UNIVERSITY OF SOUTHAMPTON

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

Volume 2 of 2

by

Tack Boon Yee

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

April, 2007

T.B. Yee, 2007 Appendix A: Paper 248

Appendix A

Paper

This appendix contains the paper published in the proceedings of the International
Federation for Information Processing International Conference on Very Large Scale

Integration 2005 (IFIP VLSI-SOC 2005).

The following published papers were included in the bound thesis. These have
not been digitised due to copyright restrictions, but the links are provided.

Y. Tack Boon, M. Zwolinski, A.D. Brown (2005) “Multi-FPGA Synthesis with Asynchronous

Communication Subsystems.” IFIP International Conference on Very Large Scale Integration (VLSI-
S0C 2005).

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 256

Appendix B

Hardware demonstrator in detail

This appendix contains implementation details of the hardware demonstrator and the
Digilent D2-SB FPGA-based development board and DIO4 peripheral board used to
implement the JPEG decoder.

The first few sections of this appendix provide the information on the JPEG decoder and a
full profile of test images and photographs of the test images decoded by the multi-FPGA
JPEG decoder. The rest of this appendix provides the detailed information on the hardware
demonstrator. The information provided includes: circuit description of the BT121
VideoDAC on the I/0 VGA peripheral board, user manuals of the development board, and

the setting up of the hardware demonstrator.

B.1 JFIF (JPEG File Interchange Format)

The JPEG File Interchange Format is a minimal file format, which enables JPEG
bitstreams to be exchanged between a wide variety of platforms and applications. The
JFIF is entirely compatible with the standard JPEG interchange format and it conforms to
the JPEG standard (ISO/IEC 10918-1 | ITU-T Recommendation T.81); the only additional
requirement is the presence of a JFIF application segment marked by an APP(marker.
The rest of this section provides the specifications and syntax of a JPEG file defined in
Annex B of the ISO/IEC 10918-1 | ITU-T Recommendation T.81 and the JFIF application
segment. The set of marker assignments and their description supported by the lossy

sequential DCT-based JPEG decoder is listed in Table B-1 below.

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail

Symbol ?Ode Description
Assignment

SOl 0xD8 Start of image

APP, OxEO JFIF application segment

APP, OxE1 - OXEF | Other APP segments

DQT 0xDB Quantisation table

SOF, 0xCO0 Start of frame

DHT 0xC4 Huffman table

SOS OxDA Start of scan

COM OxFE Comment, may be ignored (skipped)

EQI 0xD9 End of image

Table B-1 Marker identifiers in the JFIF file

JFIF marker identifiers are preceded by an all ‘1” byte (0OXFF). A two-byte SOI header
(OxFF, 0xD8) identifies the JFIF file format, the APP, marker immediately follows the
SOI header and subsequently by the other segments and markers. The end of file is
identified by the EOI (OxFF, 0xD9) marker. Normally, the only marker identifier that
should be found once the image data is started is the EOI marker. When a OxFF byte is

found followed by a zero byte, the zero byte must be discarded.

257

The following describes the JPEG file format and descriptions of the key segments given

in Table B-1:

Header: It occupies two bytes (SOI: start of image — 0xFF, 0xDB)

Segments: Following the SOI marker, there can be any number of segments or markers

described in Table B-1 above.

Trailer: It occupies two bytes. (EOI: end of image ~ 0xFF, 0xD9).

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

SOFO0 (Start of Frame 0) marker

258

] Size in
Field Description
byte(s)

Marker identifier 2 OxFF, 0xCO to identify SOFQ marker.
Length 2 This value equals to 8+ component*3 value.
Data precision 1 This is in bits/sample, usually 8.
Image height 2 This must be >0.
Image width 2 This must be >0.
Number of components 1 Usually 1= grayscaled, 3= colour YCbCr or YIQ,

4= colour CMYK.

Each component

Read each component data of 3 bytes. It
contains:

Component ID (1 byte) (1=Y, 2= Cb, 3= Cr, 4= 1,
5= Q), sampling factors (1 byte) (bits 0-3 vertical,
bits 4-7 horizontal), quantisation table number (1
byte).

¢ The JFIF uses either 1 component (Y, grayscaled) or 3 components (YCbCr,

sometimes called YUV, colour).

APPO (JFIF segment) marker

Size in
Field Description
byte(s)
Marker identifier 2 OxFF, OxEQ to identify APPO marker.
Length 2 This must be >=16
L - This identifies JFIF. 'JFIF#0’ (Ox4A, 0x46, 0x49,
File identifier mark 5 Ox46, 0x00)
Major revision number 2 Should be 1, otherwise error.
Minor revision humber 2 Should be 0 to 2, otherwise try to decode anyway
0= no units, x/y-density specifies the aspect ratio
Units for x/y densities 1 instead: 1= x/y-density are dots/inch, 2= x/y-
density are dots/cm.
X-density 2 It should be >0.
Y-density 2 It should be >0.
Thumbnail width 1 -
Thumbnail height 1 -
For thumbnails (RGB 24-bits), n= width*height*3
Bytes to be read n bytes should be read immediately followed by the
thumbnail height.

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

259

o Ifithere is no “JFIF#0” in the file identifier, or the length is <16, then it is probably not

a JFIF segment and should be ignored.

¢ Normally units= 0, x-density= 1, y-density= 1 means the image has an aspect ratio of

1:1 (evenly scaled).

e JFIF files including thumbnails are very rare, the thumbnail can usually be ignored. If

there is no thumbnail, then width= 0 and height= 0.

DHT (Define Huffman Table) marker

Size in
Field Description
byte(s)
Marker identifier 2 OxFF, 0xC4 to identify DHT marker.
Length 2 This specifies the length of Huffman table.
Bits 0-3: number of HT (0 to 3, otherwise error),
Huffman Table (HT) 1 |Bit 4: type of HT (= DC table, 1= AC table). Bits 5-
information .
7: not used, must be 0.
Number of symbols with codes of length 1 to 186,
Number of symbols 16 |the sum(n) of these bytes is the total number of
codes, which must be <= 256.
Table containing the symbols in order of
Symbols n increasing code length (n= total number of codes).

e Asingle DHT segment may contain multiple Huffman tables, each with its own

information byte.

DRI (Define Restart Interval) marker

Size in
Field Description

byte(s)

Marker identifier 2 OxFF, 0xDD to identify DRI marker.

Length 2 This must be 4.

. This is in unit of MCU blocks, means that every n
. MCU blocks, a RSTn marker can be found. The
Restart interval 2

first marker will be RSTO, then RST1, etc, after
RST7, repeating from RSTO.

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 260

DQT (Define Quantisation Table) marker

Ficld Size in b .
ie escription
byte(s) P
Marker identifier 2 OxFF, OxDB to identify DQT marker.
Length 2 This specifies the length of the quantisation table.

Bits 0-3: number of QT (0 to 3, otherwise error),

Quantisation Table (QT) : . e 09,0 _
information 1 E:ltt)s 4-7: precision of QT (0= 8-bit, otherwise 16-

Bytes n This gives the QT values, n= 64*(precision+ 1).

* Asingle DQT segment may contain multiple quantisation tables, each with its own

information byte.

* For precision= 1 (16 bits), the order is high-low for each of the 64 words.

SOS (Start of Scan) marker

Size in
Field Description
byte(s)
Marker identifier 2 OxFF, OxDA to identify SOS marker.
Length > This must be.equal to 6+2* (number of
components in scan).
Number of components 1 This must be >=1 and <= 4 (otherwise error),
in scan usually 1 or 3.
For each component, read 2 bytes. It contains 1
byte: Component ID (1= Y, 2= Cb, 3= Cr, 4=, 5=
Each component 2 Q), 1 byte: Huffman table to use (bits 0-3: AC
table O to 3, bits 4-7: DC table 0 to 3).
Ignorable bytes 3 Skip the next 3 bytes.

¢ The image data (scans) is immediately following the SOS segment.

B.2 JFIF test images

A complete profile of the test images decoded by the multi-FPGA JPEG decoder is given
below. The following diagrams include the original JEIF file and photographs of the
decoded test image using the hardware demonstrator system. Figure B-1 to Figure B-3
illustrate three 64-pixel by 64-pixel test images (LENA jpg, MANDRILL.jpg, and
DRAGON jpg) decoded using the multi-FPGA JPEG decoder.

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail

261

Original test image (LENA.jpg)

S "’4}‘41"’4"’41'\4
AU
j 41 4*4}‘*4‘*4 ‘*4‘*4;*}1‘*4
1Y U 4}‘?4'74‘741‘*4}' U

VYU

Y
m o)y
:{_r’ ”A’h’” e

RN ’W»G

i)CR"

Figure B-2 JFIF test image (MANDRILL.jpg)

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail

262

Original test image (DRAGON.jpg)

MULTI-FPGA JPEG DEMO

Figure B-3 JFIF test image (DRAGON.jpg)

Figure B-4 and Figure B-5 illustrate two 128-pixel by 128-pixel test images

(SQUARES.jpg and SLOPE.jpg) decoded using the multi-FPGA JPEG decoder.

Original test image (SQUARES.jpg)

Figure B-4 JFIF test image (SQUARES.jpg)

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 263

Original test image (SLOPE.jpg)

Figure B-5 JFIF test image (SLOPE.jpg)

B.3 Simulations of test image decoding

Post-MOODS multi-FPGA synthesis simulation results of the decoding of the LENA test
image using the non-pipelined multi-FPGA JPEG decoder are given in Figure B-6 and a
zoom in view in Figure B-7. The simulations show the signal transitions and data transfers
of the various components (e.g. the UART RTL module, Frame buffer controller RTL
module, etc), and the communication channels in the multi-FPGA JPEG decoder. The
decoded pixel data are given in signal “/sim_top_level/decoded data” (under the multi-
FPGA JPEG decoder core divider) in Figure B-7, and cursors 1 and 2 mark the first
decoded (pixel) value and the end of the eighth decoded (pixel) value in the test image
respectively in the figure (e.g. the first to the eighth pixel values obtained from the close
up view of the simulation in Figure B-7 are 0x7C, 0x94, 0x8A, 0x6F, 0x8C, 0x88, 0x8E,
0x65 respectively). The two-phase data handshaking scheme for the inter-device data in
subprogram communication channel 2 (under the SpC 2 divider) can also be seen clearly

in Figure B-7.

Simulation results for the 2-,3- and 6-device implementation of the pipelined multi-FPGA
JPEG decoder are given in Figure B-8 to Figure B-13. Cursors 1 and 2 in the zoom in
views of the simulations mark the first decoded (pixel) value and the end of the eighth

decoded (pixel) value respectively. Inter-device data sent through the explicit

264

Appendix B: Hardware demonstrator in detail

T.B. Yee, 2007

communication channels (ExCs) using the two-phase data handshaking scheme can be

seen in the zoom in views of the simulations (e.g. ExC 4 in Figure B-9).

su 0E

0000

— T oA EEEEEIEE NN
t 44 R R R EE EEEEERE R ENE EEENEENE]
3 3 - 84 4
4 Iz 2 4 - - ¢ 884 4 - 24
-5 § 4 a2 =z 4 3 ais 4 4 3 -4
-§-4- - 444 3 4 + [
LE + B E + ERE -§- 44t £§ €t
-4 +§- 4 - 4 4§44 -+ 4 + 4 L
(] [] [11]] (] (I1] (] a

(010 (0] (0010 [OIOL0] (0] (0] 00 Q40 (000 {0 (000 IO { [OI0(0]

D) D (0] (00] (01010} (0] (0] {00 (U0 [{0 [0 W 0
9000000000 00000000000 0000000000000 0I00R00000RRNRI000B0000NRARNI
2000000000 00000000000 0000000 000R000I00BBY0000RNRYRIORARIEBERRNI|
2000000000000 00000000 000000000000 0010BRRNE000RNRYIR00GRRRYRDRREEI

| (1] (] a8 [TI]] 8 (] EEEREET] [1<])

[a2 a2 il]
8 (]
[B0 aiaee] XXX
[)]] TXI1]
[a [(1] [TXX1]
[)

osn)

eep Papodap/jRASdoy wis/

WA AMAANAN AANAANANN NAN MAAAAANAANAN WAN WAAN AAAN

Figure B-6 Simulation of test image (LENA.JPG) decoding in a non-pipelined

multi-FPGA JPEG decoder

265

il

in deta

Appendix B: Hardware demonstrator

T.B. Yee, 2007

3826] FALE(6/C8 3506(6838(2278 8 s

783 5339 =05 1 6L
1)) S) G B) P) O)))) G)) G) G) G i) G e B

_0
e o e
| 1]

))) G) PO) 5 I) 1V) s e | G| (0 | W) R T R0 5 6 o !
S bt ! D e

| |
V W
i e et v G G o G nﬁ?ﬁﬂgﬁaﬁgﬂ { R
N PR N e iR T M e A [SR e S e e I O e P (s]

Figure B-7 Simulation (zoom view) of test image (LENA.JPG) decoding in a

non-pipelined multi-FPGA JPEG decoder

266

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail
= 0d
= P 4 P P -| -|
15 e HE
o
= s ==
. - | |
- o|eille|®]|®
ololalele bed o8 By
) -l eS|
ololelels b - =S
L] - =
- - -
LJ N O
2 o g
Ld o] =
. -l i
L LIl
CJ -
. ® - ole|e
d -l S
= -
L] olellle|=|=]8)
L) | o [o
ololele b g R e
LJ ~ b
0 NN o
g o - =S
L] o|ellel=2]8
L - -|2|=]|8
@ - J
= NN Bl]
! Ll
e § o § o ofls - e =
- . - -
- -lS|=
L] - | =|=|Z| 8
L NN Nl
- -]
- =l -]|®|S|®
E = clellz|slsle
L =t =
L o el
= -l pm =l EIES
™ 2 ol|s|s
ololels - -le -| 8| 8|e
- ale
i e b 1 B L) paps Mool
L o Bl]
o -l ==l
L] -leilal=|=
paps L
id o ~BISis
- e|e|e
alale = = =
@ -lo =|=|8
o - =|®
- -
B et 0t o ® cl=li=lclcle
o e | J o
- olele
..E.- - ==
i EY wle!
2
S‘l
iI
El
WAN MAANAANN AAAAANAN AAN ANANAANAAANR WAN

Figure B-8 Simulation of test image (LENA.JPG) decoding in a pipelined

multi-FPGA JPEG decoder (2-device implementation)

267

demonstrator

Appendix B: Hardware

T.B. Yee, 2007

RAA- ARN

NA.JPG) decoding in a

Figure B-9 Simulation (zoom view) of test image (LE

implementation)

(2-device

pipelined multi-FPGA JPEG decoder

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 268

H
- ‘:’ --;
2 Hoa- 21
e L) el b by
= REER =zl
2 . Odid Bd
=l =|o|o|e :-:
™ :B = elels
o= b 8 -
N NHeald
NN Neel
R HERE e
= - || S bed
=y = =] -
o Qe .
s B b b
o frr - | |
oo o [| L
-])88 -
-lo il «|S|®|8
- o|B|8|S
NN Mol
- 2|8
o o il L)
Ld bd - a
i gt :.: b Do e
b= 5= -] Sl
o=l =|Z|=|8
.~ - L
-le el SIS
NN Belielld
oo ELILIL -
|l =] ® -
N e p
o o 55 o L
o f o [0 o> hed =
- LJ
oo - - et
o 3o R - -
o[G bd .
- - 8
o = Ld
b B e b1
oo] = =)
~I~l-lclc|e -
- - L -
- -
-l - Ld =
= I > e
-) b
HE S g -
2 L L
-:”-: -l CJ_/E:
P
_Bl
j:
MR AARNAAT MARAAAAN ARAN AARAAANAANR ANAN WAN

Figure B-10 Simulation of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (3-device implementation)

269

Appendix B: Hardware demonstrator in detail

T.B. Yee, 2007

G061 %) LLYE] 48 Q00
Iﬂ ﬂ Hﬁgﬂjﬂﬂguwl”ﬂl
=]

MAMARAAMANAAN ANW WAAN

Lﬂﬂﬁlﬂnﬂﬂﬂmwrl Bl [m
= i e i e R

O E%%g (fliiiie e G ﬁaﬁﬁggagﬁﬁ ,.
o —

K
.|!|.||||l||l|||.|L1|l»|

AAN AANAAAN WAAAANAN WAN

Figure B-11 Simulation (zoom view) of test image (LENA.JPG) decoding in a

pipelined multi-FPGA JPEG decoder (3-device implementation)

270

Appendix B: Hardware demonstrator in detail

T.B. Yee, 2007

SU(832081E

TER) [g R s et by radi ed B | | e o o | 8 M [[
PSRRI A T RO w-l
| P e R S W o IR R e T T 11 @
T T A P R e I o ' ﬁ

E T O [L O T e [l -
2 B e ¢ [e & shitonion
- . m % p =y FrST———
[] SO0 NENENENINNRENERDREBRNS [T T
)) (0 0) JTOICXOX G 0] [OL OIOIOI010] NOOOODHD (01 0] [0] [0]
[CXOX T 0] [0] [OI01 0] [0] {

t 4 DIy 8dt [(REEENEE XN I I I N O KKK
T P e o o e o T O e O R O S o e RS0 T BT e S T RO I e A, o oot
.._ T T T R T e I e T e O T e T o T e ey s e T v o (o SN PR S) T ot o fars Vet e T AN i o Lo FEp U yw Wt W VAT

IR IR K I IR I N I I IR NN I

] R R L A R D S A A S T R S R A S R S PI SRS S SR T ST S TV T U w o o P o pa e m
[] T T B T e e A e e e T T e T e e e e B R R R e S el e N S e VR (i

281880008000 0000000 000000 0NENI000NNE0REREN00RNDIBNRRENO0RDE0EE
[X X0I0K X XOIO[0) [O]0X_XOXOIT) (0]] (0] 2008
[] [(X X [IIIEK]) spnpOpnansanasnes [T

(4474

eep Papodap/eas| doy wis/

AAN AARAAARAARAAN AAA ANN AAR AAWN WARAN ANAN

-12 Simulation of test image (LENA.JPG) decoding in a pipelined

Figure B

multi-FPGA JPEG decoder (6-device implementation)

271

in deta

demonstrator

Appendix B: Hardware

T.B. Yee, 2007

WAAN WMANN

AN

ARAAAANAAAAN AN AAN ANN

mmn

Figure B-13 Simulation (zoom view) of test image (LENA.JPG) decoding in a

pipelined multi-FPGA JPEG decoder (6-device implementation)

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 272

B.4 Hardware demonstrator development board
pin assignments

The multi-FPGA JPEG decoder hardware demonstrator is targeted onto three Digilent D2-
SB development boards and one of the boards connected to the I/O VGA peripheral board
as shown in the photograph of Figure B-14.

o \ D2-SB

development
board 3

D2-SB
development
board 2

I 1,

AU MNIMARAMM

development
board 1

D2-SB ‘

{ /0 VGA
B penpheral board

- ’ B

Figure B-14 Multi-FPGA board connections

The following tables give the pin assignments of the three Digilent D2-SB development
boards; connectors that are not available (N/A) for user I/O assignments (e.g. VCC, GND)
or not connected (n/c) are highlighted in grey. Table B-2 lists signals assigned to

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detaj] 273

connectors Al and A2, Table B-3 lists signals assigned to connectors B1 and B2, and

signals assigned to connectors C1, and C2 on development board 1 are given in Table B-4.

Connector A1 Connector A2

Conn. pin | FPGA pin signal Conn. pin | FPGA pin signal
1 N/A GND 1 N/A GND
2 N/A VU 2 N/A vu
3 N/A VCC33 3 N/A VCC33
4 P112 4 P162
5 P111 vga_hsync_n 5 P161 SRAMAddr(1)
6 P110 vga_vsync_n 5 P160 SRAMAddr(0)
7 P109 pin_vga_gray(1) 7 P152 SRAMAddr(3)
8 P108 pin_vga_gray(0) 8 P151 SRAMAddr(2)
9 P102 pin_vga_gray(3) 9 P150 SRAMAddr(5)
10 P101 pin_vga_gray(2) 10 P149 SRAMAddr(4)
" P100 pin_vga_gray(5) 1 P148 SRAMAddr(7)
12 P99 pin_vga_gray(4) 12 P147 SRAMAddr(6)
13 P98 pin_vga_gray(7) 13 P146 SRAMAddr(9)
14 P97 pin_vga_gray(6) 14 P145 SRAMAddr(8)
15 P96 15 P141 SRAMAddr(11)
16 P95 16 P140 SRAMAddr(10)
17 P94 17 P139 SRAMAddr(13)
18 P93 18 P138 SRAMAddr(12)
19 P89 19 P136 SRAMAddr(15)
20 P181 20 P135 SRAMAddr(14)
21 P87 21 P134 SRAMAddr(17)
22 P180 22 P133 SRAMAddr(16)
23 P179 SRAMData(12) 23 P132 SRAMData(1)
24 P178 SRAMData(13) 24 P129 SRAMData(0)
25 P176 SRAMData(14) 25 P127 SRAMData(3)
26 P175 SRAMData(15) 26 P126 SRAMData(2)
27 P174 SRAM_CE 27 P125 SRAMData(5)
28 P173 SRAM_WE 28 P123 SRAMData(4)
29 P169 SRAM_LB 29 P122 SRAMData(7))
30 P168 SRAM_UB 30 P121 SRAMData(6)
N P167 SRAM_OE 31 P120 SRAMData(9)
32 P166 32 P116 ’ SRAMData(8)
33 P165 RD 33 P115 SRAMData(11)
34 P164 ™D 34 P114 SRAMData(10)
35 P163 pin_vgaclk_25Mhz 35 P113
36 n/c 36 nic
37 n/c 37 n/c
38 n/c 38 n/c
39 nlc 39 P80 GCLKO
40 n/c 40 n/c

Table B-2 Pin assignment of signals to connector A1 and A2 of development
board 1

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 274

Connector B1 Connector B2
Conn. pin | FPGA pin signal Conn. pin | FPGA pin signal

1 N/A GND 1 N/A GND

2 N/A VU 2 N/A VU

3 N/A VCC33 3 N/A VCC33

4 P112 4 P71

5 P111 5 P70

6 P110 6 P69

7 P109 7 P68

8 P108 8 P64

9 P102 9 P63

10 P101 10 P62 Data_Symbol(0)
11 P100 " P61 Data_Symbol(1)
12 P99 12 P60 Data_Symbol(2)
13 P98 13 P59 Data_Symbol(3)
14 pPo7 14 P58 Data_Symbol(4)
15 P96 15 P57 Data_Symbol(5)
16 P95 16 P56 Data_Symbol(6)
17 P94 17 P55 Data_Symbol(7)
18 P93 18 P49 JFIF_hs_rdy
19 P89 19 P48 JFIF_hs_rcv
20 P88 20 P47 Symbol_hs_rdy
21 P87 21 P46 Symbol_hs_rcv
22 P86 22 nic

23 P84 23 nic

24 P83 24 nic

25 P82 25 nlc

26 P81 26 n/c
27 P75 27 n/c
28 P74 28 nic

29 P73 29 nic
30 nic 30 nic
31 nic 39 nic

32 n/c 32 n/c

33 nic 33 nic
34 nlc 24 nic
35 nic 35 nic
36 n/c 36 nic
a7 nlc 37 nic

38 nic 38 nlc
39 nic 39 n/c
40 n/c 40 nlc

Table B-3 Pin assignment of signals to connector B1 and B2 of development
board 1

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 275

Connector C1 Connector C2
Conn. pin | FPGA pin signal Conn. pin | FPGA pin signal

1 N/A GND 1 N/A GND

2 N/A vu 2 N/A VU

3 N/A VCC33 3 N/A VCC33

4 P112 4 P23

5 P111 5 P22 decoded_data(5)
6 P110 6 P21

7 P109 7 P20 decoded_data(6)
8 P108 8 P18 decoded_data(7)
9 P102 9 P17 decoded_data(8)
10 P101 10 P16 decoded_data(9)
11 P99 1 P15 decoded_data(10)
12 P99 12 P11 decoded_data(11)
13 P98 13 P10 decoded_data(12)
14 P97 14 P9 decoded_data(13)
15 P96 JFIF_eof 15 P8 decoded_data(14)
16 P95 Data_Symbol(8) 16 P7 decoded_data(15)
17 P94 Data_Symbol(9) 17 Pé end_conv

18 PS3 Data_Symbol(10) 18 P5 s_sym_check
19 P89 Data_Symbol(11) 19 P4
20 P45 Data_Symbol(12) 20 P3 JPEG_start
21 P87 Data_Symbol(13) 21 P206

22 P44 Data_Symbol(14) 22 P205
23 P43 Data_Symbol(15) 23 P204
24 P42 JFIF_info(0) 24 P203

25 P41 JFIF_info(1) 25 P202
26 P40 JFIF_info(2) 26 P201
27 P36 JFIF_info(3) 27 P200

28 P35 28 P199
29 P34 decoded_req 29 P198
30 P33 decoded_ack 30 P194

31 P31 decoded_data(0) 31 P193
32 P30 decoded_data(1) 32 P192

33 P29 decoded_data(2) 33 P191

34 P27 decoded_data(3) 34 P189
35 P24 decoded_data(4) 35 P188
26 n/c 36 nlc

37 nic 37 nic
38 nfe 38 nlc

39 nic 39 P77 GCLK1
40 nlc 40 nic

Table B-4 Pin assignment of signals to connector C1 and C2 of development
board 1

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 276

Table B-5 lists signals assigned to connectors Al and A2, Table B-6 lists signals assigned
to connectors B1 and B2, and signals assigned to connectors C1, and C2 on development

board 2 are given in Table B-7.

Connector A1 Connector A2
Conn. pin | FPGA pin signal Conn. pin | FPGA pin T signal
1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU
3 N/A VCC33 3 N/A VCC33
4 P112 4 P162
5 P111 5 P161 decoded_data(4)
6 P110 6 P160
7 P109 7 P152 decoded_data(2)
8 P108 8 P151 decoded_data(3)
9 P102 9 P150 decoded_data(0)
10 P101 10 P149 decoded_data(1)
11 P100 11 P148 decoded_req
12 P99 12 P147 decoded_ack
13 P98 13 P146 JFIF_info(3)
14 P97 14 P145
15 P96 15 P141 JFIF_info(1)
16 P95 16 P140 JFIF_info(2)
17 P94 17 P139 Data_Symbol(15)
18 P93 18 P138 JFIF_info(0)
19 P89 19 P136 Data_Symbol(13)
20 P181 20 P135 Data_Symbol(14)
21 P87 21 P134 Data_Symbol(11)
22 P180 ' JPEG_start 22 P133 Data_Symbol(12)
23 P179 end_conv 23 P132 Data_Symbol(9)
24 P178 s_sym_check 24 P129 Data_Symbol(10)
25 P176 decoded_data(14) 25 P127 JFIF_eof
26 P175 decoded_data(15) 26 P126 Data_Symbol(8)
27 P174 decoded_data(12) 27 P125
28 P173 decoded_data(13) 28 P123
29 P169 decoded_data(10) 29 P122
30 P168 decoded_data(11) 30 P121
31 P167 decoded_data(8) 31 P120
32 P166 decoded_data(9) 32 P116
33 P165 decoded_data(6) 33 P115
34 P164 decoded_data(7) 34 P114
35 P163 decoded_data(5) 35 P113
36 n/c 36 n/c
37 n/c 37 n/c
38 n/c 38 n/c
39 n/c 39 P80 GCLKO
40 n/c 40 n/c

Table B-5 Pin assignment of signals to connector A1 and A2 of development
board 2

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 277

Connector B1 Connector B2
Conn. pin | FPGA pin signal Conn. pin | FPGA pin signal

1 N/A GND 1 N/A GND

2 N/A VU 2 N/A vuU

3 N/A VCC33 3 N/A VCC33

4 P112 4 P71

5 P111 5 P70

6 P110 6 P69

7 P109 7 P68

8 P108 8 Pé4

9 P102 9 P63

10 P101 10 P62 Data_Symbol(0)
11 P100 11 P61 Data_Symbol(1)
12 P99 12 P60 Data_Symbol(2)
13 P98 13 P59 Data_Symbol(3)
14 P97 14 P58 Data_Symbol(4)
15 P96 15 P57 Data_Symbol(5)
16 P95 16 P56 Data_Symbol(6)
17 P94 17 P55 Data_Symbol(7)
18 P93 18 P49 JFIF_hs_rdy
19 P89 19 P48 JFIF_hs_rcv
20 P88 20 P47 Symbol_hs_rdy
21 P87 21 P46 Symbol_hs_rcv
22 P86 22 nic
23 P84 23 n/c
24 P83 24 n/c
25 P82 25 nlc
26 P81 26 nic
27 P75 27 nic
28 P74 28 n/c
29 P73 29 n/c
30 n/c 30 n/c
31 nlc 31 nlc
32 nic 32 n/c
33 n/c 33 nlc
34 n/c 34 n/c
35 n/c 35 n/c
36 n/c 36 n/c
37 n/c 37 n/c
38 n/c 38 n/c
39 nlc 39 n/c
40 n/c 40 nlc

Table B-6 Pin assignment of signals to connector B1 and B2 of development
board 2

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail
Connector C1 Connector C2
Cgir:‘n. F::iC;A signal C:));;n. ng?‘A signal

1 N/A GND 1 N/A GND

2 N/A VU 2 N/A VU

3 N/A VCC33 3 N/A VCC33

4 P112 4 P23

5 P111 5 P22 jpg_core_two_ba2_Data_inout(2)

6 P110 6 P21

7 P109 jpg_core_two_ba1_Data_req 7 P20 jpg_core_two_ba2_Data_inout(3)

8 P108 jpg_core_two_ba1_Data_ack 8 P18 jpg_core_two_ba2_Data_inoui(4)

9 P102 jpg._core_two_ba1_Data_inout(0) 9 P17 jpg_core_two_ba2_Data_inout(5)
10 P101 jpg_core_two_ba1_Data_inout(1) 10 P16 jpg_core_two_ba2_Data_inout(6)
11 P99 jpg_core_two_ba1_Data_inout(2) 11 P15 jpg_core_two_ba2_Data_inout(7)
12 P99 jpg_core_two_ba1_Data_inout(3) 12 P11 ipg_core_two_ba2_Data_inout(8)
13 P98 jpg_core_two_ba1_Data_inout(4) 13 P10 ipg_core_two_ba2_Data_inout(9)
14 P97 jpg_core_two_ba1_Data_inout(5) 14 P9 jpg_core_two_ba2_Data_inout(10)
15 P96 jpg_core_two_ba1_Data_inout(6) 15 P8 jpg_core_two_ba2_Data_inout(11)
16 P95 jpg_core_two_ba1_Data_inout(7) 16 P7 ipg_core_two_ba2_Data_inout(12)
17 P94 jpg._core_two_ba1l_Data_inout(8) 17 P6 jpg_core_two_ba2_Data_inout(13)
18 P93 jpg_core_two_ba1_Data_inout(9) 18 P5 ipg_core_two_ba2_Data_inout(14)
19 P89 jpg_core_two_ba1_Data_inout(10) 19 P4 jpg_core_two_ba2_Data_inout(15)
20 P45 jpg_core_two_ba1_Data_inout(11) 20 P3 jpg_core_two_ba2_Data_inout(16)
21 P87 jpg_core_two_ba1_Data_inout(12) 21 P206 | jpg_core_two_ba2_Data_inout(17)
22 P44 | jpg_core_two_ba1_Data_inout(13) 22 P205 | jpg_core_two_ba2_Data_inout(18)
23 P43 | jpg_core_two_bal_Data_inout(14) 23 P204 | jpg_core_two_ba2_Data_inout(19)
24 P42 | jpg_core_two_ba1_Data_inout(15) 24 P203 | jpg_core_two_ba2_Data_inout(20)
25 P41 jpg_core_two_bal_Data_inout(16) 25 P202 | jpg_core_two_ba2_Data_inout(21)
26 P40 | jpg_core_two_ba1_Data_inout(17) 26 P201 | jpg_core_two_ba2_Data_inout(22)
27 P36 jpg_core_two_ba1_Data_inout(18) 27 P200 | jpg_core_two_ba2_Data_inout(23)
28 P35 | jpg_core_two_ba1_Data_inout(19) 28 P199 | jpg_core_two_ba2_Data_inout(24)
29 P34 | jpg_core_two_ba1_Data_inout(20) 29 P198 | jpg_core_two_ba2_Data_inout(25)
30 P33 jpg_core_two_ba1_txcell_req1(0) 30 P194 | jpg_core_two_ba2_Data_inout(26)
31 P31 jpg_core_two_ba1_txcell_req1(1) 31 P193 | jpg_core_two_ba2_Data_inout(27)
32 P30 jpg_core_two_ba1_txcell_ack1(0) 32 P192 jpg_core_two_ba2_txcell_req1
33 P29 jpg_core_two_ba1_txcell_ack1(1) 33 P191 jpg_core_two_ba2_txcell_ack1
34 P27 jpg_core_two_ba2_Data_inout(0) 34 P189 jpg_core_two_ba2_Data_req
35 P24 jpg_core_two_ba2_Data_inout(1) 35 P188 jpg_core_two_ba2_Data_ack
38 n/c 36 nic
37 n/c 37 n/c
38 n/c 38 n/c
39 n/c 39 P77 GCLK1
40 n/c 40 nfc

278

Table B-7 Pin assignment of signals to connector C1 and C2 of development

board 2

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

Table B-8 lists signals assigned to connectors Al and A2, and Table B-9 lists signals

assigned to connectors B1, B2, C1, and C2 on development board 3.

Connector A1 Connector A2
Conn. pin | FPGA pin signal Conn. pin | FPGA pin signal

1 N/A GND 1 N/A GND

2 N/A \/§] 2 N/A vu

3 N/A VCC33 3 N/A VCC33

4 P112 4 P162

5 P111 vga_hsync_n 5 P161 SRAMAddr(1)
6 P110 vga_vsync_n 6 P160 SRAMAddr(0)
7 P109 pin_vga_gray(1) 7 P152 SRAMAddr(3)
8 P108 pin_vga_gray(0) 8 P151 SRAMAddr(2)
9 P102 pin_vga_gray(3) 9 P150 SRAMAddr(5)
10 P101 pin_vga_gray(2) 10 P149 SRAMAddr(4)
11 P100 pin_vga_gray(5) 11 P148 SRAMAddr(7)
12 P99 pin_vga_gray(4) 12 P147 SRAMAddr(6)
13 P98 pin_vga_gray(7) 13 P146 SRAMAddr(9)
14 P97 pin_vga_gray(6) 14 P145 SRAMAddr(8)
15 P96 15 P141 SRAMAddr(11)
16 P95 16 P140 SRAMAddr(10)
17 P94 17 P139 SRAMAddr(13)
18 P93 18 P138 SRAMAddr(12)
19 P89 19 P136 SRAMAddr(15)
20 P181 20 P135 SRAMAddr(14)
21 P87 21 P134 SRAMAddr(17)
22 P180 22 P133 SRAMAddr(16)
23 P179 SRAMData(12) 23 P132 SRAMData(1)
24 P178 SRAMData(13) 24 P129 SRAMData(0)
25 P176 SRAMData(14) 25 P127 SRAMData(3)
26 P175 SRAMData(15) 26 P126 SRAMData(2)
27 P174 SRAM_CE 27 P125 SRAMData(5)
28 P173 SRAM_WE 28 P123 SRAMData(4)
29 P169 SRAM_LB 29 P122 SRAMData(7))
30 P168 SRAM_UB 30 P121 SRAMData(5)
31 P167 SRAM_OE 31 P120 SRAMData(9)
32 P166 32 P116 SRAMData(8)
33 P165 RD 33 P115 SRAMData(11)
34 P164 D 34 P114 SRAMData(10)
35 P163 pin_vgaclk_25Mhz 35 P113

36 nlc 36 n/c
37 nle 37 nic
38 n/c 38 n/c
39 nic 39 P80 GCLKO
40 nic 40 n/c

279

Table B-8 Pin assignment of signals to connector A1 and A2 of development

board 3

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 280
Connector B1 Connector B2 Connector C1 Connector C2
Cgir;n. FS&A signal C:i!;n. FE&A signal Cs;;n. Fsi(':‘;A signal Cgir;n. FSiCiA signal

1 N/A GND 1 N/A GND 1 N/A GND 1 N/A GND
2 N/A VU 2 N/A VU 2 N/A VU 2 N/A VU
3 N/A - | VCC33 3 N/A VCC33 3 N/A VCC33 3 N/A VCC33
4 P112 4 P71 4 P112 4 P23
5 P111 5 P70 5 P111 5 P22
6 P110 6 P69 6 P110 6 P21
7 P109 7 P68 7 P109 7 P20
8 P108 8 P64 8 P108 8 P18
9 P102 9 P63 9 P102 9 P17

10 P101 10 P62 10 P101 10 P16

11 P100 11 P61 11 P99 11 P15

12 P99 12 P60 12 P99 12 P11

13 P98 13 P59 13 P98 13 P10

14 P97 14 P58 14 P97 14 P9

15 P96 15 P57 15 P96 15 P8

16 P95 16 P56 16 P95 16 P7

17 P94 17 P55 17 Pg4 17 Pé

18 P93 18 P49 18 P93 18 P5

19 P89 19 P48 19 P89 19 P4

20 P88 20 P47 20 P45 20 P3

21 P87 21 P46 21 P87 21 P206

22 P86 22 nic 22 P44 22 P205

23 P84 23 nic 23 P43 23 P204

24 P83 24 n/c 24 P42 24 P203

25 P82 25 nlc 25 P41 25 P202

26 P81 26 nic 26 P40 26 P201

27 P75 27 n/c 27 P36 27 P200

28 P74 28 n/c 28 P35 28 P199

29 P73 29 n/c 29 P34 29 P198

30 n/c 30 nic 30° P33 30 P194

31 n/c 31 n/c 31 P31 31 P193

32 n/c 32 n/c 32 P30 32 P192

33 nlc 33 nlc 33 P29 33 P191

34 nlc 34 nic 34 P27 34 P189

35 n/c 35 nlc 35 P24 35 P188

36 nic 36 nic 36 n/c 36 nic

37 n/c 37 n/c 37 n/c 37 nlc

38 n/c 38 n/c 38 n/c 38 n/c

39 nic 39 nic 39 nic 39 P77 | GCLK1

40 n/c 40 n/c 40 n/c 40 nic

Table B-9 Pin assignment of signals to connector B1, B2, C1, and C2 of

development board 3

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 281

B.5 Circuit description of the Bt121 triple 8-bit
VideoDAC

The BT121 is a triple 8-bit videoDAC designed specifically for high-performance, high-
resolution colour graphics. The BT121 generates RS-343A-compatible video signals into a
doubly-terminated 75Q load, and RS-170-compatible video signals into a singly-
terminated 75€Q) load, without requiring external buffering. Both the differential and
integral linearity errors of the D/A converters are guaranteed to be a maximum of = 1 LSB
over the full temperature range. The functional block diagram of the BT121 is given in

Figure B-15.

VREF . FS ADJUST
; . Fitafer’g;ce
— H mplifier
cLOcK T2y ; -
I ;
. S
8 8 . i
RO-R7 I _.! DAC e » IOR
8 8 f"”' |
GO-G7 i > o DAC i OG
Register |
8 8 | i
BO-B7 e el BAG e L 1OB
SYNC* e
BLANK® —— e
é Iy
VAl |AGND

Figure B-15 Functional block diagram of the BT121 videoDAC

As illustrated in the functional block diagram, the BT121 contains three 8-bit D/A
converters, input registers, and a reference amplifier. On the rising edge of CLOCK, 24
bits of colour information (R0-R7, GO-G7, and B0-B7) are latched into the device and
presented to the three 8-bit D/A converters. Latched on the rising edge of CLOCK to
maintain synchronisation with the colour data, the SYNC* and BLANK* inputs add
appropriately weighted currents to the analogue outputs, producing the specific output

levels required for video applications.

The D/A converters on the BT121 use a segmented architecture in which bit currents are
routed to either the outputs or GND by a sophisticated decoding scheme. This architecture

eliminates the need for precision component ratios and greatly reduces the switching

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 282

transients associated with turning current sources on and off. Monotonicity and low glitch
are guaranteed by use of identical current sources and current steering their outputs. An
on-chip operational amplifier stabilises the full-scale output current against temperature
and power supply variations. The analogue outputs of the BT121 can directly drive a 37.5
{2 load, such as a doubly-terminated 75 € coaxial cable. The pin diagram of the BT121
videoDAC is illustrated in Figure B-16 and the pin descriptions are given in Table B-10.

-
172}
=2
3 uw o
4 iy = < < O a
+4 Q 24} < < Z Z =
S ¢ o 2 § 3 5 5 % & &
e, e e
& 8 5 8 8 3§ 8 8§ 5 38 2
R7[|40 28 GND
Rs [|41 27 [1GND
R5[|42 26 |BO
Ra| |43 25 |B1
R3[|44 24 |B2
R2T]1 @ 23| B3
R1| 12 22[1B4
RO i3 21]1B5
GND| 4 20 B6
GND| !5 19 B7
SYNC* 16 18| | CLOCK
o - N © - w w ~
~) o - - - - - - - -
ISRy s O S s e
65 8 8 3 88 5 8 2 ¢
< o &
m

Figure B-16 Pin diagram of the BT121 videoDAC

Pin name Description

Composite blank control input (TTL compatible). A logical zero

BLANK* drives the IOR, IOG, and IOB outputs to the blanking level. BLANK*
is latched on the rising edge of CLOCK. When BLANK* is a logical

zero, the RO-R7, GO-G7, and B0-B7 inputs are ignored.

Composite sync control input (TTL compatible). SYNC* does not

override any other control or data input. SYNC* should be asserted

SYNC only during the blanking interval. It is latched on the rising edge of
CLOCK.

RO-R7. GO-G7 Red, green, and blue data inputs (TTL compatible). RO, GO, and BO

BO—B7’ ' |are the least-significant data bits. They are latched on the rising

edge of CLOCK. Coding is binary.

Clock input (TTL compatible). The rising edge of CLOCK latches the
CLOCK RO-R7, GO-G7, B0-B7, SYNC*, and BLANK* inputs. It is typically the
pixel clock rate of the video system. It is recommended that the

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 28

CLOCK input be driven by a dedicated TTL buffer to avoid reflection-
induced jitters.
Red, green, and blue current outputs. These high-impedance current
sources can directly drive a doubly-terminated 75 Q coaxial cable.
All outputs, whether used or not, should have a common output
load.

Full-scale adjust control. A resistor (RSET) connected between this
pin and GND controls the magnitude of the full-scale video signal.
Compensation pin. This pin provides compensation for the internal
reference amplifier. A 0.1 uF ceramic capacitor in series with a
resistor should be connected between this pin and the nearest VAA
pin (see Figure B-16) for optimum settling time. Connecting the
capacitor to VAA rather than to GND provides the highest possible
power supply noise rejection. The COMP resistor and capacitor
must be as close to the device as possible to keep lead lengths to
an absolute minimum.

Voltage reference input. The internal voltage reference is used and
VREF this pin is only connected to a 0.1 uF ceramic capacitor that
decouples this input to GND.

Analogue ground. All GND pins must be connected together on the
same PCB plane to prevent latchup.

Analogue power. All VAA pins must be connected on the same PCB
plane to prevent latchup.

Table B-10 Pin descriptions of the BT121

IOR, 10G, I0B

FS ADJUST

COMP

GND

VAA

The typical connection diagram using the internal voltage reference is shown in Figure B-

17 and the parts lists listed in Table B-11.

COMP — .
= R4
'L C4 1.1
| Analog Power Plane S +5V
VAA el ‘ ‘ ‘
Jv c3 :
VREF .. T c2. i ik
T e T c
BT121 |
. Ground
GND - -
! | VAA
RSET-: ©R1 =Rz °R3
| é L 1N4148/9
FS Adjust |— ; | P x
l | DAC ,,,,;“,__,, - To
IOR . 5 P —] output monitor
* | 1N4148/9
To video i
10G - . P . connector
0B o P AGND

Figure B-17 Typical connection diagram with internal voltage reference

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

284

Location Description Vendor part number
C1 33 pF tantalum capacitor Mallory CSR13F336KM
C2, C3, C4, C5 |0.1 yF ceramic capacitor Erie RPE112Z5U104M50V
C6 10 uyF capacitor Mallory CSR13G106KM
L1 Ferrite bead Fair-Rite 2743001111
R1, R2, R3 75 Q) 1% metal film resistor |Dale CMF-55C
R4 15 Q2 1% metal film resistor |Dale CMF-55C
RSET 143 € 1% metal film resistor |Dale CMF-55C

Note: The vendor numbers above are listed only as a guide. Substitution of devices
with similar characteristics will not affect the performance of the BT121.

Table B-11 Typical connection parts list

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 285

B.6 Digilent D2-SB system board reference manual

Overview

The Digilent D2-SB circuit board
provides a complete circuit development
platform centered on a Xilinx Spartan 2E
FPGA. D2-SB features include:

e A Xilinx XC2S200E-200 FPGA with
200K gates and 350MHz operation;

e 143 user I/Os routed to six standard
40-pin expansion connectors;

e A socket for a JTAG-programmable
18V02 configuration Flash ROM;

e Dual on-board 1.5A power regulators
(1.8V and 3.3V);

e An SMD 50MHz oscillator, and a
socket for a second oscillator;

e A JTAG programming port;

o A status LED and pushbutton for basic
I/0;

The D2-SB has been designed to work
seamlessly with all versions of the Xilinx
ISE CAD tools, including the free
WebPack tools available from the Xilinx
website. A growing collection of low-cost
expansion boards can be used with the
D2-SB to add analog and digital I/O
capabilities, as well as various data ports
like Ethernet and USB. The D2-SB board
ships with a power supply and
programming cable, so designs can be
implemented immediately without the
need for any additional hardware.

Functional Description

The Digilab D2-SB provides a minimal
system that can be used to rapidly
implement FPGA based circuits, or to
gain exposure to Xilinx CAD tools and
Spartan 2E devices. The D2-SB
provides only the essential supporting
devices for the Spartan 2E FPGA,
including clock sources and power
supplies. All available 1/O signals are
routed to standard expansion connectors
that mate with 40-pin, 100 mil spaced
DIP headers available from any catalog
distributor.

L8YDT 1 Sigek] 20] Pusk LED Config

requiator | somHs] [Clack] thutton| | ROK
ceeserne - E 3 & -

3IV0C &

regraiator b

¥4 ¥ 4

Xilinx Spartan2E XC28200E-PQ208

Expansion Comectors

2K 2777 Y ; EY
W
= o &3 8 o

g = 2 = = = @ @

= i Q- =S - £
= ot I B Ny & B

~l v} & o © 8 I o)

oy =l =1 OE 3 oa &
&

* ¥ 4 y y ¥ h ¥
H F Y [
A4 | a2 || B2 1 cr |
“] 811 ¢

**** 7 3

: o1
et

D2-SB circuit board block diagram

A pushbutton and LED are also included
for basic I/0. The D2-SB board has been
designed to serve primarily as a host for
peripheral boards. Each of the six
expansion connectors provides the
unregulated supply voltage (VU), 3.3V,
GND, and 32 FPGA 1/0 signals.
Because there are more connector pins
than FPGA pins, the A1, B1 and C1
connectors share an 18-pin “system
bus”, and not all pins on the B expansion
connectors are used. JTAG signals are
also routed to the A1, B1, and C1
expansion connectors. This allows
peripheral boards to drive the scan
chain, or to be configured along with the
Spartan 2E FPGA. Application-specific
peripheral boards can be created to
mate with the D2-SB, or readymade
peripheral boards that offer many
standard functions can be obtained from
Digilent (see www.digilentinc.com).

JTAG Ports and Device Configuration

The Spartan 2E FPGA and the 18V00
ROM on the D2-SB, and any
programmable devices on peripheral
boards attached to the D2-SB can be
programmed via the JTAG port. The
JTAG scan chain is routed to the FPGA
and ROM on the D2-SB and then around
the board to four connection ports as

http://www.digilentinc.com

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

286

shown in the figure below. The primary
configuration port (Port 1) uses a
standard 6-pin JTAG header (J7) that
can accommodate Digilent’'s JTAG3
cable (or cables from Xilinx or other
vendors). The other three JTAG
programming ports are available on the
A1, B1, and C1 expansion connectors,
and these ports are bi-directional. If no
peripheral board is present, a buffer on
the D2-SB removes the expansion
connector from the JTAG chain. If a
peripheral board with a JTAG device is
attached, the scan chain is driven out the
expansion connector so that any JTAG
programmable parts can be configured.
If a Digilent port module is connected to
one of the three JTAG-enabled
expansion connectors, then the port
module can drive the JTAG chain

to program all devices in the scan chain
(port modules include Ethernet, USB,
EPP parallel, and serial modules -- see
www.digilentinc.com for more
information).

The scan chain can be driven from the
primary port by powering on the D2-SB,
connecting it to a PC with a JTAG
programming cable, and running the
“auto-detect” feature of the configuration
software. The configuration software
allows devices in the scan chain to be
selectively programmed with any
available configuration file. If no
programming ROM is loaded in the IC5
socket (or if ROM is present but is not to
be included in the scan chain), jumper-
shunts must be loaded at JP1 and JP2 in
the “Bypass ROM” location to route the
JTAG chain around the ROM socket. If
an 18V02 (or larger) ROM is loaded in
the IC5 socket, it can be included in the
scan chain by loading the JP1 and JP2
jumper-shunts in the “Include ROM”
positions. If a programming ROM is
present in the IC5 socket, the FPGA will
automatically access the ROM for
configuration data if jumper shunts are
loaded in all three positions of J8 (M2,
M1, and MO). Port modules attached to
ports A1, B1, or C1 can drive the scan
chain if a jumper-shunt is installed on the
primary JTAG header across the TDI
and TDO pins. In their default state,
Digilent port modules will appear as a

JTAG cable to the configuration
software. Port modules can disable their
JTAG drivers; if more than one JTAG
driver is enabled on the scan chain,
programming may fail.

Borr g

ROK bypass

Pt d

153
JTAG
LRI
et

Dabs bypass —
umper

Prograeoming
moge pedect

s

Parrd

JTAG signal routing on D2-SB
Power Supplies

The D2-SB board uses two LM317
voltage regulators to produce a 1.8VDC
supply for the Spartan 2E core, and
3.3VDC supply for the I/O ring. Both
regulators have good bypass
capacitance, allowing them to supply up
to 1.5A of current with less than 50mV of
noise (typical). Power can be supplied
from a lowcost wall transformer supply.
The external supply must use a 2.1mm
center-positive connector, and it must
produce between 6VDC and 12VDC of
unregulated voltage. The D2-SB uses a
four layer PCB, with the inner layers
dedicated to VCC and GND planes.
Most of the VCC plane is at 3.3V, with
an island under the FPGA at 1.8V. The
FPGA and the other ICs on the board all
have 0.047uF bypass capacitors placed
as close as possible to each VCC pin.
Total board current is dependant on
FPGA configuration, clock frequency,
and external connections. In test circuits
with roughly 50K gates routed, a 50MHz
clock source, and a single expansion
board attached (the DIO5 board),
approximately 200mA +/- 30% of supply
current is drawn from the 1.8V supply,
and approximately 200mA +/- 50% is
drawn from the 3.3V supply. These
currents are strongly dependent on
FPGA and peripheral board
configurations. All FPGA 1/O signals use

http://www.diqilentinc.com

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 287

the VCCO voltage derived from the 3.3V
supply. If other VCCO voltages are
required, the regulator output can be
modified by changing R12 according to:

VCCO = 1.25(1 + R12/R11).

Refer to the LM317 data sheet and D2-
SB schematic for further information.

Oscillators

The D2-SB provides a 50MHz SMD
primary oscillator and a socket for a
second oscillator. The primary oscillator
is connected to the GCK2 input of the
Spartan 2E (pin 182), and the secondary
oscillator is connected to GCK3 (pin
185). Both clock inputs can drive the
DLL on the Spartan 2E, allowing for
internal frequencies up to four times
higher than the external clock signals.
Any 3.3V oscillator in a half-size DIP
package can be loaded into the
secondary oscillator socket.

Pushbutton and LED

A single pushbutton and LED are
provided on the board allowing basic
status and control functions to be
implemented without a peripheral board.
As examples, the LED can be
illuminated from a signal in the FPGA to
verify that configuration has been
successful, and the pushbutton can be
used to provide a basic reset function
independent of other inputs. The circuits
are shown below.

9
8 foital
Vi

[t

P

-~ L) - 8
g, T P 184

A f ;

Expansion Connectors

The six expansion connectors labeled
A1-A2, B1-B2, and C1-C2 use 2x20
right-angle headers with100 mil spacing.
All six connectors have GND on pin 1,

VU on pin 2, and 3.3V on pin 3. Pins 4-
35 route to FPGA 1/0 signals, and pins
36-40 are reserved for JTAG and/or
clock signals. The expansion headers
provide 192 signal connections, but the
Spartan 2E-PQ208 has only 143
available I/O signals. Thus, some FPGA
signals are routed to more than one
connector. In particular, the lower 18
pins (pins 4-21) of the A1, B1, and C1
connectors are all connected to the
same 18 FPGA pins, and they are
designated as the “system bus” (a
unique chip select signal is routed to
each connector). Other than these 18
shared signals, all remaining FPGA
signals are routed to individual
expansion connector positions. The
lower 18 pins of the A2, B2, and C2
connectors are designated as “periphera
busses”, and each of these busses
(named PA, PB, and PC) use 18 unique
signals. The 14 upper pins of each
expansion connector (pins 22-35) have
been designated as "module busses”.
The A1, A2, C1, and C2 connectors
each have fully populated module
busses (named MA1, MA2, MC1, and
MC2). Insufficient FPGA pins were
available to route full module buses to
the B connectors; only the 8 data pins of
MB1 are routed, and no pins are routed
to the upper B2 expansion connector
(i.e., MB2 is a “no connect’).

System Bus

The “system bus” is a protocol used by
certain expansion boards that mimics a
simple 8-bit microprocessor bus. It uses
eight data lines, six address lines, a
write-enable (WE) strobe that can be
used by the peripheral to latch written
data, an output-enable (OE) strobe that
can be used by the peripheral to enable
read data, a chip select, and a clock to
enable synchronous transfers.

The diagrams below show signal timings
assumed by Digilent to create peripheral
devices. However, any bus and timing
models can be used by modifying
circuits in the FPGA and attached
peripheral devices.

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

288

te Cye
. B , i
cs \ %
> i
. dog . Eos
OE j/’ !
s . oo s
; iy
,‘,‘i‘ Vs
WE ;g& ;/
i U th
DBO-DB7) 4 b4
Read Cycle tece tios
: i L ———
{}E ‘X‘\
ot R in
WE N
; tsu th)
: ; “ "
DBO-DBT ! LK
‘ A Read data laich tims
Symbol Parameter Time (typ)
ten Time to enable after CS asserted 10 ns
th Hold time 1ns
tdoe Time to disable after OE de-asserted 10 ns
teoe Time to enable after OE asserted 15 ns
tw Write strobe time 10 ns
tsu Data setup time 5ns
twd Write disable time O ns

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 289

&1 ¢
PN 421 ping 2235 7T gips 4 -8
g 3
hat z
o 3,
5 £
% =
A %
¥
3 < .
& NBU®)
. Spartan 2B S
b Sys Bus (18) PO 208
. s
PB{18) 5
" S o 22N
% oy o, 3\‘.»’
| = o o -
— & = = &
3] Y 0 2 P

Expansion Connector Signal Routing

o, BRhnumznnuunueanunn
‘;——T dRusunuEngruurryEne
Pies 40 -
P 4l

Expansion connector pin locations

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

290

At

B1 B2 C1

c2

Pin #

FPGA

Signal ?ggﬁk Signal FgﬁA Signal Fg;’};ﬂ\ Signal F;P};;‘}A Sigmat F;:;”f‘ Signal Diny

1 GND GND GND SND

2 /1) L =y i
4 112 |Palo 152 112 |Paloy 71 |lsDRo 112 |FCIo 22
5 111 |Palgz 161 111 |PBIoZ 70_|DBO 111 _[Pcioz 2z
& 110_[Pal02 180 110 |PaI03 59 laDR1 112 |PCioa 21
7 |oB1 109 [FA104 152 109 _|PBIO4 85 |DB3 102 |PCIDd 2C
& |aorz 128 |palos 151 105 |Psios 64 [4DR2 102 |Pcios 12
9 |oe2 102 [Palos 150 102_|PBIoS 33 |oB2 102 |Foios 17
10 JADR3 101 Pala7 144 104 |PBIOT B2 101 [PCIo7 15
11 |oB3 120 |Palos 148 100 [Psios 5t |[DE2 100 |PCios 12
12 |anRa 59 |PalDe 147 99 [PEloG 50 |laDR4 23 [PCing 11
13 |oBg o5 [Palic | 146 g5 [PBI01c | 50 |DB4 2 [Pcinie 10
14 |ADRS o7 JPalo1t | 145 97 _|PBIot1 | 55 |ADRS 97 |PCItt g
1% lpes a5 [Parmiz a4 95 |Peiotz | 57 |DBs 9 |Pcioiz 8
16 hwe g5 [Palo13 | 140w g5 |psioiz | 56 |lwe 95 |PCini2 7
17 |oes 84 1Pal014 | 139 |oee 84 lFBlots | 55 |DBe o |Pciots B
15 |or a3 fPalnes 138 |oE a3 |PBIgs 48 |loE g3 |PCIots 5
15 39 [Palois | 136 [oB7 g9 |peiots | 48 |DB7 2z |Poio1s 4
20 121 Jpalpty | 1as |osB 8s |PBIot7 | 47 Josc 15 |Pcint7
21| 87 |Palotg | 134 [LSBCOLK | 87 IPsIoie | 46 |LsBCix | g7 Pcinte | 206
22 |wa1beo | 120 [azoes | 133 |weioBo | a8 [vicsoBo | 44 Jwczoeo | 205
23 |4A1DEY | 179 [MA20B1 | 132 |MBIDB: | a4 rcioBt | 42 204
22 |watDe2z | 178 |wazpEz | 120 |mBIDB2 | 83 [rceoe2 | 42 203
25 |es1pes [176 |wacDe2 | 127 [MB1DB3 | B2 lncioB3 | 41 202
25 |wA1DE4 | 175 |wA2DB4 | 125 |MBIDBA | &1 [racioea | 4o 207
2 *A1DB5 174 |vacoBs | 125 |MB1DBS | 75 lmcioes | 26 5 | 200
28 |waiDEs | 173 Iwzogﬁ 123 |MB1DES | 74 lCtoEs | 32 lvaZ’?Bb 199
' 73 ;

169

ME1DBT [rcioe?

%4]]mc

[R
= [Cw il P Wl B (o3}

an 168 s7e] 121
31 187 A2DSTE 120

32 188 pvsawrRT | 118

a3 35 pusowat] 115

24 pra2raT | 114 ;

s i EEE 3¢ JwcanT | tas
36 JTSELB

a7 THS

33 TCK

39 GOLKD g0 [too BCLKY 77
40 GND O SND

D2-SB Expansion Connector Pinout

T.B. Yee, 2007 Appendix B: Hardware demonstrator in detail 291

in# | Function

2

Pin# Function Ping Function Pin# | Function

1 |GND 25 |VeCo 108 |VCCO 127|700
E 5wz 106 |PROG 128 | GHD

3 |PC01T 55 |PB-IC14 107 |INIT 150|701

4 |[FCI0is 55 |PB-1013 108 | ADR2 160 |PA-I03

I EEEE 57 |FBIO12 100 |DBY 161 |PA-oz

5 |PCoi4 56 |FB-IO17 110 | ADR1 162 |PA-ID

7 [Foaoi3 50 |[FE-IOT0 111_|DBU 163 |MATINT
R 50 |FEI0S 112 | ADRC 164 |MAT-RST
o |PCoiT BT |PB-I0B T13 | MAZINT 165 |MAT-WAT
0 |Fo-010 B2 |FBIO7 114 [MAZRET | 188 |MAT-WRT
1 SF B3 |PB-10% 115 |MAZZWAIT | 167 |M&I-D5TB
12 84 |PE-I0% 115 |MAZZWRT | 188 |MA1-AGTS
71 |[VCCOo &5 |GND 117 |GND 160 | WAI-DB7
72 |VCCINTT B6|vCCO 118 |VCCo 170 |GND

15 |Po-os 67 |VCCINT 119 |VCCINT 171_|vcco

W |Peo7 I EEEEE 120 |MAZDSTB | 172 |VCCINT
7 |PCI0E I EEEE 121 _|MAZ-ASTE | 173 |MAI-DBE
@ |PC-I05 70 |PE-I02 122 |MA2-DET 174 |WMAI-DE
G |GND 71 |PB-CT 123 |MA2-DBE 175 |MAI-DBA
20 |Poaod 72 |GND 124 | GND 176 |MA&1-DBS
EIEEEE 73 |MB1-LEBT7 128 |M&2-0BR 177 | GND

27 |PeAnz 74 |MBI-DB& 126 |MA2-DB4 78 |MAT-DBEZ
27 [Poaed 75 |MB1-DBE 127 |MAZDB2 178 |MAI-DB1
24| WCT-NT 76 |VCCINT 125 |VCCINT 180 |M&1-DED
75 |GND 77 |GCLK] 1280 |MAZ-DB2 121 |LGA

2 |VECO 76 |veCo 130 |VECO 122 |GCLKZ
27 |MCI-RST 70 |GND 131 | GND 133_| GND

22 |VCCINT 30 |BCLKD 122 |MAIDB1 124 |VCCO

25 [MCIWAIT | @ |MB1-DB4 133 |MAIDB2 185 |GLLKS

30 [MCI-WRT | 32 |MBi-DBa2 134 |PAID18 136 |VCCINT

31 [WC1-DSTE | 82 |MB1-DBD 135 |FA-1017 EAEE

%2 |GND 24 |NE1-DB1 135 |PAID1E 188 |MC2-NT
32 |MCI-ASTS | 25 |GND 137 |GND 120 |MC2-RaT
34 |MCI-DBT 3 |MB1-DBO 1238 |PA-1015 150 | GND

% |MCI-DEG & |LSBCLK 130 |Fa-1014 161 |[MC2-WAIT
3E |MCT1-DBS 28 |Cob 140 |PA-1013 152 |MC2-WRT
37 |VCCINT 20 |DBY 121 |PA-012 153 |MC2-0aTE
3R |VLCO G0 |VCCINT 142 |VCCINT 154 |MC2-ASTE
35 |GND 51 |VCCo 143 |VCCO 195 |VCCINT
40 |[MC1-DB4 32 |GND 124 |GND 156 |VCCO

41 |MC1-DB3 RS 145 |FAID11 197 |GND

42 |MC1-DBZ 54 |DEB 148 |PA-I010 198 |MC2-DET
43 [MC1-DB1 55 |WE 147 |PAIDS 196 |MC2-0Ee
43 [MC1-DBD 56 |DBG 145 |PA-IGE 200 |MCo-DRf
TS 57 |ADRE 140 |FA-IDT 07 |MCa-Dae
46 |PB-I01E G5 |DB4 150 |PAIOE 202 |MC2-DE:
17 |FBI017 G0 |ADR4 151 |PA-IGE 203 |MCoD

42 |PE-I0E 100 |DE3 152 |PA-104 204 |[MGC2-DB1
45 |FBI01% 01 |4DR3 153 | DIN 205 |MC2-DED
i |MT 02 |DB2 154 |LED 206 |PC0i8
51 |GND 103 |GND 155 | COLK 207 |TCK
2|0 04 |DONE 156 |VCLO 208 |VCCOo

FPGA Pin Assignment

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 292

B.7 Digilent DIO4 peripheral board reference

manual

Overview

The DIO4 circuit board provides a low-
cost, ready-made source for many of the
most common I/O devices found in
digital systems. It can be attached to a
Digilent system board to create a circuit
design platform capable of hosting a
wide array of circuits. DIO4 features
include:

A 4-digit seven segment LED display;
8 individual LEDs;

4 pushbuttons;

8 slide switches;

3-bit VGA port;

e PS/2 mouse or keyboard port;

Functional Description

The DIO4 can be attached to Digilent
system boards to quickly and easily add
several useful 1/0 devices. The DIO4
draws power from the system board, and
signals from all I/O devices are routed to
individual pins on the system board
connectors. These features allow the
DI04 to be incorporated into system-
board circuits with minimal effort.

All devices on the DIO4 use the 3.3V
supply from the system board, except for
the PS/2 port which needs a 5VDC
supply (the DIO4 contains a 5VDC
regulator). Signals coming from the PS/2
port are routed through level shifting
buffers to protect system boards that do
not have 5V tolerant inputs.

Power Supplies

The DIO4 draws power from three pins
on the 40-pin connectors: pin 37
supplies 3.3V; pin 39 provides system
GND, and pin 40 supplies unregulated
voltage (VU). VU is connected to a
5VDC LDO regulator to produce a 5VDC
supply for the PS/2 interface. The 3.3V
supply is used to drive all other I/0
devices on the board. The DIO4
consumes 5-10mA from the VU supply,

and 10-50mA from the 3.3V supply
(depending on how many LEDs are
ilfluminated).

Cornessr &1 “emnsonr B
DeTounge Byt
Yk o
Fart T .
& Butions [553 o Ty
Pot

DI04 circuit board block diagram
Seven-Segment LED display

The DIO4 board contains a modular 4-
digit, common anode seven-segment
LED display. In a common anode
display, the seven anodes of the LEDs
forming each digit are connected to four
common circuit nodes (labeled AN1
through AN4 on the DIO4). Each anode,
and therefore each digit, can be
independently turned on and off by
driving these signals to a ‘1’ or a ‘0’. The
cathodes of similar segments on all four
displays are also connected together intg
seven common circuit nodes labeled CA
through CG. Thus, each cathode for all
four displays can be turned on and off
independently. This connection scheme
creates a multiplexed display, where
driving the anode signals and
corresponding cathode patterns of each
digit in a repeating, continuous
succession can create a 4-digit display.
In order for each of the four digits to
appear bright and continuously
illuminated, all four digits should be
driven once every 1 to 16ms (for a
refresh frequency of 1 KHz to 60KHz).
For example, in a 60Hz refresh scheme,
each digit would be illuminated for ¥ of
the refresh cycle, or 4ms. The controller
must assure that the correct cathode
pattern is present when the

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

29

corresponding anode signal is driven. To
illustrate the process, if AN1 is driven
high while CB and CC are driven low,
then a “1” will be displayed in digit
position 2. Then, if AN2 is driven high
while CA, CB and CC are driven low,
then a “7” will be displayed in digit
position 2. If AN1 and CB, CC are driven
for 4ms, and then AN2 and CA, CB, CC
are driven for 4 ms in an endless
succession, the display will show “17” in
the first two digits. An example timing

- Comnon arods

o

£

Seven-segment display detail and cathode
patterns to display the decimal digits

Anodes are connected via
transistors for greater current

i L i
34 “}'%3 juzu a1
r‘

% eles
W

NEREEY

N
abod e gdp

Cathodes are connected to Xilinx
device via 100Q resistors

diagram is provided below. When
configured with the code shown in the
appendix, the CPLD on the DIO4 board
implements a seven-segment controller
provided a suitable clock (256Hz to 1
KHz) is provided on the SCLK pin. The
controller accepts four 4-bit binary
numbers in two successive registers,
and decodes and displays them.

: Digit Huminated Segme
| Shown abcocde

gy
o

]

%

o

1

T e U R e D

e e e (TR S it 65 s
—_ e U et 1T il (D el
i SR B e O v A
P R o A A T S L |

‘,
[

Limn)

Rafrash penns = vs i 18ms

»

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 294

Discrete LEDs

Eight individual LEDs are provided for
circuit outputs. The LED cathodes are
tied to GND via 270-ohm resistors, and
the LED anodes are driven from a
74HC373. The ‘373 allows LED data to
be latched on the DIO4, so that the LD#
signals from the system board do not
need to be driven continuously (the LD#
signals use connector pins that are used
in the “system bus” on some Digilent
boards). If the system bus is not needed,
then the LDG signal can be tied high.

THCETS
LD E o 0 *«;y-—-——-‘
| I
: ”\"/,//'(\
LTS o o | b
ST S 2
GMD GND GRD

Button Inputs

The DIO4 contains 4 N.O. (normally
open) pushbuttons. Button outputs are
connected to Vdd via a 4.7K resistor.
When the button is pressed, the output is
connected directly to GND. This results
in a logic signal that is low only while the
button is actively pressed and high at all
other times. The buttons are debounced
with an RC filter and Schmitt trigger
inverter as shown in the figure below.
This circuit creates a logic high signal
when the button is pressed. The
debounce circuit provides ESD
protection and creates a signal with
clean edges, so the BTN# signals can be
used as clock signals if desired.

Switch Inputs

The eight slide switches on the DIO4 can
be used to generate logic high or logic
low inputs to the attached system board.
The switches exhibit about 2ms of
bounce, and no active debouncing circuit
is employed. A 4.7K-ohm series resistor
is used for nominal input protection.

Wl

MoA S "
G O I L W
"

L % TEL
by

EHD

PS2 Port

The DIO4 board includes a 6-pin mini-
DIN connector that can accommodate a
PS2 mouse or PS2 keyboard
connection. A 5VDC regulator and
voltage-mapping buffers are provided on
the board to interface lower voltage
system boards with keyboards and/or
mice.

)
¥
T
[
=
w
bel
5

Fng Pl E

[ARPRAT

Bottem-up
hiwle pattern

P52 Connestor

o

Both the mouse and keyboard use a
two-wire serial bus (including clock and
data) to communicate with a host device,
and both drive the bus with identical
signal timings. Both use 11-bit words
that include a start, stop and odd parity
bit, but the data packets are organized
differently, and the keyboard interface
allows bidirectional data transfers (so the|
host device can illuminate state LEDs on
the keyboard). Bus timings are shown
below. The clock and data signals are
only driven when data transfers occur,
and otherwise they are held in the “idle”
state at logic ‘1°. The timings define
signal requirements for mouse-to-host
communications and bi-directional
keyboard communications.

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 205

3
A start bt ' oston by

Symbol Parameter Min Max
Tek Clock time 30us 50us
Tsu Data-to-clock setup time 5us 25us

THD Clock-to-data hold time 5us 25us

Keyboard

The keyboard uses open collector
drivers so that either the keyboard or an
attached host device can drive the two-
wire bus (if the host device will not send
data to the keyboard, then the host can
use simple input-only ports).

PS2-style keyboards use scan codes to
communicate key press data (nearly all
keyboards in use today are PS2 style).
Each key has a single, unique scan code
that is sent whenever the corresponding
key is pressed. If the key is pressed and
held, the scan code will be sent
repeatedly once every 100ms or so.
When a key is released, a “F0" key-up
code is sent, followed by the scan code
of the released key.

If a key can be “shifted” to produce a
new character (like a capital letter), then
a shift character is sent in addition to the
original scan code, and the host device
must determine which character to use.
Some keys, called extended keys, send
an “EQ” ahead of the scan code (and
they may send more than one scan
code). When an extended key is
released, an “EQ FO” key-up code is
sent, followed by the scan code. Scan
codes for most keys are shown in the
figure below.

A host device can also send data to the
keyboard. Below is a short list of some
often used commands:

ED Set Num Lock, Caps Lock, and scrol
Lock LEDs. After receiving an “ED”,
the keyboard returns an “FA”; then
the host sends a byte to set LED
status: Bit O sets Scroll Lock; bit 1
sets Num Lock; and Bit 2 sets Caps
fock. Bits 3 to 7 are ignored.

EE Echo. Upon receiving an echo
command, the keyboard replies with
{IEEH.

F3 Set scan code repeat rate. The

keyboard acknowiedges receipt of
an “F3” by returning an “FA”, after
which the host sends a second byte
to set the repeat rate.

FE Resend. Upon receiving FE, the
keyboard resends the last scan code
sent.

FF Reset. Resets the keyboard.

i
e

i
8

i
fee]
oo
kN

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

296

The keyboard should send data to the
host only when both the data and clock
lines are high (or idle). Since the host is
the “bus master”, the keyboard should
check to see whether the host is sending
data before driving the bus. To facilitate
this, the clock line can be used as a
“clear to send” signal. If the host pulls
the clock line low, the keyboard must not
send any data until the clock is released
(host-to-keyboard data transmission will
not be dealt with further here).

The keyboard sends data to the host in
11-bit words that contain a ‘0’ start bit,
followed by 8-bits of scan code (LSB
first), followed by an odd parity bit and
terminated with a ‘1’ stop bit. The
keyboard generates 11 clock transitions
(at around 20 — 30 KHz) when the data
is sent, and data is valid on the falling
edge of the clock.

Mouse

The mouse outputs a clock and data
signal when it is moved; otherwise, these
signals remain at logic ‘1’. Each time the
mouse is moved, three 11-bit words are
sent from the mouse to the host device.
Each of the 11-bit words contains a ‘0’
start bit, followed by 8 bits of data (LSB
first), followed by an odd parity bit, and
terminated with a ‘1’ stop bit.

— Mouss stales by -

— X dissgiion tye

Thus, each data transmission contains

33 bits, where bits 0, 11, and 22 are ‘0’

start bits, and bits 11, 21, and 33 are ‘1’
stop bits.

The three 8-bit data fields contain
movement data as shown below. Data is
valid at the falling edge of the clock, and
the clock period is 20 to 30 KHz.

The mouse assumes a relative
coordinate system wherein moving the
mouse to the right generates a positive
number in the X field, and moving to the
left generates a negative number.
Likewise, moving the mouse up
generates a positive number in the Y
field, and moving down represents a
negative number (the XS and YS bits in
the status byte are the sign bits —a ‘1’
indicates a negative number). The
magnitude of the X and Y numbers
represent the rate of mouse movement —
the larger the number, the faster the
mouse is moving (the XV and YV bits in
the status byte are movement overflow
indicators — a ‘1’ means overflow has
occurred). If the mouse moves
continuously, the 33-bit transmissions
are repeated every 50ms or so. The L
and R fields in the status byte indicate
Left and Right button presses (a ‘1’
indicates the button is being pressed).

— ¥ dirscnon byte -

P S hes g ane B) IO N . N
‘1!3 LR OTRBYEEYYY B 11% LK XZIED 24
»
%

X8 X7 F 10 vl va|vs|ve s ve

L R I

%, *, *
s Siantbe Suop b2
din stats Srar st

b—w

VGA Port

The five standard VGA signals Red (R),
Green (G), Blue (B), Horizontal Sync
(HS), and Vertical Sync (VS) are routed
directly to the VGA connector. A 270-
ohm series resistor is used on each color
signal. This resistor forms a divider with
the 75-ohm VGA cable termination,
resulting in a signal that conforms to the
VGA specification (i.e., OV for fully off
and .7V for fully on). VGA signal timings
are specified, published, copyrighted and
sold by the VESA organization
(www.vesa.org).

Seop b+ t Stop bit 4

S ot die slate

]

1
i3

"
X
€&

o
i

http://www.vesa.org

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail 297

The following VGA system timing
information is provided as an example of
how a VGA monitor might be driven in
640 by 480 mode. For more precise
information, or for information on higher
VGA frequencies, refer to document
available at the VESA website (or
experiment!).

VGA system timing

CRT-based VGA displays use amplitude
modulated, moving electron beams (or
cathode rays) to display information on a
phosphor-coated screen. LCD displays
use an array of switches that can impose
a voltage across a small amount of liquid
crystal, thereby changing light permitivity
through the crystal on a pixel-by-pixel
basis. Although the following description
is limited to CRT displays, LCD displays
have evolved to use the same signal
timings as CRT displays (so the “signals”
discussion below pertains to both CRTs
and LCDs).

CRT displays use electron beams (one
for red, one for blue and one for green)
to energize the phosphor that coats the
inner side of the display end of a
cathode ray tube (see drawing below).
Electron beams emanate from “electron
guns”, which are a finely pointed, heated
cathodes placed in close proximity to a
positively charged annular plate called a
“grid”.

The electrostatic force imposed by the
grid pulls away rays of energized
electrons as current flows into the
cathodes.

Anode (sntire screen)
\\% -
“ " . .

< Cathode ray tube

NG

A

. Befecton coils

Cathode ray -y | ‘
3 %%MJ; }
YN

These particle rays are initially
accelerated towards the grid, but they
soon fall under the influence of the much
larger electrostatic force that results from|
the entire phosphor coated display
surface of the CRT being charged to
20kV (or more). The rays are focused to
a fine beam as they pass through the
center of the grids, and then they
accelerate to impact on the phosphor
coated display surface.

The phosphor surface glows brightly at
the impact point, and the phosphor
continues to glow for several hundred
microseconds after the beam is
removed. The larger the current fed into
the cathode, the brighter the phosphor
will glow. Between the grid and the
display surface, the beam passes
through the neck of the CRT where two
coils of wire produce orthogonal
electromagnetic fields. Because cathode
rays are composed of charged particles
(electrons), they can be deflected by
these magnetic fields. Current
waveforms are passed through the coils
to produce magnetic fields that interact
with the cathode rays and cause them to
transverse the display surface in a
“raster” pattern, horizontally from left to
right and vertically from top to bottom. Ag
the cathode ray moves over the surface
of the display, the current sent to the
electron guns can be increased or
decreased to change the brightness of
the display at the cathode ray impact
point.

Cathode ray tube display system

Elaciron guns
{Rad, Blug, Green}

defection grid
controd ool

High voitage supply 20K

Dovtral board

Byne signais

{to deflzcton controd)

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

298

Information is only displayed when the
beam is moving in the “forward” direction
(left to right and top to bottom), and not
during the time the beam is reset back to
the left or top edge of the display. Much
of the potential display time is therefore
lost in “blanking” periods when the beam
is reset and stabilized to begin a new
horizontal or vertical display pass.

The size of the beams, the frequency at
which the beam can be traced across
the display, and the frequency at which
the electron beam can be modulated
determine the display resolution. Modern
VGA displays can accommodate
different resolutions, and a VGA
controller circuit dictates the resolution

by producing timing signals to control the
raster patterns. The controller must
produce synchronizing pulses at 3.3V (or
5V) to set the frequency at which current
flows through the deflection coils, and it
must ensure that video data is applied to
the electron guns at the correct time.
Raster video displays define a number of
“rows” that corresponds to the number of
horizontal passes the cathode makes

over the display area, and a number of
‘columns’ that corresponds to an area
on each row that is assigned to one
“picture element” or pixel. Typical
displays use from 240 to 1200 rows, and
from 320 to 1600 columns. The overall
size of a display, and the number of rows
and columns determines the size of each
pixel.
Video data typically comes from a video
refresh memory, with one or more bytes
assigned to each pixel location (the
DIO4 board uses 3-bits per pixel). The
controller must index into video memory
as the beams move across the display,
and retrieve and apply video data to the
display at precisely the time the electron
beam is moving across a given pixel.
A VGA controller circuit must generate
the HS and VS timings signals and
coordinate the delivery of video data
based on the pixel clock. The pixel clock
defines the time available to display 1
pixel of information. The VS signal
defines the “refresh” frequency of the
display, or the frequency at which all
information on the display is redrawn.

—.‘}iwm o i Q0]:é:f.é ;Qsﬁgg,v«t“
S > "
i 8;‘-39 nivels ar "§'¢'~"z seael sged *§
b, W DIHELS TR QB0 avad s80n Y
time the beam ravels acrons !
o, o 6 H
the screen]
‘;
1
Fn] ; \ 1
VGA display '
- surface e L
Caurrant | Retrace - rio
e o e P i infarmaton
4 s:f?dg?% e pixal 470.0 soest 3";}:&%‘5@ ”““F— [it ’Fi“wt ey
moriontal > § displayed
gefistion : ; dusing s
ool : . ¢ ime
¥ * Ed
: R) ‘ h
4 L Hab'e current ramp - information : ¥
- T f osplaved curng this tiee e ;
{ § ' m*w"‘““““ : i ‘} +
s % + I N 4 X N
s kS N
! ‘i N T N P | .
AU TR
1 r = P Y *
| : e . 4 .
R YRS P R 2
K™ . N N By o™ g
: Teotal horzontal tme) ;
: : Horizortal oapiay tme ; revaze .
Hme . R e T
« - »
2 R
Hs L . ‘ A L
+ e Horizoniel syne signat

i .
~Mront poreh®

s

2878 retrace frequency

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

299

The minimum refresh frequency is a
function of the display’s phosphor and
electron beam intensity, with practical
refresh frequencies falling in the 50Hz to
120Hz range. The number of lines to be
displayed at a given refresh frequency
defines the horizontal “retrace”
frequency. For a 640-pixel by 480-row
display using a 25MHz pixel clock and
60 +/-1Hz refresh, the signal timings
shown in the table below can be derived.
Timings for sync pulse width and front
and back porch intervals (porch intervals
are the pre- and post-sync pulse times
during which information cannot be
displayed) are based on observations
taken from VGA displays.

A VGA controller circuit decodes the

output of a horizontal-sync counter
driven by the pixel clock to generate HS
signal timings. This counter can be used
to locate any pixel location on a given
row. Likewise, the output of a vertical-
sync counter that increments with each
HS pulse can be used to generate VS
signal timings, and this counter can be
used to locate any given row.

These two continually running counters
can be used to form an address into
video RAM. No time relationship
between the onset of the HS pulse and
the onset of the VS pulse is specified, so
the designer can arrange the counters to
easily form video RAM addresses, or to
minimize decoding logic for sync pulse
generation.

Vertical sync Horizontal sync
=ybol Farmeter Time Clocks | Lines | Time | Clocks
Ts Syncpulse time | 16.7ms | 416800 | 521 | 32 us 800
Tdisp Display time 15.36 ms | 384000 | 480 {25.6us| 640
Tow VS pulse time 64 us 1600 2 |384us| 96
Th VS front porch 320 us 8000 10 | 640 ns 16
Top VS back porch 928 us 23200 29 |192us| 48

i

disp

Expansion Connectors

Connector pinouts are shown below.
Separately available tables show pass-
through connections for the devices on
the DIO4 board when it is attached to
various system boards.

T.B. Yee, 2007

Appendix B: Hardware demonstrator in detail

Signal Dir

o
B

Signat Dir

ne 1 e
2 nge 2 5%
4 ns 4 (54
) 1 = ne
G fig] [t
7 e 7 N
g ae 4 ne
10 ne 10 N
Rk ne H i
12 ne 2
13 A2 i 13
14 Al il 14
15 A in 15
g ARZ in 15
17 ETH4 St 17
15 BTMS Qut 14
18 ne 14
2N BTMG 20
z LEDS 21
22 LEDS in 22
2 LELRT in 23
e 0o 24
25 LERE i 25
25 ne 2é
27 LELDE T 7
z8 Ng 28
29 LED4 n 28 D in
30 b A3 SWS [sl1iy
37 LEDS n 31 CL in
32 ne 32 SWe ot
] LED2 n 33 CH in
3 ne SW3a T
35 LELY 1 Ca i
25 ne SW2 0t
37 VCC33 VED33
et GHD 5 GHD
40 Vil 40 Vil

DIO4 Expansion Connector Pinout

00

T.B. Yee, 2007 Appendix C: File formats 301

Appendix C

File formats

This appendix explains the format of various data files used within the MOODS synthesis
environment. The first is the ICODE (Intermediate CODE) generated from the VDL
compiler. Two other data files are used within the multi-FPGA partitioning process, the
first is the partitioning information (.par) file which provides input information to the
partitioning algorithm. The MOODS synthesis tool generates the second file; a module

call list (.mcl) output file listing the call structure in the module call graph.

C.1ICODE

The ICODE file is a textual representation of the user’s design generated by the source
compiler. This input file to the MOODS synthesis system is a language independent
representation of the original source code, which allows the translation from other high-
level languages such as (SystemC, Verilog). At present, the MOODS synthesis system
only has a VHDL compiler, which converts a VHDL description into an equivalent

ICODE representation.

The rest of this section provides a complete ICODE language grammar in Backus-Naur
Format (BNF). Throughout this grammar, non-italicised entries refer either to other
entries, or base entries. Italics are used to distinguish between different occurrences of a
particular type of entry (e.g. label_name is a “name”, width_number a “number”). The

base entries used are:

o string — any combination of ASCII characters not including ICODE delimiters.

Delimiters may be used if preceded by the escape character, e.g. \" rather than .

T.B. Yee, 2007 Appendix C: File formats 302

° integer — a binary/decimal/octal/hexadecimal integer number

. real — floating-point number using the standard C-++ formats for real numbers

(including exponents).

ICODE description ::=
{ info }
program_declaration
{ submodule declaration }

{ component declaration }

act_list ;==

label name { °,” label name}

actf list ;=
ACTF act_list

actt_list ::=
ACT act_list
| ACTT act_list

alias_declaration ::=

ALIAS alias_var_name [alias_range]FROM parent var_name [var_sub_range]

component declaration ::=

COMPONENT component name io_list [info]

conditional inst ::=

conditional_inst_name cond var actt_list actf list [info]

conditional inst name ::=

IF | IFNOT

T.B. Yee, 2007 Appendix C: File formats

constant ::=

‘#” number [‘2’ width number]

declaration ::=
io_port_declaration

| variable declaration

declaration part ::=

{ declaration [info] }

decode_inst ::=
DECODE decode_var [info]
{ CASE constant actt_list [info] }
ENDCASE

file info ::=
In *:” decimal _integer
| pos i’ decimal_integer

| file ‘> decimal integer

filemap info ::=

filemap ‘2’ decimal_integer filename_string

general_inst' ::=

general _inst_name io_list [actt_list] [info]

general inst name ::=
NOOP | MOVE | UEXT | SEXT | CONCAT
| UNOT | UAND | UOR | UNAND | UNOR | UXOR | UXNOR
| SNOT | SAND | SOR | SNAND | SNOR | SXOR | SXNOR
| UEQ | UNEQ | ULT | ULTE | UGT | UGTE

' General instructions are defined in the ICODE instruction database, ICInstDB and may be enhanced as

required.

(98]
(U8

T.B. Yee, 2007 Appendix C: File formats

| SEQ | SNEQ | SLT | SLTE | SGT | SGTE
| USLL | USRL | USLA | USRA | UROL | UROR
| SSLL | SSRL | SSLA | SSRA | SROL | SROR
| UMINUS | UADD | USUB | UMUL
| UDIV | UMOD | UREM | UINC | UDEC
| SMINUS | SADD | SSUB | SMUL
| SDIV | SMOD | SREM | SABS | SINC | SDEC

index ::=

decimal integer

info ;=

“{" info_specification { *,” info_specification } ‘¥’

info_specification ::=
probability info
| iteration_info
| filemap info

| file_info

instruction ::=
general inst
| memory_inst
| conditional_inst
| switch_inst
| protect_inst
| decode inst

| moduleap inst

instruction_part ::=

{ [‘. label name] instruction }

number ::=

“%’binary_integer | decimal_integer | ‘&’ octal _integer | ‘$’hex integer

04

T.B. Yee, 2007 Appendix C: File formats

inport_declaration ::=

INPORT io_port name io_port range [CLOCK | RESET]

10 list ::=

term { °,” term }

i0_port_declaration ::=

inport_declaration | outport declaration

iteration_info ::=

its “:* decimal _integer

memory data ;=

‘[’constant { °,” constant }‘]’

memory_inst ;=

memory_read_inst | memory write_inst

memory_read inst ::=

MEMREAD memory_var_name ‘[* address_term ‘]’ read var name [info]

memory_write inst ::=

MEMWRITE write_term °,” memory_var_name *,[” address_term ‘]’ [info]

moduleap_inst ::=

MODULEAP module_name io_list [actt_list | [info]

name ;=

string

outport_declaration ::=

OUTPORT io_port name io_port_range [INIT constant]

T.B. Yee, 2007 Appendix C: File formats 306

probability info ::=
pt | pf :’ real

program_declaration ::=
PROGRAM program_name io_list [actt_list] [info]
declaration_part
instruction_part

ENDMODULE [program name | [info]

protect_instruction ::=

PROTECT real [actt_list]

ram_declaration ::=

RAM ram_yar_name data_range ADDRESS address_range

range ::=

‘[’ msb_index *:” Ish_index ‘]

register_declaration ::=

REGISTER var_name var_range [INIT constant |

rom_declaration ::=

ROM rom_var name data_range ADDRESS address_range DATA memory_data

submodule declaration ::=
MODULE module_name io_list [actt list] [info]
declaration_part

instruction_part
[" label name | ENDMODULE [module name] [info]

switch_inst ;=
SWITCHON switch_var [info]
{ CASE constant actt list [info] }
DEFAULT actt_list [info]

T.B. Yee, 2007 Appendix C: File formats 307

ENDCASE

term ::=

constant | var

var .=

var_name

variable declaration ::=
register declaration
| alias_declaration
| ram_declaration

| rom_declaration

Notes :

¢ Each entry is considered to occupied one line unless extended using ‘\’.
e Comments may be included using the standard C++ delimiter “\\’.

* Most instructions are defined in the ICODE database (ICInstDB), which also

specifies the exact format of their parameters lists.

* CASES in DECODES must be in sequential ascending order with no gaps within
the sequence. Any missing cases at the start or end of the sequence default to the

first choice.

* Info entries may contain any form of application-dependent information such as
source line numbers, variables etc. Syntactically, everything within the braces is
ignored (although the key entries are identified in the BNF). In MOODS, info
records specify instruction activation probabilities (“pt”, “pf”), loop iterations

(“its”), file mappings (“filemap”) and back annotation information (“file”, “In”,

G‘pOSﬁﬁ).

T.B. Yee, 2007 Appendix C: File formats 308

C.2 Partitioning information (.par) file

The partitioning information (.par) file is an input file to the MOODS synthesis system.
The file format of the partitioning information file is similar to the standard Microsoft

initialisation (.ini) file.

; File to be placed in the design folder

| comment | Note: uses the windows ini file format

| section name | [Pre-allocate]
; PROGRAM module

m_call2=1
 PROCEDURE PROC1 module
procl1__0_4_4 =2

; PROCEDURE PROC1 module
proc2__1_4_4 =3

——
key name | |- . .

[Design_Profile]

TIME_STEP= 4

118=1141 | Multiple key values
1825=111 Tﬁ'{ e
[Domain_Info]
DOMAIN= 4
dom_1= 500 20
dom_2= 400 20
dom_3= 200 50
dom_4= 200 30

Figure C-1 Partitioning information (.par) file

Section names are enclosed in square brackets and the items under it are related to that
section. The next lines are broken into two parts: the key name and the key value(s).
Multiple values for a key are separated by a space and comments are introduced by a
semicolon character. This input file provides various types of data to the K-way partitioner

and these are grouped under different section headers listed below:

® [Module_lock] — Items under this section header are module name (key name) and

the domain number (key value) that the module is locked to during K-way

T.B. Yee, 2007 Appendix C: File formats 309

partitioning. This allows manual assignment of design modules to a fixed domain.
This feature is useful in assigning modules that needs special peripheral devices on

a target device PCB board (e.g. a VGA connector, external memory modules).

* [Pre-allocate] — Items under this section are similar to the ones mentioned above,
where the key names are module names in the design but the key value under this
section header are the initial domains that the modules are assigned to. This forms

the starting partition of the K-way partitioning algorithm.

e [Design_Profile] — The items under this section header give the design activity
profiling information. The first key name under this section header is T’ IME STEP
and the key value gives the number of time steps in each profile data. The next
lines are the profile data and these are made up of the source-destination module
node numbers as the key names, and the key values are made up of activation
count values with a space between each time step. The activation count value is the
number of times the source module calls (or activates) the destination module (e.g.
Figure C-1 illustrates a design profile with 4 time steps. Module 1 calls module 18

four times in time step 3 and only once in time steps 1, 2, and 4.).

* [Domain_Info] — The domain info section contains information on the target
devices available for the multi-FPGA system. The first key name under this section
header is DOMAIN and the key value gives the number of devices available. The
next lines give the available area and I/0 resources for each device. The first key
value gives the area available, and the second key value gives the I/0 resources

available for device n denoted by the key name, dom_x.

C.3 Module call list (.mcl) file

The module call list (.mcl) file is an output file generated by the MOODS synthesis system
and it lists all the subprogram module calls in a design. The module node numbers of the

source and destination modules are used to identify modules with subprogram calls when

T.B. Yee, 2007 Appendix C: File formats

simulating a design to obtain the design activity information using ModelSim simulation
package.

¢\CAD\Projects\m_call2\m_call2.mcl
| Module call list | '

| fiename It MODULE CALL LIST

;Mod m_cali2(prog mod) --> Mod proct__0_4 4
;Call node u11
118

;Mod proc1__0_4_4 --> Mod proc2__

f contro| call node no. }——- :Call node u23 -
18 25 \ \

™~
N ~
\ H

—1 | source module | destination module
l source module noj l source module no. | | i
| name N | name

Figure C-2 Module call list (.mcl) file

T.B. Yee, 2007 Appendix D: VHDL code listings 311

Appendix D

VHDL code listings

This appendix gives a complete listing of all the example VHDL designs used in the
experiments conducted in Chapter 6. The VHDL codes for the hardware demonstrator
have been omitted from this appendix due to its size (the behavioural VHDL of the JPEG

decoder is approximately 2000 lines of codes).

This appendix gives some background and idea of the complexity and implementation
methods for the example VHDL designs. Post-MOODS synthesis simulation results of the

multi-FPGA implementations are included for all the example designs.

D.1 Behavioural VHDL example designs

The five behavioural VHDL examples given in this section are used in experiments
(without explicit communication channels) described in Section 6.2. All the VHDL
packages which contain the definitions of constants, types, signals, functions, and

procedures are also included.

D.1.1 Quadratic equation solver

The design solves quadratic equations using the formula of Equation D.1. The 32-bit,
fixed-point quadratic equation solver example given in Figure D-3 uses the integer-maths

library given in Figure D-1 and the quadratic procedure in the VHDL package given in

Figure D-2.

—b£+b?% - 4ac (D.1)

2a

T.B. Yee, 2007

Appendix D: VHDL code listings

D

-- Integer-maths library package --

library ieee;

end c_types;

function to_int
-- moods inline
(arg: integer
) return intis
begin

end to_int;
end c_types;

package imath is

package c_types is
-- ¢ style integer and unsigned types
subtype int is signed(31 downto 0);
subtype uint is unsigned(31 downto 0);

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

function to_int(arg: integer) return int;

package body c_types is

return to_signed(arg,32);

use work.c_types.all;

-- simple constants
constant neg: boolean := false;
constant pos: boolean := true;

-- constants for acosi function
constant acos_x0:
constant acos_x1:
constant acos_x2:
constant acos_x3:
constant acos_x4:
constant acos_x5:
constant acos_y0:
constant acos_y1:
constant acos_y2:
constant acos_y3:
constant acos_y4:
constant acos_y5:

int := X"00000000";
int := X"00003333";
int := X"00006666";
int := X"00009999";
int := X"0000CCCC";
int := X"O000FFFF";
int ;= X"00019220";
int := X"00015E94";
int := X"000128C7";
int := X"0000ED63";
int := X"0000CCCD";
int := X"00000000";

-- constants for cosi function
constant s2pi: int ;= X"0006487E";
constant spi_2: int := X"0001921F";
constant spi: int := X"0003243F";

12

constant s3pi_2: int := X"0004B65F";
constant cos_x0: int ;= X"00000000";
constant cos_x1: int := X"0000506D";

constant cos_x2:
constant cos_x3:
constant cos_x4:
constant cos_x5:
constant cos_y0:
constant cos_y1:
constant cos_y2:
constant cos_y3:
constant cos_y4:
constant cos_y5:

int := X"0000A0DS";
int := X"0000F 146";
int := X"000141B3";
int := X"00019220";
int := X"O000FFFF",
int := X"O000F378";
int := X"0000CF1C™,
int := X"00009679",
int := X"00004F1B";
int ;= X"00000000",

T.B. Yee, 2007 Appendix D: VHDL code listings

(8]

-- integer cubed root function
function cbrti(a: in int) return int;
-- integer square rooot function
function sqrti(a: in int) return int;
-- integer arccos function (inputs and outputs scaled by 65536)
function acosi(a: in int) return int;
-- integer cosine function (inputs and outputs scaled by 65536)
function cosi(a: in int) return int;
-- signed integer division
function sdivi(a: in int; b: in int) return int;
-- unsigned integer divide
function udivi(a: in uint; b: in uint) return uint;
-- sign test
function sign(x: in int) return boolean:;
-- to_bool conversion
function to_bool(a: in std_logic) return boolean:
-~ moods map move u:1 u:1
-- signed sqi
function sqi(a: in int) return int;
-- signed cbi
function cbi(a: in int) return int;
-~ signed multi
function multi(a,b: in int) return int;
-- unsigned sqi
function sqi(a: in uint) return uint;
-- unsigned cbi
function cbi(a: in uint) return uint;
-- unsigned multi
function multi(a,b: in uint) return uint;
end imath;

package body imath is

-- integer cubed root function

function cbrti

(a:inint

) returniint is
variable mask: int := X"00000400";
variable best: int := X"00000000";
variable sb: boolean;
variable a_int: int;

begin
-- a simple test for basic solutions
if(a=0 or a=-1 or a=1) then return a; end if;
if(a<0) then

sb := neg;

a_int ;= -a;
else

sb :=pos;

a_int = a;
end if;

while (mask /= 0) loop
if (cbi(best+tmask) <= a_int) then
best .= best or mask;
end if:
mask := mask srl 1;
end loop;

if(not sb) then
best := -best;
end if;

return best;
end cbrti;

LI

T.B. Yee, 2007 Appendix D: VHDL code listings

S

-- integer square root function
function sqrti
(a:inint
) returnintis
variable mask: int ;= X"00008000";
variable best: int := X"00000000";
variable sb: boolean;
variable a_int: int;
begin
if (a <= 0) then return best; end if;

while(mask /= 0) loop
if ((best+mask)*(best+mask)) <= a) then
best := best or mask;
end if;
mask := mask srl 1;
end loop;

return best;
end sqrti;

-- integer arccos function (inputs and outputs scaled by 65536)
function acosi
(a:inint
) return int is
variable sb: boolean;
variable a_int: int;
variable x0,x1,y0,y1,y0b,y1b: int;
variable result: int;

begin
if(a<0) then
a_int := -a;
sb := neg;
else
a_int:=a;
sb := pos;
end if;

if (a_int<acos_x1) then
x0 := acos_x0;
x1 := acos_x1;
y0 := acos_yO0;
y1 = acos_y1;

elsif (a_int<acos_x2) then
x0 := acos_x1;
x1:=acos_x2;
y0 := acos_y1;
y1 = acos_y2;

elsif (a_int<acos_x3) then
x0 := acos_x2;
x1 := acos_x3;
y0 1= acos_y2;
y1 :=acos_y3;

elsif (a_int<acos_x4) then
x0 := acos_x3;
X1 := acos_x4;

y0 := acos_y3;
y1:= acos_y4;
else

X0 := acos_x4,;

x1:= acos_x5;

y0 := acos_y4;

y1:=acos_y5;
end if;

T.B. Yee, 2007 Appendix D: VHDL code listings

315

y0b := shift_left(y0,8);
y1b := shifi_left(y1,8);
result := shift_right(yOb + multi(sdivi(y1 b-yOb,x1-x0),(a_int-x0)),8);

if(sb=neg) then
result := X"0003242F" - result;
end if;

return result;
end acosi;

-~ integer cosine function (inputs and outputs scaled by 65536)
function cosi
(a:inint
) return int is
variable sb: boolean;
variable a_int: int;
variable temp: int;
variable x0,x1,y0,y1,y0b,y1b: int;
variable result: int;

begin
if (a<0) then
a_int ;= -a;
else
a_int ;= a;
end if;

if(a_int > s2pi) then
temp := signed(udivi(unsigned(a_int),unsigned(s2pi)));
a_int ;= a_int - multittemp,s2pi);

end if;

if(a_int<spi_2) then
sb := pos;

elsif(a_int<spi) then
a_int ;= spi - a_int;
sb := neg;

elsif(a_int<s3pi_2) then
a_int:= a_int - spi;
sb = neg;

else
a_int := s2pi- a_int;
sb .= pos;

end if;

if(a_int < cos_x1) then
x0 = cos_x0;

x1 :=cos_x1;
y0 := cos_y0;
y1:=cos_y1;
elsif(a_int < cos_x2) then
x0 := cos_x1;
x1 = cos_x2;
y0 = cos_y1;
y1 .= cos_y2;

elsif(a_int < cos_x3) then
x0 = cos_x2;

x1:= cos_x3;

y0 = cos_y2;

y1:=cos_y3;
elsif(a_int < cos_x4) then

x0 = cos_x3;

x1:= cos_x4;

y0 = cos_y3;

y1:= cos_y4,;

T.B. Yee, 2007 Appendix D: VHDL code listings

316

else
X0 := cos_x4;
x1 = cos_x5;

y0 = cos_vy4;
y1 := cos_y5;
end if;

yOb := shift_left(y0,8);
y1b = shift_left(y1,8);
result := shift_right(yOb + multi(sdivi(y1 b-y0b,x1-x0),(a_int-x0)),8);

if(sb=neg) then
result ;= -result;
end if;

return result;
end cosi;

-- signed integer division
function sdivi
(a:inint;
b:inint
) return int is
variable sa,sb: boolean;
variable ua,ub: int;
variable temp: int;

begin

sa := sign(a);

sb := sign(b);

if(sa=pos) then
ua:=a;

else va ;= -g;

end if;

if(sb=pos) then
ub :=b;

else ub := -b;

end if;

temp := signed(udivi(unsigned(ua),unsigned(ub)));

if(sa=sb) then
return temp;
else return -temp;
end if;
end sdivi;

-- unsigned integer divide
function udivi
(a:in uint;
b:in uint
) return uint is
variable mask: uint := X"40000000";
variable best: uint := X"00000000";
begin
while(mask/=0) loop
if((best+mask)*b <= a) then
best := best or mask;
end if;
mask = mask srl 1;
end loop;
return best;
end udivi;

T.B. Yee, 2007 Appendix D: VHDL code listings

]

-- 8ign test
function sign
-- moods inline
(x:inint
) return boolean is
begin
return not to_bool(x(31));
end sign;

-- to_bool conversion
function to_bool
-- moods map move u%1 u%1
(a:in std_logic
) return boolean is
begin
if(@a="1") then return true;
else return false;
end if;
end to_bool;

function sqi
(a:inint
) return int is
variable rl: signed(63 downto 0);
begin
rl:= a*a;
return rl(31 downto 0);
end sqi;

function cbi
(a:inint
) return int is
variable rl: signed(95 downto 0);
begin
rl ;= a*a*a;
return rl(31 downto Q);
end chi;

function multi
(a,brinint
) return int is
variable rl: signed(63 downto 0);
begin
rl:=a*b;
return ri(31 downto 0);
end multi;

function sqi
(a:inuint
) return uint is
variable rl: unsigned(63 downto 0);
begin
rl = a*a;
return rl(31 downto 0);
end sqji;
function cbi
(a:in uint
) return uint is
variable rl: unsigned(95 downto 0);
begin
rl:=a*a*a;
return rl(31 downto 0);
end cbi;

T.B. Yee, 2007 Appendix D: VHDL code listings 3

function multi
(a,b:in uint
) return uint is
variable rl: unsigned(63 downto 0);
begin
rh:=a*b;
return rli(31 downto 0);
end multi;
end imath;

Figure D-1 Integer-maths library package of quadratic and cubic equation
solvers

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.c_types.all;

use work.imath.all;

package algeqn_package is
procedure quadratici(a,b,c: in int; x1,x2: out int; no_real: out int);
procedure cubici(al,a2,a3: in int; x1,x2,x3: out int; no_real: out int),
end algegn_package;

package body algeqn_package is

procedure quadratici
---- moods inline
(
a,b,c:inint;
x1,x2: out int;
no_real: out int
) is
variable d, rd, a2 : int;
begin
d := sqi(b) - multi{multi(to_int(4),a),¢);
a2 = multi(a,to_int(2));

if(d < 0) then
no_real := to_int(0);
else
rd := sqrti(d);
x1 = sdivi{(-b + rd),a2),
X2 .= sdivi{(-b - rd),a2);
no_real := to_int(2);
end if;
end quadratici;

T.B. Yee, 2007 Appendix D: VHDL code listings

procedure cubici
---- moods inline
(
al,a2,a3: inint;
x1,x2,x3: out int;
no_real: out int
)is
variable q,r,g3.d,s,a1_3,srd,t_1, t 2,theta3,t1,12: int;
begin
t_1 = multi(to_int(3),a2) - sgi(al);
q := sdivit_1,to_int(9));
t_2 := multi{multi(to_int(9),a1),a2) - multi(to_int(27),a3) - multi(to_int(2),cbi(a1));
r:=sdivi(t_2,to_int(54));

g3 := cbi(q);
d :=qg3 + sqi(r);

if(d=0) then
s 1= cbrti(r);
al1_3 := sdivi(a1,to_int(3));
x1 = shift_lefi(s,1) - a1_3;

t1:=-s-al_3;
X2 = t1;
X3 = t1;

no_real := to_int(3);
elsif (d >0) then
srd := sqrti(d);
s := cbrii(r+srd);
t1 := cbrti(r-srd);
X1 = s+t1-sdivi(a1,to_int(3));
no_real := to_int(1);
else
theta3 ;= sdivi(acosi(sdivi(shift_left(r,16),sqrti(-q3))),to__int(3));
t1 ;= sdivi(a1,to_int(3));
t2 = shift_left(sqrti(-q),1);
x1 := shift_right(multi(t2,cosi(theta3)),16)-t1;
X2 = shift_right(multi(t2,cosi(theta3+X"00021828")),16)-t1;
x3 = shift_right(multi(tZ,cosi(theta3+X"OOO43050")),16)-t1;
no_real := to_int(3);
end if;
end cubici;
end algegn_package;

Figure D-2 VHDL package of quadratic and cubic equation solvers

T.B. Yee, 2007 Appendix D: VHDL code listings 320

-- Quadratic equation solver -
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.c_types.all;

use work.algegn_package.all;

entity eq_solver is
port (
al,a2,a3: inint;
x1,x2: out int;
no_real: out int
)
end eq_solver;
architecture behaviour of eq_solver is
begin
process is
variable b1: int ;= X"00000000";
variable b2: int := X"00000000";
variable b3: int := X"00000000";
variable y1: int := X"00000000";
variable y2: int ;= X"00000000";
variable vreal: int := X"00000000";
begin
b1 := a1,
b2 ;= az;
b3 := a3;
quadratici(b1,b2,b3,y1,y2 vreal);
x1 <=y1;
X2 <=y2;
no_real <= vreal;
wait for 40 ns;
end process;
end behaviour;

Figure D-3 VHDL of quadratic equation solver example

Figure D-4 shows the post-MOODS synthesis simulation of the non-pipelined multi-
FPGA quadratic equation solver. This two-device implementation has a single subprogram
communication channel (SpC [). Integer inputs al, a2, and a3 of the quadratic equation
solver are given values 1, -25 and 150 respectively. Outputs x1, x2 and number of real
numbers (no_real) are updated after 9100 ns. With a system clock period of 40 ns, the
non-pipelined multi-FPGA quadratic equation solver takes 224 clock cycles (i.e. clock

cycles = (9100 ns -140 ns) / 40 ns) to complete the application and output the result.

T.B. Yee, 2007 Appendix D: VHDL code listings 391

t

| i -
| | I |
| { Q
i | S| |
| | I |
| {
= =y
| |
‘ | ‘
i |
B
|
{
|
|
4
{
|
|
" |
g 1
Ao |
19 |
3 5
= E i
é |
&]
{

AW AAAANN AAN AW

Figure D-4 Simulation of the non-pipelined multi-FPGA quadratic equation
solver

T.B. Yee, 2007 Appendix D: VHDL code listings 322

D.1.2 Cubic equation solver

The 32-bit, fixed-point cubic equation solver example given in Figure D-5 is capable of
finding real solutions to Equation D.2. It uses the integer-maths library given in Figure D-

1 and the cubic procedure in the VHDL package given in Figure D-2.

x> +ax? +bx+c=0. (D.2)

-- Cubic equation solver -
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.c_types.ali;
use work.algegn_package.all;
entity eq_solver is
port (
al,a2,a3: inint;
x1,x2,x3: out int;
no_real: out int);
end eq_solver;
architecture behaviour of eq_solver is
begin
process is
variable b1,b2,b3, y1,y2,y3: int;
variable vreal: int;
begin
b1:=af;
b2 := az;
b3 = ag;
cubici(b1,b2,b3,y1,y2,y3,vreal);
x1 <=y1,;
X2 <=y2;
x3 <=y3;
no_real <= vreal;
wait for 40 ns;
end process;
end behaviour;

Figure D-5 VHDL of Cubic equation solver example

Figure D-6 shows the post-MOODS synthesis simulation of the non-pipelined multi-
FPGA cubic equation solver. This 2-device implementation has two subprogram
communication channels (SpC / and SpC 2) and the arbitration of these two shared
communication channels are provided by two SpC arbiters. Integer inputs al, a2, and a3 of
the cubic equation solver are given values -20, -100 and 2000 respectively. Outputs x1, x2,
x3 and number of real numbers (no_real) are updated after 70900 ns. With a system clock
period of 40 ns, the non-pipelined multi-FPGA cubic equation solver takes 1770 clock
cycles (i.e. clock cycles = (70900 ns -100 ns) / 40 ns) to complete the application.

323

Appendix D: VHDL code listings

T.B. Yee, 2007

AW ANAAAAN AAN AAW AAAAAN

Figure D-6 Simulation of the non-pipelined multi-FPGA cubic equation

solver

T.B. Yee, 2007 Appendix D: VHDL code listings 324

D.1.3 Inverse discrete cosine transform

The 2-D IDCT architecture is adapted from [142]. The architecture is made up of a one-
dimensional 8-point IDCT followed by an internal double buffer memory, followed by
another one-dimensional 8-point IDCT. The algorithm used for the calculation of the 2-D

IDCT is based on Equation (D.3).

M1 N-1
XC,, = XN, ® “p)elq) ® COS M *COS M (D.3)
4 2M 2N

m=0 n=0

Equation (D.3) can be separated into the row part and column part as shown in equations
(D.4) and (D.5). The 2-D IDCT is computed by first applying 1-D IDCT on the rows and

then on the columns.

q (2 -col number + 1)0 row number e 1

C=Keco (D.4)
2e M
1 2
where K =— forrow =0, K = “N— for row = 0.
C!Z K ocos (2 -row number + 1)0 col number o7 (D.5)

2eN

where K:[—l— for col =0, K:£ for col #0.
M M

The 2-D IDCT behavioural VHDL example is given in Figure D-8 and it uses the VHDL
package in Figure D-7.

T.B. Yee, 2007 Appendix D: VHDL code listings

25

-- VHDL package for 2-D Inverse discrete cosine transform --

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package idct_package is

procedure idct1_mult_add (
signal index : in unsigned(2 downto 0);
signal in1a : in signed(11 downto 0);
signal in2a : in signed(11 downto 0);
signal in3a : in signed(11 downto 0);
signal in4a : in signed(11 downto 0);
signal in5a : in signed(11 downto 0);
signal inBa : in signed(11 downto 0);
signal in7a : in signed(11 downto 0);
signal in8a : in signed(11 downto 0);
result_a : out signed(21 downto 0));

procedure idct2_mult_add (
signal index : in unsigned(2 downto 0);
signal in1b : in signed(10 downto 0);
signal in2b : in signed(10 downto 0);
signal in3b : in signed(10 downto 0);
signal in4b : in signed(10 downto 0);
signal in5b : in signed(10 downto 0);
signal in6b : in signed(10 downto 0);
signal in7b : in signed(10 downto 0);
signal in8b : in signed(10 downto 0);
result_b : out signed(20 downto 0));
end idct_package;

package body idct_package is

procedure idct1_muilt_add

(
signal index : in unsigned(2 downto 0);
signal in1a : in signed(11 downto 0);
signal in2a : in signed(11 downto 0);
signal in3a : in signed(11 downto 0);
signal ind4a : in signed(11 downto 0);
signal in5a : in signed(11 downto 0);
signal in6a : in signed(11 downto 0);
signal in7a : in signed(11 downto 0);
signal in8a : in signed(11 downto 0);
result_a : out signed(21 downto 0)

)is

variable p1_tmp,p2_tmp,p3_tmp,p4_tmp,p5_tmp,p6_tmp,p7_tmp,p8_tmp :

signed(21 downto 0);

begin

p1_tmp := resize(signed(in1a * (91)), 22);

case index is

when "000" =>
p2_tmp := resize(signed(in2a * (126)), 22);
p3_tmp := resize(signed(in3a * (118)), 22);
pd_tmp := resize(signed(inda * (106)), 22);
p5_tmp := resize(signed(inba * (91)), 22);
p6_tmp := resize(signed(ina * (71)), 22);
p7_tmp := resize(signed(in7a * (49)), 22);
p8_tmp := resize(signed(in8a * (25)), 22);

T.B. Yee, 2007

Appendix D: VHDL code listings

o)

26

when "001" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp = resize(signed(inda

p5_tmp = resize(signed(in5a
p6_tmp := resize(signed(inba
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a
when "010" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(inda
p5_tmp := resize(signed(in5a
p6_tmp := resize(signed(inBa
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a
when "011" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(inda
p5_tmp := resize(signed(in5a
p6_tmp := resize(signed(inBa
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a
when "100" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(in4a
p5_tmp = resize(signed(in5a
p6_tmp := resize(signed(inBa
p7_tmp := resize(signed(in7a

p8_tmp := resize(signed(in8a
when "101" =>

p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(in4a
p5_tmp = resize(signed(in5a
p6_tmp := resize(signed(in6a
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a
when "110" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(inda
p5_tmp := resize(signed(in5a
p6_tmp := resize(signed(inBa
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a
when "111" =>
p2_tmp := resize(signed(in2a
p3_tmp := resize(signed(in3a
p4_tmp := resize(signed(inda
p5_tmp := resize(signed(in5a
p6_tmp := resize(signed(inBa
p7_tmp := resize(signed(in7a
p8_tmp := resize(signed(in8a

when others => NULL;
end case;
end procedure idct1_mult_add;

* (106)), 22);
" (49)), 22);

*(-25)), 22);
" (-91)), 22);
*(-126)), 22);
*(-118)), 22);
(7)), 22);

*(71)), 22);

*(-49)), 22);
* (-126)), 22);
" (-91)), 22);
" (25)), 22);

*(118)), 22);
*(108)), 22);

" (29)), 22);
*(-118)), 22);
" (-71)), 22);
*(91)), 22);
*(106)), 22);
* (-49)), 22);
* (-126)), 22);

" (-25)), 22);
* (-118)), 22);
(71), 22);

" (91)), 22);

*(-108)), 22);
" (-49)), 22);
*(126)), 22);

" (-71)), 22);
" (-49)), 22);
* (126)), 22);
" (-91)), 22);
" (-25)), 22);
*(118)), 22);
* (-108)), 22);

*(-106)), 22);
" (49)), 22);
" (29)), 22);
" (-91)), 22);
*(126)), 22);
*(-118)), 22);
*(71)), 22);

*(-126)), 22);
*(118)), 22);
* (-106)), 22);
" (91)), 22);

T (7). 22);
* (49)), 22);

" (-25)), 22);

T.B. Yee, 2007 Appendix D: VHDL code listings

27

procedure idct2_mult_add
(
signal index : in unsigned(2 downto 0);
signal in1b : in signed(10 downto 0);
signal in2b : in signed(10 downto 0);
signal in3b : in signed(10 downto 0);
signal in4b : in signed(10 downto 0);
signal in5b : in signed(10 downto 0);
signal in6b : in signed(10 downto 0);
signal in7b : in signed(10 downto 0);
signal in8b : in signed(10 downto 0);
result_b : out signed(20 downto 0)
) is
variable p1_tmp,p2_tmp,p3_tmp,p4_tmp,p5_tmp,p6_tmp,p7_tmp,p8_tmp : signed(20 downto 0);
begin
p1_tmp := resize(signed(in1b * (91)), 21);
case index is
when "000" =>
p2_tmp := resize(signed(in2b * (126)), 21);
p3_tmp := resize(signed(in3b * (118)), 21);
p4_tmp = resize(signed(indb * (1086)), 21);
p5_tmp := resize(signed(in5b * (91)), 21);
p6_tmp := resize(signed(in6b * (71)), 21);
p7_tmp = resize(signed(in7b * (49)), 21);
p8_tmp := resize(signed(in8b * (25)), 21);
when "001" =>
p2_tmp := resize(signed(in2b * (106)), 21);
p3_tmp := resize(signed(in3b * (49)), 21);
p4_tmp := resize(signed(indb * (-25)), 21);
p5_tmp := resize(signed(insb * (-91)), 21);
p6_tmp := resize(signed(inéb * (-126)), 21);
p7_tmp := resize(signed(in7b * (-118)), 21);
p8_tmp := resize(signed(in8b * (-71)), 21);
when "010" =>
p2_tmp := resize(signed(in2b * (7 1)), 21);
p3_tmp := resize(signed(in3b * (-49)), 21);
p4_tmp := resize(signed(in4b * (-126)), 21);
p5_tmp = resize(signed(in5b * (-91)), 21);
p6_tmp := resize(signed(inBb * (25)), 21);
p7_tmp := resize(signed(in7b * (118)), 21);
p8_tmp := resize(signed(in8b * (106)), 21);
when "011" =>
p2_tmp := resize(signed(in2b * (25)), 21);
p3_tmp := resize(signed(in3b * (-118)), 21);
p4_tmp := resize(signed(in4b * (-71)), 21);
p5_tmp := resize(signed(in5b * (91)), 21);
p6_tmp := resize(signed(inBb * (106)), 21);
p7_tmp := resize(signed(in7b * (-49)), 21);
p8_tmp := resize(signed(in8b * (-126)), 21);
when "100" =>
p2_tmp := resize(signed(in2b * (-25)), 21);
p3_tmp := resize(signed(in3b * (-118)), 21);
p4_tmp := resize(signed(indb * (71)), 21);
p5_tmp := resize(signed(in5b * (91)), 21);
p6_tmp := resize(signed(inBb * (-106)), 21);
p7_tmp := resize(signed(in7b * (-49)), 21);
p8_tmp := resize(signed(in8b * (126)), 21);
when "101" =>
p2_tmp := resize(signed(in2b * (-71)), 21);
p3_tmp := resize(signed(in3b * (-49)), 21);
p4_tmp := resize(signed(indb * (126)), 21);
p5_tmp := resize(signed(in5b * (-91)), 21);
p6_tmp := resize(signed(inBb * (-25)), 21);
p7_tmp := resize(signed(in7b * (118)), 21);
p8_tmp := resize(signed(in8b * (-108)), 21);

T.B. Yee, 2007 Appendix D: VHDL code listings

when "110" =>
p2_tmp := resize(signed(in2b * (-106)), 21);
p3_tmp := resize(signed(in3b * (49)), 21);
p4_tmp := resize(signed(indb * (25)), 21);
p5_tmp := resize(signed(in5b * (-91)), 21);
p6_tmp := resize(signed(in6b * (126)), 21);
p7_tmp := resize(signed(in7b * (-118)), 21);
p8_tmp := resize(signed(in8b * (71)), 21);
when "111" =>
p2_tmp := resize(signed(in2b * (-126)), 21);

p3_tmp := resize(signed(in3b * (118)), 21);
p4_tmp := resize(signed(indb * (-108)), 21);
p5_tmp = resize(signed(indb * (91)), 21);
p6_tmp := resize(signed(inbb * (-71)), 21);
p7_tmp := resize(signed(in7b * (49)), 21);
p8_tmp := resize(signed(in8b * (-25)), 21);

when others => NULL;
end case;

result_b :=p1_tmp + p2_tmp + p3_tmp + p4_tmp + p5_tmp + p6_tmp + p7_tmp + p8_tmp;
end procedure idct2_mult_add;

end idct package;

Figure D-7 VHDL package for IDCT example

-- 2-D Inverse discrete cosine transform --

library IEEE;

use |IEEE.std_logic_1164.al};
use |IEEE.numeric_std.all;
use work.idct_package.all;

entity idct is

port (
in_hs_rdy: in unsigned(0 downto 0); -- Handshake ready
in_hs_rcv: buffer unsigned(0 downto 0) := "0"; -- Handshake receive

dct_2d_in: in signed(11 downto 0);
idct_out: out signed(7 downto 0) := (others=>'0"); -- 8 bit output.

out_hs_rdy: buffer unsigned(0 downto 0) :="0"; -- Handshake ready
out_hs_rcv: in unsigned(0 downto 0); -- Handshake receive
sys_clock: in unsigned(0 downto 0);

--moods clock

sys_reset: in unsigned(0 downto 0)
--moods reset
)i
end idct;
ARCHITECTURE behaviour of idct is
-- IDCT_2 signals
signal xa0_reg, xa1_reg, xa2_reg, xa3_reg,
xa4_reg, xa5_reg, xab_reg, xa7_reg: signed(11 downto 0):= (others=>'0");
-- IDCT_2 signals
signal xb0_reg, xb1_reg, xb2_reg, xb3_reg,
xb4_reg, xb5_reg, xb6_reg, xb7_reg: signed(10 downto 0):= (others=>'0");

T.B. Yee, 2007 Appendix D: VHDL code listings 3

-- memory section

type RAM_mem_type is array (0 to 63) of signed(10 downto 0);
signal ID_ram1_mem: RAM_mem_type;

--moods ram

signal ID_input_cnt: unsigned(3 downto 0):= "0000";
signal ID_wr_cntr: unsigned(6 downto 0):= "0000000";
signal ID_rd_cntr: unsigned(3 downto 0):= "0000",

-- Handshake signals

signal ID_stage2_rdy: unsigned(0 downto 0):="0";
signal ID_stage2_rcv: unsigned(0 downto 0):="0";
signal ID_index_i : unsigned(3 downto 0):= "0000";
signal ID_index_j : unsigned(3 downto 0):= "0000";
begin

ID1: process -- IDCT Process 1

variable z_out_int : signed(21 downto 0) := (others=>'0");
begin

reset_loop: loop

ID_wr_cntr <="0000000";

in_hs_rcv <="0";

ID_input_cnt(3 downto 0) <= "0000";

ID_rd_cntr(3 downto 0) <="0000";

ID_stage2_rdy <="0";

ID_index_i <= "0000";
wait until sys_clock'event and sys_clock ="1";
exit reset_loop when sys_reset = "1";
main_loop: loop

if(ID_wr_cntr(6) = '0') then

while(ID_input_cnt(3) ='0") loop
while(in_hs_rdy = in_hs_rcv) loop
wait until sys_clock'event and sys_clock = "1";
end loop;

case ID_input_cnt(2 downto 0) is
when "000" => xa0_reg <= dct_2d_in;
when "001" => xal_reg <= dct_2d_in;
when "010" => xa2_reg <= dct_2d_in;,
when "011" => xa3_reg <= dct_2d_in;,
when "100" => xa4_reg <= dct_2d_in;
when "101" => xab_reg <= dct_2d_in;
when "110" => xab_reg <= dct_2d_in;
when "111" => xa7_reg <= dct_2d_in;
when others => NULL;

end case,

in_hs_rcv <= not in_hs_rcv,
ID_input_cni(3 downto 0) <= ID_input_cnt(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock = "1";

end loop;

while (ID_index_i /= "1000") loop
idct1_mult_add(ID_index_i(2 downto 0),xa0_reg,xal_reg,xa2_reg,
xa3_reg,xad_reg,xab_reg,xab_reg,xa7_reg,z_out_int);
if(z_out_int(20) = '0" and z_out_int(7) ='1') then
ID_ram1_mem(to_integer(ID_wr_cntr(5 downto 0)))<= z_out_int(18 downto 8)+to_signed(1,11);
ID_wr_cntr <= 1D_wr_cntr + "0000001";
else
ID_ram1_mem(to_integer(ID_wr_cntr(5 downto 0))) <= z_out_int(18 downto 8);
ID_wr_cntr <= |D_wr_cnir + "0000001";
end if;

T.B. Yee, 2007

Appendix D: VHDL code listings

(]

(U8}

else

ID_index_i <= ID_index_i + "0001";
end loop;
ID_index_i <="0000";

while(ID_rd_cntr(3) = '0’) loop

-- Semaphore Master
while(iD_stage2_rdy /= ID_stage2_rcv) loop
wait until sys_clock'event and sys_clock ="1";
end loop;

case |1D_rd_cnir(2 downto 0) is
when "000" => xb0_reg <= 1D_ram1_mem(0);

xb1_reg <= ID_ram1_mem(8);

xb2_reg <= ID_ram1_mem(16);
xb3_reg <= ID_ram1_mem(24);
xb4_reg <= ID_ram1_mem(32);
xb5 reg <= ID_ram1_mem(40);
xb6_reg <= 1D_ram1_mem(48);
xb7_reg <= ID_ram1_mem(56);

when "001" => xb0_reg <= 1D_ram1_mem(1);

xb1_reg <= ID_ram1_mem(9);

xb2_reg <= ID_ram1_mem(17);
xb3_reg <= ID_ram1_mem(25);
xb4_reg <= |D_ram1_mem(33);
xb5_reg <= ID_ram1_mem(41);
xb6_reg <= ID_ram1_mem(49);
xb7_reg <= ID_ram1_mem(57);

when "010" => xb0_reg <= ID_ram1_mem(2);

xb1_reg <= ID_ram1_mem(10);
xb2_reg <= ID_ram1_mem(18);
xb3_reg <= ID_ram1_mem(26);
xb4_reg <= ID_ram1_mem(34);
xb5_reg <= ID_ram1_mem(42);
xb6_reg <= ID_ram1_mem(50);
xb7_reg <= ID_ram1_mem(58);

when "011" => xb0_reg <= ID_ram1_mem(3);

xb1_reg <= 1D_ram1_mem(11),
xb2_reg <= ID_ram1_mem(19);
xb3_reg <= ID_ram1_mem{27);
xb4_reg <= ID_ram1_mem(35),
xb5_reg <= ID_ram1_mem(43);
xb6_reg <= ID_ram1_mem(51);
xb7_reg <= ID_ram1_mem(59);

when "100" => xb0_reg <= ID_ram1_mem(4);

xb1_reg <= ID_ram1_mem(12);
xb2_reg <= ID_ram1_mem{20);
xb3_reg <= ID_ram1_mem(28);
xb4_reg <= ID_ram1_mem(36);
xb5_reg <= ID_ram1_mem(44);
xb6_reg <= ID_ram1_mem(52);
xb7_reg <= 1D_ram1_mem(60);

when "101" => xb0_reg <= ID_ram1_mem(5);

xb1_reg <= ID_ram1_mem(13);
xb2_reg <= 1D_ram1_mem(21);
xb3_reg <= ID_ram1_mem(29);
xb4_reg <= ID_ram1_mem(37);
xb5_reg <= ID_ram1_mem(45);
xb6_reg <= ID_ram1_mem(53);
xb7_reg <= ID_ram1_mem(61);

T.B. Yee, 2007 Appendix D: VHDL code listings

(8]

[VS)

when "110" => xb0_reg <= ID_ram1_mem(6);
xb1_reg <= ID_ram1_mem(14);
xb2_reg <= 1D_ram1_mem(22);
xb3_reg <= ID_ram1_mem(30);
xb4_reg <= ID_ram1_mem(38);
xb5_reg <= ID_ram1_mem(46);
xb6_reg <= ID_ram1_mem(54);
xb7_reg <= ID_ram1_mem(56);

when "111" => xb0_reg <= ID_ram1_mem(7);
xb1_reg <= ID_ram1_mem(15);
xb2_reg <= ID_ram1_mem(23);
xb3_reg <= ID_ram1_mem(31);
xb4_reg <= ID_ram1_mem(39);
xb5_reg <= ID_ram1_mem(47);
xb6_reg <= ID_ram1_mem(55);
xb7_reg <= ID_ram1_mem(63);

when others => NULL;

end case;

ID_stage2_rdy <= not ID_stage2_rdy;
ID_rd_cntr(3 downto 0) <= ID_rd_cntr(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock ="1";
end loop;
ID_input_cnt(3 downto 0) <= "0000";
ID_wr_cntr(6 downto 0) <= (others=>'0");
ID_rd_cntr(3 downto 0) <= (others=>'0");
end if;
wait until sys_clock'event and sys_clock ="1";
exit reset_loop when sys_reset = "1";
end loop;
end loop;
end process ID1;

ID2: process -- IDCT Process 2
variable idct2d_int: signed(20 downto 0):= (others=>'0");
begin
reset_loop: loop
ID_stage2_rcv <= "0"
out_hs_rdy <="0"
idct2d_int := (others=>'0");
ID_index_j <= "0000";
wait until sys_clock'event and sys_clock = "1";
exit reset_loop when sys_reset = "1";
main_loop: loop

while(ID_stage2_rdy = |D_stage2_rcv) loop
wait until sys_clock'event and sys_clock = "1";
end loop;

while (ID_index_j /= "1000") loop
idct2_mult_add(ID_index_j(2 downto 0),xb0_reg,xb1_reg,xb2_reg,xb3_reg,
xb4_reg,xb5_reg,xb6_reg,xb7_reg,idct2d_int);
while(out_hs_rdy /= out_hs_rcv) loop
wait until sys_clock'event and sys_clock = "1";

end loop;

idct_out <= signed(idct2d_int(15 downto 8));

out_hs_rdy <= not out_hs_rdy;

ID_index_j <=1D_index_j + "0001";

wait until sys_clock'event and sys_clock ="1";
end loop;

T.B. Yee, 2007 Appendix D: VHDL code listings

(V8]
LI

ID_index_j <= "0000";
ID_stage2_rcv <= not ID_stage2_rcv;
wait until sys_clock'event and sys_clock = "1";
exit reset_loop when sys_reset = "1";
end loop;
end loop;
end process |1D2;

end behaviour;

Figure D-8 VHDL of IDCT example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA IDCT is given
in Figure D-9. Zoom in views of the simulation showing inputs and outputs updates are
given in Figure D-10. The multi-FPGA IDCT has a single subprogram communication
channel (SpC) and a single channel arbiter. With a system clock period of 40 ns, the
non-pipelined multi-FPGA IDCT takes 4175 clock cycles (i.e. (167480 ns - 480 ns) / 40

ns) to complete the application.

333

Appendix D: VHDL code listings

T.B. Yee, 2007

DR R LI 00 ORE
T T

Z o)

1901 Y44

WANARAN WAANW WW

nn

Figure D-9 Simulation of the non-pipelined multi-FPGA IDCT example

334

Appendix D: VHDL code listings

T.B. Yee, 2007

B) G I e 403 93
S e) IR) O |

EEEATEN | RN)
0

—

e S————————

T | (]) W

RAAAAAN WAAN NN

=

O E

AR AMAAAAN AMAN WN

Figure D-10 Simulation

of the non-pipelined multi-FPGA

IDCT example

zoom in views)

(

T.B. Yee, 2007 Appendix D: VHDL code listings

(98]
(98]
wn

D.1.4 Triple-Data Encryption Standard

The triple-data encryption standard core implements the triple data encryption algorithm
(TDEA) in the electronic codebook (ECB) mode [144]. The idea of triple DES is that data
is encrypted three times (i.e. encrypted, decrypted and then encrypted again) using two
different keys. In this case, the two encryptions use the first key and the decryption uses
the second key. The VHDL package of the triple-DES is given in Figure D-11 and the
behavioural VHDL of the triple-data encryption standard (triple-DES) core is given in
Figure D-12.

-- VHDL package for Triple-DES --

library ieee;

use ieee.std_logic_1164.all;

package des_functions is
subtype vec56 is std_logic_vector(1 to 56);
subtype vecB4 is std_logic_vector(1 to 64);

-- The key_reduce function reduces a 64-bit key to a 56-bit key by stripping off parity bits
function key_reduce(key : in vect4) return vech6;
function key_reduce2(key : in vec64) return vec56;

-- The des_core function implements a DES encrypt/decrypt cycle
function des_core(plaintext : vec64; key : vec56; encrypt : std_logic) return vec64;
end;

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

package body des_functions is
subtype vec3 is std_logic_vector(1 to 3);
subtype vec4 is std_logic_vector(1 to 4);
subtype vec6 is std_logic_vector(1 to 6);
subtype vec28 is std_logic_vector(1 to 28);
subtype vec32 is std_logic_vector(1 to 32);
subtype vec48 is std_logic_vector(1 to 48);

function initial_permutation(data : vec64) return vec64 is
begin
return

data(58) & data(50) & data(42) & data(34) & data(26) & data(18) & data(10) & data(2) &
data(60) & data(52) & data(44) & data(36) & data(28) & data(20) & data(12) & data(4) &
data(62) & data(54) & data(46) & data(38) & data(30) & data(22) & data(14) & data(6) &
data(64) & data(56) & data(48) & data(40) & data(32) & data(24) & data(16) & data(8) &
data(57) & data(49) & data(41) & data(33) & data(25) & data(17) & data(9) & data(1) &
data(59) & data(51) & data(43) & data(35) & data(27) & data(19) & data(11) & data(3) &
data(61) & data(53) & data(45) & data(37) & data(29) & data(21) & data(13) & data(5) &
data(63) & data(55) & data(47) & data(39) & data(31) & data(23) & data(15) & data(7);

end;

T.B. Yee, 2007 Appendix D: VHDL code listings

(V8]

(VN

function final_permutation(data : in vec64) return vect4 is
begin
return

data(40) & data(8) & data(48) & data(16) & data(56) & data(24) & data(64) & data(32) &
data(39) & data(7) & data(47) & data(15) & data(55) & data(23) & data(63) & data(31) &
data(38) & data(6) & data(46) & data(14) & data(54) & data(22) & data(62) & data(30) &
data(37) & data(5) & data(45) & data(13) & data(53) & data(21) & data(61) & data(29) &
data(36) & data(4) & data(44) & data(12) & data(52) & data(20) & data(60) & data(28) &
data(35) & data(3) & data(43) & data(11) & data(51) & data(19) & data(59) & data(27) &
data(34) & data(2) & data(42) & data(10) & data(50) & data(18) & data(58) & data(26) &
data(33) & data(1) & data(41) & data(9) & data(49) & data(17) & data(57) & data(25);

end;

function expand(data : vec32) return vec48 is

begin

return

data(32) & data(1) & data(2) & data(3) & data(4) & data(b) & data(4) & data(b) &
data(6) & data(7) & data(8) & data(9) & data(8) & data(9) & data(10) & data(11) &
data(12) & data(13) & data(12) & data(13) & data(14) & data(15) & data(16) & data(17) &
data(16) & data(17) & data(18) & data(19) & data(20) & data(21) & data(20) & data(21) &
data(22) & data(23) & data(24) & data(25) & data(24) & data(25) & data(26) & data(27) &
data(28) & data(29) & data(28) & data(29) & data(30) & data(31) & data(32) & data(1);

end;

function substitute(data : vec48) return vec32 is
type S_block_type is array(0 to 63) of natural range 0 to 15;
constant S_blockO : S_block_type =
--moods ROM
(14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7
4,1,14,8,13,6,2,11,15,12,9,7, 3,10, 5, 0,
constant S_block1 : S_block_type :=
--moods ROM
(15,1,8,14,6,11,3,4,9,7,2,13,12,0, 5,
0,14,7,11,10,4,13,1,5,8,12,6,9, 3, 2,
constant S_block2 : S_block_type :=
--moods ROM
(10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9, 3,4, 6, 10, 2, 8, 5,14, 12, 11, 15, 1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9, 8,7, 4, 15,14, 3,11,5,2, 12);
constant S_block3 : S_block_type :=
--moods ROM
(7,13,14,3,0,6,9,10,1,2,8,5,11,12, 4, 15,13,8,11, 5,6, 15, 0 7
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10, 1, 13, 8, 9, 4,
constant S_block4 : S_block_type =
--moods ROM
(2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,1
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0, 14,11,8,12,7,1, 14, 2, 13, 6, 1
constant S_block5 : S_block_type =
--moods ROM
(12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1, 13, 14,0, 11, 3, 8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5, 15,10, 11,14,1,7,6,0, 8, 13),
constant S_block6 : S_block_type :=
--moods ROM
(4,11,2,14,15,0,8,13,3,12,9,7,5,10,6, 1,13, 0,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9, 2, 6, 11
constant S_block7 : S_block_type :=
--moods ROM
(13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,8, 11,0, 14, 9, 2,
7,11,4,1,9,12,14,2,0,6, 10,13, 15,3,5,8,2,1,14,7,4,10, 8, 13,15,12,9,0, 3,5, 6, 11);
begin
return
std_logic_vector(to_unsigned(S_block0(to_integer(unsigned(data(1)&data(6)&data(2 to 5)))),4))&
std_logic_vector(to_unsigned(S_block1(to_integer(unsigned(data(7)&data(12)&data(8 to 11)))),4))&
std_logic_vector(to_unsigned(S_block2(to_integer(unsigned(data(13)&data(18)&data(14 to 17)))).4))&
std_logic_vector(to_unsigned(S_block3(to_integer(unsigned(data(19)&data(24)&data(20 to 23)))),4))&

,0,15,7,4,14,2,13,1,10,6,12,11,9,5, 3, 8,
15,12, 8,2,4,9,1,7,5,11,3,14,10,0, 6, 13);

11,7,4,9,1,10, 14, 3,5, 12, 2, 15, 8, 6,
13,8,1,4,10,7,9,5,0,15,14,2,3,12),

'

(V8]

T.B. Yee, 2007 Appendix D: VHDL code listings

(8]

std_logic_vector(to_unsigned(S_block4(to_integer(unsigned(data(25)&data(30)&data(26 to 29)))).4))&
std_logic_vector(to_unsigned(S_block5(to_integer(unsigned(data(31)&data(36)&data(32 to 35)))),4))&
std_logic_vector(to_unsigned(S_block6(to_integer(unsigned(data(37)&data(42)&data(38 to 41)))),4))&
std_logic_vector(to_unsigned(S_block7(to_integer(unsigned(data(43)&data(48)&data(d44 to 47)))).4));
end;

function permute (data : in vec32) return vec32 is
begin
return
data(16) & data(7) & data(20) & data(21) & data(29) & data(12) & data(28) & data(17) &
data(1) & data(15) & data(23) & data(26) & data(5) & data(18) & data(31) & data(10) &
data(2) & data(8) & data(24) & data(14) & data(32) & data(27) & data(3) & data(9) &
data(19) & data(13) & data(30) & data(6) & data(22) & data(11) & data(4) & data(25); end;
function f(data : vec32; subkey : vec48) return vec32 is — Cipher function,f
begin
return permute(substitute(expand(data) xor subkey)); end;

function key_reduce1(key : in vec64) return vec56 is
begin
return

key(57) & key(49) & key(41) & key(33) & key(25) & key(17) & key(9) & key(1) &
key(58) & key(50) & key(42) & key(34) & key(26) & key(18) & key(10) & key(2) &
key(59) & key(51) & key(43) & key(35) & key(27) & key(19) & key(11) & key(3) &
key(60) & key(52) & key(44) & key(36) & key(63) & key(55) & key(47) & key(39) &
key(31) & key(23) & key(15) & key(7) & key(62) & key(54) & key(46) & key(38) &
key(30) & key(22) & key(14) & key(6) & key(61) & key(53) & key(45) & key(37) &
key(29) & key(21) & key(13) & key(5) & key(28) & key(20) & key(12) & key(4);

end;

function key_reduce2(key : in vec64) return vec56 is
begin
return
key(57) & key(49) & key(41) & key(33) & key(25) & key(17) & key(9) & key(1) &
key(58) & key(50) & key(42) & key(34) & key(26) & key(18) & key(10) & key(2) &
key(59) & key(51) & key(43) & key(35) & key(27) & key(19) & key(11) & key(3) &
key(60) & key(52) & key(44) & key(36) & key(63) & key(55) & key(47) & key(39) &
key(31) & key(23) & key(15) & key(7) & key(62) & key(54) & key(46) & key(38) &
key(30) & key(22) & key(14) & key(6) & key(61) & key(53) & key(45) & key(37) &
key(29) & key(21) & key(13) & key(5) & key(28) & key(20) & key(12) & key(4);
end;
function key_rotate(key : vec56; round : natural range 0 to 15; encrypt : std_logic) return vec56 is
type distance_type is array (natural range 0 to 31) of integer range O to 31;
constant shift_distance : distance_type :=
--moods ROM
(0, 1,2, 2,2, 2,2, 2,1, 2,2, 2,2, 2, 2 1,
27,27, 26, 26, 26, 26, 26, 26, 27, 26, 26, 26, 26, 26, 26, 27);
variable distance : natural range 0 to 31;
begin
distance := shift_distance(to_integer(unsigned(encrypt & to_unsigned(round,4))));
return vec28(unsigned(key(1 to 28)) ror distance) & vec28(unsigned(key(29 to 58)) ror distance);
end;
function key_compress(key : in vec56) return vec48 is
begin
return
key(14) & key(17) & key(11) & key(24) & key(1) & key(5) & key(3) & key(28) &
key(15) & key(B) & key(21) & key(10) & key(23) & key(19) & key(12) & key(4) &
key(26) & key(8) & key(16) & key(7) & key(27) & key(20) & key(13) & key(2) &
key(41) & key(52) & key(31) & key(37) & key(47) & key(55) & key(30) & key(40) &
key(51) & key(45) & key(33) & key(48) & key(44) & key(49) & key(39) & key(56) &
key(34) & key(53) & key(46) & key(42) & key(50) & key(36) & key(29) & key(32);
end;

T.B. Yee, 2007 Appendix D: VHDL code listings

LI

LI

function des_core(plaintext : vec64; key : vec56; encrypt : std_logic) return vec64 is
--moods inline
variable data : vec64;
variable working_key : vec56 := key;
begin
data := initial_permutation(plaintext);
for round in 0 to 15 loop
working_key := key_rotate(working_key,round,encrypt);
data := data(33 to 64) & (f(data(33 to 64) key_compress(working_key)) xor data(1 to 32));
end loop;
return final_permutation(data(33 to 64) & data(1 to 32));
end;
end;

Figure D-11 VHDL package for triple-DES example

hkhhkkkkkkhkhdkhkhkhkkhhrhkdk

-- Triple-DES -
library ieee;

use ieee.std_logic_1164.all;
use work.des_functions.all;
entity tdes_ede2 is

port(
plaintext: in std_logic_vector(1 to 32); -- now uses 32-bit input
keys: in std_logic_vector(1 to 32); -- now uses 32-bit key (4 x 32-bits = 128-bit key)

in_hs_rdy: in std_logic_vector(0 downto 0);
in_hs_rcv: buffer std_logic_vector(0 downto 0) = "0";
encrypt: in std_logic;
out_hs_rdy: buffer std_logic_vector(0 downto 0) :="0";
out_hs_rcv: in std_logic_vector(0 downto 0);
ciphertext: out std_logic_vector(1 to 32); -- now uses 32-bit
sys_reset: in std_logic;
--moods reset
sys_clock: in std_logic
--moods clock
);
end;
architecture behaviour of tdes_ede2 is
process
variable data, key1, key2 : vec64;
variable key : vec56;
variable mode : std_logic;
begin
reset_loop: loop
in_hs_rcv <="0";
out_hs_rdy <="0";
wait until sys_clock'event and sys_clock = '1";
exit reset_loop when sys_reset ='1;
main_loop: loop
forin_cntin 0 to 3 loop
while(in_hs_rdy = in_hs_rcv) loop
wait until sys_clock'event and sys_clock = '1';
end loop;
case in_cntis
when 0 =>
data(33 to 64) := plaintext(1 to 32);
key1(33 to 64) := keys(1 to 32);

(W8]
W3
O

T.B. Yee, 2007 Appendix D: VHDL code listings

when 1 =>
data(1 to 32) := plaintext(1 to 32);
key1(1 to 32) := keys(1 to 32);
when 2 =>
key2(33 to 64) := keys(1 to 32);
when 3 =>
key2(1 to 32) := keys(1 to 32);
when others => NULL;
end case;
in_hs_recv <= not in_hs_rcv;
wait until sys_clock'event and sys_clock = '1";
end loop;

for loop_cnt in 0to 2 loop
case loop_cnt is
when 1 =>
key := key_reduce2(key?2);
mode = not encrypt;
when others =>
key := key_reducel(key1);
mode := encrypt;
end case;
data := des_core(data, key, mode);
end loop;
for out_cntin 0 to 1 loop
while(out_hs_rdy /= out_hs_rcv) loop
wait until sys_clock’event and sys_clock =1
end loop;

case out_cntis
when 0 => ciphertext(1 to 32) <= data(1 to 32);
when others => ciphertext(1 to 32) <= data(33 to 64);
end case;
out_hs_rdy <= not out_hs_rdy;
wait until sys_clock'event and sys_clock = '1";
end loop;
wait until sys_clock'event and sys_clock ='1";
exit reset_loop when sys_reset ='1";
end loop;
end loop;
end process;
end;

Figure D-12 VHDL of triple-B’ES example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA triple-DES core
is given in Figure D-13. Zoom in views of the simulation showing inputs and outputs
updates are given in Figure D-14. With a system clock period of 40 ns, the non-pipelined
multi-FPGA triple-DES core takes 3950 clock cycles (i.e. clock cycles = (158420 ns - 420
ns) / 40 ns) to encrypt 64-bit plaintext using a 128-bit key.

340

Appendix D: VHDL code listings

T.B. Yee, 2007

le-DES

ip

UQCYESL | o8N]

_ S3C o_u_: V944N

I‘!Z‘I’III‘II!‘I RAR MANN

d multi-FPGA Tr

line

-pipe

Figure D-13 Simulation of the non

341

Appendix D: VHDL code listings

T.B. Yee, 2007

SUQZrest

2 o8]

$

MW AAAMNAAAN . AAN WANAN

ARRAAAAAN WAAN AANAN

$3Q-91du | YOdIUNW

nu

Figure D-14 Simulation (zoom in views) of the non-pipelined multi-FPGA

Triple-DES

T.B. Yee, 2007 Appendix D: VHDL code listings 34?2

D.1.5 256-bit Advanced encryption standard

The 256-bit advanced encryption standard (AES) [146] implements the Rijndael algorithm
that processes data blocks of 128 bits using a 256-bit cipher key. The behavioural VHDL
of the 256-bit AES example is given in Figure D-16 and it uses the VHDL package in
Figure D-15.

-- VHDL package for 256-AES packages --

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

package aes_procedures is
subtype u_sign8 is unsigned(1 to 8);
subtype u_sign16 is unsigned(1 to 16);
subtype u_sign32 is unsigned(1 to 32);
subtype u_sign64 is unsigned(1 to 64);
subtype u_sign128 is unsigned(1 to 128);
type rom_tab_1 is array(0 to 255) of u_sign$;
type rom_tab_2 is array(0 to 29) of u_sign8;
type rom_tab_5 is array(0 to 255) of u_sign32;
type rom_tab_7 is array(0 to 255) of integer;
type tab_4 is array(0 to 3) of u_sign8;
type tab_a8 is array(0to7) ofu_sign3z;
type tab_a6 is array(0 to 5) of u_sign32;
type tab_a4 is array(0 to 3) of u_sign32;
type tab_90 is array(0 to 89) of u_sign32;
type tab_44 is array(0 {0 43) of u_sign32;
type tab_64 is array(0 to 63) of u_sign32;

function word (a : in u_sign8) return u_sign32;
procedure r_oneto24(a: in u_sign32; q_out: out u_sign32);
procedure r_oneto16(a: in u_sign32; q_out: out u_sign32);
procedure r_oneto8(a: in u_sign32; g_out: out u_sign32);
procedure rco(

a: in unsigned(4 downto 0);

a_out: out u_sign32);

end aes_procedures;

T.B. Yee, 2007 Appendix D: VHDL code listings

(%]

package body aes_procedures is

function word(a : in u_sign8) return u_sign32 is
variable ¢ : u_sign32;
begin
g = a(1 to 7) & "000000000000000000000000";
return q;
end word;
procedure r_oneto24(
a: inu_sign32;
g_out: out u_sign32
) is
begin
g_out := a(25 to 32) & a(1 to 24);
end r_oneto24;

procedure r_oneto16(

a: inu_sign32;
g_out: out u_sign32
)is

begin

g_out ;= a{17 to 32) & a(1 to 16);
end r_oneto16;

procedure r_oneto8(
---- moods inline
a: in u_sign32;
g_out: out u_sign32
)is
begin
g_out:=a(9to 32) &a(1 to 8);
end r_oneto8;

procedure rco (
---- moods inline
a: in unsigned(4 downto 0);
a_out: out u_sign32
)is
constant rcotab: rom_tab_2 =
-- moods rom
("00000001", "00000010", "00000100", "00001000", "00010000",
"00100000", "01000000", "10000000", "00011011", "00110110",
"01101100", "11011000", "10101011", "01001101", "10011010",
“00101111", "01011110", "10111100", "01100011", "11000110",
"10010111", "00110101", "01101010", "11010100", "10110011",
"01111101", "11111010", "11101111", "11000101", "10010001");
‘begin
a_out := rcotab(to_integer(a)) & "000000000000000000000000";
end rco;
end aes_procedures;

(OS]

T.B. Yee, 2007 Appendix D: VHDL code listings

44

-- Encryption tables for 256-AES example -
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.aes_procedures.all;

package encryption_tables is
function fbsub(a: in u_sign8) return u_sign8;
function fbsub_quad(a: in u_sign32) return u_sign32;
function ftable(a : in u_sign8) return u_sign32;
function ftable_double(a, b : in u_sign8)return u_signé4;

procedure ftable_quad(
a: in u_sign32;
g_out: out u_sign32

);

end encryption_tables;
package body encryption_tables is

function fbsub (a: in u_sign8) return u_sign8 is
-- moods inline
constant fbsubtab : rom_tab_1 :=
-- moods rom
("01100011","01111100","01110111","01111011","11110010","01101011","01101111","11000101",

"00110000","00000001","01100111","00101011","11111110","11010111","10101011","01110110",
"11001010","10000010","11001001","01111101", "11111010","01011001","01000111","11110000",
"10101101","11010100","10100010","10101111","10011100","10100100","01110010","11000000",
"10110111","11111101","10010011","00100110","00110110","00111111","11110111","11001100",
"00110100","10100101","11100101","11110001","01110001","11011000","00110001","00010101",
"00000100","11000111","00100011","11000011","00011000","10010110","00000101","10011010",
"00000111","00010010","10000000","11100010","11101011","00100111","10110010","01110101",
"00001001","10000011","00101100","00011010","00011011","01101110","01011010","10100000",
"01010010","00111011","11010110","10110011","00101001","11100011","00101111","10000100",
"01010011""11010001","00000000","11101101", "00100000","11111100","10110001","01011011",
"01101010","11001011","10111110","00111001","01001010","01001100","01011000","11001111",
"11010000","11101111","10101010","11111011","01000011","01001101","00110011","10000101",
"01000101","11111001","00000010","01111111","01010000","00111100","10011111","10101000",
"01010001","10100011","01000000","10001111","10010010","10011101","00111000","11110101",
"10111100","10110110","11011010","00100001","00010000","11111111","11110011","11010010",
“11001101","00001100","00010011","11101100","01011111","10010111","01000100","00010111",
*11000100","10100111","01111110","00111101","01100100","01011101","00011001","01110011",
"01100000","10000001","01001111","11011100","00100010","00101010", "10010000","10001000",
"01000110","11101110","10111000","00010100","11011110","01011110","00001011","11011011",
"11100000","00110010","00111010","00001010","01001001","00000110","00100100","01011100",
"11000010","11010011","10101100","01100010","10010001","10010101","11100100","01111001",
“11100111","11001000","00110111","01101101","10001101","11010101","01001110","10101001",
"01101100","01010110","11110100","11101010","01100101","01111010","10101110","00001000",
"10111010","01111000","00100101","00101110","00011100","10100110","10110100","11000110",
"11101000","11011101"*01110100","00011111","01001011","10111101","10001011","10001010",
"01110000","00111110","10110101","01100110","01001000","00000011","11110110","00001110",
"01100001","00110101","01010111","10111001","10000110","11000001","00011101","10011110",
"14100001","11111000","10011000","00010001","01101001","11011001","10001110","10010100",
“10011011","00011110","10000111","11101001","11001110","01010101","00101000","11011111",
"10001100","10100001",*10001001","00001101","10111111","11100110","01000010","01101000",
"01000001","10011001","00101101","00001111","10110000","01010100","10111011","00010110");

T.B. Yee, 2007) Appendix D: VHDL code listings 3

45

variable b : natural range 0 to 255;
variable q : u_sign8;
begin
b := to_integer(a);
g := fbsubtab(b);
return q;
end fbsub;

function fbsub_quad (a : in u_sign32) return u_sign32 is
---- Moods inline
constant fbsubtab : rom_tab_1 :=
-- moods rom
("01100011","01111100","01110111","01111011","11110010","01101011","01101111","11000101",
"00110000","00000001",“01100111","00101011","11111110","11010111","10101011","01110110",
"11001010","10000010","11001001","01111101","11111010","01011001","01000111","11110000",
“10101101","11010100","10100010","10101111","10011100","10100100","01110010","11000000",
"16110111","11111101","10010011","00100110","00110110","00111111" "11110111","11001100",
"00110100","10100101","11100101","11110001","01110001","11011000","001 10001","00010101",
"00000100","11000111","00100011","11000011","00011000","10010110","00000101","10011010",
"00000111","00010010","10000000","11100010","11101011","00100111","10110010","01110101",
"00001001","10000011","00101100","00011010","00011011","01101110","01011010","10100000",
"01010010","00111011","11010110","10110011","00101001","11100011","00101111","10000100",
"01010011","11010001","00000000","11101101","00100000","11111100","10110001","01011011",
"01101010","11001011","10111110","00111001","01001010","01001100","01011000","11001111",
“11010000","11101111","10101010","11111011","01000011","01001101","00110011","10000101",
"01000101","11111001","00000010","01111111","01010000","00111100","10011111","10101000",
"01010001","10100011","01000000","10001111","10010010","10011101","00111000","11110101",
"10111100","10110110","11011010","00100001","00010000","11111111","11110011","11010010",
"11001101","00001100","00010011","11101100","01011111","10010111","01000100","00010111",
“11000100","10100111","01111110","00111101","01100100","01011101","00011001","01110011",
"01100000","10000001","01001111","11011100","00100010","00101010","10010000","10001000",
"01000110","11101110","10111000","00010100","11011110","01011110","00001011","11011011",
“11100000","00110010","00111010","00001010","01001001","00000110","00100100","01011100",
"11000010","11010011","10101100","01100010","10010001","10010101","11100100","01111001",
"11100111","11001000","00110111","01101101","10001101","11010101","01001110","10101001",
"01101100","01010110","11110100","11101010","01100101","01111010","10101110","00001000",
"10111010","01111000","00100101","00101110","00011100","10100110","10110100","11000110",
"11101000","11011101","01110100","00011111","01001011","10111101","10001011","10001010",
"01110000","00111110","10110101","01100110","01001000","00000011","11110110","00001110",
"01100001","00110101","01010111","10111001","10000110","11000001","00011101","10011110",
"11100001","11111000","10011000","00010001","01101001","11011001","10001110","10010100",
"10011011","00011110","10000111","11101001","11001110","01010101","00101000","11011111",
"10001100","10100001","10001001","00001101","10111111","11100110","01000010","01101000",
"01000001","10011001","00101101","00001111","10110000","01010100","10111011","00010110");
variable g: u_sign32;
begin
g(1to 8) :=fbsubtab(to_integer(a(1 to 8)));
q(9 to 16) := fbsubtab(to_integer(a(9 to 16)));
q(17 to 24) := fbsubtab(to_integer(a(17 to 24)));
q(25 to 32) := fbsubtab(to_integer(a(25 to 32)));
return q;
end fbsub_quad;

function ftable(a : in u_sign8) return u_sign32 is
---- moods inline

constant ftabletab : rom_tab_5 ;=

-- moods rom

(

-- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77,99), Hex(F6,7B,7B,8D)

“11000110011000110110001110100101", "11111000011111000111110010000100",
"11101110011101110111011110011001", "11110110011110110111101110001101",

T.B. Yee, 2007 Appendix D: VHDL code listings

46

-- Hex(FF,F2,F2,0D), Hex(D6,6B,6B,BD), Hex(DE,6F 6F B1), Hex(@1,C5,C5 54)
"11111111111100101111001000001101", "11010110011010110110101110111101",
"11011110011011110110111110110001", "10010001110001011100010101010100",
- Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B,7D)
"01100000001100000011000001010000", "00000010000000010000000100000011".
'11001110011001110110011110101001", "01010110001010110010101101111101",
- Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB E6), Hex(EC,76,76,9A)
"11100111111111101111111000011001", "10110101110101111101011101100010",
"01001101101010111010101111100110", "11101100011101100111011010011010",
- Hex(8F,CA,CA,45), Hex(1F,82,82,9D), Hex(89,C9,C9,40), Hex(FA, 7D,7D,87)
"10001111110010101100101001000101", "00011111100000101000001010011101",
10001001110010011100100101000000", "11111010011111010111110110000111",
- Hex(EF,FA FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,FO0,F0,0B)
"11101111111110101111101000010101", "10110010010110010101100111101011",
10001110010001110100011111001001", "11111011111100001111000000001011",
- Hex(41,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F A2,A2,FD), Hex(45,AF AF,EA)
"01000001101011011010110111101100", "10110011110101001101010001100111",
'01011111101000101010001011111101", "01000101101011111010111111101010",
- Hex(23,9C,9C,BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,C0,5B)
"00100011100111001001110010111111", "01010011101001001010010011110111",
*11100100011100100111001010010110", "10011011110000001100000001011011",
-- Hex(75,87,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93 AE), Hex(4C,26,26 6A)
"01110101101101111011011111000010", "11100001111111011111110100011100",
'00111101100100111001001110101110", "01001100001001100010011001101010",
- Hex(6C,36,36,5A), Hex(7E,3F,3F 41), Hex(F5,F7,F7,02), Hex(83,CC,CC.4F)
"01101100001101100011011001011010", "01111110001111110011111101000001",
'11110101111101111111011100000010", "10000011110011001100110001001111",
- Hex(68,34,34,5C), Hex(51,A5,A5,F4), Hex(D1,E5,E5,34), Hex(F9,F1,F1,08)
"01101000001101000011010001011100", "01010001101001011010010111110100",
'11010001111001011110010100110100", "11111001111100011111000100001000",
- Hex(E2,71,71,93), Hex(AB,D8,D8,73), Hex(62,31,31,53), Hex(2A,15,15,3F)
"11100010011100010111000110010011", "10101011110110001101100001110011",
'01100010001100010011000101010011", "00101010000101010001010100111111",
- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(9D,C3,C3,5E)
"00001000000001000000010000001100", "10010101110001111100011101010010",
'01000110001000110010001101100101", *10011101110000111100001101011110",
- Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F,9A,9A,B5)
"00110000000110000001100000101000", "00110111100101101001011010100001",
'00001010000001010000010100001111", "00101111100110101001101010110101",
- Hex(OE,07,07,09), Hex(24,12,12,36), Hex(1B,80,80,9B), Hex(DF,E2,E2,3D)
"00001110000001110000011100001001", "00100100000100100001001000110110",
'00011011100000001000000010011011", "11011111111000101110001000111101",
- Hex(CD,EB,EB,26), Hex(4E,27,27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
"11001101111010111110101100100110", "01001110001001110010011101101001",
'01111111101100101011001011001101", "11101010011101010111010110011111",
- Hex(12,09,09,1B), Hex(1D,83,83,9E), Hex(58,2C,2C,74), Hex(34,1A,1A,2E)
"00010010000010010000100100011011", "00011101100000111000001110011110",
'01011000001011000010110001110100", "00110100000110100001101000101110",
- Hex(36,1B,1B,2D), Hex(DC 6E,6E,B2), Hex(B4,5A,5A,EE), Hex(5B,A0,A0,FB)
"00110110000110110001101100101101", "11011100011011100110111010110010",
'10110100010110100101101011101110", "01011011101000001010000011111011",
- Hex(A4,52,52,F6), Hex(76,3B,3B,4D), Hex(B7,D6,06,61), Hex(7D,B3,B3,CE)
"10100100010100100101001011110110", "01110110001110110011101101001101",
'10110111110101101101011001100001", "01111101101100111011001111001110",
- Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F 2F,71), Hex(13,84,84,97)
"01010010001010010010100101111011", “11011101111000111110001100111110",
'01011110001011110010111101110001", "00010011100001001000010010010111",
- Hex(AB,53,53,F5), Hex(B9,D1,D1,68), Hex(00,00,00,00), Hex(C1,ED,ED,2C)
"10100110010100110101001111110101", “10111001110100011101000101101000",
'00000000000000000000000000000000", *11000001111011011110110100101100",
- Hex(40,20,20,60), Hex(E3,FC,FC,1F), Hex(79,B1,B1,C8), Hex(B6,58,5B,ED)
"01000000001000000010000001100000", "11100011111111001111110000011111",
"01111001101100011011000111001000", "10110110010110110101101111101101",

T.B. Yee, 2007 Appendix D: VHDL code listings

47

- Hex(D4,6A,6A,BE), Hex(8D,CB,CB,46), Hex(67,BE BE,D9), Hex(72,39,39.4B)
“11010100011010100110101010111110", "10001101110010111100101101000110",
'01100111101111101011111011011001", "01110010001110010011100101001011",
-- Hex(94,4A 4A,DE), Hex(98,4C,4C,D4), Hex(B0,58,58,E8), Hex(85,CF,CF 4A)
"10010100010010100100101011011110", “10011000010011000100110011010100",
'10110000010110000101100011101000", "10000101110011111100111101001010",
- Hex(BB,D0,D0,6B), Hex(C5,EF EF 2A), Hex(4F,AA AA E5), Hex(ED,FB,FB,16),
"10111011110100001101000001101011", "11000101111011111110111100101010",
'01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D, D7), Hex(66,33,33,55), Hex(11,85,85,94)
"10000110010000110100001111000101", "10011010010011010100110111010111",
'01100110001100110011001101010101", "00010001100001011000010110010100",
- Hex(8A 45,45 CF), Hex(E9,F9,F9,10), Hex(04,02,02,06), Hex(FE,7F,7F,81)
"10001010010001010100010111001111", *11101001111110011111100100010000",
'00000100000000100000001000000110", "11111110011111110111111110000001",
— Hex(A0,50,50,F0), Hex(78,3C,3C,44), Hex(25,9F,9F BA), Hex(4B,A8,A8,E3)
"10100000010100000101000011110000", "01111000001111000011110001000100",
'00100101100111111001111110111010", "01001011101010001010100011100011",
- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE), Hex(80,40,40,C0), Hex(05,8F ,8F ,8A)
"10100010010100010101000111110011", “01011101101000111010001111111110",
'10000000010000000100000011000000", "00000101100011111000111110001010",
- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1,F5,F5,04)
"00111111100100101001001010101101", "00100001100111011001110110111100",
'01110000001110000011100001001000", “11110001111101011111010100000100",
-- Hex(63,BC,BC,DF), Hex(77,B6,86,C1), Hex(AF,DA,DA,75), Hex(42,21,21,63)
"01100011101111001011110011011111", "01110111101101101011011011000001",
'10101111110110101101101001110101", “01000010001000010010000101100011",
-~ Hex(20,10,10,30), Hex(E5,FF,FF,1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
"00100000000100000001000000110000", "11100101111111111111111100011010",
'11111101111100111111001100001110", "10111111110100101101001001101101",
- Hex(81,CD,CD,4C), Hex(18,0C,0C, 14), Hex(26,13,13,35), Hex(C3,EC,EC,2F)
"10000001110011011100110101001100", "00011000000011000000110000010100",
'00100110000100110001001100110101", "11000011111011001110110000101111",
- Hex(BE,5F ,5F,E1), Hex(35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
"10111110010111110101111111100001", "00110101100101111001011110100010",
'10001000010001000100010011001100", "00101110000101110001011100111001",
- Hex(93,C4,C4,57), Hex(55,A7,A7,F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
"10010011110001001100010001010111", "01010101101001111010011111110010",
'11111100011111100111111010000010", "01111010001111010011110101000111",
- Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73,95)
"11001000011001000110010010101100", "10111010010111010101110111100111",
'00110010000110010001100100101011", "11100110011100110111001110010101",
-~ Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E,4F ,4F,D1), Hex(A3,DC,DC,7F)
"11000000011000000110000010100000", "00011001100000011000000110011000",
'10011110010011110100111111010001", "10100011110111001101110001111111",
- Hex(44,22,22,66), Hex(54,2A,2A, 7E), Hex(3B,90,90,AB), Hex(0B,88,88,83)
"01000100001000100010001001100110", "01010100001010100010101001111110",
'00111011100100001001000010101011", "00001011100010001000100010000011",
-- Hex(8C,46,46,CA), Hex(C7,EE,EE,29), Hex(6B,B8,88,D3), Hex(28,14,14,3C)
"10001100010001100100011011001010", "11000111111011101110111000101001",
'01101011101110001011100011010011", "00101000000101000001010000111100",
- Hex(A7,DE,DE,79), Hex(BC,5E,5E,E2), Hex(16,0B,0B,1D), Hex(AD,DB,DB,76)
"10100111110111101101111001111001", “10111100010111100101111011100010",
"00010110000010110000101100011101", "10101101110110111101101101110110",
-- Hex(DB,E0,E0,3B), Hex(64,32,32,56), Hex(74,3A,3A,4E), Hex(14,0A,0A,1E)
"11011011111000001110000000111011", “01100100001100100011001001010110",
'01110100001110100011101001001110", “00010100000010100000101000011110",
- Hex(92,49,49,DB), Hex(0C,06,06,0A), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
"10010010010010010100100111011011", "00001100000001100000011000001010",
'01001000001001000010010001101100", "10111000010111000101110011100100",
-~ Hex(9F,C2,C2,5D), Hex(BD,D3,D3,6E), Hex(43,AC,AC,EF), Hex(C4,62,62,A6)
"10011111110000101100001001011101", "10111101110100111101001101101110",
"01000011101011001010110011101111", "11000100011000100110001010100110",

T.B. Yee, 2007 Appendix D: VHDL code listings

348

- Hex(39,91,91,A8), Hex(31,95,95,A4), Hex(D3,E4,E4,37), Hex(F2,79,79,8B)
“00111001100100011001000110101000", "00110001100101011001010110100100",
"11010011111001001110010000110111", "11110010011110010111100110001011",
-- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA,6D.6D,B7)
“11010101111001111110011100110010", *10001011110010001100100001000011",
"01101110001101110011011101011001", "11011010011011010110110110110111",
- Hex(01,8D,8D,8C), Hex(B1,D5,D5,64), Hex(9C 4E,4E,D2), Hex(49,A9,A9,E0)
"00000001100011011000110110001100", "10110001110101011101010101100100",
“10011100010011100100111011010010", "01001001101010011010100111100000",
- Hex(D8,6C ,6C,B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA 25)
"11011000011011000110110010110100", “10101100010101100101011011111010",
“11110011111101001111010000000111", “11001111111010101110101000100101",
—- Hex(CA 65,65,AF), Hex(F4,7A,7A 8E), Hex(47 AE,AE,E9), Hex(10,08,08,18)
"11001010011001010110010110101111", "11110100011110100111101010001110",
"01000111101011101010111011101001", "00010000000010000000100000071000",
- Hex(6F BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25,6F), Hex(5C,2E,2E,72)
"01101111101110101011101011010101", 1111000001 111000011 1100010001000,
"01001010001001010010010101101111", "01011100001011100010111001110010",
— Hex(38,1C,1C,24), Hex(57,A8,A6,F1), Hex(73,B4,B4,C7), Hex(97,C6,C6,51)
"00111000000111000001110000100100", "01010111101001101010011011110001",
"01110011101101001011010011000111", "10010111110001101100011001010001",
-- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F,1F,21)
"11001011111010001110100000100011", "10100001110111011101110101111100",
“11101000011101000111010010011100", "00111110000111110001111100100001",
- Hex(96,4B,4B,DD), Hex(61,BD,BD,DC), Hex(0D,8B,8B,86), Hex(OF ,8A,8A,85)
"10010110010010110100101111011101", “01100001101111011011110111011100",
"00001101100010111000101110000110", "00001111100010101000101010000101",
- Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,85,C4), Hex(CC,66,66,AA)
“11100000011100000111000010010000", "01111100001111100011111001000010",
"01110001101101011011010111000100", “11001100011001100110011010101010",
—- Hex(90,48,48,D8), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E,0E,12)
“10010000010010000100100011011000", "00000110000000110000001100000101",
"11110111111101101111011000000001", “00011100000011100000111000010010",
- Hex(C2.61,61,A3), Hex(BA,35,35,5F), Hex(AE,57,57,F9), Hex(69,89,89,D0)
“11000010011000010110000110100011", "01101010001101010011010101011111",
"10101110010101110101011111111001*, “01101001101110011011100111010000",
- Hex(17,86,86,91), Hex(99,G1,C1,58), Hex(3A,1D,1D,27), Hex(27,9E,9E,B9)
"00010111100001101000011010010001", “10011001110000011100000101011000",
"00111010000111010001110100100111", "00100111100111101001111010111001",
-- Hex(D9,E1,E1,38), Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11,11,33)
“11011001111000011110000100111000", "11101011111110001111100000010011",
"00101011100110001001100010110011", "00100010000100010001000100110011",
- Hex(D2,69,69,BB), Hex(A9,D9,D9,70), Hex(07,8E,8E,89), Hex(33,04,94,A7)
“11010010011010010110100110111011*, “10101001110110011101100101110000",
"00000111100011101000111010001001", "00110011100101001001010010100111",
—- Hex(2D,9B,9B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
"00101101100110111001101110110110", "00111100000111100001111000100010",
"00010101100001111000011110010010", "11001001111010011110100100100000",
- Hex(87,CE,CE,49), Hex(AA 55,55,FF), Hex(50,28,28,78), Hex(A5,DF ,DF,7A)
“10000111110011101100111001001001", "10101010010101010101010111111111",
"01010000001010000010100001111000", "10100101110111111101111101111010",
— Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
"00000011100011001000110010001111", "01011001101000011010000111111000",
"00001001100010011000100110000000", "00011010000011010000110100010111",
- Hex(65,BF,BF,DA), Hex(D7,E6,E6,31), Hex(84,42,42,C8), Hex(D0,68,68,B88)
"01100101101111111011111111011010", “11010111111001101110011000110001",
"10000100010000100100001011000110", “11010000011010000110100010111000",
- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F ,0F ,11)
“10000010010000010100000111000011", "00101001100110011001100110110000",
"01011010001011010010110101110111", "00011110000011110000111100010001",
— Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D,BB,BB,D6), Hex(2C,16,16,3A)
"01111011101100001011000011001011", "10101000010101000101010011111100",
"01101101101110111011101111010110", "00101100000101100001011000111010");

T.B. Yee, 2007 Appendix D: VHDL code listings

49

variable b : natural range 0 to 255;
variable q : u_sign32;
begin

b ;= to_integer(a);

q .= ftabletab(b);

return g;

end ftable;

function ftable_double(a, b : in u_sign8) return u_sign64 is
-- -- moods inline

constant ftabletab : rom_tab_5 =
-- moods rom

(
- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77,99), Hex(F6,7B,7B,8D)
"11000110011000110110001110100101", "11111000011111000111110010000100",
“11101110011101110111011110011001", "11110110011110110111101110001101",
- Hex(FF,F2,F2,0D), Hex(D6,6B,6B,BD), Hex(DE,6F 6F B1), Hex(91,C5,C5,54)
"11111111111100101111001000001101", "11010110011010110110101110111101",
"11011110011011110110111110110001", "10010001110001011100010101010100",
~ Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B,7D)
"01100000001100000011000001010000", "00000010000000010000000100000011",
"11001110011001110110011110101001", "01010110001010110010101101111101",
— Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB,EB), Hex(EC,76,76,9A)
“11100111111111101111111000011001", "10110101110101111101011101100010",
"01001101101010111010101111100110", "11101100011101100111011010011010",
-- Hex(8F,CA,CA 45), Hex(1F,82,82,9D), Hex(89,C9,C9,40), Hex(FA,7D,7D,87)
"10001111110010101100101001000101", "00011111100000101000001010011101",
“10001001110010011100100101000000", “11111010011111010111110110000111",
- Hex(EF,FA,FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,FO,F0,0B)
"11101111111110101111101000010101", “10110010010110010101100111101011",
"10001110010001110100011111001001", "11111011111100001111000000001011",
— Hex(41,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F ,A2,A2,FD), Hex(45,AF AF,EA)
"01000001101011011010110111101100", "10110011110101001101010001100111",
"01011111101000101010001011111101", “01000101101011111010111111101010",
- Hex(23,9C,9C, BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,CO0,5B)
"00100011100111001001110010111111", "01010011101001001010010011110111",
"11100100011100100111001010010110", *10011011110000001100000001011011",
- Hex(75,B7,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93,AE), Hex(4C,26,26,6A)
"01110101101101111011011111000010", "11100001111111011111110100011100",
"00111101100100111001001110101110", "01001100001001100010011001101010",
- Hex(BC,36,36,5A), Hex(7E,3F,3F,41), Hex(F5,F7,F7,02), Hex(83,CC,CC,4F)
"01101100001101100011011001011010", "01111110001111110011111101000001",
"11110101111101111111011100000010", "10000011110011001100110001001111",
- Hex(68,34,34,5C), Hex(51,A5,A5,F4), Hex(D1,E5,E5,34), Hex(F9,F1,F1,08)
"01101000001101000011010001011100", "01010001101001011010010111110100",
"11010001111001011110010100110100", "11111001111100011111000100001000",
- Hex(E2,71,71,93), Hex(AB,D8,D8,73), Hex(62,31,31,53), Hex(2A,15,15,3F)
"11100010011100010111000110010011", "10101011110110001101100001110011",
"01100010001100010011000101010011", "00101010000101010001010100111111",
- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(9D,C3,C3,5E)
"00001000000001000000010000001100", "10010101110001111100011101010010",
“01000110001000110010001101100101", "10011101110000111100001101011110",
— Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F 9A,9A,B5)
"00110000000110000001100000101000", "00110111100101101001011010100001",
"00001010000001010000010100001111", "00101111100110101001101010110101",
-- Hex(OE,07,07,09), Hex(24,12,12,36), Hex(1B,80,80,9B), Hex(DF,E2,E2,3D)
"00001110000001110000011100001001", "00100100000100100001001000110110",
"00011011100000001000000010011011", "11011111111000101110001000111101",
- Hex(CD,EB,EB,26), Hex(4E,27,27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
"11001101111010111110101100100110", "01001110001001110010011101101001",
"01111111101100101011001011001101", "11101010011101010111010110011111",

T.B. Yee, 2007 Appendix D: VHDL code listings

50

- Hex(12,09,09,1B), Hex(1D,83,83,9E), Hex(58,2C,2C,74), Hex(34,1A, 1A 2E)
"00010010000010010000100100011011", "00011101100000111000001110011110",
"01011000001011000010110001110100", "00110100000110100001101000101110",
- Hex(36,1B,1B,2D), Hex(DC 6E,6E,B2), Hex(B4,5A,5A EE), Hex(5B,A0,A0,FB)
"00110110000110110001101100101101", "11011100011011100110111010110010",
"10110100010110100101101011101110", "01011011101000001010000011111011",
- Hex(A4,52,52,F6), Hex(76,3B,3B,4D), Hex(B7,06,D6,61), Hex(7D,B3,B3,CE)
"10100100010100100101001011110110", "01110110001110110011101101001101",
"10110111110101101101011001100001", "01111101101100111011001111001110",
— Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F 2F 71), Hex(13,84,84,97)
"01010010001010010010100101111011", "11011101111000111110001100111110",
"01011110001011110010111101110001", "00010011100001001000010010010111",
— Hex(A6,53,53 F5), Hex(B9,D1,D1,68), Hex(00,00,00,00), Hex(C1,ED,ED,2C)
"10100110010100110101001111110101", "10111001110100011101000101101000",
"00000000000000000000000000000000", "11000001111011011110110100101100",
— Hex(40,20,20,60), Hex(E3,FC,FC,1F), Hex(79,B1,B1,C8), Hex(B6,5B,58,ED)
"01000000001000000010000001100000", *11100011111111001111110000011111",
"01111001101100011011000111001000", "10110110010110110101101111101101",
— Hex(D4,6A,6A,BE), Hex(8D,CB,CB,46), Hex(67,BE,BE,D9), Hex(72,39,39,4B)
"11010100011010100110101010111110", "10001101110010111100101101000110",
"01100111101111101011111011011001", "01110010001110010011100101001011",
- Hex(94,4A,4A,DE), Hex(98,4C,4C,D4), Hex(B0,58,58,E8), Hex(85,CF,CF 4A)
"10010100010010100100101011011110", "10011000010011000100110011010100",
"10110000010110000101100011101000", "10000101110011111100111101001010",
- Hex(BB,D0,D0,6B), Hex(C5,EF,EF,2A), Hex(4F AAAA,E5), Hex(ED,FB,FB,16),
"10111011110100001101000001101011", "11000101111011111110111100101010",
"01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D,D7), Hex(66,33,33,55), Hex(11,85,85,94)
“10000110010000110100001111000101", "10011010010011010100110111010111",
"01100110001100110011001101010101*, "00010001100001011000010110010100",
- Hex(8A,45,45,CF), Hex(E9,F9,F9,10), Hex(04,02,02,08), Hex(FE,7F,7F,81)
"10001010010001010100010111001111", "11101001111110011111100100010000",
"00000100000000100000001000000110", "11111110011111110111111110000001",
- Hex(A0,50,50,F0), Hex(78,3C,3C,44), Hex(25,9F 9F,BA), Hex(4B,A8,A8,E3)
"10100000010100000101000011110000", "01111000001111000011110001000100",
"00100101100111111001111110111010", "01001011101010001010100011100011",
- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE), Hex(80,40,40,C0), Hex(05,8F ,8F,8A)
"10100010010100010101000111110011", "01011101101000111010001111111110",
"10000000010000000100000011000000", "00000101100011111000111110001010",
- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1,F5,F5,04)
"00111111100100101001001010101101", "00100001100111011001110110111100",
"01110000001110000011100001001000", "11110001111101011111010100000100",
- Hex(63,BC,BC,DF), Hex(77,86,86,C1), Hex(AF,DA,DA,75), Hex(42,21,21,63)
"01100011101111001011110011011111", "01110111101101101011011011000001",
"10101111110110101101101001110101", "01000010001000010010000101100011",
- Hex(20,10,10,30), Hex(E5,FF,FF,1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
"00100000000100000001000000110000", "11100101111111111111111100011010",
"11111101111100111111001100001110", "10111111110100101101001001101101",
- Hex(81,CD,CD,4C), Hex(18,0C,0C,14), Hex(26,13,13,35), Hex(C3,EC,EC,2F)
"10000001110011011100110101001100", "00011000000011000000110000010100",
"00100110000100110001001100110101", "11000011111011001110110000101111",
- Hex(BE,5F 5F,E1), Hex(35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
"10111110010111110101111111100001", "00110101100101111001011110100010",
"10001000010001000100010011001100", "00101110000101110001011100111001",
- Hex(93,C4,C4,57), Hex(55,A7 A7,F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
"10010011110001001100010001010111", "01010101101001111010011111110010",
"11111100011111100111111010000010", "01111010001111010011110101000111",
- Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73,95)
"11001000011001000110010010101100", “10111010010111010101110111100111",
"00110010000110010001100100101011", "11100110011100110111001110010101",
- Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E,4F 4F,D1), Hex(A3,DC,DC,7F)
"11000000011000000110000010100000", "00011001100000011000000110011000",
"10011110010011110100111111010001", "10100011110111001101110001111111",

T.B. Yee, 2007 Appendix D: VHDL code listings

351

-- Hex(44,22,22 66), Hex(54,2A,2A,7E), Hex(3B,90,90, AB), Hex(0B,88,88,83)
"01000100001000100010001001100110", "01010100001010100010101001111110",
"00111011100100001001000010101011", "00001011100010001000100010000011",
- Hex(8C,46,46,CA), Hex(C7,EE EE,29), Hex(6B,B8,B8,D3), Hex(28,14,14,3C)
“10001100010001100100011011001010", "11000111111011101110111000101001",
"01101011101110001011100011010011", “00101000000101000001010000111100",
- Hex(A7,DE DE,79), Hex(BC,5E,5E E2), Hex(16,0B,0B,1D), Hex(AD,DB,DB,76)
"10100111110111101101111001111001", "10111100010111100101111011100010",
"00010110000010110000101100011101", "10101101110110111101101101110110",
- Hex(DB,E0,E0,3B), Hex(64,32,32,56), Hex(74,3A,3A 4E), Hex(14,0A,0A 1E)
"11011011111000001110000000111011", “01100100001100100011001001010110",
"01110100001110100011101001001110", "00010100000010100000101000011110",
© - Hex(92,49,49,DB), Hex(0C,06,06,0A), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
"10010010010010010100100111011011", "00001100000001100000011000001010",
"01001000001001000010010001101100", "10111000010111000101110011100100",
— Hex(9F,C2,C2,5D), Hex(BD,D3,D3,6E), Hex(43,AC,AC,EF), Hex(C4,62,62,A6)
“10011111110000101100001001011101", "10111101110100111101001101101110",
"01000011101011001010110011101111", "11000100011000100110001010100110",
- Hex(39,91,91,A8), Hex(31,95,95,A4), Hex(D3,E4,E4,37), Hex(F2,79,79,8B)
"00111001100100011001000110101000", "00110001100101011001010110100100",
"11010011111001001110010000110111", "11110010011110010111100110001011",
- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA,6D,6D,B87)
"11010101111001111110011100110010", "10001011110010001100100001000011",
"01101110001101110011011101011001", "11011010011011010110110110110111",
— Hex(01,8D,8D,8C), Hex(B1,D5,D5,64), Hex(9C 4E,4E,D2), Hex(49,A9,A9,E0)
"00000001100011011000110110001100", "10110001110101011101010101100100",
"10011100010011100100111011010010", "01001001101010011010100111100000",
- Hex(D8,6C,6C,B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA,25)
"11011000011011000110110010110100", "10101100010101100101011011111010",
"11110011111101001111010000000111", "11001111111010101110101000100101",
- Hex(CA,65,65,AF), Hex(F4,7A,7A 8E), Hex(47,AE,AE,E9), Hex(10,08,08,18)
"11001010011001010110010110101111", "11110100011110100111101010001110",
"01000111101011101010111011101001", "00010000000010000000100000011000",
- Hex(6F,BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25,6F), Hex(5C,2E,2E,72)
"01101111101110101011101011010101", "11110000011110000111100010001000",
"01001010001001010010010101101111", “01011100001011100010111001110010",
- Hex(38,1C,1C,24), Hex(57,A8,A8,F 1), Hex(73,B4,B4,C7), Hex(97,C6,C6,51)
"00111000000111000001110000100100", "01010111101001101010011011110001",
"01110011101101001011010011000111", "10010111110001101100011001010001",
-- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F,1F,21)
"11001011111010001110100000100011", “10100001110111011101110101111100",
“11101000011101000111010010011100", "00111110000111110001111100100001",
- Hex(96,4B,4B,DD), Hex(61,BD,BD,DC), Hex(0D,8B,8B,86), Hex(OF ,8A,8A,85)
"10010110010010110100101111011101", "01100001101111011011110111011100",
"00001101100010111000101110000110", "00001111100010101000101010000101",
— Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,B5,C4), Hex(CC,66,66,AA)
"11100000011100000111000010010000", "01111100001111100011111001000010",
"01110001101101011011010111000100", “11001100011001100110011010101010",
- Hex(90,48,48,D8), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E,0E, 12)
"10010000010010000100100011011000", “00000110000000110000001100000101",
"11110111111101101111011000000001", "00011100000011100000111000010010",
- Hex(C2,61,61,A3), Hex(6A,35,35,5F), Hex(AE,57,57,F9), Hex(69,B9,B9,D0)
"11000010011000010110000110100011", "01101010001101010011010101011111",
"10101110010101110101011111111001", "01101001101110011011100111010000",
- Hex(17,86,86,91), Hex(99,C1,C1,58), Hex(3A,1D,1D,27), Hex(27,9E,9E,B9)
“00010111100001101000011010010001", "10011001110000011100000101011000",
"00111010000111010001110100100111", "00100111100111101001111010111001",
- Hex(D9,E1,E1,38), Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11,11,33)
"11011001111000011110000100111000", "11101011111110001111100000010011",
"00101011100110001001100010110011*, "00100010000100010001000100110011",
- Hex(D2,69,69,BB), Hex(A9,D9,D9,70), Hex(07,8E,8E,89), Hex(33,94,94,A7)
"11010010011010010110100110111011", *10101001110110011101100101110000",
"00000111100011101000111010001001", "00110011100101001001010010100111",

T.B. Yee, 2007 Appendix D: VHDL code listings

o)

52

- Hex(2D,9B,9B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
"00101101100110111001101110110110", "00111100000111100001111000100010",
"00010101100001111000011110010010", “11001001111010011110100100100000",
- Hex(87,CE,CE,49), Hex(AA 55,55 FF), Hex(50,28,28,78), Hex(A5,DF DF,7A)
"10000111110011101100111001001001", "10101010010101010101010111111111",
"01010000001010000010100001111000", "10100101110111111101111101111010",
- Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
"00000011100011001000110010001111", "01011001101000011010000111111000",
"00001001100010011000100110000000", "00011010000011010000110100010111",
-- Hex(65,BF,BF DA), Hex(D7,E6,E6,31), Hex(84,42,42,C6), Hex(D0,68,68,B8)
"01100101101111111011111111011010", "11010111111001101110011000110001",
"10000100010000100100001011000110", “11010000011010000110100010111000",
- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F ,OF 11)
"10000010010000010100000111000011", “00101001100110011001100110110000",
"01011010001011010010110101110111", "00011110000011110000111100010001",
- Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D,BB,BB,D6), Hex(2C,16,16,3A)
"01111011101100001011000011001011", "10101000010101000101010011111100",
"01101101101110111011101111010110", "00101100000101100001011000111010"

variable ¢ : natural range O to 255;
variable r : u_sign32;
variable q : u_sign64;
begin
c = to_integer(a);
r ;= ftabletab(c);
¢ = to_integer(b);
g := ftabletab(c) & r;
return q;

end ftable_double;

procedure ftable_quad (
---- moods inline
a: in u_sign32;
g_out: outu_sign32
)is
constant ftabletab : rom_tab_5 :=
-- moods rom

(
-- Hex(C6,63,63,A5), Hex(F8,7C,7C,84), Hex(EE,77,77,99), Hex(F6,7B,78,8D)
"11000110011000110110001110100101", "11111000011111000111110010000100",
"11101110011101110111011110011001*, "11110110011110110111101110001101",
- Hex(FF,F2,F2,0D), Hex(D6,6B,6B,BD), Hex(DE,6F 6F,B1), Hex(91,C5,C5,54)
"11111111111100101111001000001101", "11010110011010110110101110111101",
"11011110011011110110111110110001", “10010001110001011100010101010100",
-- Hex(60,30,30,50), Hex(02,01,01,03), Hex(CE,67,67,A9), Hex(56,2B,2B,7D)
"01100000001100000011000001010000", "00000010000000010000000100000011",
"11001110011001110110011110101001", *01010110001010110010101101111101",
- Hex(E7,FE,FE,19), Hex(B5,D7,D7,62), Hex(4D,AB,AB,EB), Hex(EC,76,76,9A)
"11100111111111101111111000011001", “10110101110101111101011101100010",
"01001101101010111010101111100110", "11101100011101100111011010011010",
- Hex(8F,CA,CA 45), Hex(1F,82,82,9D), Hex(89,C9,C9,40), Hex(FA,7D,7D,
"10001111110010101100101001000101", "00011111100000101000001010011104",
"10001001110010011100100101000000", "11111010011111010111110110000111",
-- Hex(EF,FA,FA,15), Hex(B2,59,59,EB), Hex(8E,47,47,C9), Hex(FB,F0,F0,0B)
"11101111111110101111101000010101*, "10110010010110010101100111101011",
“10001110010001110100011111001001", “11111011111100001111000000001011",
- Hex(41,AD,AD,EC), Hex(B3,D4,D4,67), Hex(5F ,A2,A2,FD), Hex(45,AF AF EA)
"01000001101011011010110111101100", “10110011110101001101010001100111",
"01011111101000101010001011111101", "01000101101011111010111111101010",
- Hex(23,9C,9C,BF), Hex(53,A4,A4,F7), Hex(E4,72,72,96), Hex(9B,C0,C0,5B)
"00100011100111001001110010111111", "01010011101001001010010011110111",
"11100100011100100111001010010110", "10011011110000001100000001011011",

T.B.

Yee, 2007 Appendix D: VHDL code listings 35

- Hex(75,B7,B7,C2), Hex(E1,FD,FD,1C), Hex(3D,93,93 AE), Hex(4C,26,26,6A)
"01110101101101111011011111000010", "11100001111111011111110100011100",
'00111101100100111001001110101110", "01001100001001100010011001101010",
-- Hex(6C,36,36,5A), Hex(7E,3F,3F,41), Hex(F5,F7,F7,02), Hex(83,CC,CC 4F)
"01101100001101100011011001011010", "01111110001111110011111101000001",
'11110101111101111111011100000010", "10000011110011001100110001001111",
- Hex(68,34,34,5C), Hex(51,A5,A5,F4), Hex(D1,E5,E5,34), Hex(F9,F1,F1,08)
"01101000001101000011010001011100", "01010001101001011010010111110100",
"11010001111001011110010100110100", “11111001111100011111000100001000",
- Hex(E2,71,71,93), Hex(AB,D8,D8,73), Hex(62,31,31,53), Hex(2A,15,15,3F)
"11100010011100010111000110010011", “10101011110110001101100001110011",
"01100010001100010011000101010011", "00101010000101010001010100111111",
- Hex(08,04,04,0C), Hex(95,C7,C7,52), Hex(46,23,23,65), Hex(9D,C3,C3,5E)
"00001000000001000000010000001100", *10010101110001111100011101010010",
"01000110001000110010001101100101", "10011101110000111100001101011110",
- Hex(30,18,18,28), Hex(37,96,96,A1), Hex(0A,05,05,0F), Hex(2F,9A,9A B5)
"00110000000110000001100000101000", "00110111100101101001011010100001",
'00001010000001010000010100001111", "00101111100110101001101010110101",
- Hex(0E,07,07,09), Hex(24,12,12,36), Hex(1B,80,80,9B), Hex(DF ,E2 E2,3D)
"00001110000001110000011100001001", "00100100000100100001001000110110",
'00011011100000001000000010011011", "11011111111000101110001000111101",
-- Hex(CD,EB,EB,26), Hex(4E,27,27,69), Hex(7F,B2,B2,CD), Hex(EA,75,75,9F)
"11001101111010111110101100100110", “01001110001001110010011101101001",
'01111111101100101011001011001101", "11101010011101010111010110011111",
- Hex(12,09,09,1B), Hex(1D,83,83,9E), Hex(58,2C 2C,74), Hex(34,1A 1A 2E)
"00010010000010010000100100011011", "00011101100000111000001110011110",
'01011000001011000010110001110100", “00110100000110100001101000101110",
- Hex(36,1B,1B,2D), Hex(DC,6E,6E,B2), Hex(B4,5A,5A,EE), Hex(5B,A0,A0,FB)
"00110110000110110001101100101101", "11011100011011100110111010110010",
'10110100010110100101101011101110", "01011011101000001010000011111011",
- Hex(A4,52,52,F6), Hex(76,3B,3B,4D), Hex(B7,D6,D6,61), Hex(7D,B3,B3,CE)
"10100100010100100101001011110110", "01110110001110110011101101001101",
'10110111110101101101011001100001", "01111101101100111011001111001110",
- Hex(52,29,29,7B), Hex(DD,E3,E3,3E), Hex(5E,2F 2F,71), Hex(13,84,84,97)
"01010010001010010010100101111011", “11011101111000111110001100111110",
"01011110001011110010111101110001", "00010011100001001000010010010111",
- Hex(AB,53,53,F5), Hex(B9,D1,D1,68), Hex(00,00,00,00), Hex(C1,ED,ED,2C)
"10100110010100110101001111110101", "10111001110100011101000101101000",
'00000000000000000000000000000000", "11000001111011011110110100101100",
- Hex(40,20,20,60), Hex(E3,FC,FC,1F), Hex(79,B1,B1,C8), Hex(B6,5B,5B,ED)
"01000000001000000010000001100000", "11100011111111001111110000011111",
'01111001101100011011000111001000", “10110110010110110101101111101101",
- Hex(D4,6A,6A,BE), Hex(8D,CB,CB,46), Hex(67,BE,BE,D9), Hex(72,39,39,4B)
"11010100011010100110101010111110", "10001101110010111100101101000110",
'01100111101111101011111011011001", "01110010001110010011100101001011",
-- Hex(94,4A,4A,DE), Hex(98,4C,4C,D4), Hex(B0,58,58,E8), Hex(85,CF,CF 4A)
"10010100010010100100101011011110", "10011000010011000100110011010100",
'10110000010110000101100011101000", "10000101110011111100111101001010",
-- Hex(BB,D0,D0,6B), Hex(C5,EF,EF,2A), Hex(4F,AA,AA E5), Hex(ED,FB,FB, 16),
"10111011110100001101000001101011", *11000101111011111110111100101010",
'01001111101010101010101011100101", "11101101111110111111101100010110",
- Hex(86,43,43,C5), Hex(9A,4D,4D,D7), Hex(66,33,33,55), Hex(11,85,85,94)
"10000110010000110100001111000101", "10011010010011010100110111010111",
'01100110001100110011001101010101", "00010001100001011000010110010100",
- Hex(8A,45,45,CF), Hex(E9,F9,F9,10), Hex(04,02,02,06), Hex(FE,7F,7F 81)
"10001010010001010100010111001111", "11101001111110011111100100010000",
"00000100000000100000001000000110", *11111110011111110111111110000001",
- Hex(A0,50,50,F0), Hex(78,3C,3C,44), Hex(25,9F 9F BA), Hex(4B,A8,A8,E3)
"10100000010100000101000011110000", “01111000001111000011110001000100",
'00100101100111111001111110111010", "01001011101010001010100011100011",
- Hex(A2,51,51,F3), Hex(5D,A3,A3,FE), Hex(80,40,40,C0), Hex(05,8F ,8F ,8A)
"10100010010100010101000111110011", "01011101101000111010001111111110",
"10000000010000000100000011000000", "00000101100011111000111110001010",

T.B. Yee, 2007 Appendix D: VHDL code listings

- Hex(3F,92,92,AD), Hex(21,9D,9D,BC), Hex(70,38,38,48), Hex(F1,F 5,F5,04)
"00111111100100101001001010101101", “00100001100111011001110110111100",
“01110000001110000011100001001000", "11110001111101011111010100000100",
- Hex(63,BC,BC,DF), Hex(77,86,86,C1), Hex(AF,DA,DA, 75), Hex(42,21,21,63)
"01100011101111001011110011011111*, "01110111101101101011011011000001",
“10101111110110101101101001110101*, “01000010001000010010000101100011",
- Hex(20,10,10,30), Hex(E5,FF FF 1A), Hex(FD,F3,F3,0E), Hex(BF,D2,D2,6D)
"00100000000100000001000000110000", "11100101111111111111111100011010",
"11111101111100111111001100001110", "10111111110100101101001001101101",
- Hex(81,CD,CD,4C), Hex(18,0C,0C, 14), Hex(26,13,13,35), Hex(C3,EC,EC,2F)
"10000001110011011100110101001100", "0001100000001 10000001 10000010100,
“00100110000100110001001100110101, *11000011111011001110110000101111",
- Hex(BE,5F 5F E1), Hex(35,97,97,A2), Hex(88,44,44,CC), Hex(2E,17,17,39)
"10111110010111110101111111100001", "00110101100101111001011110100010",
"10001000010001000100010011001100", "00101110000101110001011100111001",
- Hex(93,C4,C4,57), Hex(55,A7,A7,F2), Hex(FC,7E,7E,82), Hex(7A,3D,3D,47)
"10010011110001001100010001010111", "01010101101001111010011111110010",
"11111100011111100111111010000010", "01111010001111010011110101000111",
— Hex(C8,64,64,AC), Hex(BA,5D,5D,E7), Hex(32,19,19,2B), Hex(E6,73,73,95)
"11001000011001000110010010101100", "10111010010111010101110111100111",
“00110010000110010001100100101011", "11100110011100110111001110010101",
— Hex(C0,60,60,A0), Hex(19,81,81,98), Hex(9E 4F 4F,D1), Hex(A3,DC,DC,7F)
"11000000011000000110000010100000", "00011001100000011000000110011000",
“10011110010011110100111111010001", "10100011110111001101110001111111",
— Hex(44,22,22 66), Hex(54,2A 2A 7E), Hex(3B,90,90,AB), Hex(0B,88,88,83)
"01000100001000100010001001100110", "01010100001010100010101001111110",
"00111011100100001001000010101011", “00001011100010001000100010000011",
— Hex(8C,46,46,CA), Hex(C7,EE,EE,29), Hex(6B,B8,88,D3), Hex(28,14,14,3C)
"10001100010001100100011011001010", “11000111111011101110111000101001",
"01101011101110001011100011010011", "00101000000101000001010000111100",
- Hex(A7,DE,DE,79), Hex(BC,5E,5E,E2), Hex(16,0B,0B,1D), Hex(AD,DB,DB,76)
"10100111110111101101111001111001", "10111100010111100101111011100010",
"00010110000010110000101100011101", "10101101110110111101101101110110",
- Hex(DB,E0,E0,3B), Hex(64,32,32,56), Hex(74,3A,3A,4E), Hex(14,0A,0A,1E)
"11011011111000001110000000111011", "01100100001100100011001001010110",
"01110100001110100011101001001110", "00010100000010100000101000011110",
- Hex(92,49,49,DB), Hex(0C,06,08,0A), Hex(48,24,24,6C), Hex(B8,5C,5C,E4)
“10010010010010010100100111011011", "00001100000001100000011000001010",
"01001000001001000010010001101100", "10111000010111000101110011100100",
- Hex(9F,C2,C2,5D), Hex(BD,D3,D3,6E), Hex(43,AC,AC,EF), Hex(C4,62,62,A8)
"10011111110000101100001001011101", "10111101110100111101001101101110",
"01000011101011001010110011101111", "11000100011000100110001010100110",
— Hex(39,91,91,A8), Hex(31,95,95,A4), Hex(D3,E4,E4,37), Hex(F2,79,79,8B)
“00111001100100011001000110101000", "00110001100101011001010110100100",
"11010011111001001110010000110111", "11110010011110010111100110001011",
- Hex(D5,E7,E7,32), Hex(8B,C8,C8,43), Hex(6E,37,37,59), Hex(DA,6D,6D,B7)
"11010101111001111110011100110010", "10001011110010001100100001000011",
"01101110001101110011011101011001", "11011010011011010110110110110111",
-- Hex(01,8D,8D,8C), Hex(B1,D5,D5,64), Hex(9C,4E,4E,D2), Hex(49,A9,A9,E0)
"00000001100011011000110110001100", "10110001110101011101010101100100",
"10011100010011100100111011010010", "01001001101010011010100111100000",
- Hex(D8,6C,6C,B4), Hex(AC,56,56,FA), Hex(F3,F4,F4,07), Hex(CF,EA,EA,25)
"11011000011011000110110010110100", "10101100010101100101011011111010",
"11110011111101001111010000000111", "11001111111010101110101000100101",
- Hex(CA,65,65,AF), Hex(F4,7A,7A,8E), Hex(47,AE AE,E9), Hex(10,08,08,18)
“11001010011001010110010110101111", "11110100011110100111101010001110",
"01000111101011101010111011101001", "00010000000010000000100000011000",
- Hex(6F,BA,BA,D5), Hex(F0,78,78,88), Hex(4A,25,25,6F), Hex(5C,2E,2E,72)
"01101111101110101011101011010101", "11110000011110000111100010001000",
"01001010001001010010010101101111", "01011100001011100010111001110010",
- Hex(38,1C,1C,24), Hex(57,A6,A8,F1), Hex(73,84,B4,C7), Hex(97,C6,C8,51)
“00111000000111000001110000100100", "01010111101001101010011011110001",
"01110011101101001011010011000111", "10010111110001101100011001010001",

T.B. Yee, 2007 Appendix D: VHDL code listings

2

55

-- Hex(CB,E8,E8,23), Hex(A1,DD,DD,7C), Hex(E8,74,74,9C), Hex(3E,1F 1F 21)
"11001011111010001110100000100011", "10100001110111011101110101111100",
“11101000011101000111010010011100", "00111110000111110001111100100001",
-- Hex(96,4B,4B,DD), Hex(61,BD,BD,DC), Hex(0D,8B,8B,86), Hex(0OF,8A ,8A ,85)
"10010110010010110100101111011101", "01100001101111011011110111011100",
"00001101100010111000101110000110", "00001111100010101000101010000101",
-- Hex(E0,70,70,90), Hex(7C,3E,3E,42), Hex(71,B5,B5,C4), Hex(CC,66,66,AA)
"11100000011100000111000010010000", "01111100001111100011111001000010",
"01110001101101011011010111000100", "11001100011001100110011010101010",
-- Hex(90,48,48,D8), Hex(06,03,03,05), Hex(F7,F6,F6,01), Hex(1C,0E,0E,12)
"10010000010010000100100011011000", "00000110000000110000001100000101",
"11110111111101101111011000000001", "00011100000011100000111000010010",
-- Hex(C2,61,61,A3), Hex(BA,35,35,5F), Hex(AE,57,57,F9), Hex(69,B9,B9,D0)
*11000010011000010110000110100011", "01101010001101010011010101011111",
"10101110010101110101011111111001", "01101001101110011011100111010000",
-- Hex(17,86,86,91), Hex(99,C1,C1,58), Hex(3A,1D,1D,27), Hex(27,9E,9E,B9)
"00010111100001101000011010010001", "10011001110000011100000101011000",
"00111010000111010001110100100111", "00100111100111101001111010111001",
-- Hex(D9,E1,E1,38), Hex(EB,F8,F8,13), Hex(2B,98,98,B3), Hex(22,11,11,33)
"11011001111000011110000100111000", "11101011111110001111100000010011",
"00101011100110001001100010110011", "001000100C0100010001000100110011",
-- Hex(D2,69,69,BB), Hex(A9,D9,D9,70), Hex(07,8E,8E,89), Hex(33,94,94 A7)
"11010010011010010110100110111011", "10101001110110011101100101110000",
"00000111100011101000111010001001", "00110011100101001001010010100111",
-- Hex(2D,9B,2B,B6), Hex(3C,1E,1E,22), Hex(15,87,87,92), Hex(C9,E9,E9,20)
"00101101100110111001101110110110", "00111100000111100001111000100010",
"00010101100001111000011110010010", "11001001111010011110100100100000",
-- Hex(87,CE,CE 49), Hex(AA,55,55,FF), Hex(50,28,28,78), Hex(A5,DF,DF 7A)
"10000111110011101100111001001001", “10101010010101010101010111111111",
"01010000001010000010100001111000", "10100101110111111101111101111010",
-- Hex(03,8C,8C,8F), Hex(59,A1,A1,F8), Hex(09,89,89,80), Hex(1A,0D,0D,17)
"00000011100011001000110010001111", "01011001101000011010000111111000",
"00001001100010011000100110000000", "00011010000011010000110100010111",
-- Hex(65,BF BF ,DA), Hex(D7,E6,E6,31), Hex(84,42,42,C6), Hex(D0,68,68,B8)
"01100101101111111011111111011010", "11010111111001101110011000110001",
"10000100010000100100001011000110", "11010000011010000110100010111000",
-- Hex(82,41,41,C3), Hex(29,99,99,B0), Hex(5A,2D,2D,77), Hex(1E,0F ,0F,11)
"10000010010000010100000111000011", "00101001100110011001100110110000",
"01011010001011010010110101110111", "00011110000011110000111100010001",
-- Hex(7B,B0,B0,CB), Hex(A8,54,54,FC), Hex(6D,BB,BB,D6), Hex(2C,16,16,3A)
*01111011101100001011000011001011", "10101000010101000101010011111100",
"01101101101110111011101111010110", "00101100000101100001011000111010"
)
variable r, s, t, u: u_sign32;
begin

r .= ftabletab(to_integer(a(1 to 8)));

s := ftabletab(to_integer(a(® to 16)));

t = ftabletab(to_integer(a(17 to 24)));

u := ftabletab(to_integer(a(25 to 32)));

g_out(1to 32):= (r(1 to 8) xor s(25 to 32) xor t(17 to 24) xor u(9 to 16)) &
(r(9 to 16) xor s(1 to 8) xor t(25 to 32) xor u(17 to 24)) &
(r(17 to 24) xor s(9 to 16) xor t(1 to 8) xor u(25 to 32)) &
(r(25 to 32) xor s(17 to 24) xor (9 to 18) xor u(1 to 8));
end ftable_quad,
end encryption_tables;

Figure D-15 VHDL package for 256-bit AES example

T.B. Yee, 2007 Appendix D: VHDL code listings

56

B e s L

- 256-Bit AES --

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.aes_procedures.all;

use work.encryption_tables.all;

entity aes256 is

pory(
key, d_block: in u_sign32;
in_hs_rdy: in unsigned(0 downto 0);
in_hs_rcv: buffer unsigned(0 downto 0) :="0";
ciphertext: out u_sign32;
out_hs_rdy: buffer unsigned(0 downto 0):= "0";
out_hs_rcv: in unsigned(0 downto 0)

)i
end aes256;

architecture behaviour of aes256 is
begin
process

variable bb, cc, dd, ee, ff, temp_vec1, temp_vec2: u_sign32;
--variable transition_state, temp_transition_state : tab_a4,
variable transition_state, temp_transition_state : u_sign128;
variable i: unsigned(6 downto 0} := "0000000";

variable j. unsigned(4 downto 0) := "00000",

variable fkey : tab_64;
-- moods ram
variable temp1, temp2, temp3, keyloop: unsigned(6 downto 0) :="0000000";
variable index1, index2, index3 : unsigned(1 downto 0) :="00";
begin

for keyloop1 in O to 7 loop
while(in_hs_rdy = in_hs_rcv) loop
wait for 10 ns;
end loop;
fkey(keyloop1) := key;
case keyloop1 is
when 0 =>
temp_transition_state(1 to 32) :=d_block;
when 1 =>
temp_transition_state(33 to 64) :=d_block;
when 2 =>
temp_transition_state(65 to 96) :=d_block;
when 3 =>
temp_transition_state(97 to 128) := d_block;
when others => NULL,
end case;

in_hs_rcv <= not in_hs_rov;,
wait for 10 ns;
end loop;
-- For AES-256 (Nk=8, Nr=14)
-- For 256-bit : Nb * (Nr +1) =4*15 =60 ("0111100")
-- For 192-bit : =4*13 =52 ("0110100")
-- For 128-bit : =4*11 =44 ("0101100")

"0001000": -- start off with the value of Nk, in this case = 8
"00000"; -- round counter

i:
j:

T.B. Yee, 2007 Appendix D: VHDL code listings

while(i < "0111100") loop —-i<Nb*(Nr+1)
temp1 :=i-"0000001";
wait for 10 ns;

bb:= fkey(to_integer(temp1(5 downto 0)));

r_oneto8(bb, dd); -- RotWord(wl[i-11)

temp_vect(1 to 32):= fbsub_quad(dd(1 to 32)); -- SubWord(RotWord(wli-1}))

rco(j, cc); -- Reon

temp1 :=i-"0001000"

fkey(to_integer(i(5 downto 0))) := fkey(to_integer(temp1(5 downto 0))) xor temp_vec1(1 to 32) xor
cc, -- wli-Nk] xor SubWord xor Rcon

keyloop :="0000001";
while keyloop /= "0000100" loop
----moods unroll
if (keyloop +i<"0111100") then
temp1 := keyloop + i - "0001000";
temp2 := keyloop + i - "0000001";
temp3 := keyloop + i
fkey(to_integer(temp3(5 downto 0))) := fkey(to_integer(temp1(5 downto 0))) xor
fkey(to_integer(temp2(5 downto 0))); -- w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";
end loop;

if(i + "0000100" < "0111100") then
temp1 := i+ "0000011";
cc := fkey(to_integer(temp1(5 downto 0)));
temp_vec1(1to 32):= fbsub_quad(cc(1 to 32)); -- SubWord(RotWord(w(i-1]))

temp2 :=i-"0000100";
temp3 =i+ "0000100";
fkey(to_integer(temp3(5 downto 0))):= fkey(to_integer(temp2(5 downto 0))) xor
temp_vec1(1 to 32);
end if;

keyloop :="0000101";
while keyloop /= "0001000" loop
----moods unroll
if(keyloop +i<"0111100") then
temp1 := keyloop + i - "0001000",
temp2 := keyloop + i - "0000001";
temp3 := keyloop + i;
fkey(to_integer(temp3(5 downto 0))) := fkey(to_integer(temp1(5 downto 0))) xor
fkey(to_integer(temp2(5 downto 0))); -- w[i] = w[i-NKk] xor temp
end if;
keyloop := keyloop + "0000001";
end loop;

i =i+ "0001000"; -- increment by Nk

j:=j+"00001";
end loop;
= First Round === —mm===..
transition_state(1 to 32) := fkey(0) xor temp_transition_state(1 to 32); -- AddRoundKey

transition_state(33 to 64) ;= fkey(1) xor temp_transition_state(33 to 64);
transition_state(65 to 96) ;= fkey(2) xor temp_transition_state(65 to 96);
transition_state(97 to 128) := fkey(3) xor temp_{ransition_state(97 to 128);

dekd Fodedd kkedodedk kdokd e R dododok gk ok ek ok dokek ek kkek ok ek ok ke k

i :="0000100"; -- start off with the 4th key, 3 used in the first round

T.B. Yee, 2007 Appendix D: VHDL code listings

for EnclL.oop2 in 1 to 13 loop -- For AES-256 (Nk=8, Nr=14)

for Encl.oop3 in 0 to 3 loop
bb := fkey(to_integer(i(5 downto 0)));

case EnclLoop3 is
when 0 =>
temp_vec1(1 to 32) := transition_state(1 to 8) & transition_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);

ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transition_state(1 to 32) := bb(1 to 32) xor cc(1 to 32);
when 1 =>

temp_vec1(1 to 32) := transition_state(33 to 40) & transition_state(73 to 80) &
transition_state(113 to 120) & transition_state(25 to 32);

ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transition_state(33 to 64) := bb(1 to 32) xor cc(1 to 32);
when 2 =>

temp_vec1(1 to 32) := transition_state(65 to 72) & transition_state(105 to 112) &
transition_state(17 to 24) & transition_state(57 to 64);

ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transition_state(65 to 96) := bb(1 to 32) xor cc(1 to 32);
when 3 =>

temp_vec1(1 to 32) ;= transition_state(97 to 104) & transition_state(9 to 16) &
transition_state(49 to 56) & transition_state(89 to 96);

ftable_quad(temp_vec1, cc); -- Retrieve values from Forward Tables
temp_transition_state(97 to 128) := bb(1 to 32) xor cc(1 to 32);

when others => NULL;

end case;

i =i+ "0000001";

end loop;

transition_state(1 to 128) := temp_transition_state(1 to 128);
end loop;

== | ast Round ==============z=======z=====

for Encl.oop5 in 0 to 3 loop
bb := fkey(to_integer(i(5 downto 0)));

case Encloop5 is
when 0 =>
temp_vec1(1 to 32) := transition_state(1 to 8) & transition_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);

dd(1 to 32):= fbsub_quad(temp_vec1); - wli-1] = SubWord(w[i-1})
temp_transition_state(1 to 32) := bb(1 to 32) xor dd(1 to 32); -- AddRoundKey
when 1 =>

temp_vec1(1 to 32) = transition_state(33 to 40) & transition_state(73 to 80) &
transition_state(113 to 120) & transition_state(25 to 32);

dd(1 to 32):= fbsub_quad(temp_vect); -~ W[i-1] = SubWord(w[i-1])
temp_transition_state(33 to 64) := bb(1 to 32) xor dd(1 to 32); -- AddRoundKey
when 2 =>

temp_vec1(1 to 32) = transition_state(65 to 72) & transition_state(105 to 112) &
transition_state(17 to 24) & transition_state(57 to 64);

dd(1 to 32):= fbsub_quad(temp_vec1), -- wli-1] = SubWord(w[i-1])
temp_transition_state(65 to 98) := bb(1 to 32) xor dd(1 to 32); -- AddRoundKey
when 3 =>

temp_vec1(1 to 32) := transition_state(97 to 104) & transition_state(9 to 16) &
transition_state(49 to 56) & transition_state(89 to 96);

dd(1 to 32):= fbsub_quad(temp_vect), -- wli-1] = SubWord(w[i-1])
temp_transition_state(97 to 128) := bb(1 to 32) xor dd(1 to 32); -- AddRoundKey

when others => NULL.;

end case;

i =i+ "0000001"

end loop;

T.B. Yee, 2007 Appendix D: VHDL code listings 359

for EncLoop6 in 0 to 3 loop

while{out_hs_rdy /= out_hs_rcv) loop

wait for 10 ns;
end loop;
case EnclLoop6 is
when 0 =>

ciphertext <= temp_transition_state(1 to 32);
when 1 =>

ciphertext <= temp_transition_state(33 to 64);
when 2 =>

ciphertext <= temp_transition_state(65 to 96);
when 3 =>

ciphertext <= temp_transition_state(97 to 128);
when others => NULL,;
end case;

out_hs_rdy <= not out_hs_rdy;
wait for 10 ns;
end loop;
end process;
end behaviour;

Figure D-16 VHDL of 256-Bit AES example

The post-MOODS synthesis simulation of the non-pipelined multi-FPGA 256-bit AES
example is given in Figure D-17. Zoom in views of the simulation showing inputs and
outputs updates are given in Figure D-18. The simulation input values (shown in

hexadecimals) are taken from the appendix (C.3 AES-256) of the AES specification [146]:
Input plaintext (d_block) values: 00112233, 44556677, 8899AABB, CCDDEEFF.

Key: 00010203, 04050607, 08090A0B, 0CODOEOF, 10111213, 14151617, 18191A1B,
IC1DIEIF.

The output ciphertext is: SEA2B7CA, 516745BF, EAFC4990, 4B496089.

With a system clock period of 200 ns, the non-pipelined multi-FPGA 256-bit AES takes
5257 clock cycles (i.e. clock cycles = (1055500 ns - 4100 ns) / 200 ns) to process the 128-
bit data block using a 256-bit cipher key.

T.B. Yee, 2007

Appendix D: VHDL code listings

Figure D-17 Simulation of the non-pipelined multi-FPGA 256-bit AES core

S
7.}
] |
|
|
o |
i
{

AR AXAARNN WAR ARAN

2 1055500 ns

of

x5

361

Appendix D: VHDL code listings

T.B. Yee, 2007

=

lLEE\.)

[3
St

1 B HAHlI|!IDm!|]|L\1|I ﬂ|1\|¥lr.|!|ﬂu B

o
['8
&

9G2-S3V VOdIn

&
AN AAANANAN WAAN AAAN

“ "AWAAAARAN WAAR WAARAN

zoom in views) of the non-pipelined multi-FPGA

Figure D-18 Simulation (

256-bit AES core

T.B. Yee, 2007 Appendix D: VHDL code listings 362

D.2 Behavioural pipelined VHDL examples

The three behavioural pipelined VHDL examples given in this section are used in
experiments (with explicit communication channels) described in Section 6.3. All the
VHDL packages which contain the definitions of constants, types, signals, functions, and
procedures are similar to the non-pipelined implementation and they are found in the
previous section. The explicit communication channel VHDL package used by all the

pipelined VHDL examples in this section is given in Figure D-19.

library ieee;

use ieee.std_logic_1164.all;

package channel_package is
subtype semaphore is std_logic_vector(0 downto 0);
subtype int8 is integer range 0 to 255;
subtype channel_sem is std_logic_vector(0 downto 0);
subtype channel_ack is std_logic_vector(0 downto 0);

-- initialise channel semaphore

procedure init(signal sem: out channel_sem); -- channel semaphore

-- send data

procedure send(signal sem: out channel_sem; -- channel send semaphore
signal ack: in channel_ack; -- channel send acknowledge
signal chan_data: out std_logic_vector; -- channel send data
d: in std_logic_vector); -- data to send

-- recv data

procedure recv(signal sem: out channel_sem; -- channel receive semaphore
signal ack: in channel_ack; -- channel receive acknowledge
signal chan_data: in std_logic_vector; -- channel receive data
d: out std_logic_vector); -- data received

function ch_send(d: std_logic_vector; signal chan_sem_in: semaphore; signal chan_sem_out:
semaphore) return std_logic_vector;
-- moods map ch_send u:* u:1 u:1 u:%1

function ch_recv(signal chan_data: std_logic_vector; signal chan_sem_in: semaphore; signal
chan_sem_out: semaphore) return std_logic_vector;
-- moods map ch_recv u:* u:1 u:1 u:%1

function ch_init(signal chan_sem_in: semaphore) return semaphore;
-- moods map ch_init u:1 u:1

-- channel component
component channel
generic (width: positive := 1); -- width of channel data
port (send_sem: in channel_sem; -- send semaphore

T.B. Yee, 2007 Appendix D: VHDL code listings

(S

procedure send(signal sem: out channel_sem; signal ack: in channel_ack; signal chan_data: out
std_logic_vector; d: in std_logic_vector) is
-- moods inline
begin
chan_data <= ch_send(d,ack,sem);
end procedure send,;

procedure recv(signal sem: out channel_sem; signal ack: in channel_ack; signal chan_data: in
std_logic_vector; d: out std_logic_vector) is
-- moods inline
begin
d := ch_recv(chan_data, ack, sem);
end;

procedure init(signal sem: out channel_sem) is
-- moods inline
variable init_sig ;: channel_sem :="0";
begin
--sem <= ch_init("0");
sem <= init_sig;
end;

function ch_send(d: std_logic_vector; signal chan_sem_in: semaphore; signal chan_sem_out:
semaphore) return std_logic_vector is
-- moods map ch_send u:* u:t .1 u:%1
begin
return d;
end;

function ch_recv(signal chan_data: std_logic_vector; signal chan_sem_in: semaphore; signal
chan_sem_out: semaphore) return std_logic_vector is

-- moods map ch_recv u:* u:1 u:1 u:%1

begin

return chan_data;

end;
function ch_init(signal chan_sem_in: semaphore) return semaphore is

-- moods map ch_init u:1 u:1

begin

return "0";

end;
end package body channel_package;

Figure D-19 VHDL package of the explicit communication channel

(V8]

T.B. Yee, 2007 Appendix D: VHDL code listings

D.2.1 Pipelined quadratic equation solver

The pipelined quadratic equation solver is a two-stage pipelined version of the quadratic

64

equation solver given in Section 6.2.1. The behavioural VHDL of the pipelined quadratic

equation solver example is given in Figure D-20.

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.c_types.all;

use work.algeqgn_package.all;
use work.imath.all;

use work.channel_package.all;

entity pipe_quad is
port
al,a2,a3: in int;
x1,x2: out int;
no_real: out int
)
end pipe_quad,;
architecture behaviour of pipe_quad is
signal c1_send_sem, ¢1_recv_sem: channel_sem := "0";
signal c1_send_ack, c1_recv_ack: channel_ack :="0";
signal c1_send_data, c1_recv_data: std_logic_vector(95 downto 0) := (others=>'0");
begin
-~ Explicit communication channel
c1: entity work.SIMPLE_CHANNEL generic map (96)
port map(c1_send_sem, c1_recv_sem, c1_send_data, c1_send_ack, c1_recv_ack, c1_recv_data);

Prs_1: process -- Process module p_MOD_1
variable temp1 : std_logic_vector(95 downto 0);
variable b1: int := X"00000000";
variable b2: int ;= X"00000000";
variable b3: int := X"00000000";
variable d1,d2: int;
begin
init(c1_send_sem);
forever: loop

b1:=a1;
b2 = a2;
b3 .= a3;

d1 := sqi(b2) - multi(multi(to_int(4),b1),b3);

d2 ;= multi(b1,to_int(2));

temp1 := std_logic_vector(b2 & d2 & d1);
send(c1_send_sem, c1_send_ack, c1_send_data, temp1);
wait for 40 ns;

end loop;

end process Prs_1;

Prs_2: process -- Process module p_MOD_2
variable temp2 : std_logic_vector(95 downto 0);
variable e1: int ;= X"00000000";
variable e2: int := X"00000000";
variable rd: int;
variable f1: int;
begin
init(c1_recv_sem);

T.B. Yee, 2007 Appendix D: VHDL code listings 365

forever: loop
recv(c1_recv_sem, c1_recv_ack, ¢1_recv_data, temp2);
e1 := int(temp2(31 downto 0));
e2 := int(temp2(63 downto 32));
f1 := int(temp2(95 downto 64));

if(e1 < 0) then
no_real <= to_int(0);

else
rd ;= sqrti(e);
x1 <= sdivi((-f1 + rd),e2);
x2 <= sdivi((-f1 - rd),e2);
no_real <= to_int(2);

end if;

wait for 40 ns;

end loop;
end process Prs_2;
end behaviour;

Figure D-20 VHDL of pipelined quadratic equation solver

Figure D-21 shows the post-MOODS synthesis simulation of the two-stage pipelined
multi-FPGA quadratic equation solver. This two-device multi-FPGA implementation has a
single explicit communication channel (£xC I) connecting the pipeline stages. Integer
inputs al, a2, and a3 of the quadratic equation solver are given values 1, -25 and 150
respectively. Outputs x1, x2 and number of real numbers (no_real) are updated after 7660
ns. With a system clock period of 40 ns, the pipelined multi-FPGA quadratic equation
solver takes 189 clock cycles (i.e. clock cycles = (7660 ns -100 ns) / 40 ns) to complete the

application and output the result.

366

Appendix D: VHDL code listings

T.B. Yee, 2007

sba”pent) yud4-uu pougd:

WEAANNN WAN

dg

nw

Figure D-21 Simulation of the pipelined multi-FPGA quadratic equation

solver

T.B. Yee, 2007 Appendix D: VHDL code listings 367

D.2.2 Pipelined inverse discrete cosine transform

This second pipelined VHDL example is the two-stage pipelined version of the inverse
discrete cosine transform (IDCT) core given in Section 6.2.3. The behavioural VHDL of

the pipelined inverse discrete cosine transform example is given in Figure D-22.

library IEEE;

use |IEEE.std_logic_1164.all;
use [EEE.numeric_std.all;

use work.channel_package.all;
use work.idct_package.all;
entity pipe_Idct is

port (
in_hs_rdy: in unsigned(0 downto 0); -- Handshake ready
in_hs_recv: buffer unsigned(0 downto 0) := "0"; -- Handshake receive

dct_2d_in: in signed(11 downto 0);
idct_out: out signed(7 downto 0) := (others=>'0"); -- 8 bit output.

out_hs_rdy: buffer unsigned(0 downto 0) := "0"; -- Handshake ready
out_hs_rcv: in unsigned(0 downto 0); -- Handshake receive
sys_clock: in unsigned(0 downto 0);

--moods clock

sys_reset: in unsigned(0 downto 0)
--moods reset
)i

end pipe_ldct;

ARCHITECTURE behaviour of pipe_lIdct is
signal c1_send_sem, c1_recv_sem: channel_sem := "0";
signal ¢1_send_ack, ¢1_recv_ack: channel_ack :="0";
signal ¢1_send_data, c1_recv_data: std_logic_vector(10 downto 0) := (others=>'0");
-- memory section
type RAM_mem_type is array (0 to 63) of signed(10 downto 0);
begin

c1: entity work. SIMPLE_CHANNEL generic map (11) port map(¢1_send_sem, c1_recv_sem,
c1_send_data, c1_send_ack, c1_recv_ack, c1_recv_data);

Prs_1: process -- Process module p_MOD_1
-- IDCT_2 signals
variable xa0_reg, xa1_reg, xa2_reg, xa3_reg,
xa4_reg, xad5_reg, xab_reg, xa7_reg: signed(11 downto 0):= (others=>'0");
variable ID_input_cnt: unsigned(3 downto 0):= "0000";
variable z_out_int : signed(21 downto 0) := (others=>'0");
variable temp1 : std_logic_vector(10 downto 0);
variable cnt_64: unsigned(6 downto 0) := "0000000";
variable ID_index_i: unsigned(3 downto 0):= "0000";
begin
reset_loop: loop
in_hs_rcv <="0";
ID_input_cnt(3 downto 0) :="0000";
cnt_64 ;= "0000000",
ID_index_i ;= "0000";
wait until sys_clock'event and sys_clock = "1";
exit reset_loop when sys_reset = "1";
init(c1_send_sem);
main_loop: loop
while(cnt_64(6) = '0") loop

T.B. Yee, 2007 Appendix D: VHDL code listings

68

while(ID_input_cnt(3) = '0") loop

while(in_hs_rdy = in_hs_rcv) loop
wait until sys_clock'event and sys_clock ="1";

end loop;
case |D_input_cnt(2 downto 0) is
when "000" => xa0_reg := dct_2d_in;
when "001" => xal_reg := dct_2d_in;
when "010" => xa2_reg := dct_2d_in;
when "011" => xa3_reg = dct_2d_in;
when "100" => xa4_reg := dct_2d_in;
when "101" => xa5_reg := dct_2d_in;
when "110" => xab_reg := dct_2d_in;
when "111" => xa7_reg = dct_2d_in;
when others => NULL,;
end case;

in_hs_rcv <= not in_hs_rcv;
ID_input_cnt(3 downto 0) := ID_input_cnt(3 downto 0) + "0001";
wait until sys_clock'event and sys_clock ="1";

end loop;

while (ID_index_i /= "1000") loop
idet1_mult_add(ID_index_i(2 downto 0),xa0_reg,xa1_reg,xa2_reg,
xa3_reg,xa4_reg,xa5_reg,xab_reg,xa7_reg,z_out_int);

ID_index_i := ID_index_i + "0001";

if(z_out_int(20) ='0" and z_out_int(7) = '1") then

temp1 := std_logic_vector(z_out_int(18 downto 8) + to_signed(1,11));
else

temp1 := std_logic_vector(z_out_int(18 downto 8));
end if;

send(c1_send_sem, c1_send_ack, c1_send_data, temp1);
--wait until sys_clock'event and sys_clock = "1";
end loop;
ID_index_i := "0000";
cnt_64 := ¢nt_64 + "0000001";
end loop;
ID_input_cnt(3 downto 0) :="0000";
cnt_64 :="0000000";
wait until sys_clock'event and sys_clock = "1";
exit reset_loop when sys_reset = "1";
end loop;
end loop;
end process Prs_1;

Prs_2: process -- Process module p_MOD_2
- IDCT_2 signals
variable xb0_reg, xb1_reg, xb2_reg, xb3_reg,

variable temp2 : std_logic_vector(10 downto 0);
variable rcv_z_out : signed(10 downto 0) := (others=>'0");
variable ID_wr_cntr: unsigned(6 downto 0):= (others=>'0");
variable ID_rd_cntr: unsigned(3 downto 0):= (others=>'0");
variable ID_index_j: unsigned(3 downto 0):= "0000";
variable idct2d_int: signed(20 downto 0):= (others=>'0");
variable ID_ram1_mem: RAM_mem_type;
--moods ram
begin

reset_loop: loop

ID_wr_cntr := "0000000";

ID_rd_cntr := "0000";

xb4_reg, xb5_reg, xb6_reg, xb7_reg: signed(10 downto 0):= (others=>'0");

T.B. Yee, 2007 Appendix D: VHDL code listings

69

out_hs_rdy <="0"

idct2d_Int := (others=>'0");

ID_index_j := "0000";

wait until sys_clock'event and sys_clock = "1";
exit reset_loop when sys_reset ="1";
init(c1_recv_sem);

main_loop: loop

if(ID_wr_cntr(6) = '0") then
recv(c1_recv_sem, c1_recv_ack, c1_recv_data, temp2);
rcv_z_out := signed(temp?2);

ID_wr_cntr := ID_wr_cntr + "0000001";

else
while(ID_rd_cntr(3) = '0') loop

case ID_rd_cntr(2 downto 0) is
when "000" => xb0_reg := ID_ram1_mem(0);

xb1_reg :=ID_ram1_mem(8);

xb2_reg := ID_ram1_mem(16);
xb3_reg := ID_ram1_mem(24);
xb4_reg := ID_ram1_mem(32);
xb5_reg := ID_ram1_mem(40);
xb6_reg = ID_ram1_mem(48);
xb7_reg := ID_ram1_mem(56);

when "001" => xb0_reg := ID_ram1_mem(1);

xb1_reg := ID_ram1_mem(9);
xb2_reg := ID_ram1_mem(17);
xb3_reg :=ID_ram1_mem(25);
xb4_reg ;= ID_ram1_mem(33);
xb5_reg := ID_ram1_mem(41);
xb6_reg := ID_ram1_mem(49);

xb7_reg := ID_ram1_mem(57);
when "010" => xb0_reg := ID_ram1_mem(2);
xb1_reg := ID_ram1_mem(10);

xb2_reg = ID_ram1_mem(18);
xb3_reg ;= ID_ram1_mem(26);
xb4_reg := ID_ram1_mem(34);
xb5_reg ;= ID_ram1_mem(42);
xb6_reg := ID_ram1_mem(50);
xb7_reg = ID_ram1_mem(58);

when "011" => xb0_reg := ID_ram1_mem(3);

xb1_reg := ID_ram1_mem(11);
xb2_reg := ID_ram1_mem(19);
xb3_reg := ID_ram1_mem(27);
xb4_reg := ID_ram1_mem(35);
xb5_reg := ID_ram1_mem(43);
xb6_reg := ID_ram1_mem(51);

xb7_reg = ID_ram1_mem(59),
when "100" => xb0_reg := ID_ram1_mem(4);
xb1_reg = ID_ram1 mem(12)

xb2_reg = ID__ram1_mem(20)
xb3_reg ;= ID_ram1_mem(28);
xb4_reg = ID_ram1_mem(36);
xb5_reg := ID_ram1_mem(44);
xb6_reg := ID_ram1_mem(52);
xb7_reg := ID_ram1_mem(60);

when "101" => xb0_reg := ID_ram1_mem(5);

xb1_reg := ID_ram1_mem(13);
xb2_reg = ID_ram1_mem(21);
xb3_reg := ID_ram1_mem(29);
xb4_reg = ID_ram1_mem(37);
xb5_reg = ID_ram1_mem(45);
xb6_reg := ID_ram1_mem(53);

xb7_reg = ID_ram1_mem(61);

ID_ram1_mem(to_integer(ID_wr_cntr(5 downto 0))) := rcv_z_out;

T.B. Yee, 2007 Appendix D: VHDL code listings 370

when "110" => xb0_reg := ID_ram1_mem(6);
xb1_reg := ID_ram1_mem(14);

xb2_reg := |D_ram1_mem(22);
xb3_reg := ID_ram1_mem(30);
xb4_reg := ID_ram1_mem(38);
xb5_reg := ID_ram1_mem(46);
xb6_reg := ID_ram1_mem(54);
xb7_reg := 1D_ram1_mem(56);

when "111" => xb0_reg := ID_ram1_mem(7);

xb1_reg :=1D_ram1_mem(15);
xb2_reg := ID_ram1_mem(23);
xb3_reg = ID_ram1_mem(31);
xb4_reg := ID_ram1_mem(39);
xb5_reg := ID_ram1_mem(47);
xb6_reg = ID_ram1_mem(55);

xb7_reg :=ID_ram1_mem(63);
when others => NULL;
end case,

ID_rd_cntr(3 downto 0) := ID_rd_cnir(3 downto 0) + "0001";
while (ID_index_j /= "1000") loop
idct2_mult_add(ID_index_j(2 downto 0),xb0_reg,xb1_reg,xb2_reg,xb3_reg,
xb4_reg,xb5_reg xb6_reg,xb7_reg,idct2d_int);

while(out_hs_rdy /= out_hs_rcv) loop
wait until sys_clock'event and sys_clock ="1";
end loop;
idet_out <= signed(idct2d_int(15 downto 8));
out_hs_rdy <= not out_hs_rdy;
ID_index_j := ID_index_j + "0001";
end loop;
wait until sys_clock’event and sys_clock = "1";
end loop;
ID_index_j :="0000";
ID_wr_cntr(6 downto 0) := (others=>'0");
ID_rd_cntr(3 downto 0) := (others=>'0");
end if;

wait until sys_clock’event and sys_clock = "1";
exit reset_loop when sys_reset = "1";
end loop;
end loop;
end process Prs_2;

end behaviour,

Figure D-22 VHDL of pipelined inverse discrete cosine transform example

The post-MOODS synthesis simulation of the 2-stage pipelined multi-FPGA IDCT is
given in Figure D-23. Zoom in views of the simulation showing inputs and outputs
updates are given in Figure D-24. The pipelined multi-FPGA IDCT has a single explicit
communication channel (ExC) connecting the pipeline stages. With a system clock
period of 40 ns, the pipelined multi-FPGA IDCT takes 1167 clock cycles (i.e. clock cycles
= (47160 ns - 480 ns) / 40 ns) to complete the application.

371

Appendix D: VHDL code listings

T.B. Yee, 2007

M &
a

AARAAN AW

Figure D-23 Simulation of the pipelined multi-FPGA IDCT example

372

Appendix D: VHDL code listings

T.B. Yee, 2007

1201 veu

nn WARANANNNR WNN

[Tsupgizy [ziosmg

1201 Yod4-anw pauyad,

AR AANANAAN AN

example

Figure D-24 Simulation (zoom in views) of the pipelined multi-FPGA IDCT

T.B. Yee, 2007 Appendix D: VHDL code listings

(3]
(3]

D.2.3 Pipelined 256-bit advanced encryption standard

The last pipelined VHDL example is the two-stage pipelined version of the 256-bit

advanced encryption standard (AES) core given in Section 6.2.5. The behavioural VHDL

of the pipelined 256-bit AES core is given in Figure D-25.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.channel_package.all;

use work.aes_procedures.all;

use work.encryption_tables.all;

entity pipe_aes256 is

port(
key, d_block: in u_sign32;
in_hs_rdy: in unsigned(0 downto 0);
in_hs_rcv: buffer unsigned(0 downto 0) := "0";
ciphertext: out u_sign32;
out_hs_rdy: buffer unsigned(0 downto 0):= "0";
out_hs_rcv: in unsigned(0 downto 0)

)i
end pipe_aes256;

architecture behaviour of pipe_aes256 is

signal c1_send_sem, ¢1_recv_sem: channel_sem ;= "0";

signal c1_send_ack, ¢1_recv_ack: channel_ack := "0

signal c1_send_data, ¢1_recv_data: std_logic_vector(31 downto 0) := (others=>'0");

signal c2_send_sem, c2_recv_sem: channel_sem :="0";

signal c2_send_ack, ¢2_recv_ack: channel_ack := "0"

signal c2_send_data, c2_recv_data: std_logic_vector(31 downto 0) := (others=>'0);
begin

c1: entity work.SIMPLE_CHANNEL generic map (32) port map
(c1_send_sem, c¢1_recv_sem, c1_send_data, c1_send_ack, c1_recv_ack, c1_recv_data);

c2: entity work.SIMPLE_CHANNEL generic map (32) port map
(c2_send_sem, c2_recv_sem, c2_send_data, c2_send_ack, c2_recv_ack, c2_recv_data);

Prs_1: process —- Process module p_MOD_2
variable bb1, cc1, dd1, temp_vec1: u_sign32;
variable temp_t_state : u_sign128;
variable fkey : tab_64;
-- moods ram
variable temp1, temp3: std_logic_vector(31 downto 0);
variable i: unsigned(6 downto 0) := "0000000"; -- loop counters
variable j: unsigned(4 downto 0) := "00000"; -- loop counter
variable temp_a1, temp_a2, temp_a3, keyloop: unsigned(6 downto 0) :="0000000";

begin
init(c1_send_sem);
init(c2_send_sem);
forever: loop

T.B. Yee, 2007 Appendix D: VHDL code listings

74

for loopentt in O to 7 loop

while(in_hs_rdy = in_hs_rcv) loop
wait for 10 ns;

end loop;
fkey(loopcntl) = key;
case loopent1 is
when 0 => temp_t_state(1 to 32) :=d_block;
when 1 => temp_{_state(33 to 64) := d_block;
when 2 => temp_t_state(65 to 96) := d_block;
when 3 => temp_t_state(97 to 128) := d_block;
when others => NULL;
end case;

in_hs_rcv <= notin_hs_rcv;
wait for 10 ns;
end loop;
-- For AES-256 (Nk=8, Nr=14)
-~ For 256-bit : Nb* (Nr+1) =4*15 =60 ("0111100")

-- For 192-bit : =4*13 =52 ("0110100")
-- For 128-bit : =4*11 =44 ("0101100")
i :="0001000"; -- start off with the value of Nk, in this case = 8
j:="00000"; --round counter
while(i <"0111100") loop —i<Nb*(Nr+1)
temp_a1 :=i-"0000001";
wait for 10 ns;
---------------- i mod Nk = 0 ----mmeeeeeeen
bb1:= fkey(to_integer(temp_a1(5 downto 0)));
r_oneto8(bb1, dd1); -- RotWord(wli-1])
temp_vec1(1to 32):= fbsub_quad1(dd1(1to 32)); -- SubWord(RotWord(w[i-11))
rco(j, cc1); -- Rcon
temp_a1 :=i-"0001000";
fkey(to_integer(i(5 downto 0))) := fkey(to_integer(temp_a1(5 downto 0))) xor
temp_vec1(1 to 32) xor cc1; -- w[i-Nk] xor SubWord xor Rcon

keyloop := "0000001";
while keyloop /= "0000100" loop
----moods unroll
if (keyloop +i<"0111100") then
temp_a1 := keyloop + i - "0001000";
temp_aZ2 := keyloop + i - "0000001";
temp_a3 := keyloop +i;
fkey(to_integer(temp_a3(5 downto 0))) := fkey(to_integer(temp_a1(5 downto 0))) xor
fkey(to_integer(temp_a2(5 downto 0))); -- w[i] = w[i-Nk] xor temp
end if;
keyloop := keyloop + "0000001";
end loop;

if(i + "0000100" < "0111100") then
temp_a1 =i+ "0000011";
cc1 := fkey(to_integer(temp_a1(5 downto 0)));
temp_vec1(1to 32):= fbsub_quadi(cci1(1to 32)); -- SubWord(RotWord(wl[i-11))

temp_a2 :=i-"0000100";

temp_a3 =i+ "0000100"

fkey(to_integer(temp_a3(5 downto 0))):= fkey(to_integer(temp_a2(5 downto 0))) xor
temp_vec1(1 to 32); -- tkey

end if;

T.B. Yee, 2007 Appendix D: VHDL code listings

75

keyloop := "0000101";
while keyloop /= "0001000" loop
----moods unroll
if(keyloop + i < "0111100") then
temp_a1 := keyloop + i - "0001000";
temp_a2 := keyloop +i- "0000001";
temp_a3 := keyloop + i;
fkey(to_integer(temp_a3(5 downto 0))) := fkey(to_integer(temp_a1 (5 downto 0))) xor
fkey(to_integer(temp_a2(5 downto 0))); -- w[i] = wfi-Nk] xor temp
end if;
keyloop := keyloop + "0000001";
end loop;

i :=1i+"0001000"; -- increment by Nk
j:=]j+"00001"
end loop;

for loopent2 in 0 to 3 loop
case loopcnt2 is
when 0 => temp1 := std_logic_vector(tkey(0) xor temp_t_state(1 to 32));
when 1 => temp1 := std_logic_vector(fkey(1) xor temp_t_state(33 to 64));
when 2 => temp1 := std_logic_vector(fkey(2) xor temp_t_state(65 to 96)):
when 3 => temp1 := std_logic_vector(fkey(3) xor temp_t_state(97 to 128));
end case;
send(c1_send_sem, ¢1_send_ack, c1_send_data, temp1):
end loop;

i :="0000100", -- start off with the 4th key, Keys 0 to 3 used in the first round
for EncLoop1 in 1 to 14 loop -- For AES-256 (Nk=8, Nr=14)
for Encloop2 in 0 to 3 loop
bb1 := fkey(to_integer(i(5 downto 0))); -- fkey
temp3 := std_logic_vector(bb1);
send(c2_send_sem, ¢2_send_ack, c2_send_data, temp3):
i:=1i+"0000001";
wait for 10 ns;
end loop;
end loop;

end loop forever;
end Process Prs_1;

ENCRYPTION
Prs_2: process -- Process module p_MOD_3
variable bb2, cc2, dd2, ee2, temp_vec2: u_sign32;
variable transition_state, temp_transition_state : u_sign128;
variable temp2, temp4: std_logic_vector(31 downto 0);
begin
init{c1_recv_sem);
init(c2_recv_sem);
forever: loop

First Round ==

for loopent3 in 0 to 3 loop
recv(c1_recv_sem, c1_recv_ack, c¢1_recv_data, temp2);
case loopent3 is
when 0 => transition_state(1 to 32) := unsigned(temp2);
when 1 => transition_state(33 to 64) := unsigned(temp2);
when 2 => transition_state(65 to 96) := unsigned(temp2);
when 3 => transition_state(97 to 128) := unsigned(temp2);
when others => NULL;
end case;

end loop;

T.B. Yee, 2007 Appendix D: VHDL code listings

76

for EncLoop3in 1 to 14 loop -- For AES-256 (Nk=8, Nr=14)

for EncLoop4 in O to 3 loop
recv(c2_recv_sem, c2_recv_ack, c2_recv_data, temp4);
bb2 := unsigned(temp4); -- fkey

case EnclLoop4 is
when 0 =>
temp_vec2(1 to 32) = transition_state(1 to 8) & transition_state(41 to 48) &
transition_state(81 to 88) & transition_state(121 to 128);
if(EnclLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); -- w[i-1] = SubWord(w[i-1])
ee2 = dd2; '

else
ftable_quad(temp_vec2, cc2); -- Retrieve values from Forward Tables
ee2 = c¢ccz;

end if;

temp_transition_state(1 to 32) = bb2(1 to 32) xor ee2(1 to 32);

when 1 =>

temp_vec2(1 to 32) := transition_state(33 to 40) & transition_state(73 to 80) & -
transition_state(113 to 120) & transition_state(25 to 32);
if(EncLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); - W[i-1] = SubWord(w][i-1])
ee2 ;= ddz;

else
ftable_quad(temp_vec2, cc2); -- Retrieve values from Forward Tables
ee2 = cc2;

end if;

temp_transition_state(33 to 64) := bb2(1 to 32) xor ee2(1 to 32);

when 2 =>

temp_vec2(1 to 32) := transition_state(65 to 72) & transition_state(105 to 112) &
transition_state(17 to 24) & transition_state(57 to 64);
if(EnclLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); -~ w[i-1] = SubWord(w[i-1])
ee2 = ddz2;

else
ftable_quad(temp_vec2, cc2); -- Retrieve values from Forward Tables
ee2 = cc2;

end if;

temp_transition_state(65 to 96) := bb2(1 to 32) xor ee2(1 to 32);

when 3 =>

temp_vec2(1 to 32) := transition_state(97 to 104) & transition_state(9 to 16) &
transition_state(49 to 56) & transition_state(89 to 96);
if(EncLoop3 = 14) then

dd2(1 to 32):= fbsub_quad2(temp_vec2); - w[i-1] = SubWord(w[i-1])
ee2 = ddz;
else
ftable_quad(temp_vec2, cc2); -- Retrieve values from Forward Tables
ee2 ;= cc2;
end if;

temp_transition_state(97 to 128) = bb2(1 to 32) xor ee2(1 to 32);
when others => NULL;
end case;,
end loop; -- for EncLoop4 in 0 to 3 loop
transition_state(1 to 128) := temp_transition_state(1 to 128);

end loop; -- for EncLoop3 in 1 to 14 loop

T.B. Yee, 2007 Appendix D: VHDL code listings 377

for loopentd in O to 3 loop
while(out_hs_rdy /= out_hs_rcv) loop
wait for 10 ns;
end loop;
case loopcntd is
when 0 => ciphertext <= fransition_state(1 to 32);
when 1 => ciphertext <= transition_state(33 to 64);
when 2 => ciphertext <= transition_state(65 to 96);
when 3 => ciphertext <= transition_state(97 to 128);
when others => NULL;
end case,
out_hs_rdy <= not out_hs_rdy;
wait for 10 ns;
end loop; -- for loopcnt4 in 0 to 3 loop
end loop forever;
end process Prs_2;
end behaviour;

Figure D-25 VHDL of pipelined 256-bit advanced encryption standard
example

The post-MOODS synthesis simulation of the pipelined multi-FPGA 256-bit AES
example is given in Figure D-26. Zoom in views of the simulation showing inputs and
outputs updates are given in Figure D-27. This 3-device multi-FPGA implementation has
two explicit communication channels (ExC / and ExC 2) connecting the pipeline stages.
With a system clock period of 200 ns, the pipelined multi-FPGA 256-bit AES takes 1137
clock cycles (i.e. clock cycles = (231100 ns - 3700 ns) / 200 ns) to process the 128-bit data
block using a 256-bit cipher key.

378

Appendix D: VHDL code listings

T.B. Yee, 2007

|

95253V VO3 pausedy

AAAAAAN WAN WAN

Figure D-26 Simulation of the pipelined multi-FPGA 256-bit AES core

379

Appendix D: VHDL code listings

T.B. Yee, 2007

43330077

ELZLLI0] 30300020] [B0%0608()]

-
AR AANAANAN AMAN ANN

AR MAANAAANN WAN WAN

Figure D-27 Simulation (zoom in views) of the pipelined multi-FPGA 256-bit

AES core

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 380

Appendix E

MOODS multi-FPGA synthesis guide

This appendix presents the partitioning options added to the MOODS synthesis system for
multi-FPGA synthesis. The appendix covers the complete set of commands for multi-
FPGA synthesis using the MOODS Command Line Interface (CLI) and the command line
switches for the original MOODS synthesis core are briefly repeated when needed for the
sake of completeness. Background information and a more detailed guide to the original

MOODS synthesis system can be found in references [32, 39, 42, 161].

E.1 The MOODS optimiser

The MOODS Synthesis Suite organises the user designs into a project-based workspace
environment with the inclusion and compilation of all the behavioural VHDL source files
within the main project. Other projects can be imported, as subprojects, into an existing
main project in the workspace to use the libraries associated with these imported projects.
All the project files are compiled and assembled into a /ibrary structure. Details on the

compilation of designs and project workspace can be found in [161].

Having the synthesis project compiled and set up into the corresponding project libraries,
the MOODS optimiser, which is the heart of the MOODS Synthesis suite, can be invoked
using the MOODS CLI in the form of a DOS-prompt command given below:

(MOODS root directory)\Bin\Moods design
-m " (project directory)\example.lmf"

-w example

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 381

-pre—opt
-mult2shift
-prn_al

-prn nl

-vhdl out
-design profile
-exchannels

{other arguments}

The above command assumes that a top-level design called design has been compiled and
the main project name of the design is called example. File example.lmf contains
information on the directory location of library files used in the project and this is passed
to the optimiser through the -m argument preceding the location of the (.Imf) file.
Argument -w specifies the directory where the output files generated from the synthesis
are to be written to. The -pre-opt argument allows pre-scheduling optimisation to be
performed on the design. At presents, the pre-scheduling optimisation only improves on
designs with array and vector dynamic indexing. Argument -mult2shift forces constant
divides, or multiplies by a positive power of two to be implemented as shift-left or -right
operations respectively to get a significant hardware reduction. Argument -prn_al is
included to append a dump of control arcs to the design.cg output file. Argument -prn_nl
is included to append a dump of data path nets to the design.dpg output file. Argument -
vhdl_out specifies that multiple VHDL netlist output files are generated, one for each
target device. The first new argument, -design_profile is incorporated into the MOODS
optimiser to enable multi-FPGA synthesis. It instructs MOODS to retrieve partitioning and
design activity profile information (Section 4.5) in the design.par file in the project
directory. A module call list design.mcl file is generated by MOODS during the prologue
stage when the initial data structures are built. Details of the module call list file can be
found in Appendix C.3. The second new argument, -exchannels enables the use of explicit

communication channels (Section 4.2.2.1).

Other arguments exist [161], but exceed the scope of this appendix.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 382

The basic steps in optimisation are:

1. Setup a “cost function” specifying the required target specification (e.g. target area

and/or delay).
2. Run an optimisation algorithm.

Repeat the above if desired to achieve different results.

(8]

4. Set up and run the K-way partitioning process.

5. Repeat step 4 if desired to get different partitioning results.

6. Repeat steps 1 to 5 if desired to achieve different synthesis and partitioning results.
7. Run the communication subsystem optimisation algorithm.

8. Finish the design to produce final structural netlists suitable for targeting multiple

FPGA devices.

E.1.1 Setting up a cost function

During the prologue stage in MOODS, the associated technology libraries are loaded and
the input design is read in, followed by the initialisation of data structures. A number of
messages about loading libraries and files, and preliminary tasks are displayed in the

console window. When it finishes, a command prompt will appear, e.g.:
MOODS “C:\CAD\JPEG demo\jpg core two\jpg core two” -->

The command “CF” is entered to get to the cost function definition menu of MOOD. At
any point in the synthesis session, typing “?” at a command prompt gives a list of all

available commands, as illustrated below in Figure E-1.

(US]
joe]
(VS]

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide

MOODS "c:\CAD\jpeg_demo\jpg_core_two\jpg core two" =--> CF

Enter cost function command []: ?

SETTING THE COST FUNCTION

Type a two character string:
first character: A - to add a criterion
(action) - to delete a criterion
- change target
- show the cost function
- to finish
- Total CP delay
Delay between insts
- Area
- Power
- Nets (no. of DP nets)
- Clock period

second character:
(criterion)

QzZmXPwou=sn oo
i

Enter cost function command [?]:

Figure E-1 Cost function menu

The cost function allows the user to specify what the final optimised implementation
should be like (e.g. how large or fast it is). Figure E-2 illustrates the typical steps to enter
an area delay cost function, and specify a clock period for optimising the design. The
following specifies area optimisation as the highest (first) priority with a target area of 0,
and delay optimisation as the second priority with a target total delay of 0. Both target
objectives are set to zero so that the final optimised implementation is as small and as fast
as possible. Of course, non-zero target values can be given instead. A clock period of 20
ns is specified using the “AC” command and entering a value of 20 when asked to enter
the new clock value at the subsequent prompt. With all of the cost function parameters set

up, command “F” finishes the cost function definition and returns to the main MOODS

prompt.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 384

Enter cost function command [?]: AA
Enter priority level (1 is highest) [1]1: 1
Initial total area is: 34505.6 Slices
Enter target area {Slices) [34505.6]: O
Enter cost function command [aa]: AD
Enter priority level (1 is highest) [1]: 2
Initial total CP delay is: 3016.2 ns
Enter target total delay (ns) [3016.2]: 0
Enter cost function command [ad]: AC
Clock period has priority 1 and units in ns.

Enter new clock value (ns) [10.1]1: 20

Enter cost function command {acl: F

Figure E-2 Steps in setting a cost function in MOODS

E.1.2 Optimisation

After finishing the cost function set-up, the user can proceed to set up the optimisation
algorithm and perform optimisation on the design. There are currently two main
optimisation algorithms (described in Section 2.3.6) provided by the MOODS synthesis
core. The quasi-exhaustive heuristics is the simplest and MOODS proceeds to optimise the
design when the command “AOH” is entered at the MOODS prompt. Simulated annealing
is slower and more complex, and is more difficult to operate, however it can produce
better results, and also allow the design to be moved in many different directions round the
design space. Figure E-3 illustrates the steps in setting up the optimisation parameters
(annealing schedule), using the “AI” command. Once this data is entered, command “AO”

starts the annealing process, optimising the design.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide

85

MOODS "c:\CAD\Jjpeg demo\jpg core two\jpg core two" --> AI

Initializing Optimisation Data

Enter start temperature { 0.0]: 50
Enter terminating temperature [0.01: 0
Enter factor to decrease temp (<1) OR -n for No. of steps | 100.0]: ~100

Enter maximum iteration per temperature range [0]: 500

MOODS "c:\CAD\Jjpeg demo\Jjpg_core_two\jpg_core_ two" —-->

Figure E-3 Steps in setting up the annealing schedule in MOODS

E.2 K-way partitioning

When all the optimisation is completed, typing command “FI”* at the MOODS prompt

brings up the K-way partitioning prompt and typing “?” at the command prompt gives a

list of all available commands, as illustrated below in Figure E-4.

K-way partitioning --> ?

K-way Partitioning Menu

DS - Display K-way partitioning setup

EX - Examine data structures

EM - Examine modules for partitions

ET - Examine target device details

CT -~ Change number of target devices

CU - Change max device utilisation {100 percent) value, D max
CL -~ Change min device utilisation (20 percent) value, D_min
CA =~ Change offset target device areas

CW -~ Change data width

TS =~ Change to Strict balanced distribution over targeted devices
MD - Disable Multiple Subprogram Comm. Channels

K-way partitioning (Optimised)
KON - with no added options
KOL - with locked modules

K-way partitioning (with 2 partitions)

KFN - with no added options

KFP - with pre-allocated modules

KFL - with locked modules

KFB - with initial and locked modules
RM - Re-run MOODS optimisation

FI - Finish optimisation

K-way partitioning -->

Figure E-4 K-way partitioning menu

386

T.B. Yee, 2007 Appendix E;: MOODS multi-FPGA synthesis guide
COMMAND- | DESCRIPTION
DS Displays the K-way partitioning set-up.
EX This command is the same as the top-level MOODS command and it is used to
examine the data structures for the design.
EM The “EM” command leads to a set of further commands given in Figure E-5.
ET This command leads to two further commands that allows the user to display and edit
target device details (such as device area and I/O).
CT This command is used to change the number of target devices used to implement the
multi-FPGA system.
This command is used to change the maximum percentage of device utilisation. The
Cu default value of 100 means the total logic (100%) capacity may be utilised if
required.
This command is used to specify the lowest percentage of the device area utilisation.
CL This value is used to determine the balanced criterion in the K-way partitioning
algorithm when a relaxed distribution of modules over the target devices is selected.
CA This command is used to specify the device area offset percentage.
CW CW is used to assign a fixed data bus width in the subprogram communication
channel(s) for inter-device transfers.
Command TS changes the balanced criterion in the K-way partitioning algorithm to
TS/TR enforce a Strict balanced distribution of modules over targeted devices. Command
TR allows a relaxed distribution of modules over targeted devices.
Command MD disables the generation of multiple subprogram communication
MD/ME channels, the.‘reby connecting all communication cells to a single primary
communication channel. Command ME enables the generation of multiple
subprogram communication channels.
This command invokes the K-way partitioning algorithm to partition the design with
KON no pre-allocated and locked modules, and generate an optimised multi-FPGA system
with the least number of target devices required.
This command invokes the K-way partitioning algorithm to partition the design with
KOL module(s) locked to specified target device(s), and generate an optimised multi-
FPGA system with the least number of target devices required.
This command invokes the K-way partitioning algorithm to partition the design with
KFN no pre-allocated and locked modules, and generate an optimised multi-FPGA system
using a fixed number of target devices.
This command invokes the K-way partitioning algorithm to partition the design with
KFP pre-allocated modules, and generate an optimised multi-FPGA system using a fixed
number of target devices.
This command invokes the K-way partitioning algorithm to partition the design with
KFL module(s) locked to specified target device(s), and generate an optimised multi-
FPGA system using a fixed number of target devices.
This command invokes the K-way partitioning algorithm to partition the design with
KFB pre-allocated and locked modules, and generate an optimised multi-FPGA system
using a fixed number of target devices.
RM This command is used to re-run the MOODS optimisation process.
FI This command finishes and ends the K-way partitioning phase.

Table E-1 Complete set of commands in the K-way partitioning menu

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 387

A description of the complete set of commands in the K-way partitioning menu is given in
Table E-1. Figure E-5 illustrates the further set of commands associated with the “EM”
command in the main K-way partitioning menu. Process modules (locked/unlocked to the
top-level architectural module) in the design are displayed using command “B”.
Commands “A” and “U” are used to lock and unlock process modules in the design.
Commands “P” and “L” displays the pre-allocated and locked modules (if any) specified
in the partitioning information (.par) file respectively. Command “E” allows the user to
manually lock modules in the design to target devices, and a locked module can be

unlocked using the “R” command.

K-way partitioning --> EM

Examine --> ?

Modules for k partitions

Display process modules

Lock process modules

Unlock process modules
Display pre-allocated modules
Display locked modules

Edit locked modules

Remove locked modules

Exit.

LB~ v I i B e B o B s i
[N T A T

Examine -->

Figure E-5 Examine modules for partitioning menu

After setting up the partitioning parameters and running the K-way partitioning algorithm,
the final partition of the design, together with the I/O utilisation and estimated area
utilisation of target devices are displayed in the console window. The partitioning
parameters can be altered and the K-way partitioning algorithm can be repeated to get
different partitioning results, else command “FI” is entered at the K-way partitioning
prompt to begin the communication subsystem optimisation. Alternatively, the MOODS

optimisation process can be re-run using the “RM” command.

When the communication subsystem optimisation finishes, the system writes out VHDL
packages for the subprogram communication channel arbiter(s) (Section 5.4.3), final
netlists for all the target devices, and report files, leaving the system in the “EXAMINE”

mode. The “FI” command is typed once more to end the session.

T.B. Yee, 2007 Appendix E: MOODS multi-FPGA synthesis guide 388

Adapting the same naming convention described in Section E.1, assuming the top-level
design has been created from a behavioural VHDL file, design.vhd. After the multi-
FPGA synthesis session in MOODS, VHDL netlist output files

design synth doml.vhd, design_synth_domZ.vhd, ..,

design synth domk.vhd for a multi-FPGA design targeting k devices are created in

the project directory.

