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MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural 
description into a structural representation. This thesis describes an enhancement to the 
original MOODS system that provides an automated mechanism to target a single 
behavioural input design onto heterogeneous re-configurable devices, forming a multi-
FPGA system. This thesis focuses on some of the problems associated with multi-FPGA 
synthesis, in particular the area utilisation of target devices and input/output (I/O) 
constraints in a multi-FPGA system. 

The multi-FPGA partitioning mechanism has added a new optimisation objective into 
the MOODS synthesis system. Not only does it provide an automated means of 
partitioning the design into separate blocks, the partitioning algorithm optimises the 
utilisation of device area and I/O taking into account the activity profile of the design, and 
allows performance and I/O utilisation trade-offs to be considered. Asynchronous charmel-
based communication and pipelining techniques in multi-FPGA synthesis can produce a 
multi-FPGA system with performance close to a single-device implementation. 

The contribution of this work presented herein describes multi-FPGA synthesis with 
the insertion of asynchronous explicit and implicit subprogram communication channels 
between target devices in the synthesised multi-FPGA system without any user 
intervention. Experiments and simulation results of test examples and a hardware 
demonstrator presented in this thesis provide evaluation on the performance of the 
synthesised non-pipelined and pipelined multi-FPGA systems with asynchronous 
communications. Results showed that the multi-FPGA synthesis enhancement integrated 
within the MOODS environment provided a rapid realisation of pipelined multi-FPGA 
systems with asynchronous communication channels at the expense of an acceptable 
increase in area overhead and design latency. 
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Chapter 1 

Introduction 

1.1 Partitioning and high-level synthesis 

Partitioning is an important issue in high-level synthesis, hardware/software co-design, 

VLSI CAD (Very Large Scale Integration Computer Aided Design) [1,2]. With the ever-

increasing complexity of digital designs, partitioning of the circuit or system into a 

collection of smaller, manageable components has become a central and critical design 

task. Partitioning is also used to divide a large design into several target devices to satisfy 

packaging constraints such as input/output pins and area. Partitioning of a design over 

multiple hardware targets can be performed at several levels of abstraction (these include 

system level, behavioural level, and structural netlist level). Partitioning a design at high 

levels with incomplete knowledge of the targeted technology, and the final hardware (or 

software) implementation of a component poses a difficult design decision. The task of 

partitioning a system at a high level with a coarse granularity (i.e. relatively few objects 

with moderate to high complexities) can still be done manually, based on the experience 

of the designers. However, as the complexity and size of the entire system increases, this 

difficult decision and design optimisation problem gets harder, to the point when it gets 

beyond the capabilities of human designers to solve. 

High-level behavioural synthesis of a digital design takes the behavioural description and 

translates this into an optimised structural description of the same design. The design is 

described behaviourally using either hardware description languages or high-level 

programming languages. There has been a recent interest in electronic system level (ESL) 

[3-5] design with new high-level synthesis tools released in 2004 from major Electronic 

Design Automation vendors: Mentor Graphics C [6], Bluespec Inc. 
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5/wejpgc CoTMpf/er [7], and Forte Design Systems [g]. The ESL design 

methodology is an evolution of high-level modelling of complex systems and behavioural 

synthesis, extended to address additional needs of system-level design, such as 

architectural design, software development and Intellectual Property (IP) exchange and 

reuse. Design abstraction in the digital domain has changed from schematic to language-

based and is migrating towards behavioural specifications. 

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is the high-

level synthesis tool developed in the University of Southampton. The MOODS synthesis 

system synthesises an input behavioural design and produces a structural implementation 

of the behavioural design with the advantages of a rapid development time and design 

space exploration providing many alternative optimised implementations (with differing 

area, delay, power characteristics). 

The present configuration of the MOODS synthesis system can only handle single-chip 

digital designs. The behavioural description of the user's digital design is synthesised into 

a single, large structural output. A synthesised structural output too large to fit into a 

selected target FPGA must instead be targeted to a larger and more costly FPGA, or be 

split into pieces small enough to fit into multiple FPGAs. The latter requires the user to 

rewrite the behavioural design, breaking the design into smaller descriptions and manually 

assign the structural outputs of these smaller descriptions to multiple FPGAs and connect 

the inter-device signals. Consider partitioning a design with 15 blocks, of which any 

combination of 5 blocks can fit into a target device in the multi-FPGA system, there are a 

total of 3003 combinations of partitioning the 15 blocks (i.e. Number of combinations, nC"" 

= n! / [k! * (n-k)! ], where in this case, n = 15 and k = 5). The required design effort is 

becoming a m^or limitation to system complexity and the FPGA partitioning process 

needs to be automated. Synthesis of a large complex behavioural design into a multi-

FPGA system poses difficult partitioning questions that need to be answered: 

• How to partition the design and will the smaller partitions fit the target devices? 

• Which target device should a partitioned design be assigned to and how many 

target devices are needed in the multi-FPGA system? 
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• How many I/Os are available and required to connect up the multi-FPGA system? 

# How are the target devices going to transfer information (data) to each other? 

This thesis focuses on some of the problems associated with multi-FPGA synthesis, in 

particular the area utilisation of target devices and input/output (I/O) constraints in a 

multi-FPGA system. In this thesis, an evaluation is made of existing multi-FPGA 

synthesis systems and multi-FPGA partitioning techniques. This provided an insight on 

the pros and cons of the various approaches and techniques, adopting the best technique or 

combination of techniques towards the development of our partitioning extension to the 

MOODS synthesis system. The goal was to extend the MOODS synthesis system to 

support partitioning over multiple hardware targets taking into consideration the area and 

I/O resources of target devices. In pursuit of this goal, we also explored asynchronous and 

pipelining techniques to improve the performance of a partitioned design. 

The underlying hypothesis of this research is that combining asynchronous channel-based 

communication and pipelining techniques in multi-FPGA synthesis can fully utilise the 

I/O constrained FPGA target devices and the performance of the synthesised multi-FPGA 

implementation (MFI) will be close to a single-device implementation. 

This work presents asynchronous channel-based data transfer mechanisms into multi-

FPGA systems and using design activity profile to guide the proposed partitioner in 

reducing inter-device data transfers. Behavioural design examples and a hardware 

demonstrator are synthesised using the multi-FPGA synthesis in MOODS and experiments 

on non-pipelined MFIs with subprogram communication channels (without explicit 

communication channels) and pipelined MFIs with explicit communication channels are 

presented. 

The experiments and simulation results show that the proposed channel-based approach 

with pipelining in a multi-FPGA systems achieve significantly better performance (in 

terms of reduced area overheads and design latencies) over non-pipelined 

implementations. Experiments on the hardware demonstrator show that the multi-FPGA 

synthesis enhancement integrated within the MOODS environment can synthesise a large 
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and complex behavioural design and target the partitioned design to a pipelined multi-

FPGA system, with an acceptable increase in area overhead and design latency. 

1.2 Thesis structure 

The thesis consists of three main parts. The introductory chapters present the background 

material on behavioural synthesis and multi-FPGA partitioning. Chapter 2 introduces 

high-level synthesis, followed by a detailed overview of the MOODS synthesis system. 

Chapter 3 introduces partitioning methodologies and multi-FPGA partitioning. The 

chapter also reviews current research on multi-FPGA partitioning and includes a detailed 

discussion on synthesis systems capable of synthesising and targeting multiple devices. 

The second part of the thesis. Chapters 4 and 5 describe original work, which cover the 

multi-FPGA partitioning enhancement of the MOODS synthesis system and the 

communication cells used in inter-FPGA data transfers. Chapter 4 describes in detail the 

automatic partitioning mechanism that partitions a single design description, and the 

generation of multiple structural output files for configuring a multi-FPGA system. This 

chapter also introduces the channel-based approach to handle inter-device data in the 

synthesised multi-FPGA design. Chapter 5 covers the subprogram communication channel 

customised for asynchronous inter-FPGA subprogram data transfers in a multi-FPGA 

system. The chapter describes in detail the design of communication cells and arbiter cells, 

which are the building blocks of the communication channel. 

Chapter 6 contributes to the third part of the thesis with experimental results on multi-

FPGA synthesis in MOODS. Chapter 7 describes the design, synthesis and physical 

implementation of a hardware demonstrator, a multi-FPGA JPEG (Joint Photographic 

Experts Group) decoder. Implementation results and analysis of the performance of the 

non-pipelined and pipelined multi-FPGA JPEG decoder are presented. 

Finally, the thesis concludes with a summary of the contributions of this research and a 

discussion of possible future work in Chapter 8. 
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A numbei of appendices are also included in this thesis. Appendix A contains a paper 

published in the pioceedings of International Federation for Information Processing 

International Conference on Very Large Scale Integration 2005 (IFIP VLSI-SOC 2005). 

Appendix B contains detailed information on the hardware demonstrator and a full profile 

of test images and photographs of the test images decoded by the multi-FPGA JPEG 

decoder. Post-MOODS synthesis simulation results of the multi-FPGA JPEG decoder core 

are also included in this appendix. 

Appendix C details the format of various data files used within the MOODS synthesis 

environment. VHDL code listings of behavioural VHDL design examples used in the 

experiments described in Chapter 6 and post-MOODS synthesis simulation results of the 

examples are given in Appendix D. Appendix E is a brief user ' s guide to performing 

multi-FPGA synthesis using MOODS with the multi-FPGA partitioning enhancement. 
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Chapter 2 

High-level synthesis and the MOODS 

synthesis system 

This chapter describes the background material of high-level synthesis used within the 

research project. Sections 2.1 to 2.5 give a general overview of high-level synthesis. 

Section 2.6 describes the MOODS (Multiple Objective Optimisation in Data and control 

path Synthesis) synthesis system, which is used in Chapters 4 to 7 for all the 

implementation and multi-FPGA synthesis results of this thesis. The post-processing stage 

of the MOODS synthesis system is covered within Section 2.7. 

2.1 High-level synthesis 

Behavioural, or high-level synthesis is the process of transforming an abstract 

specification (such as an algorithm description) of the behaviour of the system into an 

equivalent structural description that satisfies a set of user constraints and goals on factors 

such as area, delay and energy consumption. The interpretation of VHDL [9-11] for 

behavioural synthesis is substantially different from that of traditional RTL (^^egister 

Transfer level) synthesis. In the RTL synthesis interpretation [12], the execution of an 

operation triggered on a clock edge within a process will complete within a clock cycle 

and the mapping from RTL design to gate-level design is a cycle-accurate mapping 

preserving the simulation semantics of VHDL. However, behavioural synthesis interprets 

sequential statements as if they were normal software, each of which may take several 

clock cycles to execute a single line of code. At the statement level, the overall behaviour 

of the system is unchanged, only the cycle timing of each statement is altered. This 
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statement-accurate mapping feature allows the synthesis system the flexibility to adjust the 

timing of operations and to trade off timing against other factors such as total area. 

The process of transforming a behavioural description of a digital design, described in 

some hardware description language or sequential language such as Verilog, VHDL or C, 

is illustrated in Figure 2-1. The design flow consists of a number of separate tasks and 

different synthesis systems may perform a number of these tasks concuiTently. The output 

of the behavioural synthesis system is a mixture of structural and RTL description of the 

design and it is suitable fbr the targeted logic synthesis and layout tools. 

Behavioural 

synAeis 

Behavioural 
description 

User 
optimisation 
objectives 

source compilation 

Internal 
behavioural/ 

structure 
representation 

Synthesis 
Optimisation, 
Scheduling, 

Allocation and Binding 

I L i b ; ^ L i b | 

Cell/module library 

Structural 
description 

RTL and low-level logic 
synthesis, mapping, placement 

and routing 

Figure 2-1 Design flow of a generic behavioural synthesis system 
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2.2 Input description languages 

Having mentioned that VHDL can be the input hardware description language, it is only 

one of the many hardware description languages or sequential languages that can be used 

to describe a design behaviour ally. 

2.2.1 SystemC 

SystemC [13-15] is an open C++ class library used for hardware system design and 

validation. SystemC is defined by the OSCI (Open SystemC Initiative) and the IEEE 

1666-2005 SystemC standard [14] was ratified on December 2005. C-H- or C is the 

language choice for software algorithms and interface specifications and most designers 

are familiar with these languages. The SystemC language and modeling platform provides 

the necessary constructs to model system architectures at various system levels of 

abstraction for digital design. The SystemC Class library extends the standard C++, 

without adding new syntactic constructs, to give hardware timing, concurrency, and 

reactive behaviour. This encourages systems and software designers with little or no 

knowledge of hardware description languages such as VHDL and Verilog to create digital 

designs, and to quickly simulate to validate and optimise the design according to the user 

objectives. 

The SystemC design is compiled into an executable file and validation of the design is 

basically a run of the execution file. The execution of the run file is faster than a run of an 

HDL model that depends on the simulation and it does not require licenses as needed by 

most EDA tools. 

2.2.2 Verilog 

Verilog HDL [16, 17] is another hardware description language, other than VHDL, that is 

widely used, both academically and commercially. Verilog was designed in mid 1980s and 

the Open Verilog International (OVI) was formed in 1990 to manage the Verilog 

language, which was only then opened to the public domain. Verilog was later ratified as 

IEEE std. 1364-1995 [16]. The second ratification is the IEEE std. 1364-2001 [17], 

commonly called Verilog-2001. Verilog-2001 adds many significant enhancements to 
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IEEE 1364-1995 Verilog, which include greater support for re-usable, configurable 

models. Intellectual Property (IP) modeling, and very deep submicron timing accuracy 

[18]. SystemVerilog is the third generation of Verilog and it is built on Verilog-2001. 

Besides extending the Verilog language to give design features that VHDL already had in 

place for years [19], SystemVerilog has new constructs for verification to keep up with the 

increases in complexity of today's design and verification challenges [20]. 

2.2.3 VHDL 

VHDL is an IEEE standard hardware description language [9-11, 21]. It is originally 

largely targeted towards simulation of digital systems at the various levels of abstraction. 

Synthesis use was introduced later, with the introduction of RTL (Register Transfer Level) 

synthesis tools first, then progressing into behavioural synthesis tools. VHDL was 

proposed as an IEEE standard in 1986 and it went through a number of revisions and 

changes before it was adopted as the IEEE 1076-1987 [10]. The first modification of 

VHDL was ratified in 1993 [11], and the latest in 2002 [9]. 

VHDL supports many different design methodologies (top-down, bottom-up, delay of 

detail) and is very flexible in its approach to designing hardware. VHDL provides 

technology independence and it contains levels of representation that can be used to 

represent all levels of description from the device level up to the system level. Figure 2-2 

illustrates the hierarchy structure of VHDL. VHDL models a digital system using entities 

and arcA/fgcrwrej' to define its interface and operation respectively. It is capable of 

describing concurrent blocks (a netlist of interconnected components) of sequential code, 

where the sequential elements describe the behaviour of the concurrent block at any 

abstraction level, via processes. Each design can be encapsulated by a library definition of 

its own interface, which highlights the ability of VHDL to describe a system in terms of 

modular concurrent components. A library of algorithmic descriptions can also be built 

from sequential blocks such as functions and procedures. In VHDL, are the only 

way to tie together elements of structural descriptions or to pass information directly 

between VHDL processes and entities, VHDL signals are declared in the VHDL 

architecture. VHDL variables are local to process and they are declared within VHDL 

processes. 
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Figure 2-2 VHDL hierarchy structure 

2.3 Compilation and internal representation 

• Behavioural input comyilation and oytimisation — is the first synthesis task and it is 

concerned with the compilation of the behavioural description into an internal 

representation to which synthesis operations may be applied. A number of compile-

time optimisations (procedural inlining, dead code elimination, loop unrolling) [22] 

may be performed. The result of compilation is the generation of a design specified in 

terms of a number of simple instructions, similar to a machine-readable software 

assembly language, often in some form of abstract data and control flow graphs. 

The synthesis optimisation process is either performed during the construction of the data 

structures or during an iterative refinement process after the initial data structures are 
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crsated, or & combination of both methods. A number of behaviour-preserving internal 

data stiuctures can be used to fully describe the design throughout the synthesis process. A 

simple dataflow graph (DFG) can be used to describe the system. The operations and data 

dependencies of a simple design (with no conditional and iteration constructs) can be 

represented with a dataflow graph as illustrated in Figure 2-3. 

V1 

Behavioural 
VHDL source 

V2 

: V1 + 5; 
: V1 + V2; 
: A + 3; 
: B + 8; 

V3 := C ' D: 

Figure 2-3 Data flow graph representation 

In general, many applications contain a significant amount of conditional (jf-then-else) and 

iteration (loop) constructs, and thus requires a more comprehensive representation of data, 

and the control Gow information. The CoMrro/ ancf Dara FZow (CDFG) models both 

the data and control flow information in a single hierarchical structure. This is done by 

extending the DFG representation to encapsulate control flow information for blocks of 

DFG sub-graphs within the parent graph. A m^or disadvantage of the CDFG 

representation is the basic blocks of DFG sub-graphs provide boundaries across which the 

scheduling of operations cannot pass, even if there are no dependencies restricting this 

schedule [23]. On the other hand, the D/wgcf f g/rf TVgf (ETPN) [24, 25] 

representation has no such block boundary restriction as the data and control flow is 

separated into two individual, but interrelated data structures, hence allowing more 

optimisation transforms to be performed. This separation of the control flow also makes 

the ETPN more suitable for designs with concurrency execution of operations and 

asynchrony inherent. 
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By way of an example, the associated CDFG and ETPN representations of the fragment of 

VHDL code are illustrated in Figure 2-4 and Figure 2-5 respectively. The CDFG in Figure 

2-4 comprises four DFGs. The top one represents the three sequential addition 

assignments, the second two graphs represents the two conditional assignments, and the 

last DFG represents the last multiplication assignment. 

Behavioural 

V H D L source 

A : = V 1 +5; 
B := V1 + V2; 
C : = A + 3; 

IF ( X : " ! " ) THEN 
D := B + 4; 

ELSE 
D := B + 

END IF; 

V3 := C * D 

IFX = "1" 

TRUE 

Dataflow graph 
blocks 

END IF 

Figure 2-4 Control and data flow graph representation 

ETPN represents the data path as a directed graph with nodes and conditional arcs. The 

nodes represent individual functional (operator) and storage (variable) units, while the arcs 

form the connections between nodes. These connections are only made if the arc is 
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activated by a control signal (Sn signals generated from the control part). The control flow 

of the design is described by the passage of tokens through a Petri net [26]. Each control 

path veitex represents a control state, which is activated when it receives a token, thereby 

activating the associated data path via its Sn signal. In Figure 2-5, the conditional block (if 

X — 1 ) is modelled by states S4 and S5, and the selection is based upon condition Ci, 

generated from the data path comparator (=) block. 

#5 V1 V 2 #5 V1 V 2 

1 

A B A B 

Behavioural 

V H D L source 

A : = V 1 +5 ; 
B : = V 1 + V 2 ; 
C := A + 3; 

IF (X = T ) T H E N 
D := B + 4; 

ELSE 
D := B + 8; 

END IF; 

V3 := C * D; 

V 3 V 3 

X "1" 

s > 

> / X " 
Ci Ci 

Figure 2-5 Extended timed petri net representation 

2.4 Scheduling, allocation and module binding 

The next three tasks form the core of the behavioural synthesis system. These tasks are 

concerned with performing scheduling, allocation and module binding according to user-

defined optimisation objectives. 
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• Operation scheduling is the task of assigning each operation to a particular time step. 

Schedules are optimised to achieve the objectives of the user, whilst satisfying both 

lesource constraints, specified by a given target area or the maximum number of 

functional types within each time step, or time constraints, specified by the number of 

time (or control) steps for the operations. 

Scheduling techniques [27] can be generalised into two main categories: constructive 

and j-cAgafw/mg. Simple constructive algorithms include j 

(ASAP) [28], (ALAP) [28]. ASAP schedules 

operations in the earliest possible time step permitted by the data dependencies, while 

ALAP assigns operations to the latest possible time step. The main disadvantage of these 

two algorithms is that all operations are treated equally, with no priority given to the more 

critical ones. This can result in operations that are less critical to be scheduled first on a 

limited resource (e.g. a single multiplier unit), which may block critical operations 

scheduling and result in a performance degradation. Figure 2-6 illustrates an example of 

ASAP and ALAP schedules. 

step 1 { + 

S t e p 2 

Step 3 

Step 4 

a) A S A P s c h e d u l i n g 

step 1 

Step 2 

Step 3 

Step 4 

b) A L A P s c h e d u l i n g 

Figure 2-6 Example of ASAP and ALAP schedules 
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List scheduling [29] takes a more controlled approach in ordering the operations to be 

scheduled based on some piioiity function. At each control step, operations {On) are 

scheduled sequentially as long as the required resource is available, otherwise, operations 

are postponed according to their priority. Figure 2-7 shows list scheduling of a simple 

control graph, where the priority of each operator is defined as the length of the data path 

from the opeiation to the end of the block (marked in braces in Figure 2-7). Operation 3 

(O3) has a higher prioiity than operation 1 (Oj), and is therefore scheduled in control step 

1, providing an optimal solution in this case. 

step 1 

Oi(1) 

* \ 
Step 1 

02(1) 
+ 

03(2) 

S b p 2 
" ^ 0 , ( 1 ) 

K ) 

1 ' 

Step 2 

0^1) 
* 04(1) 

a) Initial graph b) List scheduled graph 

Figure 2-7 Example of list scheduled graph 

All the above algorithms make decisions on local considerations, which may be optimal 

for one operation, but do not necessarily produce an overall optimal schedule. A 

constructive scheduling algorithm that makes global analysis of the operations and control 

steps when selecting the next operation to be scheduled is the force-directed scheduling 

[ j O ] , The basic strategy of this algorithm is to balance the concurrency of operations to 

ensure that each functional unit has a high utilisation and therefore the number of units 

required is reduced. Force-directed scheduling is more computationally expensive than all 

the constructive algorithms mentioned previously, due to its global selection of the next 

operation to schedule. 
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In contrast to constiuctive scheduling which creatcs a. schedule from scratch and adds 

operations one at a time until all operations are scheduled, transformational scheduling 

starts with an initial schedule, generally maximally serial or maximally parallel, and 

iteiatively applies a set of local transformations, improving a.nd guiding the design 

towards the objectives specified by the user. One important advantage of the 

transformational-based approach is that a complete schedule exists in each iteration and 

accurate estimation of the design in terms of different criteria (e.g. area or delay) can be 

made. This technique has been adopted in high-level synthesis systems such as Computer-

Aided Modelling, Analysis and Design (CAMAD) [25, 31] and MOODS [32], where both 

systems combine the scheduling and allocation together as a general optimisation problem. 

The transformation-based approach employed in MOODS is described in more detail in 

latter sections. 

• Allocation — involves the assignment of data variables and instructions into groups of 

data elements; storage units (registers, ROMs, RAMs, etc) used to hold data in the data 

path, functional units (adders, ALUs, multipliers, etc) that perform the operations 

depicted by the instructions and interconnect units (multiplexors) between storage 

units and functional units. 

Allocation techniques can also be generalised into constructive and global algorithms. 

Iterative/constructive allocation algorithms select an operation and the data element to 

which it will be bound, one at a time in an iterative manner and builds up the allocation, 

typically minimising cost in terms of area whilst conforming to timing constraints of the 

schedule. 

Global allocation techniques, on the other hand, deal with the data path as a whole, and 

attempt to allocate all its elements simultaneously. Allocation can be defined as a graph 

problem, where a clique-partitioning algorithm [33] builds a compatibility graph where 

vertices denote operations and edges denote the compatibility relation between the 

operations whereby edges connect mutually-exclusive operations that can share the same 

hardware. The problem is then reduced to finding a maximal partitioning of fully 

interconnected vertices, which represents a solution with the minimum hardware cost. 

Examples of other global allocation techniques include minimal graph-colouring 

algorithm, left-edge algorithm [34]. 
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Module Binding is the process of selecting and assigning the allocated data path units 

from a list of technology-dependent hardware blocks implemented from units in the 

target cell/module library. Depending on the requirements of the synthesis system, the 

module library may contain exactly one implementation per functional unit, or a 

selection of implementations (such as ripple-carry and carry-lookahead adders) per 

unit, thus allowing a one-to-many mapping choice, in which case the chosen 

implcrnsiitation will be based on user objectives. The low-level module 

charactei isation data, generally in the form of area and delay estimates are used to 

guide the scheduling and allocation processes. A similar operation is performed on the 

contiol path, implementing the circuitry for the control path units, which activate and 

steer data in the data path via appropriate data path control signals (e.g. register load 

signal, multiplexer select signals). The module library can be extended, possibly into 

multiple module libraries where module cells are designed specifically for a particular 

design such as floating-point functional units or special communication protocol units. 

2.5 Design space exploration 

High-level synthesis is the process of transforming a behavioural description of a design, 

in the form of its initial internal representation within the synthesis tool, into a structural 

implementation, optimised according to objectives set by the designer. The synthesis 

process produces a range of implementations for a particular input design, and each of 

these implementations forms a single point in what is called the design space [35-37], 

which is defined as the M-dimensional space describing all possible implementations of a 

single input description, in terms of » design aspects. 

Figure 2-8 shows a two-dimensional design space in terms of area and delay (latency). For 

any particular design and target technology, the design space consists of two regions 

where feasible implementations lie in the region and infeasible 

implementations lie in the unachievable region. These two regions are separated by the 

optimal design curve, which comprises a set of discrete points representing the most 

efficient implementations. For a given system, only a portion of the achievable region may 

be obtained as indicated by the shaded acfwa/ acAzevaA/e regzoM. This actual achievable 
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region is dependent on a number of factors such as the optimisation algorithms and design 

space modelling methods [38] used. 

optimal design 
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A r e a \ 
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r e g i o n 
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Figure 2-8 Area versus delay design space 

2.6 MOODS 

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis) 

synthesis system is the behavioural synthesis system used and modified for the multi-

FPGA partitioning research. The term MOODS refers to the entire synthesis system, 

however the core synthesis engine is also referred to as MOODS. 

This section details the principles and operations of the original MOODS synthesis system 

(without multi-FPGA partitioning enhancements) [32, 35, 36, 39]. The entire synthesis 

system comprises a number of separate programs performing various tasks in the synthesis 

of a behavioural description from VHDL down to hardware FPGA implementation. These 

tasks communicate via a number of generated intermediate files. 

Figure 2-9 illustrates the data flow of the original MOODS synthesis system before the 

multi-FPGA partitioning enhancements. The actions performed by the subcomponents are: 

1. VHDL and ICODE assembler. The behavioural VHDL description is passed into the 

VHDL compiler, 'VHDL2IC' and translated into a simpler intermediate description. 
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ICODE (Intermediate CODE). ICODE is an input language-independent description 

suitable for direct input into the core MOODS synthesis engine. 

2. Synthesis engine — MOODS'. The core component in the entire system is the MOODS 

data and control path synthesis engine. Broadly speaking, MOODS performs 

scheduling, allocation and module binding according to the user-defined optimisation 

objectives, and pioduces an output suitable for the targeted logic synthesis and layout 

tools. The single ICODE file is fed into MOODS, with a set of user objectives and 

technology libraries. A naive initial internal data structure is created by a direct 

translation of the ICODE input to form a maximally serial implementation (i.e. one 

control state/clock cycle per ICODE instruction, with the functionality of each 

instruction being bound to a separate data path node). The synthesis proceeds and 

iteiatively modifies the data structures until the user objectives are met. The internal 

representation is converted into a technology-specific netlist using interface 

information stored in the library. The use of technology-specific estimates fed up from 

the cell libraries enables MOODS to make technology-dependent trade-offs, while 

maintaining overall technology (and layout system) independence within the bulk of 

the synthesis system. 

3. 2 m W - The DDFLink (Design Data Format Link) linker is 

now used for the generation of the structural VHDL file output, previously generated 

directly from MOODS. The 'raw' structural VHDL description generated directly 

from MOODS is only suitable for debugging purposes, as it is rather unreadable, and 

contains unoptimised control to/from the data path glue logic. DDFLink performs a 

range of post-synthesis cleanup tasks (including optimisation of the glue logic to 

remove redundancy), and generates a highly commented and more readable structural 

VHDL output. The original intention of this back-end link stage was to take the output 

from several separately-synthesised blocks, and combine them in much the same way 

as a compiler link stage. 
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4. Buck-end synthesis, logic-level optiniisution and technology mapping, placement 

and Touting'. The final stage in the design flow is low-level optimisation and 

technology mapping, which utilises a number of third party tools, Synplicity Synplify 

Pio, Xilinx ISE (Integrated Software Environment), and IVIentor Graphics 

Leonardo Spectrum. These tools take the structural VHDL description generated by 

MOODS as input. Each tool performs the low-level logic synthesis and technology 

mapping, which translates the design into a physical circuit to be implemented in an 

FPGA or ASIC as illustrated in Figure 2-10. For Xilinx FPGAs, the Xilinx-targeted 

EDIF (Electronic Design Interchange Format) output from RTL synthesis tools is 

processed by Xilinx ISE to generate a bitstream file to download onto a FPGA. 
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Figure 2-10 Back-end synthesis using third party tools 

2.6.1 Synthesisable VHDL subset in MOODS 

VHDL is used by the MOODS synthesis system described in the body of the thesis. 

VHDL, which has already been considered in Section 2.2.3, was initially designed as a 

simulation language. This leads to a number of problems when implementing VHDL in a 

synthesis environment. The general set of behavioural VHDL restrictions [24, 40, 41] in 

the context of synthesis imposes a set of constraints on the synthesisable VHDL [39, 42] 

in the MOODS synthesis system. The limitations are due to the difficulty of 

implementation of certain features within the VHDL language, and the relaxed timing 
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model utilised within behavioural synthesis. Examples of unsynthesisable VHDL are data 

types such as pointers and linked lists which are unrealisable in the context of hardware 

logic and gates because their size is dynamic, unsynthesisable constructs such as assert 

statements foi simulation-only operations for error messages and anything to do with file 

I/O types due to lack of an operating system to deal with the file I/O operations such as 

opening and closing a file. 

2.6.2 ICODE generation 

The VHDL compiler that forms the front-end of the MOODS synthesis system parses and 

translates a single or a number of input VHDL files into a single language-independent 

ICODE file. Using the intermediate language ICODE as input to the MOODS synthesis 

core allows the use of different languages (Section 2.2) to describe the behaviour of the 

user design. ICODE describes the functionality, sequencing and connectivity of the design 

in a lower language level, similar to an assembly language representation of a software 

language, with additional control flow information. Complex statements (such as 

sqrt(dx*dx + dy*dy) ) must be broken up because they cannot be sensibly represented as 

an atomic operation. ICODE is in a form suitable for direct mapping to the cell library, 

and employs simple two input operations to ensure technology independence. 

VHDL processes, procedures, and functions are translated and mapped into a set of 

ICODE with the main entity/architecture definitions mapped to the ICODE 

program module that forms the root of the system's control flow. The processes within the 

architecture definition are merged into the program module. The VHDL process is the 

only concurrent construct that is converted into ICODE. No other VHDL concurrent 

constructs are supported. The concurrent behaviour of VHDL processes is performed in 

the ICODE representation by the execution of the first ICODE instruction with a multiple 

instruction activation list on a system reset. Each entry in this first activation list activates 

the first instruction in each process and its control flow never re-converges. 

Each module comprises a set of numbered ICODE instructions together with an associated 

activation list. The sequencing of operations is based on a Petri-net style token passing 
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mechanism, in which an instruction is only executed once it has been activated by another; 

the activation list specifying which instructions are to be executed once the current one has 

terminated. 

VHDL signals and vaiiables are translated into equivalent ICODE registers, aliases (bit-

slices), memory blocks, counters or ports based on their declaration in the behavioural 

code. An ICODE counter is inferred from variables defined within a loop construct. RAM 

and ROM memory blocks are specified directly by the user. A port is used only to define 

the input ports within the I/O list of the module as output ports are defined as registers. 

A simple example showing a fragment of behavioural VHDL code with its equivalent 

ICODE is shown in Figure 2-11. It outlines the key features of the generated ICODE 

description; 

# An ICODE file can contain a number of s (ICODE lines 27 and 39), which 

are translations of VHDL subprograms (fimctions and procedures). Concurrent 

processes are merged into the main module. The first ICODE 

instruction with a multiple instruction acf/'van'oM activates the first translated 

ICODE instruction in all the VHDL process on a system reset. For example, 

instiuction 2, which is the first ICODE instruction in process P one, and instruction 10 

which is the first ICODE instruction in process P two. 

# An ICODE instruction has the general form; 

label ; OPERATION <inputs>, <outputs> <activation list> 

where M,' precedes the instruction number. For example, instruction 7 is labelled 

instruction 2 is labelled and so forth. 

# Each ICODE instruction can be activated by any number of other ICODE instructions. 

Upon completion of the execution of the current instruction, all the instructions in its 

activation list are activated. If no activations are listed for an instruction, then next 

instruction is activated. For example, instruction 2 (labelled '.20002') activates a 

conditional branch instruction 3 (labelled \L0003'), which then activates either 
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instiuctions 4 or 9. While the absence of the activation list in instruction 5 results in an 

automatic activation of instruction 

• Conditional branches aie implemented as an //^instruction with two activation lists. 

One for the true condition and the other for the false condition (y^CT )̂. The 

VHDL conditional statement = "7 " in VHDL line 13) is implemented 

as two instructions 2 and 3, with instruction 4 being activated if the condition is true 

,and instruction P being activated if the condition is false. 

• Complex expressions are split into a number of simpler ICODE instructions, with 

temporary variables (for example, twipl in ICODE line 44) inserted to pass data 

through each operation. 

• VHDL subprograms (functions and procedures) are implemented as separate modules 

and these modules are activated via a calling ICODE MODULEAP instruction, which 

halts the main execution and passes control to the called module. A subprogram 

module will return when the ENDMODULE instruction is activated. 

A complete definition of the ICODE format is provided in Appendix C.l. 
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Behavioural VHDL source ICODE 
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entity m_call1 is 
port( start: in unsigned(0 downto 0); 

sum_out: out unsigned(3 downto 0); 
mult_out: out unsigned(7 downto 0)) ; 

end m_call1; 

architecture Beliaviour of m_call1 is 
signal s i , s2: unsigned(3 downto 0) :="0000"; 
signal s3: unsigned(7 downto 0) :="00000000" 
begin 
P_one ; process 
begin 
j f (start = "1") then 

proc1( s1, s2 ); - call procedure 1 
s1 <= s2; 
wait for 10 ns; 

/ 

\ 

proc2(s1, s2, s3); 
wait for 10 ns; 

end if; 
wait for 10 ns; 
end process P_one; 

P_two : process 
begin 

sum_out <= s2; 
mult_out <= s3; 
wait for 10 ns; 

end process P_two; 
end Behaviour; 

• call procedure 2 

/ 

procedure p r o d ( 
signal a j n : in unsigned(3 downto 0); 
signal a_out: out unsigned{3 downto 0) 

) is 
begin 

a_out <= a_in + "0001"; 
wait for 10 ns; 

end p r o d ; 

procedure proc2 ( 
signal b j n 1 : in unsigned(3 downto 0); 
signal b j n 2 : in unsigned(3 downto 0); 
signal b_out: out unsigned(7 downto 0) 

) is 
begin 

b_out <= b_in1 * b_in2; 
wait for 10 ns; 

end proc2; 

\ 

r \ 

/ 

/ 

\ 
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28 
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P R O G R A M m_call1 start,sum_out,mult_out 
INPORT start [0:0] 
O U T P O R T sum_out [3:0] 
O U T P O R T mult_out [7:0] 
REGISTER s i [3:0] INIT#%0000 
REGISTER S2 [3:0] INIT #%0000 
REGISTER s3 [7:0] INIT #%00000000 
REGISTER tmpO 

// Statements 
.L0001 NOOP ACT L0002, L0010 
.L0002 ueq start,#%1 ,tmpO 
.L0003 IF tmpO ACTT L0004 ACTF L0009 
.L0004 MODULEAP p r o d s1,s2 
.LOGOS MOVE s2,s1 
.L0006 PROTECT 1e-008 
.L00G7 MODULEAP proc2 s1,s2,s3 
.LOGOS PROTECT 1e-008 ACT L0009 
.L0009 PROTECT 1e-008 ACT L0002 

.L0010 MOVE s2,sum_out 
L0011 MOVE s3,mult_out 

.L0012 PROTECT 1e-008 ACT L0010 

.L0G13 ENDMODULE 

lllllinillllllllllllllHIHIIIIIIIIIIIIIIIIIilllllllllllllllllll 
M O D U L E p r o d a_in,a_out 
// Declarations 
INPORT a J n [3:0] 
OUTPORT a_out [3:0] 
REGISTER tmpi [3:0] 

// Statements 
.LGG14 uadd a_in,#%0001 ,tmp1 
.LG015 MOVE tmp1,a_out 
.L0016 PROTECT 1e-008 
.LG017 ENDMODULE 

MODULE proc2 b_in1 ,bJn2,b_out 
// Declarations 
INPORT b j n l [3:0] 
INPORT b j n 2 [3:0] 
OUTPORT b_out [7:0] 
REGISTER tmp2 [7:0] 

// Statements 
.LG018 umul b_in1 ,b jn2, tmp2 
.L0G19 MOVE tmp2,b_out 
.L0G20 PROTECT 1e-008 
.L0021 ENDMODULE 

Figure 2-11 VHDL and the generated ICODE for a sum/multiply example 
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2.6.3 Data path and control path structure 

The internal MOODS coie data structures hold both the behavioural representation of the 

ICODE and a fWly bounded structural implementation of the structural implementation of 

the behaviouial data path and control path. MOODS models the control and data paths as 

two separate graphs, linked together via implementation links and control equations. The 

data path nodes implement the operations performed by the ICODE instruction and the 

storage elements in the data path stores the ICODE variables passed into the operations 

and the results from each execution. The control path holds a graph representation of every 

state within the controlling state machine. The MOODS synthesis process is the iterative 

piocess of applying multiple simple optimisation transformations to these data structures, 

controlled by a transformation selection algorithm. It is possible to output a structural 

representation of the system at any point within the synthesis process after the building of 

the control and data path graphs 6om the ICODE file. 

Figure 2-12 shows the initial control and data path graphs created by MOODS for the 

example shown in Figuie 2-11. The structural implementation is generated directly from 

the ICODE, and this naive implementation of the behaviour has one control state node per 

instruction and a separate data path node for each functional ICODE operation and ICODE 

variable. At this stage, the initial structure has no shared operation and variable storage 

elements within the data path and since each data path node is activated by one control 

state node, it is possible to superimpose the schedules time steps over the data path graph, 

as illustrated in Figure 2-12. This combined view of the design is no longer feasible during 

synthesis when the functional units and storage elements are shared within the data path, 

altering the one-to-one direct correspondence between the two graphs. 



T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 45 

Concurrent 
branches have 

the same 
condition exiting 

a fork node 

nodes execute 
ICODE instructions 
via output register 

load enables 

Concurrent 
branches have 

the same 
condition exiting 

a fork node 

nodes execute 
ICODE instructions 
via output register 

load enables 

start #1 

IF instructions 
have no data 
path and only 

generate a 
conditional node 

CALL \ l 4 

temporary registers are 
only used once and 

will generally be 
shared or removed 
during optimisation 

Call nodes 
temporarily pass 
execution to the 

sub-module 
controller 

sum out 

mult out 

* 
p r o d 

subprogram 
module 

Subprogram modules 
have a separate data 

path and controller 
executed from a call 

node 

result registers 
load at the end 
of the executing 

control state 

CALL yy 
s 

proc2 
subprogram 

module 
1" 

s3 

Figure 2-12 Initial control and data flow graphs for the sum/multiply example 

2.6.3.1 The control path 

The control path data structure is built within MOODS in a graph structure, where each 

graph node represents a single control state. Input and output control arcs between the 

graph nodes form the links to the previous and next control state node. These arcs describe 



T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 

state transitions conditional on signals generated by the data path. For example, in Figure 

2-12, the tiansition from state S4 to state iSj or Sjo is conditional on the data path signal s7. 

At present, a one-hot encoded token passing structure is implemented for the controller. 

The controllei itself is a non-detei ministic finite state machine, where each state 

conceptually executes one or more ICODE instructions. Each control state is built from a 

control cell that contains a single register that is activated for one clock cycle by one or 

more token inputs to the cell. These token signals are representative of the arcs connecting 

the contiol state nodes, and the registered state bit forms the state enable signals used to 

control the data path. The controller structure suits the register-rich FPGA architecture. It 

is entirely possible to implement the controller using alternative state encoding (e.g. 

binary, gray-coded) in platforms with limited registers, or use a micro-coded controller. 

The mstructions executed during a state are stored as an instruction list within the control 

state node data structure. A set of acyclic sub-graphs within this list divides the 

instiuctions into groups of dependent instructions, where each group is numbered and 

instiuctions within the gioup are executed sequentially. Instructions in each group are data 

independent with instructions in other groups, and hence the instructions can be executed 

concurrently. Within a group, the instructions are dependent on each other and they are 

executed sequentially. Figure 2-13 illustrates the execution of two concurrent instruction 

groups in a single control state. The two add instructions are data dependent and the result 

of chaining the two add instructions (il and /2) in a single control state is that two separate 

adder data path units are required. The multiply instruction (z J ) grouped separately from 

the addition instructions executes concurrently. The propagation delay for the data path 

units are used to estimate the minimum delay required executing the instructions in the 

control state. The (i.e. inherent data) for each instruction is fed from 

links to the data path nodes implementing the relevant ICODE instructions. All data path 

nodes are fully bound to a physical technology-specific library cell during synthesis, from 

which the characterisation data is obtained and fed up to the synthesis optimisation 

process. The estimated delay is used to determine the maximum allowable clock rate for a 

design. With a synthesis constraint (e.g. setting the clock period to 20 ns) specified by the 

usei, the propagation delay for the data path units determines if instructions implemented 

by the corresponding units can be chained to execute in one control state. 
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Figure 2-13 Execution of chain instruction in a single control state 

The control nodes in the control path are categorised into six basic types as listed in Table 

2-1. Scheduling transformations performed on the control graph data structure tends to 

merge control nodes together forming composites of the types listed below. This merging 

of control nodes does not apply to collect and call nodes. The collect node, however, can 

be completely removed by the parallel merge transtbrmation. 

Control node types Description 

General node This node has a single unconditional input and output arc and it can 

contain any ICODE instructions other than 'MODULEAP, 'COLLECT or 

conditional instructions. A general node represents a simple sequential 

control state taking one cycle. 
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Control node types Description 

Fork node This node has a single input arc and mul t ip le unconditional output arcs. 

It can contain the same ICODE instructions as the general node. Fork 

node forms the root of a concurrent b ranch that simultaneously 

activates all the successor nodes. 

Collect node A collect node has two or more input a rcs and a single output arc. The 

node contains a single ICODE 'COLLECT instruction only and the node 

will not activate the next control state n o d e until a fixed number of input 

arcs (which may be less than the total number of inputs) are activated, 

thereby synchronising a set of concurrent branches. This node 

complements the fork node. Note that t he synchronisation of the 

translated concurrent VHDL processes is not done with the collect 

node. The VHDL compiler no longer suppor ts concurrent translation of 

sequential instruction activations, thus rendering the collect node 

obsolete. This 'collect' mechanism is still supported by the MOODS 

core, and thus the collect node is listed here for completeness. 

Conditional node A conditional node has single input arc a n d two of more conditional 

output arcs. This node can contain any ICODE instructions supported 

by the general node, as well as condit ional ICODE instructions such as 

'IF and 'SWITCHON' to form the condit ional paths through the control 

g^^h. 

Dot node This node has two or more input arcs and a single output arc. This node 

complements the conditional node. Any of the input arcs can activate 

the node. The dot node provides the re-convergence path for the 

conditional branch sections. It supports the same set of ICODE 

instructions as the general node. 

Call node The call node forms the basis of the module calling mechanism. It has a 

single input and output arc. This node contains a single ICODE 

'MODULEAP' instruction only. The call node delays the execution of the 

next control state node until a single iteration of the called sub-module 

is executed. The call node activates the first control node in the 

separate control sub-graph of the called module and when the sub-

module terminates, control is passed back to the call node and it 

activates the next control state node in the main graph. 

Table 2-1 Descriptions of the six basic control node types 
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Once the control graph is optimised, the only distinct types o f node are the call, fork, 

conditional and general node types. A call node is physically realised by the control call 

node described in Section 4.6, with all other nodes realised by a general control node. 

2.6.3.2 The data path 

The MOODS synthesis core generates the data path as a fully connected graph of data 

path node units, connected indirectly via data path nets. This level of indirection is used to 

determine the bit range connectivity of multi-bit nets used to connect the node units. The 

network of functional (adders, multipliers etc.), storage (registers), and interconnect 

(multiplexors) units in the data path graph implements the functionality of the ICODE 

instructions. The flow of data through this network is controlled by the control nodes in 

the control path. The data path consists of three main types of data path node units: 

1. One storage unit (register) is initially created for each ICODE variable (both user 

specified and temporary variables). A number of different types of storage units 

exist and the selection of which of these optimised storage units depends on the 

operations performed on the variable. The general register type storage unit is 

implemented for the storage of data variables and temporary variables used in a 

number of instructions. Each operating instruction is performed by a separate or 

shared functional unit, which is connected to a register input via a multiplexor. A 

variable which is only reset and incremented (or decremented) is implemented by a 

counter register with a reset input, thereby removing the need for an adder unit for 

such instruction executions. A third type of storage unit is formed from a multi-bit 

array variable or constant, where a RAM-type or ROM-type storage unit is created 

respectively. During synthesis, register sharing and bypassing reduces the number 

of physical storage units required. 

2. A functional unit implements ICODE operations such as additions, multiplications, 

and comparisons. These operations are purely combinational, with a combinatorial 

functional unit to produce the results. Characterisation data (Section 2.6.3.1) from 

cell libraries provides technology-specific performance data and this is used to 

estimate the area and maximum delay; time required for an input change to 
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propagate through to its output (i.e. the longest accumulated combinatorial delay). 

The functional nodes are not controlled directly f rom the control state nodes in the 

control path, they rely on the controller to feed the appropriate values to the inputs 

of the functional units and to read the results of the unit during specified control 

states. An exception to this rule is the use of ALU type functional units, which can 

perform more than one type of operation. The type of operation is selected from a 

set of input control signals, driven by control nodes in the control state machine. 

An example of an ALU unit is an add/subtract, which is used in place of a single 

add unit and a single subtract unit. Note that only one type of operation may be 

used within any single activated control state node. 

3. The final type of data path unit is the interconnect unit. The library cell that 

implements the interconnect node is a multiplexor. The multiplexor selects the 

appropriate input amongst two of more input nets and drives the inputs of any 

shared data path unit. Interconnect units are not physically created until the post-

processing phase in the synthesis process for code size efficiency and reducing 

synthesis runtime during data path optimisation. The MOODS synthesis tool, 

however, does take into account the delay and area factors of these implied 

multiplexors during the optimisation process. 

Each data path node is a generic functional block performing the appropriate ICODE 

operations (or operations for ALUs). Functionality and characterisation data (such as area 

and delay) for each unit is obtained via a link into the cell library. The actual physical 

implementations of the data path elements are taken from a pre-defined set of 

parameterised structural/RTL components defined in a technology library file. The 

separation of the generic and physical aspects of the data path elements gives technology 

independence within the synthesis core without sacrificing the accuracy of the 

performance information as the technology specific cell information is used within the 

synthesis process. 

The signals that link the control path nodes to the data path nodes are represented by 

Boolean logic equations. This abstraction of the control signal generation allows a number 

of different ways of implementing the linking signals, which includes a network of multi-

level logic gates, ROM lookup, or combined with the control graph to form a micro-coded 
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controller. At present, these linkage signals are output as simple VHDL logic expressions, 

leaving Boolean optimisation and technology mapping to the low-level logic synthesis 

tools. 

2.6.4 Transformations 

MOODS formulates the synthesis optimisation process as an iterative optimisation of the 

initial naive implementation of the design, where the synthesis task is divided into the 

traditional sub-tasks of scheduling, allocation, and module binding. This allows trade-offs 

to be made between the various synthesis sub-tasks, which are performed simultaneously. 

Optimisation is performed by applying a number of small local transformations on 

selected parts of the design using a dedicated optimisation algorithm. 

Each local transformation is semantic preserving and complete, resulting in a valid design 

after each transformation applied to the design. Throughout the process, the internal 

representation describes a complete and fully bound design implementation, making use of 

the low-level characterisation information from the module libraries to provide accurate 

estimates for circuit performance. At present, MOODS has a set of fourteen different 

transformations, each performing slight changes to the design, adjusting the scheduling of 

the control state nodes in the control path, and the allocation and binding of data path 

nodes in the data path. The fourteen transformations include six inverse transformations to 

perform backwards steps to reverse previous design decisions, resolving the problem 

associated with premature binding decisions, which may produce non-optimal designs. 

Details of the four basic control state merging transformations, two inverse state-splitting 

transformations to undo the merging of states, and a clock period adjustment 

transformation, are given in Section 2.6.4.1. Details of the two data path unit sharing 

transformations, together with four of their associated inverse unsharing transformations, 

and a binding transformation to select an alternate functional unit are given in Section 

2.6.4.2. 
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Figure 2-14 The steps to applying transformations in the iterative 
optimisation process 

The selection and application of the transformations performed within each iteration of the 

optimisation process consists of four separate steps, as illustrated in Figure 2-14: 

1. Selection - This initial phase selects a transformation from the fourteen available, and 

the portion of the design to which it should be applied. This selection is controlled by 

the optimisation algorithm in use. 

2. Testing - The second step involves checking the validity of the given transformation 

on the selected portion of the design. It is possible for some transformations to alter the 

behaviour of the design (e.g. instruction dependency and mutual exclusivity). This 
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testing phase ensures that all transformations to be applied are valid and invalid ones 

are filtered out and aborted. 

3. Rstifncition - This estimation step evaluates the effect of the given transformation on 

the system perfoimance based on the user objectives (such as area, delay, power 

consumption, etc), without permanently altering the core data structures. This step 

simulates all the changes made to the design by the transformation and calculates the 

effect of these on the current system performance. The optimisation algorithm uses the 

lesults of the estimation to determine whether to perform the transformation (i.e. make 

the changes in the core data structures) or abort the transformation. 

4. Execution - The last step applies the transformation, altering the internal data 

structures of the design. 

2.6.4.1 Scheduling 

Scheduling transformations perform control graph optimisation, whereby ICODE 

instructions are assigned to control state nodes and the number of control state nodes used 

to perform a number of ICODE operations is optimised, when more than one ICODE 

instructions are merged into a single control state. There are four basic state merging 

transformations, two inverse state-splitting transformations to undo the merging of states, 

and clock period adjustment transformation. These seven scheduling transformations and 

their effects are listed in Table 2-2. More details may be found in [39]. 

Transformation Effects 

Sequential merge This merging transform merges two sequential control nodes (i.e. nodes 

executed sequentially) to form a single control node implementing multiple 

instructions, where the instructions in the second node are moved into the 

first. ICODE instructions with data dependency are chained together within 

an instruction group, thus bypassing intermediate data value registers. The 

second control node with no associated instructions is then removed from 

the control path. 



T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system 54 

Transformation Effects 

Parallel merge This transform is applied to a concurrent branching forl< node, where the first 

nodes within each branch are merged into a single successor node. 

Merge fork and 
successor 

Elements of the previous two are combined to form this third transformation, 

where the successor instructions contained within one branch are merged 

into the branching (fork or conditional) node. 

Group instructions 
on register 

This transformation is geared towards removing registers with a single input 

and output net, which is common in the temporary variable register storage 

units generated by the compiler. These var iables are accessed by one read 

and write instruction. The transformation tr ies to bypass (remove) the data 

path register by merging the instruction group that contains the write 

instruction into the read instruction control node. 

Ungroup into 
groups 

This inverse scheduling transformation is a state-splitting transform, which 

moves groups of instructions within a control state node into two separate 

control nodes. The first control state node conta ins the single selected and 

extracted group of instructions, leaving the remaining groups in the second 

control node. 

Ungroup into time 
slices 

This second inverse scheduling transformation extracts instructions from a 

specified control node and places them into a number of new control state 

node, such that the time taken to execute the instruction groups in any of 

these old or new control nodes does not exceed a specified period. 

Clock set/multi-
cycling 

This optimisation is a global optimisation that sets the maximum clock period 

for the entire design. This transformation makes use of the ungroup into time 

siices transformation, forcing all control nodes below a user specified clock 

period constraint. 

Table 2-2 Scheduling transformations 
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2.6.4.2 Allocation and Binding 

The second gioup of tiansformations acts upon the data path, performing allocation and 

binding optimisation, where the transformations are concerned with the sharing and 

unsharing of data path units. There are two sharing transformations, together with four of 

their associated inverse unsharing transformations. A further binding transformation is 

also piovided to select an alternate functional unit to perform the same operation. These 

seven data path transformations and their effects are listed in Table 2-3. More details may 

be found in [39]. 

Transformation 

Combine 
functional units 

Share registers 

Effects 

This transformation attempts to merge two functional units into one, where 

the operations performed by the two source functional units are not 

executed in the same time slice. This has the effect of time-sharing a 

functional unit between multiple operations. The resultant function unit will 

have number of inputs, which are selected by the multiplexor interconnect 

node. Control signals from control state nodes are used to drive the select 

signals of the inferred multiplexors, and the load signals of the required 

output registers. The availability of multi-function ALU units in the cell 

libraries allows two combined units performing different operations to merge 

into a single ALU unit. For example, merging an add and a subtract 

functional unit into a single add/subtract A L U unit. 

This second merging transformation tries to share a single register storage 

unit between multiple ICODE variables with non-overlapping lifetimes, or 

variables that occurs in mutually exclusive condit ional branches. The 

register lifetime analysis also takes into account variable persistence around 

loops and through conditional branches. 
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Transformation Effects 

Vncombine 
instruction from 
unit 

This first uncombine transformation undoes the merging of two functional 

units by the combine functional unit transformation. It takes a shared 

functional unit that implements two or more ICODE instructions, and 

removes one of these instructions into a n e w functional unit created to 

implement the extracted instruction. The t ransform makes use of the cell 

library to determine the type of unit to use for implementing the extracted 

instruction. The unit that was initially shared is re-evaluated and the cell 

library is used to select a replacement funct ional unit to perform the 

remaining instructions (i.e. minus the extracted instruction). 

Uncombine unit 
fully 

This transformation utilises the uncombinB instruction from unit 

transformation to completely extract all ICODE instructions from a single 

functional unit into a number of functional units, one unit implementing one 

instruction from the original shared unit. 

Unshare variable 
from register 

Shared registers are unshared in a manner similar to the uncombine 

instruction from t/n/f transformation using this transformation, which extracts 

one of the implemented variables from the shared variable and placed in a 

new separate register storage unit. 

Unshare register 
fully 

This transformation utilises the unshared variable from register 

transformation mentioned above to completely unshare all the iCODE 

variables being implemented by a single shared registered storage unit. This 

transformation creates a number of separate register storage units, one for 

each ICODE variable. 

Alternate 
implementation 

This is the only binding transformation provided by the MOODS synthesis 

core. For a functional unit that has two or more different available 

implementations in the cell library, this transformation attempts to replace 

the existing unit bound to the functional data path unit with an alternative 

implementation with a different area and delay characteristics. This attempt 

to use an alternative implementation changes the cost of the unit and the 

cost function used within the optimisation algor i thm is used to determine 

whether to accept or abort the new unit binding. 

Table 2-3 Allocation and binding transformations 
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2.6.5 Cost function 

The cost function is a measure of the goodness" of a change (e.g. merging of control 

states 01 sharing of data path units) in the design structure wi th an application of the 

selected tiansformations. This cost function is used during the estimation phase (step 3 in 

Figure 2-14) in the iterative optimisation process. The cost function evaluates a design 

configuiation with respect to the target objectives specified by the user, where the 

multiple, possibly conflicting objectives form the weighted costs of each objective 

(dimension). These weighted costs are used by the cost function to produce a single value 

representation of the state of the design in an n-dimensional design space. 

The MOODS cost function allows the user to specify objectives for a number of 

measurable design parameters such as area, delay, and power consumption. Each of these 

objectives is specified as a target value and user defined priorities are assigned to each 

objective. The priority level assigned to objectives determines the order in which targets 

aie optimised, where the pviynciTy objectives with priority 1 (highest priority) are 

considered first before any other lower priority objectives. 

An analogy for the cost function is the "energy" of a system. During optimisation, the 

effect of applying the selected transformation is predicted by evaluating its effect on the 

system "energy". For a single objective, the change is given by: 

(2-1) 

Where Cestimate IS the estimated cost of the design after applying the transformation, 

Cprevious is the cost of the design before the transformation, and Cjnitiai is the cost of the 

initial implementation. A negative average change (AE < 0) indicates a general 

improvement in the design implementation with respect to the user objective. 

The optimisation algorithm uses the value of the change in energy (AE) due to applying a 

single transform to decide whether or not to accept the transform. AE is calculated by 

summing the change in cost of each objective caused by applying a transform starting with 

the primary objective. If all primary objectives are met, whereby all Cprevious Ctarget and 
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Cestimate^ Ctarget (wherc Ctarget IS the target cost for the objective), then AE is calculated 

from the priority 2 objectives, and so on for other lower priorities. 

58 

2.6.6 Optimisation algorithms 

The MOODS synthesis core currently provides two optimisation algorithms. Both 

methods can be used to control the optimisation process described in the previous section. 

The first key function of the optimisation algorithms is selection of the initial 

transformation and design portion to which the selected transformation should be applied 

in the data selection phase. The other function of the optimisation algorithm is to decide 

the number of transformation iterations to execute. 

2.6.6.1 Simulated annealing 

This first algorithm exploits a method with an analogy in metallurgy, where cinneciling is 

originally a process where the molten material is cooled down from the high-energy liquid 

phase to the minimal low energy solid phase in a controlled, usually slow, manner. A 

proper disciplined cooling schedule sets the final energy state at its globally minimum 

level at the end of the cooling process. 

The simulated annealing algorithm [43] is a global optimisation method that is based on 

the Metropolis algorithm [44]. The simulated algorithm works by selecting a random 

transformation and design section to target the transformation. The resulting system 

energy change in the cost function is evaluated and the algorithm accepts both improving 

(AE < 0) and degrading (AE > 0) transformations. Transformations leading to cost 

improvements will automatically be accepted, whereas the probability of accepting a cost 

degrading transformation is given by: 

f = e x p - y — : A E > 0 (2.2) 

where P is the resulting probability of accepting a degrading transformation, AE is the 

estimated positive change in energy given by the transformation and T is the temperature 

within the annealing algorithm. This ensures that the probability of acceptance of 
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degradation decreases when the temperature decreases. The decision to accept 

degradations is made from the comparison of the probabiHty threshold value and a 

normalised random number, and acceptance being granted when the generated random 

value is the smaller value between the two. 

Figure 2-15 illustrates a one-dimensional configuration space and it demonstrates how the 

simulated annealing algorithm avoids being trapped in local minima on the configuration 

path. 

C o s t 

initial 
configuration 

local minimum 

local minimum 

global minimum 

C o n f i g u r a t i o n 

Figure 2-15 Design cost plotted against a single one-dimensional space 

The design is initially represented by point An optimisation algorithm that accepts only 

transformations that result in an improvement will hit the local minimum (point B). The 

simulated annealing algorithm accepts degradation and hence allows the configuration to 

jump out of the local minima (points B and C) into the global minimum (point D). 

The main advantages of the simulated annealing algorithm are its abstractness in terms of 

its application independence and its ability to find a global minimum. The optimisation 

process using the simulated annealing approach relies entirely on the cost function and 

transformation estimators to encapsulate the design space. This allows complex trade-offs 

to be made between multiple conflicting objectives, and permits the inclusion of further 

objectives (e.g. dynamic re-configurability or testability) with additional costing 
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inechaiiisms to the cost function, with characteristic information and models for the added 

objectives. However, there are a few disadvantages associated with the simulated 

annealing. Firstly, the simulated annealing uses a random approach in the selection of 

ti ansfoi mations, thus many iterations are required for a system to reach equilibrium, 

making the simulated annealing approach slower than heuristic methods. The abstract 

parametei values used to control the simulated annealing process requires manual 

selection by the user, these are often difficult to predict in advance, requiring considerable 

expeiience to obtain the solutions for each design. Generally, the optimisation speed is 

traded off against the quality of the resultant synthesised design. 

2.6.6.2 Quasi-exhaustive heuristic 

MOODS synthesis tool addresses some of the unpredictable and often slow nature of the 

simulated annealing algorithm with a quasi-exhaustive heuristic algorithm, which is both 

faster and more user friendly. Unlike the random selection method used in simulated 

annealing, this heuristic approach uses the same set of transformations, applied in a pre-

defined schedule, guided by an analysis of the design. The quasi-exhaustive heuristic 

produces the same final structure for every optimisation run of any fixed design. The 

algorithm only perfbmis area and delay optimisation, with knowledge of suitable trade-

offs gained through an analysis of a number of test designs. 

The quasi-exhaustive heuristic only accepts improving transformations; it uses the same 

sets of transformations as those used within the simulated annealing algorithm, apart from 

the inverse (i.e. degrading) transformations. Two basic routines are provided to optimise 

area and delay: 

1. Compact control path - This routine utilises the scheduling transformations, merging 

control state nodes in the control path. This reduces delay by performing more 

instructions within a single control node and to a lesser extent, as temporary 

intermediate registers are bypassed and removed in the data path. 
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2. Compuct dcitcipath - This second routine utilises the allocation and binding 

transformations, merging operations and sharing register storage units, hence 

optimising area. 

There are two main disadvantages in using the quasi-exhaustive heuristic algorithm. 

Firstly, the inability to apply degrading transformations can lead to a sub-optimal 

synthesised design. The other reason is the heuristic approach only performs area/delay 

optimisations. To perform multi-dimensional trade-offs between multiple conflicting 

objectives, the heuristic approach needs to understand the interactions between all aspects 

of the design space in order to perform the most appropriate transformations. The 

algorithm which is faster than the simulated annealing algoritlim provides the user with 

some general idea of what constitutes a realisable target and it may be used as a pre- or 

post-processing step in conjunction with simulated annealing for further optimisation. 

2.7 Post-processing 

The post-processing stage in the MOODS is used to complete the structural description of 

a design. This epilogue (finalisation) stage happens just before the generation of the raw 

structural VHDL output {_synthl.vhd) file, final data structure {.ds) file, and the DDF data 

structure file (the last processing stage in the synthesis engine - MOODS in Figure 

2-9). 

The first step of the post-processing stage is the bypassing of subprogram module output 

registers to implement pass by reference (See Chapter 4 for subprogram module 

modifications to change outputs of external modules to pass by value). 

The next stage in the post-processing stage is to generate any multiplexors that are 

required. These interconnect data path nodes are completely implied during optimisation 

for efficiency reasons. A multiplexor is created and linked into the data path structure 

when multiple input nets drive a single data path node in. The net activation conditions 

which correspond to ICODE instructions that drive the input nets are later converted into 

multiplexor select signals. 
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The third stage in the post-processing stage involves the generation of control signals from 

the conditional signal list. Boolean expressions are generated and linked in to the 

appropriate nets and control signals within the control and data paths. 

Other tasks performed within this post-processing stage include the tidy up of the data 

path, removing of unused data path units, which have been bypassed during the 

optimisation process. The control path is also tidied by removing redundant control states. 

2.8 Summary 

The beginning of this chapter gives an outline of the overall high-level synthesis process 

and the main sub-tasks within the process. The rest of the chapter describes the MOODS 

synthesis system in more depth, in particular the methods employed by MOODS to carry 

out the synthesis sub-tasks. MOODS develops and provides the user with multiple 

implementations from a single behavioural input description within the design space, 

which provides trade-off between several, possibly conflicting, objectives in the aim of 

producing an optimised implementation of the design. 
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Chapter 3 

Multi-FPGA partitioning 

3.1 Background 

The previous chapter covered an overview of high-level synthesis and an in-depth 

description of the MOODS synthesis system, which forms one part of the multi-FPGA 

synthesis system. The other important part is the partitioning phase, more specifically Aow 

is the design partitioned and M/AgM to perform partitioning. The first aspect of the 

design is partitioned deals with the design representation used for partitioning and the 

partitioning algorithm used. A common design representation for partitioning is based on 

graph notation, where a data flow graph, control and data-flow graph, or module call graph 

is partitioned with the goal to attain a partitioned design that fulfils optimisation criteria 

and constraints such as area, speed, power consumption, number of I/Os, etc. Partitioning 

can be performed at different abstraction levels and granularity, the second aspect of wAen 

to perform partitioning has a high impact on the quality of the structural output produced 

by the synthesis system. 

The rest of this chapter provide the background information on multi-FPGA partitioning, 

giving an insight on Aovr a design can be partitioned. Section 3.2 deals with partitioning 

methodologies and it provides an overview of partitioning algorithms. With an 

understanding of partitioning algorithms. Section 3.3 introduces multi-FPGA partitioning 

and describes synthesis systems with multi-FPGA partitioning features. Section 3.4 deals 

with some aspects of the data communication in the context of multi-FPGA systems. 

Section 3.5 describes techniques and issues related to data synchronisation across clock 

domains. An introduction of design activity profiling and how the obtained profile can be 
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used to guide the paititioning algorithm to achieve an improvement in the implementation 

solution is given in Section 3.6. 

3.2 Partitioning methodology 

Multi-FPGA systems [45] are often used in logic emulation, prototyping applications, and 

implementation of application specific integrated circuits (ASIC) of large system designs 

because of their programmability features, low costs and short production times [46]. The 

general partitioning problem is a well-known NP-complete problem [47]. Partitioning of a 

design over multiple devices can be performed at various levels of abstraction, with a 

multitude of techniques in partitioning multi-FPGA systems and the possible combinations 

could reach into the thousands. 

3.2.1 Overview of partitioning algorithms 

Partitioning algorithms can be classified broadly into two main categories [48, 49]. The 

fiist is constructive and the other iterative. Constructive algorithms determine a partition 

fiom the graph describing the circuit or system, whereas iterative methods aim at 

improving the quality of an existing partitioning solution. 

Partitioning algorithms can also be labelled or Deterministic 

algorithms generate the same solution for the same set of inputs every time. Probabilistic 

algorithms, on the other hand, produce differing solutions as they are based on random 

numbers. One of the best-known, most widely referred and extended deterministic 

algorithm is the Kemighan and Lin (KL algorithm) [50] and its variant, the Fiduccia-

Mattheyses (FM) heuristic [51]. Refinement and extensions to the basic FM heuristics 

given by Krishnamurthy [52], Huang and Kahng [53], Hauck and Borriello [54],Cong et 

al. [55, 56], Dutt and Deng [57], Kuznar et al. [58, 59] as well as many others. 

Probabilistic or stochastic algorithms includes the Simulated Annealing (SA) algorithm 

[43] and Genetic Algorithms (GA) [60]. 

Research on partitioning at a higher level of abstraction (e.g. behavioural partitioning) and 

hierarchical partitioning techniques were carried out by Vahid et al. [61-65], Digital 
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Design Environments Laboratory in the University of Cincinnati [66-68], Fang and Wu 

[69-71], Duncan et al. [72], Knipnova et al. [73] as well as many others. 

Kernighan-Lin algorithm 

The KL (Keinighan-Lin) [50] algorithm is an iterative improvement bipartitioning 

algorithm foi a giaph G — (V, E), which starts with two initial partitions (usually randomly 

generated) of n elements each. Pairs of vertices are swapped between partitions until no 

fuither improvement can be achieved. The KL algorithm attempts to swap pair of vertices 

to reduce the cutsize or a move resulting in the smallest increase in cutsize, if no decrease 

is possible. A cost matrix C = (Cy), where i=j= 1 ,2 ,3 , ..., 2n, i ^ j is associated with the 

graph. For each node a e an earremaZ cost, is defined by: 

^ where is number of edges that 
ysB cross the partition boundary (3.1) 

and an internal cost L by; 

/q = ^ Cgy where Cav is number of edges that do 
veA not cross the partition boundary (3.2) 

Da Ea la IS the benefit of moving vertex a from A to B. The gain of swapping a vertex 

pair (a, 6), where a e ^ and 6 e ^ is given by - 2ca6. 

The first step of the KL algorithm arbitrarily partitions P înto two equal subsets and 

External costs, internal costs, and the difference between the two costs are then computed 

for all vertices. Step 3 of the algorithm is to choose the pair of vertices that will result in 

the highest gain value when the interchange occurs. The gain resulting from this move is 

stored and the selected pair of vertices is locked to prevent it from being considered for 

swapping again. The procedure continues until all n pairs of vertices are evaluated and 

locked, and the sequence of gains, g / , . . . , is generated (Step 4). The total gain of 

swapping the first vertex pairs is given by: 

k 

- Si where I <k<n (3.3) 
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Kernighan-Lin Algorithm 
begin 

Stepl. V= set of 2« elements; A, B is the initial part i t ion where 

1̂ 1 = 1̂ 1; and = K; 

Step2. Compute Dy for all v e K; <- 0; and ; 1; 

Step3. Choose aie A ' bisB' which maximises 

gi = Z ,̂ + -2Ca,6J 

Lock a, and and add the pair (g„ 6,) to 

Step4. i f ^ 'and 5 ' a r e both empty then Goto Step5 

else recalculate D - values for A'kj B'\ 

/ < - / + ! ; Goto Step3; 

end if 

Step5. Find k to maximise the partial sum 

k 

G f 
i=\ 

if G > 0 then 

Move { Qi, 

Move Y= {b]. 

Goto Step2; 

else STOP 

end if 

, } to 

, 6*} to 

end 

Figure 3-1 Kernighan-Lin algorithm 

The last step of the algorithm (Step 5) interchanges the first k pairs of vertices for which 

Gk is maximal, making the interchange of (a/, . . w i t h {bi, b^} permanent. The 

KL algorithm stops when the best gain found in an iteration is less than or equal to zero, 

that is, no further improvements can be obtained from vertex pair swapping. 

Fiduccia-Matthevses algorithm 

The FM (Fiduccia-Mattheyses) algorithm [51] is one of the best-known, most widely 

referred and extended partitioning algorithm. It makes two modifications to the KL 

algorithm to improve the time complexity. Firstly, instead of swapping and locking a pair 
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of vertices, the FM algorithm considers and moves a single vertex, one with the highest 

gain in a partition-to-partition move. Secondly, also one important feature of the FM 

algorithm, a bucket data structure (see Figure 3-2) keeps sorted lists of candidates 

(vertices) for moving to the other partition. The vertices are sorted by order of maximal 

gain in a move, where a positive gain is an improvement in the overall solution while a 

negative gain degrades it. 

Sorted list of vert ices 

List of locked vert ices 

Ver t i ces 1 2 3 4 5 6 7 

X 

-{ ) 

Figure 3-2 Bucket data structure in the FM algorithm 

The FM algorithm is an iterative improvement algorithm, in that it starts with a random 

initial partition, and iteratively modifies the solution by a sequence of moves within a pass. 

To avoid having all vertices migrate to one partition, a balancing criterion is maintained. A 

user-specified balance factor r (called ratio), 0 < r < 1, is used to ensure that only final 

partitions satisfying \A\/ (\A\ + \B\) = r are acceptable, where \A \ and \B\ are the sizes of 

partitioned blocks A and B. A partition (A, B) is balanced if 

(r * |K| - ^m ,̂) < 1̂ 1 <(r * I F| 4- Jmar) (3.4) 

where \A\ + |5| = \ V\, Smax = M?Lx[s(i)],z.ndi\G A uB= V 

All vertices are free to move initially, the move with the highest gain and does not violate 

the balance criterion, is selected and executed iteratively. The moved vertex (base vertex) 
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is locked and never selected and moved again during the pass, preventing the algorithm 

fiom selecting and moving the vertex moved in the previous iteration, thus the algorithm 

avoids executing in an infinite loop. The gain values of adjacent vertices affected by the 

base vertex move are updated after each move. The algorithm maintains a maximum gain 

index foi each bucket data stiucture to keep track of the vertex with the highest gain. The 

algoiithm continues with the execution of this iterative select-and-move sequence until no 

more unlocked nodes can be moved without violating the partition size constraints. At the 

end of a pass, the FM algorithm moves back to the best intermediate solution, allowing the 

algoiithm to climb out of local minima. All vertices are unlocked and the best solution 

forms the starting partition for the next pass. The algorithm terminates when a pass fails to 

improve the solution. 

A single pass of the FM algorithm using a graph with six vertices (labelled A/-;;) is 

illustrated in Figure 3-3. The algorithm starts with an initial partition in (a). The vertex 

with the highest gain (vertex M is the base vertex in (a)) is selected and moved to the next 

partition. The moved node is locked (shown shaded in the diagram) and the gain values of 

the adjacent vertices (vertices O, Q, and K) are updated. The select-and-move sequence 

ends in (g) and the intermediate result in (c) gives the best solution (with a cut-size of 3) 

forms the starting partition for the next pass. 
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Figure 3-3 Example of a single pass in the FM algorithm 

Clustering algorithm 

A clustering algorithm groups a set of objects according to some measure of closeness. 

Strongly connected objects are merged into clusters; thereby condensing the overall 

design. A hierarchical cluster tree, with the original objects as the leaf nodes, is formed as 

the merging process is iterated until a single cluster is formed. The two 'closest' objects 
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(which Ccin be individucil leaf nodes or chistcrs resulting f rom previous iterations) are 

giouped togethei and the closeness between all other clusters, or between individual 

objects and clusters are recomputed during each iteration pass. Leaf nodes are considered 

to a height of zero and each non-terminating node of the tree has an associated height, 

which reflects the distance between the objects that have been merged into the 

coiiesponding clusters. Non-terminating nodes closer to the leaf nodes represent clusters 

in which the objects are strongly connected, and in contrast, non-tenninating nodes with 

larger distance (i.e. closer to the root node) represents clusters in which objects are less 

strongly connected. Cut lines at different heights of the tree produces differing number and 

size of partitions, as each sub-tree below the cut line becomes one resulting partition. A 

small number of relatively large clusters are obtained when the cut line is close to the root, 

while a cut near the leaves will give a large number of relatively small clusters. The final 

partitions of the design are usually chosen by having cut lines at different levels and the 

resultant partitions from each cut are evaluated according to design criteria such as area or 

I/O utilisation of target devices. 

Figure 3-4 illustrates the hierarchical partitioning algorithm using five vertices labelled 

to E. Closeness values between pairs of objects are marked on the labelled on the edges 

connecting the objects. Objects or groups of objects that are merged in each succession are 

encompassed in the shaded cluster and the closeness between two clusters or between an 

individual object and a group of objects are recomputed. The closeness values can be the 

maximum, minimum, or average of the closeness of objects in the group. This closeness 

value has been estimated as the maximum closeness in the given example shown below. 
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Figure 3-4 Successive steps in Hierarchical clustering 

Figure 3-5 below illustrates the cluster tree produced by the hierarchical clustering 

algorithm. Partitions produced from each cut are shown the corresponding cut lines. The 

highest cut line, which is closest to the root node, produces a partitioning of two clusters 

with objects .E and C in one cluster and objects .8 and D in the other. The lowest cut line 

produces a partitioning of five clusters with a single object in each. 

R o o t n o d e 

C u t l i nea 

{ / I . E, C} {8, 0 } 

M . E} {C} {8, 0 } 

M . E } { 8 } { C } { 0 } 

M } { 8 } { C } { 0 } { E } 

leaf n o d e s 

Figure 3-5 Cluster tree produced by Hierarchical clustering 

Clustering algorithm can be applied at several levels of abstraction (i.e. gate netlist level, 

functional level, system level). Hierarchical clustering algorithms, which exploits the 

design structural hierarchy are reported in [70, 71, 73]. Fang and Wu [71] describes a 

hierarchical set-covering approach at the structural level for multiple-FPGA applications. 

The design is first converted into a three-level, module, process, and function, structural 

tree. An example of a structural tree with three modules (Ml, M2 and M3), eight 
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processes (Pl,l to PI,3, P2,1,P2,2, and P3,l to P3,3) and twenty Amotions to 

f3,3,2) is shown in Figure 3-6. 

M o d u les 

P r o c e s s e s 

M1 ^ 

P1,1 ^ 

\ 

t f f 
f 1 , 1 , 2 f 1 , 2 , 1 f 1 , 2 , 3 

(P2J)(P2^ 

I 
f 

f 3 , 3 , 1 

Figure 3-6 Structural tree of the hierarchical set-covering algorithm 

The structural tree is next converted into a hierarchical connected graph illustrated in 

Figuie 3-7 below. The covering process is performed on the hierarchical graph and it starts 

from the nodes with coarse granularity and then moves down to nodes with finer 

granularity when no more feasible covers can be found in the latter (higher) level. If 

modules Ml and M2 can be grouped into a set while satisfying the constraints, in this 

case, area and I/O of the target FPGA, then Ml and M2 can be merged into a set and 

targeted to the device. On the other hand, if the constraints are violated, then Ml and M2, 

then the set-covering algorithm tries to merge portions of one module with the other 

module to improve the covering size. For example, in Figure 3-7, module M2 and portions 

of Ml (process node PI,2 and functional node f 1,3,1) are covered as a set. 

f1,2,1 

\ f1,3,2 

Module 

Function 

Figure 3-7 Hierarchical connected graph 
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Frank and G^ski [62] describes a for system-level functional 

partitioning, and a N-way clustering method is used to group close objects until there are 

only N groups remaining, where each group is then assigned to its own system (hardware 

or software) component. A clustering algorithm is often used with other partitioning 

heuristics to reduce the complexity of the design, thus reducing the computational effort, 

and even significantly improve the quality of the final solution [61, 74]. 

Simulated annealing algorithm 

The simulated annealing (SA) algorithm works in a similar manner as described in Section 

2.7.6.1, where the simulated annealing is one of the optimisation algorithms used within 

the MOODS synthesis core. In partitioning, the SA algorithm starts with a random 

partition, and iteratively improves the solution. A pair of vertices is selected from each 

partition randomly in each state, and compared with the previous state. The intermediate 

solution that results in an improvement in the overall solution is accepted and the move is 

made peimanent. A piedetermined number of moves are attempted at each temperature. 

When a move that degrades the overall solution is encountered, the probability of 

accepting the degrading move is given by: 

n —ML 
^ = e x p — : A £ > 0 (3,3) 

where P is the resulting probability of accepting a degrading move, AE is the change in 

quality of the states, and 7" is the current temperature. This function ensures that the 

piobability of accepting a degrading move decreases when the temperature decreases. The 

decision to accept degradations is made from the comparison of the probability threshold 

value and a normalised random number, and acceptance being granted when the generated 

random value is the smaller value between the two. 

The simulated annealing algorithm generally produces good partitions but it is a very slow 

algorithm. The need to determine experimentally the several parameters of the SA 
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algorithm, such as the starting temperature, the coohng schedule, and the number of 

moves to perform at each temperature is another disadvantage in using the SA algorithm. 

Genetic algorithm 

Genetic algoiithms (GAs) are iiispiied by Darwin's theory of evolution, where problems 

are solved by an evolutionary process that mimics the natural selection and genetics. The 

ongins of GAs are often accredited to work carried out by J. Holland [60] in the early 70s. 

A genetic algorithm is a randomised parallel search method for a single or multi-objective 

function optimisation. A. population of individuals is maintained by the genetic algorithm, 

where each individual is a potential solution for each generation. Each potential solution i 

evaluated to give some measure of it?, fitness. From this population, a new population is 

formed by selecting some of the fitter individuals (selection) and others are formed using 

genetic operators (such as crossover and mutation). After some generations the program 

conveiges and the best individual (hopefully) represents the optimum solution. The 

genetic partitioning algorithm given in Figure 3-8 is used in the partitioning of modules 

a multi-FPGA system [75]. 

is 

m 

Genetic Partitioning Algorithm 
K\ population size (number of partitions in a generation) 

S: percent of new generation produced by selection. 

C: percent of new generation produced by crossover. 

M: percentage of partitions 

GAO 

begin 

Create a random set of AT partitions 

Evaluate the fitness of each partition 

while (stopping criteria not satisfied) 

Create S percent of new population of partitions by selection 

Create C percent of new population of partitions by crofjove/-

Replace the current generation by new generation of partitions 

Mw/afe M percent of the current partitions 

Evaluate the fitness of each partition 

Save the partition with the best fitness 

end while 

end 

Figure 3-8 Pseudo code of the genetic algorithm 
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The GA starts with the generation of the initial population and a measure of the goodness, 

fitness (/) of a partition is quantified by an evaluation function. 

/ = (3.6) 

AP,= 

AAJ 

0 

Pi - Pmax 

0 
Ai- Amax 

a Pi < f max 
otherwise 

if Ai < Amax 
Otherwise 

where k is the number of chips the design is partitioned into, P,- and Aj are the pin-count 

and area of partition i respectively, P,„ax and A,„ax are the constraints on the pin-count and 

area for the partitions. The fitness value is in the range 0.0 to 1.0; 0 indicates a bad 

solution and 1 indicates an excellent solution (i.e. all partitions satisfy all the constraints). 

The GA algorithm uses the following operators in order to produce the next generation of 

partition (population): 

• Selection - This operator probabilistically selects highly fit individuals from the 

present generation and moves them into the new generation using the roulette wheel 

technique. Roulette wheel selection can be summarised in three steps [76] as shown in 

Figure 3-9. 

Roulette Wheel Selection 

1. Sum the fitness of all the population members and call the result 

total fitness. 

2. Generate a random number n, between 0 and total fitness. 

3. Return the first population member whose fitness, when added to 

the sum of fitness of preceding members, is greater than or equal to 

n (random number generated in step 2). 

Figure 3-9 Selection using roulette wheel technique 
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The roulette wheel is an imaginary wheel which is split into as many parts as the 

population. On this wheel, each individual is assigned an area which is proportional to 

the relative fitness of the individual with respect to the overall population. Figure 3-9 

gives an example of a roulette wheel with four individuals - 4̂, .8, C, D, and relative 

fitness of 38%, 28%, 12% and 22% respectively. If the wheel is spun, when the wheel 

stops, the probability that the arrow would be on is 0.38, B is 0.28 and so on. This 

means that the probability of C (the predicted worst individual to lead to the optimal 

solution) being selected is the minimum and the probability of 4̂ (the predicted best 

individual to lead to the optimal solution) being selected in the mmximum. The effect 

of selection ensures that good individuals in the search space are preserved and search 

continued from those individuals to look for a better solution. It is important to note 

that j'e/gcrzoM does nothing to explore the unexplored regions of the search space. 

Searching of unexplored regions is mainly achieved with the crossover operator and to 

a lesser extent with the mutation operator. 5" percent (typically 20 to 40 %) of the 

partitions in the new generation are created with this select operator. 

# Croffovgr - This basic genetic operator probabilistically selects two highly fit (parenr) 

partition structures from the current population, exchanges information between them 

and produces two offspring {child} structures. The significance of this is that the 

offspring structures represent two points (or solutions) different &om the parent points 

in the search space, which probably represents some unexplored points in the design 

space. An example of uniform crossover is illustrated in Figure 3-10. Uniform 

crossover starts by selecting probabilistically two highly fit parent structures, Parent 1 

and Parent 2 for mating. The second step is to generate a binary string template whose 

length is the same as the number of elements in the design. The bits in this crossover 

template are randomly selected to be either 1 or 0. The offspring of the parents are 

produced using the randomly generated crossover template. Figure 3-10 shows two 

parent structures, which are possible partitioning solutions for 10 components (Ro, Ri, 

R], • • •, Rg) into three target devices (ChipO, Chipl and Chip2). An explanation on how 

the two offspring of the parents are produced is given below: 

Child 1 creation; If the i^ bit in the crossover template is a 1, then the i^ 

component of the design is placed in the same partition as it was in Parent 1, and 

if the i^ bit is a 0, then the component is placed in the partition as it was in Parent 
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2. For example, Bit 0 of the crossover template is a 0, component Rq is placed in 

Chip2, the same partition as Rq occurred in Parent 2. Bit 1 of the template is a I, 

component R] is placed in Chipl of Child I, which is the same as it occurred in 

farenf 7. 

2 creation: The creation of Child 2 follows a similar process. If the i"' bit in 

the crossover template is a 1, then the i''̂  component of the design is placed in the 

same partition as it was in Parent 2, and if the i^ bit is a 0, then the component is 

placed in the partition as it was in Parent 1. 

This operator creates C percent (typically 60 to 80%) of the partitions in the 

new generation. 

Parent 1 Parent 2 

CNpO Ro R4 Rs ChipO Ri Rs Rg 
C h i p l Ri R2 Re Chip1 R3 R4 R? 
Chip2 Rs R? Rs Chip2 Ro R2 Rs Re 

Template fo r c rossover 

2 3 4 5 6 7 

0 1 1 1 0 1 0 1 0 0 

Child 1 Child 2 

ChipO Rs Ra Rg ChipO Ro Ri R4 
C h i p l Ri R2 R4 C N p l Rs Re Ry Rg 
Chip2 Ro R3 Re CNp2 R2 Rs Rs 

Figure 3-10 Example of uniform crossover 

Mutation - The mutation operator is introduced as a means to help the genetic 

algorithm avoid local optima. The mutation operator is invoked after selection and 

crossover. The mutation operator selects a partition structure probabilistically and 
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moves a design component from some randomly selected segment in the partition to 

another randomly selected segment. If the fitness of the mutated structure is low, it 

would most likely be eliminated in subsequent generations. However, if the fitness of 

the mutated structure is higher, then the probability that this structure will survive and 

lead to a better solution is high. This mutation operation is applied to Af percent 

(typically 20 to 25%) of the partitions in the new generation. 

The genetic algorithm terminates when a termination criterion (or a required fitness value) 

is met. Criteria such as computational time, number of generations to be searched or a 

limit on the global optimality such as the total number of interconnection wires or total 

number of chips are also specified. Multiple objectives can be assigned a weighting value 

to prioritise the user-defined objectives in the computation of the fitness value. Recent 

work on multi-FPGA partitioning using the GA algorithm can be found in [77, 78]. 

3.3 Multi-FPGA synthesis systems 

The preceding section gives an introduction to the various methods and algorithms of 

partitioning in a general context. This section describes partitioning of multi-FPGA 

systems using some of these partitioning algorithms or a combination of algorithms used 

in multi-FPGA synthesis tools. A number of multi-FPGA synthesis systems exist, both 

commercial and academic. Some of the commercial systems are; Aptix Corporation 

Design Pilot™ [79], Auspy Development Inc. Auspy Partition System II [80], and 

Synplicity Certify^ [81]. None of the mentioned commercial tools perform the partitioning 

at the behavioural level. All three tools perform partitioning at the register transfer level, 

and Auspy Partition System II also supports partitioning at the gate-level. Some academic 

tools are: COBRA-ABS [72, 82], SPARCS Project [68, 83] and related work in multi-

component partitioning and synthesis [66, 67, 84], ISyn [70, 71, 85], SpecSyn [63, 65, 86, 

87], CADDY-II [88]. 



T.B. Yee, 2007 Chapter 3: Multi-FPGA parti t ioning -79 

3.3.1 COBRA-ABS 

The COBRA-ABS (Column Oriented Butted Regular Architecture - Algorithmic 

Behavioural Synthesis) high-level synthesis tool developed at the University of Aberdeen 

has been designed to synthesise digital signal processing (DSP) algoritlims specified in C, 

and target onto multi-field programmable gate array custom computing machines 

(FCCMs). The synthesis tool takes as input an FCCM architectural file and a datapath-

library description file, in addition to the input algorithm description described in C. 

Information in the FCCM architecture file, which specifies the target FCCM, in terms of 

the FPGA devices, custom/ASIC arithmetic resources, inter-FPGA routing (point-to-point 

and bus based), FPGA-to-memory routing, and associated communications delay. The 

low-level datapath-library description file contains characterisation data about the RTL 

modules available and cost (in area) and timing characteristics (in clock cycles). The 

FCCM target information and the low-level library characterisation data are fed into the 

optimisation process driven by a simulated annealing algorithm. 

The target architecture of the tool is based is on a partitioned VLIW (Very Long 

Instruction Word) style architecture, where each FPGA holds a single "RISC (Reduced 

Instruction Set Computer)-like" register-file based, load-store processor, with a bus-based 

architecture and a set of functional units. 

The C fimction inputs forms the in COBRA-ABS, each of which are 

represented by dataflow graph and controlled by a corresponding control-flow graph. The 

datapath space model [89] formed a three-dimensional space in which the lifetimes of 

variables are optimised. The optimised dataflow implies the hardware that is required to 

create, transfer, store and consume the data. The variable dimension represents the explicit 

and implicit data in the behavioural description. The processor dimension directly relates 

to the "RISC-like" processors and hence represents the yartitions. The datapath space (dp-

space) can therefore represent data flow in time and across partition boundaries. 

The three-dimensional model was extended to a four-dimensional model to allow 

conditional branches and loops of the basic blocks. The overall datapath for each 

processor is the superposition of all the datapaths, which would be implied by each of the 

3-D sub spaces isolation. The conceptual view of the superposition in the four-

dimensional datapath space is illustrated in Figure 3-11. 
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Processor 
A 

Block 0 
D a t a p a t h 

B lock 1 
D a t a p a t h 

B lock "n" 
D a t a p a t h 

Implied 
Datapath 

Processor 

Implied 
Datapath 

Processor Implied 
Datapath 

Variable 

Time 

Variable 

Block 0 

B lock 1 

Time 

Variable 
B lock "n" 

Time 

Superposit ion of 
datapaths gives the 
Composite Datapath 

Figure 3-11 Conceptual view of superposition in 4-dimensional datapath 
space 

The dp-space model is composed of a behavioural layer and a structural layer. A number 

of the "entities" representing the required behaviour are mapped to the 3-D dp-space. 

These entities are: input node, output node, functional-unit node, memory write, memory 

read, and global bus transfers. The DFG is transformed into a graph of interconnected dp-

space entities and mapped to the behavioural layer. The structural layer administers the 

implication of hardware units and use of fixed FCCM resources. The cost of a dp-space 

configuration is measured in both the behavioural and structural layers, and the simulated 

annealing process adjusts the dp-space configuration, in the aim of finding the fastest 

implementation, which will fit on the FPGAs. 

The synthesised output of the algorithm can be visualised as one 3-D block of dp-space 

flowing in time, into the next, with data passing seamlessly between blocks. The concept 

of the "pluggable block" was developed so that blocks, which can potentially "interface in 

time", have compatible interface on their dp-space variable-processor planes. 
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B l o c k 1 
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VahaNe 
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1 
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E x a m p l e C o n t r o l F low G r a p h Po ten t ia l d a t a f l o w b e t w e e n bas ic 3D 
d a t a p a t h - s p a c e b locks 

Figure 3-12 Pluggable 3-D block concept 

COBRA-ABS provides a powerful high-level synthesis environment for DSP algorithms, 

specified in C. However, the run times reported (in [72, 82]) are rather high (> 10 hours) 

because of the simulated annealing algorithm, which forms the core of the synthesis 

optimisation process. The other point worth noting is the "pluggable block" concept is 

highly dependent on the number of I/O resources between each block that resides in 

different FPGAs, and this will impose an upper limit on the number of buses or point-to-

point interconnects in the fixed board-level target architecture [90]. 

3.3.2 SPARCS 

The Synthesis and Partitioning for Adaptive and Reconfigurable Computer Systems 

(SPARCS) [67, 68, 83] partitioning and synthesis framework was developed at the 

University of Cincinnati. The behavioural input designs are specified in either subsets of 

VHDL or C, and translated into an equivalent Control Data Flow Block Graph (CDFG), 

where each contains a simple dataflow graph that captures the operations, and the 

edges between blocks represent the data and control flow across blocks. Each block is 

viewed as an atomic element that cannot be partitioned onto multiple FPGAs. The control 

flow at the end of the block can conditionally branch into one of the mutually exclusive 

blocks connected to it. The control flow also permits loops in the block call graph. The 

block call graph represents a single thread of control where all blocks are mutually 
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exclusive in time. Each of the partition CDFG contains a subset of blocks, which is 

synthesised into an RTL design for the corresponding device in the multi-FPGA 

architecture, with a single finite state machine controller and datapath resources shared by 

blocks within the same partition. 

The "partitioner" that performs the partitioning of the CDFG is tightly integrated with the 

high-level exploration engine, whereby the partitioner always communicates any change 

in the partitioned configuration to the exploration engine. A four-dimensional design space 

model was used to represent the overall design so that the exploration engine has a 

partitioned view of the behaviour. Each partition segment, consisting of a set of 

operations, is represented by a traditional three-dimensional design space illustrated in 

Figure 3-13. The set of all partition segments of the design behaviour forms the fourth 

dimension. An example of the four-dimensional design space for design behaviour with 

two partitioned segments is illustrated below in Figure 3-13. 

F u n c t i o n a I 
u n i t s ^ 

Time 
s t e p s 

0 p e ra t i o n s T , 

O , 0 ; O , O . 

O l 0 ; 0 , O , 

T r a d i t i o n a l th re e - d i m e n s i o n a l d e s i g n s p a c e 

T i m e s t e p s 

O l 0 ; O , O . 

O, 0; 0, 0, 

P a r t i t i o n 1 = J 

F o u r - d l m e n s l o n a l d e s i g n s p z 

B 8 h a v i o u ra I 
P a r t i t i o n 2 = { O ^ . O g , 0 ^ , 0 g} P a r t i t i o n s 

f o r a p a r t i t i o n e d b e h a v i o u r 

Figure 3-13 Four-dimensional design space for a partitioned behaviour 
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The functional units and operations are mutually exclusive between the partitions. 

However, the time steps span across the partition segments because the synthesised RTL 

output, one for each partition, is controlled by a synchronous FSM controller clocked by a 

single common (global) clock. 

A multi-partition exploration algorithm performs an iterative exploration of blocks where 

the schedule of a block is either relaxed or tightened such that the design constraints are 

best satisfied. Relaxing (increasing) the schedule length could reduce the area of a 

partition and increase the latency of the entire design and tightening the schedule works 

vice versa. A collection of cost functions are used to sort and prioritise the blocks and 

guide the exploration engine to perform the area/latency exploration. 

The exploration algorithm is independent of the partitioning algorithm used to obtain the 

partition segments. Synthesis results of SPARCS with partitioners using algorithms based 

on Fiduccia-Mattheyes (FM) partitioning algorithm and simulated annealing are given and 

it has been reported in [68] that the run times needed to find constraint satisfying solutions 

for a similar board architecture are much lesser than those reported in COBRA-ABS [72] 

described in the previous section. 

The four-dimensional design space global technique with an integrated synthesis and 

partitioning model in SPARCS has provided a fast and efficient environment to generate 

constraint-satisfying solutions targeting a multi-FPGA architecture. In a similar manner to 

the COBRA-ABS, the implication of a partitioned design is explored with a fourth 

dimension. However, SPARCS also does not allow performance trade-off against the 

number of interconnecting I/O resources between the devices in the fixed architecture. 
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3.4 Data communications and communications 

synthesis 

Data communications is fundamentally a simple operation, where data is sent from one 

point to another. A communications protocol is a specification of events and timing 

requirements in transferring information. 

In a multi-FPGA system, data is sent 6om one FPGA device to another FPGA device. It is 

possible to have direct pin-to-pin connection mappings [91-93] on the FPGAs if both 

devices access the same signal. The signal value is changed in one device, passed on 

through the direct pin-to-pin connections, and updated in another device. However, the 

number of I/Os available on the I/O constrained FPGAs may not be sufficient to 

accommodate all the signals in the design. Another significant disadvantage of the multi-

FPGA system is the lower speed of operation compared to a single chip implementation. 

The programmable features and the associated programming circuitry require a large 

amount of the chip area. The switches have significant resistance and capacitance, which 

account for the low speed of operation [49]. 

The Virtual Wires project [94] carried out in the MIT Computer Architecture Group 

explores methods to overcome pin limitation in FPGAs. Virtual wires are created by 

multiplexing and pipelining inter-device I/O signals. A virtual wire represents a single 

connection between a logical output on one FPGA partition and logical input on another 

FPGA partition. Shift registers in the sending and receiving FPGA are configured into 

shift loops, storing logical outputs into shift registers at the sending end, and shifting them 

into shift registers on the receiving FPGA. 

A bus based approach to overcome the I/O limitation was proposed by Vahid [95]. The 

approach uses a single bus, the FunctionBus, for implementing function calls among 

FPGAs. The FunctionBus architecture is shown in Figure 3-14. Inter-FPGA data and 

control-encoded address are sent over the y4Z) lines of the bus, with two additional bi-

directional control lines, Areq and Dreq, used to indicate a valid address and a valid data 
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on AD respectively. Vahid also demonstrated techniques to trade off performance for even 

more I/O reductions using the FunctionBus. 

External ports 

4 

t 

Areq 

Dreq 

/to 

External ports 

F P G A 

External ports 

A I 

FPGA 

n r 

Address request 
Oreq': Data request 
AO: Address/Data 

Figure 3-14 FunctionBus arcl i i tecture 

3.5 Data synchronisation over multiple clock 
domains 

"Moving information from one clock domain to another is rather like descending into 

DaMfe q / " / z g wa/r fo rAe Maive. " [96]. Data communication 

between two independently clocked domains can result in the data metastability [97-100]. 

Metastability can occur when an input to a register (flip-flop) is not synchronous to the 

clock, which can result in setup or hold time violations. Metastability is caused when the 

asynchronous input changes too close to the clock edge; this input to the register is not a 

stable high or low value during the register setup time. The flip-flop does not know if it is 

to change state or not, and may enter the metastable state, with the output not being logic 

High nor Low. Even though the flip-flop will eventually settle in a stable state after some 

period of time, this can still cause a system failure if the flip-flop has not left the 

metastable state by the end of the system's clock period. Figure 3-15 illustrates a simple 

two flip-flop (double buffer) synchroniser, which is typically sufficient to remove all 

likely metastability. 
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Figure 3-15 Double buffer synchron iser 

It is still possible that a synchronisation failure can occur and this failure probability can 

only be determined statistically, and the generally accepted equation for Mean Time 

Between Failure (MTBF) [98] for a metastable flip flop is given by; 

K 
(3.7) 

where A3 is the register parameter that describes the speed with which the metastable 

condition is resolved. % is the time delay for the metastability to resolve itself (resolution 

period), is another register parameter that represents the metastability-catching setup 

time window (i.e. the likelihood of the register going into the metastable state), f / is the 

clock frequency of the synchronisers and F2 is the average frequency of the asynchronous 

input changes. Using values = 10''°s and A!; = 19.4/ns based on the Xilinx XC4005E-3 

given in [98], this gives a MTBF of 0.0001 ^ based on a clock frequency of 100 MHz 

and asynchronous input changes at a frequency of 1 MHz. With a T value of 9 ns (a 

resolution period slightly less than the clock period), the MTBF value is 6.73 * 10 '̂ 

seconds. The probability of failure increases rapidly when the number of asynchronous 

inputs and clock frequency increases. For example, a clock frequency of 1 GHz, with 

asynchronous input changes at a frequency of 100 MHz and a T value of 0.9 ns, the MTBF 

value is only 3.83 seconds. Later results on the MTBF for newer Xilinx devices were 

published in [100] and the MTBF value exceeds millions of years when granted 2 ns of 

extra flip-flop settling delay. For the same operating conditions of clock frequency of 100 

MHz and asynchronous input change at a frequency of 1 MHz, the MTBF of newer Xilinx 

Virtex-II Pro devices exceeds billions of years compared to the older Xilinx XC4005E-3 

device. 
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Three common techniques of transferring data between clock domains are (1) pass data 

across clock domains using handshake signals, (2) use a Micropipeline or, (3) use an 

asynchronous FIFO (First In First Out memory) to transfer the inter-domain data. 

3.5.1 Handshaking data between clock domains 

Data is transferred across clock domains using additional handshaking control signals, 

where the sender places data onto a data bus and then asserts a request {req) signal to the 

receiver through a synchroniser. When the req signal is recognised in the receiving 

domain, the receiver clocks in the data into a register (or latch), and asserts acknowledge 

{ack) signal through a synchroniser to the sender in the domain of the sender. 

Handshaking of data is commonly used to pass data between asynchronous circuits, and 

two common signalling protocols are illustrated in Figure 3-16. 

Figure 3-16(a) illustrates the two-phase signalling scheme, where the signal levels of the 

handshake signals are unimportant; it is the signalling event (i.e. a transition, either a 

rising edge, or a falling edge on the handshake signals) that is significant. The two-phase 

signalling protocol uses a non return-to-zero scheme. The four-phase signalling protocol 

illustrated in Figure 3-16(b) uses the signal levels of the handshaking signals to indicate 

the validity of data and its acceptance by the receiver. This protocol uses a return-to-zero 

scheme, where the req and ack signals end up in the same signalling level after a data 

transfer as they were before the transfer. This protocol thus uses twice as many signalling 

events for every data transfer as the two-phase counterpart. 

Control logic for the four-phase protocol is often simpler than that needed in a two-phase 

system because the signalling lines can be used to directly drive the level-controlled 

latches (or registers) (discussed later in Section 5.5). It is also common that data lines are 

triple-buffered using triple buffer synchronisers. The extra buffering stage of the data lines 

ensures that valid data is 'definitely' on the data bus when the data request signal is 

asserted. This prevents a receiver that has an input request line with a shorter propagation 

delay from reading in the wrong data. The biggest disadvantage to using handshaking is 
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the latency required to pass and recognise all of the handshaking signals used for each data 

transferred. 
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Figure 3-16 Handshaking signalling protocols 

Single-rail and dual-rail encoding are two commonly used encoding schemes [101] for 

data representation. Single-rail encoding [102], which is conventionally used in 

synchronous designs, uses a single wire for each bit of information. Additional 

handshaking control signals are used to indicate data availability and its acceptance by the 

receiver. This scheme is also known as bundled-data approach. Dual-rail encoding (103] 

scheme uses two wires to represent each bit of information. Dual-rail circuits can have 

bundled control signals, however timing information is implicit in the code and the req 

signal required to indicate data readiness is thus not necessary. Figure 3-17 gives the list of 

values associated with the signal levels of the two wires (WO and Wl) in a dual-rail 

encoding circuit, and the corresponding interfaces between the sender and receiver. 

The main advantage of dual-rail circuits is that they are delay-insensitive [103]. Delay-

Inscnsitivc (DI) circuits operate correctly regardless of delays in components and 

connections. They have the disadvantage of having a significantly larger area overhead in 

both the number of wires and the data transfer completion detection logic. Single-rail 
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circuits have the advantages of being smaller and faster as compared with their dual-rail 

counterparts. The disadvantage of single-rail circuits is they require tighter timing 

constraints (e.g. validity (req) control and data delays must be matched) when used with 

bundled handshake control signals. 

WO W I Value 

reset 

unused 

d a t a ack 

S e n d e r R e c e i v e r 

D a t a ( 2 N - b i t s ) 

Figure 3-17 Dual-rail encoding scheme 

3.5.2 Micropipelines 

Micropipelines are a style of two-phase bundled-data pipeline introduced by Sutherland 

[104] in his 1988 Turing Award lecture. A micropipeline is an event-driven, self-timed 

asynchronous pipeline. Various simple event control module blocks are given in [104] to 

provide elemental functions such as merging and branching of the control flow. The 

micropipeline basic control modules are illustrated and described in Table 3-1. 

Figure 3-18 shows a simple micropipeline without processing elements. The data path is 

composed of a set of event-controlled storage elements in series, while the string of Muller 

C-elements serves as its local timing control block. Delay elements (if required) ensures 

that the output request signals are asserted after the data is valid (e.g. R(l) is asserted only 

when data is ready at the output of the first storage element), so that the bundling 

constraint of the bundled-data protocol is met. 

Event control module Description 

OR function The OR function for events is implementation using an exciusive-OR 

(XOR) gate. This is also known as a merge because it allows two 

event flows to merge into one. An event on either of the inputs 

causes a corresponding event to be seen on the output. 
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Event control module 

AND function 

Description 

The AND function for events is implemented using a MULLER C-

element. A transition will occur on the output only when there has 

been a transition on both inputs. The Muller C-element is sometimes 

known as a rendezvous element because events are allowed to 

pass to the outputs only when all input events have arrived. 

TOGGLE 

TOGGLE 

The TOGGLE steers input events alternately to the outputs. The first 

event is directed to the output marked with a dot after initialisation, 

the next event to the unmarked output and the sequence repeats. 
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The call module allows two mutually exclusive processes to access 

a shared resource (section of data path) or procedure, analogous to 

procedure calls in software. Unlike the previous modules, the call 

module operates on pairs of request/acknowledge (or done) 

handshaking signals. Incoming requests (either R1 or R2) are 

directed to the output request (R). The Call module remembers 

which of its inputs most recently received an event, and returns an 

acknowledge (done) event on the appropriate output acknowledge 

(either D1 or D2) signal. For the call module to operate properly, 

input request events have to be mutually exclusive. 

ARBITER 

R1 G1 

OL D1 

111 
1— 
CO 
OL 
< 02 

R2 G2 

The ARBITER provides arbitration between two possibly concurrent 

asynchronous request events on its inputs (R1 and R2) and only 

passes one through at any time to the corresponding grant outputs 

(G1 and G2). Similar to a semaphore in software, it delays 

subsequent grants until it has received an event on the done wire 

(D1 or D2) corresponding to an earlier grant so that there is no more 

than one outstanding grant at a time. 

Table 3-1 Description of the micropipeline event control modules 
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Figure 3-18 Micropipeline without process ing 

A major advantage of the micropipeline structure is the possibility of filtering out all the 

hazards in the logic blocks (i.e. removes the arbitration and synchronisation problem of 

two separate clocks at the input and output of the micropipeline). Another important 

feature is that micropipelines are automatically elastic. Data can be sent to or received 

from a micropipeline at arbitrary times. The basic event control modules of the 

micropipeline and the storage elements can be interconnected to form larger structures, 

which form the basis of more complex systems [105]. 

3.5.3 Dual port asynchronous FIFO 

Another popular method of passing data between clock domains is using an asynchronous 

FIFO (First In First Out memory) [106-108]. A dual port memory is used for the FIFO 

memory. 
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The write poit is controlled by the sender and data is written into the memory, one data 

woid per write clock. The other port port) reads data out of memory, one data word 

per read clock. Two control signals are used to indicate if the FIFO is empty or Aill. The 

wiite and read increment signals are used to push data into the memory during a write 

cycle, or pop data from the memory during a read cycle. 

write Data 

FIFO memory 
(dual port RAM) 

read Data 
• w d a t a 

w d k e n 

F I F O w p t r 

&fu 
FIFO rptr 

&full 

w a d d r w a d d r r a d d r r a d d r 

wnte /ncmmenf read /ncmmenf wnnc n n c 

read empfy wnte A/// 

wnte c/oc/( read c/ocK 

wnte /Bsef read msef 

Figure 3-19 Asynchronous FIFO block diagram 

Figure 3-19 above illustrates the blocks in the asynchronous FIFO design presented by 

Cummings of Sunburst Design Inc. in [106]. The five blocks in the asynchronous FIFO 

are: 

• FIFO memory: This is a dual port RAM that is accessed by the write clock domain 

via the write port, and the read clock domain via the read port. 

FIFO write pointer and full (wptr & full): This block is mostly synchronous to the 

write-clock domain and it contains the logic for the FIFO write pointer {wptr) and 
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it generates a full (writeyw/Z) signal to the write-clock domain when the FIFO is 

Aill. Gray coded addresses are created for writing to the memory and the FIFO 

write pointer is passed to the read-clock domain. 

# FIFO read pointer and empty & gyMpry): This block is similar to its write 

counterpart mentioned above. It is mostly synchronous to the read-clock domain 

and it contains the logic for the FIFO read pointer and FIFO empty (read 

empty) signal generation. Gray coded addresses are created for reading from the 

memory and the FIFO read pointer is passed to the write-clock domain. 

# Write-to-Read synchroniser (syncl): This block consists of a double buffer 

synchroniser that synchronises the write pointer (ifAy^r) into tbe read-clock 

domain. 

# Read-to-Write synchroniser (sync2): This block is similar to its Write-to-Read 

counterpart described above. This block synchronises the read pointer {rptr) into 

the write-clock domain. 

For a FIFO memory with (n-l)-bits address lines, giving a total of 2" ' addressable 

locations, the read and write pointers are M-bits wide. The extra most significant bit (MSB) 

is used as a flag to determine if the FIFO is empty or full. When the pointers are equal, 

including the two MSBs, the FIFO is empty. The FIFO is full when the pointers are equal 

but not the MSBs. 

The dual port memory asynchronous FIFO allows the sender to write data into the 

memory through the write port whilst the receiver reads stored data in the memory out 

from the read port concurrently. This has the advantage of reducing the latency in the 

overall system as the sender can send data into the FIFO independent of the receiver when 

the memory is not full. This reduces the possibility of blocking the sender if the receiver is 

not ready to receive the new data. However, careful speed matching of the sender and 

receiver and the depth of the FIFO have to be considered to reduce FIFO overflow and 

underflow conditions [109]. 

The main disadvantage of using the asynchronous FIFO in an I/O constraint multi-FPGA 

system for inter-device data transfers is the increased number of I/Os required for the 
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control, clock and reset signals compared to just a pair of handshaking signals in the 

bundled-data approach. 

3.6 Design activity profiling 

Design profiling is a process where a profiling tool generates and collects information on 

how a system operates and the resultant profile data is used to guide the profile-driven 

optimisation process to improve the system's performance. 

Design activating profiling to obtain the usage and inter-communications between 

multiple processes is carried out with a full testbench of the system and the obtained 

information (profile) is used in the high-level synthesis and partitioning of the design 

itself. From the simulation of the structural VHDL design using a set of typical data to 

emulate the system, the profiler gathers the various event activities. The system is 

simulated with a testbench to generate activity information for all operations in the design 

and this information is used to guide the partitioner. This approach allows the user to 

provide the system with activity information in the most practical from, as a 

comprehensive test suite will ahnost certainly be created for most designs. Once a set of 

activity data has been generated, the operation need only be repeated if the behavioural 

design changes, and not on each synthesis run. 

The activity data is fed into the partitioner during the partitioning stage and used in the 

assignments of weights on the edges of nodes in the partitioning graphs. Operations that 

interact intensively will have edges that are more heavily weighted and these edges are 

less likely to be cut by the partitioner. The atomic functional objects (processes, 

procedures, functions, shared variables, etc) that interact and communicate more often 

with each other are grouped into the same FPGA if the area permits. This reduces the off-

chip interconnections and the inter-chip communication overheads associated with it. 
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3.7 Summary 

This chapter focuses on the background material on multi-FPGA synthesis systems, with 

emphasis on partitioning and multi-FPGA synthesis systems. This chapter starts with an 

overview of the various partitioning algorithms, and an introduction of commercial and 

academic multi-FPGA high-level synthesis systems that exists. An introduction of 

techniques for inter-FPGA (cross clock domain) data transfers is also covered within this 

chapter. Multi-FPGA partitioning and the inter-domain data transfer forms the two main 

core components in the extension of the MOODS synthesis system to target multi-FPGA 

systems with asynchronous communications. 

This chapter has covered the techniques and background material on how a design can be 

partitioned. The next chapter covers when to perform partitioning in the MOODS 

synthesis system. This deals with the implementation details of the partitioning 

enhancement in the MOODS synthesis system. Implementation details and signalling 

protocols to enable data transfers between clock domains are covered in more detail in 

Chapter 5. 
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Chapter 4 

Multi-FPGA partitioning in IVIOODS 

4.1 Introduction 

Chapter 3 has provided an insight on how a design can be partitioned; this chapter starts 

with the selection of when to perform partitioning. The muhi-FPGA partitioning 

enhancement to the MOODS synthesis system comprises two main stages: (1) High-level 

synthesis and partitioning, and (2) Interface generation. This chapter covers the generation 

of multiple structural VHDL outputs from a single behavioural VHDL description as 

illustrated in the shaded region of Figure 4-1. 

s t r u c t u r a l 

V H D L 
S t r u c t u r a l 

V H D L 

S t r u c t u r a l 

V H D L 

High-level 
synthesis and s t r u c t u r a l 

partitioning V H D L 

B e h a v i o u r a l 

V H D L 

d e s c r i p 

S t r u c t u r a 

V H D L 

s t r u c t u r a l 

V H D L 

Interface 
generation 

I n t e r f a c e 

S t r u c t u r a l 

V H D L 

s t r u c t u r a l 

V H D L 

Figure 4-1 Generated system st ructure 

Section 4.2 starts with a discussion on the various stages that the partitioning mechanism 

can be inserted and concludes with an insight on the partitioning granularity and insertion 

of the K-way partitioner as part of the partitioning enhancement in the MOODS synthesis 
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system. The section also presents the channel-based approach to handle inter-device data 

in the synthesised multi-FPGA design. 

Section 4.3 introduces the module call graph representation and shows how a design is 

modelled using a module call graph. Implementation details and modifications of the 

partitioning algorithm are covered v^dthin Section 4.4. Section 4.5 describes design 

profiling in detail. Section 4.6 describes the modified ICODE modules, and the 

modifications made to the sub-module calling mechanism to support inter-FPGA module 

calls. 

4.2 MOODS synthesis system with multi-FPGA 
partitioning 

This section starts with the selection of the partitioning mechanism insertion into the 

MOODS synthesis system, which has an efkct on the level of abstraction that the 

proposed partitioning algorithm is applied to. This affects the runtime and the granularity 

of the components that are being partitioned. Partitioning at the higher level of abstraction 

(e.g. at the system-level or algorithmic level), usually at a coarser granularity has fewer 

components to assign to partitions, compared to partitioning at the cell and netlist level. 

4.2.1 Design partitioning phases in MOODS 

The MOODS synthesis system comprises four separate sub-components, which perform 

the various tasks in synthesis as described in Chapter 2. There are several possible phases 

during the synthesis process where the partitioning mechanism (partitioner) can be 

inserted as shown in Figure 4-2. 
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Figure 4-2 Insertion of K-way partitioner into the MOODS synthesis system 

The following lists the four stages where the partitioner can be inserted into the MOODS 

synthesis system: 

1. Prologue (Pre-MOODS optimisation): 

Partitioning at this early stage provides the opportunity for the MOODS synthesis core to 

perform synthesis for each partition based on its own optimisation criteria. There are two 

different ways to target the partitioning at this stage. The first approach is to partition the 

ICODE file, where subprogram module sections of the original ICODE file are extracted 

and written to multiple enhanced ICODE (ICODE+) files, each ICODE+ file targeting a 

FPGA device. The ICODE+ files will contain extra partitioning information on the 

targeted partition, and communication interface details. The ICODE+ files are then 

synthesised separately to produce separate structural VHDL output files. 

The second approach to partition the design is to partition the initial data and control path 

before applying the optimisation transforms to the partitioned data and control path 

structures. 

An estimation mechanism is needed in both approaches to use the low-level information in 

the technology cell libraries to obtain an estimate of the size and delay of modules, which 
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is used by the partitioning algorithm. Partitioning the design at this stage with no 

information about the final optimised design means it is difficult to obtain an accurate and 

efGcient partition, resulting in a low utilisation of the targeted FPGAs. It is possible to 

assign an FPGA with more modules than it can accommodate using the estimated sizes of 

the modules, in the hope that the optimisation stage in MOODS optimises the modules and 

the final design can fit into the allocated FPGA device. However, a design may have to go 

through multiple iterations of synthesis before each partition of the design can fit into the 

targeted devices. 

2. MOODS optimisation: 

MOODS optimisation is an iterative process whereby various transforms are used to 

modify the data structure and the optimisation algorithm controls the whole process, 

choosing which transforms to apply and where in order to achieve the user's target criteria. 

Throughout the optimisation process, the low-level characterisation information from the 

technology cell library is used to provide accurate estimates for circuit performance. These 

figures are used by the optimisation algorithm to guide the selection and targeting of 

transformations in such a way as to move the implementation through the design space 

towards the cost objectives specified by the user. In a similar mamier, these figures can 

also be used by the partitioning algorithm to guide the partitioning of the design and 

targeting of FPGA devices. Modules in the design may change and reduce in their sizes 

after each optimisation iteration and previous allocations of modules to partitions become 

inaccurate. The optimised design has to be re-partitioned within the optimisation loop, 

using the updated information of modules to guide the partitioning algorithm and allocate 

modules to partitions. 

Using the existing simulated annealing within the MOODS synthesis core, the partitioning 

of modules over multiple target devices can be added as one of the objectives to be 

considered by the simulated annealing algorithm. 

3. Post-MOODS optimisation: 

This is the epilogue phase where MOODS "finishes" the design, converting any implicit 

and behaviour related parts of the data structure (such as multiplexers, and control/net 
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gating signal conditions) into explicitly described structures, and removes any redundant 

control or data path elements. 

The partitioner is inserted at this stage to partition the optimised design and mark the 

control or data path elements needed for a partitioned design so that they are not removed 

vyhen the control and data path are 'tidied' up in this stage. The extra logic created for the 

control and data transfers of a partition design may require some form of multiplexing 

logic, vyhich is inserted together with the rest of the design. Thus the insertion of the 

partitioner at this stage removes the need for an extra stage to re-insert the control and data 

path elements, and the multiplexers required for a partitioned design. 

4. Linker and netlist generation (DDFLink): 

This is the last stage in the MOODS synthesis and the design is purely structural. The 

main disadvantage of inserting the partitioner at this late stage is in the breaking up of the 

structural design and the insertion of the extra logic needed for the control and data 

transfers in the partitioned design. The original control/net gating signal conditions has to 

be modified and updated to include the control conditions for inter-FPGA subprogram 

calls. The objective of partitioning at this cell/netlist is normally to group the allocated 

data path units and the synchronous FSM controller into partitions (which will fit on the 

targeted devices) and attempt to reduce the interconnections between devices. 

4.2.2 Insertion of the partitioner into MOODS 

The partitioner is not inserted in the pre-MOODS optimisation stage (stage 1 in Section 

4.2.1) due to the lack of information about the final optimised design which makes it 

difficult to obtain an accurate and efficient partition. This can result in a low utilisation of 

the targeted FPGAs which will require multiple partitioning and synthesis iterations to get 

an optimised multi-FPGA implementation. The post-MOODS optimisation stage (stage 3 

in Section 4.2.1) is not selected as the insertion of the partitioner in this stage does not 

allow further optimisation on selected modules after partitioning as the MOODS synthesis 
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core where design exploration and optimisation is performed in stage 2 (MOODS 

optimisation stage). 

The partitioner is inserted in stage 2 and partitioning is performed at the module level 

which has a coarser level of granularity rather than at the cell/netlist level. VHDL 

piocesses and subprograms (functions and procedures) are treated as inseparable units 

during partitioning. Firstly, the number of components in the graph being partitioned is not 

too large when compared to the cell/netlist level (stage 4 - linker and netlist generation) 

partitioning. Unlike partitioning with a finer granularity where control lines could be 

running across partition boundaries from one target device to another via the board 

interconnections, control lines of the control path are kept in the same partition as the data 

path that it is controlling when partitioning at the module level since the individual 

modules has its own control path controlling the data path units within the module. Having 

the control path in its local clock domain reduces the number of cross-domain control 

signals and latency due to cross-domain data synchronisation. Partitioning in Stage 2 

(MOODS optimisation stage) also allows further optimisation (i.e. an optimisation re-run) 

on the whole design or selected modules after analysing the partitioning configuration. 

The K-way partitioner performs partitioning on the optimised ICODE modules and the 

subprogram communication channel optimisation if the design contains ICODE 

subprogram modules. The two-phase partitioning exploration is cuiTently not integrated 

with the MOODS optimisation process but it does allow the user to re-run the MOODS 

optimisation stage after examining the partitioned design. It is possible to relax or tighten 

the schedule of the modules and iteratively improve the multi-FPGA solution using the 

current partitioning solution to guide the MOODS optimisation process. This has been left 

as possible future work (described in Chapter 8) due to the time restriction of this project. 

Unlike the multi-FPGA high-level synthesis systems described in Section 3.3, the 

MOODS synthesis system does not take absolute timing (in the form of deadlines and 

release times that specifies some form of absolute timing on the start of operations) into 

consideration during the optimisation process. However, MOODS possesses a basic 

multicycling [32] capability based around the specification of a user-specified clock 
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period. The pioblem of single instructions with too large a delay is dealt with by spanning 

the instruction over a sufficient number of control states can be forced below a user 

specified clock period constraint if the clock period is specified. MOODS does not follow 

the strict timing of the VHDL standard, which specifies that time only passes in wait 

statements; thus parallel processes are kept in lockstep as they are all guaranteed to enter 

waits at the same time and implicitly synchronised at these points. However, MOODS 

allows processes complete independence, where synchronisation of processes is done 

through the use of handshaking via global signals [32, 39]. Channel-based 

communications [14, 110] in an abstract Communicating Sequential Process (CSP) [111, 

112] manner between processes are also commonly used for process synchronisation. 

4.2.2.1 Explicit communication channel {ExC) 

An explicit channel-based approach for process synchronisation in MOODS was added by 

Sacker [109]. An ICODE expansion stage was added between the ICODE assembler and 

the MOODS synthesis core, which allows channel related ICODE instructions to be 

expanded and inlined by an ICODE module contained vyithin expansion libraries. The 

ICODE expansion stage also generates concurrent "blackbox" components required for 

the explicit channel instantiation &om the behavioural VHDL. This ICODE "blackbox" 

component contains only a VHDL entity and its behaviour is not defined. This allows the 

"blackbox" component to be synthesised as normal and the behaviour of the "blackbox" 

(in this case the explicit channel) inserted after synthesis. ICODE templates of varying 

channel widths (8-bits, 16-bits, 32-bits, etc) for the channel send and receive instructions 

and the channel body "blackbox" components are defined in ICODE expansion library 

files and respectively. 

The Gnal task performed by this ICODE expansion stage is the separation of ICODE 

segments (VHDL processes) from within the program module (recall Section 2.6.2) into 

separate ICODE process modules. Each individual ICODE process module has its own 

control path controlling the data path units within the module. This allows easy 

identification of concurrent process blocks in the design and more importantly it extends 

the number of objects for partitioning. The explicit communication channels introduce an 

implied pipeline structure whereby asynchronous channels connect pipelines stages in a 
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design. Channel handshaking ensures that the pipehnes stages will work irrespective of the 

operation execution time of individual stages in the asynchronous pipeline [113]. The 

effects and the benefits of extracted process modules communicating through explicit 

communication channels are shown in the experimental results in Chapter 6. 

4.2.2.2 Subprogram communication channel (SpC) 

VHDL subprograms (procedures and fimctions) are translated into ICODE subprogram 

modules in MOODS. A hierarchical calling structure is used in MOODS, whereby the 

control path in each subprogram module starts its execution upon receiving the activate 

signal and it sends an end signal back to the calling (parent) module upon termination. 

This implicit design boundary provides good object granularity for partitioning and the 

hierarchical nature of the protocol works seamlessly with the handshaking 

between processes. Process modules can run independently and call subprogram modules 

existing in different partitions. An arbitration scheme is necessary to arbitrate calls to an 

ICODE subprogram module &om different calling modules. Details on the modifications 

of the hierarchical subprogram module calling mechanism to support inter-device 

subprogram calls are described in Section 4.6. The asynchronous subprogram 

communication channel is inserted by MOODS automatically to handle the inter-device 

subprogram call. The underlying communication cells and the arbitration scheme to 

support inter-FPGA module calls are described fully in Chapter 5. 

VHDL signals are declared in the VHDL architecture and they are seen as global to 

processes within the architecture. Whilst any number of processes may read from a VHDL 

signal, only one process is allowed to write to a signal as the current MOODS synthesis 

system does not support resolved signals [32, 41]. It is becoming common to use 

communication channels for multiple communication processes [110, 113] whereby inter-

process data is sent in a unidirectional, point-to-point manner. A physical implementation 

of a simple channel is a bundle of wires; one request wire, one acknowledge wire, and one 

wire per data bit (recall the bundled-data approach in Section 3.5.1). Now, the explicit 

communication channels performs the synchronisation task of multiple communicating 

VHDL processes in MOODS which was previously done through explicit handshaking 
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global signals or semaphores [32, 42] as well as sending an updated value of the global 

signal (or channel data) to the VHDL process on the receiving end of the channel. 

4.3 Module call graph representation 

The input behavioural specification (described in VHDL) is translated into a 

corresponding intermediate code (ICODE), with VHDL processes and subprograms 

(functions and procedures) translated into ICODE modules, and modelled as a control and 

data path graphs vyithin the synthesis core. Multi-FPGA partitioning assigns the ICODE 

modules among k target devices. This section describes the symbols and notations used in 

a module call graph for a better representation, where the type of node and edge in the call 

graph gives a clear distinction between process and subprogram modules and the type of 

communication charmel between the modules respectively. This representation allows the 

modelling of subprogram calls from different modules in the design, with arbitrarily deep 

nesting of such calls. 

datajDkt, act_count 

7̂  [ » 

Process module Explicit communication channel 

dataJDkt, act_count 

Subprogram module Subprogram communication channel 

Figure 4-3 Types of nodes and edges in the module call graph 

The symbol and annotation convention of the module call graph given in Figure 4-3 is 

used throughout the rest of the thesis unless specified otherwise. There are two types of 

nodes (labelled pM and sM) to represent the process module and subprogram module 

respectively. An explicit communication channel (see Section 4.2.2.1) is represented with 

an edge with two arrow heads pointing at the destination module. A subprogram call is 

represented by a subprogram communication channel and this is an edge with a single 
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filled arrow head pointing towards the called subprogram module. Both types of edges are 

annotated with (fara/pocte/ and acffvafmn values. 

I S 

Examples of the various basic types of connection in the module call graph are listed in 

Table 4-1. A node in the module call graph can have multiple edges connecting it to other 

nodes. The first and last types of connection in the table show two process modules (PI 

and P2) connected with explicit communication channels, the second type of connection i 

a subprogram call (to subprogram p rod ) initiated from a process module (PI), and the 

third type of connection is a nested subprogram call. In summary, an explicit 

communication channel is used for process-to-process communications and a subprogram 

communication channel is used to connect the destination subprogram module to a process 

module or a subprogram module, in the case of nested subprogram calls. 

Connection t>'pe example 

pM 
P1 

1 , 1 pM 
P2 

Description of the example 

Process module P1 sends data to process module P2 

through an explicit communicat ion channel. The channel has 

a single data packet count and activation count. 

pM 
P1 

sM 
prod 

4,1 sM 
prod 

A subprogram communication channel connects process 

module P I to subprogram module proc 1. This subprogram 

call has 4 data packets and an activation count of 1. 

2,3 sM 
proc2 

A subprogram communication channel connects subprogram 

module p r o d to subprogram module proc2. This nested 

subprogram call has 2 data packets and an activation count 

of 3. 

Process module P1 and process module P2 send and 

receive data via explicit communicat ion channels. Both 

explicit channels have a single data packet count and an 

activation count of 8. 

Table 4-1 Examples of types of connection in the module call graph 

' Defined as the number of data packets transferred as parameters between a source and destination module 

^ Number of times the source module activates the destination module 
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4.4 Problem formulation 

The module call graph is a weighted directed graph CG = (A/j Each node E # 

represents a module in the design, the area of each module is denoted as and the I/O 

pin count is denoted as io{n^, for z —> 1 to ntotai, where ntotai is the total number of modules 

in each partition. Each edge e, E g, = (mrc , acr cownr), for z 1 to 

Gtotai, E jV, E TV, MjTc Mckf Corresponds to either an explicit channel or 

subprogram communication channel from the source module to the destination 

module ndst. The data packet count data_pkt is the number of data packets transferred as 

parameters between and during each call. The activation count ac/ cowMr is the 

number of times nsrc calls ndst and this activation count value is obtain from the design 

activity profile. 

A set of available m target devices is given by D = {(fy, <5̂2, .. , cL} where /M > A; > 2. Each 

device J, = (djcirea,, d^io,) where djjreai and dj.Oi denote the area capacity and number 

of available I/O pins of device i. 

The K-way partitioning problem finds a set of clusters f y, } such that c 

k 
# f b r 1 to A:, U =//aiid;?inj!:;/ = jg^fbr i 1 to A;,; - > 1 to A:, and z The 

i=\ 

partitioning solution must satisfy a set of device constraints (area and I/O) and minimise 

the inter-partition data transfers. 

The area constraint for this K-way partitioning problem is given by: 

a r e a ^ ^ P^itions where z ̂  1 to ntotai, ^ ̂  
M E and % E f . 

Let the cut-size Ckj be the number of interconnects crossing the partition boundary between 

partitions pk andpj. The I/O constraint is given by: 

for A: partitions where z -> 1 to ntotw, (4.2) 

^ ME E f ^ 1 to A, 
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4.4.1 Modified K-way partitioning in IVIOODS 

The partitioning process of a single design onto multiple FPGAs is done in two phases. 

The first phase performs K-way partitioning on the modules in the design. The partitioning 

algorithm is outlined in Figure 4-4. The second phase deals with the assignment and 

optimisation of inter-FPGA subprogram communication channels to the partitions. Each 

subprogram communication channel is managed by communication (transmit and receive) 

cells and an arbiter cell. Figure 4-6 outlines the second optimisation algorithm that creates 

and optimises the subprogram communication channel(s) between target devices. More 

than one subprogram communication channel can be created and assigned to two or more 

modules in the design. 

4.4.1.1 K-way partitioning algorithm 

The inputs to the K-way partitioning algorithm include the module call graph of the design 

and the area constraint of the target devices. The algorithm starts with an initialisation 

stage where the input module call graph CG is checked to ensure that it is properly 

annotated with valid parameters, and all constraints such as number of target devices are 

set. An initial partition is generated and this forms the starting partition of the first pass. 

The K-way partitioning algorithm is similar to the two-way F M algorithm (described in 

Section 3.2.1) with a few slight changes, such as the select-and-move process, and the 

balanced criteria. Unlike the two-way FM algorithm that only considers whether to move a 

node to the next partition (i.e. move the base node from partition A to B, or from partition 

B to A), the K-way algorithm considers AT-l possible partitions to move the base node and 

the Gain_Array that holds an array {K-\ in size) of gain values associated with moving a 

node from the current partition to another partition. 

A selected base node {ribase) move from partition to partition py is only allowed when it 

satisfies the balanced criterion given by: 

- ) - ; 

A 
(4.3) 
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for i ^ \ to n, n e N, e P, py e P, x ^ y, and is the area of the smallest unlocked 

node (i.e. mini < l < n ( ^(^/)unlocked ) )• 

K-way Partitioning Algorithm 
CC: module call graph CG = (#, # i s a set of nodes and E is a set o f edges 

DevArea[]: Device area of each target device (FPGA) 

KWay (CC, 

begin 

Initialise K-way partitioning parameters; 

CurrentPartition <— Generate a legal initial partition; 

BestPartition <— CurrentPartition', 

BestCutcost <— CurrentCutcost\ 

improved_cutcost <— True; 

/* PASS MANAGER */ 

while ( improved_cutcos t ) { /* run until no further improvement in the cutcost */ 

/* MOVE MANAGER */ 

step_number <— 0; 

/* True only when balance condition and device area constraints are satisfied */ 

while ( CwreMff arr/r/oM, ) { 
step_number++; 

Update K-way Gain_Array, and CurrentCiitcost; 

Update tentative_cutcost[], tentative_moves[], tentativejnovedJo[]] 

Update size of partition and lock moved node; 

if (feM/afh'e c w r c o f > CM/reMrCwrcoj/ ) then 
bestjentativejnove <— step_number, 

end if 

} end while 

for =1; i< bestjentativejnove-, /++) 

Permanently move nodes in tentativejnoves[i]to partition specified in tentativejnovedJo[i] 

end for 

improved cutcost <— False; 

if ( CurrentCutcost < BestCutcost) then 

CurrentCutcost tentative jutcost[bestJentativejnove]\ 

Improvedjutcost <— True; 

end if 

} end while 

return ( CurrentPartition ) /* Final partition */ 

end 

Figure 4-4 Outline of the K-way part i t ioning algori thm 
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Similar to the two-way FM algorithm, the move with the highest gain is selected and 

executed iteratively until all 6ee nodes are locked. The K-way algorithm continues with 

the execution of this iterative select-and-move sequence until no more unlocked nodes can 

be moved without violating the balanced criterion. At the end of a pass, the K-way 

algorithm moves back to the best intermediate solution. All nodes are unlocked and the 

best solution forms the starting partition for the next pass. The algorithm terminates when 

a pass fails to improve the cutcost. The cutcost is the total number of inter-FPGA data 

packets between all partitions and it is given by 

^ g; - 6; (acr _ cownf) , . . 
Ve, ^ 

foi i ^ 1 to etotalj ^ S E, Pe(nsrc) ^ Pi Pe(ndst) S P, ClYldPe(nsrc) ^ Pe(ndst). 

4.4.1.2 Subprogram communication channel optimisation 
algorithm 

The subprogram communication channel optimisation algorithm creates a subprogram 

communication charmel or multiple channels, optimised to reduce the inter-FPGA data 

packets sent between partitions. Using the design activity profile to determine module 

calls that cause congestion in the communication channel, provided that the target device 

area and I/O constraints between these module calls are met, the algorithm creates and 

assigns the modules responsible for this bottleneck in data transfer to a new subprogram 

communication channel. The design activity profile is a temporal analysis of the module 

activation in the system over a series of time steps. 

The algorithm uses a greedy-based strategy [114, 115] to reduce the bottleneck through 

the primary subprogram communication channel. A simple example of the greedy-based 

strategy in Figure 4-5 shows subprogram calls to D and the block height of each call 

gives the number of data packets sent in each call (e.g. call A sends one data packet and 

call B sends three data packets). 
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Figure 4-5 Greedy-based strategy 

Figure 4-5(a) shows all the four subprogram calls assigned to SpC 1 and 20 I/O pins 

available. Assume each SpC uses 10 I/O pins and the subprogram calls are mutually 

exclusive. The time-step with the maximum number of data packets is identified (in this 

case time step 2) and the subprogram call with the largest number of data packets is call B. 

Subprogram call B is extracted and allocated to a new subprogram communication channel 

(SpC 2) as shown in Figure 4-5(b). The number of I/O pins available reduces to 10 with 

inclusion of SpC 2. Now, the maximum number of data packets sent in any one time step 

reduces to 4 in time step 5, with subprogram call C called 3 times and contributing the 
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most number of data packets in time step 5. Subprogram call C is extracted and allocated 

to a new subprogram communication channel (5]pC J) shown in Figure 4-5(c). The 

algorithm terminates as no more I/O pins are available. Assume each data packet takes one 

unit delay. The original allocation of all four subprograms allocated to a single 

communication chaimel in (a) will take 6 unit delays. With additional I/O pins and the 

allocation of subprogram calls to more subprogram communication channels (3 channels 

in this example), the overall delay is reduced to 3 unit delays. 

The subprogram communication channel optimisation algorithm (outlined in Figure 4-6) 

begins with all module call pairs assigned to the primary subprogram communication 

channel. If the option for multiple subprogram communication channels is not selected 

(i.e. Multiple_Comm_Channel = false), the algorithm terminates with all modules 

transferring inter-FPGA data using the primary communication channel. If enabled, the 

algorithm proceeds by first unlocking all module pairs. The following three steps are 

executed iteratively in sequence till no further improvements {end ofjDpt = true) can be 

made: 

• Step 1 - The inter-FPGA data transfers for all unlocked module call pairs are 

calculated (see Section 4.5). 

• Step 2 - The time steps are sorted according to the number of inter-FPGA data 

transfers and the unlocked module call pairs in each time step are sorted according to 

their inter-FPGA transfers in the temporal time step. The subprogram communication 

channel optimisation algorithm terminates when none of the target device area and I/O 

constraints for the module pairs is met. 

• Step 3 - The channel insertion routine insertj:omm_channel is called and a new 

subprogram communication channel is inserted when there is an improvement 

(reduction) in the total number of inter-FPGA packets. The channel insertion routine 

returns a 0 when no improvement can be made, or when there is only a single module 

pair assigned to the subprogram communication channel. The area and I/O resources 

of the target devices containing the module pairs are updated if the channel insertion 



T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 1 2 

routine returns a non-zero return value; else a zero return value terminates the 

subprogram communication channel optimisation algorithm. 

Subprogram Communication Channel Optimisation Algorithm 
profile information array containing information on the module call graph 

Optimise Comm Channel {profileJnfo[]) 

begin 

Primary comm channel •f- all modules pairs; 

if ( MultipleJ2ommJ2hannel) then { 

Unlock all module call pairs {src,dsi) 

False; 

while ( end_of_Opt = False ) {/* run until no further improvement can be made */ 

/* Step 1 */ 

profile__info_sorted[] Generate a sorted array ofprofile_info[], the generated array is sorted 
according to the inter-FPGA data transfers. 

Calculate inter-FPGA data transfers for all unlocked module pa i r s in each time step. 

I* Step 2 *! 

Sort time steps in order according to 'traffic congestion', with unlocked module pairs in each time 
step sorted in order according to their inter-FPGA data transfers in the time step. 

if ( Area and I/O constraints not m e t ) then 

end_of_Opt <— True; 

else 

False; 

end if 

/* - — Step 3 */ 

bus opt status insert_comm_channel() 

if ( bus opt status ) then 

end_of_Opt <— False; 

Update Area and I/O resources of the device that the newly created bus arbiter is assigned to 

else 

end_of_Opt <— True; 

end if 

} end while 

end if 

end 

Figure 4-6 Outline of the subprogram communicat ion channel optimisation 
algorithm 
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Figure 4-7 illustrates the generation and assignment of multiple subprogram 

communication channels {SpCs) to alleviate the delay due to devices sharing a common 

communication channel. Each row in the table shown in the figure gives the total area (in 

slices), the area utilised, total number of available I/Os, and the number of I/Os utilised by 

the devices in the multi-FPGA system. Each communication channel consists of transmit 

cell(s), receive cell(s), and a channel arbiter to ensure mutually exclusive access to the 

shared channel between the devices connected to it. The original partitioned design starts 

with a single communication channel (see Figure 4-7(a)), which connects up all the target 

devices and inter-FPGA data transfers are made through a single bi-directional 

communication channel. The arbiter for SpC 1 is found in Device 4. With extra area and 

I/Os available in (a), the subprogram communication channel optimisation algorithm 

inserts a new communication channel, module call pairs with a high amount of traffic that 

cause congestion in the first communication channel are determined and assigned to a new 

communication channel. Further details on design activity profiling to determine the 

amount of inter-FPGA data transfers and how this affects the partitioning algorithm is 

covered in the next section. 

In the module call graph given at the top of Figure 4-7, module call pair ( f 2, /MocfC) is 

extracted from SpC 1 and assigned to the newly created communication channel (SpC 2) 

to spread the inter-FPGA data transfers over two channels, and thus inferring a level of 

parallelism in inter-FPGA data transfers since the two communication chamiels can 

transfer data concurrently. Device area and I/O utilisation are traded off for the increase in 

parallelism. The area and I/O increase of Device 2 is shaded in the table in Figure 4-7(b); 

this increase is due to the insertion of a communication charmel arbiter for 2. The area 

utilisation of Device 4 is reduced to 727 units (as the arbiter for SpC 1 described above is 

smaller) and its I/O utilisation reduced by two pins as a new arbiter (with an area of 22 

units) generated in Device 2 handles the arbitration control of module call pair ( f 2, 

modC). In Figure 4-7(c), module call pair {modC, modD) is extracted from SpC 1 and 

assigned to SpC 3. The communication channel arbiter for SpC 3 is inserted into Device 3, 

thus increasing the area and I/O utilisation for Device 3. This again reduces the area and 

I/O utilisation of Device 4, and now the task of inter-device data transfers is distributed 

between three subprogram communication channels. 
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2 800 672 124 84 
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S p C 2 
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Figure 4-7 Generation and assignment of communication subsystems 
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4.5 Integration of the design activity profile and the 
K-way partitioning algorithm 

The generation of the design profile and its integration into the K-way partitioning 

algorithm to guide the partitioner is covered within this section. This section starts with a 

look at how the data widths of input and output parameters affect partitioning. A 

subprogram module with larger input or output parameters data width tends to require 

more data packets than a sub-module with a smaller input and output parameter data width 

if the target devices are I/O limited. This is illustrated in Figure 4-8 with process module 

PI calling two subprogram modules, procl and proc2. 

D a t a 

P a c k e t 1 

D a t a 

P a c k e t 2 

D a t a 

P a c k e t 3 

D a t a 

P a c k e t 1 

prod inputs 
- I a _ i n [ l 1 6 ] 

prod outputs 
c_out[11 6] 

a_in[5:0] 

c_out[5:0] 

begin 

procedure p rod ( 
signal a j n : in unsignecl(11 downto 0); 
signal b j n : in unsigned(5 downto 0); 
signal c_out: out unsigned(11 downto 0) 

end proc2; 

begin 

end p rod ; 

procedure proc2 ( 
signal d j n : In unsigned(3 downto 0); 
signal e j n : in unslgned(1 downto 0): 
signal f_out: out unsigned(3 downto 0) 

22 

proc2 inputs 

b J n f S 0 ] d out 3 01 

e in 1:0 

procl outputs 
f_out[3:0J 

Bit-stuffing zeros 

Figure 4-8 Example of I/O parameter sizes and data packet count 

The example shows the number of data packets sent by each subprogram module using a 

common subprogram communication chamiel with a 6-bit channel width. Input parameter 

a_in of subprogram procl is sent over the channel in two separate data packets and input 

b in in a third data packet. Output parameter (result) c out of subprogram procl is sent 

over the channel in two separate data packets. Input parameters d in and e_in of 
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subprogram proc2 are concatenated and sent in a single packet. Output parameter ^out of 

proc2 is bit-stufkd with zeros and sent in a single data packet. The subprogram 

communication channels connecting process module P1 to subprogram modules proc 1 and 

proc2 have total data packet counts of 5 and 2 respectively (as shown in Figure 4-8). 

The partitioning algorithm priorities the partitioning of subprogram modules based on the 

number of data packets sent, thus a subprogram module with a larger parameter bit-width 

is less likely to be partitioned onto a second FPGA compared to a subprogram module 

with a smaller parameter bit-width if both are being called by the same source module (i.e. 

assuming both subprogram modules are activated the same number of times) as a larger 

parameter bit-width will probably require more data packets when targeting I/O limited 

devices. 

With the inclusion of the design activity profile, the subprogram module activation can be 

modelled more accurately and the profile data is used to guide the partitioner in producing 

a partitioned design with less inter-FPGA communication. The temporal 'trafGc analysis' 

is extracted 6om the simulation of the design using a typical (or likely) set of values 

emulating a working system. The source-destination module pair has a 

associated with each subprogram call. A module call list (./McZ) file is automatically 

generated in MOODS during synthesis. Definition of the module call list can be found in 

Appendix C.3. This module call list file lists all source-destination pairs and the call node 

that is activated for each subprogram module call. An example of a module call list file 

and a simulation of the activation of modules in a module call graph with two process 

modules (PI and P2) and four subprogram modules (modA, modB, modC and modD) is 

shown in Figure 4-9. 
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Generated module c a l l list 

pM 
P1 

pM 
P2 source-destination 

module pair 

sM 
modA 

sM 
modB 

r 
sM 

mode 

4,1 

sM 
modD 

call_node 
node number 

source-destination 
module node 

numbers 

Simulation results of subprogram module activations 

; MODULE CALL LIST 

; P I (prog mod) > modA 
; Ca l l node u3 
1 12 
; P I - > modB 
; Ca l l node u5 
1 4 3 9 
; P2 —> modB 
; Ca l l node u17 
12 439 
; P 2 - > mode 
; Ca l l node u19 
12 384 

: m o d e > modD 
, Ca l l node u37 
384 146 

T1 T2 T3 

Time step 

T4 I T5 T 6 T7 T8 

call_node u3 
(P1-modA) 

call_node u5 
(PI -modB) 

call_node u17 
(P2-modB) 

call_node u19 
(P2-modC) 

call_node u37 
(modC-modD) 

Figure 4-9 Example of module call list and simulation of subprogram module 
activations 

A profile of activation counts of the call nodes is extracted from the simulation, and this 

design profiling data is fed into the partitioner using the partitioning information {.par) 

file. The profile data is modelled using a distribution graph, where the vertical axis 

corresponds to the summation of all module activation counts in a particular time step on 

the horizontal axis. An example of the distribution graph generated for the example above 

is illustrated in Figure 4-10. 
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time steps 

Design profile data 

source-destination 
module node 
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[Design_Profile] 
TIME_STEP= 8 
1 12=1 0 0 0 0 0 0 0 
1 439=1 0 0 0 1 0 0 0 
1 2 4 3 9 = 0 3 0 0 0 3 0 0 
12 384=0 0 1 0 0 0 0 0 
384 1 4 6 = 0 0 0 2 1 0 0 0 

M o d u l e a c t i v a t i o n 
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CNTts/ CNTts2 CNTtstote/ 

8 T i m e s t e p 

( t s ) 

source-destination module numtiers [source:destination] 

[1:12] • [1:439] ^ [12:439] • [12:384] • [384:146] 

Figure 4-10 Example of the design profile distribution graph 

A partitioning ordering sequence gives the likelihood of a source and destination module 

being partitioned onto separate FPGA devices. The data packet multiplied by the 

activation count is given in the total data packets column. The total number of data packets 

for the source, destination pair has an inverse relationship with the likelihood of the pair 

being partitioned onto separate FPGA devices. In other words, the greater the total data 

packet count, the more likely the pair will be partitioned onto the same device. Source-

destination module pairs with a lower ordering sequence are less likely to be partitioned 

onto separate devices. Figure 4-11 gives the partitioning ordering sequence of the call 

graph example in Figure 4-9. 

The total data packet count of the source-destination module pairs is now not only 

dependent on the I/O parameters data width but also the number of times the source 

module calls the sub-module. For example, the {P2, moclB) pair has an activation count of 

6 and a total data packet count of 72, and it has the largest total data packet count 

compared to the other module pairs. Modules P2 and moclB are most likely to be 

partitioned onto the same FPGA device, whereas modules PI and modA have the highest 

chance of being partitioned onto separate FPGAs because the {PI, modA) pair has the 

highest sequence order of 1. The activation count and the data packet count for the module 
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call pairs are fed into the K-way partitioner described in Section 4.4.1 using the 

partitioning information (.par) file. 

highest order 
• 

lowest order 

I P I 

sM 

\ mode / mod A \ m o d b 

m o d u 

Ordering 
sequence 

Data packet 
count 

Activation 
count 

Total data 
packet c o u n t 

Source-destination 
module pair 

1 8 1 8 P I , mod A 
2 4 3 12 m o d e , modD 
3 16 1 16 P2, m o d e 
4 12 2 24 PI , modB 
5 12 6 72 P2, modB 

Figure 4-11 Partitioning ordering sequence with design profiling 

4.6 (CODE Module modifications 

Prior to the partitioning enhancement, the output values for subprogram modules are 

passed by reference. Now, modules are targeted onto two or more target devices, the 

output results are passed by value between the source module and the subprogram module 

called. Registers are required to hold the output parameters prior to sending the data back 

to the calling (source) module. The removal of output registers for inter-device 

subprogram modules are bypassed. Details of the modifications in the subprogram module 

call mechanism are covered within this section. 

After the partitioning stage, 'call nodes' (caZ/ no^fes) associated to ICODE 

instructions for modules calling a subprogram module in a different partition are replaced 

with 'transmit call nodes' {tcalljiodes). The tcalljiodes are associated with ICODE 
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instructions, which replace the original ICODE instructions. This 

change allows MOODS to distinguish between the two types of calling methods. The 

instruction associated with ICODE subprogram modules is the ICODE 

instruction. Likewise, subprogram module that is called by modules in another partition 

has its module header instruction changed from the instruction into a new 

instruction defined for subprogram modules with inter-FPGA calls, ICODE jgZCEZZ 

instruction. This change allows MOODS to determine which subprogram modules are 

called from modules in another FPGA device. The top of Figure 4-12 shows the original 

call node associated with an ICODE instruction, the activates the 

start node in the subprogram module when it is being activated (i.e. when the main 

execution is paused and control is passed to the subprogram module controller). This 

hierarchical method of control passing and data passing is modified when the subprogram 

module is located in a separate FPGA device as illustrated in Figure 4-12. 

In the source (calling module) partition, the original is replaced by the 

and the now activates a 'transmit cell' (bcceZ/ noâ e) when inter-

FPGA communications is required. The txcelljaode is the communication cell that sends 

input parameters across the FPGA device and receives the results when the execution of 

the operation is complete at the destination subprogram module. Upon completion of the 

subprogram module execution, the txcelljiode receives and loads the output results into 

the appropriate output result registers. Control is passed back to the main execution and 

this completes the subprogram module call. 

In the called subprogram module, a 'receive celF (/-xcg/Z nof^e) receives the input 

parameters sent by the txcell_node of the calling module. A 'receive call node' 

{rcalljiode) is activated by the rxcell_node when the input parameters are received and 

loaded into the appropriate registers prior to the execution of the subprogram module. The 

rcall_node uses the same calling mechanism of a calljiode, it activates the start node in 

the subprogram module. Upon completion of the subprogram module, results in the output 

registers are ready to be sent back to the source module in the other partition. The 

A-caZ/ activates the rxce/Z Mock, which completes the subprogram module call when 

it sends the results to the corresponding txcell_node of the called module. 
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Original subprogram module cal l ing mechanism 
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Figure 4-12 Inter-FPGA subprogram module calling mechanism 
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In a partitioned design, not all module calls require the inter-FPGA data transfer using the 

communication subsystem. Some of the module may only call other modules within the 

same device and the original module call method is used in such cases. An example of a 

module that has an internal and external subprogram module call is shown in Figure 4-1 J. 

Device 1 

pM 
6 , ^ P2 

Device 3 % 

/ pAf \ \ 

\ \ / 

modB V I 

Device 2 

sM 
! ' mode 

External (inter-FPGA) 
subprogram module call 

normal subprogram 
module cal l 

Figure 4-13 Module call graph of a module with internal and external 
subprogram module calls 

The shaded subprogram modules (jnodA and modB) have modules calling them from 

another device, and these external calls require inter-FPGA data transfers between the re-

configurable devices. The internal call (modA calling modC) uses the original calling 

method, where the corresponding ICODE instruction is the instruction. For 

the external call {modA calling modC), an ICODE TXjCELL instruction replaces the 

original ICODE MODULEAP instruction, and a set of communication cells is created for 

this external module call. Note the special case where an internal process module (P2) has 

an internal call to a subprogram module {modA), which is also activated by an external 

process module ( f 7). The associated to ICODE instructions for 

this call ( f 2 calling is replaced with a This change allows MOODS to 

identify modules activated by both internal and external subprogram calling methods. 
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Details of the txcell^node, rxcell_node, and the modifications of I/O parameter registers 

are covered in greater detail in Chapter 5. Note the underlying structure of the final 

generated hardware uses pass-by-value instead of pass-by-reference for the subprogram 

I/O parameters as a local copy of the subprogram I/O parameters is needed in the target 

device of the external subprogram. Data packets which contain subprogram I/O 

parameters are sent to the external module and kept in local (duplicated) registers. 

Registers are required to hold the output parameters prior to sending the data back to the 

calling (source) module. 

4.7 Summary 

This chapter starts with a discussion on the implementation of the partitioning mechanism 

into the MOODS synthesis system, and the effect of performing partitioning for a multi-

FPGA system at the various subcomponent stages within the MOODS synthesis system. A 

stage to insert the multi-FPGA partitioning mechanism and the level of granularity to 

perform the partitioning is selected considering the various factors that would affect the 

performance of the synthesis tool as well as that of the generated multi-FPGA system. 

Two types of communication channels are presented in this chapter; an explicit 

communication chaimel used for data transfers between ICODE processes (&om VHDL 

processes) and a subprogram communication channel used for inter-device ICODE 

subprogram module (from VHDL procedures and functions) calls. 

A formulation of the multi-FPGA partitioning problem is presented, a K-way partitioning 

algorithm and a subprogram communication channel optimisation algorithm are proposed 

as a two-phase solution. A module call graph representation used to model the data 

structures for partitioning is also presented within this chapter. The generation of the 

design profile and how this profile information is used to guide the partitioning algorithm 

is also covered within Section 4.5. The design profile and target technology information 

(number of target devices, area and I/O constraints) are passed into the synthesis system 

using a partitioning information {.par) file. Refer to Appendix C for the full detail of the 

partitioning information file. The new added features to synthesise a multi-FPGA system 

using the MOODS synthesis system are shaded in Figure 4-14. 
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Figure 4-14 Modified MOODS synthesis system with multi-FPGA partitioning 

The next chapter covers the implementation of the asynchronous communication channels 

in greater detail. Details covered within the next chapter include the asynchronous data 

communication channel used for inter-FPGA data transfers, the various communication 
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cells and arbiter ceils which form the building blocks of the subprogram communication 

channel, and the structure of the final generated hardware synthesised design targeted onto 

multiple heterogeneous target devices. The ICODE list of instructions and the MOODS 

cell libraries are modified for the support of the multi-FPGA partitioning. The ICODE 

instruction database is extended to include the ICODE instructions associated with inter-

FPGA data transfers (e.g. instructions such as Refer to Appendix C 

for the full ICODE instruction database description. The MOODS cell library database file 

{.mlib) is extended to include the communication cells, and latches to implement the 

subprogram communication channel. The parameterised structural/RTL components of 

these cells are added to the existing file, and a new updated library 

file, M00DS_LIB2. 7 {.vhd) file, was created. 
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Chapter 5 

Communication channels 

5.1 Introduction 

Once a single behavioural description has been synthesised and partitioned in MOODS, 

the next step is to look at the interface generation (shaded region in Figure 5-1) so that one 

FPGA device can communicate with other FPGA devices in the multi-FPGA system. 

H i g h - l e v e l 
s y n t h e s i s a n d 

p a r t i t i o n i n g 

B e h a v i o u r a l 

V H D L 
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Figure 5-1 Generated system structure 

The synthesis of a multi-FPGA system with heterogeneous devices with a single global 

clock becomes impractical, as the clock rate of the whole system is dependent on the 

slowest device connected. As the number of FPGA devices increases, the limiting problem 

becomes the distribution of the single clock without introducing intolerable clock skew. 

One approach to alleviate the above given problems is to synthesise a multi-FPGA system 

using a locally clocked, globally delay-insensitive approach [103, 116]. The partitioned 

design is targeted onto separate FPGA devices, where each device is clocked locally and 

the board-level devices communicate with one another using delay-insensitive signalling 
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methods. Asynchronous communication channels are used for data transfers between the 

partitions. The communication channel interface is presented in Section 5.2. Section 5.3 

details the communication protocol of design targeted onto an arbitrary number of FPGA 

devices. Section 5.4 deals with the implementation details of the communication cells and 

arbiter cells, which are the building blocks of the subprogram communication channel. 

Section 5.5 deals with the hardware generation of the underlying structure to support data 

communications between the devices in the multi-FPGA system. 

5.2 Communication channel interface 

The ICODE expansion stage expands channel-related instructions and replaces the 

instructions with the corresponding expanded ICODE template by inlining. A simpler 

template shown in Figure 5-2 with a variable channel data-width defined by the channel 

data sent using the channel replaces the original ICODE templates of varying channel 

widths (8-bits, 16-bits, 32-bits, etc) in [109]. 

ICODE expansion template 

MODULE chjnit val.sem MODULE ch_recv chan_data,ack,sem,d 
// Declarations // Declarations 
REGISTER val REGISTER Chan data [0:0] 
REGISTER sem [0:0] REGISTER ack [0:0] 
// Statements REGISTER sem [0:0] 
.CHI0001 MOVE val,sem REGISTER d [0:0] 

REGISTER c_tmp [0:0] 
MODULE ch_send d,ack,sem,chan_data // Statements 
// Declarations .CHR0001 UNEQ sem,ack,c_tmp 
REGISTER d [0:0] .CHR0002 IF C_tmp ACTT CHR0003 ACTF CHR0001 
REGISTER ack [0:0] .CHR0003 NOT sem,c_tmp 
REGISTER sem [0:0] .CHR0004 MOVE chan_data,d 
REGISTER Chan data [0:0] .CHR0005 MOVE c tmp,sem 
REGISTER c j m p [0:0] llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
// Statements 
.CHS0001 UNEQ sem,ack,c tmp 
.CHS0002 IF CJmp ACTT CHS0001 ACTF CHS0003 
.CHS0003 NOT sem,c_tmp 
.CHS0004 MOVE d,chan_data 
.CHS0005 MOVE c tmp,sem 
////////////////////////////////////^^^^^^ 

Channel component template 

IMPORT send_sem [0:0] 
INPORT recv_sem [0:0] 
INPORT d a t a j n [0:0] 
OUTPORT send_ack [0:0] 
OUTPORT recv_ack [0:0] 
OUTPORT data_out [0:0] 
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 

Figure 5-2 ICODE expansion and channel component templates 
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The ICODE co/MponeMr is equivalent to an ICODE but only the interface is 

defined and not its behaviour. This allows concurrent VHDL "black box" components 

(e.g. the communication channel "black box" component in Figure 5-3(a)) with a VHDL 

gMfzYy and arcAzYecfw/'g (see VHDL co/MpoMgMfs in the VHDL hierarchy structure in 

Section 2.3.3) but no defined behaviour to be synthesised in MOODS and the behaviour of 

the component inserted after synthesis. The VHDL compiler front end does not support 

this "black box" concept; a dummy component consisting of a VHDL process and 

procedure (Figure 5-3(b)) is used, allowing the VHDL to ICODE compiler to translate an 

ICODE dummy component into an ICODE module activated by a MODULEAP 

instruction (.L000002 in Figure 5-4(a)). The generated ICODE for the behavioural 

example in Figure 5-3 is given in Figure 5-4(a)). 

library ieee; 
use ieee.std_logic_1164.all: 
use le@8.numenc_skl.all; 
usGworkchannel _pack8ge.all; 

entity m_call1 is 
port( a: out std_logic_vector(7 downto 0)): 

end m_call1; 

architecture behaviour of m_call1 is 
signaj c1_send_sem, c1_recv_sem: chann^_sem; 
signal c1_send_8ck, c1_recv_8ck: channel_8ck; 
signal c1_send_data, c1_recv_data: std_logic^vector(7 downto 0); 

begin 
- Communication channel blackbox component 
c1: entity work.SIMPLE_CHANNEL generic map (8) 

port map( c1_send_sem,c1_recv_s6m,c1_send_data, 
c1_send_8ck,cl_recv_ack,cl_recv_data); 

- send process 
process 
variable tempi: std_l0gic_vect0f(7 downto 0); 
variable data: unsigned(7 downto 0); 

begin 
lrWt(cl_send_sem): 
data := (others => "0"); 
forever loop 

tempi := std_loglc_vector(data): 
send(c1_send_sem, c1_send_ack, c1_send_data, tempi); 
wait R)r 10 ns; 

end loop; 
end process; 

- recv process 
process 
variable temp3: std_loglc_vector(7 downto 0); 

begin 
lnlt(cl_recv_sem); 
forever loop 
recv(c1_recv_sem. c1_recv_8ck, c1_recv_data. tempS); 
a <= tempS; 
wait for 10 ns; 

end loop; 
end process; 

end behaviour; 

(a) Behav iou ra l VHDL des ign 

library ieee; 
use ieee.std_logic_1164.all; 
entity SIMPLE_CHANNEL is 
generic (width: positive := 8); 
port (send_s8m: in std_lo^_vector(0 downto 0); 

recv_sem: in stdjogic_vector(0 downto 0); 
send_data: in std_logic_vector(width-1 downto 0); 
send_8ck: out stdjogic_vector(0 downto 0); 
recv_ack: out std_loyLvector(0 downto 0); 
recv_data: out stdJogic_vector(width-1 downto 0)); 

erxf SIMPLE_CHANNEL; 
architecture stmcture of SIMPLE_CHANNEL is 
procedure channel_body( 

signal Bend_sem: in std_logl^vector(0 downto 0); 
siyial recv_sem: in std_logic_vector(0 downto 0); 
signal send_data: in std_logic_vector(width-l downto 0); 
signal send_ack: out std_logic_vector(0 downto 0); 
signal recv_ack: out stdjogic_vector(0 downto 0); 
signal recv_data: out stdJogic_vector(width-1 downto 0)) is 
begin 
wait for 0 ns; 

end; 
begin 
process 
begin 
chainel_body(send_sem,recv_sem,send_data,send_ack,recv_ack,recv_data); 

end process; 
end structure; 

(b) C o m m u n i c a t i o n c h a n n e l d u m m y c o m p o n e n t 

Figure 5-3 VHDL black box component 
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VHDL processes are translated and merged into the program ICODE module during the 

ICODE generation (Section 2.7.2). The ICODE expansion stage separates the ICODE 

statements (see Figure 5-4(a)) for each process into separate ICODE process modules 

(p MOD 1 and p MOD 2 in the given example - Figure 5-4(b)) activated by 

MODULEAP instructions (.L000002_0 and .LOOOOl 1 0 in Figure 5-4(b)). 

; PROGRAM m_call1 a 

I // Dedarations 
: OUTPORT a [7:0] 
I REGISTER c1_@end_sem [0:0] 
! REGISTER c1_recv_s@m [0:0] 
REGISTER c1_send_ack [0:0] 
REGISTER c1_recv_ack [0:0] 
REGISTER c1_send_d8ta [7:0] 
REGISTER c1_r8cv_d8ta [7:0] 
ALIAS diasO [0:0] FROM c1_send_sem [0:0] 
ALIAS aliasi [0:0] FROM c1_recv_sem [0:0] 
ALIAS allas2 [7:0] FROM c1_send_data [7:0] 
ALIAS 8lias3 [0:0] FROM c1_send_8ck [0:0] 
ALIAS ali8s4 [0:0] FROM c1_recv_8ck [0:0] 
ALIAS aliasS [7:0] FROM c1_recv_data [7:0] 
REGISTER tempi [7:0] 
REGISTER data [7:0] 
ALIAS sem [0:0] FROM c1_@end_sem [0:0] 
REGISTER tmp6 [0:0] 
ALIAS sem_0 [0:0] FROM c1_send_sem [0:0] 
ALIAS ack [0:0] FROM c1_Bend_ack [0:0] 
ALIAS chan_data [7:0] FROM c1_send_data [7:0] 
REGISTER d [7:0] 
REGISTER tmp8 [7:0] 
REGISTER temp3 [7:0] 
ALIAS sem_1 [0:0] FROM c1_recv_sem [0:0] 
REGISTER tmp9 [0:0] 
ALIAS sem_2 [0:0] FROM c1_recv_sem [0:0] 
ALIAS ack_0 [Oi)] FROM c1_recv_ack [0:0] 
ALIAS chan_d8ta_0 [7:0] FROM c1_recv_data [7:0] 
AUAS d_0 [7:q FROM temp3 [7:0] 
REGISTER tmp10 [7:0] 

//Statements 
.L000001 NOOP ACT L000002, L000003, L000011 
.L000002 MWULEAP channel_body alias0.alias1,aIla$2,alia53.aliaB4,8lias5 ACT L000002 

.L000003 ch jn i t #%0,tmp6 

.L000004 MOVE tmp6,sem 

.L000005 MOVE #%00000000.data 

.L000006 MOVE data,tempi 

.L000007 MOVE tempi,d 

.L000008 ch_eend d,ack,sem_0,tmp8 

.L000009 MOVE tmp8,chan_data 

. LOOOOl 0 PROTECT le-OOS ACT L000006 

.LOOOOl 1 ch_lnlt#%0,tmp9 

.LOOOOl2 MOVE tmp9,sem_1 

.L000013 ch_recv dwi_data_0,ack_0,sam_2,tmp10 

.L000014 MOVE tmp10,d_0 

.LD00015 MOVE temp3,a 

.L000016 PROTECT 1e-008 ACT LOOOOl 3 

Statements for 
p_M0D_1 

Statements for 
p_MOD_2 

.L000017 ENDMODULE 
//////////////////////////////////////////////////////////// 
// MODULE HEADER 
MODULE channel_txxfy send_sem,recv_@em,send_data,send_8ck,recv_ack,recv_data 

\ // Declarations 
INPORT send_sem [0:0] 
IMPORT recv_sem [0:0] 
INPORT send_data [7:0] 
OUTPORT send_8ck [0:0] 
OUTPORT recv_ack [0:0] 
OUTPORT recv_data [7:0] 

// Statements 
.L000018 NOOP 
.L000019 ENDMODULE 
//////////////////////////////////////////////////////////// 

ICODE of dummy 
component indixAno 
the module header 

/ 

(a) Original ICODE 

PROGRAM m_call1 a 
// Declarations 
OUTPORT a [7:0] 
REGISTER c1_aend_sem [0:0] 
REGISTER c1_recv_sem [0:0] 
REGISTER c1_send_ack [0:0] 
REGISTER c1_recv_ack [0:0] 
REGISTER c1_send_data [7:0] 
REGISTER c1_recv_data [7:0] 
ALIAS aliasO [0:0] FROM c1_send_sem [0:0] 
ALIAS aliasi [0:0] FROM cl_recv_sem [0:0] 
ALIAS alias2 [7:0] FROM c1_send_data [7:0] 
AUAS alias3 [0:0] FROM c1_send_ack [0:0] 
ALIAS alias4 [0:0] FROM c1_recv_8ck [0:0] 
AUAS allasS [7:0] FROM c1_recv_data [7:0] 
REGISTER tempi [7:0] 
REGISTER data [7:0] 
ALIAS sem [0:0] FROM c1_send_sem [0:0] 
ALIAS sem_0 [0:0] FROM c1_send_sem [0:0] 
AUAS ack [0:0] FROM c1_Bend_8Ck [0:0] 
ALIAS chan_data [7:0] FROM c1_send_data [7:0] 
REGISTER d [7:0] {file:5. In:84, pos:114} 
REGISTER temps [7:0] (file:3, ln:54, pos:4} 
ALIAS sem_1 [0:0] FROM c1_recv_sem [0:0] 
AUAS s@Ti_2 [0:0] FROM c1_recv_sem [0:0] 
AUAS ack_0 [0:0] FROM c1_recv_ack [0:0] 
ALIAS chan_data_0 [7:0] FROM c1_recv_d8ta [7:0] 
AUAS d_0 [7:0] FROM temp3 [7:0] 
REGISTER c_tmp [0:0] 
REGISTER c_tmp_0 [0:0] 

// Statements 
LOOOOOI NOOP ACT L000002_0. L000003_0. LOOOOl 1_0 

.L000002_ONOOP ACTL000002_0 

.L000003_0 MODULEAP p_M0D_1 ACT L000003_0 

.LOOOOl 1_0 MODULEAP p_M00_2 ACT LOOOOl 1_0 

.L000017 ENDMODULE 
Generated chann^ 

blackbox component 
//MODULE HEADER ' 
COMPONENT channel_t)ody ali8sO,elias1,alias2,alias3,alias4,altas5 : 

//MODULE HEADER 
MODULE p_MOD_1 
//Statements 
.L000003 MOVE #%0,sem 
// Finished expanding Module: chjnit 

.L000005 MOVE #%00000000,d8ta 

.L000006 MOVE data,tempi 

.L000007 MOVE tempi,d 
// ExpancSng Module: ch_send 
.L000008 UNEQ sem_0,ack,c_tmp_0 
.CHS0002 IF c_tmp_0 ACTT L000008 ACTF C 
.CHS0003 NOT »em_0,c_tmp_0 
.CHS0004 MOVE d.chan_data 
.CHS0005 MOVE c_tmp_0,sem_0 
.L000010 PROTECT 1e-008 ACT L000006 

ENDMODULE 

// MODULE HEADER 
MODULE p_M0D_2 
//Statements " ' 
. LOOOOl 1 MOVE #%0,sem_1 
// Finished expancBng ModiMe: chjnit 

Expanded ICODE 
for channel init 

instruction 

Expanded ICODE 
for channel send 

instruction 

Expanded ICODE . 
for channel init 

instruction 

Expanded ICODE 
for channel receive 

instruction 

// Expanding Module: ch_recv % 
.L000013 UNEQ sem_2,8ck_0,c_tmp 
.CHR0002 IF c_tmp ACTT CHR0003 ACTF LOOOOl 3 
.CHR0003 NOT sem_2,c_tmp 
.CHR0004 MOVE chan_data_0,d_0 
.CHR0005 MOVE c_tmp,sem_2 ^ 
.L000015 MOVE temp3,a 
.L000016 PROTECT le-OOS ACT LOOOOl 3 

ENDMOOULE 

(b) ICODE after expansion stage 

Figure 5-4 ICODE expansion example 
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The ICODE expansion stage replaces the dummy ICODE component module for the 

communication channel "black box" in Figure 5-4(a) with an ICODE component in 

Figure 5-4(b). Channel-related instructions (chjnit, ch_send and ch_recv in (a)) are 

replaced and inlined with the contents of expanded ICODE templates (Figure 5-2) in the 

ICODE expansion library. 

Communication cells are inserted in the partitioning stage to handle inter-device 

subprogram calls; call_nodes' in modules calling inter-device subprogram modules are 

replaced with 'transmit call nodes', and 'transmit cells', 'receive cells' are connected to 

'receive call nodes' in the destination subprogram modules (described in Section 4.6). 

These communication cells are inserted automatically by the MOODS synthesis tool after 

the partitioning phase. The output structure of the partitioned design and its interface to 

the subprogram communication channels are not created by the user, but by the MOODS 

synthesis tool itself. Later sections look into the creation and the hardware connections of 

the subprogram communication cells and channel in greater detail. 

library ieee; 
use ieee.stdJogic_1164.all; 
library moods; 
use moods.cells.all; 
entity m_cail2_dom1 is 
port ( 

a: out std_iogic_vector(7 downto 0); 
sys_Glock: in std_logic; 
sys_resel: in std_logic; 

i Explicit Comm. Channel " 
m_call2_c2_recv_sem out stdjogic_vector(0 downto 0) 
m_call2__c2_recv_ack in std_logic_vector(0 downto 0), 
m_call2_c2_recv_data- in sld_logic_vector(7 downto 0); 

I m_caH2_c1_send_6em: out eWJogtc^vectorfO downto 0); 
I m_call2_o1_send_data: out adJ08ic_veclor(7 downto 0); 
[ m_call2_c1_send_ack: in sld_logtc_vectOf;0 douvnto 0); 
I SubproGtarn Comm. Channel 
, m_call2_bal_Data_inout inout stdJogic_vector(7 downto 0).j 
I m_c8ll2_ba1_Data_rBq; moul ztdJogH;_vector(0 downto 0); I 

m_call2_ba1_0ata_ack inout stdjogic_veclor(0 downto 0) ' 
I m_call2_ba1_t>!cell_req1 out stdjogic_v6ctor(0 downto 0) 

m_oall2_ba1_txcell_ack1 in stdjogic_vector(0 downto 0) 

end m call2 dom1; 

ARCHITECTURE structure of m call2 domi is 

(a) Generated VHDL entity of output 
structural VHDL for device 1 

library ieee: 
use ieee.stdJogic_1164.all; 

library moods: 
use moods.cells.all; 
- Using cells in ch_arb_const_1 package for channel arbiter 1 
use moods.ch_arb_const_1 .all: 

entity m_call2_dom2 is 
port( 

- Explicit Comm. Channel 
m_call2_c2_5end_sem: out std_logic_vector(0 downto 0); 
m_call2_c2_send_data: out sld_iogic_vector(7 downto 0); 
m_call2_c2_send_ack: m sid_lo^c_vec*or(0 downto 0); i 
m_cai2_c1_recv_S8m: oul sld_*ogi(^ve(%or(0 downto 0); I 
m_c8ll2_c1_recv_ack: in stdJogKLvectorfO downto 0): i 
m_c^l2_c1_recv_data: in std_logic_v6Ctor(7 downto 0); | 

Subprogram Comm. Chmnel i 
m_C8n2_ba1_Data_inout: mout std_logi^vec(or(7 downto i));i 
m_call2_ba 1 _Data_req inout stdJogiG_vector(0 downto 0); ^ 
m_call2_ba1_Data_ack inou* std_k)gic_vector(0 downto 0). 
sys_ch)ck: m std_iog*c: i 
sys_reset: m std_iogic: i 
— Channel Arb. req/ack signal — i 
m_call2_ba1_txcell_req: m std_logic_vector(0 downto 0): i 
m_c8ll2_ba1_txceil_acl(: out std_logic_vector(0 downto 0) i 

end m call2 dom2; 

ARCHITECTURE structure of m call2 dom2 is 

(b) Generated VHDL entity of output 
structural VHDL for device 2 

Figure 5-5 Generated VHDL entity with explicit and subprogram 
communication channel signal declaration 
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An example of the VHDL entity of two structural VHDL output files for a design 

partitioned into two devices is given in Figure 5-5. The interface ports that link to the 

structural implementation of the inter-device communication channel (both explicit 

communication and subprogram communication channels) are added automatically to the 

VHDL entity port list declaration of the generated structural VHDL design (shown shaded 

in Figure 5-5). The input and output signals in the VHDL entity port list declaration are 

grouped and mapped to the VHDL processes that access them and these signals are written 

to the structural VHDL output files that the processes are partitioned and assigned to. The 

plan was to perform most of the system enhancement through the insertion of the 

partitioning mechanism to partition the single design, and automatically insert the control 

and data path elements into the optimised design, requiring minor modifications to the 

MOODS synthesis core. 

5.3 Communication protocol 

The partitioning enhancement in the MOODS synthesis tool synthesises and generates a 

partitioned structural design for an arbitrary number of target FPGA devices. The 

communication cells in the partitioned design requires some form of arbitration as they are 

transferring data from one FPGA device to another via the shared subprogram 

communication channel. The key feature of the communication cells is in the usage of 

asynchronous communication techniques to transfer data between the FPGA devices. 

Communications synthesis [117-121], asynchronous logic synthesis [122-127] are well-

researched areas and the current research of these areas investigating aspects of low-power 

design and system on chip design methodology [128-130]. None of the work has 

addressed the automatic generation and insertion of asynchronous communication 

channels/links during multi-FPGA system synthesis. The partitioning enhancement in 

MOODS utilises the principle of locality, where each FPGA device is implemented as 

individual processing units having an asynchronous communication interface. This 

concept is very similar to the Globally Asynchronous Locally Synchronous (GALS) 

paradigm [101, 104, 116, 131-135]. In this case, the multi-FPGA system is viewed as an 
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arbitrary number of FPGAs, or "locally synchronous islands" communicating 

asynchronously. 

5.3.1 Asynchronous data transfer protocol 

Subprogram channel communication between module and subprogram module is handled 

by the communication cells, comprising of a transmit cell a receive cell 

(rxcell_node), and a communication channel arbiter cell {arb^. Data transfers across clock 

domains use the single-rail bundled-data approach, where data is synchronised using two 

additional handshaking control signals (Section 3.5). The bundled-data approach uses 

fewer I/Os compared to an asynchronous FIFO channel. 

The implementation of the data handshaking controller is not as complicated as the 

asynchronous FIFO and this simplicity facilitates the ease of device expansion. An 

arbitrary number of target devices in the multi-FPGA system, each with its local clock, 

can be connected to the asynchronous tri-state communication channel. An asynchronous 

FIFO channel forms a point-to-point unidirectional communication channel between two 

clock domains. Two such channels are needed to send and receive input and output 

(result) parameters between two domains respectively. Additional circuitry (i.e. address 

decoding, multiplexing control inputs, tri-state shared control signals) has to be added to 

the asynchronous FIFO so that the multi-FPGA system can be connected in a multipoint 

manner. One of the main multi-FPGA partitioning is the I/O constraints of the target 

FPGA devices. Additional FPGA devices or devices with more I/O pins may be required 

to accommodate all the signals in the design if an asynchronous FIFO channel is used. 

Figure 5-6 shows an explicit communication channel and connections of the 

communication cells and arbiter cell generated for inter-FPGA subprogram 

communications through a subprogram communication channel. Each transmit cell and 

receive has a pair of request/acknowledge and activate/ready signals connected to the 

centralised communication channel arbiter respectively. To reduce I/O utilisation, the 

asynchronous handshaking and data signals in the subprogram communication channel are 

all tri-stated. 
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The communication channel arbiter serves dual functions in the communication protocol. 

Firstly, it handles the arbitration of the control of the shared communication channel for 

all transmit and receive cells that use the channel and it ensures a clean hand-over of 

ownership of the channel 6om one sender to another. Secondly, a lookup table in the 

arbiter provides a direct mapping of source modules and the corresponding destination 

modules to activate. Information on the creation and implementation of the 

communication cells are covered in greater detail in the subsequent sections. 

Send semaphore I Receive semaphore I Partition 2 

Send acknowledge Receive acknowledge 

Explicit comm. channel 

Send data Receive data 

Syntliesised design 
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partition 2 

Partition 1 Partition 3 

Syntliesised design 
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Comm. 
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Figure 5-6 Communication cell connections in the multi-FPGA system 

5.3.2 Extended burst mode state machines 

The idea here is to automatically insert asynchronous data communication channels 

between the FPGA devices using the MOODS synthesis tool. The asynchronous channel 

controllers are specified using extended burst-mode (XBM) asynchronous state machines 

[123] and synthesised using the 3D synthesis system [136]. An extended burst-mode 



T.B. Yee, 2007 Chapter 5: Communication channels I 3 4 

asynchronous finite state machine is specified by a state diagram, which consists of a 

finite number of states, a set of labelled state transition arcs connecting pairs of states, and 

a start state. Each transition is labelled with a set of conditional signal levels and two sets 

of signal edges: an input burst and an output burst. An input burst is a non-empty set of 

input edges (terminating or directed don't care), where at least one of which must be 

specified. An owfpwr is a set of output edges. Figure 5-7 describes two XBM state 

machines for the asynchronous channel controllers for transmit and receive cells in the 

subprogram communication channel. Signals that are not enclosed in angle brackets and 

ending with + or — are terminating edge signals (e.g. den, ack in Figure 5-7(a) and req, 

lastpack in Figure 5-7(b)). The signals enclosed in angle brackets are conditionals, which 

are level signals whose values are sampled when all of the terminating signals associated 

with them have occurred. A conditional lastpack is high" represented by <lastpack+>, 

and lastpack is low" is represented by <lastpack->. A state transition only occurs when 

all the conditions are met and all the terminating signals have appeared. A slash (/) is used 

to delimit each input burst. A signal ending with an asterisk is a directed don't care. The 

following lists some of the labels on the state transitions in Figure 5-7: 

• den-^ lastpack*/req+ denotes the state machine raises req when den rises regardless 

of the state of This state transition changes from the current state to in 

(a). 

• <lastpack+> ack+/ req- txdone+ denotes if lastpack = 1 when ack rises, then the state 

machine lowers req and raises txdone. This state transition changes from current state 

"̂7 to in (a). 

• req-/ack- denotes the state machine lowers ack when req falls. This state transition 

changes from the current state to in (b). 

Details on the formalisation of the extended burst-mode specifications can be found in 

[123, 137, 138]. 

Figure 5-7(a) describes an extended burst-mode specification for the asynchronous 

channel controller (j'gMd\A3M) that manages the protocol for sending inter-FPGA data 

packets, and Figure 5-7(b) describes the asynchronous channel controller (recezve^ZBM) 
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that manages the protocol for receiving the inter-FPGA data packets. The burst-mode 

specification described in (a) has four inputs {den, lastpack, ack, and txdoneset) and two 

outputs {req, and txdone), and (b) has three inputs {req, lastpack, and rxdonesel) and two 

outputs {ack, rxdone). Communication cells (transmit and receive cells) both have a pair 

of send XBMand receive XBMXo deal with the asynchronous inter-FPGA data transfers. 

J ° >; 
den+ lastpack' / 

req+ 

den- txdoneset- / 

ack- lastpack* / req+ 

^ 1 : ( 3 
- < 

<lastpack-> ack+ / 

> <lastpack+> ack+ / 
^ 2 req- txdone+ 

ack- lastpack* / 

req-

(a)Extended burst-mode specification 
for sending inter-FGPA data packets 

txdoneset+ / txdone-

req- lastpack* / ack-

M 0 
<lastpack-> req+ / ack+ 

rxdoneset- / , <lastpack+> req+ / 
J - ack+ rxdone+ 

I ^ req- lastpack* / ack-

3 

j rxdoneset+ / rxdone-

4 

(b) Extended burst-mode specification 
for receiving inter-FGPA data packets 

Figure 5-7 Extended burst-mode specifications for asynchronous channel 
controllers in communication cells 

Initially, the transmit cell at the source device asserts den to enable inter-FPGA data on the 

data bus of the tri-state communication channel and its send_XBM asserts req as illustrated 
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in the transition from states 0 to 1 in Figure 5-7(a). When the receive cell at the destination 

device receives the data on the data bus, the A/acknowledges the sender by 

asserting ack: the transmit cell in turn negates req. lastpack is asserted when the current 

data packet is the last data transfer to be sent. If the data is not the last packet (<lastpack-

>), the fg»6fZBM(in the source device) and r e c e z v e ( i n the destination device) 

continues with the four-phase handshaking protocol. When the last data packet 

{<lastpack+>) is placed on the data bus, the acknowledges the sender by 

asserting acA; and nc cfoMg (state transition 0 to 1 in (b)), j'gMcWSM negates reg and 

asserts Wone (state transition 1 to 2 in (a)). The transmit cell acknowledges the 

send_XBMhy asserting txdoneset (state transition 4 to 5 in (a)) when the last data packet is 

sent, similarly the receive cell acknowledges the r e c e / v g a s s e r t i n g 

(state transition 3 to 4 in (b)) when the last data packet is received. 

5.3.3 State encoded output communication cells 

The output of the 3D synthesis system described in the previous section is a set of 

optimised hazard-free, technology-independent logic equations, which can be used to 

describe XBM finite state machines to handle inter-device data transfers. This section 

describes an alternative implementation of communication cells using synchronous finite 

state machines (FSM) with state encoded outputs [139] to produce glitch free FSMs to 

handle the inter-device data transfers using a two-phase data handshaking signalling 

protocol. 

Combinational logic Sequential logic 

inputs 

state 
Next state logic 

next 

clock 

Present state 
flip-flop 

state and 
outputs 

Figure 5-8 Block diagram of finite state machine with state encoded 
registered outputs 

Figure 5-8 above shows the block diagram of the state encoded FSM, where state 

encodings are unique and the FSM outputs are registered and assigned directly from the 
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state-register bits. Finite state machines of communication cells and arbiter cells are 

described in subsequent sections. 

5.3.3.1 Transmit cell finite state machine 

This section describes the FSM of the transmit cell given in Figure 5-9 and the 

corresponding state encoding table in Table 5-1. The transmit cell FSM has a total of 11 

states with 6 state encoded registered outputs and 2 additional state bits, and so that 

all of the encodings are unique. The edge labels of the directed edges in Figure 5-9 specify 

the transition condition, and the corresponding effects (output values) are given in the state 

encoding table. 

During an inter-device subprogram module call, the source module activates the transmit 

cell through the transmit call node (described in Section 4.4). The transmit call node 

asserts "proc en" and the transmit cell FSM enters state 5"; and output is 

asserted. When the destination receive cell is ready to receive data, the communication 

channel arbiter cell acknowledges the transmit cell by asserting The 

transmit cell FSM enters state S2, de-asserts "''transfer_req'\ enables the tri-state data and 

handshaking signals in the communication channel with valid data by asserting transmit 

enable signal, and "'data_req_ouf^ respectively. The destination receive cell 

acknowledges the receipt of the inter-device data with the assertion of the tri-state 

handshaking signal ""datajJcK^ to complete the two-phase handshaking signalling 

protocol. The transmit cell FSM enters state S4 if the preceding data packet sent is the last, 

else it enters state 5"̂  to initiate the transfer of the second data packet. The transmit cell 

FSM enters state R1 when the communication channel arbiter cell de-asserts 

''transfer_ack'' to complete the transfer of inter-device module input parameters. 
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proc_en = 1 

last_tx = 1 
data ack = 1 

transfer ack = 1 

last_rx = 1 
data_req = 0 \ 

tastjtx = 0 
data ack = 0 iast_tx = 0 

data ack = 1 
last_rx = 0 
data_req = 1 ' last rx = 0 

data req = 0 -

last_tx = 1 
data ack = 0 

transfer ack = 0 

transfer ack = 0 

last_rx = 1 
data_req = 1 

transfer ack = 1 

Figure 5-9 State diagram of the transmit cell FSM 

The commimication channel is available for other module calls while waiting for the 

destination module execution to complete. This non-blocking protocol is important as it 

allows the destination module to activate other inter-device modules without the need for a 

separate communication channel in the case of nested module calls. 

The communication channel arbiter cell asserts the to indicate that the 

external module has completed execution and results are ready to be sent back to the 

source module. The transmit cell FSM enters state output signal is 

asserted and the tri-state handshake signal is set to logic The transmit 

cell FSM enters state R3 when ''transfer_acM' is de-asserted. The destination receive cell 

asserts handshake signal 'Wafa reg" and puts the data (results) on the tri-state 

communication channel. The transmit cell FSM loads in the data on the communication 

channel and asserts ''data_ack_our to acknowledge receipt of the data and enters state S5 

if the received data packet is the last, else it enters state S4. Output signal ''proc done'' is 
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asserted in state C D to end the inter-device module call and the FSM returns to state 

c 

<: 
5, 3 

O, 
% 

State 
K ! s. 

-Q "Q 

CALL_WAIT (C_WO 0 0 0 0 0 0 0 0 

SEND_1 1^/) 0 0 0 1 0 0 0 0 

SEND_2 (^2) 0 0 0 0 0 1 1 0 

SEND_3 (j'j) 0 0 0 0 0 1 0 0 

SEND_4 0 1 0 0 0 1 0 0 

READ_1 (^7) 0 1 0 0 0 0 0 0 

READ_2 (7(2) 0 0 0 1 1 0 0 0 

READ_3 1 1 0 1 1 0 0 0 

READ_4 1 0 0 1 1 0 0 1 

READ_5 (/(J) 1 1 0 1 1 0 0 1 

CALL_DONE (C_D) 0 0 1 0 1 0 0 0 

Table 5-1 State table of the transmit cell FSM 

5.3.3.2 Receive cell finite state machine 

The receive cell FSM complements the transmit cell FSM in the transfer of inter-device 

subprogram module data. The section describes the FSM of the receive cell given in 

Figure 5-10 and the corresponding state encoding table in Table 5-2. The receive cell FSM 

has a total of 12 states with 7 state encoded registered outputs and 2 additional state bits, 

xl and x2, so that all of the encodings are unique. The edge labels of the directed edges in 

Figure 5-10 specify the transition condition, and the corresponding effects (output values) 

are given in the state encoding table. 
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Figure 5-10 State diagram of the receive cell FSM 

The receive cell FSM starts in state C_W and upon receive the assertion of''rxcell_acf' 

from the communication channel arbiter, the FSM enters state 727 and output signals 

is asserted and the tri-state handshake signal is set to logic 

'0' . The communication channel arbiter de-asserts "rxce//_acf when the source transmit 

cell is ready to send data, the receive cell FSM enters state R2 and checks if the tri-state 

''data_req" signal is asserted to indicate valid data on the communication channel. The 

receive cell FSM loads in the data on the communication channel and asserts output signal 

"'datajxckjjuf to acknowledge receipt of the data and enters state R4 if the received data 

packet is the last, else it enters state R3. The receive cell FSM enters state A_M and output 

signal "pmc acr'' is asserted to activate the receive call node (described in Section 4.4) 

and the receive cell FSM enters state W_Max\.d waits till "'proc_end" assertion by the 

receive call node to indicate the completion of module execution. The receive cell FSM 

enters state SI and asserts ''rxcellj-dy". The communication channel arbiter asserts 
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to acknowledge the receive cell that the source transmit cell is ready to 

receive the output parameters (results) &om the module execution. The receive cell FSM 

enters state S2, de-asserts ''rxcell_rdy'\ enables the tri-state data and handshaking signals 

in the communication channel with valid data by asserting transmit enable signal, 

TXJEM^ and ''data_req_j)uf' respectively. The source transmit cell acknowledges the 

receipt of the inter-device data with the assertion of the tri-state handshaking signal 

dcitci^ack to complete the two-phase data handshaking signalling scheme. The receive 

cell FSM enters and de-asserts The receive cell FSM enters state 5"̂  if 

the preceding data packet sent is the last, else it enters state 5"̂  to initiate the transfer of the 

second data packet. The receive cell FSM enters state C D when the communication 

channel arbiter cell de-asserts 'YxceZ/ a c f to complete the transfer of inter-device module 

input parameters. Output signal "rxce/WoMg" asserted in state C D to activate the next 

control state node in the main control path and the receive cell FSM enters state C PFto 

await the next module call. 

state s } 3 

i 1 1 i i 
CALL_WAIT (C_Wg 0 0 0 0 0 0 0 0 0 

READ_1 ,^7) 0 1 0 0 1 1 0 0 0 

READ_2 ( ^ ) 1 1 0 0 1 1 0 0 0 

READ_3 (.Rj) 1 0 0 0 1 1 0 0 1 

READ_4 1 0 0 0 1 1 0 0 1 

ACT MOD (,4 AO 1 0 1 0 0 1 0 0 0 

WAIT MOD ( ^ M ) 1 0 0 0 0 0 0 0 0 

SEND_1 (j'Z) 1 0 0 1 0 0 0 0 

SEND_2 (^2) 1 0 0 0 0 0 1 1 0 

SEND_3 1 1 0 0 0 0 1 0 0 

SEND_4 0 1 0 0 0 0 1 0 0 

CALL_DONE (C_D) 0 0 0 1 0 0 0 0 0 

Table 5-2 State table of the receive cel l FSM 
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5.3.3.3 Arbiter cell finite state machine 

The communication channel arbiter cell provides arbitration for the shared subprogram 

communication channel. There are two types of communication channel arbiter cells, the 

singl6-Q.rbit6T and the imilti-ciTbitBr as shown in Figure 5-11. T h e single-arbiter (5 cirb) 

cell, as the name suggests, provides arbitration to a single pair of communication cells 

(transmit and receive cells) using the bi-directional tri-state communication channel. The 

multi-arbiter (jn_arb) cell provides arbitration to more than two communication cells 

using the shared bi-directional tn-state communication channel. 

F P G A 1 F P G A 2 

txcellnodel 
rxcell_act 

txcellnodel 
Jxce/(_8cA * 

sarb 
^ rxce!l_rdy 

rxcell_node1 

4-
Data bus. 

data_req 

data ack 

n - b i t s 

1 

1 

(a) Single-arbiter (s_arb) cell example 
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I txcell_req2 

txcell_ack2 W : r 

m arb 

n(ce//_fdyO 
rxcell node1 

n<cell_act1 

fxce//_fdyy 
rxcell node2 

n - b i t s 

data_req 

data ack 
i—= 

(b) multi-arbiter (m_arb) cell example 

Figure 5-11 Example of the single-arbiter and multiple-arbiter 

The example of a single-arbiter in Figure 5-11(a) shows a single source transmit cell 

(txcell_nodel) and destination receive cell {rxcell_jiodeI) connected to a single-arbiter 

(s_arb) that provides simple "one-to-one" communication channel arbitration between the 



T.B. Yee, 2007 Chapter 5: Communication channels 143 

pair of communication cells. Figure 5-11(b) shows a multi-arbiter (/» ar6) providing 

channel arbitration for communication cells in a "many-to-many" configuration, where 

transmit cells and in FPGA 1, and in FPGA 2) 

sends inter-device data to receive cells in FPGA 4 and rxce/Z in 

FPGA 3). 

The FSM of the single-arbiter cell is given in Figure 5-12 and the corresponding state 

encoding table in Table 5-3. The transmit cell FSM has a total of 8 states with 2 state 

encoded registered outputs and an additional state bit, xl, so that all of the encodings are 

unique. The edge labels of the directed edges in Figure 5-12 specify the transition 

condition, and the corresponding effects (output values) are given in the state encoding 

table. The single-arbiter cell handles the simple "one-to-one" arbitration and a glitch-free 

handover of the communication channel between a pair of transmit and receive cells using 

a single bi-directional tn-state communication channel. The arbiter cell performs 

handshaking between the transmit and receive cells to ensure that the tri-state signals are 

enabled (set to a known level, logic '0' in this instance) by the corresponding 

communication cells before it acknowledges the source or destination cell to initiate the 

start of the inter-device transfer. 

txcell_req = 1 

rxceil_rdy = 1 

txcell_req = 0 

S3 

txcell_req = 0 

rxcel l_rdy = 0 

txcel l_req = 1 

rxcel l_rdy = 1 

Figure 5-12 State diagram of the single-arbiter cell FSM 
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a. 
"x % s 

state a g 

SO 0 0 0 

SI 0 0 1 

S2 0 1 1 

S3 0 1 0 

S4 1 0 0 

S5 1 1 0 

S6 1 1 1 

S7 1 0 1 

Table 5-3 State table of the single-arbiter cell FSM 

The multi-arbiter cell performs a similar task of communication channel arbitration as the 

single-arbiter cell. The multi-arbiter handles communication channel arbitration for 

"many-to-one" or "many-to-many" inter-device module call configuration. The multi-

arbiter cell has a ROM Look-Up Table (LUT) block that holds the direct mappings of the 

source transmit cells and the corresponding receive cell(s) to activate. Figure 5-13 shows 

an example of the LUT mapping for three transmit cells and two receive cells given in 

Figure 5-11. The size of the LUT block is the same as the number of transmit cells 

connected to the multi-arbiter cell. The first and last transmit cells and 

j ) calls and the second transmit cell calls The 

resultant mapping in the LUT is a 0 in the first and third location of the LUT block, and a 

1 in the second location of the LUT block. 

txcell node1 

txcell_reqO 

txcell ackO 

txcell node! 

txcell_req1 

txcell ack1 

txcell nodes 

txcell_req2 

txcell ack2 

request/acknowledge pairs 

LUT block 

(0,1,0) 

m arb 

activate/ready pairs 

rxcell actO 

rxcell_rdyO 

rxcell act1 

rxcell_rdy1 

rxcell_ node1 

rxcell_ node2 

Figure 5-13 Example of LUT mapping of communicat ion cells 
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The FSM of the multi-arbiter cell with a total of 10 states is illustrated in Figure 5-14. The 

multi-arbiter cell checks the connected transmit and receive cells in a round-robin manner. 

A token with an initial value of one is incremented by one every time the multi-arbiter cell 

FSM enters state I_T. The token is cleared to zero when the preceding token value is the 

maximum count value given by one less the maximum number of transmit cells connected 

to the multi-arbiter cell (For example, the total number of connected transmit cells given 

in Figure 5-11(b) is: 3, hence the maximum token count value is: 3 -1 = 2). 

The multi-arbiter cell performs a prioritised condition check in state C_S, whereby 

condition A has a higher priority than condition B. Condition A checks the 

input signal specified by the token value for an inter-device module call. The 

register in the multi-arbiter is set to ' T if the destination module is not 

available. The register bit of an activated receive cell is set to ' T and the 

transmit cell that activated the receive cell will have a ' T set in the "ca//_reg" register. 

Condition B checks the completion of execution &om the destination module. This 

condition is true when the corresponding bits in the and "caZ/ z-eg" are set 

and is asserted by the activated receive cell. The multi-arbiter cell FSM 

enters state I T when conditions A and B are not met. 

C o n d i t i o n A 

txcell_req(token) = 1 
mod_active(LUT(token)) = 0 

rxcell_rdy(LUT(token)) = 1 

txcell_req(token) = 0 v 

rxcelLrdy(token) = 0 

C o n d i t i o n B 

rxcell_rdy(LUT(token)) = 1 
call_reg(token) = 1 
mod_active(LUT(token)) = 1 

Condition A • Condition B 
txcell_req(token) = 1 

rxcell_rdy(LUT(token)) = 0 

txcell_req(token) = 0 

Figure 5-14 State diagram of the multi-arbiter cell FSM 
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States SI to S4 in the multi-arbiter cell FSM handles the inter-device data (input 

parameters) transfers from the source transmit cell to the receive cell in the destination 

device. States R1 to R4 handles the inter-device data (results from the module execution) 

transfers from the receive cell to the source transmit cell. Status register bits to identify 

active transmit and receive cells in "ca//_reg"" and ^̂ mod active^^ respectively are set in 

state S2. The corresponding bits in the status registers are cleared in state R3 to permit 

future inter-device module call activations. The registered output signals in the multi-

arbiter cell are given in Table 5-4 below. 

State txcell_ack(token) 

CHECK_SIG (C_^ - -

INCREMENT_TOKEN (y_r) - — 

SI 0 1 

1 1 

S3 1 0 

0 0 

RI 1 0 

1 1 

R3 0 1 

0 0 

Table 5-4 Registered output signals in the mult i -arbi ter cell FSM 

5.3.4 Data transfer protocol for communication cells 

Four-phase signalling protocol is used in the handshaking of request and acknowledge 

signals in the subprogram communication channel arbitration, and two-phase signalling 

protocol is used to indicate data is valid on the tri-stated communication channel (data 

bus) and acknowledge the acceptance of data at the corresponding receiver cell. There are 

a total of sixteen events in the shared communication channel arbitration for each cross-

domain subprogram call (illustrated in Figure 5-15). The first eight events (labelled 1 to 8 

in Figure 5-15) correspond to the signalling of handshake signals used in the passing of 

input parameters from the source module through the activated transmit cell (txcell_node) 

to the destination module through the activated receive cell (r%cg/Z_MO(fe). 
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The remaining 8 events (labelled 9 to 16) correspond to the returning of output parameters 

(results) from the destination module to the corresponding calling source module. The 

rxcell_node activates the subprogram module when all the input parameters are received 

and loaded at the destination domain (event 7). Subprogram execution completes and the 

rxcelljiode asserts ready signal (event 9) to indicate that the results from the subprogram 

execution are ready to be sent back to the calling module. 

lxcell_node (txcelt_req) I 5 

arbiter (rxcell_act) 

rxcell_node (rxcell_rdy) 

arbiter (txcell_ack) 

(3 :• 

Subprogram 
execution 

Subprogram input parameter 
data transfer 

Subprogram output parameter 
data transfer 

Figure 5-15 Four-phase signalling in communication channel arbitration 

Figure 5-16 illustrates the sequence of events (labelled 1 to 8) in the passing of input 

parameters, with the asynchronous data handshaking signals {dataj-eq, datajjck, and 

Data). A description of the sequence of events corresponding to the passing of input 

parameters marked in Figure 5-16 is listed in Table 5-5. 
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txcell_node (txcell_req) f 

arbiter (rxcel!_act) 

rxcell_node (rxcell_rdy) 
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data_req • 

data acA • 

Data • 

tri-state signals 
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D ( z z x : 
, \ 

data pkt 1 data pkt 2 data pkt 3 

Figure 5-16 Asynchronous data transfer protocol ( input parameters) 

EVENT DESCRIPTION 

1 Transmit cell {txcell^node) is activated and request signal "txcell req" to the communication 
channel arbiter is set to T , requesting control of the communication channel. 

2 

Communication channel arbiter {arbiter) activates the destination module by asserting the 
^'rxcell_act" signal of the destination module to '1 ' . The call reg register bit corresponding 
to the input request signal being acknowledged is set (in the multi-arbiter cell) and similarly 
the mod_active register bit corresponding to the called destination module is set (see 
previous section for more details on call reg and mod active registers). 

3 
Receive cell (rxcelljaode) initialises the tri-state data ack handshaking line to '0 ' and 
acknowledges the communication channel arbiter activation by asserting its "rxcell rdy" 
signal to '1 ' . 

4 Communication channel arbiter acknowledges the txcell node by asserting "txcell ack" to 
'1 ' . 

5 
txcell_node enables the tri-state Data bus with first data packet is placed on the Data bus, 
and ''data_req" handshaking signal is asserted to ' T to initiate the inter-device data transfer. 
AcceZ/ Moafe de-asserts "tcce// reg" signal. 

6 

Communication channel arbiter sets "rxcell act" signal to ' 0 ' , telling rxcell node in the 
destination domain that the tri-state data handshaking lines are initialised and inter-device 
data are ready to be received. The receive cell loads in and acknowledges the data packets 
sent by the transmit cell. 

7 Receive cell loads in the last data packet and de-asserts "rxcell rdy" signal to '0 ' . Receive 
cell releases control of the tri-state 'Va/a ac*" line. 

8 Communication channel arbiter sets "txcell_ack" signal to ' 0 ' and this completes the data 
transfer protocol for the transfer of cross-domain input parameters. 

(input parameters) 



T.B. Yee, 2007 Chapter 5: Communication channels 149 

Figure 5-17 below illustrates the sequence of events (labelled 9 to 16) in the passing of 

output parameters, with the asynchronous data handshaking signals {data req, data ack, 

and Data). A description of the sequence of events corresponding to the passing of output 

parameters marked in Figure 5-17 is given in Table 5-6. 

txcell_node (txcell_req) 
15 

arbiter (n<cell_act) 
f 16 

rxcell_node (n<cell_rdy) f 

arbiter (txcell_ack) 

"X 

data_req • 

data ack • V V 

Data • 

tri-state signals data pkt 1 data pkt 2 

Figure 5-17 Asynchronous data transfer protocol (output parameters) 

EVENT DESCRIPTION 

9 Upon completion of the subprogram execution, receive cell (rxcell node) asserts its 
"rxcellj-dy" signal to ' 1 

10 Communication channel arbiter {arb) asserts "txcell ack" signal indicating to the 
txcelljiode that the subprogram has completed its execution. 

11 initialises the (/afa act handshaking line to '0' and asserts "bcce/Z reg" to ' 1'. 

12 

The call_reg register bit corresponding to the input request signal being acknowledged is 
cleared (in the multi-arbiter cell) and similarly the mod active register bit corresponding to 
the called destination module is cleared (see previous section for more details on call reg 
and modjuctive registers). Communication channel arbiter acknowledges the rxcell node by 
asserting "xxcell_act'" to ' 1'. 

13 
rxcelljiode enables the tri-state Data bus with first data packet is placed on the Data bus, 
and ^'data_req" handshaking signal is asserted to ' 1' to initiate the inter-device data transfer, 

de-asserts signal. 

14 

Communication channel arbiter sets "tcce//_acA" signal to '0'. This tells in the 
source domain that the tri-state data handshaking lines are initialised and inter-device data 
are ready to be received. The transmit cell loads in and acknowledges the data (result) 
packets sent by the receive cell. 



T.B. Yee, 2007 Chapter 5: Communication channels 150 

EVENT DESCRIPTION 

15 Transmit cell loads in the last data packet and de-asserts signal to ' 0 \ Transmit 
cell releases control of the tri-state '"data ack" line. 

16 Communication channel arbiter sets the rxcell_act" to ' 0 ' and this completes the data 
transfer protocol for the transfer of cross-domain output parameters . 

Table 5-6 Sequence of events in the asynchronous data transfers protocol 
(output parameters) 

5.4 Subsystem architecture 

This section starts with the details on the creation and implementation of the asynchronous 

subprogram communication channels. Implementation details of the various 

communication subsystem interface cells; transmit and receive cells and the 

communication channel arbiter cell are covered within this section. 

5.4.1 Transmit cell 

The 'transmit cell' {txcelljaode) is the inter-FPGA communication interface cell inserted 

into the source module that calls a destination module in another partition mapped onto a 

separate FPGA device. The original calljaode associated with a subprogram call is 

replaced by the tcaU_node if the called module is allocated a separate partition. For each 

tcall_node, a txcell_node is added into the structural output to handle the handshaking and 

transfer of I/O parameters across the communication channel. 

The width of the communication channel is optimised by the MOODS synthesis tool 

based on the number of available user I/Os of the interconnected FPGAs and the width of 

the input and output parameters of the subprogram. The input and output parameters are 

concatenated and sent in data packets, where the size of each data packet is the width of 

the communication channel used to send the data. If the bit-width of the last data packet is 

not less than the width of the communication channel, the last data packet is bit-stuffed 

with zeros to the full bit width. A multiplexor is created to select the appropriate data for a 

multi-packet subprogram input parameter transfer. The multiplexor select signals are 
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driven from the txceU_node. Figure 5-18 shows the structure generated for a subprogram 

with five input parameters (A, B, C, D, and E) of varying bit widths and the 

communication channel has a width of 16 bits. 

Packet 1 

Bit-stuff ing zeros 

Packet2 Pac \ Packet4 

upper byte 
of packet 1 

lower byte 
of packet 1 

20-bit 12-bit 

"0000" ' E 

[15:121/ [11:01 

Mux select 

signals 
Ivlultiplexor 

generated for 
multiple data 

packet transfer 

txcell node 

Communicat ion channe 

Figure 5-18 Generated structure for a multi-packet inpu t data transfer via the 
txcell node 

If an output parameter is sent over the communication channel in multiple data packets, 

only the corresponding bits of the register are updated for each packet transferred. This is 

achieved in a similar way to the input parameters multiplexor select signals, where instead 

of using the load-enable signal directly for each register, the load-enable signal is 

'ANDed' with the output parameter select signals driven from the txcelljtode. Figure 

5-19 shows the structure generated for a subprogram with 3 output parameters (X_out, 

Y_out, and Z_out) of varying bit widths and the communication channel has a width of 16 

bits. Latches are used in place of registers to hold the output parameters when XBM finite 

state machine are used instead of FSM with state encoded outputs; details on the creation 

and register-to-latch modifications are covered in Section 5.5.1. 
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Figure 5-19 Structure generated for receiving a mult i -packet output data 
transfer via the txcell node 

A single txcell_node is shared between tcall_nodes, which are mapped to the same FPGA 

device, and calling the same destination module. For a txcelljaode that is shared by two or 

more tcalljaodes, a multiplexor is created to select the input parameters associated with 

the activated tcalljaode. Figure 5-20 shows the structure generated for a txcelljT.ode 

shared by two subprogram calls (ICODE instructions \Z0007 ' and MOOOJ'). 
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Behavioural V H D L source ICODE 
entity m_c8jl1 is 
port( sum_out1: out unsigned(7 downto 0); 

sum_out2: out unsigned(11 downto 0 ) ) ; 
end m_C8ll1; 

architecture Behaviour of m_call1 is 
signal A,B,X,Y,out1: unsigned(7 downto 0):="00000000"; 
signal C,Z.out2: unsigned(11 downto 0) := (others=>'0'): 
begin 
process 
begin 

p rod (A , B, C, out1, out2 ); - call subprogram 
sum_out1 <=out1; 
sum_out2 <= out2; 
wait for 10 ns; 
p rod ( X, Y, Z, out i , out2): -- call subprogram 
sum_outl <= outi: 
sum_out2 <= out2; 
wait for 10 ns; 

end process; 
end Behaviour; 

procedure proc1 ( 
signal in1: in unsigned(7 downto 0); 
signal in2: in unsigned(7 downto 0); 
signal in3: in unsgined(11 downto 0); 
signal outi: out unsigned(7 downto 0); 
signal out2: out unsigned(11 downto 0) 

) is 
begin 
out1 <= in l + in2; 
out2 <= in3 + "000000000001"; 

end p r o d ; 

1 
2 
3 
4 
5 
6 
7 
8 
9 
fO 
11 
12 
13 
14 
15 
16 
77 
18 
19 
20 
21 
22 
2 , 

24 
2( 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

P R O G R A M m_call1 sum_out1,sum_out2 
O U T P O R T sum_out1 [7:0] 
OUTPORT sum_out2 [11:0] 
REGISTER a [7:0] INIT #%00000000 
R E G I S T E R b [7:0] INIT #%00000000 
R E G I S T E R X [7:0] INIT #%00000000 
REGISTER y [7:0] INIT #%00000000 
REGISTER out i [7:0] INIT #%000D0000 
REGISTER c [11:0] INIT #%000000000000 
R E G I S T E R z [11:0] INIT #%000000000000 
REGISTER out2[11;0] INIT #%000000000000 

// Statements 
-LOODI TXCELL p r o d a,b,c,out1,out2 
.L0002 MOVE out i , sum_out1 
.L0003 MOVE out2, sum_out2 
.L0004 PROTECT 1e-008 
.L0005 TXCELL p rod x,y,x,out1,out2 
.L0006 MOVE out1,sum_out1 
.L0007 MOVE out2,sum_out2 
.L0008 P R O T E C T 1e-008 ACT L0001 
.L0009 ENDMODULE 

lllllliinitllllllflllllllltlllllllllHIIHIIIIIIIIllIltllltlllll 
RXCELL p r o d in1,ln2,ln3,out1,out2 
// Declarations 
INPORT in l [7:0] 
IMPORT in2 [7:0] 
INPORT in3 [11:0] 
OUTPORT ou t i [7:0] 
OUTPORT out2 [11:0] 
REGISTER tmpO [7:0] 
REGISTER tmp1 [11:0] 

// Statements 
.L0010 uadd in l , in2, tmpO 
.L0011 MOVE tmpO, outi 
.L0012 uadd in3, #%000000000001, tmpi 
.L0013 MOVE tmp1, out2 
.L0014 E N D M O D U L E 
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Figure 5-20 Generated structure for a shared txcell node 
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5.4.2 Receive cell 

The receive cell (rxcell^node) is the inter-FPGA communication interface cell inserted 

into the subprogram module that is called by a source module in another partition, which 

is mapped onto a separate FPGA device. 

The ICODE .RATjEZZ instruction replaces the original ICODE module header 

instruction when the module is called by a module in another FPGA device. For each 

.RZCEZZ module, a receive cell and a receive call node is 

created to handle the inter-FPGA data transfer and initiating the execution of instructions 

within the module. The rxcell_node is added into the structural output to handle the 

handshaking and transfer of I/O parameters in data packets across the communication 

channel. The rcall_node has the same structure as the calljT.ode, the only difference is the 

rcall_node is activated by the rxcell_node. Upon completion of the subprogram execution, 

control is passed back to the which then initiates the return of the output 

results to the calling module. 

16 

T 
Communication channel 

Input parameter 
select signals 

16 /K 

Load-enable signal for 
A[7:0] and B[7:0] 

Load-enable signal for 
C[11:0] and D[19:16] 

Load-enable signal for 
D[15:0] 

Load-enable signal for 
E[11:0] 

p-load 
rxcell node 

0 0 0 
16 

[15:8] [7:0] [15:4] 

Input parameter registers 

[3:0] [15:0] [11:0] 

8-bit 8-bit 12-bit 

D 

20-bit 

Packetl Packet2 Packets 

12-bit 

Packet4 

Figure 5-21 Structure generated for receiving a mult i -packet input data 
transfer 

The rxcelljaode receives the concatenated input parameters sent by the txcell_node of the 

calling module. The input parameters in the data packets are then loaded into the 

corresponding input parameter registers. Recall the structure generated for a multi-packet 

input data transfer in Figure 5-18, Figure 5-21 illustrates the structure generated in the 
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destination sub-module to receive and load the input parameters. This structure is identical 

to the structure generated to load output results via the txcell^node in the calling module 

as described earlier. 

Latches are used in place of registers to hold the input parameters when XBM finite state 

machine are used instead of FSM with state encoded outputs; details on the creation and 

register-to-latch modifications are covered in Section 5.5.1. 

A multiplexor is created to select the appropriate data packet for a multi-packet 

subprogram output result transfer. The multiplexor select signals are driven from the 

rxcelljaode. Recall the structure generated to receive a multi-packet output data transfer in 

Figure 5-19, Figure 5-22 illustrates the structure generated in the destination sub-module 

to send the results back to the txcell_node of the calling module. This structure is identical 

to the structure generated to load input parameters via the txcell node in the calling 

module as described earlier. 
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Figure 5-22 Generated structure for receiving a mult i -packet output data 
transfer via the rxcell node 
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5.4.3 Communication channel (data bus) arbiter 

The communication cells (transmit cell and receive cell) send and receive data packets 

over a shared communication channel and these communication cells are connected to a 

centralised arbiter granting the usage of the communication channel. During synthesis, the 

mapping for each source-destination module pair in an inter-FPGA subprogram call is 

determined and this provides a direct mapping of the 'calling' module in one FPGA device 

and the called module in another device. This mapping information provides the values 

to the ROM Look-Up Table (LUT) block in the arbiter. A round-robin (rotating) priority 

scheme is implemented in the communication channel arbiter, where request lines are 

polled in a rotating manner. The sequence of events is described in Table 5-5 and Table 

5-6. The asynchronous data transfer protocol sets up the and in 

difkrent FPGA devices for the asynchronous inter-FPGA data transfer. Figure 5-23 

illustrates the LUT and status registers (call_reg and mod active) structure in the multi-

arbiter. 

The interface ports that link to the structural implementation of the arbiter are added 

automatically to the entity port list declaration of the generated structural VHDL design. 

The MOODS synthesis tool checks for communication cells {txcell_nodes and 

rxcell_nodes) that are in the same partition as the communication channel arbiter when the 

communication channel arbiters are created. These 'internal' communication cells are 

connected directly to the communication channel arbiter via internal signal nets. The 

synthesis tool determines the sizes of the external signals that interface with the arbiter, 

and resizes the interface ports. 

The communication channel arbiter is defined within a VHDL package generated by the 

MOODS synthesis tool. There are two reasons for defining the communication channel 

arbiter as a separate package. Firstly, the size of the LUT block is determined when the 

communication channel arbiter is created during the post-processing phase of the MOODS 

synthesis tool, and these memory elements are customised in the structural/RTL 

communication channel arbiter component to support all the communication cells 

connected to its interface ports. The second reason is the creation of the LUT mapping of 

the communication cells, which is a direct one-to-one mapping with the input request lines 

from source txcelljaodes, and the LUT value addressed by the index corresponds to the 
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output activation lines to destination TXCGII_nodss. The mapping information is only 

available aftei partitioning and allocation of arbiters to FPGA devices. The synthesis tool 

also checks foi arbiters providing arbitration to just a single source-destination module 

pair, the LUT is not required and a single-arbiter is used instead. 
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Figure 5-23 Look-up table block and status registers in the multi-arbiter cell 

5.5 Hardware generation 

With the inclusion of the communication subsystem providing the subprogram 

communication channel for the asynchronous transfer of data between multiple target 
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devices, various enhancements and modifications are made to the single output structure 

geneiated by the MOODS synthesis system. Firstly, the MOODS synthesis system now 

generates multiple output structural output files from a single input behavioural 

description; one for each target device. A new latch component is added into the MOODS 

technology (cell) libraries, latches are used in place of data-gated registers in some parts of 

the design where asynchronous data transferred over the communication channel is loaded 

independent of the system clock by XBM finite state machines. For communication cells 

using FSM with state encoded outputs, data-gated registers in the existing MOODS 

technology libraries are used. 

5.5.1 Data latch generation and hardware duplication 

The register arrangement for the original subprogram (module) I/O parameters is shown in 

Figure 5-24, where the original structure uses pass-by-reference for subprogram I/O 

parameters. Output results obtained from the subprogram execution are written directly to 

the corresponding output registers (owr^and owf F in the figure). The data path storage 

units (registers) implemented for the subprogram output parameters are bypassed and 

optimised away (removed), as shown shaded in the figure. 

A B 

} f 

Input parameters 

Module 

Output result passed 
by reference 

out X out Y 

Output parameters 
(bypassed and 

removed) 

Figure 5-24 Register arrangement for original subprogram module I/O 
parameters 

The communication subsystem transfers the input and output parameters of external 

subprogram modules asynchronously via a pair of transmit and receive communication 

cells. The subprogram module call mechanism is modified (described in Section 4.4) and 

the underlying structure of the final generated hardware uses pass-by-value instead of 
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pass-by-iefeience foi the procedures I/O parameters. Figure 5-25 illustrates the latch and 

duplicated register arrangement for a subprogram module that is being called from a 

module in a different target device (FPGA) using communication cells with XBM 

asynchronous finite state machines. The figure shows two FPGA devices, where FPGA 1 

is the souice device, which contains the calling module, and the called subprogram 

module is located in FPGA 2. 
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Figure 5-25 Latch and duplicated register arrangement for subprogram 
module I/O parameters across FPGA boundar ies 

The registers for the input parameters (̂ 4 and of the called module in 2 are 

replaced with latches (shaded in FPGA 2), and registers for the output parameters (C and 

D) are not bypassed, as they are needed to hold the valid results obtained from the 

subprogram execution for the rxcell node to send the results back to the called module. 

Duplicated registers and B are generated and inserted into F f GW 7 to hold 

the input parameters, which is sent to the called module by the corresponding txcell node. 

Properties (data path unit bit-width, activation instructions, etc) for these duplicated 

registers are copied from the original set of registers (registers and B in Figure 5-24 in 

this example). Similarly, duplicated latches (C cfwp/ and are generated and 

inserted into FPGA 1 to latch in the result data packets put on the communication channel 

by the rxcell node of the activated subprogram. At the end of the external module call, the 
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results in the duplicated latches are loaded into the appropriate output registers {out X and 

5.6 Summary 

The development of a multi-FPGA synthesis addition within the existing MOODS 

synthesis system has extended the MOODS synthesis system to perform optimisation and 

target multiple heterogeneous hardware devices, implementing a multi-FPGA system. 

This chapter describes the asynchronous communication channel interface and the 

automatic generation and insertion of communication cells that form the building blocks 

of the subprogram communication channel, and inter-FPGA data transfers over 

asynchionous communication channels/links in a multi-FPGA system. The asynclironous 

data communication mechanism provided by the communication cells alleviates clock 

skew pioblems in a multi-FPGA system, as each re-configurable device is viewed as 

locally clocked processing units having an asynchronous communication interface. 

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and 

lesults of the multi-FPGA synthesis are demonstrated through a few design examples in 

the next chapter. 
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Chapter 6 

Multi-FPGA implementation results 

6.1 Introduction 

The paititioning enhancement to the MOODS synthesis system provides the synthesis tool 

with an automated mechanism to partition a single behavioural design, which would not fit 

onto a single target device or which would be too costly to fit onto a target device with a 

large enough area capacity. With this partitioning add-on, the MOODS synthesis system 

can now target a single behavioural design onto two or more heterogeneous re-

configurable devices (FPGAs) at the board level. One main objective in obtaining the 

partitions is to reduce interconnects (cutsets) and data transfers across boundaries. The K-

way partitioning algorithm and communication subsystem optimisation algoritlim 

described in Section 4.4.1 generates a partitioned design, with an optimised 

communication channel or multiple communication channels to improve the performance 

of the multi-FPGA system. 

The two target technologies used for all the experiments in this section are given in Table 

6-1. Target technologies listed in Table 6-1(a) show the Xilinx Spartan2 FPGAs, and 

Table 6-1(b) shows Xilinx Virtex FPGAs. The device parts in the target technology are 

listed in the first column of the tables and the package type of the device are given in the 

second column. The third column shows the total number of user I/Os available on the 

device. Four global clock pins on Spartan 2 or Virtex devices are usable as additional user 

I/Os when not used as global clock input pins. These pins are not included in the total user 

I/O counts given in the tables because these pins are normally connected to surface 

mounted clock oscillators or sockets for oscillator (e.g. global clock inputs GCK2 and 

GCK3 are connected to an on-board oscillator and a socket for a second oscillator in the 

D2-SB system board, see Appendix B.6). The fourth and fifth columns show the 
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maximum number of I/Os used and area of the devices in slices respectively. The 

information given in the fourth and fifth columns are used by the two-phase partitioning 

K-way algorithm (Section 4.4.1). The user 1/0 and area information of the target devices 

constitutes the target domain information of the input partitioning information (.par) file to 

the MOODS synthesis system. Detailed information on the two Xilinx target technologies 

are given in [140, 141]. 

(a) Xilin X Sparta n 2 FPGA devices (b) Xilinx Virtex FPGA devices 

Device Package 

Total 
user 
I/O 

Max. 
user 
I/O 

Max. 
area in 
slices Device Package 

Total 
user 
I/O 

Max. 
user 
I/O 

Max. 
area in 
slices 

XC2S15 TQ144 86 80 768 XCV50 BG256 180 160 768 

XC2S30 T0144 92 80 1200 XCV100 BG256 180 160 1200 

XC2S50 FG256 176 150 1728 XCV150 BG352 260 250 1728 

XC2S100 FG256 176 150 2352 XCV200 BG352 260 250 2352 

XC2S150 FG456 260 250 3072 XCV300 BG432 316 300 3072 

XC2S200 FG456 284 250 4800 XCV400 BG432 316 300 4800 

XCV600 BG560 404 400 6912 

XCV800 BG560 404 400 9408 

XCV1000 FG680 512 500 12288 

Table 6-1 Target Xil inx FPGA technologies 

Design examples are described using behavioural VHDL and synthesised using the 

MOODS synthesis system to generate un-partitioned and partitioned multi-FPGA 

implementations. The structural VHDL description files generated by MOODS are further 

processed by third party tools, Synplicity Synplify Pro and Xilinx ISE (Integrated 

Software Environment), which performs low-level logic synthesis and technology 

mapping. The Xilinx-targeted EDIF (Electronic Design Interchange Format) output from 

Synplify Pro is processed by Xilinx ISE to generate a single, or multiple, bitstream files to 

download onto a single, or multiple, FPGAs for an un-partitioned or a multi-FPGA design. 

The first part of this chapter looks at experiments on subprogram communication channels 

in non-pipelined multi-FPGA systems (without explicit communication channels) in 

Section 6.2. The second part, Section 6.3, shows the inclusion of explicit communication 

channels and the overall performance of pipelined multi-FPGA systems. 
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6.2 Experimental results (without explicit 

communication channels) 

This section contains the experimental results of five behavioural VHDL designs: (1) 

Quadratic equation solver (Quad eqs), (2) Cubic equation solver (Cubic eqs), (3) Inverse 

Discrete Cosine Transform (IDCT) module, (4) Triple-Data Encryption Standard (Triple-

DES) coie, (5) 256-bit Advanced Encryption Standard (AES256) core. The behavioural 

VHDL designs of all five examples and post-MOODS synthesis simulation results of the 

multi-FPGA implementations can be found in Appendix D. 1. In this section, the non-

pipelined multi-FPGA implementations of the VHDL examples are compared with the 

equivalent single-device implementation. 

Synthesis result tables are given for each of the behavioural examples, where the first set 

of synthesis results aie obtained from synthesised designs optimised in terms of area (i.e. 

with a high area optimisation priority) and the second set of results are obtained from 

synthesised designs optimised in terms of delay (i.e. with a high delay optimisation 

priority). Synthesis results for un-partitioned single device implementations using the 

original MOODS (before the partitioning enhancements were made) are shaded and given 

in the synthesis result tables. Subsequent rows list the multi-board FPGA implementations 

produced using various configuration of target FPGA devices. The * in the synthesis 

results denotes the implemented design or partition has exceeded either the maximum 

area, or the maximum number of user I/Os of the target device. 

Column 1 of the synthesis results tables shows the number of targeted FPGA prototyping 

boaids used to implement the synthesised design. Each FPGA board has a single Xilinx 

FPGA device, which is one of the devices in the target Xilinx FPGA technologies given in 

Table 6-1. For example, a s50 FPGA denotes a Xilinx Spartan 2 XC2S50 device in a 

FG256 package with a maximum user I/O of 150 pins and a maximum device area of 1728 

slices, and a v200 FPGA denotes a Xilinx Virtex XCV200 device in a BG352 package 

with a maximum user I/O of 250 pins and a maximum device area of 2352 slices. The 

target FPGA devices are given in column 2 of the synthesis results tables. The MOODS 

synthesis optimisation priority (i.e. Area or Delay) is given in column 3. 
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The next four columns show the synthesis results of the implemented design after the 

Xilinx ISE placement and routing phase. These results show the final hardware 

implementation and not the MOODS synthesis estimate. Area (in slices), and 1/0 

utilisation are given in columns 4 and 5 respectively. The maximum achievable 

frequencies (Freq) of the FPGAs are reported in column 6. Column 7 gives the area 

overhead (AO) of the multi-FPGA system with respect to the un-partitioned area-

optimised or delay-optimised implementations (shaded row) of each example. The two-

phase partitioning results are given in the last two columns of the synthesis result tables. 

Column 8 reports the initial number of inter-device data packet transfers and the final 

number of inter-device data packet transfers after the two-phase partitioning. Column 9 

shows the number of explicit communication channels (ExCs) and subprogram 

communication channels (SpCs) inserted during synthesis with the data width of the 

channels in brackets. 

6.2.1 Quadratic equation solver 

The behavioural VHDL of the quadratic equation solver can be found in Appendix D. 1. 

Figure 6-1 shows the module call graph representation of the quadratic equation solver, 

with a total of seven modules in the design. 
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Figure 6-1 Module call graph of the quadratic equation solver 
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Synthesis lesults of the quadratic equation solver with high optimisation priority in area 

auid delziy are sh()wn bekxw ui Tzible 6-2. TThese results iii terms ()f area arid niaxirniim 

achievable frequency of the final implementation are obtained from the report files 

generated by post-Xilinx ISE placement and routing phase and not estimates obtained 

&om the MOODS synthesis system. The Xilinx Virtex XCV200 (v200) is the smallest 

FPGA device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a 

single-chip implementation in both area and delay optimised quadratic equation solver 

examples. 

Boards FPGA 
Synthesis results Two-Dhase Dartltlonina results Boards FPGA Opt. 

priority Area in slices I/O 
Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial -> final) 

Channels 
(Data widths) 

1 V200 Area 2294 (97%) 194(78%) 28.27 

2 v150 

vlOO 
Area 1617(93%) 

865 (72%) 

230 (92%) 

38 (24%) 

32.19 

28.89 

188 
(8.2%) 2 9 - > 6 1 SpC 

(32) 
3 v150 

v50 

v50 

Area 

1483 (85%) 

747 (97%) 

355 (46%) 

232 (93%) 

38 (24%) 

42 (26%) 

33.66 

23.51 

40.58 

291 
(12.7%) 2 2 ^ 4 

1 SpC 

(32) 

2 v150 

v50 
Area 1726(9994) 

754 (98%) 

230 (92%) 

38 (24%) 

30.30 

22.69 

186 
(8.1%) 8 - > 4 1 SpC 

(32) 
1 v200 Delay 2264 (96%) 194(78%) 28.43 

2 v150 

VlOO 
Delay 1717(99%) 

771 (64%) 

230 (92%) 

38 (24%) 

31.70 

25.62 

224 
(9.9%) 

2 9 - ^ 2 1 SpC 

(32) 
3 v150 

v50 

v50 

Delay 
1465 (84%) 

764 (99%) 

356(4696) 

232 (93%) 

38 (24%) 

42 (26%) 

32.92 

22.56 

42.62 

321 
(14.2%) 2 2 ^ 2 

1 SpC 

(32) 

2 v150 

v50 
Delay 1717(99%) 

766 (99%) 

230 (92%) 

38 (24%) 

3170 

22.70 

219 
(9.7%) 8 - y 2 1 SpC 

(32) 

Table 6-2 Synthesis results of the quadratic equat ion solver 

The average maximum frequencies for the area optimised and delay optimised quadratic 

equation solver are 29.87 MHz and 29.52 MHz respectively. The least number of inter-

device data transfers in the optimised implementations are 4 and 2 data packets in the area 

and delay optimised examples respectively. A single 32-bit subprogram communication 

channel {SpC) is inserted in all multi-FPGA implementation configurations. All the 
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constraint-satisfying partitioning solutions given in the table is found within 3 passes in 

the K-way partitioning algorithm in all cases. 

It may appear strange that the area-optimised un-partitioned implementation has a larger 

area (in slices) than the delay-optimised un-partitioned implementation but a further look 

at the MOODS design space for both the area- and delay-optimised in Figure 6-2 shows 

that the MOODS estimation of the final implementation with a higher priority in delay in 

this case produced not only a synthesised design with a smaller delay, the area is also 

smaller than that of the final area-optimised implementation. 

eq_solver 

Delay(ns) 

High area 
optimisation priority 

3000.0 

High delay 
optimisation priority 

4H»0 

Ana(Sllces) 

High area 
optimisation priority 

X : 

High delay 
optimisation priority 

Figure 6-2 Design space of the un-partitioned quadratic equation solver 
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6.2.2 Cubic equation solver 

The cubic equation solver uses similar VHDL subprograms as the quadratic equation 

solver but it is more complex. The module call graph representation of the cubic equation 

solver, with a total of 11 modules is given in Figure 6-3. The behavioural VHDL of the 

cubic equation solver can be found in Appendix D.1.2. 
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Figure 6-3 Module call graph of the cubic equation solver 

Synthesis results of the cubic equation solver with high optimisation priority in area and 

delay are shown in Table 6-3. The cubic equation solver has a total of 11 modules 

including the program module. The Xilinx Virtex XCV400 (v400) is the smallest FPGA 

device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a single 

chip implementation in both area and delay optimised cubic equation solver examples. 

The average maximum frequencies for the area optimised and delay optimised cubic 

equation solver are 38.32 MHz and 32.51 MHz respectively. All the constraint-satisfying 

partitioning solutions given in the table is found within 3 passes in the K-way partitioning 

algorithm in all cases. The least number of inter-device data transfers in the optimised 
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implementations is 16 data packets and 2 optimised subprogram communication channels 

{SpCs) are inserted in all multi-FPGA implementation configurations. The maximum 

achievable frequency of the v j O O device in the 4-board implementation, comprising one 

v300 and three v50 devices cannot be determined as the maximum device area utilisation 

has been exceeded. 

Boards FPGA 
Synthesis results Two-phase partltioninq results 

Boards FPGA Opt. 
priority Area in slices I/O 

Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial -» f ina l ) 

Channels (Data 
widths) 

1 v400 Area 3791 (78%) 226 (75%) 25.44 _ _ j 

2 v300 

v200 

Area 
3070 (99%) 

1561 (66%) 

300(100%) 

76 (25%) 

29.07 

36.53 

840 
(22.2%) 100->36 2 SpC 

(32.24) 

3 v300 

v150 

v150 

Area 

3070 (99%) 

379 (21%) 

1238 (71%) 

300(100%) 

38 (24%) 

78 (31%) 

31.51 

35.86 

42.01 

896 
(23.6%) 100->36 

2SpC 

(32,24) 

4 v300 

vlOO 

vlOO 

v100 

Area 

3070 (99%) 

379 (31%) 

537 (44%) 

671 (55%) 

300(100%) 

38 (24%) 

58 (36%) 

72 (45%) 

32.86 

35.17 

39.06 

57.28 

866 
(22.8%) 104 16 

2 SpC 

(32,24) 

4 v300 

v150 

v50 

v50 

Area 

3070 (99%) 

630 (36%) 

406 (52%) 

474(61%) 

300(100%) 

56 (35%) 

68 (43%) 

40 (25%) 

31.74 

36.57 

57.90 

38.42 

789 
(20.8%) 40 -> 16 

2 SpC 

(32.24) 

4 v300 

v50 

v50 

v50 

Area 

3085* (101%)' 

567 (73%) 

684 (89%) 

551 (71%) 

300(100%) 

66(41%) 

70 (44%) 

66(41%) 

39.90 

62.06 

38.95 

1096 
(28.9%) 36 ^ 36 

2 SpC 1 

(32,24) 1 

1 v400 Delay 3877 (80%) 226 (75%) 25.54 _ 

2 v300 

v200 
Delay 3070 (99%) 

1550 (65%) 

294 (98%) 

70 (28%) 

27.72 

24.54 

743 
(19.2%) 

36 -> 36 2SpC 

(32,18) 

3 v300 

v150 

v150 

Delay 
3070 (100%) 

624 (36%) 

987 (46%) 

300(100%) 

56 (35%) 

72 (45%) 

31.29 

34.58 

24.65 

804 
(20.7%) 4 0 ^ 3 6 

2SpC 

(32,24) 

4 v300 

v100 

V l O O 

VlOO 

Delay 

3070 (100%) 

393 (32%) 

645 (53%) 

793 (66%) 

300(100%) 

38 (24%) 

68 (43%) 

58 (36%) 

31.30 

34.62 

24.52 

40.25 

1024 
(26.4%) 1 0 4 ^ 3 2 

2SpC 

(32,24) 

4 v300 

v150 

v50 

v50 

Delay 

3070(100%) 

868 (50%) 

428 (55%) 

297 (38%) 

300(100%) 

42 (26%) 

68 (43%) 

58 (36%) 

24.51 

34.19 

34.88 

61.83 

786 
(20.3%) 16-> 16 

2 SpC 

(32,24) 

4 v300 

v50 

v50 

v50 

Delay 

3075* (101%)' 

633 (82%) 

433 (56%) 

766 (99%) 

300(100%) 

66(41%) 

66(41%) 

62 (39%) 

25.21 

33.12 

42.04 

1030 
(26.6%) 100->36 

2 SpC 

(32,24) 

Table 6-3 Synthesis results of the cubic equat ion solver 
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6.2.3 Inverse discrete cosine transform 

The inverse discrete cosine transform is a relatively simpler example with 3 modules (see 

module call graph representation in Figure 6-4) compared to the previous two design 

examples. The 2-D IDCT architecture is adapted from [142, 143] and the behavioural 

VHDL of the inverse discrete cosine transform can be found in Appendix D. 1.3. 

3,64 

sWI ' 
idct1_mult_ 

add 

pM 
idct 

3,64 

/ sM 
(idct2_mult 
\ add 

Figure 6-4 Module call graph of inverse discrete cosine transform example 

Synthesis resuhs of the inverse discrete cosine transform (IDCT) example with high 

optimisation priority in area and delay are shown in Table 6-4. The IDCT example has a 

total of 3 modules including the program module. The Xilinx Spartan 2 XC2S100 (si00) 

and XC2S150 (si50) are the smallest FPGA devices in the targeted Xilinx Spartan 2 

technology, with sufficient area (in slices) for a single chip implementation in the area and 

delay optimised IDCT examples respectively. Place and route error (Par err) denotes 

incomplete low-level placement and routing of components by the Xilinx ISE (Integrated 

Software Environment) and the maximum frequencies of the post-placement and routed 

design are not given in such cases. 

The average maximum frequencies for the area optimised and delay optimised IDCl 

examples are 30.02 MHz and 33.00 MHz respectively. The least number of inter-device 

data transfers in the optimised implementations are 128 and 192 data packets in the area 

and delay optimised IDCT modules respectively. 
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B o a r d s FPGA 
S y n t h e s i s r e s u l t s T w o - p h a s e p a r t i t i o n i n q r e s u l t s 

B o a r d s FPGA Opt. 
priority Area in slices I/O 

Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial -> final) 

Channels 
(Data widths) 

1 SlOO Area 1018(84%) 26(17%) 28.27 _ 

2 s50 

s50 

Area 766 (99%) 

527 (68%) 

130 (92%) 

121 (76%) 

30.33 

28.92 

275 
(27.0%) 3 2 0 1 2 8 

1 SpC 

(91) 

2 s30 

s30 
Area 652* (150%))* 

430 (99%) 

80(100%^ 

56 (70%) 30.29 

64 
(6.3%) 3 2 0 1 2 8 1 SpC 

(91) 

3 s30 

s30 

s30 

Area 

430 (85%) 

430 (99%) 

430 (99%) 

80(10094) 

58 (73%) 

54 (68%) 

31.17 

29.26 

29.13 

272 
(26.7%) 3 2 0 3 2 0 

1 SpC 

(91) 

2 s50 

s30 

Area 766 (99%) 

430 (99%) 

104(69%) 

80 (100%) 

30.33 

30.85 

178 
(17.5%) 192 ^ 1 9 2 i s x : 

1 

1 5150 Delay 1476 (85%) 26 (10%) 28.43 

2 s100 

slOO 
Delay 1003 (83%) 

865(7294) 

121 (8194) 

97 (65%) 

32 93 

3&51 

392 
(26.6%) 

192 192 1 S ^ 1 

1 

2 s50 

s50 
Delay 835* (108%)* 

766(9994) 

121 (81%) 

97 (65%) PAR err 

125 
(8.5%) 192 -> 192 1 5 ^ : 1 

1 

3 s50 

s50 

s50 

Delay 
458 (59%) 

766 (9994) 

766 (99%) 

123 (82%) 

101 (76%% 

97 (65%) 

32.31 

22 56 

38.94 

514 
(34.8%) 3 2 0 3 2 0 

i s ^ : I 

1 

2 s100 

s50 
Delay 1002 (83%) 

766 (99%) 

123 (82%) 

97 (65%) 

33.56 

PAR err 

292 
(19.8%) 192 192 i s ^ 1 

1 

Table 6-4 Synthesis results of the inverse discrete cosine transform 
example 

6.2.4 Triple-data encryption standard 

The triple-data encryption standard core implements the triple data encryption algorithm 

(TDEA) in the electronic codebook (ECB) mode [ 144]. The behavioural VHDL of the 

triple-data encryption standard (triple-DES) can be found in Appendix D. 1.4. Figure 6-5 

shows the module call graph representation of the triple-DES, with a total of eleven 

modules in the design. 
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Figure 6-5 Module call graph of the triple-DES 

Synthesis results of the triple-DES core with high optimisation priority in area and delay 

are shown in Table 6-5. The Xilinx Spartan 2 XC2S50 (s50) is the smallest FPGA device 

in the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip 

implementation in both area and delay optimised triple-DES core examples. 

Boards F P G A 

Synthesis results Two-phase partitioning results 
Boards F P G A 

O p t . 

p r i o r i t y A r e a i n s l i c e s I / O 

F r e q . 

( M H z ) 

A O i n 

s l i c e s 

D a t a p k t s 

( i n i t i a l - > f i n a l ) 

C h a n n e l s 

( D a t a w i d t h s ) 

1 s 5 0 A r e a 6 7 0 ( 8 7 % ) 9 9 ( 6 2 % ) 5 5 . 7 3 _ — _ 

2 s 3 0 

s 3 0 

A r e a 
6 3 3 * ( 1 4 6 % ) -

4 3 0 ( 9 9 % ) 

1 4 1 " ( 1 7 6 % ) * 

5 6 ( 7 0 % ) 3 0 . 2 9 

3 9 3 

( 5 8 . 7 % ) 
2 0 4 ^ 4 

1 S p C 

( 3 2 ) 

2 s 5 0 

s 3 0 

A r e a 
6 5 6 ( 8 5 % ) 

3 8 0 ( 8 7 % ) 

1 4 1 ( 9 4 % ) 

4 0 ( 1 0 0 % ) 

6 0 . 0 1 

8 0 . 3 9 

3 6 6 

( 5 4 . 6 % ) 
2 0 4 4 

1 S p C 

( 3 2 ) 

1 $ 5 0 Delay 6 7 0 ( 8 7 % ) 9 9 ( 6 2 % ) 5 9 . 0 3 

2 s 5 0 

s 3 0 

D e l a y 
7 4 6 ( 9 7 % ) 

4 3 7 * ( 1 0 1 % ) * 

1 4 3 ( 9 5 % ) 

4 2 ( 5 3 % ) 

6 4 . 1 3 5 1 3 

( 7 6 . 6 % ) 

3 9 6 - > 2 0 4 1 SpC 

( 3 2 ) 

3 s 5 0 

s 3 0 

s 3 0 

D e l a y 

6 5 5 ( 8 5 % ) 

1 5 4 ( 3 5 % ) 

2 5 6 ( 5 9 % ) 

1 4 1 ( 9 4 % ) 

4 2 ( 5 3 % ) 

3 8 ( 4 8 % ) 

6 3 . 8 6 

6 9 , 4 7 

5 6 . 3 6 

3 9 5 

( 5 9 . 0 % ) 
5 9 6 - > 2 0 0 

1 SpC 

( 3 2 ) 

Table 6-5 Synthesis results of the triple-DES core 
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The average maximum frequencies for the area optimised and delay optimised triple-DES 

core are 70.20 MHz and 63.23 MHz respectively. The least number of inter-device data 

transfers in the optimised implementations are 4 and 200 data packets in the area and 

delay optimised examples respectively. A single 32-bit subprogram communication 

channel (SpC) is inserted in all multi-FPGA implementation configurations. 

6.2.5 256-bit advanced encryption standard 

The 256-bit advanced encryption standard (AES) implements the Rijndael algorithm [145, 

146], a symmetric block cipher that processes data blocks of 128 bits using a 256-bit 

cipher key. The algorithm is symmetric since the decryption algorithm is the exact reverse 

of the encryption algorithm. The 256-bit AES has a total of 5 modules. The module call 

graph representation is given in Figure 6-6. The behavioural VHDL of the quadratic 

equation solver can be found in Appendix D.1.5. 
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s M 

f t a b l e _ q u a d 

Figure 6-6 Module call graph of 256-bit advanced encryption standard 

Synthesis results of the 256-bit AES core with high optimisation priority in area and delay 

are shown in Table 6-6. The 256-bit AES core has a total of 5 modules including the 

program module. The Xilinx Spartan 2 XC2S150 (si50) is the smallest FPGA device in 

the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip 

implementation in both area and delay optimised 256-bit AES core examples. The average 



T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 173 

maximum frequencies for the area optimised and delay optimised 256-bit AES core are 

42.60 MHz and 44.61 MHz respectively. The least number of inter-device data transfers in 

the optimised implementations are 28 and 232 data packets in the area and delay optimised 

examples respectively. A single 32-bit communication channel (5^C) is inserted in all 

multi-FPGA implementation configurations. 

Boards FPGA 
Synthesis results Two-phase part i t ioning results 

Boards FPGA Opt. 
priority Area in slices I/O 

Freq. 
(MHz) 

A O in 
sl ices 

Data pkts 
(initial final) 

Channels 
(Data widths) 

1 S150 Area 144S (83%) 102(68%) 36.85 

2 s100 

s50 

Area 1138 (94%) 

766 (99%) 

144 (96%) 

44 (29%) 

39.79 

45.41 

459 
(31.8%) 260 ^ 260 

1 SpC 

(32) 

2 s i 00 

s15 
Area 1459'(121%)* 

140 (32%) 

140 (93%) 

40 (50%) 80.95 

154 
(10.7%) 5 4 - » 2 8 1 SpC 

(32) 

3 s i 00 

s30 

s30 

s30 

Area 

1198 (99%) 

152 (35%) 

468 ' (108%)* 

204 (47%) 

144 (96%) 

48 (60%) 

38 (48%) 

38 (48%) 

40.54 

79.48 

56.10 

577 
(39.9%) 260 -> 260 

1 SpC 

(32) 

1 s150 Delay 1476 (85%) 102(68%) 39.43 _ _ 

2 s i 00 

s50 
Delay 1181 (98%) 

759 (98%) 

144 (96%) 

44 (29%) 

40.00 

44.60 

464 
(31.4%) 

260 -y 260 1 SpC 

(32) 

2 s i 00 

s30 
Delay 1060 (88%) 

607 ' (140%) ' 

140 (93%) 

40 (50%) 

40.46 191 
(12.9%) 246 -> 232 1 SpC 

(32) 

3 s i 00 

s30 

s30 

Delay 
1130 (94%) 

271 (62%) 

430 (99%) 

142 (95%) 

44 (55%) 

38 (48%) 

40.02 

55.54 

45.17 

355 
(24.1%) 

260 -> 246 

1 SpC 

(32) 

Table 6-6 Synthesis results of the 256-bit AES core 

6.2.6 Discussion of results 

The area overheads of the multi-FPGA implementations (MFIs) of the VHDL examples 

are due to various factors. The first and also the main factor that contributes most to the 

area overheads is the generation and inclusion of communication cells and arbiters, which 

are the building blocks of the communication subsystem. The other reason is the 

duplication of registers (or creation of latches) for the I/O parameters of external (cross 

boundary) subprogram modules (Section 5.5.1). 
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Figure 6-7 shows the area and I/O utilisation of the devices in different multi-board 

configurations for all 5 design examples listed in Table 6-2 to Table 6-6. All twenty-five 

configurations satisfy the target device constraints (in terms of device area in slices and 

I/O pins available) for all partitions in the MFI and the partitions are successfully mapped 

to their target devices. 
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Figure 6-7 Area and I/O utilisation of devices in example designs 

Each plotted value in Figure 6-7 gives the maximum area and I/O utilisation (area, I/O) 

amongst the devices in each of the configuration. Value p gives the maximum area and I/O 

utilisation of the 3-board MFI of the quadratic equation solver with high priority in area 

optimisation in Table 6-2 consisting of one vl50 and two v50 devices, where the vl50 

gives the highest I/O utilisation at 93% and the first v50 device gives the highest device 

area utilisation at 97%. Value q gives the maximum area and I/O utilisation of the 3-board 

MFI of the delay-optimised IDCT example in Table 6-5 consisting of three s50 devices, 

where the first s50 device gives the highest device I/O utilisation at 82% and the other two 

s50 devices give the highest device area utilisation at 99%. The two-phase partitioning 

algorithm produces a high area and I/O utilisation of the FPGA devices in all 
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configurations of the five design examples, achieving over 9 0 % in both area and I/O 

utilisations in at least one device in most cases. 

1 Clock cycles Freq (MHz) Design latency (ps) 

Example 

g. 

1 
8 
1 

c 

T3 
0 
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& 

c 
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c 
o 

'•M 

t 
nj a. 

c 
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t; 
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c 
3 

c 
o 

t ; 
ro 
o. 

T3 
(U 
c 
o 

'€ 
(0 
a 
c 
3 

"O 
0) 
c 
o 
+3 

s. 

Quad eqs 4 179 224 28.27 28.66 6.33 7.82 

Cubic eqs 36 755 1770 25.44 26 .13 29.68 67.74 

IDCT 192 831 4175 30.34 34.72 27.39 120.25 

Triple-DES 200 524 3950 55.73 63 .23 9.40 62.47 

AES-256 246 814 5257 36.85 42.30 22.09 124.28 

Table 6-7 Performance of example designs 

The performances of example designs and the overheads (in terms of clock cycles) in 

multi-FPGA implementations are given in Table 6-7 above. The number of clock cycles 

given in the table gives the total number of clock cycles it takes to complete the 

application (e.g. the number of clock cycles for the equation solvers is calculated from the 

first clock cycle when the input data is received to the last clock cycle when the last output 

data is obtained). The increase in design latencies are mainly due to the setting up of the 

shared tri-state subprogram communication channels and synchronisation of the data 

packets during the inter-clock domain asynchronous data transfers. The tri-state data bus 

and data handshake signals allow I/O resource sharing between modules in different target 

devices. A point-to-point (FTP) unidirectional communication channel implementation 

requires a simpler circuitry, with possibly smaller overheads to send and receive inter-

device data. Experiments in the next section look at the effects of point-to-point explicit 

communication channels together with subprogram communication channels in optimised 

multi-FPGA configurations. 
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6.3 Experimental results (with explicit 

communication channels) 

This section contains experiments of three VHDL examples used in the previous section. 

The quadratic equation solver (Quad eqs), inverse discrete cosine transform (IDCT) 

module and 256-bit Advanced Encryption Standard (AES256) core are modified slightly 

to include explicit communication channels (Section 4.2.2.1). Explicit communication 

channels are used to synchronise and transfer global VHDL signal data between VHDL 

processes. The three VHDL examples are re-written and pipelined to include explicit 

communication channels. The behavioural VHDL designs of all three pipelined examples 

and the Post-MOODS synthesis simulation results of the multi-FPGA implementations 

can be found in Appendix D.2. 

6.3.1 Pipelined quadratic equation solver 

The pipelined quadratic equation solver is a two-stage pipelined version of the quadratic 

equation solver given in Section 6.2.1. The behavioural VHDL of the pipelined quadratic 

equation solver can be found in Appendix D.2.1. Figure 6-8 shows the module call graph 

representation of the pipelined quadratic equation solver, with two process modules and 

five subprogram modules in the design. 
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Figure 6-8 Module call graph of the pipelined quadratic equation solver 
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Process modules p__MOD_l and p_M0D_2 are connected by an explicit communication 

channel (ExC) with a data width of 96-bits. The multi-FPGA pipelined quadratic equation 

solver implementation not only resulted in a lower area overhead for area and delay 

optimised implementations (7.4% and 8.9% respectively) compared to the results without 

explicit communication channels (8.2% and 9.7% respectively) given in Table 6-2, the 

number of inter-device data packet transfers is reduced to just the data sent across the 

pipelined stage through the explicit communication channel. 

Boards FPGA 
Synthesis results Two-phase part i t ioning results 

Boards FPGA Opt. 
priority 

Area in 
slices I/O 

Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial final) 

Channels 
(Data widths) 

1 V200 Area 2294 (97%) 194 (78%) 28.27 _ 

2 v150 

v150 

Area 
1726 (99%) 

738 (42%) 

196 (78%) 

196 (78%) 

32.33 

34.03 

170 
(7.4%) 3 4 - > 1 

1 ExC 

(96) 

2 v150 

vlOO 

Area 1726 (99%) 

738 (61%) 

196 (78%) 

196* (123%)' 

32.33 170 
(7.4%) 34 1 

1 ExC 

(96) 

1 v200 Delay 2264 (96%) 194 (78%) 28.43 _ 

2 v150 

v150 
Delay 1726 (99%) 

739 (42%) 

196 (78%) 

196 (78%) 

29.07 

34.21 

201 
(8.9%) 

3 4 - > 1 1 ExC 

(96) 

2 v150 

v100 
Delay 1726 (99%) 

738 (61%) 

196 (78%) 

196* (123%)' 

29.07 200 
(8.8%) 34 1 1 ExC 

(96) 

Table 6-8 Synthesis results of the pipelined quadratic equation solver 

The six 32-bit input and output signals in the VHDL entity port list declaration of the 

pipelined quadratic equation solver are grouped and mapped to process modules that 

access these signal, distributing the utilisation of 1/0 resources over two or more devices. 

This alleviates the problem of a single device in the multi-FPGA implementation 

exceeding the maximimi number of usable I/Os whilst the I/O resources of other devices 

are under-utilised. Without this capability to distribute the signals in the VHDL entity port 

list declaration, a larger target device such as a Xilinx XCV300 with 300 usable I/O pins 

(see Table 6-1) has to be one of the targeted devices since a minimum I/O utilisation of 

292 I/O pins (i.e. 194 pins for the signals VHDL entity port list declaration and 98 pins for 

the explicit commimication channel with two semaphore signals and 96-bit data width) is 

needed. 
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discrete cosine transform (IDCT) core given in Section 6.2.3. The behavioural VHDL of 

the pipelined IDCT core can be found in Appendix D.2.2. Figure 6-9 shows the four 

modules in the module call graph representation of the pipelined IDCT core. 
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sM 
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sM 
idct2_mult_i 

add 

Figure 6-9 Module call graph of the pipelined inverse discrete cosine 
transform example 

Boards FPGA 
Synthesis results Two-phase part i t ioning results 

Boards FPGA Opt. 
priority Area in slices I/O 

Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial final) 

Channels 
(Data widths) 

1 BlOO Area 1018(84%) 26 (17%) 28.27 — — 

2 s50 

s50 

Area 
511 (66%) 

636 (82%) 

29 (19%) 

25 (17%) 

29.22 

31.67 

129 
(12.7%) 

1 -> 1 
1 ExC 

(11) 

2 s50 

s30 
Area 766 (99%) 

430 (99%) 

104(69%) 

80 (100%) 

31.15 

28.72 

178 
(17.5%) 

1 1 1 SpC 

(74) 

3 s30 

s30 

s30 

Area 

447" (103%)' 

430 (99%) 

321 (37%) 

29 (19%) 

57 (71%) 

80 (100%) 

29.64 

35.11 

180 
(17.7%) 

3 - > 3 

1 ExC (11) 

1 SpC (51) 

1 s160 Delay 1476 (85%) 25 (10%) 28.43 

2 s i 00 

slOO 
Delay 754 (62%) 

768 (64%) 

29 (19%) 

25 (17%) 

34.63 

37.31 

46 
(3.1%) 

1 1 1 ExC 

(11) 

2 s50 

s50 
Delay 754 (98%) 

766 (99%) 

29 (19%) 

25 (65%) 

31.82 

36.87 

44 
(3.0%) 

1 1 1 ExC 

(11) 

3 s50 

s50 

s50 

Delay 

754 (98%) 

766 (99%) 

411 (53%) 

29 (19%) 

97 (65%) 

120 (80%) 

32.97 

38.93 

32.78 

455 
(30.8%) 

3 - > 3 

1 E x C ( l l ) 

1 SpC (91) 

Table 6-9 Synthesis results of the pipelined inverse discrete cosine 
transform example 
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Process modules p MOD l and p_M0D_2 are connected by an explicit communication 

channel (vExC) with a data width of 11-bits. The multi-FPGA pipelined IDCT core 

implementation not only resulted in a lower area overhead for area and delay optimised 

implementations (12.7% and 3.0% respectively) compared to the results vyithout explicit 

communication channels (27.0% and 26.6% respectively) given in Table 6-4, the number 

of inter-device data packet transfers is reduced to just the data sent across the pipelined 

stage through the explicit communication channel for the 2-board implementations. A 

single subprogram communication channel is generated for both area and delay optimised 

multi-FPGA implementations targeting three devices. The maximum I/O pin utilisation for 

one device is reduced to 29 pins for all two-board pipelined implementations with just an 

explicit communication channel in Table 6-9 compared to over 100 pins in the non-

pipelined implementation (given in Table 6-4). 

6.3.3 Pipelined 256-bit advanced encryption standard 

The last pipelined VHDL example is a two-stage pipelined version of the 256-bit 

advanced encryption standard (AES) core given in Section 6.2.5. The behavioural VHDL 

of the pipelined 256-bit AES core can be found in Appendix D.2.3. Figure 6-10 shows two 

process modules and five subprogram modules in the module call graph representation of 

the pipelined 256-bit AES core. 
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Figure 6-10 Module call graph of the pipelined 256-bit advanced encryption 
standard example 
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The two process modules (p_M0D_2 and p_M0D_3) in the pipelined 256-bit AES core 

are connected through two explicit communication channels with data widths of 32-bits. 

The number of inter-device data packet transfers is reduced to just the data sent across the 

pipelined stage through the two explicit communication channels. The two-board 

pipelined implementations given in Table 6-10 have an area overhead reduction of 10.0% 

for an area optimised implementation and 15.0% for a delay optimised implementation 

compared to the non-pipelined implementations given in Table 6-6. 

Boards FPGA 
Synthesis results Two-phase part i t ioning results 

Boards FPGA Opt. 
priority Area in slices I/O 

Freq. 
(MHz) 

A O in 
sl ices 

Data pkts 
(initial -> final) 

Channels 
(Data widths) 

1 s150 Area 1445 (83%) 102 (68%) 36.85 — 

2 S100 

s50 

Area 
994 (82%) 

766 (99%) 

104(69%) 

136 (91%) 

43.78 

34.76 

315 
(21.8%) 

1 1 
2 E y C 

(32,32) 

3 s i 00 

S30 

s30 

s30 

Area 

1283 ' (106%) ' 

625 ' (144%) ' 

203 (46%) 

166(38%) 

146 (97%) 

40 (27%) 

38 (48%) 

52 (65%) 

56.75 

80.30 

577 
(57.6%) 

168-> 84 

1 SpC 

(32) 

1 s150 Delay 1476 (85%) 102 (68%) 39.43 _ —• 

2 s100 

s50 
Delay 955 (79%) 

763 (99%) 

104(69%) 

136 (91%) 

41.99 

34.47 

242 
(16.4%) 

1 1 2 ExC 

(32,32) 

3 siOO 

s30 

s30 

S30 

Delay 

1198 (99%) 

74(17%) 

581 ' (134%) ' 

234 (54%) 

144 (96%) 

38 (48%) 

40 (27%) 

50 (63%) 

34.63 

70.46 

57.05 

611 
(41.4%) 

1 6 8 - > 7 7 

1 SpC 

(32) 

Table 6-10 Synthesis results of the pipelined 256-bit AES core 

6.3.4 Discussion of results 

The performances of the pipelined example designs and the overheads (in terms of clock 

cycles) in multi-FPGA implementations (MFls) are given in Table 6-11. The number of 

clock cycles given in the table gives the total number of clock cycles it takes to complete 

the application (i.e. the number of clock cycles is calculated from the first clock cycle 
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when the input data is received to the last clock cycle when the last output data is 

obtained). Design latency is calculated by multiplying the number of clock cycles by the 

clock period (1/Freq) of the design. Performance results of pipelined example designs are 

shaded in the table and results of the un-partitioned and non-pipelined taken &om Table 

6-7 are shown for completeness and ease of comparison. 

When pipeline stages are targeted onto a separate device, inter-device data packets are sent 

via the explicit communication channels (ExCs) coimecting the pipelined stages in the 

pipelined MFI. The is a dedicated point-to-point communication channel that does 

not require channel resource arbitration and special communication cells (Section 5.4) to 

handle inter-device data packet transfers unlike the 5]pC. Inter-device data sent through the 

Ex:C also removes the need for (Section 5.5.1), hence reducing the 

area overheads. The inter-device data packets are reduced by at least a factor of three 

compared to the non-pipelined MFI. As a result, the pipelined IDCT and AES-256 MFls 

only suffer a fraction of the design latency overhead compared to the non-pipelined MFIs. 

Example 

Inter-device 
data 

packets Clock cycles Freq (MHz) Design latency (ps) 

Example 
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1 4-» 
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(0 
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"O ~ 

g s. 
f l 

"S ? 

fa 
E c 
o 
r 
c 
3 

"O 

- 0 : # 
0) o 

i f 
73 .—, 
0) - o 

II 
Quad_eqs 4 1 179 224 189 28.27 28.66 31.64 6.33 7.82 5.97 

IDCT 192 64 831 4175 1167 30.34 34.72 34.35 27.39 120.25 34.98 

AES-256 246 60 814 5257 1137 36.85 42.30 38.23 22.09 124.28 29.74 

Table 6-11 Performance of the pipelined example designs 

Another advantage is the higher average achievable frequencies of the pipelined 

implementations of all three example designs compared to the un-partitioned 

implementations. In the case of the pipelined quadratic equation solver implementation, 

there is only a single inter-device data packet transfer in the pipelined MFI and it only 



T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resu l t s 182 

takes 10 clock cycles more than the un-partitioned implementation. With the higher 

achievable frequency, the pipelined quadratic equation solver has a lower design latency 

compared to both the im-partitioned and non-pipelined implementations. 

The experiments in this section show that pipelined multi-FPGA systems can achieve 

peifoimances comparable to single-device implementations. The user now has the choice 

of taigeting a large behavioural design onto multiple smaller devices without having the 

need to get a larger and more costly target FPGA device if the design requirements are met 

with a multi-FPGA system. The user would be able to use existing FPGA devices or a 

number of FPGA development boards configured into a multi-FPGA system for design 

prototyping. This saving in design cost and flexibility in using existing development 

boards with a collection of smaller devices would not be possible otherwise if a single 

large behavioural design is not partitioned. 

The asynchronous communication channels provide safe communication of inter-device 

data in the multi-FPGA system. The subprogram communication channel (5]5C) allows 

multiple external subprogram modules to share a common channel, hence reducing the 

number of I/Os needed for inter-device data transfers in the I /O constraint multi-FPGA 

system. The explicit communication channel (ExC) itself is responsible for the 

synchronisation of VHDL processes (process modules) connected to it and the transfer of 

data between the process modules. Therefore, the user can concentrate on the behaviour of 

the design and not the complexities of how the target devices can safely communicate. 

All experiments were run on a Intel Pentium M 1.5 GHz machine with 512 MB RAM. The 

multi-FPGA synthesis run times remain similar to the run times of single-device 

implementations using an original version of MOODS without the multi-FPGA synthesis 

enhancements as final partition solutions for all the VHDL examples are found within 3 

passes of the modified K-way partitioning algorithm (Section 4.4.1). Run times are 

approximates due to the nature of Microsoft windows environment which the synthesis 

tool is running in (e.g. synthesis run times for the pipelmed multi-FPGA 256-bit AES core 

example is 2 minutes and the single-device implementation is 1 minute and 56 seconds). 
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6.4 Summary 

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and 

results of the multi-FPGA synthesis are demonstrated through a few design examples in 

this chapter. Results of non-pipelined and pipelined multi-FPGA implementations are 

given in Sections 6.2 and 6.3 respectively. The pipelined multi-FPGA systems with 

explicit communication channels have reductions in area overheads (by up to 23% in the 

case of the pipelined IDCT example) and design latencies (up to 4 times faster) over non-

pipelined multi-FPGA implementations. Results presented in Section 6.3 show that 

pipelined multi-FPGA systems can be synthesised to achieve performances comparable to 

single-device implementations. 

Partitioning of a large behavioural design with incomplete knowledge of the targeted 

technology, and the final hardware implementation of a component poses a difficult 

design decision. As the complexity and size of the entire system increases, this difficult 

decision and design optimisation problem gets harder, to the point when it gets beyond the 

capabilities of human designers to solve. High-level synthesis of a large behavioural 

design into a multi-FPGA system reduces the design time and effort required by the user. 

This chapter has demonstrated the automated process of multi-FPGA synthesis in 

MOODS to produce multi-FPGA systems with asynchronous communication channels 

(described in Chapters 4 and 5). All the multi-FPGA implementations given in this chapter 

have been synthesised, simulated, and proven correct, with comparisons to single-device 

implementations using an original version of MOODS without the multi-FPGA synthesis 

enhancements. 

A further analysis of the performance of a multi-FPGA system is demonstrated through a 

hardware demonstrator of a large behavioural design in Chapter 7. 
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Chapter 7 

Practical synthesis 

7.1 Introduction 

This chapter describes in detail the hardware demonstrator, a JPEG decoder synthesised 

using MOODS with the multi-FPGA synthesis enhancement. The goal of the hardware 

demonstrator is to assess the performance of a multi-FPGA J P E G decoder, as opposed to a 

JPEG decoder in a single chip implementation. Section 7.2 provides information on the 

hardware development boards used to implement the multi-FPGA system. Section 7.3 

gives an introduction on the JPEG algorithm, and outlines the multi-FPGA 

implementation of the JPEG decoder. The implementation details of the partitioned 

hardware JPEG decoder targeting a multi-FPGA system are covered in the last section 

(Section 7.4). Section 7.4 discusses the performance of the non-pipelined multi-FPGA 

JPEG decoder, with a further analysis on the implementation results. It also covers a 

pipelined implementation of the multi-FPGA JPEG decoder using explicit communication 

channels. 

7.2 FPGA-based development board 

The multi-FPGA system created to demonstrate the multi-FPGA partitioning enhancement 

of MOODS is realised with the use of a number of FPGA-based development boards. This 

section starts with a brief insight on the development boards used to form the multi-FPGA 

system and the Input/Output VGA extension board built for this hardware demonstrator. 
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7.2.1 Hardware development board 

The JPEG decoder synthesised using the MOODS synthesis system into a multi-FPGA 

system is targeted onto the Digilent D2-SB FPGA-based development boards [147]. The 

development board provides a complete and expandable development platform for 

hardware prototyping purposes. The D2-SB features a Xilinx Spartan 2E-200 FPGA in a 

PQ208 package that has gate capacity of 200,000 and over 200 MHz operation. The D2-

SB provides a total of 143 user I/Os routed to six standard 40-pin connectors, and it 

contains a surface-mount 50MHz oscillator, and a socket for a second oscillator. The D2-

SB has a JTAG port (see Appendix B.6) and it is used to program the Spartan 2E FPGA 

and the 18V02 configuration flash ROM, and any programmable devices on peripheral 

boards attached to the D2-SB development board. 

LED LD1 

Pushbutton 
BTN1 

Socket for 18V02 
config. ROM 

JTAG connector 

Clock module 
(50MHz) 

Socket for 2nd 
clock module 

Power supply 
connector 

Power LED 

40-pln expansion 40-pin expansion 
port A1 ROM bypass port .42 

jumpers 

' • 

40-pin expansion 
port C2 

40-pin expansion 
port C1 

40-pin expansion 
port B1 

Xilinx Spartan 2E 
(XC2S200E-200) 

Programming mode 
select jumpers 

40-pin expansion 
port 8 2 

Figure 7-1 D2-SB development board layout picture 

Figure 7-1 shows a picture of the physical board, with various devices and interfaces 

highlighted. Detailed description of the D2-SB development board can be found in 

Appendix B.6. 
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The Digilent DI04 peripheral board [148] provides a fast and easy way to add several 

useful I/O devices to the D2-SB development board. The DI04 provides a 4-digit seven-

segment LED display, 8 individual LEDs, 5 pushbuttons with debouncing circuitry, 8 slide 

switches, a 3-bit VGA port, and a PS2 port. The D104 draws power from the main system 

board (i.e. the D2-SB development board), and signals from the various I/O devices are 

routed to individual pins on the system board connectors. A picture of the physical board 

layout of the DI04 peripheral board is given in Figure 7-2, with various devices and 

interfaces highlighted. Detailed description of the DI04 peripheral board can be found in 

Appendix B.7. 

40-pin connectors 
P1 

40-pin connectors 
P2 Four 7-segment 

LED display 
Eight LEDs 
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VGA port 

i 
5 pushbuttons 
BTN1 to BTN5 

8 slide switches 
SW1 to 

PS2 port 

Figure 7-2 DI04 digital I/O board layout picture 

7.2.2 Input/Output and VGA extension board 

An Input/Output and VGA extension board (I/O VGA ext. board) was built to facilitate 

both the input and output stages in the hardware demonstrator. The key components on the 

extension board include a serial (RS-232) port interface, a 4Mbyte Asynchronous SRAM 

(256K X 16 CMOS 15 ns) OIL module and a video Digital-to-Analogue Converter 

(videoDAC). The extension board was designed to be a general plug-in daughter board, 

which can be used with any other hardware development board to provide a serial port 

communication interface, four megabyte of fast (15 ns access time), asynchronous SRAM 
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memory, and a triple 8-bit videoDAC (BT121) to drive a VGA monitor. Figure 7-3 shows 

the key components and their corresponding locations on the top side of the I/O VGA ext. 

board. 

Triple 8-bit 
VideoDAC 

(BT121) 
Power 
LED 

2-pin 10-pin Power supply 
header (J5) header (J1) connector 

16-pin Buffer 
header (J4) (74HCT04) 

Oscillator 
.. socket 

RS-232 
driver 

5V voltage 
regulator 

Buffer 
(74HCT244) 

32-pin 4MB SRAM 
header (J2) module 

40-pin 
header (J3) 

Figure 7-3 Key components and their locations on the I/O and VGA 
extension board 

7.2.2.1 RS-232 serial port interface 

The I/O VGA ext. board has a RS-232 serial port [149] interface that allows the extension 

board to connect a PC's serial port. The Maxim MAX232EPE RS-232 voltage converter 

takes serial data as TTL/CMOS levels from a connected development board via pin 29 of 

the 32-pin and coverts the logic level to the appropriate RS-232 voltage level and this is 

sent to a connected device via pin 2 of the 10-pin header (Jl) located next to the Maxim 

device. Likewise, the Maxim device converts the RS-232 serial input data to TTL/CMOS 

levels and sends this to the development board via pin 30 of the 32-pin header (J2). A DB9 

serial port connector can be connected to the 10-pin header next to the Maxim device and 

a standard-through or null-modem serial cable can be used to connect the 1/0 VGA ext. 

board to the PC's serial port. Two 100-ohm series resistors between the Maxim output 
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pins (pins 9 and 12) and pins 28 and 30 of header J3 protects against accidental logic 

conflicts. Note that the Xilinx Spartan 2E-200 FPGA on the Digilent D2-SB development 

boards are not 5 volts tolerant, the series resistors are necessary in this case. Control 

signals, 7b (RTS) and C/gar 7b (CTS) are connected to header J2 to 

facilitate hardware handshaking during a serial data transfer. 

Figure 7-4 shows the connections between the 10-pin header (J l) , Maxim MAX232EPE 

RS-232 converter, and the 32-pin header (J3), which is used to connect to a development 

board. 

DBS serial port connector 9-pin serial port s i g n a l s 
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2) Receive Data (RD) 
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7) Request to send (RTS) 

8) Clear to send (CTS) 
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1 4 1 1 
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7 1 0 

8 9 

X Header pin number 

Header J2 

Figure 7-4 9-pin RS-232 serial port interface 

7.2.2.2 Fast, Asynchronous SRAM module 

The I/O VGA ext. board includes a four-megabyte Static Random Access Memory 

(SRAM) module (AS7C34098) designed for memory applications where fast data access, 

low power, and simple interfacing are desired. The surface-mount memory device in a 44-

pin JEDEC 400-mil TS0P2 standard package sits on a TSOP-DIL adapter. The inputs and 

outputs are TTL- and CMOS-compatible with a high speed address access time of 15 ns 

and output enable access time of 7 ns. The memory is organised as 262,144 words X 16 
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bits. The SRAM module has separate byte enable controls, allowing individual bytes to be 

written and read. Control signal controls the lower bits, j / O ; to and ^ controls 

the upper bits, I/09 to I/016. Table 7-1 shows the 18-bit SRAM address, data and control 

signal connections between the SRAM and header J3. 

Address 
bit 

Header J3 
pin number Signal Header J3 pin 

number 
A1 1 1/01 19 
A2 2 1/02 20 
A3 3 1/03 21 
A4 4 1/04 22 
A5 5 1/05 2 3 
A6 6 1/06 24 
A7 7 1/07 25 
A8 8 1/08 26 
A9 9 1/09 2 7 

A10 10 1/010 28 
A11 11 1/011 29 
A12 12 1/012 30 
A13 13 1/013 31 
A14 14 I /014 3 2 
A15 15 1/015 33 
A16 16 1/016 34 

A17 17 35 

A18 18 36 

LB 37 

38 

39 

Table 7-1 SRAM address, data and control signal connections to header J3 

7.2.2.3 VGA interface 

The VGA interface on the I/O VGA ext. board has a Conexant BT121 triple 8-bit 

videoDAC chip, with triple 8-bit digital to analogue converters for operations up to 

80MHz and driving a monitor in 24-bit True colour (16.8 million colours) mode. Figure 

7-5 shows the connections between the Conexant BT121 videoDAC chip, 74HCT244 

buffer, and headers J2, J4 and J5. Components connected to the BT121 videoDAC are 

omitted for clarity. Detailed connections of all the components can be found in Appendix 

B. 
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Grayscale {GS1 - GS5)^ ^ Green {G1 - G7) Blue {B1' B8) 

Grayscale bit 4 Grayscale bit 6 

Header J2 

Grayscale bit 2 

Grayscale bit 1 Grayscale bit 3 Grayscale bit 5 

C N 5 N 5 ) 

Grayscale bit 8 

Grayscale bit 7 

Header pin number 

jumpers 

8-bit graysca le conf igurat ion headers 

Figure 7-5 VGA interface connections 

Red, Green, and Blue (RGB) input video digital data are sent to the Conexant videoDAC 

via a number of pins on header J2: pin 3 to 10 for the read (R) component, pins II to 18 

for the green (G) component, and pins 19 to 26 for the blue (B) component. The pixel 

clock defines the time available to display one pixel of information. This pixel clock input 

is taken from pin 32 of header J2, or from an onboard oscillator if the two pins on header 

J5 are shorted with a jumper. The clock input to the videoDAC is a buffered (through 

74HCT04) pixel clock signal. The vertical sync (VS) signal defines the "refresh" 

frequency of the display and this is taken from pin 2 of header J2. The number of lines to 

be displayed at a given refresh frequency defines the horizontal "retrace" frequency, and 
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this horizontal sync (HS) signal is taken from pin 1 of header J2. VS and HS signals are 

connected to the blcink and sync inputs of the videoDAC respectively. Both sync signals 

are buffered (through 74HCT244) and connected to header J4. The analogue RGB video 

signal outputs &om the videoDAC are also connected to header J4. 

The VGA timing for a standard 640x480 display mode using a 25 MHz pixel clock and 60 

+/- 1 Hz refresh is given in Figure 7-6. 

Symbol Parameter Vertical sync Horizontal sync Symbol Parameter 
Time Clocks L ines Time Clocks 

Ts Sync pulse time 16.7 ms 416800 5 2 1 32 us 800 

Tdisp Display time 15.36 ms 384000 4 8 0 25.6 us 640 

Tpw VS pulse time 64 us 1600 2 3.84 us 96 

Tfp VS front porch 320 us 8000 10 640 ns 16 

Ttp VS back porch 928 us 23200 2 9 1.92 us 48 

T o 

7 , 
disp 

T. fp 

T T, 
pw 

bp 

Figure 7-6 VGA timing for a standard 640x486 display ^ 

The 8-bit configuration headers provides flexible jumper setting so that removal jumpers 

can be inserted to configure the VGA interface for 8-bit grayscale operation. An 8-bit 

grayscale output can be obtained by sending the same 8-bit grayscale digital video data to 

all three components (RGB). The configuration headers are arranged in three headers per 

set, with a total of eight sets to correspond to the 24-bits RGB signals. Each set of the 3-

pin headers corresponds to a bit of the grayscale value and they connect each bit of the 

individual colour component when the jumpers are inserted. For example, the set of 

headers for grayscale bit l(GSl) are connected to bit 1 of red component {Rl, pin 3 of 

header J2), bit 1 of green component (G7, pin 11 of header J2), and bit 1 of the blue 

component (^7, pin 19 of header J2). The 8-bit grayscale (G5'7 to digital input data 

is taken from pins 3 to 10 of header J2 and the jumpers in the configuration headers send 

the 8-bit grayscale values to all three components (R, G, and B). 
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The 8-bit configuration headers offers a two-fold advantage, first, the hardware 

demonstrator in this projects uses the 8-bit grayscale configuration, however the use of the 

configuration headers instead of a fixed wiring approach al lows the 24-bit true colour 

VGA interface to be easily used in future projects and hardware demonstrators simply by 

removing the removal jumpers. The second advantage is the development board now only 

needs to send an 8-bit grayscale digital data to the I/O and V G A ext. board and the 8-bit 

value is wired to all three components through the configuration headers, thus reducing the 

physical I/O connections needed for an 8-bit grayscale operation. 

7.3 JPEG decoder in a multi-FPGA system 

JPEG (Joint Photographic Experts Group) is one of the most popular algorithms for still 

image compression. The formal name of the standard that most people refer to as 'JPEG' 

is the ISO/IEC 10918-1 | ITU-T Recommendation T.81 [150]. The basic JPEG standard 

defines many options and alternatives for compression of still images of photographic 

quality. There are four distinct modes of operation defined under which the various coding 

and decoding processes are defined: sequential Discrete Cosine Transform-based (or 

jegugMrza/ and 

hierarchical. This section covers the information on the implementation of a hardware 

JPEG decoder to decompress and reconstruct a grayscale image data compressed using the 

JPEG sequential DCT- based compression. Further details on the JPEG algorithm using 

the other coding methods and decoding JPEG images can be found in [143, 150-152]. 

JPEG is a compression algorithm and does not define a specific file format for storing the 

final data values. The JPEG File Interchange Format (JFIF) [153] is a minimal file format 

which enables JPEG bitstreams to be exchanged between a wide variety of platforms and 

applications. JFIF is currently the industry standard file format for JPEG files. 

7.3.1 Sequential baseline JPEG decoder 

The main procedures in the encoding and decoding processes based on DCT are illustrated 

in Figure 7-7. The rest of this section only describes the decoding of a grayscale JPEG 

compressed image in the JFIF file, however, the encoding process is basically the same as 
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performing the decoding steps but in reverse, and in the opposite order as shown in Figure 

7-7. 

Source image 

knagedata 

FDCT QuanUser Enk^py 
encoder 

specMicaUons 
Tab^ 

specifications 

D C T - b a s e d J P E G e n c o d e r 

t 
Table 

specifications 
Tab^ 

speciHcaUons 

DCT-based JPEG decoder 

Compressed 
image data 

1 , Enti^ipy 
DequanUser decoder DequanUser I D C T 

Compressed A 

Reconstructed 
Image data 

Figure 7-7 Block diagram of a DCt-based JPEG encoder and decoder 

Entropy Decoder 

The JPEG entropy decoder implemented in this hardware demonstrator is based on the 

programmable VLC decoder for JPEG described in [143, 154]. The entropy decoder 

consists of two main data decompression units: a variable length decoder (VLD) and a 

run-length decoder (RLD). In the JPEG encoder, the quantised DCT coefGcients are pre-

processed prior to entropy coding. The DC coefficient has a correlation among adjacent 

blocks and its value varies slightly between successive blocks. DC coefficients are coded 

using differential coding. DC, and DC,_/ in denote the DC coefficients of blocks z and M 

as shown below in Figure 7-8. 
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8 x 8 b l o c k s »-
• ; 

DC 

P C ^ DC. 

Block, Block. 

DIFF = DC, - DC,., 

D i f f e r e n t i a l DC 
e n c o d i n g 

Z i g - z a g o r d e r i n g o f A C 
c o e f f i c i e n t s 

Figure 7-8 Zig-zag arrangement of the DC and AC coefficients 

The coefficients are rearranged into a one-dimensional array using a zigzag pattern as 

illustrated in Figure 7-8, placing the low frequency AC coefficients at the start of the 

linear sequence and the high frequency coefficients at the end. This groups the zeros 

resulting from the high frequency AC coefficients together, increasing the consecutive 

runs of zeros for run-length coding. A run-length coder compresses the quantised DCT 

coefficients by representing consecutive zeros with a run-length value. Each AC 

coefficient is represented by two symbols, where symbol! is a combination of {run-length, 

size} values and symbol!, which is the quantised frequency value {amplitude}, is encoded 

with a variable-length integer (VLI). The size value is the number of bits needed to 

represent the second symbol. DC coefficients are also represented by two symbols, but 

symboll has only the size value. The first symbol, with the {run-length, size} information 

is next encoded using a specified Huffman table. 

The VLC decoding process begins with the retrieval of Huffman table values in the JFIF 

file and the entropy decoder decompresses and decodes the Huffman-coded data in the 

compressed image. The four least significant bits of the decoded symboll specify the 

number bits used to encode A one in the most significant bit (MSB) of 

denotes positive amplitude and the value of the extracted codeword represents the actual 

amplitude of the coefficient. A zero in the MSB denotes negative amplitude and the 

amplitude of the DCT coefficient is given by a one's complement of the extracted 
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codeword. The entropy decoder decodes the differential coded DC values by simply doing 

the opposite process, DC coefficients for each block are computed by adding the first 

coefficient value with the preceding DC coefficient. The entropy decoder is described in 

behavioural VHDL and synthesised using the MOODS synthesis system. An example of 

entropy decoding is given below in Figure 7-9, the image data is decoded using the 

standard Huffman tables for luminance components defined in [150]. 

DCj_^ = 4 9 D C , = - 7 5 + 4 9 = - 3 0 
I > 

DCi symboH: { 7 } 

D C , symbol2: { - 7 5 } 

AC„2 symboll: { 0 , 2 } 

AC^, symbol!: { 3 } 

1 0 1 0 

E n d - o f - B l o c k 

s y m b o l f o r B l o c k , . , 

1 1 1 1 0 0 1 1 0 1 0 0 

symboH: {0,1} 

0 0 1 0 1 1 1 1 0 0 0 1 1 

/»C„ symboll: {0,2} 

symbol!: {1} ACgj symbol2: { - 4 } 

B l o c k j . , Block, 

Figure 7-9 Example of entropy decoding 

Dequantiser 

The 8x8 blocks are dequanfised by multiplying each DCT coefficient value in the blocks 

with the corresponding value in the 8x8 quantisation matrix specified in the JFIF file. The 

constant values specified in the quantisation matrix may be arbitrary, but generally these 

values are usually calculated based on the quality versus size factor. During the 

quantisation process in the JPEG encoding process, high constant values introduce more 

errors in the rounding up or down of the values obtained from the division of the DCT 

coefficients and the quantisation matrix. However, having high constant values also result 

in more high frequency DCT coefficients with small data values to become zero. Our 

human eyes are not sensitive to high frequency data information, thus the image will look 

very close to the original. The zig-zag arrangement described in the previous section tends 

to group the zeros together to form long run of zeros, thus allowing the entropy cncodcr to 
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further compress the data. A constant value of 1 will result in nearly lossless compression 

(loss will be due to the round-off errors), whereas a constant value of 255 is the maximum 

amount of loss for that coefficient. Since arbitrary constant values could be used during 

the quantisation process, the entire quantisation matrix is stored in the JFIF file so that the 

dequantiser will know the constant value to multiply each D C T coefficient by to obtain a 

dequantised 8x8 block. The final step is the decoding of the zig-zag ordered values to 

reconstruct the 6equency domain 8x8 blocks that were originally obtained after the DCT 

process in the encoding process. 

Inverse Discrete Cosine Transform 

The two-dimensional (2-D) inverse discrete cosine transform is performed on the 8x8 

blocks to convert data from the frequency domain to the spatial domain. In the JPEG 

encoding process, the 2-D Discrete Cosine Transform (DCT) [155] was performed prior to 

the quantisation phase to group high frequency information, which is not as sensitive to 

the human eye as the lower frequency information when they are minimised (or even 

removed). The coefficients of the resultant frequency domain matrix, or DCT matrix, 

contain integers in the range o f -1024 to 1023. The upper left entry in the resultant DCT 

matrix, is the DC coefficient, which is the average of the entire block and the lowest 

frequency cosine coefficient. The higher frequency remaining 63 coefficients or the AC 

coefficients occur at the lower right of the matrix. The high frequency AC coefficient 

values are often significantly smaller than the lower frequency coefficients, small enough 

to be neglected with little visible distortion to the image. The JPEG compression takes 

advantage of this and typically, the entire lower right half of the matrix comprises only 

zeros after the quantisation phase. 

The 2-D IDCT module implemented in this hardware demonstrator is based on the vector 

processing technique, which is widely used in hardware implementation of image 

processing and video coders and decoders because of the regular structure, simple control 

logic and a good balance between complexity of implementation and performance. The 2-

D IDCT module is described in behavioural VHDL and synthesised using the MOODS 

synthesis system. The 2-D IDCT architecture is adapted from [142] and it is illustrated in 

Figure 7-10. 
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1-D IDCT RAM d o u b l e 
1-D IDCT 1-D IDCT 

b u ff e r 1-D IDCT 

Figure 7-10 2-D IDCT architecture 

The architecture is made up of a one-dimensional 8-point IDCT tbllowed by an internal 

double buffer memory, followed by another one-dimensional 8-point IDCT. The algorithm 

used for the calculation of the 2-D IDCT is based on the equation (7.1). 

^ . = 1 I cos 
;M=:0 M=0 

(2m +1)/) 1 
— •cos 

2M 

r(2M + l )g 
(7 1) 

Equation (7.1) can be separated into the row part and column part as shown in equations 

(7.2) and (7.3). The 2-D IDCT is computed by first applying 1 -D IDCT on the rows and 

then on the columns. 

C = K • cos 
(2 • col number + l ) * row number • n 

2 . M 

(7.2) 

where K = — for row = 0, K = for row ^ 0 
N N 

C ' = K • cos 
(2 • row number + 1) • col number 

2 . N 
71 

(7 3) 

Vf /2 
where K = — for col = 0, K = for col ^ 0 

M M 

During the JPEG encoding process, the image samples are level-shifted to a signed 

representation by subtracting 2^'^, where P is the precision parameter of the image 

specified in the JFIF. For a grayscale image with 8 bits precision, the 8-bit signed values 
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are level-shifted back to the original sample values by adding 128 to each of the values in 

the 8x8 block resulting from the IDCT transform. Figure 7-11 shows an example of an 8x8 

dequantised block input to the IDCT module and the corresponding 8x8 values obtained 

during the IDCT process. 

Dequantised 8x8 block 8x8 block after transposition 

•416 -33 •60 32 48 0 0 0 

12 -24 -56 0 0 0 0 0 

42 13 80 -24 40 0 0 0 

-56 17 44 -29 0 0 0 0 

18 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

-161 -33 4 -4 6 0 0 0 

-193 -16 22 -2 6 0 0 0 
-178 8 -1 -10 6 0 0 0 

-115 28 -59 -31 6 0 0 0 

-91 32 -74 -50 6 0 0 0 

-129 22 -32 48 6 0 0 0 

-161 3 7 -22 6 0 0 0 

-155 -10 11 4 6 0 0 0 

L 
1-D IDCT 

R A M d o u b l e 

b u f f e r 

8x8 block after 1-D IDCT 

-161 -192 -177 -115 -90 -128 -159 -155 

-33 -16 8 28 32 22 4 -10 

4 22 -1 -58 -74 -31 7 12 

-3 -1 -9 -30 -50 47 -21 4 

6 6 6 6 6 6 6 6 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

t 
1 - D IDCT 

I 
8x8 block after 2-D IDCT 

-71 -72 •67 -59 -55 -53 -35 

•65 -73 -78 -77 -75 -71 -60 47 

-62 -61 -58 -57 •64 -72 -70 -61 

•65 -39 -9 0 -23 -54 -69 •67 

•69 -30 13 21 -13 -54 •67 -59 

-67 -12 -13 •44 -71 •68 •49 

•59 -54 49 -52 -64 -72 •61 44 

-51 -59 •64 -60 -56 -54 -50 44 

8x8 block after level-shift 

57 56 61 69 73 75 83 93 

63 55 50 51 53 57 68 81 

66 67 70 71 64 56 58 67 

63 89 119 128 105 74 59 61 

59 98 141 149 115 74 61 69 

61 88 116 115 84 57 60 79 

69 74 79 76 64 56 67 84 

77 69 64 68 72 74 78 84 

Figure 7-11 Example of the IDCT process 

7.3.2 Partitioned JPEG decoder 

The sequential DCT-based JPEG algorithm and the description of the key components are 

covered in the previous section. This section describes the partitioning of a JPEG decoder, 

which forms the core of the hardware demonstrator. Figure 7-12 illustrates the overview of 



T.B. Yee, 2007 Chapter 7: Practical synthesis 199 

the hardware demonstrator system. There are three distinct phases in the multi-FPGA 

JPEG decoder: O u f p w r J P E G (fgcoffzng 

A simple file I/O Graphical User Interface (GUI) [156] is used to select the JFIF file to be 

decoded in the input phase. This JFIF file in the source PC is then transferred serially to 

the RS-232 interface on the I/O VGA extension board using a serial (null-modem) cable. 

The ow/pwr joAâ yg is the visual output of the decoded JPEG image on a VGA monitor. The 

high-speed 4-megabyte SRAM on the I/O VGA extension board is used as a frame buffer 

to store the decoded pixel data values in the 8x8 blocks in a raster-scan manner, suitable 

for a standard 640x480 pixel VGA display. 

Source PC 

serial (null-modem) cable 

VGA Monitor 

I I 

Multi-FPGA system 

Interface 

Monitor cable 

Figure 7-12 Overview of the hardware demonstrator system 

The JPEG decoding phase is the core of the hardware demonstrator and is performed by a 

partitioned JPEG decoder in a multi-FPGA system, formed with a number of hardware 

development boards. The hardware implementation of the JPEG decoding algorithm is 

partitioned and synthesised using the K-way partitioning enhancements described in 

Chapter 4. The re-configurable device on each development board in the multi-FPGA 

system is viewed as a locally clocked processing unit performing part(s) of the JPEG 
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decoding algorithm, and inter-device data transfers performed using asynchronous 

techniques described in Chapter 5. 

7.3.3 VHDL Design 

The hardware demonstrator comprises VHDL modules written in two different styles of 

VHDL, behavioural VHDL and Register Transfer Level (RTL) VHDL. Modules 

communicating directly with the input/outputs (i.e. the I/O and VGA extension board) of 

the system are written in RTL VHDL, as strict timing requirements have to be met. For 

example, the VGA driver module that has to send the pixel data every 40 ns for a pixel 

clock of 25 MHz. Adapting a design with a mixture of modules coded using RTL and 

behavioural VHDL and not solely using the behavioural style of VHDL is not design 

limitation, however, it is more sensible and less time consuming to adopt such a design 

approach. 

Figure 7-13 shows the overall VHDL modules in the hardware demonstrator. The S data 

interface, UART, Frame buffer controller, and VGA driver module are written in RTL 

VHDL, with the rest of the modules written in behavioural VHDL and synthesised using 

the MOODS synthesis system. The module communicates directly with the Maxim 

MAX232EPE described in Section 7.2.2.1. The UART module, is part of the VHDL 

communications library in [156]. The UART sends and receives data serially from the 

Maxim device and bytes of data are passed to the S data interface VHDL module. This 5 

data interface receives a byte of data from the UART and this byte of data is passed to the 

Entropy decoder if it is a compressed image data to be decoded, else to the JFIF file 

decoder if it is part of the header information. A detailed description on the JFIF file 

layout can be found in Appendix B.l . The Block Transpose module after the JPEG 

decoder core performs block transposition on the transposed 8x8 blocks of image data 

from the IDCT module. 



T.B. Yee, 2007 C h a p t e r 7: Pract ica l syn thes i s 201 

UART 

RTLVHDL 
modules S data 

interface 

Behavioural 
VHDL modules 

JPEG 
decoder core I JFIF file 

decoder 

Entropy decoder 

Zig-zag decoder 

Dequantiser 

IDCT module 

Block Transpose 
module 

RTLVHDL 
modules 

1 
Frame buffer 

controller 

Huffman tables 

Quantisation 
matrix 

Frame 
information 

VGA driver 
module 

Figure 7-13 VHDL modules in the liardware demonstrator system 

The sequential baseline JPEG decompression algorithm decodes the compressed image in 

8x8 blocks and the decompressed image is stored in the frame buffer memory. The 4MB 

SRAM device on the I/O VGA ext. board is used as the frame buffer memory and Figure 

7-14 illustrates how the decompressed 8x8 blocks of data are stored in the frame buffer 

memory. 

The frame buffer memory mapping shows how each pixel, specified as an x-y co-ordinate 

relative to the top left of the VGA monitor display, maps to the memory location in the 

SRAM device. For an 8-bit grayscale image of up to 512 by 480 pixels, a total of 512 x 

480 X 8 bytes (1.92 MB) are required. Blocks of decompressed image data ready to be 

displayed are sent to the frame buffer controller and two bytes of pixel data are stored in 
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each memory location. Decoded image data is only sent to the FG/j (frzvgr when a 

complete image is stored in the frame buffer. The KG/4 (/river generates the 

horizontal sync and vertical sync timing signals and it coordinates with the frame buffer 

controller to deliver a pixel data on each pixel clock to the I /O VGA ext. board. With the 

&ame information (image height and image width), the VGA driver module sends a 

'background' pixel data, filling regions larger than the image with a background colour 

(black, white, or a shade of grey for an 8-bit grayscale VGA interface). 

First 8x8 block of 
decompressed image 

X co-
ordinates 

477 
478 
479 

0 1 2 3Ayt 5 6 7 8 9 10 11 12 13 14 15 

Upper byte Lower byte 

2 bytes of pixel information per 
memory location 

510 511 
addr) eddr3 addrW eddrS addrS ad±7 addr255 

#dbk267 odkMW ad*260 8ddr26f addr282 addr263 addrSff 
adoMM addfSfG addr767 

addrTBB #ddr789 add-TTO addhZyf addr772 @ddrf023 
addrf02i addrfQ27 addrf028 addrf279 
adcW2a) <x*oh287 adQM282 ad(M28: addrf2M addrf535 
addrf536 addi539 addrfMO addrfZM 

addrfTM addrf796 8ddr2(W7 
addrZMS ad(#2049 addrZOSO 8d±20Sf 8ddr2052 8ddr2303 

ad(K305 8dd̂ 25a 
8dd̂ M5 

addrZdfG ed*307f 
adî 3327 
addr3583 
addr3839 

addrJMO 8ddr4095 

V G A f rame buffer m e m o r y 

8ddf122367 
ad(M22368 8ddrf22G23 
8(AM22624 @ddrf22625 addrf228̂  

Figure 7-14 Frame buffer memory mapping of 8x8 blocks 

7.4 Results and performance 

The behavioural JPEG decoder core and block transpose modules are synthesised using 

the MOODS synthesis system to generate a multi-FPGA system. The multi-FPGA JPEG 

decoder is targeted onto three Digilent D2-SB FPGA-based development boards 
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(described in Section 7.2.1) with a Xilinx Spartan 2E-200 FPGA on each board. All the 

RTL VHDL modules (shown in Figure 7-13) and the JFIF file decoder module are 

targeted onto a single D2-SB development board and connected to the I/O VGA ext. 

board. The behavioural JPEG decoder and the block transpose module are synthesised and 

partitioned using the MOODS synthesis system with the partitioning enhancement 

described in Chapters 4 and 5. 

The whole system is simulated at the gate level (based on the post-placed and route 

simulation model produced by Xilinx ISE) prior to downloading the multi-FPGA system 

onto the FPGA devices. After the verification of the multi-FPGA system, the prototyping 

boards are connected up to form the multi-FPGA JPEG decoder hardware demonstrator 

system. Examples of the multi-FPGA JPEG decoder in action can be found in the 

photographs of Figure 7-15 and Figure 7-16, which demonstrates the complete system in 

full working order. 

Figure 7-15 Multi-FPGA JPEG decoder demonstrator 
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Figure 7-16 Multi-FPGA JPEG decoder demonstrator (Top view) 

Figure 7-17 illustrates the pixel values of the test image (LENA.jpg) taken from a graphics 

viewer [157]. The pixel values in the four 8x8 blocks are given in hexadecimal and they 

are taken from the top left comer of the test image and top-left most value Ox7C 

corresponds the top-left most comer pixel value of the test image. Figure 7-18 illustrates 

the values obtained from a simulation of the test image decoding using the multi-FPGA 
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JPEG decoder. A maximum pixel value of FF (in hexadecimal) corresponds to the 

maximum grayscale level of 255 (White), and 00 (in hexadecimal) corresponds to the 

minimum grayscale level of 0 (Black). The decoded pixel values in Figure 7-18 deviate 

slightly from the original values given in Figure 7-17, this slight error is due to the 

imprecision in multiplication and rounding errors in the quantisation and inverse discrete 

cosine transformation stages described in previous sections. Results obtained from the 

simulation shows that 97% of the decoded pixel values are within ± 2 of the original pixel 

grayscale levels. 

7C 95 8A 70 8D 89 8F 65 42 4A 4E 48 4 B 54 50 61 

7E 88 84 77 8F 8A 91 5F 38 43 47 44 4 5 4 0 56 5A 

82 7A 82 84 91 87 92 58 3B 44 49 46 4 7 4F 58 58 

87 75 87 91 90 80 91 56 38 45 4A 48 4 9 52 5A 5D 

8A 7A 8D 93 8C 7A 8E 58 35 3F 46 45 46 4E 56 58 

8B 84 8A 84 88 7B 8C 58 36 40 47 49 51 51 58 5A 

89 8A 7C 6A 85 83 8D 5C 36 41 49 49 4 B 53 5A 58 

88 ac 6F 56 84 8C 8E 58 2E 3A 42 42 4 4 4C 53 54 

91 7A 46 52 85 95 84 59 2A 38 30 37 3A 4A 51 4D 

89 57 31 61 90 8C 7D 5D 28 3F 48 46 45 4E 52 4E 

60 3A 2A 66 8C 8D 85 56 29 3C 49 44 42 4A 51 51 

49 35 37 60 77 94 97 4C 2E 38 3D 3A 3D 49 54 57 

3C 34 3F 61 70 8C 97 55 36 38 3E 40 46 4F 53 53 

43 31 37 69 7D 7F 87 66 31 38 42 49 4C 4 8 49 46 

40 38 33 61 86 86 81 65 2A 35 42 46 42 41 4 8 56 

33 47 38 4F 84 98 89 54 2E 38 45 42 39 3F 50 78 

Figure 7-17 Original 8x8 block values from test image (LENA.jpg) 

7C 94 8A 6F 8C 88 BE 65 41 49 4 0 4A 4 A 53 5C 60 

7E 87 84 77 8F 89 90 5E 39 42 46 43 43 4C 55 59 

82 79 81 84 92 86 92 57 39 42 47 44 45 4E 56 5A 

87 74 86 90 90 7F 91 55 3A 43 49 47 48 50 58 58 

8A 7A 80 92 8C 79 8E 57 34 3E 45 44 45 4 0 55 58 

8A 83 8A 84 87 7A 8C 5A 34 3F 46 46 48 50 57 59 

89 8A 7C 6A 84 83 8C 58 35 3F 47 48 4 A 51 58 5A 

88 8C 6E 55 83 8C 80 5A 20 38 40 41 43 4A 51 53 

90 79 45 50 83 94 82 58 27 36 38 34 38 49 4F 4 8 

88 56 30 60 90 8C 7C 50 29 3F 4A A5 44 4 0 51 40 

6C 39 29 66 8C 80 85 56 27 3C 48 44 40 48 50 4F 

47 34 36 5E 76 93 97 48 2C 36 38 39 3B 47 52 55 

3A 33 3E 60 6E 88 97 53 35 39 3C 3F 45 4E 53 51 

42 2F 35 69 7C 7E 87 66 2F 37 41 48 48 4A 48 45 

3F 37 31 61 86 86 80 64 28 34 41 44 40 3F 49 55 

31 46 37 4D 82 98 88 53 20 39 44 41 37 3E 50 78 

Figure 7-18 Test image (LENA.jpg) 8x8 block values decoded using the 
multi-FPGA JPEG decoder 
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7.4.1 Synthesis results of non-pipelined multi-FPGA 
JPEG decoder 

All the RTL VHDL modules and the JFIF file decoder are targeted onto a D2-SB FPGA-

based development board with a Xilinx Spartan 2E-200 FPGA (s200E). The frame buffer 

controller operates at 50 MHz, which is provided by the surface-mount 50MHz oscillator 

on the development board, and the rest of the modules operate at 25 MHz, which is 

generated by a simple divide-by-two clock divider. RTL modules are instantiated and 

linked within the architecture body of a top-level VHDL file. Table 7-2 gives the key 

details on the resource utilisation and the maximum achievable frequency of the top-level 

design on the s200E target device. 

FPGA Resource utilisation 

S200E 
Area in slices 847 (36%) 

S200E 
I/O 104 (98%) S200E 

Freq (MHz) 55.57 

Table 7-2 Synthesis results of development board 1 

The RTL modules in the development board are locally clocked, signals passed between 

these RTL modules and the partitioned JPEG core (described in behavioural VHDL and 

synthesised using MOODS) in other FPGAs cross clock domains and needs to be 

synchronised. The synchronisation logic needed to handshake inter-device signals in the 

multi-FPGA JPEG core are generated automatically into the MOODS synthesised multi-

FPGA implementation without any intervention of the user to the synthesis tool. Only the 

synchronisation between the RTL modules in development board 1 and the multi-FPGA 

JPEG core targeted onto two other development boards in the multi-FPGA system had to 

be performed manually by double buffering the top-level VHDL input signals that 

originate from the clock domain of the RTL modules. 

Figure 7-19 shows a section of the top-level VHDL with input signal end_conv and the 

corresponding generated synchronisation circuit is shown on the right. The circuit shows 

the signal end_conv passed from RTL module in domain 1 to a module in the multi-FPGA 

JPEG core in domain 2. The generated synchronisation circuit consists of two flip flops 

(registers), FF7 and FF2, which are clocked by the system clock (jyi' c/ocA:) in domain 2 
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and system reset (jyj' rgjer) is connected to the asynchronous clear (clr) inputs on the flip 

flops. Signal is the output of the first flip f lop (register), FF7, and this is 

the input into the second flip flop, FF2. The output signal (endj:onv_buf2) from the 

second flip flop, which is the synchronised input for end_conv signal is used by other parts 

of the circuit in domain 2. 

Top-level VHDL source 

process(sys_reset, sys_clock) 
begin 

if(sys_reset = "1") then 
end_conv_buf1 <= "0"; 
encl_conv_buf2 <= "0"; 

eisif(sys_clock'event and sys_clock = "1") then 
end_conv_buf1 <= end_conv; 
end_conv_buf2 <= end_conv_buf1; 

end if; 
end process; 

end conv 

Domain 1 

end conv bufi 
end conv buf2 

FF1 FF2 synchronised 

D Q ^ D Q -

clr 
_sys_reset 

sys_clock 

Domain 2 

Figure 7-19 Double buffer synchroniser insertion 

The module call graph representation of the non-pipelined JPEG decoder core is shown in 

Figure 7-20. The non-pipelined JPEG decoder had a total of six subprogram modules and 

one program module. 

pM 
jpeg_core 

8,64 

6,4 

sM 
idct1_mult_ 

add 
(get_symboii 

_index — ^ 
idct1_mult_ 

add 

" '/ sM , 2 ^ 
DQ multiple 

3,4 sM 
iidct2_mult_ 

^ add 

sIVI sM 
update amp 

It 
update do 

diff 

Figure 7-20 Module call graph representation of the non-pipelined JPEG 
decoder core 
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Synthesis and K-way partitioning results of the behavioural JPEG decoder core and the 

block transpose module are given in Table 7-3. The first row shows the synthesis result of 

a single-device implementation that fits the target device. 

Boards FPGA 
Synthesis results Two-phase partitioning results 

Boards FPGA 

priority Area in slices I/O 
Freq. 
(MHz) 

A O in 
s l i ces 

Data pkts 
(initial final) 

Channels 
(Data widths) 

1 S400E Delay 3639 (75%) 47 (44%) 30.13 — _ 

1 S200E Delay 3297' (140%)* 47^W%) - — — -

2 S200E 

S200E 
Delay 2350 (99%) 

1795 (76%) 

106(100%) 

71 (67%) 

36.79 

36.34 

5 0 6 
(13.9%&) 1 2 1 6 5 1 2 

2SpC 

(21,28) 

Table 7-3 Synthesis results of the non-pipelined JPEG decoder core 

The s400E target device in the first row is a Xilinx Spartan2E-400 FPGA [158] in a FT256 

package. It has a maximum device area of 4000 slices and a total number of 182 user I/Os. 

The maximum number of available I/Os for the implementation of the multi-FPGA system 

is restricted to 106 I/O pins as a number of pins on the s200E target device are connected 

to the push button switch, integrated circuit socket for a second clock module, and LED on 

the development board (see Appendix B.6). A detailed description on the pin assignments 

of the hardware demonstrator development boards is given in Appendix B.4. The Xilinx 

Spartan2E-400 FPGA is the smallest target FPGA in the Xilinx Spartan2E target 

technology that has sufficient device area to hold the JPEG decoder core and the block 

transposed module, with a device utilisation of 3639 slices occupying 75% of the 

maximum target area, and an I/O utilisation of 47 pins out of the 106 pins available. This 

un-partitioned single chip implementation has a maximum achievable frequency of 30.13 

MHz. 

The second row shows that targeting the design onto a Xilinx Spartan2E-200 FPGA 

results in an area utilisation of 3297 slices, which exceeds maximum area of the s200E 

device. The last two rows in Table 7-3 show the non-pipelined synthesised design 

targeting two s200E devices and implemented using two Digilent development boards. 

The first partition (shown in row 3) occupies 99% of the maximum area in the target 

s200E device and 100% of the total number of I/O pins available. The second partition 



T.B. Yee, 2007 Chapter 7: Practical synthesis 2 0 9 

occupies 76% of the maximum area in the target s200E device and 711/0 pins (67% of the 

maximum I/O available). The area overhead of 13.9% is due to the insertion of 

communication cells and arbiters (described in Section 5.4 and the duplication of data 

registers in the multi-FPGA implementation. K-way partitioning, with design profiling, 

with the aim of reducing inter-device data transfers was completed in two passes of the K-

way partitioning iteration loop. Two subprogram communication channels (with data 

widths of 21-bits and 28-bits) were generated automatically in MOODS to handle the 

inter-device data transfers between subprogram modules in the two locally clocked target 

devices. The two development boards run at 25 MHz and they are clocked independently 

using the on-board 50MHz oscillator, and a simple divide-by-two clock divider. 

7.4.2 Computation cycles and inter-device data transfers 

Simulations were conducted on multi-FPGA JPEG decoder using the synthesised netlist 

output files generated by MOODS. Performance of the decoder in un-partitioned single 

device and multi-FPGA implementations obtained from the post-MOODS simulation of 

test images are presented in Table 7-4. The total number of inter-device data transfers over 

subprogram communication channels 1 {SpC 1) and 2 {SpC 2)are given in columns 2 and 

3 respectively. The JPEG decoder system is a complex and computation intensive design, 

the computation clock cycles of the JPEG core given in columns 4 and 5 of Table 7-4. The 

performance degradation (approximately 7 times increase in design latency) is because of 

the immense number of clock cycles required to decode and store the decoded pixels in a 

frame buffer ready to be displayed upon completion of the decoding process. 

SpC 1 with a 21-bit wide data width is shared by two transmit cells, two receive cells, and 

the channel arbitration is provided by a multi-arbiter cell. A single pair of transmit and 

receive cells is coimected to 5]pC 2 and the arbitration for this communication channel 

with a 28-bit wide data width is provided by a single-arbiter cell. The relatively large 

number of inter-device data packets transferred over the two communication channels also 

provides a robust test for testing the communication cells and communication channel 

arbiter cells described in Section 5-4. 
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Test image 
(jpg) 

Inter-device data 
packets 

Clock cycles Max Freq (MHz) Design latency (ms) 
Test image 

(jpg) 
SpC1 SpC2 

Un-
partitioned Multi-FPGA 

Un-
partitioned Multi-FPGA 

Un-
partitioned Multi-FPGA 

LENA 37807 20480 178104 1496464 

30.13 36 34 

5.91 4118 

MANOmLL 37087 20480 171724 1477008 

30.13 36 34 

5 70 40 64 

DRAGON 34082 20480 170406 1398412 30.13 36 34 5.66 38 48 

SQUARES 469322 327760 2287230 20572700 

30.13 36 34 

75.91 566 12 

SLOPE 125883 81920 606572 5308488 

30.13 36 34 

20M3 146.08 

Table 7-4 Computation clock cycles and inter-device data transfers in the 
non-pipelined multi-FPGA JPEG decoder 

The maximum frequencies given in the table are obtained f rom the Xilinx ISE synthesis 

implementation results given in Table 7-3 and the maximum frequency of the multi-FPGA 

implementation is the maximum achievable frequency of the slowest FPGA device. The 

design latency, time taken to decode the test images, is calculated by multiplying the 

number of computation clock cycles by the clock period (1/Max Freq). Design latencies of 

the un-partitioned (single chip) and non-pipelined multi-FPGA JPEG decoder system are 

given in the last two columns of Table 7-4. 

A complete profile and photographs of the test images decoded using the multi-FPGA 

JPEG decoder are given in Appendix B.2. 

7.4.3 Further analysis 

Synthesis results and performance of the non-pipelined multi-FPGA JPEG decoder 

partitioned and synthesised using MOODS are given in the previous sections. This section 

gives a further analysis on the implementation of the multi-FPGA JPEG decoder. Figure 

7-21 illustrates the structure of the two communication subsystems inserted in the multi-

FPGA JPEG decoder to deal with the transfer of inter-device data packets between the 

main JPEG core module in development board 2 and subprogram modules in development 

board 3. Subprogram modules (DQ multiple, update amplt and update_dc_diff) in 

development board 2 and the control and data path node units in the synthesised output 

structure have been omitted for clarity. 
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I Subprogram commun/cakM cAan/?e/ 2 

28 

Development 
board 3 

^ t ^ ILl 
/ txcell node1 \ | txcell_node2 

Subprogram 
communication 

subsystem 2 

Module 
(IDCT2_MULT_ADD) 

Module 
(GET_SYMBOLJNDEX) 

Module 
(IDCT1_MULT_ADD) 

req/ack acl/rdy 

Dala_bus 

data_req 

Subprogram communicatior} channel 1 

Subprogram 
communication 

subsystem 1 

Figure 7-21 Structure of subprogram communication subsystem in the non-
pipelined multi-FPGA JPEG decoder 

Subprogram communication subsystem 1 has two transmit cells {txcell_nodel and 

txcell_no del), two receive cells (rxceU_nodel and rxcell_node2), and a multi-arbiter 

(mj2rb). Inter-device data transfers initiated by communication cells in communication 

subsystem 1 are sent through subprogram communication channel 1 (SpC 1) which has a 

21-bits wide Data_bus. Subprogram communication subsystem 2 has a single transmit cell 

{txcell_node3) and receive cell (rxcelljaodeS) connected to a single-arbiter {s_arb). Inter-

device data transfers between txcell_node3 and rxcelljiode3 are sent through subprogram 

communication channel 2 {SpC 2) which has a 28-bits wide Data_bus. Three modules 

(external), and are 

targeted onto the FPGA device in development board 3. Data packets (input parameters) 

are sent to the receive cells, which activate these external modules upon receiving all the 

input data packets. Output results are sent back to the transmit cells when the operations in 
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the modules are completed. Input parameters are sent in multiple inter-device data packets 

when the sum of the bits in all the input parameters exceeds the bit-width of the Data_bus 

in the communication channel, likewise for output parameters if the sum of the bits in all 

the output parameters exceeds the bit-width of the Data_bus. 

The K-way partitioning algorithm and the communication subsystem optimisation 

algorithm optimise the multi-FPGA system in terms of delay across FPGA boundaries, 

while satisfying the area and 1/0 constraints of the target devices. If the area and I/O 

constraints can be relaxed (i.e. targeting FPGA devices with a larger area, or more I/O 

pins), the number of external modules may be reduced as more modules can be targeted 

onto a single FPGA device, and hence reduce the number of inter-device data transfers, 

similarly targeting a device with a larger number of I/O pins, the bit-width of the 

DataJjus in the subprogram communication channel can be increased, such that all input 

parameters of output results can be transferred in a single data packet. 

Assume development board 2 of the multi-FPGA implementation has a target device with 

a larger area; a Xilinx Spartan2E-300 FPGA (with 3072 slices in area) instead of a Xilinx 

Spajrtaii2E-200 FPGA (with 2352 slices in area), it is then possible to re-assign and map at 

least one of the three 'external' modules in development board 3 to development board 2. 

Table 7-5 shows the effect of reducing the number of external modules in the multi-FPGA 

JPEG decoder on the inter-device data transfers and computation clock cycles results. The 

number of external modules in the multi-FPGA JPEG decoder is given in the column 1. 

The number of inter-device data packets transferred over SpC 1 and SpC 2 are given in 

columns 2 and 4 respectively. The channel {Data_bus) widths of SpC 1 and SpC 2 are 

given in columns 3 and 5 respectively. The number of computation clock cycles of the 

multi-FPGA JPEG decoder core is given in column 6. The maximum frequency in column 

7 is obtained from the Xilinx ISE synthesis implementation results given in Table 7-3. The 

design latency of the multi-FPGA JPEG decoder system is given in the last column of 

Table 7-5. 

The test image used is LENA.jpg and the first row shows the performance of the multi-

FPGA JPEG decoder with three external modules in development board 3 as illustrated in 

Figure 7-21. The second row gives the performance of the decoder when an external 

module is moved into development board 2 (this assumes that there is sufficient area in the 

FPGA device on development board 2 to hold IDCT2_MULT_ADD), hence development 
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board 3 is left with only two external modules (GET^^'TMBOZ yTVD&Yand 

/DCr7_ML/Z,7^^DZ)). The effect of removing module from 

communication subsystem 1 is a reduction in the number of inter-device data packets in 

SpC 1. This amounts to 57.9% reduction in the design latency as compared with the 

original implementation with three external modules. 

Number of 
external 
modules 

Inter-device data packets 
Clock cyc les Max Freq 

(MHz) 
Design latency 

(ms) 

Number of 
external 
modules SpC1 

Channel 
width SpC 2 

Channel 
width 

Clock cyc les Max Freq 
(MHz) 

Design latency 
(ms) 

3 37807 21 20480 28 1496464 

36.34 

41.18 

2 8805 21 20480 30 629882 36.34 17.33 

1 8805 21 - - 417636 

36.34 

11.49 

Table 7-5 Number of external modules and Its effect on the performance of 
the non-pipelined multi-FPGA JPEG decoder 

The last row in Table 7-5 shows the performance of the multi-FPGA JPEG decoder core 

with just a single external module {GET_SYMBOLJNDEX) in development board 3. Only 

a single communication subsystem is required to transfers inter-device data packets to and 

from the single external module. The total number inter-device data packets are reduced 

even further with just a single external module, and this amounts to 72.1% reduction in the 

design latency as compared with the original implementation with three external modules. 

The time taken to decode the test image (LENA.jpg) using the multi-FPGA JPEG decoder 

with a single external module is 11.49 milliseconds, which approximately twice the time 

needed for a single-chip implementation (given in Table 7-4). The graph in Figure 7-22 

shows the design latency (decoding time) versus the number of external modules in the 

multi-FPGA JPEG decoder. With less external modules, the number of inter-device data 

transfers is reduced and this improves the performance of the multi-FPGA JPEG decoder 

as the design latency reduces. Area utilisation of the target devices will also decrease, as a 

result of lesser communication cells and duplicated hardware (registers) to handle inter-

device module calls. 
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Figure 7-22 Graph of design latency versus the number of external modules 
in the multi-FPGA JPEG decoder 

Increasing the number of available I/Os on target devices is the other approach to improve 

the performance of the multi-FPGA JPEG decoder. The first column in Table 7-6 shows 

the number of available I/Os on the target devices (i.e. assuming that all the target FPGAs 

have the same number of available I/Os). The first row shows the inter-device data 

transfers and computation clock cycles of the hardware demonstrator implemented using 

the D2-SB FPGA-based development boards with 106 available I/Os (details given in 

Sections 7.4.1 and 7.4.2). Subsequent rows show the effect of increasing the number of 

available I/Os on target devices on the performance of the multi-FPGA JPEG decoder. 

The total number of inter-device data packets decreases with the increment of available 

I/Os, resulting in a decrease in the number of computation clock cycles and hence reduces 

the design latency. When 250 I/Os are available (fourth row of Table 7-6), a new 

communication subsystem is generated by MOODS during synthesis. Communication 

cells, and are connected to a single-arbiter (j'_ar6), which 

replaces the multi-arbiter {m__arb) in Figure 7-21. Communication cells, txcell_node2 and 

rxcell_node2 are connected to a third (newly) inserted single-arbiter, and together they 

deal with the inter-device data transfers across a new subprogram communication channel 

{SpC 3 in Table 7-6) with a 69-bits wide data width. 
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l/Os 
avail. 

Inter-device data packets 
Clock cycles Max Freq 

(MHz) 
Design 

latency (ms) 
l/Os 

avail. 
SpC 1 

Channel 
width SpC 2 

Channel 
width SpC 3 

Channel 
width 

Clock cycles Max Freq 
(MHz) 

Design 
latency (ms) 

106 37807 21 20480 28 - - 1 4 9 6 4 6 4 

36 34 

41,48 

150 37807 21 12288 72 - - 1406384 

36 34 

38 70 

200 37807 21 8192 101 - - 1362776 
36 34 

3750 

250 8805 21 8192 101 12288 69 921738 
36 34 

25 36 

300 8805 21 8192 101 8192 93 881232 

36 34 

2425 

350 8805 21 8192 101 8192 93 881232 

36 34 

24 25 

Table 7-6 Number of available l/Os and its effect on the performance of the 
multi-FPGA JPEG decoder 

The last two rows in Table 7-6 show that the design latency of the multi-FPGA JPEG 

decoder does not reduce further when target devices with over 300 available I/Os are used. 

The graph in Figure 7-23 shows the design latency versus the number of available I/Os in 

the multi-FPGA JPEG decoder. 

41.48 

38.70 

250 i 

24.25 

24.25 

50 .00 40 .00 10.00 20.00 30.00 

Design l a tency (ms) 

Figure 7-23 Graph of design latency versus the number of available I/Os in 
the non-pipelined multi-FPGA JPEG decoder 
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7.4.4 Pipelined multi-FPGA JPEG decoder 

The previous sections covered the implementation results and discussion on the non-

pipelined multi-FPGA JPEG decoder. This section describes a pipelined version of the 

JPEG decoder with explicit communication channels (see Section 4.2.2.1) connecting the 

pipelined stages. Figure 7-24 shows the module call graph representation of the pipelined 

JPEG decoder core with a total of six subprogram modules and six program modules 

(p_M0D_5 to p_MOD_10). The main stages of the sequential baseline JPEG decoder are 

marked under the module call graph in Figure 7-24. 

pM 
p_M0D_6 

1,64 PM 
I p_MOD_7 

1,64 
pM 

p_MOD_8 
pM 

^ p iVI0D_9 
pM 

/ p_MOD_10 

i , 6 4 _ r - 5,4 

2,64 8,64 7,64 

pM 
p_IVI0D_5 

;'3,4 
. - - j r 

SM 
|get_symboll 

index 
sIVI 

DQ_multiple' 

SM 
Idct1_mult_| 

add 

sM 
! idct2_mult_ 

add 

sM SIVI 
1 update dc_j 

diff 
(update am Pi 

It 

Entropy decoder Zig-zag decoder Dequantiser IDCT module Block 
transpose 

module 

Figure 7-24 Module call graph representation of the pipelined JPEG decoder 
core 

The target technology of the devices used in the following experiments on the pipelined 

multi-FPGA JPEG decoder core is the Xilinx Spartan 2E FPGA. Table 7-7 lists the four 

types of Xilinx Spartan 2E target devices used in the multi-FPGA implementation with the 

XC2S50E and XCS200E as the smallest and largest target devices respectively. 

Synthesis results and K-way partitioning results of the pipelined JPEG decoder core and 

the block transpose module are given in Table 7-8. These results in terms of area and 

maximum achievable frequency of the final implementation are obtained from the report 

files generated by post-Xilinx ISE placement and routing phase and not estimates obtained 

from the MOODS synthesis system. The first and second (shaded) rows show the 
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synthesis result of single-device implementations given in Table 7-3. The remaining rows 

show the synthesis results of the pipelined multi-FPGA JPEG decoder core targeting 

multiple Xilinx Spartan 2E FPGA devices. Post-MOODS synthesis simulation results of 

the pipelined multi-FPGA JPEG decoder core are given in Appendix B.3. 

Xilinx Spartan 2E FPGA devices 

Device Package 

Total 
user 
I/O 

Max. 
user 
I/O 

Max. 
area In 
s l i ces 

XC2S50E TQ144 102 80 768 

XC2S100E TQ144 102 80 1200 

XC2S150E PQ208 146 106 1728 

XC2S200E PQ208 146 106 2352 

Table 7-7 Target Xilinx Spartan 2E FPGA technologies 

Boards FPGA 
Synthesis results Two-phase partitioning results 

Boards FPGA 

priority Area in slices I/O 
Freq. 
(MHz) 

AO in 
slices 

Data pkts 
(initial final) 

Channels 
(Data widths) 

1 S400E Delay 3639 (75%) 47 (44%) 30.13 _ — -

1 S200E Delay 3297' (140%)' 47 (44%) _ — — 

2 S200E 

S200E 
Delay 2134(90%) 

1726(7394) 

54 (51%) 

35 (33%) 

35.71 

32.41 

221 
(6.1%) 67^M 

1 ExC 

(12) 

3 S200E 

S150E 

S150E 

Delay 

2134 (90%) 

1658 (95?&) 

86M%) 

54 (51%) 

27 (26%) 

31 (29%) 

34.02 

35.28 

84.28 

239 
(6.6%) 547 ^ 2 

2 ExC 

(12,8) 

4 S200E 

S150E 

S100E 

S100E 

Delay 

2058 (87%) 

1658 (95%) 

106(8%) 

86(7%) 

80 (75%) 

27 (26%) 

29 (36%) 

31 (39%) 

32.35 

35.28 

73.52 

76.55 

269 
(7.4%) 

6 8 ^ 4 

4 ExC 

(11,11,12,8) 

6 S200E 

S150E 

s50E 

s50E 

s50E 

s50E 

Delay 

2004 (85%) 

1660 (96%) 

106 (13%) 

115(15%) 

85(11T6) 

155 (20%) 

105 (99%) 

27 (26%) 

29 (36%) 

26 (33%) 

31 (39%) 

30 (38%) 

30.29 

35.38 

73.99 

60.46 

89.25 

59.21 

486 
(13.4%) 8 0 ^ ^ 0 

4 ExC 

(11, 11,12,8) 

ISIpC 

(19) 

7 S200E 

S150E 

S50E 

s50E 

S50E 

S50E 

s50E 

Delay 

1968(8394) 

1659 (96%) 

106(13%) 

117(15%) 

86(1194) 

161 (20%) 

135(17%) 

105 (99%) 

27 (26%) 

29 (36%) 

24 (30%) 

31 (39%) 

32 (40%) 

24 (30%) 

30.18 

33.43 

79.96 

59.60 

88.22 

54.08 

53.39 

593 
(16.3%) 

88 —> 88 

4ExC 

(11, 11,12,8) 

1 SpC 

(17) 

Table 7-8 Synthesis results of the pipelined JPEG decoder core 
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The first three muhi-FPGA implementations (MFIs) targeting two to four Xilinx Spartan 

2E devices are partitioned across pipelined stages with no external subprogram modules 

and inter-device data packets are sent through the explicit communication channels (Ex:Cs) 

connecting the pipeline stages. In the last two MFIs targeting the JPEG decoder core onto 

six and seven devices, subprogram modules are targeted to a different device &om their 

parent calling modules and the resulting inter-device subprogram data packets are sent 

through the single subprogram communication channel {SpC) generated automatically by 

the multi-FPGA MOODS synthesis system. 

The area overheads in terms of slices for pipelined implementations of the multi-FPGA 

JPEG decoder targeting two to four devices are lower than the non-pipelined MFI given in 

Table 7-3. One factor contributing to this area overhead reduction is that devices in the 2-

to 4-device pipelined MFIs are only connected through ExCs. The ExC is a dedicated 

point-to-point communication channel that does not require channel resource arbitration 

and special communication cells (Section 5.4) to handle inter-device data packet transfers 

unlike SpC. Inter-device data sent through the ExC also removes the need for hardware 

duplication (Section 5.5.1), hence reducing the area overheads. 

Comparing the 2-device non-pipelined (given in Table 7-3) and pipelined multi-FPGA 

JPEG decoder core implementation in Table 7-8, the area overhead of the pipelined 

implementation is smaller by 285 slices (7.8%) and the average maximum achievable 

frequency (34.06 MHz) of the target devices is slightly lower compared to the non-

pipelined implementation (36.57 MHz). The non-pipelined multi-FPGA JPEG decoder 

core has two SpCs, to handle the inter-device data packets between the main JPEG core 

module and external subprogram modules (described in Section 7.4.3) whereas inter-

device data packets is sent through an ExC with a 12-bit data width in the pipelined 

implementation. 

The area utilisation of some target devices in Table 7-8 are under 20% as the XC2S50E 

device is the smallest device in the Spartan 2E FPGA family. If the MFI is targeted to a 

target technology with even smaller and cheaper devices, then the logic resources of the 

target FPGA devices can be utilised fully, making the design implementation more cost-

efficient. 
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Implementation No. of target 
devices 

Inter-device data 
packets (Channel) 

Clock cycles Max Freq 
(MHz) 

Design latency 
(ms) 

pipelined 2 4096 (ExC 4) 271696 32 41 8^8 

pipelined 3 
4096 (ExC 4) 
4096 (ExC 5) 271698 34 02 799 

pipelined 6 

4096 (ExC 2) 
4096 (ExC 3) 
4096 (ExC 4) 
4096 (ExC 5) 
8387 (SpC 1) 

795192 30 29 26.25 

non-pipelined 2 
37897 (SpC f) 
20480 (SpC 2) 1496464 36 34 41.18 

un-partitioned 1 — 178104 30 13 5.91 

Table 7-9 Computation clock cycles and inter-device data transfers in the 
pipelined multi-FPGA JPEG decoder core 

The computation clock cycles for decoding the test image (LENA.jpg) with a pipelined 

multi-FPGA JPEG decoder targeting two, three and six FPGAs are given in Table 7-9. 

The performance of the un-partitioned (single-device) and non-pipelined multi-FPGA 

JPEG decoder implementations (see Table 7-4) are given in the last two rows of Table 7-9 

for comparison. The maximum frequencies of the pipelined MFIs are the maximum 

achievable frequency of the slowest FPGA target device given in Table 7-8. 

The computation clock cycles of the 2-device and 3-device pipelined MFIs are reduced to 

a fraction (approximately 1/5) of the computation clock cycles needed by the non-

pipelined version. Subprogram modules are mapped to the same target device as their 

parent calling modules in the 2- and 3-device pipelined MFIs and hence inter-device data 

are sent via the explicit communication channels (ExCs) connecting the pipeline stages 

which are targeted onto different devices. A multi-FPGA implementation with only 

ExC(s) removes the delay associated with the arbitration and enabling of the tri-stated 

shared subprogram communication channel, thus reducing the number of computation 

clock cycles needed to decode the test image significantly. 

The computation clock cycles of the 6-device pipelined MFI is reduced to almost half the 

number of computation clock cycles in the non-pipelined implementation. The 6-device 

pipelined MFI has two external subprogram modules (update_dc_diff and DQ_multiple) 

transferring inter-device data packets through subprogram communication channel 1 (SpC 

I) with a 19-bit wide data width. The 6-device pipelined MFI has a total of 795192 

computation clock cycles and a design latency of 26.25 ms. It is possible for the non-
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pipelined implementation to reduce its latency by targeting a larger FPGA device as 

discussed in Section 7.4.3. The 2-device non-pipelined MFI with two external subprogram 

modules (given in Table 7-5) has a total of 629882 computation clock cycles, a maximum 

achievable frequency of 36.34 MHz and a resulting design latency of 17.33 ms. 

The area overheads and design latencies of the JPEG decoder core in the multi-FPGA 

implementations (MFIs) are plotted on the graph shown in Figure 7-25. These results 

show all three pipelined MFIs of the JPEG decoder core have better performances (in 

terms of area overheads and design latencies) than the 2-device non-pipelined MFI. The 2-

and 3-device MFIs have area overheads of under 7% and design latencies of about 8 ms, 

which is about 35% more than the design latency (5.91 ms) of the un-partitioned (single-

device) implementation. 

ro 10 

* 2-device pipelined MFI 

H 3-device pipelined MFI 

+ 6-device pipelined MFI 

A 2-device non-pipelined MFI 

* un-partitioned (single-device) 

10 20 30 40 
Design latency (ms) 

5 0 

Figure 7-25 Area overhead and design latency of pipelined and non-
pipelined multi-FPGA JPEG decoder core 

The experiments in this section show the synthesis of a large complex behavioural design 

(a behavioural JPEG decoder core with over 2000 lines of VHDL code, and MOODS 

synthesis run time' of up to an hour) into a pipelined multi-FPGA system that can achieve 

performances comparable to single-device implementations. Synthesis of a large 

' This is the synthesis run t ime of a single-device implementa t ion using the or iginal version of M O O D S 

without the mul t i -FPGA synthesis enhancement . 
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behavioural design into a multi-FPGA system poses difficult partitioning questions 

(outlined in Section 1.1) that need to be answered. Solutions to how best to partition a 

design are not immediately obvious to the user and this can be a challenge to the user if 

the design contains a large number of modules which can be partitioned, leading to a large 

number of possible partitioning solutions. The fully automated multi-FPGA synthesis 

design flow in MOODS answers these questions by generating multi-FPGA systems with 

asynchronous communications automatically and as transparently to the user as possible. 

This reduces the design time and effort required by the user. 

As with the examples in Chapter 6, the multi-FPGA synthesis run times of the JPEG 

decoder remain similar to the run time of a single-device implementation using an original 

version of MOODS without the multi-FPGA synthesis enhancements (i.e. runtime 

approximates for pipelined and single-device implementations are close to 1 hour). 

7.5 Summary 

The successful implementation of the multi-FPGA JPEG decoder project described in this 

chapter has demonstrated the automated synthesis and optimisation of a large complex 

system targeting a multi-FPGA implementation. MOODS, with the two-phase K-way 

partitioning and design profiling, has partitioned and optimised a single large behavioural 

VFIDL design into a design with multiple partitions, and allowed the targeting of 

heterogeneous FPGA devices in a multi-FPGA system. 

The user now has the choice of targeting a large behavioural design onto multiple smaller 

devices without having the need to get a larger and more costly target FPGA device if the 

design requirements are met with a multi-FPGA system. The user would be able to use 

existing FPGA devices or a number of FPGA development boards configured into a multi-

FPGA system for design prototyping. This saving in design cost and flexibility in using 

existing development boards with a collection of smaller devices would not be possible 

otherwise if a single large behavioural design is not partitioned. 



T.B. Yee, 2007 Chapter 7: Practical synthesis 2 2 2 

The automated insertion of asynchronous subprogram communication subsystems 

(comprising of commimication cells and arbiters) enables modules in independently 

clocked domains to transfer data asynchronously through shared bi-directional subprogram 

communication channels (SpCs). The pipelined multi-FPGA JPEG decoder demonstrated 

the use of explicit communication chaimels (ExrCs) connecting the pipelined stages in the 

JPEG decoder core to improve the performance of the non-pipelined multi-FPGA 

implementation. The asynchronous communication channels have built-in synchronisation 

and self-scheduling properties which provide safe communication of inter-device data in 

the multi-FPGA system. Therefore, the user can concentrate on the behaviour of the 

design and not the complexities of how the target devices can safely communicate. 
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Chapter 8 

Conclusions and future work 

The partitioning enhancement to the MOODS synthesis system reported in this work has 

provided a high-level synthesis system to synthesise and automatically generate a multi-

FPGA system composed of heterogeneous re-configurable devices from a single VHDL 

description. The K-way partitioning algorithm and the communication subsystem 

optimisation algorithm optimise the multi-FPGA system in terms of design latency across 

FPGA boundaries, while satisfying the area and I/O constraints of the target devices. 

Target device information (area in slices and number of I/Os) and design activity profile is 

used to guide the partitioning algorithm are fed into MOODS. The integration of design 

activity profile and the K-way partitioning algorithm are covered in Chapter 4. 

During synthesis, explicit communication channels (ExCs) or subprogram communication 

subsystems are automatically inserted into the multiple structural outputs of the design. 

ExC provides a dedicated point-to-point communication channel connecting pipelined 

stages in the pipelined multi-FPGA design. This supports the Communicating Sequential 

Processes [111, 112] paradigm, which encourages modular design. Channel handshaking 

ensures that the pipelines stages will work irrespective of the operation execution time of 

individual stages in the asynchronous pipeline. The communication subsystem provides an 

asynchronous subprogram communication channel for transferring data packets 

between modules which exist in different clock domain devices. This extends the multi-

FPGA synthesis capability to support partitioning of VHDL subprograms and functions in 

the VHDL hierarchical structure (Section 2.2.3). Communication cells (transmit and 

receive cells) and arbiters are the basic building elements of the subprogram 

communication subsystem. Transmit and receive cells deal with the two-phase 

handshaking of inter-device data across shared bi-directional communication channel(s) 

and the communication channel is optimised with respect to the I/O constraint of the target 
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FPGA devices. Details on the generation of communication subsystem(s) and hardware 

duplication are given in Chapter 5. 

Experimental and simulation results of the pipelined multi-FPGA implementations of the 

VHDL examples in Chapter 6 and the pipelined multi-FPGA JPEG decoder in Chapter 7 

show that the pipelined implementations only incur a fraction of the area overheads and 

design latencies compared to the non-pipelined multi-FPGA versions. Area overhead and 

the design latency are used as the metrics for evaluating the quality of the multi-FPGA 

implementations in these chapters. System throughput is another possible metric as 

throughput measures the synthesised design's ability to handle a high volume of 

transactions. However, in many applications, design latency is more suitable as it 

measures the time it takes the synthesised design to perform any given transaction from 

start to finish. The area overheads for most of the pipelined multi-FPGA implementations 

are under 10% and the lowest area overhead of 3% for the delay-optimised multi-FPGA 

pipelined implementation of the inverse discrete cosine transform example; together with 

increase in the average maximum achievable frequencies of target devices in all the 

pipelined examples including the pipelined JPEG decoder. In the case of the quadratic 

equation solver example, the design latency of the pipelined implementation is lower than 

the un-partitioned single-device implementation. 

Results presented in Chapters 6 and 7 show that pipelined multi-FPGA systems can be 

synthesised to achieve performances comparable to single-device implementations. With 

the multi-FPGA synthesis enhancement, it is now possible to synthesise a large 

behavioural design and target the partitioned design onto multiple smaller (existing) 

devices without having the need to get a larger and more costly target FPGA device if the 

design requirements are met with a multi-FPGA system. This saving in design cost and 

flexibility in using existing development boards with a collection of smaller devices would 

not be possible otherwise if a single large behavioural design is not partitioned. 

The multi-FPGA synthesis run times remain virtually unaffected for all the VHDL 

examples in Chapter 6 and the JPEG decoder core in Chapter 7 compared to the run times 

of single-device implementations. The multi-FPGA synthesis enhancement, with the fast 

time-to-market, efficient and fast design space exploration advantages of a high-level 
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synthesis environment, enables the rapid realisation of multi-FPGA systems with 

asynchronous communications. 

The asynchronous communication channels in the multi-FPGA systems offers a number of 

benefits to the user; 

• The first benefit is the option to trade off performance in I/O limited target devices 

(i.e. allows multiple external subprogram modules to share a common channel and 

sending of multiple data packets over an asynchronous subprogram 

communication channel of a smaller data width). 

• The second benefit is the temporal independence between target devices as each 

board level target device is viewed an independent locally clocked processing unit 

with asynchronous communication channels, reducing clock skew problems in a 

large design. 

• The asynchronous communication channels have built-in synchronisation and self-

scheduling properties which provide safe communication of inter-device data in 

the multi-FPGA system. Therefore, the user can concentrate on the behaviour of 

the design and not the complexities of how the target devices can safely 

communicate. 

The work presented together with a hardware demonstrator has demonstrated a fully 

functional behavioural multi-FPGA synthesis tool. To the best of our knowledge, high-

level synthesis of multi-FPGA systems with asynchronous communication channels 

crossing clock domains is explicitly automated for the first time. There is scope for 

improvement in the currently implemented system, both with the multi-FPGA partitioning 

process and with the asynchronous communication mechanism. A number of suggested 

extensions are described within this chapter, which could form the basis for future work. 
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8.1 Future work 

Experience gained Aom using MOODS and extending the existing MOODS synthesis 

system for multi-FPGA synthesis has brought to light some of the limitations of the multi-

FPGA synthesis in MOODS and several extensions remain to be addressed: 

8.1.1 Shared memory elements 

The multi-FPGA synthesis enhancement in MOODS is not able to handle access of shared 

memory blocks such as ROM and RAM across target devices. Currently, the ICODE 

process and subprogram modules accessing memory elements declared in the VHDL 

architecture have to be mapped to the same target partition (device) as the program 

module (Section 2.6.2). This restriction may result in a larger target device for the 

partition with the shared memory block and reducing the configurations of target devices 

in the multi-FPGA implementation. However, the multi-FPGA synthesis tool does support 

memory blocks (ROM and RAM) local to the process or subprogram modules as these 

memory elements are declared within the scope of the VHDL process or subprogram. A 

shared memory controller which handles the data coherence and resource arbitration is a 

possible extension to support shared memory in a multi-FPGA system. This memory 

controller can be mapped to one of the existing target devices in the synthesised multi-

FPGA design or a separate target device with a large memory element. The downside to 

this extension is the Address/Data lines to the memory elements and the control signals 

(from target devices) to the memory controller would utilise more I/O resources of target 

devices and the design latency is likely to increase due to inter-device memory accesses. 

8.1.2 Explicit communication channel structures 

The asynchronous explicit communication channels connecting the implied pipeline stages 

in the multi-FPGA implementation can be extended further to allow more complex 

channels than the unidirectional point-to-point structure described in this work. Linear 

pipeline stages have only a single input and single output channel, whereas non-linear 

pipeline stages can have multiple input and output channels. Ayom is a pipeline stage with 
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multiple input channels and a single output channel. A fork is a pipeline stage with one 

input channel and multiple output channels. Non-linear asynchronous pipeline structures 

[159], including join, fork, and more complex configurations in which channels are 

conditionally read and /or written can be used to build more complex systems. Another 

possible configuration is to create an explicit communication channel that is able to send 

and/or receive multiple packets of data determined by the data width of the channel. 

Trade-offs between latency, area, and I/O resources, taking into account the design activity 

profile of modules in the design would be performed by the synthesis tool to determine the 

optimum data width of the channel. 

8.1.3 Integrating partitioning exploration with the MOODS 
optimisation process 

The two-phase partitioning exploration is currently not integrated with the MOODS 

optimisation process but it does allow the user to re-run the MOODS optimisation stage 

after examining the partitioned design. It is possible to relax or tighten the schedule of the 

modules and iteratively improve the multi-FPGA solution using the current partitioning 

solution to guide the MOODS optimisation process. A similar approach in SPARCS 

(Section 3.3.2) performs an iterative area/latency exploration of blocks of operations 

where the schedule of a block is either relaxed or tightened such that the design constraints 

are best satisfied. 

The two-phase K-way partitioning approach (Section 4.4.1) in MOODS performs K-way 

partitioning on the optimised ICODE modules and optimises the subprogram 

communication channel(s) if the design contains ICODE subprogram modules. The main 

aim of the K-way partitioning algorithm is to minimise the number of inter-device (or 

cross-domain) data transfers by grouping modules and subprogram modules with their 

corresponding calling modules, taking into consideration the utilisation of device area and 

I/Os. The MOODS synthesis core performs scheduling, allocation and module binding 

according to the user-defined optimisation objectives. MOODS performs multiple simple 

optimisation transformations, adjusting the scheduling of the control state nodes in the 

control path, and the allocation and binding of data path nodes in the data path. 
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ICODE process modules have their own control paths controlling the data path units 

within the module and explicit communication channels introduce an implied pipeline 

structure whereby channels connect the process modules (pipelines stages) in a design. 

Channel handshaking ensures that the pipelines stages will work irrespective of the 

operation execution time of individual stages in the asynchronous pipeline. This allows the 

schedule of a process module (pipeline stage) to be either relaxed or tightened such that 

the number of external modules are reduced, hence reducing the number of inter-device 

communications. Relaxing (increasing) the schedule length could reduce the area of a 

partition and increase the latency of the pipeline stage and tightening the schedule works 

vice versa. 

8.1.4 Target Architecture 

At present, the MOODS multi-FPGA synthesis system targets a multi-FPGA system at the 

board-level. This board-level architecture allows an arbitrary number of heterogeneous 

development boards to be connected up to form a multi-FPGA system. The A7-way 

partitioning algorithm uses the area and I/O information for each target device in the 

assignment of modules to ^-partitions, where K is the number of target development 

boards available. Using the same target device information, the partitioned structural 

output can be targeted to a single board with multiple re-configurable (FPGA) devices, 

having fixed interconnects between these devices. The FPGA devices can be treated as 

individual locally clocked processing units communicating asynchronously using the 

communication channels described in Chapter 4, or these devices can be clocked 

synchronously from a single global system clock. For a single global clock architecture, 

the double buffer synchronisers used for data synchronisation over multiple clock domains 

are no longer required in the communication cells since data communications between 

devices are now in a single clock domain. It is possible to target a partition design onto 

multiple boards, each having a single re-configurable device, or a single board with 

multiple re-configurable devices, or a combination of both as illustrated in Figure 8-1. 

Programmable interconnection resources or Field-Programmable Interconnect Devices 

(FPIDs) are commonly found in multi-FPGA system to provide flexible routing 
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capabilities between the FPGA devices. One of the most commonly used routing 

architectures is the partial crossbar architecture [92, 160]. The programmable interconnect 

devices can be used to cormect partitions where high performance is required. A target 

architecture with FPIDs, together with the I/O multiplexing packet-based communication 

channels might improve the overall performance of the generated multi-FPGA system. 

This can be formulated as an optimisation problem, where trade-offs between performance 

and I/O utilisation are performed, whilst satisfying design constraints such the number of 

FPIDs, programmable pins and FPGA area and I/Os available. 

Development board with a single re-
configurable chip (FPGA). 

Standard IDE cable 

: 
Fixed inter-device 

interconnects 

Backplane bus 

g (a 
m-

- A — I t — 5 I - , 

• 
» £B r a 

Development board with multiple re-
conflguraMe chips (FPGAs) 

a) Multi-board FPGA 
system b) Multi-FPGA board 

c) Multi-FPGA board in a 
multi-board system 

Figure 8-1 target architectures for multi-FPGA system 

Utilising FPIDs in the target multi-FPGA system, the MOODS multi-FPGA synthesis 

system can target a flexible and modular architecture, which would provide a good 

platform for prototyping and allow easy extension of the target architecture to suit the size 

of the synthesised design. 
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