3(/3, (3F) 6, where 

/3F is the representative of /3 on F.) Applying this to inequality 5.14, the new bounds are, 

(5.15) 

A second observation is that the projection from (3 onto F is orthogonal, so Ox = I. (Here 

Ox is the angle as marked in figure 5.40.) Hence looking again at the first triangle and lI, 

using the hyperbolic Pythagorean theorem, 

cosh(h) = cosh(6)cosh(la) (5.16) 

Hence if = cosh-1(cosh(6)cosh(la». Note here that as Ox = I' this value for h is exactly 

halfway between the original bounds - see inequality 5.12. 

Let Oy be as indicated in figure 5.40. Then looking at the second (upper) triangle, 

cosh( l(3) = cosh( h )cosh( 6) - sinh( 6)sinh( l f )cos( Oy) (5.17) 
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Note that bounds can be found for cosh(l{3) as the right hand side is bounded above and 

below dependent on By. Looking at the extremes, 

if cos( By) = -1 then equation 5.17 becomes 

cosh(l{3) = cosh(lJ )cosh(b) + sinh(b)sinh(lJ) = cosh(lJ + b) 

This is the maximum value for cosh(l{3). 

If cos(By) = 1 then equation 5.17 becomes 

cosh(l{3) = cosh(h)cosh(5) - sinh(b)sinh(lJ) = cosh(lJ - b) 

This is the minimum value for cosh(l{3). 

Therefore 

cosh(h - b) ~ cosh(l{3) ~ cosh(h + b) 

=? h - b ~ l{3 ~ lJ + b 

=? cosh-1(cosh(b)cosh(lo,)) - b ~ l{3 ~ cosh-1(cosh(b)cosh(la)) + b 

These bounds on l{3 are tighter than inequality 5.15. 

(5.18) 

Note that one more improvement can be made to the upper bound by observing that as 

AY is pushed onto AX orthogonally, then 0 ~ By ~ ~ and so 0 ~ cos( By) ~ 1. 

If cos ( By) = 0 then 

which gives a new maximum value for l{3, which is smaller than before. Hence the new 

bounds are, 

To complete this projection analysis, it is necessary to know what these bounds mean for 

1{3. First note that as la ----t 00, l{3 --A- 0 as required. In fact if la increases by more than 

4b = 4d1BI3«(3, ,), (where dll:lI3(a, b) is the distance from a to bin JH[3), then l{3 is forced to 
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increase. Combining this with the work of subsections 5.6.3 to 5.6.5, if Ly -+ 00 then 

If) ~ 0 and in fact If) will be forced to increase if there is a big enough change to Ly • 

The tightness of these bounds is dependent on the parameter of the construction, Le. the 

length of the core curve c. From the discussion at the beginning of this subsection and in 

subsection 5.6.1 when considering the nesting of circles Co and CJ, as le -+ 0, we can 

ensure that the geodesic gets close to F (as it is forced to pass through a bounded region 

of the top of the hyperplane containing the flat which defined to be the root of the tree in 

the lift), and so 6 gets arbitrarily close to 0 as le -+ O. As 6 -+ 0, 

and 

and so as expected l{3 -+ la as 6 -+ 0 (because 13 -+ a). 

Using the original bounds found (i.e. inequality 5.15), to ensure a change in l{3, then la 

needs to increase (or decrease) by at least 46. This is equivalent to four times the distance 

between 13 and j3F (where j3F is 13 projected onto F). The tighter bounds imply that an 

even smaller change would be sufficient. 

Linking this to the previous sections (Le. sections 5.6.3 to 5.6.5), we know that as 

l{3F -+ 00 (where j3F is 13 projected onto F), then la -+ 00 (where a is the geodesic with 

the same end points in the lift as j3F)' In fact a small change in l{3F gives a change in lcr. 

Therefore if the length of 13 F changes by more than 46, where 6 = dea (13, 13 F), then 1 (3 will 

also change. More importantly if l{3F -+ 00 then l{3 ~ O. 

This is all summarized as follows. 

Lemma 5.6.6 Let 13 and 13' be two geodesics in M, where M is the book of I-bundles 

manifold with single solid torus binding and three I-bundle pages. Let j3F and j3~ be the 

representatives on F onto which 13 and j3T are projected. Let l{3F denote the length of j3F' 

Then if Il{3F -l{3~1 > de3(j3, j3F) then If) =1= If)T and hence X[j3] =1= X[j3']. 
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(Note that this lemma includes both the cases where (3 and (3F intersect and when they 

do not. If (3 and (3F intersect (the case considered in sections 5.6.3 to 5.6.5) then the lower 

bound on the difference in lengths required will be smaller.) 

To rephrase in another way if (3 I--l- (3F and (3' I--l- (3~ via the projection, then to show 

x[(3] 1= X[(3/] it is needed to show that Il,8F -l,8~1 > 4drr,a((3,f3F). As le -----7 0 we know that 

d]H!3 ((3, (3F) -----7 0, and hence changing lengths of curves in F is enough to alter lengths of 

geodesics in M, and gives the means to determine when two geodesics in M cannot have 

the same character. 

This projection and lemma 5.6.6 will be used when considering the properties as 

discussed in section 5.3. 

5.7 Core curve property 

In this section we prove the core curve property as given in section 5.3 for the book of 

I-bundles with single solid torus and three I-bundle pages, as formalized in theorem 5.7.1. 

Sections 5.5 and 5.6 have provided the tools required to do this. We restate the theorem 

here. 

Theorem 5.7.1 Let M be the specific book of I-bundles manifold with single solid torus 

binding and three pages. Let 9 E 1f1(M), such that 9 is represented by the core C7J,rve of 

the solid torus in M. Then 9 is 7J,niq7J,ely determined by X[g]. By this we mean that if 

h E 1f1 (M) with X[g] = X[h] then h is conj7J,gate to g±l (so h is also represented by the 

core C7J,rve in M). 

Proof: Let 9 be represented by the core curve "(, and let h be represented by another 

geodesic "(I in M such that X[h] = X[g] (and therefore the geodesics "( and "(I representing 

9 and h respectively have the same hyperbolic length in M). Project"( and "(' onto F via 

the projection in section 5.6, so "( is represented by the unique closed curve "(F and "(I is 

represented by the unique closed curve "(~ on F (where both "(F and "(~ are piece-wise 

geodesic on F). Note that as "( is equivalent to the core curve, this is a geodesic in M 

that is already on F, and so "( = "(F' We now compare "(F = "( to "(~. 
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There are three possibilities for I'~. Firstly I'~ could intersect I' in at least one place, or 

I'~ could be completely disjoint from I' or I'~ could coincide with 1'. The aim is to rule 

out the first two possibilities. 

F 

Fig 5.41: core curve property: YF intersects y 

Let I'~ intersect I' (see figure 5.41). As I'~ is a closed curve it must intersect I' at least 

twice since I' separates. From the construction imposed on M (as given in section 5.4), we 

know that the core curve of the solid torus is short in length, so that there is a wide 

half-collar around the geodesic boundary I' on each Fi (for i = 1,2,3). This means that 

each segment of I'~ (by segment of I'~ we mean a geodesic contained entirely in one Fi) 
will have length bounded below by clog (~). (N.B. This bound comes from section 5.4, 

where c is a fixed constant, l"( is the length of 1', and f.L > l"( is a constant smaller than the 

Margulis constant.) This lower bound increases as l"( decreases. Therefore if I' is short 

then any curve intersecting it will be long in comparison. 

This means that IlengthFb~) -lengthFb)1 is large, and by lemma 5.6.6 this implies that 

l"( i= l,,(, which contradicts the assumption that X[hJ = X[g]. Hence I'~ cannot intersect 'Y-

Fig 5.42: core curve property: Y' disjoint from y 

Let I'~ be completely disjoint from I' (see figure 5.42). Hence I'~ exists solely on one Fi 

(for i = 1,2,3) in F. Hence I'~ is a geodesic in M which exists on F, and so I'~ = 1" (so 

we do not need to use the projection in this case). From lemma 5.5.3, it is possible to 
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change the length of any arbitrary closed curve on Fi while keeping the length of the 

boundary geodesic 1 fixed. Hence, this ensures that l"( f= t/, which contradicts the 

assumption that X[h] = X[g]. Hence I~ cannot be completely disjoint from I' 

The only possibility left is that I~ coincides with 1 and so "I' = I~ = I' and so both 9 

and h are represented by the core curve of the solid torus, and hence 

xfhj = X[g] =} h ~ g±l as required. o 
Theorem 5.7.1 says that the core curve of the solid torus in the specific 3-prong case is 

uniquely determined by its character (and therefore by its length in M). We will consider 

extending this result to more general books of I-bundles in section 6.3. 

5.8 The boundary property 

Before moving on to consider more general books of I-bundles, in this section we consider 

another question that is closely related to the character problem, and therefore worth 

considering here. The aim is to show that if one geodesic in M is contained in one 

component of 8M, (the boundary of M), then any other curve with the same character 

will exist in the same boundary component (but not necessarily that the curves are 

homotopic). In this section we consider this in relation to the 3-prong book of I-bundles, 

as formalized in theorem 5.8.1. 

F 

S1 

Fig 5.43: Boundary components of F 

Let 1M be a '3-page' book of I-bundles and let F denote its spine. This spine F consists of 

three pieces, which we denote (for the purpose of this section) FSll FS2 and F S3 ' The 

boundary of M consists of three components, denoted Sl, S2 and S3, labeled such that FSi 

is the part of F that is 'disjoint' from Si (for i = 1,2,3). (See figure 5.43 for clarification 

of this.) 
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We have the following. 

Theorem 5.8.1 Let M be the specific book of I-bundles with single solid torus binding 

and three pages. Let 9 E 1l"l(M) be represented by a geodesic "I that is contained in a 

component of the boundary of M h ~ Si ~ 8M). Let h E 1l"l(M) be represented by 

another curve "I' such that X[h] = X[g]· Then "I' ~ Si also. 

Proof: Let 9 be represented by a closed curve "I such that "I ~ Sl· (If "I ~ S2 or 

"I ~ S3 then the argument will be similar, just change the indexing.) This means that "( is 

disjoint from FSI (so no part of "I exists on FSI - by the notation given above). 

Let h be represented by another closed curve "I' on F, and consider the possibilities for 

where "II is situated. Either "II exists partly in FSI or it has no part in FSI (and is 

therefore disjoint from FSJ)' 

Fig 5.44: Possibilities for h 

If "II exists partly in FsJ , then we may find a simple closed curve a that intersects "II but 

is disjoint from "I (i.e. let a be a simple closed curve on FSJ). By lemma 5.5.3, we can 

change the length of a while keeping the boundary geodesic of FSJ at constant length. 

Hence we may change the length of a without effecting Sl or "I. Shrink a enough to 

ensure l-y' =I- l-y (where l-y denotes the length of "I), and hence contradicting the assumption 

that X[g] = X[hJ. 

If "/ is disjoint from FsI , then by the notation given above, "I' ~ Sl as required. 

As these are the only two possibilities, if X[g] = X[h], then "(' ~ Sl as required. 0 

A similar method to this could be used in proving the same property for more general 

books of I-bundles. 
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Chapter 6 

General Books of I-bundles 

In this chapter the focus moves to considering the character question for more general 

books of I-bundles. We aim to extend the result from section 5.7 (the core curve 

property) to this more general setting. As an initial reminder, the problem is to find a 

topological condition on the geodesics in a compact hyperbolizable 3-manifold M, such 

that if two curves have the same length over all hyperbolic structures then they are the 

same geodesic (up to homotopy and orientation). To start we will briefly look again at 

the construction, as given in detail in section 5.4, and then extend the projection as 

described in section 5.6. 

6.1 Definitions and the general CMT Construction 

This section forms a recap of both the general definition and construction for the book of 

I-bundles to gather all the information to start extending the results in chapter 5. The 

details of the general construction are given in section 5.4, but here are the important 

points. 

First note that for the purpose of this work, the books of I-bundles only have solid torus 

bindings. This is because we have ruled out having parabolics in the fundamental group. 

Let M be a general book of I-bundles (without parabolics). The components of M will 

consist of a number of solid tori, denoted 1j (for j E {I, ... , n}), and I-bundles, denoted Bi 

(for i E {I, ... q}). Each solid torus will have a family of disjoint parallel closed annuli that 
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are homotopically equivalent to the core curve on its boundary. Each I-bundle Bi = Fi x 

[0,1]' where Fi is a surface (or I-bundle base) which is a compact, orientable surface 

minus p open discs (so has non-empty possibly disconnected boundary). Form M by 

identifying the boundary 80Bi with the annuli on the solid tori. (Note that if M contains 

more than one solid torus binding, then it must contain I-bundle bases with multiple 

boundary components, so at least one I-bundle is attached to more than one solid torus. 

Otherwise M will be disconnected.) 

As for the 3-prong case, the union of the I-bundle bases with boundaries glued together 

inside each solid torus comprise a 'spine' F for M around which M is a regular 

neighbourhood. 

In section 5.4, the CMT construction was given for the general case, which put a family of 

hyperbolic structures on M such that each I-bundle base is a totally geodesic surface with 

geodesic boundary (so we take the convex core of a surface with ends to give the I-bundle 

base). This construction gives a list of parameters {lc)} for the solid tori in M, where lCj 

corresponds to the length of the core curve Cj of the solid torus Tj . Then each boundary 

component (of an I-bundle base) that glues to the solid torus Tj, with parameter lc), is a 

geodesic of length lCj. 

Following the description given in [CMT99], these parameters for the solid tori can be 

incorporated into a single parameter lo, where lo = max{lcj}. Then assuming lo is 

sufficiently small, the manifold Mis hyperbolizable (as seen in section 5.4). As lo 2:: lCj for 

all j, each core curve Cj is short. This is the only constraint imposed on M, (and 

consequently F), and the family of hyperbolic structures. (This was set aside as an 

important observation at the end of section 5.4.) 

As described in detail in section 5.4, the developing map for this structure lifts the 

universal cover of M to JH[3 such that each base surface is mapped to a totally geodesic 

subset of JH[3 called a flat. For a specific flat, at each lift of a geodesic boundary Cj of its 

base surface Fi there are Pj - 1 other flats equally spaced. (Here Pj is the number of 

annuli glued to the corresponding torus binding Tj - or equivalently the number of 

geodesic boundaries glued to the solid torus Tj with parameter lCj.) By equally spaced we 

mean that the angles between the half-planes containing the flats are equal around the lift 

of Cj (e.g. in the 3-prong case, this angle was always equal to 2;). Note that unlike the 
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3-prong example considered in chapter 5, this angle may be different for each solid torus 

binding (and hence for the lifts of each Cj), as it is dependent on the quantity of I-bundles 

that are attached to that specific solid torus. 

Fig 6.1: Tree of circles 

The lift gives a tree of circles picture (when looking from infinity or considering where the 

half planes intersect the complex plane in lHI3 - see figure 6.1), however it is important in 

this more general setting to keep a note of which ci is being lifted as they are not all 

equivalent in M (unlike the 3-prong case), and each distinct ci equates to a different solid 

torus. (See figure 6.2 below.) 

Fig 6.2: keeping note of the lift of the core curves 

Recall from section 5.4 that the f.L-thin part of a flat denotes the set of points where some 

element of the stabilizer of the flat acts with translation f.L or less. Set f.L to be less than 

the Margulis constant. Then the f.L-thin parts consist of a union of disjoint pieces, each of 

which is a neighbourhood of an axis of translation - hence will be a neighbourhood of the 

lift of a geodesic boundary. (The f.L-thick part is the complement of the f.L-thin parts.) 

Given any two points x, y in two flats H and H' in the tree, let H = HI, H 2 , .•• , Hn = H' 

be the unique sequence of flats between H and H'. Then there is a geodesic chain IX,Y 

from x to y, such that IX,y is made up of geodesic arcs {,i} where each Ii C Hi and Ii 
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meets l'i+1 in the geodesic boundary shared by Hi and Hi+l. By lemma 5.4.1 there is a 

unique shortest path amongst all such piece-wise geodesic paths between x and y. (Note 

that lemma 5.4.1 was stated and proven in all generality so applies to this more general 

setting. The proof is independent of the angles between the planes, and only uses the 

tree-like structure of the fiats, which we still have in this more general situation.) 

Following the work of Canary, Minsky and Taylor (as given in [CMT99] and described in 

section 5.4), if x and yare located in the J,l-thick part of their respective fiats, then with 

the assumption that lo is small, then each segment of the unique shortest path IX;!I has 

length bounded below. This can be seen by looking back to the spine F of the manifold. 

If lo is small, then around each geodesic boundary of a base surface Fi there is a wide 

half-collar (by the collar lemma) whose width depends only on lo. Hence the J,l-thick part 

of Fi is separated from the geodesic boundary by a distance which is dependent on the 

length of the geodesic boundary and J,l. 

According to Canary, Minsky and Taylor in [CMT99], given any k and assuming lo is 

small, then each segment has length at least k. They give this bound to be clog (~) 
where c is a fixed constant. Hence the smaller lo becomes, the larger this lower bound k 

becomes. 

To summarise, the construction for a general book of I-bundles is the same, except the 

result is a set of parameters {lcj} for the solid tori, corresponding to the lengths of the 

core curves. The only condition imposed to ensure M is hyperbolizable is that lCj :::; lo 

small for all Cj. 

For more information on this construction see section 5.4 or see Canary, Minsky and 

Taylor's description in [CMT991. 

6.2 Extending the projection 

The aim of this section is to extend the work in section 5.6 to this more general book of 

I-bundles manifold. As with the 3-prong example, it is necessary to find a way of 

associating each geodesic /3 in M to a unique closed curve /3F on the spine F. Using this 

association we may approximate the length of /3, denoted lfl' by the length of /3F, denoted 
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l{3F' and show that if l{3F -+ 00 then 1{3 -+l- O. 

There are two main differences (that are important) between the general book of I-bundles 

and the 3-prong case. Firstly we have a set of core curves Cj (and hence a set of geodesic 

boundaries), each of which is short in length (and can be shortened within the limitations 

of the CMT construction). Secondly, when considering the lift to JHI3, the angles between 

the flats may differ from 2;, and may be different for each geodesic boundary in the lift. 

However, by the nature of the construction of the tree of flats, these angles between 

adjacent flats will be fixed (as in the 3-prong case) for a specific book of I-bundles. 

In section 5.6, the initial association between a geodesic in M and a closed curve on F 

was independent of these angles between the flats (when looking in the lift to JHI3). In fact 

the projection relied on the fact that the geodesics stay within a bounded distance of the 

spine. This is still the case, and so we may use the same projection to push the geodesics 

onto F as described in section 5.B. 

The second stage in section 5.6 was to find bounds on 1{3 in terms of l{3F' This did depend 

upon the angles between the flats, and so we need to consider this in more detail here. As 

in subsections 5.6.3 to 5.6.6, this is done in two stages. 

Let {3 be a geodesic in M, and let {3F be its representative on F (so {3 I--'> (3F under the 

projection). First assume that {3 intersects F at some point (in the thick part of F). 

Choose this point as the base point for /3 F and lift to JHI3. In the lift {3 F is represented by 

a broken piece-wise geodesic path {3F, such that each segment of {3F is contained in a 

unique flat, and {3 will be represented by a hyperbolic line segment {3 with the same end 

points as {3F. (See figure 6.3.) We compare the length of /3F to the length of {3. 

f3F 

Fig 6.3: projection on to F 

Each segment of {3F has length bounded below (i.e. 2:: m), where m can be made 

arbitrarily large by making 10 = max{ ICj} small (where Cj is the core curve associated to 

solid torus I}), hence m -+ 00. Unlike the 3-prong example, the angles ()i between each 
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pair of segments are not all necessarily equal, but they will be fixed as they are equivalent 

to the angle between adjacent fiats. Hence let B1 , B2 , ..• , Bn - 1 be the angles between the n 

segments, where 0 < Bi < 'if. 

Let {J p have n segments of length m + Ai where Ai ~ 0 for all i = 1, ... , n: As in subsection 

5.6.5, an equation for l(J;. could be found in terms of m, Ai and Bj (for i = 1, ... , nand 

j = 1, ... , n - 1), however with far more unknowns to deal with, these equations would 

become complicated. Hence we adapt the work from subsection 5.6.5. As a reminder, the 

aim is to show that if ljj; -+ 00 then Iff -I-t O. 

The hyperbolic line {J and the n segments of {Jp construct a hyperbolic n + I-gon. We use 

an induction process as in section 5.6. 

Fig 6.4: n=2 case 

Let n = 2, then {J and {Jp construct a hyperbolic triangle (see figure 6.4). This triangle 

has two sides increasing at the same rate (as m -+ (0) with fixed angle between them. By 

proposition 2.1.9, we know that {J will increase in length also. Therefore for n = 2 if 

m -+ 00 then lff will increase and hence Iff -I-t 0 as required. Hence it is solved for n 2. 

Now assume that if {Jp has n - 1 segments and if m -+ 00 then l13 -I-t 0, and use this to 

prove the same for {Jp with n segments. 

p 

Fig 6.5: ~ with n segments 

The hyperbolic line {J and the n segments of {Jp define a hyperbolic n + I-gon. We take a 

hyperbolic line segment that divides this polygon into two pieces. One piece is a polygon 

with n sides (i.e. the n - 1 case which we have assumed has the required result), and the 
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second is a hyperbolic triangle with one side of length P, one side of length m + An and 

one of length 19. (See figure 6.5 for illustration of this.) 

By the assumption that the result is true for f3F with n - 1 segments, we know that P is 

not decreasing as m -+ 00, and in fact using proposition 2.1.9 and proposition 2.1.12 

successively we know that P -+ 00. Hence the hyperbolic triangle (marked T in figure 

6.5), has two sides increasing in length with respect to m, with angle 4> between them. By 

corollary 2.1.10, we know that as m -+ 00,4> -+ 8n - 1 and 8n - 1 is fixed such that 

o < 8n - 1 < 1r. Hence by proposition 2.1.12, 19 will increase with respect to m. Hence as 

m ---t 00 (and ljj; -+ (0), 19 -f-'t 0 as required. 

Now assume f3 does not intersect F. The argument from section 5.6.6 extends directly to 

this more general setting, as this part of the projection analysis did not depend on the 

angles between adjacent flats. Hence 

(6.1) 

where dHl3(f3, f3F) is the distance between f3 and its representative f3F on F. 

Hence lemma 5.6.6 extends to this general case. 

6.3 The core curve property 

In section 5.7 it was shown that in the 3-prong example the core curve was uniquely 

determined by its length (and the corresponding group element by its character). In this 

section this result is extended to the general setting described. First we comment on the 

case where M still has only one solid torus binding, but with n pages (see figure 6.6 for 

graphical representation of an example with n = 6). This is an almost direct extension of 

theorem 5.7.1. 

Lemma 6.3.1 Let G = 7r1(M) where M is the Book of I-bundles with single torus 

binding and n pages. Let g E G be represented the core curve a of the solid torus. Let 

h E G such that X[g] = X[h], then h ~ g±l. 
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To prove this the results on surfaces from section 5.5 and the described projection from 

section 5.6 are utilized. (Figure 6.6 illustrates an example of such a book of I-bundles, 

where the vertex is the solid tori, and the edges are the I-bundles.) 

Fig 6.6 n-prong case 

Proof: Let g be represented by the core curve a with length lo:. Then from the 

construction given in section 5.4, lo: is small (and can be made arbitrarily small within the 

limits of the construction - hence around a on each base surface Fi there will be a wide 

half collar, whose width depends on lo: and increases as Lo: -+ 0). 

Let h be represented by another geodesic f3 in M, with length 1{3. Use the projection (see 

sections 5.6 and 6.2) to push f3 onto f3F on F. (Note that as a is the core curve, then a 

already exists on F and so aF a). Now consider the possibilities for f3F. 

Firstly f3F could be completely disjoint from a, or f3F could intersect a in at least two 

places (as j3F is a closed curve on F), or j3F could coincide with a. We rule out the first 

two possibilities. 

Let j3F be completely disjoint from a. Then j3F is a geodesic in M, and so f3F = 13, (as j3F 

will lie solely on one base surface Fi of F). Hence f3 is a simple closed curve on a surface 

with non-empty connected boundary. By lemma 5.5.3, the length of 13 can be changed 

while the length of a remains constant. Hence ensuring that l{3 I- lo: =? l{3 I- lo: which 

contradicts X[h] = X[g]· Hence j3F cannot be completely disjoint from a. 

Let f3F intersect a (this must be in at least two places as f3F is a closed curve). From 

section 6.2, we know that to ensure l{3 I- lo: we need to make sure that 

Il{3F -lo:l > 4dlfll3(j3F,f3)· However, as lo: gets smaller, dlfll3(f3,j3F) O. More importantly 

the half collars around a on each Fi get wider, and so II{3F -lo:l gets larger (as f3F 

intersects a). By making a small enough, we can ensure that Il{3F -lo:l is large enough to 

imply 1{3 I- lo: and giving the contradiction to X[h] = X[g] as required. Hence j3F cannot 

intersect a. 
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The only possibility left is 0: and f3F coincide, so 0: = f3F = f3 as required. o 

Now let M be a book of I-bundles with q solid torus bindings Tj for j = 1, .. , q, each with 

ni pages. (N.B. some of these pages will be common to two or more of the solid tori.) Let 

O:j be the set of core curves, one for each solid torus. 

Lemma 6.3.2 Let G = 7f1 (M) where M is the book of I-bundles with q solid tori bindings 

T j such that each ~ has ni pages (i = 1,2, ... m). Let g E G be represented by the core 

curve O:j (of length La;) of the solid torus ~. Let h E G be such that X[g] X[h]. Then 

h ~ q±l. 

Fig 6.7: example of general case 

Proof: Without loss of generality let q be represented by the core curve 0:1 of torus Tl 

(if not just re-Iabel the solid tori accordingly). Let h be represented by geodesic f3 in M. 

Apply projection to f3, so that f3 --+ f3F on F and then compare l(3F to lal over all 

possibilities for f3F. 

As before we have three possibilities, i.e. f3F disjoint from 0:1, f3F intersecting 0:1, or f3F 

coincident with 0:1. Take each in turn and break into cases. 

First note that as we have the freedom to change the lengths of the core curves 

independently (as long as they are short) then for ease of exposition set 

tal = la2 = ... = laq. 

Let f3F intersect 0:1. Here we have two cases, either f3F intersects other O:j (for j = 2, ... , q) 

also, or f3F only intersects 0:1 (see figure 6.8). Assume that f3F intersects 0:1 only. Then f3F 

remains on the base surfaces Fk that are glued to the solid torus T1 . As 0:1 is short, then 

around it on each Fk is a wide half collar whose width increases as lal --+ O. Therefore let 
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lal -----+ 0 so Il,Bp -lall is large (i.e. larger than four times the distance between f3 and f3F, 

which is decreasing as lal is decreasing). We can make (Xl arbitrarily small, so ensuring 

that l,B I- lal and contradicting X[h] = X[g]· 

Fig 6.8: 1\ intersecting u1 

Now assume that f3F intersects other (Xj (for j = 2, ... , q) as well as (Xl' By the same 

argument as above, as lal -----+ 0, the half collar around (Xl gets wider. If we assume 

lal = la2 = ... = laq then all the core curves will be shrinking, and so any curve 

intersecting one or more of them will have to be very long. Hence Il,Bp - lall is large, 

which implies that l,B I- lal as required. Hence f3F cannot intersect (Xl· 

Let f3F be disjoint from (Xl' Then either f3F = (Xj (for j I- 1), or f3F is disjoint from all (Xj 

(j = 1, .. , q) or f3F intersects at least one (Xj I- (Xl. (Figure 6.9 illustrates these 

possibilities. ) 

Fig 6.9: 1\ disjoint from u
1 

If f3F = (Xj (for j I- 1), then we have the freedom to change the lengths of the core curves 

independently (as long as they stay short). Hence shrink (Xj so laj I- lal and so l,B I- lal as 

required. 

If f3F is completely disjoint from all (Xj then f3F lies purely on one of the base surfaces Fi 

of F, and so f3F = f3. Hence f3 exists on a surface with non-empty (possibly disconnected) 

boundary. Using lemma 5.5.5, the length of f3F can be changed while the length(s) of the 

boundary curve(s) of Fi remain constant. If (Xl corresponds to one of these curves then we 

can ensure l,B I- lal as required. If (Xl is not one of these curves, then note that the rest of 
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F stays fixed as l{3 changes, and so al remains constant length. Therefore l{3 =1= lal as 

required. 

If (3F intersects at least one of aj =1= aI, then, by the construction given in section 5.4, the 

length of any closed curve crossing a core curve will be made up of segments which have 

length bounded below by a function, which is dependent on the length of that core curve. 

As a core curve shrinks, any curve crossing will grow in length as this lower bound 

increases. As all core curves are short, any curve crossing them will be long. In fact any 

curve intersecting a core curve will be longer than max { ai} for all i. Hence in this 

situation we know that l{3F =1= lal and Il{3F - lall is bigger than four times the distance 

between (3 and (3F, and so l{3 =1= lal as required. 

Hence (3F cannot be disjoint from al' 

The only other possibility for (3F is that it coincides with aI, and hence l{3F = lal and as 

(3F = (3 this implies l{3 = lal and so X[hj = X[g] =?- h rv g±l as required. 0 
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Chapter 7 

Simple on F property 

This chapter discusses one of the other properties suggested in section 5.3. We will 

therefore be considering the following conjecture. 

Conjecture 7.0.3 Let G 1rl(M) where M is a book of I-bundles with single solid torus 

binding and three pages. Let g E G be represented by a geodesic in M which is uniquely 

pTOjected onto a simple closed curve on F (where F is the spine of M). Let h E G such 

that X[g] = X[h], then h ~ g±l. 

7.1 Extending McShane's lemma 

When looking for possible properties to fit in with the character question, it was 

important to find a set of natural curves in the manifold. In the 2-dimensional case, (see 

McShane's lemma in section 4.4 - lemma 4.4.1), the property was being a simple closed 

curve. The idea of a simple closed curve on a surface forms a natural divide for the 

geodesics (between simple and non-simple). In 3-dimensions, the idea of a geodesic being 

simple is not very interesting as the majority of the geodesics will be simple. (To see this 

is the case see [BW03]. In this paper, Basmajian and Wolpert show that for a 3-manifold 

which supports a geometrically finite hyperbolic structure, then either the generic 

hyperbolic structure has the spd-property or no hyperbolic structure has the 

spd-property. Here a hyperbolic 3-manifold is said to have the spd-property if all of its 

closed geodesics are simple and pair-wise disjoint. They prove that both cases occur.) 
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The spine F of M is constructed from surfaces, and so the concept of a closed curve on F 

being simple will form a natural divide for closed curves on F, and therefore form a 

natural set of geodesics in M (those that project onto simple closed curves and those that 

do not). This combined with the projection from section 5.6 means that the property of a 

geodesic in M being 'simple on F' is a natural extension to McShane's lemma. 

As a starting point, look back at the proof of McShane's result (see the proof of lemma 

4.4.1). This proof can be broken into two main pieces. Let S be a closed orient able 

surface of genus p 2:: 2. Firstly we show that if 9 E 1[1 (S) is represented by a simple closed 

curve on the surface Sand X[h] = X[g] then h E 1[1(S) must also be represented by a 

simple closed curve on S. (The proof of this part uses the fact that non-simple curves on 

S have a positive lower bound on their length, whereas sequences of simple curves have 

lengths which go to zero in certain hyperbolic structures.) Secondly we use the fact that 

both 9 and h are represented by simple closed curves on S, and shows that they must 

coincide (up to orientation). 

In order to prove the simple on F property (for a book of I-bundles M) in relation to the 

character problem, the aim would be to extend both of these steps to M. For the purpose 

of this work we will assume that M is a book of I-bundles manifold with single solid torus 

binding and three I-bundle pages - as described in section 5.4.1. 

We start by considering the second step of the McShane's lemma proof. 

7.2 Both simple =? Same curve 

In this section the aim is to extend the second part of the proof of McShane's lemma to 

M, where M isa book of I-bundles with single solid torus binding and three I-bundle 

pages. To do this we will be utilizing the projection described in section 5.6. 

Hence the aim is to prove the following, 

Lemma 7.2.1 Let g, hE 1[l(M) be such that X[h] = X[g] and such that both 9 and haTe 

TepTesented by geodesics (3 and "I in M that aTe pTojected onto simple closed CUTVes (3F 

and "IF on F (i. e (3 ----+ (3F and "I ----+ "IF via the projection in section 5.6). Then h ~ g±l. 
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Note that this will also say that l{3 = l'Y (where l{3 denotes the length of (3). 

In order to prove this lemma we have several intermediate steps to show a chain of 

implications which combined will lead to lemma 7.2.1. This chain of implications is as 

follows. 

x[g] = X[h] =? l{3 = l'Y =? i((3F, ai) = i( IF, ai) =? (3F = IF =? (3 = I 

(Note here that i(a, b) is the number of points of intersection between a and b, and aj is a 

simple closed curve on F.) 

The first implication (i.e. X[g] = X[h] =? l{3 = 1'Y) follows from the connection between 

character and length as described in section 4.3. The last implication (i.e. 

(3F = IF =? (3 = I) comes from the uniqueness of the projection as given in section 5.6, 

and as (3 ~ (3F and I ~ IF uniquely, then (3 ~ (3F = IF and I ~ IF = (3F and so (3 = I' 

The rest of this section aims to show the other two implications are true (i.e. 

l{3 = l'Y =? i((3F, aj) = ibF' aj) - see lemma 7.2.7, and i((3F, aj) = ibF' aj) =? (3F = IF -

see lemma 7.2.6). 

Before proving these we start by considering simple closed geodesics in M which lie on 

the spine F (i.e. these consist of simple closed curves on F that do not intersect the core 

curve, or equivalently that lie solely on one of FI, F2 or F3)' We show that such a pair of 

geodesics with the same length in M are the same curve up to homotopy and orientation. 

First we need the following which is based on an idea from the proof of the core curve 

property. 

Lemma 7.2.2 Let M be a book of I-bundles with single solid torus and three pages, and 

let F be the spine of M. Let c be the core curve of the solid torus, and let aF be a simple 

closed curve on F. Let nc(a) be the number of times aF intersects c. Then if (3F is 

another simple closed curve on F such that lap = l{3p then nc(aF) = nc((3F). (Here lap ~8 

the length of aF.) 

Lemma 7.2.2 says that if two simple closed curves on F that have the same length as 

measured on F then each must intersect the core curve the same number of times. (N.B. 

123 



As a and fJ are simple closed curves on F they are not geodesics in M, unless 

ne(a) = ne(fJ) = 0.) 

Proof: We proceed by proving the contrapositive, so ne(a) 1= ne(fJ) =* laF 1= I{3F' 

First note that by the CMT construction (as given in section 5.4), the length of the core 

curve, which we will denote Ie, is short and can be made arbitrarily short whilst keeping 

M hyperbolizable. 

As c is short there is a wide half collar around it on each base surface F; (for i = 1,2,3) 

that determine F, whose width depends only on Ie. Consequently any simple closed curve 

aF on F that intersects c (and hence will do so at least twice as it is closed) will have a 

lower bound of 2W(ne (aF)), where w is the width of the half collar around c (so w is 

dependent only on Ie). 

As Ie -+ 0, W will be increasing and hence so will this lower bound. (Note that this lower 

bound will also increase the more points of intersection there are between the simple 

closed curve on F and c.) Therefore if ne(aF) > ne(fJF) then laF has a lower bound which 

is greater than the lower bound on I{3F' and this will remain so as Ie -+ O. 

As Ie -+ 0, the length of any simple closed curve will be dominated by the thin parts of F 

(i.e. neighbourhoods of the geodesic boundaries, or equivalently c) that it passes through. 

Hence if ne( aF) 1= ne(fJF) then one of aF or fJF will intersect c more times and hence have 

to cross the wide collar more times, and spend more time in the thin part of F. 

Combining this with the lower bounds we see that if ne(a) 1= ne(fJ) then lap 1= l{3p as 

required. (In fact if ne(a) > ne(fJ) then laF > 1{3p-) 

Therefore if aF and fJF are simple closed curves on F such that lap = I{3F then 

ne(aF) = ne(fJF). 0 

Lemma 7.2.2 allows the problem to be broken down into cases dependent on the number 

of points of intersection between a simple closed curve on F and c. We are considering 

those simple closed curves on F that are disjoint from c (so n e (*) = 0). Note that such a 

closed curve on F will be geodesic in M. From lemma 7.2.2, if aF is a simple closed curve 

on F such that ne(aF) = 0, and fJF is such that ne(fJF) > 0 then lap 1= l{3F' 

We now need to show that if aF and fJF are simple closed curves on F such that laF = I{3F 
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then aF and f3F are equivalent up to homotopy and orientation. We do this in two steps. 

First consider the case where aF and f3F exist on different base surfaces Fi (for i = 1,2,3). 

Lemma 7.2.3 Let Fl , F2 and F3 be compact orientable surfaces of positive genus with 

connected non-empty boundary, and let F be the spine constructed from these surfaces by 

connecting along their boundary geodesic c (with length Ie). If aF is a simple closed 

geodesic on Fi and f3F is a simple closed geodesic on Fi , j =I- i (for i, j = 1,2,3) then 

lap =I- l[3p. 

F 

Fig 7.1: simple closed curves on F that do not intersect c 

Proof: Without loss of generality let aF be a simple closed geodesic on Fl. (If not 

then just re-Iabel the surfaces accordingly.) Decompose the spine by cutting along c, 

giving the three surfaces R;, for i = 1,2,3. As Fl is a compact surface with connected 

non-empty boundary apply lemma 5.5.3. Hence it is possible to change the length of ap 

while keeping Ie constant. Reconstruct F by gluing the three surfaces back together to see 

that changing length of aF does not effect the lengths of the curves on F2 or F3. 

Therefore laF varies while lf3F constant and so laF =I- l[3F as required. 0 

Lemma 7.2.3 says that two geodesics a,f3 in M that exist on F (so a = aF and 13 = f3F) 

such that la = lf3 must lie on the same base surface Fi of F (for i = 1,2,3). It remains to 

show that if aF and f3F are on the same Fi and aF ~ 13;1 then laF =I- lf3r 

Note that as both ap and f3F exist purely on R;, then the other two base surfaces, Fj for 

j =I- i, can be disregarded by lemma 5.5.3, as what happens on Fi will not effect Fj unless 

Ie changes. This part is therefore reduced to considering a surface with non-empty 

connected boundary. 

Lemma 7.2.4 Let Fl , F2 and F3 be compact orientable surfaces of positive genus with 

connected non-empty boundary of length Ie, and let F be the spine constructed from these 
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surfaces by gluing along their boundaries. If CXF and f3F are simple closed curves on Fl. 

such that laF = l{3F then CXF rv f3:jiI. 

Proof: Let CXF and f3F be simple closed curves on FI such that laF = l{3p- There are 

three possibilities to consider. Either CXF and fJF intersect one another in at least one 

place, or CXF and f3F are completely disjoint, or CXF and f3F coincide (so CXF ~ f3'jiI). 

Let CXF and fJF be such that they intersect. Apply the collar lemma around CXF to see that 

as laF -+ 0 then l{3F -+ 00. (Note that by lemma 5.5.3, laF can be made smaller while 

keeping lc at constant length and so laF -+ 0 does not effect F2 and F3.) Hence laF =I- l{3F 

in this case, which gives the contradiction required. Therefore CXF and f3F do not intersect 

on Fl' 

Let CXF and f3F be completely disjoint on Fl. Take the double of FI (so take another copy 

of FI and glue it to FI along the boundary curve c, or equivalently reflect FI across its 

boundary). The result is a closed surface, and by applying Fenchel-Nielsen coordinates to 

this new surface, we see it is possible to change laF and keep l{3F constant. Hence we can 

ensure that laF =I- l{3F as required. Therefore CXF and f3F are not completely disjoint. 

The only other possibility is that CXF and f3F coincide, and so CXF ~ f3'jiI as required. 0 

In connection to lemma 7.2.4, note that we assumed that both CXF and f3F were simple 

closed curves on Fl. We could equally have assumed that both CXF and f3F are simple 

closed curves on F2 or F3 and use the same proof (just re-Iabel the base surfaces). 

Combining lemma 7.2.3 and lemma 7.2.4 provides a proof of lemma 7.2.1 in the case 

where the geodesics in M exist on the spine F (and hence we do not need to use the 

projection). This can be summarised as follows. 

Lemma 7.2.5 Let M be the book of I-bundles with single solid torus binding and three 

I-bundle pages. Let cx and f3 be geodesics in M such that La = l{3, and let CXF and f3F be 

simple closed curves on F representing cx and f3 respectively. Then if CXF and f3F do not 

intersect the core curve c (so cx = CXF and f3 f3F), then a rv f3±1 (up to homotopy and 

orientation) . 

Proof: Combine lemmas 7.2.3 and 7.2.4 to show the above. 
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We have therefore proven lemma 7.2.1 for a particular case. The other case to consider is 

where geodesics U and 13 are projected (via the projection given in section 5.6) onto 

simple closed curves UF and j3F respectively, such that UF and j3F do intersect the core 

curve. (Note that as the core curve c separates, UF and j3F have to intersect c at least 

twice as they are closed curves.) 

To consider this we return to the chain of implications stated earlier, and given again 

below as a reminder. 

From lemma 7.2.2, two simple closed curves on F with the same length both intersect the 

core curve the same number of times. We consider whether this is true for any other 

curves on F. From a statement made in [[Lei03] section 6], on a closed surface 5, two 

simple curves with the same length, must cross a finite set of simple closed curves on 5 

the same number of times. Now consider this in relation to the spine F. 

Let i( u, 13) be the number of times geodesics U and 13 intersect (i.e. their intersection 

number). 

Lemma 7.2.6 Let Fl, F2 and F3 be compact orientable surfaces of positive genus with 

connected non-empty boundary of length ie, and let F be the spine constructed from these 

surfaces by gluing along their boundaries. If 7 and 7' are two simple closed curves on F 

and i( 7, Uj) = i( 7' , Uj) for all simple closed curves Uj on F then 7 = 7' . 

Proof: Let 7 and "I' be simple closed curves on F such that i(ry,uj) = i(ry',uj) for all 

simple closed curves Uj on F. 

Let Uk = 7 (this is valid as 7 is a simple closed curve on F), then i(ry, Uk) = i(ry, 7) = 0 as 

7 is simple. This implies that i( 7', Uk) = i( 7',7) = O. Hence "I' is either completely 

disjoint from 7 or coincides with 7 (so "I' = 7)· 
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To rule out the possibility that "/ is completely disjoint, we show that a simple closed 

curve on F can always be found such that it has a different intersection number with [ 

and ['. We have two cases. 

F; 

Fig 7.2: ily·. up ) > 0 

Firstly let [ and [' be disjoint simple closed curves on F, such that [' has an arc on Fi ) 

but [ does not have an arc on Fi (see figure 7.2). Let O'.p be a simple closed curve on Fi 
such that O'.p intersects ['. Then i(r', O'.p) > 0 but i(r, O'.p) 0 and therefore giving the 

contradiction required. 

The second case is where both [ and [' are disjoint simple closed curves on F such that 

both have segments on the same Fi. The aim is to again find a simple closed curve O'.p on 

F such that i(r, O'.p) =1= i(r', O'.p). We proceed by finding a proof by contradiction. 

-y 
-~-- -l' 

Fig 7.3: pants decomposition of Fj 

Let [ and [' be disjoint simple closed curves on F and assume i(r,O'.p) = i(r', O'.p) for all 

simple closed curves O'.p on F. Decompose F using a pants decomposition on each Fi 
(i 1,2,3), then each curve in the decomposition is a simple closed curve on F. We 

consider [ and [' in relation to the set of pants curves {O'.j}. (Figure 7.3 shows such a 

decomposition and possible paths I and ['.) 
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We have assumed that i( ,,(, O'j) = i( "(I, aj) for each aj in the pants decomposition. 

However this implies that both "( and "(I must follow the same route around F. To see 

this look at one of the pair of pants pieces P of the decomposition (see figure 7.4). 

(1., 

Fig 7.4: piece of the decomposition 

By the assumption "( and "(I intersect each of aI, a2 and a3 (as in figure 7.4) the same 

number of times (i.e. i("(,al) = i(,,(/,al) and i("(,a2) = i("(/,0'2) and i("(,0'3) = i("(/, 0'3)). 

Hence we have a number associated to each O'i which is equal to this intersection number. 

Let i("(, 0'1) = a, i("(, 0'2) = band i("(, 0'3) = c and assume a :s: b :s: c (if not then just 

reorder labels). 

Then a + b + c = 2n, for n E N (as each segment on P has two end points). We also know 

that each arc of"( on P must go from one boundary to another (otherwise it is trivial). 

Then, 

N(O'I to 0'2) + N(O'I to 0'3) = a 

N(O'I to 0'2) + N(0'2 to 0'3) = b 

N(0'2 to 0'3) + N(O'I to 0'3) = c 

where N(O'i to O'j) is the number of arcs of"( going between O'i and O'j on P. 

Also, 

N(O'l to 0'3) < min (a, c) = a =? N(O'I to 0'3) = a - 61 

N(O'I to 0'2) < min(a, b) a=? N(O'l to 0'2) = a - 62 

N(0'2 to 0'3) < min(b, c) = b =? N(0'2 to 0'3) = b - 63 
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Hence we have. 

a 

a - 81 + b - 83 b 

b - 83 + a - 82 - C 

From equations 7.2 and 7.3, we see 82 - 81 = b - c, and from equations 7.1 and 7.3. 

83 - 81 = b - c. Therefore, 

From equation 7.1, a - 81 - 82 = 0, and so 

Combining equations 7.5, 7.3 and 7.4, we have 

Hence combining equations 7.5 and 7.6, 

_ a+c-b 
01 = 2 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

We therefore can uniquely determine 81 (from equation 7.7) and hence 82 (from equation 

7.5) and hence 83 (from equation 7.4) by knowing a, band c. 

This will be the case for each pair of pants in the decomposition. Hence the intersection 

numbers of"( (and equivalently ,,(') with each aj in the pants decomposition determines 

the route around F. Therefore "( and "(' must follow the same path around F and hence 

"(' is homotopic to "(. Therefore "( and "(' are not disjoint on F. This gives the 

contradiction required. 

Hence if"( and "(' are disjoint simple closed curves on F, then there exists a simple closed 

curve a p on F such that i(ry,ap ) i= i(ry',ap ). 
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Therefore if for all simple closed curves Ctj on F, iC'Y, Ctp ) = iC'Y', Ctp ) then / = /1 on F. 0 

Lemma 7.2.6 shows that the idea of intersection numbers being equal is not restricted to 

the core curve, and in fact for two curves on F to be equal or coincident then they must 

intersect every simple closed curve on F the same number of times. 

We now prove the other implication, i.e. l{3 = l'Y =* i(f3F' Ctj) = iC'YF' Ctj). This is 

formalized into the following. 

Lemma 7.2.7 Let M be a book of I-bundles with single solid torus binding and three 

pages, and let F be the spine of M. Let f3 and / be two geodesics in M such that they are 

represented by two simple closed curves f3F and /F respectively on F. Then if l{3 = l'Y then 

i(f3F, Ctj) = iC'YF, Ctj) for all simple closed curves Ctj on F. 

Proof: Let f3 and / be two geodesics in M that are uniquely projected onto simple 

closed curves f3F and /F respectively on F using the projections described in section 5.6. 

Then we have bounds on 1{3 in terms of l{3F and on l'Y in terms of 1'YF" By lemma 5.6.6, if 

then 1{3 =1= lT We also know that max( dJl:llC'Y, /F), dJHJ (f3, f3F)) is small and decreases as the 

length of the core curve shrinks. This we can do within the constraints of the construction 

of M (as seen in section 5.4). Therefore even if Il{3F -l'YFI is small then 1{3 =1= lT 

To prove the lemma we show the contrapositive, i.e. show that if i(f3F, Ctj) =1= iC'YF' Ctj) for 

at least one simple closed curve Ctj on F, then Il{3F -l'YFI can be made arbitrarily large so 

that we ensure l (3 =1= lT 

Let Ctp be a simple closed curve on F such that i(f3F, Ctp ) =1= i(!F, Ctp ). Without loss of 

generality assume i(f3F, Ctp ) > iC'YF' Ctp ) > O. (N.B. if iC'YF' Ctp ) = 0 then shrinking Ctp will 

not effect /F but will effect f3F and so Il{3F -l'YFI will increase, and we shrink Ctp enough so 

that this difference is large enough to get a contradiction.) 

Note that as i(f3F, Ctp ) > iC'YF' Ctp ), l{3F will increase at a faster rate than LrF and therefore 

Il{3F - l'YF I will be increasing. We continue to shrink Ctp until this difference is large enough 
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to get a contradiction. Hence if i({3F, a p ) i- i(JF, a p ) for some simple closed curve avon 

F, then If] i- L'{" 

Therefore if la = If] then i(aF,'j) = i({3F"j) for all simple closed curves Ii on F. 0 

Combining lemma 7.2.6 and lemma 7.2.7, the chain of implications is shown to be true. 

hence giving a proof to lemma 7.2.1, which we restate below. 

Lemma 7.2.1 Let g, hE 1rl(M) be such that X[h] = X[g] and such that both g and haTe 

Tepresented by geodesics {3 and I in M that aTe pro.jected onto simple closed curves {3p 

and IF on F (i.e {3 -+ (3F and I -+ IF via the p'rojection in section 5.6). Then h rv g±l. 

Proof: Lemma 7.2.6 and lemma 7.2.7 provide the following chain of implications. 

o 

Therefore if we have two geodesics in M that have the same length and are both 

projected onto simple closed curves on F, then they are the same curve (up to orientation 

and homotopy). 

To complete the proof of the simple property the first step of showing if a is represented 

by a simple closed curve on F and la = If] then {3 is also represented by a simple closed 

curve on F needs to be extended. 

7.3 Simple =} Simple 

Let g E 1rl(M) be represented by a geodesic (3g which when projected onto Ig on F is a 

simple closed curve. Let h E 1rl(M) be such that X[h] = X[g]. We would like to show that 

h is also projected onto a simple closed curve on F. 

The problem with extending McShane's result directly is that all closed curves on F that 

intersect the core curve have lengths with a positive lower bound. This comes from the 

fact that the length of each segment in the broken geodesic path when lifted to lill3 has 

positive lower bound (as seen in section 5.4 and figure 7.5) which is dependent on the 

length of the core curve. Hence an alternative method needs to be found. 
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As an initial idea, consider what could go wrong, and how {3h could be projected Onto 

Don-simple closed curve on F. For this to happen, the projected curve must either 

intersect itself in at least one of the pieces Fi of F, or intersect itself on the boundary or 

core curve or lvI. 

It is necessary to show that a geodesic that projects onto a non-simple closed curve on F 

can never have the same length as one that projects onto a simple closed curve on F. By 

the analysis in section 5.6, it is necessary to show that the difference between the lengths 

is bigger than four times the distance between the geodesic and its representative on F. 

f 

Fig 7.5: simple closed curve on F with lower bound on its length 

As all closed curves on F have a positive lower bound on length, extending this part of 

McShane's lemma has proven to be extremely difficult, and is the reason that the simple 

property is just a conjecture. This part is still open for future work. 
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