
UNIVERSITY OF SOUTHAMPTON

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

Volume 2 of 2

by

Tack Boon Yee

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

April, 2007

T.B. Yee, 2007 Appendix A: Paper 2 4 8

Appendix A

Paper

This appendix contains the paper published in the proceedings of the International

Federation for Information Processing International Conference on Very Large Scale

Integration 2005 (IFIP VLSI-SOC 2005).

The following published papers were included in the bound thesis. These have
not been digitised due to copyright restrictions, but the links are provided.

Y. Tack Boon, M. Zwolinski, A.D. Brown (2005) “Multi-FPGA Synthesis with Asynchronous
Communication Subsystems.” IFIP International Conference on Very Large Scale Integration (VLSI-
SOC 2005).

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 256

Appendix B

Hardware demonstrator in detail

This appendix contains implementation details of the hardware demonstrator and the

Digilent D2-SB FPGA-based development board and DI04 peripheral board used to

implement the JPEG decoder.

The first few sections of this appendix provide the information on the JPEG decoder and a

full profile of test images and photographs of the test images decoded by the multi-FPGA

JPEG decoder. The rest of this appendix provides the detailed information on the hardware

demonstrator. The information provided includes: circuit description of the BT121

VideoDAC on the I/O VGA peripheral board, user manuals o f the development board, and

the setting up of the hardware demonstrator.

B.1 JFIF (JPEG File Interchange Format)

The JPEG File Interchange Format is a minimal file format, which enables JPEG

bitstreams to be exchanged between a wide variety of platforms and applications. The

JFIF is entirely compatible with the standard JPEG interchange format and it conforms to

the JPEG standard (ISO/IEC 10918-1 | ITU-T Recommendation T.81); the only additional

requirement is the presence of a JFIF application segment marked by an APPO marker.

The rest of this section provides the specifications and syntax of a JPEG file defined in

Annex B of the ISO/IEC 10918-1 | ITU-T Recommendation T.81 and the JFIF application

segment. The set of marker assignments and their description supported by the lossy

sequential DCT-based JPEG decoder is listed in Table B-1 below.

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 257

Symbol
Code

Assignment
Description

SOI OxD8 Start of image

APPo OxEO JFIF application segment

APPn OxE1 - OxEF Other APP segments

DOT OxDB Quantisation table

SOFo OxCO Start of frame

DHT OxC4 Huffman table

SOS OxDA Start of scan

COM OxFE Comment, may be ignored (skipped)

EOI OxD9 End of image

Table B-1 Marker identifiers in the JFIF file

JFIF marker identifiers are preceded by an all' T byte (OxFF). A two-byte SOI header

(OxFF, OxD8) identifies the JFIF file format, the APPq marker immediately follows the

SOI header and subsequently by the other segments and markers. The end of file is

identified by the EOI (OxFF, 0xD9) marker. Normally, the only marker identifier that

should beftyuiid oiice theimEyre daitais started is the IlOIiriarlcer. TA/tKm a CbdFlFibyte is

found followed by a zero byte, the zero byte must be discarded.

The following describes the JPEG file format and descriptions of the key segments given

in Table B-1:

Header: It occupies two bytes (SOI: start of image - OxFF, OxDB)

Segments: Following the SOI marker, there can be any number of segments or markers

described in Table B-1 above.

Trailer: It occupies two bytes. (EOI: end of image - OxFF, OxD9).

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 258

SOFO (Start of Frame 0) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxCO to identify SOFO marker.
Length 2 This value equals to 8+ component*3 value.
Data precision 1 This is in bits/sample, usually 8.
Image height 2 This must be >0.
Image width 2 This must be >0.

Number of components 1 Usually 1= grayscaled, 3= colour YCbCr or YIQ,
4= colour CMYK.

Each component 3

Read each component data of 3 bytes. It
contains:
Component ID (1 byte) (1= Y, 2= Cb, 3= Cr, 4= 1,
5= Q), sampling factors (1 byte) (bits 0-3 vertical,
bits 4-7 horizontal), quantisation table number (1
byte).

The JFIF uses either 1 component (Y, grayscaled) or 3 components (YCbCr,

sometimes called YUV, colour).

APPO (JFIF segment) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxEO to identify APPO marker.
Length 2 This must be >=16

File identifier mark 5 This identifies JFIF. 'JFIF#0' (0x4A, 0x46, 0x49,
0x46,0x00)

Major revision number 2 Should be 1, otherwise error.
Minor revision number 2 Should be 0 to 2, otherwise try to decode anyway

Units for x/y densities 1
0= no units, x/y-density specifies the aspect ratio
instead: 1= x/y-density are dots/inch, 2= x/y-
density are dots/cm.

X-density 2 It should be >0.
Y-density 2 It should be >0.
Thumbnail width 1 -

Thumbnail height 1 -

Bytes to be read n
For thumbnails (RGB 24-bits), n= width*height*3
bytes should be read immediately followed by the
thumbnail height.

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 259

If there is no JFIF#0 in the file identifier, or the length is <16, then it is probably not

a JFIF segment and should be ignored.

Noimally units— 0, x-density— 1, y-density= 1 means the image has an aspect ratio of

1:1 (evenly scaled).

JFIF files including thumbnails are very rare, the thumbnail can usually be ignored. If

there is no thumbnail, then width= 0 and height^ 0.

DHT (Define Huffman Table) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxC4 to identify DHT marker.
Length 2 This specifies the length of Huffman table.

Huffman Table (HT)
information 1

Bits 0-3: number of HT (0 to 3, otherwise error),
Bit 4; type of HT (= DC table, 1 = AC table). Bits 5-
7; not used, must be 0.

Number of symbols 16
Number of symbols with codes of length 1 to 16,
the sum(n) of these bytes is the total number of
codes, which must be <= 256.

Symbols n Table containing the symbols in order of
increasing code length (n= total number of codes).

• A single DHT segment may contain multiple Huffman tables, each with its own

information byte.

DRI (Define Restart Interval) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxDD to identify DRI marker.
Length 2 This must be 4.

Restart interval 2

This is in unit of MCU blocks, means that every n
VICU blocks, a RSTn marker can be found. The
first marker will be RSTO, then RST7, etc, after
RST7, repeating from RSTO.

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 260

DOT (Define Quantisation Table) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxDB to identify D Q T marker.
Length 2 This specifies the length of the quantisation table.

Quantisation Table (QT)
information 1

Bits 0-3: number of QT (0 to 3, otherwise error),
Bits 4-7: precision of QT (0= 8-bit, otherwise 16-
bit).

Bytes n 1 his gives the QT values, n= 64*(precision+ 1)

A single DQT segment may contain multiple quantisation tables, each with its own

information byte.

For precision^ 1(16 bits), the order is high-low for each of the 64 words.

SOS (Start of Scan) marker

Field
Size in

byte(s)
Description

Marker identifier 2 OxFF, OxDA to identify SOS marker.

Length 2 This must be equal to 6+2* (number of
components in scan).

Number of components
in scan 1

This must be >=1 and <= 4 (otherwise error),
usually 1 or 3.

Each component 2

For each component, read 2 bytes. It contains 1
byte: Component ID (1= Y, 2= Cb, 3= Cr, 4= 1, 5=
Q), 1 byte: Huffman table to use (bits 0-3: AC
table 0 to 3, bits 4-7: DC table 0 to 3).

Ignorable bytes 3 Skip the next 3 bytes.

• The image data (scans) is immediately following the SOS segment.

B.2 JFIF test images

A complete profile of the test images decoded by the multi-FPGA JPEG decoder is given

below. The following diagrams include the original JFIF file and photographs of the

decoded test image using the hardware demonstrator system. Figure B-1 to Figure B-3

illustrate three 64-pixel by 64-pixel test images (LENA.jpg, MANDRILL.jpg, and

DRAGON.jpg) decoded using the multi-FPGA JPEG decoder.

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 261

Original test image (LENA.jpg)

Figure B-1 JFIF test image (LENA.jpg)

Original test image (MANDRILL.jpg)
[W? [W f i f m I

^ ^

- ^

ST m i

• C(l#

Figure B-2 JFIF test image (MANDRILL.jpg)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 262

Original test image (DRAGON.jpg)

m / m 7Wi 7 f t TV

MULTl-FPGA JPEG DEMO

Figure B-3 JFIF test image (DRAGON.jpg)

Figure B-4 and Figure B-5 illustrate two 128-pixel by 128-pixel test images

(SQUARES.jpg and SLOPE.jpg) decoded using the multi-FPGA JPEG decoder.

Original test image (SQUARES.jpg)

Figure B-4 JFIF test image (SQUARES.jpg)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 2 6 3

Figure B-5 JFIF test image (SLOPE.jpg)

B.3 Simulations of test image decoding

Post-MOODS multi-FPGA synthesis simulation results of the decoding of the LENA test

image using the non-pipelined multi-FPGA JPEG decoder are given in Figure B-6 and a

zoom in view in Figure B-7. The simulations show the signal transitions and data transfers

of the various components (e.g. the UART RTL module, Frame buffer controller RTL

module, etc), and the communication channels in the multi-FPGA JPEG decoder. The

decoded pixel data are given in signal "/sim_top_level/decoded_data" (under the multi-

FPGA JPEG decoder core divider) in Figure B-7, and cursors 1 and 2 mark the first

decoded (pixel) value and the end of the eighth decoded (pixel) value in the test image

respectively in the figure (e.g. the first to the eighth pixel values obtained from the close

up view of the simulation in Figure B-7 are 0x7C, 0x94, Ox8A, 0x6F, Ox8C, 0x88, Ox8E,

0x65 respectively). The two-phase data handshaking scheme for the inter-device data in

subprogram communication channel 2 (under the SpC 2 divider) can also be seen clearly

in Figure B-7.

Simulation results for the 2-,3- and 6-device implementation of the pipelined multi-FPGA

JPEG decoder are given in Figure B-8 to Figure B-13. Cursors 1 and 2 in the zoom in

views of the simulations mark the first decoded (pixel) value and the end of the eighth

decoded (pixel) value respectively. Inter-device data sent through the explicit

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 264

communication channels (ExCs) using the two-phase data handshaking scheme can be

seen in the zoom in views of the simulations (e.g. ExC 4 in Figure B-9).

BBS mmm
HSS MMM
5 5 5 MMM

g a g s s s
25S- MMM
999 MMM

5 5 5 MMM
HHH = = =
SS5 MMM BBS MMM BBB MMM BBS MMM BBS MMM BBS MMM BBB MMM 555 MMM
555 MMM

BBS MMM
555 MMM
EBB MMM
SSh = = =
g g g = = = 995 MMM

MM M MM ^ ^
BSS BSf l Smm BBB MMM BBS MMM BBB MMM
555 MMM
QQQ- MMM BBS MMM BBB MMM
555 MMM

ill
• 1 ••• ') I
6 6 6 6

Figure B-6 Simulation of test image (LENA.JPG) decoding in a non-pipelined
multi-FPGA JPEG decoder

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 265

p % g g% § 23 2 *

I'll' a n

mill I I I
@! g! e & a 9

v i i i i i i u

Figure B-7 Simulation (zoom view) of test image (LENA.JPG) decoding in a
non-pipelined multi-FPGA JPEG decoder

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 266

9 g l l

s m

iiliiiiiii
«! *l. • TE 3 ! r ' a * "ICC ^
6 6 6 1 6 6 6 6 6 6 1

Figure B-8 Simulation of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (2-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 267

i

e a a e a s S 8 8 » t S 8-8 8 8 8 8 8

Figure B-9 Simulation (zoom view) of test image (LENA.JPG) decoding in a
pipelined multi-FPGA JPEG decoder (2-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 268

i i i i i i i i i i i H i i i i i

I •§; tl

I i I i i i! 1111 111.! i H ! 11 i I; ^ ^ ^ ^ ^ jc je u. jr j t j s jT w, J ^ *

r-i 2_GC O - ^ B'' E: f!(C r ; 3: - CC #| ^ 1 t i ?, 2_Gc D - =" E : r ; a

6 6 6 1 6 6 6 16 i I 6 6 I 6 6 6 1 6 6 A 6 6 6 6 6 A A

lilfll

i f l III
lii H i

mm
Figure B-10 Simulation of test image (LENA.JPG) decoding in a pipelined

multi-FPGA JPEG decoder (3-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 269

R

l l i U l i l ! ! , ! ,

...ill
5 S S 5 s s

Figure B-11 Simulation (zoom view) of test image (LENA.JPG) decoding in a
pipelined multi-FPGA JPEG decoder (3-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 270

IHl t l l
m m III

l i i i

I
6 6 6 1 6 6 6

Figure B-12 Simulation of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (6-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 271

n

I » 8 i »

m 1*11̂* IN #
l i i ia a i l l 111 I t l t i l t

"""'JSillUIUipil
6 6 6 1 6 6 6 1 6 6 6 1 A A11 6 6 6 6

Figure B-13 Simulation (zoom view) of test image (LENA.JPG) decoding in a
pipelined multi-FPGA JPEG decoder (6-device implementation)

T.B. Y e e , 2 0 0 7 A p p e n d i x B: Hardware demonstrator in detail 272

B.4 Hardware demonstrator development board
pin assignments

The multi-FPGA JPEG decoder hardware demonstrator is targeted onto three Digilent D2-

SB development boards and one of the boards connected to the I/O VGA peripheral board

as shown in the photograph of Figure B-14.

D2-SB
development

board 3

D2-SB
development

board 2

D2-SB
development

board 1

I/O VGA
peripheral board

Figure B-14 Multi-FPGA board connections

The following tables give the pin assignments of the three Digilent D2-SB development

boards; connectors that are not available (N/A) for user I/O assignments (e.g. VCC, GND)

or not connected (n/c) are highlighted in grey. Table B-2 lists signals assigned to

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail
273

connectors A1 and A2, Table B-3 lists signals assigned to connectors B1 and B2, and

signals assigned to connectors CI, and C2 on development board 1 are given in Table B-4.

Connector A1 Connector A2
Conn, pin FPGA pin signal Conn, pin FPGA pin

1 N/A GND
1 '' N/A GND

2 N/A VU
1 ^ N/A VU

3 N/A VCC33
1 ^ N/A VCC33

4 P112
1 P162

5 P111 vga hsync n 1 ® P161 SRAMAddr(1)
6 P110 1 vpa vsync n 1 ® P160 SRAMAddr(O)
7 1 PI 09 1 pin vga qrav(l) 1 7 PI 52 SRAMAddr(3)
8 1 P108 1 pin vga grav(O)

1 ^ P151 SfRAMAddr(2)
9 1 P102 1 pin vga qrav(3) 1 ® PI 50 SRAMAddr(5)

10 1 P101 1 pin vga gray(2) 1 10 P149 SRAMAddr(4)
11 1 PI 00 pin vga grav(5) 1 11 P148 SRAMAddr(7)
12 1 P99 1 pin vga gray(4)

1 P147 SRAMAddr(6)
13 1 P98 j pin vga grav(7)

1 P146 SRAMAddr(9)
14 1 P97 1 pin vga gray(6) 1 14 P145 SRAMAddr(8)
15 j P96 1

1 P141 SRAMAddr(11)
16 1 P95 1 1 16 PI 40 SRAMAddrdO
17 1 P94 1

1 PI 39 SRAMAddr(13)
18 1 P93 1 1 18 PI 38 SRAMAddr(12)
19 1 P89 1 1 19 PI 36 SRAMAddr(15)
20 1 P181 1 1 20 P135 SRAMAddr(14)
21 1 P87 1

1 P134 SRAMAddr(17)
22 1 P180 1 1 22 P133 SRAMAddr(16)
23 1 P179 1 SRAMData(12) 1 23 P132 SRAMDatad)
24 1 P178 1 SRAMData(13)

1 P129 SRAMData(O)
25 1 P176 1 SRAi\/IData(14) 25 PI 27 StRAMData(3)
26 1 Pi 75 1 SRAMData(15) 26 P126 SRAMData(2)
27 1 P174 j SRAM CE 27 P125 SRAMData(5)
28 1 PI 73 1 SRAM WE 28 P123 SRAMData(4)
29 j PI 69 1 SRAM LB 29 P122 SRAMData(7))
30 1 P168 1 SRAM UB 30 P121 SRAMData(6)
31 1 P167 1 SRAM OE 31 P120 SRAMData(9)
32 1 P166 1 32 P116 SRAMData(8)
33 1 P165 1 RD 33 P115 SRAMData(l l)
34 1 P164 1 TD 1 34 P114 SRAMDatad 0)
35 1 PI 63 1 pin_vgaclk 25Mhz 35 P113

36 1 n/c 36 n/c
37 1 n/c 37 n/c
38 j n/c 38 n/c

39 1 n/c 39 P80 GCLKO
40 1 n/c 1 40 n/c

Table B-2
board 1

and A2 of development

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 274

Conn 2ctor B1 Connector 82

Conn, pin FPGA pin signal Conn, pin FPGA pin signal
1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VCC33

4
P112

4 P71

5
P111

5 P70

6
P110

6
P69

7
P I 09

7
P68

8
P I 08

8
P64

9
P I 02

9
P63

10
P101

10 P62 Data_Symboi(0)

11
P100

11
P61 Data_Symbol(1)

12
P99

12
P60 Data_Symbol(2)

13
P98

13 P59 Data_Symbol(3)

14
P97

14
P58 Data_Symbol(4)

15
P96

15 P57 Data_Symbol{5)

16
P95

16 P56 Data_Symbol(6)

17
P94

17
P55 Data_Symbol(7)

18
P93

18
P49 JFIF_hs_rdy

19
P89

19
P48 JFIF_hs_rcv

20
P88

20
P47 Symbol_hs_rdy

21
P87

21
P46 Symbol_hs_rGV

22
P86

22
n/c

23
P84

23
n/c

24
P83

24
n/c

25
P82

25 n/c

26
P81

26 n/c

27
P75

27 n/c

28
P74

28
n/c

29
P73

29
n/c

30
n/c

30
n/c

31
n/c

31 n/c

32
n/c

32
n/c

33
n/c

33
n/c

34
n/c

34
n/c

35
n/c

35
n/c

36
n/c

36
n/c

37
n/c

37
n/c

38
n/c

38 n/c

39
n/c

39
n/c

40
n/c

40
n/c

Table B-3 Pin assignment of signals to connector B1 and B2 of development
board 1

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 275

Connector C1 Connector C2

Conn, pin FPGA pin signal Conn, pin FPGA pin signal

1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VCC33

4
P112

4 P23

5
P111

5 P22 decoded_data(5)

6
P110

6 P21

7
P109

7 P20 decoded_data(6)

8
PI 08

8 P18 decoded_data(7)

9
P102

9 PI 7 decoded_data(8)

10
P101

10 P16 decoded_data(9)

11
P99

11 P15 decoded_data(10)

12
P99

12 P11 decoded_data(11)

13
P98

13 P10 decoded_data(12)

14
P97

14 P9 decoded_data(13)

15
P96 JFIF_eof

15 P8 decoded_data(14)

16
P95 Data_Symboi(8)

16 P7 decoded_data(15)

17
P94 Data_Symbol(9)

17 P6 end_conv

18
P93 Data_Symbol(10)

18 P5 s_sym_check

19
P89 Data_Symbol(11)

19 P4

20
P45 Data_Symbol(12)

20 P3 JPEG_start

21
P87 Data_Symbol(13)

21 P206

22
P44 Data_Symbol(14)

22 P205

23
P43 Data_Symbol(15)

23 P204

24
P42 JFIF_info(0)

24 P203

25
P41 JFIFJnfo(1)

25 P202

26
P40 JFIF_info(2)

26 P201

27
P36 JFIFJnfo(3)

27 P200

28
P35

28 P199

29
P34 decoded_req

29 PI 98

30
P33 decoded_ack

30 PI 94

31
P31 decoded_data(0)

31 P193

32
P30 decoded_data(1)

32 PI 92

33
P29 decoded_data(2)

33
P191

34
P27 decoded_data(3)

34
P189

35
P24 decoded_data(4)

35 PI 88

36
n/c

36 n/c

37
n/c

37 n/c

38
n/c

38 n/c

39
n/c

39 P77 GCLK1

40
n/c

40 n/c

Table B-4 Pin assignment of signals to connector C1 and C2 of development
board 1

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 276

Table B-5 lists signals assigned to connectors A1 and A2, Table B-6 lists signals assigned

to connectors B1 and B2, and signals assigned to connectors CI , and C2 on development

board 2 are given in Table B-7.

Conn ector A1 Connector A2
Conn, pin FPGA pin signal Conn, pin FPGA pin signal

1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A \A:C33
4 P112

4 PI 62

5 P111 5 P161 decoded_data(4)

6 P110
6 PI 60

7 P109 7 PI 52 decoded_data(2)

8 P108 8 P151 decoded_data(3)

9 j P102
9 P150 decoded_data(0)

10 1 P101 10 P149 decoded_data(1)

11 1 P100
11 P148 decoded_req

12 1 P99 12 P147 decoded_ack

13 j P98 13 P146 JFIFJnfo(3)

14 1 P97 14 P145

15 1 P96 15 P141 JFIFJnfo(1)

16 1 P95 16 P140 JFIF_info(2)

17 P94 17 P139 Data_Symbol(15)

18 1 P93 18 P138 JFIF_info{0)

19 j P89 19 P136 Data_Symbol(13)

20 1 P181 20 P135 Data_Symbol(14)

21 P87 21 PI 34 Data_Symbol(11)

22 1 PI 80 JPEG_start 22 P133 Data_Symbol(12)

23 1 P179 end_conv 23 P132 Data_Symbol(9)

24 P178 s_sym_check 24 P129 Data_Symbol(10)

25 PI 76 decoded_data(14) 25 PI 27 JFIF_eof

26 1 P175 decoded_data(15) 26 PI 26 Data_Symbol(8)

27 1 PI 74 decoded_data(12) 27 P125

28 1 PI 73 decoded_data(13) 28 PI 23

29 PI 69 decoded_data(10) 29 PI 22

30 1 P168 decoded_data(11) 30 PI 21

31 P167 decoded_data(8) 31 PI 20

32 P166 decoded_data(9) 32 P116

33 1 P165 decoded_data(6) 33 P115

34 1 P164 decoded_data(7) 34 P114

35 1 PI 63 decoded_data(5) 35 P113

36 1 n/c 36 n/c

37 1 n/c 37 n/c

38 1 n/c 38 n/c

39 1 n/c 39 P80 GCLKO

40 1 n/c 40 n/c

Table B
board 2

and A2 of development

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 277

Conn actor B1 Connector B2
Conn, pin FPGA pin signal Conn, pin FPGA pin signal

1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VCC33
4 P112 4 P71

5 P111 5 P70

6 P110 6 P69

7 P109 7 P68

8 P108 8 P64

9 P102 9 P63

10 P101 10 P62 Data_Symbol(0)

11 P100 11 P61 Data_Symbol(1)

12 P99 12 P60 Data_Symbol(2)

13 P98 13 P59 Data_Symboi(3)

14 P97 14 P58 Data_Symbol(4)

15 P96 15 P57 Data_Symbol(5)

16 P95 16 P56 Data_Symbol(6)

17 P94 17 P55 Data_Symbol(7)

18 P93 18 P49 JFIF_hs_rdy

19 P89 19 P48 JFIF_hs_rcv

20 P88 20 P47 Symbol_hs_rdy

21 P87 21 P46 Symbol_hs_rcv

22 P86 22 n/c

23 P84 23 n/c

24 P83 24 n/c

25 P82 25 n/c

26 P81 26 n/c

27 P75 27 n/c

28 P74 28 n/c

29 P73 29 n/c

30 n/c 30 n/c

31 n/c 31 n/c

32 n/c 32 n/c

33 n/c 33 n/c

34 n/c 34 n/c

35 n/c 35 n/c

36 n/c 36 n/c

37 n/c 37 n/c

38 n/c 38 n/c

39 n/c 39 n/c

40 n/c 40 n/c

Table B-6 Pin assignment of signals to connector B1 and B2 of development
board 2

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 278

Connector C1 Connector C2
Conn,

pin
FPGA

pin signal Conn,
pin

FPGA
pin signal

1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VGC33
4 P112 4 P23

5 P111 5 P22 jpg_core_two_ba2_Data_inout(2)

6 P110 6 P21

7 PI 09 jpg_core_two_ba1_Data_req 7 P20 jpg_core_two_ba2_Data_inout(3)

8 P108 jpg_core_two_ba1_Data_ack 8 P18 jpg_core_two_ba2_Data_inout(4)

9 PI 02 jpg_core_two_ba1_Data_inout(0) 9 P17 jpg_core_two_ba2_DataJnout(5)

10 P101 jpg_core_two_ba1_DataJnout{1) 10 P16 jpg_core_two_ba2_Data_inout(6)

11 P99 jpg_coreJwo_ba1_DataJnout(2) 11 P15 jpg_core_two_ba2_Data_inout(7)

12 P99 jpg_core_two_ba1_Data_inout(3) 12 P11 jpg_core_two_ba2_Data_inout(8)

13 P98 jpg_core_two_ba1_Data_inout(4) 13 P10 jpg_core_two_ba2_Data_inout(9)

14 P97 jpg_core_two_ba1_Data_inout(5) 14 P9 jpg_core_two_ba2_Data_inout(10)

15 P96 jpg_core_two_ba1_Data_inout(6) 1 5 P8 jpg_core_two_ba2_DataJnout(11)

16 P95 jpg_core_two_ba 1 _Data_inout(7) 16 P7 jpg_core_two_ba2_DataJnout(12)

17 P94 jpg_core_two_ba1_Data_inout(8) 17 P6 jpg_core_two_ba2_Data_inout(13)

18 P93 jpg_core_two_ba1_Data_inout(9) 18 P5 jpg_core_two_ba2_Data_inout(14)

19 P89 jpg_coreJwo_ba1_DataJnout(10) 19 P4 jpg_core_two_ba2_Data_inout(15)

20 P45 jpg_core_two_ba1_DataJnout(11) 20 P3 jpg_core_two_ba2_Data_inout(16)

21 P87 jpg_core_two_ba1_Data_inout(12) 21 P206 jpg_core_two_ba2_DataJnout(17)

22 P44 jpg_core_two_ba1_Data_inout(13) 22 P205 jpg_core_two_ba2_DataJnout(18)

23 P43 jpg_core_two_ba1_DataJnout(14) 23 P204 jpg_core_two_ba2_Data_inout{19)

24 P42 jpg_core_two_ba1_DataJnout(15) 24 P203 jpg_core_two_ba2_Data_inout(20)

25 P41 jpg_coreJwo_ba1_DataJnout(16) 25 P202 jpg_core_two_ba2_Data_inout(21)

26 P40 jpg_core_two_ba1_Data_inout(17) 26 P201 jpg_core_two_ba2_DataJnout(22)

27 P36 jpg_co re_two_ba 1 _Data_i n out(18) 27 P200 jpg_core_two_ba2_Data_inout(23)

28 P35 jpg_core_two_ba1_DataJnout(19) 28 PI 99 jpg_core_two_ba2_Data_inout(24)

29 P34 jpg_core_two_ba1_DataJnout(20) 29 PI 98 jpg_core_two_ba2_Data_inout(25)

30 P33 jpg_core_two_ba1_txcell_req1 (0) 30 PI 94 jpg_core_two_ba2_Data_inout{26)

31 P31 jpg_core_two_ba1Jxceil_req1(1) 31 Pi 93 jpg_core_two_ba2_Data_inout(27)

32 P30 jpg_core_two_ba1_txcell_ack1 (0) 32 P192 jpg_core_two_ba2_txcell_req 1

33 P29 j pg_co re_two_b a 1 Jxce 1 l_a ck 1 (1) 33 P191 jpg_core_two_ba2_txcell_ack1

34 P27 jpg_core_two_ba2_Data_inout(0) 34 PI 89 jpg_core_two_ba2_Data_req

35 P24 jpg_core_two_ba2_DataJnout(1) 35 P188 jpg_core_two_ba2_Data_ack

36 n/c 36 n/c

37 n/c 37 n/c

38 n/c 38 n/c

39 n/c 39 P77 GCLK1

40 n/c 40 n/c

board 2

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 279

Table B-8 lists signals assigned to connectors A1 and A2, and Table B-9 lists signals

assigned to connectors Bl , B2, CI, and C2 on development board 3.

Connector A1 Connector A2
Conn, pin FPGA pin signal Conn, pin FPGA pin signal

1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VCC33
4 P112 4 P I 62

5 P111 vga_hsync_n 5 P161 SRAMAddr(l)
6 P110 vga_vsync_n 6 P160 SRAMAddr(O)
7 P109 Pin_vga_gray{1) 7 PI 52 SRAMAddr(3)
8 P108 pin_vga_gray(0) 8 P151 SRAMAddr(2)

9 P102 pin_vga_gray(3) 9 P I 50 SRAI\/IAddr(5)
10 P101 pin_vga_gray{2) 10 P149 SRAMAddr(4)
11 P100 pin_vga_gray(5) 11 P148 SRAMAddr(7)
12 P99 pin_vga_gray{4) 12 P147 SRAMAddr(6)
13 P98 pin_vga_gray(7) 13 P146 SRAMAddr(9)
14 P97 pin_vga_gray(6) 14 P I 45 SRAI\/IAddr(8)
15 P96 15 P141 SRAMAddr(l l)

16 P95 16 P140 SRAMAddr(IO)

17 P94 17 PI 39 SRAMAddr(13)
18 P93 18 P I 38 SRAMAddr(12)

19 P89 19 P136 SRAI\/IAddr(15)

20 P181 20 P135 SRAMAddr{14)

21 P87 21 P I 34 SRAMAddr(17)
22 P180 22 P I 33 SRAMAddr(16)

23 P179 SRAMData(12) 23 P132 SRAMData(l)

24 PI 78 SRAI\/lData(13) 24 P129 SRAMData(O)

25 P I 76 SRAMData(14) 25 P127 SRAMData(3)

26 P I 75 SRAMData(15) 26 P I 26 SRAIVlData(2)

27 PI 74 SRAIVI_CE 27 P125 SRAI\/IData(5)

28 P173 SRAI\/I_WE 28 P I 23 SRAMData(4)

29 P169 SRAM_LB 29 P122 SRAI\/IData(7))

30 P168 SRAM_UB 30 P121 SRAMData(6)

31 P167 SRAM_OE 31 P120 SRAI\/IData{9)

32 P I 66 32 P116 SRAI\/lData(8)

33 P165 RD 33 P115 SRAMData(11)

34 PI 64 TD 34 P114 SRAMData{10)

35 P163 pin_vgaclk_25Mhz 35 P113

36 n/c 36 n/c

37 n/c 37 n/c

38 n/c 38 n/c

39 n/c 39 P80 GCLKO

40 n/c 40 n/c

Table B-8 Pin assignment of signals to connector A1 and A2 of development
board 3

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 280

Connector B1 Connector B2 Connector C I Connector C2
Conn,

pin
FPGA

pin signal Conn,
pin

FPGA
pin signal Conn,

pin
FPGA

pin signal Conn,
pin

FPGA
pin signal

1 N/A GND 1 N/A GND 1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU 2 N/A V U 2 N/A VU
3 N/A VCC33 3 N/A VCC33 3 N/A VCC33 3 N/A VCC33
4 4 P71 4 P112 4 P23

5 P111 5 P70 5 P111 5 P22

6 P110 6 P69 6 P110 6 P21

7 P109 7 P68 7 P109 7 P20

8 P108 8 P64 8 P108 8 P18

9 P102 9 P63 9 P102 9 P17

10 P101 10 P62 10 PI 01 10 P16

11 PI 00 11 P61 11 P99 11 P15

12 P99 12 P60 12 P99 12 P11

13 P98 13 P59 13 P98 13 P10

14 P97 14 P58 14 P97 14 P9

15 P96 15 P57 15 P96 15 P8

16 P95 16 P56 16 P95 16 P7

17 P94 17 P55 17 P94 17 P6

18 P93 1 8 P49 18 P93 18 P5

19 P89 19 P48 19 P89 19 P4

20 P88 20 P47 20 P45 20 P3

21 P87 21 P46 21 P87 21 P206

22 P86 22 n/c 22 P44 22 P205

23 P84 23 n/c 23 P43 23 P204

24 P83 24 n/c 24 P42 24 P203

25 P82 25 n/c 25 P41 25 P202

26 P81 26 n/c 26 P40 26 P201

27 P75 27 n/c 27 P36 27 P200

28 P74 28 n/c 28 P35 28 P199

29 P73 29 n/c 29 P34 29 PI 98

30 n/c 30 n/c 30 P33 30 PI 94

31 n/c 31 n/c 31 P31 31 PI 93

32 n/c 32 n/c 32 P30 32 P192

33 n/c 33 n/c 33 P29 33 P191

34 n/c 34 n/c 34 P27 34 P189

35 n/c 35 n/c 35 P24 35 P188

3G n/c 36 n/c 36 n/c 36 n/c

37 n/c 37 n/c 37 n/c 37 n/c

3 8 n/c 3 8 n/c 38 n/c 38 n/c

39 n/c 39 n/c 39 n/c 39 P77 GCLK1

40 n/c 40 n/c 40 n/c 40 n/c

Table B-9 Pin assignment of signals to connector B1, B2, C1, and C2 of
development board 3

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 281

B.5 Circuit description of the Bt121 triple 8-bit
VideoDAC

The BT121 is a triple 8-bit videoDAC designed specifically for high-performance, high-

resolution colour graphics. The BT121 generates RS-343A-compatible video signals into a

doubly-terminated 7 5 0 load, and RS-170-compatible video signals into a singly-

terminated 7 5 0 load, without requiring external buffering. Both the differential and

integral linearity errors of the D/A converters are guaranteed to be a maximum of ± 1 LSB

over the flill temperature range. The functional block diagram of the BT121 is given in

Figure B-15.

VREF : FS ADJUST

CLOCK -

R0-R7

G 0 - G 7

B 0 - B 7

S Y N C * -

BLANK' -

1.2 V

Reference
Amplifer

8

Register

8

a

DAC

I DAC

' DAC

lOR

lOG

. lOB

VAA' 'AGND

Figure B-15 Functional block diagram of the BT121 videoDAC

As illustrated in the fimctional block diagram, the BT121 contains three 8-bit D/A

converters, input registers, and a reference amplifier. On the rising edge of CLOCK, 24

bits of colour information (R0-R7, G0-G7, and B0-B7) are latched into the device and

presented to the three 8-bit D/A converters. Latched on the rising edge of CLOCK to

maintain synchronisation with the colour data, the SYNC* and BLANK* inputs add

appropriately weighted currents to the analogue outputs, producing the specific output

levels required for video applications.

The D/A converters on the BT121 use a segmented architecture in which bit currents are

routed to either the outputs or GND by a sophisticated decoding scheme. This architecture

eliminates the need for precision component ratios and greatly reduces the switching

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 282

transients associated with turning current sources on and off. Monotonicity and low glitch

are guaranteed by use of identical current sources and current steering their outputs. An

on-chip operational amplifier stabilises the full-scale output current against temperature

and power supply variations. The analogue outputs of the BT121 can directly drive a 37.5

n load, such as a doubly-terminated 75 O coaxial cable. The pin diagram of the BT121

videoDAC is illustrated in Figure B-16 and the pin descriptions are given m Table B-10.

K O Q
CD o

o <
1 i

8 1 1
Q
§

o
§

g o

% R N S s % % 5

R7 r 40 28 J GND

R 6 [41 27 J GND

R5 r 42 26 J BO

R 4 [43 25 J B 1

R 3 r 44 24 JB2

R2 ^ 1 # 23]B3

Ri r

R0[

2

3

22

21

J B 4

]B5 j

GND 1 4 20 jBG 1

GNDl" 5 19]B7 1

SYNC* r 6 18]CLOCK 1

1—1 1—1 ' ' L j c ! ;

i (3 o o s 8 S 5 o o a

m
§ o

Figure B-16 Pin diagram of the BT121 videoDAC

Pin name Description

BLANK*

Composite blank control input (TIL compatible). A logical zero
drives the lOR, lOG, and lOB outputs to the blanking level. BLANK*
is latched on the rising edge of CLOCK. When BLANK* is a logical
zero, the R0-R7, G0-G7, and B0-B7 inputs are ignored.

SYNC*

Composite sync control input (TIL compatible). SYNC* does not
override any other control or data input. SYNC* should be asserted
only during the blanking interval. It is latched on the rising edge of
CLOCK.

R0-R7, G0-G7,
B0-B7

Red, green, and blue data inputs (TIL compatible). RO, GO, and BO
are the least-significant data bits. They are latched on the rising
edge of CLOCK. Coding is binary.

CLOCK
Clock input (TTL compatible). The rising edge of CLOCK latches the
R0-R7, G0-G7, B0-B7, SYNC*, and BLANK* inputs. It is typically the
pixel clock rate of the video system. It is recommended that the

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 283

CLOCK input be driven by a dedicated TTL buffer to avoid reflection-
induced jitters.

lOR, lOG, lOB

Red, green, and blue current outputs. These high-impedance current
sources can directly drive a doubly-terminated 75 0 coaxial cable.
All outputs, whether used or not, should have a common output
load.

FS ADJUST Full-scale adjust control. A resistor (RSET) connected between this
pin and GND controls the magnitude of the full-scale video signal

COIVIP

Compensation pin. This pin provides compensation for the internal
reference amplifier. A 0.1 pF ceramic capacitor in series with a
resistor should be connected between this pin and the nearest VAA
pin (see Figure B-16) for optimum settling time. Connecting the
capacitor to VAA rather than to GND provides the highest possible
power supply noise rejection. The COMP resistor and capacitor
must be as close to the device as possible to keep lead lengths to
an absolute minimum.

VREF
Voltage reference input. The internal voltage reference is used and
this pin is only connected to a 0.1 pF ceramic capacitor that
decouples this input to GND.

GND Analogue ground. All GND pins must be connected together on the
same PCB plane to prevent latchup.

VAA Analogue power. All VAA pins must be connected on the same PCB
plane to prevent latchup.

Table B-10 Pin descriptions of the BT121

The typical connection diagram using the internal voltage reference is shown in Figure B-

17 and the parts lists listed in Table B-11.

C O M P

VAA

R 4

A n a l o g P o w e r P l a n e

VREF
C 2 . C 3

BT121

C 6

G N D

F S A d j u s t

ICR

lOG

lOB

R S E T ; ; < R 1 : ; R 2 %R3

P

P

P

+ 5 V

C I

G r o u n d

VAA

1 N 4 1 4 8 / 9

DAG
ou tpu t

T o

m o n i t o r

video
lector

1 N 4 1 4 8 #

AGND

Figure B-17 Typical connection diagram with Internal voltage reference

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 284

Location Description Vendor part number

CI 33 pF tantalum capacitor Mallory CSR13F336KM
C2, C3, C4, C5 0.1 pF ceramic capacitor Erie RPE112Z5U104M50V
C6 10 (jF capacitor Mallory CSR13G106KM
L1 Ferrite bead Fair-Rite 2743001111
R1,R2, R3 75 Q 1% metal film resistor Dale CIVIF-SSC
R4 15 Q 1% metal film resistor Dale CMF-55C
RSET 143 O 1 % metal film resistor Dale CMF-55C

Note: The vendor numbers above are listed only as a guide. Substitution of devices
with similar characteristics will not affect the performance of the BT121.

Table B-11 Typical connection parts list

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 285

B.6 Digilent D2-SB system board reference manual

Overview

The Digilent D2-SB circuit board
provides a complete circuit development
platform centered on a Xilinx Spartan 2E
FPGA. D2-SB features include:
• A Xilinx XC2S200E-200 FPGA with
200K gates and 350MHz operation;
• 143 user l/Os routed to six standard
40-pin expansion connectors;
• A socket for a JTAG-programmable
18V02 configuration Flash ROM;
• Dual on-board 1.5A power regulators
(1.8V and 3.3V):
• An SMD 50MHz oscillator, and a
socket for a second oscillator;
• A JTAG programming port;
• A status LED and pushbutton for basic
I/O;

The D2-SB has been designed to work
seamlessly with all versions of the Xilinx
ISE CAD tools, including the free
WebPack tools available from the Xilinx
website. A growing collection of low-cost
expansion boards can be used with the
D2-SB to add analog and digital I/O
capabilities, as well as various data ports
like Ethernet and USB. The D2-SB board
ships with a power supply and
programming cable, so designs can be
implemented immediately without the
need for any additional hardware.

Functional Description

The Digilab D2-SB provides a minimal
system that can be used to rapidly
implement FPGA based circuits, or to
gain exposure to Xilinx CAD tools and
Spartan 2E devices. The D2-SB
provides only the essential supporting
devices for the Spartan 2E FPGA,
including clock sources and power
supplies. All available I/O signals are
routed to standard expansion connectors
that mate with 40-pin, 100 mil spaced
DIP headers available from any catalog
distributor.

S - ' c ' D "

I r O :
I c g u a t u : ocki oLflon

LED

Xilinx Spartan2E XC2S200E-PQ208

Expanskm Connectors

T

I I
s

I I
E

C1

L

D2-SB circuit board block diagram

A pushbutton and LED are also included
for basic I/O. The D2-SB board has been
designed to serve primarily as a host for
peripheral boards. Each of the six
expansion connectors provides the
unregulated supply voltage (VU), 3.3V,
GND, and 32 FPGA I/O signals.
Because there are more connector pins
than FPGA pins, the A1, B1 and CI
connectors share an 18-pin "system
bus", and not all pins on the B expansion
connectors are used. JTAG signals are
also routed to the A1, 81, and CI
expansion connectors. This allows
peripheral boards to drive the scan
chain, or to be configured along with the
Spartan 2E FPGA. Application-specific
peripheral boards can be created to
mate with the D2-SB, or readymade
peripheral boards that offer many
standard f u n c t i o n s can be obtained f rom
Digilent (see www.dig i len t inc .com) .

JTAG Ports and Device Configuration

The Spartan 2E FPGA and the 18V00
ROM on the D2-SB, and any
programmable devices on peripheral
boards attached to the D2-SB can be
programmed via the JTAG port. The
JTAG scan chain is routed to the FPGA
and ROM on the D2-SB and then around
the board to four connection ports as

http://www.digilentinc.com

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 286

shown in the figure below. The primary
configuration port (Port 1) uses a
standard 6-pin JTAG header (J7) that
can accommodate Digilent's JTAG3
cable (or cables from Xilinx or other
vendors). The other three JTAG
programming ports are available on the
A1, B1, and C1 expansion connectors,
and these ports are bi-directional. If no
peripheral board is present, a buffer on
the D2-SB removes the expansion
connector from the JTAG chain. If a
peripheral board with a JTAG device is
attached, the scan chain is driven out the
expansion connector so that any JTAG
programmable parts can be configured.
If a Digilent port module is connected to
one of the three JTAG-enabled
expansion connectors, then the port
module can drive the JTAG chain
to program all devices in the scan chain
(port modules include Ethernet, USB,
EPF parallel, and serial modules - see
www.diqilentinc.com for more
information).
The scan chain can be driven from the
primary port by powering on the D2-SB,
connecting it to a PC with a JTAG
programming cable, and running the
"auto-detect" feature of the configuration
software. The configuration software
allows devices in the scan chain to be
selectively programmed with any
available configuration file. If no
programming ROM is loaded in the ICS
socket (or if ROM is present but is not to
be included in the scan chain), jumper-
shunts must be loaded at JP1 and JP2 in
the "Bypass ROM" location to route the
JTAG chain around the ROM socket. If
an 18V02 (or larger) ROM is loaded in
the ICS socket, it can be included in the
scan chain by loading the JP1 and JP2
jumper-shunts in the "Include ROM"
positions. If a programming ROM is
present in the ICS socket, the FPGA will
automatically access the ROM for
configuration data if jumper shunts are
loaded in all three positions of J8 (M2,
Ml, and MO). Port modules attached to
ports A1, 81, or C1 can drive the scan
chain if a jumper-shunt is installed on the
primary JTAG header across the TDI
and TOO pins. In their default state,
Digilent port modules will appear as a

JTAG cable to the configuration
software. Port modules can disable their
JTAG drivers; if more than one JTAG
driver is enabled on the scan chain,
programming may fail.

* I / p a w

•

JTAG : ROY
:o"!neKcr ^

Cab e bypass —^
:03ft?" 2 :

p c : o &

''OC I

JTAG signal routing on D2-SB

Power Supplies

The D2-SB board uses two LM317
voltage regulators to produce a 1.8VDC
supply for the Spartan 2E core, and
3.3VDC supply for the I/O ring. Both
regulators have good bypass
capacitance, allowing them to supply up
to 1 .SA of current with less than SOmV of
noise (typical). Power can be supplied
from a lowcost wall transformer supply.
The external supply must use a 2.1mm
center-positive connector, and it must
produce between 6VDC and 12VDC of
unregulated voltage. The D2-SB uses a
four layer PCB, with the inner layers
dedicated to VCC and GND planes.
Most of the VCC plane is at 3.3V, with
an island under the FPGA at 1.8V. The
FPGA and the other ICs on the board all
have 0.047uF bypass capacitors placed
as close as possible to each VCC pin.
Total board current is dependant on
FPGA configuration, clock frequency,
and external connections. In test circuits
with roughly 50K gates routed, a SOMHz
clock source, and a single expansion
board attached (the DIOS board),
approximately 200mA +/- 30% of supply
current is drawn from the 1.8V supply,
and approximately 200mA +/- 50% is
drawn from the 3.3V supply. These
currents are strongly dependent on
FPGA and peripheral board
configurations. All FPGA I/O signals use

http://www.diqilentinc.com

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 287

the VCCO voltage derived from the 3.3V
supply. If other VCCO voltages are
required, the regulator output can be
modified by changing R12 according to:

VCCO = 1.25(1 + R12/R11).

Refer to the LM317 data sheet and D2-
SB schematic for further information.

Oscillators

The D2-SB provides a 50MHz SMD
primary oscillator and a socket for a
second oscillator. The primary oscillator
is connected to the GCK2 input of the
Spartan 2E (pin 182), and the secondary
oscillator is connected to GCK3 (pin
185). Both clock inputs can drive the
DLL on the Spartan 2E, allowing for
internal frequencies up to four times
higher than the external clock signals.
Any 3.3V oscillator in a half-size DIP
package can be loaded into the
secondary oscillator socket.

Pushbutton and LED

A single pushbutton and LED are
provided on the board allowing basic
status and control functions to be
implemented without a peripheral board.
As examples, the LED can be
illuminated from a signal in the FPGA to
verify that configuration has been
successful, and the pushbutton can be
used to provide a basic reset function
independent of other inputs. The circuits
are shown below.

8 0 ' 3 "
F 3 : X

Expansion Connectors

The six expansion connectors labeled
A1-A2, B1-B2, and C1-C2 use 2x20
right-angle headers with 100 mil spacing.
All six connectors have GND on pin 1,

VU on pin 2, and 3.3V on pin 3. Pins 4-
35 route to FPGA I/O signals, and pins
36-40 are reserved for JTAG and/or
clock signals. The expansion headers
provide 192 signal connections, but the
Spartan 2E-PQ208 has only 143
available I/O signals. Thus, some FPGA
signals are routed to more than one
connector. In particular, the lower 18
pins (pins 4-21) of the A1, B1, and CI
connectors are all connected to the
same 18 FPGA pins, and they are
designated as the "system bus" (a
unique chip select signal is routed to
each connector). Other than these 18
shared signals, all remaining FPGA
signals are routed to individual
expansion connector positions. The
lower 18 pins of the A2, B2, and C2
connectors are designated as "periphera
busses", and each of these busses
(named PA, PB, and PC) use 18 unique
signals. The 14 upper pins of each
expansion connector (pins 22-35) have
been designated as "module busses".
The A1, A2, 01, and C2 connectors
each have fully populated module
busses (named MAI, MA2, MCI, and
MC2). Insufficient FPGA pins were
available to route full module buses to
the B connectors; only the 8 data pins of
MB1 are routed, and no pins are routed
to the upper B2 expansion connector
(i.e., MB2 is a "no connect").

System Bus

The "system bus" is a protocol used by
certain expansion boards that mimics a
simple 8-bit microprocessor bus. It uses
eight data lines, six address lines, a
write-enable (WE) strobe that can be
used by the peripheral to latch written
data, an output-enable (OE) strobe that
can be used by the peripheral to enable
read data, a chip select, and a clock to
enable synchronous transfers.

The diagrams below show signal timings
assumed by Digilent to create peripheral
devices. However, any bus and timing
models can be used by modifying
circuits in the FPGA and attached
peripheral devices.

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 288

Write Cycle

cs

OE

DBO.OB7

Read Cvcle

OE -

WE

DB04)B7

\ r

y

(h

/
(d o e

- K 4 - K o e

K
t w

L J m ;

X K

t e o e

\
tdoe

i y

K

X X
K e a d d a t a l a t d i

Symbol Parameter Time (typ)
ten Time to enable after CS asserted 10 ns
th Hold time 1 ns

tdoe Time to disable after OE de-asserted 10 ns
teoe Time to enable after OE asserted 15 ns
tw Write strobe time 10 ns
tsu Data setup time 5 ns
twd Write disable time 0 ns

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 289

ii
S y s B u s

Spartan 2E
PO 208

8 o
a .

c

>8(16)

F - 5 4 . : ' p ^ i F 1 S 4 - 2 1

Expansion Connector Signal Routing

: P m 4 C

Expansion connector pin locations

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 290

P i n #
A 1 A 2 B 1 8 2 C 1 C 2

P i n #
Signal FPGA

Pin Signal FPGA
Pill Signal FPGA

Mn Signal FPGA
Pm Signal FPGA

Pin Signal FPGA
Pin

1 GND GND GND GND C O GND
2 VU VU VU VU J VU
3 VCC33 V C & # VCC33 VCC33 VCC33
4 AORO 112 PAmi 162 ADRO 112 PBmi 71 ADRO 112 PCKM 23
5 OBO 111 PAMZ 161 DBO 111 PBm2 70 DBO 111 pcm2 22
6 ADR1 110 PAoa 160 ADR1 110 PBm3 69 4 D R 1 110 pcms 21
7 DB1 109 PAm4 152 DB1 109 PBm4 G8 DB1 109 pcm4 20
8 A0R2 108 =Am5 151 ADR2 108 PBms 64 ADR2 103 pcms 13
9 DB2 ti 2 = i | 0 6 15C DB2 102 PBm6 63 DB2 102 pcme 17
10 ADR3 i n = -107 149 ADR3 101 PBm7 62 ADR3 101 PCW7 16
11 DB3 100 148 DB3 100 PBms 61 D B 3 100 pcme 15
12 ,WR4 99 PAWS 147 ADR4 99 PBmg 60 ADR4 99 pcmg 11
13 DB4 98 PAIOIO 146 DB4 98 PBI010 59 DB4 98 PCI010 1C
14 ADR5 97 PAI011 145 ADR5 97 PBI011 58 ADR5 97 PCI011 9
15 DBS 96 PAI012 141 DB5 96 PBI012 57 DBS 96 PCI012 8
16 WE 95 PAI013 140 WE 95 PBI013 56 W E 95 PCI013 7
17 DBG 94 PAI014 139 DB6 94 PBI014 55 DB6 94 PCI014 6
18 OE 93 PAI015 138 OE 93 PBI015 49 O E 93 PCI015 5
19 DB7 89 PAI016 136 DB7 89 PBI016 48 D B 7 89 PCI016 4
20 CSA 181 PAI017 135 CSB 88 PBI017 47 CSC 45 PCU017 3
21 LSBCLK 87 PAI018 134 LSBCLK 87 PBI016 46 LSBCLK 87 PCI018 206
22 VA1DB0 180 MA2DB0 133 MG1DB0 86 MCIDBO 44 IMC2DB0 205
2 3 VA1DB1 179 MA2DB1 132 MB1DB1 84 M C I OBI 43 MC2DB1 204
24 VA1DB2 178 MA20B2 129 MB1DB2 83 MC1DB2 42 MC2DB2 203
2 5 'AMDB3 176 MA2DB3 127 MB1DB3 82 MC1DB3 41 MC2DB3 202
2 6 VA1DB4 175 MA2DB4 126 MB1DB4 81 MC1DB4 40 MC2DB4 201
27 fAAilDBS 174 MA2DB5 125 MB1DB5 75 MC1DB5 36 MC2DB5 200
28 W\1DB6 173 VA20B6 123 MB1DB6 74 MC1DB6 35 VIC2DB6 199
29 '^A1DB7 169 VA2DB7 122 MB1DB7 73 dC1DB7 34 VIC2DB7 198
30 W 1 A S T B 168 MA2ASTB 121 \4C1ASTB 33 V1C2ASTB 194
31 AMDSTB 167 VA203TB 120 31 ,flC2DSTB 193
32 /A 'YvRT 166 ',AA2WRT 116 v i C A R - 30 ^C2WRT 192
3 3 , 'A"'A'AIT 165 ^ 2 W A I T 115 . ' C I WAIT 29 ,1C?A'AIT 19 '
34 /A1RST 164 VIA2RST 114 w^iRST 27 ^C2RST 189
3 5 163 v;A2INT 113 d C l I N T 24 .1C2INT 18S
36 ;TSELA ITSELB JTSELC
3 7 FMS r w s "MS
38 rcK r c K "CK
39 rOO 3OLK0 80 m o "DO (3CLK1 77

40 "Dl 3 NO ro i "Dl 1 |c 3ND

D2-SB Expansion Connector Pinout

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 291

P m # FuncHon P in# FuncUon Pin # Function P m # Function
1 GND 53 VCCO 105 VCCO 157 TDO
2 TMS 54 M2 106 PROG 158 GND
3 PC-1017 55 PB-1014 1G7 INIT 159 TDI
4 PC-1016 56 PB-1013 108 ADR2 160 P4^03
b PC-I015 57 PB-1012 109 DB1 161 PA^02
6 PC-j014 58 PB-1011 110 ADR1 162 PA-101
7 PC-1013 59 PB-I010 111 DBO 163 MA1-INT
8 PC-j012 60 PB-109 112 ADRO 164 MA1-R3T
9 PC-I011 61 PB-I08 113 MA2-INT 165 MA^AAT
10 PC-I010 62 PB407 114 MA&^ST 166 MAI A RT
11 PC^09 63 PB^OG 115 MA2-\'VAIT 167 htA1-DSTB
12 GND 64 PB^05 116 MA2-WRT 168 WA1-ASTB
13 VCCO 65 GND 117 GND 169 MA^#B7
14 VCCINTT GG VCCO 118 VCCO 170 GND
15 r 1 8 67 VCCINT 119 VCONT 171 \CCO
16 7 68 PB^04 120 MA2^8TB 172 VCCINT

P^^UG 69 PB403 121 MA2-ASTB 173 MAI-DBG
PC^OS 70 FB4C2 122 MA&D87 174 MA1-DB5
GND 71 FEWCI 123 MA2-D86 175
PC^04 72 GND 124 GND 176 MA1-DB3

21 PC^03 73 MB^DB7 125 MA2-DB5 177 GND
22 PC^02 74 MB^DBG 126 MA^DB4 178 MA1-DB2
23 PC^01 75 MB^DBS 127 MA2-DB3 179 MA1-DB1
24 MC1-INT 76 VCCWT 128 VCONT 180 MAI-DBu
25 GND 77 GCLK1 129 MA2-DB2 181 CSA
26 VCCO 78 VCCO 130 VCCO 182 GCLK2
27 MC1-RST 79 GND 131 GND 183 GND
28 VCCINT 80 GCLKO 132 M42-DB1 184 VCCO
29 MC1-WAIT 81 MB1-DB4 133 MA2-DB2 185 GCLK3
30 MC1-WRT 82 MB1-DB3 134 PAJ018 186 VCONT
31 ?,/IC1-DSTB 83 MB1-DB2 135 PA-I017 187
32 GND 84 MB1-DB1 136 PA4016 188 Mc:- N"
33 MC1-ASrB 85 GND 137 GND 189 k'C2-R:T
34 MC1-DB7 86 MB1-DB0 138 PATOIS 190 GND
35 MC1-DB6 87 LSBCLK 139 PA^014 191 IVIC2-''A'AIT
36 MC1-DB5 88 CSB 140 PA4013 192 MC2-WRT
37 VCCINT 89 DO 7 141 PA-1012 193 MC2-DSTB
38 VCCO % VCCiNT 142 VCCWT 194 MC2-ASTB
39 GND 91 VCCO 143 VCCO 195 VCCtNT
40 MC1.DB4 92 GND 144 GND 196 VCCO
41 MC1-DB3 93 OE 145 PA-1011 197 GND
42 MC1-DB2 94 DB6 146 PA-I010 198 MC2-DB7
43 fv1C1-DB1 95 A'E 147 ° A 4 0 9 199 MC2-DBe
44 MC1-DB0 96 DBS 148 PA^08 200 MC2-DB5
45 CSC 97 40R5 149 PA-107 201 MC2-DB4
46 P8-I018 98 3B4 150 :̂ A-IOG 202 IVIC2-DS3
47 °B-I017 99 4DR4 151 PA-105 203 MC2-DB2
48 :"B-I016 100 3B3 152 c'A-IO^ 204 MC2-D81
49 :'B-I015 101 4DR3 153 DIN 205 \iC2-DBG
50 Ml 102 3B2 154 -ED 206 =C-I018
51 3ND 103 3ND 155 CCLK 207 TCK
52 VIO 104 DONE 156 / c c o : # 8 y c c o

FPGA Pin Assignment

T.B. Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 292

B.7 Digilent DI04 peripheral board reference
manual

Overview
The DI04 circuit board provides a low-
cost, ready-made source for many of the
most common I/O devices found in
digital systems, it can be attached to a
Digilent system board to create a circuit
design platform capable of hosting a
wide array of circuits. DI04 features
include:
• A 4-digit seven segment LED display;
• 8 individual LEDs;
• 4 pushbuttons;
• 8 slide switches;
• 3-bit VGA port;
• PS/2 mouse or keyboard port;

Functional Description

The DI04 can be attached to Digilent
system boards to quickly and easily add
several useful I/O devices. The DI04
draws power from the system board, and
signals from all I/O devices are routed to
individual pins on the system board
connectors. These features allow the
DI04 to be incorporated into system-
board circuits with minimal effort.
All devices on the DI04 use the 3.3V
supply from the system board, except for
the PS/2 port which needs a 5VDC
supply (the DI04 contains a 5VDC
regulator). Signals coming from the PS/2
port are routed through level shifting
buffers to protect system boards that do
not have 5V tolerant inputs.

Power Supplies

The DI04 draws power from three pins
on the 40-pin connectors: pin 37
supplies 3.3V; pin 39 provides system
GND, and pin 40 supplies unregulated
voltage (VU). VU is connected to a
5VDC LDO regulator to produce a 5VDC
supply for the PS/2 interface. The 3.3V
supply is used to drive all other I/O
devices on the board. The DI04
consumes 5-10mA from the VU supply,

and 10-50mA from the 3.3V supply
(depending on how many LEDs are
illuminated).

P2

4 Oi acm*

DI04 circuit board block diagram

Seven-Segment LED display

The DI04 board contains a modular 4-
digit, common anode seven-segment
LED display. In a common anode
display, the seven anodes of the LEDs
forming each digit are connected to four
common circuit nodes (labeled AN1
through AN4 on the DI04). Each anode,
and therefore each digit, can be
independently turned on and off by
driving these signals to a '1' or a '0'. The
cathodes of similar segments on all four
displays are also connected together into
seven common circuit nodes labeled CA
through CG. Thus, each cathode for all
four displays can be turned on and off
independently. This connection scheme
creates a multiplexed display, where
driving the anode signals and
corresponding cathode patterns of each
digit in a repeating, continuous
succession can create a 4-digit display.
In order for each of the four digits to
appear bright and continuously
illuminated, all four digits should be
driven once every 1 to 16ms (for a
refresh frequency of 1 KHz to 60KHz).
For example, in a 60Hz refresh scheme,
each digit would be illuminated for % of
the refresh cycle, or 4ms. The controller
must assure that the correct cathode
pattern is present when the

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detai l 293

corresponding anode signal is driven. To
illustrate the process, if AN1 is driven
high while CB and CC are driven low,
then a "1" will be displayed in digit
position 2. Then, if AN2 is driven high
while CA, CB and CC are driven low,
then a "7" will be displayed in digit
position 2. If AN1 and CB, CC are driven
for 4ms, and then AN2 and CA, CB, CC
are driven for 4 ms in an endless
succession, the display will show "17" in
the first two digits. An example timing

c o n i n » n @n(xk

/ '
/ f

g e 0 c 6

Seven-segment display detail and cathode
patterns to display the decimal digits

Anodes are connected via
transistors for greater current

diagram is provided below. When
configured with the code shown in the
appendix, the CPLD on the DI04 board
implements a seven-segment controller
provided a suitable clock (256Hz to 1
KHz) is provided on the SCLK pin. The
controller accepts four 4-bit binary
numbers in two successive registers,
and decodes and displays them.

Digit
Shown

illL
a

mi
b

lated
c d

Se
e

gn-
f

ent
0

0 1 1 1 1 1 0
0 1 1 0 0 0 0

2 1 1 0 1 1
3 0 1
4 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1

1 1 1 0 0 Q 0
8 1 1 1 1 1 1
9 1 1 1 1 0 1 1

Asn

ASC

AN4

a b c 0 e f g d p

Cathodes are connected to Xilinx
device via 1000 resistors

kMe* x c i g i u)) D g l t 4 T

T . B . Y e e , 2 0 0 7 Appendix B: Hardware demonstrator in detail 294

Discrete LEDs

Eight individual LEDs are provided for
circuit outputs. The LED cathodes are
tied to GND via 270-ohm resistors, and
the LED anodes are driven from a
74HC373. The '373 allows LED data to
be latched on the DI04, so that the LD#
signals from the system board do not
need to be driven continuously (the LD#
signals use connector pins that are used
in the "system bus" on some Digilent
boards). If the system bus is not needed,
then the LDG signal can be tied high.

L D #

7 4 H C 3 7 3

- j o

!"• I
O-m

GN3

Button Inputs

The DI04 contains 4 N O. (normally
open) pushbuttons. Button outputs are
connected to Vdd via a 4.7K resistor.
When the button is pressed, the output is
connected directly to GND. This results
in a logic signal that is low only while the
button is actively pressed and high at all
other times. The buttons are debounced
with an RC filter and Schmitt trigger
inverter as shown in the figure below.
This circuit creates a logic high signal
when the button is pressed. The
debounce circuit provides ESD
protection and creates a signal with
clean edges, so the BTN# signals can be
used as clock signals if desired.

Vdd

T

1—0 ' 8TN#

Switch Inputs

The eight slide switches on the DI04 car
be used to generate logic high or logic
low inputs to the attached system board
The switches exhibit about 2ms of
bounce, and no active debouncing circui
is employed. A 4.7K-ohm series resistor
is used for nominal input protection.

v d d

O N C

PS2 Port

The DI04 board includes a 6-pin mini-
DIN connector that can accommodate a
PS2 mouse or PS2 keyboard
connection. A 5VDC regulator and
voltage-mapping buffers are provided on
the board to interface lower voltage
system boards with keyboards and/or
mice.

. u

- i l

•1

^ 3

Trrrn'
PS2 Connector

3 ^ 2 F i i

n c o o
o a
t t

F 1 3 i-'M ;•

Bottom-up
hole pa t t e rn

Definitions

Fuiici c -
1 Data
2 Reserved
3 GNC
4 Vdd
5 Cbok
e Reser i

Both the mouse and keyboard use a
two-wire serial bus (including clock and
data) to communicate with a host device
and both drive the bus with identical
signal timings. Both use 11-bit words
that include a start, stop and odd parity
bit, but the data packets are organized
differently, and the keyboard interface
allows bidirectional data transfers (so the
host device can illuminate state LEDs on
the keyboard). Bus timings are shown
below. The clock and data signals are
only driven when data transfers occur,
and otherwise they are held in the "idle"
state at logic ' 1 T h e timings define
signal requirements for mouse-to-host
communications and bi-directional
keyboard communications.

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 295

E d w O 1C

\
'0" bii

J u f :
' / '

T s t o o M

Symbol Parameter Min Max
Tck Clock time 30 us 50 us
Tsu Data-to-clock setup time 5 us 25 us
Thld Clock-to-data hold time 5 us 25 us

Keyboard

The keyboard uses open collector
drivers so that either the keyboard or an
attached host device can drive the two-
wire bus (if the host device will not send
data to the keyboard, then the host can
use simple input-only ports).

PS2-style keyboards use scan codes to
communicate key press data (nearly all
keyboards in use today are PS2 style).
Each key has a single, unique scan code
that is sent whenever the corresponding
key is pressed. If the key is pressed and
held, the scan code will be sent
repeatedly once every 100ms or so.
When a key is released, a TO" key-up
code is sent, followed by the scan code
of the released key.

If a key can be "shifted" to produce a
new character (like a capital letter), then
a shift character is sent in addition to the
original scan code, and the host device
must determine which character to use.
Some keys, called extended keys, send
an "EO" ahead of the scan code (and
they may send more than one scan
code). When an extended key is
released, an "EO FO" key-up code is
sent, followed by the scan code. Scan
codes for most keys are shown in the
figure below.

A host device can also send data to the
keyboard. Below is a short list of some
often used commands:

ED Set Num Lock, Caps Lock, and scro
Lock LEDs. After receiving an "ED",
the keyboard returns an "FA"; then
the host sends a byte to set LED
status: Bit 0 sets Scroll Lock; bit 1
sets Num Lock; and Bit 2 sets Caps
lock. Bits 3 to 7 are ignored.
Echo. Upon receiving an echo
command, the keyboard replies with
"EE".
Set scan code repeat rate. The
keyboard acknowledges receipt of
an "F3" by returning an "FA", after
which the host sends a second byte
to set the repeat rate.
Resend. Upon receiving FE, the
keyboard resends the last scan code
sent.

FF Reset. Resets the keyboard.

EE

F3

FE

F i F2 M 1 F : F r ' 3 = 1 - F C r 1
0 5 3 6 C - o c j 2 5 9 3 0 " - -J ,• c

! 1
| E C : 5

' 1 3 * - S : — »

1 3 2 6 ZE ^ 3 3 - = 4) < 5 6 E

T A B A' E F T u 3 = : { ; 1
3 2 - " 0 ^ : : 4 4 6 D 54 ^ 5 B

C a p s . CC'. D = c t- i- L : : '
• c ^ I S : B ^ : E 4 2 4 E . 4 C 5A

{EC 7 2
if: X Y B f J .,1

c w

14

At :

- I # 4 A

A t

I E c n

5 3

I
I E 3 - 4

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 296

The keyboard should send data to the
host only when both the data and clock
lines are high (or idle). Since the host is
the "bus master", the keyboard should
check to see whether the host is sending
data before driving the bus. To facilitate
this, the clock line can be used as a
"clear to send" signal. If the host pulls
the clock line low, the keyboard must not
send any data until the clock is released
(host-to-keyboard data transmission will
not be dealt with further here).
The keyboard sends data to the host in
11-bit words that contain a '0' start bit,
followed by 8-bits of scan code (LSB
first), followed by an odd parity bit and
terminated with a 'V stop bit. The
keyboard generates 11 clock transitions
(at around 20 - 30 KHz) when the data
is sent, and data is valid on the falling
edge of the clock.

Mouse

The mouse outputs a clock and data
signal when it is moved; otherwise, these
signals remain at logic '1'. Each time the
mouse is moved, three 11-bit words are
sent from the mouse to the host device.
Each of the 11-bit words contains a '0'
start bit, followed by 8 bits of data (LSB
first), followed by an odd parity bit, and
terminated with a '1' stop bit.

V c . ! = S t a t u : b y i e - X d -

l i
\ S W 3 b :

1 XS Y S X Y Y Y P 1 I) ' X

t
S w p b :

S a n :

VGA Port

The five standard VGA signals Red (R),
Green (G), Blue (8), Horizontal Sync
(HS), and Vertical Sync (VS) are routed
directly to the VGA connector. A 270-
ohm series resistor is used on each color
signal. This resistor forms a divider with
the 75-ohm VGA cable termination,
resulting in a signal that conforms to the
VGA specification (i.e., OV for fully off
and .7V for fully on). VGA signal timings
are specified, published, copyrighted and
sold by the VESA organization
(www.vesa.org).

Thus, each data transmission contains
33 bits, where bits 0, 11, and 22 are '0'
start bits, and bits 11, 21, and 33 are '1'
stop bits.

The three 8-bit data fields contain
movement data as shown below. Data is
valid at the falling edge of the clock, and
the clock period is 20 to 30 KHz.
The mouse assumes a relative
coordinate system wherein moving the
mouse to the right generates a positive
number in the X field, and moving to the
left generates a negative number.
Likewise, moving the mouse up
generates a positive number in the Y
field, and moving down represents a
negative number (the XS and YS bits in
the status byte are the sign bits - a '1'
indicates a negative number). The
magnitude of the X and Y numbers
represent the rate of mouse movement -
the larger the number, the faster the
mouse is moving (the XV and YV bits in
the status byte are movement overflow
indicators — a '1' means overflow has
occurred). If the mouse moves
continuously, the 33-bit transmissions
are repeated every 50ms or so. The L
and R fields in the status byte indicate
Left and Right button presses (a '1'
indicates the button is being pressed).

1

I x s l x e x :

f d

t
9 v :

S t a r Wt

YJ f f f r = 1 ^

W e

V G A " O B I 5 " C o n n e o t o f

a

14 -

"VVV-
270

2 7 0
<1 4 ;

G N D

http://www.vesa.org

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 297

The following VGA system timing
information is provided as an example of
how a VGA monitor might be driven in
640 by 480 mode. For more precise
information, or for information on higher
VGA frequencies, refer to document
available at the VESA website (or
experiment!).

VGA system timing

CRT-based VGA displays use amplitude
modulated, moving electron beams (or
cathode rays) to display information on a
phosphor-coated screen. LCD displays
use an array of switches that can impose
a voltage across a small amount of liquid
crystal, thereby changing light permitivity
through the crystal on a pixel-by-pixel
basis. Although the following description
is limited to CRT displays, LCD displays
have evolved to use the same signal
timings as CRT displays (so the "signals"
discussion below pertains to both CRTs
and LCDs).
CRT displays use electron beams (one
for red, one for blue and one for green)
to energize the phosphor that coats the
inner side of the display end of a
cathode ray tube (see drawing below).
Electron beams emanate from "electron
guns", which are a finely pointed, heated
cathodes placed in close proximity to a
positively charged annular plate called a
"grid".
The electrostatic force imposed by the
grid pulls away rays of energized
electrons as current flows into the
cathodes.

A n o d e (e n i i r e s c r e e n)

C a #) o (! e r a y t u b *

^ C e f e c D o n c a i s

/ . aw

These particle rays are initially
accelerated towards the grid, but they
soon fall under the influence of the much
larger electrostatic force that results from
the entire phosphor coated display
surface of the CRT being charged to
20kV (or more). The rays are focused to
a fine beam as they pass through the
center of the grids, and then they
accelerate to impact on the phosphor
coated display surface.
The phosphor surface glows brightly at
the impact point, and the phosphor
continues to glow for several hundred
microseconds after the beam is
removed. The larger the current fed into
the cathode, the brighter the phosphor
will glow. Between the grid and the
display surface, the beam passes
through the neck of the CRT where two
coils of wire produce orthogonal
electromagnetic fields. Because cathode
rays are composed of charged particles
(electrons), they can be deflected by
these magnetic fields. Current
waveforms are passed through the coils
to produce magnetic fields that interact
with the cathode rays and cause them to
transverse the display surface in a
"raster" pattern, horizontally from left to
right and vertically from top to bottom. As
the cathode ray moves over the surface
of the display, the current sent to the
electron guns can be increased or
decreased to change the brightness of
the display at the cathode ray impact
point.

Cathode ray tube display system

'-"x.
.P 1 blue, Green)

Ide'tcbon j n j '
I c c r W c c r ' u +

R . G . S s i q n a l s (t o q u i i s)

H i g h v o l t a g e s i f i p l y

S y n c a l g f i a i a

C o n W b o a r d (to d e f l e c t i o n c o n t f o ')

V G A c a W e

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail
2 9 8

Information is only displayed when the
beam is moving in the "forward" direction
(left to right and top to bottom), and not
during the time the beam is reset back to
the left or top edge of the display. Much
of the potential display time is therefore
lost in "blanking" periods when the beam
is reset and stabilized to begin a new
horizontal or vertical display pass.
The size of the beams, the frequency at
which the beam can be traced across
the display, and the frequency at which
the electron beam can be modulated
determine the display resolution. Modern
VGA displays can accommodate
different resolutions, and a VGA
controller circuit dictates the resolution
by producing timing signals to control the
raster patterns. The controller must
produce synchronizing pulses at 3.3V (or
5V) to set the frequency at which current
flows through the deflection coils, and it
must ensure that video data is applied to
the electron guns at the correct time.
Raster video displays define a number of
"rows" that corresponds to the number of
horizontal passes the cathode makes

over the display area, and a number of
"columns" that corresponds to an area
on each row that is assigned to one
"picture element" or pixel. Typical
displays use from 240 to 1200 rows, and
from 320 to 1600 columns. The overal
size of a display, and the number of rows]
and columns determines the size of each
pixel.
Video data typically comes from a video
refresh memory, with one or more bytes
assigned to each pixel location (the
DI04 board uses 3-bits per pixel). The
controller must index into video memory
as the beams move across the display,
and retrieve and apply video data to the
display at precisely the time the electron
beam is moving across a given pixel.
A VGA controller circuit must generate
the HS and VS timings signals and
coordinate the delivery of video data
based on the pixel clock. The pixel clock
defines the time available to display 1
pixel of information. The VS signal
defines the "refresh" frequency of the
display, or the frequency at which all
information on the display is redrawn.

STTTTa K* 0.C p x e '

" C J g h

r - i z c n i a

6 4 0 3 d s : e y e d e a c h

t T c t h e y s v e s a c m e s

t h e s c e e n

VGA display
surface

± 1 ; CtSp a y ^ C

c u - i r 3 E

c i a k e c . r r e r t - a m i p - i n f o r m a t i o n

/ c s p a x - e d c u n g N s t i m e

Tcicl horzontal dr- i

H o n z o r t c c s p a v r e t f s c e

:ini%

Hsnj"

p c ' c h ^

_ l - c ' i z c n : ^ s i g n e l

r e t ' 3 : .9 f r e q . e i c y

i_r
' b a c k o o f c h

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 299

The minimum refresh frequency is a
function of the display's phosphor and
electron beam intensity, with practical
refresh frequencies falling in the 50Hz to
120Hz range. The number of lines to be
displayed at a given refresh frequency
defines the horizontal "retrace"
frequency. For a 640-pixel by 480-row
display using a 25MHz pixel clock and
60 +/-1Hz refresh, the signal timings
shown in the table below can be derived.
Timings for sync pulse width and front
and back porch intervals (porch intervals
are the pre- and post-sync pulse times
during which information cannot be
displayed) are based on observations
taken from VGA displays.
A VGA controller circuit decodes the

output of a horizontal-sync counter
driven by the pixel clock to generate HS
signal timings. This counter can be used
to locate any pixel location on a given
row. Likewise, the output of a vertical-
sync counter that increments with each
HS pulse can be used to generate VS
signal timings, and this counter can be
used to locate any given row.
These two continually running counters
can be used to form an address into
video RAM. No time relationship
between the onset of the HS pulse and
the onset of the VS pulse is specified, so
the designer can arrange the counters to
easily form video RAM addresses, or to
minimize decoding logic for sync pulse
generation.

Symbol Parameter Vertical sync Horizontal sync Symbol Parameter
Time Lines Time Clocks

Ts Sync pulse time 16.7 ms 416800 521 32 us 800
Tdisp Display time 15.36 ms 384000 480 25.6 us 640
Tpw VS pulse time 64 us 1600 2 3.84 us 96
Tfp VS front porch 320 us 8000 10 640 ns 16
Tbp VS back porch 928 us 23200 29 1.92 us 48

T
disp

T, fp

T
T.

pw bp

Expansion Connectors
Connector pinouts are shown below.
Separately available tables show pass-
through connections for the devices on
the DI04 board when it is attached to
various system boards.

T . B . Yee, 2007 A p p e n d i x B : H a r d w a r e d e m o n s t r a t o r in d e t a i l 300

P 1 Signol Dir P2 Signal Dir
1 nc 1 nc
2 nc 2 nc
3 nc 3 nc
4 nc 4 nc
S nc 5 nc
6 nc 6 nc
7 nc 7 nc
3 nc 8 nc
9 nc a nc

1 0 nc 10 nc
1:1 nc 1 1 nc
1 2 nc 12 nc
1 3 AN3 m 1 3 V 5 in
1 4 AN4 ;n 14 HS in
I S AN1 m 1 5 GRN in
16 AN2 m 16 RED in
1 7 BTN4 o u t 1 7 P S 2 D bidi
1 8 B m s otit i a BLU in
19 nc 13 BTN2 U J t

2 0 BIN 3 out 20 PS2C b CI

21 LED6 m 21 OP ! 1

22 LEDG i n 22 8TN1 O J t

2 3 L E D 7 i n 23 CG in
2 4 nc 24 SA'S o u t

2 5 LEC6 m 2 5 CF i n

26 nc 26 S W 7 out
27 LEDS n 2 7 CE in
28 nc 2 8 S W 6 out
29 LED4 n 2 9 CD in
3 0 nc 3 0 S'„V5 out
3 1 LED3 n 3 1 CC in
32 nc 32 S W 4 out
3 3 L E D 2 I n 33 CB in
3 4 nc 3 4 5 W 3 o u t

35 LED1 n 3 5 CA in
36 nc 3 6 SV\'2 out
3 7 VCC33 3 7 VCC33
3 8 nc 3 3 SA'I
3 9 GND 3-3 GND
4 0 VU 40 VU

DI04 Expansion Connector Pinout

T.B. Yee, 2007 Appendix C: File formats 3 q |

Appendix C

File formats

This appendix explains the format of various data files used within the MOODS synthesis

environment. The first is the ICODE (Intermediate CODE) generated Aom the VHDL

compiler. Two other data files are used within the multi-FPGA partitioning process, the

first is the partitioning information {.par) file which provides input information to the

partitioning algorithm. The MOODS synthesis tool generates the second file; a module

call list (.TMcZ) output file listing the call structure in the module call graph.

C.1 ICODE

The ICODE file is a textual representation of the user's design generated by the source

compiler. This input file to the MOODS synthesis system is a language independent

representation of the original source code, which allows the translation from other high-

level languages such as (SystemC, Verilog). At present, the MOODS synthesis system

only has a VHDL compiler, which converts a VHDL description into an equivalent

ICODE representation.

The rest of this section provides a complete ICODE language grammar in Backus-Naur

Format (BNF). Throughout this grammar, non-italicised entries refer either to other

entries, or base entries. Italics are used to distinguish between different occurrences of a

particular type of entry (e.g. /a6gZ_name is a "name", ivẑ frA number a "number"). The

base entries used are:

• string - any combination of ASCII characters not including ICODE delimiters.

Delimiters may be used if preceded by the escape character, e.g. \" rather than

T.B. Yee, 2007 Appendix C: File formats
; 0 2

integer - a binary/decimal/octal/hexadecimal integer number

real — floating-point number using the standard C++ formats for real numbers

(including exponents).

ICODE description ::=

{ info }

program_declaration

{ submodule declaration }

{ component declaration }

act list ::=

We/ name { label_name}

actf_list ;;=

ACTF actjist

actt list :;=

ACT act list

I ACTT actjist

alias_declaration ;;=

ALIAS alias_var_na.me [a/za5_range]FROM parent_var_name [var_^'w6_range]

component declaration : :=

COMPONENT componentjxame, io list [info]

conditionaMnst ::=

conditional_inst_name condjJM actt_list ac t f j i s t [info]

conditional_inst_name ; :=

IF IIFNOT

T.B. Yee, 2007 Appendix C: File formats

constant ::=

number [w/f^/rA number]

declaration ::=

io_port_declai-ation

I variable declaration

declaration_part ;:=

{ declaration [info] }

decode inst ::=

DECODE decodejydiX [info]

{ CASE constant actt list [info] }

ENDCASE

file_info ;;=

In decimal_mtQgQx

I pos decimaljxitQgQX

I file decimal_\ntQgQV

filemap_info ::=

filemap ':' decimal_\ntegtx filename _stvmg

generaMnst' ;;=

general inst name io list [actt list] [infb]

general_inst_nanie :;=

NOOP I MOVE I UEXT | SEXT | CONCAT

I U N O T I U A N D I U O R | U N A N D | U N O R | U X O R | U X N O R

I SNOT I SAND I SOR | SNAND | SNOR | SXOR | SXNOR

I UEQ I UNEQ I ULT | ULTE | UGT | UGTE

' Genera] instructions are defined in the ICODE instruction database, ICInstDB and may be enhanced as

required.

T.B. Y e e , 2 0 0 7 A p p e n d i x C: Fi le formats
; o 4

ISEQISNEQ I S L T | S L T E | S G T | S G T E

I USLL I USRL I USLA | USRA | UROL | UROR

I SSLL I SSRL I SSLA | SSRA | SROL | SROR

I UMINUS I UADD | USUB | UMUL

I UDIV I UMOD I UREM | UINC | UDEC

I SMINUS I SADD | SSUB | SMUL

I SDIV I SMOD I SREM | SABS | SINC | SDEC

index

decimalJiniQgQx

info ::=

infb specification { %' infb specification }

info_specification ;;=

probability_info

I iteration_info

I filemap_info

I file_info

instruction ::=

general_inst

I memory inst

I conditional_inst

I switch__inst

I protect inst

I decode_inst

I moduleap_inst

instructionjpart : :=

{ [label_nsmQ] instruction }

number

'%'6/MaAy_integer 1 i n t e g e r | integer | integer

T.B. Yee, 2007 Appendix C: File formats 305

inport_declaration ::=

INPORT io jjortjaame io_j7or?_range [CLOCK | RESET]

io_list ::=

term { term }

io_port_declaration ::=

inport declaration | outport declaration

iteration_info ;:=

its â ecz/MaZ integer

memory_data ;:=

'['constant { constant}'] '

memory inst ;:=

memory read inst | meniory_write_inst

memory_read_inst ;:=

MEMREAD /Me/MÔ /̂ var name '] / 7'eaa(_var_name [info]

memory write inst :;=

MEMWRITE M/nfg_term TMg/Mon/ var name [info]

moduleap_inst :;=

MODULEAP module io_list [actt__list] [info]

name

string

outport_declaration ::=

OUTPORT io_portjia.m& io_portjSingQ [INIT constant]

T.B. Yee, 2007 Appendix C: File formats
; o 6

probability_info ::=

pt I pf ' : ' real

program_declaration ::=

PROGRAMprogram_n&mQ io_list [actt_list] [info]

declaration_part

instraction_part

ENDMODULE [program jxdxm] [info]

protect_instruction ::=

P R O T E C T real [actt_list]

ram_declaration :;=

RAM mm var name ADDRESS

range ; :=

/Mj'6 mdex index

register__declaration ::=

REGISTER var_name var_range [INIT constant]

rom declaration ::=

ROM m/M_war_name /̂ara range ADDRESS â ĉfrgj'j' raiige DATA memory data

submodule_declaration ::=

MODULE module_namt io list [actt list] [info]

declaration_part

instructionjpart

[label_name] ENDMODULE [module_name] [info]

switch inst :;=

SWITCHON switchjwax [info]

{ CASE constant actt list [info] }

DEFAULT acttjist [info]

T.B. Yee, 2007 Appendix C: File formats 307

ENDCASE

term ::=

constant | var

var ::=

var_name

variable_declaration ;;=

register_declaration

I alias_declaration

I ram_declaration

I rom declaration

Notes :

Each entry is considered to occupied one line unless extended using

Comments may be included using the standard €++ delimiter '\\\

Most instructions are defined in the ICODE database (ICInstDB), which also

specifies the exact format of their parameters lists.

CASES in DECODES must be in sequential ascending order with no gaps within

the sequence. Any missing cases at the start or end of the sequence default to the

first choice.

Info entries may contain any form of application-dependent information such as

source line numbers, variables etc. Syntactically, everything within the braces is

ignored (although the key entries are identified in the BNF). In MOODS, info

records specify instruction activation probabilities ("pt", "pf) , loop iterations

("its"), file mappings ("filemap") and back annotation information ("file", "In",

"pos").

T . B . Y e e , 2 0 0 7 Appendix C: File formats

C.2 Partitioning information {.par) file

The partitioning infoimation (^.par) file is an input file to the MOODS synthesis system.

The file format of the partitioning information file is similar to the standard Microsoft

initialisation (. ini) file.

com men t

sec t ion n a m e

key n a m e

Part i t ioning init ial isation file ==
File to be p laced in the design folder

Note: uses the w indows ini file format

[Pre-al locate]
; P R O G R A M module
m_cal l2 = 1
; P R O C E D U R E P R O C I m o d ^ e
p r o d 0_4_4 =2

; P R O C E D U R E P R 0 C 1 module
proc2__1_4_4 =3

[Des ign_Prof i le]
T I M E _ S T E P = 4
1 1 8 = 1 1 4 1
18 25 = 1 1 1 1

Mult ip le key va lues

[Doma in_ ln fo]
D O M A I N = 4
dom_1 = 500 20
d o m _ 2 = 400 20
d o m _ 3 = 200 50
dom 4= 200 30

Figure C-1 Partitioning information (.par) file

Section names are enclosed in square brackets and the items under it are related to that

section. The next lines are broken into two parts: the key name and the key value(s).

Multiple values for a key are separated by a space and comments are introduced by a

semicolon character. This input file provides various types of data to the K-way partitioner

and these are grouped under different section headers listed below:

[Module lock] — Items under this section header are module name (key name) and

the domain number (key value) that the module is locked to during K-way

T.B. Yee, 2007 Appendix C: File formats
; 0 9

on

partitioning. This allows manual assignment of design modules to a fixed domain

This feature is useful in assigning modules that needs special peripheral devices

a taiget device PCB board (e.g. a VGA connector, external memory modules).

[Pre-allocate] — Items under this section are similar to the ones mentioned above,

wheie the key names are module names in the design but the key value under this

section header aie the initial domains that the modules are assigned to. This forms

the starting partition of the K-way partitioning algorithm.

[Design Profile] - The items under this section header give the design activity

profiling information. The first key name under this section header is

and the key value gives the number of time steps in each profile data. The next

lines are the profile data and these are made up of the source-destination module

node numbers as the key names, and the key values are made up of activation

count values with a space between each time step. The activation count value is the

number of times the source module calls (or activates) the destination module (e.g.

Figure C-1 illustrates a design profile with 4 time steps. Module 1 calls module 18

four times in time step 3 and only once in time steps 1, 2, and 4.).

[Domain Info] - The domain info section contains information on the target

devices available for the multi-FPGA system. The first key name under this section

header is DOMAIN and the key value gives the number of devices available. The

next lines give the available area and I/O resources for each device. The first key

value gives the area available, and the second key value gives the I/O resources

available for device n denoted by the key name, dom M.

C.3 Module call list (.mcf) file

The module call list {.mcT) file is an output file generated by the MOODS synthesis system

and it lists all the subprogram module calls in a design. The module node numbers of the

source and destination modules are used to identify modules with subprogram calls when

T.B. Yee, 2007 Appendix C: File formats
' 1 0

simulating a design to obtain the design activity information using ModelSim simulation

package.

Module call list

f i l ename

control call n o d e no.

c:\CAD\Projects\m_cali2\m_call2.mcl

MODULE CALL LIST

Mod m_call2(prog mod) --> Mod p rod 0_4_4
Call node u11

18
Mod p rod 0_4_4 - > Mod proc2 1_4_4

;Call node u23
18 25

s o u r c e m o d u l e no. s o u r c e m o d u l e no.
s o u r c e m o d u l e

n a m e

dest inat ion module

n a m e

Figure C-2 Module call list (.mcl) file

T.B. Yee, 2007 Appendix D: VHDL code listings 3 j j

Appendix D

VHDL code listings

This appendix gives a complete listing of all the example VHDL designs used in the

experiments conducted in Chapter 6. The VHDL codes for the hardware demonstrator

have been omitted from this appendix due to its size (the behavioural VHDL of the JPEG

decoder is approximately 2000 lines of codes).

This appendix gives some background and idea of the complexity and implementation

methods for the example VHDL designs. Post-MOODS synthesis simulation results of the

multi-FPGA implementations are included for all the example designs.

D.1 Behavioural VHDL example designs

The five behavioural VHDL examples given in this section are used in experiments

(without explicit communication channels) described in Section 6.2. All the VHDL

packages which contain the definitions of constants, types, signals, functions, and

procedures are also included.

D.1.1 Quadratic equation solver

The design solves quadratic equations using the formula of Equation D.l . The 32-bit,

fixed-point quadratic equation solver example given in Figure D-3 uses the integer-maths

library given in Figure D-1 and the quadratic procedure in the VHDL package given in

Figure D-2.

-b± •\lb^ - 4ac (D.l)
2a

T.B. Yee, 2007 Appendix D: VHDL code listings 112

_ * A * A * * * * *

- Integer-maths library package _*********** ************ *************

library ieee;
use ieee.stdJogic_1164.all;
use ieee.numeric_std.all;

package c_types is
-- c style integer and unsigned types
subtype int is signed(31 downto 0);
subtype uint is unsigned(31 downto 0);

function toJnt(arg: integer) return int;
end c_types;

package body c_types is
function to jn t
- moods inline
(arg: integer
) return int is
begin
return to_sjgned(arg,32);

end toJnt;
end c jypes;

use work.c_types.all;
package imath is

- simple constants
constant neg: boolean := false;
constant pos: boolean ;= true;

• constants for acosi
constant acos_xO:
constant acos_x1:
constant acos_x2:
constant acos_x3:
constant acos_x4:
constant acos_x5:
constant acos_yO:
constant acos_y1:
constant acos_y2:
constant acos_y3:
constant acos_y4:
constant acos_y5:

function
:= X"00000000";
:= X"00003333";
:= X"0000G666";
:= X"00009999";
:= X"OOOOCCCC";
:= X"OOOOFFFF";
:= X"00019220";
:=X"00015E94";
:=X"000128C7":
:= X"0000ED63":
:= X"OOOOCCCD";
:= X"00000000";

-- constants for cosi function
constant s2pi: int ;= X"0006487E";
constant spi_2: int := X"0001921F";
constant spi; int := X"0003243F";
constant s3pi_2:
constant cos_xO:
constant cos_x1:
constant cos_x2:
constant cos_x3:
constant cos_x4:
constant cos_x5:
constant cos_yO:
constant cos_y1:
constant cos_y2:
constant cos_y3:
constant cos_y4:
constant cos_y5:

int := X"0004B65F";
int := X'OOOOOOOO";
int := X"0000506D";
int ;= X"0000A0D9";
int :=X"0000F146";
int:=X"000141B3";
int :=X"00019220";
int := X"OOOOFFFF";
int := X"OOOOF378";
int :=X"0000CF1C";
int := X"00009679";
int :=X"00004F1B";
int := X"00000000";

T.B. Yee, 2007 Appendix D: VHDL code listings 313

- integer cubed root function
function cbrti(a: In int) return Int;
-- Integer square rooot function
function sqrtl(a: in int) return Int;
- integer arccos function (inputs and outputs scaled by 65536)
function acosl(a: In Int) return int;
- integer cosine function (inputs and outputs scaled by 65536)
function cosi(a: in int) return int;
- signed integer division
function sdivl(a: in int; b: in Int) return Int;
- unsigned Integer divide
function udivi(a: in uint; b: in uint) return uint;
- sign test
function sign(x: in int) return boolean;
- to_bool conversion
function to_bool(a: in stdjogic) return boolean;
-- moods map move u:1 u:1
- signed sql
function sqi(a: in int) return Int;
- signed cbi
function cbl(a: in int) return Int;
- signed multi
function multi(a,b: in Int) return Int;
- unsigned sql
function sqi(a: in uint) return uint;
-- unsigned cbi
function cbi(a: in uint) return uint;
-- unsigned multi
function multl(a,b: in uint) return uint;

end imath;

package body imath Is

- integer cubed root function
function cbrti
(a: in int
) return int is

variable mask: Int := X"00000400";
variable best: Int := X"00000000";
variable sb: boolean;
variable a jn t : int;

begin
- a simple test for basic solutions
if(a=0 or a=-1 or a=1) then return a; end if;
lf(a<0) then
sb := nag;
aJnt := -a;

else
sb := pos;
aJnt := a;

end if;

while (mask /= 0) loop
if (cbi(best+mask) <= aJnt) then
best := best or mask;

end if;
mask := mask sr11;

end loop;

lf(not sb) then
best := -best;

end If;

return best;
end cbrti;

T.B. Yee, 2007 Appendix D: VHDL code listings g 2 ^

- integer square root function
function sqrti
(a: in Int
) return int is
variable mask: int := X"00008000";
variable best: int := X"00000000";
variable sb: boolean;
variable a jn t : int;

begin
if (a <= 0) then return best; end if;

while(mask /= 0) loop
if (((best+mask)*(best+mask)) <= a) then
best := best or mask;

end if;
mask := mask srI 1;

end loop;

return best;
end sqrti;

- integer arccos function (inputs and outputs scaled by 65536)
function acosi
(a: in int
) return int is
variable sb: boolean;
variable aJnt: int;
variable xO,x1,yO,y1,yOb,y1b: int;
variable result: int;

begin
if(a<0) then
aJnt := -a;
sb := neg;

else
aJnt := a;
sb := pos;

end if;

if {a_int<acos_x1) then
xO
x1
yO
y1

= acos_xO
= acos_x1
= acos_yO

acos_y1
elsif (aJnt<acos_x2) then

xO
x1
yO
y1

•acos_x1;
:acos_x2;
:acos_y1;
acos_y2;

elsif (a_int<acos_x3) then
xO
x1
yO
y1

= acos_x2;
= acos_x3;

acos_y2;
acos_y3;

elsif (aJnt<acos_x4) then
xO
x1
yO
y i

else
xO
x1
yO
y1

end if;

= acos_x3
= acos_x4
= acos_y3
= acos_y4

= acos_x4;
= acos_x5;
= acos_y4;
= acos_y5;

T . B . Y e e , 2 0 0 7 Appendix D: V H D L code listings 315

yOb := shiftjeft(y0,8);
y1b := shiftjeft(y1,8);
result := shift_right(yOb + multi(sdivi(y1b-y0b,x1-x0),(ajnt-x0)),8);

if{sb=neg) then
result := X"0003242F" - result;

end if;

return result;
end acosi;

- Integer cosine function (Inputs and outputs scaled by 65536)
function cosi
(a: in int
) return int is

variable sb: boolean;
variable a j n t : int;
variable temp: Int;
variable xO,x1,yO,y1,yOb,y1b: int;
variable result; int;

begin
If (a<0) then
aJnt ;= -a;

else
aJnt := a;

end If;

if(a_int > s2pi) then
temp ;= signed(udlvi(unslgned(ajnt),unsigned{s2pi)));
aJnt ;= aJnt - multi(temp,s2pj);

end If;

lf(a_int<spi_2) then
sb := pos;

elsif(a_int<spi) then
aJnt ;= spl - aJnt;
sb := neg;

elsif(ajnt<s3pi_2) then
aJnt ;= a_int - spi;
sb ;= neg;

else
aJnt ;= s2pi - aJnt;
sb ;= pos;

end if;

if(a_int < cos_x1) then
xO
x1
yO
y1

cos_xO;
= cos_x1;
= cos_yO;
= cos_y1;

elsif(a_int < cos_x2) then
xO
x1
yO
y i

= cos_x1;
cos_x2;
cos_y1;

= cos_y2;
elsif(ajnt < cos_x3) then
xO ;= cos_x2;
x1 := cos_x3;
yO ;= cos_y2;
y1 := cos_y3;

elsif(ajnt < cos_x4) then
xO := cos_x3;
x1 ;= cos_x4;
yO ;= cos_y3;
y1 ;= cos_y4;

T.B, Yee, 2007 Appendix D: VHDL code listings 3 j g

else
xO
x1
yO
y1

end if;

:cos_x4;
:cos_x5;
:cos_y4;
: cos_y5;

yOb := shift_left{y0,8);
y1 b := shiftjeft(y1,8);
result := shift_right(yOb + multl(sdivi(y1b-y0b,x1-x0),(ajnt-x0)),8);

if{sb=neg) then
result := -result;

end if;

return result;
end cosi;

- signed integer division
function sdivi
(a: in int;

b: in int
) return int is
variable sa.sb; boolean;
variable ua,ub: int;
variable temp: int;

begin
sa ;= sign(a);
sb := sign(b);

if(sa=pos) then
ua := a;

else ua := -a;
end if;

if(sb=pos) then
ub := b;

else ub ;= -b;
end if;

temp := signed(udivi(unsigned{ua),unsigned(ub)));

if(sa=sb) then
return temp;

else return -temp;
end if;

end sdivi;

- unsigned integer divide
function udivi
(a: in uint;

b: in uint
) return uint is

variable mask: uint := X"40000000";
variable best: uint := X"00000000";

begin
while(mask/=0) loop

if((best+mask)*b <= a) then
best := best or mask;

end if;
mask := mask srI 1;

end loop;
return best;

end udivi;

T.B. Yee, 2007 Appendix D: VHDL code listings g ^ 'y

- sign test
function sign
- moods inline
(x: in int
) return boolean is
begin

return not to_bool(x(31));
end sign;

- to_bool conversion
function to_bool
- moods map move u%1 u%1
(a: in stdjogic
) return boolean is
begin

if(a='1') then return true;
else return false;
end if;

end to_bool;

function sqi
(a: in int
) return int is

variable rl: signed(63 downto 0);
begin

rl := a*a;
return rl(31 downto 0);

end sqi;

function cbi
(a: in int
) return int is

variable rl: signed(95 dow/nto 0);
begin

rl := a*a*a;
return rl(31 downto 0);

end cbi;

function multi
(a,b: in int
) return int is

variable rl: signed(63 downto 0);
begin

rl := a * b;
return rl(31 downto 0);

end multi;

function sqi
(a: in uint
) return uint is

variable rl: unsigned(63 downto 0);
begin

rl := a*a;
return rl(31 downto 0);

end sqi;
function cbi
(a: in uint
) return uint is

variable rl: unsigned(95 downto 0);
begin

rl := a*a*a;
return rl(31 downto 0);

end cbi;

T.B. Yee, 2007 Appendix D; VHDL code listings
118

function multi
(a,b: in uint
) return uint is
variable rl: unslgned(63 downto 0);

begin
rl := a * b;
return rl(31 downto 0);

end multl;
end imath;

Figure D-1 Integer-maths library package of quadratic and cubic equation
solvers

library ieee;
use leee.stdJogic_1164.all;
use leee.numerlc_std.all;
use work.c_types.all;
use work.imath.all;

package algeqn_package is
procedure quadratici(a,b,c: in int; x1,x2: out int; no
procedure cubici(a1,a2,a3: in Int; x1,x2,x3: out int;

end algeqn_package;

_real: out int);
no_real: out int);

package body algeqn_package is

procedure quadratic!
—- moods inline
(

a,b,c: in int;
x1,x2: out int;
no_real: out int

) is
variable d, rd, a2 : int;

begin
d := sqi(b) - multl(multi(toJnt{4),a),c);
a2 := multi{a,toJnt(2));

procedure quadratic!
—- moods inline
(

a,b,c: in int;
x1,x2: out int;
no_real: out int

) is
variable d, rd, a2 : int;

begin
d := sqi(b) - multl(multi(toJnt{4),a),c);
a2 := multi{a,toJnt(2));

if(d < 0) then
no_real := toJnt(O);

else
rd := sqrti(d);
x1 := sdivi((-b + rd),a2);
x2 := sdivl((-b - rd),a2);
no_real := toJnt(2);

end if;
end quadratlcl;

T.B, Yee, 2007 Appendix D: VHDL code listings 119

procedure cubici
-— moods inline
(

a1,a2,a3: in int;
x1,x2,x3: out int;
no_real: out int

) i s

variable q,r,q3,d.s,a1_3.srd,t_1, t_2,theta3,t1,t2: int;
begin

t_1 := multi{toJnt(3),a2) - sqi(a1);
q := sdivi(t_1 ,toJnt(9));
t_2 := multi(multi(toJnt(9),a1),a2) - multi(toJnt(27),a3) - multi(to int(2) cb i fa in
r := sdivi(t_2,toJnt(54));

q3 := cbi(q);
d := q3 + sqi(r);

if(d=0) then
s := cbrtj(r);
a1_3 := sdivi(a1,toJnt(3));
x1 := shiftjeft(s,1) - a1_3;
t1 := -s - a1_3;
x2 := t1;
x3 := t1;
no_real := to_int(3);

elsif (d >0) then
srd := sqrti(d);
s := cbrti(r+srd);
t1 := Gbrti(r-srd);
x1 := s+t1-sdivi(a1,toJnt(3));
no_real := to jn t (l) ;

else
thetaS := sdivi(acosi(sdivi(shiftJeft(r,16),sqrti(-q3))),to int(3))-
t1:=sdivi(a1,toJnt(3));
t2 := shiftjeft(sqrti(-q),1);
x1 := shift_right(multi(t2,cosi(theta3)),16)-t1;
x2 := shift_right(multi(t2,cosi(theta3+X"00021828")),16)-t1;
x3 := shift_right(multi(t2,cosi(theta3+X"00043050")),16)-t1;
no_real := toJnt(3);

end if;
end cubici;
end algeqn_package;

Figure D-2 VHDL package of quadratic and cubic equation solvers

T.B. Yee, 2007 Appendix D: VHDL code listings
320

__****# A A A A * A * * * * * * * A A * A * * * * * * * * * * A * *

- Quadratic equation solver
_************ A*AAAAAAili ******* AAA ****

library ieee;
use ieee.stdJogic_1164.all;
use ieee.nurneric_std.all;
use work.c_types.all;
use work.algeqn_package.all;

entity eq_solver is
p o r t (

a1,a2,a3: in int;
x1,x2: out int;
no_real: out int

);
end eq_solver;
architecture behaviour of eq_solver is

begin
process is
variable b1: int ;= X"00000000";
variable b2: int := X"00000000";
variable b3: int := X"00000000";
variable y1: int := X"00000000";
variable y2: int := X"00000000";
variable vreal: int := X"00000000";

begin
b1 := a1;
b2 := a2;
b3 := aS;
quadratici(b1 ,b2,b3,y1 ,y2,vreal);
x1 <= y1;
x2 <= y2;
no_real <= vreal;
wait for 40 ns;

end process;
end behaviour;

Figure D-3 VHDL of quadratic equation solver example

Figure D-4 shows the post-MOODS synthesis simulation of the non-pipelined multi-

FPGA quadratic equation solver. This two-device implementation has a single subprogram

communication channel {SpC 1). Integer inputs al, a2, and a3 of the quadratic equation

solver are given values 1, -25 and 150 respectively. Outputs x l , x2 and number of real

numbers (no_real) are updated after 9100 ns. With a system clock period of 40 ns, the

non-pipelined multi-FPGA quadratic equation solver takes 224 clock cycles (i.e. clock

cycles - (9100 ns -140 ns) / 40 ns) to complete the application and output the result.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e l ist ings 321

I N N

»• _» > t

I I I I I I

mill #1 #

t - t - l 5 %

Figure D-4 Simulation of the non-pipelined multl-FPGA quadratic equation
solver

T.B. Yee, 2007 Appendix D: VHDL code listings 3 2 2

D.1.2 Cubic equation solver

The 32-bit, fixed-point cubic equation solver example given in Figure D-5 is capable of

finding real solutions to Equation D.2. It uses the integer-maths library given in Figure D-

1 and the cubic procedure in the VHDL package given in Figure D-2.

+ c = 0. (D.2)

__**** A * A A * * * * * * A A * A * * * * * * * * * * * *

- Cubic equation solver
__AA*AAAAA*AAAAAAAAAAAAA**AAAAAA

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.c_types.all;
use work.algeqn_package.all;
entity eq solver is

poi1(
a1,a2,a3: in int;
x1,x2,x3: out int;
no_real: out int);

end eq_solver;
architecture behaviour of eq_solver is

begin
process is
variable b1 ,b2,b3, y1 ,y2,y3: int;
variable vreal: int;

begin
b1 := a1;
b2 := a2;
b3 := a3;
cubicl{b1 ,b2,b3,y1 ,y2,y3,vreal);
x1 <= y1;
x2 <= y2;
x3 <= y3;
no_real <= vreal;
wait for 40 ns;

end process;
end behaviour;

Figure D-5 VHDL of Cubic equation solver example

Figure D-6 shows the post-MOODS synthesis simulation of the non-pipelined multi-

FPGA cubic equation solver. This 2-device implementation has two subprogram

communication channels {SpC 1 and SpC 2) and the arbitration of these two shared

communication channels are provided by two SpC arbiters. Integer inputs a l , a2, and a3 of

the cubic equation solver are given values -20, -100 and 2000 respectively. Outputs x l , x2,

x3 and number of real numbers (no real) are updated after 70900 ns. With a system clock

period of 40 ns, the non-pipelined multi-FPGA cubic equation solver takes 1770 clock

cycles (i.e. clock cycles = (70900 ns -100 ns) / 40 ns) to complete the application.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L code l ist ings 323

H

I

N N N N N

I Si li
lipiiiiii III 111 llliii

WhM

Figure D-6 Simulation of the non-pipelined multi-FPGA cubic equation
solver

T.B. Yee, 2007 Appendix D: VHDL code listings 3 2 4

D.1.3 Inverse discrete cosine transform

The 2-D IDCT architecture is adapted from [142]. The architecture is made up of a one-

dimensional 8-point IDCT followed by an internal double buffer memory, followed by

another one-dimensional 8-point IDCT. The algorithm used for the calculation of the 2-D

IDCT is based on Equation (D.3).

xc„ = y y XN„„ . r . eos fzAillk'
4 L 2 M J I 2 # y

(D.3)

Equation (D.3) can be separated into the row part and column part as shown in equations

(D.4) and (D.5). The 2-D IDCT is computed by first applying 1-D IDCT on the rows and

then on the columns.

^ y. (2 • col number + l)# roM' number • tt
C = K • cos ^

2 . M
(D.4)

where K = — for row = 0, K = for row 9̂ 0.
N N

rr \2 • row number + \)» col number • n /t-v c \
C = K • cos (D.5)

2 . N

Vi V2
where K = — for col = 0, K = for col ^ 0.

M M

The 2-D IDCT behavioural VHDL example is given in Figure D-8 and it uses the VHDL

package in Figure D-7.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e l ist ings)25

A * * * * * * * * * * * * * A * * * * * * * * * *

- VHDL package for 2-D Inverse discrete cosine transform _********** ************************** ******* ***** ************** *****

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package idct_package is

procedure idct1_mult_add (
signal Index ; in unsigned(2 downto 0);
signal inia : in signed(11 downto 0);
signal in2a : in signed(11 downto 0);
signal In3a : in signed(11 downto 0);
signal in4a : in signed(11 downto 0);
signal in5a ; in signed(11 downto 0);
signal in6a : in signed(11 downto 0);
signal in7a ; in signed(11 downto 0);
signal in8a : in signed(11 downto 0);
result_a : out signed(21 downto 0));

procedure idct2_mult_add (
signal index : in unsigned(2 downto 0);
signal inib : in signed(10 downto 0);
signal in2b : in signed(10 downto 0);
signal inSb : in signed(10 downto 0);
signal in4b : in signed(10 downto 0);
signal inSb : in signed(10 downto 0);
signal in6b : in signed(10 downto 0);
signal in7b : in signed(10 downto 0);
signal inSb : in signed(10 downto 0);
result_b : out signed(20 downto 0));

end idct_package;

package body idct_package is

procedure idct1_mult_add
(

signal index : in unsigned(2 downto 0);
signal inia : in signed(11 downto 0);
signal in2a : in signed(11 downto 0);
signal inSa : in signed(11 downto 0);
signal In4a : in signed(11 downto 0);
signal inSa : in signed(11 downto 0);
signal in6a : in signed(11 downto 0);
signal in7a : in signed(11 downto 0);
signal inSa : in signed(11 downto 0);
result_a : out signed(21 downto 0)

) i s

variable p1Jmp,p2_tmp,p3_tmp,p4_tmp,p5_tmp,p6_tmp,p7Jmp,p8_tmp
signed(21 downto 0);

begin
p1_tmp := resize(signed(in1a * (91)), 22);
case index is
when "000"=>

p2_tmp := resize(signed(in2a * (126)), 22);
p3_tmp := resize(signed(in3a * (118)), 22);
p4_tmp ;= resize(signed(in4a * (106)), 22);
p5_tmp := resize(signed(in5a * (91)), 22);
p6_tmp := resize(signed(in6a * (71)), 22);
p7_tmp := resize(signed(in7a * (49)), 22);
p8_tmp := resize(signed(in8a * (25)), 22);

T.B. Yee, 2007 Appendix D: VHDL code listings
; 2 6

when "001" =>
p2_tmp :=
p3_tmp :=
p4_tmp :=
p5_tmp :=
p6_tmp :=
p7_tmp :=
p8_tmp :=

when "010"
p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
p7Jmp
p8_tmp

when "011"
p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6 tmp
p7_tmp
pSJmp

when "100"
p2Jmp :=
pSJmp :=
p4_tmp :=
p5_tmp :=
p6_tmp :=
p7_tmp :=
p8_tmp :=
when "101

resize(signed(in2a'
resize(signed(in3a '
resize(signed(in4a'
resize(signed(in5a '
resize(signed(in6a'
resize(signed(in7a '
resize(signed(in8a' =>

resize(signed(in2a '
resize(signed(in3a'
resize(signed(in4a '
resize(signed(in5a'
resize(signed(in6a *
resize(signed(in7a *
resize(signed(in8a * =>

resize(signed(in2a *
resize(signed(in3a *
resize(signed(in4a *
resize(signed(in5a *
resize(signed(in6a *
resize(signed(in7a *
resize(signed(in8a * =>

resize(signed(in2a *
resize(signed(in3a *
resize(signed(in4a *
resize(signed(in5a
resize(signed(in6a'
resize(signed(in7a'
resize(signed(in8a'

p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
p7_tmp
p8_tmp

when "110"
p2_tmp :=
p3_tmp :=
p4_tmp :=
p5_tmp :=
p6_tmp :=
p7_tmp :=
p8_tmp :=

when "111"

: resize(signed(in2a'
: resize(signed(in3a '
• resize(signed(in4a'
: resize(signed(in5a '
: resize(signed(in6a'
resize(signed(in7a '
resize(signed(in8a' =>

resize(signed(in2a'
resize(signed(in3a '
resize(signed(in4a'
resize(signed(in5a '
resize(signed(in6a *
resize(signed(in7a *
resize(signed(in8a *

p2_tmp := resize{signed(in2a'
p3_tmp := resize(signed(in3a'
p4_tmp := resize(signed(in4a '
p5_tmp := resize(signed(in5a '
p6_tmp := resize(signed(in6a '
p7_tmp := resize(signed(in7a'
p8_tmp := resize(signed(in8a'

when others => NULL;
end case;

end procedure idct1_mult_add;

'(106)), 22);
' (49)), 22);
" (-25)), 22);
'(-91)), 22);
'(-126)), 22);
'(-118)), 22);
X-71)),22);

'(71)), 22);
' (-49)), 22);
' (-126)), 22);
' ^91)), 22);
^ (25)), 22);

(1 i e O) , 2 2) ;

(106)), 22);

(25)), 22);
(-118)), 22);
(-71)), 22);
(91)), 22);
(106)), 22);
(-49)), 22);
(-126)), 22);

(-25)), 22);
(-118)), 22);

*(71)), 22);
'(91)), 22);
'(-106)), 22);
' (-49)), 22);
'(126)), 22);

'(-71)), 22);
' (-49)), 22);
'(126)), 22);
' (-91)), 22);
' (-25)), 22);
'(118)), 22);
'(-106)), 22);

(-106)), 22);
' (49)), 22);
(25)), 22);
^91)), 22);
(126)), 22);
(-118)), 22);
(71)), 22);

(-126)), 22);
(118)), 22);
(-106)), 22);
(91)), 22);
(-71)), 22);
(49)), 22);
(-25)), 22);

T.B. Yee, 2007 Appendix D: VHDL code listings)27

procedure idct2_mult_add
(
signal index : in unsigned(2 downto 0);
signal inib : in signed(10 downto 0);
signal in2b : in signed(10 downto 0);
signal in3b : in signed(10 downto 0);
signal in4b : in signed(10 downto 0);
signal in5b : in signed(10 downto 0);
signal in6b : in signed(10 downto 0);
signal in7b : in signed(10 downto 0);
signal in8b : in signed(10 downto 0);
result_b : out signed(20 downto 0)

) i s

variable p1_tmp,p2_tmp,p3_tmp,p4_tmp,p5_tmp,p6_tmp,p7Jmp,p8_tmp : signed(20 downto 0);
begin
p1_tmp := resize(signed(in1b * (91)), 21);
case index is
when "000" =>

p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
p7_tmp
p8_tmp

= resize(signed(in2b'
= resize(signed(in3b'
= resize(signed(in4b'
= resize(signed(in5b'
= resize(signed(ln6b'
= resize(signed(in7b'
= resize(signed(in8b"

when "001" =>
p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
pTJmp
p8_tmp

when "010"
p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
p7Jmp
p8_tmp

when "011"
p2_tmp
p3_tmp
p4_tmp
p5_tmp
p6_tmp
p7_tmp
p8_tmp

when "100
p2_tmp
p3_tmp
p4_tmp
p5Jmp
p6_tmp
p7Jmp
p8_tmp

when "101

resize(signed(in2b'
resize(signed(in3b'
resize(signed(in4b'
resize(signed(in5b'
resize(signed(in6b'
resize(signed(in7b'
resize(signed(in8b' = >

resize(signed(in2b'
resize(signed(in3b *
resize(signed(in4b"
resize(signed(in5b *
resize(signed(in6b *
resize(signed(in7b *
resize(signed(in8b *
=:>

: resize(signed(in2b *
: resize(signed(in3b *
: resize(signed(in4b *
= resize(signed(in5b *
: resize(signed(in6b *
: resize(signed(in7b *
: resize(signed(in8b * ' =>

: resize(signed(in2b *
: resize(signed(in3b *
: resize(signed(in4b
: resize(signed(in5b ^
resize(signed(in6b'
resize(signed(in7b'
resize(signed(in8b'

p2_tmp := resize(signed(in2b'
p3_tmp := resize(signed(ln3b'
p4_tmp := resize(signed(in4b'
p5_tmp := resize(signed(in5b'
p6_tmp := resize(signed(in6b'
p7_tmp := resize(signed(in7b'
p8_tmp := resize(signed(in8b'

21);
'(1180), 21);
(106)), 21);
(91)), 21);
(71)), 21);
(49)), 21);
(25)). 21);

(106)), 21);
(49)), 21);
(-25)), 21);
(-91)), 21);
(-126)), 21);
(-1180), 21);
(-71)). 21);

(71)), 21);
(-49)), 21);
(-126)), 21);
(-91)), 21);

'(25)), 21);
"(118)), 21);
' (106)), 21);

'(25)), 21);
'(-118)), 21);
'(-71)), 21);
'(91)), 21);
'(106)), 21);
'(-49)), 21);
(-126)), 21);

(-25)), 21);
(-118)), 21);
(71)), 21);
(91)), 21);
(-106)), 21);
(-49)), 21);
(126)), 21);

(-71)). 21);
(-49)), 21);
(126)), 21);
(-91)), 21);
(-25)), 21);
(1 i e O) , 2 1) ;

(-106)), 21);

T.B. Yee, 2007 Appendix D: VHDL code listings 3 2 8

when "110" =>
p2_tmp := resize(signed(in2b * (-106)), 21);
p3_tmp := resize(signed(in3b * (49)), 21);
p4_tmp := resize(signed(in4b * (25)), 21);
p5_tmp := resize(signed(in5b * (-91)), 21);
p6_tmp := resize(signed(in6b * (126)), 21);
p7_tmp := resize(signed(in7b * (-118)), 21);
p8_tmp := resize(signed(in8b * (71)), 21);

when "111" =>
p2_tmp := resize(signed(in2b * (-126)), 21);
p3_tmp := resize(signed(in3b * (118)), 21);
p4Jmp := resize(signed(in4b * (-106)), 21);
p5_tmp := resize(signed(in5b * (91)), 21);
p6_tmp := resize(signed(in6b * (-71)), 21);
p7_tmp := resize(signed(in7b * (49)), 21);
p8_tmp := resize(signed(in8b * (-25)), 21);

when others => NULL;
end case;

result_b := p1_tmp + p2_tmp + p3_tmp + p4_tmp + p5_tmp + p6_tmp + p7_tmp + p8_tmp;
end procedure idct2_mult_add;

end idct package;

Figure D-7 VHDL package for IDCT example

- 2-D Inverse discrete cosine transform
********** ********** A AA *A *************************

library IEEE;
use IEEE.std_iogic_1164.all;
use IEEE.numeric_std.all;
use work.idct_package.all;
entity idct is
port(

in_hs_rdy: in unsigned(0 downto 0); - Handshake ready
in_hs_rcv: buffer unsigned(0 downto 0) := "0"; - Handshake receive
dct_2djn: in signed(11 downto 0);
idct_out: out signed(7 downto 0) := (others=>'0'); - 8 bit output.
out_hs_rdy: buffer unsigned(0 downto 0) := "0"; - Handshake ready
out_hs_rcv: in unsigned(0 downto 0); - Handshake receive
sys_clock: in unsigned(0 downto 0);
-moods clock
sys_reset: in unsigned(0 downto 0)
-moods reset
)',

end idct;
ARCHITECTURE behaviour of idct is
- IDCT_2 signals
signal xaO_reg, xa1_reg, xa2_reg, xa3_reg.

xa4_reg, xa5_reg, xa6_reg, xa7_reg: signed(11 downto 0):= (others=> 0');
- IDCT_2 signals
signal xbO_reg, xb1_reg, xb2_reg, xb3_reg,

xb4_reg, xb5_reg, xb6_reg, xb7_reg: signed(10 downto 0):= (others=> 0');

T.B. Yee, 2007 Appendix D: VHDL code listings 3 2 9

- memory section
type RAM_mem_type is array (0 to 63) of signed(10 downto 0);
signal ID_ram1_mem: RAM_mem_type;
-moods ram
signal iD_input_cnt: unsigned(3 downto 0):= "0000";
signal ID_wr_cntr: unsigned(6 downto 0):= "0000000";
signal ID_rd_cntr: unsigned(3 downto 0):= "0000";
- Handshake signals
signal ID_stage2_rdy: unsigned(0 downto 0):= "0";
signal ID_stage2_rcv: unsigned(0 downto 0):= "0";
signal IDJndexJ ; unsigned(3 downto 0):= "0000";
signal IDJndexJ ; unsigned(3 downto 0);= "0000";
begin

********** * A * A *

ID1: process - IDCT Process 1
variable z_outJnt: signed(21 downto 0) := (others=>'0');

begin
resetjoop: loop

ID_wr_cntr <= "0000000";
in_hs_rcv <= "0";
IDJnput_cnt(3 downto 0) <= "0000";
I D_rd_cntr(3 downto 0) <="0000";
ID_stage2_rdy <= "0";
IDJndexJ <= "0000";

wait until sys_ciock'event and sys_clock = "1";
exit resetjoop when sys_reset = "1";
malnjoop: loop

if(ID_wr_cntr(6) = '0') then

while(IDJnput_cnt(3) = '0') loop
while(in_hs_rdy = in_hs_rcv) loop
wait until sys_clock'event and sys_clock = "1";

end loop;

case IDJnput_cnt(2 downto 0) is
when "000" => xaO_reg <= dct_2djn;
when "001" => xa1_reg <= dct_2djn;
when "010" => xa2_reg <= dct_2djn;
when "Oi l" => xa3_reg <= dct_2djn;
when "100" => xa4_reg <= dct_2d_in;
when "101" => xa5_reg <= dct_2djn;
when "110" => xa6_reg <= dct_2djn;
when "111" => xa7_reg <= dct_2djn;
when others => NULL;
end case;

in_hs_rcv <= not in_hs_rcv;
ID_input_cnt(3 downto 0) <= IDJnput_cnt(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock = "1";

end loop;

while (IDJndexJ /= "1000") loop
idct1_mu!t_add(IDJndexJ(2 downto 0),xa0_reg,xa1_reg,xa2_reg,

xa3_reg,xa4_reg,xa5_reg,xa6_reg,xa7_reg,z_outJnt);
if(z_outjnt(20) = '0' and z_outJnt(7) = '1') then

ID_ram1_mem(toJnteger(ID_wr_cntr(5 downto 0)))<= z_out_int(18 downto 8)+to_signed(1,11);
ID_wr_cntr <= ID_wr_cntr + "0000001";

else
ID_ram1_mem(toJnteger(ID_wr_cntr(5 downto 0))) <= z_outJnt(18 downto 8);
ID_wr_cntr <= ID_wr_cntr + "0000001";

end if;

T.B. Y e e , 2 0 0 7 Appendix D: VHDL code listings

ID_indexJ <= IDJndexJ + "0001";
end loop;
IDJndexJ <= "0000";

else
while(ID_rd_cntr(3) = '0') loop

- Semaphore Master
while(ID_stage2_rdy /= ID_stage2_rcv) loop
wait until sys_clock'event and sys_clock = "1";

end loop;

case ID_rd_cntr(2 downto 0) is
when "000" => xbO_reg <= ID_ram1_mem(0);

xb1_reg <= ID_ram1_mem(8);
xb2_reg <= ID_ram1_nnem(16); i
xb3_reg <= ID_ram1_mem(24);
xb4_reg <= ID_ram1_mem(32);
xb5_reg <= ID_ram1_mem(40);
xb6_reg <= ID_ram1_mem(48);
xb7_reg <= ID_ram1_mem(56);

when "001" => xbO_reg <= ID_ram1_mem(1);
xb1_reg <= ID_ram1_mem(9);
xb2_reg <= ID_ram1_mem(17);
xb3_reg <= ID_ram1_mem(25);
xb4_reg <= ID_ram1_mem(33)
xb5_reg <= ID_ram1_mem(41);
xb6_reg <= ID_ram1_mem(49);
xb7_reg <= ID_ram1_mem(57)

when "010" => xbO_reg <= ID_ram1_mem(2);
xb1_reg <= ID_ram1_mem(10)
xb2_reg <= ID_ram1_mem(18)
xb3_reg <= ID_ram1_mem(26)
xb4_reg <= ID_ram1_mem(34)
xb5_reg <= ID_ram1_mem(42)
xb6_reg <= ID_ram1_mem(50)
xb7_reg <= ID_ram1_mem(58)

when "011" => xbO_reg <= ID_ram1_mem(3);
xb1_reg <= ID_ram1_mem(11)
xb2_reg <= ID_ram1_mem(19)
xb3_reg <= ID_ram1_mem(27)
xb4_reg <= ID_ram1_mem(35)
xb5_reg <= ID_ram1_mem(43)
xb6_reg <= ID_ram1_mem(51)
xb7_reg <= ID_ram1_mem(59)

when "100" => xbO_reg <= ID_ram1_mem(4); i
xb1_reg <= ID_ram1_mem(12)
xb2_reg <= ID_ram1_mem(20)
xb3_reg <= ID_ram1_mem(28)
xb4_reg <= ID_ram1_mem(36)
xb5_reg <= ID_ram1_mem(44)
xb6_reg <= ID_ram1_mem(52)
xb7_reg <= ID_ram1_mem(60)

when "101" => xbO_reg <= ID_ram1_mem(5);
xb1_reg <= ID_ram1_mem(13)
xb2_reg <= ID_ram1_mem(21)
xb3_reg <= ID_ram1_mem(29)
xb4_reg <= ID_ram1_mem(37)
xb5_reg <= ID_ram1_mem(45)
xb6_reg <= ID_ram1_mem(53)
xb7_reg <= ID_ram1_mem(61)

T.B. Yee, 2007 Appendix D: VHDL code listings J J .

when "110" =
xb1_
xb2_
xb3_
xb4_
xb5_
xb6
x b ? !

when "111" =
xb1_
xb2_
xb3_
xb4
x b S i

xb6_
xb7_

when others
end case;

xbO_reg <= ID.
_reg
_reg
.reg
.reg
_reg
jeg
.reg
> xbO_ <=

< =

< =

< =

< =

< =

< =

.reg

.reg

.reg

.reg

.reg
reg
reg

ID_ram1
iD_ram1
ID_ram1
ID_ram1
ID_ram1
ID_ram1
ID_ram1
reg <= ID
ID_ram1
ID_ram1
ID_ram1
ID_ram1
ID_ram1
ID_ram1
ID rami

:> NULL;

_ram1_mem(6);
mem(14);
.mem(22);
mem (30);
mem(38);
mem(46);
mem(54);
mem(56);

i_ram1_mem(7);
mem(15);
mem (23);
.mem(31);
mem(39);
mem(47);
mem(55);
mem(63);

ID_stage2_rdy <= not ID_stage2_rdy;
ID_rd_cntr(3 downto 0) <= ID_rd_cntr(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock = "1";

end loop;
IDJnput_cnt(3 downto 0) <= "0000";
ID_wr_cntr(6 downto 0) <= (others=>'0');
ID_rd_cntr(3 downto 0) <= (others=>'0');

end if;
wait until sys_clock'event and sys_clock = "1";
exit resetjoop when sys_reset = "1";
end loop;
end loop;

end process ID1;

*

102: process - IDCT Process 2
variable idct2d_int: signed(20 downto 0):= (others=>'0');

begin
resetjoop: loop

ID_stage2_rcv <= "0";
out_hs_rdy <= "0";
idct2djnt := (others=>'0');
ID_indexJ <= "0000";
wait until sys_clock'event and sys_clock = "1";
exit resetjoop when sys_reset = "1";
mainjoop: loop

while(ID_stage2_rdy = ID_stage2_rcv) loop
wait until sys_clock'event and sys_clock = "1";

end loop;

while (IDJndexJ /= "1000") loop
idct2_mult_add(IDJndexJ(2 downto 0),xb0_reg,xb1_reg,xb2_reg,xb3_reg,

xb4_reg,xb5_reg,xb6_reg,xb7_reg,idct2djnt);
while(out_hs_rdy /= out_hs_rcv) loop

wait until sys_clock'event and sys_clock = "1";
end loop;
idct_out <= signed(idct2djnt(15 downto 8));
out_hs_rdy <= not out_hs_rdy;
IDJndexJ <= IDJndexJ + "0001";
wait until sys_clock'event and sys_clock = "1";

end loop;

T.B. Yee, 2007 Appendix D: VHDL code listings

IDJndexJ <= "0000";
ID_stage2_rcv <= not ID_stage2_rcv;
wait until sys_clock'event and sys_ciock = "1";
exit resetjoop when sys_reset = "1";
end loop;

end loop;
end process ID2;

*************** ****** **************** *********** * A # A ***********************

end behaviour;

Figure D-8 VHDL of IDCT example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA IDCT is given

in Figure D-9. Zoom in views of the simulation showing inputs and outputs updates are

given in Figure D-10. The multi-FPGA IDCT has a single subprogram communication

channel {SpC 1) and a single channel arbiter. With a system clock period of 40 ns, the

non-pipelined multi-FPGA IDCT takes 4175 clock cycles (i.e. (167480 ns - 480 ns) / 40

ns) to complete the application.

T.B. Yee, 2007 Appendix D: VHDL code listings 333

LI

I I

Figure D-9 Simulation of tlie non-pipelined multi-FPGA IDCT example

T.B. Yee, 2007 Appendix D: VHDL code listings 334

III

' R 5 3 3 5 5

llllll l lU i

5%; *s

H a l l

6 5 ! 6)

I I 1

Figure D-10 Simulation (zoom in views) of the non-pipelined multi-FPGA
IDCT example

T.B. Yee, 2007 Appendix D: VHDL code listings 3 3 5

D.1.4 Triple-Data Encryption Standard

The triple-data encryption standard core implements the triple data encryption algorithm

(TDEA) in the electronic codebook (ECB) mode [144]. The idea of triple DES is that data

is encrypted three times (i.e. encrypted, decrypted and then encrypted again) using two

different keys. In this case, the two encryptions use the first key and the decryption uses

the second key. The VHDL package of the triple-DES is given in Figure D-11 and the

behavioural VHDL of the triple-data encryption standard (triple-DES) core is given in

Figure D-12.

********************AA*A*************

- VHDL package for Triple-DES -*** * * ******** * * * *** ******************

library ieee;
use ieee,std_logic_1164.all;
package des_functions is
subtype vec56 is std_loglc_vector(1 to 56);
subtype vec64 Is std_logic_vector(1 to 64);

- The key_reduce function reduces a 64-bit key to a 56-bit key by stripping off parity bits
function key_reduce1(key : in vec64) return vec56;
function key_reduce2(key : In vec64) return vec56;

- The des_core function Implements a DES encrypt/decrypt cycle
function des_core(plalntext: vec64; key : vec56; encrypt: stdjogic) return vec64;

end;

library ieee;
use ieee.stdJoglc_1164.all;
use ieee.numeric_std.all;
package body des_functions is
subtype vec3 is std_logic_vector{1 to 3);
subtype vec4 is stdJogic_vector(1 to 4);
subtype vecB is std_logic_vector(1 to 6);
subtype vec28 is std_logic_vector(1 to 28);
subtype vec32 is stdJogic_vector(1 to 32);
subtype vec48 is std_logic_vector(1 to 48);

function initlal_permutation(data : vec64) return vec64 Is
begin

return
data(58) & data(50) & data(42) & data(34) & data(26) & data(18) & data(10) & data(2) &
data(60) & data(52) & data(44) & data(36) & data(28) & data(20) & data(12) & data(4) &
data(62) & data(54) & data(46) & data(38) & data(30) & data(22) & data(14) & data(6) &
data(64) & data{56) & data(48) & data(40) & data{32) & data(24) & data(16) & data(8) &
data(57) & data(49) & data{41) & data(33) & data(25) & data(17) & data(9) & data(1) &
data(59) & data(51) & data(43) & data(35) & data(27) & data(19) & data(l l) & data(3) &
data(61) & data(53) & data(45) & data(37) & data(29) & data(21) & data(13) & data(5) &
data{63) & data(55) & data(47) & data(39) & data(31) & data(23) & data(15) & data(7);

end;

T.B. Yee, 2007 Appendix D: VHDL code listings J J C

function final_permutation(data : in vec64) return vec64 is
begin

return
data(40) & data(8) & data(48) & data(16) & data(56) & data(24) & data(64) & data{32) &
data(39) & data(7) & data(47) & data(15) & data(55) & data(23) & data(63) & data(31) &
data(38) & data(6) & data(46) & data(14) & data(54) & data(22) & data(62) & data(30) &
data(37) & data(5) & data(45) & data(13) & data(53) & data(21) & data(61) & data{29) &
data{36) & data(4) & data(44) & data(12) & data(52) & data(20) & data(60) & data(28) &
data(35) & data(3) & data(43) & data(11) & data(51) & data(19) & data(59) & data(27) &
data(34) & data(2) & data(42) & data(10) & data(50) & data(18) & data(58) & data(26) &
data(33) & data(1) & data(41) & data(9) & data(49) & data(17) & data(57) & data(25);

end;

function expand(data : vec32) return vec48 is
begin

return
data(32) & data(1) & data(2) & data(3) & data(4) & data(5) & data(4) & data(5) &
data(6) & data(7) & data(8) & data(9) & data(8) & data(9) & data(10) & data(11) &
data(12) & data(13) & data(12) & data(13) & data(14) & data(15) & data(16) & data(17) &
data(16) & data(17) & data(18) & data(19) & data(20) & data(21) & data(20) & data(21) &
data(22) & data(23) & data(24) & data(25) & data(24) & data(25) & data(26) & data(27) &
data(28) & data(29) & data(28) & data(29) & data(30) & data(31) & data(32) & data(1);

end;

function substitute(data : vec48) return vec32 is
type S_block_type is array(0 to 63) of natural range 0 to 15;
constant S_blockO : S_block_type :=

--moods ROIVI
(14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11,9, 5, 3, 8,
4, 1,14,8, 13,6,2. 11, 15, 12,9, 7, 3, 10, 5, 0,15, 12, 8, 2, 4, 9, 1. 7, 5, 11,3, 14, 10, 0, 6, 13);

constant S_block1 : S_block_type :=
-moods ROM
(15, 1,8, 14, 6, 11, 3,4, 9, 7,2, 13, 12, 0, 5, 10,3, 13,4, 7, 15,2, 8, 14, 12,0, 1, 10,6, 9, 11,5,
0, 14, 7, 11, 10, 4, 13, 1, 5,8, 12,6, 9, 3,2, 15, 13,8, 10, 1,3, 15, 4, 2, 11,6, 7, 12, 0, 5, 14,9);

constant S_block2 : S_block_type :=
-moods ROM
(10, 0. 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6. 10, 2, 8, 5, 14, 12, 11, 15, 1,

13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0 ,6,9, 8. 7,4, 15, 14, 3, 11,5, 2, 12);
constant S_block3 : S_block_type :=
—moods ROM
(7, 13, 14, 3, 0,6, 9, 10, 1,2, 8, 5, 11, 12,4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14,9,

10, 6, 9, 0, 12, 11, 7, 13, 15, 1,3, 14, 5,2, 8, 4,3, 15,0,6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14);
constant S_block4 : S_block_type :=

-moods ROM
(2, 12,4, 1, 7, 10, 11,6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11,2, 12,4, 7, 13, 1,5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8. 15, 9, 12, 5, 6, 3, 0, 14,11,8, 12, 7, 1, 14. 2, 13, 6, 15, 0, 9, 10, 4, 5, 3);

constant S_block5 : S_block_type :=
-moods ROM
(12, 1, 10, 15, 9. 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9. 14, 15, 5,2, 8, 12. 3. 7, 0.4, 10, 1, 13. 11,6,4, 3,2, 12, 9, 5, 15, 10. 11, 14, 1, 7, 6, 0, 8, 13);

constant S_block6 : S_block_type :=
-moods ROM
(4, 11,2, 14, 15. 0,8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11,7, 4, 9, 1, 10, 14, 3,5, 12, 2, 15, 8,6,

1,4, 11, 13, 12, 3, 7, 14, 10, 15,6, 8, 0,5, 9, 2.6, 11, 13, 8, 1,4, 10, 7. 9. 5. 0, 15, 14, 2, 3, 12);
constant S_block7 : S_block_type :=

—moods ROM
(13,2, 8,4, 6, 15, 11, 1, 10,9, 3, 14, 5,0, 12, 7, 1, 15, 13, 8, 10, 3, 7,4, 12, 5.6, 11,0, 14, 9,2,

7, 11, 4, 1, 9, 12. 14. 2, 0, 6, 10, 13, 15, 3, 5, 8. 2, 1, 14, 7, 4, 10, 8. 13, 15, 12, 9, 0, 3. 5, 6, 11);
begin
return
stdJogic_vector(to_unsigned(S_blockO(toJnteger(unsigned(data(1)&data(6)&data(2 to 5)))),4))&
std_logic_vector(to_unsigned(S_block1(toJnteger(unsigned(data(7)&data(12)&data(8 to 11)))).4))&
std_logic_vector(to_unsigned(S_block2(toJnteger(unsigned(data(13)&data(18)&data(14 to 17)))),4))&
std_logic_vector(to_unsigned(S_block3(toJnteger(unsigned(data(19)&data(24)&data(20 to 23)))),4))&

T.B. Yee, 2007 Appendix D: VHDL code listings

stdJogic_vector(to_unsigned(S_block4(toJnteger(unsigned(data(25)&data(30)&data(26 to 29)))),4))&
std_logic_vector(to_unsigned(S_block5(to_integer(unsigned(data(31)&data(36)&data(32 to 35)))),4))&
stdJogic_vector(to_unsigned(S_block6(toJnteger(unsigned(data(37)&data(42)&data(38 to 41)))),4))&
std_logic_vector(to_unsigned(S_block7(toJnteger(unsigned{data(43)&data(48)&data(44 to 47)))),4));
end;

function permute (data : in vec32) return vec32 is
begin
return
data(16) & data(7) & data(20) & data(21) & data(29) & data(12) & data(28) & data(17) &
data(1) & data(15) & data(23) & data(26) & data(5) & data(18) & data(31) & data(10) &
data(2) & data(8) & data(24) & data(14) & data(32) & data(27) & data(3) & data(9) &
data(19) & data(13) & data(30) & data(6) & data(22) & data(11) & data(4) & data(25); end;

function f(data : vec32; subkey : vec48) return vec32 is - Cipher function,f
begin
return permute(substitute(expand(data) xor subkey)); end;

function key_reduce1(key : in vec64) return vec56 is
begin

return
key(57) & key(49) & key(41) & key(33) & key(25) & key(17) & key(9) & key(1) &
key(58) & key(50) & key(42) & key(34) & key(26) & key(18) & key(10) & key(2) &
key(59) & key(51) & key(43) & key(35) & key(27) & key(19) & key(11) & key(3) &
key(60) & key(52) & key(44) & key(36) & key(63) & key(55) & key(47) & key(39) &
key(31) & key(23) & key(15) & key(7) & key(62) & key(54) & key(46) & key(38) &
key(30) & key(22) & key(14) & key(6) & key(61) & key(53) & key(45) & key(37) &
key(29) & key(21) & key(13) & key(5) & key(28) & key(20) & key(12) & key(4);

end;

function key_reduce2(key : in vec64) return vec56 is
begin
return

key(57) & key(49) & key(41) & key(33) & key(25) & key(17) & key(9) & key(1) &
key(58) & key(50) & key(42) & key(34) & key(26) & key(18) & key(IO) & key(2) &
key(59) & key(51) & key(43) & key(35) & key(27) & key(19) & key(11) & key(3) &
key(60) & key(52) & key(44) & key(36) & key(63) & key(55) & key(47) & key(39) &
key(31) & key(23) & key(15) & key(7) & key(62) & key(54) & key(46) & key(38) &
key(30) & key(22) & key(14) & key(6) & key(61) & key(53) & key(45) & key(37) &
key(29) & key(21) & key(13) & key(5) & key(28) & key(20) & key(12) & key(4);

end;

function key_rotate(key ; vec56; round : natural range 0 to 15; encrypt ; stdjogic) return vec56 is
type distance_type is array (natural range 0 to 31) of integer range 0 to 31;
constant shift_distance : distance_type :=
-moods ROM
(0, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
27, 27, 26, 26, 26, 26, 26, 26, 27, 26, 26. 26, 26, 26, 26, 27);

variable distance ; natural range 0 to 31;
begin
distance ;= shift_distance(to_integer(unsigned(encrypt & to_unsigned(round,4))));
return vec28(unsigned(key(1 to 28)) ror distance) & vec28(unsigned(key(29 to 56)) ror distance);

end;

function key_compress(key ; in vec56) return vec48 is
begin

return
key(14) & key(17) & key(11) & key(24) & key(1) & key(5) & key(3) & key(28) &
key(15) & key(6) & key(21) & key(10) & key(23) & key(19) & key(12) & key(4) &
key(26) & key(8) & key(16) & key(7) & key(27) & key(20) & key(13) & key(2) &
key(41) & key(52) & key(31) & key(37) & key(47) & key(55) & key(30) & key(40) &
key(51) & key(45) & key(33) & key(48) & key(44) & key(49) & key(39) & key(56) &
key(34) & key(53) & key(46) & key(42) & key(50) & key(36) & key(29) & key(32);

end;

T.B. Yee, 2007 Appendix D: V H D L code listings

function des_core(plaintext: vec64; key : vec56; encrypt: std jogic) return vec64 is
-moods inline
variable data : vec64;
variable working_key : vec56 := key;

begin
data := initial_permutation(plaintext);
for round in 0 to 15 loop

working_key := key_rotate(working_key,round,encrypt);
data := data(33 to 64) & (f(data(33 to 64),key_compress(working_key)) xor data(1 to 32));

end loop;
return final_permutation(data(33 to 64) & data(1 to 32));

end;
end;

Figure D-11 VHDL package for trIple-DES example

******A***AAA******A**A***

Triple-DES
*

library ieee;
use ieee.std_logiG_1164.all;
use work.des_functions.all;
entity tdes_ede2 is

port(
plaintext: in stdJogic_vector(1 to 32); -- now uses 32-bit input
keys: in stdJogic_vector(1 to 32); -- now uses 32-bit key (4 x 32-bits = 128-bit key)
in_hs_rdy: in std_logic_vector(0 downto 0);
in_hs_rcv: buffer stdjogic_vector(0 downto 0) := "0";
encrypt: in s td jogic ;
out_hs_rdy: buffer stdjogic_vector(0 downto 0) := "0";
out_hs_rGv: in stdjogic_vector(0 downto 0);
ciphertext: out stdJogic_uector(1 to 32); - now uses 32-bit
sys_reset: in s td jog ic ;
-moods reset
sys_clock: in s td jog ic
-moods clock
):

end;
architecture behaviour of tdes_ede2 is

process
variable data, keyl , key2 : vec64;
variable key: vec56;
variable mode : s td jog ic ;

begin
reset joop: loop

in_hs_rcv <= "0";
out_hs_rdy <= "0";
wait until sys_clock'event and sys_clock = '1';

exit reset joop when sys_reset = '1';
main joop: loop

for in_cnt in 0 to 3 loop
while(in_hs_rdy = in_hs_rcv) loop

wait until sys_clock'event and sys_clock = '1';
end loop;
case in_cnt is
when 0 =>

data(33 to 64) := plaintext(1 to 32);
keyl (33 to 64) := keys(1 to 32);

T.B. Yee, 2007 Appendix D: VHDL code listings J J .

when 1 =>
data(1 to 32) := plaintext(1 to 32);
key1(1 to 32) := keys(1 to 32);

when 2 =>
key2(33 to 64) := keys(1 to 32);

when 3 =>
key2(1 to 32) := keys(1 to 32);

when others => NULL;
end case;
in_hs_rcv <= not in_hs_rcv;
wait until sys_clock'event and sys_clock = '1';

end loop;

for loop_cnt in 0 to 2 loop
case loop_cnt is
when 1 =>

key ;= key_reduce2(key2);
mode := not encrypt;

when others =>
key := key_reduce1(key1);
mode := encrypt;

end case;
data := des_core(data, key, mode);

end loop;
for out_cnt in 0 to 1 loop
while(out_hs_rdy /= out_hs_rcv) loop
wait until sys_clock'event and sys_clock = '1';

end loop;

case out_cnt is
when 0 => ciphertext(1 to 32) <= data(1 to 32);
when others => ciphertext(1 to 32) <= data(33 to 64);

end case;
out_hs_rdy <= not out_hs_rdy;
wait until sys_clock'event and sys_clock = '1';
end loop;

wait until sys_clock'event and sys_clock = i ' ;
exit resetjoop when sys_reset = '1';
end loop;

end loop;
end process;

end;

Figure D-12 VHDL of triple-DES example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA triple-DES core

is given in Figure D-13. Zoom in views of the simulation showing inputs and outputs

updates are given in Figure D-14. With a system clock period of 40 ns, the non-pipelined

multi-FPGA triple-DES core takes 3950 clock cycles (i.e. clock cycles = (158420 ns - 420

ns) / 40 ns) to encrypt 64-bit plaintext using a 128-bit key.

T.B. Yee, 2007 Appendix D: VHDL code listings 340

1 1
i

I

g i 2 s i t *

£ 5 5 £ £ 2 S
rJ cJ rJ fV rV rsi' ry

Figure D-13 Simulation of the non-pipelined multi-FPGA Triple-DES

T.B. Yee, 2007 Appendix D: VHDL code listings 341

i l l
5 5 2 5

3 3 3 3

II !
4 * 4 * 3
2 .c' 2 £

6 6 (6 6 6 6 6 1 6 6 6 I 6 M m 6

8
I

H i
I I I n i l

Figure D-14 Simulation (zoom in views) of the non-pipelined multi-FPGA
Triple-DES

T.B. Yee, 2007 Appendix D: VHDL code listings 3 4 2

D.1.5 256-bit Advanced encryption standard

The 256-bit advanced encryption standard (AES) [146] implements the Rijndael algorithm

that processes data blocks of 128 bits using a 256-bit cipher key. The behavioural VHDL

of the 256-bit AES example is given in Figure D-16 and it uses the VHDL package in

Figure D-15.

* * * * * * * * * * * * *

- VHDL package for 256-AES packages **

library ieee;
use ieee.stdJogic_1164.all;
use ieee.numeric_std.all;

package aes_procedures is
subtype u_sign8 is unslgned(1 to 8);
subtype u_slgn16 is unsigned(1 to 16);
subtype u_sign32 is unslgned(1 to 32);
subtype u_sign64 is unsigned(1 to 64);
subtype u_sign128 is unsigned(1 to 128);
type rom_tab_1 is array(0 to 255) of u_sign8;
type rom_tab_2 is array(0 to 29) of u_sign8;
type rom_tab_5 is array(0 to 255) of u_sign32;
type rom_tab_7 is array(0 to 255) of integer;
type tab_4 is array(0 to 3) of u_sign8;
type tab_a8 is array(0 to 7) of u_sign32;
type tab_a6 is array(0 to 5) of u_sign32;
type tab_a4 is array(0 to 3) ofu_sign32;
type tab_90 is array(0 to 89) of u_sign32;
type tab_44 is array(0 to 43) ofu_sign32;
type tab_64 is array(0 to 63) of u_sign32;

function word (a : in u_sign8) return u_sign32;

procedure r_oneto24(a: in u_sign32; q_out: out u_sign32);

procedure r_oneto16(a: in u_sign32; q_out: out u_sign32);

procedure r_oneto8(a: in u_sign32; q_out: out u_sign32);

procedure rco(
a: in unsigned(4 downto 0);
a_out: out u_sign32);

end aes_procedures;

T.B. Yee, 2007 Appendix D: V H D L code listings 3 4 3

package body aes_procedures is

function word (a : in u_sign8) return u_sign32 is
variable q : u_sign32;

begin
q := a(1 to 7) & "000000000000000000000000"
return q;

end word;

procedure r_oneto24(
a: in u_sign32;
q_out: out u_sign32

) i s

begin
q_out := a(25 to 32) & a(1 to 24);

end r_oneto24;

procedure r_oneto16(
a: in u_sign32;
q_out: out u_sign32

) i s

begin
q_out := a(17 to 32) & a(1 to 16);

end r_oneto16;

procedure r_oneto8(
-— moods Inline

a: in u_sign32;
q_out: out u_sign32

) i s
begin

q_out := a(9 to 32) & a(1 to 8);
end r_oneto8;

procedure rco (
-— moods inline

a: in unsigned(4 downto 0);
a_out: out u_sign32

) i s

constant rcotab: rom_tab_2 :=
- moods rom

("00000001", "00000010", "00000100", "00001000", "00010000",
"00100000", "01000000", "10000000", "00011011", "00110110",
" 0 1 1 0 1 1 0 0 " , " 1 1 0 1 1 0 0 0 " , " 1 0 1 0 1 0 1 1 " , " 0 1 0 0 1 1 0 1 " , " 1 0 0 1 1 0 1 0 " ,

" 0 0 1 0 1 1 1 1 " , " 0 1 0 1 1 1 1 0 " , " 1 0 1 1 1 1 0 0 " , " 0 1 1 0 0 0 1 1 " , " 1 1 0 0 0 1 1 0 " ,

"10010111", "00110101", "01101010", "11010100", "10110011",
"01111101", "11111010", "11101111", "11000101", "10010001");

'begin
a_out := rcotab(to_integer(a)) & "000000000000000000000000";

end rco;
end aes_procedures;

T.B. Yee, 2007 Appendix D: VHDL code listings)44

* * * * * * * * * *

- Encryption tables for 256-AES example **

library leee;
use ieee.std_loglc_1164.all;
use ieee.numeric_std.all;

use work.aes_procedures.all;

package encryption_tables is

function fbsub(a: in u_sign8) return u_sign8;

function fbsub_quad(a: in u_sign32) return u_sign32;

function ftable(a : in u_sign8) return u_sign32;

function ftable_double(a, b : in u_sign8)return u_sign64;

procedure ftable_quad(
a: in u_sign32;
q_out: out u_sign32

);

end encryption_tables;

package body encryption_tables is

function fbsub (a : In u_slgn8) return u_slgn8 is
-- moods inline

constant fbsubtab : rom_tab_1 :=
- moods rom
(''01100011","01111100","01110111","01111011'',''11110010'',"01101011 ","01101111","11000101"

"00110000","00000001","01100111","00101011","11111110","11010111 ","10101011","01110110",
"11001010","10000010","11001001 ","01111101", "11111010","01011001 "."01000111 ","11110000",
"10101101 ","11010100","10100010","10101111","10011100","10100100","01110010","11000000",
"10110111","11111101","10010011","00100110","00110110","00111 111","11110111","11001100",
" 0 0 1 i o i o o " , " i o i o o i o r ' , " i 1 i o o i o i " , " i 1 1 1 0 0 0 1 " , " 0 1 i i o o o i " , " i 1 0 1 1 0 0 0 " , " 0 0 1 i o o o r ' , " o o o i o i o i " ,
"00000100","11000111 ","00100011 ","11000011 ","00011000","10010110","00000101 ","10011010",
"00000111 ","00010010","10000000","11100010","11101011 ","00100111 ","10110010","01110101",
" 0 0 0 0 1 0 0 1 " , " 1 0 0 0 0 0 1 1 " , " 0 0 1 0 1 1 0 0 " , " 0 0 0 1 1 0 1 0 " , " 0 0 0 1 1 0 1 1 " , " 0 1 1 0 1 1 1 0 " , " 0 1 0 1 1 0 1 0 " , " 1 0 1 0 0 0 0 0 " ,

" 0 1 0 1 0 0 1 0 " , " 0 0 1 1 1 0 1 1 " , " 1 1 0 1 0 1 1 0 " , " 1 0 1 1 0 0 1 1 " , " 0 0 1 0 1 0 0 1 " , " 1 1 1 0 0 0 1 1 " , " 0 0 1 0 1 1 1 1 " , " 1 0 0 0 0 1 0 0 " ,

"01010011 ","11010001 ","00000000","11101101", "00100000","11111100","10110001 ","01011011",
" 0 1 1 0 1 0 1 0 " , " 1 1 0 0 1 0 1 1 " , " 1 0 1 1 1 1 1 0 " , " 0 0 1 1 1 0 0 1 " , " 0 1 0 0 1 0 1 0 " , " 0 1 0 0 1 1 0 0 " , " 0 1 0 1 1 0 0 0 " , " 1 1 0 0 1 1 1 1 " ,

" 1 1 0 1 0 0 0 0 " , " 1 1 1 0 1 1 1 1 " , " 1 0 1 0 1 0 1 0 " , " 1 1 1 1 1 0 1 1 " , " 0 1 0 0 0 0 1 1 " , " 0 1 0 0 1 1 0 1 " , " 0 0 1 1 0 0 1 1 " , " 1 0 0 0 0 1 0 1 " ,

"01000101 ","11111001 ","00000010","01111111 ","01010000","00111100","10011111 ","10101000",
"01010001","10100011","01000000","10001111","10010010","10011101","00111000","11110101",
"10111100","10110110","11011010","00100001 ","00010000","11111111'
" 1 1 0 0 1 1 0 1 " , " 0 0 0 0 1 1 0 0 " , " 0 0 0 1 0 0 1 1 " , " 1 1 1 0 1 1 0 0 " , " 0 1 0 1 1 1 1 1 " , " 1 0 0 1 0 1 1 1 '

" 1 1 0 0 0 1 0 0 " , " 1 0 1 0 0 1 1 1 " , " 0 1 1 1 1 1 1 0 " , " 0 0 1 1 1 1 0 1 " , " 0 1 1 0 0 1 0 0 " , " 0 1 0 1 1 1 0 1 "

" 0 1 1 0 0 0 0 0 " , " 1 0 0 0 0 0 0 r ' , " 0 1 0 0 1 1 1 1 " , " 1 1 0 1 1 1 0 0 " , " 0 0 1 0 0 0 1 0 " , " 0 0 1 0 1 0 1 0 "
" 0 1 0 0 0 1 1 0 " , " 1 1 1 0 1 1 1 0 " , " 1 0 1 1 1 0 0 0 " , " 0 0 0 1 0 1 0 0 " , " 1 1 0 1 1 1 1 0 " , " 0 1 0 1 1 1 1 0 " , " 0 0 0 0 1 0 1 1 " , " 1 1 0 1 1 0 1 1 " ,

" 1 1 1 0 0 0 0 0 " , " 0 0 1 1 0 0 1 0 " , " 0 0 1 1 1 0 1 0 " , " 0 0 0 0 1 0 1 0 " , " 0 1 0 0 1 0 0 1 " , " 0 0 0 0 0 1 1 0 " , " 0 0 1 0 0 1 0 0 " , " 0 1 0 1 1 1 0 0 " ,

"11000010","11010011","10101100","01100010","10010001","10010101","11100100","01111001",
" 1 1 1 0 0 1 1 1 " , " 1 1 0 0 1 0 0 0 " , " 0 0 1 1 0 1 1 1 " , " 0 1 1 0 1 1 0 1 " , " 1 0 0 0 1 1 0 r ' , " 1 1 0 1 0 1 0 1 " , " 0 1 0 0 1 1 1 0 " , " 1 0 1 0 1 0 0 1 "
" 0 1 1 0 1 1 0 0 " , " 0 1 0 1 0 1 1 0 " , " 1 1 1 1 0 1 0 0 " , " 1 1 1 0 1 0 1 0 " , " 0 1 1 0 0 1 0 1 " , " 0 1 1 1 1 0 1 0 " , '

" 1 0 1 1 1 0 1 0 " , " 0 1 1 1 1 0 0 0 " , " 0 0 1 0 0 1 0 1 " , " 0 0 1 0 1 1 1 0 " , " 0 0 0 1 1 1 0 0 " , " 1 0 1 0 0 1 1 0 " ,

" 1 1 1 0 1 0 0 0 " , " 1 1 0 1 1 1 0 1 " , " 0 1 1 1 0 1 0 0 " , " 0 0 0 1 1 1 1 1 " , " 0 1 0 0 1 0 1 1 " , " 1 0 1 1 1 1 0 1 '

" 0 1 1 1 0 0 0 0 " , " 0 0 1 1 1 1 1 0 " , " 1 0 1 1 0 1 0 1 " , " 0 1 1 0 0 1 1 0 " , " 0 1 0 0 1 0 0 0 " , " 0 0 0 0 0 0 1 1 '

" 0 1 1 0 0 0 0 1 " , " 0 0 1 1 0 1 0 1 " , " 0 1 0 1 0 1 1 1 " , " 1 0 1 1 1 0 0 r ' , " 1 0 0 0 0 1 1 0 " , " 1 1 0 0 0 0 0 1 '
"11100001","1 111 1000","10011000","00010001","01101001","11011001'
"10011011","00011110","10000111","11101001","11001110","01010101"
" 1 0 0 0 1 1 0 0 " , " 1 0 1 0 0 0 0 1 " , " 1 0 0 0 1 0 0 1 " , " 0 0 0 0 1 1 0 1 " , " 1 0 1 1 1 1 1 1 " , " 1 1 1 0 0 1 1 0 " , " 0 1 0 0 0 0 1 0 " , " 0 1 1 0 1 0 0 0 " ,

" 0 1 0 0 0 0 0 r ' , " 1 0 0 1 1 0 0 1 " , " 0 0 1 0 1 1 0 1 " , " 0 0 0 0 1 1 1 1 " , " 1 0 1 1 0 0 0 0 " , " 0 1 0 1 0 1 0 0 " , " 1 0 1 1 1 0 1 1 " , " 0 0 0 1 0 1 1 0 " :

' , " 1 1 1 1 0 0 1 1 " , " 1 1 0 1 0 0 1 0 " ,

,"01000100","00010111".
, " 0 0 0 1 1 0 0 1 " , " 0 1 1 1 0 0 1 1 " ,

" 1 0 0 1 0 0 0 0 " , " 1 0 0 0 1 0 0 0 " ,

" 1 0 1 0 1 1 1 0 " , " 0 0 0 0 1 0 0 0 " ,

, " 1 0 1 1 0 1 0 0 " , " 1 1 0 0 0 1 1 0 " ,

',"10001011","10001010",
' , " 1 1 1 1 0 1 1 0 " . " 0 0 0 0 1 1 1 0 " ,

' , " 0 0 0 1 1 1 0 1 " , " 1 0 0 1 1 1 1 0 " ,

, " 1 0 0 0 1 1 1 0 " , " 1 0 0 1 0 1 0 0 " ,

,"00101000","11011111",

T.B. Yee, 2007 Appendix D: V H D L code listings M5

variable b : natural range 0 to 255;
variable q : u_sign8;
begin

b := to_lnteger(a);
q := fbsubtab(b);
return q;

end fbsub;

function fbsub_quad (a : in u_sign32) return u_slgn32 Is
— moods Inline
constant fbsubtab : rom_tab_1 :=
- moods rom
(" 0 1 1 0 0 0 1 1 " , " 0 1 1 1 1 1 0 0 " , ' ' 0 1 1 1 0 1 1 1 " , ' ' 0 1 1 1 1 0 1 1 ' ' , ' ' 1 1 1 1 0 0 1 0 " , ' ' 0 1 1 0 1 0 1 1 " , " 0 1 1 0 1 1 1 1 " , " 1 1 0 0 0 1 0 1 "

" 0 0 1 1 0 0 0 0 " , " 0 0 0 0 0 0 0 1 " , " 0 1 1 0 0 1 1 1 " , " 0 0 1 0 1 0 1 1 " , " 1 1 1 1 1 1 1 0 " , " 1 1 0 1 0 1 1 1 " , " 1 0 1 0 1 0 1 1 " . " 0 1 1 1 0 1 1 0 " ,

" 1 1 0 0 1 0 1 0 " , " 1 0 0 0 0 0 1 0 " , " 1 1 0 0 1 0 0 1 " , " 0 1 1 1 1 1 0 1 " , " 1 1 1 1 1 0 1 0 " , " 0 1 0 1 1 0 0 1 ' { " 0 1 0 0 0 1 1 1 " ! " 1 1 1 1 0 0 0 0 " ,

"10101101","11010100","10100010","10101111","10011100","101001 GO","01110010","11000000",
" 1 0 1 1 0 1 1 1 " , " 1 1 1 1 1 1 0 1 " , " 1 0 0 1 0 0 1 1 " , " 0 0 1 0 0 1 1 0 " , " 0 0 1 1 0 1 1 0 " , " 0 0 1 1 1 1 1 1 " , " 1 1 1 1 0 1 1 1 " , " 1 1 0 0 1 1 0 0 " ,

"00110100","10100101","11100101","11110001","01110001","11011000","00110001 ","00010101",
" 0 0 0 0 0 1 0 0 " , " 1 1 0 0 0 1 1 1 " , " 0 0 1 0 0 0 1 1 " , " 1 1 0 0 0 0 1 1 " , " 0 0 0 1 1 0 0 0 " , " 1 0 0 1 0 1 1 0 " , " 0 0 0 0 0 1 0 1 " , " 1 0 0 1 1 0 1 0 " ,

"00000111","00010010","10000000","11100010","11101011","00100111","10110010","01110101",
" 0 0 0 0 1 0 0 r ' , " 1 0 0 0 0 0 1 1 " , " 0 0 1 0 1 1 0 0 " , " 0 0 0 1 1 0 1 0 " , " 0 0 0 1 1 0 1 1 " , " 0 1 1 0 1 1 1 0 " , " 0 1 0 1 1 0 1 0 " , " 1 0 1 0 0 0 0 0 " ,

" 0 1 0 1 0 0 1 0 " , " 0 0 1 1 1 0 1 1 " , " 1 1 0 1 0 1 1 0 " , " 1 0 1 1 0 0 1 1 " , " 0 0 1 0 1 0 0 1 " , " 1 1 1 0 0 0 1 1 " , " 0 0 1 0 1 1 1 1 " , " 1 0 0 0 0 1 0 0 " ,

"01010011 ","11010001","00000000","11101101 ","00100000","1 111 1100","10110001 ","01011011",
" 0 1 1 0 1 0 1 0 " , " 1 1 0 0 1 0 1 1 " , " 1 0 1 1 1 1 1 0 " , " 0 0 1 1 1 0 0 r ' , " 0 1 0 0 1 0 1 0 " , " 0 1 0 0 1 1 0 0 " , " 0 1 0 1 1 0 0 0 " , " 1 1 0 0 1 1 1 1 " ,

"11010000","11101111","10101010","11111011","01000011","01001101","00110011","10000101",
" 0 1 0 0 0 1 0 1 " . " 1 1 1 1 1 0 0 r ' , " 0 0 0 0 0 0 1 0 " , " 0 1 1 1 1 1 1 1 " , " 0 1 0 1 0 0 0 0 " , " 0 0 1 1 1 1 0 0 " , " 1 0 0 1 1 1 1 1 " , " 1 0 1 0 1 0 0 0 " ,

"01010001","10100011"."01000000","10001111 ","10010010","10011101 ","00111000","11110101",
"10111100","10110110","11011010","00100001","00010000","11111 111","11110011","11010010",
"11001101","00001100","00010011","11101100","01011111"."10010111","01000100","00010111",
" 1 1 0 0 0 1 0 0 " , " 1 0 1 0 0 1 1 1 " , " 0 1 1 1 1 1 1 0 " , " 0 0 1 1 1 1 0 1 " , " 0 1 1 0 0 1 0 0 " , " 0 1 0 1 1 1 0 1 " , " 0 0 0 1 1 0 0 r ' , " 0 1 1 1 0 0 1 1 " ,

" 0 1 1 0 0 0 0 0 " , " 1 0 0 0 0 0 0 1 " , " 0 1 0 0 1 1 1 1 " , " 1 1 0 1 1 1 0 0 " , " 0 0 1 0 0 0 1 0 " , " 0 0 1 0 1 0 1 0 " , " 1 0 0 1 0 0 0 0 " , " 1 0 0 0 1 0 0 0 " ,

"01000110","11101110","10111000","00010100","11011110","01011110","00001011","11011011",
"11100000","00110010","00111010","00001010","01001001 ","00000110","00100100","01011100",
"11000010","11010011","10101100","01100010","10010001","10010101","11100100","01111001",
" 1 1 1 0 0 1 1 1 " , " 1 1 0 0 1 0 0 0 " , " 0 0 1 1 0 1 1 1 " , " 0 1 1 0 1 1 0 1 " , " 1 0 0 0 1 1 0 1 " , " 1 1 0 1 0 1 0 1 " , " 0 1 0 0 1 1 1 0 " , " 1 0 1 0 1 0 0 1 " ,

"01101100","01010110","11110100","11101010","01100101","01111010","10101110","00001000",
" 1 0 1 1 1 0 1 0 " , " 0 1 1 1 1 0 0 0 " , " 0 0 1 0 0 1 0 1 " , " 0 0 1 0 1 1 1 0 " , " 0 0 0 1 1 1 0 0 " , " 1 0 1 0 0 1 1 0 " , " 1 0 1 1 0 1 0 0 " , " 1 1 0 0 0 1 1 0 " ,

"11101000","11011101","01110100","00011111","01001011","10111101","10001011","10001010",
"01110000","00111110","10110101 ","01100110","01001000","00000011 ","11110110","00001110",
" 0 1 1 0 0 0 0 1 " , " 0 0 1 1 0 1 0 1 " , " 0 1 0 1 0 1 1 1 " , " 1 0 1 1 1 0 0 1 " , " 1 0 0 0 0 1 1 0 " , " 1 1 0 0 0 0 0 1 " , " 0 0 0 1 1 1 0 1 " , " 1 0 0 1 1 1 1 0 " ,

"11100001 ","11111000","10011000","00010001","01101001 ","11011001 ","10001110","10010100",
"10011011","00011110","10000111","11101001","11001110","01010101 ","00101000","11011111",

1 0 1 1 1 1 1 1 " , " 1 1 1 0 0 1 1 0 " , " 0 1 0 0 0 0 1 0 " , " 0 1 1 0 1 0 0 0 " ,

1 0 1 1 0 0 0 0 " , " 0 1 0 1 0 1 0 0 " , " 1 0 1 1 1 0 1 1 " , " 0 0 0 1 0 1 1 0 ") ;

" 1 0 0 0 1 1 0 0 " , " 1 0 1 0 0 0 0 1 " , " 1 0 0 0 1 0 0 1 " , " 0 0 0 0 1 1 0 1 " , '

"0100000110011001 ","00101101 ","00001 111",'
variable q: u_slgn32;
begin

q(1 to 8) := fbsubtab(toJnteger(a(1 to 8)));
q{9 to 16) := fbsubtab(to_integer(a(9 to 16)));
q(17 to 24) := fbsubtab(toJnteger(a(17 to 24)));
q(25 to 32) := fbsubtab(to_lnteger(a(25 to 32)));
return q;

end fbsub_quad;

function ftable(a : in u_slgn8) return u_slgn32 Is
-— moods Inline
constant ftabletab : rom_tab_5 :=

- moods rom

(
- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77.99), Hex(F6,7B,7B,8D)
" 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 " , " 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 " ,

" 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 " , " 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 " ,

T.B. Yee, 2007 Appendix D: VHDL code listings 3 4 g

- Hex(FF,F2,F2,0D), Hex(D6,6B,6B.BD), Hex(DE,6F,6F,B1), Hex(91,C5 C5 54)
"11111111111100101111001000001101", "11010110011010110110101110111101"

"11011110011011110110111110110001", "10010001110001011100010101010100" '
- Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B 70)
" 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 " , " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 "

" 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 " , " 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 " , '

- Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB,E6), Hex(EC,76,76 9A)
" 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 " . " 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 " ,

"01001101101010111010101111100110", "11101100011101100111011010011010", '
-- Hex(8F,CA,CA,45), Hex(1 F,82,82,9D), Hex(89,C9,C9,40), Hex(FA,7D,7D 87)
"10001111110010101100101001000101", "00011111100000101000001010011101",

" 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 " , " 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 " , '

- Hex(EF,FA,FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,FO,FO,OB)
"11101111111110101111101000010101", "10110010010110010101100111101011",

"10001110010001110100011111001001", "11111011111100001111000000001 o i l " , '
- Hex(41 ,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F,A2,A2,FD), Hex(45,AF,AF.EA)
"01000001101011011010110111101100", "10110011110101001101010001100111",

"01011111101000101010001011111101", "01000101101011111010111111101010"
- Hex(23,9C,9C,BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,C0,5B)
" 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 " , " 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1 " ,

" 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 " , " 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 " ,

- Hex(75,B7,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93,AE), Hex(4C,26,26,6A)
" 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 " , " 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 " ,

" 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 " , " 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 " , '

- Hex(6C,36,36,5A), Hex(7E,3F,3F,41), Hex(F5,F7,F7,02), Hex(83,CC,CC,4F)
" 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 " , " 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 " ,

" 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 " , " 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 " ,

- Hex(68,34,34,5C), Hex(51,A5,A5,F4), Hex(D1,E5,E5,34), Hex(F9,F1,F1,08)
" 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 " , " 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 " ,

" 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 " , " 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 " ,

- Hex(E2,71,71,93), Hex(AB,D8,D8,73), Hex(62,31,31,53), Hex(2A,15,15,3F)
"11100010011100010111000110010011", "10101011110110001101100001110011",

"01100010001100010011000101010011", "00101010000101010001010100111111",
- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(9D,C3,C3,5E)
"00001000000001000000010000001100", "10010101110001111100011101010010",

" 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 " , " 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 " ,

- Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F,9A,9A,B5)
" 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 " , " 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 " ,

" 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 " , " 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 " ,

- Hex(0E,07,07,09), Hex(24.12,12,36), Hex(1B,80,80,9B), Hex(DF,E2,E2,3D)
" 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 " , " 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 " ,

" 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 " , " 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 " ,

- Hex(CD,EB,EB,26), Hex(4E,27,27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
" 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 " , " 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 " ,

" 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 " , " 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 " ,

- Hex(12,09,09,IB), Hex(1D,83,83,9E), Hex(58,2C,2C,74), Hex(34,1A.1A,2E)
"00010010000010010000100100011011", "00011101100000111000001110011110",

" 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 " , " 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 " ,

- Hex(36,1B,1B,2D), Hex(DC,6E,6E,B2), Hex(B4,5A,5A,EE), Hex(5B,A0,A0,FB)
"00110110000110110001101100101101", "11011100011011100110111010110010",

" 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 " , " 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 " ,

- Hex(A4,52.52,F6), Hex(76,3B,3B,4D), Hex(B7,D6,D6,61), Hex(7D.B3,B3.CE)
"10100100010100100101001011110110", "011101100011101100111 Oil01001101",

" 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 " , " 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 " ,

- Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F,2F,71), Hex(13,84,84,97)
" 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 " , " 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 " ,

"01011110001011110010111101110001", "00010011100001001000010010010111",
- Hex(A6,53,53,F5), Hex(B9,D1,D1,68), Hex(00,00,00,00), Hex(C1,ED,ED,2C)
"10100110010100110101001111110101", "10111001110100011101000101101000",

"00000000000000000000000000000000", "11000001111011011110110100101100",
- Hex(40,20,20,60), Hex(E3,FC,FC,1F), Hex(79,B1,B1,C8), Hex(B6,5B,5B,ED)
" 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 " , " 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 " ,

" 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 " , " 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 " ,

T.B. Yee, 2007 Appendix D: VHDL code listings g/j.'y

- Hex(D4,6A,6A,BE), Hex(8D,CB,CB,46), Hex(67,BE,BE,D9), Hex(72,39,39,4B)
"11010100011010100110101010111110", "10001101110010111100101101000110",

"01100111101111101011111011011001", "01110010001110010011100101001011",
- Hex(94,4A,4A,DE), Hex(98,4C,4C,D4), Hex(B0,58,58,E8), Hex(85,CF,CF,4A)
"10010100010010100100101011 Oi l 110", "10011000010011000100110011010100",

"10110000010110000101100011101000", "10000101110011111100111101001010",
- Hex(BB,D0.D0,6B), Hex(C5,EF,EF,2A), Hex(4F,AA,AA,E5), Hex(ED,FB,FB,16),
" 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 " , " 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 " ,

"01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D,D7), Hex(66,33,33,55), Hex(11,85,85,94)
" 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 " , " 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 " ,

" 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 " , " 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 " ,

- Hex(8A,45,45,CF), Hex(E9,F9,F9,10), Hex(04,02,02.06), Hex(FE,7F,7F,81)
" 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 " , " 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 " ,

" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 " , " 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 " ,

- Hex(A0,50,50,F0), Hex(78.3C,3C,44), Hex(25,9F,9F,BA), Hex(4B,A8,A8,E3)
" 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 " , " 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 " .

" 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 " , " 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 " ,

- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE), Hex(80,40,40,CO), Hex(05,8F,8F,8A)
" 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 " 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 " ,

" 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 " , " 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 " ,

- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1,F5,F5,04)
" 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 " , " 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 " ,

" 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 " , " 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 " ,

- Hex(63,BC,BC,DF), Hex(77,B6,B6,C1), Hex(AF.DA,DA,75), Hex(42,21,21,63)
" 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 " , " 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 " ,

" 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 " , " 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 " ,

- Hex(20,10,10,30), Hex(E5,FF,FF,1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
" 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 " , " 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 " ,

"11111101111100111111001100001110", "10111111110100101101001001101101",
- Hex(81,CD,CD,4C), Hex(18,0C,0C,14), Hex(26,13,13,35), Hex(C3,EC,EC,2F)
" 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 " , " 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 " ,

" 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 " , " 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 " ,

-Hex(BE,5F,5F,E1), Hex(35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
" 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 " , " 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 " ,

" 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 " , " 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 " ,

- Hex(93,C4,C4,57), Hex(55,A7,A7,F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
" 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 " , " 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 " ,

" 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 " , " 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 " ,

- Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73,95)
" 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 " , " 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 " ,

" 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 " , " 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 " ,

- Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E,4F.4F,D1), Hex(A3,DC,DC,7F)
" 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 " , " 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 " ,

" 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 " , " 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 " ,

- Hex(44,22,22,66), Hex(54,2A,2A,7E), Hex(3B,90,90,AB), Hex(0B.88,88,83)
" 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 " , " 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 " ,

"00111011100100001001000010101 oil", " 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 " ,
- Hex(8C,46,46,CA), Hex(C7,EE,EE,29), Hex(6B,B8,B8,D3), Hex(28,14,14,3C)
" 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 " , " 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 " ,

" 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 " , " 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 " ,

- Hex(A7,DE,DE,79), Hex(BC,5E,5E,E2), Hex(16,0B,0B,1D), Hex(AD,DB,DB,76)
" 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 " , " 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 " ,

" 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 " 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 " ,

- Hex(DB,E0,E0,3B), Hex(64,32,32,56), Hex(74,3A,3A,4E), Hex(14,0A,0A,1E)
"11011011111000001110000000111011", "01100100001100100011001001010110",

" 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 " , " 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 " ,

- Hex(92,49,49,DB), Hex(OC,06,06,OA), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
" 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 " , " 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 " ,

" 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 " , " 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 " ,

- Hex(9F,C2,C2,5D), Hex(BD,D3.D3,6E). Hex(43,AC,AC,EF), Hex(C4,62,62,A6)
" 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 " , " 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 " ,

"01000011101011001010110011101111", "11000100011000100110001010100110",

T.B. Yee, 2007 Appendix D: VHDL code listings 3 4 g

- Hex(39,91,91,A8), Hex(31,95,95,A4), Hex(D3,E4,E4,37), Hex(F2,79,79,86)
" 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 " , " 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 " ,

" 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 " , " 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 " ,

- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA,6D,6D,B7)
" 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 " , " 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 " ,

"01101110001101110011011101011001", "11011010011011010110110110110111",
- Hex(01,8D,8D,8C), Hex(B1,D5,D5,64), Hex(9C,4E,4E,D2), Hex(49,A9,A9,E0)
" 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 " , " 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 " ,

" 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 " , " 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 " ,

- Hex(D8,6C,6C,B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA,25)
" 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 " , " 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 " ,

" 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 " , " 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 " .

- Hex(CA,65,65,AF), Hex(F4,7A,7A,8E), Hex(47,AE,AE,E9), Hex(10,08,08,18)
" 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 " , " 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 " ,

" 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 " , " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 " ,

- Hex(6F,BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25,6F), Hex(5C,2E,2E,72)
" 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 " , " 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 " ,

" 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 " , " 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 " ,

- Hex(38,1C,1C,24), Hex(57,A6,A6,F1), Hex(73,B4,B4,C7), Hex(97,C6,C6,51)
"00111000000111000001110000100100", "01010111101001101010011011110001",

" 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 " , " 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 " ,

- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F,1F,21)
" 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 " , " 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 " ,

" 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 " , " 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 " ,

- Hex(96,4B,4B,DD), Hex(61,BD,BD,DC), Hex(0D,8B.8B,86), Hex(0F,8A,8A,85)
" 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 " , " 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 " ,

" 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 " , " 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 " ,

- Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,B5,C4), Hex(CC,66.66,AA)
" 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 " , " 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 " ,

" 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 " , " 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 " ,

- Hex(90,48,48,08), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E,0E,12)
" 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 " , " 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 " ,

" 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 " 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 " ,

- Hex(C2,61,61,A3), Hex(6A,35,35,5F), Hex(AE,57,57,F9), Hex(69,B9,B9,D0)
" 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 " , " 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 " ,

" 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 " , " 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 " ,

- Hex(17,86,86,91), Hex(99,C1,C1,58), Hex(3A,1D,1D,27), Hex(27,9E,9E,B9)
" 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 " , " 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 " ,

" 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 " , " 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 " ,

- Hex(D9,E1,E1,38), Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11,11,33)
" 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 " , " 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 " ,

" 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 " , " 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 " ,

- Hex(D2,69,69,BB), Hex(A9,D9,D9,70), Hex(07,8E,8E,89), Hex(33,94,94,A7)
" 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 " , " 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 " ,

" 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 " , " 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 " ,

- Hex(2D,9B,9B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
"00101101100110111001101110110110", "00111100000111100001111000100010",

" 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 " , " 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 " ,

- Hex(87,CE,CE,49), Hex(AA,55,55,FF), Hex(50,28,28,78), Hex(A5.DF,DF,7A)
" 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 " , " 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 " ,

" 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 " , " 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 " ,

- Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
" 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 " , " 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 " ,

"00001001100010011000100110000000", "00011010000011010000110100010111",
-- Hex(65,BF,BF,DA), Hex(D7,E6,E6,31), Hex(84,42,42,C6), Hex(D0,68,68,B8)
" 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 " , " 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 " ,

" 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 " , " 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 " ,

- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F,0F,11)
" 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 " , " 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 " ,

" 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 " , " 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 " ,

- Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D,BB,BB,D6), Hex(2C,16,16,3A)
"01111011101100001011000011001011", "10101000010101000101010011111100",

" 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 " , " 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 ") ;

T.B. Yee, 2007 Appendix D: VHDL code listings 3 4 9

variable b : natural range 0 to 255;
variable q : u_slgn32;
begin

b := tojnteger(a);
q := ftabletab(b);
return q;

end ftable;

function ftable_double(a, b : In u_sign8) return u_slgn64 is
moods inline

constant ftabletab : rom_tab_5 :=
-- moods rom

- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77,99), Hex(F6.7B,78,80)
" 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 " , " 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 " ,

" 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 " , " 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 " ,

- Hex(FF,F2,F2,0D), Hex(D6,6B,6B,BD), Hex(DE,6F,6F,B1). Hex(91 ,C5,C5,54)
" 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 " , " 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1 " ,

" 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 " , " 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 " ,

- Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B,7D)
" 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 " , " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

"11001110011001110110011110101001", "01010110001010110010101101111101",
- Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB,E6), Hex(EC,76,76,9A)
" 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 " , " 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0 " ,

" 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 " , "11101100011101100111 oil010011010",
- Hex(8F,CA,CA,45), Hex(1F,82,82,9D), Hex(89,C9,C9,40), Hex(FA,7D,7D,87)
" 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 " , " 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 " ,

" 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 " , " 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 " ,

- Hex(EF,FA,FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,FO,FO.OB)
"11101111111110101111101000010101", "10110010010110010101100111101011",

" 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 1 " , " 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 " ,

- Hex(41,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F,A2,A2,FD), Hex(45,AF,AF,EA)
"01000001101011011010110111101100", "10110011110101001101010001100111",

" 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 " , " 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 " ,

- Hex(23,9C,9C,BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,C0,5B)
"00100011100111001001110010111111" , "01010011101001001010010011110111" ,

" 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 " , " 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 " ,

- Hex(75,B7,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93,AE), Hex{4C,26,26,6A)
" 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 " , " 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 " ,

" 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 " , " 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 " ,

- Hex(6C,36,36,5A), Hex(7E,3F,3F,41), Hex(F5,F7,F7,02), Hex(83,CC,CC,4F)
" 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 " , " 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 " ,

" 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 " , " 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 " ,

- Hex(68,34,34,5C), Hex(51,A5,A5,F4), Hex(D1,E5,E5,34), Hex(F9,F1,F1,08)
" 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 " , " 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 0 " ,

" 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 " , " 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 " ,

- Hex(E2,71,71,93), Hex(AB,08,08,73), Hex(62,31,31,53), Hex(2A,15,15,3F)
" 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 " , " 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 " ,

" 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 " , " 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 " ,

- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(90,C3,C3,5E)
" 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 " , " 1 0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0 1 0 " ,

"01000110001000110010001101100101", "10011101110000111100001101011110",
- Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F,9A,9A,B5)
" 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 " , " 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 " ,

"00001010000001010000010100001 111", "00101111100110101001101010110101",
- Hex(OE,07,07,09), Hex(24,12,12,36), Hex(1B,80,80,98), Hex(0F,E2.E2,3D)
" 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 " , " 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 " ,

" 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 " , " 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 " ,

- Hex(CD,EB,EB,26), Hex(4E,27,27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
" 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 " , " 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 " ,

"01111111101100101011001011001101", "11101010011101010111010110011111",

T.B. Yee, 2007 Appendix D: VHDL code listings 35Q

- Hex(12,09,09,18), Hex(1D,83,83,9E), Hex(58,2C,2C,74), Hex(34,1A,1A,2E)
" 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 " 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 " ,

" 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 " , " 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 " ,

- Hex(36,1B,1B,2D), Hex(DC,6E,6E,B2), Hex(B4,5A,5A,EE), Hex(5B,A0,A0,FB)
" 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 " 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 1 0 " ,

" 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 " , " 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 " ,

- Hex(A4,52,52,F6), Hex(76,3B,3B,4D), Hex(B7,D6,D6,61), Hex(7D,B3,B3,CE)
"10100100010100100101001011110110", "01110110001110110011101101001101",

"10110111110101101101011001100001", "01111101101100111011001111001110",
- Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F,2F,71), Hex(13,84,84,97)
"01010010001010010010100101111011", "11011101111000111110001100111110",

"01011110001011110010111101110001", "00010011100001001000010010010111",
- Hex(A6,53,53,F5), Hex(B9,D1 ,D1,68), Hex(00,00,00,00), Hex(C1 ,ED,ED,2C)
"10100110010100110101001111110101", "10111001110100011101000101101000",

" 0 " , " 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 " ,

- Hex(40,20,20,60), Hex(E3,FC,FC,1 F), Hex(79,B1 ,B1 ,C8), Hex(B6,5B,5B,ED)
" 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 " , " 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 " ,

" 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 " , " 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 " .

- Hex(D4,6A,6A,BE), Hex(8D,CB,CB,46), Hex(67,BE,BE,D9), Hex(72,39,39,48)
" 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 " , " 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 0 " ,

" 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 " , " 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 " ,

- Hex(94,4A,4A.DE), Hex(98,4C,4C,D4), Hex(80,58,58,E8). Hex(85,CF,CF,4A)
" 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 " , " 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 " ,

" 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 " , " 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 " ,

- Hex(BB,D0,D0,6B), Hex(C5,EF,EF,2A), Hex(4F,AA,AA,E5), Hex(ED,FB,FB.16),
" 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 " 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 " ,

"01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D,D7), Hex(66,33,33,55), Hex(11.85,85,94)
" 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 " , " 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 1 " ,

" 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 " , " 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 " ,

- Hex(8A,45,45,CF), Hex(E9,F9,F9,10), Hex(04,02,02,06), Hex(FE,7F,7F,81)
"10001010010001010100010111001111", "11101001111110011111100100010000",

" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 " , " 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 " ,

- Hex(A0,50,50,F0), Hex(78,3C,3C.44), Hex(25,9F,9F,8A), Hex(48,A8,A8,E3)
" 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 " , " 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 " ,

"00100101100111111001111110111010", "01001011101010001010100011100011",
- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE). Hex(80,40,40,C0), Hex(05.8F,8F,8A)
" 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 " , " 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 " ,

"10000000010000000100000011000000", "00000101100011111000111110001010",
- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1 ,F5,F5,04)
" 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 " , " 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 " ,

" 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 " , " 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 " ,

- Hex(63,BC,BC,DF). Hex(77,86,B6,C1), Hex(AF,DA,DA,75), Hex(42.21,21,63)
" 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 " , " 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 " ,

"10101111110110101101101001110101", "01000010001000010010000101100011",
- Hex(20,10,10,30), Hex(E5,FF,FF,1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
" 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 " , " 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 " ,

" 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 " , " 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0 1 " ,

- Hex(81,CD,CD,4C), Hex(18.0C,0C,14), Hex(26,13,13,35), Hex(C3,EC,EC,2F)
" 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 " , " 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 " ,

" 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 " , " 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 " ,

- Hex(BE,5F,5F,E1), Hex{35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
" 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 " , " 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 " ,

" 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 " , " 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 " ,

- Hex(93,C4,C4,57), Hex(55,A7,A7,F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
"10010011110001001100010001010111", "01010101101001111010011111110010",

" 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 " , " 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 " ,

- Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73,95)
"11001000011001000110010010101100", "10111010010111010101110111100111",

" 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 " , " 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 " ,

- Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E,4F,4F,D1), Hex(A3,DC,DC,7F)
" 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 " , " 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 " ,

"10011110010011110100111111010001", "10100011110111001101110001111111",

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 1

- Hex(44,22,22,66), Hex(54,2A,2A,7E), Hex(3B,90,90,AB), Hex(0B.88,88,83)
" 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 " , " 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 " ,

"00111011100100001001000010101011", "00001011100010001000100010000011",
- Hex(8C,46,46.CA), Hex(C7,EE,EE,29), Hex(6B.B8,B8,D3), Hex(28.14.14,3C)
" 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 " , " 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 " ,

"01101011101110001011100011010011", "00101000000101000001010000111100",
- Hex(A7,DE,DE,79), Hex(BC,5E,5E,E2), Hex(16,0B,0B,1D), Hex(AD,DB,DB,76)
"10100111110111101101111001111001", "10111100010111100101111011100010",

" 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 " 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 " ,

- Hex(DB,E0,E0,3B), Hex(64,32.32,56), Hex(74,3A,3A.4E), Hex(14.0A,0A,1E)
" 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 " , " 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 " ,

" 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 " , " 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 " ,

- Hex(92,49,49,DB). Hex(0C,06,06,0A), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
" 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 " , " 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 " ,

" 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 " , " 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 " ,

- Hex(9F,C2,C2,5D), Hex(BD,D3,D3,6E). Hex(43,AC,AC,EF), Hex(C4,62,62.A6)
" 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 " , " 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 " ,

" 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 1 " , " 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 " ,

- Hex(39,91,91 ,A8). Hex(31,95,95,A4), Hex(D3,E4,E4,37), Hex(F2,79.79.8B)
" 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 " , " 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 " ,

"11010011111001001110010000110111". "11110010011110010111100110001011",
- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA,6D,6D,B7)
" 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 " , " 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 " ,

"01101110001101110011011101011001", "11011010011011010110110110110111".
- Hex(01,8D,8D,8C), Hex(B1,D5.D5,64), Hex(9C.4E,4E,D2), Hex(49,A9,A9,E0)
" 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 " , " 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 " ,

" 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 " , " 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 " ,

- Hex(D8,6C.6C.B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA,25)
" 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 " , " 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 " ,

" 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 " , " 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 " ,

- Hex(CA,65,65,AF). Hex(F4,7A,7A.8E), Hex(47,AE,AE,E9), Hex(10,08,08,18)
" 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 " , " 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 " ,

" 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 " , " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 " ,

- Hex(6F,BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25,6F), Hex(5C.2E,2E,72)
" 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 " , " 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 " ,

" 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 " , " 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 " ,

- Hex(38,1C,1C,24), Hex(57,A6,A6.F1). Hex(73,B4,B4,C7), Hex(97,C6.C6,51)
" 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 " , " 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 " ,

" 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 " , " 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 " ,

- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F,1F,21)
" 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 " , " 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 " ,

" 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 " , " 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 " ,

- Hex(96,4B,4B,DD), Hex(61.BD,BD,DC), Hex(0D,8B,8B,86), Hex(0F,8A,8A,85)
" 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 " , " 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 " ,

" 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 " , " 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 " ,

- Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,B5,C4), Hex(CC.66.66,AA)
" 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 " , " 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 " ,

" 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 " , " 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 " ,

- Hex(90,48,48,08), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E.0E,12)
" 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 " , " 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 " ,

" 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 " , " 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 " ,

- Hex(C2,61,61,A3), Hex(6A,35,35,5F), Hex(AE,57,57,F9), Hex(69.B9,B9,D0)
"11000010011000010110000110100011". "01101010001101010011010101011111",

"10101110010101110101011111111001", "01101001101110011011100111010000",
- Hex(17,86,86.91), Hex(99,C1,C1,58), Hex(3A,1D,1D,27), Hex(27.9E,9E.B9)
" 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 " , " 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 " ,

" 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 " , " 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 " ,

- Hex(D9,E1,E1,38). Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11,11,33)
" 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 " , " 1 1 1 0 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 " ,

" 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 " , " 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 " ,

- Hex(D2,69,69,BB). Hex(A9,D9,D9,70), Hex(07,8E,8E,89), Hex(33.94,94,A7)
"11010010011010010110100110111011", "10101001110110011101100101110000",

"00000111100011101000111010001001", "00110011100101001001010010100111",

T.B. Yee. 2007 Appendix D: VHDL code listings 352

- Hex(2D,9B,9B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
" 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 " , " 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 " ,

"00010101100001111000011110010010", "11001001111010011110100100100000",
- Hex(87,CE,CE,49), Hex(AA,55,55,FF), Hex(50,28,28,78), Hex(A5,DF,DF,7A)
" 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 " , " 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 " ,

" 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 " , " 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 " ,

- Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
" 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 " , " 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 " ,

" 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 " , " 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 " ,

- Hex(65,BF,BF,DA), Hex(D7,E6,E6,31), Hex(84,42,42,C6), Hex(D0,68,68,B8)
"01100101101111111011111111011010", "11010111111001101110011000110001",

" 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 " , " 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 " ,

- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F,0F,11)
"10000010010000010100000111000011", "00101001100110011001100110110000",

" 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 " , " 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 " ,

- Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D,BB,BB,D6), Hex(2C,16,16,3A)
" 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 " , " 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 " ,

" 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 " , " 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 "

);

variable c : natural range 0 to 255;
variable r : u_sign32;
variable q : u_sign64;

begin
c := to_integer(a);
r := ftabletab(c);
c := tojnteger(b);
q := ftabletab(c) & r;
return q;

end ftable double;

procedure ftable_quad (
-— moods inline

a: in u_sign32;
q_out: out u_sign32

)is
constant ftabletab : rom_tab_5 :=
- moods rom

- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77,99), Hex(F6,7B,7B,8D)
"11000110011000110110001110100101", "11111000011111000111110010000100"

"11101110011101110111011110011001", "11110110011110110111101110001101"
- Hex(FF,F2,F2,0D), Hex(D6,6B,6B,BD), Hex(DE,6F,6F,B1), Hex(91,C5,C5,54)
" 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 " , " 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 1

" 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 " , " 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 "

- Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B,7D)
"01100000001100000011000001010000", "00000010000000010000000100000011

" 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 " , " 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 "

- Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB,E6), Hex(EC,76,76,9A)
" 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 " , " 1 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 1 0

"01001101101010111010101111100110", "11101100011101100111011010011010"
- Hex(8F,CA,CA,45), Hex(1F,82,82,90), Hex(89,C9,C9,40), Hex(FA,7D,7D;iBi^
" 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 " , " 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 1

" 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 " , " 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 "

- Hex(EF,FA,FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,FO,FO,OB)
"11101111111110101111101000010101", "10110010010110010101100111101011

"10001110010001110100011111001001", "11111011111100001111000000001011"
- Hex(41,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F,A2,A2,FD), Hex(45,AF,AF,EA)
"01000001101011011010110111101100", "10110011110101001101010001100111

" 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 " , " 0 1 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 "

- Hex(23,9C,9C,BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,C0,5B)
" 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 " 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 1 1

" 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 " , " 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 "

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 :

- Hex(75,B7,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93,AE), Hex(4C.26,26,6A)
" 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 0 " , " 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 " ,

" 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 " , " 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 " ,

- Hex(6C,36,36,5A), Hex(7E,3F,3F,41), Hex(F5,F7,F7,02), Hex(83,CC,CC,4F)
" 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 " , " 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 " ,

" 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 " , " 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 " ,

- Hex(68,34,34,5C), Hex(51 ,A5,A5,F4), Hex(D1 ,E5,E5,34). Hex(F9,F1 ,F1,08)
"01101000001101000011010001011100", "01010001101001011010010111110100".

" 1 1 0 1 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 " , " 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 " ,

- Hex(E2,71,71,93). Hex(AB,D8,D8,73), Hex(62,31,31,53), Hex(2A.15,15,3F)
" 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 " , " 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 " ,

"01100010001100010011000101010011", "00101010000101010001010100111111",
- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(9D.C3,C3,5E)
"00001000000001000000010000001100", "10010101110001111100011101010010",

" 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 " , " 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 1 1 0 " ,

- Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F,9A,9A,B5)
" 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 " , " 0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 " ,

" 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 " , " 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 " ,

- Hex(OE,07,07,09), Hex(24,12,12,36), Hex(1 B,80,80,9B), Hex(DF,E2,E2,3D)
" 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 " , " 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 " ,

" 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 " , " 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 " ,

- Hex(CD,EB,EB,26), Hex(4E,27.27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
" 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 " , " 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 " ,

" 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 " , " 1 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 " ,

- Hex(12,09,09,16), Hex(1D,83,83,9E), Hex(58,2C,2C,74), Hex(34,1A,1A.2E)
" 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 " 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 " ,

" 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 " , " 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 " ,

- Hex(36,1B,1B,2D), Hex(DC,6E,6E,B2), Hex(B4,5A,5A,EE), Hex(5B.A0.A0,FB)
"00110110000110110001101100101101", "11011100011011100110111010110010",

" 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 " , " 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 1 " ,

- Hex(A4,52,52,F6), Hex(76,3B,3B,4D), Hex(B7,D6,D6,61), Hex(7D,B3.B3,CE)
" 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 " , " 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 " ,

" 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 " , " 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 0 " ,

- Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F,2F,71), Hex{13,64,84,97)
" 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 1 " , " 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 " ,

" 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 " , " 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 " ,

- Hex(A6,53,53,F5), Hex(B9,D1,D1,68), Hex(00,00,00,00), Hex(C1,ED,ED,2C)
"10100110010100110101001111110101", "10111001110100011101000101101000",

" 0 " , " 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 " ,

- Hex(40,20,20,60), Hex{E3,FC,FC,1F), Hex{79,B1,B1,C8), Hex(B6,5B,5B,ED)
" 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 " , " 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 " ,

"01111001101100011011000111001000", "10110110010110110101101111101101",
- Hex(D4,6A,6A,BE). Hex(8D,CB,CB,46), Hex(67,BE,BE,D9), Hex(72.39,39,4B)
"11010100011010100110101010111110", "10001101110010111100101101000110",

" 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 1 " , " 0 1 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 " ,

- Hex(94,4A,4A,DE), Hex(98,4C,4C,D4), Hex(B0.58,58,E8), Hex(85,CF,CF,4A)
" 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 0 " , " 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 " ,

" 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 " , " 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 " ,

- Hex(BB,D0,D0,6B), Hex(C5,EF,EF,2A), Hex(4F,AA,AA,E5), Hex(ED,FB,FB,16),
" 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 1 1 " , " 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 " ,

"01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D,D7), Hex(66,33,33,55), Hex(11.85,85,94)
"10000110010000110100001111000101", "10011010010011010100110111010111",

" 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 " 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 " ,

- Hex(8A,45,45,CF), Hex(E9,F9,F9,10), Hex(04,02,02,06), Hex(FE,7F,7F.81)
" 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 " , " 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 " ,

" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 " , " 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 " ,

- Hex(A0,50,50,F0), Hex(78,3C,3C.44), Hex(25,9F.9F,BA), Hex(4B,A8,A8,E3)
" 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 " , " 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 " ,

" 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 " , " 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 " ,

- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE), Hex(80,40,40,C0), Hex(05,8F,8F,8A)
" 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 " , " 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 " ,

" 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 " , " 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 " ,

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 4

- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1,F5,F5,04)
"00111111100100101001001010101101", "00100001100111011001110110111100",

" 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 " , " 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 0 0 0 0 1 0 0 " ,

- Hex(63,BC,BC,DF), Hex(77,B6,B6,C1), Hex(AF,DA,DA,75), Hex(42.21,21,63)
" 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 1 " , " 0 1 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 " ,

"10101111110110101101101001110101", "01000010001000010010000101100011",
- Hex(20,10,10,30), Hex(E5,FF,FF,1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
" 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 " , " 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 " ,

"11111101111100111111001100001110", "10111111110100101101001001101101",
- Hex(81,CD,CD,4C), Hex(18,0C,0C,14), Hex(26,13,13,35). Hex(C3,EC.EC,2F)
" 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 " , " 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 " ,

" 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 " , " 1 1 0 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 " ,

- Hex(BE,5F,5F,E1), Hex(35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
" 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 " , " 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 " ,

" 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 " , " 0 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 " ,

- Hex(93,C4,C4,57), Hex(55,A7,A7.F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
" 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 " , " 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 " ,

" 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 " , " 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 " ,

- Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73.95)
" 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 " , " 1 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 " ,

" 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 " 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 " ,

- Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E,4F,4F,D1), Hex(A3,DC,DC,7F)
" 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 " , " 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 " ,

" 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 " , " 1 0 1 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 " ,

- Hex(44,22,22.66), Hex(54,2A,2A,7E). Hex(3B,90,90,AB), Hex(0B.88,88,83)
" 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 " , " 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 " ,

" 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 " , " 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 " ,

- Hex(8C,46,46,CA), Hex(C7,EE.EE.29), Hex(6B,B8,B8,D3), Hex(28.14,14,3C)
" 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0 " , " 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 " ,

" 0 1 1 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 1 " , " 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 " ,

-Hex(A7,DE,DE,79), Hex(BC,5E,5E,E2), Hex(16,0B,0B,1D), Hex(AD,DB.DB,76)
" 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 " , " 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 " ,

" 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 " , " 1 0 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 " .

- Hex(DB,E0.E0,3B), Hex(64,32.32,56), Hex(74,3A,3A,4E), Hex(14,0A,0A,1E)
" 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 " , " 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 " ,

" 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 " , " 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 " ,

- Hex(92.49,49,DB), Hex(0C.06,06,0A), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
" 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 " , " 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 " ,

" 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 " , " 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 " ,

- Hex(9F,C2,C2,5D), Hex(BD,D3,D3,6E), Hex(43,AC,AC,EF), Hex(C4,62,62,A6)
" 1 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 " , " 1 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 " ,

"01000011101011001010110011101111", "11000100011000100110001010100110".
- Hex(39.91,91.A8). Hex(31,95,95,A4), Hex(D3,E4,E4.37), Hex(F2,79,79,8B)
" 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 0 " , " 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 " ,

" 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 1 1 " , " 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 " ,

- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA.6D,6D,B7)
" 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 " , " 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 " ,

"01101110001101110011011101011001", "11011010011011010110110110110111",
- Hex(01,8D,8D,8C), Hex(B1,D5,D5,64), Hex(9C,4E,4E,D2), Hex(49,A9,A9,E0)
" 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 " , " 1 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 " ,

" 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 " , " 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 " ,

- Hex(D8,6C,6C,B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA,25)
" 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 " , " 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 " ,

" 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 " . " 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 " ,

- Hex(CA.65.65,AF), Hex(F4.7A,7A,8E), Hex(47.AE,AE.E9). Hex(10.08.08,18)
" 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 1 " , " 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 " ,

" 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 0 1 " , " 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 " ,

- Hex(6F,BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25.6F). Hex(5C,2E,2E,72)
" 0 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 1 " , " 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 " ,

" 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 " , " 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 " ,

- Hex(38,1C,1C,24), Hex(57,A6,A6,F1), Hex(73,B4,B4,C7), Hex(97.C6,C6,51)
" 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 " , " 0 1 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 0 0 1 " ,

" 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 " , " 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 " ,

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 5

- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F,1F,21)
" 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 1 1 " , " 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 0 0 " ,

" 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 " , " 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 " ,

- Hex(96,4B,4B,DD), Hex(61,BD,BD,DC), Hex(0D,8B,8B,86), Hex(0F.8A,8A,85)
" 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 " , " 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 " ,

" 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 " , " 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 " ,

- Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,B5,C4), Hex(CC,66,66,AA)
" 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 " , " 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 " ,

" 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 " , " 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 " ,

- Hex(90,48,48,08), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E,0E,12)
"10010000010010000100100011011000", "00000110000000110000001100000101",

" 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 " , " 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 " ,

- Hex(C2,61,61,A3), Hex(6A,35,35,5F), Hex(AE,57,57,F9), Hex(69,B9,B9,D0)
" 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 " , " 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 " ,

" 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 1 " , " 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 0 0 " ,

- Hex(17,86,86,91), Hex(99,C1,C1,58), Hex(3A,1D,1D,27), Hex(27,9E,9E,B9)
" 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 " 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 " ,

" 0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 " , " 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 " ,

- Hex(D9,E1,E1,38), Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11.11,33)
" 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 " , " 1 1 1 0 1 0 1 1 1 l l 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 " ,

" 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 " 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 " ,

- Hex(D2,69,69,BB), Hex(A9,D9,D9,70), Hex(07.8E,8E,89). Hex(33,94,94,A7)
"11010010011010010110100110111011", "10101001110110011101100101110000",

" 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 1 " , " 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1

- Hex(2D,9B,9B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
" 0 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 0 " , " 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 " .

" 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 " , " 1 1 0 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 " ,

- Hex(87,CE,CE,49), Hex(AA,55.55,FF), Hex(50,28,28,78), Hex(A5,DF.DF,7A)
"10000111110011101100111001001001", "10101010010101010101010111111111",

" 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 " , " 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 0 " ,

- Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
" 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 " , " 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 " ,

" 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 " , " 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 " ,

- Hex(65,BF,BF,DA), Hex(D7,E6,E6,31), Hex(84,42,42,C6), Hex(D0,68,68,B8)
" 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 0 " , " 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 " ,

" 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 " , " 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 " ,

- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F,0F,11)
" 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 " , " 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 " ,

" 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 " , " 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 " ,

- Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D.BB,BB,D6), Hex(2C,16,16,3A)
" 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 " 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 0 0 " ,

" 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 " , " 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 "

);
variable r, s, t, u : u_sign32;
begin

r := ftabletab(to_integer(a(1 to 8)));
s := ftabletab(toJnteger(a(9 to 16)));
t := ftabletab(to_integer(a(17 to 24)));
u := ftabletab(toJnteger(a(25 to 32)));

q_out(1 to 32):= (r(1 to 8) xor s(25 to 32) xor t(17 to 24) xor u(9 to 16)) &
(r(9 to 16) xor s(1 to 8) xor t(25 to 32) xor u(17 to 24)) &
(r(17 to 24) xor s(9 to 16) xor t(1 to 8) xor u(25 to 32)) &
(r(25 to 32) xor s(17 to 24) xor t(9 to 16) xor u(1 to 8));

end ftable_quad;
end encryption_tables;

Figure D-15 VHDL package for 256-bit AES example

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 6

* * * * * * * * * * * * * * * * * _ _

— 256-Bit AES —
* * * * * * * * * * * * * * * * * _ _

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.aes_procedures.all;
use work.encryption_tables.all;
entity aes256 is
pon(

key, d_block: in u_sign32;
in_hs_rdy: in unsigned(0 downto 0);
jn_hs_rcv: buffer unsigned(0 downto 0) := "0";
ciphertext: out u_sign32;
out_hs_rdy: buffer unsigned(0 downto 0):= "0";
out_hs_rcv: in unsigned{0 downto 0)

);
end aes256;

architecture behaviour of aes256 is
begin

process
variable bb, cc, dd, ee, ff, temp_vec1, temp_vec2: u_sign32;
--variable transition_state, temp_transition_state : tab_a4;
variable transition_state, temp_transition_state : u_sign128;
variable i: unsigned(6 downto 0) := "0000000";
variable j: unsigned(4 downto 0) := "00000";

variable fkey : tab_64;
- moods ram
variable tempi, temp2, tempS, keyloop: unsigned(6 downto 0) :="0000000"
variable indexl, index2, indexS : unslgned(1 downto 0) :="00";

begin

for keyloopi in 0 to 7 loop
whlle(in_hs_rdy = in_hs_rcv) loop

wait for 10 ns;
end loop;
fkey(keyloopl) := key;

case keyloopi Is
when 0 =>

temp_transition_state(1 to 32) := d_block;
when 1 =>

temp_transition_state(33 to 64) := d_block;
when 2 =>

temp_transition_state(65 to 96) := d_block;
when 3 =>

temp_transition_state(97 to 128) ;= d_block;
when others => NULL;
end case;

in_hs_rcv <= not in_hs_rcv;
wait for 10 ns;

end loop;
- For AES-256 (Nk=8, Nr=14)
- For 256-bit: Nb * (Nr +1) = 4 * 15 = 60 ("0111100")
- For 192-bit: = 4 * 1 3 = 52 ("0110100")
- F o r 128-bit: = 4 * 1 1 = 44 ("0101100")

i ;= "0001000"; - start off with the value of Nk, in this case = 8
i := "00000"; - round counter

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 7

while(i < "0111100") loop -- i < Nb * (Nr +1)
tempi := i - "0000001";
wait for 10 ns;

i mod Nk = 0 —
bb:= fkey(toJnteger(temp1 (5 downto 0)));
r_oneto8(bb, dd); -- RotWord(w[i-1])
temp_vec1(1 to 32):= fbsub_quad(dd(1 to 32)); - SubWord(RotWord(w[i-1]))
rco(j, GO); - Rcon
tempi :=i-"0001000":
fkey(toJnteger(i(5 downto 0))) := fkey(to_integer(temp1(5 downto 0))) xor temp_vec1(1 to 32) xor

cc; — w[i-Nk] xor SubWord xor Rcon

keyloop := "0000001";
while keyloop /= "0000100" loop
-—moods unroll

if (keyloop + i < "0111100") then
tempi := keyloop + i - "0001000";
temp2 := keyloop + i - "0000001";
tempS := keyloop + i;
fkey(toJnteger(temp3(5 downto 0))) := fkey(toJnteger(temp1 (5 downto 0))) xor

fkey(toJnteger(temp2(5 downto 0))); - w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";

end loop;

1 mod Nk = 4
if(i + "0000100" < "0111100") then
tempi := i + "0000011";
cc := fkey(to_integer(temp1(5 downto 0)));
temp_vec1(1 to 32):= fbsub_quad(cc(1 to 32)); --SubWord(RotWord(w[i-1]))

temp2 := i - "0000100";
temp3 := i + "0000100";
fkey(to_integer(temp3(5 downto 0))):= fkey(to_integer(temp2(5 downto 0))) xor

temp_vec1(1 to 32);
end if;

keyloop := "0000101";
while keyloop /= "0001000" loop
-—moods unroll

if(keyloop + i < "0111100") then
tempi := keyloop + i - "0001000";
temp2 := keyloop + 1 - "0000001";
temp3 := keyloop + i;
fkey(toJnteger(temp3(5 downto 0))) := fkey(to_integer(temp1 (5 downto 0))) xor

fkey(to_integer(temp2(5 downto 0))); -- w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";

end loop;

I := i + "0001000"; - increment by Nk
j :=j + "00001";

end loop;

-======================== First Round ==========================-

transition_state(1 to 32) := fkey(O) xor temp_transition_state(1 to 32); - AddRoundKey
transition_state(33 to 64) := fkey(1) xor temp_transition_state(33 to 64);
transition_state(65 to 96) := fkey(2) xor temp_transition_state(65 to 96);
transition_state(97 to 128) := fkey(3) xor temp_transition_state(97 to 128);

*******************A**************************AA*AAA*A*

i := "0000100"; - start off with the 4th key, 3 used in the first round

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 g

for EncLoop2 in 1 to 13 loop -- For AES-256 (Nk=8, Nr=14)

for EncLoopS in 0 to 3 loop
bb ;= fkey(toJnteger(i(5 downto 0)));

case EncLoopS is
when 0 =>

temp_vec1(1 to 32) := transition_state{1 to 8) & transition_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);

ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transition_state(1 to 32) := bb(1 to 32) xor cc(1 to 32);

when 1 =>
temp_vec1(1 to 32) := transition_state(33 to 40) & transltion_state(73 to 80) &

transition_state(113 to 120) & transition_state(25 to 32);
ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transjtion_state(33 to 64) := bb(1 to 32) xor cc(1 to 32);

when 2 =>
temp_vec1(1 to 32) := transltion_state(65 to 72) & transition_state(105 to 112) &

transition_state(17 to 24) & transition_state(57 to 64);
ftable_quad(temp_veGl, cc); -- Retrieve values from Forward Tables
temp_transition_state(65 to 96) ;= bb(1 to 32) xor cc(1 to 32);

when 3 =>
temp_vec1(1 to 32) := transition_state(97 to 104) & transition_state(9 to 16) &

transition_state{49 to 56) & transition_state(89 to 96);
ftable_quad(temp_veGl, cc); -- Retrieve values from Forward Tables
temp_transition_state(97 to 128) := bb(1 to 32) xor cc(1 to 32);

when others => NULL;
end case;
i := i + "0000001";

end loop;

transition_state(1 to 128) := temp_transition_state(1 to 128);
end loop;

Last Round :
for EncLoopS in 0 to 3 loop

bb := fkey(toJnteger(i(5 downto 0)));

case EncLoopS is
when 0 =>

temp_vec1 (1 to 32) := transition_state(1 to 8) & transition_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);

dd(1 to 32):= fbsub_quad(temp_vec1); -- w[i-1] = SubWord(w[i-1])
temp_transitlon_state(1 to 32) ;= bb(1 to 32) xor dd(1 to 32); - AddRoundKey

when 1 =>
temp_vec1 (1 to 32) ;= transition_state(33 to 40) & transition_state(73 to 80) &

transition_state(113 to 120) & transition_state(25 to 32);
dd(1 to 32);= fbsub_quad(temp_vec1); -- w[i-1] = SubWord(w[i-1])
temp_transition_state(33 to 64) := bb(1 to 32) xor dd(1 to 32); - AddRoundKey

when 2 =>
temp_vec1(1 to 32) ;= transitlon_state(65 to 72) & transition_state(10S to 112) &

transition_state(17 to 24) & transition_state(S7 to 64);
dd(1 to 32);= fbsub_quad(temp_vec1); - w[i-1] = SubWord(w[i-1])
temp_transition_state(6S to 96) := bb(1 to 32) xor dd(1 to 32); - AddRoundKey

when 3=>
temp_vec1(1 to 32) := transition_state(97 to 104) & transition_state(9 to 16) &

transition_state(49 to 56) & transition_state(89 to 96);
dd(1 to 32):= fbsub_quad(temp_vec1); - w[i-1] = SubWord(w[i-1])
temp_transition_state(97 to 128) := bb(1 to 32) xor dd(1 to 32); — AddRoundKey

when others => NULL;
end case;
i := i + "0000001";

end loop;

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 9

for EncLoop6 in 0 to 3 loop
while(out_hs_rdy /= out_hs_rcv) loop

wait for 10 ns;
end loop;
case EncLoop6 is
when 0 =>

ciphertext <= temp_transition_state(1 to 32);
when 1 =>

ciphertext <= temp_transition_state(33 to 64);
when 2 =>

ciphertext <= temp_transition_state(65 to 96);
when 3 =>

ciphertext <= temp_transition_state(97 to 128);
when others => NULL;
end case;

out_hs_rdy <= not out_hs_rdy;
wait for 10 ns;

end loop;
end process;

end behaviour;

Figure D-16 VHDL of 256-Bit AES example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA 256-bit AES

example is given in Figure D-17. Zoom in views of the simulation showing inputs and

outputs updates are given in Figure D-18. The simulation input values (shown in

hexadecimals) are taken from the appendix (C.3 AES-256) of the AES specification [146];

Input plaintext (d block) values: 00112233, 44556677, 8899AABB, CCDDEEFF.

Key: 00010203,04050607, 08090A0B, OCODOEOF, 10111213, 14151617, 18191A1B,

ICIDIEIF.

The output ciphertext is: 8EA2B7CA, 516745BF, EAFC4990, 4B496089.

With a system clock period of 200 ns, the non-pipelined multi-FPGA 256-bit AES takes

5257 clock cycles (i.e. clock cycles = (1055500 ns - 4100 ns) / 200 ns) to process the 128-

bit data block using a 256-bit cipher key.

T.B. Y e e , 2 0 0 7 Appendix D: V H D L code listings 360

§ § o o

l i t ?

m
i l l l i i i

mmVi i t i i

Figure D-17 Simulation of the non-pipelined multi-FPGA 256-bit AES core

T.B. Y e e , 2 0 0 7 Appendix D; V H D L c o d e l ist ings 361

U M f i t till' mm* m
i g l g l S I S

I" '"S

l i i i l i III III!
i Hi''

Figure D-18 Simulation (zoom in views) of the non-pipelined multi-FPGA
256-bit AES core

T.B. Y e e , 2 0 0 7 Appendix D: VHDL code listings (6 2

D.2 Behavioural pipelined VHDL examples

The three behavioural pipelined VHDL examples given in this section are used in

experiments (with explicit communication channels) described in Section 6.3. All the

VHDL packages which contain the definitions of constants, types, signals, functions, and

procedures are similar to the non-pipelined implementation and they are found in the

previous section. The explicit communication channel VHDL package used by all the

pipelined VHDL examples in this section is given in Figure D-19.

library ieee;
use ieee.std_logic_1164.all;
package channel_package is

subtype semaphore is s td jog ic_vector (0 downto 0);
subtype intS is integer range 0 to 255;
subtype channel_sem is std_logic_vector(0 downto 0)
subtype channel_ack is std_logic_vector(0 downto 0);

-- initialise channel semaphore
procedure init(signal sem: out channel_sem); channel semaphore
-- send data
procedure send{signal sem: out channel_sem; channel send semaphore

signal ack: in channel_ack; channel send acknowledge
signal chan_data: out stdJogic_vector; channel send data
d: in std_logic_vector); data to send

-- recv data
procedure recv(slgnal sem: out channel_sem; channel receive semaphore

signal ack: in channel_ack; channel receive acknowledge
signal chan_data: in std_logic_vector; channel receive data
d: out stdJogic_vector); data received

function ch_send(d: std_logic_vector; signal chan_sem_ jn : semaphore; signal chan_sem_out:
semaphore) return std_logic_vector;
- moods map ch_send u:* u:1 u:1 u:%1

function ch_recv(signal chan_data: std_logic_vector; signal c h a n _ s e m j n : semaphore; signal
chan_sem_out: semaphore) return std_loglc_vector;
-- moods map ch_recv u:* u:1 u:1 u:%1

function ch jn i t (s igna l c h a n _ s e m j n : semaphore) return semaphore;
-- moods map c h j n i t u:1 u:1

-- channel component
component channel

generic (width: positive := 1); -- width of channel data
port (send_sem: in channel_sem; - send semaphore

T.B. Yee, 2007 Appendix D: VHDL code listings

procedure send(signal sem: out channel_sem; signal ack: in channel_ack; signal chan_data: out
std_logic_vector; d: in std_logic_vector) is

- moods inline
begin

chan_data <= ch_send{d,ack,sem);
end procedure send;

procedure recv(signal sem: out channel_sem; signal ack: in channel_ack; signal chan_data: in
std_logic_vector; d: out stdJogic_vector) is

~ moods inline
begin

d := ch_recv(chan_data, ack, sem);
end;

procedure init(signal sem: out channel_sem) is
-- moods inline
variable init_sig : channel_sem := "0";
begin

--sem <= ch_init("0");
sem <= init_slg;

end;

function ch_send(d: std_logic_vector; signal chan_semjn : semaphore; signal chan_sem_out:
semaphore) return stdJogic_vector is

- moods map ch_send u:* u:1 u:1 u:%1
begin

return d;
end;

function ch_recv(signal chan_data: stdJogic_vector; signal chan_sem_in: semaptiore; signal
chan_sem_out: semaphore) return std_logic_vector is

- moods map ch_recv u:* u:1 u:1 u:%1
begin

return chan_data;

end;

function chjn i t (s ignal chan_semjn : semaphore) return semaphore is
- moods map c h j n i t u:1 u:1
begin
return "0";

end;
end package body channel_package;

Figure D-19 VHDL package of the explicit communication channel

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 4

D.2.1 Pipelined quadratic equation solver

The pipelined quadratic equation solver is a two-stage pipelined version of the quadratic

equation solver given in Section 6.2.1. The behavioural VHDL of the pipelined quadratic

equation solver example is given in Figure D-20.

library leee;
use ieee.stdJogic_1164.all;
use ieee.numeric_std.all;
use work.c_types.all;
use work.algeqn_package.all;
use work.imath.all;
use work.channel_package.all;

entity plpe_quad Is
pod(

a1,a2,a3: in int;
x1,x2: out int;
no_real: out Int

);
end plpe_quad;
architecture behaviour of plpe_quad Is
signal c1_send_sem, c1_recv_sem: channel_sem := "0";
signal c1_send_ack, c1_recv_ack: channel_ack := "0";
signal c1_send_data, c1_recv_data: std_loglc_vector(95 downto 0) := (others=>'0');
begin
-- Explicit communication channel
c1: entity work.SIMPLE_CHANNEL generic map (96)
port map(c1_send_sem, c1_recv_sem, c1_send_data, c1_send_ack, c1_recv_ack, c1_recv_data);

Prs_1: process -- Process module p_M0D_1
variable tempi : std_loglc_vector(95 downto 0);
variable b1: Int := X"00000000";
variable b2: int := X"00000000";
variable b3: Int := X"00000000";
variable d1,d2: int;
begin
Inlt(c1_send_sem);
forever: loop

b1
b2
b3

= a1;
= a2;
= a3;

d1 := sqi(b2) - multl(multi(to_lnt(4),b1),b3);
d2 := multl(b1 ,to_int(2));
tempi := std_logic_vector(b2 & d2 & d1);
send(c1_send_sem, c1_send_ack, c1_send_data, tempi);
wait for 40 ns;
end loop;

end process Prs_1;

Prs_2: process - Process module p_M0D_2
variable temp2 : std_logic_vector(95 downto 0);
variable e1: int := X"00000000";
variable e2: Int := X"00000000";
variable rd: Int;
variable f1: int;
begin
init(c1_recv_sem);

T.B.Yee, 2007 Appendix D: VHDL code listings 3 5 5

forever: loop
recv(c1_recv_sem, c1_recv_ack, c1_recv_data, temp2);
e1 := int(temp2(31 downto 0));
e2 := int(temp2(63 downto 32));
f1 := int(temp2(95 downto 64));

if(e1 < 0) then
no_real <= to_int(0);

else
rd := sqrti(e1);
x1 <= sdivi((-f1 + rd),e2);
x2 <= sdivi((-f1 - rd),e2);
no_real <= to_int(2);

end if;
wait for 40 ns;

end loop;
end process Prs_2;

end behaviour;

Figure D-20 VHDL of pipelined quadratic equation solver

Figure D-21 shows the post-MOODS synthesis simulation of the two-stage pipelined

multi-FPGA quadratic equation solver. This two-device multi-FPGA implementation has a

single explicit communication channel {ExC 1) connecting the pipeline stages. Integer

inputs al, a2, and a3 of the quadratic equation solver are given values 1, -25 and 150

respectively. Outputs xl , x2 and number of real numbers (no real) are updated after 7660

ns. With a system clock period of 40 ns, the pipelined multi-FPGA quadratic equation

solver takes 189 clock cycles (i.e. clock cycles = (7660 ns -100 ns) / 40 ns) to complete the

application and output the result.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L code listings 366

n
^ I? 5 p

m m I I I

Figure D-21 Simulation of the pipelined multi-FPGA quadratic equation
solver

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 7

D.2.2 Pipelined inverse discrete cosine transform

This second pipelined VHDL example is the two-stage pipelined version of the inverse

discrete cosine transform (IDCT) core given in Section 6.2.3. The behavioural VHDL of

the pipelined inverse discrete cosine transform example is given in Figure D-22.

library IEEE;
use IEEE.stdJoglc_1164.all;
use IEEE.numeric_std.all;
use work.channel_package.all;
use work.idct_package.all;
entity p ipe jdc t is
port (

in_hs_rdy: in unslgned(0 downto 0); -- Handshake ready
in_hs_rcv: buffer unslgned(0 downto 0) := "0"; -- Handshake receive
dct_2d_in: in signed(11 downto 0);
idct_out: out signed(7 downto 0) := (others=>'0');-- 8 bit output.
out_hs_rdy: buffer unsigned(0 downto 0) := "0"; - Handshake ready
out_hs_rcv: in unslgned(0 downto 0); -- Handshake receive
sys_clock: in unslgned(0 downto 0);
-moods clock
sys_reset: in unsigned(0 downto 0)
-moods reset

):
end p ipe jdct ;

ARCHITECTURE behaviour of pipejdct is
signal c1_send_sem, c1_recv_sem: channel_sem := "0";

signal c1_send_ack, c1_recv_ack: channel_ack := "0";
signal c1_send_data, c1_recv_data: stdjogic_vector(10 downto 0) := (others=>'0');

- memory section
type RAM_mem_type is array (0 to 63) of signed(10 downto 0);
begin

c1: entity work.SIMPLE_CHANNEL generic map (11) port map(c1_send_sem, c1_recv_sem,
c1_send_data, c1_send_ack, c1_recv_ack, c1_recv_data);

Prs_1: process - Process module p_M0D_1
- IDCT_2 signals

variable xaO_reg, xa1_reg, xa2_reg, xa3_reg,
xa4_reg, xa5_reg, xa6_reg, xa7_reg: signed(11 downto 0):= (others=>'0');

variable ID_input_cnt: unsigned(3 downto 0):= "0000";
variable z_out_int: signed(21 downto 0) := (others=>'0');
variable tempi : stdjogic_vector(10 downto 0);
variable cnt_64: unsigned(6 downto 0) := "0000000";
variable IDJndexJ: unsigned(3 downto 0):= "0000";

begin
reset joop: loop

ln_hs_rcv <= "0";
ID_input_cnt(3 downto 0) := "0000";
cnt_64 := "0000000";
IDJndexJ := "0000";

wait until sys_clock'event and sys_clock = "1";
exit rese t joop when sys_reset = "1";
Inlt(c1_send_sem);
main joop: loop
while(cnt_64(6) = '0') loop

T.B. Yee, 2007 Appendix D: VHDL code listings 3 5 3

while(IDJnput_cnt(3) = '0') loop
while(in_hs_rdy = in_hs_rcv) loop

wait until sys_clock'event and sys_clock = "1";
end loop;
case ID_input_cnt(2 down to 0) is
when "000" => xaO_reg
when "001" => xa1_reg
when "010" => xa2_reg
when "O i l " => xa3_reg
when "100" => xa4_reg
when "101" => xa5_reg
when "110" => xa6_reg
when "111" => xa7_reg
when others => NULL;
end case;

= dct_2djn ;
= dct_2djn;
= dct_2djn ;
= dct_2d_in;
= dct_2djn;
= dct_2djn ;
= dct_2djn ;
= dct_2djn ;

ln_hs_rcv <= not in_hs_rcv;
IDJnput_cnt(3 downto 0) := IDJnput_cnt(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock = "1";

end loop;

while (ID_indexJ /= "1000") loop
idct1_mult_add(ID_index_i(2 downto 0),xa0_reg,xa1_reg,xa2_reg,

xa3_reg,xa4_reg,xa5_reg,xa6_reg,xa7_reg,z_outJnt);

IDJndexJ := IDJndexJ + "0001";

i f(z_outjnt(20) = '0' and z_out_int(7) = '1') then
tempi ;= std_logic_vector(z_out_int(18 downto 8) + to_signed(1,11));

else
tempi := stdJogic_vector(z_outJnt(18 downto 8));

end if;

send(c1_send_sem, c1_send_ack, c1_send_data, tempi);
-wa i t until sys_clock'event and sys_clock = "1";

end loop;
IDJndexJ := "0000";
cnt_64 := cnt_64 + "0000001";

end loop;
IDJnput_cnt(3 downto 0) := "0000";
cnt_64 := "0000000";

wait until sys_clock'event and sys_clock = "1";
exit rese t joop when sys_reset = "1";
end loop;
end loop;

end process Prs_1;

Prs_2: process - Process module p_M0D_2
- IDCT_2 signals
variable xbO_reg, xb1_reg, xb2_reg, xb3_reg,

xb4_reg, xb5_reg, xb6_reg, xb7_reg: signed(10 downto 0):= (others=>'0';
variable temp2 : stdjogic_vector(10 downto 0);
variable rcv_z_out: signed(10 downto 0) := (others=>'0');
variable ID_wr_cntr: unsigned(6 downto 0):= (others=>'0');
variable ID_rd_cntr: unsigned(3 downto 0):= (others=>'0');
variable IDJndexJ: unsigned(3 downto 0):= "0000";
variable idct2d_int: signed(20 downto 0):= (others=>'0');
variable ID_ram1_mem: RAM_memJype;
-moods ram

begin
reset joop: loop

ID_wr_cntr := "0000000";
ID_rd_cntr := "0000";

T.B. Yee, 2007 Appendix D: VHDL code listings ; 6 9

out_hs_rdy <= "0";
idct2djnt := (others=>'0');
IDJndexJ := "0000";
wait until sys_clock'event and sys_clock _ „ y , .

exit reset joop when sys_reset = "1";
init(c1_recv_sem);
main joop: loop

if(ID_wr_cntr(6) = '0') then
recv(c1_recv_sem, c1_recv_ack, c1_recv_data, temp2);
rcv_z_out := slgned(temp2);
ID_ram1_mem(toJnteger(ID_wr_cntr(5 downto 0))) := rcv_z_out;
ID_wr_cntr := ID_ _wr_cntr + "0000001";

else
whlle(ID_rd_cntr(3) = '0') loop

case ID_rd_cntr(2 downto 0) is
when "000" => xbO_reg := ID_ram1 mem(O);

xb1_reg := ID_ram1_menn(8);
xb2_reg := ID_ram1_mem(16);
xb3_reg := ID_ram1_mem(24);
xb4_reg := ID_ram1_mem(32);
xb5_reg := ID_ram1_mem(40);
xb6_reg := ID_ram1_mem(48); (
xb7_reg := ID_ram1_mem(56); j

when "001" => xbO_reg := ID_ram1_mem(1); |
xb1_reg = ID_ram1_mem(9);
xb2_reg = ID_ram1_mem(17); 1
xb3_reg = ID_ram1_mem(25)
xb4_reg = ID_rann1_mem(33]
xb5_reg = ID_ram1_mem(4i;
xb6_reg = ID_ram1_mem(49);
xb7_reg = ID_ram1_mem(57)

when "010" => xbO_reg := ID_ram1_mem(2); |
xb1_reg = ID_ram1_mem(10)
xb2_reg = ID_ram1_mem(18)
xb3_reg = ID_ram1_mem(26)
xb4_reg = ID_ram1_mem(34)
xb5_reg = ID_ram1_mem(42)
xb6_reg = ID_ram1_mem(50)
xb7_reg = ID_ram1_mem(58)

when "011" => xbO_reg := ID_ram1_mem(3);
xb1_reg = ID_ram1_mem(11)
xb2_reg = ID_ram1_mem(19)
xb3_reg = ID_ram1_mem(27)
xb4_reg = ID_ram1_mem(35)
xb5_reg = ID_ram1_mem(43)
xb6_reg = ID_ram1_mem(51)
xb7_reg = ID_ram1_mem(59)

when "100" => xbO_reg := ID_ram1_mem(4); j
xb1_reg = ID_ram1_mem(12)
xb2_reg = ID_ram1_mem(20)
xb3_reg = ID_ram1_mem(28)
xb4_reg = ID_ram1_mem(36)
xb5_reg = ID_ram1_mem(44)
xb6_reg = ID_ram1_mem(52)
xb7_reg = ID_ram1_mem(60)

when "101" => xbO_reg := ID_ram1_mem{5);
xb1_reg : = ID_ram1_mem(13)
xb2_reg : = ID_ram1_mem(21)
xb3_reg : = ID_ram1_mem(29)
xb4_reg : = lD_ram1_mem(37)
xb5_reg : = ID_ram1_mem(45)
xb6_reg : = ID_ram1_mem(53)
xb7_reg : = ID_ram1_mem(61)

T.B. Y e e , 2 0 0 7 Appendix D: VHDL code listings
; 7 0

when "110"
xb1
xb2.
xb3,
xb4
xb5
xb6'
xb7

when "111" =
xb1
xb2
xb3
xb4
xb5
xb6
xb7.

when others
end case;

=> xbO_reg := ID.
.reg
/ e g
/ e g
/ e g
/ e g
/ e g
/ e g

ID_ram1
= ID_rann1
= ID_ram1
= ID_ram1.
= ID_ram1.
= ID_ram1
= ID rami

:> xbO_reg := ID

/ e g
/ e g
/ e g
/ e g
/ e g
/ e g
/ e g

= ID_ram1
= ID_ram1
= ID_ram1
= ID_ram1.
= ID_ram1_
= ID_ram1
= ID rami

_ram1_mem(6);
_mem(14);
.mem (22);
.mem(30);
.mem(38);
_mem(46);
mem(54);
mem(56);
_ram1_mem(7);
mem(15);
mem (23);
mem(31);
mem(39);
.mem(47);
mem(55);
,mem(63);

=> NULL;

ID_rd_cntr(3 downto 0) := ID_rd_cntr(3 downto 0) + "0001";

while (I D J n d e x J /= "1000") loop
idct2_mult_add(ID_lndexJ(2 downto 0),xb0_reg,xb1_reg,xb2_reg,xb3_reg,

xb4_reg ,xb5_reg ,xb6_reg ,xb7_reg, idct2d_int);

while(out_hs_rdy /= out_hs_rcv) loop
wait until sys_c!ock'event and sys_clock = "1";

end loop;
idct_out <= signed(idct2d_int(15 downto 8));
out_hs_rdy <= not out_hs_rdy;
I D J n d e x J := I D J n d e x J + "0001";

end loop;
wait until sys_clock'event and sys_clock = "1";

end loop;
I D J n d e x J := "0000";
ID_wr_cntr(6 downto 0) := (others=>'0');
ID_rd_cntr(3 downto 0) := (others=>'0');

end if;

wait until sys_clock'event and sys_clock = "1";
exit r e s e t j o o p when sys_reset = "1";
end loop;
end loop;

end process Prs_2;
*** ********************** ***** A * A A * **********************

end behaviour;

Figure D-22 VHDL of pipelined inverse discrete cosine transform example

The post-MOODS synthesis simulation of the 2-stage pipelined multi-FPGA IDCT is

given in Figure D-23. Zoom in views of the simulation showing inputs and outputs

updates are given in Figure D-24. The pipelined multi-FPGA IDCT has a single explicit

communication channel {ExC 1) connecting the pipeline stages. With a system clock

period of 40 ns, the pipelined multi-FPGA IDCT takes 1167 clock cycles (i.e. clock cycles

= (47160 ns - 480 ns) / 40 ns) to complete the application.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e listings 371

III

3 3 1 * i

ai E l •>' a' MJ

Figure D-23 Simulation of the pipelined multi-FPGA IDCT example

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e listings 372

1 3
-s' -Q* -g' 5

MB. 1
I & i i & 8 i i i
-C f -C f •=' -=' •=' f '

m i l I r l l l
L k i & 2

6 6 6 6 6 6 I 6 6 6

i

limMii III
' J .} J J -I J

H p ? I

Figure D-24 Simulation (zoom in views) of the pipelined multi-FPGA
example

T.B. Yee, 2007 Appendix D: VHDL code listings 3 7 3

D.2.3 Pipelined 256-bit advanced encryption standard

The last pipelined VHDL example is the two-stage pipelined version of the 256-bit

advanced encryption standard (AES) core given in Section 6.2.5. The behavioural VHDL

of the pipelined 256-bit AES core is given in Figure D-25.

library ieee;
use ieee.std_logic_1164.all;
use leee.numerlc_std.all;
use work.channel_package.all;
use work.aes_procedures.all;
use work.encryptlon_tables.all;
entity pipe_aes256 is
port(

key, d_block: in u_sign32;
in_hs_rdy: in unsigned(0 downto 0);
in_hs_rcv: buffer unsigned(0 downto 0) := "0";
ciphertext: out u_sign32;
out_hs_rdy: buffer unsigned(0 downto 0):= "0";
out_hs_rcv: in unsigned(0 downto 0)

V
/ '

end pipe_aes256;

architecture behaviour of pipe_aes256 is
signal c1_send_sem, c1_recv_senn: channel_sem := "0";
signal c1_send_ack, c1_recv_ack: channel_ack := "0";
signal c1_send_data, c1_recv_data: stdJogic_vector(31 downto 0) := (others=>'0');
signal c2_send_sem, c2_recv_sem: channel_sem := "0";
signal c2_send_ack, c2_recv_ack: channel_ack "0";
signal c2_send_data, c2_recv_data: stdJogic_vector(31 downto 0) := (others=>'0');

begin

c1: entity work.SIMPLE_CHANNEL generic map (32) port map
(c1_send_sem, c1_recv_sem, c1_send_data, c1_send_ack, c1_recv_ _ack, c1_recv_data);

c2: entity work.SIMPLE_CHANNEL generic map (32) port map
(c2_send_sem, c2_recv_sem, c2_send_data, c2_send_ack, c2_recv_ _ack, c2_recv_data);

Prs_1: process -- Process module p_M0D_2
variable bb1, cc1, dd1, temp_vec1: u_sign32;
variable temp_t_state : u_sign128;
variable fkey : tab_64;
- moods ram
variable tempi , temp3: std_logic_vector(31 downto 0);
variable i: unsigned(6 downto 0) := "0000000"; - loop counters
variable j: unsigned(4 downto 0) := "00000"; - loop counter
variable temp_a1, temp_a2, temp_a3, keyloop: unsigned(6 downto 0) —"0000000"; |

begin
init(c1_send_sem);
init(c2_send_sem);
forever: loop

T.B. Yee, 2007 Appendix D: VHDL code listings 3 7 4

for loopcnti in 0 to 7 loop
while{in_hs_rdy = in_hs_rcv) loop

wait for 10 ns;
end loop;

fkey(loopcntl) := key;
case loopcnti is
when 0 => temp_t_state(1 to 32) := d_block;
when 1 => temp_t_state(33 to 64) := d_block;
when 2 => temp_t_state(65 to 96) := d_block;
when 3 => temp_t_state(97 to 128) := deblock;
when others => NULL;
end case;

ln_hs_rcv <= not in_hs_rcv;
wait for 10 ns;

end loop;
- For AES-256 (Nk=8, Nr=14)
-- For 256-bit
- For 192-bit
- For 128-bit

N b * (N r + 1) = 4 * 15 = 60 ("0111100")
= 4 * 1 3 = 52 ("0110100")
= 4 * 1 1 = 4 4 ("0101100")

i := "0001000"; - start off with the value of Nk, in this case = 8
j := "00000"; - round counter

while(i < "0111100") loop - i < Nb * (Nr +1)
temp_a1 := i - "0000001";
wait for 10 ns;

i mod Nk = 0
bb l := fkey(to_integer(temp_a1(5 downto 0)));
r_oneto8(bb1, ddl) ; - RotWord(w[i-1])
temp_vec1(1 to 32):= fbsub_quad1(dd1(1 to 32)); - SubWord(Rot\A/ord(w[i-1]))
rco(j, cc1); - Rcon
temp_a1 := i - "0001000";
fkey(to_lnteger(i(5 downto 0))) := fkey(to_integer(temp_a1(5 downto 0))) xor

temp_vec1 (1 to 32) xor cc1; - w[i-Nk] xor SubWord xor Rcon

keyloop ;= "0000001";
while keyloop /= "0000100" loop
-—moods unroll

if (keyloop + i < "0111100") then
temp_a1 := keyloop + i - "0001000";
temp_a2 := keyloop + i - "0000001";
temp_a3 := keyloop + i;
fkey(toJnteger(temp_a3(5 downto 0))) := fkey(toJnteger(temp_a1(5 downto 0))) xor

fkey(to_integer(temp_a2(5 downto 0))); ~ w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";

end loop;

j mod Nk = 4
if(i + "0000100" < "0111100") then

temp_a1 ;= i + "0000011";
cc l := fkey(to_integer(temp_a1(5 downto 0)));
temp_vec1(1 to 32):= fbsub_quad1(cc1(1 to 32)); - SubWord(RotWord(w[i-1]))

temp_a2 := i - "0000100";
temp_a3 := i + "0000100";
fkey(toJnteger(temp_a3(5 downto 0))):= fkey(to_integer(temp_a2(5 downto 0))) xor

temp_vec1 (1 to 32); - fkey
end if;

T.B. Yee, 2007 Appendix D: VHDL code listings 3 7 5

keyloop := "0000101";
while keyloop /= "0001000" loop
-—moods unroll

if(keyloop + 1 < "0111100") then
temp_a1 := keyloop + 1 - "0001000";
temp_a2 := keyloop + i - "0000001";
temp_a3 := keyloop + 1;
fkey(toJnteger(temp_a3(5 downto 0))) := fkey(toJnteger(temp_a1(5 downto 0))) xor

fkey(to_integer(temp_a2(5 downto 0))); - w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";

end loop;

i := i + "0001000"; - increment by Nk
j := j + "00001":

end loop;

for loopcnt2 in 0 to 3 loop
case loopcnt2 is

when 0 => tempi := stdJogic_vector(fkey(0) xor temp_t_state(1 to 32));
when 1 => tempi := stdJogic_vector(fkey(1) xor temp_t_state(33 to 64));
when 2 => tempi := stdJogic_vector(fkey(2) xor temp_t_state(65 to 96));
when 3 => tempi := stdJogic_vector(fkey(3) xor temp_t_state(97 to 128));

end case;
send(c1_send_sem, c1_send_ack, c1_send_data, tempi);

end loop;

i := "0000100"; - start off with the 4th key, Keys 0 to 3 used in the first round
for EncLoopI in 1 to 14 loop - For AES-256 (Nk=8, Nr=14)

for EncLoop2 in 0 to 3 loop
bb l := fkey(to_integer(i(5 downto 0))); -- fkey
temp3 := stdJogic_vector(bb1);
send(c2_send_sem, c2_send_ack, c2_send_data, temp3);
i := i + "0000001";
wait for 10 ns;

end loop;
end loop;

end loop forever;
end Process Prs_1;

..======================= ENCRYPTION ==============================-
Prs_2: process - Process module p_M0D_3

variable bb2, cc2, dd2, ee2, temp_vec2: u_sign32;
variable transition_state, temp_transition_state : u_sign128;
variable temp2, temp4: stdJogic_vector(31 downto 0);

begin
init(c1_recv_sem);
inlt(c2_recv_sem);
forever: loop

for loopcnt3 in 0 to 3 loop
recv(c1_recv_sem, c1_recv_ack, c1_recv_data, temp2);
case loopcnt3 is
when 0 => transition_state{1 to 32) := unsigned(temp2);
when 1 => transition_state(33 to 64) := unsigned(temp2);
when 2 => transition_state(65 to 96) := unsigned(temp2);
when 3 => transition_state(97 to 128) := unsigned(temp2);
when others => NULL;
end case;

end loop;
* A A * * * * * * * * * *

T.B. Yee, 2007 Appendix D: VHDL code listings 316

for EncLoop3 in 1 to 14 loop - For AES-256 (Nk=8, Nr=14)

for EncLoop4 in 0 to 3 loop
recv(c2_recv_sem, c2_recv_ack, c2_recv_data, temp4);
bb2 := unslgned(temp4); -- fkey

case EncLoop4 is
when 0 =>

temp_vec2(1 to 32) := transition_state(1 to 8) & transltion_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);

if(EncLoop3 = 14) then
dd2(1 to 32):= fbsub_quad2(temp_vec2); - w[i-1] = SubWord(w[i-1])
ee2 := dd2;

else
ftable_quad(temp_vec2, cc2); - Retrieve va lues from Forward Tables
ee2 := cc2;

end if;
temp_transition_state(1 to 32) := bb2(1 to 32) xor ee2(1 to 32);

when 1 =>
temp_vec2(1 to 32) := transition_state(33 to 40) & transltion_state(73 to 80) &

transition_state(113 to 120) & transition_state(25 to 32);
if(EncLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); -- w[i-1] = SubWord(w[i-1])
ee2 := dd2;

else
ftable_quad(temp_vec2, cc2); - Retrieve va lues from Forward Tables
ee2 := cc2;

end if;
temp_transition_state(33 to 64) := bb2(1 to 32) xor ee2(1 to 32);

when 2 =>
temp_vec2(1 to 32) := transition_state(65 to 72) & transitlon_state(105 to 112) &

transition_state(17 to 24) & transition_state(57 to 64);
if(EncLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); - w[i-1] = SubWord(w[i-1])
ee2 := dd2;

else
ftable_quad(temp_vec2, cc2); -- Retrieve values from Forward Tables
ee2 := CG2;

end if;
temp_transition_state(65 to 96) := bb2(1 to 32) xor ee2(1 to 32);

when 3 =>
temp_vec2(1 to 32) := transition_state(97 to 104) & transltion_state(9 to 16) &

transition_state(49 to 56) & transition_state(89 to 96);
if(EncLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); -- w[i-1] = SubWord(w[i-1])
ee2 := dd2;

else
ftable_quad(temp_vec2, cc2); - Retrieve values from Forward Tables
ee2 := cc2;

end if;
temp_transition_state(97 to 128) := bb2(1 to 32) xor ee2(1 to 32);

when others => NULL;
end case;

end loop; - for EncLoop4 in 0 to 3 loop
transition_state(1 to 128) := temp_transition_state(1 to 128);

end loop; - for EncLoop3 in 1 to 14 loop

T.B. Yee, 2007 Appendix D: VHDL code listings g y y

for loopcnt4 in 0 to 3 loop
while(out_hs_rdy /= out_hs_rcv) loop

wait for 10 ns;
end loop;
case loopcnt4 is

when 0 => ciphertext <= transition_state(1 to 32);
when 1 => ciphertext <= transition_state(33 to 64);
when 2 => ciphertext <= transition_state(65 to 96);
when 3 => ciphertext <= transition_state(97 to 128);
when others => NULL;

end case;
out_hs_rdy <= not out_hs_rdy;
wait for 10 ns;

end loop; -- for loopcnt4 in 0 to 3 loop
end loop forever;

end process Prs_2;
end behaviour;

Figure D-25 VHDL of pipelined 256-bit advanced encryption standard
example

The post-MOODS synthesis simulation of the pipelined multi-FPGA 256-bit AES

example is given in Figure D-26. Zoom in views of the simulation showing inputs and

outputs updates are given in Figure D-27. This 3-device multi-FPGA implementation has

two explicit communication channels (&cC 7 and ExrC 2) connecting the pipeline stages.

With a system clock period of 200 ns, the pipelined multi-FPGA 256-bit AES takes 1137

clock cycles (i.e. clock cycles = (231100 ns - 3700 ns) / 200 ns) to process the 128-bit data

block using a 256-bit cipher key.

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e l ist ings 378

i m m m

• I I

I

j j i i i i J i L f i i

Figure D-26 Simulation of the pipelined multi-FPGA 256-bit AES core

T.B. Y e e , 2 0 0 7 A p p e n d i x D: V H D L c o d e l ist ings 379

I -S, 5 H I
i n H i

I

l l i l i p m
111 mm

I J * '

i i i i

ill W ' '
i w m 1!! !!1

Z ' M : > Z' : • J :• j :> i- 2~> :<

Figure D-27 Simulation (zoom in views) of the pipelined multi-FPGA 256-bit
AES core

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis gu ide 3 8 0

Appendix E

MOODS multi-FPGA synthesis guide

This appendix presents the partitioning options added to the MOODS synthesis system for

multi-FPGA synthesis. The appendix covers the complete set of commands for multi-

FPGA synthesis using the MOODS Command Line Interface (CLI) and the command line

switches for the original MOODS synthesis core are briefly repeated when needed for the

sake of completeness. Background information and a more detailed guide to the original

MOODS synthesis system can be found in references [32, 39, 42, 161].

E.1 The MOODS optimiser

The MOODS Synthesis Suite organises the user designs into a project-based workspace

environment with the inclusion and compilation of all the behavioural VHDL source files

within the main project. Other projects can be imported, as subprojects, into an existing

main project in the workspace to use the libraries associated with these imported projects.

All the project files are compiled and assembled into a library structure. Details on the

compilation of designs and project workspace can be found in [161].

Having the synthesis project compiled and set up into the corresponding project libraries,

the MOODS optimiser, which is the heart of the MOODS Synthesis suite, can be invoked

using the MOODS CLI in the form of a DOS-prompt command given below:

(MOODS root directory)\Bin\Moods design

-m "{project directory)\example.Imf"

-w example

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 3 8 1

-pre-opt

- m u l t 2 s h i f t

-prn_al

-prn_nl

-vhdl_out

-design_profile

-exchannels

{other arguments}

The above command assumes that a top-level design called has been compiled and

the main project name of the design is called example. File exampleXvsxi contains

information on the directory location of library files used in the project and this is passed

to the optimiser through the -m argument preceding the location of the (.Imf) file.

Argument -w specifies the directory where the output files generated from the synthesis

are to be written to. The -pre-opt argument allows pre-scheduling optimisation to be

performed on the design. At presents, the pre-scheduling optimisation only improves on

designs with array and vector dynamic indexing. Argument -mult2shift forces constant

divides, or multiplies by a positive power of two to be implemented as shift-left or -right

operations respectively to get a significant hardware reduction. Argument -prn al is

included to append a dump of control arcs to the design.cg output file. Argument -pm nl

is included to append a dump of data path nets to the design.d^g output file. Argument -

vhdl out specifies that multiple VHDL netlist output files are generated, one for each

target device. The first new argument, -design_profile is incorporated into the MOODS

optimiser to enable multi-FPGA synthesis. It instructs MOODS to retrieve partitioning and

design activity profile information (Section 4.5) in the design.pax file in the project

directory. A module call list design.mcl file is generated by MOODS during the prologue

stage when the initial data structures are built. Details of the module call list file can be

found in Appendix C.3. The second new argument, -exchannels enables the use of explicit

communication channels (Section 4.2.2.1).

Other arguments exist [161], but exceed the scope of this appendix.

T.B.Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 3 8 2

The basic steps in optimisation are:

1. Set up a "cost Amotion" specifying the required target specification (e.g. target area

and/or delay).

2. Run an optimisation algorithm.

3. Repeat the above if desired to achieve different results.

4. Set up and run the K-way partitioning process.

5. Repeat step 4 if desired to get different partitioning results.

6. Repeat steps 1 to 5 if desired to achieve different synthesis and partitioning results.

7. Run the communication subsystem optimisation algorithm.

8. Finish the design to produce final structural netlists suitable for targeting multiple

FPGA devices.

E.1.1 Setting up a cost function

During the prologue stage in MOODS, the associated technology libraries are loaded and

the input design is read in, followed by the initialisation of data structures. A number of

messages about loading libraries and files, and preliminary tasks are displayed in the

console window. When it finishes, a command prompt will appear, e.g.:

MOODS "C:\CAD\JPEG_demo\ipg_core_two\ipg_core_two'' — >

The command "CF" is entered to get to the cost function definition menu of MOOD. At

any point in the synthesis session, typing "?" at a command prompt gives a list of all

available commands, as illustrated below in Figure E-1.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide

MOODS "c:\CAD\ipeg_demo\jpg_core_two\ipgcore_two" --> CF

Enter cost function command []; ?

SETTING THE COST FUNCTION

Type a two character string:
first character: A - to add a criterion

(action) D - to delete a criterion
C - change target
S - show the cost function
F - to finish

second character: D - Total CP delay
(criterion) B - Delay between insts

A - Area
P - Power
N - Nets (no. of DP nets)
C - Clock period

Enter cost function command [?]:

Figure E-1 Cost function menu

The cost function allows the user to specify what the final optimised implementation

should be like (e.g. how large or fast it is). Figure E-2 illustrates the typical steps to enter

an area delay cost function, and specify a clock period for optimising the design. The

following specifies area optimisation as the highest (first) priority with a target area of 0,

and delay optimisation as the second priority with a target total delay of 0. Both target

objectives are set to zero so that the final optimised implementation is as small and as fast

as possible. Of course, non-zero target values can be given instead. A clock period of 20

ns is specified using the "AC" command and entering a value of 20 when asked to enter

the new clock value at the subsequent prompt. With all of the cost function parameters set

up, command "F" finishes the cost function definition and returns to the main MOODS

prompt.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 3 8 4

Enter cost function command [?]: AA

Enter priority level (1 is highest) [1]: 1
Initial total area is: 34505.6 Slices
Enter target area (Slices) [34505.6]: 0

Enter cost function command [aa]; AD

Enter priority level (1 is highest) [1]: 2
Initial total CP delay is: 3016.2 ns
Enter target total delay (ns) [3016.2]: 0

Enter cost function command [ad]; AC

Clock period has priority 1 and units in ns.
Enter new clock value (ns) [10.1]: 20

Enter cost function command [ac]: F

Figure E-2 Steps in setting a cost function in MOODS

E.1.2 Optimisation

After finishing the cost function set-up, the user can proceed to set up the optimisation

algorithm and perform optimisation on the design. There are currently two main

optimisation algorithms (described in Section 2 . 3 . 6) provided by the MOODS synthesis

core. The quasi-exhaustive heuristics is the simplest and MOODS proceeds to optimise the

design when the command "AOH" is entered at the MOODS prompt. Simulated annealing

is slower and more complex, and is more difficult to operate, however it can produce

better results, and also allow the design to be moved in many different directions round the

design space. Figure E-3 illustrates the steps in setting up the optimisation parameters

(annealing schedule), using the "AI" command. Once this data is entered, command "AO"

starts the annealing process, optimising the design.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 3 8 5

MOODS "c:\CAD\jpeg_demo\jpg_core_two\jpg_core_two" --> A I

Initializing Optimisation Data

Enter start temperature [0.0]: 50

Enter terminating temperature [0.0]: 0

Enter factor to decrease temp (<1) OR -n for No. of steps [100.0]: -100

Enter maximum iteration per temperature range [0] : 500

MOODS "c:\CAD\jpeg_demo\jpg_core_two\jpg_core_two" — >

Figure E-3 Steps in setting up the annealing schedule in MOODS

E.2 K-way partitioning

When all the optimisation is completed, typing command "FI" at the MOODS prompt

brings up the K-way partitioning prompt and typing "?" at the command prompt gives a

list of all available commands, as illustrated below in Figure E-4.

K-way partitioning --> ?

K-way Partitioning Menu

DS - Display K-way partitioning setup

EX - Examine data structures

EM - Examine modules for partitions
ET Examine target device details
CT - Change number of target devices

CU - Change max device utilisation (100 percent) value, D max

CL - Change min device utilisation (20 percent) value, D_min

CA - Change offset target device areas

CM - Change data width

TS - Change to Strict balanced distribution over targeted devices

MD - Disable Multiple Subprogram Comm. Channels

K-way partitioning (Optimised)
KON - with no added options
KOL - with locked modules

K-way partitioning (with 2 partitions)

KFN - with no added options
KFP - with pre-allocated modules
KFL - with locked modules
KFB - with initial and locked modules

RM - Re-run MOODS optimisation

FI - Finish optimisation

K-way partitioning -- >

Figure E-4 K-way partitioning menu

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 386

COMMAND DESCRIPTION

DS Displays the K-way partitioning set-up.

EX This command is the same as the top-level MOODS command and it is used to
examine the data structures for the design.

EM The "EM" command leads to a set of further commands given in Figure E-5.

ET This command leads to two further commands that allows the user to display and edit
target device details (such as device area and I/O).

CT This command is used to change the number of target devices used to implement the
multi-FPGA system.

c u
This command is used to change the maximum percentage of device utilisation. The
default value of 100 means the total logic (100%) capacity may be utilised if
required.

CL
This command is used to specify the lowest percentage of the device area utilisation.
This value is used to determine the balanced criterion in the K-way partitioning
algorithm when a relaxed distribution of modules over the target devices is selected.

CA This command is used to specify the device area offset percentage.

CW CW is used to assign a fixed data bus width in the subprogram communication
channe](s) for inter-device transfers.

TS/TR
Command TS changes the balanced criterion in the K-way partitioning algorithm to
enforce a Strict balanced distribution of modules over targeted devices. Command
TR allows a relaxed distribution of modules over targeted devices.

MD/ME

Command MD disables the generation of multiple subprogram communication
channels, thereby connecting all communication cells to a single primary
communication channel. Command ME enables the generation of multiple
subprogram communication channels.

KON
This command invokes the K-way partitioning algorithm to partition the design with
no pre-allocated and locked modules, and generate an optimised multi-FPGA system
with the least number of target devices required.

KOL
This command invokes the K-way partitioning algorithm to partition the design with
module(s) locked to specified target device(s), and generate an optimised multi-
FPGA system with the least number of target devices required.

KFN
This command invokes the K-way partitioning algorithm to partition the design with
no pre-allocated and locked modules, and generate an optimised multi-FPGA system
using a fixed number of target devices.

KFP
This command invokes the K-way partitioning algorithm to partition the design with
pre-allocated modules, and generate an optimised multi-FPGA system using a fixed
number of target devices.

KFL
This command invokes the K-way partitioning algorithm to partition the design with
module(s) locked to specified target device(s), and generate an optimised multi-
FPGA system using a fixed number of target devices.

KFB
This command invokes the K-way partitioning algorithm to partition the design with
pre-allocated and locked modules, and generate an optimised multi-FPGA system
using a fixed number of target devices.

RM This command is used to re-run the MOODS optimisation process.

FI This command finishes and ends the K-way partitioning phase.

Table E-1 Complete set of commands in the K-way partitioning menu

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 3 8 7

A description of the complete set of commands in the K-way partitioning menu is given in

Table E-1. Figure E-5 illustrates the further set of commands associated with the "EM"

command in the main K-way partitioning menu. Process modules (locked/unlocked to the

top-level architectural module) in the design are displayed using command "B".

Commands "A" and "U" are used to lock and unlock process modules in the design.

Commands "P" and "L" displays the pre-allocated and locked modules (if any) specified

in the partitioning information (.par) file respectively. Command "E" allows the user to

manually lock modules in the design to target devices, and a locked module can be

unlocked using the "R" command.

K-way partitioning --> EM

Examine --> ?

Modules for k partitions

B - Display process modules
A - Lock process modules
0 - Unlock process modules
P - Display pre-allocated modules
L - Display locked modules
E - Edit locked modules
R - Remove locked modules
F - Exit.

Examine -->

Figure E-5 Examine modules for partitioning menu

After setting up the partitioning parameters and running the K-way partitioning algorithm,

the final partition of the design, together with the I/O utilisation and estimated area

utilisation of target devices are displayed in the console window. The partitioning

parameters can be altered and the K-way partitioning algorithm can be repeated to get

different partitioning results, else command "FI" is entered at the K-way partitioning

prompt to begin the communication subsystem optimisation. Alternatively, the MOODS

optimisation process can be re-run using the "RM" command.

When the communication subsystem optimisation finishes, the system writes out VHDL

packages for the subprogram communication channel arbiter(s) (Section 5.4.3), final

netlists for all the target devices, and report files, leaving the system in the "EXAMINE"

mode. The "FI" command is typed once more to end the session.

T.B. Y e e , 2 0 0 7 A p p e n d i x E: M O O D S m u l t i - F P G A synthes is g u i d e 3

Adapting the same naming convention described in Section E. 1, assuming the top-level

design has been created from a behavioural VHDL file, de s i gn . vhd. After the multi-

FPGA synthesis session in MOODS, VHDL netlist output files

design_synth_doml.vhd, design_synth_dom2.vhdf

des ign synth domA:. vhd for a multi-FPGA design targeting A: devices are created in

the project directory.

