
UNIVERSITY OF SOUTHAMPTON

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

Volume 1 of 2

by

Tack Boon Yee

A thesis submitted for the degree of

Doctor of Philosophy.

School of Electronics and Computer Science,

University of Southampton

April, 2007

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

()FII^J(}I^fIIE]RJ]<{J, SĈ IEnSBCIi /LNI) fvLALTTHOEIvLA/riCZS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Synthesis of Multi-FPGA Systems with

Asynchronous Communications

by Tack Boon Yee

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is a high-
level synthesis system which provides the ability to synthesise a system level behavioural
description into a structural representation. This thesis describes an enhancement to the
original MOODS system that provides an automated mechanism to target a single
behavioural input design onto heterogeneous re-configurable devices, forming a multi-
FPGA system. This thesis focuses on some of the problems associated with multi-FPGA
synthesis, in particular the area utilisation of target devices and input/output (I/O)
constraints in a multi-FPGA system.

The multi-FPGA partitioning mechanism has added a new optimisation objective into
the MOODS synthesis system. Not only does it provide an automated means of
partitioning the design into separate blocks, the partitioning algorithm optimises the
utilisation of device area and I/O taking into account the activity profile of the design, and
allows performance and I/O utilisation trade-offs to be considered. Asynchronous charmel-
based communication and pipelining techniques in multi-FPGA synthesis can produce a
multi-FPGA system with performance close to a single-device implementation.

The contribution of this work presented herein describes multi-FPGA synthesis with
the insertion of asynchronous explicit and implicit subprogram communication channels
between target devices in the synthesised multi-FPGA system without any user
intervention. Experiments and simulation results of test examples and a hardware
demonstrator presented in this thesis provide evaluation on the performance of the
synthesised non-pipelined and pipelined multi-FPGA systems with asynchronous
communications. Results showed that the multi-FPGA synthesis enhancement integrated
within the MOODS environment provided a rapid realisation of pipelined multi-FPGA
systems with asynchronous communication channels at the expense of an acceptable
increase in area overhead and design latency.

Contents

Acknowledgements 18

Chapter 1: Introduction 19

1.1 Partitioning and high-level synthesis 19

1.2 Thesis structure 22

Chapter 2: High-level synthesis and the MOODS synthesis

system 24

2.1 High-level synthesis 24

2.2 Input description languages 26

2.2.1 SystemC 26

2.2.2 Verilog 26

2.2.3 VHDL 27

2.3 Compilation and internal representation 28

2.4 Scheduling, allocation and module binding 31

2.5 Design space exploration 35

2.6 MOODS 36

2.6.1 Synthesisable VHDL subset in MOODS 39

2.6.2 ICODE generation 40

2.6.3 Data path and control path structure 44

2.6.4 Transformations 51

2.6.5 Cost function 57

2.6.6 Optimisation algorithms 58

2.7 Post-processing 61

2.8 Summary 62

Chapter 3: Multi-FPGA partitioning 63

3.1 Background 63

3.2 Partitioning methodology 64

3.2.1 Overview of partitioning algorithms 64

3.3 Multi-FPGA synthesis systems 78

3.3.1 COBRA-ABS 79

3.3.2 SPARCS 81

3.4 Data communications and communications synthesis 84

3.5 Data synchronisation over multiple clock domains 85

3.5.1 Handshaking data between clock domains 87

3.5.2 Micropipelines 89

3.5.3 Dual port asynchronous FIFO 91

3.6 Design activity profiling 94

3.7 Summary 95

Chapter 4: Multi-FPGA partitioning in IVIOODS 96

4.1 Introduction 96

4.2 MOODS synthesis system with multi-FPGA partitioning 97

4.2.1 Design partitioning phases in MOODS 97

4.2.2 Insertion of the partitioner into MOODS 100

4.3 Module call graph representation 104

4.4 Problem formulation 106

4.4.1 Modified K-way partitioning in MOODS 107

4.5 Integration of the design activity profile and the K-way partitioning algorithm.... 115

4.6 ICODE Module modifications 119

4.7 Summary 123

Chapter 5: Communication channels 126

5.1 Introduction 126

5.2 Communication channel interface 127

5.3 Communication protocol 131

5.3.1 Asynchronous data transfer protocol 132

5.3.2 Extended burst mode state machines 133

5.3.3 State encoded output communication cells 136

5.3.4 Data transfer protocol for communication cells 146

5.4 Subsystem architecture 150

5.4.1 Transmit cell 150

5.4.2 Receive cell 154

5.4.3 Communication channel (data bus) arbiter 156

5.5 Hardware generation I57

5.5.1 Data latch generation and hardware duplication 158

5.6 Summary 160

Chapter 6: Multi-FPGA implementation results 161

6.1 Introduction 161

6.2 Experimental results (without explicit communication chaimels) 163

6.2.1 Quadratic equation solver 164

6.2.2 Cubic equation solver 167

6.2.3 Inverse discrete cosine transform 169

6.2.4 Triple-data encryption standard 170

6.2.5 256-bit advanced encryption standard 172

6.2.6 Discussion of results 173

6.3 Experimental results (with explicit communication channels) 176

6.3.1 Pipelined quadratic equation solver 176

6.3.2 Pipelined inverse discrete cosine transform 178

6.3.3 Pipelined 256-bit advanced encryption standard 179

6.3.4 Discussion of results 180

6.4 Summary 183

Chapter 7: Practical synthesis 184

7.1 Introduction 184

7.2 FPGA-based development board 184

7.2.1 Hardware development board 185

7.2.2 Input/Output and VGA extension board 186

7.3 JPEG decoder in a multi-FPGA system 192

7.3.1 Sequential baseline JPEG decoder 192

7.3.2 Partitioned JPEG decoder 198

7.3.3 VHDL Design 200

7.4 Results and performance 202

7.4.1 Synthesis results of non-pipelined multi-FPGA JPEG decoder 206

7.4.2 Computation cycles and inter-device data transfers 209

7.4.3 Further analysis 210

7.4.4 Pipelined multi-FPGA JPEG decoder 216

7.5 Summary 221

Chapter 8: Conclusions and future work 223

8.1 Future work 226

8.1.1 Shared memory elements 226

8.1.2 Explicit communication channel structures 226

8.1.3 Integrating partitioning exploration with the MOOD S optimisation process.. 227

8.1.4 Target Architecture 228

References 230

Appendix A: Paper 248

Appendix B: Hardware demonstrator in detail 256

B. 1 JFIF (JPEG File Interchange Format) 256

B.2 JFIF test images 260

B.3 Simulations of test image decoding 263

B.4 Hardware demonstrator development board pin assignments 272

B.5 Circuit description of the Btl21 triple 8-bit VideoDAC 281

B.6 Digilent D2-SB system board reference manual 285

B.7 Digilent DI04 peripheral board reference manual 292

Appendix C: File formats 301

C.l ICODE 301

C.2 Partitioning information {.par) file 308

C.3 Module call list {.mcl) file 309

Appendix D: VHDL code listings 311

D.l Behavioural VHDL example designs 311

I). 1.1 Quadratic equation solver 311

D.l.2 Cubic equation solver 322

D. 1.3 Inverse discrete cosine transform 324

D.l.4 Triple-Data Encryption Standard 335

D.l.5 256-bit Advanced encryption standard 342

D.2 Behavioural pipelined VHDL examples 362

D.2.1 Pipelined quadratic equation solver 364

D.2.2 Pipelined inverse discrete cosine transform 367

D.2.3 Pipelined 256-bit advanced encryption standard 373

Appendix E; MOODS multi-FPGA synthesis guide 380

E.l The MOODS optimiser 380

E.1.1 Setting up a cost function 382

E. 1.2 Optimisation 384

E.2 K-way partitioning 385

List of Figures

Figure 2-1 Design flow of a generic behavioural synthesis system 25

Figure 2-2 VHDL hierarchy structure 28

Figure 2-3 Data flow graph representation 29

Figure 2-4 Control and data flow graph representation 30

Figure 2-5 Extended timed petri net representation 31

Figure 2-6 Example of ASAP and ALAP schedules 32

Figure 2-7 Example of list scheduled graph 33

Figure 2-8 Area versus delay design space 36

Figure 2-9 Original MOODS synthesis system design flow 38

Figure 2-10 Back-end synthesis using third party tools 39

Figure 2-11 VHDL and the generated ICODE for a sum/multiply example 43

Figure 2-12 Initial control and data flow graphs for the sum/multiply example 45

Figure 2-13 Execution of chain instruction in a single control state 47

Figure 2-14 The steps to applying transformations in the iterative optimisation process .. 52

Figure 2-15 Design cost plotted against a single one-dimensional space 59

Figure 3-1 Kernighan-Lin algorithm 66

Figure 3-2 Bucket data structure in the FM algorithm 67

Figure 3-3 Example of a single pass in the FM algorithm 69

Figure 3-4 Successive steps in Hierarchical clustering 71

Figure 3-5 Cluster tree produced by Hierarchical clustering 71

Figure 3-6 Structural tree of the hierarchical set-covering algorithm 72

Figure 3-7 Hierarchical connected graph 72

Figure 3-8 Pseudo code of the genetic algorithm 74

Figure 3-9 Selection using roulette wheel technique 75

Figure 3-10 Example of uniform crossover 77

Figure 3-11 Conceptual view of superposition in 4-dimensional datapath space 80

Figure 3-12 Pluggable 3-D block concept 81

Figure 3-13 Four-dimensional design space for a partitioned behaviour 82

Figure 3-14 FunctionBus architecture 85

Figure 3-15 Double buffer synchroniser 86

Figure 3-16 Handshaking signalling protocols 88

Figure 3-17 Dual-rail encoding scheme 89

Figure 3-18 Micropipeline without processing 91

Figure 3-19 Asynchronous FIFO block diagram 92

Figure 4-1 Generated system structure 96

Figure 4-2 Insertion of K-way partitioner into the MOODS synthesis system 98

Figure 4-3 Types of nodes and edges in the module call graph 104

Figure 4-4 Outline of the K-way partitioning algorithm 108

Figure 4-5 Greedy-based strategy 110

Figure 4-6 Outline of the subprogram communication channel optimisation algorithm.. 112

Figure 4-7 Generation and assignment of communication subsystems 114

Figure 4-8 Example of I/O parameter sizes and data packet count 115

Figure 4-9 Example of module call list and simulation of subprogram module activations

117

Figure 4-10 Example of the design profile distribution graph 118

Figure 4-11 Partitioning ordering sequence with design profiling 119

Figure 4-12 Inter-FPGA subprogram module calling mechanism 121

Figure 4-13 Module call graph of a module with internal and external subprogram module

calls 122

Figure 4-14 Modified MOODS synthesis system with multi-FPGA partitioning 124

Figure 5-1 Generated system structure 126

Figure 5-2 ICODE expansion and channel component templates 127

Figure 5-3 VHDL black box component 128

Figure 5-4 ICODE expansion example 129

Figure 5-5 Generated VHDL entity with explicit and subprogram communication channel

signal declaration 130

Figure 5-6 Communication cell connections in the multi-FPGA system 133

Figure 5-7 Extended burst-mode specifications for asynchronous channel controllers in

communication cells 135

Figure 5-8 Block diagram of finite state machine with state encoded registered outputs 136

Figure 5-9 State diagram of the transmit cell FSM 138

Figure 5-10 State diagram of the receive cell FSM 140

Figure 5-11 Example of the single-arbiter and multiple-arbiter 142

Figure 5-12 State diagram of the single-arbiter cell FSM 143

Figure 5-13 Example of LUT mapping of communication cells 144

Figure 5-14 State diagram of the multi-arbiter cell FSM 145

Figure 5-15 Four-phase signalling in communication channel arbitration 147

Figure 5-16 Asynchronous data transfer protocol (input parameters) 148

Figure 5-17 Asynchronous data transfer protocol (output parameters) 149

Figure 5-18 Generated structure for a multi-packet input data transfer via the

151

Figure 5-19 Structure generated for receiving a multi-packet output data transfer via the

txcelljaode 152

Figure 5-20 Generated structure for a shared txcelljiode 153

Figure 5-21 Structure generated for receiving a multi-packet input data transfer 154

Figure 5-22 Generated structure for receiving a multi-packet output data transfer via the

rxcelljaode 155

Figure 5-23 Look-up table block and status registers in the multi-arbiter cell 157

Figure 5-24 Register arrangement fbr original subprogram module I/O parameters 158

Figure 5-25 Latch and duplicated register arrangement for subprogram module 1/0

parameters across FPGA boundaries 159

Figure 6-1 Module call graph of the quadratic equation solver 164

Figure 6-2 Design space of the un-partitioned quadratic equation solver 166

Figure 6-3 Module call graph of the cubic equation solver 167

Figure 6-4 Module call graph of inverse discrete cosine transform example 169

Figure 6-5 Module call graph of the triple-DES 171

Figure 6-6 Module call graph of 256-bit advanced encryption standard 172

Figure 6-7 Area and I/O utilisation of devices in example designs 174

Figure 6-8 Module call graph of the pipelined quadratic equation solver 176

Figure 6-9 Module call graph of the pipelined inverse discrete cosine transform example

178

Figure 6-10 Module call graph of the pipelined 256-bit advanced encryption standard

example 179

Figure 7-1 D2-SB development board layout picture 185

Figure 7-2 DI04 digital I/O board layout picture 186

Figure 7-3 Key components and their locations on the I/O and VGA extension board... 187

Figure 7-4 9-pin RS-232 serial port interface 188

Figure 7-5 VGA interface connections 190

Figure 7-6 VGA timing for a standard 640x480 display mode 191

Figure 7-7 Block diagram of a DCT-based JPEG encoder and decoder 193

Figure 7-8 Zig-zag arrangement of the DC and AC coefficients 194

Figure 7-9 Example of entropy decoding 195

Figure 7-10 2-D IDCT architecture 197

Figure 7-11 Example of the IDCT process 198

Figure 7-12 Overview of the hardware demonstrator system 199

Figure 7-13 VHDL modules in the hardware demonstrator system 201

Figure 7-14 Frame buffer memory mapping of 8x8 blocks 202

Figure 7-15 Multi-FPGA JPEG decoder demonstrator 203

Figure 7-16 Multi-FPGA JPEG decoder demonstrator (Top view) 204

Figure 7-17 Original 8x8 block values from test image (LENA.jpg) 205

Figure 7-18 Test image (LENA.jpg) 8x8 block values decoded using the multi-FPGA

JPEG decoder 205

Figure 7-19 Double buffer synchroniser insertion 207

Figure 7-20 Module call graph representation of the non-pipelined JPEG decoder core. 207

Figure 7-21 Structure of subprogram communication subsystem in the non-pipelined

multi-FPGA JPEG decoder 211

Figure 7-22 Graph of design latency versus the number of external modules in the multi-

FPGA JPEG decoder 214

Figure 7-23 Graph of design latency versus the number of available I/Os in the non-

pipelined multi-FPGA JPEG decoder 215

Figure 7-24 Module call graph representation of the pipelined JPEG decoder core 216

Figure 7-25 Area overhead and design latency of pipelined and non-pipelined multi-FPGA

JPEG decoder core 220

Figure 8-1 Target architectures for multi-FPGA system 229

Figure B-1 JFIF test image (LENA.jpg) 261

Figure B-2 JFIF test image (MANDRILL.jpg) 261

Figure B-3 JFIF test image (DRAGON.jpg) 262

Figure B-4 JFIF test image (SQUARES.jpg) 262

Figure B-5 JFIF test image (SLOPE.jpg) 263

Figure B-6 Simulation of test image (LENA. JPG) decoding in a non-pipelined multi-

FPGA JPEG decoder 264

Figure B-7 Simulation (zoom view) of test image (LENA. JPG) decoding in a non-

pipelined multi-FPGA JPEG decoder 265

Figure B-8 Simulation of test image (LENA. JPG) decoding in a pipelined multi-FPGA

JPEG decoder (2-device implementation) 266

Figure B-9 Simulation (zoom view) of test image (LENA. JPG) decoding in a pipelined

multi-FPGA JPEG decoder (2-device implementation) 267

Figure B-10 Simulation of test image (LENA. JPG) decoding in a pipelined multi-FPGA

JPEG decoder (3-device implementation) 268

Figure B-11 Simulation (zoom view) of test image (LENA. JPG) decoding in a pipelined

multi-FPGA JPEG decoder (3-device implementation) 269

Figure B-12 Simulation of test image (LENA. JPG) decoding in a pipelined multi-FPGA

JPEG decoder (6-device implementation) 270

Figure B-13 Simulation (zoom view) of test image (LENA. JPG) decoding in a pipelined

multi-FPGA JPEG decoder (6-device implementation) 271

Figure B-14 Multi-FPGA board connections 272

Figure B-15 Functional block diagram of the BT121 videoDAC 281

Figure B-16 Pin diagram of the BT121 videoDAC 282

Figure B-17 Typical connection diagram with internal voltage reference 283

Figure C-1 Partitioning information {.par) file 308

Figure C-2 Module call list (.mcl) file 310

Figure D-1 Integer-maths library package of quadratic and cubic equation solvers 318

Figure D-2 VHDL package of quadratic and cubic equation solvers 319

Figure D-3 VHDL of quadratic equation solver example 320

Figure D-4 Simulation of the non-pipelined multi-FPGA quadratic equation solver 321

Figure D-5 VHDL of Cubic equation solver example 322

Figure D-6 Simulation of the non-pipelined multi-FPGA cubic equation solver 323

Figure D-7 VHDL package for IDCT example 328

Figure D-8 VHDL of IDCT example 332

Figure D-9 Simulation of the non-pipelined multi-FPGA IDCT example 333

Figure D-10 Simulation (zoom in views) of the non-pipelined multi-FPGA IDCT example

334

Figure D-11 VHDL package for triple-DES example 338

Figure D-12 VHDL of triple-DES example 339

Figure D-13 Simulation of the non-pipelined multi-FPGA Triple-DES 340

Figure D-14 Simulation (zoom in views) of the non-pipelined multi-FPGA Triple-DES

341

Figure D-15 VHDL package for 256-bit AES example 355

Figure D-16 VHDL of 256-Bit AES example 359

Figure D-17 Simulation of the non-pipelined multi-FPGA 256-bit AES core 360

Figure D-18 Simulation (zoom in views) of the non-pipelined multi-FPGA 256-bit AES

core 361

Figure D-19 VHDL package of the explicit communication channel 363

Figure D-20 VHDL of pipelined quadratic equation solver 365

Figure D-21 Simulation of the pipelined multi-FPGA quadratic equation solver 366

Figure D-22 VHDL of pipelined inverse discrete cosine transform example 370

Figure D-23 Simulation of the pipelined multi-FPGA IDCT example 371

Figure D-24 Simulation (zoom in views) of the pipelined multi-FPGA IDCT example . 372

Figure D-25 VHDL of pipelined 256-bit advanced encryption standard example 377

Figure D-26 Simulation of the pipelined multi-FPGA 256-bit AES core 378

Figure D-27 Simulation (zoom in views) of the pipelined multi-FPGA 256-bit AES core

379

Figure E-1 Cost function menu 383

Figure E-2 Steps in setting a cost function in MOODS 384

Figure E-3 Steps in setting up the annealing schedule in MOODS 385

Figure E-4 K-way partitioning menu 385

Figure E-5 Examine modules for partitioning menu 387

List of Tables

Table 2-1 Descriptions of the six basic control node types 48

Table 2-2 Scheduling transformations 54

Table 2-3 Allocation and binding transformations 56

Table 3-1 Description of the micropipeline event control modules 90

Table 4-1 Examples of types of connection in the module call graph 105

Table 5-1 State table of the transmit cell FSM 139

Table 5-2 State table of the receive cell FSM 141

Table 5-3 State table of the single-arbiter cell FSM 144

Table 5-4 Registered output signals in the multi-arbiter cell F S M 146

Table 5-5 Sequence of events in the asynchronous data transfers protocol (input

parameters) 148

Table 5-6 Sequence of events in the asynchronous data transfers protocol (output

parameters) 150

Table 6-1 Target Xilinx FPGA technologies 162

Table 6-2 Synthesis results of the quadratic equation solver 165

Table 6-3 Synthesis results of the cubic equation solver 168

Table 6-4 Synthesis results of the inverse discrete cosine transform example 170

Table 6-5 Synthesis results of the triple-DES core 171

Table 6-6 Synthesis results of the 256-bit AES core 173

Table 6-7 Performance of example designs 175

Table 6-8 Synthesis results of the pipelined quadratic equation solver 177

Table 6-9 Synthesis results of the pipelined inverse discrete cosine transform example. 178

Table 6-10 Synthesis results of the pipelined 256-bit AES core 180

Table 6-11 Performance of the pipelined example designs 181

Table 7-1 SRAM address, data and control signal connections to header J3 189

Table 7-2 Synthesis results of development board 1 206

Table 7-3 Synthesis results of the non-pipelined JPEG decoder core 208

Table 7-4 Computation clock cycles and inter-device data transfers in the non-pipelined

multi-FPGA JPEG decoder 210

Table 7-5 Number of external modules and its effect on the performance of the non-

pipelined multi-FPGA JPEG decoder 213

Table 7-6 Number of available I/Os and its effect on the performance of the multi-FPGA

JPEG decoder 215

Table 7-7 Target Xilinx Spartan 2E FPGA technologies 217

Table 7-8 Synthesis results of the pipelined JPEG decoder core 217

Table 7-9 Computation clock cycles and inter-device data transfers in the pipelined multi-

FPGA JPEG decoder core 219

Table B-1 Marker identifiers in the JFIF file 257

Table B-2 Pin assignment of signals to connector A1 and A2 of development board 1 ..273

Table B-3 Pin assignment of signals to connector B1 and B2 of development board 1 ...274

Table B-4 Pin assignment of signals to connector CI and C2 of development board 1... 275

Table B-5 Pin assignment of signals to connector A1 and A2 of development board 2 .. 276

Table B-6 Pin assignment of signals to connector B1 and B2 of development board 2...277

Table B-7 Pin assignment of signals to connector CI and C2 of development board 2... 278

Table B-8 Pin assignment of signals to coimector A1 and A2 of development board 3 ..279

Table B-9 Pin assignment of signals to connector Bl , B2, CI, and C2 of development

board 3 280

Table B-10 Pin descriptions of the BT121 283

Table B-11 Typical connection parts list 284

Table E-1 Complete set of commands in the K-way partitioning menu 386

List of Acronyms

256-AES

AES

CDFG

DBS

DFG

ETPN

ExC

FIFO

FM

FPGA

FSM

GA

GALS

ICODE

IDCT

JFIF

JPEG

KL

LUT

MOODS

MFI

RTL

SA

SpC

SRAM

VGA

VHDL

256-bit Advanced Encryption Standard

Advanced Encryption Standard

Control and Data Flow Graph

Data Encryption Standard

Data Flow Graph

Extended Timed Petri Net

Explicit Communication Channel

First In First Out

Fiduccia-Mattheyses

Field Programmable Gate Array

Finite State Machine

Genetic Algorithms

Globally Asynchronous Locally Synchronous

Intermediate Code

Inverse Discrete Cosine Transform

JPEG File Interchange Format

Joint Photographic Experts Group

Kernighan-Lin

Look Up Table

Multiple Objective Optimisation in Data and control path synthesis

Multi-FPGA Implementation

Register Transfer Level

Simulated Annealing

Subprogram Communication Channel

Static Random Access Memory

Video Graphics Array

VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

XBM Extended Burst-Mode

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Mark Zwolinski for his

invaluable help and guidance. Mark's unbiased opinions and support were very much

appreciated and I am very grateful to him for sourcing out the development boards, which

made realisation of the hardware demonstrator possible.

Thanks to all members of the Electronics Systems Design Group at the University of

Southampton, and also Xilinx for donating the four development boards through the

Xilinx University Program. I would also like to thank the senior tutor of the school, Eric

Cooke for his advice and help in administrative issues.

Thanks also go to Andrew Chapman, Dr. Petros Oikonomakos, Donald Esrafili-Gerdeh,

and Dr. Matthew Sacker for the numerous discussions made on the subject of high-level

synthesis and partitioning.

I would like to thank my family for their unconditional support and love. I owe much to

my aunties for providing the financial support during my final few months towards the

completion of this work.

My special thanks go to my good friends, Dr. Yeng Leong Chong, Josephus Tan and his

wife Claire for their support over these years.

T.B. Yee, 2007 Chapter 1: Introduction ^ 9

Chapter 1

Introduction

1.1 Partitioning and high-level synthesis

Partitioning is an important issue in high-level synthesis, hardware/software co-design,

VLSI CAD (Very Large Scale Integration Computer Aided Design) [1,2]. With the ever-

increasing complexity of digital designs, partitioning of the circuit or system into a

collection of smaller, manageable components has become a central and critical design

task. Partitioning is also used to divide a large design into several target devices to satisfy

packaging constraints such as input/output pins and area. Partitioning of a design over

multiple hardware targets can be performed at several levels of abstraction (these include

system level, behavioural level, and structural netlist level). Partitioning a design at high

levels with incomplete knowledge of the targeted technology, and the final hardware (or

software) implementation of a component poses a difficult design decision. The task of

partitioning a system at a high level with a coarse granularity (i.e. relatively few objects

with moderate to high complexities) can still be done manually, based on the experience

of the designers. However, as the complexity and size of the entire system increases, this

difficult decision and design optimisation problem gets harder, to the point when it gets

beyond the capabilities of human designers to solve.

High-level behavioural synthesis of a digital design takes the behavioural description and

translates this into an optimised structural description of the same design. The design is

described behaviourally using either hardware description languages or high-level

programming languages. There has been a recent interest in electronic system level (ESL)

[3-5] design with new high-level synthesis tools released in 2004 from major Electronic

Design Automation vendors: Mentor Graphics C [6], Bluespec Inc.

T.B. Yee, 2007 Chapter 1: Introduction 2 0

5/wejpgc CoTMpf/er [7], and Forte Design Systems [g]. The ESL design

methodology is an evolution of high-level modelling of complex systems and behavioural

synthesis, extended to address additional needs of system-level design, such as

architectural design, software development and Intellectual Property (IP) exchange and

reuse. Design abstraction in the digital domain has changed from schematic to language-

based and is migrating towards behavioural specifications.

MOODS (Multiple Objective Optimisation in Data and control path Synthesis) is the high-

level synthesis tool developed in the University of Southampton. The MOODS synthesis

system synthesises an input behavioural design and produces a structural implementation

of the behavioural design with the advantages of a rapid development time and design

space exploration providing many alternative optimised implementations (with differing

area, delay, power characteristics).

The present configuration of the MOODS synthesis system can only handle single-chip

digital designs. The behavioural description of the user's digital design is synthesised into

a single, large structural output. A synthesised structural output too large to fit into a

selected target FPGA must instead be targeted to a larger and more costly FPGA, or be

split into pieces small enough to fit into multiple FPGAs. The latter requires the user to

rewrite the behavioural design, breaking the design into smaller descriptions and manually

assign the structural outputs of these smaller descriptions to multiple FPGAs and connect

the inter-device signals. Consider partitioning a design with 15 blocks, of which any

combination of 5 blocks can fit into a target device in the multi-FPGA system, there are a

total of 3003 combinations of partitioning the 15 blocks (i.e. Number of combinations, nC""

= n! / [k! * (n-k)!], where in this case, n = 15 and k = 5). The required design effort is

becoming a m^or limitation to system complexity and the FPGA partitioning process

needs to be automated. Synthesis of a large complex behavioural design into a multi-

FPGA system poses difficult partitioning questions that need to be answered:

• How to partition the design and will the smaller partitions fit the target devices?

• Which target device should a partitioned design be assigned to and how many

target devices are needed in the multi-FPGA system?

T.B. Yee, 2007 Chapter 1: Introduction 2 1

• How many I/Os are available and required to connect up the multi-FPGA system?

How are the target devices going to transfer information (data) to each other?

This thesis focuses on some of the problems associated with multi-FPGA synthesis, in

particular the area utilisation of target devices and input/output (I/O) constraints in a

multi-FPGA system. In this thesis, an evaluation is made of existing multi-FPGA

synthesis systems and multi-FPGA partitioning techniques. This provided an insight on

the pros and cons of the various approaches and techniques, adopting the best technique or

combination of techniques towards the development of our partitioning extension to the

MOODS synthesis system. The goal was to extend the MOODS synthesis system to

support partitioning over multiple hardware targets taking into consideration the area and

I/O resources of target devices. In pursuit of this goal, we also explored asynchronous and

pipelining techniques to improve the performance of a partitioned design.

The underlying hypothesis of this research is that combining asynchronous channel-based

communication and pipelining techniques in multi-FPGA synthesis can fully utilise the

I/O constrained FPGA target devices and the performance of the synthesised multi-FPGA

implementation (MFI) will be close to a single-device implementation.

This work presents asynchronous channel-based data transfer mechanisms into multi-

FPGA systems and using design activity profile to guide the proposed partitioner in

reducing inter-device data transfers. Behavioural design examples and a hardware

demonstrator are synthesised using the multi-FPGA synthesis in MOODS and experiments

on non-pipelined MFIs with subprogram communication channels (without explicit

communication channels) and pipelined MFIs with explicit communication channels are

presented.

The experiments and simulation results show that the proposed channel-based approach

with pipelining in a multi-FPGA systems achieve significantly better performance (in

terms of reduced area overheads and design latencies) over non-pipelined

implementations. Experiments on the hardware demonstrator show that the multi-FPGA

synthesis enhancement integrated within the MOODS environment can synthesise a large

T.B. Yee, 2007 Chapter 1: Introduction 2 2

and complex behavioural design and target the partitioned design to a pipelined multi-

FPGA system, with an acceptable increase in area overhead and design latency.

1.2 Thesis structure

The thesis consists of three main parts. The introductory chapters present the background

material on behavioural synthesis and multi-FPGA partitioning. Chapter 2 introduces

high-level synthesis, followed by a detailed overview of the MOODS synthesis system.

Chapter 3 introduces partitioning methodologies and multi-FPGA partitioning. The

chapter also reviews current research on multi-FPGA partitioning and includes a detailed

discussion on synthesis systems capable of synthesising and targeting multiple devices.

The second part of the thesis. Chapters 4 and 5 describe original work, which cover the

multi-FPGA partitioning enhancement of the MOODS synthesis system and the

communication cells used in inter-FPGA data transfers. Chapter 4 describes in detail the

automatic partitioning mechanism that partitions a single design description, and the

generation of multiple structural output files for configuring a multi-FPGA system. This

chapter also introduces the channel-based approach to handle inter-device data in the

synthesised multi-FPGA design. Chapter 5 covers the subprogram communication channel

customised for asynchronous inter-FPGA subprogram data transfers in a multi-FPGA

system. The chapter describes in detail the design of communication cells and arbiter cells,

which are the building blocks of the communication channel.

Chapter 6 contributes to the third part of the thesis with experimental results on multi-

FPGA synthesis in MOODS. Chapter 7 describes the design, synthesis and physical

implementation of a hardware demonstrator, a multi-FPGA JPEG (Joint Photographic

Experts Group) decoder. Implementation results and analysis of the performance of the

non-pipelined and pipelined multi-FPGA JPEG decoder are presented.

Finally, the thesis concludes with a summary of the contributions of this research and a

discussion of possible future work in Chapter 8.

T.B. Yee, 2007 Chapter 1: Introduction 23

A numbei of appendices are also included in this thesis. Appendix A contains a paper

published in the pioceedings of International Federation for Information Processing

International Conference on Very Large Scale Integration 2005 (IFIP VLSI-SOC 2005).

Appendix B contains detailed information on the hardware demonstrator and a full profile

of test images and photographs of the test images decoded by the multi-FPGA JPEG

decoder. Post-MOODS synthesis simulation results of the multi-FPGA JPEG decoder core

are also included in this appendix.

Appendix C details the format of various data files used within the MOODS synthesis

environment. VHDL code listings of behavioural VHDL design examples used in the

experiments described in Chapter 6 and post-MOODS synthesis simulation results of the

examples are given in Appendix D. Appendix E is a brief user ' s guide to performing

multi-FPGA synthesis using MOODS with the multi-FPGA partitioning enhancement.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 2 4

Chapter 2

High-level synthesis and the MOODS

synthesis system

This chapter describes the background material of high-level synthesis used within the

research project. Sections 2.1 to 2.5 give a general overview of high-level synthesis.

Section 2.6 describes the MOODS (Multiple Objective Optimisation in Data and control

path Synthesis) synthesis system, which is used in Chapters 4 to 7 for all the

implementation and multi-FPGA synthesis results of this thesis. The post-processing stage

of the MOODS synthesis system is covered within Section 2.7.

2.1 High-level synthesis

Behavioural, or high-level synthesis is the process of transforming an abstract

specification (such as an algorithm description) of the behaviour of the system into an

equivalent structural description that satisfies a set of user constraints and goals on factors

such as area, delay and energy consumption. The interpretation of VHDL [9-11] for

behavioural synthesis is substantially different from that of traditional RTL (^^egister

Transfer level) synthesis. In the RTL synthesis interpretation [12], the execution of an

operation triggered on a clock edge within a process will complete within a clock cycle

and the mapping from RTL design to gate-level design is a cycle-accurate mapping

preserving the simulation semantics of VHDL. However, behavioural synthesis interprets

sequential statements as if they were normal software, each of which may take several

clock cycles to execute a single line of code. At the statement level, the overall behaviour

of the system is unchanged, only the cycle timing of each statement is altered. This

T.B. Yee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system 25

statement-accurate mapping feature allows the synthesis system the flexibility to adjust the

timing of operations and to trade off timing against other factors such as total area.

The process of transforming a behavioural description of a digital design, described in

some hardware description language or sequential language such as Verilog, VHDL or C,

is illustrated in Figure 2-1. The design flow consists of a number of separate tasks and

different synthesis systems may perform a number of these tasks concuiTently. The output

of the behavioural synthesis system is a mixture of structural and RTL description of the

design and it is suitable fbr the targeted logic synthesis and layout tools.

Behavioural

synAeis

Behavioural
description

User
optimisation
objectives

source compilation

Internal
behavioural/

structure
representation

Synthesis
Optimisation,
Scheduling,

Allocation and Binding

I L i b ; ^ L i b |

Cell/module library

Structural
description

RTL and low-level logic
synthesis, mapping, placement

and routing

Figure 2-1 Design flow of a generic behavioural synthesis system

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 2 6

2.2 Input description languages

Having mentioned that VHDL can be the input hardware description language, it is only

one of the many hardware description languages or sequential languages that can be used

to describe a design behaviour ally.

2.2.1 SystemC

SystemC [13-15] is an open C++ class library used for hardware system design and

validation. SystemC is defined by the OSCI (Open SystemC Initiative) and the IEEE

1666-2005 SystemC standard [14] was ratified on December 2005. C-H- or C is the

language choice for software algorithms and interface specifications and most designers

are familiar with these languages. The SystemC language and modeling platform provides

the necessary constructs to model system architectures at various system levels of

abstraction for digital design. The SystemC Class library extends the standard C++,

without adding new syntactic constructs, to give hardware timing, concurrency, and

reactive behaviour. This encourages systems and software designers with little or no

knowledge of hardware description languages such as VHDL and Verilog to create digital

designs, and to quickly simulate to validate and optimise the design according to the user

objectives.

The SystemC design is compiled into an executable file and validation of the design is

basically a run of the execution file. The execution of the run file is faster than a run of an

HDL model that depends on the simulation and it does not require licenses as needed by

most EDA tools.

2.2.2 Verilog

Verilog HDL [16, 17] is another hardware description language, other than VHDL, that is

widely used, both academically and commercially. Verilog was designed in mid 1980s and

the Open Verilog International (OVI) was formed in 1990 to manage the Verilog

language, which was only then opened to the public domain. Verilog was later ratified as

IEEE std. 1364-1995 [16]. The second ratification is the IEEE std. 1364-2001 [17],

commonly called Verilog-2001. Verilog-2001 adds many significant enhancements to

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system 2 y

IEEE 1364-1995 Verilog, which include greater support for re-usable, configurable

models. Intellectual Property (IP) modeling, and very deep submicron timing accuracy

[18]. SystemVerilog is the third generation of Verilog and it is built on Verilog-2001.

Besides extending the Verilog language to give design features that VHDL already had in

place for years [19], SystemVerilog has new constructs for verification to keep up with the

increases in complexity of today's design and verification challenges [20].

2.2.3 VHDL

VHDL is an IEEE standard hardware description language [9-11, 21]. It is originally

largely targeted towards simulation of digital systems at the various levels of abstraction.

Synthesis use was introduced later, with the introduction of RTL (Register Transfer Level)

synthesis tools first, then progressing into behavioural synthesis tools. VHDL was

proposed as an IEEE standard in 1986 and it went through a number of revisions and

changes before it was adopted as the IEEE 1076-1987 [10]. The first modification of

VHDL was ratified in 1993 [11], and the latest in 2002 [9].

VHDL supports many different design methodologies (top-down, bottom-up, delay of

detail) and is very flexible in its approach to designing hardware. VHDL provides

technology independence and it contains levels of representation that can be used to

represent all levels of description from the device level up to the system level. Figure 2-2

illustrates the hierarchy structure of VHDL. VHDL models a digital system using entities

and arcA/fgcrwrej' to define its interface and operation respectively. It is capable of

describing concurrent blocks (a netlist of interconnected components) of sequential code,

where the sequential elements describe the behaviour of the concurrent block at any

abstraction level, via processes. Each design can be encapsulated by a library definition of

its own interface, which highlights the ability of VHDL to describe a system in terms of

modular concurrent components. A library of algorithmic descriptions can also be built

from sequential blocks such as functions and procedures. In VHDL, are the only

way to tie together elements of structural descriptions or to pass information directly

between VHDL processes and entities, VHDL signals are declared in the VHDL

architecture. VHDL variables are local to process and they are declared within VHDL

processes.

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

User design
Entity

Architecture

Signal

Concurrent
statements

Process

Variable

Sequential
statements

Component

Component

Component

Entity

Architecture

Concurrent
statements

Library

Entity

Architecture

Concurrent
statements

Entity

Architecture

Concurrent
statements

28

Figure 2-2 VHDL hierarchy structure

2.3 Compilation and internal representation

• Behavioural input comyilation and oytimisation — is the first synthesis task and it is

concerned with the compilation of the behavioural description into an internal

representation to which synthesis operations may be applied. A number of compile-

time optimisations (procedural inlining, dead code elimination, loop unrolling) [22]

may be performed. The result of compilation is the generation of a design specified in

terms of a number of simple instructions, similar to a machine-readable software

assembly language, often in some form of abstract data and control flow graphs.

The synthesis optimisation process is either performed during the construction of the data

structures or during an iterative refinement process after the initial data structures are

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 29

crsated, or & combination of both methods. A number of behaviour-preserving internal

data stiuctures can be used to fully describe the design throughout the synthesis process. A

simple dataflow graph (DFG) can be used to describe the system. The operations and data

dependencies of a simple design (with no conditional and iteration constructs) can be

represented with a dataflow graph as illustrated in Figure 2-3.

V1

Behavioural
VHDL source

V2

: V1 + 5;
: V1 + V2;
: A + 3;
: B + 8;

V3 := C ' D:

Figure 2-3 Data flow graph representation

In general, many applications contain a significant amount of conditional (jf-then-else) and

iteration (loop) constructs, and thus requires a more comprehensive representation of data,

and the control Gow information. The CoMrro/ ancf Dara FZow (CDFG) models both

the data and control flow information in a single hierarchical structure. This is done by

extending the DFG representation to encapsulate control flow information for blocks of

DFG sub-graphs within the parent graph. A m^or disadvantage of the CDFG

representation is the basic blocks of DFG sub-graphs provide boundaries across which the

scheduling of operations cannot pass, even if there are no dependencies restricting this

schedule [23]. On the other hand, the D/wgcf f g/rf TVgf (ETPN) [24, 25]

representation has no such block boundary restriction as the data and control flow is

separated into two individual, but interrelated data structures, hence allowing more

optimisation transforms to be performed. This separation of the control flow also makes

the ETPN more suitable for designs with concurrency execution of operations and

asynchrony inherent.

T.B. Yee, 2007 Chapter 2. High-level synthesis and the M O O D S synthesis system

By way of an example, the associated CDFG and ETPN representations of the fragment of

VHDL code are illustrated in Figure 2-4 and Figure 2-5 respectively. The CDFG in Figure

2-4 comprises four DFGs. The top one represents the three sequential addition

assignments, the second two graphs represents the two conditional assignments, and the

last DFG represents the last multiplication assignment.

Behavioural

V H D L source

A : = V 1 +5;
B := V1 + V2;
C : = A + 3;

IF (X : " ! ") THEN
D := B + 4;

ELSE
D := B +

END IF;

V3 := C * D

IFX = "1"

TRUE

Dataflow graph
blocks

END IF

Figure 2-4 Control and data flow graph representation

ETPN represents the data path as a directed graph with nodes and conditional arcs. The

nodes represent individual functional (operator) and storage (variable) units, while the arcs

form the connections between nodes. These connections are only made if the arc is

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

activated by a control signal (Sn signals generated from the control part). The control flow

of the design is described by the passage of tokens through a Petri net [26]. Each control

path veitex represents a control state, which is activated when it receives a token, thereby

activating the associated data path via its Sn signal. In Figure 2-5, the conditional block (if

X — 1) is modelled by states S4 and S5, and the selection is based upon condition Ci,

generated from the data path comparator (=) block.

#5 V1 V 2 #5 V1 V 2

1

A B A B

Behavioural

V H D L source

A : = V 1 +5 ;
B : = V 1 + V 2 ;
C := A + 3;

IF (X = T) T H E N
D := B + 4;

ELSE
D := B + 8;

END IF;

V3 := C * D;

V 3 V 3

X "1"

s >

> / X "
Ci Ci

Figure 2-5 Extended timed petri net representation

2.4 Scheduling, allocation and module binding

The next three tasks form the core of the behavioural synthesis system. These tasks are

concerned with performing scheduling, allocation and module binding according to user-

defined optimisation objectives.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system

• Operation scheduling is the task of assigning each operation to a particular time step.

Schedules are optimised to achieve the objectives of the user, whilst satisfying both

lesource constraints, specified by a given target area or the maximum number of

functional types within each time step, or time constraints, specified by the number of

time (or control) steps for the operations.

Scheduling techniques [27] can be generalised into two main categories: constructive

and j-cAgafw/mg. Simple constructive algorithms include j

(ASAP) [28], (ALAP) [28]. ASAP schedules

operations in the earliest possible time step permitted by the data dependencies, while

ALAP assigns operations to the latest possible time step. The main disadvantage of these

two algorithms is that all operations are treated equally, with no priority given to the more

critical ones. This can result in operations that are less critical to be scheduled first on a

limited resource (e.g. a single multiplier unit), which may block critical operations

scheduling and result in a performance degradation. Figure 2-6 illustrates an example of

ASAP and ALAP schedules.

step 1 { +

S t e p 2

Step 3

Step 4

a) A S A P s c h e d u l i n g

step 1

Step 2

Step 3

Step 4

b) A L A P s c h e d u l i n g

Figure 2-6 Example of ASAP and ALAP schedules

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 33

List scheduling [29] takes a more controlled approach in ordering the operations to be

scheduled based on some piioiity function. At each control step, operations {On) are

scheduled sequentially as long as the required resource is available, otherwise, operations

are postponed according to their priority. Figure 2-7 shows list scheduling of a simple

control graph, where the priority of each operator is defined as the length of the data path

from the opeiation to the end of the block (marked in braces in Figure 2-7). Operation 3

(O3) has a higher prioiity than operation 1 (Oj), and is therefore scheduled in control step

1, providing an optimal solution in this case.

step 1

Oi(1)

* \
Step 1

02(1)
+

03(2)

S b p 2
" ^ 0 , (1)

K)

1 '

Step 2

0^1)
* 04(1)

a) Initial graph b) List scheduled graph

Figure 2-7 Example of list scheduled graph

All the above algorithms make decisions on local considerations, which may be optimal

for one operation, but do not necessarily produce an overall optimal schedule. A

constructive scheduling algorithm that makes global analysis of the operations and control

steps when selecting the next operation to be scheduled is the force-directed scheduling

[j O] , The basic strategy of this algorithm is to balance the concurrency of operations to

ensure that each functional unit has a high utilisation and therefore the number of units

required is reduced. Force-directed scheduling is more computationally expensive than all

the constructive algorithms mentioned previously, due to its global selection of the next

operation to schedule.

2007 Chapter 2. High-level synthesis and the M O O D S synthesis system jz|.

In contrast to constiuctive scheduling which creatcs a. schedule from scratch and adds

operations one at a time until all operations are scheduled, transformational scheduling

starts with an initial schedule, generally maximally serial or maximally parallel, and

iteiatively applies a set of local transformations, improving a.nd guiding the design

towards the objectives specified by the user. One important advantage of the

transformational-based approach is that a complete schedule exists in each iteration and

accurate estimation of the design in terms of different criteria (e.g. area or delay) can be

made. This technique has been adopted in high-level synthesis systems such as Computer-

Aided Modelling, Analysis and Design (CAMAD) [25, 31] and MOODS [32], where both

systems combine the scheduling and allocation together as a general optimisation problem.

The transformation-based approach employed in MOODS is described in more detail in

latter sections.

• Allocation — involves the assignment of data variables and instructions into groups of

data elements; storage units (registers, ROMs, RAMs, etc) used to hold data in the data

path, functional units (adders, ALUs, multipliers, etc) that perform the operations

depicted by the instructions and interconnect units (multiplexors) between storage

units and functional units.

Allocation techniques can also be generalised into constructive and global algorithms.

Iterative/constructive allocation algorithms select an operation and the data element to

which it will be bound, one at a time in an iterative manner and builds up the allocation,

typically minimising cost in terms of area whilst conforming to timing constraints of the

schedule.

Global allocation techniques, on the other hand, deal with the data path as a whole, and

attempt to allocate all its elements simultaneously. Allocation can be defined as a graph

problem, where a clique-partitioning algorithm [33] builds a compatibility graph where

vertices denote operations and edges denote the compatibility relation between the

operations whereby edges connect mutually-exclusive operations that can share the same

hardware. The problem is then reduced to finding a maximal partitioning of fully

interconnected vertices, which represents a solution with the minimum hardware cost.

Examples of other global allocation techniques include minimal graph-colouring

algorithm, left-edge algorithm [34].

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 35

Module Binding is the process of selecting and assigning the allocated data path units

from a list of technology-dependent hardware blocks implemented from units in the

target cell/module library. Depending on the requirements of the synthesis system, the

module library may contain exactly one implementation per functional unit, or a

selection of implementations (such as ripple-carry and carry-lookahead adders) per

unit, thus allowing a one-to-many mapping choice, in which case the chosen

implcrnsiitation will be based on user objectives. The low-level module

charactei isation data, generally in the form of area and delay estimates are used to

guide the scheduling and allocation processes. A similar operation is performed on the

contiol path, implementing the circuitry for the control path units, which activate and

steer data in the data path via appropriate data path control signals (e.g. register load

signal, multiplexer select signals). The module library can be extended, possibly into

multiple module libraries where module cells are designed specifically for a particular

design such as floating-point functional units or special communication protocol units.

2.5 Design space exploration

High-level synthesis is the process of transforming a behavioural description of a design,

in the form of its initial internal representation within the synthesis tool, into a structural

implementation, optimised according to objectives set by the designer. The synthesis

process produces a range of implementations for a particular input design, and each of

these implementations forms a single point in what is called the design space [35-37],

which is defined as the M-dimensional space describing all possible implementations of a

single input description, in terms of » design aspects.

Figure 2-8 shows a two-dimensional design space in terms of area and delay (latency). For

any particular design and target technology, the design space consists of two regions

where feasible implementations lie in the region and infeasible

implementations lie in the unachievable region. These two regions are separated by the

optimal design curve, which comprises a set of discrete points representing the most

efficient implementations. For a given system, only a portion of the achievable region may

be obtained as indicated by the shaded acfwa/ acAzevaA/e regzoM. This actual achievable

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 36

region is dependent on a number of factors such as the optimisation algorithms and design

space modelling methods [38] used.

optimal design
curve

A r e a \
\ 1 actual achievable j

\ I region /

unachievable
r e g i o n

Delay |

Figure 2-8 Area versus delay design space

2.6 MOODS

The MOODS (Multiple Objective Optimisation in Data and control path Synthesis)

synthesis system is the behavioural synthesis system used and modified for the multi-

FPGA partitioning research. The term MOODS refers to the entire synthesis system,

however the core synthesis engine is also referred to as MOODS.

This section details the principles and operations of the original MOODS synthesis system

(without multi-FPGA partitioning enhancements) [32, 35, 36, 39]. The entire synthesis

system comprises a number of separate programs performing various tasks in the synthesis

of a behavioural description from VHDL down to hardware FPGA implementation. These

tasks communicate via a number of generated intermediate files.

Figure 2-9 illustrates the data flow of the original MOODS synthesis system before the

multi-FPGA partitioning enhancements. The actions performed by the subcomponents are:

1. VHDL and ICODE assembler. The behavioural VHDL description is passed into the

VHDL compiler, 'VHDL2IC' and translated into a simpler intermediate description.

T.B. Vee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

ICODE (Intermediate CODE). ICODE is an input language-independent description

suitable for direct input into the core MOODS synthesis engine.

2. Synthesis engine — MOODS'. The core component in the entire system is the MOODS

data and control path synthesis engine. Broadly speaking, MOODS performs

scheduling, allocation and module binding according to the user-defined optimisation

objectives, and pioduces an output suitable for the targeted logic synthesis and layout

tools. The single ICODE file is fed into MOODS, with a set of user objectives and

technology libraries. A naive initial internal data structure is created by a direct

translation of the ICODE input to form a maximally serial implementation (i.e. one

control state/clock cycle per ICODE instruction, with the functionality of each

instruction being bound to a separate data path node). The synthesis proceeds and

iteiatively modifies the data structures until the user objectives are met. The internal

representation is converted into a technology-specific netlist using interface

information stored in the library. The use of technology-specific estimates fed up from

the cell libraries enables MOODS to make technology-dependent trade-offs, while

maintaining overall technology (and layout system) independence within the bulk of

the synthesis system.

3. 2 m W - The DDFLink (Design Data Format Link) linker is

now used for the generation of the structural VHDL file output, previously generated

directly from MOODS. The 'raw' structural VHDL description generated directly

from MOODS is only suitable for debugging purposes, as it is rather unreadable, and

contains unoptimised control to/from the data path glue logic. DDFLink performs a

range of post-synthesis cleanup tasks (including optimisation of the glue logic to

remove redundancy), and generates a highly commented and more readable structural

VHDL output. The original intention of this back-end link stage was to take the output

from several separately-synthesised blocks, and combine them in much the same way

as a compiler link stage.

T.B. Yee, 2007 Chaptci 2. High-level synthesis and the M O O D S synthesis system

Behavioural
VHDL file

(.vhd)

I
1 VHDL compiler

T
Optimised

behav. VHDL
(.vhd)

1 } ICODE assembler

ICODE file

2 MOODS

Initial control and data
path creation

Data
structure file

(.ds/.ddf)
Cost function &

design evaluator
Design

examiner
Control and
data path

graphs

Optimisation
algorithms

optimisation
objectives

Estimators &
transformations Logging and

report files
daf,.dpg,etc;

Structural
netlister

Cell library
database Library dependent

module database
files

Expanded
module

templates

Final data
structure file

(.ds/.ddfj

Rawf structural
VHDL output file

Lsynthl.vhd)

(3) Linker and netlist
generator (DDFLink)

Structural
VHDL output

file (_synth.vhd)

4) RTL and low-level logic synthesis
mapping, placement and routing

Figure 2-9 Original IVIOODS synthesis system design flow

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

4. Buck-end synthesis, logic-level optiniisution and technology mapping, placement

and Touting'. The final stage in the design flow is low-level optimisation and

technology mapping, which utilises a number of third party tools, Synplicity Synplify

Pio, Xilinx ISE (Integrated Software Environment), and IVIentor Graphics

Leonardo Spectrum. These tools take the structural VHDL description generated by

MOODS as input. Each tool performs the low-level logic synthesis and technology

mapping, which translates the design into a physical circuit to be implemented in an

FPGA or ASIC as illustrated in Figure 2-10. For Xilinx FPGAs, the Xilinx-targeted

EDIF (Electronic Design Interchange Format) output from RTL synthesis tools is

processed by Xilinx ISE to generate a bitstream file to download onto a FPGA.

Low-le'veTo'ptfm
and technology mapping

Placement and
routing

L

structural
EDIF VHDL EDIF

a$oioi
w

Bitstream
generation

1010101
0101111

110

FPGA
implementation

0 00000
FPGA prototyping

board

S y n p l i f y P r o X i l i n x I S E

Figure 2-10 Back-end synthesis using third party tools

2.6.1 Synthesisable VHDL subset in MOODS

VHDL is used by the MOODS synthesis system described in the body of the thesis.

VHDL, which has already been considered in Section 2.2.3, was initially designed as a

simulation language. This leads to a number of problems when implementing VHDL in a

synthesis environment. The general set of behavioural VHDL restrictions [24, 40, 41] in

the context of synthesis imposes a set of constraints on the synthesisable VHDL [39, 42]

in the MOODS synthesis system. The limitations are due to the difficulty of

implementation of certain features within the VHDL language, and the relaxed timing

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 40

model utilised within behavioural synthesis. Examples of unsynthesisable VHDL are data

types such as pointers and linked lists which are unrealisable in the context of hardware

logic and gates because their size is dynamic, unsynthesisable constructs such as assert

statements foi simulation-only operations for error messages and anything to do with file

I/O types due to lack of an operating system to deal with the file I/O operations such as

opening and closing a file.

2.6.2 ICODE generation

The VHDL compiler that forms the front-end of the MOODS synthesis system parses and

translates a single or a number of input VHDL files into a single language-independent

ICODE file. Using the intermediate language ICODE as input to the MOODS synthesis

core allows the use of different languages (Section 2.2) to describe the behaviour of the

user design. ICODE describes the functionality, sequencing and connectivity of the design

in a lower language level, similar to an assembly language representation of a software

language, with additional control flow information. Complex statements (such as

sqrt(dx*dx + dy*dy)) must be broken up because they cannot be sensibly represented as

an atomic operation. ICODE is in a form suitable for direct mapping to the cell library,

and employs simple two input operations to ensure technology independence.

VHDL processes, procedures, and functions are translated and mapped into a set of

ICODE with the main entity/architecture definitions mapped to the ICODE

program module that forms the root of the system's control flow. The processes within the

architecture definition are merged into the program module. The VHDL process is the

only concurrent construct that is converted into ICODE. No other VHDL concurrent

constructs are supported. The concurrent behaviour of VHDL processes is performed in

the ICODE representation by the execution of the first ICODE instruction with a multiple

instruction activation list on a system reset. Each entry in this first activation list activates

the first instruction in each process and its control flow never re-converges.

Each module comprises a set of numbered ICODE instructions together with an associated

activation list. The sequencing of operations is based on a Petri-net style token passing

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOOD S synthesis system 4 %

mechanism, in which an instruction is only executed once it has been activated by another;

the activation list specifying which instructions are to be executed once the current one has

terminated.

VHDL signals and vaiiables are translated into equivalent ICODE registers, aliases (bit-

slices), memory blocks, counters or ports based on their declaration in the behavioural

code. An ICODE counter is inferred from variables defined within a loop construct. RAM

and ROM memory blocks are specified directly by the user. A port is used only to define

the input ports within the I/O list of the module as output ports are defined as registers.

A simple example showing a fragment of behavioural VHDL code with its equivalent

ICODE is shown in Figure 2-11. It outlines the key features of the generated ICODE

description;

An ICODE file can contain a number of s (ICODE lines 27 and 39), which

are translations of VHDL subprograms (fimctions and procedures). Concurrent

processes are merged into the main module. The first ICODE

instruction with a multiple instruction acf/'van'oM activates the first translated

ICODE instruction in all the VHDL process on a system reset. For example,

instiuction 2, which is the first ICODE instruction in process P one, and instruction 10

which is the first ICODE instruction in process P two.

An ICODE instruction has the general form;

label ; OPERATION <inputs>, <outputs> <activation list>

where M,' precedes the instruction number. For example, instruction 7 is labelled

instruction 2 is labelled and so forth.

Each ICODE instruction can be activated by any number of other ICODE instructions.

Upon completion of the execution of the current instruction, all the instructions in its

activation list are activated. If no activations are listed for an instruction, then next

instruction is activated. For example, instruction 2 (labelled '.20002') activates a

conditional branch instruction 3 (labelled \L0003'), which then activates either

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system ^ 2

instiuctions 4 or 9. While the absence of the activation list in instruction 5 results in an

automatic activation of instruction

• Conditional branches aie implemented as an //^instruction with two activation lists.

One for the true condition and the other for the false condition (y^CT)̂. The

VHDL conditional statement = "7 " in VHDL line 13) is implemented

as two instructions 2 and 3, with instruction 4 being activated if the condition is true

,and instruction P being activated if the condition is false.

• Complex expressions are split into a number of simpler ICODE instructions, with

temporary variables (for example, twipl in ICODE line 44) inserted to pass data

through each operation.

• VHDL subprograms (functions and procedures) are implemented as separate modules

and these modules are activated via a calling ICODE MODULEAP instruction, which

halts the main execution and passes control to the called module. A subprogram

module will return when the ENDMODULE instruction is activated.

A complete definition of the ICODE format is provided in Appendix C.l.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 43

Behavioural VHDL source ICODE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

entity m_call1 is
port(start: in unsigned(0 downto 0);

sum_out: out unsigned(3 downto 0);
mult_out: out unsigned(7 downto 0)) ;

end m_call1;

architecture Beliaviour of m_call1 is
signal s i , s2: unsigned(3 downto 0) :="0000";
signal s3: unsigned(7 downto 0) :="00000000"
begin
P_one ; process
begin
j f (start = "1") then

proc1(s1, s2); - call procedure 1
s1 <= s2;
wait for 10 ns;

/

\

proc2(s1, s2, s3);
wait for 10 ns;

end if;
wait for 10 ns;
end process P_one;

P_two : process
begin

sum_out <= s2;
mult_out <= s3;
wait for 10 ns;

end process P_two;
end Behaviour;

• call procedure 2

/

procedure p r o d (
signal a j n : in unsigned(3 downto 0);
signal a_out: out unsigned{3 downto 0)

) is
begin

a_out <= a_in + "0001";
wait for 10 ns;

end p r o d ;

procedure proc2 (
signal b j n 1 : in unsigned(3 downto 0);
signal b j n 2 : in unsigned(3 downto 0);
signal b_out: out unsigned(7 downto 0)

) is
begin

b_out <= b_in1 * b_in2;
wait for 10 ns;

end proc2;

\

r \

/

/

\

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

P R O G R A M m_call1 start,sum_out,mult_out
INPORT start [0:0]
O U T P O R T sum_out [3:0]
O U T P O R T mult_out [7:0]
REGISTER s i [3:0] INIT#%0000
REGISTER S2 [3:0] INIT #%0000
REGISTER s3 [7:0] INIT #%00000000
REGISTER tmpO

// Statements
.L0001 NOOP ACT L0002, L0010
.L0002 ueq start,#%1 ,tmpO
.L0003 IF tmpO ACTT L0004 ACTF L0009
.L0004 MODULEAP p r o d s1,s2
.LOGOS MOVE s2,s1
.L0006 PROTECT 1e-008
.L00G7 MODULEAP proc2 s1,s2,s3
.LOGOS PROTECT 1e-008 ACT L0009
.L0009 PROTECT 1e-008 ACT L0002

.L0010 MOVE s2,sum_out
L0011 MOVE s3,mult_out

.L0012 PROTECT 1e-008 ACT L0010

.L0G13 ENDMODULE

lllllinillllllllllllllHIHIIIIIIIIIIIIIIIIIilllllllllllllllllll
M O D U L E p r o d a_in,a_out
// Declarations
INPORT a J n [3:0]
OUTPORT a_out [3:0]
REGISTER tmpi [3:0]

// Statements
.LGG14 uadd a_in,#%0001 ,tmp1
.LG015 MOVE tmp1,a_out
.L0016 PROTECT 1e-008
.LG017 ENDMODULE

MODULE proc2 b_in1 ,bJn2,b_out
// Declarations
INPORT b j n l [3:0]
INPORT b j n 2 [3:0]
OUTPORT b_out [7:0]
REGISTER tmp2 [7:0]

// Statements
.LG018 umul b_in1 ,b jn2, tmp2
.L0G19 MOVE tmp2,b_out
.L0G20 PROTECT 1e-008
.L0021 ENDMODULE

Figure 2-11 VHDL and the generated ICODE for a sum/multiply example

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system

2.6.3 Data path and control path structure

The internal MOODS coie data structures hold both the behavioural representation of the

ICODE and a fWly bounded structural implementation of the structural implementation of

the behaviouial data path and control path. MOODS models the control and data paths as

two separate graphs, linked together via implementation links and control equations. The

data path nodes implement the operations performed by the ICODE instruction and the

storage elements in the data path stores the ICODE variables passed into the operations

and the results from each execution. The control path holds a graph representation of every

state within the controlling state machine. The MOODS synthesis process is the iterative

piocess of applying multiple simple optimisation transformations to these data structures,

controlled by a transformation selection algorithm. It is possible to output a structural

representation of the system at any point within the synthesis process after the building of

the control and data path graphs 6om the ICODE file.

Figure 2-12 shows the initial control and data path graphs created by MOODS for the

example shown in Figuie 2-11. The structural implementation is generated directly from

the ICODE, and this naive implementation of the behaviour has one control state node per

instruction and a separate data path node for each functional ICODE operation and ICODE

variable. At this stage, the initial structure has no shared operation and variable storage

elements within the data path and since each data path node is activated by one control

state node, it is possible to superimpose the schedules time steps over the data path graph,

as illustrated in Figure 2-12. This combined view of the design is no longer feasible during

synthesis when the functional units and storage elements are shared within the data path,

altering the one-to-one direct correspondence between the two graphs.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 45

Concurrent
branches have

the same
condition exiting

a fork node

nodes execute
ICODE instructions
via output register

load enables

Concurrent
branches have

the same
condition exiting

a fork node

nodes execute
ICODE instructions
via output register

load enables

start #1

IF instructions
have no data
path and only

generate a
conditional node

CALL \ l 4

temporary registers are
only used once and

will generally be
shared or removed
during optimisation

Call nodes
temporarily pass
execution to the

sub-module
controller

sum out

mult out

*
p r o d

subprogram
module

Subprogram modules
have a separate data

path and controller
executed from a call

node

result registers
load at the end
of the executing

control state

CALL yy
s

proc2
subprogram

module
1"

s3

Figure 2-12 Initial control and data flow graphs for the sum/multiply example

2.6.3.1 The control path

The control path data structure is built within MOODS in a graph structure, where each

graph node represents a single control state. Input and output control arcs between the

graph nodes form the links to the previous and next control state node. These arcs describe

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system

state transitions conditional on signals generated by the data path. For example, in Figure

2-12, the tiansition from state S4 to state iSj or Sjo is conditional on the data path signal s7.

At present, a one-hot encoded token passing structure is implemented for the controller.

The controllei itself is a non-detei ministic finite state machine, where each state

conceptually executes one or more ICODE instructions. Each control state is built from a

control cell that contains a single register that is activated for one clock cycle by one or

more token inputs to the cell. These token signals are representative of the arcs connecting

the contiol state nodes, and the registered state bit forms the state enable signals used to

control the data path. The controller structure suits the register-rich FPGA architecture. It

is entirely possible to implement the controller using alternative state encoding (e.g.

binary, gray-coded) in platforms with limited registers, or use a micro-coded controller.

The mstructions executed during a state are stored as an instruction list within the control

state node data structure. A set of acyclic sub-graphs within this list divides the

instiuctions into groups of dependent instructions, where each group is numbered and

instiuctions within the gioup are executed sequentially. Instructions in each group are data

independent with instructions in other groups, and hence the instructions can be executed

concurrently. Within a group, the instructions are dependent on each other and they are

executed sequentially. Figure 2-13 illustrates the execution of two concurrent instruction

groups in a single control state. The two add instructions are data dependent and the result

of chaining the two add instructions (il and /2) in a single control state is that two separate

adder data path units are required. The multiply instruction (z J) grouped separately from

the addition instructions executes concurrently. The propagation delay for the data path

units are used to estimate the minimum delay required executing the instructions in the

control state. The (i.e. inherent data) for each instruction is fed from

links to the data path nodes implementing the relevant ICODE instructions. All data path

nodes are fully bound to a physical technology-specific library cell during synthesis, from

which the characterisation data is obtained and fed up to the synthesis optimisation

process. The estimated delay is used to determine the maximum allowable clock rate for a

design. With a synthesis constraint (e.g. setting the clock period to 20 ns) specified by the

usei, the propagation delay for the data path units determines if instructions implemented

by the corresponding units can be chained to execute in one control state.

T.B. Yee, 2007 Chapter 2. High-level synthesis and the M O O D S synthesis system 47

1
i2

State active
signal - S j

group g1

group g2

c A B D

: + ii

+ ; /2 i4

a) Delay optimised control and data path

clock

/2 idle
t ime

/4

Register
access time

Register
se tup time

b) Chained instruction timing

Figure 2-13 Execution of chain instruction in a single control state

The control nodes in the control path are categorised into six basic types as listed in Table

2-1. Scheduling transformations performed on the control graph data structure tends to

merge control nodes together forming composites of the types listed below. This merging

of control nodes does not apply to collect and call nodes. The collect node, however, can

be completely removed by the parallel merge transtbrmation.

Control node types Description

General node This node has a single unconditional input and output arc and it can

contain any ICODE instructions other than 'MODULEAP, 'COLLECT or

conditional instructions. A general node represents a simple sequential

control state taking one cycle.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system 48

Control node types Description

Fork node This node has a single input arc and mul t ip le unconditional output arcs.

It can contain the same ICODE instructions as the general node. Fork

node forms the root of a concurrent b ranch that simultaneously

activates all the successor nodes.

Collect node A collect node has two or more input a rcs and a single output arc. The

node contains a single ICODE 'COLLECT instruction only and the node

will not activate the next control state n o d e until a fixed number of input

arcs (which may be less than the total number of inputs) are activated,

thereby synchronising a set of concurrent branches. This node

complements the fork node. Note that t he synchronisation of the

translated concurrent VHDL processes is not done with the collect

node. The VHDL compiler no longer suppor ts concurrent translation of

sequential instruction activations, thus rendering the collect node

obsolete. This 'collect' mechanism is still supported by the MOODS

core, and thus the collect node is listed here for completeness.

Conditional node A conditional node has single input arc a n d two of more conditional

output arcs. This node can contain any ICODE instructions supported

by the general node, as well as condit ional ICODE instructions such as

'IF and 'SWITCHON' to form the condit ional paths through the control

g^^h.

Dot node This node has two or more input arcs and a single output arc. This node

complements the conditional node. Any of the input arcs can activate

the node. The dot node provides the re-convergence path for the

conditional branch sections. It supports the same set of ICODE

instructions as the general node.

Call node The call node forms the basis of the module calling mechanism. It has a

single input and output arc. This node contains a single ICODE

'MODULEAP' instruction only. The call node delays the execution of the

next control state node until a single iteration of the called sub-module

is executed. The call node activates the first control node in the

separate control sub-graph of the called module and when the sub-

module terminates, control is passed back to the call node and it

activates the next control state node in the main graph.

Table 2-1 Descriptions of the six basic control node types

2007 Chapter 2. High-level synthesis and the MOOJDS synthesis system 4 9

Once the control graph is optimised, the only distinct types o f node are the call, fork,

conditional and general node types. A call node is physically realised by the control call

node described in Section 4.6, with all other nodes realised by a general control node.

2.6.3.2 The data path

The MOODS synthesis core generates the data path as a fully connected graph of data

path node units, connected indirectly via data path nets. This level of indirection is used to

determine the bit range connectivity of multi-bit nets used to connect the node units. The

network of functional (adders, multipliers etc.), storage (registers), and interconnect

(multiplexors) units in the data path graph implements the functionality of the ICODE

instructions. The flow of data through this network is controlled by the control nodes in

the control path. The data path consists of three main types of data path node units:

1. One storage unit (register) is initially created for each ICODE variable (both user

specified and temporary variables). A number of different types of storage units

exist and the selection of which of these optimised storage units depends on the

operations performed on the variable. The general register type storage unit is

implemented for the storage of data variables and temporary variables used in a

number of instructions. Each operating instruction is performed by a separate or

shared functional unit, which is connected to a register input via a multiplexor. A

variable which is only reset and incremented (or decremented) is implemented by a

counter register with a reset input, thereby removing the need for an adder unit for

such instruction executions. A third type of storage unit is formed from a multi-bit

array variable or constant, where a RAM-type or ROM-type storage unit is created

respectively. During synthesis, register sharing and bypassing reduces the number

of physical storage units required.

2. A functional unit implements ICODE operations such as additions, multiplications,

and comparisons. These operations are purely combinational, with a combinatorial

functional unit to produce the results. Characterisation data (Section 2.6.3.1) from

cell libraries provides technology-specific performance data and this is used to

estimate the area and maximum delay; time required for an input change to

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

propagate through to its output (i.e. the longest accumulated combinatorial delay).

The functional nodes are not controlled directly f rom the control state nodes in the

control path, they rely on the controller to feed the appropriate values to the inputs

of the functional units and to read the results of the unit during specified control

states. An exception to this rule is the use of ALU type functional units, which can

perform more than one type of operation. The type of operation is selected from a

set of input control signals, driven by control nodes in the control state machine.

An example of an ALU unit is an add/subtract, which is used in place of a single

add unit and a single subtract unit. Note that only one type of operation may be

used within any single activated control state node.

3. The final type of data path unit is the interconnect unit. The library cell that

implements the interconnect node is a multiplexor. The multiplexor selects the

appropriate input amongst two of more input nets and drives the inputs of any

shared data path unit. Interconnect units are not physically created until the post-

processing phase in the synthesis process for code size efficiency and reducing

synthesis runtime during data path optimisation. The MOODS synthesis tool,

however, does take into account the delay and area factors of these implied

multiplexors during the optimisation process.

Each data path node is a generic functional block performing the appropriate ICODE

operations (or operations for ALUs). Functionality and characterisation data (such as area

and delay) for each unit is obtained via a link into the cell library. The actual physical

implementations of the data path elements are taken from a pre-defined set of

parameterised structural/RTL components defined in a technology library file. The

separation of the generic and physical aspects of the data path elements gives technology

independence within the synthesis core without sacrificing the accuracy of the

performance information as the technology specific cell information is used within the

synthesis process.

The signals that link the control path nodes to the data path nodes are represented by

Boolean logic equations. This abstraction of the control signal generation allows a number

of different ways of implementing the linking signals, which includes a network of multi-

level logic gates, ROM lookup, or combined with the control graph to form a micro-coded

T-B. Vee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system

controller. At present, these linkage signals are output as simple VHDL logic expressions,

leaving Boolean optimisation and technology mapping to the low-level logic synthesis

tools.

2.6.4 Transformations

MOODS formulates the synthesis optimisation process as an iterative optimisation of the

initial naive implementation of the design, where the synthesis task is divided into the

traditional sub-tasks of scheduling, allocation, and module binding. This allows trade-offs

to be made between the various synthesis sub-tasks, which are performed simultaneously.

Optimisation is performed by applying a number of small local transformations on

selected parts of the design using a dedicated optimisation algorithm.

Each local transformation is semantic preserving and complete, resulting in a valid design

after each transformation applied to the design. Throughout the process, the internal

representation describes a complete and fully bound design implementation, making use of

the low-level characterisation information from the module libraries to provide accurate

estimates for circuit performance. At present, MOODS has a set of fourteen different

transformations, each performing slight changes to the design, adjusting the scheduling of

the control state nodes in the control path, and the allocation and binding of data path

nodes in the data path. The fourteen transformations include six inverse transformations to

perform backwards steps to reverse previous design decisions, resolving the problem

associated with premature binding decisions, which may produce non-optimal designs.

Details of the four basic control state merging transformations, two inverse state-splitting

transformations to undo the merging of states, and a clock period adjustment

transformation, are given in Section 2.6.4.1. Details of the two data path unit sharing

transformations, together with four of their associated inverse unsharing transformations,

and a binding transformation to select an alternate functional unit are given in Section

2.6.4.2.

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system 52

step 1

Step 2

transformation valid ?

no

perform the
transformation ?

yes

no
Step 4

yes

no

perform another
iteration ?

Test the validity of the
transformation

Apply the transform to the
design

Select transformation and
target section of the design

Estimate the effect the
transform will have on the

design performance

Figure 2-14 The steps to applying transformations in the iterative
optimisation process

The selection and application of the transformations performed within each iteration of the

optimisation process consists of four separate steps, as illustrated in Figure 2-14:

1. Selection - This initial phase selects a transformation from the fourteen available, and

the portion of the design to which it should be applied. This selection is controlled by

the optimisation algorithm in use.

2. Testing - The second step involves checking the validity of the given transformation

on the selected portion of the design. It is possible for some transformations to alter the

behaviour of the design (e.g. instruction dependency and mutual exclusivity). This

T.B. Yee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system 5 3

testing phase ensures that all transformations to be applied are valid and invalid ones

are filtered out and aborted.

3. Rstifncition - This estimation step evaluates the effect of the given transformation on

the system perfoimance based on the user objectives (such as area, delay, power

consumption, etc), without permanently altering the core data structures. This step

simulates all the changes made to the design by the transformation and calculates the

effect of these on the current system performance. The optimisation algorithm uses the

lesults of the estimation to determine whether to perform the transformation (i.e. make

the changes in the core data structures) or abort the transformation.

4. Execution - The last step applies the transformation, altering the internal data

structures of the design.

2.6.4.1 Scheduling

Scheduling transformations perform control graph optimisation, whereby ICODE

instructions are assigned to control state nodes and the number of control state nodes used

to perform a number of ICODE operations is optimised, when more than one ICODE

instructions are merged into a single control state. There are four basic state merging

transformations, two inverse state-splitting transformations to undo the merging of states,

and clock period adjustment transformation. These seven scheduling transformations and

their effects are listed in Table 2-2. More details may be found in [39].

Transformation Effects

Sequential merge This merging transform merges two sequential control nodes (i.e. nodes

executed sequentially) to form a single control node implementing multiple

instructions, where the instructions in the second node are moved into the

first. ICODE instructions with data dependency are chained together within

an instruction group, thus bypassing intermediate data value registers. The

second control node with no associated instructions is then removed from

the control path.

T.B. Yee, 2007 Chaptei 2. High-level synthesis and the M O O D S synthesis system 54

Transformation Effects

Parallel merge This transform is applied to a concurrent branching forl< node, where the first

nodes within each branch are merged into a single successor node.

Merge fork and
successor

Elements of the previous two are combined to form this third transformation,

where the successor instructions contained within one branch are merged

into the branching (fork or conditional) node.

Group instructions
on register

This transformation is geared towards removing registers with a single input

and output net, which is common in the temporary variable register storage

units generated by the compiler. These var iables are accessed by one read

and write instruction. The transformation tr ies to bypass (remove) the data

path register by merging the instruction group that contains the write

instruction into the read instruction control node.

Ungroup into
groups

This inverse scheduling transformation is a state-splitting transform, which

moves groups of instructions within a control state node into two separate

control nodes. The first control state node conta ins the single selected and

extracted group of instructions, leaving the remaining groups in the second

control node.

Ungroup into time
slices

This second inverse scheduling transformation extracts instructions from a

specified control node and places them into a number of new control state

node, such that the time taken to execute the instruction groups in any of

these old or new control nodes does not exceed a specified period.

Clock set/multi-
cycling

This optimisation is a global optimisation that sets the maximum clock period

for the entire design. This transformation makes use of the ungroup into time

siices transformation, forcing all control nodes below a user specified clock

period constraint.

Table 2-2 Scheduling transformations

T.B. Yee, 2007 Chapter 2. High-level synthesis and the M O O D S synthesis system 55

2.6.4.2 Allocation and Binding

The second gioup of tiansformations acts upon the data path, performing allocation and

binding optimisation, where the transformations are concerned with the sharing and

unsharing of data path units. There are two sharing transformations, together with four of

their associated inverse unsharing transformations. A further binding transformation is

also piovided to select an alternate functional unit to perform the same operation. These

seven data path transformations and their effects are listed in Table 2-3. More details may

be found in [39].

Transformation

Combine
functional units

Share registers

Effects

This transformation attempts to merge two functional units into one, where

the operations performed by the two source functional units are not

executed in the same time slice. This has the effect of time-sharing a

functional unit between multiple operations. The resultant function unit will

have number of inputs, which are selected by the multiplexor interconnect

node. Control signals from control state nodes are used to drive the select

signals of the inferred multiplexors, and the load signals of the required

output registers. The availability of multi-function ALU units in the cell

libraries allows two combined units performing different operations to merge

into a single ALU unit. For example, merging an add and a subtract

functional unit into a single add/subtract A L U unit.

This second merging transformation tries to share a single register storage

unit between multiple ICODE variables with non-overlapping lifetimes, or

variables that occurs in mutually exclusive condit ional branches. The

register lifetime analysis also takes into account variable persistence around

loops and through conditional branches.

T.B. Yee, 2007 Chapter 2. High-level synthesis and the M O O D S synthesis system 56

Transformation Effects

Vncombine
instruction from
unit

This first uncombine transformation undoes the merging of two functional

units by the combine functional unit transformation. It takes a shared

functional unit that implements two or more ICODE instructions, and

removes one of these instructions into a n e w functional unit created to

implement the extracted instruction. The t ransform makes use of the cell

library to determine the type of unit to use for implementing the extracted

instruction. The unit that was initially shared is re-evaluated and the cell

library is used to select a replacement funct ional unit to perform the

remaining instructions (i.e. minus the extracted instruction).

Uncombine unit
fully

This transformation utilises the uncombinB instruction from unit

transformation to completely extract all ICODE instructions from a single

functional unit into a number of functional units, one unit implementing one

instruction from the original shared unit.

Unshare variable
from register

Shared registers are unshared in a manner similar to the uncombine

instruction from t/n/f transformation using this transformation, which extracts

one of the implemented variables from the shared variable and placed in a

new separate register storage unit.

Unshare register
fully

This transformation utilises the unshared variable from register

transformation mentioned above to completely unshare all the iCODE

variables being implemented by a single shared registered storage unit. This

transformation creates a number of separate register storage units, one for

each ICODE variable.

Alternate
implementation

This is the only binding transformation provided by the MOODS synthesis

core. For a functional unit that has two or more different available

implementations in the cell library, this transformation attempts to replace

the existing unit bound to the functional data path unit with an alternative

implementation with a different area and delay characteristics. This attempt

to use an alternative implementation changes the cost of the unit and the

cost function used within the optimisation algor i thm is used to determine

whether to accept or abort the new unit binding.

Table 2-3 Allocation and binding transformations

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 57

2.6.5 Cost function

The cost function is a measure of the goodness" of a change (e.g. merging of control

states 01 sharing of data path units) in the design structure wi th an application of the

selected tiansformations. This cost function is used during the estimation phase (step 3 in

Figure 2-14) in the iterative optimisation process. The cost function evaluates a design

configuiation with respect to the target objectives specified by the user, where the

multiple, possibly conflicting objectives form the weighted costs of each objective

(dimension). These weighted costs are used by the cost function to produce a single value

representation of the state of the design in an n-dimensional design space.

The MOODS cost function allows the user to specify objectives for a number of

measurable design parameters such as area, delay, and power consumption. Each of these

objectives is specified as a target value and user defined priorities are assigned to each

objective. The priority level assigned to objectives determines the order in which targets

aie optimised, where the pviynciTy objectives with priority 1 (highest priority) are

considered first before any other lower priority objectives.

An analogy for the cost function is the "energy" of a system. During optimisation, the

effect of applying the selected transformation is predicted by evaluating its effect on the

system "energy". For a single objective, the change is given by:

(2-1)

Where Cestimate IS the estimated cost of the design after applying the transformation,

Cprevious is the cost of the design before the transformation, and Cjnitiai is the cost of the

initial implementation. A negative average change (AE < 0) indicates a general

improvement in the design implementation with respect to the user objective.

The optimisation algorithm uses the value of the change in energy (AE) due to applying a

single transform to decide whether or not to accept the transform. AE is calculated by

summing the change in cost of each objective caused by applying a transform starting with

the primary objective. If all primary objectives are met, whereby all Cprevious Ctarget and

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system

Cestimate^ Ctarget (wherc Ctarget IS the target cost for the objective), then AE is calculated

from the priority 2 objectives, and so on for other lower priorities.

58

2.6.6 Optimisation algorithms

The MOODS synthesis core currently provides two optimisation algorithms. Both

methods can be used to control the optimisation process described in the previous section.

The first key function of the optimisation algorithms is selection of the initial

transformation and design portion to which the selected transformation should be applied

in the data selection phase. The other function of the optimisation algorithm is to decide

the number of transformation iterations to execute.

2.6.6.1 Simulated annealing

This first algorithm exploits a method with an analogy in metallurgy, where cinneciling is

originally a process where the molten material is cooled down from the high-energy liquid

phase to the minimal low energy solid phase in a controlled, usually slow, manner. A

proper disciplined cooling schedule sets the final energy state at its globally minimum

level at the end of the cooling process.

The simulated annealing algorithm [43] is a global optimisation method that is based on

the Metropolis algorithm [44]. The simulated algorithm works by selecting a random

transformation and design section to target the transformation. The resulting system

energy change in the cost function is evaluated and the algorithm accepts both improving

(AE < 0) and degrading (AE > 0) transformations. Transformations leading to cost

improvements will automatically be accepted, whereas the probability of accepting a cost

degrading transformation is given by:

f = e x p - y — : A E > 0 (2.2)

where P is the resulting probability of accepting a degrading transformation, AE is the

estimated positive change in energy given by the transformation and T is the temperature

within the annealing algorithm. This ensures that the probability of acceptance of

T.B. Yee, 2007 Chapter 2: High-level synthesis and the MOODS synthesis system 59

degradation decreases when the temperature decreases. The decision to accept

degradations is made from the comparison of the probabiHty threshold value and a

normalised random number, and acceptance being granted when the generated random

value is the smaller value between the two.

Figure 2-15 illustrates a one-dimensional configuration space and it demonstrates how the

simulated annealing algorithm avoids being trapped in local minima on the configuration

path.

C o s t

initial
configuration

local minimum

local minimum

global minimum

C o n f i g u r a t i o n

Figure 2-15 Design cost plotted against a single one-dimensional space

The design is initially represented by point An optimisation algorithm that accepts only

transformations that result in an improvement will hit the local minimum (point B). The

simulated annealing algorithm accepts degradation and hence allows the configuration to

jump out of the local minima (points B and C) into the global minimum (point D).

The main advantages of the simulated annealing algorithm are its abstractness in terms of

its application independence and its ability to find a global minimum. The optimisation

process using the simulated annealing approach relies entirely on the cost function and

transformation estimators to encapsulate the design space. This allows complex trade-offs

to be made between multiple conflicting objectives, and permits the inclusion of further

objectives (e.g. dynamic re-configurability or testability) with additional costing

T.B. Yee, 2007 Chspter 2. High-level synthesis cind the IVIOODS synthesis system

inechaiiisms to the cost function, with characteristic information and models for the added

objectives. However, there are a few disadvantages associated with the simulated

annealing. Firstly, the simulated annealing uses a random approach in the selection of

ti ansfoi mations, thus many iterations are required for a system to reach equilibrium,

making the simulated annealing approach slower than heuristic methods. The abstract

parametei values used to control the simulated annealing process requires manual

selection by the user, these are often difficult to predict in advance, requiring considerable

expeiience to obtain the solutions for each design. Generally, the optimisation speed is

traded off against the quality of the resultant synthesised design.

2.6.6.2 Quasi-exhaustive heuristic

MOODS synthesis tool addresses some of the unpredictable and often slow nature of the

simulated annealing algorithm with a quasi-exhaustive heuristic algorithm, which is both

faster and more user friendly. Unlike the random selection method used in simulated

annealing, this heuristic approach uses the same set of transformations, applied in a pre-

defined schedule, guided by an analysis of the design. The quasi-exhaustive heuristic

produces the same final structure for every optimisation run of any fixed design. The

algorithm only perfbmis area and delay optimisation, with knowledge of suitable trade-

offs gained through an analysis of a number of test designs.

The quasi-exhaustive heuristic only accepts improving transformations; it uses the same

sets of transformations as those used within the simulated annealing algorithm, apart from

the inverse (i.e. degrading) transformations. Two basic routines are provided to optimise

area and delay:

1. Compact control path - This routine utilises the scheduling transformations, merging

control state nodes in the control path. This reduces delay by performing more

instructions within a single control node and to a lesser extent, as temporary

intermediate registers are bypassed and removed in the data path.

T.B. Yee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system

2. Compuct dcitcipath - This second routine utilises the allocation and binding

transformations, merging operations and sharing register storage units, hence

optimising area.

There are two main disadvantages in using the quasi-exhaustive heuristic algorithm.

Firstly, the inability to apply degrading transformations can lead to a sub-optimal

synthesised design. The other reason is the heuristic approach only performs area/delay

optimisations. To perform multi-dimensional trade-offs between multiple conflicting

objectives, the heuristic approach needs to understand the interactions between all aspects

of the design space in order to perform the most appropriate transformations. The

algorithm which is faster than the simulated annealing algoritlim provides the user with

some general idea of what constitutes a realisable target and it may be used as a pre- or

post-processing step in conjunction with simulated annealing for further optimisation.

2.7 Post-processing

The post-processing stage in the MOODS is used to complete the structural description of

a design. This epilogue (finalisation) stage happens just before the generation of the raw

structural VHDL output {_synthl.vhd) file, final data structure {.ds) file, and the DDF data

structure file (the last processing stage in the synthesis engine - MOODS in Figure

2-9).

The first step of the post-processing stage is the bypassing of subprogram module output

registers to implement pass by reference (See Chapter 4 for subprogram module

modifications to change outputs of external modules to pass by value).

The next stage in the post-processing stage is to generate any multiplexors that are

required. These interconnect data path nodes are completely implied during optimisation

for efficiency reasons. A multiplexor is created and linked into the data path structure

when multiple input nets drive a single data path node in. The net activation conditions

which correspond to ICODE instructions that drive the input nets are later converted into

multiplexor select signals.

T.B. Vee, 2007 Chapter 2: High-level synthesis and the M O O D S synthesis system ^ 2

The third stage in the post-processing stage involves the generation of control signals from

the conditional signal list. Boolean expressions are generated and linked in to the

appropriate nets and control signals within the control and data paths.

Other tasks performed within this post-processing stage include the tidy up of the data

path, removing of unused data path units, which have been bypassed during the

optimisation process. The control path is also tidied by removing redundant control states.

2.8 Summary

The beginning of this chapter gives an outline of the overall high-level synthesis process

and the main sub-tasks within the process. The rest of the chapter describes the MOODS

synthesis system in more depth, in particular the methods employed by MOODS to carry

out the synthesis sub-tasks. MOODS develops and provides the user with multiple

implementations from a single behavioural input description within the design space,

which provides trade-off between several, possibly conflicting, objectives in the aim of

producing an optimised implementation of the design.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning

Chapter 3

Multi-FPGA partitioning

3.1 Background

The previous chapter covered an overview of high-level synthesis and an in-depth

description of the MOODS synthesis system, which forms one part of the multi-FPGA

synthesis system. The other important part is the partitioning phase, more specifically Aow

is the design partitioned and M/AgM to perform partitioning. The first aspect of the

design is partitioned deals with the design representation used for partitioning and the

partitioning algorithm used. A common design representation for partitioning is based on

graph notation, where a data flow graph, control and data-flow graph, or module call graph

is partitioned with the goal to attain a partitioned design that fulfils optimisation criteria

and constraints such as area, speed, power consumption, number of I/Os, etc. Partitioning

can be performed at different abstraction levels and granularity, the second aspect of wAen

to perform partitioning has a high impact on the quality of the structural output produced

by the synthesis system.

The rest of this chapter provide the background information on multi-FPGA partitioning,

giving an insight on Aovr a design can be partitioned. Section 3.2 deals with partitioning

methodologies and it provides an overview of partitioning algorithms. With an

understanding of partitioning algorithms. Section 3.3 introduces multi-FPGA partitioning

and describes synthesis systems with multi-FPGA partitioning features. Section 3.4 deals

with some aspects of the data communication in the context of multi-FPGA systems.

Section 3.5 describes techniques and issues related to data synchronisation across clock

domains. An introduction of design activity profiling and how the obtained profile can be

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 64

used to guide the paititioning algorithm to achieve an improvement in the implementation

solution is given in Section 3.6.

3.2 Partitioning methodology

Multi-FPGA systems [45] are often used in logic emulation, prototyping applications, and

implementation of application specific integrated circuits (ASIC) of large system designs

because of their programmability features, low costs and short production times [46]. The

general partitioning problem is a well-known NP-complete problem [47]. Partitioning of a

design over multiple devices can be performed at various levels of abstraction, with a

multitude of techniques in partitioning multi-FPGA systems and the possible combinations

could reach into the thousands.

3.2.1 Overview of partitioning algorithms

Partitioning algorithms can be classified broadly into two main categories [48, 49]. The

fiist is constructive and the other iterative. Constructive algorithms determine a partition

fiom the graph describing the circuit or system, whereas iterative methods aim at

improving the quality of an existing partitioning solution.

Partitioning algorithms can also be labelled or Deterministic

algorithms generate the same solution for the same set of inputs every time. Probabilistic

algorithms, on the other hand, produce differing solutions as they are based on random

numbers. One of the best-known, most widely referred and extended deterministic

algorithm is the Kemighan and Lin (KL algorithm) [50] and its variant, the Fiduccia-

Mattheyses (FM) heuristic [51]. Refinement and extensions to the basic FM heuristics

given by Krishnamurthy [52], Huang and Kahng [53], Hauck and Borriello [54],Cong et

al. [55, 56], Dutt and Deng [57], Kuznar et al. [58, 59] as well as many others.

Probabilistic or stochastic algorithms includes the Simulated Annealing (SA) algorithm

[43] and Genetic Algorithms (GA) [60].

Research on partitioning at a higher level of abstraction (e.g. behavioural partitioning) and

hierarchical partitioning techniques were carried out by Vahid et al. [61-65], Digital

T.B. Yee, 2007 Chapter 3: Multi-FPGA partit ioning 65

Design Environments Laboratory in the University of Cincinnati [66-68], Fang and Wu

[69-71], Duncan et al. [72], Knipnova et al. [73] as well as many others.

Kernighan-Lin algorithm

The KL (Keinighan-Lin) [50] algorithm is an iterative improvement bipartitioning

algorithm foi a giaph G — (V, E), which starts with two initial partitions (usually randomly

generated) of n elements each. Pairs of vertices are swapped between partitions until no

fuither improvement can be achieved. The KL algorithm attempts to swap pair of vertices

to reduce the cutsize or a move resulting in the smallest increase in cutsize, if no decrease

is possible. A cost matrix C = (Cy), where i=j= 1 ,2 ,3 , ..., 2n, i ^ j is associated with the

graph. For each node a e an earremaZ cost, is defined by:

^ where is number of edges that
ysB cross the partition boundary (3.1)

and an internal cost L by;

/q = ^ Cgy where Cav is number of edges that do
veA not cross the partition boundary (3.2)

Da Ea la IS the benefit of moving vertex a from A to B. The gain of swapping a vertex

pair (a, 6), where a e ^ and 6 e ^ is given by - 2ca6.

The first step of the KL algorithm arbitrarily partitions P înto two equal subsets and

External costs, internal costs, and the difference between the two costs are then computed

for all vertices. Step 3 of the algorithm is to choose the pair of vertices that will result in

the highest gain value when the interchange occurs. The gain resulting from this move is

stored and the selected pair of vertices is locked to prevent it from being considered for

swapping again. The procedure continues until all n pairs of vertices are evaluated and

locked, and the sequence of gains, g / , . . . , is generated (Step 4). The total gain of

swapping the first vertex pairs is given by:

k

- Si where I <k<n (3.3)

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 66

Kernighan-Lin Algorithm
begin

Stepl. V= set of 2« elements; A, B is the initial part i t ion where

1̂ 1 = 1̂ 1; and = K;

Step2. Compute Dy for all v e K; <- 0; and ; 1;

Step3. Choose aie A ' bisB' which maximises

gi = Z ,̂ + -2Ca,6J

Lock a, and and add the pair (g„ 6,) to

Step4. i f ^ 'and 5 ' a r e both empty then Goto Step5

else recalculate D - values for A'kj B'\

/ < - / + ! ; Goto Step3;

end if

Step5. Find k to maximise the partial sum

k

G f
i=\

if G > 0 then

Move { Qi,

Move Y= {b].

Goto Step2;

else STOP

end if

, } to

, 6*} to

end

Figure 3-1 Kernighan-Lin algorithm

The last step of the algorithm (Step 5) interchanges the first k pairs of vertices for which

Gk is maximal, making the interchange of (a/, . . w i t h {bi, b^} permanent. The

KL algorithm stops when the best gain found in an iteration is less than or equal to zero,

that is, no further improvements can be obtained from vertex pair swapping.

Fiduccia-Matthevses algorithm

The FM (Fiduccia-Mattheyses) algorithm [51] is one of the best-known, most widely

referred and extended partitioning algorithm. It makes two modifications to the KL

algorithm to improve the time complexity. Firstly, instead of swapping and locking a pair

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 67

of vertices, the FM algorithm considers and moves a single vertex, one with the highest

gain in a partition-to-partition move. Secondly, also one important feature of the FM

algorithm, a bucket data structure (see Figure 3-2) keeps sorted lists of candidates

(vertices) for moving to the other partition. The vertices are sorted by order of maximal

gain in a move, where a positive gain is an improvement in the overall solution while a

negative gain degrades it.

Sorted list of vert ices

List of locked vert ices

Ver t i ces 1 2 3 4 5 6 7

X

-{)

Figure 3-2 Bucket data structure in the FM algorithm

The FM algorithm is an iterative improvement algorithm, in that it starts with a random

initial partition, and iteratively modifies the solution by a sequence of moves within a pass.

To avoid having all vertices migrate to one partition, a balancing criterion is maintained. A

user-specified balance factor r (called ratio), 0 < r < 1, is used to ensure that only final

partitions satisfying \A\/ (\A\ + \B\) = r are acceptable, where \A \ and \B\ are the sizes of

partitioned blocks A and B. A partition (A, B) is balanced if

(r * |K| - ^m ,̂) < 1̂ 1 <(r * I F| 4- Jmar) (3.4)

where \A\ + |5| = \ V\, Smax = M?Lx[s(i)],z.ndi\G A uB= V

All vertices are free to move initially, the move with the highest gain and does not violate

the balance criterion, is selected and executed iteratively. The moved vertex (base vertex)

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 68

is locked and never selected and moved again during the pass, preventing the algorithm

fiom selecting and moving the vertex moved in the previous iteration, thus the algorithm

avoids executing in an infinite loop. The gain values of adjacent vertices affected by the

base vertex move are updated after each move. The algorithm maintains a maximum gain

index foi each bucket data stiucture to keep track of the vertex with the highest gain. The

algoiithm continues with the execution of this iterative select-and-move sequence until no

more unlocked nodes can be moved without violating the partition size constraints. At the

end of a pass, the FM algorithm moves back to the best intermediate solution, allowing the

algoiithm to climb out of local minima. All vertices are unlocked and the best solution

forms the starting partition for the next pass. The algorithm terminates when a pass fails to

improve the solution.

A single pass of the FM algorithm using a graph with six vertices (labelled A/-;;) is

illustrated in Figure 3-3. The algorithm starts with an initial partition in (a). The vertex

with the highest gain (vertex M is the base vertex in (a)) is selected and moved to the next

partition. The moved node is locked (shown shaded in the diagram) and the gain values of

the adjacent vertices (vertices O, Q, and K) are updated. The select-and-move sequence

ends in (g) and the intermediate result in (c) gives the best solution (with a cut-size of 3)

forms the starting partition for the next pass.

T.B. Yee, 2007 Chapter 3; Multi-FPGA partitioning 69

Gain

Cut-Size = 5

Cut-size = 3

(N I R
Cut-size = 4

Cut-size = 5

(a)

Gain

+3

+2

- 2

-K.O)

-4N)

(C)

Gain

+3

+2

+ 1

(W.
iR)

(e)

Gain

+3

(g)

+3

+2

+ 1 P R)
0

-1

-2

-3
,

w;.

I.
Cut-size = 4

Cut-size = 4

Gain

P '

I
Q
I .
-(«/

+ 3

+2

- 2

f O
1 P)
; w

(b)

Gain

Cut-size = 3

+3

+2

2

(W
: q)

(d)

Gain

+3

+ 1

(f)

Figure 3-3 Example of a single pass in the FM algorithm

Clustering algorithm

A clustering algorithm groups a set of objects according to some measure of closeness.

Strongly connected objects are merged into clusters; thereby condensing the overall

design. A hierarchical cluster tree, with the original objects as the leaf nodes, is formed as

the merging process is iterated until a single cluster is formed. The two 'closest' objects

T.B, Yee, 2007 Chapter 3: Multi-FPGA parti t ioning
7 0

(which Ccin be individucil leaf nodes or chistcrs resulting f rom previous iterations) are

giouped togethei and the closeness between all other clusters, or between individual

objects and clusters are recomputed during each iteration pass. Leaf nodes are considered

to a height of zero and each non-terminating node of the tree has an associated height,

which reflects the distance between the objects that have been merged into the

coiiesponding clusters. Non-terminating nodes closer to the leaf nodes represent clusters

in which the objects are strongly connected, and in contrast, non-tenninating nodes with

larger distance (i.e. closer to the root node) represents clusters in which objects are less

strongly connected. Cut lines at different heights of the tree produces differing number and

size of partitions, as each sub-tree below the cut line becomes one resulting partition. A

small number of relatively large clusters are obtained when the cut line is close to the root,

while a cut near the leaves will give a large number of relatively small clusters. The final

partitions of the design are usually chosen by having cut lines at different levels and the

resultant partitions from each cut are evaluated according to design criteria such as area or

I/O utilisation of target devices.

Figure 3-4 illustrates the hierarchical partitioning algorithm using five vertices labelled

to E. Closeness values between pairs of objects are marked on the labelled on the edges

connecting the objects. Objects or groups of objects that are merged in each succession are

encompassed in the shaded cluster and the closeness between two clusters or between an

individual object and a group of objects are recomputed. The closeness values can be the

maximum, minimum, or average of the closeness of objects in the group. This closeness

value has been estimated as the maximum closeness in the given example shown below.

T.B. Yee, 2007 Chapter 3: Mul t i -FPGA par t i t ioning
7 1

Figure 3-4 Successive steps in Hierarchical clustering

Figure 3-5 below illustrates the cluster tree produced by the hierarchical clustering

algorithm. Partitions produced from each cut are shown the corresponding cut lines. The

highest cut line, which is closest to the root node, produces a partitioning of two clusters

with objects .E and C in one cluster and objects .8 and D in the other. The lowest cut line

produces a partitioning of five clusters with a single object in each.

R o o t n o d e

C u t l i nea

{ / I . E, C} {8, 0 }

M . E} {C} {8, 0 }

M . E } { 8 } { C } { 0 }

M } { 8 } { C } { 0 } { E }

leaf n o d e s

Figure 3-5 Cluster tree produced by Hierarchical clustering

Clustering algorithm can be applied at several levels of abstraction (i.e. gate netlist level,

functional level, system level). Hierarchical clustering algorithms, which exploits the

design structural hierarchy are reported in [70, 71, 73]. Fang and Wu [71] describes a

hierarchical set-covering approach at the structural level for multiple-FPGA applications.

The design is first converted into a three-level, module, process, and function, structural

tree. An example of a structural tree with three modules (Ml, M2 and M3), eight

T.B. Yee, 2007 Chapter 3: Mul t i -FPGA part i t ioning 72

processes (Pl,l to PI,3, P2,1,P2,2, and P3,l to P3,3) and twenty Amotions to

f3,3,2) is shown in Figure 3-6.

M o d u les

P r o c e s s e s

M1 ^

P1,1 ^

\

t f f
f 1 , 1 , 2 f 1 , 2 , 1 f 1 , 2 , 3

(P2J)(P2^

I
f

f 3 , 3 , 1

Figure 3-6 Structural tree of the hierarchical set-covering algorithm

The structural tree is next converted into a hierarchical connected graph illustrated in

Figuie 3-7 below. The covering process is performed on the hierarchical graph and it starts

from the nodes with coarse granularity and then moves down to nodes with finer

granularity when no more feasible covers can be found in the latter (higher) level. If

modules Ml and M2 can be grouped into a set while satisfying the constraints, in this

case, area and I/O of the target FPGA, then Ml and M2 can be merged into a set and

targeted to the device. On the other hand, if the constraints are violated, then Ml and M2,

then the set-covering algorithm tries to merge portions of one module with the other

module to improve the covering size. For example, in Figure 3-7, module M2 and portions

of Ml (process node PI,2 and functional node f 1,3,1) are covered as a set.

f1,2,1

\ f1,3,2

Module

Function

Figure 3-7 Hierarchical connected graph

T.B. Yee, 2007 Chapter 3: Multi-FPGA parti t ioning 73

Frank and G^ski [62] describes a for system-level functional

partitioning, and a N-way clustering method is used to group close objects until there are

only N groups remaining, where each group is then assigned to its own system (hardware

or software) component. A clustering algorithm is often used with other partitioning

heuristics to reduce the complexity of the design, thus reducing the computational effort,

and even significantly improve the quality of the final solution [61, 74].

Simulated annealing algorithm

The simulated annealing (SA) algorithm works in a similar manner as described in Section

2.7.6.1, where the simulated annealing is one of the optimisation algorithms used within

the MOODS synthesis core. In partitioning, the SA algorithm starts with a random

partition, and iteratively improves the solution. A pair of vertices is selected from each

partition randomly in each state, and compared with the previous state. The intermediate

solution that results in an improvement in the overall solution is accepted and the move is

made peimanent. A piedetermined number of moves are attempted at each temperature.

When a move that degrades the overall solution is encountered, the probability of

accepting the degrading move is given by:

n —ML
^ = e x p — : A £ > 0 (3,3)

where P is the resulting probability of accepting a degrading move, AE is the change in

quality of the states, and 7" is the current temperature. This function ensures that the

piobability of accepting a degrading move decreases when the temperature decreases. The

decision to accept degradations is made from the comparison of the probability threshold

value and a normalised random number, and acceptance being granted when the generated

random value is the smaller value between the two.

The simulated annealing algorithm generally produces good partitions but it is a very slow

algorithm. The need to determine experimentally the several parameters of the SA

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 74

algorithm, such as the starting temperature, the coohng schedule, and the number of

moves to perform at each temperature is another disadvantage in using the SA algorithm.

Genetic algorithm

Genetic algoiithms (GAs) are iiispiied by Darwin's theory of evolution, where problems

are solved by an evolutionary process that mimics the natural selection and genetics. The

ongins of GAs are often accredited to work carried out by J. Holland [60] in the early 70s.

A genetic algorithm is a randomised parallel search method for a single or multi-objective

function optimisation. A. population of individuals is maintained by the genetic algorithm,

where each individual is a potential solution for each generation. Each potential solution i

evaluated to give some measure of it?, fitness. From this population, a new population is

formed by selecting some of the fitter individuals (selection) and others are formed using

genetic operators (such as crossover and mutation). After some generations the program

conveiges and the best individual (hopefully) represents the optimum solution. The

genetic partitioning algorithm given in Figure 3-8 is used in the partitioning of modules

a multi-FPGA system [75].

is

m

Genetic Partitioning Algorithm
K\ population size (number of partitions in a generation)

S: percent of new generation produced by selection.

C: percent of new generation produced by crossover.

M: percentage of partitions

GAO

begin

Create a random set of AT partitions

Evaluate the fitness of each partition

while (stopping criteria not satisfied)

Create S percent of new population of partitions by selection

Create C percent of new population of partitions by crofjove/-

Replace the current generation by new generation of partitions

Mw/afe M percent of the current partitions

Evaluate the fitness of each partition

Save the partition with the best fitness

end while

end

Figure 3-8 Pseudo code of the genetic algorithm

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 75

The GA starts with the generation of the initial population and a measure of the goodness,

fitness (/) of a partition is quantified by an evaluation function.

/ = (3.6)

AP,=

AAJ

0

Pi - Pmax

0
Ai- Amax

a Pi < f max
otherwise

if Ai < Amax
Otherwise

where k is the number of chips the design is partitioned into, P,- and Aj are the pin-count

and area of partition i respectively, P,„ax and A,„ax are the constraints on the pin-count and

area for the partitions. The fitness value is in the range 0.0 to 1.0; 0 indicates a bad

solution and 1 indicates an excellent solution (i.e. all partitions satisfy all the constraints).

The GA algorithm uses the following operators in order to produce the next generation of

partition (population):

• Selection - This operator probabilistically selects highly fit individuals from the

present generation and moves them into the new generation using the roulette wheel

technique. Roulette wheel selection can be summarised in three steps [76] as shown in

Figure 3-9.

Roulette Wheel Selection

1. Sum the fitness of all the population members and call the result

total fitness.

2. Generate a random number n, between 0 and total fitness.

3. Return the first population member whose fitness, when added to

the sum of fitness of preceding members, is greater than or equal to

n (random number generated in step 2).

Figure 3-9 Selection using roulette wheel technique

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning

The roulette wheel is an imaginary wheel which is split into as many parts as the

population. On this wheel, each individual is assigned an area which is proportional to

the relative fitness of the individual with respect to the overall population. Figure 3-9

gives an example of a roulette wheel with four individuals - 4̂, .8, C, D, and relative

fitness of 38%, 28%, 12% and 22% respectively. If the wheel is spun, when the wheel

stops, the probability that the arrow would be on is 0.38, B is 0.28 and so on. This

means that the probability of C (the predicted worst individual to lead to the optimal

solution) being selected is the minimum and the probability of 4̂ (the predicted best

individual to lead to the optimal solution) being selected in the mmximum. The effect

of selection ensures that good individuals in the search space are preserved and search

continued from those individuals to look for a better solution. It is important to note

that j'e/gcrzoM does nothing to explore the unexplored regions of the search space.

Searching of unexplored regions is mainly achieved with the crossover operator and to

a lesser extent with the mutation operator. 5" percent (typically 20 to 40 %) of the

partitions in the new generation are created with this select operator.

Croffovgr - This basic genetic operator probabilistically selects two highly fit (parenr)

partition structures from the current population, exchanges information between them

and produces two offspring {child} structures. The significance of this is that the

offspring structures represent two points (or solutions) different &om the parent points

in the search space, which probably represents some unexplored points in the design

space. An example of uniform crossover is illustrated in Figure 3-10. Uniform

crossover starts by selecting probabilistically two highly fit parent structures, Parent 1

and Parent 2 for mating. The second step is to generate a binary string template whose

length is the same as the number of elements in the design. The bits in this crossover

template are randomly selected to be either 1 or 0. The offspring of the parents are

produced using the randomly generated crossover template. Figure 3-10 shows two

parent structures, which are possible partitioning solutions for 10 components (Ro, Ri,

R], • • •, Rg) into three target devices (ChipO, Chipl and Chip2). An explanation on how

the two offspring of the parents are produced is given below:

Child 1 creation; If the i^ bit in the crossover template is a 1, then the i^

component of the design is placed in the same partition as it was in Parent 1, and

if the i^ bit is a 0, then the component is placed in the partition as it was in Parent

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 77

2. For example, Bit 0 of the crossover template is a 0, component Rq is placed in

Chip2, the same partition as Rq occurred in Parent 2. Bit 1 of the template is a I,

component R] is placed in Chipl of Child I, which is the same as it occurred in

farenf 7.

2 creation: The creation of Child 2 follows a similar process. If the i"' bit in

the crossover template is a 1, then the i''̂ component of the design is placed in the

same partition as it was in Parent 2, and if the i^ bit is a 0, then the component is

placed in the partition as it was in Parent 1.

This operator creates C percent (typically 60 to 80%) of the partitions in the

new generation.

Parent 1 Parent 2

CNpO Ro R4 Rs ChipO Ri Rs Rg
C h i p l Ri R2 Re Chip1 R3 R4 R?
Chip2 Rs R? Rs Chip2 Ro R2 Rs Re

Template fo r c rossover

2 3 4 5 6 7

0 1 1 1 0 1 0 1 0 0

Child 1 Child 2

ChipO Rs Ra Rg ChipO Ro Ri R4
C h i p l Ri R2 R4 C N p l Rs Re Ry Rg
Chip2 Ro R3 Re CNp2 R2 Rs Rs

Figure 3-10 Example of uniform crossover

Mutation - The mutation operator is introduced as a means to help the genetic

algorithm avoid local optima. The mutation operator is invoked after selection and

crossover. The mutation operator selects a partition structure probabilistically and

T.B. Yee, 2007 Chapter 3: Miilti-FPGA partitioning y g

moves a design component from some randomly selected segment in the partition to

another randomly selected segment. If the fitness of the mutated structure is low, it

would most likely be eliminated in subsequent generations. However, if the fitness of

the mutated structure is higher, then the probability that this structure will survive and

lead to a better solution is high. This mutation operation is applied to Af percent

(typically 20 to 25%) of the partitions in the new generation.

The genetic algorithm terminates when a termination criterion (or a required fitness value)

is met. Criteria such as computational time, number of generations to be searched or a

limit on the global optimality such as the total number of interconnection wires or total

number of chips are also specified. Multiple objectives can be assigned a weighting value

to prioritise the user-defined objectives in the computation of the fitness value. Recent

work on multi-FPGA partitioning using the GA algorithm can be found in [77, 78].

3.3 Multi-FPGA synthesis systems

The preceding section gives an introduction to the various methods and algorithms of

partitioning in a general context. This section describes partitioning of multi-FPGA

systems using some of these partitioning algorithms or a combination of algorithms used

in multi-FPGA synthesis tools. A number of multi-FPGA synthesis systems exist, both

commercial and academic. Some of the commercial systems are; Aptix Corporation

Design Pilot™ [79], Auspy Development Inc. Auspy Partition System II [80], and

Synplicity Certify^ [81]. None of the mentioned commercial tools perform the partitioning

at the behavioural level. All three tools perform partitioning at the register transfer level,

and Auspy Partition System II also supports partitioning at the gate-level. Some academic

tools are: COBRA-ABS [72, 82], SPARCS Project [68, 83] and related work in multi-

component partitioning and synthesis [66, 67, 84], ISyn [70, 71, 85], SpecSyn [63, 65, 86,

87], CADDY-II [88].

T.B. Yee, 2007 Chapter 3: Multi-FPGA parti t ioning -79

3.3.1 COBRA-ABS

The COBRA-ABS (Column Oriented Butted Regular Architecture - Algorithmic

Behavioural Synthesis) high-level synthesis tool developed at the University of Aberdeen

has been designed to synthesise digital signal processing (DSP) algoritlims specified in C,

and target onto multi-field programmable gate array custom computing machines

(FCCMs). The synthesis tool takes as input an FCCM architectural file and a datapath-

library description file, in addition to the input algorithm description described in C.

Information in the FCCM architecture file, which specifies the target FCCM, in terms of

the FPGA devices, custom/ASIC arithmetic resources, inter-FPGA routing (point-to-point

and bus based), FPGA-to-memory routing, and associated communications delay. The

low-level datapath-library description file contains characterisation data about the RTL

modules available and cost (in area) and timing characteristics (in clock cycles). The

FCCM target information and the low-level library characterisation data are fed into the

optimisation process driven by a simulated annealing algorithm.

The target architecture of the tool is based is on a partitioned VLIW (Very Long

Instruction Word) style architecture, where each FPGA holds a single "RISC (Reduced

Instruction Set Computer)-like" register-file based, load-store processor, with a bus-based

architecture and a set of functional units.

The C fimction inputs forms the in COBRA-ABS, each of which are

represented by dataflow graph and controlled by a corresponding control-flow graph. The

datapath space model [89] formed a three-dimensional space in which the lifetimes of

variables are optimised. The optimised dataflow implies the hardware that is required to

create, transfer, store and consume the data. The variable dimension represents the explicit

and implicit data in the behavioural description. The processor dimension directly relates

to the "RISC-like" processors and hence represents the yartitions. The datapath space (dp-

space) can therefore represent data flow in time and across partition boundaries.

The three-dimensional model was extended to a four-dimensional model to allow

conditional branches and loops of the basic blocks. The overall datapath for each

processor is the superposition of all the datapaths, which would be implied by each of the

3-D sub spaces isolation. The conceptual view of the superposition in the four-

dimensional datapath space is illustrated in Figure 3-11.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 80

Processor
A

Block 0
D a t a p a t h

B lock 1
D a t a p a t h

B lock "n"
D a t a p a t h

Implied
Datapath

Processor

Implied
Datapath

Processor Implied
Datapath

Variable

Time

Variable

Block 0

B lock 1

Time

Variable
B lock "n"

Time

Superposit ion of
datapaths gives the
Composite Datapath

Figure 3-11 Conceptual view of superposition in 4-dimensional datapath
space

The dp-space model is composed of a behavioural layer and a structural layer. A number

of the "entities" representing the required behaviour are mapped to the 3-D dp-space.

These entities are: input node, output node, functional-unit node, memory write, memory

read, and global bus transfers. The DFG is transformed into a graph of interconnected dp-

space entities and mapped to the behavioural layer. The structural layer administers the

implication of hardware units and use of fixed FCCM resources. The cost of a dp-space

configuration is measured in both the behavioural and structural layers, and the simulated

annealing process adjusts the dp-space configuration, in the aim of finding the fastest

implementation, which will fit on the FPGAs.

The synthesised output of the algorithm can be visualised as one 3-D block of dp-space

flowing in time, into the next, with data passing seamlessly between blocks. The concept

of the "pluggable block" was developed so that blocks, which can potentially "interface in

time", have compatible interface on their dp-space variable-processor planes.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 81

1

B l o c k 1

B ock 0 Decis ion node

VahaNe
processor plane

Block 0

I B l o c k 2 ,

1

B lock 2

translates to
B l o c k 1

Block 3

E x a m p l e C o n t r o l F low G r a p h Po ten t ia l d a t a f l o w b e t w e e n bas ic 3D
d a t a p a t h - s p a c e b locks

Figure 3-12 Pluggable 3-D block concept

COBRA-ABS provides a powerful high-level synthesis environment for DSP algorithms,

specified in C. However, the run times reported (in [72, 82]) are rather high (> 10 hours)

because of the simulated annealing algorithm, which forms the core of the synthesis

optimisation process. The other point worth noting is the "pluggable block" concept is

highly dependent on the number of I/O resources between each block that resides in

different FPGAs, and this will impose an upper limit on the number of buses or point-to-

point interconnects in the fixed board-level target architecture [90].

3.3.2 SPARCS

The Synthesis and Partitioning for Adaptive and Reconfigurable Computer Systems

(SPARCS) [67, 68, 83] partitioning and synthesis framework was developed at the

University of Cincinnati. The behavioural input designs are specified in either subsets of

VHDL or C, and translated into an equivalent Control Data Flow Block Graph (CDFG),

where each contains a simple dataflow graph that captures the operations, and the

edges between blocks represent the data and control flow across blocks. Each block is

viewed as an atomic element that cannot be partitioned onto multiple FPGAs. The control

flow at the end of the block can conditionally branch into one of the mutually exclusive

blocks connected to it. The control flow also permits loops in the block call graph. The

block call graph represents a single thread of control where all blocks are mutually

T.B. Yee, 2007 Chapter 3: Miilti-FPGA partitioning 82

exclusive in time. Each of the partition CDFG contains a subset of blocks, which is

synthesised into an RTL design for the corresponding device in the multi-FPGA

architecture, with a single finite state machine controller and datapath resources shared by

blocks within the same partition.

The "partitioner" that performs the partitioning of the CDFG is tightly integrated with the

high-level exploration engine, whereby the partitioner always communicates any change

in the partitioned configuration to the exploration engine. A four-dimensional design space

model was used to represent the overall design so that the exploration engine has a

partitioned view of the behaviour. Each partition segment, consisting of a set of

operations, is represented by a traditional three-dimensional design space illustrated in

Figure 3-13. The set of all partition segments of the design behaviour forms the fourth

dimension. An example of the four-dimensional design space for design behaviour with

two partitioned segments is illustrated below in Figure 3-13.

F u n c t i o n a I
u n i t s ^

Time
s t e p s

0 p e ra t i o n s T ,

O , 0 ; O , O .

O l 0 ; 0 , O ,

T r a d i t i o n a l th re e - d i m e n s i o n a l d e s i g n s p a c e

T i m e s t e p s

O l 0 ; O , O .

O, 0; 0, 0,

P a r t i t i o n 1 = J

F o u r - d l m e n s l o n a l d e s i g n s p z

B 8 h a v i o u ra I
P a r t i t i o n 2 = { O ^ . O g , 0 ^ , 0 g} P a r t i t i o n s

f o r a p a r t i t i o n e d b e h a v i o u r

Figure 3-13 Four-dimensional design space for a partitioned behaviour

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning

The functional units and operations are mutually exclusive between the partitions.

However, the time steps span across the partition segments because the synthesised RTL

output, one for each partition, is controlled by a synchronous FSM controller clocked by a

single common (global) clock.

A multi-partition exploration algorithm performs an iterative exploration of blocks where

the schedule of a block is either relaxed or tightened such that the design constraints are

best satisfied. Relaxing (increasing) the schedule length could reduce the area of a

partition and increase the latency of the entire design and tightening the schedule works

vice versa. A collection of cost functions are used to sort and prioritise the blocks and

guide the exploration engine to perform the area/latency exploration.

The exploration algorithm is independent of the partitioning algorithm used to obtain the

partition segments. Synthesis results of SPARCS with partitioners using algorithms based

on Fiduccia-Mattheyes (FM) partitioning algorithm and simulated annealing are given and

it has been reported in [68] that the run times needed to find constraint satisfying solutions

for a similar board architecture are much lesser than those reported in COBRA-ABS [72]

described in the previous section.

The four-dimensional design space global technique with an integrated synthesis and

partitioning model in SPARCS has provided a fast and efficient environment to generate

constraint-satisfying solutions targeting a multi-FPGA architecture. In a similar manner to

the COBRA-ABS, the implication of a partitioned design is explored with a fourth

dimension. However, SPARCS also does not allow performance trade-off against the

number of interconnecting I/O resources between the devices in the fixed architecture.

T.B. Yee, 2007 Chapter 3: Multi-FPGA parti t ioning g 4

3.4 Data communications and communications

synthesis

Data communications is fundamentally a simple operation, where data is sent from one

point to another. A communications protocol is a specification of events and timing

requirements in transferring information.

In a multi-FPGA system, data is sent 6om one FPGA device to another FPGA device. It is

possible to have direct pin-to-pin connection mappings [91-93] on the FPGAs if both

devices access the same signal. The signal value is changed in one device, passed on

through the direct pin-to-pin connections, and updated in another device. However, the

number of I/Os available on the I/O constrained FPGAs may not be sufficient to

accommodate all the signals in the design. Another significant disadvantage of the multi-

FPGA system is the lower speed of operation compared to a single chip implementation.

The programmable features and the associated programming circuitry require a large

amount of the chip area. The switches have significant resistance and capacitance, which

account for the low speed of operation [49].

The Virtual Wires project [94] carried out in the MIT Computer Architecture Group

explores methods to overcome pin limitation in FPGAs. Virtual wires are created by

multiplexing and pipelining inter-device I/O signals. A virtual wire represents a single

connection between a logical output on one FPGA partition and logical input on another

FPGA partition. Shift registers in the sending and receiving FPGA are configured into

shift loops, storing logical outputs into shift registers at the sending end, and shifting them

into shift registers on the receiving FPGA.

A bus based approach to overcome the I/O limitation was proposed by Vahid [95]. The

approach uses a single bus, the FunctionBus, for implementing function calls among

FPGAs. The FunctionBus architecture is shown in Figure 3-14. Inter-FPGA data and

control-encoded address are sent over the y4Z) lines of the bus, with two additional bi-

directional control lines, Areq and Dreq, used to indicate a valid address and a valid data

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 85

on AD respectively. Vahid also demonstrated techniques to trade off performance for even

more I/O reductions using the FunctionBus.

External ports

4

t

Areq

Dreq

/to

External ports

F P G A

External ports

A I

FPGA

n r

Address request
Oreq': Data request
AO: Address/Data

Figure 3-14 FunctionBus arcl i i tecture

3.5 Data synchronisation over multiple clock
domains

"Moving information from one clock domain to another is rather like descending into

DaMfe q / " / z g wa/r fo rAe Maive. " [96]. Data communication

between two independently clocked domains can result in the data metastability [97-100].

Metastability can occur when an input to a register (flip-flop) is not synchronous to the

clock, which can result in setup or hold time violations. Metastability is caused when the

asynchronous input changes too close to the clock edge; this input to the register is not a

stable high or low value during the register setup time. The flip-flop does not know if it is

to change state or not, and may enter the metastable state, with the output not being logic

High nor Low. Even though the flip-flop will eventually settle in a stable state after some

period of time, this can still cause a system failure if the flip-flop has not left the

metastable state by the end of the system's clock period. Figure 3-15 illustrates a simple

two flip-flop (double buffer) synchroniser, which is typically sufficient to remove all

likely metastability.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 86

D o m a i n 1

asynchronous input

D o m a i n 2

D Q

>

qi

FF1

q2
synchronised

input

FF2
Domain 2 Clock

Figure 3-15 Double buffer synchron iser

It is still possible that a synchronisation failure can occur and this failure probability can

only be determined statistically, and the generally accepted equation for Mean Time

Between Failure (MTBF) [98] for a metastable flip flop is given by;

K
(3.7)

where A3 is the register parameter that describes the speed with which the metastable

condition is resolved. % is the time delay for the metastability to resolve itself (resolution

period), is another register parameter that represents the metastability-catching setup

time window (i.e. the likelihood of the register going into the metastable state), f / is the

clock frequency of the synchronisers and F2 is the average frequency of the asynchronous

input changes. Using values = 10''°s and A!; = 19.4/ns based on the Xilinx XC4005E-3

given in [98], this gives a MTBF of 0.0001 ^ based on a clock frequency of 100 MHz

and asynchronous input changes at a frequency of 1 MHz. With a T value of 9 ns (a

resolution period slightly less than the clock period), the MTBF value is 6.73 * 10 '̂

seconds. The probability of failure increases rapidly when the number of asynchronous

inputs and clock frequency increases. For example, a clock frequency of 1 GHz, with

asynchronous input changes at a frequency of 100 MHz and a T value of 0.9 ns, the MTBF

value is only 3.83 seconds. Later results on the MTBF for newer Xilinx devices were

published in [100] and the MTBF value exceeds millions of years when granted 2 ns of

extra flip-flop settling delay. For the same operating conditions of clock frequency of 100

MHz and asynchronous input change at a frequency of 1 MHz, the MTBF of newer Xilinx

Virtex-II Pro devices exceeds billions of years compared to the older Xilinx XC4005E-3

device.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning g y

Three common techniques of transferring data between clock domains are (1) pass data

across clock domains using handshake signals, (2) use a Micropipeline or, (3) use an

asynchronous FIFO (First In First Out memory) to transfer the inter-domain data.

3.5.1 Handshaking data between clock domains

Data is transferred across clock domains using additional handshaking control signals,

where the sender places data onto a data bus and then asserts a request {req) signal to the

receiver through a synchroniser. When the req signal is recognised in the receiving

domain, the receiver clocks in the data into a register (or latch), and asserts acknowledge

{ack) signal through a synchroniser to the sender in the domain of the sender.

Handshaking of data is commonly used to pass data between asynchronous circuits, and

two common signalling protocols are illustrated in Figure 3-16.

Figure 3-16(a) illustrates the two-phase signalling scheme, where the signal levels of the

handshake signals are unimportant; it is the signalling event (i.e. a transition, either a

rising edge, or a falling edge on the handshake signals) that is significant. The two-phase

signalling protocol uses a non return-to-zero scheme. The four-phase signalling protocol

illustrated in Figure 3-16(b) uses the signal levels of the handshaking signals to indicate

the validity of data and its acceptance by the receiver. This protocol uses a return-to-zero

scheme, where the req and ack signals end up in the same signalling level after a data

transfer as they were before the transfer. This protocol thus uses twice as many signalling

events for every data transfer as the two-phase counterpart.

Control logic for the four-phase protocol is often simpler than that needed in a two-phase

system because the signalling lines can be used to directly drive the level-controlled

latches (or registers) (discussed later in Section 5.5). It is also common that data lines are

triple-buffered using triple buffer synchronisers. The extra buffering stage of the data lines

ensures that valid data is 'definitely' on the data bus when the data request signal is

asserted. This prevents a receiver that has an input request line with a shorter propagation

delay from reading in the wrong data. The biggest disadvantage to using handshaking is

T . B . Y e e , 2 0 0 7 C h a p t e r 3: M u l t i - F P G A p a r t i t i o n i n g 88

the latency required to pass and recognise all of the handshaking signals used for each data

transferred.

S e n d e r

d a t a r e q

R e c e i v e r S e n d e r

data ack

R e c e i v e r S e n d e r

Data

R e c e i v e r S e n d e r R e c e i v e r

data req ,

\ \ J \ • \ 1 (/
ack V y 1 A

\
J ' ^

Data L valid data^ Data A -̂ valid dalâ—

First data transfer j S e c o n d data transfer

(a) T w o - p h a s e s i g n a l l i n g p r o t o c o l

First data transfer S e c o n d data transfer

(b) F o u r - p h a s e s i g n a l l i n g p r o t o c o l

Figure 3-16 Handshaking signalling protocols

Single-rail and dual-rail encoding are two commonly used encoding schemes [101] for

data representation. Single-rail encoding [102], which is conventionally used in

synchronous designs, uses a single wire for each bit of information. Additional

handshaking control signals are used to indicate data availability and its acceptance by the

receiver. This scheme is also known as bundled-data approach. Dual-rail encoding (103]

scheme uses two wires to represent each bit of information. Dual-rail circuits can have

bundled control signals, however timing information is implicit in the code and the req

signal required to indicate data readiness is thus not necessary. Figure 3-17 gives the list of

values associated with the signal levels of the two wires (WO and Wl) in a dual-rail

encoding circuit, and the corresponding interfaces between the sender and receiver.

The main advantage of dual-rail circuits is that they are delay-insensitive [103]. Delay-

Inscnsitivc (DI) circuits operate correctly regardless of delays in components and

connections. They have the disadvantage of having a significantly larger area overhead in

both the number of wires and the data transfer completion detection logic. Single-rail

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 89

circuits have the advantages of being smaller and faster as compared with their dual-rail

counterparts. The disadvantage of single-rail circuits is they require tighter timing

constraints (e.g. validity (req) control and data delays must be matched) when used with

bundled handshake control signals.

WO W I Value

reset

unused

d a t a ack

S e n d e r R e c e i v e r

D a t a (2 N - b i t s)

Figure 3-17 Dual-rail encoding scheme

3.5.2 Micropipelines

Micropipelines are a style of two-phase bundled-data pipeline introduced by Sutherland

[104] in his 1988 Turing Award lecture. A micropipeline is an event-driven, self-timed

asynchronous pipeline. Various simple event control module blocks are given in [104] to

provide elemental functions such as merging and branching of the control flow. The

micropipeline basic control modules are illustrated and described in Table 3-1.

Figure 3-18 shows a simple micropipeline without processing elements. The data path is

composed of a set of event-controlled storage elements in series, while the string of Muller

C-elements serves as its local timing control block. Delay elements (if required) ensures

that the output request signals are asserted after the data is valid (e.g. R(l) is asserted only

when data is ready at the output of the first storage element), so that the bundling

constraint of the bundled-data protocol is met.

Event control module Description

OR function The OR function for events is implementation using an exciusive-OR

(XOR) gate. This is also known as a merge because it allows two

event flows to merge into one. An event on either of the inputs

causes a corresponding event to be seen on the output.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 90

Event control module

AND function

Description

The AND function for events is implemented using a MULLER C-

element. A transition will occur on the output only when there has

been a transition on both inputs. The Muller C-element is sometimes

known as a rendezvous element because events are allowed to

pass to the outputs only when all input events have arrived.

TOGGLE

TOGGLE

The TOGGLE steers input events alternately to the outputs. The first

event is directed to the output marked with a dot after initialisation,

the next event to the unmarked output and the sequence repeats.

SELECT

m
CO

1 —

o
LU
_J
LU
(/)

CD

2

T

t h e input event is steered to one of the two outputs depending on

the Boolean input select value (indicated by the diamond head). The

select signal must be available before the incoming event arrives, a

similar requirement to the bundling constraint.

CALL

R1

D1

_ l R R

<
o D

R2

D2

The call module allows two mutually exclusive processes to access

a shared resource (section of data path) or procedure, analogous to

procedure calls in software. Unlike the previous modules, the call

module operates on pairs of request/acknowledge (or done)

handshaking signals. Incoming requests (either R1 or R2) are

directed to the output request (R). The Call module remembers

which of its inputs most recently received an event, and returns an

acknowledge (done) event on the appropriate output acknowledge

(either D1 or D2) signal. For the call module to operate properly,

input request events have to be mutually exclusive.

ARBITER

R1 G1

OL D1

111
1—
CO
OL
< 02

R2 G2

The ARBITER provides arbitration between two possibly concurrent

asynchronous request events on its inputs (R1 and R2) and only

passes one through at any time to the corresponding grant outputs

(G1 and G2). Similar to a semaphore in software, it delays

subsequent grants until it has received an event on the done wire

(D1 or D2) corresponding to an earlier grant so that there is no more

than one outstanding grant at a time.

Table 3-1 Description of the micropipeline event control modules

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 91

R(m)

D(m)

R(2) A(3) R(out)
(D E L A Y) DELAY

(DELAY I) (D E L A Y

A(m) R(1) A(2) R(3) A(out)

Figure 3-18 Micropipeline without process ing

A major advantage of the micropipeline structure is the possibility of filtering out all the

hazards in the logic blocks (i.e. removes the arbitration and synchronisation problem of

two separate clocks at the input and output of the micropipeline). Another important

feature is that micropipelines are automatically elastic. Data can be sent to or received

from a micropipeline at arbitrary times. The basic event control modules of the

micropipeline and the storage elements can be interconnected to form larger structures,

which form the basis of more complex systems [105].

3.5.3 Dual port asynchronous FIFO

Another popular method of passing data between clock domains is using an asynchronous

FIFO (First In First Out memory) [106-108]. A dual port memory is used for the FIFO

memory.

T.B. Yee, 2007 Chapter 3: Multi-FPGA partitioning 92

The write poit is controlled by the sender and data is written into the memory, one data

woid per write clock. The other port port) reads data out of memory, one data word

per read clock. Two control signals are used to indicate if the FIFO is empty or Aill. The

wiite and read increment signals are used to push data into the memory during a write

cycle, or pop data from the memory during a read cycle.

write Data

FIFO memory
(dual port RAM)

read Data
• w d a t a

w d k e n

F I F O w p t r

&fu
FIFO rptr

&full

w a d d r w a d d r r a d d r r a d d r

wnte /ncmmenf read /ncmmenf wnnc n n c

read empfy wnte A///

wnte c/oc/(read c/ocK

wnte /Bsef read msef

Figure 3-19 Asynchronous FIFO block diagram

Figure 3-19 above illustrates the blocks in the asynchronous FIFO design presented by

Cummings of Sunburst Design Inc. in [106]. The five blocks in the asynchronous FIFO

are:

• FIFO memory: This is a dual port RAM that is accessed by the write clock domain

via the write port, and the read clock domain via the read port.

FIFO write pointer and full (wptr & full): This block is mostly synchronous to the

write-clock domain and it contains the logic for the FIFO write pointer {wptr) and

T.B. Yee, 2007 Chapter 3: Multi-FPGA partit ioning 9 3

it generates a full (writeyw/Z) signal to the write-clock domain when the FIFO is

Aill. Gray coded addresses are created for writing to the memory and the FIFO

write pointer is passed to the read-clock domain.

FIFO read pointer and empty & gyMpry): This block is similar to its write

counterpart mentioned above. It is mostly synchronous to the read-clock domain

and it contains the logic for the FIFO read pointer and FIFO empty (read

empty) signal generation. Gray coded addresses are created for reading from the

memory and the FIFO read pointer is passed to the write-clock domain.

Write-to-Read synchroniser (syncl): This block consists of a double buffer

synchroniser that synchronises the write pointer (ifAy^r) into tbe read-clock

domain.

Read-to-Write synchroniser (sync2): This block is similar to its Write-to-Read

counterpart described above. This block synchronises the read pointer {rptr) into

the write-clock domain.

For a FIFO memory with (n-l)-bits address lines, giving a total of 2" ' addressable

locations, the read and write pointers are M-bits wide. The extra most significant bit (MSB)

is used as a flag to determine if the FIFO is empty or full. When the pointers are equal,

including the two MSBs, the FIFO is empty. The FIFO is full when the pointers are equal

but not the MSBs.

The dual port memory asynchronous FIFO allows the sender to write data into the

memory through the write port whilst the receiver reads stored data in the memory out

from the read port concurrently. This has the advantage of reducing the latency in the

overall system as the sender can send data into the FIFO independent of the receiver when

the memory is not full. This reduces the possibility of blocking the sender if the receiver is

not ready to receive the new data. However, careful speed matching of the sender and

receiver and the depth of the FIFO have to be considered to reduce FIFO overflow and

underflow conditions [109].

The main disadvantage of using the asynchronous FIFO in an I/O constraint multi-FPGA

system for inter-device data transfers is the increased number of I/Os required for the

T.B, Yee, 2007 Chapter 3: Multi-FPGA parti t ioning 5 4

control, clock and reset signals compared to just a pair of handshaking signals in the

bundled-data approach.

3.6 Design activity profiling

Design profiling is a process where a profiling tool generates and collects information on

how a system operates and the resultant profile data is used to guide the profile-driven

optimisation process to improve the system's performance.

Design activating profiling to obtain the usage and inter-communications between

multiple processes is carried out with a full testbench of the system and the obtained

information (profile) is used in the high-level synthesis and partitioning of the design

itself. From the simulation of the structural VHDL design using a set of typical data to

emulate the system, the profiler gathers the various event activities. The system is

simulated with a testbench to generate activity information for all operations in the design

and this information is used to guide the partitioner. This approach allows the user to

provide the system with activity information in the most practical from, as a

comprehensive test suite will ahnost certainly be created for most designs. Once a set of

activity data has been generated, the operation need only be repeated if the behavioural

design changes, and not on each synthesis run.

The activity data is fed into the partitioner during the partitioning stage and used in the

assignments of weights on the edges of nodes in the partitioning graphs. Operations that

interact intensively will have edges that are more heavily weighted and these edges are

less likely to be cut by the partitioner. The atomic functional objects (processes,

procedures, functions, shared variables, etc) that interact and communicate more often

with each other are grouped into the same FPGA if the area permits. This reduces the off-

chip interconnections and the inter-chip communication overheads associated with it.

T.B. Yee, 2007 Chapter 3: Multi-FPGA parti t ioning 9 5

3.7 Summary

This chapter focuses on the background material on multi-FPGA synthesis systems, with

emphasis on partitioning and multi-FPGA synthesis systems. This chapter starts with an

overview of the various partitioning algorithms, and an introduction of commercial and

academic multi-FPGA high-level synthesis systems that exists. An introduction of

techniques for inter-FPGA (cross clock domain) data transfers is also covered within this

chapter. Multi-FPGA partitioning and the inter-domain data transfer forms the two main

core components in the extension of the MOODS synthesis system to target multi-FPGA

systems with asynchronous communications.

This chapter has covered the techniques and background material on how a design can be

partitioned. The next chapter covers when to perform partitioning in the MOODS

synthesis system. This deals with the implementation details of the partitioning

enhancement in the MOODS synthesis system. Implementation details and signalling

protocols to enable data transfers between clock domains are covered in more detail in

Chapter 5.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 96

Chapter 4

Multi-FPGA partitioning in IVIOODS

4.1 Introduction

Chapter 3 has provided an insight on how a design can be partitioned; this chapter starts

with the selection of when to perform partitioning. The muhi-FPGA partitioning

enhancement to the MOODS synthesis system comprises two main stages: (1) High-level

synthesis and partitioning, and (2) Interface generation. This chapter covers the generation

of multiple structural VHDL outputs from a single behavioural VHDL description as

illustrated in the shaded region of Figure 4-1.

s t r u c t u r a l

V H D L
S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

High-level
synthesis and s t r u c t u r a l

partitioning V H D L

B e h a v i o u r a l

V H D L

d e s c r i p

S t r u c t u r a

V H D L

s t r u c t u r a l

V H D L

Interface
generation

I n t e r f a c e

S t r u c t u r a l

V H D L

s t r u c t u r a l

V H D L

Figure 4-1 Generated system st ructure

Section 4.2 starts with a discussion on the various stages that the partitioning mechanism

can be inserted and concludes with an insight on the partitioning granularity and insertion

of the K-way partitioner as part of the partitioning enhancement in the MOODS synthesis

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 97

system. The section also presents the channel-based approach to handle inter-device data

in the synthesised multi-FPGA design.

Section 4.3 introduces the module call graph representation and shows how a design is

modelled using a module call graph. Implementation details and modifications of the

partitioning algorithm are covered v^dthin Section 4.4. Section 4.5 describes design

profiling in detail. Section 4.6 describes the modified ICODE modules, and the

modifications made to the sub-module calling mechanism to support inter-FPGA module

calls.

4.2 MOODS synthesis system with multi-FPGA
partitioning

This section starts with the selection of the partitioning mechanism insertion into the

MOODS synthesis system, which has an efkct on the level of abstraction that the

proposed partitioning algorithm is applied to. This affects the runtime and the granularity

of the components that are being partitioned. Partitioning at the higher level of abstraction

(e.g. at the system-level or algorithmic level), usually at a coarser granularity has fewer

components to assign to partitions, compared to partitioning at the cell and netlist level.

4.2.1 Design partitioning phases in MOODS

The MOODS synthesis system comprises four separate sub-components, which perform

the various tasks in synthesis as described in Chapter 2. There are several possible phases

during the synthesis process where the partitioning mechanism (partitioner) can be

inserted as shown in Figure 4-2.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 98

I C O D E

MOODS

P r o l o g u e

O p t i m i s a t i o n

P o s t - o p t i m i s a t i o n

L i n k e r a n d n e t l i s t

g e n e r a t o r

(DDFLmk)
^ 4 7

Figure 4-2 Insertion of K-way partitioner into the MOODS synthesis system

The following lists the four stages where the partitioner can be inserted into the MOODS

synthesis system:

1. Prologue (Pre-MOODS optimisation):

Partitioning at this early stage provides the opportunity for the MOODS synthesis core to

perform synthesis for each partition based on its own optimisation criteria. There are two

different ways to target the partitioning at this stage. The first approach is to partition the

ICODE file, where subprogram module sections of the original ICODE file are extracted

and written to multiple enhanced ICODE (ICODE+) files, each ICODE+ file targeting a

FPGA device. The ICODE+ files will contain extra partitioning information on the

targeted partition, and communication interface details. The ICODE+ files are then

synthesised separately to produce separate structural VHDL output files.

The second approach to partition the design is to partition the initial data and control path

before applying the optimisation transforms to the partitioned data and control path

structures.

An estimation mechanism is needed in both approaches to use the low-level information in

the technology cell libraries to obtain an estimate of the size and delay of modules, which

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 9 9

is used by the partitioning algorithm. Partitioning the design at this stage with no

information about the final optimised design means it is difficult to obtain an accurate and

efGcient partition, resulting in a low utilisation of the targeted FPGAs. It is possible to

assign an FPGA with more modules than it can accommodate using the estimated sizes of

the modules, in the hope that the optimisation stage in MOODS optimises the modules and

the final design can fit into the allocated FPGA device. However, a design may have to go

through multiple iterations of synthesis before each partition of the design can fit into the

targeted devices.

2. MOODS optimisation:

MOODS optimisation is an iterative process whereby various transforms are used to

modify the data structure and the optimisation algorithm controls the whole process,

choosing which transforms to apply and where in order to achieve the user's target criteria.

Throughout the optimisation process, the low-level characterisation information from the

technology cell library is used to provide accurate estimates for circuit performance. These

figures are used by the optimisation algorithm to guide the selection and targeting of

transformations in such a way as to move the implementation through the design space

towards the cost objectives specified by the user. In a similar mamier, these figures can

also be used by the partitioning algorithm to guide the partitioning of the design and

targeting of FPGA devices. Modules in the design may change and reduce in their sizes

after each optimisation iteration and previous allocations of modules to partitions become

inaccurate. The optimised design has to be re-partitioned within the optimisation loop,

using the updated information of modules to guide the partitioning algorithm and allocate

modules to partitions.

Using the existing simulated annealing within the MOODS synthesis core, the partitioning

of modules over multiple target devices can be added as one of the objectives to be

considered by the simulated annealing algorithm.

3. Post-MOODS optimisation:

This is the epilogue phase where MOODS "finishes" the design, converting any implicit

and behaviour related parts of the data structure (such as multiplexers, and control/net

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1QO

gating signal conditions) into explicitly described structures, and removes any redundant

control or data path elements.

The partitioner is inserted at this stage to partition the optimised design and mark the

control or data path elements needed for a partitioned design so that they are not removed

vyhen the control and data path are 'tidied' up in this stage. The extra logic created for the

control and data transfers of a partition design may require some form of multiplexing

logic, vyhich is inserted together with the rest of the design. Thus the insertion of the

partitioner at this stage removes the need for an extra stage to re-insert the control and data

path elements, and the multiplexers required for a partitioned design.

4. Linker and netlist generation (DDFLink):

This is the last stage in the MOODS synthesis and the design is purely structural. The

main disadvantage of inserting the partitioner at this late stage is in the breaking up of the

structural design and the insertion of the extra logic needed for the control and data

transfers in the partitioned design. The original control/net gating signal conditions has to

be modified and updated to include the control conditions for inter-FPGA subprogram

calls. The objective of partitioning at this cell/netlist is normally to group the allocated

data path units and the synchronous FSM controller into partitions (which will fit on the

targeted devices) and attempt to reduce the interconnections between devices.

4.2.2 Insertion of the partitioner into MOODS

The partitioner is not inserted in the pre-MOODS optimisation stage (stage 1 in Section

4.2.1) due to the lack of information about the final optimised design which makes it

difficult to obtain an accurate and efficient partition. This can result in a low utilisation of

the targeted FPGAs which will require multiple partitioning and synthesis iterations to get

an optimised multi-FPGA implementation. The post-MOODS optimisation stage (stage 3

in Section 4.2.1) is not selected as the insertion of the partitioner in this stage does not

allow further optimisation on selected modules after partitioning as the MOODS synthesis

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 101

core where design exploration and optimisation is performed in stage 2 (MOODS

optimisation stage).

The partitioner is inserted in stage 2 and partitioning is performed at the module level

which has a coarser level of granularity rather than at the cell/netlist level. VHDL

piocesses and subprograms (functions and procedures) are treated as inseparable units

during partitioning. Firstly, the number of components in the graph being partitioned is not

too large when compared to the cell/netlist level (stage 4 - linker and netlist generation)

partitioning. Unlike partitioning with a finer granularity where control lines could be

running across partition boundaries from one target device to another via the board

interconnections, control lines of the control path are kept in the same partition as the data

path that it is controlling when partitioning at the module level since the individual

modules has its own control path controlling the data path units within the module. Having

the control path in its local clock domain reduces the number of cross-domain control

signals and latency due to cross-domain data synchronisation. Partitioning in Stage 2

(MOODS optimisation stage) also allows further optimisation (i.e. an optimisation re-run)

on the whole design or selected modules after analysing the partitioning configuration.

The K-way partitioner performs partitioning on the optimised ICODE modules and the

subprogram communication channel optimisation if the design contains ICODE

subprogram modules. The two-phase partitioning exploration is cuiTently not integrated

with the MOODS optimisation process but it does allow the user to re-run the MOODS

optimisation stage after examining the partitioned design. It is possible to relax or tighten

the schedule of the modules and iteratively improve the multi-FPGA solution using the

current partitioning solution to guide the MOODS optimisation process. This has been left

as possible future work (described in Chapter 8) due to the time restriction of this project.

Unlike the multi-FPGA high-level synthesis systems described in Section 3.3, the

MOODS synthesis system does not take absolute timing (in the form of deadlines and

release times that specifies some form of absolute timing on the start of operations) into

consideration during the optimisation process. However, MOODS possesses a basic

multicycling [32] capability based around the specification of a user-specified clock

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in MOODS 1 0 2

period. The pioblem of single instructions with too large a delay is dealt with by spanning

the instruction over a sufficient number of control states can be forced below a user

specified clock period constraint if the clock period is specified. MOODS does not follow

the strict timing of the VHDL standard, which specifies that time only passes in wait

statements; thus parallel processes are kept in lockstep as they are all guaranteed to enter

waits at the same time and implicitly synchronised at these points. However, MOODS

allows processes complete independence, where synchronisation of processes is done

through the use of handshaking via global signals [32, 39]. Channel-based

communications [14, 110] in an abstract Communicating Sequential Process (CSP) [111,

112] manner between processes are also commonly used for process synchronisation.

4.2.2.1 Explicit communication channel {ExC)

An explicit channel-based approach for process synchronisation in MOODS was added by

Sacker [109]. An ICODE expansion stage was added between the ICODE assembler and

the MOODS synthesis core, which allows channel related ICODE instructions to be

expanded and inlined by an ICODE module contained vyithin expansion libraries. The

ICODE expansion stage also generates concurrent "blackbox" components required for

the explicit channel instantiation &om the behavioural VHDL. This ICODE "blackbox"

component contains only a VHDL entity and its behaviour is not defined. This allows the

"blackbox" component to be synthesised as normal and the behaviour of the "blackbox"

(in this case the explicit channel) inserted after synthesis. ICODE templates of varying

channel widths (8-bits, 16-bits, 32-bits, etc) for the channel send and receive instructions

and the channel body "blackbox" components are defined in ICODE expansion library

files and respectively.

The Gnal task performed by this ICODE expansion stage is the separation of ICODE

segments (VHDL processes) from within the program module (recall Section 2.6.2) into

separate ICODE process modules. Each individual ICODE process module has its own

control path controlling the data path units within the module. This allows easy

identification of concurrent process blocks in the design and more importantly it extends

the number of objects for partitioning. The explicit communication channels introduce an

implied pipeline structure whereby asynchronous channels connect pipelines stages in a

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 0 3

design. Channel handshaking ensures that the pipehnes stages will work irrespective of the

operation execution time of individual stages in the asynchronous pipeline [113]. The

effects and the benefits of extracted process modules communicating through explicit

communication channels are shown in the experimental results in Chapter 6.

4.2.2.2 Subprogram communication channel (SpC)

VHDL subprograms (procedures and fimctions) are translated into ICODE subprogram

modules in MOODS. A hierarchical calling structure is used in MOODS, whereby the

control path in each subprogram module starts its execution upon receiving the activate

signal and it sends an end signal back to the calling (parent) module upon termination.

This implicit design boundary provides good object granularity for partitioning and the

hierarchical nature of the protocol works seamlessly with the handshaking

between processes. Process modules can run independently and call subprogram modules

existing in different partitions. An arbitration scheme is necessary to arbitrate calls to an

ICODE subprogram module &om different calling modules. Details on the modifications

of the hierarchical subprogram module calling mechanism to support inter-device

subprogram calls are described in Section 4.6. The asynchronous subprogram

communication channel is inserted by MOODS automatically to handle the inter-device

subprogram call. The underlying communication cells and the arbitration scheme to

support inter-FPGA module calls are described fully in Chapter 5.

VHDL signals are declared in the VHDL architecture and they are seen as global to

processes within the architecture. Whilst any number of processes may read from a VHDL

signal, only one process is allowed to write to a signal as the current MOODS synthesis

system does not support resolved signals [32, 41]. It is becoming common to use

communication channels for multiple communication processes [110, 113] whereby inter-

process data is sent in a unidirectional, point-to-point manner. A physical implementation

of a simple channel is a bundle of wires; one request wire, one acknowledge wire, and one

wire per data bit (recall the bundled-data approach in Section 3.5.1). Now, the explicit

communication channels performs the synchronisation task of multiple communicating

VHDL processes in MOODS which was previously done through explicit handshaking

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 104

global signals or semaphores [32, 42] as well as sending an updated value of the global

signal (or channel data) to the VHDL process on the receiving end of the channel.

4.3 Module call graph representation

The input behavioural specification (described in VHDL) is translated into a

corresponding intermediate code (ICODE), with VHDL processes and subprograms

(functions and procedures) translated into ICODE modules, and modelled as a control and

data path graphs vyithin the synthesis core. Multi-FPGA partitioning assigns the ICODE

modules among k target devices. This section describes the symbols and notations used in

a module call graph for a better representation, where the type of node and edge in the call

graph gives a clear distinction between process and subprogram modules and the type of

communication charmel between the modules respectively. This representation allows the

modelling of subprogram calls from different modules in the design, with arbitrarily deep

nesting of such calls.

datajDkt, act_count

7̂ [»

Process module Explicit communication channel

dataJDkt, act_count

Subprogram module Subprogram communication channel

Figure 4-3 Types of nodes and edges in the module call graph

The symbol and annotation convention of the module call graph given in Figure 4-3 is

used throughout the rest of the thesis unless specified otherwise. There are two types of

nodes (labelled pM and sM) to represent the process module and subprogram module

respectively. An explicit communication channel (see Section 4.2.2.1) is represented with

an edge with two arrow heads pointing at the destination module. A subprogram call is

represented by a subprogram communication channel and this is an edge with a single

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 105

filled arrow head pointing towards the called subprogram module. Both types of edges are

annotated with (fara/pocte/ and acffvafmn values.

I S

Examples of the various basic types of connection in the module call graph are listed in

Table 4-1. A node in the module call graph can have multiple edges connecting it to other

nodes. The first and last types of connection in the table show two process modules (PI

and P2) connected with explicit communication channels, the second type of connection i

a subprogram call (to subprogram p rod) initiated from a process module (PI), and the

third type of connection is a nested subprogram call. In summary, an explicit

communication channel is used for process-to-process communications and a subprogram

communication channel is used to connect the destination subprogram module to a process

module or a subprogram module, in the case of nested subprogram calls.

Connection t>'pe example

pM
P1

1 , 1 pM
P2

Description of the example

Process module P1 sends data to process module P2

through an explicit communicat ion channel. The channel has

a single data packet count and activation count.

pM
P1

sM
prod

4,1 sM
prod

A subprogram communication channel connects process

module P I to subprogram module proc 1. This subprogram

call has 4 data packets and an activation count of 1.

2,3 sM
proc2

A subprogram communication channel connects subprogram

module p r o d to subprogram module proc2. This nested

subprogram call has 2 data packets and an activation count

of 3.

Process module P1 and process module P2 send and

receive data via explicit communicat ion channels. Both

explicit channels have a single data packet count and an

activation count of 8.

Table 4-1 Examples of types of connection in the module call graph

' Defined as the number of data packets transferred as parameters between a source and destination module

^ Number of times the source module activates the destination module

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S] 0 6

4.4 Problem formulation

The module call graph is a weighted directed graph CG = (A/j Each node E #

represents a module in the design, the area of each module is denoted as and the I/O

pin count is denoted as io{n^, for z —> 1 to ntotai, where ntotai is the total number of modules

in each partition. Each edge e, E g, = (mrc , acr cownr), for z 1 to

Gtotai, E jV, E TV, MjTc Mckf Corresponds to either an explicit channel or

subprogram communication channel from the source module to the destination

module ndst. The data packet count data_pkt is the number of data packets transferred as

parameters between and during each call. The activation count ac/ cowMr is the

number of times nsrc calls ndst and this activation count value is obtain from the design

activity profile.

A set of available m target devices is given by D = {(fy, <5̂2, .. , cL} where /M > A; > 2. Each

device J, = (djcirea,, d^io,) where djjreai and dj.Oi denote the area capacity and number

of available I/O pins of device i.

The K-way partitioning problem finds a set of clusters f y, } such that c

k
f b r 1 to A:, U =//aiid;?inj!:;/ = jg^fbr i 1 to A;,; - > 1 to A:, and z The

i=\

partitioning solution must satisfy a set of device constraints (area and I/O) and minimise

the inter-partition data transfers.

The area constraint for this K-way partitioning problem is given by:

a r e a ^ ^ P^itions where z ̂ 1 to ntotai, ^ ̂
M E and % E f .

Let the cut-size Ckj be the number of interconnects crossing the partition boundary between

partitions pk andpj. The I/O constraint is given by:

for A: partitions where z -> 1 to ntotw, (4.2)

^ ME E f ^ 1 to A,

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 0 7

4.4.1 Modified K-way partitioning in IVIOODS

The partitioning process of a single design onto multiple FPGAs is done in two phases.

The first phase performs K-way partitioning on the modules in the design. The partitioning

algorithm is outlined in Figure 4-4. The second phase deals with the assignment and

optimisation of inter-FPGA subprogram communication channels to the partitions. Each

subprogram communication channel is managed by communication (transmit and receive)

cells and an arbiter cell. Figure 4-6 outlines the second optimisation algorithm that creates

and optimises the subprogram communication channel(s) between target devices. More

than one subprogram communication channel can be created and assigned to two or more

modules in the design.

4.4.1.1 K-way partitioning algorithm

The inputs to the K-way partitioning algorithm include the module call graph of the design

and the area constraint of the target devices. The algorithm starts with an initialisation

stage where the input module call graph CG is checked to ensure that it is properly

annotated with valid parameters, and all constraints such as number of target devices are

set. An initial partition is generated and this forms the starting partition of the first pass.

The K-way partitioning algorithm is similar to the two-way F M algorithm (described in

Section 3.2.1) with a few slight changes, such as the select-and-move process, and the

balanced criteria. Unlike the two-way FM algorithm that only considers whether to move a

node to the next partition (i.e. move the base node from partition A to B, or from partition

B to A), the K-way algorithm considers AT-l possible partitions to move the base node and

the Gain_Array that holds an array {K-\ in size) of gain values associated with moving a

node from the current partition to another partition.

A selected base node {ribase) move from partition to partition py is only allowed when it

satisfies the balanced criterion given by:

-) - ;

A
(4.3)

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 0 8

for i ^ \ to n, n e N, e P, py e P, x ^ y, and is the area of the smallest unlocked

node (i.e. mini < l < n (^(^/)unlocked))•

K-way Partitioning Algorithm
CC: module call graph CG = (#, # i s a set of nodes and E is a set o f edges

DevArea[]: Device area of each target device (FPGA)

KWay (CC,

begin

Initialise K-way partitioning parameters;

CurrentPartition <— Generate a legal initial partition;

BestPartition <— CurrentPartition',

BestCutcost <— CurrentCutcost\

improved_cutcost <— True;

/* PASS MANAGER */

while (improved_cutcos t) { /* run until no further improvement in the cutcost */

/* MOVE MANAGER */

step_number <— 0;

/* True only when balance condition and device area constraints are satisfied */

while (CwreMff arr/r/oM,) {
step_number++;

Update K-way Gain_Array, and CurrentCiitcost;

Update tentative_cutcost[], tentative_moves[], tentativejnovedJo[]]

Update size of partition and lock moved node;

if (feM/afh'e c w r c o f > CM/reMrCwrcoj/) then
bestjentativejnove <— step_number,

end if

} end while

for =1; i< bestjentativejnove-, /++)

Permanently move nodes in tentativejnoves[i]to partition specified in tentativejnovedJo[i]

end for

improved cutcost <— False;

if (CurrentCutcost < BestCutcost) then

CurrentCutcost tentative jutcost[bestJentativejnove]\

Improvedjutcost <— True;

end if

} end while

return (CurrentPartition) /* Final partition */

end

Figure 4-4 Outline of the K-way part i t ioning algori thm

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 0 9

Similar to the two-way FM algorithm, the move with the highest gain is selected and

executed iteratively until all 6ee nodes are locked. The K-way algorithm continues with

the execution of this iterative select-and-move sequence until no more unlocked nodes can

be moved without violating the balanced criterion. At the end of a pass, the K-way

algorithm moves back to the best intermediate solution. All nodes are unlocked and the

best solution forms the starting partition for the next pass. The algorithm terminates when

a pass fails to improve the cutcost. The cutcost is the total number of inter-FPGA data

packets between all partitions and it is given by

^ g; - 6; (acr _ cownf) , . .
Ve, ^

foi i ^ 1 to etotalj ^ S E, Pe(nsrc) ^ Pi Pe(ndst) S P, ClYldPe(nsrc) ^ Pe(ndst).

4.4.1.2 Subprogram communication channel optimisation
algorithm

The subprogram communication channel optimisation algorithm creates a subprogram

communication charmel or multiple channels, optimised to reduce the inter-FPGA data

packets sent between partitions. Using the design activity profile to determine module

calls that cause congestion in the communication channel, provided that the target device

area and I/O constraints between these module calls are met, the algorithm creates and

assigns the modules responsible for this bottleneck in data transfer to a new subprogram

communication channel. The design activity profile is a temporal analysis of the module

activation in the system over a series of time steps.

The algorithm uses a greedy-based strategy [114, 115] to reduce the bottleneck through

the primary subprogram communication channel. A simple example of the greedy-based

strategy in Figure 4-5 shows subprogram calls to D and the block height of each call

gives the number of data packets sent in each call (e.g. call A sends one data packet and

call B sends three data packets).

T.B. Yee, 2007 Chapter 4: Mul t i -FPGA partitioning in M O O D S 1 1 0

SpC2

{8}"

Data packets
k

^ 1 I max
6 -

SpC f 5! , 0
4-7 :

{A 8, C, 0} 2

1

A

8 C
C' : 8 " C

; C _l_/\ I : C !
!_ _ 0 1 2 3 4 5 Time step

I/O (ts)
a v a i l a b l e : 2 0

(a)

Data packets Data packets
A imax i

4 2

— - ~ . • C : C {/4, D } 0 1 2 3 4 5 Time step

{4,0,0} ,4 I c"| ,4 I 4 11:
° •i 2 3 4 5 Time step Data packets

<%) i I A

Data packets SpC 2 ^

k B
3 - ^

' 8 181 0

1 2 3 4 5 Time step Data packets

#0 1

5 Time step
(ts)

WD i ' S&C3 I c
a v a i l a b l e 1 0 ^ i c

(b) {C}
^ C c ^
^ i 2 3 4 5 Time step

(ts)

I/O
a v a i l a b l e : 0

(C)

Figure 4-5 Greedy-based strategy

Figure 4-5(a) shows all the four subprogram calls assigned to SpC 1 and 20 I/O pins

available. Assume each SpC uses 10 I/O pins and the subprogram calls are mutually

exclusive. The time-step with the maximum number of data packets is identified (in this

case time step 2) and the subprogram call with the largest number of data packets is call B.

Subprogram call B is extracted and allocated to a new subprogram communication channel

(SpC 2) as shown in Figure 4-5(b). The number of I/O pins available reduces to 10 with

inclusion of SpC 2. Now, the maximum number of data packets sent in any one time step

reduces to 4 in time step 5, with subprogram call C called 3 times and contributing the

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S H I

most number of data packets in time step 5. Subprogram call C is extracted and allocated

to a new subprogram communication channel (5]pC J) shown in Figure 4-5(c). The

algorithm terminates as no more I/O pins are available. Assume each data packet takes one

unit delay. The original allocation of all four subprograms allocated to a single

communication chaimel in (a) will take 6 unit delays. With additional I/O pins and the

allocation of subprogram calls to more subprogram communication channels (3 channels

in this example), the overall delay is reduced to 3 unit delays.

The subprogram communication channel optimisation algorithm (outlined in Figure 4-6)

begins with all module call pairs assigned to the primary subprogram communication

channel. If the option for multiple subprogram communication channels is not selected

(i.e. Multiple_Comm_Channel = false), the algorithm terminates with all modules

transferring inter-FPGA data using the primary communication channel. If enabled, the

algorithm proceeds by first unlocking all module pairs. The following three steps are

executed iteratively in sequence till no further improvements {end ofjDpt = true) can be

made:

• Step 1 - The inter-FPGA data transfers for all unlocked module call pairs are

calculated (see Section 4.5).

• Step 2 - The time steps are sorted according to the number of inter-FPGA data

transfers and the unlocked module call pairs in each time step are sorted according to

their inter-FPGA transfers in the temporal time step. The subprogram communication

channel optimisation algorithm terminates when none of the target device area and I/O

constraints for the module pairs is met.

• Step 3 - The channel insertion routine insertj:omm_channel is called and a new

subprogram communication channel is inserted when there is an improvement

(reduction) in the total number of inter-FPGA packets. The channel insertion routine

returns a 0 when no improvement can be made, or when there is only a single module

pair assigned to the subprogram communication channel. The area and I/O resources

of the target devices containing the module pairs are updated if the channel insertion

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 1 2

routine returns a non-zero return value; else a zero return value terminates the

subprogram communication channel optimisation algorithm.

Subprogram Communication Channel Optimisation Algorithm
profile information array containing information on the module call graph

Optimise Comm Channel {profileJnfo[])

begin

Primary comm channel •f- all modules pairs;

if (MultipleJ2ommJ2hannel) then {

Unlock all module call pairs {src,dsi)

False;

while (end_of_Opt = False) {/* run until no further improvement can be made */

/* Step 1 */

profile__info_sorted[] Generate a sorted array ofprofile_info[], the generated array is sorted
according to the inter-FPGA data transfers.

Calculate inter-FPGA data transfers for all unlocked module pa i r s in each time step.

I* Step 2 *!

Sort time steps in order according to 'traffic congestion', with unlocked module pairs in each time
step sorted in order according to their inter-FPGA data transfers in the time step.

if (Area and I/O constraints not m e t) then

end_of_Opt <— True;

else

False;

end if

/* - — Step 3 */

bus opt status insert_comm_channel()

if (bus opt status) then

end_of_Opt <— False;

Update Area and I/O resources of the device that the newly created bus arbiter is assigned to

else

end_of_Opt <— True;

end if

} end while

end if

end

Figure 4-6 Outline of the subprogram communicat ion channel optimisation
algorithm

T.B. Yee, 2007 Chapter 4: Mul t i -FPGA partitioning in M O O D S 1 1 3

Figure 4-7 illustrates the generation and assignment of multiple subprogram

communication channels {SpCs) to alleviate the delay due to devices sharing a common

communication channel. Each row in the table shown in the figure gives the total area (in

slices), the area utilised, total number of available I/Os, and the number of I/Os utilised by

the devices in the multi-FPGA system. Each communication channel consists of transmit

cell(s), receive cell(s), and a channel arbiter to ensure mutually exclusive access to the

shared channel between the devices connected to it. The original partitioned design starts

with a single communication channel (see Figure 4-7(a)), which connects up all the target

devices and inter-FPGA data transfers are made through a single bi-directional

communication channel. The arbiter for SpC 1 is found in Device 4. With extra area and

I/Os available in (a), the subprogram communication channel optimisation algorithm

inserts a new communication channel, module call pairs with a high amount of traffic that

cause congestion in the first communication channel are determined and assigned to a new

communication channel. Further details on design activity profiling to determine the

amount of inter-FPGA data transfers and how this affects the partitioning algorithm is

covered in the next section.

In the module call graph given at the top of Figure 4-7, module call pair (f 2, /MocfC) is

extracted from SpC 1 and assigned to the newly created communication channel (SpC 2)

to spread the inter-FPGA data transfers over two channels, and thus inferring a level of

parallelism in inter-FPGA data transfers since the two communication chamiels can

transfer data concurrently. Device area and I/O utilisation are traded off for the increase in

parallelism. The area and I/O increase of Device 2 is shaded in the table in Figure 4-7(b);

this increase is due to the insertion of a communication charmel arbiter for 2. The area

utilisation of Device 4 is reduced to 727 units (as the arbiter for SpC 1 described above is

smaller) and its I/O utilisation reduced by two pins as a new arbiter (with an area of 22

units) generated in Device 2 handles the arbitration control of module call pair (f 2,

modC). In Figure 4-7(c), module call pair {modC, modD) is extracted from SpC 1 and

assigned to SpC 3. The communication channel arbiter for SpC 3 is inserted into Device 3,

thus increasing the area and I/O utilisation for Device 3. This again reduces the area and

I/O utilisation of Device 4, and now the task of inter-device data transfers is distributed

between three subprogram communication channels.

T.B. Yee, 2007 Chapter 4: Mul t i -FPGA partit ioning in M O O D S 114

D e v i c e 4

/ pM

modB

modA

D e v i c e 2

D e v i c e 1

' sM
\ mode I

4,3

D e v i c e 3

sM

\ modD '

Device Total area Area util. Total 10 10 util.

1 800 600 124 80
2 800 650 124 80
3 950 655 150 90
4 950 750 150 75

Device 1 Device 4

I
t

Device 3 Device 2

(a)

(P1,modA), '
(P2,modC),

(mode,modD)

I n s e r t s u b p r o g r a m

C o m m u n i c a t i o n c h a n n e l 2

Device Total area Area util. Total 10 10 util.

1 800 600 124 80
2 800 672 124 84
3 950 655 150 90
4 950 727 150 73

i SipCf
(P1,modA), I

(modC,modD)\

(b)

Device 1 Device 4

Device 3 Device 2

S p C 2

(P2,modC)

I n s e r t s u b p r o g r a m

c o m m u n i c a t i o n c h a n n e l 3

Device Total area Area util. Total K) 10 util.

1 800 600 124 80
2 800 672 124 84
3 950 6 7 7 150 84
4 950 662 150 71

Spc 1 : D e v i c e 1

(P1,modA) - -|

D e v i c e 4

S p C 3

\(modC,modD)

(c)

D e v i c e 3 D e v i c e 2

S p C 2

(P2,modC)

Figure 4-7 Generation and assignment of communication subsystems

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 115

4.5 Integration of the design activity profile and the
K-way partitioning algorithm

The generation of the design profile and its integration into the K-way partitioning

algorithm to guide the partitioner is covered within this section. This section starts with a

look at how the data widths of input and output parameters affect partitioning. A

subprogram module with larger input or output parameters data width tends to require

more data packets than a sub-module with a smaller input and output parameter data width

if the target devices are I/O limited. This is illustrated in Figure 4-8 with process module

PI calling two subprogram modules, procl and proc2.

D a t a

P a c k e t 1

D a t a

P a c k e t 2

D a t a

P a c k e t 3

D a t a

P a c k e t 1

prod inputs
- I a _ i n [l 1 6]

prod outputs
c_out[11 6]

a_in[5:0]

c_out[5:0]

begin

procedure p rod (
signal a j n : in unsignecl(11 downto 0);
signal b j n : in unsigned(5 downto 0);
signal c_out: out unsigned(11 downto 0)

end proc2;

begin

end p rod ;

procedure proc2 (
signal d j n : In unsigned(3 downto 0);
signal e j n : in unslgned(1 downto 0):
signal f_out: out unsigned(3 downto 0)

22

proc2 inputs

b J n f S 0] d out 3 01

e in 1:0

procl outputs
f_out[3:0J

Bit-stuffing zeros

Figure 4-8 Example of I/O parameter sizes and data packet count

The example shows the number of data packets sent by each subprogram module using a

common subprogram communication chamiel with a 6-bit channel width. Input parameter

a_in of subprogram procl is sent over the channel in two separate data packets and input

b in in a third data packet. Output parameter (result) c out of subprogram procl is sent

over the channel in two separate data packets. Input parameters d in and e_in of

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 1 5

subprogram proc2 are concatenated and sent in a single packet. Output parameter ^out of

proc2 is bit-stufkd with zeros and sent in a single data packet. The subprogram

communication channels connecting process module P1 to subprogram modules proc 1 and

proc2 have total data packet counts of 5 and 2 respectively (as shown in Figure 4-8).

The partitioning algorithm priorities the partitioning of subprogram modules based on the

number of data packets sent, thus a subprogram module with a larger parameter bit-width

is less likely to be partitioned onto a second FPGA compared to a subprogram module

with a smaller parameter bit-width if both are being called by the same source module (i.e.

assuming both subprogram modules are activated the same number of times) as a larger

parameter bit-width will probably require more data packets when targeting I/O limited

devices.

With the inclusion of the design activity profile, the subprogram module activation can be

modelled more accurately and the profile data is used to guide the partitioner in producing

a partitioned design with less inter-FPGA communication. The temporal 'trafGc analysis'

is extracted 6om the simulation of the design using a typical (or likely) set of values

emulating a working system. The source-destination module pair has a

associated with each subprogram call. A module call list (./McZ) file is automatically

generated in MOODS during synthesis. Definition of the module call list can be found in

Appendix C.3. This module call list file lists all source-destination pairs and the call node

that is activated for each subprogram module call. An example of a module call list file

and a simulation of the activation of modules in a module call graph with two process

modules (PI and P2) and four subprogram modules (modA, modB, modC and modD) is

shown in Figure 4-9.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 117

Generated module c a l l list

pM
P1

pM
P2 source-destination

module pair

sM
modA

sM
modB

r
sM

mode

4,1

sM
modD

call_node
node number

source-destination
module node

numbers

Simulation results of subprogram module activations

; MODULE CALL LIST

; P I (prog mod) > modA
; Ca l l node u3
1 12
; P I - > modB
; Ca l l node u5
1 4 3 9
; P2 —> modB
; Ca l l node u17
12 439
; P 2 - > mode
; Ca l l node u19
12 384

: m o d e > modD
, Ca l l node u37
384 146

T1 T2 T3

Time step

T4 I T5 T 6 T7 T8

call_node u3
(P1-modA)

call_node u5
(PI -modB)

call_node u17
(P2-modB)

call_node u19
(P2-modC)

call_node u37
(modC-modD)

Figure 4-9 Example of module call list and simulation of subprogram module
activations

A profile of activation counts of the call nodes is extracted from the simulation, and this

design profiling data is fed into the partitioner using the partitioning information {.par)

file. The profile data is modelled using a distribution graph, where the vertical axis

corresponds to the summation of all module activation counts in a particular time step on

the horizontal axis. An example of the distribution graph generated for the example above

is illustrated in Figure 4-10.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 118

Total number of
time steps

Design profile data

source-destination
module node
numbers

[Design_Profile]
TIME_STEP= 8
1 12=1 0 0 0 0 0 0 0
1 439=1 0 0 0 1 0 0 0
1 2 4 3 9 = 0 3 0 0 0 3 0 0
12 384=0 0 1 0 0 0 0 0
384 1 4 6 = 0 0 0 2 1 0 0 0

M o d u l e a c t i v a t i o n

c o u n t (C N T)

i

Activation count (CNT) in eacti time step (ts):
CNTts/ CNTts2 CNTtstote/

8 T i m e s t e p

(t s)

source-destination module numtiers [source:destination]

[1:12] • [1:439] ^ [12:439] • [12:384] • [384:146]

Figure 4-10 Example of the design profile distribution graph

A partitioning ordering sequence gives the likelihood of a source and destination module

being partitioned onto separate FPGA devices. The data packet multiplied by the

activation count is given in the total data packets column. The total number of data packets

for the source, destination pair has an inverse relationship with the likelihood of the pair

being partitioned onto separate FPGA devices. In other words, the greater the total data

packet count, the more likely the pair will be partitioned onto the same device. Source-

destination module pairs with a lower ordering sequence are less likely to be partitioned

onto separate devices. Figure 4-11 gives the partitioning ordering sequence of the call

graph example in Figure 4-9.

The total data packet count of the source-destination module pairs is now not only

dependent on the I/O parameters data width but also the number of times the source

module calls the sub-module. For example, the {P2, moclB) pair has an activation count of

6 and a total data packet count of 72, and it has the largest total data packet count

compared to the other module pairs. Modules P2 and moclB are most likely to be

partitioned onto the same FPGA device, whereas modules PI and modA have the highest

chance of being partitioned onto separate FPGAs because the {PI, modA) pair has the

highest sequence order of 1. The activation count and the data packet count for the module

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 119

call pairs are fed into the K-way partitioner described in Section 4.4.1 using the

partitioning information (.par) file.

highest order
•

lowest order

I P I

sM

\ mode / mod A \ m o d b

m o d u

Ordering
sequence

Data packet
count

Activation
count

Total data
packet c o u n t

Source-destination
module pair

1 8 1 8 P I , mod A
2 4 3 12 m o d e , modD
3 16 1 16 P2, m o d e
4 12 2 24 PI , modB
5 12 6 72 P2, modB

Figure 4-11 Partitioning ordering sequence with design profiling

4.6 (CODE Module modifications

Prior to the partitioning enhancement, the output values for subprogram modules are

passed by reference. Now, modules are targeted onto two or more target devices, the

output results are passed by value between the source module and the subprogram module

called. Registers are required to hold the output parameters prior to sending the data back

to the calling (source) module. The removal of output registers for inter-device

subprogram modules are bypassed. Details of the modifications in the subprogram module

call mechanism are covered within this section.

After the partitioning stage, 'call nodes' (caZ/ no^fes) associated to ICODE

instructions for modules calling a subprogram module in a different partition are replaced

with 'transmit call nodes' {tcalljiodes). The tcalljiodes are associated with ICODE

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 2 0

instructions, which replace the original ICODE instructions. This

change allows MOODS to distinguish between the two types of calling methods. The

instruction associated with ICODE subprogram modules is the ICODE

instruction. Likewise, subprogram module that is called by modules in another partition

has its module header instruction changed from the instruction into a new

instruction defined for subprogram modules with inter-FPGA calls, ICODE jgZCEZZ

instruction. This change allows MOODS to determine which subprogram modules are

called from modules in another FPGA device. The top of Figure 4-12 shows the original

call node associated with an ICODE instruction, the activates the

start node in the subprogram module when it is being activated (i.e. when the main

execution is paused and control is passed to the subprogram module controller). This

hierarchical method of control passing and data passing is modified when the subprogram

module is located in a separate FPGA device as illustrated in Figure 4-12.

In the source (calling module) partition, the original is replaced by the

and the now activates a 'transmit cell' (bcceZ/ noâ e) when inter-

FPGA communications is required. The txcelljaode is the communication cell that sends

input parameters across the FPGA device and receives the results when the execution of

the operation is complete at the destination subprogram module. Upon completion of the

subprogram module execution, the txcelljiode receives and loads the output results into

the appropriate output result registers. Control is passed back to the main execution and

this completes the subprogram module call.

In the called subprogram module, a 'receive celF (/-xcg/Z nof^e) receives the input

parameters sent by the txcell_node of the calling module. A 'receive call node'

{rcalljiode) is activated by the rxcell_node when the input parameters are received and

loaded into the appropriate registers prior to the execution of the subprogram module. The

rcall_node uses the same calling mechanism of a calljiode, it activates the start node in

the subprogram module. Upon completion of the subprogram module, results in the output

registers are ready to be sent back to the source module in the other partition. The

A-caZ/ activates the rxce/Z Mock, which completes the subprogram module call when

it sends the results to the corresponding txcell_node of the called module.

T.B. Yee , 2 0 0 7 Chapter 4: Multi-FPGA partitioning in M O O D S 121

Original subprogram module cal l ing mechanism

n input token

call_node
_ >

output token f

activate

out enable

end_sig

N3 I Start node

(N5 j end node

t ransmi t
call node

tcall_node) *-

FPGA 1

t ransmit cell

txcell node

r
Inter-FPGA data transfer

rxcell node

receive cell

I

t f

rcall_node)—

receive
^ call node

FPGA 2

T
N3

T

N4

T

N5

Figure 4-12 Inter-FPGA subprogram module calling mechanism

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 122

In a partitioned design, not all module calls require the inter-FPGA data transfer using the

communication subsystem. Some of the module may only call other modules within the

same device and the original module call method is used in such cases. An example of a

module that has an internal and external subprogram module call is shown in Figure 4-1 J.

Device 1

pM
6 , ^ P2

Device 3 %

/ pAf \ \

\ \ /

modB V I

Device 2

sM
! ' mode

External (inter-FPGA)
subprogram module call

normal subprogram
module cal l

Figure 4-13 Module call graph of a module with internal and external
subprogram module calls

The shaded subprogram modules (jnodA and modB) have modules calling them from

another device, and these external calls require inter-FPGA data transfers between the re-

configurable devices. The internal call (modA calling modC) uses the original calling

method, where the corresponding ICODE instruction is the instruction. For

the external call {modA calling modC), an ICODE TXjCELL instruction replaces the

original ICODE MODULEAP instruction, and a set of communication cells is created for

this external module call. Note the special case where an internal process module (P2) has

an internal call to a subprogram module {modA), which is also activated by an external

process module (f 7). The associated to ICODE instructions for

this call (f 2 calling is replaced with a This change allows MOODS to

identify modules activated by both internal and external subprogram calling methods.

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 2 '

Details of the txcell^node, rxcell_node, and the modifications of I/O parameter registers

are covered in greater detail in Chapter 5. Note the underlying structure of the final

generated hardware uses pass-by-value instead of pass-by-reference for the subprogram

I/O parameters as a local copy of the subprogram I/O parameters is needed in the target

device of the external subprogram. Data packets which contain subprogram I/O

parameters are sent to the external module and kept in local (duplicated) registers.

Registers are required to hold the output parameters prior to sending the data back to the

calling (source) module.

4.7 Summary

This chapter starts with a discussion on the implementation of the partitioning mechanism

into the MOODS synthesis system, and the effect of performing partitioning for a multi-

FPGA system at the various subcomponent stages within the MOODS synthesis system. A

stage to insert the multi-FPGA partitioning mechanism and the level of granularity to

perform the partitioning is selected considering the various factors that would affect the

performance of the synthesis tool as well as that of the generated multi-FPGA system.

Two types of communication channels are presented in this chapter; an explicit

communication chaimel used for data transfers between ICODE processes (&om VHDL

processes) and a subprogram communication channel used for inter-device ICODE

subprogram module (from VHDL procedures and functions) calls.

A formulation of the multi-FPGA partitioning problem is presented, a K-way partitioning

algorithm and a subprogram communication channel optimisation algorithm are proposed

as a two-phase solution. A module call graph representation used to model the data

structures for partitioning is also presented within this chapter. The generation of the

design profile and how this profile information is used to guide the partitioning algorithm

is also covered within Section 4.5. The design profile and target technology information

(number of target devices, area and I/O constraints) are passed into the synthesis system

using a partitioning information {.par) file. Refer to Appendix C for the full detail of the

partitioning information file. The new added features to synthesise a multi-FPGA system

using the MOODS synthesis system are shaded in Figure 4-14.

T.B. Yee, 2007 Chapter 4: Mul t i -FPGA parti t ioning in M O O D S

Optimised
behav.

VHDL (vhd)

ICODE file
(xic)

ICODE expansion

MOODS
Control and data path

optimisation

Partitioner

K-way partitioner

Communication cells
and bus arbiter

insertion

< -

structural netlist
generation

1

output file
(_synth_domfr.vhd)

Expansion
module

templates

Design profiling

Testbench of
full system

i
VHDL

! s imulat ion

M l
Module

activity data

K-way
partitioning
parameters

Target
technology
information

k number of structural VHDL
output file for k partitions

124

Figure 4-14 Modified MOODS synthesis system with multi-FPGA partitioning

The next chapter covers the implementation of the asynchronous communication channels

in greater detail. Details covered within the next chapter include the asynchronous data

communication channel used for inter-FPGA data transfers, the various communication

T.B. Yee, 2007 Chapter 4: Multi-FPGA partitioning in M O O D S 1 2 5

cells and arbiter ceils which form the building blocks of the subprogram communication

channel, and the structure of the final generated hardware synthesised design targeted onto

multiple heterogeneous target devices. The ICODE list of instructions and the MOODS

cell libraries are modified for the support of the multi-FPGA partitioning. The ICODE

instruction database is extended to include the ICODE instructions associated with inter-

FPGA data transfers (e.g. instructions such as Refer to Appendix C

for the full ICODE instruction database description. The MOODS cell library database file

{.mlib) is extended to include the communication cells, and latches to implement the

subprogram communication channel. The parameterised structural/RTL components of

these cells are added to the existing file, and a new updated library

file, M00DS_LIB2. 7 {.vhd) file, was created.

T.B . Yee, 2007 C h a p t e r 5: C o m m u n i c a t i o n c h a n n e l s 126

Chapter 5

Communication channels

5.1 Introduction

Once a single behavioural description has been synthesised and partitioned in MOODS,

the next step is to look at the interface generation (shaded region in Figure 5-1) so that one

FPGA device can communicate with other FPGA devices in the multi-FPGA system.

H i g h - l e v e l
s y n t h e s i s a n d

p a r t i t i o n i n g

B e h a v i o u r a l

V H D L

d e s c r i p t i o n 1

S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

I n t e r f a c e
g e n e r a t i o n

S t r u c t u r a l

V H D L

I n t e r f a c e

S t r u c t u r a l

V H D L

S t r u c t u r a l

V H D L

Figure 5-1 Generated system structure

The synthesis of a multi-FPGA system with heterogeneous devices with a single global

clock becomes impractical, as the clock rate of the whole system is dependent on the

slowest device connected. As the number of FPGA devices increases, the limiting problem

becomes the distribution of the single clock without introducing intolerable clock skew.

One approach to alleviate the above given problems is to synthesise a multi-FPGA system

using a locally clocked, globally delay-insensitive approach [103, 116]. The partitioned

design is targeted onto separate FPGA devices, where each device is clocked locally and

the board-level devices communicate with one another using delay-insensitive signalling

T.B. Yee, 2007 Chapter 5: Communication channels 127

methods. Asynchronous communication channels are used for data transfers between the

partitions. The communication channel interface is presented in Section 5.2. Section 5.3

details the communication protocol of design targeted onto an arbitrary number of FPGA

devices. Section 5.4 deals with the implementation details of the communication cells and

arbiter cells, which are the building blocks of the subprogram communication channel.

Section 5.5 deals with the hardware generation of the underlying structure to support data

communications between the devices in the multi-FPGA system.

5.2 Communication channel interface

The ICODE expansion stage expands channel-related instructions and replaces the

instructions with the corresponding expanded ICODE template by inlining. A simpler

template shown in Figure 5-2 with a variable channel data-width defined by the channel

data sent using the channel replaces the original ICODE templates of varying channel

widths (8-bits, 16-bits, 32-bits, etc) in [109].

ICODE expansion template

MODULE chjnit val.sem MODULE ch_recv chan_data,ack,sem,d
// Declarations // Declarations
REGISTER val REGISTER Chan data [0:0]
REGISTER sem [0:0] REGISTER ack [0:0]
// Statements REGISTER sem [0:0]
.CHI0001 MOVE val,sem REGISTER d [0:0]

REGISTER c_tmp [0:0]
MODULE ch_send d,ack,sem,chan_data // Statements
// Declarations .CHR0001 UNEQ sem,ack,c_tmp
REGISTER d [0:0] .CHR0002 IF C_tmp ACTT CHR0003 ACTF CHR0001
REGISTER ack [0:0] .CHR0003 NOT sem,c_tmp
REGISTER sem [0:0] .CHR0004 MOVE chan_data,d
REGISTER Chan data [0:0] .CHR0005 MOVE c tmp,sem
REGISTER c j m p [0:0] ll
// Statements
.CHS0001 UNEQ sem,ack,c tmp
.CHS0002 IF CJmp ACTT CHS0001 ACTF CHS0003
.CHS0003 NOT sem,c_tmp
.CHS0004 MOVE d,chan_data
.CHS0005 MOVE c tmp,sem
////////////////////////////////////^^^^^^

Channel component template

IMPORT send_sem [0:0]
INPORT recv_sem [0:0]
INPORT d a t a j n [0:0]
OUTPORT send_ack [0:0]
OUTPORT recv_ack [0:0]
OUTPORT data_out [0:0]
ll

Figure 5-2 ICODE expansion and channel component templates

T.B . Yee, 2007 C h a p t e r 5: C o m m u n i c a t i o n c h a n n e l s 128

The ICODE co/MponeMr is equivalent to an ICODE but only the interface is

defined and not its behaviour. This allows concurrent VHDL "black box" components

(e.g. the communication channel "black box" component in Figure 5-3(a)) with a VHDL

gMfzYy and arcAzYecfw/'g (see VHDL co/MpoMgMfs in the VHDL hierarchy structure in

Section 2.3.3) but no defined behaviour to be synthesised in MOODS and the behaviour of

the component inserted after synthesis. The VHDL compiler front end does not support

this "black box" concept; a dummy component consisting of a VHDL process and

procedure (Figure 5-3(b)) is used, allowing the VHDL to ICODE compiler to translate an

ICODE dummy component into an ICODE module activated by a MODULEAP

instruction (.L000002 in Figure 5-4(a)). The generated ICODE for the behavioural

example in Figure 5-3 is given in Figure 5-4(a)).

library ieee;
use ieee.std_logic_1164.all:
use le@8.numenc_skl.all;
usGworkchannel _pack8ge.all;

entity m_call1 is
port(a: out std_logic_vector(7 downto 0)):

end m_call1;

architecture behaviour of m_call1 is
signaj c1_send_sem, c1_recv_sem: chann^_sem;
signal c1_send_8ck, c1_recv_8ck: channel_8ck;
signal c1_send_data, c1_recv_data: std_logic^vector(7 downto 0);

begin
- Communication channel blackbox component
c1: entity work.SIMPLE_CHANNEL generic map (8)

port map(c1_send_sem,c1_recv_s6m,c1_send_data,
c1_send_8ck,cl_recv_ack,cl_recv_data);

- send process
process
variable tempi: std_l0gic_vect0f(7 downto 0);
variable data: unsigned(7 downto 0);

begin
lrWt(cl_send_sem):
data := (others => "0");
forever loop

tempi := std_loglc_vector(data):
send(c1_send_sem, c1_send_ack, c1_send_data, tempi);
wait R)r 10 ns;

end loop;
end process;

- recv process
process
variable temp3: std_loglc_vector(7 downto 0);

begin
lnlt(cl_recv_sem);
forever loop
recv(c1_recv_sem. c1_recv_8ck, c1_recv_data. tempS);
a <= tempS;
wait for 10 ns;

end loop;
end process;

end behaviour;

(a) Behav iou ra l VHDL des ign

library ieee;
use ieee.std_logic_1164.all;
entity SIMPLE_CHANNEL is
generic (width: positive := 8);
port (send_s8m: in std_lo^_vector(0 downto 0);

recv_sem: in stdjogic_vector(0 downto 0);
send_data: in std_logic_vector(width-1 downto 0);
send_8ck: out stdjogic_vector(0 downto 0);
recv_ack: out std_loyLvector(0 downto 0);
recv_data: out stdJogic_vector(width-1 downto 0));

erxf SIMPLE_CHANNEL;
architecture stmcture of SIMPLE_CHANNEL is
procedure channel_body(

signal Bend_sem: in std_logl^vector(0 downto 0);
siyial recv_sem: in std_logic_vector(0 downto 0);
signal send_data: in std_logic_vector(width-l downto 0);
signal send_ack: out std_logic_vector(0 downto 0);
signal recv_ack: out stdjogic_vector(0 downto 0);
signal recv_data: out stdJogic_vector(width-1 downto 0)) is
begin
wait for 0 ns;

end;
begin
process
begin
chainel_body(send_sem,recv_sem,send_data,send_ack,recv_ack,recv_data);

end process;
end structure;

(b) C o m m u n i c a t i o n c h a n n e l d u m m y c o m p o n e n t

Figure 5-3 VHDL black box component

T.B. Yee, 2007 Chapter 5; Communication channels 129

VHDL processes are translated and merged into the program ICODE module during the

ICODE generation (Section 2.7.2). The ICODE expansion stage separates the ICODE

statements (see Figure 5-4(a)) for each process into separate ICODE process modules

(p MOD 1 and p MOD 2 in the given example - Figure 5-4(b)) activated by

MODULEAP instructions (.L000002_0 and .LOOOOl 1 0 in Figure 5-4(b)).

; PROGRAM m_call1 a

I // Dedarations
: OUTPORT a [7:0]
I REGISTER c1_@end_sem [0:0]
! REGISTER c1_recv_s@m [0:0]
REGISTER c1_send_ack [0:0]
REGISTER c1_recv_ack [0:0]
REGISTER c1_send_d8ta [7:0]
REGISTER c1_r8cv_d8ta [7:0]
ALIAS diasO [0:0] FROM c1_send_sem [0:0]
ALIAS aliasi [0:0] FROM c1_recv_sem [0:0]
ALIAS allas2 [7:0] FROM c1_send_data [7:0]
ALIAS 8lias3 [0:0] FROM c1_send_8ck [0:0]
ALIAS ali8s4 [0:0] FROM c1_recv_8ck [0:0]
ALIAS aliasS [7:0] FROM c1_recv_data [7:0]
REGISTER tempi [7:0]
REGISTER data [7:0]
ALIAS sem [0:0] FROM c1_@end_sem [0:0]
REGISTER tmp6 [0:0]
ALIAS sem_0 [0:0] FROM c1_send_sem [0:0]
ALIAS ack [0:0] FROM c1_Bend_ack [0:0]
ALIAS chan_data [7:0] FROM c1_send_data [7:0]
REGISTER d [7:0]
REGISTER tmp8 [7:0]
REGISTER temp3 [7:0]
ALIAS sem_1 [0:0] FROM c1_recv_sem [0:0]
REGISTER tmp9 [0:0]
ALIAS sem_2 [0:0] FROM c1_recv_sem [0:0]
ALIAS ack_0 [Oi)] FROM c1_recv_ack [0:0]
ALIAS chan_d8ta_0 [7:0] FROM c1_recv_data [7:0]
AUAS d_0 [7:q FROM temp3 [7:0]
REGISTER tmp10 [7:0]

//Statements
.L000001 NOOP ACT L000002, L000003, L000011
.L000002 MWULEAP channel_body alias0.alias1,aIla$2,alia53.aliaB4,8lias5 ACT L000002

.L000003 ch jn i t #%0,tmp6

.L000004 MOVE tmp6,sem

.L000005 MOVE #%00000000.data

.L000006 MOVE data,tempi

.L000007 MOVE tempi,d

.L000008 ch_eend d,ack,sem_0,tmp8

.L000009 MOVE tmp8,chan_data

. LOOOOl 0 PROTECT le-OOS ACT L000006

.LOOOOl 1 ch_lnlt#%0,tmp9

.LOOOOl2 MOVE tmp9,sem_1

.L000013 ch_recv dwi_data_0,ack_0,sam_2,tmp10

.L000014 MOVE tmp10,d_0

.LD00015 MOVE temp3,a

.L000016 PROTECT 1e-008 ACT LOOOOl 3

Statements for
p_M0D_1

Statements for
p_MOD_2

.L000017 ENDMODULE
//
// MODULE HEADER
MODULE channel_txxfy send_sem,recv_@em,send_data,send_8ck,recv_ack,recv_data

\ // Declarations
INPORT send_sem [0:0]
IMPORT recv_sem [0:0]
INPORT send_data [7:0]
OUTPORT send_8ck [0:0]
OUTPORT recv_ack [0:0]
OUTPORT recv_data [7:0]

// Statements
.L000018 NOOP
.L000019 ENDMODULE
//

ICODE of dummy
component indixAno
the module header

/

(a) Original ICODE

PROGRAM m_call1 a
// Declarations
OUTPORT a [7:0]
REGISTER c1_aend_sem [0:0]
REGISTER c1_recv_sem [0:0]
REGISTER c1_send_ack [0:0]
REGISTER c1_recv_ack [0:0]
REGISTER c1_send_data [7:0]
REGISTER c1_recv_data [7:0]
ALIAS aliasO [0:0] FROM c1_send_sem [0:0]
ALIAS aliasi [0:0] FROM cl_recv_sem [0:0]
ALIAS alias2 [7:0] FROM c1_send_data [7:0]
AUAS alias3 [0:0] FROM c1_send_ack [0:0]
ALIAS alias4 [0:0] FROM c1_recv_8ck [0:0]
AUAS allasS [7:0] FROM c1_recv_data [7:0]
REGISTER tempi [7:0]
REGISTER data [7:0]
ALIAS sem [0:0] FROM c1_send_sem [0:0]
ALIAS sem_0 [0:0] FROM c1_send_sem [0:0]
AUAS ack [0:0] FROM c1_Bend_8Ck [0:0]
ALIAS chan_data [7:0] FROM c1_send_data [7:0]
REGISTER d [7:0] {file:5. In:84, pos:114}
REGISTER temps [7:0] (file:3, ln:54, pos:4}
ALIAS sem_1 [0:0] FROM c1_recv_sem [0:0]
AUAS s@Ti_2 [0:0] FROM c1_recv_sem [0:0]
AUAS ack_0 [0:0] FROM c1_recv_ack [0:0]
ALIAS chan_data_0 [7:0] FROM c1_recv_d8ta [7:0]
AUAS d_0 [7:0] FROM temp3 [7:0]
REGISTER c_tmp [0:0]
REGISTER c_tmp_0 [0:0]

// Statements
LOOOOOI NOOP ACT L000002_0. L000003_0. LOOOOl 1_0

.L000002_ONOOP ACTL000002_0

.L000003_0 MODULEAP p_M0D_1 ACT L000003_0

.LOOOOl 1_0 MODULEAP p_M00_2 ACT LOOOOl 1_0

.L000017 ENDMODULE
Generated chann^

blackbox component
//MODULE HEADER '
COMPONENT channel_t)ody ali8sO,elias1,alias2,alias3,alias4,altas5 :

//MODULE HEADER
MODULE p_MOD_1
//Statements
.L000003 MOVE #%0,sem
// Finished expanding Module: chjnit

.L000005 MOVE #%00000000,d8ta

.L000006 MOVE data,tempi

.L000007 MOVE tempi,d
// ExpancSng Module: ch_send
.L000008 UNEQ sem_0,ack,c_tmp_0
.CHS0002 IF c_tmp_0 ACTT L000008 ACTF C
.CHS0003 NOT »em_0,c_tmp_0
.CHS0004 MOVE d.chan_data
.CHS0005 MOVE c_tmp_0,sem_0
.L000010 PROTECT 1e-008 ACT L000006

ENDMODULE

// MODULE HEADER
MODULE p_M0D_2
//Statements " '
. LOOOOl 1 MOVE #%0,sem_1
// Finished expancBng ModiMe: chjnit

Expanded ICODE
for channel init

instruction

Expanded ICODE
for channel send

instruction

Expanded ICODE .
for channel init

instruction

Expanded ICODE
for channel receive

instruction

// Expanding Module: ch_recv %
.L000013 UNEQ sem_2,8ck_0,c_tmp
.CHR0002 IF c_tmp ACTT CHR0003 ACTF LOOOOl 3
.CHR0003 NOT sem_2,c_tmp
.CHR0004 MOVE chan_data_0,d_0
.CHR0005 MOVE c_tmp,sem_2 ^
.L000015 MOVE temp3,a
.L000016 PROTECT le-OOS ACT LOOOOl 3

ENDMOOULE

(b) ICODE after expansion stage

Figure 5-4 ICODE expansion example

T.B. Yee, 2007 Chapter 5: Communication channels 130

The ICODE expansion stage replaces the dummy ICODE component module for the

communication channel "black box" in Figure 5-4(a) with an ICODE component in

Figure 5-4(b). Channel-related instructions (chjnit, ch_send and ch_recv in (a)) are

replaced and inlined with the contents of expanded ICODE templates (Figure 5-2) in the

ICODE expansion library.

Communication cells are inserted in the partitioning stage to handle inter-device

subprogram calls; call_nodes' in modules calling inter-device subprogram modules are

replaced with 'transmit call nodes', and 'transmit cells', 'receive cells' are connected to

'receive call nodes' in the destination subprogram modules (described in Section 4.6).

These communication cells are inserted automatically by the MOODS synthesis tool after

the partitioning phase. The output structure of the partitioned design and its interface to

the subprogram communication channels are not created by the user, but by the MOODS

synthesis tool itself. Later sections look into the creation and the hardware connections of

the subprogram communication cells and channel in greater detail.

library ieee;
use ieee.stdJogic_1164.all;
library moods;
use moods.cells.all;
entity m_cail2_dom1 is
port (

a: out std_iogic_vector(7 downto 0);
sys_Glock: in std_logic;
sys_resel: in std_logic;

i Explicit Comm. Channel "
m_call2_c2_recv_sem out stdjogic_vector(0 downto 0)
m_call2__c2_recv_ack in std_logic_vector(0 downto 0),
m_call2_c2_recv_data- in sld_logic_vector(7 downto 0);

I m_caH2_c1_send_6em: out eWJogtc^vectorfO downto 0);
I m_call2_o1_send_data: out adJ08ic_veclor(7 downto 0);
[m_call2_c1_send_ack: in sld_logtc_vectOf;0 douvnto 0);
I SubproGtarn Comm. Channel
, m_call2_bal_Data_inout inout stdJogic_vector(7 downto 0).j
I m_c8ll2_ba1_Data_rBq; moul ztdJogH;_vector(0 downto 0); I

m_call2_ba1_0ata_ack inout stdjogic_veclor(0 downto 0) '
I m_call2_ba1_t>!cell_req1 out stdjogic_v6ctor(0 downto 0)

m_oall2_ba1_txcell_ack1 in stdjogic_vector(0 downto 0)

end m call2 dom1;

ARCHITECTURE structure of m call2 domi is

(a) Generated VHDL entity of output
structural VHDL for device 1

library ieee:
use ieee.stdJogic_1164.all;

library moods:
use moods.cells.all;
- Using cells in ch_arb_const_1 package for channel arbiter 1
use moods.ch_arb_const_1 .all:

entity m_call2_dom2 is
port(

- Explicit Comm. Channel
m_call2_c2_5end_sem: out std_logic_vector(0 downto 0);
m_call2_c2_send_data: out sld_iogic_vector(7 downto 0);
m_call2_c2_send_ack: m sid_lo^c_vec*or(0 downto 0); i
m_cai2_c1_recv_S8m: oul sld_*ogi(^ve(%or(0 downto 0); I
m_c8ll2_c1_recv_ack: in stdJogKLvectorfO downto 0): i
m_c^l2_c1_recv_data: in std_logic_v6Ctor(7 downto 0); |

Subprogram Comm. Chmnel i
m_C8n2_ba1_Data_inout: mout std_logi^vec(or(7 downto i));i
m_call2_ba 1 _Data_req inout stdJogiG_vector(0 downto 0); ^
m_call2_ba1_Data_ack inou* std_k)gic_vector(0 downto 0).
sys_ch)ck: m std_iog*c: i
sys_reset: m std_iogic: i
— Channel Arb. req/ack signal — i
m_call2_ba1_txcell_req: m std_logic_vector(0 downto 0): i
m_c8ll2_ba1_txceil_acl(: out std_logic_vector(0 downto 0) i

end m call2 dom2;

ARCHITECTURE structure of m call2 dom2 is

(b) Generated VHDL entity of output
structural VHDL for device 2

Figure 5-5 Generated VHDL entity with explicit and subprogram
communication channel signal declaration

T.B. Yee, 2007 Chapter 5: Communication channels 1 3 1

An example of the VHDL entity of two structural VHDL output files for a design

partitioned into two devices is given in Figure 5-5. The interface ports that link to the

structural implementation of the inter-device communication channel (both explicit

communication and subprogram communication channels) are added automatically to the

VHDL entity port list declaration of the generated structural VHDL design (shown shaded

in Figure 5-5). The input and output signals in the VHDL entity port list declaration are

grouped and mapped to the VHDL processes that access them and these signals are written

to the structural VHDL output files that the processes are partitioned and assigned to. The

plan was to perform most of the system enhancement through the insertion of the

partitioning mechanism to partition the single design, and automatically insert the control

and data path elements into the optimised design, requiring minor modifications to the

MOODS synthesis core.

5.3 Communication protocol

The partitioning enhancement in the MOODS synthesis tool synthesises and generates a

partitioned structural design for an arbitrary number of target FPGA devices. The

communication cells in the partitioned design requires some form of arbitration as they are

transferring data from one FPGA device to another via the shared subprogram

communication channel. The key feature of the communication cells is in the usage of

asynchronous communication techniques to transfer data between the FPGA devices.

Communications synthesis [117-121], asynchronous logic synthesis [122-127] are well-

researched areas and the current research of these areas investigating aspects of low-power

design and system on chip design methodology [128-130]. None of the work has

addressed the automatic generation and insertion of asynchronous communication

channels/links during multi-FPGA system synthesis. The partitioning enhancement in

MOODS utilises the principle of locality, where each FPGA device is implemented as

individual processing units having an asynchronous communication interface. This

concept is very similar to the Globally Asynchronous Locally Synchronous (GALS)

paradigm [101, 104, 116, 131-135]. In this case, the multi-FPGA system is viewed as an

T.B. Yee, 2007 Chapter 5: Communication channels] 3 '

arbitrary number of FPGAs, or "locally synchronous islands" communicating

asynchronously.

5.3.1 Asynchronous data transfer protocol

Subprogram channel communication between module and subprogram module is handled

by the communication cells, comprising of a transmit cell a receive cell

(rxcell_node), and a communication channel arbiter cell {arb^. Data transfers across clock

domains use the single-rail bundled-data approach, where data is synchronised using two

additional handshaking control signals (Section 3.5). The bundled-data approach uses

fewer I/Os compared to an asynchronous FIFO channel.

The implementation of the data handshaking controller is not as complicated as the

asynchronous FIFO and this simplicity facilitates the ease of device expansion. An

arbitrary number of target devices in the multi-FPGA system, each with its local clock,

can be connected to the asynchronous tri-state communication channel. An asynchronous

FIFO channel forms a point-to-point unidirectional communication channel between two

clock domains. Two such channels are needed to send and receive input and output

(result) parameters between two domains respectively. Additional circuitry (i.e. address

decoding, multiplexing control inputs, tri-state shared control signals) has to be added to

the asynchronous FIFO so that the multi-FPGA system can be connected in a multipoint

manner. One of the main multi-FPGA partitioning is the I/O constraints of the target

FPGA devices. Additional FPGA devices or devices with more I/O pins may be required

to accommodate all the signals in the design if an asynchronous FIFO channel is used.

Figure 5-6 shows an explicit communication channel and connections of the

communication cells and arbiter cell generated for inter-FPGA subprogram

communications through a subprogram communication channel. Each transmit cell and

receive has a pair of request/acknowledge and activate/ready signals connected to the

centralised communication channel arbiter respectively. To reduce I/O utilisation, the

asynchronous handshaking and data signals in the subprogram communication channel are

all tri-stated.

T.B. Yee, 2007 Chapter 5: Communication channels [33

The communication channel arbiter serves dual functions in the communication protocol.

Firstly, it handles the arbitration of the control of the shared communication channel for

all transmit and receive cells that use the channel and it ensures a clean hand-over of

ownership of the channel 6om one sender to another. Secondly, a lookup table in the

arbiter provides a direct mapping of source modules and the corresponding destination

modules to activate. Information on the creation and implementation of the

communication cells are covered in greater detail in the subsequent sections.

Send semaphore I Receive semaphore I Partition 2

Send acknowledge Receive acknowledge

Explicit comm. channel

Send data Receive data

Syntliesised design
in

partition 2

Partition 1 Partition 3

Syntliesised design
in partition 1

Transmit Cell
{txcell_node)

request

Comm.
channel
arbiter
{arb)

activate

Rece ive Cell
(rxcell_node)

Transmit Cell
{txcell_node)

a(-knowledc e

Comm.
channel
arbiter
{arb) ready

Rece ive Cell
(rxcell_node)

Transmit Cell
{txcell_node)

!

Comm.
channel
arbiter
{arb)

Rece ive Cell
(rxcell_node)

Data bus
n-bits

data_req

data ack

Synthesised design
in partition 3

Subprogram
comm. channel

Figure 5-6 Communication cell connections in the multi-FPGA system

5.3.2 Extended burst mode state machines

The idea here is to automatically insert asynchronous data communication channels

between the FPGA devices using the MOODS synthesis tool. The asynchronous channel

controllers are specified using extended burst-mode (XBM) asynchronous state machines

[123] and synthesised using the 3D synthesis system [136]. An extended burst-mode

T.B. Yee, 2007 Chapter 5: Communication channels I 3 4

asynchronous finite state machine is specified by a state diagram, which consists of a

finite number of states, a set of labelled state transition arcs connecting pairs of states, and

a start state. Each transition is labelled with a set of conditional signal levels and two sets

of signal edges: an input burst and an output burst. An input burst is a non-empty set of

input edges (terminating or directed don't care), where at least one of which must be

specified. An owfpwr is a set of output edges. Figure 5-7 describes two XBM state

machines for the asynchronous channel controllers for transmit and receive cells in the

subprogram communication channel. Signals that are not enclosed in angle brackets and

ending with + or — are terminating edge signals (e.g. den, ack in Figure 5-7(a) and req,

lastpack in Figure 5-7(b)). The signals enclosed in angle brackets are conditionals, which

are level signals whose values are sampled when all of the terminating signals associated

with them have occurred. A conditional lastpack is high" represented by <lastpack+>,

and lastpack is low" is represented by <lastpack->. A state transition only occurs when

all the conditions are met and all the terminating signals have appeared. A slash (/) is used

to delimit each input burst. A signal ending with an asterisk is a directed don't care. The

following lists some of the labels on the state transitions in Figure 5-7:

• den-^ lastpack*/req+ denotes the state machine raises req when den rises regardless

of the state of This state transition changes from the current state to in

(a).

• <lastpack+> ack+/ req- txdone+ denotes if lastpack = 1 when ack rises, then the state

machine lowers req and raises txdone. This state transition changes from current state

"̂7 to in (a).

• req-/ack- denotes the state machine lowers ack when req falls. This state transition

changes from the current state to in (b).

Details on the formalisation of the extended burst-mode specifications can be found in

[123, 137, 138].

Figure 5-7(a) describes an extended burst-mode specification for the asynchronous

channel controller (j'gMd\A3M) that manages the protocol for sending inter-FPGA data

packets, and Figure 5-7(b) describes the asynchronous channel controller (recezve^ZBM)

T.B. Yee, 2007 Chapter 5: Communication channels 135

that manages the protocol for receiving the inter-FPGA data packets. The burst-mode

specification described in (a) has four inputs {den, lastpack, ack, and txdoneset) and two

outputs {req, and txdone), and (b) has three inputs {req, lastpack, and rxdonesel) and two

outputs {ack, rxdone). Communication cells (transmit and receive cells) both have a pair

of send XBMand receive XBMXo deal with the asynchronous inter-FPGA data transfers.

J ° >;
den+ lastpack' /

req+

den- txdoneset- /

ack- lastpack* / req+

^ 1 : (3
- <

<lastpack-> ack+ /

> <lastpack+> ack+ /
^ 2 req- txdone+

ack- lastpack* /

req-

(a)Extended burst-mode specification
for sending inter-FGPA data packets

txdoneset+ / txdone-

req- lastpack* / ack-

M 0
<lastpack-> req+ / ack+

rxdoneset- / , <lastpack+> req+ /
J - ack+ rxdone+

I ^ req- lastpack* / ack-

3

j rxdoneset+ / rxdone-

4

(b) Extended burst-mode specification
for receiving inter-FGPA data packets

Figure 5-7 Extended burst-mode specifications for asynchronous channel
controllers in communication cells

Initially, the transmit cell at the source device asserts den to enable inter-FPGA data on the

data bus of the tri-state communication channel and its send_XBM asserts req as illustrated

T.B. Yee, 2007 Chapter 5: Communicat ion channe l s 136

in the transition from states 0 to 1 in Figure 5-7(a). When the receive cell at the destination

device receives the data on the data bus, the A/acknowledges the sender by

asserting ack: the transmit cell in turn negates req. lastpack is asserted when the current

data packet is the last data transfer to be sent. If the data is not the last packet (<lastpack-

>), the fg»6fZBM(in the source device) and r e c e z v e (i n the destination device)

continues with the four-phase handshaking protocol. When the last data packet

{<lastpack+>) is placed on the data bus, the acknowledges the sender by

asserting acA; and nc cfoMg (state transition 0 to 1 in (b)), j'gMcWSM negates reg and

asserts Wone (state transition 1 to 2 in (a)). The transmit cell acknowledges the

send_XBMhy asserting txdoneset (state transition 4 to 5 in (a)) when the last data packet is

sent, similarly the receive cell acknowledges the r e c e / v g a s s e r t i n g

(state transition 3 to 4 in (b)) when the last data packet is received.

5.3.3 State encoded output communication cells

The output of the 3D synthesis system described in the previous section is a set of

optimised hazard-free, technology-independent logic equations, which can be used to

describe XBM finite state machines to handle inter-device data transfers. This section

describes an alternative implementation of communication cells using synchronous finite

state machines (FSM) with state encoded outputs [139] to produce glitch free FSMs to

handle the inter-device data transfers using a two-phase data handshaking signalling

protocol.

Combinational logic Sequential logic

inputs

state
Next state logic

next

clock

Present state
flip-flop

state and
outputs

Figure 5-8 Block diagram of finite state machine with state encoded
registered outputs

Figure 5-8 above shows the block diagram of the state encoded FSM, where state

encodings are unique and the FSM outputs are registered and assigned directly from the

T.B. Yee, 2007 Chapter 5: Communication channels 2 3 7

state-register bits. Finite state machines of communication cells and arbiter cells are

described in subsequent sections.

5.3.3.1 Transmit cell finite state machine

This section describes the FSM of the transmit cell given in Figure 5-9 and the

corresponding state encoding table in Table 5-1. The transmit cell FSM has a total of 11

states with 6 state encoded registered outputs and 2 additional state bits, and so that

all of the encodings are unique. The edge labels of the directed edges in Figure 5-9 specify

the transition condition, and the corresponding effects (output values) are given in the state

encoding table.

During an inter-device subprogram module call, the source module activates the transmit

cell through the transmit call node (described in Section 4.4). The transmit call node

asserts "proc en" and the transmit cell FSM enters state 5"; and output is

asserted. When the destination receive cell is ready to receive data, the communication

channel arbiter cell acknowledges the transmit cell by asserting The

transmit cell FSM enters state S2, de-asserts "''transfer_req'\ enables the tri-state data and

handshaking signals in the communication channel with valid data by asserting transmit

enable signal, and "'data_req_ouf^ respectively. The destination receive cell

acknowledges the receipt of the inter-device data with the assertion of the tri-state

handshaking signal ""datajJcK^ to complete the two-phase handshaking signalling

protocol. The transmit cell FSM enters state S4 if the preceding data packet sent is the last,

else it enters state 5"̂ to initiate the transfer of the second data packet. The transmit cell

FSM enters state R1 when the communication channel arbiter cell de-asserts

''transfer_ack'' to complete the transfer of inter-device module input parameters.

T.B. Yee, 2007 Chapter 5: Communicat ion channels 138

proc_en = 1

last_tx = 1
data ack = 1

transfer ack = 1

last_rx = 1
data_req = 0 \

tastjtx = 0
data ack = 0 iast_tx = 0

data ack = 1
last_rx = 0
data_req = 1 ' last rx = 0

data req = 0 -

last_tx = 1
data ack = 0

transfer ack = 0

transfer ack = 0

last_rx = 1
data_req = 1

transfer ack = 1

Figure 5-9 State diagram of the transmit cell FSM

The commimication channel is available for other module calls while waiting for the

destination module execution to complete. This non-blocking protocol is important as it

allows the destination module to activate other inter-device modules without the need for a

separate communication channel in the case of nested module calls.

The communication channel arbiter cell asserts the to indicate that the

external module has completed execution and results are ready to be sent back to the

source module. The transmit cell FSM enters state output signal is

asserted and the tri-state handshake signal is set to logic The transmit

cell FSM enters state R3 when ''transfer_acM' is de-asserted. The destination receive cell

asserts handshake signal 'Wafa reg" and puts the data (results) on the tri-state

communication channel. The transmit cell FSM loads in the data on the communication

channel and asserts ''data_ack_our to acknowledge receipt of the data and enters state S5

if the received data packet is the last, else it enters state S4. Output signal ''proc done'' is

T.B. Yee, 2007 Chapter 5: Communicat ion channels 139

asserted in state C D to end the inter-device module call and the FSM returns to state

c

<:
5, 3

O,
%

State
K ! s.

-Q "Q

CALL_WAIT (C_WO 0 0 0 0 0 0 0 0

SEND_1 1^/) 0 0 0 1 0 0 0 0

SEND_2 (^2) 0 0 0 0 0 1 1 0

SEND_3 (j'j) 0 0 0 0 0 1 0 0

SEND_4 0 1 0 0 0 1 0 0

READ_1 (^7) 0 1 0 0 0 0 0 0

READ_2 (7(2) 0 0 0 1 1 0 0 0

READ_3 1 1 0 1 1 0 0 0

READ_4 1 0 0 1 1 0 0 1

READ_5 (/(J) 1 1 0 1 1 0 0 1

CALL_DONE (C_D) 0 0 1 0 1 0 0 0

Table 5-1 State table of the transmit cell FSM

5.3.3.2 Receive cell finite state machine

The receive cell FSM complements the transmit cell FSM in the transfer of inter-device

subprogram module data. The section describes the FSM of the receive cell given in

Figure 5-10 and the corresponding state encoding table in Table 5-2. The receive cell FSM

has a total of 12 states with 7 state encoded registered outputs and 2 additional state bits,

xl and x2, so that all of the encodings are unique. The edge labels of the directed edges in

Figure 5-10 specify the transition condition, and the corresponding effects (output values)

are given in the state encoding table.

T.B. Yee, 2007 Chapter 5: Communication channels 140

rxcell act = 1

last_tx = 1
data_req = 1

rxcel l act = 0

rxcell act = 0

last_tx = 1
data ack = 0 \

last rx = 0
data req = 0

last_rx = 0
data req = 1

last_tx = 0
data ack last tx = 0

data ack = 0

last_rx = 1
data_req = 0

rxcell act = 1

W M

last_tx = 1
data ack = 1

proc_end = 1

Figure 5-10 State diagram of the receive cell FSM

The receive cell FSM starts in state C_W and upon receive the assertion of''rxcell_acf'

from the communication channel arbiter, the FSM enters state 727 and output signals

is asserted and the tri-state handshake signal is set to logic

'0' . The communication channel arbiter de-asserts "rxce//_acf when the source transmit

cell is ready to send data, the receive cell FSM enters state R2 and checks if the tri-state

''data_req" signal is asserted to indicate valid data on the communication channel. The

receive cell FSM loads in the data on the communication channel and asserts output signal

"'datajxckjjuf to acknowledge receipt of the data and enters state R4 if the received data

packet is the last, else it enters state R3. The receive cell FSM enters state A_M and output

signal "pmc acr'' is asserted to activate the receive call node (described in Section 4.4)

and the receive cell FSM enters state W_Max\.d waits till "'proc_end" assertion by the

receive call node to indicate the completion of module execution. The receive cell FSM

enters state SI and asserts ''rxcellj-dy". The communication channel arbiter asserts

T.B. Yee, 2007 Chapter 5: Communicat ion channe l s 1 4 1

to acknowledge the receive cell that the source transmit cell is ready to

receive the output parameters (results) &om the module execution. The receive cell FSM

enters state S2, de-asserts ''rxcell_rdy'\ enables the tri-state data and handshaking signals

in the communication channel with valid data by asserting transmit enable signal,

TXJEM^ and ''data_req_j)uf' respectively. The source transmit cell acknowledges the

receipt of the inter-device data with the assertion of the tri-state handshaking signal

dcitci^ack to complete the two-phase data handshaking signalling scheme. The receive

cell FSM enters and de-asserts The receive cell FSM enters state 5"̂ if

the preceding data packet sent is the last, else it enters state 5"̂ to initiate the transfer of the

second data packet. The receive cell FSM enters state C D when the communication

channel arbiter cell de-asserts 'YxceZ/ a c f to complete the transfer of inter-device module

input parameters. Output signal "rxce/WoMg" asserted in state C D to activate the next

control state node in the main control path and the receive cell FSM enters state C PFto

await the next module call.

state s } 3

i 1 1 i i
CALL_WAIT (C_Wg 0 0 0 0 0 0 0 0 0

READ_1 ,^7) 0 1 0 0 1 1 0 0 0

READ_2 (^) 1 1 0 0 1 1 0 0 0

READ_3 (.Rj) 1 0 0 0 1 1 0 0 1

READ_4 1 0 0 0 1 1 0 0 1

ACT MOD (,4 AO 1 0 1 0 0 1 0 0 0

WAIT MOD (^ M) 1 0 0 0 0 0 0 0 0

SEND_1 (j'Z) 1 0 0 1 0 0 0 0

SEND_2 (^2) 1 0 0 0 0 0 1 1 0

SEND_3 1 1 0 0 0 0 1 0 0

SEND_4 0 1 0 0 0 0 1 0 0

CALL_DONE (C_D) 0 0 0 1 0 0 0 0 0

Table 5-2 State table of the receive cel l FSM

T.B. Yee, 2007 Chapter 5: Communication channels 142

5.3.3.3 Arbiter cell finite state machine

The communication channel arbiter cell provides arbitration for the shared subprogram

communication channel. There are two types of communication channel arbiter cells, the

singl6-Q.rbit6T and the imilti-ciTbitBr as shown in Figure 5-11. T h e single-arbiter (5 cirb)

cell, as the name suggests, provides arbitration to a single pair of communication cells

(transmit and receive cells) using the bi-directional tri-state communication channel. The

multi-arbiter (jn_arb) cell provides arbitration to more than two communication cells

using the shared bi-directional tn-state communication channel.

F P G A 1 F P G A 2

txcellnodel
rxcell_act

txcellnodel
Jxce/(_8cA *

sarb
^ rxce!l_rdy

rxcell_node1

4-
Data bus.

data_req

data ack

n - b i t s

1

1

(a) Single-arbiter (s_arb) cell example

F P G A 1

txcell node1

Data bus <

txcell_reqO

kce// ackO

txcell node2
txcell_req1

txcell ack1

F P G A 2

txcell nodes

F P G A 4

fxce// ecfO

F P G A 3

I txcell_req2

txcell_ack2 W : r

m arb

n(ce//_fdyO
rxcell node1

n<cell_act1

fxce//_fdyy
rxcell node2

n - b i t s

data_req

data ack
i—=

(b) multi-arbiter (m_arb) cell example

Figure 5-11 Example of the single-arbiter and multiple-arbiter

The example of a single-arbiter in Figure 5-11(a) shows a single source transmit cell

(txcell_nodel) and destination receive cell {rxcell_jiodeI) connected to a single-arbiter

(s_arb) that provides simple "one-to-one" communication channel arbitration between the

T.B. Yee, 2007 Chapter 5: Communication channels 143

pair of communication cells. Figure 5-11(b) shows a multi-arbiter (/» ar6) providing

channel arbitration for communication cells in a "many-to-many" configuration, where

transmit cells and in FPGA 1, and in FPGA 2)

sends inter-device data to receive cells in FPGA 4 and rxce/Z in

FPGA 3).

The FSM of the single-arbiter cell is given in Figure 5-12 and the corresponding state

encoding table in Table 5-3. The transmit cell FSM has a total of 8 states with 2 state

encoded registered outputs and an additional state bit, xl, so that all of the encodings are

unique. The edge labels of the directed edges in Figure 5-12 specify the transition

condition, and the corresponding effects (output values) are given in the state encoding

table. The single-arbiter cell handles the simple "one-to-one" arbitration and a glitch-free

handover of the communication channel between a pair of transmit and receive cells using

a single bi-directional tn-state communication channel. The arbiter cell performs

handshaking between the transmit and receive cells to ensure that the tri-state signals are

enabled (set to a known level, logic '0' in this instance) by the corresponding

communication cells before it acknowledges the source or destination cell to initiate the

start of the inter-device transfer.

txcell_req = 1

rxceil_rdy = 1

txcell_req = 0

S3

txcell_req = 0

rxcel l_rdy = 0

txcel l_req = 1

rxcel l_rdy = 1

Figure 5-12 State diagram of the single-arbiter cell FSM

T.B. Yee, 2007 Chapter 5: Communicat ion channels 144

a.
"x % s

state a g

SO 0 0 0

SI 0 0 1

S2 0 1 1

S3 0 1 0

S4 1 0 0

S5 1 1 0

S6 1 1 1

S7 1 0 1

Table 5-3 State table of the single-arbiter cell FSM

The multi-arbiter cell performs a similar task of communication channel arbitration as the

single-arbiter cell. The multi-arbiter handles communication channel arbitration for

"many-to-one" or "many-to-many" inter-device module call configuration. The multi-

arbiter cell has a ROM Look-Up Table (LUT) block that holds the direct mappings of the

source transmit cells and the corresponding receive cell(s) to activate. Figure 5-13 shows

an example of the LUT mapping for three transmit cells and two receive cells given in

Figure 5-11. The size of the LUT block is the same as the number of transmit cells

connected to the multi-arbiter cell. The first and last transmit cells and

j) calls and the second transmit cell calls The

resultant mapping in the LUT is a 0 in the first and third location of the LUT block, and a

1 in the second location of the LUT block.

txcell node1

txcell_reqO

txcell ackO

txcell node!

txcell_req1

txcell ack1

txcell nodes

txcell_req2

txcell ack2

request/acknowledge pairs

LUT block

(0,1,0)

m arb

activate/ready pairs

rxcell actO

rxcell_rdyO

rxcell act1

rxcell_rdy1

rxcell_ node1

rxcell_ node2

Figure 5-13 Example of LUT mapping of communicat ion cells

T.B. Yee, 2007 Chapter 5: Communication channels 145

The FSM of the multi-arbiter cell with a total of 10 states is illustrated in Figure 5-14. The

multi-arbiter cell checks the connected transmit and receive cells in a round-robin manner.

A token with an initial value of one is incremented by one every time the multi-arbiter cell

FSM enters state I_T. The token is cleared to zero when the preceding token value is the

maximum count value given by one less the maximum number of transmit cells connected

to the multi-arbiter cell (For example, the total number of connected transmit cells given

in Figure 5-11(b) is: 3, hence the maximum token count value is: 3 -1 = 2).

The multi-arbiter cell performs a prioritised condition check in state C_S, whereby

condition A has a higher priority than condition B. Condition A checks the

input signal specified by the token value for an inter-device module call. The

register in the multi-arbiter is set to ' T if the destination module is not

available. The register bit of an activated receive cell is set to ' T and the

transmit cell that activated the receive cell will have a ' T set in the "ca//_reg" register.

Condition B checks the completion of execution &om the destination module. This

condition is true when the corresponding bits in the and "caZ/ z-eg" are set

and is asserted by the activated receive cell. The multi-arbiter cell FSM

enters state I T when conditions A and B are not met.

C o n d i t i o n A

txcell_req(token) = 1
mod_active(LUT(token)) = 0

rxcell_rdy(LUT(token)) = 1

txcell_req(token) = 0 v

rxcelLrdy(token) = 0

C o n d i t i o n B

rxcell_rdy(LUT(token)) = 1
call_reg(token) = 1
mod_active(LUT(token)) = 1

Condition A • Condition B
txcell_req(token) = 1

rxcell_rdy(LUT(token)) = 0

txcell_req(token) = 0

Figure 5-14 State diagram of the multi-arbiter cell FSM

T.B. Yee, 2007 Chapter 5: Communicat ion channels 146

States SI to S4 in the multi-arbiter cell FSM handles the inter-device data (input

parameters) transfers from the source transmit cell to the receive cell in the destination

device. States R1 to R4 handles the inter-device data (results from the module execution)

transfers from the receive cell to the source transmit cell. Status register bits to identify

active transmit and receive cells in "ca//_reg"" and ^̂ mod active^^ respectively are set in

state S2. The corresponding bits in the status registers are cleared in state R3 to permit

future inter-device module call activations. The registered output signals in the multi-

arbiter cell are given in Table 5-4 below.

State txcell_ack(token)

CHECK_SIG (C_^ - -

INCREMENT_TOKEN (y_r) - —

SI 0 1

1 1

S3 1 0

0 0

RI 1 0

1 1

R3 0 1

0 0

Table 5-4 Registered output signals in the mult i -arbi ter cell FSM

5.3.4 Data transfer protocol for communication cells

Four-phase signalling protocol is used in the handshaking of request and acknowledge

signals in the subprogram communication channel arbitration, and two-phase signalling

protocol is used to indicate data is valid on the tri-stated communication channel (data

bus) and acknowledge the acceptance of data at the corresponding receiver cell. There are

a total of sixteen events in the shared communication channel arbitration for each cross-

domain subprogram call (illustrated in Figure 5-15). The first eight events (labelled 1 to 8

in Figure 5-15) correspond to the signalling of handshake signals used in the passing of

input parameters from the source module through the activated transmit cell (txcell_node)

to the destination module through the activated receive cell (r%cg/Z_MO(fe).

T.B. Yee, 2007 Chapter 5; Communication channels 147

The remaining 8 events (labelled 9 to 16) correspond to the returning of output parameters

(results) from the destination module to the corresponding calling source module. The

rxcell_node activates the subprogram module when all the input parameters are received

and loaded at the destination domain (event 7). Subprogram execution completes and the

rxcelljiode asserts ready signal (event 9) to indicate that the results from the subprogram

execution are ready to be sent back to the calling module.

lxcell_node (txcelt_req) I 5

arbiter (rxcell_act)

rxcell_node (rxcell_rdy)

arbiter (txcell_ack)

(3 :•

Subprogram
execution

Subprogram input parameter
data transfer

Subprogram output parameter
data transfer

Figure 5-15 Four-phase signalling in communication channel arbitration

Figure 5-16 illustrates the sequence of events (labelled 1 to 8) in the passing of input

parameters, with the asynchronous data handshaking signals {dataj-eq, datajjck, and

Data). A description of the sequence of events corresponding to the passing of input

parameters marked in Figure 5-16 is listed in Table 5-5.

T.B. Yee, 2007 Chapter 5: Communication channels 148

5)
txcell_node (txcell_req) f

arbiter (rxcel!_act)

rxcell_node (rxcell_rdy)

arbiter (txcell_ack)

data_req •

data acA •

Data •

tri-state signals

\ / V

J

D (z z x :
, \

data pkt 1 data pkt 2 data pkt 3

Figure 5-16 Asynchronous data transfer protocol (input parameters)

EVENT DESCRIPTION

1 Transmit cell {txcell^node) is activated and request signal "txcell req" to the communication
channel arbiter is set to T , requesting control of the communication channel.

2

Communication channel arbiter {arbiter) activates the destination module by asserting the
^'rxcell_act" signal of the destination module to '1 ' . The call reg register bit corresponding
to the input request signal being acknowledged is set (in the multi-arbiter cell) and similarly
the mod_active register bit corresponding to the called destination module is set (see
previous section for more details on call reg and mod active registers).

3
Receive cell (rxcelljaode) initialises the tri-state data ack handshaking line to '0 ' and
acknowledges the communication channel arbiter activation by asserting its "rxcell rdy"
signal to '1 ' .

4 Communication channel arbiter acknowledges the txcell node by asserting "txcell ack" to
'1 ' .

5
txcell_node enables the tri-state Data bus with first data packet is placed on the Data bus,
and ''data_req" handshaking signal is asserted to ' T to initiate the inter-device data transfer.
AcceZ/ Moafe de-asserts "tcce// reg" signal.

6

Communication channel arbiter sets "rxcell act" signal to ' 0 ' , telling rxcell node in the
destination domain that the tri-state data handshaking lines are initialised and inter-device
data are ready to be received. The receive cell loads in and acknowledges the data packets
sent by the transmit cell.

7 Receive cell loads in the last data packet and de-asserts "rxcell rdy" signal to '0 ' . Receive
cell releases control of the tri-state 'Va/a ac*" line.

8 Communication channel arbiter sets "txcell_ack" signal to ' 0 ' and this completes the data
transfer protocol for the transfer of cross-domain input parameters.

(input parameters)

T.B. Yee, 2007 Chapter 5: Communication channels 149

Figure 5-17 below illustrates the sequence of events (labelled 9 to 16) in the passing of

output parameters, with the asynchronous data handshaking signals {data req, data ack,

and Data). A description of the sequence of events corresponding to the passing of output

parameters marked in Figure 5-17 is given in Table 5-6.

txcell_node (txcell_req)
15

arbiter (n<cell_act)
f 16

rxcell_node (n<cell_rdy) f

arbiter (txcell_ack)

"X

data_req •

data ack • V V

Data •

tri-state signals data pkt 1 data pkt 2

Figure 5-17 Asynchronous data transfer protocol (output parameters)

EVENT DESCRIPTION

9 Upon completion of the subprogram execution, receive cell (rxcell node) asserts its
"rxcellj-dy" signal to ' 1

10 Communication channel arbiter {arb) asserts "txcell ack" signal indicating to the
txcelljiode that the subprogram has completed its execution.

11 initialises the (/afa act handshaking line to '0' and asserts "bcce/Z reg" to ' 1'.

12

The call_reg register bit corresponding to the input request signal being acknowledged is
cleared (in the multi-arbiter cell) and similarly the mod active register bit corresponding to
the called destination module is cleared (see previous section for more details on call reg
and modjuctive registers). Communication channel arbiter acknowledges the rxcell node by
asserting "xxcell_act'" to ' 1'.

13
rxcelljiode enables the tri-state Data bus with first data packet is placed on the Data bus,
and ^'data_req" handshaking signal is asserted to ' 1' to initiate the inter-device data transfer,

de-asserts signal.

14

Communication channel arbiter sets "tcce//_acA" signal to '0'. This tells in the
source domain that the tri-state data handshaking lines are initialised and inter-device data
are ready to be received. The transmit cell loads in and acknowledges the data (result)
packets sent by the receive cell.

T.B. Yee, 2007 Chapter 5: Communication channels 150

EVENT DESCRIPTION

15 Transmit cell loads in the last data packet and de-asserts signal to ' 0 \ Transmit
cell releases control of the tri-state '"data ack" line.

16 Communication channel arbiter sets the rxcell_act" to ' 0 ' and this completes the data
transfer protocol for the transfer of cross-domain output parameters .

Table 5-6 Sequence of events in the asynchronous data transfers protocol
(output parameters)

5.4 Subsystem architecture

This section starts with the details on the creation and implementation of the asynchronous

subprogram communication channels. Implementation details of the various

communication subsystem interface cells; transmit and receive cells and the

communication channel arbiter cell are covered within this section.

5.4.1 Transmit cell

The 'transmit cell' {txcelljaode) is the inter-FPGA communication interface cell inserted

into the source module that calls a destination module in another partition mapped onto a

separate FPGA device. The original calljaode associated with a subprogram call is

replaced by the tcaU_node if the called module is allocated a separate partition. For each

tcall_node, a txcell_node is added into the structural output to handle the handshaking and

transfer of I/O parameters across the communication channel.

The width of the communication channel is optimised by the MOODS synthesis tool

based on the number of available user I/Os of the interconnected FPGAs and the width of

the input and output parameters of the subprogram. The input and output parameters are

concatenated and sent in data packets, where the size of each data packet is the width of

the communication channel used to send the data. If the bit-width of the last data packet is

not less than the width of the communication channel, the last data packet is bit-stuffed

with zeros to the full bit width. A multiplexor is created to select the appropriate data for a

multi-packet subprogram input parameter transfer. The multiplexor select signals are

T.B. Yee, 2007 Chapter 5: Communicat ion channe ls 151

driven from the txceU_node. Figure 5-18 shows the structure generated for a subprogram

with five input parameters (A, B, C, D, and E) of varying bit widths and the

communication channel has a width of 16 bits.

Packet 1

Bit-stuff ing zeros

Packet2 Pac \ Packet4

upper byte
of packet 1

lower byte
of packet 1

20-bit 12-bit

"0000" ' E

[15:121/ [11:01

Mux select

signals
Ivlultiplexor

generated for
multiple data

packet transfer

txcell node

Communicat ion channe

Figure 5-18 Generated structure for a multi-packet inpu t data transfer via the
txcell node

If an output parameter is sent over the communication channel in multiple data packets,

only the corresponding bits of the register are updated for each packet transferred. This is

achieved in a similar way to the input parameters multiplexor select signals, where instead

of using the load-enable signal directly for each register, the load-enable signal is

'ANDed' with the output parameter select signals driven from the txcelljtode. Figure

5-19 shows the structure generated for a subprogram with 3 output parameters (X_out,

Y_out, and Z_out) of varying bit widths and the communication channel has a width of 16

bits. Latches are used in place of registers to hold the output parameters when XBM finite

state machine are used instead of FSM with state encoded outputs; details on the creation

and register-to-latch modifications are covered in Section 5.5.1.

T.B. Yee, 2007 Chapter 5: Communicat ion channe l s 152

16

Load-enable signal
for X_out[7:0] and

Y_out[7:0]

Load-enable signal
for Z_out[19:4]

Load-enable signal
for Z_out[3:0]

Communicat ion channe l

Output parameter
select signals

0 u

Output result registers

16

p-load
txcell n o d e

16.

[15 jl] [7:0]

X_out

8-bit

[15̂%

YoW

[3:0]

Z out

8-bit

Packetl Packet2 Packets

Figure 5-19 Structure generated for receiving a mult i -packet output data
transfer via the txcell node

A single txcell_node is shared between tcall_nodes, which are mapped to the same FPGA

device, and calling the same destination module. For a txcelljaode that is shared by two or

more tcalljaodes, a multiplexor is created to select the input parameters associated with

the activated tcalljaode. Figure 5-20 shows the structure generated for a txcelljT.ode

shared by two subprogram calls (ICODE instructions \Z0007 ' and MOOOJ').

T.B. Yee, 2007 Chapter 5: Communication channels 15:

Behavioural V H D L source ICODE
entity m_c8jl1 is
port(sum_out1: out unsigned(7 downto 0);

sum_out2: out unsigned(11 downto 0)) ;
end m_C8ll1;

architecture Behaviour of m_call1 is
signal A,B,X,Y,out1: unsigned(7 downto 0):="00000000";
signal C,Z.out2: unsigned(11 downto 0) := (others=>'0'):
begin
process
begin

p rod (A , B, C, out1, out2); - call subprogram
sum_out1 <=out1;
sum_out2 <= out2;
wait for 10 ns;
p rod (X, Y, Z, out i , out2): -- call subprogram
sum_outl <= outi:
sum_out2 <= out2;
wait for 10 ns;

end process;
end Behaviour;

procedure proc1 (
signal in1: in unsigned(7 downto 0);
signal in2: in unsigned(7 downto 0);
signal in3: in unsgined(11 downto 0);
signal outi: out unsigned(7 downto 0);
signal out2: out unsigned(11 downto 0)

) is
begin
out1 <= in l + in2;
out2 <= in3 + "000000000001";

end p r o d ;

1
2
3
4
5
6
7
8
9
fO
11
12
13
14
15
16
77
18
19
20
21
22
2 ,

24
2(
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

P R O G R A M m_call1 sum_out1,sum_out2
O U T P O R T sum_out1 [7:0]
OUTPORT sum_out2 [11:0]
REGISTER a [7:0] INIT #%00000000
R E G I S T E R b [7:0] INIT #%00000000
R E G I S T E R X [7:0] INIT #%00000000
REGISTER y [7:0] INIT #%00000000
REGISTER out i [7:0] INIT #%000D0000
REGISTER c [11:0] INIT #%000000000000
R E G I S T E R z [11:0] INIT #%000000000000
REGISTER out2[11;0] INIT #%000000000000

// Statements
-LOODI TXCELL p r o d a,b,c,out1,out2
.L0002 MOVE out i , sum_out1
.L0003 MOVE out2, sum_out2
.L0004 PROTECT 1e-008
.L0005 TXCELL p rod x,y,x,out1,out2
.L0006 MOVE out1,sum_out1
.L0007 MOVE out2,sum_out2
.L0008 P R O T E C T 1e-008 ACT L0001
.L0009 ENDMODULE

lllllliinitllllllflllllllltlllllllllHIIHIIIIIIIIllIltllltlllll
RXCELL p r o d in1,ln2,ln3,out1,out2
// Declarations
INPORT in l [7:0]
IMPORT in2 [7:0]
INPORT in3 [11:0]
OUTPORT ou t i [7:0]
OUTPORT out2 [11:0]
REGISTER tmpO [7:0]
REGISTER tmp1 [11:0]

// Statements
.L0010 uadd in l , in2, tmpO
.L0011 MOVE tmpO, outi
.L0012 uadd in3, #%000000000001, tmpi
.L0013 MOVE tmp1, out2
.L0014 E N D M O D U L E

Packet 1
(LOOOf)

Packet 1
(.L0005)

8-bit 8-bit 8-bit 8-bit

A [B _] X Y

Packet2
(LOOOf)

12-bit

Packet2
(.L0005)

12-bit

[15:8] [7:0] [15:8] [7:0]

16
MUX

I jqooir

Multiplexor generated for
multiple subprogram

activation

[15:0]

ii
i5

[15:12]

C Z

[11:0] , ' [11:0]/ /

1 2 ,
1 '

12/
J r

M U X

[11:0]

i1
i5

Instruction
enable signals

t xce l I n o d e

M u x s e l e c t

s i g n a l s

C o m m u n i c a t i o n c h a n n e l

Figure 5-20 Generated structure for a shared txcell node

T.B. Yee, 2007 Chapter 5: Communicat ion channels 154

5.4.2 Receive cell

The receive cell (rxcell^node) is the inter-FPGA communication interface cell inserted

into the subprogram module that is called by a source module in another partition, which

is mapped onto a separate FPGA device.

The ICODE .RATjEZZ instruction replaces the original ICODE module header

instruction when the module is called by a module in another FPGA device. For each

.RZCEZZ module, a receive cell and a receive call node is

created to handle the inter-FPGA data transfer and initiating the execution of instructions

within the module. The rxcell_node is added into the structural output to handle the

handshaking and transfer of I/O parameters in data packets across the communication

channel. The rcall_node has the same structure as the calljT.ode, the only difference is the

rcall_node is activated by the rxcell_node. Upon completion of the subprogram execution,

control is passed back to the which then initiates the return of the output

results to the calling module.

16

T
Communication channel

Input parameter
select signals

16 /K

Load-enable signal for
A[7:0] and B[7:0]

Load-enable signal for
C[11:0] and D[19:16]

Load-enable signal for
D[15:0]

Load-enable signal for
E[11:0]

p-load
rxcell node

0 0 0
16

[15:8] [7:0] [15:4]

Input parameter registers

[3:0] [15:0] [11:0]

8-bit 8-bit 12-bit

D

20-bit

Packetl Packet2 Packets

12-bit

Packet4

Figure 5-21 Structure generated for receiving a mult i -packet input data
transfer

The rxcelljaode receives the concatenated input parameters sent by the txcell_node of the

calling module. The input parameters in the data packets are then loaded into the

corresponding input parameter registers. Recall the structure generated for a multi-packet

input data transfer in Figure 5-18, Figure 5-21 illustrates the structure generated in the

T.B. Yee, 2007 Chapter 5: Communicat ion channels 155

destination sub-module to receive and load the input parameters. This structure is identical

to the structure generated to load output results via the txcell^node in the calling module

as described earlier.

Latches are used in place of registers to hold the input parameters when XBM finite state

machine are used instead of FSM with state encoded outputs; details on the creation and

register-to-latch modifications are covered in Section 5.5.1.

A multiplexor is created to select the appropriate data packet for a multi-packet

subprogram output result transfer. The multiplexor select signals are driven from the

rxcelljaode. Recall the structure generated to receive a multi-packet output data transfer in

Figure 5-19, Figure 5-22 illustrates the structure generated in the destination sub-module

to send the results back to the txcell_node of the calling module. This structure is identical

to the structure generated to load input parameters via the txcell node in the calling

module as described earlier.

Packet l Packet2

8-bit 8-bit

X out , Y out

upper byte of

packet 1

lower byte of

packet 1

Mult iplexor
generated for
mult iple data

packet transfer

16

20-bit

Z out

[19:4]

16

[3:0]

16.

M U X

Commun ica t ion channel

Packe ts

! "000000000000

[15v%

Bit-Stuffing zeros

rxceli node

M u x select

s ignals

Figure 5-22 Generated structure for receiving a mult i -packet output data
transfer via the rxcell node

T.B. Yee, 2007 Chapter 5: Communication channels 2

5.4.3 Communication channel (data bus) arbiter

The communication cells (transmit cell and receive cell) send and receive data packets

over a shared communication channel and these communication cells are connected to a

centralised arbiter granting the usage of the communication channel. During synthesis, the

mapping for each source-destination module pair in an inter-FPGA subprogram call is

determined and this provides a direct mapping of the 'calling' module in one FPGA device

and the called module in another device. This mapping information provides the values

to the ROM Look-Up Table (LUT) block in the arbiter. A round-robin (rotating) priority

scheme is implemented in the communication channel arbiter, where request lines are

polled in a rotating manner. The sequence of events is described in Table 5-5 and Table

5-6. The asynchronous data transfer protocol sets up the and in

difkrent FPGA devices for the asynchronous inter-FPGA data transfer. Figure 5-23

illustrates the LUT and status registers (call_reg and mod active) structure in the multi-

arbiter.

The interface ports that link to the structural implementation of the arbiter are added

automatically to the entity port list declaration of the generated structural VHDL design.

The MOODS synthesis tool checks for communication cells {txcell_nodes and

rxcell_nodes) that are in the same partition as the communication channel arbiter when the

communication channel arbiters are created. These 'internal' communication cells are

connected directly to the communication channel arbiter via internal signal nets. The

synthesis tool determines the sizes of the external signals that interface with the arbiter,

and resizes the interface ports.

The communication channel arbiter is defined within a VHDL package generated by the

MOODS synthesis tool. There are two reasons for defining the communication channel

arbiter as a separate package. Firstly, the size of the LUT block is determined when the

communication channel arbiter is created during the post-processing phase of the MOODS

synthesis tool, and these memory elements are customised in the structural/RTL

communication channel arbiter component to support all the communication cells

connected to its interface ports. The second reason is the creation of the LUT mapping of

the communication cells, which is a direct one-to-one mapping with the input request lines

from source txcelljaodes, and the LUT value addressed by the index corresponds to the

T.B. Yee. 2007 Chapter 5: Communication channels
157

output activation lines to destination TXCGII_nodss. The mapping information is only

available aftei partitioning and allocation of arbiters to FPGA devices. The synthesis tool

also checks foi arbiters providing arbitration to just a single source-destination module

pair, the LUT is not required and a single-arbiter is used instead.

I FPGA 2
I

I mod 13

request

/ acknowledge

rxcell_nocle |

txcell_node \

txcell node \

IFPGA 1

(mod 1

txcell_node i

ru5; I

I FPGA 4

activate

ready

source-destination module pair

call node node number

source-destination
module node numbers

Generated module call list

I FPGA 3

mod 27

rxcell_node

txcell node

; MODULE CALL LIST

; mod i - > mods
; Call node u5
1 8

; mod i --> mod 13
; Call node u12
1 13
; mod 13 - > mod27
; Call node u21
13 27
; mod 13 - > mod8
; Call node u26
138
; mod27 - > modS
; Call node u81
27 8

I mod 8

" '
rxcell_node

I ' l l .
Multi-arbiter

(m_arb)

0 12 3 4 0 1 Z
request/acknowledge activate/ready

pairs pairs

LUTROM

addr

4 ! 2
3 I 2

2 ' i
1 ' 0
0 I 2

call_reg register

I o| o| 11 o| ol
Bit(s) of activated

request lines set to '1'

mod_active register

0 10

Bit(s) of activated lines set

to '1' for activated modules

source request signal to destination

activate signal mapping

Figure 5-23 Look-up table block and status registers in the multi-arbiter cell

5.5 Hardware generation

With the inclusion of the communication subsystem providing the subprogram

communication channel for the asynchronous transfer of data between multiple target

T.B. Yee, 2007 Chapter 5: Communication channels 158

devices, various enhancements and modifications are made to the single output structure

geneiated by the MOODS synthesis system. Firstly, the MOODS synthesis system now

generates multiple output structural output files from a single input behavioural

description; one for each target device. A new latch component is added into the MOODS

technology (cell) libraries, latches are used in place of data-gated registers in some parts of

the design where asynchronous data transferred over the communication channel is loaded

independent of the system clock by XBM finite state machines. For communication cells

using FSM with state encoded outputs, data-gated registers in the existing MOODS

technology libraries are used.

5.5.1 Data latch generation and hardware duplication

The register arrangement for the original subprogram (module) I/O parameters is shown in

Figure 5-24, where the original structure uses pass-by-reference for subprogram I/O

parameters. Output results obtained from the subprogram execution are written directly to

the corresponding output registers (owr^and owf F in the figure). The data path storage

units (registers) implemented for the subprogram output parameters are bypassed and

optimised away (removed), as shown shaded in the figure.

A B

} f

Input parameters

Module

Output result passed
by reference

out X out Y

Output parameters
(bypassed and

removed)

Figure 5-24 Register arrangement for original subprogram module I/O
parameters

The communication subsystem transfers the input and output parameters of external

subprogram modules asynchronously via a pair of transmit and receive communication

cells. The subprogram module call mechanism is modified (described in Section 4.4) and

the underlying structure of the final generated hardware uses pass-by-value instead of

T.B. Yee, 2007 Chapter 5: Communication channels 159

pass-by-iefeience foi the procedures I/O parameters. Figure 5-25 illustrates the latch and

duplicated register arrangement for a subprogram module that is being called from a

module in a different target device (FPGA) using communication cells with XBM

asynchronous finite state machines. The figure shows two FPGA devices, where FPGA 1

is the souice device, which contains the calling module, and the called subprogram

module is located in FPGA 2.

A_dupl B_dupl
duplicated
registers

txcell node

Communication
channel

out X out Y FPGA 1

latches ^ A

f
B

rxcell node

i l
Module

FPGA 2

Output result passed
by value

Figure 5-25 Latch and duplicated register arrangement for subprogram
module I/O parameters across FPGA boundar ies

The registers for the input parameters (̂ 4 and of the called module in 2 are

replaced with latches (shaded in FPGA 2), and registers for the output parameters (C and

D) are not bypassed, as they are needed to hold the valid results obtained from the

subprogram execution for the rxcell node to send the results back to the called module.

Duplicated registers and B are generated and inserted into F f GW 7 to hold

the input parameters, which is sent to the called module by the corresponding txcell node.

Properties (data path unit bit-width, activation instructions, etc) for these duplicated

registers are copied from the original set of registers (registers and B in Figure 5-24 in

this example). Similarly, duplicated latches (C cfwp/ and are generated and

inserted into FPGA 1 to latch in the result data packets put on the communication channel

by the rxcell node of the activated subprogram. At the end of the external module call, the

T.B. Yee, 2007 Chapter 5: Communication channels j g Q

results in the duplicated latches are loaded into the appropriate output registers {out X and

5.6 Summary

The development of a multi-FPGA synthesis addition within the existing MOODS

synthesis system has extended the MOODS synthesis system to perform optimisation and

target multiple heterogeneous hardware devices, implementing a multi-FPGA system.

This chapter describes the asynchronous communication channel interface and the

automatic generation and insertion of communication cells that form the building blocks

of the subprogram communication channel, and inter-FPGA data transfers over

asynchionous communication channels/links in a multi-FPGA system. The asynclironous

data communication mechanism provided by the communication cells alleviates clock

skew pioblems in a multi-FPGA system, as each re-configurable device is viewed as

locally clocked processing units having an asynchronous communication interface.

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and

lesults of the multi-FPGA synthesis are demonstrated through a few design examples in

the next chapter.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resul ts 161

Chapter 6

Multi-FPGA implementation results

6.1 Introduction

The paititioning enhancement to the MOODS synthesis system provides the synthesis tool

with an automated mechanism to partition a single behavioural design, which would not fit

onto a single target device or which would be too costly to fit onto a target device with a

large enough area capacity. With this partitioning add-on, the MOODS synthesis system

can now target a single behavioural design onto two or more heterogeneous re-

configurable devices (FPGAs) at the board level. One main objective in obtaining the

partitions is to reduce interconnects (cutsets) and data transfers across boundaries. The K-

way partitioning algorithm and communication subsystem optimisation algoritlim

described in Section 4.4.1 generates a partitioned design, with an optimised

communication channel or multiple communication channels to improve the performance

of the multi-FPGA system.

The two target technologies used for all the experiments in this section are given in Table

6-1. Target technologies listed in Table 6-1(a) show the Xilinx Spartan2 FPGAs, and

Table 6-1(b) shows Xilinx Virtex FPGAs. The device parts in the target technology are

listed in the first column of the tables and the package type of the device are given in the

second column. The third column shows the total number of user I/Os available on the

device. Four global clock pins on Spartan 2 or Virtex devices are usable as additional user

I/Os when not used as global clock input pins. These pins are not included in the total user

I/O counts given in the tables because these pins are normally connected to surface

mounted clock oscillators or sockets for oscillator (e.g. global clock inputs GCK2 and

GCK3 are connected to an on-board oscillator and a socket for a second oscillator in the

D2-SB system board, see Appendix B.6). The fourth and fifth columns show the

T.B. Yee, 2007 Chapter 6: Miil t i-FPGA implementat ion resu l t s 162

maximum number of I/Os used and area of the devices in slices respectively. The

information given in the fourth and fifth columns are used by the two-phase partitioning

K-way algorithm (Section 4.4.1). The user 1/0 and area information of the target devices

constitutes the target domain information of the input partitioning information (.par) file to

the MOODS synthesis system. Detailed information on the two Xilinx target technologies

are given in [140, 141].

(a) Xilin X Sparta n 2 FPGA devices (b) Xilinx Virtex FPGA devices

Device Package

Total
user
I/O

Max.
user
I/O

Max.
area in
slices Device Package

Total
user
I/O

Max.
user
I/O

Max.
area in
slices

XC2S15 TQ144 86 80 768 XCV50 BG256 180 160 768

XC2S30 T0144 92 80 1200 XCV100 BG256 180 160 1200

XC2S50 FG256 176 150 1728 XCV150 BG352 260 250 1728

XC2S100 FG256 176 150 2352 XCV200 BG352 260 250 2352

XC2S150 FG456 260 250 3072 XCV300 BG432 316 300 3072

XC2S200 FG456 284 250 4800 XCV400 BG432 316 300 4800

XCV600 BG560 404 400 6912

XCV800 BG560 404 400 9408

XCV1000 FG680 512 500 12288

Table 6-1 Target Xil inx FPGA technologies

Design examples are described using behavioural VHDL and synthesised using the

MOODS synthesis system to generate un-partitioned and partitioned multi-FPGA

implementations. The structural VHDL description files generated by MOODS are further

processed by third party tools, Synplicity Synplify Pro and Xilinx ISE (Integrated

Software Environment), which performs low-level logic synthesis and technology

mapping. The Xilinx-targeted EDIF (Electronic Design Interchange Format) output from

Synplify Pro is processed by Xilinx ISE to generate a single, or multiple, bitstream files to

download onto a single, or multiple, FPGAs for an un-partitioned or a multi-FPGA design.

The first part of this chapter looks at experiments on subprogram communication channels

in non-pipelined multi-FPGA systems (without explicit communication channels) in

Section 6.2. The second part, Section 6.3, shows the inclusion of explicit communication

channels and the overall performance of pipelined multi-FPGA systems.

T.B, Yee, 2007 Chapter 6: Multi-FPGA implementation resul t s] 5 3

6.2 Experimental results (without explicit

communication channels)

This section contains the experimental results of five behavioural VHDL designs: (1)

Quadratic equation solver (Quad eqs), (2) Cubic equation solver (Cubic eqs), (3) Inverse

Discrete Cosine Transform (IDCT) module, (4) Triple-Data Encryption Standard (Triple-

DES) coie, (5) 256-bit Advanced Encryption Standard (AES256) core. The behavioural

VHDL designs of all five examples and post-MOODS synthesis simulation results of the

multi-FPGA implementations can be found in Appendix D. 1. In this section, the non-

pipelined multi-FPGA implementations of the VHDL examples are compared with the

equivalent single-device implementation.

Synthesis result tables are given for each of the behavioural examples, where the first set

of synthesis results aie obtained from synthesised designs optimised in terms of area (i.e.

with a high area optimisation priority) and the second set of results are obtained from

synthesised designs optimised in terms of delay (i.e. with a high delay optimisation

priority). Synthesis results for un-partitioned single device implementations using the

original MOODS (before the partitioning enhancements were made) are shaded and given

in the synthesis result tables. Subsequent rows list the multi-board FPGA implementations

produced using various configuration of target FPGA devices. The * in the synthesis

results denotes the implemented design or partition has exceeded either the maximum

area, or the maximum number of user I/Os of the target device.

Column 1 of the synthesis results tables shows the number of targeted FPGA prototyping

boaids used to implement the synthesised design. Each FPGA board has a single Xilinx

FPGA device, which is one of the devices in the target Xilinx FPGA technologies given in

Table 6-1. For example, a s50 FPGA denotes a Xilinx Spartan 2 XC2S50 device in a

FG256 package with a maximum user I/O of 150 pins and a maximum device area of 1728

slices, and a v200 FPGA denotes a Xilinx Virtex XCV200 device in a BG352 package

with a maximum user I/O of 250 pins and a maximum device area of 2352 slices. The

target FPGA devices are given in column 2 of the synthesis results tables. The MOODS

synthesis optimisation priority (i.e. Area or Delay) is given in column 3.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 164

The next four columns show the synthesis results of the implemented design after the

Xilinx ISE placement and routing phase. These results show the final hardware

implementation and not the MOODS synthesis estimate. Area (in slices), and 1/0

utilisation are given in columns 4 and 5 respectively. The maximum achievable

frequencies (Freq) of the FPGAs are reported in column 6. Column 7 gives the area

overhead (AO) of the multi-FPGA system with respect to the un-partitioned area-

optimised or delay-optimised implementations (shaded row) of each example. The two-

phase partitioning results are given in the last two columns of the synthesis result tables.

Column 8 reports the initial number of inter-device data packet transfers and the final

number of inter-device data packet transfers after the two-phase partitioning. Column 9

shows the number of explicit communication channels (ExCs) and subprogram

communication channels (SpCs) inserted during synthesis with the data width of the

channels in brackets.

6.2.1 Quadratic equation solver

The behavioural VHDL of the quadratic equation solver can be found in Appendix D. 1.

Figure 6-1 shows the module call graph representation of the quadratic equation solver,

with a total of seven modules in the design.

4.1

sM
sqi

pNI
eq_solver

uT

sM
q u a d r a t i c l

5,3/

sM
multi

4,1

sM
sqrti

5,2

sM
sdlvl

5,2

sM
udivl

Figure 6-1 Module call graph of the quadratic equation solver

T.B. Yee, 2007 Chapter 6: Mul t i -FPGA implementat ion resu l t s 165

Synthesis lesults of the quadratic equation solver with high optimisation priority in area

auid delziy are sh()wn bekxw ui Tzible 6-2. TThese results iii terms ()f area arid niaxirniim

achievable frequency of the final implementation are obtained from the report files

generated by post-Xilinx ISE placement and routing phase and not estimates obtained

&om the MOODS synthesis system. The Xilinx Virtex XCV200 (v200) is the smallest

FPGA device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a

single-chip implementation in both area and delay optimised quadratic equation solver

examples.

Boards FPGA
Synthesis results Two-Dhase Dartltlonina results Boards FPGA Opt.

priority Area in slices I/O
Freq.
(MHz)

AO in
slices

Data pkts
(initial -> final)

Channels
(Data widths)

1 V200 Area 2294 (97%) 194(78%) 28.27

2 v150

vlOO
Area 1617(93%)

865 (72%)

230 (92%)

38 (24%)

32.19

28.89

188
(8.2%) 2 9 - > 6 1 SpC

(32)
3 v150

v50

v50

Area

1483 (85%)

747 (97%)

355 (46%)

232 (93%)

38 (24%)

42 (26%)

33.66

23.51

40.58

291
(12.7%) 2 2 ^ 4

1 SpC

(32)

2 v150

v50
Area 1726(9994)

754 (98%)

230 (92%)

38 (24%)

30.30

22.69

186
(8.1%) 8 - > 4 1 SpC

(32)
1 v200 Delay 2264 (96%) 194(78%) 28.43

2 v150

VlOO
Delay 1717(99%)

771 (64%)

230 (92%)

38 (24%)

31.70

25.62

224
(9.9%)

2 9 - ^ 2 1 SpC

(32)
3 v150

v50

v50

Delay
1465 (84%)

764 (99%)

356(4696)

232 (93%)

38 (24%)

42 (26%)

32.92

22.56

42.62

321
(14.2%) 2 2 ^ 2

1 SpC

(32)

2 v150

v50
Delay 1717(99%)

766 (99%)

230 (92%)

38 (24%)

3170

22.70

219
(9.7%) 8 - y 2 1 SpC

(32)

Table 6-2 Synthesis results of the quadratic equat ion solver

The average maximum frequencies for the area optimised and delay optimised quadratic

equation solver are 29.87 MHz and 29.52 MHz respectively. The least number of inter-

device data transfers in the optimised implementations are 4 and 2 data packets in the area

and delay optimised examples respectively. A single 32-bit subprogram communication

channel {SpC) is inserted in all multi-FPGA implementation configurations. All the

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 166

constraint-satisfying partitioning solutions given in the table is found within 3 passes in

the K-way partitioning algorithm in all cases.

It may appear strange that the area-optimised un-partitioned implementation has a larger

area (in slices) than the delay-optimised un-partitioned implementation but a further look

at the MOODS design space for both the area- and delay-optimised in Figure 6-2 shows

that the MOODS estimation of the final implementation with a higher priority in delay in

this case produced not only a synthesised design with a smaller delay, the area is also

smaller than that of the final area-optimised implementation.

eq_solver

Delay(ns)

High area
optimisation priority

3000.0

High delay
optimisation priority

4H»0

Ana(Sllces)

High area
optimisation priority

X :

High delay
optimisation priority

Figure 6-2 Design space of the un-partitioned quadratic equation solver

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 167

6.2.2 Cubic equation solver

The cubic equation solver uses similar VHDL subprograms as the quadratic equation

solver but it is more complex. The module call graph representation of the cubic equation

solver, with a total of 11 modules is given in Figure 6-3. The behavioural VHDL of the

cubic equation solver can be found in Appendix D.1.2.

9,1

SM
cubic!

sM 1
sdivi

i — V \ udivi
/5,1 5,3

4

5,0

4 ,3 <

\ / sM \ / sM
acosi / I cosi

Figure 6-3 Module call graph of the cubic equation solver

Synthesis results of the cubic equation solver with high optimisation priority in area and

delay are shown in Table 6-3. The cubic equation solver has a total of 11 modules

including the program module. The Xilinx Virtex XCV400 (v400) is the smallest FPGA

device in the targeted Xilinx Virtex technology, with sufficient area (in slices) for a single

chip implementation in both area and delay optimised cubic equation solver examples.

The average maximum frequencies for the area optimised and delay optimised cubic

equation solver are 38.32 MHz and 32.51 MHz respectively. All the constraint-satisfying

partitioning solutions given in the table is found within 3 passes in the K-way partitioning

algorithm in all cases. The least number of inter-device data transfers in the optimised

T.B. Yee, 2007 Chapter 6: Mul t i -FPGA implementat ion resu l t s 168

implementations is 16 data packets and 2 optimised subprogram communication channels

{SpCs) are inserted in all multi-FPGA implementation configurations. The maximum

achievable frequency of the v j O O device in the 4-board implementation, comprising one

v300 and three v50 devices cannot be determined as the maximum device area utilisation

has been exceeded.

Boards FPGA
Synthesis results Two-phase partltioninq results

Boards FPGA Opt.
priority Area in slices I/O

Freq.
(MHz)

AO in
slices

Data pkts
(initial -» f ina l)

Channels (Data
widths)

1 v400 Area 3791 (78%) 226 (75%) 25.44 _ _ j

2 v300

v200

Area
3070 (99%)

1561 (66%)

300(100%)

76 (25%)

29.07

36.53

840
(22.2%) 100->36 2 SpC

(32.24)

3 v300

v150

v150

Area

3070 (99%)

379 (21%)

1238 (71%)

300(100%)

38 (24%)

78 (31%)

31.51

35.86

42.01

896
(23.6%) 100->36

2SpC

(32,24)

4 v300

vlOO

vlOO

v100

Area

3070 (99%)

379 (31%)

537 (44%)

671 (55%)

300(100%)

38 (24%)

58 (36%)

72 (45%)

32.86

35.17

39.06

57.28

866
(22.8%) 104 16

2 SpC

(32,24)

4 v300

v150

v50

v50

Area

3070 (99%)

630 (36%)

406 (52%)

474(61%)

300(100%)

56 (35%)

68 (43%)

40 (25%)

31.74

36.57

57.90

38.42

789
(20.8%) 40 -> 16

2 SpC

(32.24)

4 v300

v50

v50

v50

Area

3085* (101%)'

567 (73%)

684 (89%)

551 (71%)

300(100%)

66(41%)

70 (44%)

66(41%)

39.90

62.06

38.95

1096
(28.9%) 36 ^ 36

2 SpC 1

(32,24) 1

1 v400 Delay 3877 (80%) 226 (75%) 25.54 _

2 v300

v200
Delay 3070 (99%)

1550 (65%)

294 (98%)

70 (28%)

27.72

24.54

743
(19.2%)

36 -> 36 2SpC

(32,18)

3 v300

v150

v150

Delay
3070 (100%)

624 (36%)

987 (46%)

300(100%)

56 (35%)

72 (45%)

31.29

34.58

24.65

804
(20.7%) 4 0 ^ 3 6

2SpC

(32,24)

4 v300

v100

V l O O

VlOO

Delay

3070 (100%)

393 (32%)

645 (53%)

793 (66%)

300(100%)

38 (24%)

68 (43%)

58 (36%)

31.30

34.62

24.52

40.25

1024
(26.4%) 1 0 4 ^ 3 2

2SpC

(32,24)

4 v300

v150

v50

v50

Delay

3070(100%)

868 (50%)

428 (55%)

297 (38%)

300(100%)

42 (26%)

68 (43%)

58 (36%)

24.51

34.19

34.88

61.83

786
(20.3%) 16-> 16

2 SpC

(32,24)

4 v300

v50

v50

v50

Delay

3075* (101%)'

633 (82%)

433 (56%)

766 (99%)

300(100%)

66(41%)

66(41%)

62 (39%)

25.21

33.12

42.04

1030
(26.6%) 100->36

2 SpC

(32,24)

Table 6-3 Synthesis results of the cubic equat ion solver

T.B. Yee , 2 0 0 7 Chapter 6: Mult i -FPGA implementation results 169

6.2.3 Inverse discrete cosine transform

The inverse discrete cosine transform is a relatively simpler example with 3 modules (see

module call graph representation in Figure 6-4) compared to the previous two design

examples. The 2-D IDCT architecture is adapted from [142, 143] and the behavioural

VHDL of the inverse discrete cosine transform can be found in Appendix D. 1.3.

3,64

sWI '
idct1_mult_

add

pM
idct

3,64

/ sM
(idct2_mult
\ add

Figure 6-4 Module call graph of inverse discrete cosine transform example

Synthesis resuhs of the inverse discrete cosine transform (IDCT) example with high

optimisation priority in area and delay are shown in Table 6-4. The IDCT example has a

total of 3 modules including the program module. The Xilinx Spartan 2 XC2S100 (si00)

and XC2S150 (si50) are the smallest FPGA devices in the targeted Xilinx Spartan 2

technology, with sufficient area (in slices) for a single chip implementation in the area and

delay optimised IDCT examples respectively. Place and route error (Par err) denotes

incomplete low-level placement and routing of components by the Xilinx ISE (Integrated

Software Environment) and the maximum frequencies of the post-placement and routed

design are not given in such cases.

The average maximum frequencies for the area optimised and delay optimised IDCl

examples are 30.02 MHz and 33.00 MHz respectively. The least number of inter-device

data transfers in the optimised implementations are 128 and 192 data packets in the area

and delay optimised IDCT modules respectively.

T . B . Y e e , 2 0 0 7 Chapter 6: Multi-FPGA implementation resul ts 170

B o a r d s FPGA
S y n t h e s i s r e s u l t s T w o - p h a s e p a r t i t i o n i n q r e s u l t s

B o a r d s FPGA Opt.
priority Area in slices I/O

Freq.
(MHz)

AO in
slices

Data pkts
(initial -> final)

Channels
(Data widths)

1 SlOO Area 1018(84%) 26(17%) 28.27 _

2 s50

s50

Area 766 (99%)

527 (68%)

130 (92%)

121 (76%)

30.33

28.92

275
(27.0%) 3 2 0 1 2 8

1 SpC

(91)

2 s30

s30
Area 652* (150%))*

430 (99%)

80(100%^

56 (70%) 30.29

64
(6.3%) 3 2 0 1 2 8 1 SpC

(91)

3 s30

s30

s30

Area

430 (85%)

430 (99%)

430 (99%)

80(10094)

58 (73%)

54 (68%)

31.17

29.26

29.13

272
(26.7%) 3 2 0 3 2 0

1 SpC

(91)

2 s50

s30

Area 766 (99%)

430 (99%)

104(69%)

80 (100%)

30.33

30.85

178
(17.5%) 192 ^ 1 9 2 i s x :

1

1 5150 Delay 1476 (85%) 26 (10%) 28.43

2 s100

slOO
Delay 1003 (83%)

865(7294)

121 (8194)

97 (65%)

32 93

3&51

392
(26.6%)

192 192 1 S ^ 1

1

2 s50

s50
Delay 835* (108%)*

766(9994)

121 (81%)

97 (65%) PAR err

125
(8.5%) 192 -> 192 1 5 ^ : 1

1

3 s50

s50

s50

Delay
458 (59%)

766 (9994)

766 (99%)

123 (82%)

101 (76%%

97 (65%)

32.31

22 56

38.94

514
(34.8%) 3 2 0 3 2 0

i s ^ : I

1

2 s100

s50
Delay 1002 (83%)

766 (99%)

123 (82%)

97 (65%)

33.56

PAR err

292
(19.8%) 192 192 i s ^ 1

1

Table 6-4 Synthesis results of the inverse discrete cosine transform
example

6.2.4 Triple-data encryption standard

The triple-data encryption standard core implements the triple data encryption algorithm

(TDEA) in the electronic codebook (ECB) mode [144]. The behavioural VHDL of the

triple-data encryption standard (triple-DES) can be found in Appendix D. 1.4. Figure 6-5

shows the module call graph representation of the triple-DES, with a total of eleven

modules in the design.

T.B. Yee , 2 0 0 7 Chapter 6: Multi-FPGA implementation results 171

pM
tdes ede2

sM
initial_perm

key_reduce key_reduce

sM
key

compress

sM
expand

sM
substitute

sM
permute

5 , 4 8

sM
key_rotate

sM
l f inal_perm

Figure 6-5 Module call graph of the triple-DES

Synthesis results of the triple-DES core with high optimisation priority in area and delay

are shown in Table 6-5. The Xilinx Spartan 2 XC2S50 (s50) is the smallest FPGA device

in the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip

implementation in both area and delay optimised triple-DES core examples.

Boards F P G A

Synthesis results Two-phase partitioning results
Boards F P G A

O p t .

p r i o r i t y A r e a i n s l i c e s I / O

F r e q .

(M H z)

A O i n

s l i c e s

D a t a p k t s

(i n i t i a l - > f i n a l)

C h a n n e l s

(D a t a w i d t h s)

1 s 5 0 A r e a 6 7 0 (8 7 %) 9 9 (6 2 %) 5 5 . 7 3 _ — _

2 s 3 0

s 3 0

A r e a
6 3 3 * (1 4 6 %) -

4 3 0 (9 9 %)

1 4 1 " (1 7 6 %) *

5 6 (7 0 %) 3 0 . 2 9

3 9 3

(5 8 . 7 %)
2 0 4 ^ 4

1 S p C

(3 2)

2 s 5 0

s 3 0

A r e a
6 5 6 (8 5 %)

3 8 0 (8 7 %)

1 4 1 (9 4 %)

4 0 (1 0 0 %)

6 0 . 0 1

8 0 . 3 9

3 6 6

(5 4 . 6 %)
2 0 4 4

1 S p C

(3 2)

1 $ 5 0 Delay 6 7 0 (8 7 %) 9 9 (6 2 %) 5 9 . 0 3

2 s 5 0

s 3 0

D e l a y
7 4 6 (9 7 %)

4 3 7 * (1 0 1 %) *

1 4 3 (9 5 %)

4 2 (5 3 %)

6 4 . 1 3 5 1 3

(7 6 . 6 %)

3 9 6 - > 2 0 4 1 SpC

(3 2)

3 s 5 0

s 3 0

s 3 0

D e l a y

6 5 5 (8 5 %)

1 5 4 (3 5 %)

2 5 6 (5 9 %)

1 4 1 (9 4 %)

4 2 (5 3 %)

3 8 (4 8 %)

6 3 . 8 6

6 9 , 4 7

5 6 . 3 6

3 9 5

(5 9 . 0 %)
5 9 6 - > 2 0 0

1 SpC

(3 2)

Table 6-5 Synthesis results of the triple-DES core

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 172

The average maximum frequencies for the area optimised and delay optimised triple-DES

core are 70.20 MHz and 63.23 MHz respectively. The least number of inter-device data

transfers in the optimised implementations are 4 and 200 data packets in the area and

delay optimised examples respectively. A single 32-bit subprogram communication

channel (SpC) is inserted in all multi-FPGA implementation configurations.

6.2.5 256-bit advanced encryption standard

The 256-bit advanced encryption standard (AES) implements the Rijndael algorithm [145,

146], a symmetric block cipher that processes data blocks of 128 bits using a 256-bit

cipher key. The algorithm is symmetric since the decryption algorithm is the exact reverse

of the encryption algorithm. The 256-bit AES has a total of 5 modules. The module call

graph representation is given in Figure 6-6. The behavioural VHDL of the quadratic

equation solver can be found in Appendix D.1.5.

4 , 7 , , . ' 4 , 1 3

pM
a e s 2 5 6

3 , 7 4 , 1 0 3

s M \ / s M

f b _ s u b _ q u a d j \ r c o

s M

f t a b l e _ q u a d

Figure 6-6 Module call graph of 256-bit advanced encryption standard

Synthesis results of the 256-bit AES core with high optimisation priority in area and delay

are shown in Table 6-6. The 256-bit AES core has a total of 5 modules including the

program module. The Xilinx Spartan 2 XC2S150 (si50) is the smallest FPGA device in

the targeted Xilinx Spartan 2 technology, with sufficient area (in slices) for a single chip

implementation in both area and delay optimised 256-bit AES core examples. The average

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation results 173

maximum frequencies for the area optimised and delay optimised 256-bit AES core are

42.60 MHz and 44.61 MHz respectively. The least number of inter-device data transfers in

the optimised implementations are 28 and 232 data packets in the area and delay optimised

examples respectively. A single 32-bit communication channel (5^C) is inserted in all

multi-FPGA implementation configurations.

Boards FPGA
Synthesis results Two-phase part i t ioning results

Boards FPGA Opt.
priority Area in slices I/O

Freq.
(MHz)

A O in
sl ices

Data pkts
(initial final)

Channels
(Data widths)

1 S150 Area 144S (83%) 102(68%) 36.85

2 s100

s50

Area 1138 (94%)

766 (99%)

144 (96%)

44 (29%)

39.79

45.41

459
(31.8%) 260 ^ 260

1 SpC

(32)

2 s i 00

s15
Area 1459'(121%)*

140 (32%)

140 (93%)

40 (50%) 80.95

154
(10.7%) 5 4 - » 2 8 1 SpC

(32)

3 s i 00

s30

s30

s30

Area

1198 (99%)

152 (35%)

468 ' (108%)*

204 (47%)

144 (96%)

48 (60%)

38 (48%)

38 (48%)

40.54

79.48

56.10

577
(39.9%) 260 -> 260

1 SpC

(32)

1 s150 Delay 1476 (85%) 102(68%) 39.43 _ _

2 s i 00

s50
Delay 1181 (98%)

759 (98%)

144 (96%)

44 (29%)

40.00

44.60

464
(31.4%)

260 -y 260 1 SpC

(32)

2 s i 00

s30
Delay 1060 (88%)

607 ' (140%) '

140 (93%)

40 (50%)

40.46 191
(12.9%) 246 -> 232 1 SpC

(32)

3 s i 00

s30

s30

Delay
1130 (94%)

271 (62%)

430 (99%)

142 (95%)

44 (55%)

38 (48%)

40.02

55.54

45.17

355
(24.1%)

260 -> 246

1 SpC

(32)

Table 6-6 Synthesis results of the 256-bit AES core

6.2.6 Discussion of results

The area overheads of the multi-FPGA implementations (MFIs) of the VHDL examples

are due to various factors. The first and also the main factor that contributes most to the

area overheads is the generation and inclusion of communication cells and arbiters, which

are the building blocks of the communication subsystem. The other reason is the

duplication of registers (or creation of latches) for the I/O parameters of external (cross

boundary) subprogram modules (Section 5.5.1).

T.B. Yee, 2007 Chapter 6: Mul t i -FPGA implementat ion resu l t s 174

Figure 6-7 shows the area and I/O utilisation of the devices in different multi-board

configurations for all 5 design examples listed in Table 6-2 to Table 6-6. All twenty-five

configurations satisfy the target device constraints (in terms of device area in slices and

I/O pins available) for all partitions in the MFI and the partitions are successfully mapped

to their target devices.

100

80

§ 60
%
(f l

3
o

40

20

Area and I/O utilisation of devices

20 40 60 80

A r e a u t i l i s a t i o n (%)

f (97,93)

? (99,82)

• Target device in
each configuration

100

Figure 6-7 Area and I/O utilisation of devices in example designs

Each plotted value in Figure 6-7 gives the maximum area and I/O utilisation (area, I/O)

amongst the devices in each of the configuration. Value p gives the maximum area and I/O

utilisation of the 3-board MFI of the quadratic equation solver with high priority in area

optimisation in Table 6-2 consisting of one vl50 and two v50 devices, where the vl50

gives the highest I/O utilisation at 93% and the first v50 device gives the highest device

area utilisation at 97%. Value q gives the maximum area and I/O utilisation of the 3-board

MFI of the delay-optimised IDCT example in Table 6-5 consisting of three s50 devices,

where the first s50 device gives the highest device I/O utilisation at 82% and the other two

s50 devices give the highest device area utilisation at 99%. The two-phase partitioning

algorithm produces a high area and I/O utilisation of the FPGA devices in all

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resu l t s 175

configurations of the five design examples, achieving over 9 0 % in both area and I/O

utilisations in at least one device in most cases.

1 Clock cycles Freq (MHz) Design latency (ps)

Example

g.

1
8
1

c

T3
0
C

o

&

c
3

c
o

'•M

t
nj a.

c
o

t;
&

c
3

c
o

t ;
ro
o.

T3
(U
c
o

'€
(0
a
c
3

"O
0)
c
o
+3

s.

Quad eqs 4 179 224 28.27 28.66 6.33 7.82

Cubic eqs 36 755 1770 25.44 26 .13 29.68 67.74

IDCT 192 831 4175 30.34 34.72 27.39 120.25

Triple-DES 200 524 3950 55.73 63 .23 9.40 62.47

AES-256 246 814 5257 36.85 42.30 22.09 124.28

Table 6-7 Performance of example designs

The performances of example designs and the overheads (in terms of clock cycles) in

multi-FPGA implementations are given in Table 6-7 above. The number of clock cycles

given in the table gives the total number of clock cycles it takes to complete the

application (e.g. the number of clock cycles for the equation solvers is calculated from the

first clock cycle when the input data is received to the last clock cycle when the last output

data is obtained). The increase in design latencies are mainly due to the setting up of the

shared tri-state subprogram communication channels and synchronisation of the data

packets during the inter-clock domain asynchronous data transfers. The tri-state data bus

and data handshake signals allow I/O resource sharing between modules in different target

devices. A point-to-point (FTP) unidirectional communication channel implementation

requires a simpler circuitry, with possibly smaller overheads to send and receive inter-

device data. Experiments in the next section look at the effects of point-to-point explicit

communication channels together with subprogram communication channels in optimised

multi-FPGA configurations.

T.B. Yee , 2 0 0 7 Chapter 6: Multi-FPGA implementation results 176

6.3 Experimental results (with explicit

communication channels)

This section contains experiments of three VHDL examples used in the previous section.

The quadratic equation solver (Quad eqs), inverse discrete cosine transform (IDCT)

module and 256-bit Advanced Encryption Standard (AES256) core are modified slightly

to include explicit communication channels (Section 4.2.2.1). Explicit communication

channels are used to synchronise and transfer global VHDL signal data between VHDL

processes. The three VHDL examples are re-written and pipelined to include explicit

communication channels. The behavioural VHDL designs of all three pipelined examples

and the Post-MOODS synthesis simulation results of the multi-FPGA implementations

can be found in Appendix D.2.

6.3.1 Pipelined quadratic equation solver

The pipelined quadratic equation solver is a two-stage pipelined version of the quadratic

equation solver given in Section 6.2.1. The behavioural VHDL of the pipelined quadratic

equation solver can be found in Appendix D.2.1. Figure 6-8 shows the module call graph

representation of the pipelined quadratic equation solver, with two process modules and

five subprogram modules in the design.

pM
p_M0D_1

mu ti

pM \
p_IVI0D_2.'

3 , 2

sM
sdivi

3 , 2

sM
udivi

Figure 6-8 Module call graph of the pipelined quadratic equation solver

T.B. Yee, 2007 Chapter 6: Mul t i -FPGA implementation r e s u l t s 177

Process modules p__MOD_l and p_M0D_2 are connected by an explicit communication

channel (ExC) with a data width of 96-bits. The multi-FPGA pipelined quadratic equation

solver implementation not only resulted in a lower area overhead for area and delay

optimised implementations (7.4% and 8.9% respectively) compared to the results without

explicit communication channels (8.2% and 9.7% respectively) given in Table 6-2, the

number of inter-device data packet transfers is reduced to just the data sent across the

pipelined stage through the explicit communication channel.

Boards FPGA
Synthesis results Two-phase part i t ioning results

Boards FPGA Opt.
priority

Area in
slices I/O

Freq.
(MHz)

AO in
slices

Data pkts
(initial final)

Channels
(Data widths)

1 V200 Area 2294 (97%) 194 (78%) 28.27 _

2 v150

v150

Area
1726 (99%)

738 (42%)

196 (78%)

196 (78%)

32.33

34.03

170
(7.4%) 3 4 - > 1

1 ExC

(96)

2 v150

vlOO

Area 1726 (99%)

738 (61%)

196 (78%)

196* (123%)'

32.33 170
(7.4%) 34 1

1 ExC

(96)

1 v200 Delay 2264 (96%) 194 (78%) 28.43 _

2 v150

v150
Delay 1726 (99%)

739 (42%)

196 (78%)

196 (78%)

29.07

34.21

201
(8.9%)

3 4 - > 1 1 ExC

(96)

2 v150

v100
Delay 1726 (99%)

738 (61%)

196 (78%)

196* (123%)'

29.07 200
(8.8%) 34 1 1 ExC

(96)

Table 6-8 Synthesis results of the pipelined quadratic equation solver

The six 32-bit input and output signals in the VHDL entity port list declaration of the

pipelined quadratic equation solver are grouped and mapped to process modules that

access these signal, distributing the utilisation of 1/0 resources over two or more devices.

This alleviates the problem of a single device in the multi-FPGA implementation

exceeding the maximimi number of usable I/Os whilst the I/O resources of other devices

are under-utilised. Without this capability to distribute the signals in the VHDL entity port

list declaration, a larger target device such as a Xilinx XCV300 with 300 usable I/O pins

(see Table 6-1) has to be one of the targeted devices since a minimum I/O utilisation of

292 I/O pins (i.e. 194 pins for the signals VHDL entity port list declaration and 98 pins for

the explicit commimication channel with two semaphore signals and 96-bit data width) is

needed.

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resul ts 178

discrete cosine transform (IDCT) core given in Section 6.2.3. The behavioural VHDL of

the pipelined IDCT core can be found in Appendix D.2.2. Figure 6-9 shows the four

modules in the module call graph representation of the pipelined IDCT core.

pM
p_IVI0D_1 •

1,64

/
pM

p_M0D_2

3,64 , 2,64 !

sM
| idct1_mult_

add

sM
idct2_mult_i

add

Figure 6-9 Module call graph of the pipelined inverse discrete cosine
transform example

Boards FPGA
Synthesis results Two-phase part i t ioning results

Boards FPGA Opt.
priority Area in slices I/O

Freq.
(MHz)

AO in
slices

Data pkts
(initial final)

Channels
(Data widths)

1 BlOO Area 1018(84%) 26 (17%) 28.27 — —

2 s50

s50

Area
511 (66%)

636 (82%)

29 (19%)

25 (17%)

29.22

31.67

129
(12.7%)

1 -> 1
1 ExC

(11)

2 s50

s30
Area 766 (99%)

430 (99%)

104(69%)

80 (100%)

31.15

28.72

178
(17.5%)

1 1 1 SpC

(74)

3 s30

s30

s30

Area

447" (103%)'

430 (99%)

321 (37%)

29 (19%)

57 (71%)

80 (100%)

29.64

35.11

180
(17.7%)

3 - > 3

1 ExC (11)

1 SpC (51)

1 s160 Delay 1476 (85%) 25 (10%) 28.43

2 s i 00

slOO
Delay 754 (62%)

768 (64%)

29 (19%)

25 (17%)

34.63

37.31

46
(3.1%)

1 1 1 ExC

(11)

2 s50

s50
Delay 754 (98%)

766 (99%)

29 (19%)

25 (65%)

31.82

36.87

44
(3.0%)

1 1 1 ExC

(11)

3 s50

s50

s50

Delay

754 (98%)

766 (99%)

411 (53%)

29 (19%)

97 (65%)

120 (80%)

32.97

38.93

32.78

455
(30.8%)

3 - > 3

1 E x C (l l)

1 SpC (91)

Table 6-9 Synthesis results of the pipelined inverse discrete cosine
transform example

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resul ts 1 7 9

Process modules p MOD l and p_M0D_2 are connected by an explicit communication

channel (vExC) with a data width of 11-bits. The multi-FPGA pipelined IDCT core

implementation not only resulted in a lower area overhead for area and delay optimised

implementations (12.7% and 3.0% respectively) compared to the results vyithout explicit

communication channels (27.0% and 26.6% respectively) given in Table 6-4, the number

of inter-device data packet transfers is reduced to just the data sent across the pipelined

stage through the explicit communication channel for the 2-board implementations. A

single subprogram communication channel is generated for both area and delay optimised

multi-FPGA implementations targeting three devices. The maximum I/O pin utilisation for

one device is reduced to 29 pins for all two-board pipelined implementations with just an

explicit communication channel in Table 6-9 compared to over 100 pins in the non-

pipelined implementation (given in Table 6-4).

6.3.3 Pipelined 256-bit advanced encryption standard

The last pipelined VHDL example is a two-stage pipelined version of the 256-bit

advanced encryption standard (AES) core given in Section 6.2.5. The behavioural VHDL

of the pipelined 256-bit AES core can be found in Appendix D.2.3. Figure 6-10 shows two

process modules and five subprogram modules in the module call graph representation of

the pipelined 256-bit AES core.

1,4

' p_
pM

M0D_2 '
1,56

p M
p_MOD_3

2,7 2,14 2,7
- >

2,52

V

sM
r_one_to8

sM
fb_sub_quad1

sM
rco

s M
fb sub_quad2

sM
ftable_quad

—

Figure 6-10 Module call graph of the pipelined 256-bit advanced encryption
standard example

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resul ts 180

The two process modules (p_M0D_2 and p_M0D_3) in the pipelined 256-bit AES core

are connected through two explicit communication channels with data widths of 32-bits.

The number of inter-device data packet transfers is reduced to just the data sent across the

pipelined stage through the two explicit communication channels. The two-board

pipelined implementations given in Table 6-10 have an area overhead reduction of 10.0%

for an area optimised implementation and 15.0% for a delay optimised implementation

compared to the non-pipelined implementations given in Table 6-6.

Boards FPGA
Synthesis results Two-phase part i t ioning results

Boards FPGA Opt.
priority Area in slices I/O

Freq.
(MHz)

A O in
sl ices

Data pkts
(initial -> final)

Channels
(Data widths)

1 s150 Area 1445 (83%) 102 (68%) 36.85 —

2 S100

s50

Area
994 (82%)

766 (99%)

104(69%)

136 (91%)

43.78

34.76

315
(21.8%)

1 1
2 E y C

(32,32)

3 s i 00

S30

s30

s30

Area

1283 ' (106%) '

625 ' (144%) '

203 (46%)

166(38%)

146 (97%)

40 (27%)

38 (48%)

52 (65%)

56.75

80.30

577
(57.6%)

168-> 84

1 SpC

(32)

1 s150 Delay 1476 (85%) 102 (68%) 39.43 _ —•

2 s100

s50
Delay 955 (79%)

763 (99%)

104(69%)

136 (91%)

41.99

34.47

242
(16.4%)

1 1 2 ExC

(32,32)

3 siOO

s30

s30

S30

Delay

1198 (99%)

74(17%)

581 ' (134%) '

234 (54%)

144 (96%)

38 (48%)

40 (27%)

50 (63%)

34.63

70.46

57.05

611
(41.4%)

1 6 8 - > 7 7

1 SpC

(32)

Table 6-10 Synthesis results of the pipelined 256-bit AES core

6.3.4 Discussion of results

The performances of the pipelined example designs and the overheads (in terms of clock

cycles) in multi-FPGA implementations (MFls) are given in Table 6-11. The number of

clock cycles given in the table gives the total number of clock cycles it takes to complete

the application (i.e. the number of clock cycles is calculated from the first clock cycle

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resu l t s 181

when the input data is received to the last clock cycle when the last output data is

obtained). Design latency is calculated by multiplying the number of clock cycles by the

clock period (1/Freq) of the design. Performance results of pipelined example designs are

shaded in the table and results of the un-partitioned and non-pipelined taken &om Table

6-7 are shown for completeness and ease of comparison.

When pipeline stages are targeted onto a separate device, inter-device data packets are sent

via the explicit communication channels (ExCs) coimecting the pipelined stages in the

pipelined MFI. The is a dedicated point-to-point communication channel that does

not require channel resource arbitration and special communication cells (Section 5.4) to

handle inter-device data packet transfers unlike the 5]pC. Inter-device data sent through the

Ex:C also removes the need for (Section 5.5.1), hence reducing the

area overheads. The inter-device data packets are reduced by at least a factor of three

compared to the non-pipelined MFI. As a result, the pipelined IDCT and AES-256 MFls

only suffer a fraction of the design latency overhead compared to the non-pipelined MFIs.

Example

Inter-device
data

packets Clock cycles Freq (MHz) Design latency (ps)

Example

It "D .—,
OJ T3

l i
Tl
0)
c
o

t:
(0
CL
§

"D
O

II
? c

zi
1!
II

1 4-»
'€
(0
Q.

§

"O ~

g s.
f l

"S ?

fa
E c
o
r
c
3

"O

- 0 : #
0) o

i f
73 .—,
0) - o

II
Quad_eqs 4 1 179 224 189 28.27 28.66 31.64 6.33 7.82 5.97

IDCT 192 64 831 4175 1167 30.34 34.72 34.35 27.39 120.25 34.98

AES-256 246 60 814 5257 1137 36.85 42.30 38.23 22.09 124.28 29.74

Table 6-11 Performance of the pipelined example designs

Another advantage is the higher average achievable frequencies of the pipelined

implementations of all three example designs compared to the un-partitioned

implementations. In the case of the pipelined quadratic equation solver implementation,

there is only a single inter-device data packet transfer in the pipelined MFI and it only

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resu l t s 182

takes 10 clock cycles more than the un-partitioned implementation. With the higher

achievable frequency, the pipelined quadratic equation solver has a lower design latency

compared to both the im-partitioned and non-pipelined implementations.

The experiments in this section show that pipelined multi-FPGA systems can achieve

peifoimances comparable to single-device implementations. The user now has the choice

of taigeting a large behavioural design onto multiple smaller devices without having the

need to get a larger and more costly target FPGA device if the design requirements are met

with a multi-FPGA system. The user would be able to use existing FPGA devices or a

number of FPGA development boards configured into a multi-FPGA system for design

prototyping. This saving in design cost and flexibility in using existing development

boards with a collection of smaller devices would not be possible otherwise if a single

large behavioural design is not partitioned.

The asynchronous communication channels provide safe communication of inter-device

data in the multi-FPGA system. The subprogram communication channel (5]5C) allows

multiple external subprogram modules to share a common channel, hence reducing the

number of I/Os needed for inter-device data transfers in the I /O constraint multi-FPGA

system. The explicit communication channel (ExC) itself is responsible for the

synchronisation of VHDL processes (process modules) connected to it and the transfer of

data between the process modules. Therefore, the user can concentrate on the behaviour of

the design and not the complexities of how the target devices can safely communicate.

All experiments were run on a Intel Pentium M 1.5 GHz machine with 512 MB RAM. The

multi-FPGA synthesis run times remain similar to the run times of single-device

implementations using an original version of MOODS without the multi-FPGA synthesis

enhancements as final partition solutions for all the VHDL examples are found within 3

passes of the modified K-way partitioning algorithm (Section 4.4.1). Run times are

approximates due to the nature of Microsoft windows environment which the synthesis

tool is running in (e.g. synthesis run times for the pipelmed multi-FPGA 256-bit AES core

example is 2 minutes and the single-device implementation is 1 minute and 56 seconds).

T.B. Yee, 2007 Chapter 6: Multi-FPGA implementation resul ts 1 g :

6.4 Summary

The applicability of the two-phase partitioning algorithm and multi-FPGA synthesis and

results of the multi-FPGA synthesis are demonstrated through a few design examples in

this chapter. Results of non-pipelined and pipelined multi-FPGA implementations are

given in Sections 6.2 and 6.3 respectively. The pipelined multi-FPGA systems with

explicit communication channels have reductions in area overheads (by up to 23% in the

case of the pipelined IDCT example) and design latencies (up to 4 times faster) over non-

pipelined multi-FPGA implementations. Results presented in Section 6.3 show that

pipelined multi-FPGA systems can be synthesised to achieve performances comparable to

single-device implementations.

Partitioning of a large behavioural design with incomplete knowledge of the targeted

technology, and the final hardware implementation of a component poses a difficult

design decision. As the complexity and size of the entire system increases, this difficult

decision and design optimisation problem gets harder, to the point when it gets beyond the

capabilities of human designers to solve. High-level synthesis of a large behavioural

design into a multi-FPGA system reduces the design time and effort required by the user.

This chapter has demonstrated the automated process of multi-FPGA synthesis in

MOODS to produce multi-FPGA systems with asynchronous communication channels

(described in Chapters 4 and 5). All the multi-FPGA implementations given in this chapter

have been synthesised, simulated, and proven correct, with comparisons to single-device

implementations using an original version of MOODS without the multi-FPGA synthesis

enhancements.

A further analysis of the performance of a multi-FPGA system is demonstrated through a

hardware demonstrator of a large behavioural design in Chapter 7.

T.B. Yee, 2007 Chapter 7: Practical synthesis j g 4

Chapter 7

Practical synthesis

7.1 Introduction

This chapter describes in detail the hardware demonstrator, a JPEG decoder synthesised

using MOODS with the multi-FPGA synthesis enhancement. The goal of the hardware

demonstrator is to assess the performance of a multi-FPGA J P E G decoder, as opposed to a

JPEG decoder in a single chip implementation. Section 7.2 provides information on the

hardware development boards used to implement the multi-FPGA system. Section 7.3

gives an introduction on the JPEG algorithm, and outlines the multi-FPGA

implementation of the JPEG decoder. The implementation details of the partitioned

hardware JPEG decoder targeting a multi-FPGA system are covered in the last section

(Section 7.4). Section 7.4 discusses the performance of the non-pipelined multi-FPGA

JPEG decoder, with a further analysis on the implementation results. It also covers a

pipelined implementation of the multi-FPGA JPEG decoder using explicit communication

channels.

7.2 FPGA-based development board

The multi-FPGA system created to demonstrate the multi-FPGA partitioning enhancement

of MOODS is realised with the use of a number of FPGA-based development boards. This

section starts with a brief insight on the development boards used to form the multi-FPGA

system and the Input/Output VGA extension board built for this hardware demonstrator.

T.B. Yee , 2 0 0 7 Chapter 7: Practical synthesis 185

7.2.1 Hardware development board

The JPEG decoder synthesised using the MOODS synthesis system into a multi-FPGA

system is targeted onto the Digilent D2-SB FPGA-based development boards [147]. The

development board provides a complete and expandable development platform for

hardware prototyping purposes. The D2-SB features a Xilinx Spartan 2E-200 FPGA in a

PQ208 package that has gate capacity of 200,000 and over 200 MHz operation. The D2-

SB provides a total of 143 user I/Os routed to six standard 40-pin connectors, and it

contains a surface-mount 50MHz oscillator, and a socket for a second oscillator. The D2-

SB has a JTAG port (see Appendix B.6) and it is used to program the Spartan 2E FPGA

and the 18V02 configuration flash ROM, and any programmable devices on peripheral

boards attached to the D2-SB development board.

LED LD1

Pushbutton
BTN1

Socket for 18V02
config. ROM

JTAG connector

Clock module
(50MHz)

Socket for 2nd
clock module

Power supply
connector

Power LED

40-pln expansion 40-pin expansion
port A1 ROM bypass port .42

jumpers

' •

40-pin expansion
port C2

40-pin expansion
port C1

40-pin expansion
port B1

Xilinx Spartan 2E
(XC2S200E-200)

Programming mode
select jumpers

40-pin expansion
port 8 2

Figure 7-1 D2-SB development board layout picture

Figure 7-1 shows a picture of the physical board, with various devices and interfaces

highlighted. Detailed description of the D2-SB development board can be found in

Appendix B.6.

T.B. Yee , 2 0 0 7 Chapter 7: Practical synthesis 186

The Digilent DI04 peripheral board [148] provides a fast and easy way to add several

useful I/O devices to the D2-SB development board. The DI04 provides a 4-digit seven-

segment LED display, 8 individual LEDs, 5 pushbuttons with debouncing circuitry, 8 slide

switches, a 3-bit VGA port, and a PS2 port. The D104 draws power from the main system

board (i.e. the D2-SB development board), and signals from the various I/O devices are

routed to individual pins on the system board connectors. A picture of the physical board

layout of the DI04 peripheral board is given in Figure 7-2, with various devices and

interfaces highlighted. Detailed description of the DI04 peripheral board can be found in

Appendix B.7.

40-pin connectors
P1

40-pin connectors
P2 Four 7-segment

LED display
Eight LEDs
LD1 to LD8

VGA port

i
5 pushbuttons
BTN1 to BTN5

8 slide switches
SW1 to

PS2 port

Figure 7-2 DI04 digital I/O board layout picture

7.2.2 Input/Output and VGA extension board

An Input/Output and VGA extension board (I/O VGA ext. board) was built to facilitate

both the input and output stages in the hardware demonstrator. The key components on the

extension board include a serial (RS-232) port interface, a 4Mbyte Asynchronous SRAM

(256K X 16 CMOS 15 ns) OIL module and a video Digital-to-Analogue Converter

(videoDAC). The extension board was designed to be a general plug-in daughter board,

which can be used with any other hardware development board to provide a serial port

communication interface, four megabyte of fast (15 ns access time), asynchronous SRAM

T.B. Yee , 2 0 0 7 Chapter 7: Practical synthesis 187

memory, and a triple 8-bit videoDAC (BT121) to drive a VGA monitor. Figure 7-3 shows

the key components and their corresponding locations on the top side of the I/O VGA ext.

board.

Triple 8-bit
VideoDAC

(BT121)
Power
LED

2-pin 10-pin Power supply
header (J5) header (J1) connector

16-pin Buffer
header (J4) (74HCT04)

Oscillator
.. socket

RS-232
driver

5V voltage
regulator

Buffer
(74HCT244)

32-pin 4MB SRAM
header (J2) module

40-pin
header (J3)

Figure 7-3 Key components and their locations on the I/O and VGA
extension board

7.2.2.1 RS-232 serial port interface

The I/O VGA ext. board has a RS-232 serial port [149] interface that allows the extension

board to connect a PC's serial port. The Maxim MAX232EPE RS-232 voltage converter

takes serial data as TTL/CMOS levels from a connected development board via pin 29 of

the 32-pin and coverts the logic level to the appropriate RS-232 voltage level and this is

sent to a connected device via pin 2 of the 10-pin header (Jl) located next to the Maxim

device. Likewise, the Maxim device converts the RS-232 serial input data to TTL/CMOS

levels and sends this to the development board via pin 30 of the 32-pin header (J2). A DB9

serial port connector can be connected to the 10-pin header next to the Maxim device and

a standard-through or null-modem serial cable can be used to connect the 1/0 VGA ext.

board to the PC's serial port. Two 100-ohm series resistors between the Maxim output

T.B. Yee, 2007 Chapter 7: Practical synthesis

pins (pins 9 and 12) and pins 28 and 30 of header J3 protects against accidental logic

conflicts. Note that the Xilinx Spartan 2E-200 FPGA on the Digilent D2-SB development

boards are not 5 volts tolerant, the series resistors are necessary in this case. Control

signals, 7b (RTS) and C/gar 7b (CTS) are connected to header J2 to

facilitate hardware handshaking during a serial data transfer.

Figure 7-4 shows the connections between the 10-pin header (J l) , Maxim MAX232EPE

RS-232 converter, and the 32-pin header (J3), which is used to connect to a development

board.

DBS serial port connector 9-pin serial port s i g n a l s

1) Data carrier detect

2) Receive Data (RD)

3) Transmit Data (TD)

4) Data terminal ready (DTR)

5) Signal ground

6) Data set ready

7) Request to send (RTS)

8) Clear to send (CTS)

9) Ring indicator

Header J1

10

9

J 7

4 6

5

4 >

3 -

2 '

1 -

Gnd

Max im IVIAX232EPE

1 4 1 1

1 3 1 2

7 1 0

8 9

X Header pin number

Header J2

Figure 7-4 9-pin RS-232 serial port interface

7.2.2.2 Fast, Asynchronous SRAM module

The I/O VGA ext. board includes a four-megabyte Static Random Access Memory

(SRAM) module (AS7C34098) designed for memory applications where fast data access,

low power, and simple interfacing are desired. The surface-mount memory device in a 44-

pin JEDEC 400-mil TS0P2 standard package sits on a TSOP-DIL adapter. The inputs and

outputs are TTL- and CMOS-compatible with a high speed address access time of 15 ns

and output enable access time of 7 ns. The memory is organised as 262,144 words X 16

T.B. Yee, 2007 Chapter 7: Practical synthesis 189

bits. The SRAM module has separate byte enable controls, allowing individual bytes to be

written and read. Control signal controls the lower bits, j / O ; to and ^ controls

the upper bits, I/09 to I/016. Table 7-1 shows the 18-bit SRAM address, data and control

signal connections between the SRAM and header J3.

Address
bit

Header J3
pin number Signal Header J3 pin

number
A1 1 1/01 19
A2 2 1/02 20
A3 3 1/03 21
A4 4 1/04 22
A5 5 1/05 2 3
A6 6 1/06 24
A7 7 1/07 25
A8 8 1/08 26
A9 9 1/09 2 7

A10 10 1/010 28
A11 11 1/011 29
A12 12 1/012 30
A13 13 1/013 31
A14 14 I /014 3 2
A15 15 1/015 33
A16 16 1/016 34

A17 17 35

A18 18 36

LB 37

38

39

Table 7-1 SRAM address, data and control signal connections to header J3

7.2.2.3 VGA interface

The VGA interface on the I/O VGA ext. board has a Conexant BT121 triple 8-bit

videoDAC chip, with triple 8-bit digital to analogue converters for operations up to

80MHz and driving a monitor in 24-bit True colour (16.8 million colours) mode. Figure

7-5 shows the connections between the Conexant BT121 videoDAC chip, 74HCT244

buffer, and headers J2, J4 and J5. Components connected to the BT121 videoDAC are

omitted for clarity. Detailed connections of all the components can be found in Appendix

B.

T.B. Yee, 2007 Chapter 7: Practical synthesis 190

DB15 VGA connector

®
®

® © ®

VGA signal pin assignments

1)Red

2) Green

3) Blue

4) Monitor sense 1

5) Monitor sense 1

6) Red return

7) Green return

8) Blue return

9) No connection

10) Digital ground

11) Monitor sense 1

12) No connection

13) Horizontal Sync.

14) Vertical Sync.

15) No connection

Buffer
(74HCT244) Header J4

' ^"0 0 4 4

Horizontal sync o
Vert ical sync o

Conexant BT121

Buffer
(74HCT04)

Red (R1 - R8) I
Grayscale {GS1 - GS5)^ ^ Green {G1 - G7) Blue {B1' B8)

Grayscale bit 4 Grayscale bit 6

Header J2

Grayscale bit 2

Grayscale bit 1 Grayscale bit 3 Grayscale bit 5

C N 5 N 5)

Grayscale bit 8

Grayscale bit 7

Header pin number

jumpers

8-bit graysca le conf igurat ion headers

Figure 7-5 VGA interface connections

Red, Green, and Blue (RGB) input video digital data are sent to the Conexant videoDAC

via a number of pins on header J2: pin 3 to 10 for the read (R) component, pins II to 18

for the green (G) component, and pins 19 to 26 for the blue (B) component. The pixel

clock defines the time available to display one pixel of information. This pixel clock input

is taken from pin 32 of header J2, or from an onboard oscillator if the two pins on header

J5 are shorted with a jumper. The clock input to the videoDAC is a buffered (through

74HCT04) pixel clock signal. The vertical sync (VS) signal defines the "refresh"

frequency of the display and this is taken from pin 2 of header J2. The number of lines to

be displayed at a given refresh frequency defines the horizontal "retrace" frequency, and

T.B. Yee, 2007 Chapter 7: Practical synthesis 191

this horizontal sync (HS) signal is taken from pin 1 of header J2. VS and HS signals are

connected to the blcink and sync inputs of the videoDAC respectively. Both sync signals

are buffered (through 74HCT244) and connected to header J4. The analogue RGB video

signal outputs &om the videoDAC are also connected to header J4.

The VGA timing for a standard 640x480 display mode using a 25 MHz pixel clock and 60

+/- 1 Hz refresh is given in Figure 7-6.

Symbol Parameter Vertical sync Horizontal sync Symbol Parameter
Time Clocks L ines Time Clocks

Ts Sync pulse time 16.7 ms 416800 5 2 1 32 us 800

Tdisp Display time 15.36 ms 384000 4 8 0 25.6 us 640

Tpw VS pulse time 64 us 1600 2 3.84 us 96

Tfp VS front porch 320 us 8000 10 640 ns 16

Ttp VS back porch 928 us 23200 2 9 1.92 us 48

T o

7 ,
disp

T. fp

T T,
pw

bp

Figure 7-6 VGA timing for a standard 640x486 display ^

The 8-bit configuration headers provides flexible jumper setting so that removal jumpers

can be inserted to configure the VGA interface for 8-bit grayscale operation. An 8-bit

grayscale output can be obtained by sending the same 8-bit grayscale digital video data to

all three components (RGB). The configuration headers are arranged in three headers per

set, with a total of eight sets to correspond to the 24-bits RGB signals. Each set of the 3-

pin headers corresponds to a bit of the grayscale value and they connect each bit of the

individual colour component when the jumpers are inserted. For example, the set of

headers for grayscale bit l(GSl) are connected to bit 1 of red component {Rl, pin 3 of

header J2), bit 1 of green component (G7, pin 11 of header J2), and bit 1 of the blue

component (^7, pin 19 of header J2). The 8-bit grayscale (G5'7 to digital input data

is taken from pins 3 to 10 of header J2 and the jumpers in the configuration headers send

the 8-bit grayscale values to all three components (R, G, and B).

T.B. Yee, 2007 Chapter 7: Practical synthesis | g 2

The 8-bit configuration headers offers a two-fold advantage, first, the hardware

demonstrator in this projects uses the 8-bit grayscale configuration, however the use of the

configuration headers instead of a fixed wiring approach al lows the 24-bit true colour

VGA interface to be easily used in future projects and hardware demonstrators simply by

removing the removal jumpers. The second advantage is the development board now only

needs to send an 8-bit grayscale digital data to the I/O and V G A ext. board and the 8-bit

value is wired to all three components through the configuration headers, thus reducing the

physical I/O connections needed for an 8-bit grayscale operation.

7.3 JPEG decoder in a multi-FPGA system

JPEG (Joint Photographic Experts Group) is one of the most popular algorithms for still

image compression. The formal name of the standard that most people refer to as 'JPEG'

is the ISO/IEC 10918-1 | ITU-T Recommendation T.81 [150]. The basic JPEG standard

defines many options and alternatives for compression of still images of photographic

quality. There are four distinct modes of operation defined under which the various coding

and decoding processes are defined: sequential Discrete Cosine Transform-based (or

jegugMrza/ and

hierarchical. This section covers the information on the implementation of a hardware

JPEG decoder to decompress and reconstruct a grayscale image data compressed using the

JPEG sequential DCT- based compression. Further details on the JPEG algorithm using

the other coding methods and decoding JPEG images can be found in [143, 150-152].

JPEG is a compression algorithm and does not define a specific file format for storing the

final data values. The JPEG File Interchange Format (JFIF) [153] is a minimal file format

which enables JPEG bitstreams to be exchanged between a wide variety of platforms and

applications. JFIF is currently the industry standard file format for JPEG files.

7.3.1 Sequential baseline JPEG decoder

The main procedures in the encoding and decoding processes based on DCT are illustrated

in Figure 7-7. The rest of this section only describes the decoding of a grayscale JPEG

compressed image in the JFIF file, however, the encoding process is basically the same as

T.B. Yee, 2007 Chapter 7: Practical synthesis 193

performing the decoding steps but in reverse, and in the opposite order as shown in Figure

7-7.

Source image

knagedata

FDCT QuanUser Enk^py
encoder

specMicaUons
Tab^

specifications

D C T - b a s e d J P E G e n c o d e r

t
Table

specifications
Tab^

speciHcaUons

DCT-based JPEG decoder

Compressed
image data

1 , Enti^ipy
DequanUser decoder DequanUser I D C T

Compressed A

Reconstructed
Image data

Figure 7-7 Block diagram of a DCt-based JPEG encoder and decoder

Entropy Decoder

The JPEG entropy decoder implemented in this hardware demonstrator is based on the

programmable VLC decoder for JPEG described in [143, 154]. The entropy decoder

consists of two main data decompression units: a variable length decoder (VLD) and a

run-length decoder (RLD). In the JPEG encoder, the quantised DCT coefGcients are pre-

processed prior to entropy coding. The DC coefficient has a correlation among adjacent

blocks and its value varies slightly between successive blocks. DC coefficients are coded

using differential coding. DC, and DC,_/ in denote the DC coefficients of blocks z and M

as shown below in Figure 7-8.

T . B . Y e e , 2 0 0 7 C h a p t e r 7: P r a c t i c a l syn thes i s 194

8 x 8 b l o c k s »-
• ;

DC

P C ^ DC.

Block, Block.

DIFF = DC, - DC,.,

D i f f e r e n t i a l DC
e n c o d i n g

Z i g - z a g o r d e r i n g o f A C
c o e f f i c i e n t s

Figure 7-8 Zig-zag arrangement of the DC and AC coefficients

The coefficients are rearranged into a one-dimensional array using a zigzag pattern as

illustrated in Figure 7-8, placing the low frequency AC coefficients at the start of the

linear sequence and the high frequency coefficients at the end. This groups the zeros

resulting from the high frequency AC coefficients together, increasing the consecutive

runs of zeros for run-length coding. A run-length coder compresses the quantised DCT

coefficients by representing consecutive zeros with a run-length value. Each AC

coefficient is represented by two symbols, where symbol! is a combination of {run-length,

size} values and symbol!, which is the quantised frequency value {amplitude}, is encoded

with a variable-length integer (VLI). The size value is the number of bits needed to

represent the second symbol. DC coefficients are also represented by two symbols, but

symboll has only the size value. The first symbol, with the {run-length, size} information

is next encoded using a specified Huffman table.

The VLC decoding process begins with the retrieval of Huffman table values in the JFIF

file and the entropy decoder decompresses and decodes the Huffman-coded data in the

compressed image. The four least significant bits of the decoded symboll specify the

number bits used to encode A one in the most significant bit (MSB) of

denotes positive amplitude and the value of the extracted codeword represents the actual

amplitude of the coefficient. A zero in the MSB denotes negative amplitude and the

amplitude of the DCT coefficient is given by a one's complement of the extracted

T.B. Yee, 2007 Chapter 7: Practical synthesis 195

codeword. The entropy decoder decodes the differential coded DC values by simply doing

the opposite process, DC coefficients for each block are computed by adding the first

coefficient value with the preceding DC coefficient. The entropy decoder is described in

behavioural VHDL and synthesised using the MOODS synthesis system. An example of

entropy decoding is given below in Figure 7-9, the image data is decoded using the

standard Huffman tables for luminance components defined in [150].

DCj_^ = 4 9 D C , = - 7 5 + 4 9 = - 3 0
I >

DCi symboH: { 7 }

D C , symbol2: { - 7 5 }

AC„2 symboll: { 0 , 2 }

AC^, symbol!: { 3 }

1 0 1 0

E n d - o f - B l o c k

s y m b o l f o r B l o c k , . ,

1 1 1 1 0 0 1 1 0 1 0 0

symboH: {0,1}

0 0 1 0 1 1 1 1 0 0 0 1 1

/»C„ symboll: {0,2}

symbol!: {1} ACgj symbol2: { - 4 }

B l o c k j . , Block,

Figure 7-9 Example of entropy decoding

Dequantiser

The 8x8 blocks are dequanfised by multiplying each DCT coefficient value in the blocks

with the corresponding value in the 8x8 quantisation matrix specified in the JFIF file. The

constant values specified in the quantisation matrix may be arbitrary, but generally these

values are usually calculated based on the quality versus size factor. During the

quantisation process in the JPEG encoding process, high constant values introduce more

errors in the rounding up or down of the values obtained from the division of the DCT

coefficients and the quantisation matrix. However, having high constant values also result

in more high frequency DCT coefficients with small data values to become zero. Our

human eyes are not sensitive to high frequency data information, thus the image will look

very close to the original. The zig-zag arrangement described in the previous section tends

to group the zeros together to form long run of zeros, thus allowing the entropy cncodcr to

T.B. Yee, 2007 Chapter 7: Practical synthesis j g g

further compress the data. A constant value of 1 will result in nearly lossless compression

(loss will be due to the round-off errors), whereas a constant value of 255 is the maximum

amount of loss for that coefficient. Since arbitrary constant values could be used during

the quantisation process, the entire quantisation matrix is stored in the JFIF file so that the

dequantiser will know the constant value to multiply each D C T coefficient by to obtain a

dequantised 8x8 block. The final step is the decoding of the zig-zag ordered values to

reconstruct the 6equency domain 8x8 blocks that were originally obtained after the DCT

process in the encoding process.

Inverse Discrete Cosine Transform

The two-dimensional (2-D) inverse discrete cosine transform is performed on the 8x8

blocks to convert data from the frequency domain to the spatial domain. In the JPEG

encoding process, the 2-D Discrete Cosine Transform (DCT) [155] was performed prior to

the quantisation phase to group high frequency information, which is not as sensitive to

the human eye as the lower frequency information when they are minimised (or even

removed). The coefficients of the resultant frequency domain matrix, or DCT matrix,

contain integers in the range o f -1024 to 1023. The upper left entry in the resultant DCT

matrix, is the DC coefficient, which is the average of the entire block and the lowest

frequency cosine coefficient. The higher frequency remaining 63 coefficients or the AC

coefficients occur at the lower right of the matrix. The high frequency AC coefficient

values are often significantly smaller than the lower frequency coefficients, small enough

to be neglected with little visible distortion to the image. The JPEG compression takes

advantage of this and typically, the entire lower right half of the matrix comprises only

zeros after the quantisation phase.

The 2-D IDCT module implemented in this hardware demonstrator is based on the vector

processing technique, which is widely used in hardware implementation of image

processing and video coders and decoders because of the regular structure, simple control

logic and a good balance between complexity of implementation and performance. The 2-

D IDCT module is described in behavioural VHDL and synthesised using the MOODS

synthesis system. The 2-D IDCT architecture is adapted from [142] and it is illustrated in

Figure 7-10.

T.B. Yee, 2007 Chapter 7: Practical synthesis 197

1-D IDCT RAM d o u b l e
1-D IDCT 1-D IDCT

b u ff e r 1-D IDCT

Figure 7-10 2-D IDCT architecture

The architecture is made up of a one-dimensional 8-point IDCT tbllowed by an internal

double buffer memory, followed by another one-dimensional 8-point IDCT. The algorithm

used for the calculation of the 2-D IDCT is based on the equation (7.1).

^ . = 1 I cos
;M=:0 M=0

(2m +1)/) 1
— •cos

2M

r(2M + l)g
(7 1)

Equation (7.1) can be separated into the row part and column part as shown in equations

(7.2) and (7.3). The 2-D IDCT is computed by first applying 1 -D IDCT on the rows and

then on the columns.

C = K • cos
(2 • col number + l) * row number • n

2 . M

(7.2)

where K = — for row = 0, K = for row ^ 0
N N

C ' = K • cos
(2 • row number + 1) • col number

2 . N
71

(7 3)

Vf /2
where K = — for col = 0, K = for col ^ 0

M M

During the JPEG encoding process, the image samples are level-shifted to a signed

representation by subtracting 2^'^, where P is the precision parameter of the image

specified in the JFIF. For a grayscale image with 8 bits precision, the 8-bit signed values

T.B. Yee, 2007 Chapter 7: Practical synthesis 198

are level-shifted back to the original sample values by adding 128 to each of the values in

the 8x8 block resulting from the IDCT transform. Figure 7-11 shows an example of an 8x8

dequantised block input to the IDCT module and the corresponding 8x8 values obtained

during the IDCT process.

Dequantised 8x8 block 8x8 block after transposition

•416 -33 •60 32 48 0 0 0

12 -24 -56 0 0 0 0 0

42 13 80 -24 40 0 0 0

-56 17 44 -29 0 0 0 0

18 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-161 -33 4 -4 6 0 0 0

-193 -16 22 -2 6 0 0 0
-178 8 -1 -10 6 0 0 0

-115 28 -59 -31 6 0 0 0

-91 32 -74 -50 6 0 0 0

-129 22 -32 48 6 0 0 0

-161 3 7 -22 6 0 0 0

-155 -10 11 4 6 0 0 0

L
1-D IDCT

R A M d o u b l e

b u f f e r

8x8 block after 1-D IDCT

-161 -192 -177 -115 -90 -128 -159 -155

-33 -16 8 28 32 22 4 -10

4 22 -1 -58 -74 -31 7 12

-3 -1 -9 -30 -50 47 -21 4

6 6 6 6 6 6 6 6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

t
1 - D IDCT

I
8x8 block after 2-D IDCT

-71 -72 •67 -59 -55 -53 -35

•65 -73 -78 -77 -75 -71 -60 47

-62 -61 -58 -57 •64 -72 -70 -61

•65 -39 -9 0 -23 -54 -69 •67

•69 -30 13 21 -13 -54 •67 -59

-67 -12 -13 •44 -71 •68 •49

•59 -54 49 -52 -64 -72 •61 44

-51 -59 •64 -60 -56 -54 -50 44

8x8 block after level-shift

57 56 61 69 73 75 83 93

63 55 50 51 53 57 68 81

66 67 70 71 64 56 58 67

63 89 119 128 105 74 59 61

59 98 141 149 115 74 61 69

61 88 116 115 84 57 60 79

69 74 79 76 64 56 67 84

77 69 64 68 72 74 78 84

Figure 7-11 Example of the IDCT process

7.3.2 Partitioned JPEG decoder

The sequential DCT-based JPEG algorithm and the description of the key components are

covered in the previous section. This section describes the partitioning of a JPEG decoder,

which forms the core of the hardware demonstrator. Figure 7-12 illustrates the overview of

T.B. Yee, 2007 Chapter 7: Practical synthesis 199

the hardware demonstrator system. There are three distinct phases in the multi-FPGA

JPEG decoder: O u f p w r J P E G (fgcoffzng

A simple file I/O Graphical User Interface (GUI) [156] is used to select the JFIF file to be

decoded in the input phase. This JFIF file in the source PC is then transferred serially to

the RS-232 interface on the I/O VGA extension board using a serial (null-modem) cable.

The ow/pwr joAâ yg is the visual output of the decoded JPEG image on a VGA monitor. The

high-speed 4-megabyte SRAM on the I/O VGA extension board is used as a frame buffer

to store the decoded pixel data values in the 8x8 blocks in a raster-scan manner, suitable

for a standard 640x480 pixel VGA display.

Source PC

serial (null-modem) cable

VGA Monitor

I I

Multi-FPGA system

Interface

Monitor cable

Figure 7-12 Overview of the hardware demonstrator system

The JPEG decoding phase is the core of the hardware demonstrator and is performed by a

partitioned JPEG decoder in a multi-FPGA system, formed with a number of hardware

development boards. The hardware implementation of the JPEG decoding algorithm is

partitioned and synthesised using the K-way partitioning enhancements described in

Chapter 4. The re-configurable device on each development board in the multi-FPGA

system is viewed as a locally clocked processing unit performing part(s) of the JPEG

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 0 0

decoding algorithm, and inter-device data transfers performed using asynchronous

techniques described in Chapter 5.

7.3.3 VHDL Design

The hardware demonstrator comprises VHDL modules written in two different styles of

VHDL, behavioural VHDL and Register Transfer Level (RTL) VHDL. Modules

communicating directly with the input/outputs (i.e. the I/O and VGA extension board) of

the system are written in RTL VHDL, as strict timing requirements have to be met. For

example, the VGA driver module that has to send the pixel data every 40 ns for a pixel

clock of 25 MHz. Adapting a design with a mixture of modules coded using RTL and

behavioural VHDL and not solely using the behavioural style of VHDL is not design

limitation, however, it is more sensible and less time consuming to adopt such a design

approach.

Figure 7-13 shows the overall VHDL modules in the hardware demonstrator. The S data

interface, UART, Frame buffer controller, and VGA driver module are written in RTL

VHDL, with the rest of the modules written in behavioural VHDL and synthesised using

the MOODS synthesis system. The module communicates directly with the Maxim

MAX232EPE described in Section 7.2.2.1. The UART module, is part of the VHDL

communications library in [156]. The UART sends and receives data serially from the

Maxim device and bytes of data are passed to the S data interface VHDL module. This 5

data interface receives a byte of data from the UART and this byte of data is passed to the

Entropy decoder if it is a compressed image data to be decoded, else to the JFIF file

decoder if it is part of the header information. A detailed description on the JFIF file

layout can be found in Appendix B.l . The Block Transpose module after the JPEG

decoder core performs block transposition on the transposed 8x8 blocks of image data

from the IDCT module.

T.B. Yee, 2007 C h a p t e r 7: Pract ica l syn thes i s 201

UART

RTLVHDL
modules S data

interface

Behavioural
VHDL modules

JPEG
decoder core I JFIF file

decoder

Entropy decoder

Zig-zag decoder

Dequantiser

IDCT module

Block Transpose
module

RTLVHDL
modules

1
Frame buffer

controller

Huffman tables

Quantisation
matrix

Frame
information

VGA driver
module

Figure 7-13 VHDL modules in the liardware demonstrator system

The sequential baseline JPEG decompression algorithm decodes the compressed image in

8x8 blocks and the decompressed image is stored in the frame buffer memory. The 4MB

SRAM device on the I/O VGA ext. board is used as the frame buffer memory and Figure

7-14 illustrates how the decompressed 8x8 blocks of data are stored in the frame buffer

memory.

The frame buffer memory mapping shows how each pixel, specified as an x-y co-ordinate

relative to the top left of the VGA monitor display, maps to the memory location in the

SRAM device. For an 8-bit grayscale image of up to 512 by 480 pixels, a total of 512 x

480 X 8 bytes (1.92 MB) are required. Blocks of decompressed image data ready to be

displayed are sent to the frame buffer controller and two bytes of pixel data are stored in

T.B. Yee, 2007 Chapter 7: Practical synthesis 202

each memory location. Decoded image data is only sent to the FG/j (frzvgr when a

complete image is stored in the frame buffer. The KG/4 (/river generates the

horizontal sync and vertical sync timing signals and it coordinates with the frame buffer

controller to deliver a pixel data on each pixel clock to the I /O VGA ext. board. With the

&ame information (image height and image width), the VGA driver module sends a

'background' pixel data, filling regions larger than the image with a background colour

(black, white, or a shade of grey for an 8-bit grayscale VGA interface).

First 8x8 block of
decompressed image

X co-
ordinates

477
478
479

0 1 2 3Ayt 5 6 7 8 9 10 11 12 13 14 15

Upper byte Lower byte

2 bytes of pixel information per
memory location

510 511
addr) eddr3 addrW eddrS addrS ad±7 addr255

#dbk267 odkMW ad*260 8ddr26f addr282 addr263 addrSff
adoMM addfSfG addr767

addrTBB #ddr789 add-TTO addhZyf addr772 @ddrf023
addrf02i addrfQ27 addrf028 addrf279
adcW2a) <x*oh287 adQM282 ad(M28: addrf2M addrf535
addrf536 addi539 addrfMO addrfZM

addrfTM addrf796 8ddr2(W7
addrZMS ad(#2049 addrZOSO 8d±20Sf 8ddr2052 8ddr2303

ad(K305 8dd̂ 25a
8dd̂ M5

addrZdfG ed*307f
adî 3327
addr3583
addr3839

addrJMO 8ddr4095

V G A f rame buffer m e m o r y

8ddf122367
ad(M22368 8ddrf22G23
8(AM22624 @ddrf22625 addrf228̂

Figure 7-14 Frame buffer memory mapping of 8x8 blocks

7.4 Results and performance

The behavioural JPEG decoder core and block transpose modules are synthesised using

the MOODS synthesis system to generate a multi-FPGA system. The multi-FPGA JPEG

decoder is targeted onto three Digilent D2-SB FPGA-based development boards

T.B. Yee, 2007 Chapter 7; Practical synthesis 203

(described in Section 7.2.1) with a Xilinx Spartan 2E-200 FPGA on each board. All the

RTL VHDL modules (shown in Figure 7-13) and the JFIF file decoder module are

targeted onto a single D2-SB development board and connected to the I/O VGA ext.

board. The behavioural JPEG decoder and the block transpose module are synthesised and

partitioned using the MOODS synthesis system with the partitioning enhancement

described in Chapters 4 and 5.

The whole system is simulated at the gate level (based on the post-placed and route

simulation model produced by Xilinx ISE) prior to downloading the multi-FPGA system

onto the FPGA devices. After the verification of the multi-FPGA system, the prototyping

boards are connected up to form the multi-FPGA JPEG decoder hardware demonstrator

system. Examples of the multi-FPGA JPEG decoder in action can be found in the

photographs of Figure 7-15 and Figure 7-16, which demonstrates the complete system in

full working order.

Figure 7-15 Multi-FPGA JPEG decoder demonstrator

T.B. Yee, 2007 Chapter 7: Practical synthesis 204

. A : . ' .

•i0

i T- • "

Figure 7-16 Multi-FPGA JPEG decoder demonstrator (Top view)

Figure 7-17 illustrates the pixel values of the test image (LENA.jpg) taken from a graphics

viewer [157]. The pixel values in the four 8x8 blocks are given in hexadecimal and they

are taken from the top left comer of the test image and top-left most value Ox7C

corresponds the top-left most comer pixel value of the test image. Figure 7-18 illustrates

the values obtained from a simulation of the test image decoding using the multi-FPGA

T.B. Yee, 2007 Chapter 7: Practical synthesis 205

JPEG decoder. A maximum pixel value of FF (in hexadecimal) corresponds to the

maximum grayscale level of 255 (White), and 00 (in hexadecimal) corresponds to the

minimum grayscale level of 0 (Black). The decoded pixel values in Figure 7-18 deviate

slightly from the original values given in Figure 7-17, this slight error is due to the

imprecision in multiplication and rounding errors in the quantisation and inverse discrete

cosine transformation stages described in previous sections. Results obtained from the

simulation shows that 97% of the decoded pixel values are within ± 2 of the original pixel

grayscale levels.

7C 95 8A 70 8D 89 8F 65 42 4A 4E 48 4 B 54 50 61

7E 88 84 77 8F 8A 91 5F 38 43 47 44 4 5 4 0 56 5A

82 7A 82 84 91 87 92 58 3B 44 49 46 4 7 4F 58 58

87 75 87 91 90 80 91 56 38 45 4A 48 4 9 52 5A 5D

8A 7A 8D 93 8C 7A 8E 58 35 3F 46 45 46 4E 56 58

8B 84 8A 84 88 7B 8C 58 36 40 47 49 51 51 58 5A

89 8A 7C 6A 85 83 8D 5C 36 41 49 49 4 B 53 5A 58

88 ac 6F 56 84 8C 8E 58 2E 3A 42 42 4 4 4C 53 54

91 7A 46 52 85 95 84 59 2A 38 30 37 3A 4A 51 4D

89 57 31 61 90 8C 7D 5D 28 3F 48 46 45 4E 52 4E

60 3A 2A 66 8C 8D 85 56 29 3C 49 44 42 4A 51 51

49 35 37 60 77 94 97 4C 2E 38 3D 3A 3D 49 54 57

3C 34 3F 61 70 8C 97 55 36 38 3E 40 46 4F 53 53

43 31 37 69 7D 7F 87 66 31 38 42 49 4C 4 8 49 46

40 38 33 61 86 86 81 65 2A 35 42 46 42 41 4 8 56

33 47 38 4F 84 98 89 54 2E 38 45 42 39 3F 50 78

Figure 7-17 Original 8x8 block values from test image (LENA.jpg)

7C 94 8A 6F 8C 88 BE 65 41 49 4 0 4A 4 A 53 5C 60

7E 87 84 77 8F 89 90 5E 39 42 46 43 43 4C 55 59

82 79 81 84 92 86 92 57 39 42 47 44 45 4E 56 5A

87 74 86 90 90 7F 91 55 3A 43 49 47 48 50 58 58

8A 7A 80 92 8C 79 8E 57 34 3E 45 44 45 4 0 55 58

8A 83 8A 84 87 7A 8C 5A 34 3F 46 46 48 50 57 59

89 8A 7C 6A 84 83 8C 58 35 3F 47 48 4 A 51 58 5A

88 8C 6E 55 83 8C 80 5A 20 38 40 41 43 4A 51 53

90 79 45 50 83 94 82 58 27 36 38 34 38 49 4F 4 8

88 56 30 60 90 8C 7C 50 29 3F 4A A5 44 4 0 51 40

6C 39 29 66 8C 80 85 56 27 3C 48 44 40 48 50 4F

47 34 36 5E 76 93 97 48 2C 36 38 39 3B 47 52 55

3A 33 3E 60 6E 88 97 53 35 39 3C 3F 45 4E 53 51

42 2F 35 69 7C 7E 87 66 2F 37 41 48 48 4A 48 45

3F 37 31 61 86 86 80 64 28 34 41 44 40 3F 49 55

31 46 37 4D 82 98 88 53 20 39 44 41 37 3E 50 78

Figure 7-18 Test image (LENA.jpg) 8x8 block values decoded using the
multi-FPGA JPEG decoder

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 0 6

7.4.1 Synthesis results of non-pipelined multi-FPGA
JPEG decoder

All the RTL VHDL modules and the JFIF file decoder are targeted onto a D2-SB FPGA-

based development board with a Xilinx Spartan 2E-200 FPGA (s200E). The frame buffer

controller operates at 50 MHz, which is provided by the surface-mount 50MHz oscillator

on the development board, and the rest of the modules operate at 25 MHz, which is

generated by a simple divide-by-two clock divider. RTL modules are instantiated and

linked within the architecture body of a top-level VHDL file. Table 7-2 gives the key

details on the resource utilisation and the maximum achievable frequency of the top-level

design on the s200E target device.

FPGA Resource utilisation

S200E
Area in slices 847 (36%)

S200E
I/O 104 (98%) S200E

Freq (MHz) 55.57

Table 7-2 Synthesis results of development board 1

The RTL modules in the development board are locally clocked, signals passed between

these RTL modules and the partitioned JPEG core (described in behavioural VHDL and

synthesised using MOODS) in other FPGAs cross clock domains and needs to be

synchronised. The synchronisation logic needed to handshake inter-device signals in the

multi-FPGA JPEG core are generated automatically into the MOODS synthesised multi-

FPGA implementation without any intervention of the user to the synthesis tool. Only the

synchronisation between the RTL modules in development board 1 and the multi-FPGA

JPEG core targeted onto two other development boards in the multi-FPGA system had to

be performed manually by double buffering the top-level VHDL input signals that

originate from the clock domain of the RTL modules.

Figure 7-19 shows a section of the top-level VHDL with input signal end_conv and the

corresponding generated synchronisation circuit is shown on the right. The circuit shows

the signal end_conv passed from RTL module in domain 1 to a module in the multi-FPGA

JPEG core in domain 2. The generated synchronisation circuit consists of two flip flops

(registers), FF7 and FF2, which are clocked by the system clock (jyi' c/ocA:) in domain 2

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 0 7

and system reset (jyj' rgjer) is connected to the asynchronous clear (clr) inputs on the flip

flops. Signal is the output of the first flip f lop (register), FF7, and this is

the input into the second flip flop, FF2. The output signal (endj:onv_buf2) from the

second flip flop, which is the synchronised input for end_conv signal is used by other parts

of the circuit in domain 2.

Top-level VHDL source

process(sys_reset, sys_clock)
begin

if(sys_reset = "1") then
end_conv_buf1 <= "0";
encl_conv_buf2 <= "0";

eisif(sys_clock'event and sys_clock = "1") then
end_conv_buf1 <= end_conv;
end_conv_buf2 <= end_conv_buf1;

end if;
end process;

end conv

Domain 1

end conv bufi
end conv buf2

FF1 FF2 synchronised

D Q ^ D Q -

clr
_sys_reset

sys_clock

Domain 2

Figure 7-19 Double buffer synchroniser insertion

The module call graph representation of the non-pipelined JPEG decoder core is shown in

Figure 7-20. The non-pipelined JPEG decoder had a total of six subprogram modules and

one program module.

pM
jpeg_core

8,64

6,4

sM
idct1_mult_

add
(get_symboii

_index — ^
idct1_mult_

add

" '/ sM , 2 ^
DQ multiple

3,4 sM
iidct2_mult_

^ add

sIVI sM
update amp

It
update do

diff

Figure 7-20 Module call graph representation of the non-pipelined JPEG
decoder core

T.B. Yee, 2007 Chapter 7: Practical synthesis 208

Synthesis and K-way partitioning results of the behavioural JPEG decoder core and the

block transpose module are given in Table 7-3. The first row shows the synthesis result of

a single-device implementation that fits the target device.

Boards FPGA
Synthesis results Two-phase partitioning results

Boards FPGA

priority Area in slices I/O
Freq.
(MHz)

A O in
s l i ces

Data pkts
(initial final)

Channels
(Data widths)

1 S400E Delay 3639 (75%) 47 (44%) 30.13 — _

1 S200E Delay 3297' (140%)* 47^W%) - — — -

2 S200E

S200E
Delay 2350 (99%)

1795 (76%)

106(100%)

71 (67%)

36.79

36.34

5 0 6
(13.9%&) 1 2 1 6 5 1 2

2SpC

(21,28)

Table 7-3 Synthesis results of the non-pipelined JPEG decoder core

The s400E target device in the first row is a Xilinx Spartan2E-400 FPGA [158] in a FT256

package. It has a maximum device area of 4000 slices and a total number of 182 user I/Os.

The maximum number of available I/Os for the implementation of the multi-FPGA system

is restricted to 106 I/O pins as a number of pins on the s200E target device are connected

to the push button switch, integrated circuit socket for a second clock module, and LED on

the development board (see Appendix B.6). A detailed description on the pin assignments

of the hardware demonstrator development boards is given in Appendix B.4. The Xilinx

Spartan2E-400 FPGA is the smallest target FPGA in the Xilinx Spartan2E target

technology that has sufficient device area to hold the JPEG decoder core and the block

transposed module, with a device utilisation of 3639 slices occupying 75% of the

maximum target area, and an I/O utilisation of 47 pins out of the 106 pins available. This

un-partitioned single chip implementation has a maximum achievable frequency of 30.13

MHz.

The second row shows that targeting the design onto a Xilinx Spartan2E-200 FPGA

results in an area utilisation of 3297 slices, which exceeds maximum area of the s200E

device. The last two rows in Table 7-3 show the non-pipelined synthesised design

targeting two s200E devices and implemented using two Digilent development boards.

The first partition (shown in row 3) occupies 99% of the maximum area in the target

s200E device and 100% of the total number of I/O pins available. The second partition

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 0 9

occupies 76% of the maximum area in the target s200E device and 711/0 pins (67% of the

maximum I/O available). The area overhead of 13.9% is due to the insertion of

communication cells and arbiters (described in Section 5.4 and the duplication of data

registers in the multi-FPGA implementation. K-way partitioning, with design profiling,

with the aim of reducing inter-device data transfers was completed in two passes of the K-

way partitioning iteration loop. Two subprogram communication channels (with data

widths of 21-bits and 28-bits) were generated automatically in MOODS to handle the

inter-device data transfers between subprogram modules in the two locally clocked target

devices. The two development boards run at 25 MHz and they are clocked independently

using the on-board 50MHz oscillator, and a simple divide-by-two clock divider.

7.4.2 Computation cycles and inter-device data transfers

Simulations were conducted on multi-FPGA JPEG decoder using the synthesised netlist

output files generated by MOODS. Performance of the decoder in un-partitioned single

device and multi-FPGA implementations obtained from the post-MOODS simulation of

test images are presented in Table 7-4. The total number of inter-device data transfers over

subprogram communication channels 1 {SpC 1) and 2 {SpC 2)are given in columns 2 and

3 respectively. The JPEG decoder system is a complex and computation intensive design,

the computation clock cycles of the JPEG core given in columns 4 and 5 of Table 7-4. The

performance degradation (approximately 7 times increase in design latency) is because of

the immense number of clock cycles required to decode and store the decoded pixels in a

frame buffer ready to be displayed upon completion of the decoding process.

SpC 1 with a 21-bit wide data width is shared by two transmit cells, two receive cells, and

the channel arbitration is provided by a multi-arbiter cell. A single pair of transmit and

receive cells is coimected to 5]pC 2 and the arbitration for this communication channel

with a 28-bit wide data width is provided by a single-arbiter cell. The relatively large

number of inter-device data packets transferred over the two communication channels also

provides a robust test for testing the communication cells and communication channel

arbiter cells described in Section 5-4.

T.B. Yee, 2007 Chapter 7: Practical synthesis 210

Test image
(jpg)

Inter-device data
packets

Clock cycles Max Freq (MHz) Design latency (ms)
Test image

(jpg)
SpC1 SpC2

Un-
partitioned Multi-FPGA

Un-
partitioned Multi-FPGA

Un-
partitioned Multi-FPGA

LENA 37807 20480 178104 1496464

30.13 36 34

5.91 4118

MANOmLL 37087 20480 171724 1477008

30.13 36 34

5 70 40 64

DRAGON 34082 20480 170406 1398412 30.13 36 34 5.66 38 48

SQUARES 469322 327760 2287230 20572700

30.13 36 34

75.91 566 12

SLOPE 125883 81920 606572 5308488

30.13 36 34

20M3 146.08

Table 7-4 Computation clock cycles and inter-device data transfers in the
non-pipelined multi-FPGA JPEG decoder

The maximum frequencies given in the table are obtained f rom the Xilinx ISE synthesis

implementation results given in Table 7-3 and the maximum frequency of the multi-FPGA

implementation is the maximum achievable frequency of the slowest FPGA device. The

design latency, time taken to decode the test images, is calculated by multiplying the

number of computation clock cycles by the clock period (1/Max Freq). Design latencies of

the un-partitioned (single chip) and non-pipelined multi-FPGA JPEG decoder system are

given in the last two columns of Table 7-4.

A complete profile and photographs of the test images decoded using the multi-FPGA

JPEG decoder are given in Appendix B.2.

7.4.3 Further analysis

Synthesis results and performance of the non-pipelined multi-FPGA JPEG decoder

partitioned and synthesised using MOODS are given in the previous sections. This section

gives a further analysis on the implementation of the multi-FPGA JPEG decoder. Figure

7-21 illustrates the structure of the two communication subsystems inserted in the multi-

FPGA JPEG decoder to deal with the transfer of inter-device data packets between the

main JPEG core module in development board 2 and subprogram modules in development

board 3. Subprogram modules (DQ multiple, update amplt and update_dc_diff) in

development board 2 and the control and data path node units in the synthesised output

structure have been omitted for clarity.

T .B . Yee , 2 0 0 7 C h a p t e r 7 : P r a c t i c a l s y n t h e s i s 211

I Subprogram commun/cakM cAan/?e/ 2

28

Development
board 3

^ t ^ ILl
/ txcell node1 \ | txcell_node2

Subprogram
communication

subsystem 2

Module
(IDCT2_MULT_ADD)

Module
(GET_SYMBOLJNDEX)

Module
(IDCT1_MULT_ADD)

req/ack acl/rdy

Dala_bus

data_req

Subprogram communicatior} channel 1

Subprogram
communication

subsystem 1

Figure 7-21 Structure of subprogram communication subsystem in the non-
pipelined multi-FPGA JPEG decoder

Subprogram communication subsystem 1 has two transmit cells {txcell_nodel and

txcell_no del), two receive cells (rxceU_nodel and rxcell_node2), and a multi-arbiter

(mj2rb). Inter-device data transfers initiated by communication cells in communication

subsystem 1 are sent through subprogram communication channel 1 (SpC 1) which has a

21-bits wide Data_bus. Subprogram communication subsystem 2 has a single transmit cell

{txcell_node3) and receive cell (rxcelljaodeS) connected to a single-arbiter {s_arb). Inter-

device data transfers between txcell_node3 and rxcelljiode3 are sent through subprogram

communication channel 2 {SpC 2) which has a 28-bits wide Data_bus. Three modules

(external), and are

targeted onto the FPGA device in development board 3. Data packets (input parameters)

are sent to the receive cells, which activate these external modules upon receiving all the

input data packets. Output results are sent back to the transmit cells when the operations in

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 1 2

the modules are completed. Input parameters are sent in multiple inter-device data packets

when the sum of the bits in all the input parameters exceeds the bit-width of the Data_bus

in the communication channel, likewise for output parameters if the sum of the bits in all

the output parameters exceeds the bit-width of the Data_bus.

The K-way partitioning algorithm and the communication subsystem optimisation

algorithm optimise the multi-FPGA system in terms of delay across FPGA boundaries,

while satisfying the area and 1/0 constraints of the target devices. If the area and I/O

constraints can be relaxed (i.e. targeting FPGA devices with a larger area, or more I/O

pins), the number of external modules may be reduced as more modules can be targeted

onto a single FPGA device, and hence reduce the number of inter-device data transfers,

similarly targeting a device with a larger number of I/O pins, the bit-width of the

DataJjus in the subprogram communication channel can be increased, such that all input

parameters of output results can be transferred in a single data packet.

Assume development board 2 of the multi-FPGA implementation has a target device with

a larger area; a Xilinx Spartan2E-300 FPGA (with 3072 slices in area) instead of a Xilinx

Spajrtaii2E-200 FPGA (with 2352 slices in area), it is then possible to re-assign and map at

least one of the three 'external' modules in development board 3 to development board 2.

Table 7-5 shows the effect of reducing the number of external modules in the multi-FPGA

JPEG decoder on the inter-device data transfers and computation clock cycles results. The

number of external modules in the multi-FPGA JPEG decoder is given in the column 1.

The number of inter-device data packets transferred over SpC 1 and SpC 2 are given in

columns 2 and 4 respectively. The channel {Data_bus) widths of SpC 1 and SpC 2 are

given in columns 3 and 5 respectively. The number of computation clock cycles of the

multi-FPGA JPEG decoder core is given in column 6. The maximum frequency in column

7 is obtained from the Xilinx ISE synthesis implementation results given in Table 7-3. The

design latency of the multi-FPGA JPEG decoder system is given in the last column of

Table 7-5.

The test image used is LENA.jpg and the first row shows the performance of the multi-

FPGA JPEG decoder with three external modules in development board 3 as illustrated in

Figure 7-21. The second row gives the performance of the decoder when an external

module is moved into development board 2 (this assumes that there is sufficient area in the

FPGA device on development board 2 to hold IDCT2_MULT_ADD), hence development

T.B. Yee, 2007 Chapter 7: Practical synthesis 21:

board 3 is left with only two external modules (GET^^'TMBOZ yTVD&Yand

/DCr7_ML/Z,7^^DZ)). The effect of removing module from

communication subsystem 1 is a reduction in the number of inter-device data packets in

SpC 1. This amounts to 57.9% reduction in the design latency as compared with the

original implementation with three external modules.

Number of
external
modules

Inter-device data packets
Clock cyc les Max Freq

(MHz)
Design latency

(ms)

Number of
external
modules SpC1

Channel
width SpC 2

Channel
width

Clock cyc les Max Freq
(MHz)

Design latency
(ms)

3 37807 21 20480 28 1496464

36.34

41.18

2 8805 21 20480 30 629882 36.34 17.33

1 8805 21 - - 417636

36.34

11.49

Table 7-5 Number of external modules and Its effect on the performance of
the non-pipelined multi-FPGA JPEG decoder

The last row in Table 7-5 shows the performance of the multi-FPGA JPEG decoder core

with just a single external module {GET_SYMBOLJNDEX) in development board 3. Only

a single communication subsystem is required to transfers inter-device data packets to and

from the single external module. The total number inter-device data packets are reduced

even further with just a single external module, and this amounts to 72.1% reduction in the

design latency as compared with the original implementation with three external modules.

The time taken to decode the test image (LENA.jpg) using the multi-FPGA JPEG decoder

with a single external module is 11.49 milliseconds, which approximately twice the time

needed for a single-chip implementation (given in Table 7-4). The graph in Figure 7-22

shows the design latency (decoding time) versus the number of external modules in the

multi-FPGA JPEG decoder. With less external modules, the number of inter-device data

transfers is reduced and this improves the performance of the multi-FPGA JPEG decoder

as the design latency reduces. Area utilisation of the target devices will also decrease, as a

result of lesser communication cells and duplicated hardware (registers) to handle inter-

device module calls.

T.B. Yee, 2007 Chapter 7: Practical synthesis 214

% 3
i

I '
I ^
3
Z

4 1 1 8

173G

11^9

10 20 ^ 40

D e s i g n latency (m s)

50

Figure 7-22 Graph of design latency versus the number of external modules
in the multi-FPGA JPEG decoder

Increasing the number of available I/Os on target devices is the other approach to improve

the performance of the multi-FPGA JPEG decoder. The first column in Table 7-6 shows

the number of available I/Os on the target devices (i.e. assuming that all the target FPGAs

have the same number of available I/Os). The first row shows the inter-device data

transfers and computation clock cycles of the hardware demonstrator implemented using

the D2-SB FPGA-based development boards with 106 available I/Os (details given in

Sections 7.4.1 and 7.4.2). Subsequent rows show the effect of increasing the number of

available I/Os on target devices on the performance of the multi-FPGA JPEG decoder.

The total number of inter-device data packets decreases with the increment of available

I/Os, resulting in a decrease in the number of computation clock cycles and hence reduces

the design latency. When 250 I/Os are available (fourth row of Table 7-6), a new

communication subsystem is generated by MOODS during synthesis. Communication

cells, and are connected to a single-arbiter (j'_ar6), which

replaces the multi-arbiter {m__arb) in Figure 7-21. Communication cells, txcell_node2 and

rxcell_node2 are connected to a third (newly) inserted single-arbiter, and together they

deal with the inter-device data transfers across a new subprogram communication channel

{SpC 3 in Table 7-6) with a 69-bits wide data width.

T.B. Yee, 2007 Chapter 7: Practical synthesis 215

l/Os
avail.

Inter-device data packets
Clock cycles Max Freq

(MHz)
Design

latency (ms)
l/Os

avail.
SpC 1

Channel
width SpC 2

Channel
width SpC 3

Channel
width

Clock cycles Max Freq
(MHz)

Design
latency (ms)

106 37807 21 20480 28 - - 1 4 9 6 4 6 4

36 34

41,48

150 37807 21 12288 72 - - 1406384

36 34

38 70

200 37807 21 8192 101 - - 1362776
36 34

3750

250 8805 21 8192 101 12288 69 921738
36 34

25 36

300 8805 21 8192 101 8192 93 881232

36 34

2425

350 8805 21 8192 101 8192 93 881232

36 34

24 25

Table 7-6 Number of available l/Os and its effect on the performance of the
multi-FPGA JPEG decoder

The last two rows in Table 7-6 show that the design latency of the multi-FPGA JPEG

decoder does not reduce further when target devices with over 300 available I/Os are used.

The graph in Figure 7-23 shows the design latency versus the number of available I/Os in

the multi-FPGA JPEG decoder.

41.48

38.70

250 i

24.25

24.25

50 .00 40 .00 10.00 20.00 30.00

Design l a tency (ms)

Figure 7-23 Graph of design latency versus the number of available I/Os in
the non-pipelined multi-FPGA JPEG decoder

T.B. Yee, 2007 Chapter 7: Practical synthesis 216

7.4.4 Pipelined multi-FPGA JPEG decoder

The previous sections covered the implementation results and discussion on the non-

pipelined multi-FPGA JPEG decoder. This section describes a pipelined version of the

JPEG decoder with explicit communication channels (see Section 4.2.2.1) connecting the

pipelined stages. Figure 7-24 shows the module call graph representation of the pipelined

JPEG decoder core with a total of six subprogram modules and six program modules

(p_M0D_5 to p_MOD_10). The main stages of the sequential baseline JPEG decoder are

marked under the module call graph in Figure 7-24.

pM
p_M0D_6

1,64 PM
I p_MOD_7

1,64
pM

p_MOD_8
pM

^ p iVI0D_9
pM

/ p_MOD_10

i , 6 4 _ r - 5,4

2,64 8,64 7,64

pM
p_IVI0D_5

;'3,4
. - - j r

SM
|get_symboll

index
sIVI

DQ_multiple'

SM
Idct1_mult_|

add

sM
! idct2_mult_

add

sM SIVI
1 update dc_j

diff
(update am Pi

It

Entropy decoder Zig-zag decoder Dequantiser IDCT module Block
transpose

module

Figure 7-24 Module call graph representation of the pipelined JPEG decoder
core

The target technology of the devices used in the following experiments on the pipelined

multi-FPGA JPEG decoder core is the Xilinx Spartan 2E FPGA. Table 7-7 lists the four

types of Xilinx Spartan 2E target devices used in the multi-FPGA implementation with the

XC2S50E and XCS200E as the smallest and largest target devices respectively.

Synthesis results and K-way partitioning results of the pipelined JPEG decoder core and

the block transpose module are given in Table 7-8. These results in terms of area and

maximum achievable frequency of the final implementation are obtained from the report

files generated by post-Xilinx ISE placement and routing phase and not estimates obtained

from the MOODS synthesis system. The first and second (shaded) rows show the

T.B. Yee, 2007 Chapter 7: Practical synthesis 217

synthesis result of single-device implementations given in Table 7-3. The remaining rows

show the synthesis results of the pipelined multi-FPGA JPEG decoder core targeting

multiple Xilinx Spartan 2E FPGA devices. Post-MOODS synthesis simulation results of

the pipelined multi-FPGA JPEG decoder core are given in Appendix B.3.

Xilinx Spartan 2E FPGA devices

Device Package

Total
user
I/O

Max.
user
I/O

Max.
area In
s l i ces

XC2S50E TQ144 102 80 768

XC2S100E TQ144 102 80 1200

XC2S150E PQ208 146 106 1728

XC2S200E PQ208 146 106 2352

Table 7-7 Target Xilinx Spartan 2E FPGA technologies

Boards FPGA
Synthesis results Two-phase partitioning results

Boards FPGA

priority Area in slices I/O
Freq.
(MHz)

AO in
slices

Data pkts
(initial final)

Channels
(Data widths)

1 S400E Delay 3639 (75%) 47 (44%) 30.13 _ — -

1 S200E Delay 3297' (140%)' 47 (44%) _ — —

2 S200E

S200E
Delay 2134(90%)

1726(7394)

54 (51%)

35 (33%)

35.71

32.41

221
(6.1%) 67^M

1 ExC

(12)

3 S200E

S150E

S150E

Delay

2134 (90%)

1658 (95?&)

86M%)

54 (51%)

27 (26%)

31 (29%)

34.02

35.28

84.28

239
(6.6%) 547 ^ 2

2 ExC

(12,8)

4 S200E

S150E

S100E

S100E

Delay

2058 (87%)

1658 (95%)

106(8%)

86(7%)

80 (75%)

27 (26%)

29 (36%)

31 (39%)

32.35

35.28

73.52

76.55

269
(7.4%)

6 8 ^ 4

4 ExC

(11,11,12,8)

6 S200E

S150E

s50E

s50E

s50E

s50E

Delay

2004 (85%)

1660 (96%)

106 (13%)

115(15%)

85(11T6)

155 (20%)

105 (99%)

27 (26%)

29 (36%)

26 (33%)

31 (39%)

30 (38%)

30.29

35.38

73.99

60.46

89.25

59.21

486
(13.4%) 8 0 ^ ^ 0

4 ExC

(11, 11,12,8)

ISIpC

(19)

7 S200E

S150E

S50E

s50E

S50E

S50E

s50E

Delay

1968(8394)

1659 (96%)

106(13%)

117(15%)

86(1194)

161 (20%)

135(17%)

105 (99%)

27 (26%)

29 (36%)

24 (30%)

31 (39%)

32 (40%)

24 (30%)

30.18

33.43

79.96

59.60

88.22

54.08

53.39

593
(16.3%)

88 —> 88

4ExC

(11, 11,12,8)

1 SpC

(17)

Table 7-8 Synthesis results of the pipelined JPEG decoder core

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 1 8

The first three muhi-FPGA implementations (MFIs) targeting two to four Xilinx Spartan

2E devices are partitioned across pipelined stages with no external subprogram modules

and inter-device data packets are sent through the explicit communication channels (Ex:Cs)

connecting the pipeline stages. In the last two MFIs targeting the JPEG decoder core onto

six and seven devices, subprogram modules are targeted to a different device &om their

parent calling modules and the resulting inter-device subprogram data packets are sent

through the single subprogram communication channel {SpC) generated automatically by

the multi-FPGA MOODS synthesis system.

The area overheads in terms of slices for pipelined implementations of the multi-FPGA

JPEG decoder targeting two to four devices are lower than the non-pipelined MFI given in

Table 7-3. One factor contributing to this area overhead reduction is that devices in the 2-

to 4-device pipelined MFIs are only connected through ExCs. The ExC is a dedicated

point-to-point communication channel that does not require channel resource arbitration

and special communication cells (Section 5.4) to handle inter-device data packet transfers

unlike SpC. Inter-device data sent through the ExC also removes the need for hardware

duplication (Section 5.5.1), hence reducing the area overheads.

Comparing the 2-device non-pipelined (given in Table 7-3) and pipelined multi-FPGA

JPEG decoder core implementation in Table 7-8, the area overhead of the pipelined

implementation is smaller by 285 slices (7.8%) and the average maximum achievable

frequency (34.06 MHz) of the target devices is slightly lower compared to the non-

pipelined implementation (36.57 MHz). The non-pipelined multi-FPGA JPEG decoder

core has two SpCs, to handle the inter-device data packets between the main JPEG core

module and external subprogram modules (described in Section 7.4.3) whereas inter-

device data packets is sent through an ExC with a 12-bit data width in the pipelined

implementation.

The area utilisation of some target devices in Table 7-8 are under 20% as the XC2S50E

device is the smallest device in the Spartan 2E FPGA family. If the MFI is targeted to a

target technology with even smaller and cheaper devices, then the logic resources of the

target FPGA devices can be utilised fully, making the design implementation more cost-

efficient.

T.B. Yee, 2007 Chapter 7: Practical synthesis 219

Implementation No. of target
devices

Inter-device data
packets (Channel)

Clock cycles Max Freq
(MHz)

Design latency
(ms)

pipelined 2 4096 (ExC 4) 271696 32 41 8^8

pipelined 3
4096 (ExC 4)
4096 (ExC 5) 271698 34 02 799

pipelined 6

4096 (ExC 2)
4096 (ExC 3)
4096 (ExC 4)
4096 (ExC 5)
8387 (SpC 1)

795192 30 29 26.25

non-pipelined 2
37897 (SpC f)
20480 (SpC 2) 1496464 36 34 41.18

un-partitioned 1 — 178104 30 13 5.91

Table 7-9 Computation clock cycles and inter-device data transfers in the
pipelined multi-FPGA JPEG decoder core

The computation clock cycles for decoding the test image (LENA.jpg) with a pipelined

multi-FPGA JPEG decoder targeting two, three and six FPGAs are given in Table 7-9.

The performance of the un-partitioned (single-device) and non-pipelined multi-FPGA

JPEG decoder implementations (see Table 7-4) are given in the last two rows of Table 7-9

for comparison. The maximum frequencies of the pipelined MFIs are the maximum

achievable frequency of the slowest FPGA target device given in Table 7-8.

The computation clock cycles of the 2-device and 3-device pipelined MFIs are reduced to

a fraction (approximately 1/5) of the computation clock cycles needed by the non-

pipelined version. Subprogram modules are mapped to the same target device as their

parent calling modules in the 2- and 3-device pipelined MFIs and hence inter-device data

are sent via the explicit communication channels (ExCs) connecting the pipeline stages

which are targeted onto different devices. A multi-FPGA implementation with only

ExC(s) removes the delay associated with the arbitration and enabling of the tri-stated

shared subprogram communication channel, thus reducing the number of computation

clock cycles needed to decode the test image significantly.

The computation clock cycles of the 6-device pipelined MFI is reduced to almost half the

number of computation clock cycles in the non-pipelined implementation. The 6-device

pipelined MFI has two external subprogram modules (update_dc_diff and DQ_multiple)

transferring inter-device data packets through subprogram communication channel 1 (SpC

I) with a 19-bit wide data width. The 6-device pipelined MFI has a total of 795192

computation clock cycles and a design latency of 26.25 ms. It is possible for the non-

T.B. Yee, 2007 Chapter 7: Practical synthesis 220

pipelined implementation to reduce its latency by targeting a larger FPGA device as

discussed in Section 7.4.3. The 2-device non-pipelined MFI with two external subprogram

modules (given in Table 7-5) has a total of 629882 computation clock cycles, a maximum

achievable frequency of 36.34 MHz and a resulting design latency of 17.33 ms.

The area overheads and design latencies of the JPEG decoder core in the multi-FPGA

implementations (MFIs) are plotted on the graph shown in Figure 7-25. These results

show all three pipelined MFIs of the JPEG decoder core have better performances (in

terms of area overheads and design latencies) than the 2-device non-pipelined MFI. The 2-

and 3-device MFIs have area overheads of under 7% and design latencies of about 8 ms,

which is about 35% more than the design latency (5.91 ms) of the un-partitioned (single-

device) implementation.

ro 10

* 2-device pipelined MFI

H 3-device pipelined MFI

+ 6-device pipelined MFI

A 2-device non-pipelined MFI

* un-partitioned (single-device)

10 20 30 40
Design latency (ms)

5 0

Figure 7-25 Area overhead and design latency of pipelined and non-
pipelined multi-FPGA JPEG decoder core

The experiments in this section show the synthesis of a large complex behavioural design

(a behavioural JPEG decoder core with over 2000 lines of VHDL code, and MOODS

synthesis run time' of up to an hour) into a pipelined multi-FPGA system that can achieve

performances comparable to single-device implementations. Synthesis of a large

' This is the synthesis run t ime of a single-device implementa t ion using the or iginal version of M O O D S

without the mul t i -FPGA synthesis enhancement .

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 2 1

behavioural design into a multi-FPGA system poses difficult partitioning questions

(outlined in Section 1.1) that need to be answered. Solutions to how best to partition a

design are not immediately obvious to the user and this can be a challenge to the user if

the design contains a large number of modules which can be partitioned, leading to a large

number of possible partitioning solutions. The fully automated multi-FPGA synthesis

design flow in MOODS answers these questions by generating multi-FPGA systems with

asynchronous communications automatically and as transparently to the user as possible.

This reduces the design time and effort required by the user.

As with the examples in Chapter 6, the multi-FPGA synthesis run times of the JPEG

decoder remain similar to the run time of a single-device implementation using an original

version of MOODS without the multi-FPGA synthesis enhancements (i.e. runtime

approximates for pipelined and single-device implementations are close to 1 hour).

7.5 Summary

The successful implementation of the multi-FPGA JPEG decoder project described in this

chapter has demonstrated the automated synthesis and optimisation of a large complex

system targeting a multi-FPGA implementation. MOODS, with the two-phase K-way

partitioning and design profiling, has partitioned and optimised a single large behavioural

VFIDL design into a design with multiple partitions, and allowed the targeting of

heterogeneous FPGA devices in a multi-FPGA system.

The user now has the choice of targeting a large behavioural design onto multiple smaller

devices without having the need to get a larger and more costly target FPGA device if the

design requirements are met with a multi-FPGA system. The user would be able to use

existing FPGA devices or a number of FPGA development boards configured into a multi-

FPGA system for design prototyping. This saving in design cost and flexibility in using

existing development boards with a collection of smaller devices would not be possible

otherwise if a single large behavioural design is not partitioned.

T.B. Yee, 2007 Chapter 7: Practical synthesis 2 2 2

The automated insertion of asynchronous subprogram communication subsystems

(comprising of commimication cells and arbiters) enables modules in independently

clocked domains to transfer data asynchronously through shared bi-directional subprogram

communication channels (SpCs). The pipelined multi-FPGA JPEG decoder demonstrated

the use of explicit communication chaimels (ExrCs) connecting the pipelined stages in the

JPEG decoder core to improve the performance of the non-pipelined multi-FPGA

implementation. The asynchronous communication channels have built-in synchronisation

and self-scheduling properties which provide safe communication of inter-device data in

the multi-FPGA system. Therefore, the user can concentrate on the behaviour of the

design and not the complexities of how the target devices can safely communicate.

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 3

Chapter 8

Conclusions and future work

The partitioning enhancement to the MOODS synthesis system reported in this work has

provided a high-level synthesis system to synthesise and automatically generate a multi-

FPGA system composed of heterogeneous re-configurable devices from a single VHDL

description. The K-way partitioning algorithm and the communication subsystem

optimisation algorithm optimise the multi-FPGA system in terms of design latency across

FPGA boundaries, while satisfying the area and I/O constraints of the target devices.

Target device information (area in slices and number of I/Os) and design activity profile is

used to guide the partitioning algorithm are fed into MOODS. The integration of design

activity profile and the K-way partitioning algorithm are covered in Chapter 4.

During synthesis, explicit communication channels (ExCs) or subprogram communication

subsystems are automatically inserted into the multiple structural outputs of the design.

ExC provides a dedicated point-to-point communication channel connecting pipelined

stages in the pipelined multi-FPGA design. This supports the Communicating Sequential

Processes [111, 112] paradigm, which encourages modular design. Channel handshaking

ensures that the pipelines stages will work irrespective of the operation execution time of

individual stages in the asynchronous pipeline. The communication subsystem provides an

asynchronous subprogram communication channel for transferring data packets

between modules which exist in different clock domain devices. This extends the multi-

FPGA synthesis capability to support partitioning of VHDL subprograms and functions in

the VHDL hierarchical structure (Section 2.2.3). Communication cells (transmit and

receive cells) and arbiters are the basic building elements of the subprogram

communication subsystem. Transmit and receive cells deal with the two-phase

handshaking of inter-device data across shared bi-directional communication channel(s)

and the communication channel is optimised with respect to the I/O constraint of the target

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 4

FPGA devices. Details on the generation of communication subsystem(s) and hardware

duplication are given in Chapter 5.

Experimental and simulation results of the pipelined multi-FPGA implementations of the

VHDL examples in Chapter 6 and the pipelined multi-FPGA JPEG decoder in Chapter 7

show that the pipelined implementations only incur a fraction of the area overheads and

design latencies compared to the non-pipelined multi-FPGA versions. Area overhead and

the design latency are used as the metrics for evaluating the quality of the multi-FPGA

implementations in these chapters. System throughput is another possible metric as

throughput measures the synthesised design's ability to handle a high volume of

transactions. However, in many applications, design latency is more suitable as it

measures the time it takes the synthesised design to perform any given transaction from

start to finish. The area overheads for most of the pipelined multi-FPGA implementations

are under 10% and the lowest area overhead of 3% for the delay-optimised multi-FPGA

pipelined implementation of the inverse discrete cosine transform example; together with

increase in the average maximum achievable frequencies of target devices in all the

pipelined examples including the pipelined JPEG decoder. In the case of the quadratic

equation solver example, the design latency of the pipelined implementation is lower than

the un-partitioned single-device implementation.

Results presented in Chapters 6 and 7 show that pipelined multi-FPGA systems can be

synthesised to achieve performances comparable to single-device implementations. With

the multi-FPGA synthesis enhancement, it is now possible to synthesise a large

behavioural design and target the partitioned design onto multiple smaller (existing)

devices without having the need to get a larger and more costly target FPGA device if the

design requirements are met with a multi-FPGA system. This saving in design cost and

flexibility in using existing development boards with a collection of smaller devices would

not be possible otherwise if a single large behavioural design is not partitioned.

The multi-FPGA synthesis run times remain virtually unaffected for all the VHDL

examples in Chapter 6 and the JPEG decoder core in Chapter 7 compared to the run times

of single-device implementations. The multi-FPGA synthesis enhancement, with the fast

time-to-market, efficient and fast design space exploration advantages of a high-level

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 5

synthesis environment, enables the rapid realisation of multi-FPGA systems with

asynchronous communications.

The asynchronous communication channels in the multi-FPGA systems offers a number of

benefits to the user;

• The first benefit is the option to trade off performance in I/O limited target devices

(i.e. allows multiple external subprogram modules to share a common channel and

sending of multiple data packets over an asynchronous subprogram

communication channel of a smaller data width).

• The second benefit is the temporal independence between target devices as each

board level target device is viewed an independent locally clocked processing unit

with asynchronous communication channels, reducing clock skew problems in a

large design.

• The asynchronous communication channels have built-in synchronisation and self-

scheduling properties which provide safe communication of inter-device data in

the multi-FPGA system. Therefore, the user can concentrate on the behaviour of

the design and not the complexities of how the target devices can safely

communicate.

The work presented together with a hardware demonstrator has demonstrated a fully

functional behavioural multi-FPGA synthesis tool. To the best of our knowledge, high-

level synthesis of multi-FPGA systems with asynchronous communication channels

crossing clock domains is explicitly automated for the first time. There is scope for

improvement in the currently implemented system, both with the multi-FPGA partitioning

process and with the asynchronous communication mechanism. A number of suggested

extensions are described within this chapter, which could form the basis for future work.

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 6

8.1 Future work

Experience gained Aom using MOODS and extending the existing MOODS synthesis

system for multi-FPGA synthesis has brought to light some of the limitations of the multi-

FPGA synthesis in MOODS and several extensions remain to be addressed:

8.1.1 Shared memory elements

The multi-FPGA synthesis enhancement in MOODS is not able to handle access of shared

memory blocks such as ROM and RAM across target devices. Currently, the ICODE

process and subprogram modules accessing memory elements declared in the VHDL

architecture have to be mapped to the same target partition (device) as the program

module (Section 2.6.2). This restriction may result in a larger target device for the

partition with the shared memory block and reducing the configurations of target devices

in the multi-FPGA implementation. However, the multi-FPGA synthesis tool does support

memory blocks (ROM and RAM) local to the process or subprogram modules as these

memory elements are declared within the scope of the VHDL process or subprogram. A

shared memory controller which handles the data coherence and resource arbitration is a

possible extension to support shared memory in a multi-FPGA system. This memory

controller can be mapped to one of the existing target devices in the synthesised multi-

FPGA design or a separate target device with a large memory element. The downside to

this extension is the Address/Data lines to the memory elements and the control signals

(from target devices) to the memory controller would utilise more I/O resources of target

devices and the design latency is likely to increase due to inter-device memory accesses.

8.1.2 Explicit communication channel structures

The asynchronous explicit communication channels connecting the implied pipeline stages

in the multi-FPGA implementation can be extended further to allow more complex

channels than the unidirectional point-to-point structure described in this work. Linear

pipeline stages have only a single input and single output channel, whereas non-linear

pipeline stages can have multiple input and output channels. Ayom is a pipeline stage with

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 7

multiple input channels and a single output channel. A fork is a pipeline stage with one

input channel and multiple output channels. Non-linear asynchronous pipeline structures

[159], including join, fork, and more complex configurations in which channels are

conditionally read and /or written can be used to build more complex systems. Another

possible configuration is to create an explicit communication channel that is able to send

and/or receive multiple packets of data determined by the data width of the channel.

Trade-offs between latency, area, and I/O resources, taking into account the design activity

profile of modules in the design would be performed by the synthesis tool to determine the

optimum data width of the channel.

8.1.3 Integrating partitioning exploration with the MOODS
optimisation process

The two-phase partitioning exploration is currently not integrated with the MOODS

optimisation process but it does allow the user to re-run the MOODS optimisation stage

after examining the partitioned design. It is possible to relax or tighten the schedule of the

modules and iteratively improve the multi-FPGA solution using the current partitioning

solution to guide the MOODS optimisation process. A similar approach in SPARCS

(Section 3.3.2) performs an iterative area/latency exploration of blocks of operations

where the schedule of a block is either relaxed or tightened such that the design constraints

are best satisfied.

The two-phase K-way partitioning approach (Section 4.4.1) in MOODS performs K-way

partitioning on the optimised ICODE modules and optimises the subprogram

communication channel(s) if the design contains ICODE subprogram modules. The main

aim of the K-way partitioning algorithm is to minimise the number of inter-device (or

cross-domain) data transfers by grouping modules and subprogram modules with their

corresponding calling modules, taking into consideration the utilisation of device area and

I/Os. The MOODS synthesis core performs scheduling, allocation and module binding

according to the user-defined optimisation objectives. MOODS performs multiple simple

optimisation transformations, adjusting the scheduling of the control state nodes in the

control path, and the allocation and binding of data path nodes in the data path.

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 2 2 8

ICODE process modules have their own control paths controlling the data path units

within the module and explicit communication channels introduce an implied pipeline

structure whereby channels connect the process modules (pipelines stages) in a design.

Channel handshaking ensures that the pipelines stages will work irrespective of the

operation execution time of individual stages in the asynchronous pipeline. This allows the

schedule of a process module (pipeline stage) to be either relaxed or tightened such that

the number of external modules are reduced, hence reducing the number of inter-device

communications. Relaxing (increasing) the schedule length could reduce the area of a

partition and increase the latency of the pipeline stage and tightening the schedule works

vice versa.

8.1.4 Target Architecture

At present, the MOODS multi-FPGA synthesis system targets a multi-FPGA system at the

board-level. This board-level architecture allows an arbitrary number of heterogeneous

development boards to be connected up to form a multi-FPGA system. The A7-way

partitioning algorithm uses the area and I/O information for each target device in the

assignment of modules to ^-partitions, where K is the number of target development

boards available. Using the same target device information, the partitioned structural

output can be targeted to a single board with multiple re-configurable (FPGA) devices,

having fixed interconnects between these devices. The FPGA devices can be treated as

individual locally clocked processing units communicating asynchronously using the

communication channels described in Chapter 4, or these devices can be clocked

synchronously from a single global system clock. For a single global clock architecture,

the double buffer synchronisers used for data synchronisation over multiple clock domains

are no longer required in the communication cells since data communications between

devices are now in a single clock domain. It is possible to target a partition design onto

multiple boards, each having a single re-configurable device, or a single board with

multiple re-configurable devices, or a combination of both as illustrated in Figure 8-1.

Programmable interconnection resources or Field-Programmable Interconnect Devices

(FPIDs) are commonly found in multi-FPGA system to provide flexible routing

T.B. Yee, 2007 Chapter 8: Conclusions and future w o r k 229

capabilities between the FPGA devices. One of the most commonly used routing

architectures is the partial crossbar architecture [92, 160]. The programmable interconnect

devices can be used to cormect partitions where high performance is required. A target

architecture with FPIDs, together with the I/O multiplexing packet-based communication

channels might improve the overall performance of the generated multi-FPGA system.

This can be formulated as an optimisation problem, where trade-offs between performance

and I/O utilisation are performed, whilst satisfying design constraints such the number of

FPIDs, programmable pins and FPGA area and I/Os available.

Development board with a single re-
configurable chip (FPGA).

Standard IDE cable

:
Fixed inter-device

interconnects

Backplane bus

g (a
m-

- A — I t — 5 I - ,

•
» £B r a

Development board with multiple re-
conflguraMe chips (FPGAs)

a) Multi-board FPGA
system b) Multi-FPGA board

c) Multi-FPGA board in a
multi-board system

Figure 8-1 target architectures for multi-FPGA system

Utilising FPIDs in the target multi-FPGA system, the MOODS multi-FPGA synthesis

system can target a flexible and modular architecture, which would provide a good

platform for prototyping and allow easy extension of the target architecture to suit the size

of the synthesised design.

T.B. Yee, 2007 References 2 3 0

References

1. Johannes, F.M., "Partitioning of VLSI circuits and systems". Proceedings of the

Design Automation Conference, 1996, pp. 83-87.

2. Wolf, W., "A decade of hardware/software codesign", Computer, Vol. 36, No. 4,

April 2003, pp. 38-43.

3. "International Technology Roadmap for Semiconductors (2004 Update) - Design",

2004. http://public.itrs.net

4. Shukla, S.K.- Pixley, C.- Smith, G., "Guest Editors' Introduction; The True State of

the Art of ESL Design", Design & Test of Computers, IEEE, Vol. 23, No. 5, May

2006, pp. 335-337.

5. Bacchini, F., et al., "Building a common ESL design and verification methodology

- is it just a dream?" Proceedings of the Design Automation Conference

(DAC2006), 2006, pp. 370-371.

6. "Catapult™ C Synthesis", Mentor Graphics, 2004. www.mentor.com

7. "Bluespec Compiler", Bluespec Inc., 2004. www.bluespec.com

8. "Cynthesizer", Forte Design Systems, 2004. www.forteds.com

9. "IEEE Standard VHDL Reference Manual, IEEE Std 1076-2002", IEEE, 2002.

http://public.itrs.net
http://www.mentor.com
http://www.bluespec.com
http://www.forteds.com

T.B. Yee, 2007 References 2 3 1

10. "IEEE Standard VHDL Reference Manual, IEEE Std 1076-1987", IEEE, 1987.

11. "IEEE Standard VHDL Reference Manual, IEEE Std 1076-1993", IEEE, 1993.

12. Rushton, A., "VHDL for Logic Synthesis", 2"^ ed, John Wiley and Sons, 1999,

ISE»<:047198325)[.

13. Yarom, I.- Glasser, G., "SystemC Opportunities in Chip Design Flow",

Proceedings of the 11th IEEE International Conference on Electronics, Circuits

and Systems (ICECS 2004), 2004, pp. 507-510.

14. "IEEE Standard SystemC Language Reference Manual, IEEE Std 1666-2005",

IEEE, 2005.

15. Grotker, T., et al., "System Design with SystemC", Kluwer Academic Publishers,

2002, ISBN: 1402070721.

16. "IEEE Standard Description Language Based on the Verilog Hardware Description

Language, IEEE Std 1364-1995", 1995.

17. "IEEE Standard Description Language Based on the Verilog Hardware Description

Language, IEEE Std 1364-2001", IEEE, 2001.

18. Sutherland, S., "The IEEE Verilog 1364-2001 Standard - What's New, and Why

You Need It", Proceedings of the 9th Annual International HDL Conference and

Exhibition (HDLCon2000), 2000.

19. Fitzpatrick, T., "System Verilog for VHDL Users Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition (DATE'04), 2004, pp.

1334-1339 (Vol.2).

T.B. Yee, 2007 References 2 3 2

20. Rich, D.I., "The evolution of systemverilog", IEEE Design & Test of Computers,

Vol. 20, No. 4, July-August 2003, pp. 82 - 84.

21. "IEEE Standard VHDL Reference Manual, IEEE Std 1076a-2000", IEEE, 2000.

22. Aho, A. v . - Ullman, D.D., "Principles of Compiler Design", Addison-Wesley,

1977, ISBN: 0-201-00022-9.

23. Gajski, D.D.- Ramachandran, L., "Introduction to High-Level Synthesis", IEEE

Design & Test of Computers, Vol. 11, No. 4, October-December 1994, pp. 44-54.

24. Eles, P., et al., "Compiling VHDL into a high-level synthesis design

representation", Proceedings of the EURO-DAC 92; European Design Automation

Conference, 1992, pp. 604-609.

25. Eles, P.- Kuchcinski, K.- Peng, Z., "System Synthesis with VHDL", Kluwer

Academic Publishers, 1998, ISBN: 0-79238-082-7.

26. Murata, T., "Petri Nets: Properties, Analysis and Applications", Proceedings of the

IEEE, Vol. 77, No. 4, April 1989, pp. 541-580.

27. Walker, R.A.- Chaudhuri, S., "Introduction to the Scheduling Problem", IEEE

Design & Test of Computers, Vol. 12, No. 2, June 1995, pp. 60-69.

28. Camposano, R., "From Behavior to Structure: High-Level Synthesis", IEEE

Design & Test of Computers, Vol. 7, No. 5, October 1990, pp. 8-19.

29. Parker, A.C.- Pizarro, J.T.- Mlinar, M., "MAHA: a program for datapath

synthesis", Proceedings of the Design Automation Conference, 1986, pp. 461-466.

T.B. Yee, 2007 References 2 3 3

30. Paulin, P.O.- Knight, J.P., "Force-Directed Scheduling for the Behavioral

Synthesis of ASIC's", IEEE transaction on Computer Aided Design, Vol. 8, No. 6,

June 1989, pp. 661-679.

31. Peng, Z.- Kuchcinski, K., "Automated Transformation of Algorithms into Register-

Transfer Level Implementations", IEEE Transactions on Computer Aided Design

of Integrated Circuits and Systems, Vol. 13, No. 2, February 1994, pp. 150-166.

32. Williams, A.C., "A Behavioural VHDL Synthesis System using Data Path

Optimisation", PhD Thesis, University of Southampton, 1997.

33. Paulin, P.O.- Knight, J.P., "Scheduling and binding algorithms for high-level

synthesis", Proceedings of the Design Automation Conference, 1989, pp. 1-6.

34. Kurdahi, F.J.- Parker, A.C., "REAL: a program for REgister ALlocation",

Proceedings of the Design Automation Conference, 1987, pp. 210-215.

35. Baker, K.R.- Currie, A.J.- Nichols, K.G., "Multiple Objective Optimisation in a

Behavioural Synthesis System", lEE Proceedings - G, Vol. 140, No. 4, August

1993, pp. 253-260.

36. Williams, A.C.- Brown, A.D.- Zwolinski, M., "Simultaneous optimisation of

dynamic power, area and delay in behavioural synthesis", lEE Proceedings on

Computers and Digital Techniques, Vol. 147, No. 6, November 2000, pp. 383-390.

37. De Micheli, G., "Synthesis and Optimization of Digital Circuits", McGraw Hill

International Editions, 1994, ISBN: 0070163332.

38. McFarland, M.C.- Parker, A.C.- Camposano, R., "Tutorial on High-Level

Synthesis", Proceedings of the 25th ACM/IEEE Design Automation Conference,

1988, pp. 330-336.

T.B. Yee, 2007 References 2 3 4

39. "MOODS Internals vl .0", University of Southampton, July 2001.

40. Camposano, R.- Saunders, L.F.- Tabet, R.M., "VHDL as input for high-level

synthesis", IEEE Design & Test of Computers, Vol. 8, No. 1, March 1991, pp. 43-

49.

41. Ramachandran, L., et al., "Semantics and synthesis of signals in behavioral

VHDL", Proceedings of the EURO-DAC 92: European Design Automation

Conference, 1992, pp. 616-621.

42. "MOODS VHDL Style Guide Version 1.2 (alpha)", L M E Design Automation Ltd.,

August 2001.

43. Kirkpatrick, S.- Gelatt, C.D.- Vecchi, M.P., "Optimization by Simulated

Annealing", Science, Vol. 220, No. 4598, May 1983, pp. 671-680.

44. Metropolis, N., et al., "Equation of State Calculations by Fast Computing

Machines", Journal of Chemical Physics, Vol. 21, No. 6, June 1953, pp. 1087-

1092.

45. Hauck, S., "The roles of FPGAs in reprogrammable systems", Proceedings of the

IEEE, Vol. 86, No. 4, April 1998, pp. 615-638.

46. "The Programmable Logic Data Book", Xilinx Inc, 2000.

47. Cook, S.A., "The complexity of theorem-proving procedures", Proceedings of the

Third Annual ACM symposium on Theory of computing, 1971, pp. 151 - 158.

48. Sherwani, N.A., "Algorithms for VLSI Physical Design Automation", 3'̂ '' ed,

Kluwer Academic Publishers, 1999, ISBN; 0792383931.

T.B, Yee, 2007 References 2 3 5

49. Sait, S.M.- Youssef, H., "VLSI Physical Design and Automation: Theory and

Practice", McGraw-Hill, 1994, ISBN: 0-07-707742-3.

50. Kernighan, B.W.- Lin, S., "An Efficient Heuristic Procedure for Partitioning of

Electrical Circuits", Bell Systems Technical Journal, Vol. 49, No. 2, February

1970, pp. 291-307.

51. Fiduccia, C.M.- Mattheyses, R.M., "A Linear-Time Heuristic for Improved

Network Partitions", Proceedings of the Design Automation Conference, 1982, pp.

241-247.

52. Krishnamurthy, B., "An Improved Min-Cut Algorithm For Partitioning VLSI

Networks", IEEE Transaction on Computers, Vol. C-33, No. 5, May 1984, pp.

438-446.

53. Huang, D.J.- Kahng, A.B., "Multi-way System Partitioning into a Single Type or

Multiple Types of FPGA", Proceedings of the International Symposium on Field

Programmable Gate Arrays, 1995, pp. 104-145.

54. Hauck, S.- Borriello, G., "An Evaluation of Bipartitioning Techniques",

Proceedings of the Chapel Hill Conference on Advanced Research in VLSI, 1995,

pp. 383-402.

55. Cong, J.- Wu, C., "Global Clustering-Based Performance-Driven Circuit

Partitioning", Proceedings of the International Symposium on Physical Design,

2002, pp. 149-154.

56. Cong, J.- Romesis, M.- Xie, M., "Optimality, Scalability and Stability Study of

Partitioning and Placement Algorithms", Proceedings of the International

Symposium on Physical Design, 2003, pp. 88 - 94.

T.B. Yee, 2007 References 2 3 6

57. Dutt, S.- Deng, W., "VLSI Circuit Partitioning by Cluster-Removal using Iterative

Improvement Techniques", Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, 1996, pp. 194-200.

58. Kuznar, R.- Brglez, F.- Z^c, B., "Cost Minimization of Partitions into Multiple

Devices", Proceedings of the Design Automation Conference, 1993, pp. 315-320.

59. Kuznar, R.- Brglez, F., "PROP: A Recursive Paradigm for Area-Efficient and

Performance Oriented Partitioning of large FPGA Netlists", Proceedings of the

IEEE/ACM International Conference on Computer Aided Design, 1995, pp. 644-

649.

60. Holland, J.H., "Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence",

Reprint ed, 1992, ISBN: 0262581116.

61. Vahid, F.- Gajski, D.D., "Clustering for improved system-level functional

partitioning". Proceedings of the Eighth International Symposium on System

Synthesis, 1995, pp. 28-33.

62. Vahid, F.- Gajski, D.D., "Closeness metrics for system-level functional

partitioning". Proceedings of the EURO-DAC 95: European Design Automation

Conference, 1995, pp. 328-333.

63. Vahid, F.- Le, T.D.M.- Flsu, Y.C., "Functional Partitioning Improvements over

Structural Partitioning for Packaging Constraints and Synthesis-tool Performance",

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 2,

April 1998, pp. 181-208.

T.B. Yee, 2007 References 2 3 7

64. Vahid, F., "A Three-Step Approach to the Functional Partitioning of Large

Behavioral Processes", Proceedings of the International Symposium on System

Synthesis, 1998, pp. 152-157.

65. Vahid, F., "Procedure cloning: a transformation for improved system-level

functional partitioning", ACM Transactions on Design Automation of Electronic

Systems, Vol. 4, No. 1, January 1999, pp. 70-96.

66. Kumar, N.- Srinivasan, V.- Vemuri, R., "Hierarchical Behavioural Partitioning for

Multicomponent Synthesis", Proceedings of the European Design Automation

Conference with EURO-VHDL, 1996, pp. 212-219.

67. Lakshmikanthan, P., et al., "Behavioral Partitioning with Synthesis for Multi-

FPGA Architectures under Interconnect, Area, and Latency Constraints",

Proceedings of the 7th Reconfigurable Architectures Workshop (RAW 2000),

2000, pp. 924-931.

68. Govindarajan, S., et al., "A Technique for Dynamic High-level Exploration During

Behavioral Partitioning for Multi-device Architectures", Proceedings of the 13th

International Conference on VLSI Design, 2000, pp. 212-219.

69. Fang, W.-J.- Wu, A.C.-H., "Performance-Driven Multi-FPGA Partitioning Using

Functional Clustering and Replication", Proceedings of the 35th Design

Automation Conference (DAC), 1998, pp. 283-286.

70. Fang, W.-J.- Wu, A.C.-H., "Integrating HDL Synthesis and Partitioning for Multi-

FPGA Designs", IEEE Design & Test of Computers, Vol. 5, No. 2, April-June

1998, pp. 65-72.

T.B.Yee, 2007 References 2 3 8

71. Fang, W.-J.- Wu, A.C.-H., "Multi-Way FPGA Partitioning by Fully Exploiting

Design Hierarchy", ACM Transactions on Design Automation of Electronic

Systems (TODAES), Vol. 5, No. 1, January 2000, pp. 34-50.

72. Duncan, A.A.- Hendry, D.C.- Gray, P., "An Overview of the COBRA-ABS High

Level Synthesis System for Multi-FPGA Systems", Proceedings of the IEEE

Symposium on FPGAs for Custom Computing Machines, 1998, pp. 106-115.

73. Krupnova, H.- Abbara, A.- Saucier, G., "A hierarchy-driven FPGA partitioning

method". Proceedings of the Design Automation Conference, 1997, pp. 522-525.

74. Keruiings, A.- Frazer, M., "Circuit clustering and its effects on a multi-way circuit

partitioning heuristic". Proceedings of the IEEE 1997 Canadian Conference on

Electrical and Computer Engineering, 1997, pp. 15-18.

75. Vemuri, R., "Genetic Algorithms for Partitioning, Placement, and Layout

Assignment for Multi-chip Modules", PhD Thesis, University of Cincinnati, 1994.

76. Lawrence, D., "Handbook of genetic algorithms", Van No strand Reinhold, New

York, 1991, ISBN: 0442001738.

77. Pratibha, P., et al., "An Evolutionary Algorithm for Automatic Spatial Partitioning

in Reconfigurable Environments", Proceedings of the Third Mexican International

Conference on Artificial Intelligence, 2004, pp. 735-745.

78. Hidalgo, J.I., et al., "Multi-FPGA Systems Synthesis by Means of Evolutionary

Computation", Proceedings of the Genetic and Evolutionary Computation

Conference, 2003, pp. 2109-2120.

79. "Design Pilot™", Aptix Corporation, 2003. www.aDtix.com

http://www.aDtix.com

T.B. Yee, 2007 References 2 3 9

80. "AuspyPartit ionSystemH",Auspy Development Inc. , 2000. www.ausDV.com

81. "Certify", Synplicity, 2003. www.svnplicitv.com

82. Duncan, A.A.- Hendry, D.C.- Gray, P., "The COBRA-ABS high-level synthesis

system for multi-FPGA custom computing machines", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 9, No. 1, February 2001, pp. 218-

223.

83. Ouaiss, I., et al., "An Integrated Partitioning and Synthesis System for

Dynamically Reconfigurable Multi-FPGA Architectures", Proceedings of the 5th

Reconfigurable Architectures Workshop (RAW), 1998, pp. 31-36.

84. Kumar, N., "High-Level VLSI Synthesis For Multichip Designs", PhD Thesis,

University of Cincinnati, 1994.

85. Fang, W.-J.- Wu, A.C.-H., "A hierarchical functional structuring and partitioning

approach for multiple-FPGA implementations". Proceedings of the International

Conference on Computer-Aided Design (ICCAD), 1996, pp. 638 - 643.

86. Gajski, D.D., et al., "SpecSyn; an environment supporting the specify-explore-

refme paradigm for hardware/software system design", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 6, No. 1, March 1998, pp. 84-100.

87. Vahid, F., "Partitioning sequential programs for CAD using a three-step approach",

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3,

July 2002, pp. 413-429.

88. Bringmann, O.- Menn, C.- Rosenstiel, W., "Target Architecture Oriented High-

Level Synthesis for Multi-FPGA Based Emulation", Proceedings of the Design,

Automation and Test in Europe (DATE), 2000, pp. 326-332.

http://www.ausDV.com
http://www.svnplicitv.com

T.B. Yee, 2007 References 2 4 0

89. Duncan, A.A.- Hendry, D.C., "High-level synthesis of DSP datapaths by global

optimisation of variable lifetimes", lEE Proceedings on Computers and Digital

Techniques, Vol. 142, No. 3, May 1995, pp. 215-224.

90. Duncan, A.A.- Hendry, D.C., "Architectural Issues for High Level Synthesis of

DSP Algorithms onto Multiple FPGAs", Proceedings of the 4th Reconfigurable

Architectures Workshop (RAW), 1997, pp. 73-76.

91. Jain, S.C.- Kumar, S.- Kumar, A., "Evaluation of various routing architectures for

multi-FPGA boards". Proceedings of the Thirteenth International Conference on

VLSI Design, 2000, pp. 262-267.

92. Khalid, M.A.S.- Rose, J., "A novel and efficient routing architecture for multi-

FPGA systems", IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 8, No. 1, February 2000, pp. 30-39.

93. Hauck, S., "Multi-FPGA systems", PhD Thesis, University of Washington, 1995.

94. Babb, J., et al., "Logic emulation with virtual wires", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 6, June

1997, pp. 609-626.

95. Vahid, F., "I/O and Performance Tradeoffs with the FunctionBus during Multi-

FPGA Partitioning", Proceedings of the International Symposium on Field-

Programmable Gate Arrays, 1997, pp. 27-34.

96. Chambers, P., "The Ten Commandments of Excellent Design", in Electronic

1997. pp. 33-40.

97. "Application Note XAPP077 - Metastability Considerations", Xilinx Inc, 1997.

T.B. Yee, 2007 References 2 4 1

98. "Application Note XAPP094 - Metastable Recovery", Xilinx Inc, 1997.

99. Clark, I.G., BzAZzogropA}', 1997-2004.

100. "Application Note XAPP094 - Metastable Recovery in Vertex-II Pro FPGAs",

Xilinx Inc, 2005.

101. Beerel, P.A., 'Asynchronous circuits: an increasingly practical design solution",

Proceedings of the International Symposium on Quality Electronic Design, 2002,

pp. 367-372.

102. Peeters, A.M.G., "Single-Rail Handshake Circuits", PhD Thesis, Eindhoven

University of Technology, 1996.

103. Verhoeff, T.P., q / 1 9 9 5 - 1 9 9 8 , Eindhoven

University of Technology.

104. Sutherland, I.E., "Micropipelines", Communications of the ACM, Vol. 32, No. 6,

June 1989, pp. 720-738.

105. Woods, J.v., et al., "AMULET 1: An Asynchronous A R M Microprocessor", IEEE

transactions on computers. Vol. 46, No. 4, April 1997, pp. 385-398.

106. Cummings, C.E., "Simulation and Synthesis Techniques for Asynchronous FIFO

Design", Proceedings of the Synopsys Users Group Conference (SNUG), 2002.

107. Cummings, C.E., "Simulation and Synthesis Techniques for Asynchronous FIFO

Design with Asynchronous Pointer Comparisons", Proceedings of the Synopsys

Users Group Conference (SNUG), 2002.

T.B. Yee, 2007 References 2 4 2

108. "DS232(v0.2) - Asynchronous FIFO v5.1", Xilinx Inc, March 2003.

109. Backer, M., "Asynchronous and Multiple Clock Domain Synthesis for Large Scale

Systems", PhD Thesis, University of Southampton, 2005.

110. Saifhashemi, A.- Beerel, P. A., "High Level Modeling of Channel-Based

Asynchronous Circuit Using Verilog", Proceedings of the Communicating Process

Architectures (CPA2005), 2005, pp. 275-287.

111. Hoare, C.A.R., "Communicating Sequential Processes", Communications of the

ACM, Vol. 21, No. 8, August 1978, pp. 666-677.

112. Hoare, C.A.R., "Communicating Sequential Processes", Prentice-Hall, 1985,

ISBN: 0131532715.

113. Self, R.P.- Fleyry, M.- Downton, A.C., "Design methodology for construction of

asynchronous pipelines with Handel-C", lEE Proceedings - Software, Vol. 150,

No. 1, February 2003, pp. 39-47.

114. Michalewicz, Z - Fogel, D.B., "How to Solve It: Modern Heuristics", 1st ed.

Springer-Verlag, 2000, ISBN: 3540660615.

115. Harel, D., "Algorithms: The spirit of computing", 2nd ed, Addison-Wesley, 1992,

ISBN: 0201504014.

116. Saito, H., et al., "Design of Asynchronous Controllers with Delay Insensitive

Interface", lEICE TRANS. FUNDAMENTALS, Vol. E85-A, No. 12, December

2002,pp.2577-2585.

T.B. Yee, 2007 References 2 4 3

117. Gasteier, M.- Glesner, M., "Bus-based communication synthesis on system level",

ACM Transactions on Design Automation of Electronic Systems (TODAES), Vol.

4, No. 1, January 1999, pp. 1-11.

118. Gutberlet, P.- Rosenstiel, W., "Specification of Interface Components for

Synchronous Data Paths", Proceedings of the 7th international symposium on

system synthesis, 1994, pp. 134-139.

119. Madsen, J.- Hald, B., "An Approach to Interface Synthesis", Proceedings of the 8th

International Symposium of System Synthesis, 1995, pp. 16-21.

120. Svantesson, B.- Kumar, S.- Hemani, A., "A methodology and algorithms for

efficient interprocess communication synthesis from system description in SDL",

Proceedings of the Eleventh International Conference on VLSI Design, 1997, pp.

78-84.

121. Kishinevsky, M.- Cortadella, J.- Kondratyev, A., "Asynchronous interface

specification, analysis and synthesis", Proceedings of the 1998 Design and

Automation Conference, 1998, pp. 2-7.

122. Hauck, S., "Asynchronous design methodologies: an overview". Proceedings of the

IEEE, Vol. 83, No. 1, January 1995, pp. 69-93.

123. Yun, K.Y.- Dill, D.L., "Unifying synchronous/asynchronous state machine

synthesis". Proceedings of the 1993 IEEE/ACM International Conference on

Computer-Aided Design, 1993, pp. 255-260.

124. Bardsley, A.- Edwards, D.A., "The Balsa Asynchronous Circuit Synthesis

System", Proceedings of the Forum on Design Languages (FDL2000), 2000, pp.

37-44.

T.B. Yee, 2007 References 2 4 4

125. Jacobson, H., et al., "High-Level Asynchronous System Design using the ACK

Framework", Proceedings of the Sixth International Symposium on Advanced

Research in Asynchronous Circuits and Systems (ASYNC), 2000, pp. 93-103.

126. Edwards, D.A.- Tom, W.B., "Design, Automation and Test for Asynchronous

Circuits and Systems - Async Tool Survey (3rd edition)", 2004.

127. Gil, D., et al., "Adaptation and Automation of the FPGA design Flow for

asynchronous circuit implementation", Proceedings of the International Conference

on Automation, Control and Instrumentation, 2005.

128. Benini, L.- De Micheli, G., "Networks on chips: a new SoC paradigm", Computer,

Vol. 35, No. 1, January 2002, pp. 70-78.

129. Bainbridge, W.J., "Asynchronous System-on-Chip Interconnect", PhD Thesis,

University of Manchester, 2000.

130. Muttersbach, J.- Villiger, T.- Fichtner, W., "Practical design of globally-

asynchronous locally-synchronous systems", Proceedings of the Sixth International

Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC 2000), 2000, pp. 52-59.

131. Chapiro, D.M., "Globally asynchronous locally synchronous systems", PhD

Thesis, Stanford University, 1984.

132. Yun, K.Y.- Dooply, A.E., "Pausible Clocking Based Heterogeneous Systems",

IEEE Transactions on VLSI Systems, Vol. 17, No. 4, December 1999, pp. 482-

487.

T.B. Yee, 2007 References 2 4 5

133. Bormann, D.S.- Cheung, P.Y.K., "Asynchronous wrapper for heterogeneous

systems", Proceedings of the International Conference on Computer Design (ICCD

97), 1997, pp. 307-314.

134. Muttersbach, J., et al., "Globally-asynchronous locally-synchronous architectures

to simplify the design of on-chip systems". Proceedings of the Twelfth Annual

IEEE International ASIC/SOC Conference, 1999, pp. 317-321.

135. Royal, A.- Cheung, P.Y.K., "Globally Asynchronous Locally Synchronous FPGA

Architectures", Proceedings of the Field Programmable Logic and Application,

2003, pp. 355-364.

136. "3D Synthesis System Version 3.13", Kenneth Y. Yun, University of California,

San Diego, 1999.

137. Yun, K.Y.- Dill, D.L., "Automatic synthesis of extended burst-mode circuits: part I

(specification and hazard-free implementations)", IEEE Transactions on CAD,

Vol. 18, No. 2, February 1999, pp. 101-117.

138. Yun, K.Y.- Dill, D.L., "Automatic synthesis of extended burst-mode circuits; part

II (automatic synthesis)", IEEE Transactions on CAD, Vol. 18, No. 2, February

1999, pp. 118-132.

139. Cummings, C.E., "Coding And Scripting Techniques For FSM Designs With

Synthesis-Optimized, Glitch-Free Outputs", Proceedings of the Synopsys Users

Group Conference (SNUG), 2000.

140. "Spartan-II 2.5V FPGA Family: Complete Data Sheet (DSOOl)", Xilinx Inc, 2003.

141. "Virtex™ 2.5V Field Programmable Gate Arrays (DS003)", Xilinx Inc, 2001.

T.B. Yee, 2007 References 2 4 6

142. "Application Note XAPP611 - Video Compression Using IDCT", Xilinx Inc, 2002.

143. Bhaskaran, V.- Konstantinides, K., "Image and Video Compression Standards:

Algorithms ajid Architectures", 2"^ ed, Kluwer Academic Publishers, 1997, ISBN:

0792399528.

144. "Data Encryption Standard (DBS)", FIPS PUB 46-3, 1999.

145. Daemen, J.- Rijmen, V., "The Design of Rijndael: AES - The Advanced

Encryption Standard", 1st ed. Springer, 2002, ISBN: 3540425802.

146. "Advanced Encryption Standard (AES)", FIPS 197, 2001.

147. "Digilent D2-SB System Board Reference Manual", Digilent Inc., 2003.

148. "Digilent DI04 Peripheral Board Reference Manual", Digilent Inc., 2003.

149. Buchanan, W., "Computer Busses: Design And Application", CRC Press, 2000,

ISBN: 0849308259.

150. "ISO/IEC 10918-1 I ITU-T Recommendation T.81. Digital compression and

coding of continuous-tone still images - part 1: Requirements and guidelines."

International Organization for Standards (ISO), 1993.

151. Wallace, G.K., "The JPEG Still Picture Compression Standard", Communications

of the Association for Computing Machinery, Vol. 34, No. 4, April 1991, pp. 30-

44.

152. Pennebaker, W.B.- Mitchell, J.L., "JPEG: Still Image Data Compression

Standard", 1st ed, Kluwer Academic Publishers, 1992, 0442012721.

T.B. Yee, 2007 References 2 4 7

153. "JPEG File Interchange Format (JFIF)", C-Cube Microsystems, 1992.

154. "Application Note XAPP621 - Variable Length Coding", Xilinx Inc, 2003.

155. Ahmed, N.- Natarajan, T.- Rao, K.R., "Discrete Cosine Transform", IEEE

Transaction on Computers, Vol. C-23, No. 1, January 1987, pp. 90-93.

156. Chapman, A.M., "VHDL Communications Library Guide verl .0", User guide.

University of Southampton, 2005.

157. "IrfanView (Version 3.95)", Irfan Skiljan, 2004. www.irfanview.com

158. "Spartan-IIE 1.8V FPGA Family: Complete Data Sheet (DS077)", Xilinx Inc,

2003.

159. Ozdag, R.O., et al., "High-speed non-linear asynchronous pipelines", Proceedings

of the Design, Automation and Test in Europe (DATE), 2002, pp. 1000-1007.

160. Kim, C.- Shin, H., "A performance-driven logic emulation system: FPGA network

design and performance-driven partitioning", IEEE Transactions on Computer

Aided Design of Integrated Circuits and Systems, Vol. 15, No. 5, May 1996, pp.

560-568.

161. "MOODS User Guide Version 1.2 (alpha)", LME Design Automation Ltd., August

2001.

http://www.irfanview.com

