UNIVERSITY OF SOUTHAMPTON

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

Volume 1 of 2

by

Tack Boon Yee

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

April, 2007

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

by Tack Boon Yee

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural
description into a structural representation. This thesis describes an enhancement to the
original MOODS system that provides an automated mechanism to target a single
behavioural input design onto heterogeneous re-configurable devices, forming a multi-
FPGA system. This thesis focuses on some of the problems associated with multi-FPGA
synthesis, in particular the area utilisation of target devices and input/output (I/O)
constraints in a multi-FPGA system.

The multi-FPGA partitioning mechanism has added a new optimisation objective into
the MOODS synthesis system. Not only does it provide an automated means of
partitioning the design into separate blocks, the partitioning algorithm optimises the
utilisation of device area and I/O taking into account the activity profile of the design, and
allows performance and I/O utilisation trade-offs to be considered. Asynchronous channel-
based communication and pipelining techniques in multi-FPGA synthesis can produce a
multi-FPGA system with performance close to a single-device implementation.

The contribution of this work presented herein describes multi-FPGA synthesis with
the insertion of asynchronous explicit and implicit subprogram communication channels
between target devices in the synthesised multi-FPGA system without any user
intervention. Experiments and simulation results of test examples and a hardware
demonstrator presented in this thesis provide evaluation on the performance of the
synthesised non-pipelined and pipelined multi-FPGA systems with asynchronous
communications. Results showed that the multi-FPGA synthesis enhancement integrated
within the MOODS environment provided a rapid realisation of pipelined multi-FPGA
systems with asynchronous communication channels at the expense of an acceptable
increase in area overhead and design latency.

Contents

ACKNOWIEdgEMENTS ...t e e e eeeeeeeeaas 18
Chapter 1: INtrodUCtion ... e eeeeeeeee e e e e e s eaans 19
1.1 Partitioning and high-level SYNthesisc.cooooivoeoireeeee oo 19
1.2 ThesiS STIUCTUIE ..ottt ettt es e 22

SYSTOM L. e r e e e e e e e e reernn 24
2.1 High-1evel SYNthesiS......cvooiiiieiiieeicccee e e 24
2.2 Input description lANGUAZESc.coueiririiiiiiieiititiee ettt eeer s ee 26
2.2.1 SYSEMC Lottt 26
222 VETHOZ oottt ettt 26
223 VHDL oot 27
2.3 Compilation and internal representationc..coooovoeueeeereeeeeeeeeeee e, 28
2.4 Scheduling, allocation and module binding..............ccocovevimiremeeeeeeeeeeee e, 31
2.5 Design Space eXPlOTAtIONc.eiveiiieeriiee it 35
2O MOODS ...t 36
2.6.1 Synthesisable VHDL subset in MOODSooooviieooiiii oo, 39
2.6.2 ICODE @ENEIAtION.....ccuiiiuieriiiierieie ettt 40
2.6.3 Data path and control path Structurecoooveeioiiieeiie e, 44
2.6.4 TranSTOTMAIONS ...c.eivervriieieeeietit ettt e 51
2.6.5 COSt UNCHON ... e 57
2.6.6 Optimisation algorithms........c..cocooviiiiiiiiii e, 58
2.7 POSE-PIOCESSINGcvevinieriiiiaiieieett ettt ettt 61
2.8 SUITIIIATY ..ottt ettt et e ettt ee e 62
Chapter 3: Multi-FPGA partitioningccccceeeiimnceincciereeeeeseiieenn 63

3.1 BACKEIOUNG ..ot ettt 63

3.2 Partitioning MethodOLOZYcvevuieiiriieieeeiee e 64

3.2.1 Overview of partitioning algorithms.......c..cooceveieieiun e, 64
3.3 Multi-FPGA synthesis SYSteIMIS ...c..ovvouiiiviiiioiiieeeeee oo 78
3.3.1 COBRA-ABS ... e e, 79
332 SPARCS . e 81
3.4 Data communications and communications Synthesis...............oc.oocvovvioveveeeeeeeenen 84
3.5 Data synchronisation over multiple clock domainsocoovooviveioioeeeeeeee 85
3.5.1 Handshaking data between clock dOmainsoeooiivrioioiioeeereeeeeeeeeen s 87
3.5.2 MICIOPIPEIINES. ...ttt 89
3.5.3 Dual port asynchronous FIFOcc.ooiiiiiiiiii e 91
3.6 Design activity PIOTIHIE ...eoveiriviieiieei et 94
3.7 SUIMIMIALY ..ottt ettt ettt ettt e te et et e e e e et e e e e eee et e et e eee e e e e ees et et eene s 95
Chapter 4: Multi-FPGA partitioning in MOODS............ccoovevirnvennnes 96
4.1 INTEOQUCTION ...ttt ettt ettt eee s e e 96
4.2 MOODS synthesis system with multi-FPGA partitioning...............cccoccocovveveerenn... 97
4.2.1 Design partitioning phases in MOODS ...ttt 97
4.2.2 Insertion of the partitioner into MOODScoouvmuiiiiiiiiieeeeeeeeeeeee 100
4.3 Module call graph 1epreSentation.......c.cvivceereiieeeeeeeeeee e 104
4.4 Problem fOrmulationccviiiiiiniiieie e 106
4.4.1 Modified K-way partitioning in MOODSoooiiiiiiiiiieeeeee e, 107
4.5 Integration of the design activity profile and the K-way partitioning algorithm.... 115
4.6 ICODE Module modifiCations.........coceveeuiriiiiaiiiiiiiiiieee et 119
4.7 SUIIMATY ..ottt ettt ettt eas b s esn e e e e e e easeessesseseesesessesbesseseeneeeas 123
Chapter 5: Communication channels...............cc.ceccieeviiiieeennnnen. 126
5.1 INTTOAUCTION ..ottt ettt es e ees e 126
5.2 Communication channel interfacec.ocovviriiiiirieeeeeiie e 127
5.3 CommuniCation ProtOCOL......coiririiieieiitiret ettt ettt 131
5.3.1 Asynchronous data transfer protocolccccoeeviviiiiiiiiiiieiie e 132
5.3.2 Extended burst mode state machinescoceeverieiiiie i, 133
5.3.3 State encoded output communication cells........ccooovviiiiriiiiniiniiii e 136
5.3.4 Data transfer protocol for communication CellS............oocceivviiiiiiiiiiieiiiineeeene. 146
5.4 Subsystem architeCtUIEcccooiviiiiiiiiiiet ettt 150

54T TranSIIIE CEIL oot 150

542 ReECEIVE CEIL.uiiiiiiiiii e e 154

5.4.3 Communication channel (data bus) arbiter..............c....ooooiioeee 156
5.5 Hardware generationcecioiiiiiiioioioces oo 157
5.5.1 Data latch generation and hardware duplication...................c.ccocovooeeveerean 158
5.6 SUIMIMIATY ...oviiiiiiit ittt e e, 160
Chapter 6: Multi-FPGA implementation results...........ccccc.......... 161
6.1 INTrodUCTIONottt e, 161
6.2 Experimental results (without explicit communication channels).......................... 163
6.2.1 Quadratic eqUAtION SOLVET ...cooviiuiiiiieiiece e 164
6.2.2 Cubic €qUatION SOIVET......ccccviiiiiiiiticicei et 167
6.2.3 Inverse discrete cosine tranSfoTm..........c.oooviiie oo e 169
6.2.4 Triple-data encryption standardc.ocooooovieiieeeeeeeee oo 170
6.2.5 256-bit advanced encryption standardc.ocvuveiiiiiie e 172
6.2.6 DISCUSSION Of TESULLS ..c.vovieiieiietiiccie ettt e e 173
6.3 Experimental results (with explicit communication channels)............................... 176
6.3.1 Pipelined quadratic equation SOIVETcc.ccooiveieeeeieeeeeeee e 176
6.3.2 Pipelined inverse discrete cosine tranSform................cooveeeoeeo e 178
6.3.3 Pipelined 256-bit advanced encryption standardc.ocooevveoveeeeveeren, 179
6.3.4 DISCUSSION OF TESULLSeeiiiiiiciicie ettt 180
6.4 SUIMIMATYooovitiieiiiie ettt e e e ee e 183
Chapter 7: Practical synthesis...........cccccuvveerniieniiireeiccec e eeeenananns 184
7.1 INETOAUCTION ..ceivi ettt ettt enas 184
7.2 FPGA-based development BOardc..ocoeeviiiiiieiiiee e 184
7.2.1 Hardware development boardcccccocooiviiiiiiiiii e 185
7.2.2 Input/Output and VGA extension boardc..ooeevvoiiiveiciiecoiceeeee e 186
7.3 JPEG decoder in a multi-FPGA SYSteIMcecoiveviiiiiie et 192
7.3.1 Sequential baseline JPEG decoder..........c.oovovoiiiiiiiiiiiieeeeeeeee 192
7.3.2 Partitioned JPEG decoderccooueioiiiiiicec e 198
7.3.3 VHDL DESIZN ...ttt 200
7.4 Results and performanCe..........ooe e iieriioiiriiit ittt e ettt ee e ess e s eas s 202
7.4.1 Synthesis results of non-pipelined multi-FPGA JPEG decoder....................... 206
7.4.2 Computation cycles and inter-device data transfers.............c..occoeeeviieveeiennen, 209

7.4.3 FUrther analySiScoooiiiiiiiii et 210

7.4.4 Pipelined multi-FPGA JPEG decoder........c.oovoouueneei oo 216

7.5 SUITIITIATY ..ottt ettt ettt ettt e e e oo e s e e ees e 221
Chapter 8: Conclusions and future work.................cccceeevvvnrennnn. 223
8.1 FULUIE WOTK ..ottt e 226
8.1.1 Shared MemMOTy €leMENTSc.ovieiieiiieiiiis e, 226
8.1.2 Explicit communication channel StruCturesoeoveroroooooeoeeeeeeeeenee, 226

8.1.3 Integrating partitioning exploration with the MOODS optimisation process..227

8.1.4 Target ArchiteCtUIEoovieuioieiiieieieee e 228
ReferencCes ... 230
APPENAIX A PaPr ..t e e e e e e e e e e remaeeeneees 248
Appendix B: Hardware demonstrator in detailcccceoeen....... 256

B.1 JFIF (JPEG File Interchange FOrmat)cccooviiiiiiiiieiiee e, 256
B.2 JFTF tESt IMAEES ... ecuveiiitiaieeieeiieeie ettt ettt s e e e s ettt eete s e e eeeeeeeeees 260
B.3 Simulations of test image decoding..........covivieviviiiii i 263
B.4 Hardware demonstrator development board pin assignments..............c..cocovenenn... 272
B.5 Circuit description of the Bt121 triple 8-bit VideoDACcc.covovveiveeieeeeeeee 281
B.6 Digilent D2-SB system board reference manual..................ooocoiiieioiioiiioiieeeeen, 285
B.7 Digilent DIO4 peripheral board reference manual...............coooooovivivieeiiieeee 292
Appendix C: File formatsccccooriimiiiiiii e 301
CLLTCODE ... et 301
C.2 Partitioning information (par) file........ccoovviiiiiiiiiiiii e 308
C.3 Module call list (.716]) fIleoooiiiiiiiiiiic e 309
Appendix D: VHDL code listingscccccoviiimmiiiiirrcer e eeenes 311
D.1 Behavioural VHDL example designs..........cccoviviriiieieeeiiieeiee e 311

D.1.1 Quadratic €quation SOIVET..........cccociiiiiriiiriiie et 311

D.1.2 Cubic qUAtION SOLVET......iiiiiiiiiiiiie ettt 322

D.1.3 Inverse discrete cosine transform........c.ocvoivveiiiiiieiiiiie e 324

D.1.4 Triple-Data Encryption Standardcccccocivioiiiiiiiiiiiie e 335

D.1.5 256-bit Advanced encryption standardccoceeeeieiiiiiiiiiiie e 342

D.2 Behavioural pipelined VHDL eXamplesccoovviieeiiieeeeiicieieececeeeeeeeee 362

D.2.1 Pipelined quadratic equation SOIVETcooooviieriiiiiiii oo 364

D.2.2 Pipelined inverse discrete cosine transformo..occoovveeecioiienn, 367
D.2.3 Pipelined 256-bit advanced encryption standardcccooveeciviiiieeenn.. 373
Appendix E: MOODS multi-FPGA synthesis guide........c........... 380
E.1 The MOODS OPtINISET ..eeviiiiiiriiiiie ittt et ee e 380
E.1.1 Setting up @ cost fUNCION ...vvieeiiieiiceiiiieie et 382

E. 1.2 OPUMISATION ..ottt ettt et ees ettt 384

E.2 K-Way PartitiONIIZ.......eiovteetieitiitait ittt ettt ettt e et 385

List of Figures

Figure 2-1 Design flow of a generic behavioural synthesis SYStem........coovvveeeverceeerannen 25
Figure 2-2 VHDL hierarchy StruCtUre..........ocoovrveioiiiiioiieeieeee oo 28
Figure 2-3 Data flow graph representationcoccoeecviiseeiiieeeeoeeee oot 29
Figure 2-4 Control and data flow graph representationcc.oocvovieoereeice oo 30
Figure 2-5 Extended timed petri net repreSentation..........c.....oeiveveeeeeeeeeeeeeer oo 31
Figure 2-6 Example of ASAP and ALAP schedulesc..ooooiiimiiieeeeeeeeeee 32
Figure 2-7 Example of list scheduled graphccccovooioiiiiei i 33
Figure 2-8 Area versus delay design SPaCEc.ooovioviviiiiee e, 36
Figure 2-9 Original MOODS synthesis system design flow............cccoocoovivieieeceiinee, 38
Figure 2-10 Back-end synthesis using third party tools......c........oovvviiviiiiiiiiiiiiiieeeeee 39
Figure 2-11 VHDL and the generated ICODE for a sum/multiply example..................... 43
Figure 2-12 Initial control and data flow graphs for the sum/multiply example 45
Figure 2-13 Execution of chain instruction in a single control state..............cc.ccccevierennnnen 47

Figure 2-14 The steps to applying transformations in the iterative optimisation process .. 52

Figure 2-15 Design cost plotted against a single one-dimensional space.............cc.ccooone.. 59
Figure 3-1 Kernighan-Lin algorithm............cccoooiiiiiiiiii e 66
Figure 3-2 Bucket data structure in the FM algorithm...............cccccoooiiiiiiiiiiie e 67
Figure 3-3 Example of a single pass in the FM algorithm...............c..ccooiiiiiiie 69
Figure 3-4 Successive steps in Hierarchical clustering...............ooovovvvieiieieviinieeiiecc e 71
Figure 3-5 Cluster tree produced by Hierarchical clustering...........cccoocovviiiiiiiiincociene. 71
Figure 3-6 Structural tree of the hierarchical set-covering algorithm...........ccccoceviiieeen. 72
Figure 3-7 Hierarchical connected graph..........cccooviiiiiiiiiiiiiiiiiieecee e 72
Figure 3-8 Pseudo code of the genetic algorithm...........ccccocoeoiiiiiiiiiiiiiie e 74
Figure 3-9 Selection using roulette wheel teChniqueccoovvvviiiiviiiiiiiie e, 75
Figure 3-10 Example of Uniform CroSSOVETcoiiiiiiiiiiiie e 77
Figure 3-11 Conceptual view of superposition in 4-dimensional datapath space............... 80
Figure 3-12 Pluggable 3-D block CONCEPL ...voiviiiiiiiiiiiiiiiiiiie e 81

Figure 3-13 Four-dimensional design space for a partitioned behaviourc.ccooceeee 82

Figure 3-14 FunctionBus architeCture.........oocvivieiiiiiiiieeioe e 85

Figure 3-15 Double buffer SynchroniSer..........ococoioiiiiieeeee oo 86
Figure 3-16 Handshaking signalling protocolscccooouoviieeee e 88
Figure 3-17 Dual-rail encoding SChEME........c.coveiiiioiiiieiee e &9
Figure 3-18 Micropipeline WithOUt proCesSSINgc.ooovvoiiviiiieie e 91
Figure 3-19 Asynchronous FIFO block diagramc.cocoeeeeemnonii oo 92
Figure 4-1 Generated SYSTEM SIIUCTUIE ..oviveeriiriariiieereeie ettt eee e eeeee et e et eeeeeeaens 96
- Figure 4-2 Insertion of K-way partitioner into the MOODS synthesis system................... 98
Figure 4-3 Types of nodes and edges in the module call graph..............cococcovvveveiecre 104
Figure 4-4 Outline of the K-way partitioning algorithm...................c.oooooiioiiiee 108
Figure 4-5 Greedy-based SITateZyccocovviiiiriiiiiiee e e 110
Figure 4-6 Outline of the subprogram communication channel optimisation algorithm.. 112
Figure 4-7 Generation and assignment of communication subSystems............cccoeveuenev.. 114
Figure 4-8 Example of I/O parameter sizes and data packet count..........c.ccoevevveeveeveeen. 115

Figure 4-9 Example of module call list and simulation of subprogram module activations

... 117
Figure 4-10 Example of the design profile distribution graph................c.cocoooiiieeinnn, 118
Figure 4-11 Partitioning ordering sequence with design profilingc.ccocoeiveenenn. 119
Figure 4-12 Inter-FPGA subprogram module calling mechanism..............c.cccooveevveeenenn.. 121

Figure 4-13 Module call graph of a module with internal and external subprogram module

CALLS e ettt ettt 122
Figure 4-14 Modified MOODS synthesis system with multi-FPGA partitioning............ 124
Figure 5-1 Generated SyStem SIIUCTUIEcovieriiieiiiieiicitee et ee e 126
Figure 5-2 ICODE expansion and channel component templatesocccceererirriennene 127
Figure 5-3 VHDL black boX COMPONENTc.ooviiviiiriiiiiiicieeiiiiee e, 128
Figure 5-4 ICODE expansion eXamplecccovvieiiiiioriiiiiieieeeeiieie et 129
Figure 5-5 Generated VHDL entity with explicit and subprogram communication channel

SIENAL AECIATALION ..vivviiiiiiciic e 130
Figure 5-6 Communication cell connections in the multi-FPGA systemcccccevveenee 133

Figure 5-7 Extended burst-mode specifications for asynchronous channel controllers in
COMMUNICAION CELIS...uiitiiiiiii it 135
Figure 5-8 Block diagram of finite state machine with state encoded registered outputs 136
Figure 5-9 State diagram of the transmit cell FSM..........oooiiiiiiiiiiii e 138
Figure 5-10 State diagram of the receive cell FSMccccooiiiiiiiiiiiiee e 140

Figure 5-11 Example of the single-arbiter and multiple-arbiterccoooiiiiii 142

Figure 5-12 State diagram of the single-arbiter cell FSM.............oo i, 143
Figure 5-13 Example of LUT mapping of communication cellS ... 144
Figure 5-14 State diagram of the multi-arbiter cell FSM.........ooiiiiii e 145
Figure 5-15 Four-phase signalling in communication channel arbitration..........oooovvvv.... 147
Figure 5-16 Asynchronous data transfer protocol (input parameters)cc............ 148
Figure 5-17 Asynchronous data transfer protocol (output parameters) 149

Figure 5-18 Generated structure for a multi-packet input data transfer via the txcell node

... 151
Figure 5-19 Structure generated for receiving a multi-packet output data transfer via the

EXCELL_IOGE ...l 152
Figure 5-20 Generated structure for a shared txcell nodecccoovoveeveeeeieceeeerinn, 153
Figure 5-21 Structure generated for receiving a multi-packet input data transfer 154

Figure 5-22 Generated structure for receiving a multi-packet output data transfer via the

FXCCIL MOGE ... 155
Figure 5-23 Look-up table block and status registers in the multi-arbiter cell 157
Figure 5-24 Register arrangement for original subprogram module /0 parameters........ 158

Figure 5-25 Latch and duplicated register arrangement for subprogram module 1/0

parameters across FPGA boundariesocooovioiioiioioiceeeeeeee e 159
Figure 6-1 Module call graph of the quadratic equation SOIVETc.ccveevvevieeeeeieeaee, 164
Figure 6-2 Design space of the un-partitioned quadratic equation solver 166
Figure 6-3 Module call graph of the cubic equation SOIVETcccoeivereeveceeeeeeeeeeeene. 167
Figure 6-4 Module call graph of inverse discrete cosine transform example................... 169
Figure 6-5 Module call graph of the triple-DEScccooooiiiiiiiiieeeeceeeeeeeeee e 171
Figure 6-6 Module call graph of 256-bit advanced encryption standard.......................... 172
Figure 6-7 Area and I/0 utilisation of devices in example designsccceceveveeveneee. 174
Figure 6-8 Module call graph of the pipelined quadratic equation solver........................ 176
Figure 6-9 Module call graph of the pipelined inverse discrete cosine transform example

... 178
Figure 6-10 Module call graph of the pipelined 256-bit advanced encryption standard

EXAIMIPLE ...ttt ettt ettt e e e aanes 179
Figure 7-1 D2-SB development board layout picture..............oocoveooiioiieieicieeeeeee 185
Figure 7-2 DIO4 digital I/O board 1ayout piCtureocoovveiiiee i 186

Figure 7-3 Key components and their locations on the I/O and VGA extension board ... 187

Figure 7-4 9-pin RS-232 serial port interfacecooovvioivoioeee oo, 188

Figure 7-5 VGA Interface CONNECTIONS ..o.viuviiiiiviiiiiiieeeiie e e 190
Figure 7-6 VGA timing for a standard 640x480 display modeoocvevveiveceen 191
Figure 7-7 Block diagram of a DCT-based JPEG encoder and decoder........ccoovevveeenr.... 193
Figure 7-8 Zig-zag arrangement of the DC and AC coefficients.............cccooovvvvevveeei. 194
Figure 7-9 Example of entropy decodingooooiiviooiiioi oo 195
Figure 7-10 2-D IDCT archit@CtUI........couiiveuieierieieieee et 197
Figure 7-11 Example of the IDCT PrOCESS c.ooviiiiiiiiieieeceiee e 198
Figure 7-12 Overview of the hardware demonstrator SYStemcoocoovvveveeeererereeenn. 199
Figure 7-13 VHDL modules in the hardware demonstrator SyStemc..cocoeceevvcveveneen.. 201
Figure 7-14 Frame buffer memory mapping of 8Xx8 blocks..........ccccoovvvveivciiiiieei . 202
Figure 7-15 Multi-FPGA JPEG decoder demonstrator...............ccoooovoviicroeeeeeeeenn 203
Figure 7-16 Multi-FPGA JPEG decoder demonstrator (Top VIEW)...........ccccoovevevreennn, 204
Figure 7-17 Original 8x8 block values from test image (LENA JPg) .c.cooovvveevveviienne, 205
Figure 7-18 Test image (LENA . jpg) 8x8 block values decoded using the multi-FPGA
JPEG deCOer ...t 205
Figure 7-19 Double buffer synchroniser inSertioncooeeeeeeieiiioiiciecieeseeeeee. 207

Figure 7-20 Module call graph representation of the non-pipelined JPEG decoder core.207

Figure 7-21 Structure of subprogram communication subsystem in the non-pipelined

Multi-FPGA JPEG decOder........ccuiiiiiiiiiiiiei e, 211
Figure 7-22 Graph of design latency versus the number of external modules in the multi-
FPGA JPEG deCOUETc.uiiiiiriiiiiiiieie ettt 214
Figure 7-23 Graph of design latency versus the number of available I/Os in the non-
pipelined multi-FPGA JPEG decoder ..o 215
Figure 7-24 Module call graph representation of the pipelined JPEG decoder core 216
Figure 7-25 Area overhead and design latency of pipelined and non-pipelined multi-FPGA
JPEG deCOAET COTE ...ttt ettt 220
Figure 8-1 Target architectures for multi-FPGA Systemccccccviiviiiieiiiieiiicce 229
Figure B-1 JFIF test image (LENAJPEZ) cooooeioieiiiie e 261
Figure B-2 JFIF test image (MANDRILL.JPE) ..o vroieeieeieiiiiieee et 261
Figure B-3 JFIF test image (DRAGONPE) ..cvieiiiiiiiieiiiiccceiieee ettt 262
Figure B-4 JFIF test image (SQUARES.JPEZ).ccvviiiiiiriiieiioi et 262

Figure B-5 JFIF test image (SLOPE.JDE)..c..cioiiiiiieiiecee e 263

Figure B-6 Simulation of test image (LENA.JPG) decoding in a non-pipelined multi-
FPGA JPEG deCOTer.....uiiiiiiiiiiiii e e, 264
Figure B-7 Simulation (zoom view) of test image (LENA.JPG) decoding in a non-
pipelined multi-FPGA JPEG decoderc.cooovoiiiiiiiei e, 265
Figure B-8 Simulation of test image (LENA.JPG) decoding in a pipelined multi-FPGA
JPEG decoder (2-device implementation)c.ceveeeeeeevumineeire oo, 266
Figure B-9 Simulation (zoom view) of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (2-device implementation)occoocoveveeevoreeeennn. 267
Figure B-10 Simulation of test image (LENA.JPG) decoding in a pipelined multi-FPGA

JPEG decoder (3-device implementation)cooveveeevnneeeeioe i 268
Figure B-11 Simulation (zoom view) of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (3-device implementation)ccoocvveeieeeeeeeeeeenennnn. 269
Figure B-12 Simulation of test image (LENA.JPG) decoding in a pipelined multi-FPGA
JPEG decoder (6-device implementation)c..ocvoeveiinnesioeeieeeee e, 270
Figure B-13 Simulation (zoom view) of test image (LENA.JPG) decoding in a pipelined
multi-FPGA JPEG decoder (6-device implementation)ccocoeveioreicenecane. 271
Figure B-14 Multi-FPGA board CONNECIONS.ccviviiiiiiiii e 272
Figure B-15 Functional block diagram of the BT121 videoDAC..........cccooivvevieiiiinne 281
Figure B-16 Pin diagram of the BT121 videoDACooviiiivniiiiiiiiie e 282
Figure B-17 Typical connection diagram with internal voltage reference 283
Figure C-1 Partitioning information (par) file........ccoooooiiiiiiiiiiiiei e 308
Figure C-2 Module call list (.mcl) file ...ocooooiiiiii e 310
Figure D-1 Integer-maths library package of quadratic and cubic equation solvers 318
Figure D-2 VHDL package of quadratic and cubic equation SOIVErS.........cccocvrirrrenncene 319
Figure D-3 VHDL of quadratic equation solver example...............ccooeoviiviiiiiiiiioeeeene 320
Figure D-4 Simulation of the non-pipelined multi-FPGA quadratic equation solver....... 321
Figure D-5 VHDL of Cubic equation solver eXamplecccooiiienviiiciniiiiiiiecereevieeen 322
Figure D-6 Simulation of the non-pipelined multi-FPGA cubic equation solver............. 323
Figure D-7 VHDL package for IDCT eXamplecocooviiiiiiiiiiiiiiieeeieic e 328
Figure D-8 VHDL of IDCT €Xample......ccvviiiiiiiee it 332
Figure D-9 Simulation of the non-pipelined multi-FPGA IDCT exampleccccevnrene 333

Figure D-10 Simulation (zoom in views) of the non-pipelined multi-FPGA IDCT example

Figure D-12 VHDL of triple-DES eXample.........c.oocooiiiiioeeee e oo, 339

Figure D-13 Simulation of the non-pipelined multi-FPGA Triple-DES ...ccoovovvvvvvveenne.. 340
Figure D-14 Simulation (zoom in views) of the non-pipelined multi-FPGA Triple-DES
... 341
Figure D-15 VHDL package for 256-bit AES example..............ooooioioiiieeeeeeeeeeeeee. 355
Figure D-16 VHDL 0of 256-Bit AES eXampleocooviiiiiieiiiiiio oo, 359
Figure D-17 Simulation of the non-pipelined multi-FPGA 256-bit AES core ..oovvvven...... 360
Figure D-18 Simulation (zoom in views) of the non-pipelined multi-FPGA 256-bit AES
COT ottt ettt ettt ettt e e b et e e a e et b e ettt e e ettt e e et e e et e nnt e e e e et aenans 361
Figure D-19 VHDL package of the explicit communication channelccocoovevn.... 363
Figure D-20 VHDL of pipelined quadratic equation SOIVETc..ccoveeeereveeereeeennn. 365
Figure D-21 Simulation of the pipelined multi-FPGA quadratic equation solver............ 366
Figure D-22 VHDL of pipelined inverse discrete cosine transform example 370
Figure D-23 Simulation of the pipelined multi-FPGA IDCT examplec.cccocova.ee. 371
Figure D-24 Simulation (zoom in views) of the pipelined multi-FPGA IDCT example .372
Figure D-25 VHDL of pipelined 256-bit advanced encryption standard example.......... 377
Figure D-26 Simulation of the pipelined multi-FPGA 256-bit AES corecccvevverenen.e. 378
Figure D-27 Simulation (zoom in views) of the pipelined multi-FPGA 256-bit AES core
... 379
Figure E-1 Cost function MenU.........ccccoooiiiiiiiiniiiicecc et 383
Figure E-2 Steps in setting a cost function in MOODS ..o 384
Figure E-3 Steps in setting up the annealing schedule in MOODSc.cocoovvevevvveneneenn. 385
Figure E-4 K-way partitioning mMenUccocviieirieioeereiieeeeeeeeeeceeeee et 385

Figure E-5 Examine modules for partitioning menucoceveoiiioiriiieeciceeeeee 387

List of Tables

Table 2-1 Descriptions of the six basic control N0de tyPESvvvvvoiieeeeeeeeeeeeeereree, 48
Table 2-2 Scheduling transformationsc.cc.ocvoivieiiiiiieee oo 54
Table 2-3 Allocation and binding tranSformationsc..eveeeeeoio oo 56
Table 3-1 Description of the micropipeline event control modules...........c.ocvevevvevercvereeenn. 90
Table 4-1 Examples of types of connection in the module call graph...............ccooovevnne. 105
Table 5-1 State table of the transmit cell FSMc.oovoiiiiiiiiiiie oo, 139
Table 5-2 State table of the receive Cell FSMooiiiiiiiiiiieceeeeee e 141
Table 5-3 State table of the single-arbiter cell FSMcc.oooiiiiiiiiiiieieeeeeeee . 144
Table 5-4 Registered output signals in the multi-arbiter cell FSMcooooiviviiieeerienen. 146

Table 5-5 Sequence of events in the asynchronous data transfers protocol (input

PATAIMETETS) ...ttt ettt ettt te et ettt ts e e e te et e te e etseeseteeenene e e 148

Table 5-6 Sequence of events in the asynchronous data transfers protocol (output

PATAIMETETS)eeeiiiiie ittt ea et et e ettt e et e ettt e e e e e sesete et et eaeene s e eenannens 150
Table 6-1 Target XilinX FPGA technolo@iescc.oooiiiiiiiiieeie e 162
Table 6-2 Synthesis results of the quadratic equation SOIVEr...........ccccocveiiiiiiiieeieiee. 165
Table 6-3 Synthesis results of the cubic equation SOIVETcc.oooveeviiviiiiiiiiieeeee, 168
Table 6-4 Synthesis results of the inverse discrete cosine transform example................. 170
Table 6-5 Synthesis results of the triple-DES corecooooiiiiiiiiii e 171
Table 6-6 Synthesis results of the 256-bit AES COTE .vovvviiiiieiieee e 173
Table 6-7 Performance of example designs..........ovviviiiiiivriieiiiciiie e 175
Table 6-8 Synthesis results of the pipelined quadratic equation SOIvVer............ccc.ccveeene.n. 177
Table 6-9 Synthesis results of the pipelined inverse discrete cosine transform example. 178
Table 6-10 Synthesis results of the pipelined 256-bit AES cOTecceovoiiiiiiiiiiicne, 180
Table 6-11 Performance of the pipelined example designscocoeveeeiiiiviiiercienne. 181
Table 7-1 SRAM address, data and control signal connections to header J3 189
Table 7-2 Synthesis results of development board 1c.ccoviiiiiiiiiicoiieic e 206

~ Table 7-3 Synthesis results of the non-pipelined JPEG decoder coreccooevvvevcinnnnn 208

Table 7-4 Computation clock cycles and inter-device data transfers in the non-pipelined

Multi-FPGA JPEG deCOdEToiiiiiiiieiieiiiieeeeeeceeee e 210
Table 7-5 Number of external modules and its effect on the performance of the non-
pipelined multi-FPGA JPEG decoder.........oooovioiiiiiieeoeeeeee e, 213
Table 7-6 Number of available I/Os and its effect on the performance of the multi-FPGA
JPEG dECOET ...ttt 215
Table 7-7 Target Xilinx Spartan 2E FPGA technolo@iescoovvovooooooeeeeeeen 217
Table 7-8 Synthesis results of the pipelined JPEG decoder core............oovvvooeoeenn.. 217
Table 7-9 Computation clock cycles and inter-device data transfers in the pipelined multi-
FPGA JPEG d€COUET COTE.....ovvivitiiiiiiiiieieiie e 219
Table B-1 Marker identifiers in the JETF file.........cccoovoooiiiee oo, 257

Table B-2 Pin assignment of signals to connector Al and A2 of development board 1 ..273
Table B-3 Pin assignment of signals to connector B1 and B2 of development board 1...274
Table B-4 Pin assignment of signals to connector C1 and C2 of development board 1...275
Table B-5 Pin assignment of signals to connector Al and A2 of development board 2 ..276
Table B-6 Pin assignment of signals to connector B1 and B2 of development board 2...277
Table B-7 Pin assignment of signals to connector C1 and C2 of development board 2...278
Table B-8 Pin assignment of signals to connector Al and A2 of development board 3 ..279

Table B-9 Pin assignment of signals to connector B1, B2, C1, and C2 of development

DOAIA 3. e e, 280
Table B-10 Pin descriptions of the BTI21.....c..ooviii oot 283
Table B-11 Typical connection Parts LStc.ooiiioueooeeeieee e 284

Table E-1 Complete set of commands in the K-way partitioning menu........................... 386

List of Acronyms

256-AES 256-bit Advanced Encryption Standard
AES Advanced Encryption Standard

CDFG Control and Data Flow Graph

DES Data Encryption Standard

DFG Data Flow Graph

ETPN Extended Timed Petri Net

ExC Explicit Communication Channel
FIFO First In First Out

FM Fiduccia-Mattheyses

FPGA Field Programmable Gate Array

FSM Finite State Machine

GA Genetic Algorithms

GALS Globally Asynchronous Locally Synchronous
ICODE Intermediate Code

IDCT Inverse Discrete Cosine Transform
JFIF JPEG File Interchange Format

JPEG Joint Photographic Experts Group

KL Kernighan-Lin

LUT Look Up Table

MOODS Multiple Objective Optimisation in Data and control path synthesis
MFI Multi-FPGA Implementation

RTL Register Transfer Level

SA Simulated Annealing

SpC Subprogram Communication Channel
SRAM Static Random Access Memory

VGA Video Graphics Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
VLSI Very Large Scale Integration
XBM Extended Burst-Mode

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Mark Zwolinski for his
invaluable help and guidance. Mark’s unbiased opinions and support were very much
appreciated and I am very grateful to him for sourcing out the development boards, which

made realisation of the hardware demonstrator possible.

Thanks to all members of the Electronics Systems Design Group at the University of
Southampton, and also Xilinx for donating the four development boards through the
Xilinx University Program. I would also like to thank the senior tutor of the school, Eric

Cooke for his advice and help in administrative issues.

Thanks also go to Andrew Chapman, Dr. Petros Oikonomakos, Donald Esrafili-Gerdeh,
and Dr. Matthew Sacker for the numerous discussions made on the subject of high-level

synthesis and partitioning.

I would like to thank my family for their unconditional support and love. I owe much to
my aunties for providing the financial support during my final few months towards the

completion of this work.

My special thanks go to my good friends, Dr. Yeng Leong Chong, Josephus Tan and his

wife Claire for their support over these years.

T.B. Yee, 2007 Chapter 1: Introduction 19

Chapter 1

Introduction

1.1 Partitioning and high-level synthesis

Partitioning is an important issue in high-level synthesis, hardware/software co-design,
VLSI CAD (Very Large Scale Integration Computer Aided Design) [1, 2]. With the ever-
increasing complexity of digital designs, partitioning of the circuit or system into a
collection of smaller, manageable components has become a central and critical design
task. Partitioning is also used to divide a large design into several target devices to satisfy
packaging constraints such as input/output pins and area. Partitioning of a design over
multiple hardware targets can be performed at several levels of abstraction (these include
system level, behavioural level, and structural netlist level). Partitioning a design at high
levels with incomplete knowledge of the targeted technology, and the final hardware (or
software) implementation of a component poses a difficult design decision. The task of
partitioning a system at a high level with a coarse granularity (i.e. relatively few objects
with moderate to high complexities) can still be done manually, based on the experience
of the designers. However, as the complexity and size of the entire system increases, this
difficult decision and design optimisation problem gets harder, to the point when it gets

beyond the capabilities of human designers to solve.

High-level behavioural synthesis of a digital design takes the behavioural description and
translates this into an optimised structural description of the same design. The design is
described behaviourally using either hardware description languages or high-level
programming languages. There has been a recent interest in electronic system level (ESL)
[3-5] design with new high-level synthesis tools released in 2004 from major Electronic

Design Automation vendors: Mentor Graphics Catapult C Synthesis [6], Bluespec Inc.

T.B. Yee, 2007 Chapter 1: Introduction 20

Bluespec Compiler [7], and Forte Design Systems Cynthesizer [8]. The ESL design
methodology is an evolution of high-level modelling of complex systems and behavioural
synthesis, extended to address additional needs of system-level design, such as
architectural design, software development and Intellectual Property (IP) exchange and
reuse. Design abstraction in the digital domain has changed from schematic to language-

based and is migrating towards behavioural specifications.

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is the high-
level synthesis tool developed in the University of Southampton. The MOODS synthesis
system synthesises an input behavioural design and produces a structural implementation
of the behavioural design with the advantages of a rapid development time and design
space exploration providing many alternative optimised implementations (with differing

area, delay, power characteristics).

The present configuration of the MOODS synthesis system can only handle single-chip
digital designs. The behavioural description of the user’s digital design is synthesised into
a single, large structural output. A synthesised structural output too large to fit into a
selected target FPGA must instead be targeted to a larger and more costly FPGA, or be
split into pieces small enough to fit into multiple FPGAs. The latter requires the user to
rewrite the behavioural design, breaking the design into smaller descriptions and manually
assign the structural outputs of these smaller descriptions to multiple FPGAs and connect
the inter-device signals. Consider partitioning a design with 15 blocks, of which any
combination of 5 blocks can fit into a target device in the multi-FPGA system, there are a
total of 3003 combinations of partitioning the 15 blocks (i.e. Number of combinations, ,C*
=n!/[k! * (n-k)!], where in this case, n = 15 and k = 5). The required design effort is
becoming a major limitation to system complexity and the FPGA partitioning process
needs to be automated. Synthesis of a large complex behavioural design into a multi-

FPGA system poses difficult partitioning questions that need to be answered:
e How to partition the design and will the smaller partitions fit the target devices?

e Which target device should a partitioned design be assigned to and how many

target devices are needed in the multi-FPGA system?

T.B. Yee, 2007 Chapter 1: Introduction 21

* How many I/Os are available and required to connect up the multi-FPGA system?
* How are the target devices going to transfer information (data) to each other?

This thesis focuses on some of the problems associated with multi-FPGA synthesis, in
particular the area utilisation of target devices and input/output (I/O) constraints in a
multi-FPGA system. In this thesis, an evaluation is made of existing multi-FPGA
synthesis systems and multi-FPGA partitioning techniques. This provided an insight on
the pros and cons of the various approaches and techniques, adopting the best technique or
combination of techniques towards the development of our partitioning extension to the
MOODS synthesis system. The goal was to extend the MOODS synthesis system to
support partitioning over multiple hardware targets taking into consideration the area and
I/O resources of target devices. In pursuit of this goal, we also explored asynchronous and

pipelining techniques to improve the performance of a partitioned design.

The underlying hypothesis of this research is that combining asynchronous channel-based
communication and pipelining techniques in multi-FPGA synthesis can fully utilise the
I/O constrained FPGA target devices and the performance of the synthesised multi-FPGA

implementation (MFI) will be close to a single-device implementation.

This work presents asynchronous channel-based data transfer mechanisms into multi-
FPGA systems and using design activity profile to guide the proposed partitioner in
reducing inter-device data transfers. Behavioural design examples and a hardware
demonstrator are synthesised using the multi-FPGA synthesis in MOODS and experiments
on non-pipelined MFIs with subprogram communication channels (without explicit
communication channels) and pipelined MFIs with explicit communication channels are

presented.

The experiments and simulation results show that the proposed channel-based approach
with pipelining in a multi-FPGA systems achieve significantly better performance (in
terms of reduced area overheads and design latencies) over non-pipelined
implementations. Experiments on the hardware demonstrator show that the multi-FPGA

synthesis enhancement integrated within the MOODS environment can synthesise a large

T.B. Yee, 2007 Chapter 1: Introduction 22

and complex behavioural design and target the partitioned design to a pipelined multi-

FPGA system, with an acceptable increase in area overhead and design latency.

1.2 Thesis structure

The thesis consists of three main parts. The introductory chapters present the background
material on behavioural synthesis and multi-FPGA partitioning. Chapter 2 introduces
high-level synthesis, followed by a detailed overview of the MOODS synthesis system.
Chapter 3 introduces partitioning methodologies and multi-FPGA partitioning. The
chapter also reviews current research on multi-FPGA partitioning and includes a detailed

discussion on synthesis systems capable of synthesising and targeting multiple devices.

The second part of the thesis, Chapters 4 and 5 describe original work, which cover the
multi-FPGA partitioning enhancement of the MOODS synthesis system and the
communication cells used in inter-FPGA data transfers. Chapter 4 describes in detail the
automatic partitioning mechanism that partitions a single design description, and the
generation of multiple structural output files for configuring a multi-FPGA system. This
chapter also introduces the channel-based approach to handle inter-device data in the
synthesised multi-FPGA design. Chapter 5 covers the subprogram communication channel
customised for asynchronous inter-FPGA subprogram data transfers in a multi-FPGA
system. The chapter describes in detail the design of communication cells and arbiter cells,

which are the building blocks of the communication channel.

Chapter 6 contributes to the third part of the thesis with experimental results on multi-
FPGA synthesis in MOODS. Chapter 7 describes the design, synthesis and physical
implementation of a hardware demonstrator, a multi-FPGA JPEG (Joint Photographic
Experts Group) decoder. Implementation results and analysis of the performance of the

non-pipelined and pipelined multi-FPGA JPEG decoder are presented.

Finally, the thesis concludes with a summary of the contributions of this research and a

discussion of possible future work in Chapter 8.

T.B. Yee, 2007 Chapter 1: Introduction 23

A number of appendices are also included in this thesis. Appendix A contains a paper
published in the proceedings of International Federation for Information Processing
International Conference on Very Large Scale Integration 2005 (IFTP VLSI-SOC 2005).
Appendix B contains detailed information on the hardware demonstrator and a full profile
of test images and photographs of the test images decoded by the multi-FPGA JPEG
decoder. Post-MOODS synthesis simulation results of the multi-EPGA JPEG decoder core

are also included in this appendix.

Appendix C details the format of various data files used within the MOODS synthesis
environment. VHDL code listings of behavioural VHDL design examples used in the
experiments described in Chapter 6 and post-MOODS synthesis simulation results of the
examples are given in Appendix D. Appendix E is a brief user’s guide to performing

multi-FPGA synthesis using MOODS with the multi-FPGA partitioning enhancement.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 24

Chapter 2
High-level synthesis and the MOODS

synthesis system

This chapter describes the background material of high-level synthesis used within the
research project. Sections 2.1 to 2.5 give a general overview of high-level synthesis.
Section 2.6 describes the MOODS (Multiple Objective Optimisation in Data and control
path Synthesis) synthesis system, which is used in Chapters 4 to 7 for all the
implementation and multi-FPGA synthesis results of this thesis. The post-processing stage

of the MOODS synthesis system is covered within Section 2.7.

2.1 High-level synthesis

Behavioural, or high-level synthesis is the process of transforming an abstract
specification (such as an algorithm description) of the behaviour of the system into an
equivalent structural description that satisfies a set of user constraints and goals on factors
such as area, delay and energy consumption. The interpretation of VHDL [9-1 1] for
behavioural synthesis is substantially different from that of traditional RTL (Register
Transfer Level) synthesis. In the RTL synthesis interpretation [12], the execution of an
operation triggered on a clock edge within a process will complete within a clock cycle
and the mapping from RTL design to gate-level design is a cycle-accurate mapping
preserving the simulation semantics of VHDL. However, behavioural synthesis interprets
sequential statements as if they were normal software, each of which may take several
clock cycles to execute a single line of code. At the statement level, the overall behaviour

of the system is unchanged, only the cycle timing of each statement is altered. This

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 25

statement-accurate mapping feature allows the synthesis system the flexibility to adjust the

timing of operations and to trade off timing against other factors such as total area.

The process of transforming a behavioural description of a digital design, described in
some hardware description language or sequential language such as Verilog, VHDL or C,
is illustrated in Figure 2-1. The design flow consists of a number of separate tasks and
different synthesis systems may perform a number of these tasks concurrently. The output
of the behavioural synthesis system is a mixture of structural and RTL description of the

design and it is suitable for the targeted logic synthesis and layout tools.

- User .
Behawogral . optimisation |
description objectives /
___ °
: y i
; source compilation :
.)
[. 1
! l . ; Synthesis !
i e Optimisation, i
: Internal . | Scheduling, i
! behavioural/ »ﬁlﬁc‘acation and Binding :
! structure : f !
: representation | [. !
- " A '
! rLib ;. Lib | i
I
! : Cell/module library ;
i Behavioural e :
i3
UAYIMBESIS Ll i
A4
Structural
description

y

| RTL and low-level logic |
’fsynthesis, mapping, placement§
W; and routing |

Figure 2-1 Design flow of a generic behavioural synthesis system

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 26

2.2 Input description languages

Having mentioned that VHDL can be the input hardware description language, it is only
one of the many hardware description languages or sequential languages that can be used

to describe a design behaviourally.

2.2.1 SystemC

SystemC [13-15] is an open C++ class library used for hardware system design and
validation. SystemC is defined by the OSCI (Open SystemC Initiative) and the IEEE
1666-2005 SystemC standard [14] was ratified on December 2005. C++ or C is the
language choice for software algorithms and interface specifications and most designers
are familiar with these languages. The SystemC language and modeling platform provides
the necessary constructs to model system architectures at various system levels of
abstraction for digital design. The SystemC Class library extends the standard C-++,
without adding new syntactic constructs, to give hardware timing, concurrency, and
reactive behaviour. This encourages systems and software designers with little orno
knowledge of hardware description languages such as VHDL and Verilog to create digital
designs, and to quickly simulate to validate and optimise the design according to the user

objectives.

The SystemC design is compiled into an executable file and validation of the design is
basically a run of the execution file. The execution of the run file is faster than a run of an
HDL model that depends on the simulation and it does not require licenses as needed by

most EDA tools.

2.2.2 Verilog

Verilog HDL [16, 17] is another hardware description language, other than VHDL, that is
widely used, both academically and commercially. Verilog was designed in mid 1980s and
the Open Verilog International (OVI) was formed in 1990 to manage the Verilog
language, which was only then opened to the public domain. Verilog was later ratified as
IEEE std. 1364-1995 [16]. The second ratification is the IEEE std. 1364-2001 [17],

commonly called Verilog-2001. Verilog-2001 adds many significant enhancements to

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS Synthesis system 27

IEEE 1364-1995 Verilog, which include greater support for re-usable, configurable
models, Intellectual Property (IP) modeling, and very deep submicron timing accuracy
[18]. SystemVerilog is the third generation of Verilog and it is built on Verilog-2001.
Besides extending the Verilog language to give design features that VHDL already had in
place for years [19], SystemVerilog has new constructs for verification to keep up with the

increases in complexity of today’s design and verification challenges [20].

2.2.3 VHDL

VHDL is an IEEE standard hardware description language [9-11, 21]. It is originally
largely targeted towards simulation of digital systems at the various levels of abstraction.
Synthesis use was introduced later, with the introduction of RTL (Register Transfer Level)
synthesis tools first, then progressing into behavioural synthesis tools. VHDL was
proposed as an IEEE standard in 1986 and it went through a number of revisions and
changes before it was adopted as the IEEE 1076-1987 [10]. The first modification of
VHDL was ratified in 1993 [11], and the latest in 2002 [9].

VHDL supports many different design methodologies (top-down, bottom-up, delay of
detail) and is very flexible in its approach to designing hardware. VHDL provides
technology independence and it contains levels of representation that can be used to
represent all levels of description from the device level up to the system level. Figure 2-2
illustrates the hierarchy structure of VHDL. VHDL models a digital system using entities
and architectures to define its interface and operation respectively. It is capable of
describing concurrent blocks (a netlist of interconnected components) of sequential code,
where the sequential elements describe the behaviour of the concurrent block at any
abstraction level, via processes. Each design can be encapsulated by a library definition of
its own interface, which highlights the ability of VHDL to describe a system in terms of
modular concurrent components. A library of algorithmic descriptions can also be built
from sequential blocks such as functions and procedures. In VHDL, signals are the only
way to tie together elements of structural descriptions or to pass information directly
between VHDL processes and entities, VHDL signals are declared in the VHDL

architecture. VHDL variables are local to process and they are declared within VHDL

processes.

28

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system
User design —
Library
| Brgiieetine | [E]
. Signal | !
T | | Architecture
Concurrent | Component s
statements S Concurrent
A— Cgmponent % statements
[Gomporent |
— —
Process |
| Variable
Sequential Architecture
statements o
Concurrent
statements

Architecture |

Concurrent
statements

L

Figure 2-2 VHDL hierarchy structure

2.3 Compilation and internal representation

* Behavioural input compilation and optimisation — is the first synthesis task and it is

concerned with the compilation of the behavioural description into an internal
representation to which synthesis operations may be applied. A number of compile-

time optimisations (procedural inlining, dead code elimination, loop unrolling) [22]

may be performed. The result of compilation is the generation of a design specified in

terms of a number of simple instructions, similar to a machine-readable software

assembly language, often in some form of abstract data and control flow graphs.

The synthesis optimisation process is either performed during the construction of the data

structures or during an iterative refinement process after the initial data structures are

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 29

created, or a combination of both methods. A number of behaviour-preserving internal
data structures can be used to fully describe the design throughout the synthesis process. A
simple dataflow graph (DFG) can be used to describe the system. The operations and data
dependencies of a simple design (with no conditional and iteration constructs) can be

represented with a dataflow graph as illustrated in Figure 2-3.

5 Vi V2
Behavioural
VHDL source ; 3 R 3
........ n "
......... 3 \[/ 8
A:=V1+5; |
B:=V1+V2; 7/(B
C=A+3 s
D.=B+8; Y
V3:=C*D; (*) (/:Q)

Figure 2-3 Data flow graph representation

In general, many applications contain a significant amount of conditional (if-then-else) and
iteration ({oop) constructs, and thus requires a more comprehensive representation of data,
and the control flow information. The Control and Data Flow Graph (CDFG) models both
the data and control flow information in a single hierarchical structure. This is done by
extending the DFG representation to encapsulate control flow information for blocks of
DFG sub-graphs within the parent graph. A major disadvantage of the CDFG
representation is the basic blocks of DFG sub-graphs provide boundaries across which the
scheduling of operations cannot pass, even if there are no dependencies restricting this
schedule [23]. On the other hand, the Extended Timed Petri Net (ETPN) [24, 25]
representation has no such block boundary restriction as the data and control flow is
separated into two individual, but interrelated data structures, hence allowing more
optimisation transforms to be performed. This separation 6f the control flow also makes
the ETPN more suitable for designs with concurrency execution of operations and

asynchrony inherent.

T.B. Yee, 2007

By way of an example, the associated CDFG and ETPN representations of the fragment of

VHDL code are illustrated in Figure 2-4 and Figure 2-5 respectively. The CDFG in Figure

Chapter 2: High-level synthesis and the MOODS synthesis system

2-4 comprises four DFGs. The top one represents the three sequential addition

assignments, the second two graphs represents the two conditional assignments, and the

last DFG represents the last multiplication assignment.

Behavioural
VHDL source

IF (X="1") THEN
D:=B+4
ELSE
D=B+8;
END IF;

{

LGY
o «G

Dataflow graph

blocks

FALSE
Y

. ¢ | [b |

O

*
I V3 !

| SO

v

Figure 2-4 Control and data flow graph representation

ETPN represents the data path as a directed graph with nodes and conditional arcs. The
nodes represent individual functional (operator) and storage (variable) units, while the arcs

form the connections between nodes. These connections are only made if the arc is

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 31

activated by a control signal (S, signals generated from the control part). The control flow
of the design is described by the passage of tokens through a Petri net [26]. Each control
path vertex represents a control state, which is activated when it receives a token, thereby
activating the associated data path via its S, signal. In Figure 2-5, the conditional block (if
X =%17) is modelled by states S; and Ss, and the selection is based upon condition C;,

generated from the data path comparator (=) block.

! X l f “1”
S3 83
[=
83 83
L ¢ |G
Behavioural
VHDL source
A=V1+5
B:=V1+V2
C=A+3
IF (X =“1") THEN
D:=B +4;
ELSE
D:=B+8;
END IF;

VvV3:=C*D;

Figure 2-5 Extended timed petri net representation

2.4 Scheduling, allocation and module binding

The next three tasks form the core of the behavioural synthesis system. These tasks are
concerned with performing scheduling, allocation and module binding according to user-

defined optimisation objectives.

T.B. Yee, 2007

Chapter 2: High-level synthesis and the MOODS synthesis system

* Operation scheduling — is the task of assigning each operation to a particular time step.

Schedules are optimised to achieve the objectives of the user, whilst satisfying both
resource constraints, specified by a given target area or the maximum number of
functional types within each time step, or time constraints, specified by the number of

time (or control) steps for the operations.

Scheduling techniques [27] can be generalised into two main categories: constructive
scheduling and transformational scheduling. Simple constructive algorithms include As
Soon As Possible (ASAP) [28], As Late As Possible (ALAP) [28]. ASAP schedules
operations in the earliest possible time step permitted by the data dependencies, while
ALAP assigns operations to the latest possible time step. The main disadvantage of these
two algorithms is that all operations are treated equally, with no priority given to the more
critical ones. This can result in operations that are less critical to be scheduled first on a
limited resource (e.g. a single multiplier unit), which may block critical operations

scheduling and result in a performance degradation. Figure 2-6 illustrates an example of

ASAP and ALAP schedules.

Step 1

Step 2

Step 3

Step 4

a) ASAP scheduling

Step 1

Step 2

Step 3

Step 4

b) ALAP scheduling

Figure 2-6 Example of ASAP and ALAP schedules

'S
|98]

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system

List scheduling [29] takes a more controlled approach in ordering the operations to be
scheduled based on some priority function. At each control step, operations (O,) are
scheduled sequentially as long as the required resource is available, otherwise, operations
are postponed according to their priority. Figure 2-7 shows list scheduling of a simple
control graph, where the priority of each operator is defined as the length of the data path
from the operation to the end of the block (marked in braces in Figure 2-7). Operation 3
(O3) has a higher priority than operation 1 (0,), and is therefore scheduled in control step

1, providing an optimal solution in this case.

Ox(1) 0s(2)
) (o
Step 1 Step 1 Lo+ /i [*

Step 2 Step 2 \ \ i
\’/
.. I S
v v
a) Initial graph b) List scheduled graph

Figure 2-7 Example of list scheduled graph

All the above algorithms make decisions on local considerations, which may be optimal
for one operation, but do not necessarily produce an overall optimal schedule. A
constructive scheduling algorithm that makes global analysis of the operations and control
steps when selecting the next operation to be scheduled is the force-directed scheduling
[30]. The basic strategy of this algorithm is to balance the concurrency of operations to
ensure that each functional unit has a high utilisation and therefore the number of units
required is reduced. Force-directed scheduling is more computationally expensive than all
the constructive algorithms mentioned previously, due to its global selection of the next

operation to schedule.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 34

In contrast to constructive scheduling which creates a schedule from scratch and adds
operations one at a time until all operations are scheduled, transformational scheduling
starts with an initial schedule, generally maximally serial or maximally parallel, and
iteratively applies a set of local transformations, improving and guiding the design
towards the objectives specified by the user. One important advantage of the
transformational-based approach is that a complete schedule exists in each iteration and
accurate estimation of the design in terms of different criteria (e.g. area or delay) can be
made. This technique has been adopted in high-level synthesis systems such as Computer-
Aided Modelling, Analysis and Design (CAMAD) [25, 31] and MOODS [32], where both
systems combine the scheduling and allocation together as a general optimisation problem.
The transformation-based approach employed in MOODS is described in more detail in

latter sections.

e Allocation — involves the assignment of data variables and instructions into groups of
data elements; storage units (registers, ROMs, RAMs, etc) used to hold data in the data
path, functional units (adders, ALUs, multipliers, etc) that perform the operations
depicted by the instructions and interconnect units (multiplexors) between storage

units and functional units.

Allocation techniques can also be generalised into constructive and global algorithms.
Iterative/constructive allocation algorithms select an operation and the data element to
which it will be bound, one at a time in an iterative manner and builds up the allocation,
typically minimising cost in terms of area whilst conforming to timing constraints of the

schedule.

Global allocation techniques, on the other hand, deal with the data path as a whole, and
attempt to allocate all its elements simultaneously. Allocation can be defined as a graph
problem, where a clique-partitioning algorithm [33] builds a compatibility graph where
vertices denote operations and edges denote the compatibility relation between the
operations whereby edges connect mutually-exclusive operations that can share the same
hardware. The problem is then reduced to finding a maximal partitioning of fully
interconnected vertices, which represents a solution with the minimum hardware cost.
Examples of other global allocation techniques include minimal graph-colouring

algorithm, left-edge algorithm [34].

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 35

® Module Binding — is the process of selecting and assigning the allocated data path units

from a list of technology-dependent hardware blocks implemented from units in the
target cell/module library. Depending on the requirements of the synthesis system, the
module library may contain exactly one implementation per functional unit, or a
selection of implementations (such as ripple-carry and carry-lookahead adders) per
unit, thus allowing a one-to-many mapping choice, in which case the chosen
implementation will be based on user objectives. The low-level module
characterisation data, generally in the form of area and delay estimates are used to
guide the scheduling and allocation processes. A similar operation is performed on the
control path, implementing the circuitry for the control path units, which activate and
steer data in the data path via appropriate data path control signals (e.g. register load
signal, multiplexer select signals). The module library can be extended, possibly into
multiple module libraries where module cells are designed specifically for a particular

design such as floating-point functional units or special communication protocol units.

2.5 Design space exploration

High-level synthesis is the process of transforming a behavioural description of a design,
in the form of its initial internal representation within the synthesis tool, into a structural
implementation, optimised according to objectives set by the designer. The synthesis
process produces a range of implementations for a particular input design, and each of
these implementations forms a single point in what is called the design space [35-37],
which is defined as the n-dimensional space describing all possible implementations of a

single input description, in terms of 7 design aspects.

Figure 2-8 shows a two-dimensional design space in terms of area and delay (latency). For
any particular design and target technology, the design space consists of two regions
where feasible implementations lie in the achievable region and infeasible
implementations lie in the unachievable region. These two regions are separated by the
optimal design curve, which comprises a set of discrete points representing the most
efficient implementations. For a given system, only a portion of the achievable region may

be obtained as indicated by the shaded acrual achievable region. This actual achievable

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 36

region is dependent on a number of factors such as the optimisation algorithms and design

space modelling methods [38] used.

optimal design
curve

‘ actual achievable
region

unachievable
‘= region

R [T .
Figure 2-8 Area versus delay design“‘,’saawéé.,. |

2.6 MOODS

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis)
synthesis system is the behavioural synthesis system used and modified for the multi-
FPGA partitioning research. The term MOODS refers to the entire synthesis system,

however the core synthesis engine is also referred to as MOODS.

This section details the principles and operations of the original MOODS synthesis system
(without multi-FPGA partitioning enhancements) [32, 35, 36, 39]. The entire synthesis

system comprises a number of separate programs performing various tasks in the synthesis
of a behavioural description from VHDL down to hardware FPGA implementation. These

tasks communicate via a number of generated intermediate files.

Figure 2-9 illustrates the data flow of the original MOODS synthesis system before the

multi-FPGA partitioning enhancements. The actions performed by the subcomponents are:

1. VHDL and ICODE assembler: The behavioural VHDL description is passed into the

VHDL complier, ‘VHDL2IC” and translated into a simpler intermediate description.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 37

ICODE (Intermediate CODE). ICODE is an input language-independent description
suitable for direct input into the core MOODS synthesis engine.,

2. Synthesis engine — MOODS: The core component in the entire system is the MOODS
data and control path synthesis engine. Broadly speaking, MOODS performs
scheduling, allocation and module binding according to the user-defined optimisation
objectives, and produces an output suitable for the targeted logic synthesis and layout
tools. The single ICODE file is fed into MOODS, with a set of user objectives and
technology libraries. A naive initial internal data structure is created by a direct
translation of the ICODE input to form a maximally serial implementation (i.e. one
control state/clock cycle per ICODE instruction, with the functionality of each
instruction being bound to a separate data path node). The synthesis proceeds and
iteratively modifies the data structures until the user objectives are met. The internal
representation is converted into a technology-specific netlist using interface
information stored in the library. The use of technology-specific estimates fed up from
the cell libraries enables MOODS to make technology-dependent trade-offs, while
maintaining overall technology (and layout system) independence within the bulk of

the synthesis system.

3. Structural Linker — DDFLink: The DDFLink (Design Data Format Link) linker is
now used for the generation of the structural VHDL file output, previously generated
directly from MOODS. The ‘raw’ structural VHDL description generated directly
from MOODS is only suitable for debugging purposes, as it is rather unreadable, and
contains unoptimised control to/from the data path glue logic. DDFLink performs a
range of post-synthesis cleanup tasks (including optimisation of the glue logic to
remove redundancy), and generates a highly commented and more readable structural
VHDL output. The original intention of this back-end link stage was to take the output

from several separately-synthesised blocks, and combine them in much the same way

as a compiler link stage.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 38

Behavioural 7
VHDL file
(.vhd)

Optimised
behav. VHDL
(.vhd)

3

|11} ICODE assembler |

v

ICODE file

;Initial control and data |
path creation i

Data -
structure file
(.ds/.ddf) Cost function & —} o
| design evaluator Ve
//’\\ L o / User %
Optimisation { T
@{ optimisation

Design Control and } !
examiner ; | | algorithms | o /
Samier data path i > 9 N objectives /

graphs /

Estimators & | .
: | transformations | e
/ Logging and <]
—

/ report files

/ f
(daf, dpg.etc) . @ | (lib) | ‘ | (lib) | 1
Structural Cell library ’ } [—

netlister database | Library dependent) P Expanded |

(R | module database || module |

| files i ; templates |

4 4 | :
Final data Raw structural
——————— structure file —-—— VHDL output file T T e e

(.ds/.ddf) (_synth1.vhd)

—

I @ Linker and netlist ;]
I generator (DDFLink) |
Structural
VHDL output
file (_synth.vhd)

v

! {4 RTL and low-level logic synthesis,
mapping, placement and routing

1
|

J

&

Figure 2-9 Original MOODS synthesis system design flow

T.B. Yee, 2007

Chapter 2: High-level synthesis and the MOODS synthesis system 3

4. Back-end synthesis, logic-level optimisation and technology mapping, placement

and routing: The final stage in the design flow is low-level optimisation and

technology mapping, which utilises a number of third party tools, Synplicity Synplify

Pro, Xilinx ISE (Integrated Software Environment), and Mentor Graphics

LeonardoSpectrum. These tools take the structural VHDL description generated by

MOODS as input. Each tool performs the low-level logic synthesis and technology

mapping, which translates the design into a physical circuit to be implemented in an

FPGA or ASIC as illustrated in Figure 2-10. For Xilinx FPGAs, the Xilinx-targeted

EDIF (Electronic Design Interchange Format) output from RTL synthesis tools is

processed by Xilinx ISE to generate a bitstream file to download onto a FPGA.

T -

|

. VHDL

Synplify Pro

Low-level optimisation
and technology mapping

I

|
|Structural| | |
J ructural | EDIF |

i

Placement and
routing

@

OO s

]

[}]

Dololiolio]] |
Jel0lolo

Xilinx ISE

Bitstream
generation

= -
i 1010101

L 0101111 |

FPGA
implementation

e ity
10 “ooooo {

FPGA prototyping
board

Figure 2-10 Back-end synthesis using third party tools

2.6.1 Synthesisable VHDL subset in MOODS

VHDL is used by the MOODS synthesis system described in the body of the thesis.

VHDL, which has already been considered in Section 2.2.3, was initially designed as a

simulation language. This leads to a number of problems when implementing VHDL in a

synthesis environment. The general set of behavioural VHDL restrictions [24, 40, 41] in

the context of synthesis imposes a set of constraints on the synthesisable VHDL [39, 42]

in the MOODS synthesis system. The limitations are due to the difficulty of

implementation of certain features within the VHDL language, and the relaxed timing

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 40

model utilised within behavioural synthesis. Examples of unsynthesisable VHDL are data
types such as pointers and linked lists which are unrealisable in the context of hardware
logic and gates because their size is dynamic, unsynthesisable constructs such as assers
statements for simulation-only operations for error messages and anything to do with file
I/O types due to lack of an operating system to deal with the file /O operations such as

opening and closing a file.

2.6.2 ICODE generation

The VHDL compiler that forms the front-end of the MOODS synthesis system parses and
translates a single or a number of input VHDL files into a single language-independent
ICODE file. Using the intermediate language ICODE as input to the MOODS synthesis
core allows the use of different languages (Section 2.2) to describe the behaviour of the
user design. ICODE describes the functionality, sequencing and connectivity of the design
in a lower language level, similar to an assembly language representation of a software
language, with additional contro! flow information. Complex statements (such as
sqrt(dx*dx + dy*dy)) must be broken up because they cannot be sensibly represented as
an atomic operation. ICODE is in a form suitable for direct mapping to the cell library,

and employs simple two input operations to ensure technology independence.

VHDL processes, procedures, and functions are translated and mapped into a set of
ICODE modules, with the main entity/architecture definitions mapped to the ICODE
program module that forms the root of the system’s control flow. The processes within the
architecture definition are merged into the program module. The VHDL process is the
only concurrent construct that is converted into ICODE. No other VHDL concurrent
constructs are supported. The concurrent behaviour of VHDL processes is performed in
the ICODE representation by the execution of the first ICODE instruction with a multiple
instruction activation list on a system reset. Each entry in this first activation list activates

the first instruction in each process and its control flow never re-converges.

Each module comprises a set of numbered ICODE instructions together with an associated

activation list. The sequencing of operations is based on a Petri-net style token passing

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS Synthesis system 41

mechanism, in which an instruction is only executed once it has been gctivated by another;
the activation list specifying which instructions are to be executed once the current one has

terminated.

VHDL signals and variables are translated into equivalent ICODE registers, aliases (bit-
slices), memory blocks, counters or ports based on their declaration in the behavioural
code. An ICODE counter is inferred from variables defined within a loop construct. RAM
and ROM memory blocks are specified directly by the user. A port is used only to define

the input ports within the I/O list of the module as output ports are defined as registers.

A simple example showing a fragment of behavioural VHDL code with its equivalent

ICODE is shown in Figure 2-11. It outlines the key features of the generated [CODE

description:

* AnICODE file can contain a number of ‘MODULE’s (ICODE lines 27 and 39), which
are translations of VHDL subprograms (functions and procedures). Concurrent
processes are merged into the main ‘PROGRAM module. The first ICODE NOOP
instruction with a multiple instruction activation list activates the first translated
ICODE instruction in all the VHDL process on a system reset. For example,
instruction 2, which is the first ICODE instruction in process P_one, and instruction 70

which is the first ICODE instruction in process P_two.

¢ An ICODE instruction has the general form:
label : OPERATION <inputs>, <outputs> <activation list>

where . precedes the instruction number. For example, instruction / is labelled

“L000I’, instruction 2 is labelled ¢.L0002°, and so forth.

¢ FEach ICODE instruction can be activated by any number of other ICODE instructions.
Upon completfon of the execution of the current instruction, all the instructions in its
activation list are activated. If no activations are listed for an instruction, then next
instruction is activated. For example, instruction 2 (labelled ©.L0002°) activates a

conditional branch instruction 3 (labelled *. LZ0003”), which then activates either

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 47

instructions 4 or 9. While the absence of the activation list in instruction 5 results in an

automatic activation of instruction 6.

* Conditional branches are implemented as an /F instruction with two activation lists.
One for the true condition (4C7T) and the other for the false condition (ACTF). The
VHDL conditional statement (“if start = “1” then” in VHDL line 13) is implemented
as two instructions 2 and 3, with instruction 4 being activated if the condition is true

,and instruction 9 being activated if the condition is false.

¢ Complex expressions are split into a number of simpler ICODE instructions, with
temporary variables (for example, tmp] in ICODE line 44) inserted to pass data

through each operation.

* VHDL subprograms (functions and procedures) are implemented as separate modules
and these modules are activated via a calling ICODE MODULEAP instruction, which
halts the main execution and passes control to the called module. A subprogram

module will return when the ENDMODULE instruction is activated.

A complete definition of the ICODE format is provided in Appendix C.1.

T.B. Yee, 2007

Chapter 2: High-level synthesis and the MOODS synthesis system 43

Behavioural VHDL source

ntity m_call1 is

ort(start: in unsigned(0 downto 0);
sum_out: out unsigned(3 downto 0);
mult_out: out unsigned(7 downto 0)):

T o

architecture Behaviour of m_call1 is

| begin
] P_one : process
} 12! begin

- Q“

13 if (start ="1") then

14 proci(s1, s2); -- call procedure 1
15 §1 <=82;

16 wait for 10 ns;

| proc2(s1, s2, s3); -- call procedure 2
i wait for 10 ns;
i end if;

wait for 10 ns:
end process P_one;

P_two : process
begin
sum_out <= s2;
27[mult_out <= s3;
wait for 10 ns;
29, end process P_two;
| 30| end Behaviour;

NN NNNDNRN - -
DONON OO

32| procedure proct (
| 33| signal a_in: in unsigned(3 downto 0);
34 signal a_out: out unsigned(3 downto 0)
35|)is
36| begin
37, a_out<=a_in+"0001";
38| waitfor 10 ns;
i 39) end proct;
|

procedure proc2 (

42[signal b_in1: in unsigned(3 downto 0);

| 43 signal b_in2: in unsigned(3 downto 0);
J signal b_out: out unsigned(7 downto 0)

)i

l begin
7| b_out<=b_in1 *b_in2;
8[wait for 10 ns;

| end proc2;

signal s1, s2: unsigned(3 downto 0) :="0000";
| signal s3: unsigned(7 downto 0) :="00000000";

©WN® G A WN=-

-
()]

Y
N

47
48
49

[50

ICODE

| PROGRAM m_call1 start,sum_out,mult_out |

INPORT start [0:0] f
OUTPORT sum_out [3:0]

QUTPORT mult_out [7:0] 4
REGISTER s1 [3:0] INIT #%0000 ,‘
REGISTER s2 [3:0] INIT #%0000 |
REGISTER s3 [7:0] INIT #%00000000
REGISTER tmp0

/f Statements

.LO001 NOOP ACT L0002, L0010
-.LO002 ueq start #%1 tmp0
.L0O003 IF tmp0 ACTT L0004 ACTF L0009 |
.LO004 MODULEAP proct s1,s2
.LOO05 MOVE s2,s1

.LO006 PROTECT 1e-008

.LO007 MODULEAP proc2 s1,s2,s3
.L0O008 PROTECT 1e-008 ACT L0009
.LO009 PROTECT 1e-008 ACT L0002

L0010 MOVE s2,sum_out

.LO011 MOVE s3,mult_out

.L0012 PROTECT 1e-008 ACT L0010
.LO013 ENDMODULE

T T T]
MODULE proct a_in,a_out

// Declarations |
INPORT a_in [3:0]
OUTPORT a_out [3:0]
REGISTER tmp1 [3:0]

// Statements

.L0014 uadd a_in,#%0001,tmp1
L0015 MOVE tmp1,a_out
.LO016 PROTECT 1e-008
.L0017 ENDMODULE

MODULE proc2 b_in1,b_in2,b_out
/I Declarations

INPORT b_in1 [3:0]

INPORT b_in2 [3:0]

OUTPORT b_out [7:0]
REGISTER tmp2 [7:0]

/l Statements

L0018 umul b_in1,b_in2,tmp2

.LO019 MOVE tmp2,b_out

.L0020 PROTECT 1e-008 \
.L0021 ENDMODULE |

Figure 2-11 VHDL and the generated ICODE for a sum/multiply example

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 44

2.6.3 Data path and control path structure

The internal MOODS core data structures hold both the behavioural representation of the
ICODE and a fully bounded structural implementation of the structural implementation of
the behavioural data path and control path. MOODS models the control and data paths as
two separate graphs, linked together via implementation links and control equations. The
data path nodes implement the operations performed by the ICODE instruction and the
storage elements in the data path stores the ICODE variables passed into the operations
and the results from each execution. The control path holds a graph representation of every
state within the controlling state machine. The MOODS synthesis process is the iterative
process of applying multiple simple optimisation transformations to these data structures,
controlled by a transformation selection algorithm. It is possible to output a structural
representation of the system at any point within the synthesis process after the building of

the control and data path graphs from the ICODE file.

Figure 2-12 shows the initial control and data path graphs created by MOODS for the
example shown in Figure 2-11. The structural implementation is generated directly from
the ICODE, and this naive implementation of the behaviour has one control state node per
instruction and a separate data path node for each functional I[CODE operation and ICODE
variable. At this stage, the initial structure has no shared operation and variable storage
elements within the data path and since each data path node is activated by one control
state node, it is possible to superimpose the schedules time steps over the data path graph,
as illustrated in Figure 2-12. This combined view of the desi gn is no longer feasible during
synthesis when the functional units and storage elements are shared within the data path,

altering the one-to-one direct correspondence between the two graphs.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 45

Concurrent |
.............................. nodes execute

|
H
i I
I branches have] | ICODE instructions |
|
|

the same ; A
/J via output register }
/_\‘ .] load enables

| condition exiting

M\Sz)it
| start o [H#1 ... temporary registers are |

..

= I—%T%—J L__‘[MJ | onlyusedonceand |

will generally be ;
shared or removed }

IF instructions l / during optimisation
have no data
path and only [

f

i

generate a

/ conditional node
[Mehtbebhssaieiatl |

- 3
... s1 ol mu[t_out |
T
,,,,,,,,,,,,,, I !
) proci | ﬁubprogram mtod;lfs |
————————————— - subprogram | |___ | ave a separate data W
\ : : ™ path and controller |
. __module
N b medule J executed from a call
| Call nodes ; | node
temporarily pass |.}-....] s2 WU . T FFS PRSP
execution to the . B,
- R |
Szgnr::g:;]e - result registers |
load at the end
| of the executing ’
control state J
YD + A
proc2 !
—————————— }g subprogram !
i module i
........ L .
.. [83 DR R R R T
l ,

Figure 2-12 Initial control and data flow graphs for the sum/multiply example

2.6.3.1 The control path

The control path data structure is built within MOODS in a graph structure, where each
graph node represents a single control state. Input and output control arcs between the

graph nodes form the links to the previous and next control state node. These arcs describe

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS Synthesis system 46

state transitions conditional on signals generated by the data path. For example, in Figure

2-12, the transition from state Sy to state S5 or Sy, is conditional on the data path signal s7.

At present, a one-hot encoded token passing structure is implemented for the controller.
The controller itself is a non-deterministic finite state machine, where each state
conceptually executes one or more ICODE instructions. Each control state is built from a
control cell that contains a single register that is activated for one clock cycle by one or
more token inputs to the cell. These token signals are representative of the arcs connecting
the control state nodes, and the registered state bit forms the state enable signals used to
control the data path. The controller structure suits the register-rich FPGA architecture. It
is entirely possible to implement the controller using alternative state encoding (e.g.

binary, gray-coded) in platforms with limited registers, or use a micro-coded controller.

The instructions executed during a state are stored as an instruction list within the control
state node data structure. A set of acyclic sub-graphs within this list divides the
instructions into groups of dependent instructions, where each group is numbered and
instructions within the group are executed sequentially. Instructions in each group are data
independent with instructions in other groups, and hence the instructions can be executed
concurrently. Within a group, the instructions are dependent on each other and they are
executed sequentially. Figure 2-13 illustrates the execution of two concurrent instruction
groups in a single control state. The two add instructions are data dependent and the result
of chaining the two add instructions (i/ and i2) in a single control state is that two separate
adder data path units are required. The multiply instruction (i3) grouped separately from
the addition instructions executes concurrently. The propagation delay for the data path
units are used to estimate the minimum delay required executing the instructions in the
control state. The characterisation data (i.e. inherent data) for each instruction is fed from
links to the data path nodes implementing the relevant ICODE instructions. All data path
nodes are fully bound to a physical technology-specific library cell during synthesis, from
which the characterisation data is obtained and fed up to the synthesis optimisation
process. The estimated delay is used to determine the maximum allowable clock rate for a
design. With a synthesis constraint (e.g. setting the clock period to 20 ns) specified by the
user, the propagation delay for the data path units determines if instructions implemented

by the corresponding units can be chained to execute in one control state.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 47

a) Delay optimised control and data path

clock F 1 ‘

_ | i
State active ' |
signal - S, : I

group g7 D)
P |
group g2 L i4 : L
e - -
Register Register
access time setup time

b) Chained instruction timing

Figure 2-13 Execution of chain instruction in a single control state

The control nodes in the control path are categorised into six basic types as listed in Table
2-1. Scheduling transformations performed on the control graph data structure tends to
merge control nodes together forming composites of the types listed below. This merging
of control nodes does not apply to collect and call nodes. The collect node, however, can

be completely removed by the parallel merge transformation.

Control node types | Description

General node This node has a single unconditional input and output arc and it can
contain any ICODE instructions other than ‘MODULEAP, ‘COLLECT or
conditional instructions. A general node represents a simple sequential

control state taking one cycle.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system

48

Control node types

Description

Fork node

This node has a single input arc and multiple unconditional output arcs.
It can contain the same ICODE instructions as the general node. Fork
node forms the root of a concurrent branch that simultaneously

activates all the successor nodes.

Collect node

A collect node has two or more input arcs and a single output arc. The
node contains a single ICODE ‘COLLECT instruction only and the node
will not activate the next control state node until a fixed number of input
arcs (which may be less than the total number of inputs) are activated,
thereby synchronising a set of concurrent branches. This node
complements the fork node. Note that the synchronisation of the
translated concurrent VHDL processes is not done with the collect
node. The VHDL compiler no longer supports concurrent translation of
sequential instruction activations, thus rendering the collect node
obsolete. This ‘collect’ mechanism is still supported by the MOODS

core, and thus the collect node is listed here for completeness.

Conditional node

A conditional node has single input arc and two of more conditional
output arcs. This node can contain any ICODE instructions supported
by the general node, as well as conditional ICODE instructions such as
‘IF and ‘SWITCHON to form the conditional paths through the control

graph.

Dot node

This node has two or more input arcs and a single output arc. This node
complements the conditional node. Any of the input arcs can activate
the node. The dot node provides the re-convergence path for the
conditional branch sections. It supports the same set of ICODE

instructions as the general node.

Call node

The call node forms the basis of the module calling mechanism. It has a
single input and output arc. This node contains a single ICODE
‘MODULEAP' instruction only. The call node delays the execution of the
next control state node until a single iteration of the called sub-module
is executed. The call node activates the first control node in the
separate control sub-graph of the called module and when the sub-
module terminates, control is passed back to the call node and it

activates the next control state node in the main graph.

Table 2-1 Descriptions of the six basic control node types

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 49

Once the control graph is optimised, the only distinct types of node are the call, fork,
conditional and general node types. A call node is physically realised by the control call

node described in Section 4.6, with all other nodes realised by a general control node.

2.6.3.2 The data path

The MOODS synthesis core generates the data path as a fully connected graph of data
path node units, connected indirectly via data path nets. This level of indirection is used to
determine the bit range connectivity of multi-bit nets used to connect the node units. The
network of functional (adders, multipliers etc.), storage (registers), and interconnect
(multiplexors) units in the data path graph implements the functionality of the ICODE
instructions. The flow of data through this network is controlled by the control nodes in

the control path. The data path consists of three main types of data path node units:

1. One storage unit (register) is initially created for each ICODE variable (both user
specified and temporary variables). A number of different types of storage units
exist and the selection of which of these optimised storage units depends on the
operations performed on the variable. The general register type storage unit is
implemented for the storage of data variables and temporary variables used in a
number of instructions. Each operating instruction is performed by a separate or
shared functional unit, which is connected to a register input via a multiplexor. A
variable which is only reset and incremented (or decremented) is implemented by a
counter register with a reset input, thereby removing the need for an adder unit for
such instruction executions. A third type of storage unit is formed from a multi-bit
array variable or constant, where a RAM-type or ROM-type storage unit is created
respectively. During synthesis, register sharing and bypassing reduces the number

of physical storage units required.

2. A functional unit implements ICODE operations such as additions, multiplications,
and comparisons. These operations are purely combinational, with a combinatorial
functional unit to produce the results. Characterisation data (Section 2.6.3.1) from
cell libraries provides technology-specific performance data and this is used to

estimate the area and maximum delay; time required for an input change to

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 50

propagate through to its output (i.e. the longest accumulated combinatorial delay).
The functional nodes are not controlled directly from the control state nodes in the
control path; they rely on the controller to feed the appropriate values to the inputs |
of the functional units and to read the results of the unit during specified control
states. An exception to this rule is the use of ALU type functional units, which can
perform more than one type of operation. The type of operation is selected from a
set of input control signals, driven by control nodes in the control state machine.
An example of an ALU unit is an add/subtract, which is used in place of a single
add unit and a single subtract unit. Note that only one type of operation may be

used within any single activated control state node.

3. The final type of data path unit is the interconnect unit. The library cell that
implements the interconnect node is a multiplexor. The multiplexor selects the
appropriate input amongst two of more input nets and drives the inputs of any
shared data path unit. Interconnect units are not physically created until the post-
processing phase in the synthesis process for code size efficiency and reducing
synthesis runtime during data path optimisation. The MOODS synthesis tool,
however, does take into account the delay and area factors of these implied

multiplexors during the optimisation process.

Each data path node is a generic functional block performing the appropriate ICODE
operations (or operations for ALUs). Functionality and characterisation data (such as area
and delay) for each unit is obtained via a link into the cell library. The actual physical
implementations of the data path elements are taken from a pre-defined set of
parameterised structural/RTL components defined in a technology library file. The
separation of the generic and physical aspects of the data path elements gives technology
independence within the synthesis core without sacrificing the accuracy of the
performance information as the technology specific cell information is used within the

synthesis process.

The signals that link the control path nodes to the data path nodes are represented by
Boolean logic equations. This abstraction of the control signal generation allows a number
of different ways of implementing the linking signals, which includes a network of multi-

level logic gates, ROM lookup, or combined with the control graph to form a micro-coded

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 51

controller. At present, these linkage signals are output as simple VHDL logic expressions,
leaving Boolean optimisation and technology mapping to the low-level logic synthesis

tools.

2.6.4 Transformations

MOODS formulates the synthesis optimisation process as an iterative optimisation of the
initial naive implementation of the design, where the synthesis task is divided into the
traditional sub-tasks of scheduling, allocation, and module binding. This allows trade-offs
to be made between the various synthesis sub-tasks, which are performed simultaneously.
Optimisation is performed by applying a number of small local transformations on

selected parts of the design using a dedicated optimisation algorithm.

Each local transformation is semantic preserving and complete, resulting in a valid design
after each transformation applied to the design. Throughout the process, the internal
representation describes a complete and fully bound design implementation, making use of
the low-level characterisation information from the module libraries to provide accurate
estimates for circuit performance. At present, MOODS has a set of fourteen different
transformations, each performing slight changes to the design, adjusting the scheduling of
the control state nodes in the control path, and the allocation and binding of data path
nodes in the data path. The fourteen transformations include six inverse transformations to
perform backwards steps to reverse previous design decisions, resolving the problem
assocliated with premature binding decisions, which may produce non-optimal designs.
Details of the four basic control state merging transformations, two inverse state-splitting
transformations to undo the merging of states, and a clock period adjustment
transformation, are given in Section 2.6.4.1. Details of the two data path unit sharing
transformations, together with four of their associated inverse unsharing transformations,

and a binding transformation to select an alternate functional unit are given in Section

2.64.2.

T.B. Yee, 2007

Chapter 2: High-level synthesis and the MOODS synthesis system

52

A4

/

Step 1 Select transformation and
P target section of the design
y
Test the validity of the
Step 2 transformation

]

transformation valid ?

no

|
Step 3 !
I

Estimate the effect the

transform will have on the {
design performance |

perform the yes
transformation ? #
[|
no | Step 4 I Apply the transform to the |
| design r
v o

perform another
iteration ?

\/

Figure 2-14 The steps to applying transformations in the iterative

optimisation process

The selection and application of the transformations performed within each iteration of the

optimisation process consists of four separate steps, as illustrated in Figure 2-14:

1. Selection - This initial phase selects a transformation from the fourteen available, and

the portion of the design to which it should be applied. This selection is controlled by

the optimisation algorithm in use.

Testing - The second step involves checking the validity of the given transformation

on the selected portion of the design. It is possible for some transformations to alter the

behaviour of the design (e.g.

instruction dependency and mutual exclusivity). This

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 53

testing phase ensures that all transformations to be applied are valid and invalid ones

are filtered out and aborted.

3. Estimation - This estimation step evaluates the effect of the given transformation on
the system performance based on the user objectives (such as area, delay, power
consumption, etc), without permanently altering the core data structures. This step
simulates all the changes made to the design by the transformation and calculates the
effect of these on the current system performance. The optimisation algorithm uses the
results of the estimation to determine whether to perform the transformation (i.e. make

the changes in the core data structures) or abort the transformation.

4. Execution - The last step applies the transformation, altering the internal data

structures of the design.

2.6.4.1 Scheduling

Scheduling transformations perform control graph optimisation, whereby ICODE
instructions are assigned to control state nodes and the number of control state nodes used
to perform a number of ICODE operations is optimised, when more than one ICODE
instructions are merged into a single control state. There are four basic state merging
transformations, two inverse state-splitting transformations to undo the merging of states,
and clock period adjustment transformation. These seven scheduling transformations and

their effects are listed in Table 2-2. More details may be found in [39].

=7

Transformation | Effects

Sequential merge This merging transform merges two sequential control nodes (i.e. nodes
executed sequentially) to form a single control node implementing multiple
instructions, where the instructions in the second node are moved into the
first. ICODE instructions with data dependency are chained together within
an instruction group, thus bypassing intermediate data value registers. The
second control node with no associated instructions is then removed from

the control path.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 54
Transformation | Effects
Parallel merge This transform is applied to a concurrent branching fork node, where the first
nodes within each branch are merged into a single successor node.
Merge fork and Elements of the previous two are combined to form this third transformation,
successor

where the successor instructions contained within one branch are merged

into the branching (fork or conditional) node.

Group instructions
on register

This transformation is geared towards removing registers with a single input
and output net, which is common in the temporary variable register storage
units generated by the compiler. These variables are accessed by one read
and write instruction. The transformation tries to bypass (remove) the data
path register by merging the instruction group that contains the write

instruction into the read instruction control node.

Ungroup into
groups

This inverse scheduling transformation is a state-splitting transform, which
moves groups of instructions within a control state node into two separate

control nodes. The first control state node contains the single selected and
extracted group of instructions, leaving the remaining groups in the second

control node.

Ungroup into time
slices

This second inverse scheduling transformation extracts instructions from a
specified control node and places them into a number of new control state
node, such that the time taken to execute the instruction groups in any of

these old or new control nodes does not exceed a specified period.

Clock set / multi-
cycling

This optimisation is a global optimisation that sets the maximum clock period
for the entire design. This transformation makes use of the ungroup into time
slices transformation, forcing all control nodes below a user specified clock

period constraint.

Table 2-2 Scheduling transformations

T.B. Yee, 2007

Chapter 2: High-level synthesis and the MOODS synthesis system 55

2.6.4.2 Allocation and Binding

The second group of transformations acts upon the data path, performing allocation and

binding optimisation, where the transformations are concerned with the sharing and

unsharing of data path units. There are two sharing transformations, together with four of

their associated inverse unsharing transformations. A further binding transformation is

also provided to select an alternate functional unit to perform the same operation. These

seven data path transformations and their effects are listed in Table 2-3. More details may

be found in [39].

Transformation

Effects

Combine
JSunctional units

This transformation attempts to merge two functional units into one, where
the operations performed by the two source functional units are not
executed in the same time slice. This has the effect of time-sharing a
functional unit between multiple operations. The resultant function unit will
have number of inputs, which are selected by the multiplexor interconnect
node. Control signals from control state nodes are used to drive the select
signals of the inferred muitiplexors, and the load signals of the required
output registers. The availability of multi-function ALU units in the cell
libraries allows two combined units performing different operations to merge
into a single ALU unit. For example, merging an add and a subtract

functional unit into a single add/subtract ALU unit.

Share registers

This second merging transformation tries to share a single register storage
unit between multiple ICODE variables with non-overlapping lifetimes, or
variables that occurs in mutually exclusive conditional branches. The
register lifetime analysis also takes into account variable persistence around

loops and through conditional branches.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 56
Transformation | Effects
Uncombine This first uncombine transformation undoes the merging of two functional
Z:fl.ttmc"onfmm units by the combine functional unit transformation. It takes a shared

functional unit that implements two or more ICODE instructions, and
removes one of these instructions into a new functional unit created to
implement the extracted instruction. The transform makes use of the cell
library to determine the type of unit to use for implementing the extracted
instruction. The unit that was initially shared is re-evaluated and the cell
library is used to select a replacement functional unit to perform the

remaining instructions (i.e. minus the extracted instruction).

Uncombine unit
Sully

This transformation utilises the uncombine instruction from unit
transformation to completely extract all ICODE instructions from a single
functional unit into a number of functional units, one unit implementing one

instruction from the original shared unit.

Unshare variable
Jrom register

Shared registers are unshared in a manner similar to the uncombine
instruction from unit transformation using this transformation, which extracts
one of the implemented variables from the shared variable and placed in a

new separate register storage unit.

Unshare register
Sully

This transformation utilises the unshared variable from reqgister
transformation mentioned above to completely unshare all the ICODE
variables being implemented by a single shared registered storage unit. This
transformation creates a number of separate register storage units, one for
each ICODE variable.

Alternate
implementation

This is the only binding transformation provided by the MOODS synthesis
core. For a functional unit that has two or more different available
implementations in the cell library, this transformation attempts to replace
the existing unit bound to the functional data path unit with an alternative
implementation with a different area and delay characteristics. This attempt
to use an alternative implementation changes the cost of the unit and the
cost function used within the optimisation algorithm is used to determine

whether to accept or abort the new unit binding.

Table 2-3 Allocation and binding transformations

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 57

2.6.5 Cost function

The cost function is a measure of the “goodness” of a change (e.g. merging of control
states or sharing of data path units) in the design structure with an application of the
selected transformations. This cost function is used during the estimation phase (step 3 in
Figure 2-14) in the iterative optimisation process. The cost function evaluates a design
configuration with respect to the target objectives specified by the user, where the
multiple, possibly conflicting objectives form the weighted costs of each objective
(dimension). These weighted costs are used by the cost function to produce a single value

representation of the state of the design in an n-dimensional design space.

The MOODS cost function allows the user to specify objectives for a number of
measurable design parameters such as area, delay, and power consumption. Each of these
objectives is specified as a target value and user defined priorities are assigned to each
objective. The priority level assigned to objectives determines the order in which targets
are optimised, where the primary objectives with priority 1 (highest priority) are

considered first before any other lower priority objectives.

An analogy for the cost function is the “energy” of a system. During optimisation, the
effect of applying the selected transformation is predicted by evaluating its effect on the

system “energy”. For a single objective, the change is given by:

lemmle - C previous (2 . 1)
C nitial

AE =

Where Cestimate is the estimated cost of the design after applying the transformation,
Chrevious 15 the cost of the design before the transformation, and Cip;ia 1S the cost of the
initial implementation. A negative average change (AE < 0) indicates a general

improvement in the design implementation with respect to the user objective.

The optimisation algorithm uses the value of the change in energy (AE) due to applying a
single transform to decide whether or not to accept the transform. AE is calculated by
summing the change in cost of each objective caused by applying a transform starting with

the primary objective. If all primary objectives are met, whereby all Cpreyipus < Ciarger and

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 58

Cestimate < Crarget (Where Ciarger s the target cost for the objective), then AE is calculated

from the priority 2 objectives, and so on for other lower priorities.

2.6.6 Optimisation algorithms

The MOODS synthesis core currently provides two optimisation algorithms. Both
methods can be used to control the optimisation process described in the previous section.
The first key function of the optimisation algorithms is selection of the initial
transformation and design portion to which the selected transformation should be applied
in the data selection phase. The other function of the optimisation algorithm is to decide

the number of transformation iterations to execute.

2.6.6.1 Simulated annealing

This first algorithm exploits a method with an analogy in metallurgy, where annealing is
originally a process where the molten material is cooled down from the high-energy liquid
phase to the minimal low energy solid phase in a controlled, usually slow, manner. A
proper disciplined cooling schedule sets the final energy state at its globally minimum

level at the end of the cooling process.

The simulated annealing algorithm [43] is a global optimisation method that is based on
the Metropolis algorithm [44]. The simulated algorithm works by selecting a random
transformation and design section to target the transformation. The resulting system
energy change in the cost function is evaluated and the algorithm accepts both improving
(AE < 0) and degrading (AE > 0) transformations. Transformations leading to cost
improvements will automatically be accepted, whereas the probability of accepting a cost

degrading transformation is given by:

P:exp_?E : AE>0 (2.2)

where P is the resulting probability of accepting a degrading transformation, AE is the
estimated positive change in energy given by the transformation and 7'is the temperature

within the annealing algorithm. This ensures that the probability of acceptance of

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 59

degradation decreases when the temperature decreases. The decision to accept
degradations is made from the comparison of the probability threshold value and a
normalised random number, and acceptance being granted when the generated random

value is the smaller value between the two.

Figure 2-15 illustrates a one-dimensional configuration space and it demonstrates how the
simulated annealing algorithm avoids being trapped in local minima on the configuration

path.

A
| °
‘ initial
configuration

B

L d
Cost | local minimum
| (o4
*

local minimum

D

-

global minimum

L el 15 Lt - -
Configuration

Figure 2-15 Design cost plotted against a single one-dimensional space

The design is initially represented by point 4. An optimisation algorithm that accepts only
transformations that result in an improvement will hit the local minimum (point B). The
simulated annealing algorithm accepts degradation and hence allows the confi guration to

jump out of the local minima (points B and C) into the global minimum (point D).

The main advantages of the simulated annealing algorithm are its abstractness in terms of
its application independence and its ability to find a global minimum. The optimisation
process using the simulated annealing approach relies entirely on the cost function and
transformation estimators to encapsulate the design space. This allows complex trade-offs
to be made between multiple conflicting objectives, and permits the inclusion of further

objectives (e.g. dynamic re-configurability or testability) with additional costing

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS Synthesis system 60

mechanisms to the cost function, with characteristic information and models for the added
objectives. However, there are a few disadvantages associated with the simulated
annealing. Firstly, the simulated annealing uses a random approach in the selection of
transformations, thus many iterations are required for a system to reach equilibrium,
making the simulated annealing approach slower than heuristic methods. The abstract
parameter values used to control the simulated annealing process requires manual
selection by the user, these are often difficult to predict in advance, requiring considerable
experience to obtain the solutions for each design. Generally, the optimisation speed is

traded off against the quality of the resultant synthesised design.

2.6.6.2 Quasi-exhaustive heuristic

MOODS synthesis tool addresses some of the unpredictable and often slow nature of the
simulated annealing algorithm with a quasi-exhaustive heuristic algorithm, which is both
faster and more user friendly. Unlike the random selection method used in simulated
annealing, this heuristic approach uses the same set of transformations, applied in a pre-
defined schedule, guided by an analysis of the design. The quasi-exhaustive heuristic
produces the same final structure for every optimisation run of any fixed design. The
algorithm only performs area and delay optimisation, with knowledge of suitable trade-

offs gained through an analysis of a number of test designs.

The quasi-exhaustive heuristic only accepts improving transformations; it uses the same
sets of transformations as those used within the simulated annealing algorithm, apart from
the inverse (i.e. degrading) transformations. Two basic routines are provided to optimise

area and delay:

1. Compact control path - This routine utilises the scheduling transformations, merging
control state nodes in the control path. This reduces delay by performing more
instructions within a single control node and to a lesser extent, as temporary

intermediate registers are bypassed and removed in the data path.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 61

2. Compact data path - This second routine utilises the allocation and binding
transformations, merging operations and sharing register storage units, hence

optimising area.

There are two main disadvantages in using the quasi-exhaustive heuristic algorithm.
Firstly, the inability to apply degrading transformations can lead to a sub-optimal
synthesised design. The other reason is the heuristic approach only performs area/delay
optimisations. To perform multi-dimensional trade-offs between multiple conflicting
objectives, the heuristic approach needs to understand the interactions between all aspects
of the design space in order to perform the most appropriate transformations. The
algorithm which is faster than the simulated annealing algorithm provides the user with
some general idea of what constitutes a realisable target and it may be used as a pre- or

post-processing step in conjunction with simulated annealing for further optimisation.

2.7 Post-processing

The post-processing stage in the MOODS is used to complete the structural description of
a design. This epilogue (finalisation) stage happens just before the generation of the raw
structural VHDL output (_synthl.vhd) file, final data structure (.ds) file, and the DDF data
structure (.ddy) file (the last processing stage in the synthesis engine — MOODS in Figure

2-9).

The first step of the post-processing stage is the bypassing of subprogram module output
registers to implement pass by reference (See Chapter 4 for subprogram module

modifications to change outputs of external modules to pass by value).

The next stage in the post-processing stage is to generate any multiplexors that are
required. These interconnect data path nodes are completely implied during optimisation
for efficiency reasons. A multiplexor is created and linked into the data path structure
when multiple input nets drive a single data path node in. The net activation conditions
which correspond to ICODE instructions that drive the input nets are later converted into

multiplexor select signals.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 62

The third stage in the post-processing stage involves the generation of control signals from
the conditional signal list. Boolean expressions are generated and linked in to the

appropriate nets and control signals within the control and data paths.

Other tasks performed within this post-processing stage include the tidy up of the data
path, removing of unused data path units, which have been bypassed during the

optimisation process. The control path is also tidied by removing redundant control states.

2.8 Summary

The beginning of this chapter gives an outline of the overall high-level synthesis process
and the main sub-tasks within the process. The rest of the chapter describes the MOODS
synthesis system in more depth, in particular the methods employed by MOODS to carry
out the synthesis sub-tasks. MOODS develops and provides the user with multiple
implementations from a single behavioural input description within the design space,
which provides trade-off between several, possibly conflicting, objectives in the aim of

producing an optimised implementation of the design.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 63

Chapter 3

Multi-FPGA partitioning

3.1 Background

The previous chapter covered an overview of high-level synthesis and an in-depth
description of the MOODS synthesis system, which forms one part of the multi-FPGA
synthesis system. The other important part is the partitioning phase, more specifically ow
is the design partitioned and when to perform partitioning. The first aspect of sow the
design is partitioned deals with the design representation used for partitioning and the
partitioning algorithm used. A common design representation for partitioning is based on
graph notation, where a data flow graph, control and data-flow graph, or module call graph
is partitioned with the goal to attain a partitioned design that fulfils optimisation criteria
and constraints such as area, speed, power consumption, number of I/Os, etc. Partitioning
can be performed at different abstraction levels and granularity, the second aspect of when
to perform partitioning has a high impact on the quality of the structural output produced

by the synthesis system.

The rest of this chapter provide the background information on multi-FPGA partitioning,
giving an insight on how a design can be partitioned. Section 3.2 deals with partitioning
methodologies and it provides an overview of partitioning algorithms. With an
understanding of partitioning algorithms, Section 3.3 introduces multi-FPGA partitioning
and describes synthesis systems with multi-FPGA partitioning features. Section 3.4 deals
with some aspects of the data communication in the context of multi-FPGA systems.
Section 3.5 describes techniques and issues related to data synchronisation across clock

domains. An introduction of design activity profiling and how the obtained profile can be

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 64

used to guide the partitioning algorithm to achieve an improvement in the implementation

solution is given in Section 3.6.

3.2 Partitioning methodology

Multi-FPGA systems [45] are often used in logic emulation, prototyping applications, and
implementation of application specific integrated circuits (ASIC) of large system designs
because of their programmability features, low costs and short production times [46]. The
general partitioning problem is a well-known NP-complete problem [47]. Partitioning of a
design over multiple devices can be performed at various levels of abstraction, with a
multitude of techniques in partitioning multi-FPGA systems and the possible combinations

could reach into the thousands.

3.2.1 Overview of partitioning algorithms

Partitioning algorithms can be classified broadly into two main categories [48, 49]. The
first is constructive and the other iterative. Constructive algorithms determine a partition
from the graph describing the circuit or system, whereas iterative methods aim at

improving the quality of an existing partitioning solution.

Partitioning algorithms can also be labelled deterministic or probabilistic. Deterministic
algorithms generate the same solution for the same set of inputs every time. Probabilistic
algorithms, on the other hand, produce differing solutions as they are based on random
numbers. One of the best-known, most widely referred and extended deterministic
algorithm is the Kernighan and Lin (KL algorithm) [50] and its variant, the Fiduccia-
Mattheyses (FM) heuristic [51]. Refinement and extensions to the basic FM heuristics
given by Krishnamurthy [52], Huang and Kahng [53], Hauck and Borriello [54],Cong et
al. [55, 56], Dutt and Deng [57], KuZnar et al. [58, 59] as well as many others.
Probabilistic or stochastic algorithms includes the Simulated Annealing (SA) algorithm
[43] and Genetic Algorithms (GA) [60].

Research on partitioning at a higher level of abstraction (e. g. behavioural partitioning) and

hierarchical partitioning techniques were carried out by Vahid et al. [61-65], Digital

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 65

Design Environments Laboratory in the University of Cincinnati [66-68], Fang and Wu

[69-71], Duncan et al. [72], Krupnova et al. [73] as well as many others.

Kernighan-Lin algorithm

The KL (Kernighan-Lin) [50] algorithm is an iterative improvement bipartitioning
algorithm for a graph G = (¥, E), which starts with two initial partitions (usually randomly
generated) of » elements each. Pairs of vertices are swapped between partitions until no
further improvement can be achieved. The KL algorithm attempts to swap pair of vertices
to reduce the cutsize or a move resulting in the smallest increase in cutsize, if no decrease
is possible. A cost matrix C = (cy), where i=j=1,2,3, ..., 2n, i = 7 is associated with the

graph. For each node a € 4, an external cost, E, is defined by:

E, = Zc ay Where ¢, is number of edges that (3.1)
yeB cross the partition boundary '
and an internal cost I, by:
I,= anv where ¢, is number of edges that do
ved not cross the partition boundary (3.2)

D, = E, — I, 1s the benefit of moving vertex a from 4 to B. The gain of swapping a vertex

pair (a, b), where ae 4 and be B is given by D, + Dj - 2¢,.

The first step of the KL algorithm arbitrarily partitions ¥ into two equal subsets 4 and B.
External costs, internal costs, and the difference between the two costs are then computed
for all vertices. Step 3 of the algorithm is to choose the pair of vertices that will result in
the highest gain value when the interchange occurs. The gain resulting from this move is
stored and the selected pair of vertices is locked to prevent it from being considered for
swapping again. The procedure continues until all » pairs of vertices are evaluated and
locked, and the sequence of gains, g, ..., g, is generated (Step 4). The total gain of

swapping the first vertex pairs is given by:

k
Gy :Zgi where 1 <k<n (3.3)
i=]

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 66

Kernighan-Lin Algorithm

begin

Stepl. V=set of 2n clements; 4, B is the initial partition where
|4] = |Bl; ANB = & and AUB = V;

Step2. Compute D, for all ve ¥V: queue < 0; and i «— 1;
A’=A4; B’=B;

Step3. Choose aie A/ bie B’ which maximises
gi=D, + D, -ZCa’b' ;

Lock a; and 4;, and add the pair (a;, b)) to queue;
A’=A4"-{a;};B'=B"-{b};
Step4. if A“and B”are both empty then Goto Step5
else recalculate D - values for 47U B”:
i< i+1; Goto Step3;
end if
Step5. Find k to maximise the partial sum

k
Gy :Zgi ;
i=1

if G> 0 then
Move X={a,, ...,a,}toB;
Move Y={b,, ..., b, } to 4;
Goto Step2;
else STOP
end if
end

Figure 3-1 Kernighan-Lin algorithm

The last step of the algorithm (Step 5) interchanges the first & pairs of vertices for which
Gy is maximal, making the interchange of {as, ..., ax} with {b,, ..., by} permanent. The
KL algorithm stops when the best gain found in an iteration is less than or equal to zero,

that is, no further improvements can be obtained from vertex pair swapping.

Fiduccia-Mattheyses alcorithm

The FM (Fiduccia-Mattheyses) algorithm [51] is one of the best-known, most widely
referred and extended partitioning algorithm. It makes two modifications to the KL

algorithm to improve the time complexity. Firstly, instead of swapping and locking a pair

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 67

of vertices, the FM algorithm considers and moves a single vertex, one with the highest
gain in a partition-to-partition move. Secondly, also one important feature of the FM
algorithm, a bucket data structure (see Figure 3-2) keeps sorted lists of candidates
(vertices) for moving to the other partition. The vertices are sorted by order of maximal
gain in a move, where a positive gain is an improvement in the overall solution while a

negative gain degrades it.

[) |
max } Sorted list of vertices
Max Gain
3 —{ —{ —{ [List of locked vertices
2 Locked
1 Y
0 — | A4
\ PN
1 \ —=—=—=
| b ~—
2 H
3 | | H |
s | X
| | I
|
|
min | |
| [
|
Vertices 1 | 2 | 3 | 4 | 5 | 6 | 7 I I n l

Figure 3-2 Bucket data structure in the FM algorithm

The FM algorithm is an iterative improvement algorithm, in that it starts with a random
initial partition, and iteratively modifies the solution by a sequence of moves within a pass.
To avoid having all vertices migrate to one partition, a balancing criterion is maintained. A
user-specified balance factor r (called ratio), 0 <r <1, is used to ensure that only final
partitions satisfying |4| / (]4| + |B|) = r are acceptable, where |4| and |B| are the sizes of
partitioned blocks 4 and B. A partition (A, B) is balanced if

(r* W] - Smax) < 14| < * V] + Sax) (3.4)
where || + |B| = |V, Smax = Max[s(i)],andie 4 UB=V

All vertices are free to move initially, the move with the highest gain and does not violate

the balance criterion, is selected and executed iteratively. The moved vertex (base vertex)

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 68

is locked and never selected and moved again during the pass, preventing the algorithm
from selecting and moving the vertex moved in the previous iteration, thus the algorithm
avoids executing in an infinite loop. The gain values of adjacent vertices affected by the
base vertex move are updated after each move. The algorithm maintains a maximum gain
index for each bucket data structure to keep track of the vertex with the highest gain. The
algorithm continues with the execution of this iterative select-and-move sequence until no
more unlocked nodes can be moved without violating the partition size constraints. At the
end of a pass, the FM algorithm moves back to the best intermediate solution, allowing the
algorithm to climb out of local minima. All vertices are unlocked and the best solution

forms the starting partition for the next pass. The algorithm terminates when a pass fails to

improve the solution.

A single pass of the FM algorithm using a graph with six vertices (labelled M-R) is
illustrated in Figure 3-3. The algorithm starts with an initial partition in (a). The vertex
with the highest gain (vertex M is the base vertex in (a)) is selected and moved to the next
partition. The moved node is locked (shown shaded in the diagram) and the gain values of
the adjacent vertices (vertices O, 0, and R) are updated. The select-and-move sequence
ends in (g) and the intermediate result in (c) gives the best solution (with a cut-size of 3)

forms the starting partition for the next pass.

T.B. Yee, 2007

Chapter 3: Multi-FPGA partitioning

(=

(0}

(20— Q‘»— { 'ﬁ;

Cut-size=5

g i
[L DX
[,N‘ 7

@ . ®
| I
| & i
| 57l

Gain
(M) | +3 i
i | +2 | o
AP -
i T +1 (P
NY/ V(@ [0 (N
/1 1 £l
| 29 H . st
| &—T—& |2 [~R
Cut-size = 4 3 Lva
L |
(b)
Gain
‘\o,‘) +3 |
1 L 42]
i/ (M) f
‘ i T ‘ +1 |
| @ A—(a 0 N
| - { T —
| 1 | EIRC
| &1 ® 2 |
Cut-size =3 \7.737 + R
(d)
Y. Gain
N] +3
1 +2
(o) t
‘ ‘W,v’ | +1
| @———m) [0|
| L 1 (=R
| <5') ‘ R [2
Cut-size = 4 » -3
(f)

Figure 3-3 Example of a single pass in the FM algorithm

Clustering algorithm

A clustering algorithm groups a set of objects according to some measure of closeness.

Strongly connected objects are merged into clusters: thereby condensing the overall

69

design. A hierarchical cluster tree, with the original objects as the leaf nodes, is formed as

the merging process is iterated until a single cluster is formed. The two ‘closest’ objects

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 70

(which can be individual leaf nodes or clusters resulting from previous iterations) are
grouped together and the closeness between all other clusters, or between individual
objects and clusters are recomputed during each iteration pass. Leaf nodes are considered
to a height of zero and each non-terminating node of the tree has an associated height,
which reflects the distance between the objects that have been merged into the
corresponding clusters. Non-terminating nodes closer to the leaf nodes represent clusters
in which the objects are strongly connected, and in contrast, non-terminating nodes with
larger distance (i.e. closer to the root node) represents clusters in which objects are less
strongly connected. Cut lines at different heights of the tree produces differing number and
size of partitions, as each sub-tree below the cut line becomes one resulting partition. A
small number of relatively large clusters are obtained when the cut line is close to the root,
while a cut near the leaves will give a large number of relatively small clusters. The final
partitions of the design are usually chosen by having cut lines at different levels and the
resultant partitions from each cut are evaluated according to design criteria such as area or

I/O utilisation of target devices.

Figure 3-4 illustrates the hierarchical partitioning algorithm using five vertices labelled 4
to £. Closeness values between pairs of objects are marked on the labelled on the edges
connecting the objects. Objects or groups of objects that are merged in each succession are
encompassed in the shaded cluster and the closeness between two clusters or between an
individual object and a group of objects are recomputed. The closeness values can be the
maximum, minimum, or average of the closeness of objects in the group. This closeness

value has been estimated as the maximum closeness in the given example shown below.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 71

Figure 3-4 Successive steps in Hierarchical clustering

Figure 3-5 below illustrates the cluster tree produced by the hierarchical clustering
algorithm. Partitions produced from each cut are shown the corresponding cut lines. The
highest cut line, which is closest to the root node, produces a partitioning of two clusters
with objects 4, £ and C in one cluster and objects B and D in the other. The lowest cut line

produces a partitioning of five clusters with a single object in each.

i Rootnode |

; Cutlines | /\J\

\ {A, E, C}{B, D}

/ \ {A, E}{C}{B. D}
/ \ \7\ {A, E}{B}{C} (D}

/'\/ \ /\ {A} {B} {C}{D}{E}
AR

Figure 3-5 Cluster tree produced by Hierarchical clustering

Clustering algorithm can be applied at several levels of abstraction (i.e. gate netlist level,
functional level, system level). Hierarchical clustering algorithms, which exploits the
design structural hierarchy are reported in [70, 71, 73]. F ang and Wu [71] describes a
hierarchical set-covering approach at the structural level for multiple-FPGA applications.
The design is first converted into a three-level, module, process, and function, structural

tree. An example of a structural tree with three modules (M1, M2 and M3), eight

T.B. Yee, 2007

Chapter 3: Multi-FPGA partitioning

processes (P1,1 to P1,

13,3,2) is shown in Figure 3-6.

3,P2,1,P2,2, and P3,1 to P3,3) and twenty functions (f1,1,1 to

/ - Y
ATer)
{
d ; ;- E g
Modules (w1 (Mz) [ma
/r : \ e
rreseseet. P11\<P12\/P13) 'P21 P22\ p31\/P32"ffP33\>
/ J A \ J\ <
\
\ \
Funct!ons
. o [] L 10 L { 1 Ej
7 7‘ t
1,1,2 1,21 1,23 £3,3,1

Figure 3-6 Structural tree of the hierarchical set-covering algorithm

The structural tree is next converted into a hierarchical connected graph illustrated in

72

Figure 3-7 below. The covering process is performed on the hierarchical graph and it starts

from the nodes with coarse granularity and then moves down to nodes with finer

granularity when no more feasible covers can be found in the latter (higher) level. If
modules M1 and M2 can be grouped into a set while satisfying the constraints, in this

case, area and 1/0 of the target FPGA, then M1 and M2 can be merged into a set and

targeted to the device. On the other hand, if the constraints are violated, then M1 and M2,

then the set-covering algorithm tries to merge portions of one module with the other

module to improve the covering size. For example, in Figure 3-7, module M2 and portions

of M1 (process node P1,2 and functional node f1,3,1) are covered as a set.

1,1,2

Function

Figure 3-7 Hierarchical connected graph

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 73

Frank and Gajski [62] describes a closeness metrics for system-level functional
partitioning, and a N-way clustering method is used to group close objects until there are
only N groups remaining, where each group is then assigned to its own system (hardware
or software) component. A clustering algorithm is often used with other partitioning
heuristics to reduce the complexity of the design, thus reducing the computational effort,

and even significantly improve the quality of the final solution [61, 74].

Simulated annealing algorithm

The simulated annealing (SA) algorithm works in a similar manner as described in Section
2.7.6.1, where the simulated annealing is one of the optimisation algorithms used within
the MOODS synthesis core. In partitioning, the SA algorithm starts with a random
partition, and iteratively improves the solution. A pair of vertices is selected from each
partition randomly in each state, and compared With the previous state. The intermediate
solution that results in an improvement in the overall solution is accepted and the move is
made permanent. A predetermined number of moves are attempted at each temperature.
When a move that degrades the overall solution is encountered, the probability of

accepting the degrading move is given by:

P=exp AE>0 (3.5)
where P is the resulting probability of accepting a degrading move, AE is the change in
quality of the states, and 7 is the current temperature. This function ensures that the
probability of accepting a degrading move decreases when the temperature decreases. The
decision to accept degradations is made from the comparison of the probability threshold
value and a normalised random number, and acceptance being granted when the generated

random value is the smaller value between the two.

The simulated annealing algorithm generally produces good partitions but it is a very slow

algorithm. The need to determine experimentally the several parameters of the SA

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 74

algorithm, such as the starting temperature, the cooling schedule, and the number of

moves to perform at each temperature is another disadvantage in using the SA algorithm.

Genetic algorithm

Genetic algorithms (GAs) are inspired by Darwin’s theory of evolution, where problems
are solved by an evolutionary process that mimics the natural selection and genetics. The
origins of GAs are often accredited to work carried out by J. Holland [60] in the early 70s.
A genetic algorithm is a randomised parallel search method for a single or multi-objective
function optimisation. A population of individuals is maintained by the genetic algorithm,
where each individual is a potential solution for each generation. Each potential solution is
evaluated to give some measure of its fitness. From this population, a new population is
formed by selecting some of the fitter individuals (selection) and others are formed using
genetic operators (such as crossover and mutation). After some generations the program
converges and the best individual (hopefully) represents the optimum solution. The
genetic partitioning algorithm given in Figure 3-8 is used in the partitioning of modules in

a multi-FPGA system [75].

Genetic Partitioning Algorithm

K: population size (number of partitions in a generation)
S: percent of new generation produced by selection.

C: percent of new generation produced by crossover.

M: percentage of partitions mutated.

GAQ
begin
Create a random set of K partitions
Evaluate the fitness of each partition
while (stopping criteria not satisfied)
Create S percent of new population of partitions by selection
Create C percent of new population of partitions by crossover
Replace the current generation by new generation of partitions
Muzrate M percent of the current partitions
Evaluate the fitness of each partition
Save the partition with the best fitness
end while
end

Figure 3-8 Pseudo code of the genetic algorithm

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 75

The GA starts with the generation of the initial population and a measure of the goodness,

fitness (f) of a partition is quantified by an evaluation function.

p 1 (3.6)
f - k k
14 Z,ﬁ“’"* M

s 0 1fP1 < Pmax

AP'_{ Pi- Pmax otherwise
i 0 lfAz < Amax

Adi _: Ai- Amax otherwise

where £ is the number of chips the design is partitioned into, P; and 4; are the pin-count
and area of partition i respectively, Py, and 4,4, are the constraints on the pin-count and
area for the partitions. The fitness value is in the range 0.0 to 1.0; 0 indicates a bad
solution and 1 indicates an excellent solution (i.e. all partitions satisfy all the constraints).
The GA algorithm uses the following operators in order to produce the next generation of

partition (population):

e Selection - This operator probabilistically selects highly fit individuals from the
present generation and moves them into the new generation using the roulette wheel
technique. Roulette wheel selection can be summarised in three steps [76] as shown in

Figure 3-9.

Roulette Wheel Selection

1. Sum the fitness of all the population members and call the result

total fitness.

2. Generate a random number 7, between 0 and total fitness.

3. Return the first population member whose fitness, when added to
the sum of fitness of preceding members, is greater than or equal to

n (random number generated in step 2).

Figure 3-9 Selection using roulette wheel techniql]e

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 76

The roulette wheel is an imaginary wheel which is split into as many parts as the
population. On this wheel, each individual is assigned an area which is proportional to
the relative fitness of the individual with respect to the overall population. Figure 3-9
gives an example of a roulette wheel with four individuals — 4, B, C, D, and relative
fitness of 38%, 28%, 12% and 22% respectively. If the wheel is spun, when the wheel
stops, the probability that the arrow would be on 4 is 0.38, B is 0.28 and so on. This
means that the probability of C (the predicted worst individual to lead to the optimal
solution) being selected is the minimum and the probability of 4 (the predicted best
individual to lead to the optimal solution) being selected in the maximum. The effect
of selection ensures that good individuals in the search space are preserved and search
continued from those individuals to look for a better solution. It is important to note
that selection does nothing to explore the unexplored regions of the search space.
Searching of unexplored regions is mainly achieved with the crossover operator and to
a lesser extent with the mutation operator. S percent (typically 20 to 40 %) of the

partitions in the new generation are created with this select operator.

e Crossover - This basic genetic operator probabilistically selects two highly fit (parent)
partition structures from the current population, exchanges information between them
and produces two offspring (child) structures. The significance of this is that the
offspring structures represent two points (or solutions) different from the parent points
in the search space, which probably represents some unexplored points in the design
space. An example of uniform crossover is illustrated in Figure 3-10. Uniform
crossover starts by selecting probabilistically two highly fit parent structures, Parent 1
and Parent 2 for mating. The second step is to generate a binary string template whose
length is the same as the number of elements in the design. The bits in this crossover
template are randomly selected to be either 1 or 0. The offspring of the parents are
produced using the randomly generated crossover template. Figure 3-10 shows two
parent structures, which are possible partitioning solutions for 10 components (Ry, Ry,
Rs, ..., Ro) into three target devices (Chip0, Chipl and Chip2). An explanation on how

the two offspring of the parents are produced is given below:

Child I creation: If the i" bit in the crossover template is a 1, then the i
component of the design is placed in the same partition as it was in Parent 1, and

if the i™ bit is a 0, then the component is placed in the partition as it was in Parent

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 77

2. For example, Bit 0 of the crossover template is a 0, component Ry is placed in
Chip2, the same partition as Rq occurred in Parent 2. Bit 1 of the template is a 1,

component Ry is placed in Chipl of Child 1, which is the same as it occurred in

Parent 1.

Child 2 creation: The creation of Child 2 follows a similar process. If the i" bit in
the crossover template is a 1, then the i™ component of the design is placed in the
same partition as it was in Parent 2, and if the i" bit is a 0, then the component is

placed in the partition as it was in Parent 1.

This crossover operator creates C percent (typically 60 to 80%) of the partitions in the

new generation.

Parent 1 Parent 2
Chipd | Ry | Rs| Rs Chip0 | Ry | Rg | Rg
Chip1 | Ry | Ry | Rg R9Ti Chipt | Rs | Ry | Ry
Chip2 | R3 | Ry | Rsg Chip2 | Ry | Ry | Rs | Rg

Template for crossover
1 2 3 4 5 6 7
1

] 8 9
Fo1[101)01(0{0

Child 1 Child 2
Chip0 | Rs | Rg | Rg Chip0 | Ry | Ry R4
Chipt | Ry | Ry | Ry Chipt | Rz | Rs | R7 | Rg
Chip2 | Ro |Rs|Rs|Ry| Chip2 | R, | Rs | Ry

Figure 3-10 Example of uniform crossover

® Mutation — The mutation operator is introduced as a means to help the genetic
algorithm avoid local optima. The mutation operator is invoked after selection and

crossover. The mutation operator selects a partition structure probabilistically and

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 78

moves a design component from some randomly selected segment in the partition to
another randomly selected segment. If the fitness of the mutated structure is low, it
would most likely be eliminated in subsequent generations. However, if the fitness of
the mutated structure is higher, then the probability that this structure will survive and
lead to a better solution is high. This mutation operation is applied to M percent

(typically 20 to 25%) of the partitions in the new generation.

The genetic algorithm terminates when a termination criterion (or a required fitness value)
is met. Criteria such as computational time, number of generations to be searched or a
limit on the global optimality such as the total number of interconnection wires or total
number of chips are also specified. Multiple objectives can be assigned a weighting value
to prioritise the user-defined objectives in the computation of the fitness value. Recent

work on multi-FPGA partitioning using the GA algorithm can be found in [77, 78].

3.3 Multi-FPGA synthesis systems

The preceding section gives an introduction to the various methods and algorithms of
partitioning in a general context. This section describes partitioning of multi-FPGA
systems using some of these partitioning algorithms or a combination of algorithms used
in multi-FPGA synthesis tools. A number of multi-FPGA synthesis systems exist, both
commercial and academic. Some of the commercial systems are: Aptix Corporation
Design Pilot [79], Auspy Development Inc. Auspy Partition System II [80], and
Synplicity Certify® [81]. None of the mentioned commercial tools perform the partitioning
at the behavioural level. All three tools perform partitioning at the register transfer level,
and Auspy Partition System II also supports partitioning at the gate-level. Some academic
tools are: COBRA-ABS [72, 82], SPARCS Project [68, 83] and related work in multi-
component partitioning and synthesis [66, 67, 84], ISyn [70, 71, 85], SpecSyn [63, 65, 86,
87], CADDY-II [88].

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 79

3.3.1 COBRA-ABS

The COBRA-ABS (Column Oriented Butted Regular Architecture — Algorithmic
Behavioural Synthesis) high-level synthesis tool developed at the University of Aberdeen
has been designed to synthesise digital signal processing (DSP) algorithms specified in C,
and target onto multi-field programmable gate array custom computing machines
(FCCMs). The synthesis tool takes as input an FCCM architectural file and a datapath-
library description file, in addition to the input algorithm description described in C.
Information in the FCCM architecture file, which specifies the target FCCM, in terms of
the FPGA devices, custom/ASIC arithmetic resources, inter-FPGA routing (point-to-point
and bus based), FPGA-to-memory routing, and associated communications delay. The
low-level datapath-library description file contains characterisation data about the RTL
modules available and cost (in area) and timing characteristics (in clock cycles). The
FCCM target information and the low-level library characterisation data are fed into the

optimisation process driven by a simulated annealing algorithm.

The target architecture of the tool is based is on a partitioned VLIW (Very Long
Instruction Word) style architecture, where each FPGA holds a single “RISC (Reduced
Instruction Set Computer)-like” register-file based, load-store processor, with a bus-based

architecture and a set of functional units.

The C function inputs forms the basic blocks in COBRA-ABS, each of which are
represented by dataflow graph and controlled by a corresponding control-flow graph. The
datapath space model [89] formed a three-dimensional space in which the lifetimes of
variables are optimised. The optimised dataflow implies the hardware that is required to
create, transfer, store and consume the data. The variable dimension represents the explicit
and implicit data in the behavioural description. The processor dimension directly relates
to the “RISC-like” processors and hence represents the partitions. The datapath space (dp-

space) can therefore represent data flow in time and across partition boundaries.

The three-dimensional model was extended to a four-dimensional model to allow
conditional branches and loops of the basic blocks. The overall datapath for each
processor is the superposition of all the datapaths, which would be implied by each of the
3-D sub spaces isolation. The conceptual view of the superposition in the four-

dimensional datapath space is illustrated in Figure 3-11.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 80

Processor

A

v Variable
Block 0
Implied
Datapath
Time
Block O 4 P

Processor

Datapath
Processor
i 1 Variabl
arianie
Implied J v
v Bilock 1
Block 1 @7 S Datapath
Datapath N
Time
y
H : .
/ . :
Ay,

/7 Implied

Block “n” Y
Datapath . @ / Datapath
\ /
AY

Variable
4

A
/ Block “n”

Time

Superposition of
datapaths gives the
Composite Datapath

Figure 3-11 Conceptual view of superposition in 4-dimensional datapath
space

The dp-space model is composed of a behavioural layer and a structural layer. A number
of the “entities” representing the required behaviour are mapped to the 3-D dp-space.
These entities are: input node, output node, functional-unit node, memory write, memory
read, and global bus transfers. The DFG is transformed into a graph of interconnected dp-
space entities and mapped to the behavioural layer. The structural layer administers the
implication of hardware units and use of fixed FCCM resources. The cost of a dp-space
configuration is measured in both the behavioural and structural layers, and the simulated
annealing process adjusts the dp-space configuration, in the aim of finding the fastest

implementation, which will fit on the FPGAs.

The synthesised output of the algorithm can be visualised as one 3-D block of dp-space
flowing in time, into the next, with data passing seamlessly between blocks. The concept
of the “pluggable block” was developed so that blocks, which can potentially “interface in

time”, have compatible interface on their dp-space variable-processor planes.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 81

Variable |

| { processor plane
i Block 0 Decision node .
I
ralock 0 s
| Block 2 5/3}
L T AN
translates to i | S —
| B L b s -
fock 1 $s\r .
| Block1 | [Block 2 | m
i
‘\\ ProceAssor

Variable

L

Time

Potential dataflow between basic 3D
datapath-space blocks

Example Control Flow Graph

Figure 3-12 Pluggable 3-D block concept

COBRA-ABS provides a powerful high-level synthesis environment for DSP algorithms,
specified in C. However, the run times reported (in [72, 82]) are rather high (> 10 hours)
because of the simulated annealing algorithm, which forms the core of the synthesis
optimisation process. The other point worth noting is the “pluggable block” concept is
highly dependent on the number of I/O resources between each block that resides in
different FPGAs, and this will impose an upper limit on the number of buses or point-to-

point interconnects in the fixed board-level target architecture [90].

3.3.2 SPARCS

The Synthesis and Partitioning for Adaptive and Reconfigurable Computer Systems
(SPARCS) [67, 68, 83] partitioning and synthesis framework was developed at the
University of Cincinnati. The behavioural input designs are specified in either subsets of
VHDL or C, and translated into an equivalent Control Data Flow Block Graph (CDFQG),
where each block contains a simple dataflow graph that captures the operations, and the
edges between blocks represent the data and control flow across blocks. Each block is
viewed as an afomic element that cannot be partitioned onto multiple FPGAs. The control
flow at the end of the block can conditionally branch into one of the mutually exclusive
blocks connected to it. The control flow also permits loops in the block call graph. The

block call graph represents a single thread of control where all blocks are mutually

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 82

exclusive in time. Each of the partition CDFG contains a subset of blocks, which is
synthesised into an RTL design for the corresponding device in the multi-FPGA
architecture, with a single finite state machine controller and datapath resources shared by

blocks within the same partition.

The “partitioner” that performs the partitioning of the CDF@ is tightly integrated with the
high-level exploration engine, whereby the partitioner always communicates any change
in the partitioned configuration to the exploration engine. A four-dimensional design space
model was used to represent the overall design so that the exploration engine has a
partitioned view of the behaviour. Each partition segment, consisting of a set of
operations, is represented by a traditional three-dimensional design space illustrated in
Figure 3-13. The set of all partition segments of the design behaviour forms the fourth
dimension. An example of the four-dimensional design space for design behaviour with

two partitioned segments is illustrated below in Figure 3-13.

A / F,
F2F3
4 Functional T, Fi _
Time I units o, 0, O, o, -
steps l F,
/ F2F3
Operation? T, F .
o, o, o, o,

Traditional three-dimensional design space

Time steps

A
A . F4 A =4 . Fa
F, ° Fo 7
2 6
F 7 F
T2 L. Pt .
o, o0, 0, O, 0, 0, 0O, O,
4 . F, - . Fo
F 3 Fs !
T F, FS‘
o, 0, O, O, g 0o, 0, 0O, O, -
Behavioural
Partition 1= {0,,0,,0,,0,} Partition 2= {0,,0,,0,.0,} P artitions

Four-dimensional design space for a partitioned behaviour

Figure 3-13 Four-dimensional design space for a partitioned behaviour

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 83

The functional units and operations are mutually exclusive between the partitions.
However, the time steps span across the partition segments because the synthesised RTL
output, one for each partition, is controlled by a synchronous FSM controller clocked by a

single common (global) clock.

A multi-partition exploration algorithm performs an iterative exploration of blocks where
the schedule of a block is either relaxed or tightened such that the design constraints are
best satisfied. Relaxing (increasing) the schedule length could reduce the area of a
partition and increase the latency of the entire design and tightening the schedule works
vice versa. A collection of cost functions are used to sort and prioritise the blocks and

guide the exploration engine to perform the area/latency exploration.

The exploration algorithm is independent of the partitioning algorithm used to obtain the
partition segments. Synthesis results of SPARCS with partitioners using algorithms based
on Fiduccia-Mattheyes (FM) partitioning algorithm and simulated annealing are given and
it has been reported in [68] that the run times needed to find constraint satisfying solutions

for a similar board architecture are much lesser than those reported in COBRA-ABS [72]

described in the previous section.

The four-dimensional design space global technique with an integrated synthesis and
partitioning model in SPARCS has provided a fast and efficient environment to generate
constraint-satisfying solutions targeting a multi-FPGA architecture. In a similar manner to
the COBRA-ABS, the implication of a partitioned design is explored with a fourth
dimension. However, SPARCS also does not allow performance trade-off against the

number of interconnecting I/O resources between the devices in the fixed architecture.

T.B. Yee, 2007 Chapter 3: Muiti-FPGA partitioning 84

3.4 Data communications and communications

synthesis

Data communications is fundamentally a simple operation, where data is sent from one
point to another. A communications protocol is a specification of events and timing

requirements in transferring information.

In a multi-FPGA system, data is sent from one FPGA device to another FPGA device. It is
possible to have direct pin-to-pin connection mappings [91-93] on the FPGAs if both
devices access the same signal. The signal value is changed in one device, passed on
through the direct pin-to-pin connections, and updated in another device. However, the
number of I/Os available on the I/O constrained FPGAs may not be sufficient to
accommodate all the signals in the design. Another significant disadvantage of the multi-
FPGA system is the lower speed of operation compared to a single chip implementation.
The programmable features and the associated programming circuitry require a large
amount of the chip area. The switches have significant resistance and capacitance, which

account for the low speed of operation [49].

The Virtual Wires project [94] carried out in the MIT Computer Architecture Group
explores methods to overcome pin limitation in FPGAs. Virtual wires are created by
multiplexing and pipelining inter-device 1/0 signals. A virtual wire represents a single
connection between a logical output on one FPGA partition and logical input on another
FPGA partition. Shift registers in the sending and receiving FPGA are configured into
shift loops, storing logical outputs into shift registers at the sending end, and shifting them

into shift registers on the receiving FPGA.

A bus based approach to overcome the I/O limitation was proposed by Vahid [95]. The
approach uses a single bus, the FunctionBus, for implementing function calls among
FPGAs. The FunctionBus architecture is shown in Figure 3-14. Inter-FPGA data and
control-encoded address are sent over the AD lines of the bus, with two additional bi-

directional control lines, Areq and Dreq, used to indicate a valid address and a valid data

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 85

on AD respectively. Vahid also demonstrated techniques to trade off performance for even

more /0 reductions using the FunctionBus.

External ports External ports External ports

;
1
|

Areq: Address request
Dreq: Data request
AD: Address/Data

Figure 3-14 FunctionBus architecture

3.5 Data synchronisation over multiple clock
domains

“Moving information from one clock domain to another is rather like descending into
Dante’s inferno. All sorts of evils lie in wait to beset the naive. ” [96]. Data communication
between two independently clocked domains can result in the data metastability [97-100].
Metastability can occur when an input to a register (flip-flop) is not synchronous to the
clock, which can result in setup or hold time violations. Metastability is caused when the
asynchronous input changes too close to the clock edge; this input td the register is not a
stable high or low value during the register setup time. The flip-flop does not know if it is
to change state or not, and may enter the metastable state, with the output not being logic
High nor Low. Even though the flip-flop will eventually settle in a stable state after some
period of time, this can still cause a system failure if the flip-flop has not left the
metastable state by the end of the system’s clock period. Figure 3-15 illustrates a simple
two flip-flop (double buffer) synchroniser, which is typically sufficient to remove all

likely metastability.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 86

Domain 1 Domain 2

D U, R synchronised
asynchronous input g1 ; g2 input
— 0 q o aq

t

1 H H

i I : i

! > >

1 I | —

| FF1 FF2

: Domain 2 Clock
! .

|

Figure 3-15 Double buffer synchroniser

!
{
|
1
i
f
|
1

It is still possible that a synchronisation failure can occur and this failure probability can
only be determined statistically, and the generally accepted equation for Mean Time

Between Failure (MTBF) [98] for a metastable flip flop is given by:

MTBF = (.7

where K7 is the register parameter that describes the speed with which the metastable
condition is resolved. 7 is the time delay for the metastability to resolve itself (resolution
period), K, is another register parameter that represents the metastability-catching setup
time window (i.e. the likelihood of the register going into the metastable state). F, is the
clock frequency of the synchronisers and F5 is the average frequency of the asynchronous
input changes. Using values K; = 10"% and K, = 19.4/ns based on the Xilinx XC4005E-3
given in [98], this gives a MTBF of 0.0001 ¢'**** based on a clock frequency of 100 MHz
and asynchronous input changes at a frequency of 1 MHz. With a t value of 9 ns (a
resolution period slightly less than the clock period), the MTBF value is 6.73 * 10"!
seconds. The probability of failure increases rapidly when the number of asynchronous
inputs and clock frequency increases. For example, a clock frequency of 1 GHz, with
asynchronous input changes at a frequency of 100 MHz and a t value of 0.9 ns, the MTBF
value is only 3.83 seconds. Later results on the MTBF for newer Xilinx devices were
published in [100] and the MTBF value exceeds millions of years when granted 2 ns of
extra flip-flop settling delay. For the same operating conditions of clock frequency of 100
MHz and asynchronous input change at a frequency of 1 MHz, the MTBF of newer Xilinx
Virtex-II Pro devices exceeds billions of years compared to the older Xilinx XC4005E-3

device.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 87

Three common techniques of transferring data between clock domains are (1) pass data
across clock domains using handshake signals, (2) use a Micropipeline or, (3) use an

asynchronous FIFO (First In First Out memory) to transfer the inter-domain data.

3.5.1 Handshaking data between clock domains

Data is transferred across clock domains using additional handshaking control signals,
where the sender places data onto a data bus and then asserts a request (req) signal to the
receiver through a synchroniser. When the req signal is recognised in the receiving
domain, the receiver clocks in the data into a register (or latch), and asserts acknowledge
(ack) signal through a synchroniser to the sender in the domain of the sender.
Handshaking of data is commonly used to pass data between asynchronous circuits, and

two common signalling protocols are illustrated in Figure 3-16.

Figure 3-16(a) illustrates the two-phase signalling scheme, where the signal levels of the
handshake signals are unimportant; it is the signalling event (i.e. a transition, either a
rising edge, or a falling edge on the handshake signals) that is significant. The two-phase
signalling protocol uses a non return-to-zero scheme. The four-phase signalling protocol
illustrated in Figure 3-16(b) uses the signal levels of the handshaking signals to indicate
the validity of data and its acceptance by the receiver. This protocol uses a return-to-zero
scheme, where the req and ack signals end up in the same signalling level after a data
transfer as they were before the transfer. This protocol thus uses twice as many signalling

events for every data transfer as the two-phase counterpart.

Control logic for the four-phase protocol is often simpler than that needed in a two-phase
system because the signalling lines can be used to directly drive the level-controlled
latches (or registers) (discussed later in Section 5.5). It is also common that data lines are
triple-buffered using triple buffer synchronisers. The extra buffering stage of the data lines
ensures that valid data is ‘definitely’ on the data bus when the data request signal is
asserted. This prevents a receiver that has an input request line with a shorter propagation

delay from reading in the wrong data. The biggest disadvantage to using handshaking is

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 88

the latency required to pass and recognise all of the handshaking signals used for each data

transferred.

‘7" -— = data_req

data_ack
Sender ik Receiver

‘ Data

data_req /. A\ data_req / AN v e o

data_ack \ o/ T 3 S\ data_ack / N\ V -}
Data ; Data \
valid data valid data
First data transfer [Second data transfer First data transfer Second data transfer
(a) Two-phase signalling protocol (b) Four-phase signalling protocol

Figure 3-16 Handshaking signalliﬂng protocénlbéw

Single-rail and dual-rail encoding are two commonly used encoding schemes [101] for
data representation. Single-rail encoding [102], which is conventionally used in
synchronous designs, uses a single wire for each bit of information. Additional
handshaking control signals are used to indicate data availability and its acceptance by the
receiver. This scheme is also known as bundled-data approach. Dual-rail encoding [103]
scheme uses two wires to represent each bit of information. Dual-rail circuits can have
bundled control signals, however timing information is implicit in the code and the reg
signal required to indicate data readiness is thus not necessary. Figure 3-17 gives the list of
values associated with the signal levels of the two wires (W0 and W1) in a dual-rail

encoding circuit, and the corresponding interfaces between the sender and receiver.

The main advantage of dual-rail circuits is that they are delay-insensitive [103]. Delay-
Insensitive (DI) circuits operate correctly regardless of delays in components and
connections. They have the disadvantage of having a significantly larger area overhead in

both the number of wires and the data transfer completion detection logic. Single-rail

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 89

circuits have the advantages of being smaller and faster as compared with their dual-rail
counterparts. The disadvantage of single-rail circuits is they require tighter timing
constraints (e.g. validity (req) control and data delays must be matched) when used with

bundled handshake control signals.

WO Wil Value
0 0 reset | ‘1 data_ack
0 ! 0 Sender | Receiver
1 0 1 ‘ ‘ |
| Data (2N-bits)
1 1 unused S — e

Figure 3-17 Dual-rail encoding scheme

3.5.2 Micropipelines

Micropipelines are a style of two-phase bundled-data pipeline introduced by Sutherland
[104] in his 1988 Turing Award lecture. A micropipeline is an event-driven, self-timed
asynchronous pipeline. Various simple event control module blocks are given in [104] to
provide elemental functions such as merging and branching of the control flow. The

micropipeline basic control modules are illustrated and described in Table 3-1.

Figure 3-18 shows a simple micropipeline without processing elements. The data path is
composed of a set of event-controlled storage elements in series, while the string of Muller
C-clements serves as its local timing control block. Delay elements (if required) ensures
that the output request signals are asserted after the data is valid (e.g. R(1) is asserted only
when data is ready at the output of the first storage element), so that the bundling

constraint of the bundled-data protocol is met.

Event control module | Description

OR function The OR function for events is implementation using an exclusive-OR
(XOR) gate. This is also known as a merge because it allows two

A;D— event flows to merge into one. An event on either of the inputs
—~

causes a corresponding event to be seen on the output.

T.B. Yee, 2007

Chapter 3: Multi-FPGA partitioning 90

Event control module

Description

AND function

The AND function for events is implemented using a MULLER C-
element. A transition will occur on the output only when there has
been a transition on both inputs. The Muller C-element is sometifnes
known as a rendezvous element because events are allowed to

pass to the outputs only when all input events have arrived.

TOGGLE

.

The TOGGLE steers input events alternately to the outputs. The first

event is directed to the output marked with a dot after initialisation,

‘ﬂ frue

i
the next event to the unmarked output and the sequence repeats.
| TOGGLE P q P
| [
SELECT The input event is steered to one of the two outputs depending on
o L, the Boolean input select value (indicated by the diamond head). The
K select signal must be available before the incoming event arrives, a
=
8 similar requirement to the bundling constraint.
*_’ _J
w
n
e

CALL

—» R1

CALL

«ioz_ |

The call module allows two mutually exclusive processes to access
a shared resource (section of data path) or procedure, analogous to
procedure calls in software. Unlike the previous modules, the call
module operates on pairs of request/acknowledge (or done)
handshaking signals. Incoming requests (either R1 or R2) are
directed to the output request (R). The Call module remembers
which of its inputs most recently received an event, and returns an
acknowledge (done) event on the appropriate output acknowledge
(either D1 or D2) signal. For the call module to operate properly,

input request events have to be mutually exclusive.

ARBITER

—» R

ARBITER -~
2 @
!

?

~—pR2 G2—»

The ARBITER provides arbitration between two possibly concurrent
asynchronous request events on its inputs (R1 and R2) and only
passes one through at any time to the corresponding grant outputs
(G1 and G2). Similar to a semaphore in software, it delays
subsequent grants until it has received an event on the done wire
(D1 or D2) corresponding to an earlier grant so that there is no more

than one outstanding grant at a time.

Table 3-1 Description of the micropipeline event control modules

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 91

R(in) A(1) R2) A®) R(out)
DELAY DELAY | —
1] | N N
EC; | | {TC‘ l l
o | | |
N — T -
C Pd Cd P C Pd Cd P
D(in) o o o ® D(out)
Ly H i H i ~ i ﬁ
Cd P C Pd Cd P C Pd

Y

¥ iu
!
|

C C
A(in) R(1) A2 R(3) A(out)

Figure 3-18 Micropipeline without processing

A major advantage of the micropipeline structure is the possibility of filtering out all the
hazards in the logic blocks (i.e. removes the arbitration and synchronisation problem of
two separate clocks at the input and output of the micropipeline). Another important
feature is that micropipelines are automatically elastic. Data can be sent to or received
from a micropipeline at arbitrary times. The basic event control modules of the
micropipeline and the storage elements can be interconnected to form larger structures,

which form the basis of more complex systems [105].

3.5.3 Dual port asynchronous FIFO

Another popular method of passing data between clock domains is using an asynchronous
FIFO (First In First Out memory) [106-108]. A dual port memory is used for the FIFO

memory.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 92

The write port is controlled by the sender and data is written into the memory, one data
word per write clock. The other port (read port) reads data out of memory, one data word
per read clock. Two control signals are used to indicate if the FIFO is empty or full. The
write and read increment signals are used to push data into the memory during a write

cycle, or pop data from the memory during a read cycle.

FIFO memory
(dual port RAM)
write Data read Data
P wdata rdata
» wclken
FIFO wptr " FIFO mptr
Sfull & full
waddr > waddr raddr € raddr
write increment)) read increment
» winc > rncr«
read empt
write full P y:
< wptr ptr
v sync2 synct
wptr2 ¢ | :D;LT » rptr2
wrst 2 f % Lﬁj rrst
write clock 0 read clock
write reset l read reset

Figure 3-19 Asynchronous FIFO block diagram

Figure 3-19 above illustrates the blocks in the asynchronous FIFO design presented by
Cummings of Sunburst Design Inc. in [106]. The five blocks in the asynchronous FIFO

are:

¢ FIFO memory: This is a dual port RAM that is accessed by the write clock domain

via the write port, and the read clock domain via the read port.

e FIFO write pointer and full (wpr & full): This block is mostly synchronous to the

write-clock domain and it contains the logic for the FIFO write pointer (wptr) and

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 93

it generates a full (write fu/]) signal to the write-clock domain when the FIFO is
full. Gray coded addresses are created for writing to the memory and the FIFO

write pointer is passed to the read-clock domain.

e FIFO read pointer and empty (rptr & empty): This block is similar to its write
counterpart mentioned above. It is mostly synchronous to the read-clock domain
and it contains the logic for the FIFO read pointer (rptr) and FIFO empty (read
empty) signal generation. Gray coded addresses are created for reading from the

memory and the FIFO read pointer is passed to the write-clock domain.

e Write-to-Read synchroniser (syncl): This block consists of a double buffer
synchroniser that synchronises the write pointer (wrptr) into the read-clock

domain.

e Read-to-Write synchroniser (sync2): This block is similar to its Write-to-Read
counterpart described above. This block synchronises the read pointer (#ptr) into

the write-clock domain.

For a FIFO memory with (n-1)-bits address lines, giving a total of 2" addressable
locations, the read and write pointers are #-bits wide. The extra most significant bit (MSB)
is used as a flag to determine if the FIFO is empty or full. When the pointers are equal,
including the two MSBs, the FIFO is empty. The FIFO is full when the pointers are equal

but not the MSBs.

The dual port memory asynchronous FIFO allows the sender to write data into the
memory through the write port whilst the receiver reads stored data in the memory out
from the read port concurrently. This has the advantage of reducing the latency in the
overall system as the sender can send data into the FIFO independent of the receiver when
the memory is not full. This reduces the possibility of blocking the sender if the receiver is
not ready to receive the new data. However, careful speed matching of the sender and

receiver and the depth of the FIFO have to be considered to reduce FIFO overflow and

underflow conditions [109].

The main disadvantage of using the asynchronous FIFO in an I/O constraint multi-FPGA

system for inter-device data transfers is the increased number of I/Os required for the

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 94

control, clock and reset signals compared to just a pair of handshaking signals in the

bundled-data approach.

3.6 Design activity profiling

Design profiling is a process where a profiling tool generates and collects information on
how a system operates and the resultant profile data is used to guide the profile-driven

optimisation process to improve the system’s performance.

Design activating profiling to obtain the usage and inter-communications between
multiple processes is carried out with a full testbench of the system and the obtained
information (profile) is used in the high-level synthesis and partitioning of the design
itself. From the simulation of the structural VHDL design using a set of typical data to
emulate the system, the profiler gathers the various event activities. The system is
simulated with a testbench to generate activity information for all operations in the design
and this information is used to guide the partitioner. This approach allows the user to
provide the system with activity information in the most practical from, as a
comprehensive test suite will almost certainly be created for most designs. Once a set of
activity data has been generated, the operation need only be repeated if the behavioural

design changes, and not on each synthesis run.

The activity data is fed into the partitioner during the partitioning stage and used in the
assignments of weighis on the edges of nodes in the partitioning graphs. Operations that
interact intensively will have edges that are more heavily weighted and these edges are
less likely to be cut by the partitioner. The atomic functional objects (processes,
procedures, functions, shared variables, etc) that interact and communicate more often
with each other are grouped into the same FPGA if the area permits. This reduces the off-

chip interconnections and the inter-chip communication overheads associated with it.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 95

3.7 Summary

This chapter focuses on the background material on multi-FPGA synthesis systems, with
emphasis on partitioning and multi-FPGA synthesis systems. This chapter starts with an
overview of the various partitioning algorithms, and an introduction of commercial and
academic multi-FPGA high-level synthesis systems that exists. An introduction of
techniques for inter-FPGA (cross clock domain) data transfers is also covered within this
chapter. Multi-FPGA partitioning and the inter-domain data transfer forms the two main
core components in the extension of the MOODS synthesis system to target multi-FPGA

systems with asynchronous communications.

This chapter has covered the techniques and background material on how a design can be
partitioned. The next chapter covers when to perform partitioning in the MOODS
synthesis system. This deals with the implementation details of the partitioning
enhancement in the MOODS synthesis system. Implementation details and signalling

protocols to enable data transfers between clock domains are covered in more detail in

Chapter 5.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 96

Chapter 4

Multi-FPGA partitioning in MOODS

4.1 Introduction

Chapter 3 has provided an insight on Aow a design can be partitioned; this chapter starts
with the selection of when to perform partitioning. The multi-FPGA partitioning
enhancement to the MOODS synthesis system comprises two main stages: (1) High-level
synthesis and partitioning, and (2) Interface generation. This chapter covers the generation
of multiple structural VHDL outputs from a single behavioural VHDL description as

illustrated in the shaded region of Figure 4-1.

| Structural
VHDL

~ Structural
VHDL

High-level

Synthests Jnd | structural lnterfalt(_;e
_ partitioning VHDL generation | :
. [Interface

. Behavioural =

VHDL \ Structural &
. description ~ . VHDL ’ ‘ i fﬂ;

’ ' ' Structural . Structural f,

~ Structural I ‘ ,
VHDL . VHDL VHDL

Figure 4-1 Generated system structure

Section 4.2 starts with a discussion on the various stages that the partitioning mechanism
can be inserted and concludes with an insight on the partitioning granularity and insertion

of the K-way partitioner as part of the partitioning enhancement in the MOODS synthesis

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOQODS 97

system. The section also presents the channel-based approach to handle inter-device data

in the synthesised multi-FPGA design.

Section 4.3 introduces the module call graph representation and shows how a design is
modelled using a module call graph. Implementation details and modifications of the
partitioning algorithm are covered within Section 4.4. Section 4.5 describes design
profiling in detail. Section 4.6 describes the modified ICODE modules, and the

modifications made to the sub-module calling mechanism to support inter-FPGA module

calls.

4.2 MOODS synthesis system with multi-FPGA
partitioning

This section starts with the selection of the partitioning mechanism insertion into the
MOODS synthesis system, which has an effect on the level of abstraction that the
proposed partitioning algorithm is applied to. This affects the runtime and the granularity
of the components that are being partitioned. Partitioning at the higher level of abstraction
(e.g. at the system-level or algorithmic level), usually at a coarser granularity has fewer

components to assign to partitions, compared to partitioning at the cell and netlist level.

4.2.1 Design partitioning phases in MOODS

The MOODS synthesis system comprises four separate sub-components, which perform
the various tasks in synthesis as described in Chapter 2. There are several possible phases
during the synthesis process where the partitioning mechanism (partitioner) can be

inserted as shown in Figure 4-2,

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 08

ICODE /
MOODS
J \ 4
! Prologue <z17
l Optimisation <2(
y
{ Post-optimisation 3 :
y
Linker and netlist g
generator {\{4/

(DDFLink)

Figure 4-2 Insertion of K-way partitioner into the MOODS synthesis system

The following lists the four stages where the partitioner can be inserted into the MOODS

synthesis system:
1. Prologue (Pre-MOODS optimisation):

Partitioning at this early stage provides the opportunity for the MOODS synthesis core to
perform synthesis for each partition based on its own optimisation criteria. There are two
different ways to target the partitioning at this stage. The first approach is to partition the
ICODE file, where subprogram module sections of the original ICODE file are extracted
and written to multiple enhanced ICODE (ICODE+) files, each ICODE+ file targeting a
FPGA device. The ICODE+ files will contain extra partitioning information on the
targeted partition, and communication interface details. The ICODE+ files are then

synthesised separately to produce separate structural VHDL output files.

The second approach to partition the design is to partition the initial data and control path
before applying the optimisation transforms to the partitioned data and control path

structures.

An estimation mechanism is needed in both approaches to use the low-level information in

the technology cell libraries to obtain an estimate of the size and delay of modules, which

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 99

is used by the partitioning algorithm. Partitioning the design at this stage with no
information about the final optimised design means it is difficult to obtain an accurate and
efficient partition, resulting in a low utilisation of the targeted FPGAs. It is possible to
assign an FPGA with more modules than it can accommodate using the estimated sizes of
the modules, in the hope that the optimisation stage in MOODS optimises the modules and
the final design can fit into the allocated FPGA device. However, a design may have to go
through multiple iterations of synthesis before each partition of the design can fit into the

targeted devices.
2. MOODS optimisation:

MOODS optimisation is an iterative process whereby various transforms are used to
modify the data structure and the optimisation algorithm controls the whole process,

choosing which transforms to apply and where in order to achieve the user’s target criteria.

Throughout the optimisation process, the low-level characterisation information from the
technology cell library is used to provide accurate estimates for circuit performance. These
figures are used by the optimisation algorithm to guide the selection and targeting of
transformations in such a way as to move the implementation through the design space
towards the cost objectives specified by the user. In a similar manner, these figures can
also be used by the partitioning algorithm to guide the partitioning of the design and
targeting of FPGA devices. Modules in the design may change and reduce in their sizes
after each optimisation iteration and previous allocations of modules to partitions become
inaccurate. The optimised design has to be re-partitioned within the optimisation loop,
using the updated information of modules to guide the partitioning algorithm and allocate

modules to partitions.

Using the existing simulated annealing within the MOODS synthesis core, the partitioning
of modules over multiple target devices can be added as one of the objectives to be

considered by the simulated annealing algorithm.

3. Post-MOODS optimisation:

This is the epilogue phase where MOODS “finishes” the design, converting any implicit

and behaviour related parts of the data structure (such as multiplexers, and control/net

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 100

gating signal conditions) into explicitly described structures, and removes any redundant

control or data path elements.

The partitioner is inserted at this stage to partition the optimised design and mark the
control or data path elements needed for a partitioned design so that they are not removed
when the control and data path are ‘tidied” up in this stage. The extra logic created for the
control and data transfers of a partition design may require some form of multiplexing
logic, which is inserted together with the rest of the design. Thus the insertion of the
partitioner at this stage removes the need for an extra stage to re-insert the control and data

path elements, and the multiplexers required for a partitioned design.
4. Linker and netlist generation (DDFLink):

This is the last stage in the MOODS synthesis and the design is purely structural. The
main disadvantage of inserting the partitioner at this late stage is in the breaking up of the
structural design and the insertion of the extra logic needed for the control and data
transfers in the partitioned design. The original control/net gating signal conditions has to
be modified and updated to include the control conditions for inter-FPGA subprogram
calls. The objective of partitioning at this cell/netlist is normally to group the allocated
data path units and the synchronous FSM controller into partitions (which will fit on the

targeted devices) and attempt to reduce the interconnections between devices.

4.2.2 Insertion of the partitioner into MOODS

The partitioner is not inserted in the pre-MOODS optimisation stage (stage 1 in Section
4.2.1) due to the lack of information about the final optimised design which makes it
difficult to obtain an accurate and efficient partition. This can result in a low utilisation of
the targeted FPGAs which will require multiple partitioning and synthesis iterations to get
an optimised multi-FPGA implementation. The post-MOODS optimisation stage (stage 3
in Section 4.2.1) is not selected as the insertion of the partitioner in this stage does not

allow further optimisation on selected modules after partitioning as the MOODS synthesis

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 101

core where design exploration and optimisation is performed in stage 2 (MOODS

optimisation stage).

The partitioner is inserted in stage 2 and partitioning is performed at the module level
which has a coarser level of granularity rather than at the cell/netlist level. VHDL
processes and subprograms (functions and procedures) are treated as inseparable units
during partitioning. Firstly, the number of components in the graph being partitioned is not
too large when compared to the cell/netlist level (stage 4 — linker and netlist generation)
partitioning. Unlike partitioning with a finer granularity where control lines could be
running across partition boundaries from one target device to another via the board
interconnections, control lines of the control path are kept in the same partition as the data
path that it is controlling when partitioning at the module level since the individual
modules has its own control path controlling the data path units within the module. Having
the control path in its local clock domain reduces the number of cross-domain control
signals and latency due to cross-domain data synchronisation. Partitioning in Stage 2
(MOODS optimisation stage) also allows further optimisation (i.e. an optimisation re-run)

on the whole design or selected modules after analysing the partitioning configuration.

The K-way partitioner performs partitioning on the optimised ICODE modules and the
subprogram communication channel optimisation if the design contains ICODE
subprogram modules. The two-phase partitioning exploration is currently not integrated
with the MOODS optimisation process but it does allow the user to re-run the MOODS
optimisation stage after examining the partitioned design. It is possible to relax or tighten
the schedule of the modules and iteratively improve the multi-FPGA solution using the
current partitioning solution to guide the MOODS optimisation process. This has been left

as possible future work (described in Chapter 8) due to the time restriction of this project.

Unlike the multi-FPGA high-level synthesis systems described in Section 3.3, the
MOODS synthesis system does not take absolute timing (in the form of deadlines and
release times that specifies some form of absolute timing on the start of operations) into
consideration during the optimisation process. However, MOODS possesses a basic

multicycling [32] capability based around the specification of a user-specified clock

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOQODS 102

period. The problem of single instructions with too large a delay is dealt with by spanning
the instruction over a sufficient number of control states can be forced below a user
specified clock period constraint if the clock period is specified. MOODS does not follow
the strict timing of the VHDL standard, which specifies that time only passes in wait
statements; thus parallel processes are kept in lockstep as they are all guaranteed to enter
waits at the same time and implicitly synchronised at these points. However, MOODS
allows processes complete independence, where synchronisation of processes is done
through the use of handshaking via global signals [32, 39]. Channel-based
communications [14, 110] in an abstract Communicating Sequential Process (CSP) [111,

112] manner between processes are also commonly used for process synchronisation.

4.2.2.1 Explicit communication channel (ExC)

An explicit channel-based approach for process synchronisation in MOODS was added by
Sacker [109]. An ICODE expansion stage was added between the ICODE assembler and
the MOODS synthesis core, which allows channel related ICODE instructions to be
expanded and inlined by an ICODE module contained within expansion libraries. The
ICODE expansion stage also generates concurrent “blackbox’ components required for
the explicit channel instantiation from the behavioural VHDL. This ICODE “blackbox”
component contains only a VHDL entity and its behaviour is not defined. This allows the
“blackbox” component to be synthesised as normal and the behaviour of the “blackbox”
(in this case the explicit channel) inserted after synthesis. ICODE templates of varying
channel widths (8-bits, 16-bits, 32-bits, etc) for the channel send and receive instructions
and the channel body “blackbox” components are defined in ICODE expansion library

files mod_lib.xic and comp lib.xic respectively.

The final task performed by this ICODE expansion stage is the separation of ICODE
segments (VHDL processes) from within the program module (recall Section 2.6.2) into
separate ICODE process modules. Each individual ICODE process module has its own
control path controlling the data path units within the module. This allows easy |
identification of concurrent process blocks in the design and more importantly it extends
the number of objects for partitioning. The explicit communication channels introduce an

implied pipeline structure whereby asynchronous channels connect pipelines stages in a

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 103

design. Channel handshaking ensures that the pipelines stages will work irrespective of the
operation execution time of individual stages in the asynchronous pipeline [113]. The
effects and the benefits of extracted process modules communicating through explicit

communication channels are shown in the experimental results in Chapter 6.

4.2.2.2 Subprogram communication channel (SpC)

VHDL subprograms (procedures and functions) are translated into ICODE subprogram
modules in MOODS. A hierarchical calling structure is used in MOODS, whereby the
control path in each subprogram module starts its execution upon receiving the activate
signal and it sends an end signal back to the calling (parent) module upon termination.
This implicit design boundary provides good object granularity for partitioning and the
hierarchical nature of the activate-end protocol works seamlessly with the handshaking
between processes. Process modules can run independently and call subprogram modules
existing in different partitions. An arbitration scheme is necessary to arbitrate calls to an
ICODE subprogram module from different caHing modules. Details on the modifications
of the hierarchical subprogram module calling mechanism to support inter-device
subprogram calls are described in Section 4.6. The asynchronous subprogram
communication channel is inserted by MOODS automatically to handle the inter-device
subprogram call. The underlying communication cells and the arbitration scheme to

support inter-FPGA module calls are described fully in Chapter 5.

VHDL signals are declared in the VHDL architecture and they are seen as global to
processes within the architecture. Whilst any number of processes may read from a VHDL
signal, only one process is allowed to write to a signal as the current MOODS synthesis
system does not support resolved signals [32, 41]. It is becoming common to use
communication channels for multiple communication processes [110, 113] whereby inter-
process data is sent in a unidirectional, point-to-point manner. A physical implementation
of a simple channel is a bundle of wires; one request wire, one acknowledge wire, and one
wire per data bit (recall the bundled-data approach in Section 3.5.1). Now, the explicit
communication channels performs the synchronisation task of multiple communicating

VHDL processes in MOODS which was previously done through explicit handshaking

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 104

global signals or semaphores [32, 42] as well as sending an updated value of the global

signal (or channel data) to the VHDL process on the receiving end of the channel.

4.3 Module call graph representation

The input behavioural specification (described in VHDL) is translated into a
corresponding intermediate code (ICODE), with VHDL processes and subprograms
(functions and procedures) translated into ICODE modules, and modelled as a control and
data path graphs within the synthesis core. Multi-FPGA partitioning assigns the ICODE
modules among £ target devices. This section describes the symbols and notations used in
a module call graph for a better representation, where the type of node and edge in the call
graph gives a clear distinction between process and subprogram modules and the type of
communication channel between the modules respectively. This representation allows the
modelling of subprogram calls from different modules in the design, with arbitrarily deep

nesting of such calls.

Mo
P) data_pkt, act_count
>
Process module Explicit communication channel
M
@ data_pkt, act_count
Subprogram module Subprogram communication channel

Figure 4-3 Types of nodes and edges in the module call graph

The symbol and annotation convention of the module call graph given in Figure 4-3 is
used throughout the rest of the thesis unless specified otherwise. There are two types of
nodes (labelled pM and sM) to represent the process module and subprogram module
respectively. An explicit communication channel (see Section 4.2.2.1) is represented with
an edge with two arrow heads pointing at the destination module. A subprogram call is

represented by a subprogram communication channel and this is an edge with a single

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 105

filled arrow head pointing towards the called subprogram module. Both types of edges are

annotated with data packet' and activation count® values.

Examples of the various basic types of connection in the module call graph are listed in
Table 4-1. A node in the module call graph can have multiple edges connecting it to other
nodes. The first and last types of connection in the table show two process modules (P1
and P2) connected with explicit communication channels, the second type of connection is
a subprogram call (to subprogram proc1) initiated from a process module (P1), and the
third type of connection is a nested subprogram call. In summary, an explicit
communication channel is used for process-to-process communications and a subprogram
communication channel is used to connect the destination subprogram module to a process

module or a subprogram module, in the case of nested subprogram calls.

Connection type example | Description of the example

\ = Process module P1 sends data to process module P2
pM- 11 . PM || through an explicit communication channel. The channel has

P1 L P2
. a single data packet count and activation count.

e A subprogram communication channel connects process

PM oy 4T o sM | module P1 to subprogram module proc 1. This subprogram

P1 ™ proct

S B} call has 4 data packets and an activation count of 1.

S A subprogram communication channel connects subprogram
osM 23 oy sM module proc1 to subprogram module proc2. This nested
_proct PVOCZ : subprogram call has 2 data packets and an activation count

of 3.

Process module P1 and process module P2 send and
receive data via explicit communication channels. Both

explicit channels have a single data packet count and an

activation count of 8.

Table 4-1 Examples of types of connection in the module call graph

! Defined as the number of data packets transferred as parameters between a source and destination module

2 Number of times the source module activates the destination module

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOQDS 106

4.4 Problem formulation

The module call graph is a weighted directed graph CG = (¥, E). Each node n; € N
represents a module in the design, the area of each module is denoted as a(n;), and the /O
pin count is denoted as io(n;), for i — 1 t0 Nyorl, Where Ny is the total number of modules
in each partition. Each edge e; € E, e; = (nsrc , ndst, data_pkt, act_count), fori — 1 to
€otal, S7C € N, ndst € N, nsrc # ndst corresponds to either an explicit channel or
subprogram communication channel from the source module nsr¢ to the destination
module ndst. The data packet count data_pkt is the number of data packets transferred as
parameters between nsrc and ndst during each call. The activation count act _count is the

number of times 7src calls ndst and this activation count value is obtain from the design

activity profile.

A set of available m target devices is given by D = {d}, d>, ..., d,,} where m > k > 2. Each
device d; = (d_area;, d_io;) where d_area; and d_io; denote the area capacity and number

of available I/O pins of device ;.

The K-way partitioning problem finds a set of clusters P = { p;, pa, ..., px } such that p,

k
Nfori—»1tok, Up;, =Nandp,np;=fori—> 1tok,j— 1tok andi=;. The
i=1

partitioning solution must satisfy a set of device constraints (area and 1/0) and minimise

the inter-partition data transfers.

The area constraint for this K-way partitioning problem is given by:

d _areay 2 Z a(n;) for k partitions where i — 1 t0 Nyoral, (4.1)

Vnep, ne N andp; € P.

Let the cut-size ¢j; be the number of interconnects crossing the partition boundary between

partitions p; and p;. The I/O constraint is given by:

for k partitions where i — 1 t0 Nyotal, (4.2)

d_iog > vZiO(ni) TH neNpieP,j—1tok andj*k
nep,

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 107

4.4.1 Modified K-way partitioning in MOODS

The partitioning process of a single design onto multiple FPGAs is done in two phases.
The first phase performs K-way partitioning on the modules in the design. The partitioning
algorithm is outlined in Figure 4-4. The second phase deals with the assignment and
optimisation of inter-FPGA subprogram communication channels to the partitions. Each
subprogram communication channel is managed by communication (transmit and receive)
cells and an arbiter cell. Figure 4-6 outlines the second optimisation algorithm that creates
and optimises the subprogram communication channel(s) between target devices. More

than one subprogram communication channel can be created and assigned to two or more

modules in the design.

4.4.1.1 K-way partitioning algorithm

The inputs to the K-way partitioning algorithm include the module call graph of the design
and the area constraint of the target devices. The algorithm starts with an initialisation
stage where the input module call graph CG is checked to ensure that it is properly
annotated with valid parameters, and all constraints such as number of target devices are

set. An initial partition is generated and this forms the starting partition of the first pass.

The K-way partitioning algorithm is similar to the two-way FM algorithm (described in
Section 3.2.1) with a few slight changes, such as the select-and-move process, and the
balanced criteria. Unlike the two-way FM algorithm that only considers whether to move a
node to the next partition (i.e. move the base node from partition 4 to B, or from partition
B to A), the K-way algorithm considers K-1 possible partitions to move the base node and
the Gain_Array that holds an array (K-1 in size) of gain values associated with moving a

node from the current partition to another partition.

A selected base node (11p45.) move from partition p, to partition py, is only allowed when it

satisfies the balanced criterion given by:

[[Z a(nz)]‘i'a(nbase) < a(]iV) + W nin J/\ ([Z a(ni)]_ a(nbaxe) 2 a(ljv) ~ Whin (43)

vnmep, Vnep,

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 108

fori—>1lton,neN,p,e P, p, € P, x#y,and w,,, is the area of the smallest unlocked

node (ie. Wmnin = minl <i<n (a(ni)unlocked))

K-way Partitioning Algorithm
CG: module call graph CG = (N, E), N.is a set of nodes and £ is a set of edges
DevAreaf]: Device area of each target device (FPGA)

KWay (CG, DevArea[])

begin
Initialise K-way partitioning parameters;
CurrentPartition < Generate a legal initial partition;
BestPartition < CurrentPartition;
BestCutcost < CurrentCutcost,

improved cutcost < True;
/% e PASS MANAGER ----- */

step_number < 0;
/* True only when balance condition and device area constraints are satisfied */

while (kway_move_vertex(Gain_Array, CurrentPartition, DevAreaf])) {
step _number++;
Update K-way Gain_Array, and CurrentCutcost,
Update rentative_cutcost[], tentative_moves[], tentative_moved_to[],
Update size of partition and lock moved node;
if (tentative_cutcost[best_tentative_move] > CurrentCutcost) then
best_tentative_move < step_number,
end if
} end while
for (i =1; i < best_tentative_move; i++)
Permanently move nodes in tentative_moves[ijto partition specified in tentative_moved _to[i]

end for

improved cutcost < False;
if (CurrentCutcost < BestCutcost) then
CurrentPartition < BestPartition,
CurrentCutcost < tentative_cutcost[best_tentative_move],
Improved_cutcost < True;
end if
} end while
return (CurrentPartition) /* Final partition */

end

Figure 4-4 Outline of the K-way partitioning algorithm

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 109

Similar to the two-way FM algorithm, the move with the highest gain is selected and
executed iteratively until all free nodes are locked. The K-way algorithm continues with
the execution of this iterative select-and-move sequence until no more unlocked nodes can
be moved without violating the balanced criterion. At the end of a pass, the K-way
algorithm moves back to the best intermediate solution. All nodes are unlocked and the
best solution forms the starting partition for the next pass. The algorithm terminates when
a pass fails to improve the cutcost. The cutcost is the total number of inter-FPGA data

packets between all partitions and it is given by

Zei (data _ pkt)-e;(act _count) (4.4)
Ve, ’

fori—1to Ctotal, € € E: Defnsrc) € P, DPendst) € P, andpe(nsrc) Z Pe(ndsi).

4.4.1.2 Subprogram communication channel optimisation
algorithm

The subprogram communication channel optimisation algorithm creates a subprogram
communication channel or multiple channels, optimised to reduce the inter-FPGA data
packets sent between partitions. Using the design activity profile to determine module
calls that cause congestion in the communication channel, provided that the target device
area and I/O constraints between these module calls are met, the algorithm creates and
assigns the modules responsible for this bottleneck in data transfer to a new subprogram
communication channel. The design activity profile is a temporal analysis of the module

activation in the system over a series of time steps.

The algorithm uses a greedy-based strategy [114, 115] to reduce the bottleneck through
the primary subprogram communication channel. A simple example of the greedy-based
strategy in Figure 4-5 shows subprogram calls A to D and the block height of each call
gives the number of data packets sent in each call (e.g. call 4 sends one data packet and

call B sends three data packets).

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 110

Data packets
73&
max
" 1"
SpC 1 i’ b
e E——) A A
,,,,,,,,,,,,,,,,,, L 5 e
4.8 CD 2 e B ¢
A C cl
b1 230 45 Timestep
1o | {ts)
available : 20
(a)
Data packets Data packets
A gmax
4o ~Z
Al
S R
3 p il C LALALA
) C C S04 08 Time step
AlclalAalc (ts)
0.1 2.3 4 5 Timestep
{ts)
gl e ' B
spc2] S
S a—— ‘ B 3.4 5 Timestep
——————— o ; L (ts)
B * et >
L 01208 4 5 Time step
{ts) 5
e c_
available 10 f ¢’
clc c]
(b) R e
o203 4 5 Time step
{ts)
/0
available : 0 :
(c)

Figure 4-5 Greedy-based strategy

Figure 4-5(a) shows all the four subprogram calls assigned to SpC I and 20 I/O pins
available. Assume each SpC uses 10 I/O pins and the subprogram calls are mutually
exclusive. The time-step with the maximum number of data packets is identified (in this
case time step 2) and the subprogram call with the largest number of data packets is call B.
Subprogram call B is extracted and allocated to a new subprogram communication channel
(SpC 2) as shown in Figure 4-5(b). The number of I/O pins available reduces to 10 with
inclusion of SpC 2. Now, the maximum number of data packets sent in any one time step

reduces to 4 in time step 5, with subprogram call C called 3 times and contributing the

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOQODS 111

most number of data packets in time step 5. Subprogram call C is extracted and allocated
to a new subprogram communication channel (SpC 3) shown in Figure 4-5(c). The
algorithm terminates as no more I/0 pins are available. Assume each data packet takes one
unit delay. The original allocation of all four subprograms allocated to a single
communication channel in (a) will take 6 unit delays. With additional I/O pins and the
allocation of subprogram calls to more subprogram communication channels (3 channels

in this example), the overall delay is reduced to 3 unit delays.

The subprogram communication channel optimisation algorithm (outlined in Figure 4-6)
begins with all module call pairs assigned to the primary subprogram communication
channel. If the option for multiple subprogram communication channels is not selected
(i.e. Multiple Comm_Channel = false), the algorithm terminates with all modules
transferring inter-FPGA data using the primary communication channel. If enabled, the
algorithm proceeds by first unlocking all module pairs. The following three steps are
executed iteratively in sequence till no further improvements (end of Opt = true) can be

made:

e Step 1 - The inter-FPGA data transfers for all unlocked module call pairs are

calculated (see Section 4.5).

e Step 2 - The time steps are sorted according to the number of inter-FPGA data
transfers and the unlocked module call pairs in each time step are sorted according to
their inter-FPGA transfers in the temporal time step. The subprogram communication
channel optimisation algorithm terminates when none of the target device area and I/O

constraints for the module pairs is met.

e Step 3 - The channel insertion routine insert_comm_channel is called and a new
subprogram communication channel is inserted when there is an improvement
(reduction) in the total number of inter-FPGA packets. The channel insertion routine
returns a 0 when no improvement can be made, or when there is only a single module
pair assigned to the subprogram communication channel. The area and I/O resources

of the target devices containing the module pairs are updated if the channel insertion

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 112

routine returns a non-zero return value; else a zero return value terminates the

subprogram communication channel optimisation algorithm.

Subprogram Communication Channel Optimisation Algorithm
profile_info[]: profile information array containing information on the module call graph

Optimise_Comm_Channel (profile_info[])
begin
Primary comm_channel « all modules pairs;
if (Multiple Comm_Channel) then {
Unlock all module call pairs (src, dst)
end _of Opt < False;
while (end _of Opt = False) {/* run until no further improvement can be made */

profile_info_sorted[] < Generate a sorted array of profile_info[], the generated array is sorted
according to the inter-FPGA data transfers.

Calculate inter-FPGA data transfers for all unlocked module pairs in each time step.

Sort time steps in order according to ‘traffic congestion’, with unlocked module pairs in each time
step sorted in order according to their inter-FPGA data transfers in the time step.

if (Area and I/O constraints not met) then
end of Opt < True,

else
end of Opt « False;

end if

bus_opt_status < insert comm_channel()
if (bus_opt_status) then
end of Opt <« False;
Update Area and I/O resources of the device that the newly created bus arbiter is assigned to
else
end of Opt <« True;
end if
} end while
end if
end

Figure 4-6 Outline of the subprogram communication channel optimisation
algorithm

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 113

Figure 4-7 illustrates the generation and assignment of multiple subprogram
communication channels (SpCs) to alleviate the delay due to devices sharing a common
communication channel. Each row in the table shown in the figure gives the total area (in
slices), the area utilised, total number of available I/Os, and the number of I/Os utilised by
the devices in the multi-FPGA system. Each communication channel consists of transmit
cell(s), receive cell(s), and a channel arbiter to ensure mutually exclusive access to the
shared channel between the devices connected to it. The original partitioned design starts
with a single communication channel (see Figure 4-7(a)), which connects up all the target
devices and inter-FPGA data transfers are made through a single bi-directional
communication channel. The arbiter for SpC I is found in Device 4. With extra area and
I/Os available in (a), the subprogram communication channel optimisation algorithm
inserts a new communication channel, module call pairs with a high amount of fraffic that
cause congestion in the first communication channel are determined and assigned to a new
communication channel. Further details on design activity profiling to determine the
amount of inter-FPGA data transfers and how this affects the partitioning algorithm is

covered in the next section.

In the module call graph given at the top of Figure 4-7, module call pair (P2, modC) is
extracted from SpC I and assigned to the newly created communication channel (SpC 2)
to spread the inter-FPGA data transfers over two channels, and thus inferring a level of
parallelism in inter-FPGA data transfers since the two communication channels can
transfer data concurrently. Device area and I/O utilisation are traded off for the increase in
parallelism. The area and I/O increase of Device 2 is shaded in the table in Figure 4-7(b);
this increase is due to the insertion of a communication channel arbiter for SpC 2. The area
utilisation of Device 4 is reduced to 727 units (as the arbiter for SpC I described above is
smaller) and its I/O utilisation reduced by two pins as a new arbiter (with an area of 22
units) generated in Device 2 handles the arbitration control of module call pair (P2,
modC). In Figure 4-7(c), module call pair (modC, modD) is extracted from SpC I and
assigned to SpC 3. The communication channel arbiter for SpC 3 is inserted into Device 3,
thus increasing the area and I/O utilisation for Device 3. This again reduces the area and
/0 utilisation of Device 4, and now the task of inter-device data transfers is distributed

between three subprogram communication channels.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOOQODS

114

Deviced .~7 7" Tl
-~ \\
M
k4 g h \\
pM A\
P2 \§ ,/'—~\\Devicez
5%
Device 1 i A
P S / !
// r// /
£ e s
4 w7 -
‘ >
\
=
\\
=~ Device 3
N
A
\
!
7
N e d
Device |Totalarea| Area util. | Total 10 | 10 util. Device 1 Device 4 . (P1,modA),
1 800 600 124 80 B " (P2modC),
2 800 650 124 80 | {modC,modD)
3 950 855 150 90 e e
4 950 750 150 75 Device 3 | Device 2 !
B | I
(a)
Insert subprogram
* Communication channel 2
- - - 1 Device1 | Device 4 | . SpC2
Device |Total area| Area util. | Total 10 | 10 util, 5 SpC 1 ‘ (1 (P2modc)
1 800 600 124 80 | (P1,modA), | P I
2 800 872 124 84 }(modC,modD)(" e -
3 950 655 150 90 L N |
4 950 727 150 73 | Device3 | Device2
(b)
Insert subprogram
* communication channel 3
Device | Total area| Area util.| Totallo | l0utl | =~ SpC7 | Deviced | | Deviced socz |
1 800 500 124 50 (P1,modA) .= ‘ PP
e | l (P2,modC)
2 800 672 124 84 (R et
3 950 877 150 94 B
4 950 662 150 71 CoSpC3 e B .
(chimOdD)‘ | Device 3 | Device2
(c)

Figure 4-7 Generation and assignment of communication subsystems

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 115

4.5 Integration of the design activity profile and the
K-way partitioning algorithm

The generation of the design profile and its integration into the K-way partitioning
algorithm to guide the partitioner is covered within this section. This section starts with a
look at how the data widths of input and output parameters affect partitioning. A
subprogram module with larger input or output parameters data width tends to require
more data packets than a sub-module with a smaller input and output parameter data width
if the target devices are 1/0 limited. This is illustrated in Figure 4-8 with process module

P1I calling two subprogram modules, proc! and proc2.

Data Data | Data | | Data
Packet1 | Packet2 | Packet3 | i Packet 1

\\ proc2 inputs

i
T Y

proc1 inputs : i7) 7
{ain[118] le a_in[5:0] > b infs0] ;ﬁdﬂom[&(ﬂﬁ
8 / D ES T
i | | e_in[1:0]]
proct1 outputs W ; roc2 e i
Fogoou11:8] ;/ c_ouif5:0]) . proc2 outputs {0 putf3:07)
\ i / // \ J
| Bitstuffing zeros | ™
\ ‘ ;

1 \ ;

2. \ -

3 | procedure proc1 { \ !

4 | signal a_in: in unsigned(11 downto 0); \ !

5 | signal b_in: in unsigned(5 downto 0); \ /

6 | signal c_out: out unsigned(11 downto 0) . /

7 his SN /\ :

8 |begin) / .

91 .. \

100 ...

11; end proct;

12

73] procedure proc2 (

74| signal d_in: in unsigned(3 downto 0);
15| signal e_in: in unsigned(1 downto 0);
16| signal f_out: out unsigned(3 downto 0)
17))is

18] begin

22| end proc2;

Figure 4-8 Example of /0 parameter sizes and data packet count

The example shows the number of data packets sent by each subprogram module using a
common subprogram communication channel with a 6-bit channel width. Input parameter
a_in of subprogram proc/ is sent over the channel in two separate data packets and input
b_in in a third data packet. Output parameter (result) ¢_out of subprogram proc! is sent

over the channel in two separate data packets. Input parameters d_in and e_in of

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 116

subprogram proc2 are concatenated and sent in a single packet. Output parameter f_out of
proc2 is bit-stuffed with zeros and sent in a single data packet. The subprogram
communication channels connecting process module P1 to subprogram modules procl and

proc2 have total data packet counts of 5 and 2 respectively (as shown in Figure 4-8).

The partitioning algorithm priorities the partitioning of subprogram modules based on the
number of data packets sent, thus a subprogram module with a larger parameter bit-width
is less likely to be partitioned onto a second FPGA compared to a subprogram module
with a smaller parameter bit-width if both are being called by the same source module (i.e.
assuming both subprogram modules are activated the same number of times) as a larger
parameter bit-width will probably require more data packets when targeting I/O limited

devices.

With the inclusion of the design activity profile, the subprogram module activation can be
modelled more accurately and the profile data is used to guide the partitioner in producing
a partitioned design with less inter-FPGA communication. The temporal “traffic analysis’
is extracted from the simulation of the design using a typical (or likely) set of values
emulating a working system. The source-destination module pair has a call-node
associated with each subprogram call. A module call list (.mc/) file is automatically
generated in MOODS during synthesis. Definition of the module call list can be found in
Appendix C.3. This module call list file lists all source-destination pairs and the call node
that is activated for each subprogram module call. An example of a module call list file
and a simulation of the activation of modules in a module call graph with two process
modules (P1 and P2) and four subprogram modules (modA, modB, modC and modD) is

shown in Figure 4-9.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 117

Generated module call list

‘;'\1/' j ‘F’D'Z' 5 ~source-destiation | _ MODULE GALL LIST
Ve /o L modulepar =, P1(prog mod) --> modA
8% 21 121 \6,1 T call node Cali node u3
— .. " node number | 112
W e,
i | “destination | 1 Lall node u
o T T [numbers . P2 > modB
14‘1 T Call node w17
12 439
; P2 > modC
[sM ; Call node u19
\ modD / 12 384
S ; ModC --> modD
; Cail node u37
1 384 146
Simulation results ofsubprogram module activations SR |
Time step
T | T2 | T3 i T4 | T5 i T6] T7 | T8 |

call_node u3
(P1-modA)

call_node u5
(P1-modB)

call_node u17
(P2-modB)

call_node u19
(P2-modC)

call_node u37 /
(modC-modD}) i '

Figure 4-9 Example of module call list and simulation of subprogram module
activations

A profile of activation counts of the call nodes is extracted from the simulation, and this
design profiling data is fed into the partitioner using the partitioning information (. par)
file. The profile data is modelled using a distribution graph, where the vertical axis
corresponds to the summation of all module activation counts in a particular time step on

the horizontal axis. An example of the distribution graph generated for the example above

is illustrated in Figure 4-10.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 118

Total number of Design profile data Module activation
time steps : count (CNT)
[Design_Profile]
TIME_STEP=8
112=10000000 5
source-destination —1439=1 0001000
module node 12439=03000300 4
numbers 12384=00100000
384146=00021000

7

Activation count (CNT) in each time step (ts):
CNTts7 CNTts2 CNTtstotal

e
0. % 2°3 4 5 6 7. .8 Time step
(ts)

source-destination module numbers [source:destination]

[1:12] Il 1:439 .[12:439] .[12:384] .[384:146]

Figure 4-10 Example of the design profile distribution graph

A partitioning ordering sequence gives the likelihood of a source and destination module
being partitioned onto separate FPGA devices. The data packet multiplied by the
activation count is given in the total data packets column. The total number of data packets
for the source, destination pair has an inverse relationship with the likelihood of the pair
being partitioned onto separate FPGA devices. In other words, the greater the total data
packet count, the more likely the pair will be partitioned onto the same device. Source-
destination module pairs with a lower ordering sequence are less likely to be partitioned
onto separate devices. Figure 4-11 gives the partitioning ordering sequence of the call

graph example in Figure 4-9.

The total data packet count of the source-destination module pairs is now not only
dependent on the I/O parameters data width but also the number of times the source
module calls the sub-module. For example, the (P2, modB) pair has an activation count of
6 and a total data packet count of 72, and it has the largest total data packet count
compared to the other module pairs. Modules P2 and modB are most likely to be
partitioned onto the same FPGA device, whereas modules P/ and modA have the highest
chance of being partitioned onto separate FPGAs because the (P/, modA) pair has the

highest sequence order of 1. The activation count and the data packet count for the module

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 119

call pairs are fed into the K-way partitioner described in Section 4.4.1 using the

partitioning information (.par) file.

[sm [sm [sm
4,3
sM
Ordering | Data packet | Activation Total data Source-destination
sequence count count packet count module pair
highest order 1 8 1 8 P1, modA
2 4 3 12 modC, modD
3 16 1 16 P2, modC
4 12 2 24 P1, modB
lowest order S 12 6 72 P2, modB

Figure 4-11 Partitioning ordering sequence with design profiling

4.6 ICODE Module modifications

Prior to the partitioning enhancement, the output values for subprogram modules are
passed by reference. Now, modules are targeted onto two or more target devices, the
output results are passed by value between the source module and the subprogram module
called. Registers are required to hold the output parameters prior to sending the data back
to the calling (source) module. The removal of output registers for inter-device
subprogram modules are bypassed. Details of the modifications in the subprogram module

call mechanism are covered within this section.

After the partitioning stage, ‘call nodes’ (call nodes) associated to [CODE MODULEAP
instructions for modules calling a subprogram module in a different partition are replaced

with ‘transmit call nodes’ (tcall_nodes). The tcall nodes are associated with ICODE

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 120

TX CELL instructions, which replace the original ICODE MODULEAP instructions. This
change allows MOODS to distinguish between the two types of calling methods. The
instruction associated with ICODE subprogram modules is the ICODE MODULE
instruction. Likewise, subprogram module that is called by modules in another partition
has its module header instruction changed from the MODULE instruction into a new
instruction defined for subprogram modules with inter-FPGA calls, ICODE RXCELL
instruction. This change allows MOODS to determine which subprogram modules are
called from modules in another FPGA device. The top of Figure 4-12 shows the original
call node associated with an ICODE MODULEAP instruction, the call node activates the
start node in the subprogram module when it is being activated (i.e. when the main
execution is paused and control is passed to the subprogram module controller). This
hierarchical method of control passing and data passing is modified when the subprogram

module is located in a separate FPGA device as illustrated in Figure 4-12.

In the source (calling module) partition, the original call node is replaced by the
tcall_node and the fcall_node now activates a ‘transmit cell” (#xcell node) when inter-
FPGA communications is required. The #xcell node is the communication cell that sends
input parameters across the FPGA device and receives the results when the execution of
the operation is complete at the destination subprogram module. Upon completion of the
subprogram module execution, the fxcell node receives and loads the output results into
the appropriate output result registers. Control is passed back to the main execution and

this completes the subprogram module call.

In the called subprogram module, a ‘receive cell” (rxcell node) receives the input
parameters sent by the fxcell node of the calling module. A ‘receive call node’
(rcall_node) is activated by the rxcell node when the input parameters are received and
loaded into the appropriate registers prior to the execution of the subprogram module. The
rcall_node uses the same calling mechanism of a call node, it activates the start node in
the subprogram module. Upon completion of the subprogram module, results in the output
registers are ready to be sent back to the source module in the other partition. The
rcall_node activates the rxcell node, which completes the subprogram module call when

it sends the results to the corresponding 7xcell node of the called module.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS

Original subprogram module calling mechanism

‘ n input token

L ‘ activate Y

‘ A ns | start node
ERE

| YYvy

| Y

‘ out_enable (

L | call_node ——» e N4

} & N

1 N5 | end node
output token Y

end_sig
FPGA 1
Lk
”j‘"!’_‘ i,)
Pity] t it cell
I ransmit ce
TL,,f S
| tcall_node ——» thcell_ node |
) : y F,A s)
transmit
call node ¢ o

Inter-FPGA data transfer

| Y
4t N3
[p— \AJ
rxcell_node R
\
. >
receive cell rcall_node > N4
receive
y call node Y
N5
\/
FPGA 2

Figure 4-12 Inter-FPGA subprogrammodulecalllng mechanism

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 122

In a partitioned design, not all module calls require the inter-FPGA data transfer using the
communication subsystem. Some of the module may only call other modules within the
same device and the original module call method is used in such cases. An example of a

module that has an internal and external subprogram module call is shown in Figure 4-13.

. T T -~ -~ - T ~. H
Device 1 - - 7 B _Device 2
‘ Mo ’ 4 A N
f [P | / ;opM o
v 1 P1 / 7 4,2 I 6 2 | P2 } N
N N Ay | 1 '\ / Y
N =~ T = ' d /‘//\\@ e \\
——=- L osm \
L MOodA \‘
- T T N ’
Device 3 -~ o> 43 N 120 - |
¢ BN / \ 7N I
L S8 / < |7 osm /
\ modB [1 ~ g \ modC 7
N s SN S 7
| . | ’ |
f External (inter-FPGA) normal subprogram]
i subprogram module call I module call |
|

Figure 4-13 Module call graph of a module with internal and external
subprogram module calls

The shaded subprogram modules (mod4 and modB) have modules calling them from
another device, and these external calls require inter-FPGA data transfers between the re-
configurable devices. The internal call (modA calling modC) uses the original calling
method, where the corresponding ICODE instruction is the MODULEAP instruction. For
the external call (modA calling modC), an ICODE TX CELL instruction replaces the
original ICODE MODULEAP instruction, and a set of communication cells is created for
this external module call. Note the special case where an internal process module (P2) has
an internal call to a subprogram module (modA), which is also activated by an external
process module (PI). The call node associated to ICODE MODULEAP instructions for
this call (P2 calling modA4) is replaced with a dcall node. This change allows MOODS to

identify modules activated by both internal and external subprogram calling methods.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOOQDS 123

Details of the txcell_node, rxcell node, and the modifications of I/O parameter registers
are covered in greater detail in Chapter 5. Note the underlying structure of the final
generated hardware uses pass-by-value instead of pass-by-reference for the subprogram
I/O parameters as a local copy of the subprogram /0 parameters is needed in the target
device of the external subprogram. Data packets which contain subprogram I/O
parameters are sent to the external module and kept in local (duplicated) registers.
Registers are required to hold the output parameters prior to sending the data back to the

calling (source) module.

4.7 Summary

This chapter starts with a discussion on the implementation of the partitioning mechanism
into the MOODS synthesis system, and the effect of performing partitioning for a multi-
FPGA system at the various subcomponent stages within the MOODS synthesis system. A
stage to insert the multi-FPGA partitioning mechanism and the level of granularity to
perform the partitioning is selected considering the various factors that would affect the
performance of the synthesis tool as well as that of the generated multi-FPGA system.
Two types of communication channels are presented in this chapter; an explicit
communication channel used for data transfers between ICODE processes (from VHDL
processes) and a subprogram communication channel used for inter-device ICODE

subprogram module (from VHDL procedures and functions) calls.

A formulation of the multi-FPGA partitioning problem is presented, a K-way partitioning
algorithm and a subprogram communication channel optimisation algorithm are proposed
as a two-phase solution. A module call graph representation used to model the data
structures for partitioning is also presented within this chapter. The generation of the
design profile and how this profile information is used to guide the partitioning algorithm
is also covered within Section 4.5. The design profile and target technology information
(number of target devices, area and /O constraints) are passed into the synthesis system
using a partitioning information (.par) file. Refer to Appendix C for the full detail of the
partitioning information file. The new added features to synthesise a multi-FPGA system

using the MOODS synthesis system are shaded in Figure 4-14.

T.B. Yee, 2007

Chapter 4: Multi-FPGA partitioning in MOODS

124

Optimised
behav.
VHDL (.vhd)

v

ICODE file
(.xic)

! MOODS
Control and data path
optimisation

|
Partitioner |

K-way partitioner

Communication cells
and bus arbiter
insertion

Structural netlist i
generation

Structural VHDL
output file
(_synth_domk.vhd)

Expansion
module
templates

Design profiling

Testbench of
full system

VHDL
simulation

Module
activity data

/ K-W&fy
' partitioning
parameters

Target
technology
informai

k number of structural VHDL
output file for k partitions

Figure 4-14 Modified MOODS synthesis system with multi-FPGA partitioning

The next chapter covers the implementation of the asynchronous communication channels

in greater detail. Details covered within the next chapter include the asynchronous data

communication channel used for inter-FPGA data transfers, the various communication

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 125

cells and arbiter cells which form the building blocks of the subprogram communication
channel, and the structure of the final generated hardware synthesised design targeted onto
multiple heterogeneous target devices. The ICODE list of instructions and the MOODS
cell libraries are modified for the support of the multi-FPGA partitioning. The ICODE
instruction database is extended to include the ICODE instructions associated with inter-
FPGA data transfers (e.g. instructions such as 7X_CELL, RX CELL). Refer to Appendix C
for the full ICODE instruction database description. The MOODS cell library database file
(-mmlib) is extended to include the communication cells, and latches to implement the
subprogram communication channel. The parameterised structural/RTL components of
these cells are added to the existing MOODS LIB2.6 (.vhd) file, and a new updated library
file, MOODS LIB2.7 (.vhd) file, was created.

T.B. Yee, 2007 Chapter 5: Communication channels 126

Chapter 5

Communication channels

5.1 Introduction

Once a single behavioural description has been synthesised and partitioned in MOODS,
the next step is to look at the interface generation (shaded region in Figure 5-1) so that one

FPGA device can communicate with other FPGA devices in the multi-FPGA system.

e

] ;
Structural | |

§ St;ﬁ:étfal Structural |
. VHDL | VHDL

:

High-level , s Mntarface
synthesis and | Structural i ¢ -
VHDL _ generation

. Behavioural
VHDL
. description

partitioning I {
|

|

b

: Structural
VHDL

Structural
 VHDL s

- Structural
VHDL

Structural
VHDL

Figure 5-1 Generated system structure

The synthesis of a multi-FPGA system with heterogeneous devices with a single global
clock becomes impractical, as the clock rate of the whole system is dependent on the
slowest device connected. As the number of FPGA devices increases, the limiting problem
becomes the distribution of the single clock without introducing intolerable clock skew.
One approach to alleviate the above given problems is to synthesise a multi-FPGA system
using a locally clocked, globally delay-insensitive approach [103, 116]. The partitioned
design is targeted onto separate FPGA devices, where each device is clocked locally and

the board-level devices communicate with one another using delay-insensitive signalling

T.B. Yee, 2007 Chapter 5: Communication channels 127

methods. Asynchronous communication channels are used for data transfers between the
partitions. The communication channel interface is presented in Section 5.2. Section 5.3
details the communication protocol of design targeted onto an arbitrary number of FPGA
devices. Section 5.4 deals with the implementation details of the communication cells and
arbiter cells, which are the building blocks of the subprogram communication channel.
Section 5.5 deals with the hardware generation of the underlying structure to support data

communications between the devices in the multi-FPGA system.

5.2 Communication channel interface

The ICODE expansion stage expands channel-related instructions and replaces the
instructions with the corresponding expanded ICODE template by inlining. A simpler
template shown in Figure 5-2 with a varjable channel data-width defined by the channel
data sent using the channel replaces the original ICODE templates of varying channel

widths (8-bits, 16-bits, 32-bits, etc) in [109].

ICODE expansion template

MODULE ch_init val, sem MODULE ch_recv chan_data,ack,sem,d
/I Declarations /I Declarations

REGISTER val REGISTER chan_data [0:0]

REGISTER sem [0:0] REGISTER ack [0:0]

/I Statements REGISTER sem [0:0]

.CHI0001 MOVE val,sem REGISTER d {0:0}

T T T T REGISTER c_tmp [0:0]

MODULE ch_send d,ack,sem,chan_data // Statements

1/ Declarations .CHRO001 UNEQ sem,ack,c_tmp
REGISTER d [0:0] .CHRO0002 IF ¢_tmp ACTT CHR0003 ACTF CHRO0001
REGISTER ack [0:0] .CHRO0O003 NOT sem,c_tmp

REGISTER sem [0:0] .CHR0004 MOVE chan_data,d
REGISTER chan_data [0:0] .CHR0005 MOVE ¢_tmp,sem

REGISTER c_tmp [0:0] i
/I Statements

.CHS0001 UNEQ sem,ack,c_tmp

.CHS0002 IF c_tmp ACTT CHS0001 ACTF CHS0003
.CHS0003 NOT sem,c_tmp

.CHS80004 MOVE d,chan_data

.CHS0005 MOVE c_tmp,sem
i

Channel component template

COMPONENT channel_body send_sem,recv_sem,data_in,send_ack recv_ack,data_out
INPORT send_sem [0:0]

INPORT recv_sem [0:0]

INPORT data_in [0:0]

OUTPORT send_ack [0:0]

OUTPORT recv_ack [0:0]

OUTPORT data_out [0:0]

NI i i i i

Figure 5-2 ICODE expansion and channel component templates

T.B. Yee, 2007 Chapter 5: Communication channels 128

The ICODE component is equivalent to an ICODE module but only the interface is

defined and not its behaviour. This allows concurrent VHDL “black box” components

(e.g. the communication channel “black box” component in Figure 5-3(a)) with a VHDL
entity and architecture (see VHDL components in the VHDL hierarchy structure in
Section 2.3.3) but no defined behaviour to be synthesised in MOODS and the behaviour of
the component inserted after synthesis. The VHDL compiler front end does not support
this “black box” concept; a dummy component consisting of a VHDL process and
procedure (Figure 5-3(b)) is used, allowing the VHDL to ICODE compiler to translate an
ICODE dummy component into an ICODE module activated by a MODULEAP
instruction (.L000002 in Figure 5-4(a)). The generated ICODE for the behavioural

example in Figure 5-3 is given in Figure 5-4(a)).

library icee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

use work.channel_package.all,

| entity m_calit is
. port{ a; out std_egic_vector(7 downto 0) };
end m_call1;

architecture behaviour of m_call1 is
signal ¢1_send_sem, ¢1_recv_sem: channei_sem;,
signal c1_send_ack, ¢1_recv_ack: channei_ack;

begin
-- Communication channel blackbox component
¢t entity work SIMPLE_CHANNEL generic map (8)
port map(c1_send_sem,c1_recv_sem,c1_send_data,
¢1_send_ack,c1_recv_ack,c1_recv_data);

-- send process
process
variable temp1: std_logic_vector(7 downto 0);
variable data: unsigned(7 downto 0);
begin
init{(c1_send_sem},
data ;= (others =>'0");
forever: loop
tempt := std_logic_vector(data);
send(c1_send_sem, c1_send_ack, c1_send_data, temp1);
wait for 10 ns;
end loop;
end process;

| - recv process
. process
variable temp3: std_logic_vector(7 downto 0;

1 begin
init{c1_recv_sem);
forever: loop

recv(c1_recv_sem, c1_recv_ack, c1_recv_data, temp3);

a <= temp3;

wait for 10 ns;
. end loop;

end process,
end behaviour;

signal ¢1_send_data, c1_recv_data: std_logic_vector(7 downto 0;

(a) Behavioural VHDL design

library ieee;
| use ieee.std_logic_1164.all;
entity SIMPLE_CHANNEL is
generic (width: positive = 8);
port (send_sem: in std_logic_vector(0 downto 0);
recv_sem: in sid_logic_vector(0 downto 0j;
send_data: in std_logic_vector(width-1 downto 0);
send_ack: out std_togic_vector(0 downto 0);
recy_ack: out std_logic_vector(0 downto 0}
recv_data: out std_logic_vector(width-1 downto 0));
end SIMPLE_CHANNEL;
architecture structure of SIMPLE_CHANNEL is
procedure channel_body(
signal send_sem: in std_logic_vector(0 downto 0);
signal recv_sem: in std_logic_vector(0 downto 0);
signal send_data: in std_logic_vector(width-1 downto 0);
signal send_ack: out std_logic_vector(Q downto 0);
signal recv_ack: out std_togic_vector(0 downto 0);
signal recv_data: out std_logic_vector(width-1 downto 0)) is
begin
wait for 0 ns;
end,
begin
process
begin
channel_body(send_sem,recv_sem,send_data,send_ack,recv_ack,recv_data);
end process;
end structure;

(b) Communication channel dummy component

Figure 5-3 VHDL black box component

T.B. Yee, 2007 Chapter 5: Communication channels 129

VHDL processes are translated and merged into the program ICODE module during the
ICODE generation (Section 2.7.2). The ICODE expansion stage separates the [CODE
statements (see Figure 5-4(a)) for each process into separate ICODE process modules
(p_MOD_1 and p_MOD_2 in the given example - Figure 5-4(b)) activated by
MODULEAP instructions (.L000002_0 and .L000011_0 in Figure 5-4(b)).

PROGRAM m_call1 a
/t Declarations
OUTPORT a {7:0]
REGISTER c1_send_sem [0:0]
REGISTER c¢1_recv_sem {0:0}
REGISTER ¢1_send_ack [0:0]
""" - . Tt REGISTER ¢1_recv_ack [0:0]

. PROGRAM m_call1 a REGISTER c1_send_data [7:0]
v REGISTER ¢1_recv_data {7:0)

/t Declarations ALIAS alias0 [0:0) FROM c1_send_sem [0:0]
| OUTPORT a {7:0] ALIAS alias1 [0:0] FROM c1_recv_sem [0:0]
| REGISTER ¢1_send_sem [0:0] ALIAS alias2 [7:0] FROM c1_send_data [7:0}
| REGISTER c¢1_recv_sem [0:0) ALIAS alias3 [0:0) FROM ¢1_send_ack [0:0]

REGISTER c1_send_ack {0:0] ALIAS alias4 {0:0] FROM c1_recv_ack [0:0]

REGISTER ¢1_recv_ack [0:0] ALIAS alias5 [7:0] FROM c1_recv_data [7:0}

REGISTER ¢1_send_data [7:0] REGISTER temp1 (7:0] -

REGISTER c1_recv_data [7:0] REGISTER data [7:0]

ALIAS alias0 [0:0] FROM c1_send_sem [0:0] ALIAS sem [0:0] FROM c¢1_send_sem [0:0}

ALIAS alias1 [0:0] FROM c1_recv_sem [0:0] ALIAS sem_0 [0:0] FROM ¢1_send_sem [0:0]

ALIAS alias2 [7:0] FROM ¢1_send_data [7:0] ALIAS ack {0:0] FROM c1_send_ack [0:0)

ALIAS alias3 [0:0] FROM c1_send_ack [0:0] ALIAS chan_data [7:0] FROM c1_send_data [7:0]

ALIAS aliasd [0:0] FROM c1_recv_ack [0:0] REGISTER d [7:0] {file:5, in:84, pos: 114}

ALIAS alias5 [7:0] FROM c¢1_recv_data [7:0} REGISTER temp3 [7:0] (ﬁxezs, n:54, pos:4}

Egg:ggg ;zTapPT[Z]:O] ALIAS sem_1 [0:0] FROM c1_recv_sem [0:0]

R ALIAS sem_2 [0:0] FROM ¢1_recv_sem [0:0]

ALIAS sem [0:0] FROM c1_send_sem [0:0] ALIAS ack_0 [E):O] FROM c1_recv_ack {0:0)

REGISTER tmp6 [0:0] ALIAS chan_data_0 {7:0] FROM c1_recv_data [7:0)

ALIAS sem_0 {0:0] FROM c1_send_sem [0:0] ALIAS d_0[7:0] FROM temp3 [7:0]

ALIAS ack [0:0] FROM c¢1_send_ack [0:0] REGISTER ¢ tmp [0:0]

ALIAS chan_data [7:0] FROM c1_send_data [7:0] REGISTER c_tmp 010:0)

REGISTER d [7:0] T

REGISTER tmp8 [7:0] /I Statements

REGISTER temp3 [7:0) .£000001 NOOP ACT LOBO002_0, LOOB003_0, LO00011_0

ALIAS sem_1[0:0] FROM c1_recv_sem {0:0) .L000002_0 NOOP ACT LOOOO_OQ 0

REGISTER tmp9 [0:0] .L000003_0 MODULEAP p_MOD_1 ACT LO00C03_0

ALIAS sem_2 [0:0] FROM c1_recv_sem [0:0] .L000011_0 MCDULEAP p_MOD_2 ACT LO00G11_0

ALIAS ack_0 {0:0] FROM c1_recv_ack [0:0] LO00017 ENDMODULE e
ALIAS chan_data_0 [7:0) FROM c1_recv_data [7:0] [Generated channel
ALIAS d_0 [7:0] FROM temp3 [7:0] . blackbox component
REGISTER tmp10 {7:0] /I MODULE HEADER - PSRttt aala

COMPONENT channel_body alias0,alias1,alias2,alias3,alias4, aliass
1/ Statements - :
.LO00001 NOOP ACT LG00002, 1.000003, L0001

L000002 MODULEAP channel_body alias,alias1 alias2 alias3 aliasd,aliass ACT LOO0O02 | | MODULE HEADER ' Expanded ICODE |
. o — — MODULE p_MOD_1 ... for channel init
-LO000O3 ch_init #%0,tmps | Statements for | /I Statements e instruction
| |

.L000004 MOVE tmp8,sem o MOD, 1 1000003 MOVE #%0,sem
tgggggg mgxg 2“’/(:00[0000100.da(a e - : /I Finished expanding Moduie: ch_jnit
. ata,temp ;

.LO00007 MOVE temp1,d ’ | .L.00000S MOVE #%00000000,data Expanded ICODE
.tgggggg KA%\slgntd d;CE.sené,?,thB .L000006 MOVE data,temp1 | for channel send
. mp8,chan_data o 7 .LO00007 MOVE temp1,d instruction
.L000010 PROTECT 1e-008 ACT LO0000S | Ststvggtszfof // Expanding Module: ch_send [
FRRTS | I .L 000008 UNEQ sem_0,ack,c_tmp_0
.L000011 ch_init #%0,tmp9 .CHS0002 IF ¢c_tmp_0 ACTT LO00008 ACTF CHS0003
-L000012 MOVE tmp9,sem_1 .CHS0003 NOT sem_0,c_tmp_0
.LO00013 ch_recv chan_data_0,ack_0,sem_2,tmp10 .CHS0004 MOVE d,chan_data
.L000014 MOVE tmp10,d_0 .CHS0005 MOVE ¢_tmp_0,sem_0
.L000015 MOVE temp3,a .L.O00010 PROTECT 1e-008 ACT LOC0OC06
.L000016 PROTECT 1e-008 ACT LO00013 ENDMODULE .
i Expanded ICODE
,L0O00017 ENDMODULE for channel init
T . /MODULE HEADER , instruction
// MODULE HEADER MODULE p_MOD_2 o ; I .
MODULE channel_body send_sem,recv_sem,send_data, send_ack,recv_ack,recv_data 1 Statements - [.
; Expanded ICODE |

- .L000011 MOVE #9%0,sem_1

for channel receive

// Declarations . ICODE of dummy // Finished expanding Module: ch_init

INPORT send_sem [0:0] | component including | instruction
INPORT recv_sem [0:0] | the module header | // Expanding Module: ch_recv T
INPORT send_data [7:0] L B .LO00D13 UNEQ sem_2,ack_0,c_tmp
OUTPORT send_ack [0:0] _CHRO002 IF ¢_tmp ACTT CHRO003 ACTF L000013
OUTPORT recv_ack [0:0] | . .CHRO0003 NOT sem_2,c_tmp
OUTPORT recy_data [7:0] _CHR0004 MOVE chan_data_0,d_0
.CHRO005 MOVE ¢_tmp,sem_2
1/ Statements .LO00015 MOVE temp3,a
-L000018 NOOP 000016 PROTECT 1e-008 ACT LO00013
| .L000019 ENDMOBULE j ENDMOBULE
(a) Original ICODE (b) ICODE after expansion stage

Figure 5-4 ICODE expansion example

T.B. Yee, 2007 Chapter 5: Communication channels 130

The ICODE expansion stage replaces the dummy ICODE component module for the
communication channel “black box” in Figure 5-4(a) with an ICODE component in
Figure 5-4(b). Channel-related instructions (ch_init, ch_send and ch_recv in (2)) are
replaced and inlined with the contents of expanded ICODE templates (Figure 5-2) in the
ICODE expansion library.

Communication cells are inserted in the partitioning stage to handle inter-device
subprogram calls; ‘call_nodes’ in modules calling inter-device subprogram modules are
replaced with ‘transmit call nodes’, and ‘transmit cells’. ‘receive cells’ are connected to
‘receive call nodes’ in the destination subprogram modules (described in Section 4.6).
These communication cells are inserted automatically by the MOODS synthesis tool after
the partitioning phase. The output structure of the partitioned design and its interface to
the subprogram communication channels are not created by the user, but by the MOODS

synthesis tool itself. Later sections look into the creation and the hardware connections of

the subprogram communication cells and channel in greater detail.

library ieee;

use ieee.std_logic_1164.all;

library moods;

use moods.cells.all;

entity m_call2_dom1is

port (
a: out std_logic_vector(7 downto 0);
sys_clock: in std_logic;
sys_reset: in std_logic;

smesees Explicit- Comm. Channel: ssesese

m_callZ_¢2 recv_sem: out std logic: vector(0 downto D:
mocall2 €2 recy ack: in std logic vector(G downto 0y
mcall2 e2 recv_data: in sid logic_vector(7 downto 0);
m_callz ¢t send. sem: out std_logic_vector(0 downto 0);
mcall2; ¢1 send_ data out std logic. vector(7 downto 0);

m_call2. ¢t send_ack:in std_logic- vector(0 downto 0);
»»»»»» Subprogram Comm: Channs! =

m.call2_bat Data req: inout std logic vector(0 downto 0):
m_callZ bat Dala ack: inout std_logic vector(0 downto 0;
mocall2 bal txcell req1 out std logic vector(0 downto D)
m_call2_bai txeell ackl: in std logic vector(0 downto 0)

mcall2_bat Data inout: inout std logic: vector(7 downto 0}

),

énd m_call2_dom1;

ARCHITECTURE structure of m_cali2_dom1 is

(a) Generated VHDL entity of output
structural VHDL for device 1

library ieee;
use ieee.std_logic_1164.all;

library moods;

use moods.cells.all;

-- Using cells in ch_arb_const_1 package for channel arbiter 1
use moods.ch_arb_const_1.all

entity m_call2_dom2 is

port

==~ EXplicit Comm_ Channel -
m_call2_r2: send sem:.out std_Jogic_vector(0.downto 0);
m_call2_c2. send data; out sid logic. vector(7 downto 0);
m_call2.c2, send_ack: in'std logi¢ - vector(Q:downto D),
m_call2_cl:_recv. sem: ouf std logic: vecior(0 downto D);
m_call2_ 1. recv_ack: in std_logic vector(0 downto 0y

m_cali2 ¢t recv data: in std jogic. vector(7 downto 0);
------ Subprogran: Comm: Channel =i
m_call2.bal_Data inout inout std logic_vector(7 downto 0);
m_cali2 bat_ Data. reqiinout std logic vector(0 dowrito 0);
m_call2 bat Data ack: inoutstd. logic vector(0 downto 0);
sys clock: fnstd logic

sys:resel in sid Jogic:

————— Channel Arb. reg/ack signal =---
m_.call2_bal_txcell_req:in'std logic vector(0 downto 0);
m_call2.bai: txcell _ack: out std_logic_vector(0 downto 0)

)

end m_call2_dom2;

ARCHITECTURE structure of m_call2_dom2 is

(b) Generated VHDL entity of output
structural VHDL for device 2

Figure 5-5 Generated VHDL entity with explicit and subprogram
communication channel signal declaration

T.B. Yee, 2007 Chapter 5: Communication channels 131

An example of the VHDL entity of two structural VHDL output files for a design
partitioned into two devices is given in Figure 5-5. The interface ports that link to the
structural implementation of the inter-device communication channel (both explicit
communication and subprogram communication channels) are added automatically to the
VHDL entity port list declaration of the generated structural VHDL design (shown shaded
in Figure 5-5). The input and output signals in the VHDL entity port list declaration are
grouped and mapped to the VHDL processes that access them and these signals are written
* to the structural VHDL output files that the processes are partitioned and assigned to. The
plan was to perform most of the system enhancement through the insertion of the
partitioning mechanism to partition the single design, and automatically insert the control
and data path elements into the optimised design, requiring minor modifications to the

MOODS synthesis core.

5.3 Communication protocol

The partitioning enhancement in the MOODS synthesis tool synthesises and generates a
partitioned structural design for an arbitrary number of target FPGA devices. The
communication cells in the partitioned design requires some form of arbitration as they are
transferring data from one FPGA device to another via the shared subprogram
communication channel. The key feature of the communication cells is in the usage of
asynchronous communication techniques to transfer data between the FPGA devices.
Communications synthesis [117-121], asynchronous logic synthesis [122-127] are well-
researched areas and the current research of these areas investigating aspects of low-power
design and system on chip design methodology [128-130]. None of the work has
addressed the automatic generation and insertion of asynchronous communication
channels/links during multi-FPGA system synthesis. The partitioning enhancement in
MOODS utilises the principle of locality, where each FPGA device is implemented as
individual processing units having an asynchronous communication interface. This
concept is very similar to the Globally Asynchronous Locally Synchronous (GALS)
paradigm [101, 104, 116, 131-135]. In this case, the multi-FPGA system is viewed as an

T.B. Yee, 2007 Chapter 5: Communication channels 132

arbitrary number of FPGAs, or “locally synchronous islands” communicating

asynchronously.

5.3.1 Asynchronous data transfer protocol

Subprogram channel communication between module and subprogram module is handled
by the communication cells, comprising of a transmit cell (txcell node), areceive cell
(rxcell_node), and a communication channel arbiter cell (arb). Data transfers across clock
domains use the single-rail bundled-data approach, where data is synchronised using two
additional handshaking control signals (Section 3.5). The bundled-data approach uses

fewer 1/Os compared to an asynchronous FIFO channel.

The implementation of the data handshaking controller is not as complicated as the
asynchronous FIFO and this simplicity facilitates the ease of device expansion. An
arbitrary number of target devices in the multi-FPGA system, each with its local clock,
can be connected to the asynchronous tri-state communication channel. An asynchronous
FIFO channel forms a point-to-point unidirectional communication channel between two
clock domains. Two such channels are needed to send and receive input and output
(result) parameters between two domains respectively. Additional circuitry (i.e. address
decoding, multiplexing control inputs, tri-state shared control signals) has to be added to
the asynchronous FIFO so that the multi-FPGA system can be connected in a multipoint
manner. One of the main multi-FPGA partitioning is the I/O constraints of the target
FPGA devices. Additional FPGA devices or devices with more 1/0O pins may be required

to accommodate all the signals in the design if an asynchronous FIFO channel is used.

Figure 5-6 shows an explicit communication channel and connections of the
communication cells and arbiter cell generated for inter-FPGA subprogram
communications through a subprogram communication channel. Each transmit cell and
receive has a pair of request/acknowledge and activate/ready signals connected to the
centralised communication channel arbiter respectively. To reduce I/O utilisation, the
asynchronous handshaking and data signals in the subprogram communication channel are

all tri-stated.

T.B. Yee, 2007 Chapter 5: Communication channels 1

LI
(O8]

The communication channel arbiter serves dual functions in the communication protocol.
Firstly, it handles the arbitration of the control of the shared communication channel for
all transmit and receive cells that use the channel and it ensures a clean hand-over of
ownership of the channel from one sender to another. Secondly, a lookup table in the
arbiter provides a direct mapping of source modules and the corresponding destination
modules to activate. Information on the creation and implementation of the

communication cells are covered in greater detail in the subsequent sections.

{__Send semaphore Receive semaphore | [Partition 2

\ Send acknowledge } Receive acknowledge L
i /

Explicit comm. channel C)
/
Receive data ;

Synthesised design
in
partition 2

. Send data

Partition 1 Partition 3
/TN ,
request activate
" comm. d) _
Synthesised design | Transmit Cell channel Receive Cell SynﬁheSIrstiq de35|gn
i it i in partiuon
in partition 1 (txcell_node) acknowledge a(r:;lt;)er ready (rxcell_node)
Subprogram
comm. channel
Data bus n-bits J
4 7 / o Y
Y ’ T
data_req 1 P
¢) 7 T
data_ack 1 | 1‘
V'l v A 1 I
¢ v —
N

Figure 5-6 Communication cell connections in the multi-FPGA system

5.3.2 Extended burst mode state machines

The idea here is to automatically insert asynchronous data communication channels
between the FPGA devices using the MOODS synthesis tool. The asynchronous channel
controllers are specified using extended burst-mode (XBM) asynchronous state machines

[123] and synthesised using the 3D synthesis system [136]. An extended burst-mode

T.B. Yee, 2007 Chapter 5: Communication channels 134

asynchronous finite state machine is specified by a state diagram, which consists of a
finite number of states, a set of labelled state transition arcs connecting pairs of states, and
a start state. Each transition is labelled with a set of conditional signal levels and two sets
of signal edges: an input burst and an output burst. An input burst is a non-empty set of
input edges (terminating or directed don’t care), where at least one of which must be
specified. An ouiput burst is a set of output edges. Figure 5-7 describes two XBM state
machines for the asynchronous channel controllers for transmit and receive cells in the
subprogram communication channel. Signals that are not enclosed in angle brackets and
ending with + or — are terminating edge signals (e.g. den, ack in Figure 5-7(a) and reg,
lastpack in Figure 5-7(b)). The signals enclosed in angle brackets are conditionals, which
are level signals whose values are sampled when all of the terminating signals associated
with them have occurred. A conditional “if lastpack is high” represented by <lastpack+>,
and “if lastpack is low” is represented by <lastpack->. A state transition only occurs when
all the conditions are met and all the terminating signals have appeared. A slash (/) is used
to delimit each input burst. A signal ending with an asterisk is a direcred don’t care. The

following lists some of the labels on the state transitions in Figure 5-7:

* den+t lastpack™ / req+ denotes the state machine raises req when den rises regardless

of the state of /astpack. This state transition changes from the current state S0 to S/ in

(a).

o <lastpack+> ack+/ req- txdone+ denotes if lasipack = 1 when ack rises, then the state
machine lowers req and raises txdone. This state transition changes from current state

S1to S§2in (a).

* req-/ack- denotes the state machine lowers ack when req falls. This state transition

changes from the current state S2 to S0 in (b).

Details on the formalisation of the extended burst-mode specifications can be found in

[123, 137, 138].

Figure 5-7(a) describes an extended burst-mode specification for the asynchronous
channel controller (send XBM) that manages the protocol for sending inter-FPGA data

packets, and Figure 5-7(b) describes the asynchronous channel controller (receive. XBM)

T.B. Yee, 2007 Chapter 5: Communication channels 135

that manages the protocol for receiving the inter-FPGA data packets. The burst-mode

specification described in (a) has four inputs (den, lastpack, ack, and txdoneset) and two
outputs (req, and txdone), and (b) has three inputs (req, lastpack, and rxdoneset) and two
outputs (ack, rxdone). Communication cells (transmit and receive cells) both have a pair

of send XBM and receive XBM to deal with the asynchronous inter-FPGA data transfers.

ack- lastpack® / req+
—den+ lastpack™ / A
req+
(0)}—E—uw 1 3 _
« - v |
den- txdoneset- / <lastpack-> ack+ /
A <lastpack+> ack+ / req-
2 reg- txdone+ |
T |
Yy ack- lastpack*/
4
(a)Extended burst-mode specification
T for sending inter-FGPA data packets
y txdoneset+ / txdone-
5
req- lastpack™ / ack-
A
%) = > 2
<lastpack-> req+ / ack+
«
rxdoneset- / <lastpack+> req+ /
ack+ rxdone+
1
i‘ T
| y red- lastpack* / ack-
(b) Extended burst-mode specification
3 for receiving inter-FGPA data packets
y rxdoneset+ / rxdone-
4

Figure 5-7 Extended burst-mode specifications for asynchronous channel
controllers in communication cells

Initially, the transmit cell at the source device asserts den to enable inter-FPGA data on the

data bus of the tri-state communication channel and its send XBM asserts req as illustrated

T.B. Yee, 2007 Chapter 5: Communication channels 136

in the transition from states 0 to 1 in Figure 5-7(a). When the receive cell at the destination
device receives the data on the data bus, the receive XBM acknowledges the sender by
asserting ack: the transmit cell in turn negates req. lastpack is asserted when the current
data packet is the last data transfer to be sent. If the data is not the last packet (<lastpack-
>), the send_XBM (in the source device) and receive XBM (in the destination device)
continues with the four-phase handshaking protocol. When the last data packet
(<lastpack+>) is placed on the data bus, the receive XBM acknowledges the sender by
asserting ack and rx_done (state transition 0 to 1 in (b)), send XBM negates req and
asserts fxdone (state transition 1 to 2 in (a)). The transmit cell acknowledges the

send XBM by asserting txdoneset (state transition 4 to 5 in (a)) when the last data packet is
sent, similarly the receive cell acknowledges the receive XBM by asserting rxdoneset

(state transition 3 to 4 in (b)) when the last data packet is received.

5.3.3 State encoded output communication cells

The output of the 3D synthesis system described in the previous section is a set of
optimised hazard-free, technology-independent logic equations, which can be used to
describe XBM finite state machines to handle inter-device data transfers. This section
describes an alternative implementation of communication cells using synchronous finite
state machines (FSM) with state encoded outputs [139] to produce glitch free FSMs to

handle the inter-device data transfers using a two-phase data handshaking signalling

protocol.
Combinational logic Sequential logic
inputs o
o m
J L state and

outputs

.
-

Present state

» flip-flop

Next state logic
state

|

clock

?
|
I
|

Figure 5-8 Block diagram of finite state machine with state encoded
registered outputs

Figure 5-8 above shows the block diagram of the state encoded FSM, where state

encodings are unique and the FSM outputs are registered and assigned directly from the

T.B. Yee, 2007 Chapter 5: Communication channels 137

state-register bits. Finite state machines of communication cells and arbiter cells are

described in subsequent sections.

5.3.3.1 Transmit cell finite state machine

This section describes the FSM of the transmit cell given in Figure 5-9 and the
corresponding state encoding table in Table 5-1. The transmit cell FSM has a total of 11
states with 6 state encoded registered outputs and 2 additional state bits, x/ and x2, so that
all of the encodings are unique. The edge labels of the directed edges in Figure 5-9 specify
the transition condition, and the corresponding effects (output values) are given in the state

encoding table.

During an inter-device subprogram module call, the source module activates the transmit
cell through the transmit call node (described in Section 4.4). The transmit call node
asserts “proc_en” and the transmit cell FSM enters state S7 and output “fransfer req” is
asserted. When the destination receive cell is ready to receive data, the communication
channel arbiter cell acknowledges the transmit cell by asserting “transfer ack”. The
transmit cell FSM enters state S2, de-asserts “transfer req”, enables the tri-state data and
handshaking signals in the communication channel with valid data by asserting transmit
enable signal, “7X_EN” and “data_req_out” respectively. The destination receive cell
acknowledges the receipt of the inter-device data with the assertion of the tri-state
handshaking signal “data_ack” to complete the two-phase handshaking signalling
protocol. The transmit cell FSM enters state S4 if the preceding data packet sent is the last,
else it enters state S3 to initiate the transfer of the second data packet. The transmit cell
FSM enters state R/ when the communication channel arbiter cell de-asserts

“iransfer_ack” to complete the transfer of inter-device module input parameters.

T.B. Yee, 2007 Chapter 5: Communication channels 138

(c.D)

proc_en = 1 [-
[s1] Y_

7N

\/ [' R5) last rx =1
transfer_ack = 1 | Nta_req =1
last_x=1 \

data_req =0 \"\
!

last tx =0 R4 E
last_tx = 0 \ data_ack = 0 ;
/ data_ack = 1 ! / , /
/ / ’f }w last rx=0 /
/ last_rx =0 | data_req =1/
[l L S3 data_req =0 &
\

last_tx =1

data_ack =0
7 =
last_tx =1 /Jjnsfer_ack 0
data_ack = 1 S4)

(R2 |

+

transfer_ack = 0 transfer_ack = 1

Figure 5-9 State diagram of the transmit cell FSM

The communication channel is available for other module calls while waiting for the
destination module execution to complete. This non-blocking protocol is important as it
allows the destination module to activate other inter-device modules without the need for a

separate communication channel in the case of nested module calls.

The communication channel arbiter cell asserts the “sransfer _ack” to indicate that the
external module has completed execution and results are ready to be sent back to the
source module. The transmit cell FSM enters state R2, output signal “fransfer req” is
asserted and the tri-state handshake signal “data_ack _our” is set to logic *0°. The transmit
cell FSM enters state R3 when “transfer _ack” is de-asserted. The destination receive cell
asserts handshake signal “data req” and puts the data (results) on the tri-state
communication channel. The transmit cell FSM loads in the data on the communication
channel and asserts “data_ack_out” to acknowledge receipt of the data and enters state S5

if the received data packet is the last, else it enters state S4. Output signal “proc_done” is

T.B. Yee, 2007 Chapter 5: Communication channels , 139

asserted in state C_D to end the inter-device module call and the FSM returns to state

cw

. 5 3 H

B = %F &é\! El Er § §:

State é § & & g g

5 3 =
CALL_WAIT (C_W)| 0 0 0 0 0 0
SEND 1 (51 0 0 0 1 0 0 0
SEND 2 (S2) 0 0 0 0 0 1 1 0
SEND 3 (S3) 0 0 0 0 0 1 0 0
SEND 4 (S%) 0 1 0 0 0 1 0 0
READ 1 (R]) 0 1 0 0 0 0 0 0
READ 2 (R2) 0 0 0 I 1 0 0 0
READ 3 (R3) 1 i 0 1 1 0 0 0
READ 4 (R4) 1 0 0 1 1 0 0 1
READ 5(R3) 1 1 0 1 1 0 0 1
CALL_DONE (C D) 0 0 1 0 1 0 0 0

Table 5-1 State table of the transmit cell FSM

5.3.3.2 Receive cell finite state machine

The receive cell FSM complements the transmit cell FSM in the transfer of inter-device
subprogram module data. The section describes the FSM of the receive cell given in

F igure 5-10 and the corresponding state encoding table in Table 5-2. The receive cell FSM
has a total of 12 states with 7 state encoded registered outputs and 2 additional state bits,
x1 and x2, so that all of the encodings are unique. The edge labels of the directed edges in
Figure 5-10 specify the transition condition, and the corresponding effects (output values)

are given in the state encoding table.

T.B. Yee, 2007 Chapter 5: Communication channels 140

2

CD)

rxcell_act = 1 %)

m \fjcel!_act =0

[s4

last_tx =1
data_ack =1

rxcell_act =0

last_tx =1
data_ack=0

1
‘\ last_rx =0
\ data_req=0

\
H \ i
last_rx =0 i S3 }
data_req =1 N /
last_tx =0
last_tx=0 | | data_ack =

data_ack =0

last_rx =1
data_req=0
last_tx =1

data_req =1 rxcell_act = 1

Figure 5-10 State diagram of the receive cell FSM

The receive cell FSM starts in state C_1¥ and upon receive the assertion of “rxcell act”
from the communication channel arbiter, the FSM enters state R/ and output signals
“rxcell_rdy” is asserted and the tri-state handshake signal “data_ack our” is set to logic
‘0’. The communication channel arbiter de-asserts “rxcell_act” when the source transmit
cell is ready to send data, the receive cell FSM enters state R2 and checks if the tri-state
“data_req” signal is asserted to indicate valid data on the communication channel. The
receive cell FSM loads in the data on the communication channel and asserts output signal
“data_ack_out” to acknowledge receipt of the data and enters state R4 if the received data
packet is the last, else it enters state R3. The receive cell FSM enters state A M and output
signal “proc_act” is asserted to activate the receive call node (described in Section 4.4)
and the receive cell FSM enters state WM and waits till “proc_end” assertion by the
receive call node to indicate the completion of module execution. The receive cell FSM

enters state S/ and asserts “rxcell rdy”. The communication channel arbiter asserts

T.B. Yee, 2007 Chapter 5: Communication channels 141

“rxcell_act” to acknowledge the receive cell that the source transmit cell is ready to
receive the output parameters (results) from the module execution. The receive cell FSM
enters state S2, de-asserts “rxcell_rdy”, enables the tri-state data and handshaking signals
in the communication channel with valid data by asserting transmit enable signal,
“TX_EN” and “data_req_our” respectively. The source transmit cell acknowledges the
receipt of the inter-device data with the assertion of the tri-state handshaking signal
“data_ack” to complete the two-phase data handshaking signalling scheme. The receive
cell FSM enters S3 and de-asserts “data_req _our”. The receive cell FSM enters state S4 if
the preceding data packet sent is the last, else it enters state S3 to initiate the transfer of the
second data packet. The receive cell FSM enters state C_D when the communication
channel arbiter cell de-asserts “rxcell act” to complete the transfer of inter-device module
input parameters. Output signal “rxcell_done” asserted in state C_D to activate the next

control state node in the main control path and the receive cell FSM enters state C_ ¥ to

await the next module call.

¥ ‘3 3

N ~ gi .ég i?‘ E, 5 | ;;’l \;)I

A R 8 3 3 5 > N o

State S, 2 g 3 3

~ < =
CALL WAIT(C W) | 0 | 0 0 0 0 0 0 0 0
READ_1 (R}) 0 I 0 0 I 1 0 0 0
READ 2 (R2) 1 1 0 0 1 1 0 0 0
READ 3 (R3) 1 0 0 0 1 1 0 0 I
READ 4 (R4) 1 0 0 0 1 1 0 0 1
ACT MOD (4 M) 1 0 1 0 0 1 0 0 0
WAIT MOD (W M) I 0 0 0 0 0 0 0 0
SEND 1 (1) 0 1 0 0 1 0 0 0 0
SEND 2 (52) 1 0 0 0 0 0 1 1 0
SEND_3 (53) 1 1 0 0 0 0 1 0 0
SEND 4 (54) 0 1 0 0 0 0 1 0 0
CALL_DONE (C_D) 0 0 0 1 0 0 0 0 0

Table 5-2 State table of the receive cell FSM

T.B. Yee, 2007 Chapter 5: Communication channels 142

5.3.3.3 Arbiter cell finite state machine

The communication channel arbiter cell provides arbitration for the shared subprogram
communication channel. There are two types of communication channel arbiter cells, the
single-arbiter and the multi-arbiter as shown in Figure 5-11. The single-arbiter (s_arb)
cell, as the name suggests, provides arbitration to a single pair of communication cells
(transmit and receive cells) using the bi-directional tri-state communication channel. The
multi-arbiter (m_arb) cell provides arbitration to more than two communication cells

using the shared bi-directional tri-state communication channel.

FPGA 1 FPGA 2
txeell req.. rxcell_act .
txcell_nodet txeell ack' s_arb i rd rxcell_node1
L rxcell_r
e 2=
_Data bus 11 n-bits
data_req 1
¢ —
data_ack 1
¢ 7
(a) Single-arbiter (s_arb) cell example
FPGA1 R FPGA 4
txcell_req0 rxcell act0

txcell_node1 s »
- txeell acko rxcell_node1
< = rxeell rdy0

FPGA 3 b E S

txcell_req1

txcell_node2 -~
xeeflnode txcell_ack1 !

A

4
3 &

SRS : FPGA 2 b -
e, -804 xcell_act1 -

txcell_req2 rxcell_node2

xeell_rdyt g

Y.

txcell_node3

txcell_ack2

1 .
Data bus § 1 1 1 1 n-bits
data_req 1
< - 7
data_ack 1
< -

(b) multi-arbiter (m_arb) cell example

Figure 5-11 Example of the single-arbiter and multiple-arbiter

The example of a single-arbiter in Figure 5-11(a) shows a single source transmit cell
(txcell nodel) and destination receive cell (rxcell nodel) connected to a single-arbiter

(s_arb) that provides simple “one-to-one” communication channel arbitration between the

T.B. Yee, 2007 Chapter 5: Communication channels 143

pair of communication cells. Figure 5-11(b) shows a multi-arbiter (m_arb) providing
channel arbitration for communication cells in a “many-to-many” configuration, where
transmit cells (#xcell nodel and txcell node2 in FPGA 1, and txcell node3 in FPGA 2)
sends inter-device data to receive cells (rxcell_nodel in FPGA 4 and rxcell node? in

FPGA 3).

The FSM of the single-arbiter cell is given in Figure 5-12 and the corresponding state
encoding table in Table 5-3. The transmit cell FSM has a total of § states with 2 state
encoded registered outputs and an additional state bit, x/, so that all of the encodings are
unique. The edge labels of the directed edges in Figure 5-12 specify the transition
condition, and the corresponding effects (output values) are given in the state encoding
table. The single-arbiter cell handles the simple “one-to-one” arbitration and a glitch-free
handover of the communication channel between a pair of transmit and receive cells using
a single bi-directional tri-state communication channel. The arbiter cell performs
handshaking between the transmit and receive cells to ensure that the tri-state signals are
enabled (set to a known level, logic ‘0” in this instance) by the corresponding
communication cells before it acknowledges the source or destination cell to initiate the

start of the inter-device transfer.

)

/_\ txcell_req=0
(80\, — 87

\

<

txcell_req = 1 | rxceli_rdy =0

O

S1 S6
rxcell_rdy = txcell_req =1
|
3\ f\
| Ss2 | . S5

I rxcell_rdy =1

txcell_req=0
S3 }Eﬁ/sj)}
_/

Figure 5-12 State diagram of the single-arbiter cell FSM

C

T.B. Yee, 2007 Chapter 5: Communication channels 144

® = =

State § s
SO 0 0 0
S1 0 1
S2 0 1 1
S3 0 1 0
S4 1 0 0
S5 1 1 0
S6 1 1 1
S7 1 0 1

Table 5-3 State table of the single-arbiter cell FSM

The multi-arbiter cell performs a similar task of communication channel arbitration as the
single-arbiter cell. The multi-arbiter handles communication channel arbitration for
“many-to-one” or “many-to-many” inter-device module call configuration. The multi-
arbiter cell has a ROM Look-Up Table (LUT) block that holds the direct mappings of the
source transmit cells and the corresponding receive cell(s) to activate. Figure 5-13 shows
an example of the LUT mapping for three transmit cells and two receive cells given in
Figure 5-11. The size of the LUT block is the same as the number of transmit cells
connected to the multi-arbiter cell. The first and last transmit cells (#xcell nodel and
txcell node3) calls rxcell nodel and the second transmit cell calls rxcell node2. The
resultant mapping in the LUT is a 0 in the first and third location of the LUT block, and a
1 in the second location of the LUT block.

| request/acknowledge pairs
txcell_req0
» LUT block
txcell_nodeT | (ool acko > 1
< b (0, 1,0)
g
txcell_reqt rxcell_act0
txcell_node2 | ycoll ack1 0 m_arb . rxcell_rdy0 rxcell_node1
< = 1 =
i rxcell_act1
txcell_req2 >
| rxcell rdyi | rxcell_node2
txcell_node3 _txcell_ack2 /v; ray
[activate/ready pairs

Figure 5-13 Example of LUT mappmgof communication cells

T.B. Yee, 2007 Chapter 5: Communication channels 145

The FSM of the multi-arbiter cell with a total of 10 states is illustrated in Figure 5-14. The
multi-arbiter cell checks the connected transmit and receive cells in a round-robin manner.
A token with an initial value of one is incremented by one every time the multi-arbiter cell
FSM enters state /_T. The token is cleared to zero when the preceding token value is the
maximum count value given by one less the maximum number of transmit cells connected
to the multi-arbiter cell (For example, the total number of connected transmit cells given

in Figure 5-11(b) is: 3, hence the maximum token count value is: 3 -1 = 2).

The multi-arbiter cell performs a prioritised condition check in state C_S, whereby
condition A has a higher priority than condition B. Condition A checks the “transfer req”
input signal specified by the token value for an inter-device module call. The
“mod_active” register in the multi-arbiter is set to ‘1’ if the destination module is not

- available. The “mod_active” register bit of an activated receive cell is set to ‘1’ and the
transmit cell that activated the receive cell will have a ‘1’ set in the “call reg” register.
Condition B checks the completion of execution from the destination module. This
condition is true when the corresponding bits in the “mod_active™ and “call reg” are set
and “rxcell_rdy” is asserted by the activated receive cell. The multi-arbiter cell FSM

enters state / 7 when conditions A and B are not met.

Condition A Condition B

rxcell_rdy(LUT(token)) = 1
call_reg(token) = 1

txcell_req(token) =
) =
mod_active(LUT(foken)) = 1

1
mod_active(LUT(token)) = 0

)

R1

%]
ey

txcell_req(token) = 1

rxcell_rdy(LUT(token)) = \ Condition A » Condition B

\
R2

O%
1O

4
\\
T

' .
txcell_req(token) = 0 . /
s3 |

rxcell_rdy(token) = 0

rxcell_rdy(LUT(token)) = O

-

R

txcell_req(token) =0

Figure 5-14 State diagram of the multi-arbiter cell FSM

T.B. Yee, 2007 Chapter 5: Communication channels 146

States S/ to S4 in the multi-arbiter cell FSM handles the inter-device data (input
parameters) transfers from the source transmit cell to the receive cell in the destination
device. States R/ to R4 handles the inter-device data (results from the module execution)
transfers from the receive cell to the source transmit cell. Status register bits to identify
active transmit and receive cells in “call_reg” and “mod_active” respectively are set in
state S2. The corresponding bits in the status registers are cleared in state R3 to permit
future inter-device module call activations. The registered output signals in the multi-

arbiter cell are given in Table 5-4 below.

State txcell_ack(token) rxcell act(token)

CHECK_SIG (C_S) - _
INCREMENT_TOKEN (/ T) - —
S 0 1

S2 1 I

S3 I 0

S4 0 0

RI 1 0

R2 1 1

R3 0 1

R4 0 0

Table 5-4 Registered output signals in the multi-arbiter cell FSM

5.3.4 Data transfer protocol for communication cells

Four-phase signalling protocol is used in the handshaking of request and acknowledge
signals in the subprogram communication channel arbitration, and two-phase signalling
protocol is used to indicate data is valid on the tri-stated communication channel (data
bus) and acknowledge the acceptance of data at the corresponding receiver cell. There are
a total of sixteen events in the shared communication channel arbitration for each cross-
domain subprogram call (illustrated in Figure 5-15). The first eight events (labelled 1 to 8
in Figure 5-15) correspond to the signalling of handshake signals used in the passing of
input parameters from the source module through the activated transmit cell (zxcell node)

to the destination module through the activated receive cell (rxcell node).

T.B. Yee, 2007 Chapter 5: Communication channels 147

The remaining 8 events (labelled 9 to 16) correspond to the returning of output parameters
(results) from the destination module to the corresponding calling source module. The
rxcell_node activates the subprogram module when all the input parameters are received
and loaded at the destination domain (event 7). Subprogram execution completes and the
rxcell _node asserts ready signal (event 9) to indicate that the results from the subprogram

execution are ready to be sent back to the calling module.

5
txcell_node (txcell_req) j " 15
2 12
; 6 16
arbiter (rxcell_act)
3 13
- 7 9 {
rxcell_node (rxcell_rdy) w‘ | |
‘ |
;
\ 10 5
: =] 8
arbiter (txcell_ack) 1
i i Subprogram
| execution
Subprogram input parameter Subprogram output parameter
data transfer data transfer

Figure 5-15 Four-phase signalling in communication channel arbitration

Figure 5-16 illustrates the sequence of events (labelled 1 to 8) in the passing of input
parameters, with the asynchronous data handshaking signals (data req. data ack, and
Data). A description of the sequence of events corresponding to the passing of input

parameters marked in Figure 5-16 is listed in Table 5-5.

T.B. Yee, 2007

Chapter 5: Communication channels

rxcell_node (rxcell_rdy)

txcell_node (txcell_req) X
® ®
arbiter (rxcell_act) / \\\/

arbiter (txcell_ack)

©
)

o«

data_req — 7
i

148

data_ack

Data {
tri-state signals

i

/
/

/ ,

)___.___._

data pkt3 |

A X

| datapktt | [datapki2 | |

Figure 5-16 Asynchronous data transfer protocol (input parameters)

EVENT

DESCRIPTION

1

Transmit cell (ixcell_node) is activated and request signal “sxcell_req” to the communication
channel arbiter is set to ‘1°, requesting control of the communication channel.

Communication channel arbiter (arbiter) activates the destination module by asserting the
“rxcell_act” signal of the destination module to ‘1°. The call reg register bit corresponding
to the input request signal being acknowledged is set (in the multi-arbiter cell) and similarly
the mod_active register bit corresponding to the called destination module is set (see
previous section for more details on call_reg and mod_active registers).

(U]

Receive cell (rxcell_node) initialises the tri-state data_ack handshaking line to ‘0’ and
acknowledges the communication channel arbiter activation by asserting its “rxcell rdy”
signal to ‘1.

Communication channel arbiter acknowledges the txcell node by asserting “txcell _ack” to
‘1.

ixcell_node enables the tri-state Data bus with first data packet is placed on the Data bus,
and “data_req” handshaking signal is asserted to *1” to initiate the inter-device data transfer.
txcell_node de-asserts “txcell req” signal.

Communication channel arbiter sets “rxcell_act” signal to 0°, telling rxcell _node in the
destination domain that the tri-state data handshaking lines are initialised and inter-device
data are ready to be received. The receive cell loads in and acknowledges the data packets
sent by the transmit cell.

Receive cell loads in the last data packet and de-asserts “rxcell_rdy” signal to ‘0°. Receive
cell releases control of the tri-state “data_ack” line.

Communication channel arbiter sets “fxcell_ack” signal to ‘0’ and this completes the data
transfer protocol for the transfer of cross-domain input parameters.

Table 5-5 Sequence of events in the asynchronous data transfers protocol

(input parameters)

T.B. Yee, 2007 Chapter 5: Communication channels 149

Figure 5-17 below illustrates the sequence of events (labelled 9 to 16) in the passing of

output parameters, with the asynchronous data handshaking signals (data_req, data_ack,

and Data). A description of the sequence of events corresponding to the passing of output

parameters marked in Figure 5-17 is given in Table 5-6.

txcell_node (txcell_req) \// \"
.
arbiter (rxcell_act) / A\

rxcell_node (rxcell_rdy) / L

arbiter (txcell_ack) /

/
data_req / L f———

data_ack / - /—____,

/ /
Data ' { X),_____
(.‘_#__‘ #MLM
| tri-state signals data pkt1 | data pkt 2 :

Figure 5-17 Asynchronous data transfer protocol (output parameters)

EVENT

DESCRIPTION

Upon completion of the subprogram execution, receive cell (rxcell _node) asserts its
“rxcell rdy” signal to ‘1.

10

Communication channel arbiter (arb) asserts “rxcell _ack” signal indicating to the
txcell_node that the subprogram has completed its execution.

11

ixcell_node initialises the data_ack handshaking line to ‘0> and asserts “txcell req” to ‘1°.

12

The call_reg register bit corresponding to the input request signal being acknowledged is
cleared (in the multi-arbiter cell) and similarly the mod_active register bit corresponding to
the called destination module is cleared (see previous section for more details on call_reg
and mod_active registers). Communication channel arbiter acknowledges the rxcell _node by
asserting “rxcell_act” to ‘1’.

rxcell_node enables the tri-state Data bus with first data packet is placed on the Data bus,
and “data_req” handshaking signal is asserted to ‘1° to initiate the inter-device data transfer.
rxcell_node de-asserts “rxcell_rdy” signal.

14

Communication channel arbiter sets “zxcell_ack” signal to ‘0°. This tells rxcell _node in the
source domain that the tri-state data handshaking lines are initialised and inter-device data
are ready to be received. The transmit cell loads in and acknowledges the data (result)
packets sent by the receive cell.

T.B. Yee, 2007 Chapter 5: Communication channels 150

EVENT | DESCRIPTION

15 Transmit cell loads in the last data packet and de-asserts “txcell req” signal to ‘0. Transmit
cell releases control of the tri-state “data_ack” line.

16 Communication channel arbiter sets the “rxcell_act” to “0” and this completes the data

transfer protocol for the transfer of cross-domain output parameters. ,

Table 5-6 Sequence of events in the asynchronous data transfers protocol
(output parameters)

5.4 Subsystem architecture

This section starts with the details on the creation and implementation of the asynchronous
subprogram communication channels. Implementation details of the various
communication subsystem interface cells; transmit and receive cells and the

communication channel arbiter cell are covered within this section.

5.4.1 Transmit cell

The “transmit cell’ (txcell_node) is the inter-FPGA communication interface cell inserted
into the source module that calls a destination module in another partition mapped onto a
separate FPGA device. The original call_node associated with a subprogram call is
replaced by the fcall node if the called module is allocated a separate partition. For each
tcall_node, a txcell_node is added into the structural output to handle the handshaking and

transfer of I/O parameters across the communication channel.

The width of the communication channel is optimised by the MOODS synthesis tool
based on the number of available user 1/Os of the interconnected FPGAs and the width of
the input and output parameters of the subprogram. The input and output parameters are
concatenated and sent in data packets, where the size of each data packet is the width of
the communication channel used to send the data. If the bit-width of the last data packet is
not less than the width of the communication channel, the last data packet is bit-stuffed
with zeros to the full bit width. A multiplexor is created to select the appropriate data for a

multi-packet subprogram input parameter transfer. The multiplexor select signals are

T.B. Yee, 2007 Chapter 5: Communication channels

151

driven from the fxcell_node. Figure 5-18 shows the structure generated for a subprogram

with five input parameters (A, B, C, D, and E) of varying bit widths and the

communication channel has a width of 16 bits.

Packet1 Packet2 Packet3 \ Packet4
\ -
8-bit 8-bit 12-bit \ 12-bit
LA || B | [¢] "0000° | E
N | |
[15:8] [7:0] [15:4]/." [S:O]T [15:0]5* [15:12]{ (11014
| |
upper byte | ' * '
of packet 1 | } [
|
f lower byte 16 1
of packet 1 6 16 18
B — / / 4 4
\\
\ MUX |
\]]

Multiplexor [i | Mu?(select
generated for +] signals
multiple data |

packet transfer -%J
txcell_node
|
16
16
Communication channel

Figure 5-18 Generated structure for a multi-packet input data transfer via the

txcell_node

If an output parameter is sent over the communication channel in multiple data packets,

only the corresponding bits of the register are updated for each packet transferred. This is

achieved in a similar way to the input parameters multiplexor select signals, where instead

of using the load-enable signal directly for each register, the load-enable signal is

‘ANDed’ with the output parameter select signals driven from the fxcell node. Figure

5-19 shows the structure generated for a subprogram with 3 output parameters (X_out,

Y_out, and Z_out) of varying bit widths and the communication channel has a width of 16

bits. Latches are used in place of registers to hold the output parameters when XBM finite

state machine are used instead of FSM with state encoded outputs; details on the creation

and register-to-latch modifications are covered in Section 5.5.1.

T.B. Yee, 2007 Chapter 5: Communication channels 152

16, Communication channel
1 Output parameter l 16
select signals [
p-load \ ;
j < N txcell_node |
] N i
i |
i
16
\j
Load-enable signal
for X_out[7:0] and |
Y_out{7:0] ~ r 1)
| Load-enable signal F1 | [15:8] [7:0] [1510]/?/ [310]J
| for Z_out{19:4] //{/ ‘ _1 | W
Load-enable signal | J
for Z_out[3:0] y y I‘ Y
 Xoout | Y_out } Z out |
i
| Output result registersT// 8-bit 8-bit 20-bit
l B N S
Packet1 Packet2 Packet3

Figure 5-19 Structure generated for receiving a multi-packet output data
transfer via the txcell node

A single txcell_node is shared between fcall nodes, which are mapped to the same FPGA
device, and calling the same destination module. For a fxcell node that is shared by two or
more fcall_nodes, a multiplexor is created to select the input parameters associated with
the activated 7call_node. Figure 5-20 shows the structure generated for a txcell node

shared by two subprogram calls (ICODE instructions *. L0001’ and °.L0005).

T.B. Yee, 2007

Chapter 5: Communication channels

Behavioural VHDL source

ICODE

1 | entity m_call1 is 7 1| PROGRAM m_call1 sum_out1,sum_out2
2| port({ sum_out1: out unsigned(7 downto 0); 2| OUTPORT sum_out1 [7:0]
3 sum_out2: out unsigned(11 downto 0)); 3 | OUTPORT sum_out2 [11:0]
4| end m_call1; 4 | REGISTER a [7:0] INIT #%00000000
5 5 | REGISTER b [7:0] INIT #%00000000
6 | architecture Behaviour of m_call1 is 6 | REGISTER x [7:0] INIT #%00000000
7 | signal A,B,X,Y,out1: unsigned(7 downto 0):="00000000"; 7 | REGISTER vy [7:0] INIT #%00000000
8 | signal C,Z,out2: unsigned(11 downto 0) := (others=>'0"); 8 | REGISTER out1 [7:0] INIT #%00000000
9 | begin 9 | REGISTER ¢ [11:0] INIT #%000006000000
10, process 10| REGISTER z [11:0] INIT #%000000000000
11| begin 11 REGISTER out? [11:0] INIT #%000000000000
12] proc1(A, B, C, out1, out2); -- call subprogram 12
13 sum_out1 <= outt,; 13| I/ Statements
14 sum_out2 <= out2; 14} L0001 TXCELL proct a,b,c,outt,out2
15] wait for 10 ns; 15/ .L0002 MOVE out1, sum_out1
16 proc1(X, Y, Z, out1, out2); -- call subprogram * 16| .L0003 MOVE out2, sum_out2
17) sum_out1 <= out1; 77| .L0004 PROTECT 1e-008
18 sum_out2 <= out2; 18] .L0005 TXCELL proc1 x,y,x,out,0ut2
19 wait for 10 ns; 79) .L0008 MOVE out1,sum_out1
20| end process; 20| .L0007 MOVE out2,sum_out2
21| end Behaviour; 21| L0008 PROTECT 1e-008 ACT L0001
22 22 L0009 ENDMODULE
23| procedure proc1 (23
24 signal in1: in unsigned(7 downto 0); 24| TSI i
25 signal in2: in unsigned(7 downto 0); 25 RXCELL proct int,in2,in3,0ut1,0ut2
26| signal in3: in unsgined(11 downto 0); 26| I/ Declarations
27, signal out1: out unsigned(7 downto 0); 27) INPORT in1 [7:0]
28, signal out2: out unsigned(11 downto 0) 28| INPORT in2 [7:0]
29|)is 29| INPORT in3 [11:0]
30| begin 30; OUTPORT out1 [7:0]
317] outt <=in1+inZ; 31) OUTPORT out2 [11:0]
32| out2 <=in3 +*000000000001"; 32| REGISTER tmp0 [7.0]
33| end proct; 33 REGISTER tmp1[11:0]
34
35| If Statements
36| .1.0010 uadd in1, in2, tmp0
37, .L0G11 MOVE tmp0, out1
38| .L0012 uadd in3, #%000000000001, tmp1
39) L0013 MOVE tmp1, out2
40 L0014 ENDMODULE
Packet1 Packet1 Packet2 Packet2
(.L000T) (.LO00S5) (.LO0O7T) (.L000S5)
8-bit 8-bit 8-bit 8-bit 12-bit 12-bit
CACE X vy] Fegic | [z |
-Tr—- I
[15:8]/" [7:0] [15:8] [7:0]Jr [11:0] [11:0])(
|
et |
i i
16 L 16 12 ' 12
R — i1 e
N MUK - i5 o MUX 2 s
1 [15:O]J[[15:12] [1 1:0]} [_L__‘
| Multiplexor generated for ! {Instruction |
| multiple subprogram | enable signals |
% activation r \ /
N MUX 7 !
) |
16 } | Mux select
v I T T signals
=11
txcell_node
A
16

wﬁ’
Communication channel

Figure 5-20 Generated structure for a shared txcel/l _node

T.B. Yee, 2007 Chapter 5: Communication channels 154

5.4.2 Receive cell

The ‘receive cell’ (rxcell node) is the inter-FPGA communication interface cell inserted
into the subprogram module that is called by a source module in another partition, which

1s mapped onto a separate FPGA device.

The ICODE RXCELL instruction replaces the original ICODE MODULE module header
instruction when the module is called by a module in another FPGA device. For each
RXCELL module, a receive cell (rxcell_node) and a receive call node (rcall_node) is
created to handle the inter-FPGA data transfer and initiating the execution of instructions
within the module. The rxcell_node is added into the structural output to handle the
handshaking and transfer of I/O parameters in data packets across the communication
channel. The rcall_node has the same structure as the call_node, the only difference is the
rcall_node is activated by the rxcell_node. Upon completion of the subprogram execution,
control is passed back to the rxcell_node, which then initiates the return of the output

results to the calling module.

16 Communication channel
Input parameter 16 4
select signals %
p-load
J | N rxcell_node
a }
. 16
[Load-enable signal for I ¥
| A7:0]and B[7:0] T
| Load-enable signal for
|__Cl11:0] and D[19:16] I J [15:8] [7:01 [15:4] [3:0] [15:0] [11:0]
Load-enable signal for])
D[15:0] : g
i
Load-enable signal for | J i
E[11:0] T Z Y 11 A Li ANy 4
L : |
1 LA I s eIy =
| Input parameter registers J 8-bit 8-bit 12-bit 20-bit 12-bit |
L S e’
Packet1 Packet2 Packet3 Packet4

Figure 5-21 Structure generated for receiving a multi-packet input data
transfer

The rxcell_node receives the concatenated input parameters sent by the txcell node of the
calling module. The input parameters in the data packets are then loaded into the
corresponding input parameter registers. Recall the structure generated for a multi-packet

input data transfer in Figure 5-18, Figure 5-21 illustrates the structure generated in the

T.B. Yee, 2007 Chapter 5: Communication channels 155

destination sub-module to receive and load the input parameters. This structure is identical
to the structure generated to load output results via the txcell node in the calling module

as described earlier.

Latches are used in place of registers to hold the input parameters when XBM finite state
machine are used instead of FSM with state encoded outputs; details on the creation and

register-to-latch modifications are covered in Section 5.5.1.

A multiplexor is created to select the appropriate data packet for a multi-packet
subprogram output result transfer. The multiplexor select signals are driven from the
rxcell_node. Recall the structure generated to receive a multi-packet output data transfer in
Figure 5-19, Figure 5-22 illustrates the structure generated in the destination sub-module
to send the results back to the zxcell node of the calling module. This structure is identical
to the structure generated to load input parameters via the fxcell node in the calling

module as described earlier.

Packet1 Packet2 Packet3
8-bit 8-bit 20-bit
| X_out || Y_out | Zout | | | ‘000000000000 |
H 1 BT eRmEE
N
[15:8] [7:0] [19:4] [3:0] {15:4]1 \\
3
i ! f \
i
Y
N

I upp:;l?eytt? o Bit-stuffing zeros f
l__pH 16 16 16 }

;’ lower byte of } 4

| \
packet 1 i \\ MUX

j

Multiplexor / signats
generated for
multiple data ﬁ
packet transfer rxce”_node
|
[
16
16
/
/

Communication channel

Figure 5-22 Generated structure for receiving a multi-packet output data
transfer via the rxcell node

T.B. Yee, 2007 Chapter 5: Communication channels 156

5.4.3 Communication channel (data bus) arbiter

The communication cells (transmit cell and receive cell) send and receive data packets
over a shared communication channel and these communication cells are connected to a
centralised arbiter granting the usage of the communication channel. During synthesis, the
mapping for each source-destination module pair in an inter-FPGA subprogram call is
determined and this provides a direct mapping of the ‘calling” module in one FPGA device
and the ‘called” module in another device. This mapping information provides the values
to the ROM Look-Up Table (LUT) block in the arbiter. A round-robin (rotating) priority
scheme is implemented in the communication channel arbiter, where request lines are
polled in a rotating manner. The sequence of events is described in Table 5-5 and Table
5-6. The asynchronous data transfer protocol sets up the txcell node and rxcell node in
different FPGA devices for the asynchronous inter-FPGA data transfer. F igure 5-23

illustrates the LUT and status registers (call_reg and mod_active) structure in the multi-

arbiter.

The interface ports that link to the structural implementation of the arbiter are added
automatically to the entity port list declaration of the generated structural VHDL design.
The MOODS synthesis tool checks for communication cells (txcell_nodes and
rxcell_nodes) that are in the same partition as the communication channel arbiter when the
communication channel arbiters are created. These ‘internal’ communication cells are
connected directly to the communication channel arbiter via internal signal nets. The
synthesis tool determines the sizes of the external signals that interface with the arbiter,

and resizes the interface ports.

The communication channel arbiter is defined within a VHDL package generated by the
MOODS synthesis tool. There are two reasons for defining the communication channel
arbiter as a separate package. Firstly, the size of the LUT block is determined when the
communication channel arbiter is created during the post-processing phase of the MOODS
synthesis tool, and these memory elements are customised in the structural/RTL
communication channel arbiter component to support all the communication cells
connected to its interface ports. The second reason is the creation of the LUT mapping of
the communication cells, which is a direct one-to-one mapping with the input request lines

from source zxcell_nodes, and the LUT value addressed by the index corresponds to the

T.B. Yee, 2007 Chapter 5: Communication channels 157

output activation lines to destination rxcell nodes. The mapping information is only
available after partitioning and allocation of arbiters to FPGA devices. The synthesis tool
also checks for arbiters providing arbitration to just a single source-destination module

pair, the LUT is not required and a single-arbiter is used instead.

| source-destination modute pair f Generated module call list
request |
FPGA 2 ;
acknowledge | m ;. MODULE CALL LIST
mod 13 / : .
| —— / 1
I :
rxcell5 117ode [activate 7’ ; mod1 --> mod8
(u31) / source-destination : Call node u5
dule nod 18
txcell_node module node numbers - mod1 —> mod13
(u26) L) ; Call node u12
[xcell node | 113
! txcell§r170de ; mod13 --> mod27
LM,W ; Call node u21
FPGA 2 1327
FPGA 1 e S SRR ; mod13 --> mod8
e mod 27 | ; Call node u26
mo rxcell_node | | 138
P
ixcell_node (u90) ! ; mod27 --> mod8
(u12) — J : Call node u81
ixcell_node 278
txcell_node (u8t)
(ub) 1 S ———
e .
FPGA 4
; . 012 3 4
Multi-arbiter request/acknowlsdge
(m_arb) pairs pars
[.) !
LUT ROM call_reg register [reB\IJZZ ﬁ;:gt'sveattﬁ)dw f‘
Yt
acar [eleli[elo] | L™ |
. ‘mzmé 1
3 W [mod active register J Bit(s) of activated lines set
e - kit to ‘1" for activated modules
2 | 8 DD
. ¢
s
o .2
j source request signal to destination f
| activate signal mapping f

Figure 5-23 Look-up table block and status registers in the multi-arbiter cell

5.5 Hardware generation

With the inclusion of the communication subsystem providing the subprogram

communication channel for the asynchronous transfer of data between multiple target

T.B. Yee, 2007 Chapter 5: Communication channels 158

devices, various enhancements and modifications are made to the single output structure
generated by the MOODS synthesis system. Firstly, the MOODS synthesis system now
generates multiple output structural output files from a single input behavioural
description; one for each target device. A new latch component is added into the MOODS
technology (cell) libraries, latches are used in place of data-gated registers in some parts of
the design where asynchronous data transferred over the communication channel is loaded
independent of the system clock by XBM finite state machines. For communication cells
using FSM with state encoded outputs, data-gated registers in the existing MOODS

technology libraries are used.

5.5.1 Data latch generation and hardware duplication

The register arrangement for the original subprogram (module) 1/0 parameters is shown in
Figure 5-24, where the original structure uses pass-by-reference for subprogram I/O
parameters. Output results obtained from the subprogram execution are written directly to
the corresponding output registers (our X and ous Y in the figure). The data path storage
units (registers) implemented for the subprogram output parameters are bypassed and

optimised away (removed), as shown shaded in the figure.

B Input parameters
F

Module I

|
|
Output parameters

[
l Z:Etj E] (bypassed and
A

removed)

/ 4
]out_XI Jout_Yj

Output result passed 4/'

by reference

Figure 5-24 Register arrangement for original subprogram module 1/O
parameters

The communication subsystem transfers the input and output parameters of external
subprogram modules asynchronously via a pair of transmit and receive communication
cells. The subprogram module call mechanism is modified (described in Section 4.4) and

the underlying structure of the final generated hardware uses pass-by-value instead of

T.B. Yee, 2007 Chapter 5: Communication channels 159

pass-by-reference for the procedures I/O parameters. Figure 5-25 illustrates the latch and
duplicated register arrangement for a subprogram module that is being called from a
module in a different target device (FPGA) using communication cells with XBM
asynchronous finite state machines. The figure shows two FPGA devices, where FPGA]
is the source device, which contains the calling module, and the called subprogram

module is located in FPGA 2.

duplicated

' A_dupl ! { B_dupl [registers

Communication
channel

ST - -
oo duplicated

i ;)

;Eiztf'?l LE:duP . . latches

[outx | | out_Y] FPGA 1 FPGA 2
v

OQutput result passed
by value

Figure 5-25 Latch and duplicated register arrangement for subprogram
modaule I/O parameters across FPGA boundaries

The registers for the input parameters (4 and B) of the called module in FPGA 2 are
replaced with latches (shaded in FPGA 2), and registers for the output parameters (C and
D) are not bypassed, as they are needed to hold the valid results obtained from the

subprogram execution for the rxcell_node to send the results back to the called module.

Duplicated registers (4_dupl and B_dupl) are generated and inserted into FPGA I to hold
the input parameters, which is sent to the called module by the corresponding txcell node.
Properties (data path unit bit-width, activation instructions, etc) for these duplicated
registers are copied from the original set of registers (registers 4 and B in Figure 5-24 in
this example). Similarly, duplicated latches (C_dupl and D _dupl) are generated and
inserted into ’PGA [to latch in the result data packets put on the communication channel

by the rxcell_node of the activated subprogram. At the end of the external module call, the

T.B. Yee, 2007 Chapter 5: Communication channels 160

results in the duplicated latches are loaded into the appropriate output registers (out X and

out Y).

5.6 Summary

The development of a multi-FPGA synthesis addition within the existing MOODS
synthesis system has extended the MOODS synthesis system to perform optimisation and

target multiple heterogeneous hardware devices, implementing a multi-FPGA system.

This chapter describes the asynchronous communication channel interface and the
automatic generation and insertion of communication cells that form the building blocks
of the subprogram communication channel, and inter-FPGA data transfers over
asynchronous communication channels/links in a multi-FPGA system. The asynchronous
data communication mechanism provided by the communication cells alleviates clock
skew problems in a multi-FPGA system, as each re-configurable device is viewed as

locally clocked processing units having an asynchronous communication interface.

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and
results of the multi-FPGA synthesis are demonstrated through a few desi gn examples in

the next chapter.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 161

Chapter 6

Multi-FPGA implementation results

6.1 Introduction

The partitioning enhancement to the MOODS synthesis system provides the synthesis tool
with an automated mechanism to partition a single behavioural design, which would not fit
onto a single target device or which would be too costly to fit onto a target device with a
large enough area capacity. With this partitioning add-on, the MOODS synthesis systerﬁ
can now target a single behavioural design onto two or more heterogeneous re-
configurable devices (FPGAs) at the board level. One main objective in obtaining the
partitions is to reduce interconnects (cutsets) and data transfers across boundaries. The K-
way partitioning algorithm and communication subsystem optimisation algorithm
described in Section 4.4.1 generates a partitioned design, with an optimised
communication channel or multiple communication channels to improve the performance

of the multi-FPGA system.

The two target technologies used for all the experiments in this section are given in Table
6-1. Target technologies listed in Table 6-1(a) show the Xilinx Spartan2 FPGAs, and
Table 6-1(b) shows Xilinx Virtex FPGAs. The device parts in the target technology are
listed in the first column of the tables and the package type of the device are given in the
second column. The third column shows the total number of user I/Os available on the
device. Four global clock pins on Spartan 2 or Virtex devices are usable as additional user
I/Os when not used as global clock input pins. These pins are not included in the total user
I/0 counts given in the tables because these pins are normally connected to surface
mounted clock oscillators or sockets for oscillator (e.g. global clock inputs GCK2 and
GCK3 are connected to an on-board oscillator and a socket for a second oscillator in the

D2-SB system board, see Appendix B.6). The fourth and fifth columns show the

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 162

maximum number of I/Os used and area of the devices in slices respectively. The
information given in the fourth and fifth columns are used by the two-phase partitioning
K-way algorithm (Section 4.4.1). The user I/O and area information of the target devices
constitutes the target domain information of the input partitioning information (.par) file to
the MOODS synthesis system. Detailed information on the two Xilinx target technologies

are given in [140, 141].

(a) Xilinx Spartan 2 FPGA devices (b) Xilinx Virtex FPGA devices
Total | Max. Max. Total | Max. Max.
user | user | areain user | user | areain

Device Package | /O /10 slices Device Package | 1/0 1o slices

XC2815 | TQ144 | 86 80 768 XCV50 BG256 | 180 | 160 768

XC2830 | TQ144 92 80 1200 XCV100 | BG256 | 180 | 160 | 1200

XC2850 | FG256 | 176 | 150 | 1728 XCV150 | BG352 | 260 | 250 | 1728

XC2S100 | FG256 | 176 | 150 | 2352 XCV200 | BG352 | 260 | 250 | 2352

XC25150 | FG456 | 260 | 250 | 3072 XCV300 | BG432 | 316 | 300 | 3072

XC25200 | FG456 | 284 | 250 | 4800 XCV400 | BG432 | 316 | 300 | 4800

XCVB00 | BG560 | 404 | 400 | 6912
XCV800 | BG560 | 404 | 400 | 9408
XCV1000 | FG680 | 512 | 500 | 12288

Table 6-1 Target Xilinx FPGA technologies

Design examples are described using behavioural VHDL and synthesised using the
MOODS synthesis system to generate un-partitioned and partitioned multi-FPGA
implementations. The structural VHDL description files generated by MOODS are further
processed by third party tools, Synplicity Synplify Pro and Xilinx ISE (Integrated
Software Environment), which performs low-level logic synthesis and technology
mapping. The Xilinx-targeted EDIF (Electronic Design Interchange Format) output from
Synplify Pro is processed by Xilinx ISE to generate a single, or multiple, bitstream files to

download onto a single, or multiple, FPGAs for an un-partitioned or a multi-FPGA design.

The first part of this chapter looks at experiments on subprogram communication channels
in non-pipelined multi-FPGA systems (without explicit communication channels) in
Section 6.2. The second part, Section 6.3, shows the inclusion of explicit communication

channels and the overall performance of pipelined multi-FPGA systems.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 163

6.2 Experimental results (without explicit

communication channels)

This section contains the experimental results of five behavioural VHDL designs: (1)
Quadratic equation solver (Quad eqs), (2) Cubic equation solver (Cubic eqs), (3) Inverse
Discrete Cosine Transform (IDCT) module, (4) Triple-Data Encryption Standard (Triple-
DES) core, (5) 256-bit Advanced Encryption Standard (AES256) core. The behavioural
VHDL designs of all five examples and post-MOODS synthesis simulation results of the
multi-FPGA implementations can be found in Appendix D.1. In this section, the non-
pipelined multi-FPGA implementations of the VHDL examples are compared with the

equivalent single-device implementation.

Synthesis result tables are given for each of the behavioural examples, where the first set
of synthesis results are obtained from synthesised designs optimised in terms of area (i.c.
with a high area optimisation priority) and the second set of results are obtained from
synthesised designs optimised in terms of delay (i.e. with a hi gh delay optimisation
priority). Synthesis results for un-partitioned single device implementations using the
original MOODS (before the partitioning enhancements were made) are shaded and given
in the synthesis result tables. Subsequent rows list the multi-board FPGA implementations
produced using various configuration of target FPGA devices. The * in the synthesis |
results denotes the implemented design or partition has exceeded either the maximum

area, or the maximum number of user I/Os of the target device.

Column 1 of the synthesis results tables shows the number of targeted FPGA prototyping
boards used to implement the synthesised design. Each FPGA board has a single Xilinx
FPGA device, which is one of the devices in the target Xilinx FPGA technologies given in
Table 6-1. For example, a s50 FPGA denotes a Xilinx Spartan 2 XC2S50 device in a
FG256 package with a maximum user I/O of 150 pins and a maximum device area of 1728
slices, and a v200 FPGA denotes a Xilinx Virtex XCV200 device in a BG352 package
with a maximum user I/O of 250 pins and a maximum device area of 2352 slices. The
target FPGA devices are given in column 2 of the synthesis results tables. The MOODS

synthesis optimisation priority (i.e. Area or Delay) is given in column 3.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 164

The next four columns show the synthesis results of the implemented design after the
Xilinx ISE placement and routing phase. These results show the final hardware
implementation and not the MOODS synthesis estimate. Area (in slices), and I/O
utilisation are given in columns 4 and 5 respectively. The maximum achievable
frequencies (Freq) of the FPGAs are reported in column 6. Column 7 gives the area
overhead (AO) of the multi-FPGA system with respect to the un-partitioned area-
optimised or delay-optimised implementations (shaded row) of each example. The two-
phase partitioning results are given in the last two columns of the synthesis result tables.
Column 8 reports the initial number of inter-device data packet transfers and the final
number of inter-device data packet transfers after the two-phase partitioning. Column 9
shows the number of explicit communication channels (ExC: s) and subprogram
communication channels (SpCs) inserted during synthesis with the data width of the

channels in brackets.

6.2.1 Quadratic equation solver

The behavioural VHDL of the quadratic equation solver can be found in Appendix D.1.1.
Figure 6-1 shows the module call graph representation of the quadratic equation solver,

with a total of seven modules in the design.

pM
eq_solver
8,1
Y
sM i
quadratici
41 53 41 52 |
» y 1 A '
sM sM sM sM
sqi multi sqrti sdivi

52
Y

sM
udivi

Figure 6-1 Module call graph of the quadratic equation solver

T.B. Yee, 2007

Chapter 6: Multi-FPGA implementation results

165

Synthesis results of the quadratic equation solver with high optimisation priority in area

and delay are shown below in Table 6-2. These results in terms of area and maximum

achievable frequency of the final implementation are obtained from the report files

generated by post-Xilinx ISE placement and routing phase and not estimates obtained

from the MOODS synthesis system. The Xilinx Virtex XCV200 (v200) is the smallest

FPGA device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a

single-chip implementation in both area and delay optimised quadratic equation solver

examples.
Synthesis results Two-phase partitioning resuits
Boards | FPGA Opt. Freq. AQ in Data pkts Channels
priority | Area in slices 110 (MHz) slices (initial - final) (Data widths)
1 v200 Area 2294 (97%) 194 (78%) 28.27 - — =
2 | v150 1617 (93%) 230 (92%) 32.18 188 1SpC
Area (8.2%) 2956

v100 865 (72%) 38 (24%) 28.89 (32)

3| vi50 1483 (85%) | 232 (93%) | 33.66 251 1 8pC
V50 Area 747 (97%) 38(24%) | 2351 | (12.7%) 22 >4 (32)
V50 355 (46%) 42 (26%) | 40.58

2| V150 | Ares 1726 (99%) | 230 (92%) | 30.30 186 8 54 18pC

8.19

V50 754 (98%) 38 (24%) | 2089 | &%) | (32)

1] v200 | Delay | 2264 (96%) | 194 (78%) | 2843 = - 1 -

zT V150 | p 1717 (99%) | 230 (92%) | 31.70 224 29 5 2 18pC

elay (9.9%)

v100 771 (64%) 38 (24%) | 25.62 ' (32)

31 v150 1465 (84%) | 232 (93%) | 32.92 21 1 8pC
vs0 | Delay | 764 (9g%) 38 (24%) | 22.56 | (14.2%) 222 (32)
v50 356 (46%) 42 (26%) 42.62

2/ V150 | pepay 1717 (99%) | 230 (92%) | 31.70 (92;;)) 8 50 1 SpC
v50 766 (99%) 38 (24%) 22.70 ' (32)

Table 6-2 Synthesis results of the quadratic equation solver

The average maximum frequencies for the area optimised and delay optimised quadratic

equation solver are 29.87 MHz and 29.52 MHz respectively. The least number of inter-

device data transfers in the optimised implementations are 4 and 2 data packets in the area

and delay optimised examples respectively. A single 32-bit subprogram communication

channel (SpC) is inserted in all multi-FPGA implementation configurations. All the

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 166

constraint-satisfying partitioning solutions given in the table is found within 3 passes in

the K-way partitioning algorithm in all cases.

It may appear strange that the area-optimised un-partitioned implementation has a larger
area (in slices) than the delay-optimised un-partitioned implementation but a further look
at the MOODS design space for both the area- and delay-optimised in Figure 6-2 shows
that the MOODS estimation of the final implementation with a higher priority in delay in
this case produced not only a synthesised design with a smaller delay, the area is also

smaller than that of the final area-optimised implementation.

—
eq_solver
Delay(ns)
3600.0
3200.0 ; High_ area' i
optimisation priority
2800.0
2400.0
20000 / H.igh‘delay.)
optimisation priority
1600.0
1200.0
800.0
4000 /
0.0 SR SR, |
0.0 500.0 1000.0 1500.0 2000.0 2600.0 3000.0 3500.0 4000.0 4600.0
Area(Slices)

Delay(ns) R i T /
s
High area
e

optimisation priority

High delay

optimisation priority

Area(Siices)

Figure 6-2 Design space of the un-partitioned quadratic equation solver

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 167

6.2.2 Cubic equation solver

The cubic equation solver uses similar VHDL subprograms as the quadratic equation
solver but it is more complex. The module call graph representation of the cubic equation
solver, with a total of 11 modules is given in Figure 6-3. The behavioural VHDL of the

cubic equation solver can be found in Appendix D.1.2.

(pM |
\eq_solver
9,1
Y
= eSS c MR 5'5» sM
ot | cubici | sdivi | 59
sM 4 ¢ / > sM
| sqrti — — udivi
r' 514 #4\5i3
A 4
g3l 00 0K 41 50 !
Y= 1 f Y 43 A i
, sM ‘ sM || sM \ sM
\ sqi J cbrti | | acosi cosi
: | 4'2; 5,1
| v 5.3
4,0\ * 5'9 ' 3
Y | »
sM sM
chi multi

Figure 6-3 Module call graph of the cubic equation solver

Synthesis results of the cubic equation solver with high optimisation priority in area and
delay are shown in Table 6-3. The cubic equation solver has a total of 11 modules
including the program module. The Xilinx Virtex XCV400 (v400) is the smallest FPGA
device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a single
chip implementation in both area and delay optimised cubic equation solver examples.
The average maximum frequencies for the area optimised and delay optimised cubic
equation solver are 38.32 MHz and 32.51 MHz respectively. All the constraint-satisfying
partitioning solutions given in the table is found within 3 passes in the K-way partitioning

algorithm in all cases. The least number of inter-device data transfers in the optimised

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resulis 168

implementations is 16 data packets and 2 optimised subprogram communication channels
(SpCs) are inserted in all multi-FPGA implementation configurations. The maximum
achievable frequency of the v300 device in the 4-board implementation, comprising one
v300 and three v50 devices cannot be determined as the maximum device area utilisation

has been exceeded.

Synthesis resuits Two-phase partitioning resuits
Boards | FPGA Opt. Freq. AO in Data pkts Channels (Data
priority | Area in slices 1/0 (MHz) slices (initial — final) widths)

1] v400 | Area | 3791(78%) | 226(75%) | 2544 | - . -

T .] T T
2| v300 | Lo 3070 (99%) | 300(100%) | 29.07 840 100 - 35 2 8pC
(22.2%) -

v200 1561 (66%) | 76 (25%) | 36.53 (32,24)

31 v300 3070 (99%) | 300(100%) | 31.51 506 2 5pC
vi50 | Area 379 (21%) 38 (24%) | 35.86 | (23.6%) 100 — 36 (32,24)
v150 1238 (71%) | 78 (31%) | 42.01

4| v300 3070 (99%) | 300(100%) | 32.86 2 8pC
V100 | Area 379 (31%) 38 (24%) | 35.17 - 282&3@ 104 15 (32,24)
v100 537 (44%) 58 (36%) | 39.06 ‘
v100 671 (55%) 72 (45%) | 57.28

41 v300 3070 (99%) | 300(100%) | 31.74 2 8pC
V150 | Area 630 (36%) 56 (35%) | 36.57 (2588%/) 40 16 (32,24)
v50 406 (52%) 68 (43%) | 57.90 e
v50 474 (61%) 40 (25%) | 38.42

41 v300 3085* (101%)* | 300(100%) - 2 8pC
V50 | Area 567 (73%) 66 (41%) | 39.90 (21808‘?/) 36 5 36 (32,24)
v50 684 (89%) 70 (44%) | 62.06 e

551 66 (41%

226 (75%) | 2554 - = n
2| V300 | pgp,, | 3070(99%) | 294 (98%) | 27.72 74230 36 -5 36 2 SpC
V200 1550 (65%) | 70 (28%) | 24.54 | (19:2%) (32,18)
3| v300 3070 (100%) | 300(100%) | 31.29 504 2 SpC
viso | Delay | 624 (36%) 56 (35%) | 34.58 | (20.7%) 40 — 36 (32,24)
v150 987 (46%) 72 (45%) | 24.65
4| v300 3070 (100%) | 300(100%) | 31.30 2 SpC
V100 | pepgy | 393(32%) 38 (24%) | 34.62 (216 0304/) 104 — 32 (32,24)
v100 645 (53%) 68 (43%) | 24.52 e
v100 793 (66%) 58 (36%) | 40.25
4| v300 3070 (100%) | 300(100%) | 24.51 2 SpC
VIS0 | pejay | 868 (50%) 42 (26%) | 34.19 (zg%ez/) 16 55 16 (32,24)
V50 428 (55%) 68 (43%) | 34.88 o
V50 207 (38%) 58 (36%) | 61.83
4| v300 3075* (101%)* | 300(100%) - 2 SpC
V50 | pejay | 633(82%) 66 (41%) | 25.21 (216023 : 100 - 36 (32,24)
v50 433 (56%) 66 (41%) | 33.12 o7
V50 766 (99%) 62 (39%) | 42.04

Table 6-3 Synthesis results of the cubic equation solver

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 169

6.2.3 Inverse discrete cosine transform

The inverse discrete cosine transform is a relatively simpler example with 3 modules (see
module call graph representation in Figure 6-4) compared to the previous two design
examples. The 2-D IDCT architecture is adapted from [142, 143] and the behavioural

VHDL of the inverse discrete cosine transform can be found in Appendix D.1.3.

pM
idct
3,64 3,64
LIy i
sM sM
lidet1_mult_ lidet2_mult_
add add

Figure 6-4 Module call graph of inverse discrete cosine transform example

Synthesis results of the inverse discrete cosine transform (IDCT) example with high
optimisation priority in area and delay are shown in Table 6-4. The IDCT example has a
total of 3 modules including the program module. The Xilinx Spartan 2 XC25100 (s100)
and XC2S150 (s150) are the smallest FPGA devices in the targeted Xilinx Spartan 2
technology, with sufficient area (in slices) for a single chip implementation in the area and
delay optimised IDCT examples respectively. Place and route error (Par err) denotes
incomplete low-level placement and routing of components by the Xilinx ISE (Integrated
Software Environment) and the maximum frequencies of the post-placement and routed

design are not given in such cases.

The average maximum frequencies for the area optimised and delay optimised IDCT
examples are 30.02 MHz and 33.00 MHz respectively. The least number of inter-device
data transfers in the optimised implementations are 128 and 192 data packets in the area

and delay optimised IDCT modules respectively.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resulis 170

Synthesis results Two-phase partitioning results
Boards | FPGA Opt. Freq. AO in Data pkts Channels
priority | Area in slices /0O (MHz) slices (initial — final) (Data widths)
17 8100 | Ares 1018 (84%) 26 (17%) 2827 = - “
e
766 (999 0 .
21 s50 Area (99%) 130(92%) | 30.33 (2570?%) 320 > 128 1 8pC
$50 527 (68%) 121 (76%) | 28.92) (91
21 s30 Area | 852" (150%)* | 80 (100%) - (6631}%) 320 — 128 1 SpC
s30 430 (99%) 56 (70%) 30.29 ' (o1
3] s30 430 (85%) 80 (100%) | 31.17 272 1 SpC
$30 Area 430 (99%) 58 (73%) 2926 | (26.7%) 320 - 320 @1
s30 430 (99%) 54 (68%) 29.13
0, 0,
2| 50 | Aren 766 (99%) 104 (69%) | 30.33 ; ; 75%) 192 = 192 1 8pC
F s30 430(99%) | 80 (100%) | 30.85 ‘ | (@1
1 I 5150 | Delay | 1476 (85%) 26 (10%) 2843 - -] -
I
2| $100 | popay 1003 (83%) | 121(81%) | 32.93 22%%/ 192 — 192 1 8pC
$100 865 (72%) 97 (65%) 36.51 (26.6%) (91)
2| $50 | pejy | 8357 (108%)" | 121 (81%) - (8123) 192 — 192 18pC
$50 766 (99%) 97 (65%) | PARerr e 91)
3| s50 458 (59%) 123 (82%) | 32.31 514 1.8pC
s50 | Delay 766 (99%) 101 (76%) | 22.56 | (34.8%) 320 — 320 (e1)
s50 766 (99%) 97 (65%) 38.94
0,
2| 8100 | pgpay 1002 (83%) | 123 (82%) | 33.56 (192)9820/) 162 5 192 1 8pC
s50 766 (99%) 97 (65%) | PARerr = (81

Table 6-4 Synthesis results of the inverse discrete cosine transform
example

6.2.4 Triple-data encryption standard

The triple-data encryption standard core implements the triple data encryption algorithm
(TDEA) in the electronic codebook (ECB) mode [144]. The behavioural VHDL of the
triple-data encryption standard (triple-DES) can be found in Appendix D.1.4. Figure 6-5
shows the module call graph representation of the triple-DES, with a total of eleven

modules in the design.

T.B. Yee, 2007

Chapter 6: Multi-FPGA implementation results

171

[pM \
latdes_edez ‘
52
s by 63 5,48
sM 4,48 sM ; .
|key_reduce| » 'key_reduce| | | sM [sM
i Ji s \ = linitial_perm key_rotate
/[sM \ 5,48|
[l akayRies) =% v [t
\ compress : final_perm
sM
f
448 448 4,48
— 5
'-‘ sM & sM . sM ‘
expand | substitute permute

Figure 6-5 Module call graph of the triple-DES

Synthesis results of the triple-DES core with high optimisation priority in area and delay
are shown in Table 6-5. The Xilinx Spartan 2 XC2S50 (s50) is the smallest FPGA device

in the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip

implementation in both area and delay optimised triple-DES core examples.

Synthesis results Two-phase partitioning results
Boards | FPGA [opt. Fregq. AO in Data pkts Channels
priority | Area in slices 1/0 (MHz) slices (initial — final) (Data widths)
1 s50 Area 670 (87%) 99 (62%) 55.73 = = -
2 | s30 Area 633* (146%)* | 141*(176%)* - (52973;@ 204 4 1.SpC
s30 430 (99%) 56 (70%) 30.29 i (32)
25155550 Area 656 (85%) 141 (94%) 60.01 (53666%) 204 - 4 1.8pC
s30 380 (87%) 40 (100%) 80.39 r (32)
1 s50 Delay 670 (87%) 99 (62%) 59.03 - - -
2 | s50 Delay 746 (97%) 143 (95%) 64.13 72163:’/ 396 — 204 1 SpC
s30 437* (101%)* 42 (53%) = oo (32)
3 .| s50 655 (85%) 141 (94%) 63.86 1 SpC
Del Spe 596 —» 200
s30 elay 154 (35%) 42 (53%) 69.47 | (59.0%) = (32)
s30 256 (59%) 38 (48%) 56.36

Table 6-5 Synthesis results of the triple-DES core

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 172

The average maximum frequencies for the area optimised and delay optimised triple-DES
core are 70.20 MHz and 63.23 MHz respectively. The least number of inter-device data
transfers in the optimised implementations are 4 and 200 data packets in the area and
delay optimised examples respectively. A single 32-bit subprogram communication

channel (SpC) is inserted in all multi-FPGA implementation configurations.

6.2.5 256-bit advanced encryption standard

The 256-bit advanced encryption standard (AES) implements the Rijndael algorithm [145,
146], a symmetric block cipher that processes data blocks of 128 bits using a 256-bit
cipher key. The algorithm is symmetric since the decryption algorithm is the exact reverse
of the encryption algorithm. The 256-bit AES has a total of 5 modules. The module call
graph representation is given in Figure 6-6. The behavioural VHDL of the quadratic

equation solver can be found in Appendix D.1.5.

pM
aes256
i
4,7 4,13 3,7 4,103 g
A 4 4 | A
[sM i sM o sM sM
| r_one_to8 | |fb_sub_quad rco ' | ftable_quad
(

Figure 6-6 Module call graph of 256-bit advanced encryption standard

Synthesis results of the 256-bit AES core with high optimisation priority in area and delay
are shown in Table 6-6. The 256-bit AES core has a total of 5 modules including the
program module. The Xilinx Spartan 2 XC2S150 (s150) is the smallest FPGA device in
the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip

implementation in both area and delay optimised 256-bit AES core examples. The average

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resulis 173

maximum frequencies for the area optimised and delay optimised 256-bit AES core are
42.60 MHz and 44.61 MHz respectively. The least number of inter-device data transfers in
the optimised implementations are 28 and 232 data packets in the area and delay optimised
examples respectively. A single 32-bit communication channel (SpC) is inserted in all

multi-FPGA implementation configurations.

Synthesis results Two-phase partitioning results
Boards | FPGA | opt Freq. AO in Data pkts Channels
priority | Area in slices 110 (MHz) slices (initial — final) (Data widths)
1] 8150 Area 1445 (83%) 102 (68%) | 3685 - i - -
_[el e
2| s100 1138 (94%) | 144 (96%) | 39.79 459 1 8pC
Area (31.8%) 260 — 260
s50 766 (99%) 44 (29%) 45 41 (32)
2 s100 1459* (121%)* | 140 (93%) - 154 1 SpC
Area (10.7%) 54 —» 28
s15 140 (32%) 40 (50%) 80.95 (32)
3 s100 1198 (99%) 144 (96%) 40.54 1 SpC
0,
s30 Area 152 (35%) 48 (60%) 79.48 (33797%) 260 —» 260 (32)
s30 468 (108%)* 38 (48%) - ’
s30 204 (47%) 38 (48%) 56.10 L
e -
118150 Delay 1476 (85%) 102 (68%) | 3943 = = -
2| $100 | pgja, | 1181(98%) | 144 (96%) | 40.00 3;1%/ 260 — 260 1 8pC
50 759 (98%) 44 29%) | 4480 | C14%) (32)
2| s100 Delay 1060 (88%) 140 (93%) 40.46 (1;991%) 246 — 232 1 SpC
s30 B07* (140%)* | 40 (50%) - ‘ (32)
3 s100 1130 (94%) 142 (95%) 40.02 355 18pC
s30 | Delay 271 (62%) 44 (55%) | 55.54 | (24.1%) 260 — 246 (32)
s30 430 (99%) 38 (48%) 45.17

Table 6-6 Synthesis results of the 256-bit AES core

6.2.6 Discussion of results

The area overheads of the multi-FPGA implementations (MFIs) of the VHDL examples
are due to various factors. The first and also the main factor that contributes most to the
area overheads is the generation and inclusion of communication cells and arbiters, which
are the building blocks of the communication subsystem. The other reason is the
duplication of registers (or creation of latches) for the I/O parameters of external (cross

boundary) subprogram modules (Section 5.5.1).

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 174

Figure 6-7 shows the area and 1/O utilisation of the devices in different multi-board
configurations for all 5 design examples listed in Table 6-2 to Table 6-6. All twenty-five
configurations satisfy the target device constraints (in terms of device area in slices and
I/O pins available) for all partitions in the MFI and the partitions are successfully mapped

to their target devices.

Area and lO utilisation of devices

100 - ;
d_
80 & \ p(97,93)
<
< q (99,82)
[
g 0+
)
©
R
= 40
=1
)
20 ~
' & Target device in
. each configuration,
0 | ’ | s
0 20 40 60 80 100

Area utilisation (%)

Figure 6-7 Area and I/O utilisation of devices in example designs

Each plotted value in Figure 6-7 gives the maximum area and I/O utilisation (area, I/O)
amongst the devices in each of the configuration. Value p gives the maximum area and I/O
utilisation of the 3-board MFI of the quadratic equation solver with high priority in area
optimisation in Table 6-2 consisting of one v150 and two v50 devices, where the v150
gives the highest I/O utilisation at 93% and the first v50 device gives the highest device
area utilisation at 97%. Value ¢ gives the maximum area and I/O utilisation of the 3-board
MFT of the delay-optimised IDCT example in Table 6-5 consisting of three s50 devices,
where the first s50 device gives the highest device I/O utilisation at 82% and the other two
s50 devices give the highest device area utilisation at 99%. The two-phase partitioning

algorithm produces a high area and I/0 utilisation of the FPGA devices in all

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 175

configurations of the five design examples, achieving over 90% in both area and I[/O

utilisations in at least one device in most cases.

g Clock cycles Freq (MHz) Design latency (us)
8
o
B
©
Example g E § g
3 £ S £ S £ g
§ & £ 2 = oy £
] c 1] c © c [+
£ = Q 3 o 3 a
Quad_egs 4 179 224 28.27 28.66 6.33 7.82

Cubic_egs 36 755 1770 25.44 26.13 29.68 67.74

IDCT 192 831 4175 30.34 34.72 27.39 120.25

Triple-DES 200 524 3950 55.73 63.23 9.40 62.47

AES-256 246 814 5257 36.85 42.30 22.09 124.28

Table 6-7 Performance of example designs

The performances of example designs and the overheads (in terms of clock cycles) in
multi-FPGA implementations are given in Table 6-7 above. The number of clock cycles
given in the table gives the total number of clock cycles it takes to complete the
application (e.g. the number of clock cycles for the equation solvers is calculated from the
first clock cycle when the input data is received to the last clock cycle when the last output
data is obtained). The increase in design latencies are mainly due to the setting up of the
shared tri-state subprogram communication channels and synchronisation of the data
packets during the inter-clock domain asynchronous data transfers. The tri-state data bus
and data handshake signals allow I/O resource sharing between modules in different target
devices. A point-to-point (PTP) unidirectional communication channel implementation
requires a simpler circuitry, with possibly smaller overheads to send and receive inter-
device data. Experiments in the next section look at the effects of point-to-point explicit
communication channels together with subprogram communication channels in optimised

multi-FPGA configurations.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 176

6.3 Experimental results (with explicit

communication channels)

This section contains experiments of three VHDL examples used in the previous section.
The quadratic equation solver (Quad_eqs), inverse discrete cosine transform (IDCT)
module and 256-bit Advanced Encryption Standard (AES256) core are modified slightly
to include explicit communication channels (Section 4.2.2.1). Explicit communication
channels are used to synchronise and transfer global VHDL signal data between VHDL
processes. The three VHDL examples are re-written and pipelined to include explicit
communication channels. The behavioural VHDL designs of all three pipelined examples
and the Post-MOODS synthesis simulation results of the multi-FPGA implementations
can be found in Appendix D.2.

6.3.1 Pipelined quadratic equation solver

The pipelined quadratic equation solver is a two-stage pipelined version of the quadratic
equation solver given in Section 6.2.1. The behavioural VHDL of the pipelined quadratic
equation solver can be found in Appendix D.2.1. Figure 6-8 shows the module call graph
representation of the pipelined quadratic equation solver, with two process modules and

five subprogram modules in the design.

|
& pM 2y i . pM I
p_MOD_1 7 p_MOD_2 »
2,3 3,9 25 3,2
r A | 4 h |
sM sM sM sM
sqi multi sqrti sdivi
3,2
Y
sM
udivi

Figure 6-8 Module call graph of the pipelined quadratic equation solver

Chapter 6: Multi-FPGA implementation results

T.B. Yee, 2007 177

Process modules p MOD_1 and p_ MOD 2 are connected by an explicit communication
channel (ExC) with a data width of 96-bits. The multi-FPGA pipelined quadratic equation
solver implementation not only resulted in a lower area overhead for area and delay
optimised implementations (7.4% and 8.9% respectively) compared to the results without
explicit communication channels (8.2% and 9.7% respectively) given in Table 6-2, the
number of inter-device data packet transfers is reduced to just the data sent across the

pipelined stage through the explicit communication channel.

Synthesis results Two-phase partitioning results
Boards | FPGA Opt. Area in Freq. | AQin Data pkts Channels
priority slices 1/0 (MHz) slices (initial — final) (Data widths)
1.1 v200 Area 2294 (97%) 194 (78%) 2827 - - =
0, 0,
2| v150 Area 1726 (99%) 196 (78%) 32.33 (71;&) 34 5 1 1ExC
v150 738 (42%) 196 (78%) 34.03 (96)
0, 0,
2| v150 Area 1726 (99%) 196 (78%) 32.33 (71;90) 34 1 1ExC
v100 738 (61%) 196* (123%)* -) (96)
1 m 2264 (96% 194 (78% 2843 - } = =
2] v150 1726 (99%) 196 (78%) 29.07 201 1ExC
Del 34 > 1
clay (8.9%)
v150 739 (42%) 196 (78%) 34.21) (96)
2 v150 Delay 1726 (99%) 196 (78%) 29.07 (82(8)%) 34 5 1 1 ExC
v100 738 (61%) 196* (123%)* -) (96)

Table 6-8 Synthesis results of the pipelined quadratic equation solver

The six 32-bit input and output signals in the VHDL entity port list declaration of the
pipelined quadratic equation solver are grouped and mapped to process modules that
access these signal, distributing the utilisation of I/O resources over two or more devices.
This alleviates the problem of a single device in the multi-FPGA implementation
exceeding the maximum number of usable I/Os whilst the I/O resources of other devices
are under-utilised. Without this capability to distribute the signals in the VHDL entity port
list declaration, a larger target device such as a Xilinx XCV300 with 300 usable I/O pins
(see Table 6-1) has to be one of the targeted devices since a minimum I/O utilisation of
292 1/0 pins (i.e. 194 pins for the signals VHDL entity port list declaration and 98 pins for
the explicit communication channel with two semaphore signals and 96-bit data width) is

needed.

T.B. Yee, 2007

Chapter 6: Multi-FPGA implementation results

178

discrete cosine transform (IDCT) core given in Section 6.2.3. The behavioural VHDL of

the pipelined IDCT core can be found in Appendix D.2.2. Figure 6-9 shows the four

modules in the module call graph representation of the pipelined IDCT core.

1,64
[pM —— pM
| p_MOD_1 ' p_MOD_2
364 264
I 2 o
sM sM
lidet1_muit_ lidet2_mult_:
add add

Figure 6-9 Module call graph of the pipelined inverse discrete cosine

transform example

Boards

Synthesis results

Two-phase partitioning results

FPGA

Opt. Freq. AOQ in Data pkts Channels
Il priority | Area in slices 110 (MHz) slices (initial —> final) (Data widths)
1] 5100 | Area 1018 (84%) 26 U1%) 2827 = - =
2| s50 i 511 (66%) 29 (19%) 29.22 129 t ExC
Area (12.7%) 11
s50 636 (82%) 25 (17%) 31.67 (11)
2| s50 Area 766 (99%) 104 (69%) | 31.15 (1;75%/0) 151 1 SpC
s30 430 (99%) 80 (100%) | 28.72 ‘ (74)
3| s30 447* (103%)* | 29 (19%) - 150 1 ExC (11)
s30 Area 430 (99%) 57 (71%) 29.64 (17.7%) 33 1 SpC (51)
s30 321 (37%) 80 (100%) | 35.11
1 | 1476 (85%) 26 (10%) < = i =
—_—
2| s100 754 (62%) 29 (19%) 34.63 46 151] 1 ExC
Delay (3.1%)
s100 768 (64%) 25 (17%) 37.31 ' (11)
2| $50 | pejay 754 (98%) 29 (19%) 31.82 (3%‘1/) 151 1 ExC
s50 766 (99%) 25 (65%) 36.87 o (11)
3| s50 754 (98%) 29 (19%) 32.97 455 1 ExC (11)
s50 | Delay 766 (99%) 97 (65%) | 38.93 | (30.8%) 33 1 SpC (91)
$50 411 (53%) 120 (80%) | 32.78

Table 6-9 Synthesis results of the pipelined inverse discrete cosine

transform example

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 179

Process modules p_ MOD_1 and p_MOD_2 are connected by an explicit communication
channel (£xC) with a data width of 11-bits. The multi-FPGA pipelined IDCT core
implementation not only resulted in a lower area overhead for area and delay optimised
implementations (12.7% and 3.0% respectively) compared to the results without explicit
communication channels (27.0% and 26.6% respectively) given in Table 6-4, the number
of inter-device data packet transfers is reduced to just the data sent across the pipelined
stage through the explicit communication channel for the 2-board implementations. A
single subprogram communication channel is generated for both area and delay optimised
multi-FPGA implementations targeting three devices. The maximum I/O pin utilisation for
one device is reduced to 29 pins for all two-board pipelined implementations with just an
explicit communication channel in Table 6-9 compared to over 100 pins in the non-

pipelined implementation (given in Table 6-4).

6.3.3 Pipelined 256-bit advanced encryption standard

The last pipelined VHDL example is a two-stage pipelined version of the 256-bit
advanced encryption standard (AES) core given in Section 6.2.5. The behavioural VHDL
of the pipelined 256-bit AES core can be found in Appendix D.2.3. Figure 6-10 shows two
process modules and five subprogram modules in the module call graph representation of

the pipelined 256-bit AES core.

'''' 1,4
oM T pm
| MOoD 2 | MOD_3
PIERS L e . PEEE-
2,7 2,14 2.7 24 2,52
—r .« e b A A
sM [sM : sM L sM L sM
r_one_to8 | fb_sub_quadi rco ' fb_sub_quad2 ' ftable_quad

Figure 6-10 Module call graph of the pipelined 256-bit advanced encryption
standard example

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 180

The two process modules (p_MOD_2 and p MOD _3) in the pipelined 256-bit AES core
are connected through two explicit communication channels with data widths of 32-bits.
The number of inter-device data packet transfers is reduced to just the data sent across the
pipelined stage through the two explicit communication channels. The two-board
pipelined implementations given in Table 6-10 have an area overhead reduction of 10.0%
for an area optimised implementation and 15.0% for a delay optimised implementation

compared to the non-pipelined implementations given in Table 6-6.

Synthesis resuits TWo-phase partitioning results
Boards | FPGA | opt. Freq. AOQ in Data pkis Channels
priority | Area in slices 1/O (MHz) slices (initial > final) (Data widths)
1| s150 Area 1445 (83%) 102 (68%) |. 3685 - = -
2 | s100 Area 994 (82%) 104 (69%) | 43.78 (213185%) 151 2 ExC
s50 766 (99%) 136 (91%) | 34.76 ' (32,32)
3] s100 1283* (106%)* | 146 (97%) - 1SpC
$30 Area | 6257 (144%)" | 40 (27%) - (557670/) 168 — 84 (32)
$30 203 (46%) 38 (48%) | 56.75 e
s30 166 (38%) 52 (65%) 80.30
s s s e T
1.1 8150 | Deiay 1476 (85%) 102 (B8%) | 39.43 = = =
2| s100 Delay 955 (79%) 104 (69%) | 41.99 124220/ 11 2 ExC
s50 763 (99%) 136 (91%) | 34.47 (16.4%) (32,32)
3] s100 1198 (99%) 144 (96%) | 34.63 1SpC
s30 Delay 74 (17%) 38 (48%) 70.46 (4?1410/) 168 — 77 (32)
s30 581* (134%)* 40 (27%) - e
s30 234 (54%) 50 (63%) 57.05

Table 6-10 Synthesis results of the pipelined 256-bit AES core

6.3.4 Discussion of results

The performances of the pipelined example designs and the overheads (in terms of clock
cycles) in multi-FPGA implementations (MFIs) are given in Table 6-11. The number of
clock cycles given in the table gives the total number of clock cycles it takes to complete

the application (i.e. the number of clock cycles is calculated from the first clock cycle

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 181

when the input data is received to the last clock cycle when the last output data is
obtained). Design latency is calculated by multiplying the number of clock cycles by the
clock period (1/Freq) of the design. Performance results of pipelined example designs are
shaded in the table and results of the un-partitioned and non-pipelined taken from Table

6-7 are shown for completeness and ease of comparison.

When pipeline stages are targeted onto a separate device, inter-device data packets are sent
via the explicit communication channels (ExCs) connecting the pipelined stages in the
pipelined MFI. The ExC is a dedicated point-to-point communication channel that does
not require channel resource arbitration and special communication cells (Section 5.4) to
handle inter-device data packet transfers unlike the SpC. Inter-device data sent through the
ExC also removes the need for hardware duplication (Section 5.5.1), hence reducing the
area overheads. The inter-device data packets are reduced by at least a factor of three
compared to the non-pipelined MFI. As a result, the pipelined IDCT and AES-256 MFIs

only suffer a fraction of the design latency overhead compared to the non-pipelined MFIs.

Inter-device
data Clock cycles Freq (MHz) Design latency (us)
packets 9 g y

Example o T] T] 3 K
£ o~ S oS | o~ 5 £ | o~ S cE | 5~
0T | 0T 2] o] 0 B o .2 00 kel
c Q c o h~4 S Qo c o h c Q c Qo b= c Qo c o
2a |85 | ¢ 2a | 8= | 83| 8L | 23 | 8=
ESIEE| £ |E5| 8| & |E5|E&| = |E5|EL
ol ol 3 oE | ol 5 fFe | &8 5 fE| L8
Quad egs | 4 1 179 224 189 | 28.27 | 2866 | 31.64| 6.33 7.82 5.97
IDCT 192 | 64 831 4175 | 1167 | 30.34 | 34.72 | 34.35 | 27.39 [120.25] 34.98
AES-256 | 246 | 60 814 5257 | 1137 | 36.85 | 42.30 | 38.23 | 22.09 | 124.28 | 29.74

Table 6-11 Performance of the pipelined example designs

Another advantage is the higher average achievable frequencies of the pipelined
implementations of all three example designs compared to the un-partitioned
implementations. In the case of the pipelined quadratic equation solver implementation,

there is only a single inter-device data packet transfer in the pipelined MFI and it only

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 182

takes 10 clock cycles more than the un-partitioned implementation. With the higher
achievable frequency, the pipelined quadratic equation solver has a lower design latency

compared to both the un-partitioned and non-pipelined implementations.

The experiments in this section show that pipelined multi-FPGA systems can achieve
performances comparable to single-device implementations. The user now has the choice
of targeting a large behavioural design onto multiple smaller devices without having the
need to get a larger and more costly target FPGA device if the design requirements are met
with a multi-FPGA system. The user would be able to use existing FPGA devices or a
number of FPGA development boards configured into a multi-FPGA system for design
prototyping. This saving in design cost and flexibility in using existing development
boards with a collection of smaller devices would not be possible otherwise if a single

large behavioural design is not partitioned.

The asynchronous communication channels provide safe communication of inter-device
data in the multi-FPGA system. The subprogram communication channel (SpC) allows
multiple external subprogram modules to share a common channel, hence reducing the
number of I/Os needed for inter-device data transfers in the I/O constraint multi-FPGA
system. The explicit communication channel (ExC) itself is responsible for the
synchronisation of VHDL processes (process modules) connected to it and the transfer of
data between the process modules. Therefore, the user can concentrate on the behaviour of

the design and not the complexities of how the target devices can safely communicate.

All experiments were run on a Intel Pentium M 1.5 GHz machine with 512 MB RAM. The
multi-FPGA synthesis run times remain similar to the run times of single-device
implementations using an original version of MOODS without the multi-FPGA synthesis
enhancements as final partition solutions for all the VHDL examples are found within 3
passes of the modified K-way partitioning algorithm (Section 4.4.1). Run times are
approximates due to the nature of Microsoft windows environment which the synthesis
tool is running in (e.g. synthesis run times for the pipelined multi-FPGA 256-bit AES core

example is 2 minutes and the single-device implementation is 1 minute and 56 seconds).

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 183

6.4 Summary

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and
results of the multi-FPGA synthesis are demonstrated through a few design examples in
this chapter. Results of non-pipelined and pipelined multi-FPGA implementations are
given in Sections 6.2 and 6.3 respectively. The pipelined multi-FPGA systems with
explicit communication channels have reductions in area overheads (by up to 23% in the
case of the pipelined IDCT example) and design latencies (up to 4 times faster) over non-
pipelined multi-FPGA implementations. Results presented in Section 6.3 show that
pipelined multi-FPGA systems can be synthesised to achieve performances comparable to

single-device implementations.

Partitioning of a large behavioural design with incomplete knowledge of the targeted
technology, and the final hardware implementation of a component poses a difficult
design decision. As the complexity and size of the entire system increases, this difficult
decision and design optimisation problem gets harder, to the point when it gets beyond the
capabilities of human designers to solve. High-level synthesis of a large behavioural

design into a multi-FPGA system reduces the design time and effort required by the user.

This chapter has demonstrated the automated process of multi-FPGA synthesis in
MOODS to produce multi-FPGA systems with asynchronous communication channels
(described in Chapters 4 and 5). All the multi-FPGA implementations given in this chapter
have been synthesised, simulated, and proven correct, with comparisons to single-device

implementations using an original version of MOODS without the multi-FPGA synthesis

enhancements.

A further analysis of the performance of a multi-FPGA system is demonstrated through a

hardware demonstrator of a large behavioural design in Chapter 7.

T.B. Yee, 2007 Chapter 7: Practical synthesis 184

Chapter 7

Practical synthesis

7.1 Introduction

This chapter describes in detail the hardware demonstrator, a JPEG decoder synthesised
using MOODS with the multi-FPGA synthesis enhancement. The goal of the hardware
demonstrator is to assess the performance of a multi-FPGA JPEG decoder, as opposed to a
JPEG decoder in a single chip implementation. Section 7.2 provides information on the
hardware development boards used to implement the multi-FPGA system. Section 7.3
gives an introduction on the JPEG algorithm, and outlines the multi-FPGA
implementation of the JPEG decoder. The implementation details of the partitioned
hardware JPEG decoder targeting a multi-FPGA system are covered in the last section
(Section 7.4). Section 7.4 discusses the performance of the non-pipelined multi-FPGA
JPEG decoder, with a further analysis on the implementation results. It also covers a

pipelined implementation of the multi-FPGA JPEG decoder using explicit communication

channels.

7.2 FPGA-based development board

The multi-FPGA system created to demonstrate the multi-FPGA partitioning enhancement
of MOODS is realised with the use of a number of FPGA-based development boards. This
section starts with a brief insight on the development boards used to form the multi-FPGA

system and the Input/Output VGA extension board built for this hardware demonstrator.

T.B. Yee, 2007 Chapter 7: Practical synthesis 185

7.2.1 Hardware development board

The JPEG decoder synthesised using the MOODS synthesis system into a multi-FPGA
system is targeted onto the Digilent D2-SB FPGA-based development boards [147]. The
development board provides a complete and expandable development platform for
hardware prototyping purposes. The D2-SB features a Xilinx Spartan 2E-200 FPGA in a
PQ208 package that has gate capacity of 200,000 and over 200 MHz operation. The D2-
SB provides a total of 143 user I/Os routed to six standard 40-pin connectors, and it
contains a surface-mount SOMHz oscillator, and a socket for a second oscillator. The D2-
SB has a JTAG port (see Appendix B.6) and it is used to program the Spartan 2E FPGA
and the 18V02 configuration flash ROM, and any programmable devices on peripheral
boards attached to the D2-SB development board.

P

o

e SRR RN NEROREEREERRY

Figure 7-1 D2-SB development board layout picture

Figure 7-1 shows a picture of the physical board, with various devices and interfaces
highlighted. Detailed description of the D2-SB development board can be found in
Appendix B.6.

T.B. Yee, 2007 Chapter 7: Practical synthesis 186

The Digilent DIO4 peripheral board [148] provides a fast and easy way to add several
useful I/O devices to the D2-SB development board. The DIO4 provides a 4-digit seven-
segment LED display, 8 individual LEDs, 5 pushbuttons with debouncing circuitry, 8 slide
switches, a 3-bit VGA port, and a PS2 port. The DIO4 draws power from the main system
board (i.e. the D2-SB development board), and signals from the various I/O devices are
routed to individual pins on the system board connectors. A picture of the physical board
layout of the DIO4 peripheral board is given in Figure 7-2, with various devices and
interfaces highlighted. Detailed description of the DIO4 peripheral board can be found in
Appendix B.7.

- 40-pin connectors

UHHHHH LEEETHY]:

e N NN P i i uw—r_.

P2-

Hob e (e Hi i Ee B3

y) e =
1) 1IreNee, L S S e e e
"‘J'u'!!"‘;';' R Y X 8 (08 ‘ n?

TWIHT) i o) Ny D N e o

" | 57

Figure 7-2 DIO4 digital /0 board layout picture

7.2.2 Input/Output and VGA extension board

An Input/Output and VGA extension board (I/O VGA ext. board) was built to facilitate
both the input and output stages in the hardware demonstrator. The key components on the
extension board include a serial (RS-232) port interface, a 4Mbyte Asynchronous SRAM
(256K x 16 CMOS 15 ns) DIL module and a video Digital-to-Analogue Converter
(videoDAC). The extension board was designed to be a general plug-in daughter board,
which can be used with any other hardware development board to provide a serial port

communication interface, four megabyte of fast (15 ns access time), asynchronous SRAM

T.B. Yee, 2007 Chapter 7: Practical synthesis 187

memory, and a triple 8-bit vidleoDAC (BT121) to drive a VGA monitor. F igure 7-3 shows
the key components and their corresponding locations on the top side of the I/O VGA ext.
board.

.....

......

J3) g
e Fk’f U

Nl 2t At LAHE TSR st

kel PR Wy eeRl 2

Figure 7-3 Key components and their locations on the 1/0 and VGA
extension board

7.2.2.1 RS-232 serial port interface

The I/O VGA ext. board has a RS-232 serial port [149] interface that allows the extension
board to connect a PC’s serial port. The Maxim MAX232EPE RS-232 voltage converter
takes serial data as TTL/CMOS levels from a connected development board via pin 29 of
the 32-pin and coverts the logic level to the appropriate RS-232 voltage level and this is
sent to a connected device via pin 2 of the 10-pin header (J1) located next to the Maxim
device. Likewise, the Maxim device converts the RS-232 serial input data to TTL/CMOS
levels and sends this to the development board via pin 30 of the 32-pin header (J 2). ADB9
serial port connector can be connected to the 10-pin header next to the Maxim device and
a standard-through or null-modem serial cable can be used to connect the I/O VGA ext.

board to the PC’s serial port. Two 100-ohm series resistors between the Maxim output

T.B. Yee, 2007 Chapter 7: Practical synthesis 188

pins (pins 9 and 12) and pins 28 and 30 of header J3 protects against accidental logic
conflicts. Note that the Xilinx Spartan 2E-200 FPGA on the Digilent D2-SB development
boards are not 5 volts tolerant, the series resistors are necessary in this case. Control
signals, Request To Send (RTS) and Clear To Send (CTS) are connected to header J2 to

facilitate hardware handshaking during a serial data transfer.

Figure 7-4 shows the connections between the 10-pin header (J1), Maxim MAX232EPE
RS-232 converter, and the 32-pin header (J3), which is used to connect to a development

board.

DB9 serial port connector 9-pin serial port signals

1) Data carrier detect 6) Data set ready

G
> — *5
o < g 84 2} Receive Data (RD) 7} Request to send (RTS)
8 g3 3) Transmit Data {TD) 8) Clear to send (CTS)
o5 7 :2 4) Data terminal ready (DTR) 9) Ring indicator
51

5) Signal ground

Header J1 Maxim MAX232EPE

. |

(10) i’S}—-——l 14 11

N e Gnd

9 (44— 13 12

N i 100

{8) 13} 7 10 —

(7) (2} 8 9 WA

e o 100 Header J2
(32) (30 |(28)

— (31 (29 L7}
{ %] Header pin number — T i
Sl I ———

Figure 7-4 9-pin RS-232 serial port interface

7.2.2.2 Fast, Asynchronous SRAM module

The I/O VGA ext. board includes a four-megabyte Static Random Access Memory
(SRAM) module (AS7C34098) designed for memory applications where fast data access,
low power, and simple interfacing are desired. The surface-mount memory device in a 44-
pin JEDEC 400-mil TSOP2 standard package sits on a TSOP-DIL adapter. The inputs and
outputs are TTL- and CMOS-compatible with a high speed address access time of 15 ns

and output enable access time of 7 ns. The memory is organised as 262,144 words X 16

T.B. Yee, 2007

Chapter 7: Practical synthesis

189

bits. The SRAM module has separate byte enable controls, allowing individual bytes to be

written and read. Control signal LB controls the lower bits, /O] to /08, and UB controls
the upper bits, /09 to I/OI6. Table 7-1 shows the 18-bit SRAM address, data and control

signal connections between the SRAM and header J3.

Adgl:ess }:Ieader J3 Signal Header J3 pin
it pin number number
A1l 1 1101 19
A2 2 /102 20
A3 3 1/103 21
A4 4 /04 22
A5 5 1105 23
A6 6 1106 24
A7 7 /07 25
A8 8 1/108 26
A9 9 1109 27
A10 10 /010 28
A1 11 /011 29
A12 12 /012 30
A13 13 /013 31
A14 14 11014 32
A15 15 /015 33
A16 16 11016 34
A17 17 CE 35
A18 18 WE 36
LB 37
UB 38
OFE 39

Table 7-1 SRAM address, data and control signal connections to header J3

7.2.2.3 VGA interface

The VGA interface on the I/O VGA ext. board has a Conexant BT121 triple 8-bit

videoDAC chip, with triple 8-bit digital to analogue converters for operations up to

80MHz and driving a monitor in 24-bit True colour (16.8 million colours) mode. Figure

7-5 shows the connections between the Conexant BT121 videoDAC chip, 74HCT244
buffer, and headers J2, J4 and J5. Components connected to the BT121 videoDAC are

omitted for clarity. Detailed connections of all the components can be found in Appendix

B.

T.B. Yee, 2007

Chapter 7: Practical synthesis

190

pin assignments

9) No connection
10) Digital ground
11) Monitor sense 1
12) No connection
13) Horizontal Sync.
14) Vertical Sync.
15) No connection

DB15 VGA connector VGA signal
/\ 1) Red
@ @ 2) Green
@ @ 3) Blue

@ 4) Monitor sense 1
@ ® @ 5) Monitor sense 1
6) Red return

®®® 7) Green return
% 8) Blue return

Buffer

(74HCT244)
8 12
Horizontal sync o—l—
Vertical sync O—T—
2 18

Conexant BT121

blank

Red (R1-R8)/
Grayscale (GS1 - GS8)

—V

clk

:—| Bc]-

o
@
o
Q.
o
-
—
-

©)
®

8

]

=

L

—

Go-

RO

Buffer
(74HCTO04)

7

Green (G1 - G7) P‘ Blue (B7 - B8)

®
©)

IO,
@@

®
@

®@

@
€]

®E

@
@@

®
__®?

—

—————

m

®

Grayscale bit 2

Grayscale bit 1

®

)
Gr.
Gra

*®)

ayscale bit
cal

©

le bit

w

yS

Grayscale bit 6 rayscale bit 8
Grayscale bit 5 Grayscale bit 7

8-bit grayscale configuration headers

OPEEEE
[elololelele

3
=S

G
-

onboard
oscillator

o

@ Header pin number

B8 jumpers

Figure 7-5 VGA interface connections

Red, Green, and Blue (RGB) input video digital data are sent to the Conexant videoDAC

via a number of pins on header J2: pin 3 to 10 for the read (R) component, pins 11 to 18

for the green (G) component, and pins 19 to 26 for the blue (B) component. The pixel

clock defines the time available to display one pixel of information. This pixel clock input

is taken from pin 32 of header J2, or from an onboard oscillator if the two pins on header

J5 are shorted with a jumper. The clock input to the videoDAC is a buffered (through

74HCTO04) pixel clock signal. The vertical sync (VS) signal defines the “refresh”

frequency of the display and this is taken from pin 2 of header J2. The number of lines to

be displayed at a given refresh frequency defines the horizontal “retrace” frequency, and

T.B. Yee, 2007 Chapter 7: Practical synthesis 191

this horizontal sync (HS) signal is taken from pin 1 of header J2. VS and HS signals are
connected to the blank and sync inputs of the videoDAC respectively. Both sync signals
are buffered (through 74HCT244) and connected to header J4. The analogue RGB video

signal outputs from the videoDAC are also connected to header J4.

The VGA timing for a standard 640x480 display mode using a 25 MHz pixel clock and 60

+/- 1 Hz refresh is given in Figure 7-6.

Symbol Parameter Vertical sync Horizontal sync
: Time Clocks Lines Time Clocks

Ts Sync pulse time 16.7 ms 416800 521 32 us 800
T disp Display time 15.36 ms 384000 480 25.6 us 640
Tow VS pulse time 64 us 1600 2 3.84 us 96
Tfp VS front porch 320 us 8000 10 640 ns 16
Thp VS back porch 928 us 23200 29 1.92 us 48

L TS

| 't TdiSP

> T,

Figure 7-6 VGA timing for a standard 640x480 display mode

The 8-bit configuration headers provides flexible jumper setting so that removal jumpers
can be inserted to configure the VGA interface for 8-bit grayscale operation. An 8-bit
greyscale output can be obtained by sending the same 8-bit grayscale digital video data to
all three components (RGB). The configuration headers are arranged in three headers per
set, with a total of eight sets to correspond to the 24-bits RGB signals. Each set of the 3-
pin headers corresponds to a bit of the grayscale value and they connect each bit of the
individual colour component when the jumpers are inserted. For example, the set of
headers for grayscale bit 1(GS1) are connected to bit 1 of red component (R/, pin 3 of
header J2), bit 1 of green component (G/, pin 11 of header J2), and bit 1 of the blue
component (B/, pin 19 of header J2). The 8-bit grayscale (GS/ to GS8) digital input data
is taken from pins 3 to 10 of header J2 and the jumpers in the configuration headers send

the 8-bit grayscale values to all three components (R, G, and B).

T.B. Yee, 2007 Chapter 7: Practical synthesis 192

The 8-bit configuration headers offers a two-fold advantage, first, the hardware
demonstrator in this projects uses the 8-bit grayscale configuration, however the use of the
configuration headers instead of a fixed wiring approach allows the 24-bit true colour
VGA interface to be easily used in future projects and hardware demonstrators simply by
removing the removal jumpers. The second advantage is the development board now only
needs to send an 8-bit grayscale digital data to the /O and VGA ext. board and the 8-bit
value is wired to all three components through the configuration headers, thus reducing the

physical I/O connections needed for an 8-bit grayscale operation.

7.3 JPEG decoder in a multi-FPGA system

JPEG (Joint Photographic Experts Group) is one of the most popular algorithms for still
image compression. The formal name of the standard that most people refer to as ‘JPEG’
is the ISO/IEC 10918-1 | ITU-T Recommendation T.81 [150]. The basic JPEG standard
defines many options and alternatives for compression of still images of photographic
quality. There are four distinct modes of operation defined under which the various coding
and decoding processes are defined: sequential Discrete Cosine Transform-based (or
sequential Baseline), progressive Discrete Cosine Transform-based, lossless, and
hierarchical. This section covers the information on the implementation of a hardware
JPEG decoder to decompress and reconstruct a grayscale image data compressed using the
JPEG sequential DCT- based compression. Further details on the JPEG algorithm using
the other coding methods and decoding JPEG images can be found in [143, 150-152].
JPEG is a compression algorithm and does not define a specific file format for storing the
final data values. The JPEG File Interchange Format (JFIF) [153] is a minimal file format
which enables JPEG bitstreams to be exchanged between a wide variety of platforms and

applications. JFIF is currently the industry standard file format for JPEG files.

7.3.1 Sequential baseline JPEG decoder

The main procedures in the encoding and decoding processes based on DCT are illustrated
in Figure 7-7. The rest of this section only describes the decoding of a grayscale JPEG

compressed image in the JFIF file, however, the encoding process is basically the same as

T.B. Yee, 2007 Chapter 7: Practical synthesis

19

-~

J

performing the decoding steps but in reverse, and in the opposite order as shown in Figure

7-7.
> FDCT ——» Quantiser ——nf E:C‘;Odpe{ F
) o 4) Compressed
i image data
Source image
| Table Table
I specifications 'I‘ specifications
L H
DCT-based JPEG encoder
Entropy 7 ;3 ti j IDC‘JW T
i A decoder - equantiser — >l T e
Compresse L y ,,,T,,,, - S —)
image data | Reconstructed
P = e 5
Table l l Table 3f
Lspecifications | |specifications [L
DCT-based JPEG decoder
Figure 7-7 Block diagram of a DCT-based JPEG encoder and decoder
Entropy Decoder

The JPEG entropy decoder implemented in this hardware demonstrator is based on the
programmable VLC decoder for JPEG described in [143, 154]. The entropy decoder

consists of two main data decompression units: a variable length decoder (VLD) and a

run-length decoder (RLD). In the JPEG encoder, the quantised DCT coefficients are pre-

processed prior to entropy coding. The DC coefficient has a correlation among adjacent

blocks and its value varies slightly between successive blocks. DC coefficients are coded

using differential coding. DC; and DC,; in denote the DC coefficients of blocks 7 and i-1

as shown below in Figure 7-8.

T.B. Yee, 2007 Chapter 7: Practical synthesis 194

DC
\A Co AC,,
4
0 O 0 o0 00
se 0 s ecse
cos s eeee
co e s ssee
' : oo o s0ee
/D Ciy DG oo s 00
| Block,, | BlockiJ f‘". e e .w.\
S AC,, AC,,
DIFF = DC,-DC,,
Differential DC Zig-zag ordering of AC
encoding coefficients

Figure 7-8 Zig-zag arrangement of the DC and AC coefficients

The coefficients are rearranged into a one-dimensional array using a zigzag pattern as
illustrated in Figure 7-8, placing the low frequency AC coefficients at the start of the
linear sequence and the high frequency coefficients at the end. This groups the zeros
resulting from the high frequency AC coefficients together, increasing the consecutive
runs of zeros for run-length coding. A run-length coder compresses the quantised DCT
coefficients by representing consecutive zeros with a run-length value. Each AC
coefficient is represented by two symbols, where symboll is a combination of {run-length,
size} values and symbol2, which is the quantised frequency value {amplitude}, is encoded
with a variable-length integer (VLI). The size value is the number of bits needed to
represent the second symbol. DC coefficients are also represented by two symbols, but
symboll has only the size value. The first symbol, with the {run-length, size} information

is next encoded using a specified Huffman table.

The VLC decoding process begins with the retrieval of Huffman table values in the JFIF
file and the entropy decoder decompresses and decodes the Huffman-coded data in the
compressed image. The four least significant bits of the decoded symboll specify the
number bits used to encode symbol2. A one in the most significant bit (MSB) of symbol2
denotes positive amplitude and the value of the extracted codeword represents the actual
amplitude of the coefficient. A zero in the MSB denotes negative amplitude and the

amplitude of the DCT coefficient is given by a one’s complement of the extracted

T.B. Yee, 2007 Chapter 7: Practical synthesis 195

codeword. The entropy decoder decodes the differential coded DC values by simply doing
the opposite process, DC coefficients for each block are computed by adding the first
coefficient value with the preceding DC coefficient. The entropy decoder is described in
behavioural VHDL and synthesised using the MOODS synthesis system. An example of
entropy decoding is given below in Figure 7-9, the image data is decoded using the

standard Huffman tables for luminance components defined in [150].

&
DC,=-75+49 = -30

DC, symbol1: {7} AC,, symbol1: {O,ZU
DC, symbol2: {-75} AC,, symbol2: {3}

End-of-Block
symbol for Block,

N

| Ac,, symbol1: {0,1} | | AC,, symbol1: {0,2}]\

Block, ,

I

| .
I I AC,, symbol2: {1} } [ACQJE{T{)OIZ: (-4}
I

| Block,

|

Figure 7-9 Example of entropy decoding

Dequantiser

The 8x8 blocks are dequantised by multiplying each DCT coefficient value in the blocks
with the corresponding value in the 8x8 quantisation matrix specified in the JFIF file. The
constant values specified in the quantisation matrix may be arbitrary, but generally these
values are usually calculated based on the quality versus size factor. During the
quantisation process in the JPEG encoding process, high constant values introduce more
errors in the rounding up or down of the values obtained from the division of the DCT
coefficients and the quantisation matrix. However, having high constant values also result
in more high frequency DCT coefficients with small data values to become zero. Our
human eyes are not sensitive to high frequency data information, thus the image will look
very close to the original. The zig-zag arrangement described in the previous section tends

to group the zeros together to form long run of zeros, thus allowing the entropy encoder to

T.B. Yee, 2007 Chapter 7: Practical synthesis 196

further compress the data. A constant value of 1 will result in nearly lossless compression
(loss will be due to the round-off errors), whereas a constant value of 255 is the maximum
amount of loss for that coefficient. Since arbitrary constant values could be used during
the quantisation process, the entire quantisation matrix is stored in the JFIF file so that the
dequantiser will know the constant value to multiply each DCT coefficient by to obtain a
dequantised 8x8 block. The final step is the decoding of the zig-zag ordered values to
reconstruct the frequency domain 8x8 blocks that were originally obtained after the DCT

process in the encoding process.

Inverse Discrete Cosine Transform

The two-dimensional (2-D) inverse discrete cosine transform is performed on the 8x8
blocks to convert data from the frequency domain to the spatial domain. In the JPEG
encoding process, the 2-D Discrete Cosine Transform (DCT) [155] was performed prior to
the quantisation phase to group high frequency information, which is not as sensitive to
the human eye as the lower frequency information when they are minimised (or even
removed). The coefficients of the resultant frequency domain matrix, or DCT matrix,
contain integers in the range of —1024 to 1023. The upper left entry in the resultant DCT
matrix, is the DC coefficient, which is the average of the entire block and the lowest
frequency cosine coefficient. The higher frequency remaining 63 coefficients or the AC
coefficients occur at the lower right of the matrix. The high frequency AC coefficient
values are often significantly smaller than the lower frequency coefficients, small enough
to be neglected with little visible distortion to the image. The JPEG compression takes
advantage of this and typically, the entire lower right half of the matrix comprises only

zeros after the quantisation phase.

The 2-D IDCT module implemented in this hardware demonstrator is based on the vector
processing technique, which is widely used in hardware implementation of image
processing and video coders and decoders because of the regular structure, simple control
logic and a good balance between complexity of implementation and performance. The 2-
D IDCT module is described in behavioural VHDL and synthesised using the MOODS
synthesis system. The 2-D IDCT architecture is adapted from [142] and it is illustrated in

Figure 7-10.

T.B. Yee, 2007 Chapter 7: Practical synthesis 197

.| RAM double
—» 1-DIDCT > buffer "-L 1-DIDCT >

Figure 7-10 2-D IDCT architecture

The architecture is made up of a one-dimensional 8-point IDCT followed by an internal
double buffer memory, followed by another one-dimensional 8-point IDCT. The algorithm

used for the calculation of the 2-D IDCT is based on the equation (7.1).

(7.1)

B M-l N-1 c(p)e(q) 7[(2m + l)p 72(217 + 1)q
XCPQ - Z Z XYan M 4 d COS(M j' CcOSs (TJ

m=0 n=0

Equation (7.1) can be separated into the row part and column part as shown in equations
(7.2) and (7.3). The 2-D IDCT is computed by first applying 1-D IDCT on the rows and

then on the columns.

: : . (7.2)
C =K ecos (2 col number + 1)' row number e 7
2e¢ M
1 2
where K =~ forrow =0, K = ~= for row # 0
N N
(7.3)

2 -row number -+ 1)0 col number e

C! =Kocos(
2eN

where K = —1— forcol=0, K= Vz for col #0

During the JPEG encoding process, the image samples are level-shifted to a signed
representation by subtracting 2", where P is the precision parameter of the image

specified in the JFIF. For a grayscale image with 8 bits precision, the 8-bit signed values

T.B. Yee, 2007 Chapter 7: Practical synthesis 108

are level-shifted back to the original sample values by adding 128 to each of the values in
the 8x8 block resulting from the IDCT transform. Figure 7-11 shows an example of an 8x8

dequantised block input to the IDCT module and the corresponding 8x8 values obtained

during the IDCT process.
Dequantised 8x8 block 8x8 block after transposition

416 -33] 60| 324|000 461 B3| 4 [46| 0|0 0
122486 0] 0[]0 0] 0 13| 16| 2] 2|6 0] 0] 0
42 13| 8| -24{4]| 0] 0] 0 4781 8 | 4 |40 6] 0] 0] 0
5617 | 44]-2|0]0] 0] 0 15| 28 | 59| 31| 6 | 0 [0 | O
B8]olo]o0o[0j0jolo 91| 32|74 50| 6] 0l 0] 0
ololojo]lo0ojo0oj0]o0O 429| 2| 32486 0| 0] 0
olojo]ojo]|oj0]oO 461] 3 7 |2 6] 0[0,0
0 0 0 0 0 0 0 1] 4550 10 1 4 6 0 0 0

1-DIDCT |—» RAMdouble | 4 hper — —»

buffer

8x8 block after 1-D IDCT 8x8 block after 2-D IDCT

161] 192 | 477 | 115 | 90 | 128 | -159 | -155 71| 72| 67| 59| 55| B3| 45| -35

33116 8| 2832|2411 65| 73| 78| 7| 5] 11| 60| 47

4 | 2| 1|58 431|712 62| 61| 58| 57| 64| -72] -70 | H1

3| 4] 930|504 2] 4 65| 39| 9] 0| 23| 54| 69| 67

6| 6| 6| 6[6|6][6]86 69| 30| 13 1] 13| 54| 67| 59

0 0 0 0 0 0 0 0 67| 40| 2] 43| 44 71| B8 M9

olojlo|o[o0o]|]o0io0]0O 59| 54| 49| 52| 64| 2] 61| 44

0 0 0 0 0 0 0 0 51| 59| 64| 60| 56| -54| B0 | M
8x8 block after level-shift

57| 56 | 61| 69| 73| 75| 83 | 93

63| 55| 50| 51| 53| 57| 68 | &1

66 | 67 | 70| M| 64| 5% | 58| 67

63 | 89 | 119] 128 | 105| 74 | 59 | &1

59 | 98 | 141|149 | 115] 74 | 61 | 69

61 88 | 116 | 1M5| 84 | 57 | 60 | 79

69 | 74| 79| 76 | 64| 56 | 67 | %4

77 | 69 | 64| 68 | 72| 74| 78 | 84

Figure 7-11 Example of the IDCT process

7.3.2 Partitioned JPEG decoder

The sequential DCT-based JPEG algorithm and the description of the key components are
covered in the previous section. This section describes the partitioning of a JPEG decoder,

which forms the core of the hardware demonstrator. Figure 7-12 illustrates the overview of

T.B. Yee, 2007 Chapter 7: Practical synthesis 199

the hardware demonstrator system. There are three distinct phases in the multi-FPGA

JPEG decoder: Input phase, Output phase, JPEG decoding phase.

A simple file I/O Graphical User Interface (GUI) [156] is used to select the JFIF file to be
decoded in the input phase. This JFIF file in the source PC is then transferred serially to
the RS-232 interface on the I/O VGA extension board using a serial (null-modem) cable.
The output phase is the visual output of the decoded JPEG image on a VGA monitor. The
high-speed 4-megabyte SRAM on the I/O VGA extension board is used as a frame buffer
to store the decoded pixel data values in the 8x8 blocks in a raster-scan manner, suitable

for a standard 640x480 pixel VGA display.

Source PC

| serial (null-modem) cable

Multi-FPGA system

R B
N/ o
== ! N | | Interface

[

» N

N

L [

AR

‘ Monitor cable |

Figure 7-12 Overview of the hardware demonstrator system

The JPEG decoding phase is the core of the hardware demonstrator and is performed by a
partitioned JPEG decoder in a multi-FPGA system, formed with a number of hardware
development boards. The hardware implementation of the JPEG decoding algorithm is
partitioned and synthesised using the K-way partitioning enhancements described in
Chapter 4. The re-configurable device on each development board in the multi-FPGA

system is viewed as a locally clocked processing unit performing part(s) of the JPEG

T.B. Yee, 2007 Chapter 7: Practical synthesis 200

decoding algorithm, and inter-device data transfers performed using asynchronous

techniques described in Chapter 5.

7.3.3 VHDL Design

The hardware demonstrator comprises VHDL modules written in two different styles of
VHDL, behavioural VHDL and Register Transfer Level (RTL) VHDL. Modules
communicating directly with the input/outputs (i.e. the /O and VGA extension board) of
the system are written in RTL VHDL, as strict timing requirements have to be met. For
example, the VGA driver module that has to send the pixél data every 40 ns for a pixel
clock of 25 MHz. Adapting a design with a mixture of modules coded using RTL and
behavioural VHDL and not solely using the behavioural style of VHDL is not design

limitation, however, it is more sensible and less time consuming to adopt such a design

approach.

Figure 7-13 shows the overall VHDL modules in the hardware demonstrator. The S data
interface, UART, Frame buffer controller, and VGA driver module are written in RTL
VHDL, with the rest of the modules written in behavioural VHDL and synthesised using
the MOODS synthesis system. The UART module communicates directly with the Maxim
MAX232EPE described in Section 7.2.2.1. The U4RT module is part of the VHDL
communications library in [156]. The UART sends and receives data serially from the
Maxim device and bytes of data are passed to the S data interface VHDL module. This S
data interface receives a byte of data from the UART and this byte of data is passed to the
Entropy decoder if it is a compressed image data to be decoded, else to the JFIF file
decoder if it is part of the header information. A detailed description on the JFIF file
layout can be found in Appendix B.1. The Block Transpose module after the JPEG
decoder core performs block transposition on the transposed 8x8 blocks of image data

from the IDCT module.

T.B. Yee, 2007 Chapter 7: Practical synthesis 201

UART
RTL VHDL ¥
modules S data
interface ﬂ
e - —
JFIF file
decoder ||

decoder core

.
Entropy decoder)

Zig-zag decoder

Dequantiser
IDCT module

$

Block Transpose
module

Huffman tables

Quantisation
matrix

Behavioural
VHDL modules

information

Frame buffer
RTL VHDL controller
modules !
VGA driver
module

Figure 7-13 VHDL modules in the hardware demonstrator system

The sequential baseline JPEG decompression algorithm decodes the compressed image in
8x8 blocks and the decompressed image is stored in the frame buffer memory. The 4MB
SRAM device on the I/O VGA ext. board is used as the frame buffer memory and Figure

7-14 illustrates how the decompressed 8x8 blocks of data are stored in the frame buffer

memory.

The frame buffer memory mapping shows how each pixel, specified as an x-y co-ordinate
relative to the top left of the VGA monitor display, maps to the memory location in the
SRAM device. For an 8-bit grayscale image of up to 512 by 480 pixels, a total of 512 x
480 x 8 bytes (1.92 MB) are required. Blocks of decompressed image data ready to be

displayed are sent to the frame buffer controller and two bytes of pixel data are stored in

T.B. Yee, 2007 Chapter 7: Practical synthesis 202

each memory location. Decoded image data is only sent to the VGA driver module when a
complete image is stored in the frame buffer. The VGA driver module generates the
horizontal sync and vertical sync timing signals and it coordinates with the frame buffer
controller to deliver a pixel data on each pixel clock to the I/O VGA ext. board. With the
frame information (image height and image width), the VGA driver module sends a
‘background’ pixel data, filling regions larger than the image with a background colour

(black, white, or a shade of grey for an §-bit grayscale VGA interface).

X co-
First 8x8 block of ordinates
decompresrs\ed image /\
0 1 2 3i\74 5 6 7 8 910 11 12 13 14 15 510 511\
/7 Q[addd addrt addr2 addrs addrd addrs addr8 addr7 addr255
1 | 20dr256 20dr259 | addr260 | addr261 | addr262 | addr263 addr511
2 | addr512 ador515 | addr516 addr767
3 [addr768 | addr769 addr772 addr1023
4 [oddri024 | addr1025 | 301026 | adori027 | addr1028 . addri279
5 [Taddri280 | adar1281 | addrt282 | addr1280 | addr1284 addr1535
6 [laddri536 | adar1537 | addr1536 | eddr1538 | addr1540 addr1791
7 [addri762. | ddr1793 | addri79s | adar1795 | addr1796 addr2047
8 | addr2048 | addr2048 | addr2050 | addr2051 | addr2052 addr2303
Q | addr2304 | addr2305 addr2559
10 | addr2560 addr2815
11 | addr2816 addr3071
12 | addr3072 2ddr3327
13 | addr3328 2ddr3583
14 | addrase4 20dr3839
9 15 | addr3840 addr4095
1+
5 <
> T
S
<]
VGA frame buffer memory
477 |addri22112) addr1 22367
A78 |addr122368 addr122623
\479 |addr122624]addr122625] adar1 22879
J Upper byte 1 Lower byte l
2 bytes of pixel information per
memory location

Figure 7-14 Frame buffer memory mapping of 8x8 blocks

7.4 Results and performance

The behavioural JPEG decoder core and block transpose modules are synthesised using
the MOODS synthesis system to generate a multi-FPGA system. The multi-FPGA JPEG
decoder is targeted onto three Digilent D2-SB FPGA-based development boards

T.B. Yee, 2007 Chapter 7: Practical synthesis 203

(described in Section 7.2.1) with a Xilinx Spartan 2E-200 FPGA on each board. All the
RTL VHDL modules (shown in Figure 7-13) and the JFIF file decoder module are
targeted onto a single D2-SB development board and connected to the /O VGA ext.
board. The behavioural JPEG decoder and the block transpose module are synthesised and
partitioned using the MOODS synthesis system with the partitioning enhancement
described in Chapters 4 and 5.

The whole system is simulated at the gate level (based on the post-placed and route
simulation model produced by Xilinx ISE) prior to downloading the multi-FPGA system
onto the FPGA devices. After the verification of the multi-FPGA system, the prototyping
boards are connected up to form the multi-FPGA JPEG decoder hardware demonstrator
system. Examples of the multi-FPGA JPEG decoder in action can be found in the
photographs of Figure 7-15 and Figure 7-16, which demonstrates the complete system in
full working order.

wmmmm?
’J 4) 4 J; ”;'

\
?‘
N

Figure 7-15 Multi-FPGA JPEG decoder demonstrator

T.B. Yee, 2007 Chapter 7: Practical synthesis 204

a5 11
g
—

Y

o

e 2 # LY
3 ?A-o‘va_x..;’.‘
o

¢
.

Figure 7-16 Multi-FPGA JPEG decoder demonstrator (Top view)

Figure 7-17 illustrates the pixel values of the test image (LENA.jpg) taken from a graphics
viewer [157]. The pixel values in the four 8x8 blocks are given in hexadecimal and they
are taken from the top left corner of the test image and top-left most value 0x7C
corresponds the top-left most corner pixel value of the test image. Figure 7-18 illustrates

the values obtained from a simulation of the test image decoding using the multi-FPGA

T.B. Yee, 2007 Chapter 7: Practical synthesis 205

JPEG decoder. A maximum pixel value of FF (in hexadecimal) corresponds to the
maximum grayscale level of 255 (White), and 00 (in hexadecimal) corresponds to the
minimum grayscale level of 0 (Black). The decoded pixel values in Figure 7-18 deviate
slightly from the original values given in Figure 7-17, this slight error is due to the
imprecision in multiplication and rounding errors in the quantisation and inverse discrete
cosine transformation stages described in previous sections. Results obtained from the
simulation shows that 97% of the decoded pixel values are within =+ 2 of the original pixel

grayscale levels.

7clos|8a|70|8D]| 89| 8F| 65| 42| 4a]4E|4B]| 4B | 54 5D 61
7E| 88| 84| 77| 8F|8a| 91| 5F|3B| 43| 47| 44| 45| 4D| 56 | 5A
82|7a| 82| 84| 91|87|92|58|3B|44|49| 46| a7 | 4F]| 58|58
87| 75| 87|91|90|80|91|56)38]45|4A] 48| a9 52]5a5D
sanl7al8D| 93| 8c|7a|8E|58) 35| 3F | 46| 45| 46 | 4E] 56| 58
88| 84| 8a|84|8s|78|8c|58]36]40|47] 49| 51] 51| 58]5A
8o |8al|7c|eal 85| 83|8D|5C] 36| 41|49 49| 4B 53| 5A]58
ss|sc|6r|56]sa|sctaE]|sBl2E|3a]42]42] 44| 4c]| 53] 54
91|7a] 46|52 85 95| 84| 59]2A] 38 |3D| 37| 3A] 4A] 51]4D
sa|s57]|31]61]90|scl7n|sp|2|3FriaB| 46| 45| 4E| 521 4E
6D|3A] 2al66|8c|8D] 85| 56) 29| 3C] 49| 44| a2 | 4A| 51 51
4913537 60|77 |94|07|4ac)2e| 38}3D|3A]| 3D} 49| 54| 57
ac|aa|3F|e1|70]|8c|o7|55)36]38|3E]| 40| 46 | 4F | 53] 53
43|31 37|69|7D|7F| 87| 66] 31| 38| 42| 49| 4c|aB| 49|46
40| 38| 33]|61]|86|86]81|65]2a]|35[42]46]| 42]41]4B]56
33| 47| 38 |4F|84|oB|89|54]2E|3B[45]42]| 39| 3F|5D]7B

o e T

Figure 7-17 Original 8x8 block values from test image (LENA.jpg)

7C| 94 |8A|6F|8C|88|8E|65]41|49|4D|4A[4A] 53|5C| 60
7E|{ 87|84 77| 8F| 89| 90| 5E]39]| 42|46]43)|4314C|55] 59
82|79]|81]|84[92[86192]|57]39|42]|47]|44|45]|4E]| 56| 5A
87|74186]|90|90|7F|91|55]3A|43]49|47]48 50| 58] 5B
8A|7A|8D|92|8C|79|8E| 57§34 3E|45|44|45|4D|55] 58
8A| 83|8A| 84|87 |7A|8C|5A 34| 3F|46[46]| 48| 50| 57| 59
89| 8A|7C|6A|84|83|8C|5Bf35|3F|47]|48]4A] 51|58 5A
88|8C|6BE|55[83|8C|8D|5Af2D| 38|40|41]43]|4A] 51|33
90]79]|45|50]83|94|82|58]27|36|3B|34]38)|49]|4F| 4B
88156|30|60|90|8C|7C|{5D) 29| 3F |4A|A5]|44]|4D|51]4D
6C|39]|29|66]|8C|8D|85|56]27|3C|48|44!140]48]50] 4F
47|34 |36|5E|76]93|97]|4B]2C| 36 [3B|39|3B|47|52] 55
3A|33|3E|60|6E|8B|9753]35|39|3C|3F|45|4E| 53] 51
42| 2F| 35| 69| 7C|7E| 87|66 2F| 37 [41|48|4B|4A| 48] 45
3F|37|31]61]86|86[80|64]28|34[41}44]|40|3F| 4955
3114637|4D| 82| 9B| 88| 53]2D| 3944|4137 |3E|5D| 7B

T _— . " T

age (LENA.jpg) 8x8 block valu
multi-FPGA JPEG decoder

Figure 7-18 Testim es decoded using the

T.B. Yee, 2007 Chapter 7: Practical synthesis 206

7.4.1 Synthesis results of non-pipelined multi-FPGA
JPEG decoder

All the RTL VHDL modules and the JFIF file decoder are targeted onto a D2-SB FPGA-
based development board with a Xilinx Spartan 2E-200 FPGA (s200E). The frame buffer
controller operates at 50 MHz, which is provided by the surface-mount SOMHz oscillator
on the development board, and the rest of the modules operate at 25 MHz, which is
generated by a simple divide-by-two clock divider. RTL modules are instantiated and
linked within the architecture body of a top-level VHDL file. Table 7-2 gives the key
details on the resource utilisation and the maximum achievable frequency of the top-level

design on the s200E target device.

FPGA Resource utilisation
Area in slices 847 (36%)
$2008 1o 104 (98%)
Freq (MHz) 55.57

Table 7-2 Synthesis results of development board 1

The RTL modules in the development board are locally clocked, signals passed between
these RTL modules and the partitioned JPEG core (described in behavioural VHDL and
synthesised using MOODS) in other FPGAs cross clock domains and needs to be
synchronised. The synchronisation logic needed to handshake inter-device signals in the
multi-FPGA JPEG core are generated automatically into the MOODS synthesised multi-
FPGA implementation without any intervention of the user to the synthesis tool. Only the
synchronisation between the RTL modules in development board 1 and the multi-FPGA
JPEG core targeted onto two other development boards in the multi-FPGA system had to
be performed manually by double buffering the top-level VHDL input signals that

originate from the clock domain of the RTL modules.

Figure 7-19 shows a section of the top-level VHDL with input signal end_conv and the
corresponding generated synchronisation circuit is shown on the right. The circuit shows
the signal end conv passed from RTL module in domain 1 to a module in the multi-FPGA
JPEG core in domain 2. The generated synchronisation circuit consists of two flip flops

(registers), FFI and FF2, which are clocked by the system clock (sys_clock) in domain 2

T.B. Yee, 2007

Chapter 7: Practical synthesis

207

and system reset (sys_reset) is connected to the asynchronous clear (clr) inputs on the flip

flops. Signal end_conv_bufI is the output of the first flip flop (register), FFI, and this is

the input into the second flip flop, FF2. The output signal (end conv_buf2) from the

second flip flop, which is the synchronised input for end_conv signal is used by other parts

of the circuit in domain 2.

Top-level VHDL source

process{sys_reset, sys_clock)
begin
if(sys_reset = "1") then
end_conv_buf1 <="0"
end_conv_buf2 <="0";
elsif(sys_clock'event and sys_clock = "1") then
end_conv_buf1 <= end_conv,
end_conv_buf2 <= end_conv_buf1;
end if;
end process;

-

Domain 1

. end_conv |

T T

. end_conv_buf1

FF1 FF2

— D a—D o——

synchronised
input

sys_reset

sys_clock

Domain 2

Figure 7-19 Double buffer synchroniser insertion

The module call graph representation of the non-pipelined JPEG decoder core is shown in

Figure 7-20. The non-pipelined JPEG decoder had a total of six subprogram modules and

one program module.

j pM |
. jpeg_core |

e ol

sM ‘
'get_symbol|
_index

3,64

sM . 2,4
DQ_multiple

sM
iupdate_amp
It

X

sM
update_dc__
diff

8,64
8,64 sM
add

34 sM ;
lidet2_mult_
add

lidet1_muit_:

Figure 7-20 Module call graph representation of the non-pipelined JPEG
decoder core

T.B. Yee, 2007 Chapter 7: Practical synthesis 208

Synthesis and K-way partitioning results of the behavioural JPEG decoder core and the
block transpose module are given in Table 7-3. The first row shows the synthesis result of

a single-device implementation that fits the target device.

Synthesis resulits Two-phase partitioning results
Boards | FPGA Opt. Freq. AOQ in Data pkis Channels
priority | Area in slices 110 (MHz) slices (initial — final) (Data widths)
1.1 s400E | Delay 3639 (75%) 47 (44%) 3013 = | - - ‘
iz
1 ! sZDOEI Delay | 3297 (140%)" 47 (44%) - =] - =
0, 0,
2 | s200E Delay 2350 (99%) 106 (100%) 36.79 (15‘3%2/) 1216 —» 512 2 8pC
s200E 1795 (76%) 71 (67%) 36.34 e (21, 28)

Table 7-3 Synthesis results of the non-pipelined JPEG decoder core

The s400E target device in the first row is a Xilinx Spartan2E-400 FPGA [158] in a FT256
package. It has a maximum device area of 4000 slices and a total number of 182 user I/Os.
The maximum number of available I/Os for the implementation of the multi-FPGA system
is restricted to 106 I/O pins as a number of pins on the s200E target device are connected
to the push button switch, integrated circuit socket for a second clock module, and LED on
the development board (see Appendix B.6). A detailed description on the pin assignments
of the hardware demonstrator development boards is given in Appendix B.4. The Xilinx
Spartan2E-400 FPGA is the smallest target FPGA in the Xilinx Spartan2E target
technology that has sufficient device area to hold the JPEG decoder core and the block
transposed module, with a device utilisation of 3639 slices occupying 75% of the
maximum target area, and an [/O utilisation of 47 pins out of the 106 pins available. This

un-partitioned single chip implementation has a maximum achievable frequency of 30.13

MHz.

The second row shows that targeting the design onto a Xilinx Spartan2E-200 FPGA
results in an area utilisation of 3297 slices, which exceeds maximum area of the s200E
device. The last two rows in Table 7-3 show the non-pipelined synthesised design
targeting two s200E devices and implemented using two Digilent development boards.
The first partition (shown in row 3) occupies 99% of the maximum area in the target

s200E device and 100% of the total number of I/O pins available. The second partition

T.B. Yee, 2007 Chapter 7: Practical synthesis 209

occupies 76% of the maximum area in the target s200E device and 71 I/O pins (67% of the
maximum I/O available). The area overhead of 13.9% is due to the insertion of
communication cells and arbiters (described in Section 5.4 and the duplication of data
registers in the multi-FPGA implementation. K-way partitioning, with design profiling,
with the aim of reducing inter-device data transfers was completed in two passes of the K-
way partitioning iteration loop. Two subprogram communication channels (with data
widths of 21-bits and 28-bits) were generated automatically in MOODS to handle the
inter-device data transfers between subprogram modules in the two locally clocked target
devices. The two development boards run at 25 MHz and they are clocked independently

using the on-board 50MHz oscillator, and a simple divide-by-two clock divider.

7.4.2 Computation cycles and inter-device data transfers

Simulations were conducted on multi-FPGA JPEG decoder using the synthesised netlist
output files generated by MOODS. Performance of the decoder in un-partitioned single
device and multi-FPGA implementations obtained from the post-MOODS simulation of
test images are presented in Table 7-4. The total number of inter-device data transfers over
subprogram communication channels 1 (SpC) and 2 (SpC 2)are given in columns 2 and
3 respectively. The JPEG decoder system is a complex and computation intensive design,
the computation clock cycles of the JPEG core given in columns 4 and 5 of Table 7-4. The
performance degradation (approximately 7 times increase in design latency) is because of
the immense number of clock cycles required to decode and store the decoded pixels in a

frame buffer ready to be displayed upon completion of the decoding process.

SpC I with a 21-bit wide data width is shared by two transmit cells, two receive cells, and
the channel arbitration is provided by a multi-arbiter cell. A single pair of transmit and
receive cells is connected to SpC 2 and the arbitration for this communication channel
with a 28-bit wide data width is provided by a single-arbiter cell. The relatively large
number of inter-device data packets transferred over the two communication channels also
provides a robust test for testing the communication cells and communication channel

arbiter cells described in Section 5-4.

T.B. Yee, 2007 Chapter 7: Practical synthesis 210

Inter-device dat R
Test image " erpai\ﬁftes o Clock cycles Max Freq (MHz) Design latency (ms)
(.ipg) Un- Un- Un-
SpC 1 SpC 2 | partitioned | Multi-FPGA | partitioned | Multi-FPGA | partitioned | Multi-FPGA
LENA 37807 | 20480 | 178104 | 1496464 5.91 41.18
MANDRILL | 37087 | 20480 | 171724 | 1477008 5.70 40.64
DRAGON | 34082 | 20480 | 170406 | 1398412 30.13 36.34 5.66 38.48
SQUARES | 469322 | 327760 | 2287230 | 20572700 75.91 566.12
SLOPE | 125883 | 81920 | 606572 | 5308488 20.13 146.08

Table 7-4 Computation clock cycles and inter-device data transfers in the
non-pipelined multi-FPGA JPEG decoder

The maximum frequencies given in the table are obtained from the Xilinx ISE synthesis
implementation results given in Table 7-3 and the maximum frequency of the multi-FPGA
implementation is the maximum achievable frequency of the slowest FPGA device. The
design latency, time taken to decode the test images, is calculated by multiplying the
number of computation clock cycles by the clock period (1/Max Freq). Design latencies of
the un-partitioned (single chip) and non-pipelined multi-FPGA JPEG decoder system are

given in the last two columns of Table 7-4.

A complete profile and photographs of the test images decoded using the multi-FPGA
JPEG decoder are given in Appendix B.2.

7.4.3 Further analysis

Synthesis results and performance of the non-pipelined multi-FPGA JPEG decoder
partitioned and synthesised using MOODS are given in the previous sections. This section
gives a further analysis on the implementation of the multi-FPGA JPEG decoder. Figure
7-21 illustrates the structure of the two communication subsystems inserted in the multi-
FPGA JPEG decoder to deal with the transfer of inter-device data packets between the
main JPEG core module in development board 2 and subprogram modules in development
board 3. Subprogram modules (DQ_multiple, update amplt and update_dc_diff) in
development board 2 and the control and data path node units in the synthesised output

structure have been omitted for clarity.

T.B. Yee, 2007 Chapter 7: Practical synthesis 211
7 data_ack W”’EUTprogram
| Subpmgram communication channel 2 | data_req | | communication
e - [Data_bus | | subsystem 2
:) 28 \
Developme}j\.t | i 3 Development
: il _ ,' board 3
board 2 Ltfcell_ nodeﬂ | sarb _Kce”:n?i/@/!)
g T TR I T
I i |-
T - i
| Module
= | IDCTI_MULT_ADD,
Module i (- —)
(JPEG core) |
3 F |
Module Module
(GET_SYMBOL_INDEX) (IDCT2_MULT_ADD)
” t A
g | A~ IR ;fﬂ—f =l
} . 1/; . 1it ” dY2' ; i "__LML’J] [_‘ 4 "Ml) +
/" |txcell_node | | txcel_node2 | (i mearb 07 xcell_nodet | rxcell_node2
7 4) ! L i H el
Y |' ,! Y '
. 4 - - . A
21 ‘
7, 7777777 Pffa_bus Subprogram
‘ [[act/rdy | - communication
| Subprogram commurication channel 1 I - SUbsy §tgm 1 .

Figure 7-21 Structure of subprogram communication subsystem in the non-
pipelined multi-FPGA JPEG decoder

Subprogram communication subsystem 1 has two transmit cells (#xcell_nodel and

txcell node2), two receive cells (rxcell nodeland rxcell node2), and a multi-arbiter
(m_arb). Inter-device data transfers initiated by communication cells in communication
subsystem 1 are sent through subprogram communication channel 1 (SpC /) which has a
21-bits wide Data bus. Subprogram communication subsystem 2 has a single transmit cell
(txcell node3) and receive cell (rxcell_node3) connected to a single-arbiter (s_arb). Inter-
device data transfers between rxcell_node3 and rxcell node3 are sent through subprogram
communication channel 2 (SpC 2) which has a 28-bits wide Dara_bus. Three modules
(external), GET SYMBOL INDEX, IDCT2 MULT ADD, and IDCTI_MULT ADD are
targeted onto the FPGA device in development board 3. Data packets (input parameters)
are sent to the receive cells, which activate these external modules upon receiving all the

input data packets. Output results are sent back to the transmit cells when the operations in

T.B. Yee, 2007 Chapter 7: Practical synthesis 212

the modules are completed. Input parameters are sent in multiple inter-device data packets
when the sum of the bits in all the input parameters exceeds the bit-width of the Data bus
in the communication channel, likewise for output parameters if the sum of the bits in all

the output parameters exceeds the bit-width of the Data bus.

The K-way partitioning algorithm and the communication subsystem optimisation
algorithm optimise the multi-FPGA system in terms of delay across FPGA boundaries,
while satisfying the area and I/O constraints of the target devices. If the area and /O
constraints can be relaxed (i.e. targeting FPGA devices with a larger area, or more I/O
pins), the number of external modules may be reduced as more modules can be targeted
onto a single FPGA device, and hence reduce the number of inter-device data transfers,
similarly targeting a device with a larger number of I/O pins, the bit-width of the
Data_bus in the subprogram communication channel can be increased, such that all input

parameters of output results can be transferred in a single data packet.

Assume development board 2 of the multi-FPGA implementation has a target device with
a larger area; a Xilinx Spartan2E-300 FPGA (with 3072 slices in area) instead of a Xilinx
Spartan2E-200 FPGA (with 2352 slices in area), it is then possible to re-assign and map at
least one of the three ‘external’ modules in development board 3 to development board 2.
Table 7-5 shows the effect of reducing the number of external modules in the multi-FPGA
JPEG decoder on the inter-device data transfers and computation clock cycles results. The
number of external modules in the multi-FPGA JPEG decoder is given in the column 1.
The number of inter-device data packets transferred over SpC I and SpC 2 are given in
columns 2 and 4 respectively. The channel (Data bus) widths of SpC I and SpC 2 are
given in columns 3 and 5 respectively. The number of computation clock cycles of the
multi-FPGA JPEG decoder core is given in column 6. The maximum frequency in column
7 is obtained from the Xilinx ISE synthesis implementation results given in Table 7-3. The

design latency of the multi-FPGA JPEG decoder system is given in the last column of
Table 7-5.

The test image used is LENA jpg and the first row shows the performance of the multi-
FPGA JPEG decoder with three external modules in development board 3 as illustrated in
Figure 7-21. The second row gives the performance of the decoder when an external
module is moved into development board 2 (this assumes that there is sufficient area in the

FPGA device on development board 2 to hold IDCT2 MULT ADD), hence development

T.B. Yee, 2007 Chapter 7: Practical synthesis 213

board 3 is left with only two external modules (GET SYMBOL [NDEX and

IDCTI 'MULT ADD). The effect of removing module IDCT2 MULT ADD from
communication subsystem 1 is a reduction in the number of inter-device data packets in
SpC 1. This amounts to 57.9% reduction in the design latency as compared with the

original implementation with three external modules.

Number of Inter-device data packets anl
external Channel Channel Clock cycles M(aG:Zr;aq Desngml:)tency
moduies SpC 1 width SpC 2 width

3 37807 21 20480 28 1496464 41.18
2 8805 21 20480 30 629882 36.34 17.33
1 8805 21 - 417636 11.49

Table 7-5 Number of external modules and its effect on the performance of
the non-pipelined multi-FPGA JPEG decoder

The last row in Table 7-5 shows the performance of the multi-FPGA JPEG decoder core
with just a single external module (GET SYMBOL INDEX) in development board 3. Only
a single communication subsystem is required to transfers inter-device data packets to and
from the single external module. The total number inter-device data packets are reduced
even further with just a single external module, and this amounts to 72.1% reduction in the
design latency as compared with the original implementation with three external modules.
The time taken to decode the test image (LENA.jpg) using the multi-FPGA JPEG decoder
with a single external module is 11.49 milliseconds, which approximately twice the time
needed for a single-chip implementation (given in Table 7-4). The graph in Figure 7-22
shows the design latency (decoding time) versus the number of external modules in the
multi-FPGA JPEG decoder. With less external modules, the number of inter-device data
transfers is reduced and this improves the performance of the multi-FPGA JPEG decoder
as the design latency reduces. Area utilisation of the target devices will also decrease, as a
result of lesser communication cells and duplicated hardware (registers) to handle inter-

device module calls.

T.B. Yee, 2007 Chapter 7: Practical synthesis 214

3 . {4118
o]
E
®
§ 7.33
%
)
e
o 3
5 .
2 1 1149
E
S
4 : s :
0 10 20 30 40 50
Design latency (ms)

Figure 7-22 Graph of design latency versus the number of external modules
in the multi-FPGA JPEG decoder

Increasing the number of available I/Os on target devices is the other approach to improve
the performance of the multi-FPGA JPEG decoder. The first column in Table 7-6 shows
the number of available I/Os on the target devices (i.e. assuming that all the target FPGAs
have the same number of available I/Os). The first row shows the inter-device data
transfers and computation clock cycles of the hardware demonstrator implemented using
the D2-SB FPGA-based development boards with 106 available 1/Os (details given in
Sections 7.4.1 and 7.4.2). Subsequent rows show the effect of increasing the number of
available I/Os on target devices on the performance of the multi-FPGA JPEG decoder.
The total number of inter-device data packets decreases with the increment of available
I/Os, resulting in a decrease in the number of computation clock cycles and hence reduces
the design latency. When 250 I/Os are available (fourth row of Table 7-6), a new
communication subsystem is generated by MOODS during synthesis. Communication
cells, txcell nodel and rxcell nodel, are connected to a single-arbiter (s_arb), which
replaces the multi-arbiter (m_arb) in Figure 7-21. Communication cells, txcell_node2 and
rxcell node2 are connected to a third (newly) inserted single-arbiter, and together they
deal with the inter-device data transfers across a new subprogram communication channel

(SpC 3 in Table 7-6) with a 69-bits wide data width.

T.B. Yee, 2007 Chapter 7: Practical synthesis 215

I/Os Inter-device data packets Max Freq Design
avail. Channel Channel Channel Clock cycles (MHz) | latency (ms)
SpC1 width SpC 2 width SpC 3 width
106 | 37807 21 20480 28 - - 1496464 41.48
150 | 37807 21 12288 72 - - 1406384 38.70
200 | 37807 21 8192 101 - - 1362776 36.34 37.50
250 | 8805 21 8192 101 12288 69 921738 25.36
300 | 8805 21 8192 101 8192 93 881232 24.25
350 | 8805 21 8192 101 8192 93 881232 24.25

Table 7-6 Number of available I/Os and its effect on the performance of the
multi-FPGA JPEG decoder

The last two rows in Table 7-6 show that the design latency of the multi-FPGA JPEG
decoder does not reduce further when target devices with over 300 available I/Os are used.

The graph in Figure 7-23 shows the design latency versus the number of available [/Os in

the multi-FPGA JPEG decoder.

106 .
150

250 | 12536

Number of 1/0s

300 | 12425

350 12425

f i ¥

0.00 10.00 20.00 30.00 40.00 50.00

Design latency (ms)

Figure 7-23 Graph of design latency versus the number of available I/0s in
the non-pipelined multi-FPGA JPEG decoder

T.B. Yee, 2007 Chapter 7: Practical synthesis 216

7.4.4 Pipelined multi-FPGA JPEG decoder

The previous sections covered the implementation results and discussion on the non-
pipelined multi-FPGA JPEG decoder. This section describes a pipelined version of the
JPEG decoder with explicit communication channels (see Section 4.2.2.1) connecting the
pipelined stages. Figure 7-24 shows the module call graph representation of the pipelined
JPEG decoder core with a total of six subprogram modules and six program modules
(p_MOD_5 to p_MOD_10). The main stages of the sequential baseline JPEG decoder are
marked under the module call graph in Figure 7-24.

1,64 1,64 1,64 1,64
M !)
N;IJOD 6 7 0.7 R pM A o
p n p_MOD_7 p_MOD_8 | p_MOD_9 p_MOD_10
1,64__ I !) 5.4 — “lw —
/ a
2,64 8,64 7,64
sM
; : s Y 4
| P N[l)(';nD 5 [. [get_symbol] i 1
- = is4 24 _index oM sM sM
e IR | o) lidet_mult_, [idct2_mult_
Y \ DQ_multiple add ; . add
. sM . sM — S
|update_dc_| |update_amp)
diff Co It /
e e S ,,,,14, . S . I s >
Entropy decoder Zig-zag decoder Dequantiser IDCT module - Block
transpose
module

Figure 7-24 Module call graph representation of the pipelined JPEG decoder
core

The target technology of the devices used in the following experiments on the pipelined
multi-FPGA JPEG decoder core is the Xilinx Spartan 2E FPGA. Table 7-7 lists the four
types of Xilinx Spartan 2E target devices used in the multi-FPGA implementation with the
XC2S50E and XCS200E as the smallest and largest target devices respectively.

Synthesis results and K-way partitioning results of the pipelined JPEG decoder core and
the block transpose module are given in Table 7-8. These results in terms of area and
maximum achievable frequency of the final implementation are obtained from the report
files generated by post-Xilinx ISE placement and routing phase and not estimates obtained

from the MOODS synthesis system. The first and second (shaded) rows show the

T.B. Yee, 2007

Chapter 7: Practical synthesis

217

synthesis result of single-device implementations given in Table 7-3. The remaining rows

show the synthesis results of the pipelined multi-FPGA JPEG decoder core targeting

multiple Xilinx Spartan 2E FPGA devices. Post-MOODS synthesis simulation results of

the pipelined multi-FPGA JPEG decoder core are given in Appendix B.3.

Table 7-7 Target Xilinx Spartan 2E FPGA technologies

Xilinx Spartan 2E FPGA devices

Total | Max. Max.
user | user | area in
Device Package 110 110 slices
XC2S50E TQ144 102 80 768
XC2S100E | TQ144 102 80 1200
XC2S150E | PQ208 146 | 106 1728
XC2S200E | PQ208 146 | 106 2352

Synthesis results Two-phase partitioning results
Boards | FPGA Opt. Freq. AO in Data pkis Channels
priority | Area in slices 1/0 (MHz) slices (initial — final) (Data widths)

1 7_54_00E Delay 3639 (75%) 47 (44%) 3013 = = -

1.1 s200E | Delay | 3297 (140%)" 47 (44%) - s = -

2 | s200E Delay 2134 (90%) 54 (51%) 35.71 (6212:&) 67 — 1 1 ExC
S200E 1726 (73%) 35 (33%) 32.41 ' (12)

3 | s200E 2134 (90%) 54 (51%) 34.02 239 2 ExC
s150E | Pelay | 1658 (95%) 27 (26%) | 3528 | (6.6%) 547 - 2 (12, 8)
s150E 86 (4%) 31 (29%) 84.28

4 | s200E 2058 (87%) 80 (75%) 32.35 4 ExC
s150E Delay 1658 (95%) 27 (26%) 35.28 (722?/0) 68 — 4 (11, 11,12, 8)
s100E 106 (8%) 29 (36%) 73.52 '
s100E 86 (7%) 31 (38%) 76.55

6 | s200E 2004 (85%) 105 (99%) 30.29 4 ExC
s150E 1660 (96%) 27 (26%) 35.38 (11, 11,12, 8)
S50E | pejay 106 (13%) 29 (36%) 73.99 (1§i(a%) 80 - 80
s50E 115 (15%) 26 (33%) 60.46 ' 1 8pC
s50E 85 (11%) 31 (39%) 89.25 (19)
s50E 155 (20%) 30 (38%) 59.21

7 | s200E 1968 (83%) 105 (99%) 30.18 4 ExC
s150E 1659 (96%) 27 (26%) 33.43 (11,11, 12, 8)
s50E 106 (13%) 29 (36%) 79.96 593
s50E | Delay 117 (15%) 24 (30%) | 59.80 | (16.3%) 88 — 88 1.8pC
s50E 86 (11%) 31 (39%) 88.22 (17)
S50E 161 (20%) 32 (40%) 54.08
s$50E 135 (17%) 24 (30%) 53.39

Table 7-8 Synthesis results of the pipelined JPEG decoder core

T.B. Yee, 2007 Chapter 7: Practical synthesis 218

The first three multi-FPGA implementations (MFIs) targeting two to four Xilinx Spartan
2E devices are partitioned across pipelined stages with no external subprogram modules
and inter-device data packets are sent through the explicit communication channels (ExCs)
connecting the pipeline stages. In the last two MFIs targeting the JPEG decoder core onto
six and seven devices, subprogram modules are targeted to a different device from their
parent calling modules and the resulting inter-device subprogram data packets are sent
through the single subprogram communication channel (SpC) generated automatically by

the multi-FPGA MOODS synthesis system.

The area overheads in terms of slices for pipelined implementations of the multi-FPGA
JPEG decoder targeting two to four devices are lower than the non-pipelined MFI given in
Table 7-3. One factor contributing to this area overhead reduction is that devices in the 2-
to 4-device pipelined MFIs are only connected through ExCs. The ExC is a dedicated
point-to-point communication channel that does not require channel resource arbitration
and special communication cells (Section 5.4) to handle inter-device data packet transfers
unlike SpC. Inter-device data sent through the ExC also removes the need for hardware

duplication (Section 5.5.1), hence reducing the area overheads.

Comparing the 2-device non-pipelined (given in Table 7-3) and pipelined multi-FPGA
JPEG decoder core implementation in Table 7-8, the area overhead of the pipelined
implementation is smaller by 285 slices (7.8%) and the average maximum achievable
frequency (34.06 MHz) of the target devices is slightly lower compared to the non-
pipelined implementation (36.57 MHz). The non-pipelined multi-FPGA JPEG decoder
core has two SpCs to handle the inter-device data packets between the main JPEG core
module and external subprogram modules (described in Section 7.4.3) whereas inter-

device data packets is sent through an ExC with a 12-bit data width in the pipelined

implementation.

The area utilisation of some target devices in Table 7-8 are under 20% as the XC2S50E
device is the smallest device in the Spartan 2E FPGA family. If the MFI is targeted to a
target technology with even smaller and cheaper devices, then the logic resources of the

target FPGA devices can be utilised fully, making the design implementation more cost-

efficient.

T.B. Yee, 2007 Chapter 7: Practical synthesis 219

. No. of target Inter-device data Max Freq | Design latency
Implementation devices packets (Channel) Clock cycles (MHz) (ms)
pipelined 2 4096 (ExC 4) 271696 32.41 8.38
_ 4096 (ExC 4)
pipelined 3 4096 (ExC 5) 271698 34.02 7.99
4096 (ExC 2)
4096 (ExC 3)
pipelined 6 4096 (ExC 4) 795192 30.29 26.25
4096 (ExC 5)
8387 (SpC 1)
inali 37897 (SpC 1)
non-pipelined 2 20480 (SpC 2) 1496464 36.34 41.18
un-partitioned 1 - 178104 30.13 5.91

Table 7-9 Computation clock cycles and inter-device data transfers in the
pipelined multi-FPGA JPEG decoder core

The computation clock cycles for decoding the test image (LENA.jpg) with a pipelined
multi-FPGA JPEG decoder targeting two, three and six FPGAs are given in Table 7-9.
The performance of the un-partitioned (single-device) and non-pipelined multi-FPGA
JPEG decoder implementations (see Table 7-4) are given in the last two rows of Table 7-9
for comparison. The maximum frequencies of the pipelined MFIs are the maximum

achievable frequency of the slowest FPGA target device given in Table 7-8.

The computation clock cycles of the 2-device and 3-device pipelined MFIs are reduced to
a fraction (approximately 1/5) of the computation clock cycles needed by the non-
pipelined version. Subprogram modules are mapped to the same target device as their
parent calling modules in the 2- and 3-device pipelined MFIs and hence inter-device data
are sent via the explicit communication channels (ExCs) connecting the pipeline stages
which are targeted onto different devices. A multi-FPGA implementation with only
ExC(s) removes the delay associated with the arbitration and enabling of the tri-stated
shared subprogram communication channel, thus reducing the number of computation

clock cycles needed to decode the test image significantly.

The computation clock cycles of the 6-device pipelined MFT is reduced to almost half the
number of computation clock cycles in the non-pipelined implementation. The 6-device
pipelined MFT has two external subprogram modules (update _dc_diff and DQ_multiple)
transferring inter-device data packets through subprogram communication channel 1 (SpC
1) with a 19-bit wide data width. The 6-device pipelined MFI has a total of 795192

computation clock cycles and a design latency of 26.25 ms. It is possible for the non-

T.B. Yee, 2007 Chapter 7: Practical synthesis 220

pipelined implementation to reduce its latency by targeting a larger FPGA device as
discussed in Section 7.4.3. The 2-device non-pipelined MFI with two external subprogram
modules (given in Table 7-5) has a total of 629882 computation clock cycles, a maximum

achievable frequency of 36.34 MHz and a resulting design latency of 17.33 ms.

The area overheads and design latencies of the JPEG decoder core in the multi-FPGA
implementations (MFIs) are plotted on the graph shown in Figure 7-25. These results
show all three pipelined MFIs of the JPEG decoder core have better performances (in
terms of area overheads and design latencies) than the 2-device non-pipelined MFI. The 2-
and 3-device MFIs have area overheads of under 7% and design latencies of about 8 ms,
which is about 35% more than the design latency (5.91 ms) of the un-partitioned (single-

device) implementation.

16
J * 2-device pipelined MF]|
14 + 2 3-device pipelined MFI
< 12 - + B-device pipelined MFI
g 10 4 2-device non-pipelined MFI
_GC> * un-partitioned (single-device)
s 8
2
o a2
g °]
< 4
2 3
0 T ™ E
0 10 20 30 40 50
Design latency (ms)

Figure 7-25 Area overhead and design latency of pipelined and non-
pipelined multi-FPGA JPEG decoder core

The experiments in this section show the synthesis of a large complex behavioural design
(a behavioural JPEG decoder core with over 2000 lines of VHDL code, and MOODS
synthesis run time' of up to an hour) into a pipelined multi-FPGA system that can achieve

performances comparable to single-device implementations. Synthesis of a large

! This is the synthesis run time of a single-device implementation using the original version of MOODS

without the multi-FPGA synthesis enhancement.

T.B. Yee, 2007 Chapter 7: Practical synthesis 221

behavioural design into a multi-FPGA system poses difficult partitioning questions
(outlined in Section 1.1) that need to be answered. Solutions to how best to partition a
design are not immediately obvious to the user and this can be a challenge to the user if
the design contains a large number of modules which can be partitioned, leading to a large
number of possible partitioning solutions. The fully automated multi-FPGA synthesis
design flow in MOODS answers these questions by generating multi-FPGA systems with
asynchronous communications automatically and as transparently to the user as possible.

This reduces the design time and effort required by the user.

As with the examples in Chapter 6, the multi-FPGA synthesis run times of the JPEG
decoder remain similar to the run time of a single-device implementation using an original
version of MOODS without the multi-FPGA synthesis enhancements (i.e. run time

approximates for pipelined and single-device implementations are close to 1 hour).

7.5 Summary

The successful implementation of the multi-FPGA JPEG decoder project described in this
chapter has demonstrated the automated synthesis and optimisation of a large complex
system targeting a multi-FPGA implementation. MOODS, with the two-phase K-way
partitioning and design profiling, has partitioned and optimised a single large behavioural
VHDL design into a design with multiple partitions, and allowed the targeting of

heterogeneous FPGA devices in a multi-FPGA system.

The user now has the choice of targeting a large behavioural design onto multiple smaller
devices without having the need to get a larger and more costly target FPGA device if the
design requirements are met with a multi-FPGA system. The user would be able to use
existing FPGA devices or a number of FPGA development boards configured into a multi-
FPGA system for design prototyping. This saving in design cost and flexibility in using
existing development boards with a collection of smaller devices would not be possible

otherwise if a single large behavioural design is not partitioned.

T.B. Yee, 2007 Chapter 7: Practical synthesis 222

The automated insertion of asynchronous subprogram communication subsystems
(comprising of communication cells and arbiters) enables modules in independently
clocked domains to transfer data asynchronously through shared bi-directional subprogram
communication channels (SpCs). The pipelined multi-FPGA JPEG decoder demonstrated
the use of explicit communication channels (ExCs) connecting the pipelined stages in the
JPEG decoder core to improve the performance of the non-pipelined multi-FPGA
implementation. The asynchronous communication channels have built-in synchronisation
and self-scheduling properties which provide safe communication of inter-device data in
the multi-FPGA system. Therefore, the user can concentrate on the behaviour of the

design and not the complexities of how the target devices can safely communicate.

T.B. Yee, 2007 Chapter 8: Conclusions and future work 223

Chapter 8

Conclusions and future work

The partitioning enhancement to the MOODS synthesis system reported in this work has
provided a high-level synthesis system to synthesise and automatically generate a multi-
FPGA system composed of heterogeneous re-configurable devices from a single VHDL
description. The K-way partitioning algorithm and the communication subsystem
optimisation algorithm optimise the multi-FPGA system in terms of design latency across
FPGA boundaries, while satisfying the area and I/O constraints of the target devices.
Target device information (area in slices and number of I/Os) and design activity profile is
used to guide the partitioning algorithm are fed into MOODS. The integration of design

activity profile and the K-way partitioning algorithm are covered in Chapter 4.

During synthesis, explicit communication channels (ExCs) or subprogram communication
subsystems are automatically inserted into the multiple structural outputs of the design.
ExC provides a dedicated point-to-point communication channel connecting pipelined
stages in the pipelined multi-FPGA design. This supports the Communicating Sequential
Processes [111, 112] paradigm, which encourages modular design. Channel handshaking
ensures that the pipelines stages will work irrespective of the operation execution time of
individual stages in the asynchronous pipeline. The communication subsystem provides an
asynchronous subprogram communication channel (SpC) for transferring data packets
between modules which exist in different clock domain devices. This extends the multi-
FPGA synthesis capability to support partitioning of VHDL subprograms and functions in
the VHDL hierarchical structure (Section 2.2.3). Communication cells (transmit and
receive cells) and arbiters are the basic building elements of the subprogram
communication subsystem. Transmit and receive cells deal with the two-phase
handshaking of inter-device data across shared bi-directional communication channel(s)

and the communication channel is optimised with respect to the I/O constraint of the target

T.B. Yee, 2007 Chapter 8: Conclusions and future work 224

FPGA devices. Details on the generation of communication subsystem(s) and hardware

duplication are given in Chapter 5.

Experimental and simulation results of the pipelined multi-FPGA implementations of the
VHDL examples in Chapter 6 and the pipelined multi-FPGA JPEG decoder in Chapter 7
show that the pipelined implementations only incur a fraction of the area overheads and
design latencies compared to the non-pipelined multi-FPGA versions. Area overhead and
the design latency are used as the metrics for evaluating the quality of the multi-FPGA
implementations in these chapters. System throughput is another possible metric as
throughput measures the synthesised design’s ability to handle a high volume of
transactions. However, in many applications, design latency is more suitable as it
measures the time it takes the synthesised design to perform any given transaction from
start to finish. The area overheads for most of the pipelined multi-FPGA implementations
are under 10% and the lowest area overhead of 3% for the delay-optimised multi-FPGA
pipelined implementation of the inverse discrete cosine transform example; together with
increase in the average maximum achievable frequencies of target devices in all the
pipelined examples including the pipelined JPEG decoder. In the case of the quadratic
equation solver example, the design latency of the pipelined implementation is lower than

the un-partitioned single-device implementation.

Results presented in Chapters 6 and 7 show that pipelined multi-FPGA systems can be
synthesised to achieve performances comparable to single-device implementations. With
the multi-FPGA synthesis enhancement, it is now possible to synthesise a large
behavioural design and target the partitioned design onto multiple smaller (existing)
devices without having the need to get a larger and more costly target FPGA device if the
design requirements are met with a multi-FPGA system. This saving in design cost and
flexibility in using existing development boards with a collection of smaller devices would

not be possible otherwise if a single large behavioural design is not partitioned.

The multi-FPGA synthesis run times remain virtually unaffected for all the VHDL
examples in Chapter 6 and the JPEG decoder core in Chapter 7 compared to the run times
of single-device implementations. The multi-FPGA synthesis enhancement, with the fast

time-to-market, efficient and fast design space exploration advantages of a high-level

T.B. Yee, 2007 Chapter 8: Conclusions and future work 225

synthesis environment, enables the rapid realisation of multi-FPGA systems with

asynchronous communications.

The asynchronous communication channels in the multi-FPGA systems offers a number of

benefits to the user:

e The first benefit is the option to trade off performance in I/O limited target devices
(i.e. allows multiple external subprogram modules to share a common channel and
sending of multiple data packets over an asynchronous subprogram

communication channel of a smaller data width).

e The second benefit is the temporal independence between target devices as each
board level target device is viewed an independent locally clocked processing unit
with asynchronous communication channels, reducing clock skew problems in a

large design.

e The asynchronous communication channels have built-in synchronisation and self-
scheduling properties which provide safe communication of inter-device data in
the multi-FPGA system. Therefore, the user can concentrate on the behaviour of
the design and not the complexities of how the target devices can safely

communicate.

The work presented together with a hardware demonstrator has demonstrated a fully
functional behavioural multi-FPGA synthesis tool. To the best of our knowledge, high-
level synthesis of multi-FPGA systems with asynchronous communication channels
crossing clock domains is explicitly automated for the first time. There is scope for
improvement in the currently implemented system, both with the multi-FPGA partitioning
process and with the asynchronous communication mechanism. A number of suggested

extensions are described within this chapter, which could form the basis for future work.

T.B. Yee, 2007 Chapter 8: Conclusions and future work 226

8.1 Future work

Experience gained from using MOODS and extending the existing MOODS synthesis
system for multi-FPGA synthesis has brought to light some of the limitations of the multi-

FPGA synthesis in MOODS and several extensions remain to be addressed:

8.1.1 Shared memory elements

The multi-FPGA synthesis enhancement in MOODS is not able to handle access of shared
memory blocks such as ROM and RAM across target devices. Currently, the ICODE
process and subprogram modules accessing memory elements declared in the VHDL
architecture have to be mapped to the same target partition (device) as the program
module (Section 2.6.2). This restriction may result in a larger target device for the
partition with the shared memory block and reducing the configurations of target devices
in the multi-FPGA implementation. However, the multi-FPGA synthesis tool does support
memory blocks (ROM and RAM) Jocal to the process or subprogram modules as these
memory elements are declared within the scope of the VHDL process or subprogram. A
shared memory controller which handles the data coherence and resource arbitration is a
possible extension to support shared memory in a multi-FPGA system. This memory
controller can be mapped to one of the existing target devices in the synthesised multi-
FPGA design or a separate target device with a large memory element. The downside to
this extension is the Address/Data lines to the memory elements and the control signals
(from target devices) to the memory controller would utilise more I/O resources of target

devices and the design latency is likely to increase due to inter-device memory accesses.

8.1.2 Explicit communication channel structures

The asynchronous explicit communication channels connecting the implied pipeline stages
in the multi-FPGA implementation can be extended further to allow more complex
channels than the unidirectional point-to-point structure described in this work. Linear
pipeline stages have only a single input and single output channel, whereas non-linear

pipeline stages can have multiple input and output channels. A join is a pipeline stage with

T.B. Yee, 2007 Chapter 8: Conclusions and future work 227

multiple input channels and a single output channel. A fork is a pipeline stage with one
input channel and multiple output channels. Non-linear asynchronous pipeline structures
[159], including join, fork, and more complex configurations in which channels are
conditionally read and /or written can be used to build more complex systems. Another
possible configuration is to create an explicit communication channel that is able to send
and/or receive multiple packets of data determined by the data width of the channel.
Trade-offs between latency, area, and I/0 resources, taking into account the design activity
profile of modules in the design would be performed by the synthesis tool to determine the

optimum data width of the channel.

8.1.3 Integrating partitioning exploration with the MOODS
optimisation process

The two-phase partitioning exploration is currently not integrated with the MOODS
optimisation process but it does allow the user to re-run the MOODS optimisation stage

after examining the partitioned design. It is possible to relax or tighten the schedule of the

modules and iteratively improve the multi-FPGA solution using the current partitioning
solution to guide the MOODS optimisation process. A similar approach in SPARCS
(Section 3.3.2) performs an iterative area/latency exploration of blocks of operations
where the schedule of a block is either relaxed or tightened such that the design constraints

are best satisfied.

The two-phase K-way partitioning approach (Section 4.4.1) in MOODS performs K-way
partitioning on the optimised ICODE modules and optimises the subprogram
communication channel(s) if the design contains ICODE subprogram modules. The main
aim of the K-way partitioning algorithm is to minimise the number of inter-device (or
cross-domain) data transfers by grouping modules and subprogram modules with their
corresponding calling modules, taking into consideration the utilisation of device area and
1/0s. The MOODS synthesis core performs scheduling, allocation and module binding
according to the user-defined optimisation objectives. MOODS performs multiple simple
optimisation transformations, adjusting the scheduling of the control state nodes in the

control path, and the allocation and binding of data path nodes in the data path.

T.B. Yee, 2007 Chapter 8: Conclusions and future work 228

ICODE process modules have their own control paths controlling the data path units
within the module and explicit communication channels introduce an implied pipeline
structure whereby channels connect the process modules (pipelines stages) in a design.
Channel handshaking ensures that the pipelines stages will work irrespective of the
operation execution time of individual stages in the asynchronous pipeline. This allows the
schedule of a process module (pipeline stage) to be either relaxed or tightened such that
the number of external modules are reduced, hence reducing the number of inter-device
communications. Relaxing (increasing) the schedule length could reduce the area of a

partition and increase the latency of the pipeline stage and tightening the schedule works

vice versa.

8.1.4 Target Architecture:

At present, the MOODS multi-FPGA synthesis system targets a multi-FPGA system at the
board-level. This board-level architecture allows an arbitrary number of heterogeneous
development boards to be connected up to form a multi-FPGA system. The K-way
partitioning algorithm uses the area and I/O information for each target device in the
assignment of modules to K-partitions, where K is the number of target development
boards available. Using the same target device information, the partitioned structural
output can be targeted to a single board with multiple re-configurable (FPGA) devices,
having fixed interconnects between these devices. The FPGA devices can be treated as
individual locally clocked processing units communicating asynchronously using the
communication channels described in Chapter 4, or these devices can be clocked
synchronously from a single global system clock. For a single global clock architecture,
the double buffer synchronisers used for data synchronisation over multiple clock domains
are no longer required in the communication cells since data communications between
devices are now in a single clock domain. It is possible to target a partition design onto
multiple boards, each having a single re-configurable device, or a single board with

multiple re-configurable devices, or a combination of both as illustrated in Figure 8-1.

Programmable interconnection resources or Field-Programmable Interconnect Devices

(FPIDs) are commonly found in multi-FPGA system to provide flexible routing

T.B. Yee, 2007 Chapter 8: Conclusions and future work 226

capabilities between the FPGA devices. One of the most commonly used routing
architectures is the partial crossbar architecture [92, 160]. The programmable interconnect
devices can be used to connect partitions where high performance is required. A target
architecture with FPIDs, together with the I/O multiplexing packet-based communication
channels might improve the overall performance of the generated multi-FPGA system.
This can be formulated as an optimisation problem, where trade-offs between performance
and /O utilisation are performed, whilst satisfying design constraints such the number of

FPIDs, programmable pins and FPGA area and I/Os available.

] Development board with a single re-
| configurable chip (FPGA).

Standard {DE cable

Fixed inter-device i

interconnects

Backplane bus

Development board with multiple re-
configurable chips (FPGAs)

¢) Multi-FPGA board in a

a) Multi-board FPGA
system multi-board system

b) Multi-FPGA board

Figure 8-1 Target architectures for multi-FPGA system

Utilising FPIDs in the target multi-FPGA system, the MOODS multi-FPGA synthesis
system can target a flexible and modular architecture, which would provide a good
platform for prototyping and allow easy extension of the target architecture to suit the size

of the synthesised design.

T.B. Yee, 2007 References 230

References

('S

Johannes, F.M., "Partitioning of VLSI circuits and systems", Proceedings of the

Design Automation Conference, 1996, pp. 83-87.

Wolf, W., "A decade of hardware/software codesign", Computer, Vol. 36, No. 4,
April 2003, pp. 38-43.

"International Technology Roadmap for Semiconductors (2004 Update) - Design",
2004. http://public.itrs.net

Shukla, S.K.- Pixley, C.- Smith, G., "Guest Editors' Introduction: The True State of
the Art of ESL Design", Design & Test of Computers, IEEE, Vol. 23, No. 5, May
2006, pp. 335-337.

Bacchini, F., et al., "Building a common ESL design and verification methodology
- is it just a dream?" Proceedings of the Design Automation Conference

(DAC2006), 2006, pp. 370-371.

"Catapult'™ C Synthesis", Mentor Graphics, 2004. www.mentor.com

"Bluespec Compiler", Bluespec Inc., 2004. www.bluespec.com

"Cynthesizer", Forte Design Systems, 2004. www.forteds.com

"IEEE Standard VHDL Reference Manual, IEEE Std 1076-2002", IEEE, 2002.

http://public.itrs.net
http://www.mentor.com
http://www.bluespec.com
http://www.forteds.com

T.B. Yee, 2007 References 231

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

"IEEE Standard VHDL Reference Manual, IEEE Std 1076-1987", IEEE, 1987.

"IEEE Standard VHDL Reference Manual, IEEE Std 1076-1993", IEEE, 1993.

Rushton, A., "VHDL for Logic Synthesis", 2™ ed, John Wiley and Sons, 1999,
ISBN: 047198325X.

Yarom, I.- Glasser, G., "SystemC Opportunities in Chip Design Flow",
Proceedings of the 11th IEEE International Conference on Electronics, Circuits

and Systems (ICECS 2004), 2004, pp. 507-510.

"IEEE Standard SystemC Language Reference Manual, IEEE Std 1666-2005",
IEEE, 2005.

Grotker, T, et al., "System Design with SystemC", Kluwer Academic Publishers,
2002, ISBN: 1402070721.

"IEEE Standard Description Language Based on the Verilog Hardware Description
Language, IEEE Std 1364-1995", 1995.

"IEEE Standard Description Language Based on the Verilog Hardware Description
Language, IEEE Std 1364-2001", IEEE, 2001.

Sutherland, S., "The IEEE Verilog 1364-2001 Standard - What's New, and Why
You Need It", Proceedings of the 9th Annual International HDL Conference and
Exhibition (HDLCon2000), 2000.

Fitzpatrick, T., "System Verilog for VHDL Users ", Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition (DATE'04), 2004, pp.

1334-1339 (Vol.2).

T.B. Yee, 2007 References 232

20. Rich, D.I, "The evolution of systemverilog", IEEE Design & Test of Computers,
Vol. 20, No. 4, July-August 2003, pp. 82 - 84.

21. "IEEE Standard VHDL Reference Manual, IEEE Std 1076a-2000", IEEE, 2000.

22. Aho, A.V.- Ullman, D.D., "Principles of Complier Design", Addison-Wesley,
1977, ISBN: 0-201-00022-9.

23. Gajski, D.D.- Ramachandran, L., "Introduction to High-Level Synthesis", IEEE
Design & Test of Computers, Vol. 11, No. 4, October-December 1994, pp. 44-54.

24. Eles, P., etal., "Compiling VHDL into a high-level synthesis design
representation”, Proceedings of the EURO-DAC 92: European Design Automation
Conference, 1992, pp. 604-609.

25. Eles, P.- Kuchcinski, K.- Peng, Z., "System Synthesis with VHDL", Kluwer
Academic Publishers, 1998, ISBN: 0-79238-082-7.

26. Murata, T., "Petri Nets: Properties, Analysis and Applications", Proceedings of the
IEEE, Vol. 77, No. 4, April 1989, pp. 541-580.

27. Walker, R.A.- Chaudhuri, S., "Introduction to the Scheduling Problem", IEEE
Design & Test of Computers, Vol. 12, No. 2, June 1995, pp. 60-69.

28. Camposano, R., "From Behavior to Structure: High-Level Synthesis", IEEE
Design & Test of Computers, Vol. 7, No. 5, October 1990, pp. 8-19.

29. Parker, A.C.- Pizarro, J.T.- Mlinar, M., "MAHA: a program for datapath
synthesis", Proceedings of the Design Automation Conference, 1986, pp. 461-466.

[S]

T.B. Yee, 2007 References 23

30. Paulin, P.G.- Knight, J.P., "Force-Directed Scheduling for the Behavioral
Synthesis of ASIC's", IEEE transaction on Computer Aided Design, Vol. 8, No. 6,
June 1989, pp. 661-679.

31. Peng, 7Z.- Kuchcinski, K., "Automated Transformation of Algorithms into Register-
Transfer Level Implementations", IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, Vol. 13, No. 2, February 1994, pp. 150-166.

32. Williams, A.C., "A Behavioural VHDL Synthesis System using Data Path
Optimisation", PhD Thesis, University of Southampton, 1997.

33. Paulin, P.G.- Knight, J.P., "Scheduling and binding algorithms for high—leve}
synthesis", Proceedings of the Design Automation Conference, 1989, pp. 1-6.

34, Kurdahi, F.J.- Parker, A.C., "REAL: a program for REgister ALlocation",
Proceedings of the Design Automation Conference, 1987, pp. 210-215.

35. Baker, K.R.- Currie, A.J.- Nichols, K.G., "Multiple Objective Optimisation in a
Behavioural Synthesis System", IEE Proceedings - G, Vol. 140, No. 4, August
1993, pp. 253-260.

36. Williams, A.C.- Brown, A.D.- Zwolinski, M., "Simultaneous optimisation of
dynamic power, area and delay in behavioural synthesis", IEE Proceedings on

Computers and Digital Techniques, Vol. 147, No. 6, November 2000, pp. 383-390.

37. De Micheli, G., "Synthesis and Optimization of Digital Circuits", McGraw Hill
International Editions, 1994, ISBN: 0070163332.

38. McFarland, M.C.- Parker, A.C.- Camposano, R., "Tutorial on High-Level
Synthesis", Proceedings of the 25th ACM/IEEE Design Automation Conference,
1988, pp. 330-336.

T.B. Yee, 2007 References 234

40.

41.

42.

44,

45.

46.

47.

48.

"MOODS Internals v1.0", University of Southampton, July 2001.

Camposano, R.- Saunders, L.F.- Tabet, R M., "VHDL as input for high-level
synthesis", IEEE Design & Test of Computers, Vol. 8, No. 1, March 1991, pp. 43-
49,

Ramachandran, L., et al., "Semantics and synthesis of signals in behavioral
VHDL", Proceedings of the EURO-DAC 92: European Design Automation
Conference, 1992, pp. 616-621.

"MOODS VHDL Style Guide Version 1.2 (alpha)", LME Design Automation Ltd.,
August 2001.

Kirkpatrick, S.- Gelatt, C.D.- Vecchi, M.P., "Optimization by Simulated
Annealing", Science, Vol. 220, No. 4598, May 1983, pp. 671-680.

Metropolis, N., et al., "Equation of State Calculations by Fast Computing
Machines", Journal of Chemical Physics, Vol. 21, No. 6, June 1953, pp. 1087-
1092.

Hauck, S., "The roles of FPGAs in reprogrammable systems", Proceedings of the

IEEE, Vol. 86, No. 4, April 1998, pp. 615-638.

"The Programmable Logic Data Book", Xilinx Inc, 2000.

Cook, S.A., "The complexity of theorem-proving procedures”, Proceedings of the

Third Annual ACM symposium on Theory of computing, 1971, pp. 151 - 158.

Sherwani, N.A., "Algorithms for VLSI Physical Design Automation", 3" ed,
Kluwer Academic Publishers, 1999, ISBN: 0792383931.

T.B. Yee, 2007 References 235

49, Sait, S.M.- Youssef, H., "VLSI Physical Design and Automation: Theory and
Practice", McGraw-Hill, 1994, ISBN: 0-07-707742-3.

50. Kernighan, B.W.- Lin, S., "An Efficient Heuristic Procedure for Partitioning of
Electrical Circuits", Bell Systems Technical Journal, Vol. 49, No. 2, February
1970, pp. 291-307.

51. Fiduccia, C.M.- Mattheyses, R.M., "A Linear-Time Heuristic for Improved
Network Partitions", Proceedings of the Design Automation Conference, 1982, pp.

241-247.

52. Krishnamurthy, B., "An Improved Min-Cut Algorithm For Partitioning VLSI
Networks", IEEE Transaction on Computers, Vol. C-33, No. 5, May 1984, pp.
438-446.

53. Huang, D.J.- Kahng, A.B., "Multi-way System Partitioning into a Single Type or
Multiple Types of FPGA", Proceedings of the International Symposium on Field
Programmable Gate Arrays, 1995, pp. 104-145.

54. Hauck, S.- Borriello, G., "An Evaluation of Bipartitioning Techniques",
Proceedings of the Chapel Hill Conference on Advanced Research in VLSI, 1995,

pp. 383-402.

55. Cong, J.- Wu, C., "Global Clustering-Based Performance-Driven Circuit
Partitioning", Proceedings of the International Symposium on Physical Design,

2002, pp. 149-154.

56. Cong, J.- Romesis, M.- Xie, M., "Optimality, Scalability and Stability Study of
Partitioning and Placement Algorithms", Proceedings of the International

Symposium on Physical Design, 2003, pp. 88 - 94,

T.B. Yee, 2007 References 236

57. Dutt, S.- Deng, W., "VLSI Circuit Partitioning by Cluster-Removal using Iterative
Improvement Techniques”, Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, 1996, pp. 194-200.

58. Kuznar, R.- Brglez, F.- Zajc, B., "Cost Minimization of Partitions into Multiple
Devices", Proceedings of the Design Automation Conference, 1993, pp. 315-320.

59. Kuznar, R.- Brglez, F., "PROP: A Recursive Paradigm for Area-Efficient and
Performance Oriented Partitioning of large FPGA Netlists", Proceedings of the
IEEE/ACM International Conference on Computer Aided Design, 1995, pp. 644-

649.

60. Holland, J.H., "Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence",
Reprint ed, 1992, ISBN: 0262581116.

61. Vahid, F.- Gajski, D.D., "Clustering for improved system-level functional

partitioning", Proceedings of the Eighth International Symposium on System

Synthesis, 1995, pp. 28-33.

62. Vahid, F.- Gajski, D.D., "Closeness metrics for system-level functional
partitioning", Proceedings of the EURO-DAC 95: European Design Automation
Conference, 1995, pp. 328-333.

63. Vahid, F.- Le, T.D.M.- Hsu, Y.C., "Functional Partitioning Improvements over
Structural Partitioning for Packaging Constraints and Synthesis-tool Performance”,
ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 2,

April 1998, pp. 181-208.

T.B. Yee, 2007 References 237

64.

65.

66.

67.

68.

69.

70.

Vahid, F., "A Three-Step Approach to the Functional Partitioning of Large
Behavioral Processes", Proceedings of the International Symposium on System

Synthesis, 1998, pp. 152-157.

Vahid, F., "Procedure cloning: a transformation for improved system-level
functional partitioning", ACM Transactions on Design Automation of Electronic

Systems, Vol. 4, No. 1, January 1999, pp. 70-96.

Kumar, N.- Srinivasan, V.- Vemuri, R., "Hierarchical Behavioural Partitioning for
Multicomponent Synthesis", Proceedings of the European Design Automation

Conference with EURO-VHDL, 1996, pp. 212-219.

Lakshmikanthan, P, et al., "Behavioral Partitioning with Synthesis for Multi-
FPGA Architectures under Interconnect, Area, and Latency Constraints",
Proceedings of the 7th Reconfigurable Architectures Workshop (RAW 2000),
2000, pp. 924-931.

Govindarajan, S., et al., "A Technique for Dynamic High-level Exploration During
Behavioral Partitioning for Multi-device Architectures", Proceedings of the 13th

International Conference on VLSI Design, 2000, pp. 212-219.

Fang, W.-J.- Wu, A.C.-H., "Performance-Driven Multi-FPGA Partitioning Using
Functional Clustering and Replication", Proceedings of the 35th Design

Automation Conference (DAC), 1998, pp. 283-286.

Fang, W.-J.- Wu, A.C.-H., "Integrating HDL Synthesis and Partitioning for Multi-
FPGA Designs", IEEE Design & Test of Computers, Vol. 5, No. 2, April-June
1998, pp. 65-72.

T.B. Yee, 2007 References 238

71.

72.

74.

75.

76.

77.

78.

79.

Fang, W.-J.- Wu, A.C.-H., "Multi-Way FPGA Partitioning by Fully Exploiting
Design Hierarchy", ACM Transactions on Design Automation of Electronic

Systems (TODAES), Vol. 5, No. 1, January 2000, pp. 34-50.

Duncan, A.A.- Hendry, D.C.- Gray, P., "An Overview of the COBRA-ABS High
Level Synthesis System for Multi-FPGA Systems", Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, 1998, pp. 106-115.

Krupnova, H.- Abbara, A.- Saucier, G., "A hierarchy-driven FPGA partitioning
method", Proceedings of the Design Automation Conference, 1997, pp. 522-525.

Kennings, A.- Frazer, M., "Circuit clustering and its effects on a multi-way circuit
partitioning heuristic", Proceedings of the IEEE 1997 Canadian Conference on

Electrical and Computer Engineering, 1997, pp. 15-18.

Vemuri, R., "Genetic Algorithms for Partitioning, Placement, and Layout

Assignment for Multi-chip Modules", PhD Thesis, University of Cincinnati, 1994,

Lawrence, D., "Handbook of genetic algorithms", Van Nostrand Reinhold, New

York, 1991, ISBN: 0442001738.

Pratibha, P., et al., "An Evolutionary Algorithm for Automatic Spatial Partitioning
in Reconfigurable Environments", Proceedings of the Third Mexican International

Conference on Artificial Intelligence, 2004, pp. 735-745.

Hidalgo, J.I., et al., "Multi-FPGA Systems Synthesis by Means of Evolutionary
Computation", Proceedings of the Genetic and Evolutionary Computation

Conference, 2003, pp. 2109-2120.

"Design Pilot™", Aptix Cor oration, 2003. www.aptix.com
g p P

http://www.aDtix.com

T.B. Yee, 2007 References 239

80.

81.

82.

83.

84.

85.

86.

87.

88.

"Auspy Partition System II", Auspy Development Inc., 2000. www.auspy.com

"Certify", Synplicity, 2003. www.synplicity.com

Duncan, A.A.- Hendry, D.C.- Gray, P., "The COBRA-ABS high-level synthesis
system for multi-FPGA custom computing machines", IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, February 2001, pp. 218-
223.

Ouaiss, I, et al., "An Integrated Partitioning and Synthesis System for
Dynamically Reconfigurable Multi-FPGA Architectures”, Proceedings of the Sth
Reconfigurable Architectures Workshop (RAW), 1998, pp. 31-36.

Kumar, N., "High-Level VLSI Synthesis For Multichip Designs", PhD Thesis,

University of Cincinnati, 1994.

Fang, W.-J.- Wu, A.C.-H., "A hierarchical functional structuring and partitioning
approach for multiple-FPGA implementations", Proceedings of the International

Conference on Computer-Aided Design (ICCAD), 1996, pp. 638 - 643.

Gajski, D.D., et al., "SpecSyn: an environment supporting the specify-explore-
refine paradigm for hardware/software system design", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 6, No. 1, March 1998, pp. 84-100.

Vahid, F., "Partitioning sequential programs for CAD using a three-step approach”,
ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3,

July 2002, pp. 413-429.

Bringmann, O.- Menn, C.- Rosenstiel, W., "Target Architecture Oriented High-
Level Synthesis for Multi-FPGA Based Emulation"”, Proceedings of the Design,
Automation and Test in Europe (DATE), 2000, pp. 326-332.

http://www.ausDV.com
http://www.svnplicitv.com

T.B. Yee, 2007 References 240

89. Duncan, A.A.- Hendry, D.C., "High-level synthesis of DSP datapaths by global
optimisation of variable lifetimes", IEE Proceedings on Computers and Digital

Techniques, Vol. 142, No. 3, May 1995, pp. 215-224.

90. Duncan, A.A.- Hendry, D.C., "Architectural Issues for High Level Synthesis of
DSP Algorithms onto Multiple FPGAs", Proceedings of the 4th Reconfigurable
Architectures Workshop (RAW), 1997, pp. 73-76.

91. Jain, S.C.- Kumar, S.- Kumar, A., "Evaluation of various routing architectures for
multi-FPGA boards", Proceedings of the Thirteenth International Conference on

VLSI Design, 2000, pp. 262-267.

92, Khalid, M.A.S.- Rose, J., "A novel and efficient routing architecture for multi-
FPGA systems", IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 8, No. 1, February 2000, pp. 30-39.

93. Hauck, S., "Multi-FPGA systems", PhD Thesis, University of Washington, 1995.

94. Babb, J., et al., "Logic emulation with virtual wires", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 6, June
1997, pp. 609-626.

95. Vahid, F., "I/O and Performance Tradeoffs with the FunctionBus during Multi-
FPGA Partitioning", Proceedings of the International Symposium on Field-

Programmable Gate Arrays, 1997, pp. 27-34.

96. Chambers, P., "The Ten Commandments of Excellent Design", in Electronic

Design, 1997. pp. 33-40.

97. "Application Note XAPP077 - Metastability Considerations", Xilinx Inc, 1997.

T.B. Yee, 2007 References 241

98.

99.

100.

101.

102.

104.

105.

106.

107.

"Application Note XAPP094 - Metastable Recovery", Xilinx Inc, 1997.

Clark, 1.G., Metastability Bibliography, 1997-2004.

"Application Note XAPP094 - Metastable Recovery in Vertex-1I Pro FPGAs",
Xilinx Inc, 2005.

Beerel, P.A., "Asynchronous circuits: an increasingly practical design solution",
Proceedings of the International Symposium on Quality Electronic Design, 2002,

pp. 367-372.

Peeters, A.M.G., "Single-Rail Handshake Circuits", PhD Thesis, Eindhoven
University of Technology, 1996.

Verhoeft, T.P., Encyclopedia of Delay-Insensitive Systems, 1995-1998, Eindhoven
University of Technology.

Sutherland, L.E., "Micropipelines", Communications of the ACM, Vol. 32, No. 6,
June 1989, pp. 720-738.

Woods, J.V., etal.,, "AMULET1: An Asynchronous ARM Microprocessor", IEEE
transactions on computers, Vol. 46, No. 4, April 1997, pp. 385-398.

Cummings, C.E., "Simulation and Synthesis Techniques for Asynchronous FIFO

Design", Proceedings of the Synopsys Users Group Conference (SNUG), 2002.

Cummings, C.E., "Simulation and Synthesis Techniques for Asynchronous FIFO
Design with Asynchronous Pointer Comparisons", Proceedings of the Synopsys

Users Group Conference (SNUG), 2002.

T.B. Yee, 2007 References 242

108. "DS232(v0.2) - Asynchronous FIFO v5.1", Xilinx Inc, March 2003.

109. Sacker, M., "Asynchronous and Multiple Clock Domain Synthesis for Large Scale
Systems", PhD Thesis, University of Southampton, 2005.

110. Saifhashemi, A.- Beerel, P.A., "High Level Modeling of Channel-Based
Asynchronous Circuit Using Verilog", Proceedings of the Communicating Process

Architectures (CPA2005), 2005, pp. 275-287.

111. Hoare, C.A.R., "Communicating Sequential Processes", Communications of the

ACM, Vol. 21, No. 8, August 1978, pp. 666-677.

112. Hoare, C.A.R., "Communicating Sequential Processes", Prentice-Hall, 1985,

ISBN: 0131532715.

113. Self, R.P.- Fleyry, M.- Downton, A.C., "Design methodology for construction of
asynchronous pipelines with Handel-C", IEE Proceedings - Software, Vol. 150,
No. 1, February 2003, pp. 39-47.

114. Michalewicz, Z.- Fogel, D.B., "How to Solve It: Modern Heuristics", 1st ed,
Springer-Verlag, 2000, ISBN: 3540660615.

115. Harel, D., "Algorithms: The spirit of computing”, 2nd ed, Addison-Wesley, 1992,
ISBN: 0201504014.

116. Saito, H., et al., "Design of Asynchronous Controllers with Delay Insensitive
Interface", IEICE TRANS. FUNDAMENTALS, Vol. E85-A, No. 12, December
2002, pp. 2577-2585.

T.B. Yee, 2007 References 243

117.

118.

119.

120.

121.

122.

123.

124.

Gasteier, M.- Glesner, M., "Bus-based communication synthesis on system level",
ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol.
4, No. 1, January 1999, pp. 1-11.

Gutberlet, P.- Rosenstiel, W., "Specification of Interface Components for
Synchronous Data Paths", Proceedings of the 7th international symposium on

system synthesis, 1994, pp. 134-139.

Madsen, J.- Hald, B., "An Approach to Interface Synthesis", Proceedings of the 8th
International Symposium of System Synthesis, 1995, pp. 16-21.

Svantesson, B.- Kumar, S.- Hemani, A., "A methodology and algorithms for
efficient interprocess communication synthesis from system description in SDL",
Proceedings of the Eleventh International Conference on VLSI Design, 1997, pp.
78-84.

Kishinevsky, M.- Cortadella, J.- Kondratyev, A., "Asynchronous interface
specification, analysis and synthesis", Proceedings of the 1998 Design and

&

Automation Conference, 1998, pp. 2-7.

Hauck, S., "Asynchronous design methodologies: an overview", Proceedings of the

IEEE, Vol. 83, No. 1, January 1995, pp. 69-93.

Yun, K.Y.- Dill, D.L., "Unifying synchronous/asynchronous state machine
synthesis", Proceedings of the 1993 IEEE/ACM International Conference on
Computer-Aided Design, 1993, pp. 255-260.

Bardsley, A.- Edwards, D.A., "The Balsa Asynchronous Circuit Synthesis
System", Proceedings of the Forum on Design Languages (FDL2000), 2000, pp.

37-44.

T.B. Yee, 2007 References 244

125.

126.

127.

128.

129.

130.

131.

132.

Jacobson, H., et al., "High-Level Asynchronous System Design using the ACK
Framework", Proceedings of the Sixth International Symposium on Advanced

Research in Asynchronous Circuits and Systems (ASYNC), 2000, pp. 93-103.

Edwards, D.A.- Tom, W.B., "Design, Automation and Test for Asynchronous
Circuits and Systems - Async Tool Survey (3rd edition)", 2004.

Gil, D., et al., "Adaptation and Automation of the FPGA design Flow for
asynchronous circuit implementation", Proceedings of the International Conference

on Automation, Control and Instrumentation, 2005.

Benini, L.- De Micheli, G., "Networks on chips: a new SoC paradigm", Computer,
Vol. 35, No. 1, January 2002, pp. 70-78.

Bainbridge, W.J., "Asynchronous System-on-Chip Interconnect”, PhD Thesis,
University of Manchester, 2000.

Muttersbach, J.- Villiger, T.- Fichtner, W., "Practical design of globally-
asynchronous locally-synchronous systems", Proceedings of the Sixth International
Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC 2000), 2000, pp. 52-59.

Chapiro, D.M., "Globally asynchronous locally synchronous systems", PhD
Thesis, Stanford University, 1984,

Yun, K.Y.- Dooply, A.E., "Pausible Clocking Based Heterogeneous Systems",
IEEE Transactions on VLSI Systems, Vol. 17, No. 4, December 1999, pp. 482-

487.

T.B. Yee, 2007 References 245

135.

136.

138.

139.

140.

141.

Bormann, D.S.- Cheung, P.Y.K., "Asynchronous wrapper for heterogeneous
systems”, Proceedings of the International Conference on Computer Design (ICCD

'97), 1997, pp. 307-314.

Muttersbach, J., et al., "Globally-asynchronous locally-synchronous architectures
to simplify the design of on-chip systems", Proceedings of the Twelfth Annual

IEEE International ASIC/SOC Conference, 1999, pp. 317-321.

Royal, A.- Cheung, P.Y K., "Globally Asynchronous Locally Synchronous FPGA
Architectures”, Proceedings of the Field Programmable Logic and Application,

2003, pp. 355-364.

"3D Synthesis System Version 3.13", Kenneth Y. Yun, University of California,
San Diego, 1999.

Yun, K.Y.- Dill, D.L., "Automatic synthesis of extended burst-mode circuits: part 1
(specification and hazard-free implementations)", IEEE Transactions on CAD,

Vol. 18, No. 2, February 1999, pp. 101-117.

Yun, K.Y.- Dill, D.L., "Automatic synthesis of extended burst-mode circuits: part
IT (automatic synthesis)", IEEE Transactions on CAD, Vol. 18, No. 2, February
1999, pp. 118-132.

Cummings, C.E., "Coding And Scripting Techniques For FSM Designs With
Synthesis-Optimized, Glitch-Free Outputs", Proceedings of the Synopsys Users
Group Conference (SNUG), 2000.

"Spartan-I1 2.5V FPGA Family: Complete Data Sheet (DS001)", Xilinx Inc, 2003.

"Virtex ™ 2.5V Field Programmable Gate Arrays (DS003)", Xilinx Inc, 2001.

T.B. Yee, 2007 References 246

142.

144.

145.

146.

147.

148.

149.

150.

151.

152.

"Application Note XAPP611 - Video Compression Using IDCT", Xilinx Inc, 2002.

Bhaskaran, V.- Konstantinides, K., "Image and Video Compression Standards:
Algorithms and Architectures"”, ond ed, Kluwer Academic Publishers, 1997, ISBN:
0792399528.

"Data Encryption Standard (DES)", FIPS PUB 46-3, 1999,

Daemen, J.- Rijmen, V., "The Design of Rijndael: AES - The Advanced
Encryption Standard", 1st ed, Springer, 2002, ISBN: 3540425802.

"Advanced Encryption Standard (AES)", FIPS 197, 2001.

"Digilent D2-SB System Board Reference Manual", Digilent Inc., 2003.

"Digilent DIO4 Peripheral Board Reference Manual", Digilent Inc., 2003.

Buchanan, W., "Computer Busses: Design And Application”, CRC Press, 2000,
ISBN: 0849308259.

"ISO/IEC 10918-1 | ITU-T Recommendation T.81. Digital compression and
coding of continuous-tone still images - part 1: Requirements and guidelines."

International Organization for Standards (ISO), 1993.

Wallace, G.K., "The JPEG Still Picture Compression Standard", Communications
of the Association for Computing Machinery, Vol. 34, No. 4, April 1991, pp. 30-
44,

Pennebaker, W.B.- Mitchell, J.L., "JPEG: Still Image Data Compression
Standard”, 1st ed, Kluwer Academic Publishers, 1992, 0442012721.

T.B. Yee, 2007 References 247

153.

154.

155.

156.

157.

158.

159.

160.

161.

"JPEG File Interchange Format (JFIF)", C-Cube Microsystems; 1992.
"Application Note XAPP621 - Variable Length Coding", Xilinx Inc, 2003.

Ahmed, N.- Natarajan, T.- Rao, K.R., "Discrete Cosine Transform", IEEE
Transaction on Computers, Vol. C-23, No. 1, January 1987, pp. 90-93.

Chapman, A.M., "VHDL Communications Library Guide ver1.0", User guide,
University of Southampton, 2005.

"IrfanView (Version 3.95)", Irfan Skiljan, 2004. www.irfanview.com

"Spartan-11E 1.8V FPGA Family: Complete Data Sheet (DS077)", Xilinx Inc,
2003.

Ozdag, R.O., et al., "High-speed non-linear asynchronous pipelines”, Proceedings

of the Design, Automation and Test in Europe (DATE), 2002, pp. 1000-1007.

Kim, C.- Shin, H., "A performance-driven logic emulation system: FPGA network
design and performance-driven partitioning", IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems, Vol. 15, No. 5, May 1996, pp.
560-568.

"MOODS User Guide Version 1.2 (alpha)", LME Design Automation Ltd., August
2001.

http://www.irfanview.com

