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Land cover mapping from remotely sens~d imagery provides useful information for 
many authorities on different spatial scales and with different thematic contents. 
Although the spatial resolution of the remotely sensed image has been increased, the 
spatial resolution of the resulting land cover using conventional classifiers is still 
limited by the size of a pixel. This problem can be resolved partly by current super­
resolution mapping techniques based on the spatial dependence maximisation. 
However, limitations still exist for these super-resolution mapping techniques since 
they are based solely on the spatial dependence assumption. 

New approaches for using supplementary data such as panchromatic and fused 
imagery and Light Detection And Ranging (LiDAR) elevation data to increase the 
accuracy and spatial resolution of the thematic map were developed in this thesis. 
Information from the fused and panchromatic imagery was incorporated into the 
Hopfield neural network (HNN) model based forward and inverse models in form of 
reflectance functions. For the fused image, the forward and inverse models were 
formulated based on a linear mixture model and local end-member values. The 
reflectance function for the panchromatic image was derived locally based on the 
spectral and spatial convolutions. Visual and statistical analyses demonstrated that the 
use of fused and panchromatic imagery can increase accuracy of the sub-pixel image. 
The HNN super-resolution mapping using LiDAR elevation data is based on an 
optimisation process with a probability maximisation for the building class as a goal 
together with the goal functions and constraints of the traditional super-resolution 
mapping. The results showed a considerable increase in all accuracy statistics of the 
new technique, particularly for building objects. 

Adopting the HNN model and forward model mechanism, three approaches for super­
resolving of fine sub-pixel multispectral (MS) image from the coarse MS imagery 
were developed based on the HNN super-resolution mapping technique with the 
forward model and semivariogram matching. The first approach can be applied to 
predict the sub-pixel image based on the super-resolution of the mixed pixels. The 
second approach can be used to create the sub-pixel MS image with spectral features 
of the coarse resolution image and spatial variation at sub-pixel resolution. The aim of 
the third approach is to generate a smoothed sub-pixel image by maximising the 
spatial dependence between the sub-pixels based on a semivariance value of zero at 
lag h = 1. 

11 



To myfamily 

. "'" 

!! 

, .. { ~' 

IV 



LIST OF CONTENTS 

ABSTRACT .........•••.................................................................................................... II 

DECLARATION OF AUTHORSHIP ............. ~ ...................................................... 111 

LIST OF CONTENTS ................................................................................................ V 

LIST OF FIGURES ................................................................................................. XII 

LIST OF TABLES ................................................................................................... XV 

ACKN"OWLEDGEMENTS ................................................................................... XVI 

LIST OF ABBREVIATIONS AND SYMBOLS ..••.................•.......................... XVII 

CHAPTER 1: INTRODUCTION ............................................................................... 1 

1.1 SUMMARy ............................................................................................................. 1 

1.2 DEFINITION OF REMOTE SENSING .................................................................. 1 

1.3 DATA ACQUISITION IN REMOTE SENSING ................................................... 2 

1.3.1 Energy sources ................................................................................................. 2 

1.3.1.1 Passive and active energy sources ............................................................. 2 

1.3.2 Energy interactions of the Earth surface ...................................................... 3 

1.3.3 Reflectance spectra as a function of ground properties .............................. 3 

1.3.4 Physical model of the remote sensing system ........•...................................... 3 

1.3.4.1 Pixels ................................................ .......................................................... 4 

1.3.4.2 Spatial variation ............................................. ............................................ 5 

1.3.4.3 Geostatistics ............................................................................................... 5 

1.4 CLASSIFICATION OF LAND COVER ................................................................ 5 

1.4.1 Basic concepts in land cover classification .................................................... 6 

1.4.1.1 Land use versus land cover ........................................................................ 6 

1.4.1.2 Land cover classification ........................................................................... 6 

1.4.2 Hard classification ........................................................................................... 7 

1.4.2.1 Parallelpiped classifier ............................................... ............................... 7 

1.4.2.2 Minimum distance classifier ...................................................................... 7 

1.4.2.3 Maximum likelihood classifier ................................................................... 7 

v 



1.4.3 Soft -classification ............................................................................................. 8 

1.4.3.1 Spectral mixture analysis ........................................................................... 8 

1.4.3.2 Fuzzy classification .................................................................................... 9 

1.5 IMAGE FUSION .................................................................................................. 1 0 

1.6 SUPER-RESOLUTION MAPPING ...................................................................... 10 

1.7 PROBLEMS AND OBJECTIVES ........................................................................ 11 

CHAPTER 2: METHODS USED TO INCREASE THE SPATIAL 
RESOLUTION OF URBAN THEMATIC MAPS .................................................. 14 

2.1 SUMMARy ........................................................................................................... 14 

2.2 SOFT CLASSIFICATION .................................................................................... 14 

2.2.1 Spectral mixture analysis ........................................................................••... 15 

2.2.1.1 Limited number of end members .............................................................. 15 

2.2.1.2 Training data .......................................... .................................................. 16 

2.2.1.3 Non-linear mixture models ....................................................................... 16 

2.2.2 Fuzzy set theory and soft-classification ••........•............................................ 16 

2.2.2.1 Fuzzy c-means clustering algorithms ....................................................... 17 

2.2.2.2 Bayesian Fuzzy classification .................................................................. 18 

2.2.2.3 Fuzzy rule base classification .................................................................. 19 

2.2.2.4 Soft classification using neural networks .. ............................................... 19 

2.2.2.5 Soft classification using support vector machines ................................... 22 

2.2.2.6 Soft classification using k-nearest neighbours ......................................... 23 

2.2.3 Accuracy assessment for soft classification ................................................. 23 

2.3 IMAGE FUSION ................................................................................................... 24 

2.3.1 Introduction ................................................................................................... 24 

2.3.2 Projection and substitution methods ........................................................... 24 

2.3.2.1 Intensity-Hue-Saturation .......................................................................... 24 

2.3.2.2 peA methods ............................................................................................ 25 

2.3.2.3 Gram-Schmidt transformation ................................................................. 25 

2.3.2.4 Filter fusion (FF) ..................................................................................... 26 

2.3.3 Relative spectral contribution methods ...................................................... 26 

2.3.3.1 PAN+XS method (PAN+XS) .................................................................... 26 

2.3.3.2 Regressionfusion (RF) ............................................................................. 27 

2.3.3.3 Brovey transform ...................................................................................... 27 

2.3.4 Wavelets image fusion based on the ARSIS concept methods .................. 27 

2.3.4.1 Wavelets transform .................................................................................. 27 

VI 



2.3.4.2 ARS1S concepts/or image/usion ............................................................. 28 

2.3.4 Further fusion methods ................................................................................ 30 

2.3.4.1 Hybrid method .......................................................................................... 30 

2.3.4.2 Geostatistical digital image merging ....................................................... 30 

2.3.4.3 Spatial based technique ........................................................................... 31 

2.4 SUPER RESOLUTION MAPPING ...................................................................... 31 

2.4.1 Image sharpening ............................................................................ ., ............. 32 

2.4.2 Clustering techniques .................................................................................... 32 

2.4.2.1 Per-field classification ............................................................................. 33 

2.4.2.2 Spatial clustering and image segmentation ............................................. 33 

2.4.2.3 Spatial clustering techniques ................................................................... 34 

2.4.4 Two-point histogram ..................................................................................... 35 

2.4.3 Super-resolution mapping using neural networks ..................................... 36 

2.4.3.1 Super-resolution mapping using MLP neural network ............................ 36 

2.4.3.2 Super-resolution mapping using the Hopfield neural network ................ 37 

.2.5 GENERAL MODEL FOR USING SUPPLEMENTARY DATA FOR SUPER-
RESOLUTION MAPPING .......................................................................................... 41 

2.5.1 The Hopfield neural network and added constraint and goal function .. .41 

2.5.2 General model for super-resolution mapping using fused or 
panchromatic images ............................................................................................. 42 

2.5.2.1 Super-resolution mapping using information/rom the/used image as a 
constraint ............................................................................................................. 44 

2.5.2.2 Super-resolution mapping using the panchromatic image as a constraint 
.............................................................................................................................. 44 

2.5.3 Multispectral image super-resolution ........................................................ .45 

2.5.4 General model for super-resolution mapping using the LiDAR elevation 
data .......................................................................................................................... 45 

CHAPTER 3: SUPER-RESOLUTION MAPPING USING A HOPFIELD 
NEURAL NETWORK AND A FUSED IMAGE ................................................... .47 

3.1 INTRODUCTION ................................................................................................. 47 

3.2 HOPFIELD NEURAL NETWORK STRUCTURE FOR USING A FUSED 
IMAGE FOR SUPER-RESOLUTION MAPPING .................................................... .47 

3.2.1 Fused imagery for land cover classification ............................................... .47 

3.2.2 The Hopfield neural network design ........................................................... 48 

3.3 EXPERIMENT 1: SIMULATED IKONOS DATA .............................................. 54 

3.3.1 Data ................................................................................................................. 54 

3.3.1.1 Raw data analysis .................................................................................... 55 

vn 



3.3.1.2 Data simulation ........................................................................................ 57 

3.3.1.3 Pre-processing ......................................................................................... 58 

3.3.1.4 Global end-member spectra ...................................... ............................... 59 

3.3.1.5 Local end-member spectra ..................................... .................................. 59 

3.3.2 Results and discussion ................................................................................... 61 

3.3.2.1 Network settings ............................................... ........................................ 61 

3.3.2.2 Accuracy assessment ................................................................................ 61 

3.3.2.3 Visual evaluation ............................................ .......................................... 62 

3.3.2.4 Statistical evaluation ................................................................................ 64 

3.4 EXPERIMENT 2: DEGRADED QUICKBIRD IMAGE ...................................... 65 

3.4.1 Data ............................ o •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 65 

3.4.1.1 Training and reference data .................................................................... 66 

3.4.1.2 Image degradation ................................................................................... 67 

3.4.1.3 Pre-processing ......................................................................................... 69 

3.4.2 Results and discussion ................................................................................... 70 

3.4.2.1 Network settings and accuracy assessment ............................................. 70 

3.4.2.2 Visual evaluation ............................................ .......................................... 72 

3.4.2.3 Statistical evaluation ............................................. ................................... 73 

3.4.2.4 Image registration error effect ................................................. ................ 74 

3.5 CONCLUSIONS .................................................................................................... 74 

CHAPTER 4: SUPER-RESOLUTION MAPPING USING A HOPFIELD 
NEURAL NETWORK WITH THE PANCHROMATIC IMAGE ....................... 76 

4.1 INTRODUCTION ................................................................................................. 76 

4.2 HOPFIELD NEURAL NETWORK STRUCTURE FOR USING THE PAN 
IMAGE FOR SUPER-RESOLUTION MAPPING ..................................................... 76 

4.2.1 General model. ............................................................................................... 76 

4.2.2 HNN structure ............................................................................................... 77 

4.2.2.1 Forward model ................................................. ........................................ 79 

4.2.2.2 Spectral convolution ................................................................................ 80 

4.2.2.3 Error image .............................................................................................. 80 

4.2.2.4 Inverse model and panchromatic reflectance constraint ......................... 80 

4.2.2.5 Weighting mechanismfor proportion and panchromatic reflectance 
constraint ............................................................................................................. 82 

4.3 EXAMPLE 1: SIMULATED IKONOS IMAGE .................................................. 82 

4.3.1 Data ................................................................................................................. 82 

Vlll 



4.3.2 Local end-member spectra ........................................................................... 84 

4.3.3 Local spectral convolution weighting factor ............................•.................. 85 

4.3.4 Results and discussions .........•....................................................................... 85 

4.3.4.1 Network settings ....................................................................................... 85 

4.3.4.2 Visual evaluation ............................................ .......................................... 86 

4.3.4.3 Statistical evaluation ................................................................................ 87 

4.4 EXAMPLE 2: DEGRADED QUICKBIRD IMAGE ............................................ 88 

4.4.1 Data ................................................................................................................. S8 

4.4.1.1 Training and reference data .................................................................... 88 

4.4.1.2 Data degradation ..................................................................................... 91 

4.4.1.3 Pre-processing ......................................................................................... 91 

4.4.2 Results and discussions ................................................................................. 92 

4.4.2.1 Network settings ....................................................................................... 92 

4.4.2.2 Visual evaluation ...................................................................................... 92 

4.4.2.3 Statistical evaluation ................................................................................ 94 

4.4.2.4 Image registration error effect ................................................................. 95 

4.5 CONCLUSIONS .................................................................................................... 96 

CHAPTER 5: SUPER-RESOLUTION OF MULTISPECTRAL IMAGERY 
BASED ON THE HNN .....................••....................................................................... 98 

5.1 INTRODUCTION ................................................................................................. 98 

5.2 SUPER-RESOLUTION MAPPING AND FORWARD MODEL FOR SUPER-
RESOLUTION OF MS IMAGERY ............................................................................ 99 

5.2.1 General model. ............................................................................................... 99 

5.2.1.1 Soft-classification for super-resolution mapping of MS imagery .......... l 00 

5.2.1.2 Forward model and end-member spectra ...................................... ........ 101 

5.2.2 Evaluation of the super-resolved image .................................................... 101 

5.3 EXPERIMENT .................................................................................................... 102 

5.3.1 Data ............................................................................................................... 102 

5.3.1.1 Reference data ........................................................................................ 102 

5.3.1.2 Degraded images and soft-classification .......................................... ..... 102 

5.3.2 Results and discussion ................................................................................. 1 05 

5.3.2.1 Results .................................................................................................... 1 05 

5.3.2.2 Visual evaluation ................. .......................................................... ......... 108 

5.3.2.3 Statistical evaluation ............................................. ................................. 1 08 

IX 



5.4 SUPER-RESOLUTION OF MS IMAGERY USING SEMIVARlOGRAM 
MATCHING .............................................................................................................. 109 

5.4.1 General model. ............................................................................................. 109 

5.4.2 HNN structure ............................................................................................. 110 

5.4.3 Semivariogram matching for degraded MS image .................................. 112 

5.4.3.1 Data .................................................. ...................................................... 112 

5.4.3.2 Results .................................................................................................... 114 

5.5 COMBINATION OF THE HNN SUPER-RESOLUTION USING THE 
FORWARD MODEL AND SEMIVARIOGRAM MATCHING ............................. 115 

5.6 IMAGE SMOOTHING USING THE HNN WITH SEMIV ARI 0 GRAM 
MATCHING .............................................................................................................. 117 

5.6.1 General model .............................................................................................. 117 

5.6.2 Results and discussion ................................................................................. 119 

5.6.2.1 Smoothing of single MS image ............................................................... 119 

5.6.2.2 Smoothing of SPOT MS image ............................................................... 121 

5.7 CONCLUSIONS .................................................................................................. 123 

CHAPTER 6: SUPER-RESOLUTION MAPPING USING A HOP FIELD 
NEURAL NETWORK WITH LIDAR DATA ...................................................... 125 

6.1 INTRODUCTION ............................................................................................... 125 

6.2 LITERATURE REVIEWS .................................................................................. 125 

6.3 METHOD ............................................................................................................. 126 

6.3.1 Hopfield neural network ............................................................................. 126 

6.3.2 Height function ............................................................................................ 127 

6.4 EXPERIMENT .................................................................................................... 129 

6.4.1 Data ............................................................................................................... 129 

6.4.1.1 Optical and Elevation Image ................................................................. 129 

6.4.1.2 Land class proportion image ................................................................. 129 

6.4.1.3 Statistical analysis of LiDAR elevation data .......................................... 129 

6.4.2 Results and discussions ............................................................................... 130 

6.4.2.1 Network settings and hard classification ............................................. .. 130 

6.4.2.2 Visual evaluation .................................................................................... 133 

6.4.2.3 Statistical evaluation .............................................................................. 133 

6.5 CONCLUSIONS .................................................................................................. 134 

CHAPTER 7: DISCUSSION AND FUTURE RESEARCH ................................ 135 

7.1 INTRODUCTION ............................................................................................... 135 

x 



7.2 SPATIAL DEPENDENCE AND SUPER-RESOLUTION MAPPING ............. 135 

7.2.1 Spatial dependence at sub-pixel spatial resolution .................................. 135 

7.2.1.1 Spatial dependence and small objects ................................................... 135 

7.2.1.2 Spatial dependence and accuracy of the sub-pixel maps ....................... J38 

7.2.2 Using supplementary data for super-resolution ....................................... 139 

7.2.2.1 Super-resolution mapping by the HNN with fused imagery .................. 139 

7.2.2.2 Super-resolution mapping by the HNN with PAN imagery ................ ... 140 

7.2.2.3 Super-resolution mapping by the HNN with LiDAR elevation data ...... 141 

7.2.3 Spatial dependence for image smoothing using variogram matching .... 141 

7.3 PROBLEMS FOR THE NEW APPROACHES .................................................. 142 

7.3.1 Computation problem ................................................................................. 142 

7.3.2 The limit of number ofland cover classes ................................................. 143 

7.3.3 Image registration error ............................................................................. 143 

7.4 FUTURE RESEARCH ........................................................................................ 144 

7.4.1 Downscaling without classification step .................................................... 144 

7.4.2 The HNN model for image fusion .............................................................. 144 

7.4.3 Improvement and alternatives for the proposed approaches ................. 144 

CHAPTER 8: CONCLUSIONS ............................................................................. 146 

8.1 INTRODUCTION ............................................................................................... 146 

8.2 SUMMARY ......................................................................................................... 146 

8.2.1 Background .................................................................................................. 146 

8.2.2 Objectives ..................................................................................................... 146 

8.2.3 Development and analysis .......................................................................... 146 

8.3 CONCLUSIONS .................................................................................................. 149 

REFERENCES ......................................................................................................... 151 

Xl 



LIST OF FIGURES 

Figure 1.1. A remote sensing system (Lillesand and Kiefer (2000» ........................ 1 

Figure 1.2 Electromagnetic spectrum ..................................................•..................... 2 

Figure 1.3 (a) Land cover proportion image and (b), (c), (d) three possible 

resulting super-resolution mapping images based on maximising spatial 

dependence .......................................................................................................... 12 

Figure 2.1. Neural network architecture for image classification ......................... 20 

Figure 2.2. Approximation and detail images of an image using the Mallat 

algorithm ............................................................................................................. 29 

Figure 2.3 Multi-scale pyramid ............................................................•.................... 29 

Figure 2.4. Hopfield neural network of five nodes .................................................. 37 

Figure 2.5 Hopfield neural network for super-resolution mapping ...................... 38 

Figure 2.6. General model for super-resolution mapping using panchromatic or 

MS image ............................................................................................................ 43 

Figure 2.7 General model to incorporate LiDAR elevation data for super-

resolution mapping ............................................................................................ 46 

Figure 3.1 HNN super-resolution mapping using the fused multispectral mages48 

Figure 3.2 Reflectance constraint for sub-pixels covered by pixel (m,n) at the 

fused level. ........................................................................................................... 49 

Figure 3.3 Four steps in experiment: ........................................................................ 53 

Figure 3.4 (a) Land cover map at 4 m spatial resolution used for simulating data, 

(b) 4 m cereal class map, (c) 4 m grass class map, (d) 4 m trees class map. 54 

Figure 3.5 Histogram of three classes in four bands of IKONOS MS image: ...... 56 

Figure 3.6 Simulated IKONOS image: ..................................................................... 57 

Figure 3.7 Local end-member spectra calculation: ................................................. 59 

Figure 3.8 Results for simulated IKON OS image: .................................................. 63 

Figure 3.9 . Four steps in experiment: ...................................................................... 65 

Figure 3.10 QuickBird MS and PAN image ......................................•••................... 66 

Figure 3.11 Three land cover classes image for reference: .................•.................. 67 

Figure 3.12 Degraded MS and PAN images ............................................................ 68 

Figure 3.13 Results for the Degraded QuickBird image: ....................................... 71 

xu 



Figure 3.14 The effect ofthe image registration on Kappa Index Agreement 

value of resulted sub-pixel map using the HNN super-resolution mapping 

using the fused image ......................................................................................... 74 

Figure 4.1 HNN super-resolution (SR) mapping using the panchromatic (PAN) 

mages .......................................................................... ~ ........................................ 77 

Figure 4.2 Panchromatic (PAN) reflectance constraint for sub-pixels covered by 

pixel (m,n) at the PAN spatial resolution (SR) ................................................ 78 

Figure 4.3 Results of the simulated data ..........................................•••..................... 83 

Figure 4.4 Four steps in experiment: ................................................••..•................... 88 

Figure 4.5 Original PAN and MS images: ......................................•........................ 89 

Figure 4.6 Four land cover class images for reference: .................•••••.................... 89 

Figure 4.7 Degraded PAN and MS images: ............................................................. 90 

Figure 4.8 Results for the degraded QuickBird images: ..............••••...................... 93 

Figure 4.9 The effect of image registration error on Kappa Index of Agreement 

value of the sub-pixel map produced using the HNN super-resolution 

mapping using the PAN image .......................................................................... 96 

Figure 5.1 General model for super-resolution of MS imagery .....•....................... 99 

Figure 5.5.2 Reference 20 m MS image ............................................•.•................... 103 

Figure 5.3 Unsupervised classes ....•.•....................................................................... 103 

Figure 5.4 Degraded MS images: ............................................................................ 104 

Figure 5.5 Super resolution of the 40 m MS image: .............................................. 1 05 

Figure 5.6 Super resolution ofthe 60 m MS image ............................................... l06 

Figure 5.7 Super resolution of the 80 m MS image ............................................... l07 

Figure 5.8 Super-resolution and semivariogram matching ................................. 109 

Figure 5.9 Structure of the HNN for semivariogram matching ........................... lll 

Figure 5.10 Sub-pixel semivariogram matching of a degraded MS image ......... I13 

Figure 5.11 Calculation of semivariance values based on the supporting pixels in 

eight directions ................................................................................................. 113 

Figure 5.12 Effect of semivariogram matching ..................................................... 114 

Figure 5.13 Sub-pixel images simulated from semivariogram matching ........... 116 

Figure 5.14 Image smoothening by zero semivariance ........................................ 118 

Figure 5.15 Effect of the reflectance constraint and the semivariance function in 

the South direction ........................................................................................... 118 

Figure 5.16 Smoothing of the degraded QuickBird image ............•...................... 120 

Xlll 



Figure 5.17 Smoothing of the SPOT the HNN super-resolved images using 

forward model .................................................................................................. 122 

Figure 6.1 Super-resolution mapping using the HNN .......................................... 127 

Figure 6.2 Optical and LiDAR elevation data used for land cover map and 

elevation data simulation ................................................................................. 128 

Figure 6.3 Histograms oftrees and building classes in LiDAR elevation data .. 130 

Figure 6.4 Reference and resulting images ............................................................ 131 

Figure 7.1 Zoom factor and spatial dependence ................................................... 135 

Figure 7.2 Spatial dependence effects on the small objects .................................. 137 

Figure 7.3 Super-resolution for objects with different sizes ................................ 138 

">-" •• < -;: 

. ~.' ';: 

"t, " 

XIV 



LIST OF TABLES 

Table 3.1 Statistical Information for the Cereal, Grass and Trees Classes in the 

IKONOS Image .................................................................................................. 55 

Table 3.2 Confusion matrices and Accuracy Statistics of Simulated IKONOS 

Results ....................................................................................•............................ 62 

Table 3.3 Confusion Matrices and Accuracy Statistics of Degraded QuickBird 

Results ....................................................................................••........................... 70 

Table 4.1 Accuracy statistics of simulated results ................................................... S6 

Table 4.2 Accuracy Statistics of Degraded QuickBird Results .............................. 94 

Table 5.1 Accuracy statistics of the soft-classification .......................................... 104 

Table 5.2 RMSE of the spectral bands of the 40 m degraded MS and the 

resulting 20 m super-resolved images ............................................................ 106 

Table 5.3 RMSE of the spectral bands of the 60 m degraded MS and the 

resulting 20 m super-resolved images ............................................................ 107 

Table 5.4 RMSE of the spectral bands of the SO m degraded MS image and the 

resulting 20 m and 40 m super-resolved images ..................•.•....................... 10S 

Table 5.5 RMSE of the super-resolution image before and after semivariogram 

matching ............................................................................................................ 117 

Table 5.6 RMSE of the degraded, smoothed and bilinear interpolation images120 

Table 5.7 RMSE of the super-resolved image using the HNN and smoothed 

SPOT images .................................................................................................... 122 

Table 6.1 Accuracy statistics for LiDAR experiment .................••........................ 132 

xv 



ACKNOWLEDGEMENTS 

The completion of this thesis would not have been possible without the support of 

many people. First of all, I would like to express my gratitude to my first superviser, 

Professor Peter Atkinson, for his useful guidence, constructive comments and 

criticisms, English correction, and encouragement during this work. I would also like 

to thank my second supervisor, Dr. Hugh Lewis, for his help with useful ideas, 

technical discussions and computer codes. 

I am grateful to the Vietnamese Government, the Ministry of Education and Training 

and the Hanoi Mining and Geology University for providing me the funding to study 

in the UK. 

Many thanks are directed to all the individuals who have helped me during this 

research. Also, a big thank-you goes to all my friends and colleagues for their 

enjoyable time together and great support. 

Finally, I have to say "thanks" to my family, particularly my wife and my daughter 

MinhAnh. 

r. 

: ... -

XVI 



LIST OF ABBREVIATIONS AND SYMBOLS 

ARSIS - Amelioration de la Resolution Spatiale par Injection de Structures 

A VHRR - Advanced Very High Resolution Radiometer 

DEM - digital elevation model 

DN - digital number 

DSM - digital surface model 

DTM - digital elevation model 

GIS - geographical information system 

GRE - ground resolution element 

HNN - Hopfield neural network 

HPF - high pass filtered 

HRV - high resolution visible 

IBSM - Inter-Band Structures Model 

IFOV - instantaneous field-of-view 

IHS - Intensity-Hue-Saturation 

KIA - Kappa Index Agreement-K 

Landsat - Land Remote-sensing Satellite 

LiDAR - Light Detection And Ranging 

ME - mean error 

MS - Multispectral 

NOAA - National Oceanic and Atmospheric Administration's Advanced 

PCA - principal component analysis 

PAN - panchromatic 

RMSE - Root Mean Square Error 

SPOT - Satellite Pour l'Observation de la Terre 

TM - Thematic Mapper 

Ym (h) - semivariance at lag h 

IL - wavelength 

e - fuzzy subset 

E - a universal of generic elements denoted by c; 
c; - generic elements denoted by 

f.l - membership grade within the interval of a fuzzy subset 

XVll 



C - the covariance matrix 

E-Energy 

e - vector of error terms for each spectral band 

Gl, G2 - Goal functions 

h - distance and direction vector of separation or lag 

Jm - square error function 

N (h) - number of vector data a lag h 

N - number of pixels 

0- object function 

P - vector of the proportions of mixture components for each pixel 

P - land cover proportion 

p( Wi Ix) - the conditional probability of a pixel x belonging to class Wi 

PLCkj - spatial dependence ofpixelj of class k 

R). - spectral reflectance 

Shoe - the matrix of end-member spectra (b = number of spectral bands, c= number of 

classes) 

SiJ - end-member spectra values 

v - data value, output value of the neuron 

x - vector of the measured sensor responses for each pixel 

x - data value 

z - zoom factor 

" ;" r .~ , ; !' 

XV111 



Chapter 1: Introduction 

1.1 Summary 

This chapter is a review of remote sensing techniques for land cover mapping and 

related aspects such as data acquisition and data analysis. While a broad review of 

techniques are covered, the most important concepts that are relevant to the thesis are 

also discussed. These include land cover, hard and soft classification, super-resolution 

mapping techniques and image fusion techniques. 

Firstly, the basic principles of remote sensing are presented, followed by a review of 

methods of land cover classification. These concepts aim to provide a background for 

the research. Secondly, definition and reviews of techniques for both super-resolution 

mapping and image fusion techniques are introduced. Finally, the chapter 

concentrates on the problems which this research aims to solve: urban land cover 

mapping and the rationale of using super-resolution mapping techniques as a solution. 
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Figure 1.1. A remote sensing system (Lillesand and Kiefer (2000)) 

1.2 Definition of remote sensing 

(h) 
Intormation 

products 

(i) 
Users 

Remote sensing, as broadly defined by Lillesand and Kiefer (2000), "is the science 

and art of obtaining information about an object, area, or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, area, or 

phenomenon under investigation". A narrower definition was provided by Campbell 

(1996) that "remote sensing is the practice of deriving information about the Earth's 

land and water surface using images acquired from an overhead perspective, using 
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electromagnetic radiation in one or more regions of the electromagnetic spectrum, 

reflected or emitted from the earth's surface". A remote sensing system is depicted in 

Figure 1.1. 

According to the above definitions, remote sensing involves two basic processes: data 

acquisition and data analysis. The elements of the data acquisition process are energy 

sources, energy interactions with the atmosphere and the Earth surface, and the 

physical model for measurement. The introduction of these elements is the objective 

of Section 1.3 of this chapter. The second process, data analysis, involves interpreting 

the data acquired by the sensors to provide information applied in a wide range of 

fields. The present research is focused on the analysis of remotely sensed data for land 

cover extraction, which is often referred to as image classification. 

1.3 Data acquisition in remote sensing 

1.3.1 Energy sources 

The most widely used electromagnetic energy in remote sensing exists at visible and 

near-infrared wavelengths, particularly for thematic land cover classification. Other 

electromagnetic energy that may be used includes radio waves, heat, ultraviolet rays 

and X-rays. All these kinds of energy are inherently similar and radiate in accordance 

with basic wave theory. Most remote sensing systems utilise one or several of the 

visible, infrared and microwave portions of the spectrum (Figure 1.2). 

1.3.1.1 Passive and active energy sources 

Energy is produced by nuclear reaction within the Sun in a full spectrum of 

electromagnetic radiation and transmitted through space without experiencing major 

changes. Some remote sensing systems detect energy that is emitted or reflected 
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naturally from the ground. Other systems use instruments that generate their own 

energy, and then record the reflection from the Earth's surface. The two kinds of 

systems are termed passive and active systems, respectively. 

1.3.2 Energy interactions of the Earth surface 

As electromagnetic energy reaches the Earth's surface, it interacts with the surface in 

three basic ways: transmission, absorption and reflection. The proportions of light 

attributed for each process depend on the properties of the surface, the energy's 

wavelength and the angle of illumination (Campbell, 1996). The state of energy 

interactions of wavelength A can be expressed as follows: 

(1.1) 

Er(A) represents the part of the energy transmitted by the surface. Its magnitude 

depends on the transmittance property of the surface. EAA) represents the absorbed 

amount of incident energy EAA) and ER(A) is the reflected energy. 

1.3.3 Reflectance spectra as a function of ground properties 

Among the three interaction properties of the surface, reflectance is the most 

important because all the remote sensing systems operate using reflected energy. The 

reflectance of each surface feature is determined as function of wavelength and is 

called spectral reflectance R).., which is a percentage, defined as 

(1.2) 

where EJ(A) and ER(A) are defined as in (1.1). Thematic information can be extracted 

from the remotely sensed data based on the spectral reflectance of the Earth surface 

features. 

1.3.4 Physical model of the remote sensing system 

Electromagnetic radiation is detected by sensors and recorded in pictorial formats for 

analysis by human operators or by computer automatically. At one instant in time, a 

sensor collects energy in a certain waveband from a ground area (ground resolution 

element-GRE) within its instantaneous field-of-view (IFOV - used area measurement 

unit) and transforms the detected energy to a digital value. The recorded digital value 

depends on the energy interactions with the features of the Earth surface area covered 
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by the IFOV and the sensor's characteristics (Warner and Shank, 1997). Remote 

sensing systems are often operated in several wavebands (bands). For example, the 

Land Remote-sensing Satellite (Landsat) Enhanced Thematic Mapper (ETM) and 

acquires data in seven bands between 0.574 /-lm to 12.50 /lm, while IKONOS data 

consist of four Multispectral (MS) bands between 0.4 /lm to 0.85 /lm and a 

panchromatic (PAN) band. 

1.3.4.1 Pixels 

Pixels are the smallest picture elements or cells that make up photographs or images. 

In remote sensing images, each pixel covers an area on the ground. The size of the 

ground covered by a pixel varies between remote sensing systems. The quantity of 

energy reflected or emitted from a GRE determines the digital value or brightness of 

the pixels. However, the GRE should not be confused with the pixel. The difference 

can be illustrated by Landsat MSS with the GRE size of 57 m by 79 m (overlap of 

around 11 m in each scanner pass) and the pixel size of 57 m by 57 m. Within a GRE, 

the properties of the Earth surface are usually considered homogeneous, although this 

is rarely the case in practice. 

i) Spatial Resolution 

Spatial resolution determines the spatial detail depicted in an image. The ground 

dimension of the GRE defines the spatial resolution of remotely sensed data. The 

spatial resolution is influenced primarily by the sensor characteristics and altitude 

above the Earth. High spatial resolution data such as provided by IKONOS are 

produced at 1 m in PAN mode and 4 m in multispectral mode. In contrast, coarse 

spatial resolution data of 1.1 km are produced by the National Oceanic and 

Atmospheric Administration's Advanced (NOAA) Advanced Very High Resolution 

Radiometer (A VHRR). 

ii) Radiometric Resolution 

Radiometric resolution is determined by the number of bits used to record a 

brightness value within a digital image. This shows the sensitivity of the sensor as 

well as the capability for recording and transmitting data. 

iii) Spectral Resolution 
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Spectral resolution is the ability to discriminate fine spectral differences. The spectral 

resolution of a remote sensing system is determined by the number of spectral bands 

over the electromagnetic spectrum and the spectral range of each band. 

1.3.4.2 Spatial variation 

Spatial variation is the variation in data values across space. In remote sensing, spatial 

variation is exhibited through the change of data values across images. Spatial 

dependence is the likelihood that observations close in space are more alike than those 

far apart. This observation was confirmed by Goodchild (1987). The spatial 

dependence assumption is true for most geographic phenomena at different scales. In 

remotely sensed data, the ubiquity of spatial dependence was detected by Atkinson 

and Curran (1995). Spatial dependence can be described by the covariance function, 

which represents the variation between pairs of data at specific distance and direction 

vectors of separation or lags h (Atkinson and Tate, 2000). The spatial variation can 

also be represented by the semivariogram, which is a function relating semivariance 

Ym at lag has 

(1.3) 

where Vi is the data value at point (iJ) and Vi+h is the data value at point (iJ)+h, and 

N(h) is the number of data values. 

1.3.4.3 Geostatistics 

Geostatistics applies the theories of stochastic processes and statistical inference to 

geographic phenomena. In simple terms, geostatistics is a set of techniques for 

estimating the local values of properties that vary in space from sample data 

(Atkinson and Curran, 1998). Geostatistics has been employed for numerous remote 

sensing tasks such as defining the optimal pixel size (Marceau et aI., 1994, Atkinson 

and Curran, 1995), land cover classification (Carr and Mirranda, 1998, de Bruin, 

2000) and estimation of continuous variables (Davidson and Watson, 1995, Dungan, 

1995). 

1.4 Classification of land cover 

Information on land cover is important for a variety of subjects at local, national and 

international levels (Campbell, 1996). This information can be acquired from remote 

sensing imagery automatically based on a process commonly known as land cover 
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classification. The process closely relates to the concepts presented in the following 

sections. 

1.4.1 Basic concepts in land cover classification 

1.4.1.1 Land use versus land cover 

Land use can be defined as the use of land by humans, usually with emphasis on the 

functional role of land in economic activities. In contrast, land cover often relates to 

natural or human-made features of the surface (Lillesand and Kiefer, 2000). 

1.4.1.2 Land cover classification 

Image classification procedures are used to categorise all pixels in an image into land 

cover classes or themes. Each procedure employs one algorithm or combines several 

algorithms, which are called classifiers. For a specific task, the analyst selects the best 

classifier based on the characteristics of each image. Classified land cover data can be 

used directly or reorganised by geographical information system (GIS) tools to 

produce map-like land cover images. Most of classification procedures (except 

unsupervised classification methods) usually involves three stages as follows: 

i) Training 

Training is a stage in which the classifier is taught to recognise pixels belonging to 

certain classes. This stage is often implemented prior to the classification allocation 

stage. 

ii) Allocation 

The allocation stage is a second stage of classification in which a land cover class is 

assigned to all pixels in an image based on the training data and the digital values of 

the pixels. 

iii) Accuracy assessment 

Accuracy assessment is a third stage in which classified pixels are compared with 

reference data to evaluate the accuracy of the classification. With conventional 

classification, accuracy assessment is mainly based on statistics such as the confusion 

matrix, overall accuracy, user's and producer's accuracies, commission and omission 

errors (Congalton, 1991, Campbell, 1996), Kappa Index Agreement-K (KIA) 

(Lillesand and Kiefer, 2000). KIA is accuracy statistics which uses all information in 
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the confusion matrix in order that the chance allocation of labels can be taken into 

consideration (Tso and Mather, 2001). 

1.4.2 Hard classification 

Hard classification is a conventional method, in which each pixel is assigned 

unambiguously to a single land cover class (Foody, 2002). Two approaches may be 

used to perform the hard classification: supervised and unsupervised classification. 

Supervised classification can be defined as the process of using reference data to 

classify pixels of the whole image. Unsupervised classification, in contrast, aggregates 

pixels into natural groups or clusters and then uses reference data to label those 

classified groups. In the following sections, the most widely used conventional 

classifiers are represented. 

1.4.2.1 Parallelpiped classifier 

The upper and lower significant bounds of brightness values in all wavebands are 

defined for each class from training data. Together, the range in all bands describes a 

multidimensional box or parallelepiped in the feature space. If, on classification, 

pixels are found to lie in a parallelepiped they are labelled as belonging to that class. 

1.4.2.2 Minimum distance classifier 

The minimum Euclidean distance in multi-dimensional feature space between the 

position of the pixels to be classified and the mean of each class is used as a criterion 

to identify a pixel belonging to a class. 

1.4.2.3 Maximum likelihood classifier 

The maximum likelihood classifier (MLC) is a supervised statistical approach to 

pattern recognition. In this classifier, the conditional probability of a pixel belonging 

to a class is calculated for all classes, and a pixel is assigned to a class if the 

conditional probability is the highest. This rule can be expressed as 

(1.4) 

where p( Wi Ix) is the conditional probability of a pixel x belonging to class Wi. 

The conditional probability p(wilx) can then be computed based on the Bayesian 

formula: 

I 
P(XIWi)P(Wi) 

P(WiX)= , 
p(x) 

(1.5) 
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where p(xlwj ) is the occurrence of events x gIVen Wi, p(x) and p(wJ are pnor 

probabilities of events x and Wi. The p(x) is the same for all pixels and, p(wJ is usually 

set to be unifonnly distributed. The probability p(xlw;) is calculated as follows: 

(1.6) 

where Ci is the covariance matrix of class Wi with the dimension p, Pi is the mean 

vector of class Wi, Cj-
1 is the inverse matrix of Ci and \.\ is the determinant. 

1.4.3 Soft-classification 

In hard classification, the land cover within a pixel is assumed to belong to a single 

class. However, the real landscape is not always composed of elemental squares or 

pixels (Fisher, 1997). Remotely sensed images, in fact, are commonly dominated by 

pixels that are composed of two or more land cover properties, called mixed pixels. 

As a consequence, the assumption of discrete, mutually exclusive classes and pure 

pixels may often be unsatisfied. Since hard classification is not appropriate for the 

case of mixed pixels, an alternative tool for land cover mapping was developed. Soft 

or fuzzy classification assigns to each pixel multiple and partial class memberships (or 

area proportions of classes in some cases) and, therefore, can produce a more accurate 

and realistic representation of many land covers (Foody, 1996; Bastin, 1997). 

In general, there exist many approaches to the classification of mixed pixels. Two 

common approaches are reviewed here: spectral mixture analysis and fuzzy 

classification. 

1.4.3.1 Spectral mixture analysis 

Spectral mixture analysis involves a range of techniques wherein the digital value of 

mixed pixels is compared to a set of pure reference spectra. The basic assumption is 

that the spectral variation in an image is caused by mixtures of a limited number of 

surface materials. The result is a prediction of the proportions of the ground area of 

each pixel that are occupied by each of the reference classes. The basic mixture model 

may be represented as 

R=SP+e (1.7) 

where 

R = Vector of the measured sensor responses for each pixel 
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Sh·e = the matrix of end-member spectra (b = number of spectral bands, c = number of 

classes) 

P = Vector of the proportions of mixture components for each pixel 

e = Vector of error terms for each spectral band 

Subject to 

:LP = 1 and P 2: 0 (1.8) 

The proportions P can be resolved if n+ 1 2: c (n is number of MS bands). Where 

n+ 1> c, it is possible to estimate P by the least squares principle. The linear spectral 

mixture model has been used widely to generate fraction images of forest cover 

proportions and crop area proportions (Quarmby et al. 1992; Townshend et al. 2000). 

The method also has potential for application with hyperspectral imagery owing to the 

large number of spectral bands. However, the approach has some drawbacks such as 

the limit to the number of land cover classes for unmixing (Lillesand and Kiefer, 

2000). 

1.4.3.2 Fuzzy classification 

Fuzzy-set based approaches are appropriate for resolving the mixture information 

contained by mixed pixels. All of these approaches employ the fuzzy-set theory's 

membership grade concepts for the classes' proportions. An example is the supervised 

fuzzy maximum likelihood classifier proposed by Wang (1990). This algorithm 

provides membership grades for each pixel based on the fuzzy means and fuzzy 

covariance matrices estimated from training sets. Another algorithm for dealing with 

mixed pixels is the fuzzy c-means (FCM) algorithm. 

An alternative algorithm for statistical fuzzy classification is provided by artificial 

neural networks. The potential of neural networks for mixed pixel classification was 

recognised by several authors (e.g. Foody, 1996; Carpenter, 1999). Foody (1996) used 

a multilayer perceptron neural network (MLP) to predict class proportions. The 

network was trained using mixed pixels with proportions outputs. Carpenter (1999) 

applied the ARTMAP mixture system to provide output class proportions with great 

accuracy. The advantage of the ARTMAP mixture system compared to the MLP soft 

classification is that it is not necessary to determine the number of neurons in the 

hidden layers. 
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1.5 Image fusion 

The exact meaning of remote sensing data fusion varies from one scientist to another. 

Pohl and Van Genderen (1998) proposed that "image fusion is the combination of two 

or more different images to form a new image by using a certain algorithm", which is 

restricted to images. The spatial fusion takes place at three levels: pixel, feature and 

decision (Pohl and Van Genderen, 1998). Image fusion at the pixel level is the lowest 

processing level for merging different sources of remote sensing data and 

encompasses the most commonly used techniques (Steinnocher, 1999). At this level, 

image fusion involves combination of two or more different types of images to fonn a 

new image with finer spatial and spectral resolution than that of the original images. 

Fusion at the feature level requires the extraction of objects recognised in the various 

data sources. Similar objects from multiple sources are assigned to each other and 

then fused for further assessment using statistical approaches or artificial neural 

networks. Decision level fusion represents a method that combines information 

obtained from various sources for better understanding of the observed objects. 

Image fusion can be applied to various types of data sets: for example, data from a 

single sensor, data from multiple-sensors and multi-temporal data. While temporal 

image fusion is mainly applicable for change detection, non-temporal fusion of single 

or multi-sensor data can be used in a variety of applications such as image sharpening, 

geometric corrections and image classification (Pohl and Van Genderen, 1998). Thus, 

this thesis will focus on the fusion methods that are useful for increasing the accuracy 

of land cover classification of remotely sensed image for urban land cover. 

1.6 Super-resolution mapping 

The problem of mixed pixels can be solved using soft-classification. The outputs of 

soft-classification are a set of proportion images, each displaying the proportion of a 

certain class. This produces a more appropriate and informative representation of land 

cover than that of hard classification. However, while the class composition of every 

pixel is predicted, the spatial distribution of the classes within the pixels is still 

unknown (Tatem et a!., 2002). Super-resolution mapping refers to the process of sub­

pixel mapping of the soft-classified land cover proportions based on the assumption 

that a mixed pixel is composed of the crisp sub-pixels only. 
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Several techniques have been used for super-resolution mapping. Atkinson (1997) and 

Verhoeye and De Wulf (2001) mapped soft-classified proportion images based on the 

assumption of spatial dependence within and between pixels. These approaches 

produce accurate land cover maps at a finer spatial resolution than the initial input 

images. However, the resulting sub-pixel land cover maps produced by these 

approaches contain linear artefacts (Tatem at al., 2002). Zhan et al. (2002) also used a 

similar technique by interpolating the probability measures derived from MLC and 

spatial information at a pixel scale. The sub-pixel probability vectors produced by 

inverse distance weighted interpolation from the centres (or edges) of neighbouring 

and central pixels. The accuracy of the resulting land cover map produced by this 

approach was slightly greater than the accuracy of the hard classified data. 

Another algorithm, mainly developed by Tatem et al. (Tatem et al. 2000; 2001; 

2002), employs the Hopfield neural network (HNN) as an optimisation tool based on 

the energy minimisation and constrained by the land cover proportions obtained by 

soft-classification. This technique is presented as a simple and robust technique for 

prediction of the location of class proportions within each pixel. More details on the 

technique will be discussed in the next chapter of the thesis. An alternative approach 

for the super-resolution is proposed by Atkinson (2003). This approach uses two­

point histogram matching for optimisation. The first results of this approach show 

potential, but further research is required. 

1.7 Problems and objectives 

Super-resolution mapping or sub-pixel mapping resolves the uncertainty remaining in 

the soft-classified land cover proportions. In the super-resolution maps, the spatial 

locations of soft-classified land cover classes are defined. The resulting super­

resolution maps are similar to the hard classified land cover classes at the sub-pixel 

spatial resolution. Most of the current super-resolution mapping approaches are based 

on the maximisation of the spatial correlation (or spatial dependence) between the 

sub-pixels. These approaches, therefore, can be referred to as clustering algorithms. In 

general, the sub-pixel maps obtained by clustering algorithms are more accurate than 

those produced by the conventional hard classifiers at the original coarse spatial 

resolution. However, there still exists a limit to the detail and accuracy of the resulting 

thematic maps produced by clustering algorithms since they are based only on the 
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soft-classified proportion data at the pixel level and the spatial dependence 

assumption. 

Figure 1.3 shows an example of the inaccuracy of the above-mentioned super­

resolution mapping methods using clustering algorithms. From the land cover 

proportion of a single class in Figure l.3(a), three possible resulting thematic maps at 

sub-pixel resolution can be obtained using clustering algorithms as in Figure 1.3(b), 

1.3( c) and 1.3( d) . All these maps satisfy the assumption of spatial dependence but the 

location of the sub-pixels in the central pixel is different. In the real landscape, the 

100% 100% 100% 

0% 50% 0% 

100% 100% 100% 

(c) (d) 

Figure 1.3 (a) Land cover proportion image and (b), (c), (d) three possible resulting super-resolution 
mapping images based on maximising spatial dependence. 

cases which are similar to the example in Figure 1.3 are quite common. Thus, it is 

possible that the resulting sub-pixel maps obtained by the clustering algorithms 

contain some inaccuracy. This suggests that if some information can be provided at 

the sub-pixel or an intermediate spatial resolution (spatial resolution which finer than 

that of original image but coarser than that of the sub-pixel image) then more accurate 

sub-pixel mapping results can be achieved. 

The development of this thesis emerged from the idea that the information at the sub­

pixel or intermediate spatial resolution can increase the detail and accuracy of the 

super-resolution land cover classes. In fact, sub-pixel information obtained from 

vector boundary data was used previously by Aplin and Atkinson (2001). However, 
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this kind of accurate vector data (i.e. land parcel boundary maps) are not always 

available for remote sensing scenes. Nowadays, together with a MS Image, 

commercial remote sensing systems such as Landsat, Satellite Pour l'Observation de 

la Terre (SPOT), IKONOS or QuickBird also provide panchromatic images with finer 

spatial resolution. Another source of very fine spatial resolution data is Light 

Detection And Ranging (LiDAR) elevation data with a high density of data points and 

high vertical accuracy. The main objective of the research in this thesis is utilising the 

above mentioned sources of fine spatial resolution data for super-resolution land cover 

mappmg. 

First of all, the thesis introduces the method used to obtain the land cover information 

at the sub-pixel scale. This introduction provides specific understanding of the 

published techniques for soft-classification, image fusion and super-resolution land 

cover mapping. From a detailed review on these techniques, the thesis presents a 

general model for utilising the information of the fused and panchromatic imagery 

and LiDAR elevation data for super-resolution mapping. 

Developing from the proposed general model, the new approaches for super­

resolution mapping are presented. The thesis examines the feasibility of these 

approaches using visual and statistical assessment. The goal of this process is to 

demonstrate that information such as from panchromatic imagery and LiDAR 

elevation data is useful for accurate super-resolution mapping using the HNN. In 

order to reach that goal, the super-resolution maps provided by the new approaches 

must be compared with the maps produced by hard classifiers and the super-resolution 

mapping without using supplementary data. 

Finally, the thesis makes use of super-resolution land cover mapping to super-resolve 

the multispectral image. In addition, the thesis also investigates the possibility of 

using spatio-statistical semivariogram information at the sub-pixel level for 

multispectral image super-resolution and interpolation. During the investigation 

process, specific analysis is undertaken to provide a through understanding of the 

impacts of semivariograms on the super-resolution image. 
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Chapter 2: Methods Used to Increase the Spatial 
Resolution of Urban Thematic Maps 

2.1 Summary 

In Chapter 1, the methods for increasing the spatial resolution of the land cover 

classified maps were introduced briefly. This chapter considers these methods in a 

more detailed and specific review. This review represents the published concepts and 

algorithms of three useful techniques for increasing the spatial resolution of land 

cover mapping from remotely sensed images such as: i) soft classification, ii) super­

resolution mapping and iii) data fusion. Furthermore, the review also considers the 

characteristics of these algorithms, their advantages and disadvantages and the 

possibilities of combining them for obtaining finer spatial resolution and more 

accurate land cover maps in comparison with the conventional hard land cover 

classifications. 

The three techniques increase the spatial resolution of resulting land cover classified 

maps in different manners. Soft classification is applied for sub-pixel land cover 

proportion prediction given mixed pixels. In scenes where the land covers are 

spatially distributed with high spatial frequency (for example: urban scenes), soft 

classifiers should be used to achieve more accurate and informative land cover 

mapping. Image fusion techniques are applied to increase the spatial and spectral 

resolution of images from multispectral and panchromatic images. Super-resolution 

mapping techniques are useful to resolve the ambiguity within a pixel (i.e. mapping 

trees in a field) implicit in the land cover proportions predicted by soft classification. 

The last part of the chapter introduces a model to incorporate the information from a 

supplementary source of data such as fused and panchromatic images to increase the 

spatial resolution of the land cover map. 

2.2 Soft classification 

The principles of soft classification were presented briefly in Chapter 1. There are 

many approaches commonly used for soft classification. To choose the most accurate 

soft-classification, it is necessary to review the most commonly used soft­

classification algorithms. Each of these algorithms is discussed in the following 

sections of this chapter. 
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2.2.1 Spectral mixture analysis 

Spectral mixture analysis determines the sub-pixel proportions of ground cover based 

on the assumption that the energy received by the sensor is the linear sum of the 

energy emitted from each cover component within each pixel. Spectral mixture 

analysis is used widely for land cover proportion prediction. Examples are Small 

(2001) who used linear mixture analysis for prediction of vegetation abundance for 

urban land; Theseira et al. (1999,2002) who used spectral mixture modelling applied 

to a semi-arid environment using a multiple end-member approach; Roberts et al. 

(1998) who employed spectral mixture analysis for mapping chaparral; Atkinson et al. 

(1997) who compared linear mixture modelling for sub-pixel land cover mapping 

with the alternative approaches such as statistical fuzzy c-means and artificial neural 

networks. Despite its wide range of applications, spectral mixture analysis has several 

problems that are introduced in the following sections. 

2.2.1.1 Limited number of end members 

A problem with spectral mixture analysis is the restriction of the number of end 

members by the number of available spectral features. It can be inferred that the linear 

mixture model is more appropriate when the number of input features is reasonably 

large (McGwire et aI., 2000). The data sources with large number of spectral bands 

are likely to have large number of spectral features. However, the inter-correlation 

between the bands of large dimensional data may pose problems for solving the set of 

linear equations. This problem may be solved by using orthogonal transformations 

such as the minimum noise fraction (Van de Meer and De long, 2000). 

To overcome the problem of end member number restriction, Bosdogianni et al. 

(1997) proposed a method of predicting land cover proportions with higher order 

moments. Using this method, the proportions of sets of pixels are computed instead of 

land cover proportions within a single pixel. The constraint equations are computed 

from mean values and covariance matrices of the sets of estimated pixels. Therefore, 

the number of equations is augmented to estimate a larger number of end-member 

proportions. A search method is applied to find the solution for the composition for 

end members. It is obvious that the method can be used for estimation of large 

numbers of land cover proportions of sets of mixed pixels. However, the methods also 

reduce the spatial resolution of the classified data because the land cover proportions 

are estimated for sets of mixed pixels rather than for each single pixel. 
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Another approach to overcome the problem of restricted end member number is called 

"multiple end member spectral mixture models" (Theseira et af. 1999, 2002). The 

approach is based on the assumption that the maximum number of classes within a 

pixel is fewer than the number of spectral bands. The proposed technique selects the 

most appropriate composition of end members amongst all possible combinations of 

land covers within a pixel by iteration. The criterion for selection is minimum Root 

Mean Square Error (RMSE). However, the results are unlikely to be acceptable for 

some environment such as semi-arid environment (Thereisa et al., 1999). 

2.2.1.2 Training data 

Before a mixture model is constructed, it is necessary to determine certain constants 

such as the values of the end member spectra. These constants may be detennined 

from training images or from laboratory instruments such as spectrometer. 

Determination of these constants has to be performed carefully to avoid inaccuracy in 

the results of proportion estimation. 

2.2.1.3 Non-linear mixture models 

Another problem of the linear spectral mixture analysis is that it does not account for 

certain factors such as the variability of the reflectance of an end member. In this 

situation, a more sophisticated non-linear mixture model may be required (Borel and 

Gerstl, 1994). In addition, this problem may possibly be solved by non-linear 

classification methods such as fuzzy set theory and neural networks. 

2.2.2 Fuzzy set theory and soft-classification 

Fuzzy classification attempts to handle the mixed pixel problem by employing the 

fuzzy set concept, in which a pixel may have partial membership in more than one 

land cover class. In fuzzy set theory, let S represent a universal of generic elements 

denoted by (. A fuzzy subset e of S is determined by a membership function /.le, 

which assigns a membership grade within the interval [0, 1] to each element (. The 

membership grade can be expressed as 

/.le:(-+ [0,1] (2.1) 

In crisp sets, the membership grade must be ° or 1. It is clear that, the fuzzy set is 

more flexible for handling the problems of vague boundaries that are common in 

nature. The fuzzy subset e can be expressed as 

e=2:.f1e(~)/~ (2.2) 
I 
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(2.3) 

where Equation (2.2) represents the discrete case and Equation (2.3) represents the 

continuous case. The symbol '/' does not represent the division operator but the link 

between the value of ( and its corresponding membership grade !le( () in the fuzzy 

subset e. The symbols "I" and "I"do not represent the sum or integral operator but 

they depict that the element (belongs to the subset e. 

The membership grade !le( () can be denoted as the partial membership of a pixel for a 

set of land covers. The memberships then can be used as surrogates for land cover 

proportions Pl, P2, .. , Pc within a pixel. Based on fuzzy set theory, several approaches 

have been developed for land cover proportion prediction such as the fuzzy c-means 

classifier, Bayesian soft classifier, fuzzy rules base classifiers and fuzzy classification 

by neural networks. 

2.2.2.1 Fuzzy c-means clustering algorithms 

Statistical fuzzy classifiers are developed from the ISODATA clustering algorithm for 

hard classification. The clustering criterion used in the fuzzy c-means algorithm is 

based on minimising the generalised within-groups sum of square error function Jm 

(2.4) 

where Vi is the centre of cluster i, Xk is the vector of measurements of pixel k in the 

feature space, !lik represents the membership values (it can represent land cover 

proportion Pik in land cover soft classification) of the pixel k in class i, c denotes the 

number of classes and N denotes the number of pixels. The values !l;k are the elements 

of the fuzzy partial matrix (or land cover proportion matrix) P. In equation (2.5), the 

square Euclidean distance (xk -Vi? can be replaced by the Mahalanobis distance, 

which requires the calculation of the fuzzy covariance matrix. The local minimum of 

Jm may be achieved from 

(2.5) 

where m is the membership weighting exponent. 

The fuzzy c-means clustering is, thus, performed by iterating Equation (2.5). In the 

first iteration, the cluster means are calculated by the randomly initialised clustering 
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membership /-lik. The membership values then can be derived from the calculated 

cluster means. In the next iteration, the cluster means are computed from the last 

iteration and the process continues until the difference between two consecutive 

iterations is small enough. 

2.2.2.2 Bayesian Fuzzy classification 

Another statistical approach for fuzzy classification is fuzzy maximum likelihood 

classification based on the Bayesian formula (Wang, 1990; Maselli et al., 1995). In 

this approach, the fuzzy means and covariance matrices are expressed as 

and 

(2.6) 

The membership function values /-li in Equation (2.6) can be calculated from the 

conditional probabilities as 

_ Pk(xj ) 

Ilk(xi)- "'[.Pi(x) 
I 

(2.7) 

When the membership function of class i is applied to a pixel vector, the membership 

grade of the pixel in class i is calculated for each pixel. In comparison with the fuzzy 

c-means approaches, the fuzzy maximum likelihood approach seems to be more 

straightforward. However, empirical evaluations by artificial data, which are 

implemented by Bastin (1997) and Eastman and Laney (2002) showed that the 

maximum likelihood sub-pixel decomposition works with important limitations. It is 

critical that the conditional probability distributions from the training site data overlap 

over the complete range of mixtures. Where the training data are pure pixels, the 

classification for mixed pixels is inaccurate. The classifier could perform more 

accurately if mixed pixels are used in the training process but the procedure may then 

fail to uncover the pure pixels. Harne et al. (2001) used conditional probabilities to 

compute proportions for forests in combination with an unsupervised classification. 

The testing procedure showed that the overall proportion of forest was 

underestimated. 

18 



2.2.2.3 Fuzzy rule base classification 

The application of fuzzy rule base methods for soft classification is still at an early 

stage (Tso and Mather, 2000). Simpson and Keller (1995) used fuzzy rule base 

methods to segment sea ice from cloud and cloud-free oceans in polar A VHHR 

imagery with six fuzzy subspaces and seven rules for classification. The proportions 

of each information class were derived from the output of the rules based 

classification without implementing the defuzzification step. Bardossy and Samaniego 

(1995) applied fuzzy rule based classification to produce four categories of land cover 

and an image depicting the degree of ambiguity of classification for each pixel. 

Two issues related to the use of the fuzzy rule base for solving the mixed pixel 

problem should be noted. The first issue is that the membership grades for a given 

pixel over all classes must sum to one. The second issue concerns the number of 

dimensions of remotely sensed data. If the number of data dimensions is large, the 

number of rules may pose a problem for computation. This issue can be solved using 

data dimension reduction techniques. 

2.2.2.4 Soft classification using neural networks 

Neural network techniques have been applied in a wide variety of remote sensing 

applications (Atkinson and Tatnall, 1997, Tso and Mather, 2000). Several kinds of 

neural networks, including the multi-layer perceptron and ARTMAP system, can be 

used for image classification, particularly for soft classification. Evaluation of neural 

networks for hard classification is implemented by Paola and Schowengerdt (1995), 

who compared the maximum likelihood classifier and back-propagation neural 

network for urban land use classification. For soft classification, comparison with 

statistical soft classification techniques such as fuzzy c-means and mixture model 

have been undertaken by Atkinson et al. (1997) who achieved more accurate results 

with the neural network approach in terms of the accuracy of classification. 

Two types of the most widely used neural network architectures for soft classification 

are the multi-layer perceptron and Adaptive Resonance Theory (ART) systems. In 

addition, application of these two architectures is introduced in the following sections. 

• Soft classification using the multi-layer perceptron network 

The multi-layer perceptron neural network is a feed-forward network using the back­

propagation learning algorithm. The architecture of the network used for image 
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classification can be seen in Figure 2.1. A feed-forward neural network usually has 

three layers. The first layer is the input layer, which contains the set of nodes that 

receive external inputs. The number of nodes in the input layer is equal to the 

dimension of the feature space. Each node in the input layer connects to all of the 

nodes in the hidden layer. The number of hidden layers is usually one or two 

depending on the application. The last layer is the output layer, which produces the 

output for classification. Therefore, each node in the output layer represents an 

information class. 

Hidden layer 

Input 
layer 

Inputs 

Figure 2.1. Neural network architecture for image classification 

Output 
layer 

Outputs 

The neural network passes the signals from the input layer to the output layer via the 

hidden layers in a feed-forward manner. The signal received by the node of the next 

layer from all of its preceding nodes is as follows 

(2.8) 

where roji represents the weights between node i and node j, and OJ is the output from 

the node i. The output from a given nodej is then computed from 

(2.9) 

The function f is the activation function which is usually a sigmoid function. The 

procedure for neural network classification includes two stages. In the first stage 

called the training stage, the network is taught how to recognise the pattern of a class. 

Training patterns are presented to the network and the signals are fed-forwards as 

described above. Then, the network output is compared with the desired value and the 

error is computed. This error is then back-propagated through the network and the 

weights of connections are changed as follows 

(2.10) 
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where 1] is the learning rate parameter, r5j is the rate of change of the error, and a is the 

momentum parameter. In the classification stage, the network receives an input vector 

and then produces classified data in the output layer. 

Multi-layer perceptron networks can be used both for hard and soft-classification. In 

hard classification, the training and output values are crisp. Therefore, each time a 

pixel spectral vector is presented, the neural network produces an output vector that is 

set to be 1 for the classified class and 0 for the other classes. In soft classification, the 

network is often trained using mixed pixels. Each input vector generates a 

corresponding output membership value for each of the candidate information classes. 

Soft classification using a feed-forward neural network approach is examined by 

Foody (1996), Atkinson et al. (1997), Foody et al. (1997), and Zhang and Foody 

(1998, 2001). All of these papers show that the class proportion of the image pixels 

could be predicted more accurately than that of the fuzzy c-means classifier and 

Bayesian fuzzy classification. 

The weight modification process of the neural network can be achieved usmg 

alternative methods rather than the back-propagation learning algorithm. The 

Bayesian modification of an artificial neural network can be applied to avoid the 

issues related to model over-fitting (Bishop, 1995). Lampinen and Vehtari (2001) 

showed that the Bayesian MLP performs better than the back-propagation MLP in 

some classification tasks. Braswell et al. (2003) used an artificial neural network with 

the Bayesian weight modification algorithm for mapping sub-pixel land cover 

distributions using Multi-angle Imaging Spectroradiometer (MISR) and Moderate 

Resolution Imaging Spectroradiometer (MODIS) data in the Brazilian Amazon 

regIOn. 

Empirical studies carried out by Bernard et at. (1997) to test training procedures with 

neural networks suggest that a wide variety of mixed pixels are necessary in training 

sets to obtain accurate recognition of dominant and subsidiary classes. Another 

concerning aspect of soft classification using a MLP is the sensitivity to the absence 

classes in the training process (Foody 2000, 2002b). Problems of feed-forward neural 

network soft classification are that the output on nodes does not have to sum to 1 and 

the partitions of land cover classification seem to be simple or linear (Warner and 

Shank, 1997). Methods for solving these problems include use of a compound linear­

sigmoid activation function and training using synthetic mixed pixels. 
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• Soft classification using the ARTMAP neural network 

Another kind of neural network architecture used for land cover classification is fuzzy 

ARTMAP (ARTMAP architecture uses two ART networks to create a map between 

the input and output patterns using an intermediate map field) (Carpenter et al., 1997, 

1999; Gopal, 1998; Mannan et aI., 1998). This architecture is based on the simple 

Adaptive Resonance Theory (ART) that was introduced by Carpenter (1987). Fuzzy 

ARTMAP systems can be used for both crisp and fuzzy output classification. In 

comparison with hard classification using maximum likelihood, the fuzzy AR TMAP 

system is generally more accurate, particularly for large training samples (Gopal et 

al., 1998). For vegetation classification, fuzzy ARTMAP performed more accurately 

than the multi-layer perceptron neural network in terms of training time and accuracy 

(Carpenter et al., 1997; Mannan et al., 1998). However, an empirical study by Tso 

and Mather (2001), in contrast, shows that the training stage for fuzzy ARTMAP 

networks is significantly faster than other networks but the output accuracy is much 

lower. 

For soft-classification, Carpenter et al. (1999) used fuzzy ARTMAP networks to 

estimate vegetation proportions from Landsat TM data. The soft-classification results 

of the ARTMAP system are more accurate compared with linear mixture modelling 

and Bayesian soft classification. However, it is necessary to further evaluate the 

performance of fuzzy ARTMAP systems versus multi-layer perceptron neural 

networks for land cover classification in the other landscapes. 

2.2.2.5 Soft classification using support vector machines 

Support Vector Machines (SVMs) are classification and regression methods based on 

a learning paradigm proposed by Vapnik (1998). The classification techniques are 

based on the optimal hyperplane that maximises the separated margin between the 

classes. The optimal hyperplane is used to select the data points which lie on the class 

boundary closest to the neighbouring classes. These data points are support vectors. 

Support Vector Machines were used by Brown et al. (1999, 2000) for spectral 

unmixing. The methods were evaluated to be equivalent with the Constrained Least 

Squares Linear Spectral Mixture Model. Moreover, the technique selected the "pure 

pixel" automatically from a much larger data set. Extensions of the SVM algorithm 

allow the technique to be used with non-linear mixtures. 
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2.2.2.6 Soft classification using k-nearest neighbours 

The k-nearest neighbour (k-nn) soft-classification (Lewis and Brown, 1998) estimates 

the land cover proportions of the unknown pixels based on the proportions of the k 

nearest neighbour training pixels or examplars. The k-nearest neighbour training 

pixels are selected using kernel-based algorithms. The proportion Pc of class c of an 

unknown pixel can be estimated as 

k . . 

~W::I1~. D-
R = 1=1 for w. = 1- 1 

C ± ~ c max~=1 [ D; ] + 0.000 1 
(2.11) 

;=1 
where 11~ is land cover proportion of class c of the examplar i, ~ is weighting 

coefficient and Di is Euclidean distance from the unknown pixel to the examplar i in 

the feature space. 

2.2.3 Accuracy assessment for soft classification 

Accuracy assessment of a conventional land cover classification is usually expressed 

in terms of a confusion matrix. For soft classification, these accuracy measures are not 

necessarily appropriate (Foody, 2002c). Alternatively, there are several other 

proposed measures for accuracy assessment of soft classified land cover proportions. 

The most commonly used criteria for soft classification are RMSE and Mean Error 

(ME) (Huang and Townsend, 2003), which are calculated as 

f(p. _ pKnown)2 

RMSE = 1. :t ;=1 IJ ij and ME = _. 1_:t f (Iij _ ~Known )2 

C )=1 n c . n )=1 ;=1 ' 
(2.12) 

where c is total number of classes , N is the total number of pixels, P are the 

classified proportions and ~Known are the known proportions. 

Atkinson (1999) proposed some criteria such as correlation coefficient, standardised 

RMSE, standardised ME and standardised Kernel based statistic as alternative 

measures of association between estimated and target set of proportions. Distribution 

of errors in soft classification can be depicted by the cross-entropy (Foody, 1995), 

which was calculated from estimated class membership probability distribution and 

the ground data. Binaghi et al. (1999) generalised the model of the confusion matrix 

to fuzzy set-based error matrix, which can apply for both crisp and fuzzy 

classification accuracy assessment. Similarly, Lewis and Brown (2001) proposed 

another generalised model for confusion and error matrices that can be applied for 
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both hard and soft-classification. The model was demonstrated for accuracy 

assessment of urban land cover based on the assumption that the sub-pixel 

classification can be interpreted as an area estimation. 

2.3 Image Fusion 

2.3.1 Introduction 

A variety of image fusion techniques have been introduced to date. Ranchin and Wald 

(2000) divided image fusion methods into three groups: (i) projection and substitution 

methods, (ii) relative spectral contribution methods and (iii) the methods relevant to 

the ARSIS (Amelioration de la Resolution Spatiale par Injection de Structures) 

concepts (ARSIS is a French acronym meaning spatial resolution enhancement by 

injection of structures). The projection and substitution group includes the Intensity­

Hue-Saturation (IHS) methods (Carper et aI., 1990), principal component analysis 

(PCA) method (Chavez et aI., 1991), filter-based fusion (Chavez et ai., 1991) and 

standardised PCA methods. The relative spectral contributions group consists of 

intensity modulation (Cliche et ai., 1985), the PAN+XS method, and regression 

fusion (Price, 1999). Wavelets methods (Blanc et aI., 1998, Ranchin and Wald, 2000, 

Ranchin et ai., 2003) are based on the ARSIS concept that spectral characteristics of 

the synthetic images must be close to the real image at the fine spatial resolution. In 

addition to those commonly used methods mentioned above, there are also other 

methods such as geostatistical digital image merging (Delgado-Garcia et ai., 2002), 

and hybrid fusion (Nunez et ai., 1999). 

2.3.2 Projection and substitution methods 

2.3.2.1 Intensity-Hue-Saturation 

IHS is the most commonly used method for image fusion (Chavez et aI., 1991). IHS 

has been used for the fusion of SPOT PAN and SPOT high resolution visible (HRV) 

MS image data (Carper et aI., 1990) and Landsat TM PAN and MS imagery (Chavez 

et al., 1991). Chen et al. (2003) used the IHS transformation for hyperspectral and 

radar data to enhance urban surface features. 

IHS image fusion can be applied for merging fine spatial resolution imagery and 

coarser spatial resolution imagery with fine spectral resolution. Lillesand and Kiefer 

(2000) used IRS to fuse three bands of the lower spatial resolution data set that is 
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registered to the same grid as the fine spatial resolution image and then transformed 

these data into IHS space. The finer spatial resolution image, which is usually a PAN 

image, is contrast stretched so that it has variance and average approximate to the 

intensity component image. The stretched, finer spatial resolution image replaces the 

intensity component image before the images are transformed back into the original 

space. The main justification used for replacing the intensity component with the 

stretched finer spatial resolution image is that the two images are approximately equal 

to each other spectrally. 

In the research by Carper et af. (1990), the intensity image was replaced by the 

weighted-average image, which is computed as twice the PAN plus registered 

resampled SPOT multispectral band 3. The weighted-average image was found to be 

highly correlated with the intensity derived from the multispectral data. Therefore, the 

resulting synthesised images were more correlated with the original MS images. The 

IHS data fusion methods are inappropriate for high quality transformation of MS 

content when increasing the spatial resolution (Ranchin and Wald, 2000). The MS 

content of the original images is not preserved due to the difference between the 

intensity component image and the PAN image. 

2.3.2.2 PCA methods 

There are two approaches for image fusion using the PCA transformation. Chavez et 

af. (1991) implemented a PCA-based fusion method by replacing the first component 

of the transformed PCA of the low spatial resolution image by the stretched higher 

spatial resolution image. Another approach was carried out by Yesou (1993) using 

PCA transformation of all multi-image data channels. In this approach, the image 

channels of the different sensors are combined into one image file and a PCA is 

applied for all the channels. 

2.3.2.3 Gram-Schmidt transformation 

The Gram-Schmidt transformation method was registered as US Patent by Laben and 

Brower (2000). A coarser spatial resolution PAN image is simulated and a Gram­

Schmidt transformation (Clayton, 1974) is performed on the simulated coarser spatial 

resolution PAN image and the plurality of lower spatial resolution spectral band 

images. The simulated lower spatial resolution PAN image is employed as the first 

band in the Gram-Schmidt transformation. The statistics of the finer spatial resolution 
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panchromatic image are adjusted to match the statistics of the first transform band 

resulting from the Gram-Schmidt transformation and the higher spatial resolution 

panchromatic image (with adjusted statistics) is substituted for the first transform 

band resulting from the Gram-Schmidt transformation to produce a new set of 

transform bands. Finally, the inverse Gram-Schmidt transformation is performed on 

the new set of transform bands to produce the finer spatial resolution MS image. 

2.3.2.4 Filter fusion (FF) 

The idea of filter fusion is to transfer the high spatial frequency content of the high 

spatial resolution image to the MS imagery (Chavez et al., 1991). Note that the filters 

referred to are spatial filters. The fusion is performed by combining a version of the 

fine spatial resolution image and a high pass filtered (HPF) version of the more highly 

resolved image. The method preserves a high percentage of the spectral characteristic, 

since the spectral information is associated with the low spatial frequencies of the MS 

imagery. The high-frequency information is extracted by high pass filtering the finer 

spatial resolution PAN band. The cut-off frequencies of the filters have to be chosen 

in such a way that the included data do not influence the spectra of the opposite data. 

The limitation of the approach is the introduction of false edges if the low spatial 

resolution MS band and the more highly resolved band exhibit only a weak 

correlation. 

2.3.3 Relative spectral contribution methods 

2.3.3.1 P AN+ XS method (P AN+ XS) 

PAN+XS method is a standard merging method for SPOT HRV multispectral band 1 

and band 2 and PAN image fusion. SPOT HRV provides two almost identical 

instruments and therefore the method can be applied to scenes that were observed by 

one instrument in the multispectral mode and by the other in PAN mode. Again, the 

fusion is based on the correlation between the bands XSj and XS2 with PANJO. The 

radiance counts of the new XSHj and XSH2 bands are computed according to Equation 

(2.13) as 

(2.13) 
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2.3.3.2 Regression fusion (RF) 

Due to the high correlation between the visible bands, the relation between one of the 

fused visible waveband images and the fine spatial resolution band can be expressed 

by the simple regression shown as 

(2.14) 

The bias parameter ai and the scaling parameter bi can be calculated by a least squares 

approach between the resampled digital number of the low spatial resolution 

multispectral band i DNresampledi and the high spatial resolution DNhigh. The regression 

technique is not suitable for the uncorrelated bands since the global correlation is low. 

However, the problem can be partially solved using a local correlation approach. 

Instead of computing the global regression parameters, the ai and bi parameters are 

determined in a sliding window (Price, 1999). The more complicated regression 

method could also be implemented using both fine and coarse spatial resolution 

images and more parameters which are determined using geostatistical approaches 

(Pardo-Iglizquiza et at., 2006). 

2.3.3.3 Brovey transform 

The Brovey transformation is based on spectral modelling (Ranchin and Wald, 2000, 

Liu, 2000). The algorithm is 

(2.15) 

where DNjusedi means the digital number of the resulting fused image produced from 

the input data in b multispectral bands multiplied by the high spatial resolution image 

DNhighes. The Brovey transform assumes that the spectral range of the high spatial 

resolution image DNhighes covers the spectral range of the sum of the DNjusedi. If this is 

not the case, there will be spectral distortion in the synthesised images. 

2.3.4 Wavelets image fusion based on the ARSIS concept methods 

2.3.4.1 Wavelets transform 

Wavelets theory is a powerful mathematical tool developed recently to analyse non­

stationary signals of finite energy for which the classical formalism based on variance 

and the correlation function does not hold. Remotely sensed images are such a signal 

(Ranchin and Wald, 1993). The wavelet transform creates a summation of elementary 

fusion or wavelets from arbitrary functions of finite energy. Respective weights of the 
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wavelets in the summation are called the wavelet coefficients. The mother wavelet or 

generating wavelet is a function P{t) i.e. 

(2.16) 

A remotely sensed signal function /(t) can then be decomposed to the approximation 

and detail images using wavelets as in Figure 2.2 (Mallat, 1989). The model was used 

to compute the wavelet coefficient for the high-pass filter and low-pass filter in the 

model called multiresolution analysis. Multiresolution analysis can be used to 

produce an approximation image at multi-scales represented as a pyramid (Figure 

2.3). At the base of the pyramid is the original image. Each level of the pyramid is an 

approximation computed from the original one. The higher the level of the pyramid, 

the coarser is the spatial resolution of the approximation image. 

A number of researchers have used wavelets for fusion of remotely sensed images. 

Examples are Garguet-Duport et al. (1996) and Yocky (1996), who replaced the 

approximation images of the decomposed multispectral bands of 20 m spatial 

resolution by an approximation of the SPOT PAN band and used the inverse wavelet 

transform to produce synthesised images of multispectral bands of 10m spatial 

resolution; Li et at. (2002), used a similar technique to replace the detail image of the 

multispectral bands at two successive levels in the multi-scale pyramid. 

2.3.4.2 ARSIS concepts for image fusion 

The ARSIS concept for image fusion was first developed by Wald et al. (1997) for 

fusion of a high spatial resolution image Ah with high spectral but with low spatial 

resolution image Bli. The synthetic image of the high spectral bands is B,:;. The 

concept is based on three properties as 

Any synthetic image B;;, once degraded to its original spatial resolution I, 

should be as similar as possible to the original image Bli. 

Any synthetic image B;; should be as similar as possible to the images Bli that 

the corresponding sensor would observe with the highest spatial resolution h. 
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Approximation of "Horizontal" 
The images at spatial detail at the spatial 

resolution 112 resolution 112 

"Vertical" "Diagonal" 
detail at the spatial detail at the spatial 

resolution 112 resolution 1/2 

Figure 2.2. Approximation and detail images of an image using the Mallat algorithm 

image 

\\. 

Original image 

Figure 2.3 Multi-scale pyramid. 

The MS set of synthetic images B;; should be as similar as possible to the MS 

set of images Bli that the corresponding sensor would observe with the highest 

spatial resolution h. 

Ranchin and Wald (2000) and Ranchin et al. (2003) constructed a scheme for the 

application of the ARSIS concept using a multi-scale model and its inverse and used it 

to fuse the SPOT PAN and multispectral bands. The scheme is similar to the wavelet­

based fusion presented in section 2.4.4.1 except the core procedure in the proposed 

scheme is the Inter-Band Structures Model (IBSM) and the quality assessment 

process. 
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Blanc et al. (1998) used iterated rational filter banks within the ARSIS concept to 

produce 10m Landsat multispectral images using the SPOT PAN bands. The research 

resolved the problem of dyadic multiresolution analysis by using the rational factor of 

113 or 2/3 and several approaches were used to synthesise the high spatial resolution 

TM MS images. 

2.3.4 Further fusion methods 

2.3.4.1 Hybrid method 

NUfiez et aI., (1999) used the "a trous" wavelet decomposition combined with the 

PCA transformation and the IHS transformation to merge SPOT PAN and Landsat 

TM images. The "a trous" wavelet algorithm decomposes the image into wavelet 

planes. Given an image P decomposed to a sequence of approximations Pl , P2,., Pr 

and the wavelet plane, w~, defmed as the difference between two successive 

approximations Pl-l and Pl. The reconstruction can be carried out as 

(2.17) 

The wavelet planes can be used to fuse images in two different approaches such as the 

substitution method and additive method. In the substitution method, the wavelet 

planes of the SPOT PAN image can be substituted for wavelet planes of the TM 

multispectral images in PCA transformation fusion. Similarly, the additive method 

adds the wavelet planes of the SPOT PAN image to the red, blue and green bands of 

the TM images or to the intensity component of the IHS fusion. 

2.3.4.2 Geostatistical digital image merging 

A geostatistical algorithm was used by Garcia (2002) to merge Landsat 7 ETM+ 

images and a 3 m spatial resolution aerial ortho-image. The method consists of a 

series of geostatistical techniques. The process began with a normal score 

transformation of the image data in order to have a unique statistical distribution for 

all the images. The data were then used to compute the variograms in the column and 

row directions. The behaviour of the obtained variograms was analysed for use in the 

next step. From the models it was possible to obtain the 3 m variogram model 

parameters applying an iterative deregularisation. The parameters were used as the 

input information for GSLIB SGSIM co-simulation program to simulate the data sets 

on 3 m-pixel size. The last operation involved conditioning the co-simulated images 
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with the original 30 m spatial resolution to keep the coincidence between the original 

digital numbers and the mean values of the lOx 10 pixels of 3 m spatial resolution 

cosimulated image. The geostatistical method has many advantages over non­

geostatistical methods such as IHS, PCA, high-pass filter and colour normalised from 

a geostatistical point of view. However, more research on quality of the fusion results 

should be done to investigate the potential of the method. 

Pardo-Iglizquiza et al. (2006) proposed an approach for sharpening MS image by 

PAN image based on downscaling cokriging. Using linear systems theory (Papoulis, 

1984), the weight parameters for random variables of pixels at fine and coarse spatial 

resolution were defined for the image fusion model. The comparison demonstrated 

that the downscaled cokriged sharpened image was more visually and quantitatively 

similar to the target image than the fused image from HPF fusion approach. 

2.3.4.3 Spatial based technique 

Steinnocher (1999) used a filter technique for image sharpening. The method is based 

on the assumption that an image object Z is represented by a set of neighbouring 

pixels Zj, whose values are Gaussian distributed. The adaptive modified sigma filters 

are used to assign the pixels to the objects since it matches the assumption given 

above. 

For the fusion approach, the multispectral bands are included in the filtering process. 

The multispectral images are co-registered with the higher spatial resolution PAN 

image by nearest neighbour sampling. The pixels belonging to an object are 

recognised using modified sigma filter to the PAN image. The position of the object 

pixels are transferred to the multispectral bands, where the average of the respective 

sub-pixel is performed. The resulting multispectral images are sharpened by the 

objects defined in the higher spatial resolution. 

2.4 Super resolution mapping 

As briefly described in Chapter 1, super resolution mapping is the technique of 

increasing the spatial resolution of thematic maps in comparison with the original 

spatial resolution using soft-classified land cover proportion data. Super resolution 

mapping techniques make use of the land cover proportions information produced by 

soft classification and a spatial dependence assumption. This section introduces super­

resolution mapping and other approaches for increasing the spatial resolution (without 
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usmg the information at sub-pixel spatial resolution) such as image sharpening, 

clustering techniques, neural network optimisation and two-point histogram. 

2.4.1 Image sharpening 

Similar to super-resolution mappmg, Image sharpening methods can be used to 

increase the spatial resolution of land cover maps. In some research, the spatial 

resolution of the classified data was increased using the proportion maps and finer 

spatial resolution data such as a PAN image. These methods are a kind of remotely 

sensed data fusion. An example of these methods can be cited as Gross and Schott 

(1998), who used synthetic PAN imagery of 4.5 m spatial resolution to sharpen the 

proportions image derived from the spectral mixture analysis at 9 m spatial resolution. 

However, the result retains a certain degree of uncertainty since the prediction was not 

a hard thematic map of the experimental area but the proportions image at a finer 

spatial resolution. Another example is Foody (1998), who used an image of 15 m 

spatial resolution to sharpen 30 m spatial resolution data to produce a soft classified 

image of a boat lake in Swansea, UK. The resulting image was refined through fitting 

class membership contours. A similar regression technique was used by Foody 

(2002b) to determine the position of ground control points (GCPs) within coarse 

spatial resolution image pixels of A VHRR (Advanced Very High Resolution 

Radiometer) data to reduce misregistration errors. The mean distance between the 

estimated locations of 11 GCPs in the fine versus coarse spatial resolution imagery 

was reduced by 37.5 percent from 655.8 m for the conventional method to 421.2 m. 

The spatial resolution can be increased directly (without using the soft-classification) 

from the original MS image. Pinilla Ruiz and Ariza Lopez (2002) used the 

deconvolution filters derived from the point spread function to restore the original 

signal of SPOT HRV data. The method increased the spatial resolution of the restored 

image, especially for finding structures such as concrete dams, bridges, highway, etc. 

2.4.2 Clustering techniques 

This section focuses on super resolution mappmg techniques usmg clustering 

algorithms. The clustering algorithms are based on the assumption of spatial 

dependence, which refers to the tendency for pairs of pixels of a given property to be 

more alike when close together than when further apart. This assumption reflects the 

nature of spatial objects in remotely sensed imagery where pixels in the boundaries 
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between objects may cover several land cover classes and the sub-pixels of the same 

class are closer. 

2.4.2.1 Per-field classification 

The spatial resolution of the resulting land cover maps can be increased using sub­

pixel mapping by per-field classification. Aplin et al. (2000, 2001) implemented per­

field classification of the data both from hard and soft classification of CAS1 data at 4 

m spatial resolution. In the first stage, the polygon vector data were integrated with 

raster data at a spatial resolution of 004 m. Following the integration of image data, the 

image was classified per-pixel using both conventional maximum likelihood and 

Bayesian fuzzy classification. In the next stage, a per-field land cover class was 

produced from the hard and soft classification in different ways. For the hard 

classified images, the number of pixels was calculated for each land cover class and 

the land cover label of each polygon was assigned according to the class with the 

largest number. For soft classification, the class assignment of each scaled-up pixel 

was based on the area of the original pixel covered by polygons and the proportions of 

the land cover classes. The results show high accuracy for super resolution mapping 

by per-field classification. However, the disadvantage of super resolution by per-field 

classification is the limited availability of accurate vector data sets in most cases. 

2.4.2.2 Spatial clustering and image segmentation 

Schneider and Steinwendner (1999) used spatial sub-pixel analysis combined with 

segmentation techniques to produce vector maps at sub-pixel accuracy. The first step 

in this technique is region growing segmentation started at seed pixels. The seed 

pixels must be pure pixel (pixel locates entirely inside an object). The region growing 

process is implemented with strict homogeneity requirements. Pixels in the boundary 

of segments are examined for candidates for sub-pixel analysis. The spatial sub-pixel 

analysis derives sub-pixel information from the spatial pattern of pixels in a certain 

neighbourhood (e.g. 3x3 pixels) of a given pixel. Different models for the scene 

pattern within the neighbourhood can be assumed. This sub-pixel parameter 

information can be used for segmentation directly or for resampling with a smaller 

pixel size to produce finer spatial resolution images. The technique represents a 

successful, automated and simplistic pre-processing step for increasing the spatial 

resolution of satellite sensor imagery. However, application of this technique is 

limited to the images containing large objects with straight boundaries at a certain 
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spatial resolution. Moreover, the models used still have problems with pixels 

containing more than two classes. 

2.4.2.3 Spatial clustering techniques 

Atkinson (1997) proposed the concept of sub-pixel mapping or super-resolution 

mapping and introduced a method for locating the land cover within a pixel using soft 

classified images. The sub-pixel locating process was based on the spatial dependence 

maximisation of the sub-pixels. A sub-pixel is assigned to a given land cover class 

based on its highest spatial dependence scores for each land cover class. Based on the 

concept of super-resolution mapping, several algorithms for allocating classes to all 

the sub-pixels by maximising their spatial dependence within an original pixel were 

proposed. These methods differ in the way to calculate and maximise the spatial 

dependence. Atkinson (1997) calculated the attractiveness based on a local window. 

The scores were calculated by the inverse squared distances for each class. The 

method was then extended to a sub-pixel swapping technique which have been 

proposed by Atkinson (200 I, 2006). At first, a number of sub-pixels for each land 

cover class were allocated based on the increase of the spatial resolution and the soft­

classification output. Subsequently, the attractiveness score for each sub-pixel was 

calculated and the swapping of sub-pixels was implemented to increase the spatial 

correlation. The algorithm ran for a specified number of iterations or until the spatial 

correlation was maximised. The approach was used by Thornton et al. (2006) to map 

the rural land cover objects using QuickBird image in Christchurch, UK. 

Verhoeye and De Wulf (2001) also extended the work of Atkinson (1997) by 

establishing a linear optimisation model. The location of sub-pixels is determined by 

maximizing spatial dependence 

c NP 
SPD=L:L:xk , *PLCk , 

i=lj=l Cj Cj 

(2.18) 

where the variable xij = 1 if a sub-pixel j is assigned to land cover class k and 

otherwise, xkj = 0, c is the number of land cover classes, NP is number of sub-pixels in 

a pixel, and PLCkj is spatial dependence of sub-pixel} belonging to land cover class k. 

The proportion image is used as a constraint for optimisation procedures. The spatial 

dependence parameter PLCkj can be calculated from the land cover class proportions 

of each pixel and distance from the sub-pixel to the neighbourhood pixels. 
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Mertems et at. (2003) used a genetic algorithm to allocate the sub-pixels in a pixel 

based on the neighbouring value which represents the spatial dependence of the sub­

pixels. The neighbouring value of each sub-pixel can be calculated as 

N 5,. 
7h=I-.!L (2.19) 

k=lN 

with bij = 1 if neighbour j belongs to the same class as sub-pixel i and bij = 0 

otherwise, N is number of neighbouring sub-pixels. The allocation of the sub-pixels 

should maximise the sum of the neighbouring values of all sub-pixels within an 

original pixel. The sum of the neighbouring values of all sub-pixels within an original 

pixel is 

NP 
7]= &;7]i (2.20) 

where NP is number of sub-pixels within an original pixel. 

Zhan et al. (2002) implemented sub-pixel mapping based on land cover class 

probabilities. The sub-pixel classification procedure consisted of two stages. The first 

stage was standard classification using the maximum likelihood algorithm. The 

classified image was then used to determine the class probabilities of a sub-pixel for 

each class by interpolating using the land cover classes of eight neighbouring pixels 

and the pixel itself. Subsequently, the sub-pixel hard classification image was derived 

from the interpolated probabilities at the sub-pixel scale. Despite considerable 

increase in accuracy in comparison with the hard classification, in general, the 

approach often softens the land cover image rather than predicting accurately the land 

cover location within a pixel. 

2.4.4 Two-point histogram 

An alternative technique for super-resolution mapping of land cover is the two-point 

histogram (Atkinson, 2003). The technique is based on geostatistical post-processing 

with simulated annealing in the program ANNEAL (Deutsch and Joumel, 1998). The 

spatial optimisation algorithm aims to minimise the objective function as 

(2.21) 

where K is number of outcomes or, in this case, is land cover categories, the bivariate 

transition probability p:,~,ning (h) and p;:::izalion (h) are the target and corresponding 
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frequencies of the realization image. The two-point histogram P k k' (h) at distance h is 

the set of bivariate transition probabilities defined as follows: 

(h) = pr{ Z(i)E category k } 
Pk,k' Z(i+h)E category k' 

(2.22) 

where Z is a random variable at position i that can take one of k = 1, ... , c outcomes. 

Applied to the super-resolution problem, the realization image is initiated and 

contains hard classified sub-pixels, with the number of sub-pixels per class in each 

original pixel determined according to land cover class proportions from the soft 

classification. For example: in a pixel of 10 by 10 sub-pixels with proportion of 30% 

grassland and 70% built-land, there will be 30 grassland sub-pixels and 70 built-land 

sub-pixels. The two-point histogram of training and an initial image is calculated for 

optimisation. In each pixel, the sub-pixels are swapped in order to gain a smaller 

value for the objective function. The swapping is accepted only if the new value of the 

objective function Onew < Oinitial (Goovaerts, 1997). If the swapping is accepted, the 

value of the objective function will be updated to the new value. This process is 

repeated until the objective function value is minimised. 

Foody et al. (2003, 2005) used the above described method for super-resolution 

mapping of shoreline in Kampung Sebarang Takir, Terenggaru, Malaysia. The 

prediction result shows a higher accuracy in terms of RMSE and percentage of 

prediction within 2 m of actual shoreline in comparison with hard classification, 

contouring soft classification and wavelet interpolation. 

2.4.3 Super-resolution mapping using neural networks 

2.4.3.1 Super-resolution mapping using MLP neural network 

MLP neural network was used for super-resolution mapping by Mertens et al. (2004). 

For the super-resolution mapping task, three networks were trained to produce the 

horizontal, vertical and diagonal wavelet coefficients from a land cover proportion 

image. The input layer of the network included nine neurons. Each neuron represented 

a proportion value of the central original pixel or its eight surrounding pixels. In the 

output layer of the neural network, there was only a single neuron which represented 

the horizontal, vertical or diagonal wavelet coefficient value. From the predicted 

wavelet coefficient images and the land cover proportion image, the proportion image 

at the sub-pixel level was produced based on multiresolution analysis. The proportion 

images were then used to produce the crisp land cover images based on a hardening 
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Figure 2.4. Hopfield neural network of five nodes 

process. Both artificial and real proportion images were used to test the method. 

Visual comparison of the results showed that the predicted maps at the sub-pixel level 

were more detailed and contiguous than those obtained by hard classification. 

2.4.3.2 Super-resolution mapping using the Hopfield neural network 

• Hopjield neural network 

The Hopfield neural network is a fully connected recurrent network that is mostly 

used for auto-association and optimisation (Mehrotra et al., 1997). A simple network 

of five neurons can be seen as in Figure 2.2.The stable states of the network are 

obtained when the energy function is minimised. Energy functions E can be 

simplified such that 

(2.23) 

where Tij is the weight of connection from neuron) to i, and Vi and Vj are the outputs 

of neurons i and}. Ii is an external bias on neuron i. 

For optimisation purposes, the energy function is calculated based on the goal and 

constraint functions, which can be defined as 

Energy = Goal + Constraints (2.24) 

For the task of super resolution land cover mapping, the Hopfield neural network is 

used as an optimisation tool by Tatem et al. (2001a, 2001b, 2002a, 2002b, 2002c). 

The class proportion images output from a soft classification are used as constraints 

for minimizing the energy function of the network. 

• Target identification by Hopjield neural network 
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Tatem et al. (200 1 b) used the Hopfield neural network for target identification from 

remotely sensed imagery. The depiction of a Hopfield neural network designed for 

super-resolution mapping can be seen in Figure 2.5. In the research, each sub-pixel 

(i,j) in the image coordinates was represented by a neuron in the Hopfield neural 

network. Each pixel (x,y) in the satellite sensor image was represented by a matrix of z 

x z sub-pixels centred at [xz + int(z/2), yz + int(z/2)}, where int is an integer value (z 

is the zoom factor). The energy function E was defined as 

E=-L:~)klGlij +k2G2ij +k3Pij) (2.25) 
i j 

where kl' k2 and k3 are weighted constants, Glij and G2ij are output values for neuron 

(i,j) contributed by the two goal functions, and Pij is the output value contributed by 

the constraint. The first goal function Gl ij aims to increase the output of the centre 

neuron vi} to 1 if the average output of the surrounding eight neurons is greater than 

0.5. 

(2.26) 

where .A. is a gain which controls the steepness of the tanh function. The tanh function 

controls the effect of the neighbouring neurons. If the averaged output of the 

neighbouring neurons is less than 0.5, then the function has no effect on the energy 

function. If the average of the surrounding function is greater than 1 and the output of 
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neural vij less than 1, the gradient output is negative and it is required to increase the 

neuron output. 

The second goal function aims to decrease the output of the centre neuron to vij = 0 if 

the average output of surrounding eight neurons is less than 0.5 

--=- I-tanh - I IVkl A xVij 
dG2ij 1 ( (1 i+! j+! J J 

dVij 2 8 k=i-!(k*j)/=j-W*j) 

(2.27) 

This time, the tanh function evaluates to 0 if the averaged output of the neighbouring 

neurons is more than 0.5. If it is less than 0.5, the function evaluates to 1 and the 

centre neural output vij is less than 1, the gradient output is positive and it is required 

to decrease neuron output. The values of the neuron outputs are stabilised if only one 

of these conditions is satisfied and Glij+ G2ij= O. 

The two goal functions of the Hopfield neural network play the role of the spatial 

dependence maximisation in super-resolution mapping. By adjusting the values of the 

two goal functions, the energy function of the HNN is minimised or the adjacent sub­

pixels are more likely to be in the same land cover class. 

The goal functions provide the enforcement of spatial order. However, the sole 

application of these functions would result in all neuron outputs taking the values 1 or 

O. Therefore, a method of constraining the effect of those functions to the correct 

image is required. The constraint Pij aims to retain the pixel class proportions of the 

soft classified images. The constraint can be described as follows: 

-I) = -2 I I(1 + tanh(Vkl - 0.55),.1,) - axy 
dP'. 1 (xz+zYZ+z J 
dv ij 2z k=xz I=yz 

(2.28) 

where 0.55 is threshold to define a sub-pixel belong to a class. If the area proportion 

of the estimate for the original pixel (x,y) is lower or greater than the target area, the 

output values of neurons are increased or decreased to solve the problem. Only when 

the area proportion estimate is identical to the target area proportion for each pixel, a 

zero gradient occurs, corresponding to Pij =0 in the energy function. The weighted 

constants kI, k2 and k3 are used to rank the importance of the element functions in 

Equation (2.25). Tatem et al. (2001 b) suggested that the values of kJ = k2= 150 and k3 

= 130 are appropriate for land cover target identification. 

• Land cover pattern prediction by Hopfield neural network 
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The above mentioned energy function is applied to identify large land cover targets. 

For identifying the targets of sub-pixel size, Tatem et al. (2002c) use another energy 

function as follows: 

E = - :L:L(k\Slij + k2 S2ij + k3S\ + k 4 S4ij + kS S5ij + k6 S6 ij + k7 S7 ij + ksPij) (2.29) 
i j 

where kl to ks are constants weighting the energy parameters, Pi) represents the output 

value for the area proportion constraint, and SI to S7 represent the output values for 

neuron (i,j) of seven semivariance functions. These seven functions are defined as 

(2.30) 

where 

vc .. = - v. + 
1 [ N(h) 

( ) IJ 2N (h) i=t:\ I±h,;±h- ( 

N(h) J2 ( N(h) J] i=t:~l±h,j±h - 4· 2N(h) i=~~Vi±h,j±h)2 -2N(h)y(h) 

(2.31) 

In Equation (2.31), N (h) is the number of pixels at lag h from the centre pixel, y(h) is 

the semivariance at lag h (Atkinson et al., 2000). The semivariances y(h) of the 

objects are derived from aerial photographs of the experimental area. 

• Land cover mapping at the sub-pixel scale using the Hopfield neural network 

Super resolution mapping (or land cover mapping at a sub-pixel scale) techniques are 

developed from the above described target identification techniques. Tatem et al. 

(2001a) introduced the multi-layer Hopfield neural network for super resolution land 

cover mapping. In this network, each land cover class is represented by a neural layer 

in the network. The neurons in the network connect to all neurons in the same layer 

and other layers. From the energy function (Equation (2.25)), a multi-class constraint 

is added as follows 

(2.32) 

where the goal and within-pixel area constraint functions are similar to those In 

Equations (2.26), (2.27) and (2.28). The constraint function Mhi) is defined as 

dMh·· (N ) 
dv 

IJ =- )'vhij -1 
hij k=O 

(2.33) 

Constraint (2.28) can be expressed as the sum of outputs of each set of neurons 

representing pixel (i,}) in the final image must be equal to 1. 
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Where the scene consists of features that are both larger and smaller than a pixel, 

Tatem et al. (2002a, 2002b) combined the energy functions (Equation (2.29) and 

Equation (2.32)) to form a comprehensive energy function 

(2.34) 

where the first seven constraint functions are similar to those in Equation (2.29), and 

the other parameter functions are like those in Equation (2.32). 

2.5 General model for using supplementary data for super­

resolution mapping 

2.5.1 The Hopfield neural network and added constraint and goal function 

Comparing with the Hopfield neural network techniques, the regression techniques in 

section 2.3.2 are less accurate since they are unable to create a suitable computation 

model for the spatial dependence between sub pixels. The spatial dependence, which 

is often calculated by interpolation of land cover class proportions from the centre of 

the original pixel, is complicated and not suitable for clustering of the sub pixels in 

some cases such as mapping the object smaller than a pixel. Conversely, the 

optimisation by the HNN simply clusters the sub pixels into regions and constrains 

them by the proportion and multi-class functions. Therefore, it is less complicated and 

more effective to maximise the spatial dependence. 

Another advantage of super resolution mapping by the HNN is its potential to 

incorporate other ancillary infonnation for land cover mapping by using the 

constraints and the goals for the energy function. This ancillary information may be 

derived from other sources of data such as remotely sensed imagery obtained by other 

sensors or with different spatial resolutions such as PAN images, aerial photographs 

or other information on the objects. Particularly, with a flexible zoom factor z, the 

Hopfield neural network super resolution mapping technique can be used as a tool for 

data fusion, which is useful for land cover mapping. 

The energy function in Equation (2.32) can be used to incorporate the supplementary 

information for super-resolution land cover mapping, assuming that the 

supplementary data can provide the information about the land cover classes for the 

sub-pixels or the neurons of the HNN. Similar to the semivariance functions in 

Equation (2.34), the information about the land cover classes can be represented by a 
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function F. For every sub-pixel (iJ) or neuron (h,iJ") the value of the function F (F"ii) 

can be added to the energy function as 

(2.35) 

The weighting coefficient kF controls the effect of the supplementary information on 

the energy function and the class labeling process for sub-pixel (iJ). If the value of kF 

is great, the resulting land cover is more likely to be indicated by the supplementary 

information. Hence, when the information revealed by the supplementary data can 

define the land cover class accurately, the weighting coefficient kF can be increased to 

obtain the accurate results. Otherwise, the small value of kF still makes a contribution 

of the function F into the super-resolution mapping results. 

2.5.2 General model for super-resolution mapping using fused or panchromatic 

images 

Amongst the sources of data which can provide useful information for more accurate 

super-resolution mapping, panchromatic imagery are the most widely available at a 

spatial resolution finer than that of the original MS image. Panchromatic imagery can 

be obtained by the current commercial remote sensing sensors such as Landsat ETM+ 

with 15 m spatial resolution PAN image, SPOT 5 with 2.5 m PAN image, IKONOS 

with 1 m PAN image and QuickBird with PAN image of around 0.6 m spatial 

resolution. These panchromatic images can be fused with the MS image at a coarser 

spatial resolution or used directly to provide useful information for more accurate 

super-resolution mapping. 

The general model for using information from the panchromatic imagery for super­

resolution mapping is presented in Figure 2.6. The model is implemented at three 

different spatial resolutions: original spatial resolution of the MS image, intermediate 

spatial resolution PAN image, and sub-pixel resolution of the resulting land cover 

classes. The proposed model employs Hopfield neural network optimisation as the 

core algorithm since it is easy to incorporate the additional information from PAN 

imagery by adding new constraint or goal functions to the energy function of the 

HNN. Similar to the HNN used by Tatem et at. (2002), the HNN is constrained by the 

soft-classified land cover proportions. In the proposed model, these new function 

values can be defined based on forward and inverse models. According to the 
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Figure 2.6. General model for super-resolution mapping using panchromatic or MS image 

proposed model, the super-resolution mapping with information from PAN imagery 

uses the land cover proportions at the spatial resolution of the MS image as input to 

initialise and constrain the HNN. After the fIrst iteration, the sub-pixel crisp land 

cover map is predicted. The forward model is then used to predict the synthetic MS 

image at sub-pixel spatial resolution using end-member spectra. With spatial and 

spectral convolutions, synthetic PAN or MS images at the intermediate spatial 

resolution of the PAN image can be predicted. The synthetic PAN or MS images then 

are compared with the observed PAN or fused MS images to produce an adjusted 

value for the HNN using an inverse model. The adjusted or reflectance constraint 

value together with the goal functions and proportion constraint of the super­

resolution mapping by Tatem et al. (2002) are used as inputs for the HNN to calculate 

the output values of the neurons and the value of the energy function in the next 

iteration. The process continues until the value of the energy function is minimised 

and the HNN converges to a stable state. At this state, the outputs of the HNN neurons 

are binary values which represent the sub-pixel super-resolved land cover maps. 
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2.5.2.1 Super-resolution mapping using information from the fused image as a 
constraint 

This approach is a combination of two methods for increasing the spatial resolution of 

the land cover map. As presented in section 2.4, the PAN image can be fused with the 

MS images at coarser spatial resolution but finer spectral resolution to produce fused 

MS image at the fine spatial resolution of the PAN image. Employing the proposed 

model in Figure 2.6, these fused MS images can provide useful information for super­

resolution mapping. Information from the fused MS image is incorporated into the 

HNN for super-resolution mapping in the form of a reflectance constraint value added 

to the energy function. The reflectance constraint can be described as: the digital 

number synthesised by all sub-pixels covered by a pixel of panchromatic image must 

be equal to the digital number of that pixel in the fused MS image. To calculate the 

value of the reflectance constraint, forward and inverse models are used. The forward 

model which is used to synthesise the MS image uses the end-member spectra and 

output values of the neurons of the HNN as 

(2.36) 

where Rho is the estimated reflectance of pixel (m,n) in a fused image band, c is the 
mn 

number of land cover class, PI, P2, .. , Pc are the proportions of a given land cover class 

covered by a pixel of the fused images or the number of sub-pixels in a given land 

cover class (IP=I), and SI, S2, .. ,Sc are end-member spectra of the land cover class 1, 

2, .. , c in a multispectral fused band. The inverse model which produces the reflectance 

constraint value is a linear mixture model (Settle and Drake, 1993). 

2.5.2.2 Super-resolution mapping using the panchromatic image as a constraint 

The panchromatic imagery can be used directly for super-resolution mapping based 

on the core model as in Figure 2.6. Incorporating information from the PAN image 

directly in the super-resolution mapping process, it is possible to skip the image 

fusion process which is included in the approach using the fused imagery for super­

resolution mapping proposed above. To obtain the synthetic PAN image, a spectral 

convolution process is employed to convolve the MS band synthesised by the 

forward model using end-member spectra. Similar to the super-resolution mapping 

with the fused image, the additional panchromatic reflectance constraint can be 

described as the digital number of every pixel of the synthetic panchromatic image 
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derived from the sub-pixels of the super-resolved maps must be equal to the digital 

number of the observed PAN image. 

2.5.3 Multispectral image super-resolution 

Using the forward model with end-member spectra in Figure 2.6, it is possible to 

produce the sub-pixel spatial resolution synthetic MS image from the sub-pixel land 

cover maps. In this application of the proposed model, the end product of the process 

is MS images at sub-pixel spatial resolution instead of the sub-pixel land cover maps. 

These super-resolved MS images can then be used for other remote sensing 

applications. 

Another application of the HNN for MS super-resolution mapping is semivariogram 

matching. The MS image at a coarse spatial resolution is matched with the 

semivariogram at the sub-pixel scale to produce the MS image with sub-pixel spatial 

variation. The method can be applied to generate the sub-pixel pattern in the MS 

image. The details of the method are given in Chapter 5 of this thesis. 

2.5.4 General model for super-resolution mapping using the LiDAR elevation 

data 

LiDAR is technology for determining the elevation of the ground surface plus natural 

and human-made features. From the LiDAR data, it is possible to acquire a digital 

surface model (DSM) (an elevation model contains non-terrain objects such as trees, 

buildings, power lines and other human-made objects). In practice, the DSM is 

frequently used for extraction of trees and buildings. Different from the multispectral 

and panchromatic imagery, the LiDAR elevation data provide useful information for 

prediction of just a few land cover classes. Correspondingly, the model for integrating 

the LiDAR for super-resolution land cover mapping must be modified from the model 

based on the constraint in Figure 2.6. 

Figure 2.7 presents the diagram for the LiDAR elevation data integrating model. The 

approach assume that the information obtained from the LiDAR elevation data is 

useful for a a land class (for example: building class). A class probability image is 

produced for the building class using elevation data. The class probability value 

represents the probability of the sub-pixel belonging to the building class. During the 
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Figure 2.7 General model to incorporate LiDAR elevation data for super-resolution mapping 

super-resolution mapping optimisation process, the output values of the neurons of the 

building class are increased according to the values in the class probability image. The 

increasing values for the neurons in the building class are named height function 

values. For the neurons of the other classes, the elevation data have no effect. 

Accordingly, the height function values for these neurons are zeros. Using this model, 

the LiDAR information is integrated into the super-resolution land cover mapping. 
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Chapter 3: Super-resolution mapping using a Hopfield 
neural network and a fused image1 

3.1 Introduction 

In this Chapter, a proposed model to incorporate super-resolution mapping and image 

fusion for increasing the spatial resolution is presented. The model is based on the 

Hopfield neural network. In this model, the information from the fused images is 

exploited in the form of an additional reflectance constraint of the energy function of 

the HNN. The value of the reflectance constraint is defined using forward and inverse 

models. The forward model is used to produce the synthetic MS images from the 

super-resolved land cover map at sub-pixel spatial resolution based on the end­

member spectra. Comparing the synthetic MS images at the intermediate spatial 

resolution of the fused images with the observed fused image, the value of the 

reflectance constraint is determined using an inverse model based on a linear mixture 

model. 

The proposed model was evaluated using the simulated and real remotely sensed 

imagery. The accuracy assessment of the resulting land cover map showed that the 

combination of the fusion and super-resolution mapping could increase the accuracy 

visually and statistically. 

3.2 Hopfield neural network structure for using a fused image for 
super-resolution mapping 

3.2.1 Fused imagery for land cover classification 

There are two approaches for using a fused MS image for land cover classification. 

The fusion-then-classification approach uses the fused MS image directly for land 

cover classification. An example of the fusion-then-classification approach is given by 

Shackleford and Davis (2003) who used aIm fused MS image for urban mapping. 

The classification-then-sharpening approach uses the fused MS image to sharpen a 

land cover proportion image obtained from the original MS image. The classification­

then-sharpening approach was used by Foody (1998) to sharpen a fuzzy classification 

output and by Gross and Schott (1998) to sharpen a proportion image obtained by 

spectral mixture analysis. According to the results of both approaches, the accuracy of 

I This chapter is based on Nguyen et al. (2006) 
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the thematic map using the fused MS image increased slightly in comparison with that 

of the original MS image. Evaluation of the two approaches by Robinson et of. (2000) 

based on a linear mixing model indicated that the classification-then-sharpening 

approach was preferable in terms of accuracy. The fusion-then-classification approach 

produced a thematic map with lower accuracy due to the spectral distortion in the 

fused MS image. 

3.2.2 The Hopfield neural network design2 

This section presents a model for using the fused image as additional information for 

super-resolution mapping. Theoretically, the fused MS image can provide useful 

information at an intermediate spatial resolution for predicting land cover at a finer 

spatial resolution. However, the spectral distortion of the fused images may cause 

some errors. To reduce the effect of spectral distortion, the classification-then­

sharpening approach was incorporated into the HNN for super-resolution mapping. 

Figure 3.1 is a graphical depiction of the proposed method to use a fused image for 

super-resolution mapping by the HNN. From the MS images at the original spatial 

resolution land cover area proportion images are produced by a soft-classification 

procedure. The area proportion images are then used to constrain the HNN to produce 

the super-resolution land cover map in the first iteration of the optimization process. 

Fused MS Image 
(8 m) 

p ?? Error 
image 

I Difference 
< 2&jJf§.:§9' 

~Synthesised MS 
Image (8 m) 

Energy 
minimised 

I Forward model' No 

Yes 

I Soft-classification I 

~ HNN 

A rea proportions 
32 m) ( 

Super- esolution 
Map (4 m) 

Super-resolution 
Map (4 m) 

Figure 3.1 HNN super-resolution mapping using the fused multispectral mages 

2 In this section, there will be some repeatation of the model presented earlier due to use of paper in the thesis, and so that 
reader can read this chapter independently. 
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Figure 3.2 Reflectance constraint for sub-pixels covered by pixel (m.n) at the fused level. 
A pixel at the original level contains four pixels at the fusion level. m, n are the coordinates of the fused 
pixel. R(m,n) is the reflectance value of the fused pixel (m, n) and SI and S2 are the end-member spectra 
of class I and class 2. PI and P2 are average output values of the neurons of class 1 and 2 that are 
covered by the fused pixel (m, n).fis the fusion factor. 

From the super-resolution map at the first iteration, an estimated MS image is then 

produced using a forward model. The estimated MS image is then compared with the 

fused image and a reflectance error image is determined. For all neurons covered by 

the same pixel in the fused image, a value based on the reflectance error image is 

produced to adjust the estimated MS image. Thus, the HNN is constrained by the 

reflectance values of the fused image. The adjustment value, or reflectance constraint, 

along with the goal and constraint values in the HNN structure proposed by Tatem et. 

al. (2001a), can be used in the optimisation process for super-resolution mapping by 

minimising the energy function. After the optimisation process, the estimated MS 

image produced by sub-pixels in the super-resolution map should resemble the fused 

Image. 

The method presented is based on the structure of the HNN proposed by Tatem et al. 

(2002a, 2002b). The structure of the HNN for super-resolution mapping of two land 

cover classes can be seen in Figure 3.2. A pixel at the original spatial resolution is 

divided into two inter-connected matrices of neurons in the HNN. Each neuron (h,i,j) 

represents a sub-pixel at position (i,j) in the land cover class h and each matrix of 

neurons represents a land cover class. The HNN is a recurrent neural network and it 

reaches a stable state when the energy function is minimised. For super-resolution 

mapping, the HNN is initialised using the soft-classified land cover proportions and 
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runs until it converges to a monotonic stable state (Tatem et. al., 200Ia). At this state, 

the output values of the neurons are binary values. If the output value of the neuron 

(h, i,j) is 1, the sub-pixel (i,j) is assigned to the land cover class h. Otherwise, if the 

output value is 0, the sub-pixel (i,j) does not belong to the class h. The energy 

function can be expressed as 

(3.1 ) 

where kl' k2, k3 and k4 are weighting constants. Values of the weighting constants 

define the effects of the conresponding goal functions, proportion constraint and 

multi-class constraint to the energy function. For each neuron (h, i,j), G1hij and G2hij 

are the values of the spatial clustering or goal functions. The values of G1hij and G2hij 

can be determined by 

1 [ (1 i+l j+l J 1 "2 1 + tanh "8 d~-121.-1 vhde -0.5 A (Vhij -1) 
d*1 e*J 

(3.2) 

and 

(3.3) 

where A is the gain or the steepness of the tanh function (usually assigned a value 100 

[14]). 1I8=lIN, where N is the number of pixels in the neighbourhood used in the goal 

function, 0.5 is the threshold, and Vhij is the ouput value of the neuron (h, i,i). The first 

goal function (Equation (3.2)) is used to increase the output value Vhij of the neuron if 

the average output value of the eight surrounding neurons is greater than 0.5. In 

contrast, the second goal function (Equation (3.3)) decreases Vhij if the average output 

value of the eight surrounding neurons is less than 0.5. 

The value Phij in Equation (3.1) is the proportion constraint. This value retains the 

land cover proportion for each original pixel and is defined as 

dPhij _ 1 xz+z-lYZ+Z-! ) 
-d --2 L L (1+tanh(vhde -0.5)A. -ahxy ' 

vhij 2z d=xz e=yz 
(3.4) 

xz+z-l yz+z-J 

where 1/2z2 L L (1 + tanh (Vhde -0.5),1,) is the estimated proportion and ahxy is the 
d=xz e=yz 

input proportion of the land cover h of the pixel (x,y) which is obtained by soft 

classification. The pixel (x,y) is the corresponding pixel at the original spatial 
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resolution to which the sub-pixel or neuron (h,i,) belongs. z is the zoom factor, which 

determines the increase in spatial resolution from the original image to the super­

resolution mapping image. The proportion constraint function contributes a positive 

value if the estimated proportion of the class h is greater than the input proportion. As 

a result, the network reduces the output values of neurons within the pixel (x,y) in the 

class layer h. Conversely, if the estimated proportion is less than the input proportion, 

the proportion constraint produces a negative value to increase the output values of 

the neurons in the class h. 

The multi-class value Mhij is used to reduce the output of the neurons if the sum of 

outputs of c classes at the position (i,j) is greater than 1. If the sum of outputs of c 

classes is less than 1, the function increases the output of the neurons at the position 

(i,j). The value of the multi-class constraint is calculated as 

dMh "" (c ) -d lj = L vkij -1, 
v hij k=O 

(3.5) 

To use the fused image for super-resolution mapping by the HNN, the energy function 

in Equation (3.1) is modified by adding a reflectance constraint. In this experiment, a 

function based on the reflectance of the fused image is added to the goal functions and 

proportion constraint that comprise the energy function. The new energy function for 

each band of the fused image can be expressed in an equation as follows 

E = -~~~( 'sGlhij +k2G2hij +k3P"ij +k4Mhij +ksRhij ) , (3.6) 

where Rhij is the reflectance constraint value for each neuron (h, i,j). 

The structure of the modified HNN can be seen in Figure 3.2. Each neuron in the 

HNN represents a sub-pixel point in the original spatial resolution image. The fusion 

factor f determines the increase in spatial resolution of the new super-resolution image 

in comparison with the fused image. Apart from the proportion constraint for each 

original pixel, fXf sub-pixels covered by pixel (m,n) of the fused image are 

constrained by a reflectance constraint. The reflectance constraint is based on the 

principle that the average predicted reflectance from all sub-pixels located within a 

pixel of the fused image should be equal to the observed reflectance (or target 

reflectance) of that pixel. 
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For each band of the fused image, there is an additional constraint for the energy 

function. The energy function is minimised if the derivatives of variables in Equation 

(3.6) converge to zero for each neuron (h,i,j) 

dEh ·· dGlh·· dG2 h ·· dP.h ·· dMh ·· dRh ·· 
--lj -k lj +k lj +k --lj +k --lj +k --lj 
d - 1 d 2 d 3d 4 d 5 d . Vhij Vhij Vhij Vhij Vhij Vhij 

(3.7) 

The derivative values of Gl, G2, P, and M with respect to Vhij are computed using 

Equations (3.2), (3.3), (3.4), (3.5), respectively. 

To derive the value dRhyldvhij, the estimated reflectance R;mn of the neurons 

representing the fused pixel (m,n) can be defined by a forward model using a linear 

mixture model (Settle and Drake, 1 993) as 

(3.8) 

(m/::J.-1) (n/:;1;-I) 
where the estimated proportion value V. =11 f2( 2.., 2... vepq ) and Ss,e is the end-member 

p=m/ q=n/ 

spectra of the land cover class e for a spectral band s. 

Similarly, the observed reflectance for pixel (m,n) can be expressed using the same 

forward model as 

(3.9) 

where R:m.is the observed reflectance of pixel (m,n) in a fused image band, c is the 

total number of land cover classes, PI, P2, .. , Pc are the proportions of a given land 

cover class covered by a pixel of the fused images (L,P=J), and Ss,l, Ss.2, .. , Ss.c are 

end-member spectra ofthe land cover classes 1,2, .. , c in a MS fused band s. 

From Equations (3.8) and (3.9), the difference between the observed and estimated 

reflectance of the neurons representing the fused pixel (m,n) is defined by 

(3.10) 

The value of the reflectance constraint requires that the reflectance difference in 

Equation (3.10) should be zero for every spectral band. Accordingly, the estimated 

proportion value Ve is expected to converge to the land cover proportion Pe within 

each pixel of the fused image. Therefore, the value of the reflectance constraint for the 

fused pixel (m,n) can be produced based on an inverse model using the linear mixture 

model equation 

R~n =SPmn , (3.11) 
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Figure 3.3 Four steps in experiment: 
(A) Raw data analysis, (B)- Data simulation, (C)- Pre-processing, and (D)- Super-resolution mapping. 

where R~n =[Rf .. R~ .. RZ]~n is the vector of reflectance values of the fused spectral 

bands 1, .. , s, .. , b and 

(3.12) 

is the matrix of end-member spectra values for b fused spectral bands and P is the 

vector of land cover proportion values. 

Using the least squares linear mixture model, land cover class proportions of the fused 

pixel (m,n) can be predicted by 

p =(STS)-lSTRo =MRo with M=(STS)-lST mn mn mn • (3.13) 

From Equation (3.13), the values for reflectance constraints for all fused spectral 

bands are calculated from the difference between observed and estimated reflectance 

of b fused multispectral bands as 

(3.14) 

If the number of fused image spectral bands is less than the number of land cover 

classes, the value of the reflectance constraint cannot be known. 
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Figure 3.4 (a) Land cover map at 4 m spatial resolution used for simulating data, (b) 4 m cereal class 
map, (c) 4 m grass class map, (d) 4 m trees class map. 

3.3 Experiment 1: Simulated IKONOS data 

3.3.1 Data 

In this experiment, a set of data based on IKONOS imagery was used. The set of data 

is a simulated 32 m MS image and an 8 m fused spectral image created by degrading a 

real IKONOS image. The ratio between the spatial resolution of the simulated MS and 

fused images is similar to the ratio between the real 4 m MS and 1 m panchromatic 

(PAN) IKONOS images. Thus, the algorithm should be applicable to the real imagery 

(i.e. 4 m MS and 1 m fused image) if it performs adequately on the simulated 

imagery. There are two reasons for using simulated imagery. Firstly, it was possible to 

evaluate the quality of the fused imagery. Secondly, the simulation ensured that there 

were no errors in image registration between the reference image and the land cover 

image obtained by super-resolution mapping. For the simulated IKONOS image, the 

experiment was implemented in four steps as follows: (A) Raw data analysis, 
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Cereal class 
Band Min Max Mean Standard deviation 

1 236 461 386.99 27.520 
2 336 574 491.68 27.282 
3 275 432 384.64 18.565 
4 257 346 322.75 9.993 

Grass class 
Band Min Max Mean Standard deviation 

1 220 325 259.64 12.303 
2 377 623 492.91 29.851 
3 283 354 314.68 7.864 
4 271 309 289.37 4.618 

Trees class 
Band Min Max Mean Standard deviation 

1 141 238 183.98 25.127 
2 194 713 421.70 105.667 
3 218 311 259.71 20.061 
4 244 286 264.16 8.887 

Table 3.1 Statistical Infonnation for the Cereal, Grass and Trees Classes in the IKONOS Image 

(B) Data simulation, (C) Pre-processing, and (D) Super-resolution mapping (Figure 

3.3). 

3.3.1.1 Raw data analysis 

Raw data: An IKONOS MS image was acquired over Eastleigh and Chandler Ford, 

Southampton, UK in 25th August 2000. The IKONOS image consisted of four 4 m 

MS bands in the following wavebands: Red (632-698 nm), Near-Infra Red (NIR: 757-

853 nm), Green (506-595 nm) and Blue (445-516 nm) and aIm PAN band (450-900 

nm). Based on image fusion, the MS and PAN bands can be used to produce four 

fused MS image bands at 1 m spatial resolution. 

Reference data and statistical information: The experiment was implemented in an 

area of 64x64 pixels (at 4 m spatial resolution) that consisted of three land cover 

classes: cereal, grass, and trees (Figure 3.4(a), 3.4(b), 3.4(c) and 3.4(d) (In the 

experiment, several testing sites were chosen. However, the area of 64x64 pixels used 

above was the largest site that contained three land cover classes). These three land 

cover classes were produced using maximum likelihood classification of the real 

IKONOS image. Statistical information such as the means and standard deviations of 

the three land cover classes in the area was obtained (Table 3.1 and Figure 3.5). The 
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(k) (I) (m) 

Figure 3.6 Simulated IKONOS image: 
Four bands (a) Red, (b) NIR, (c) Green, and (d) Blue 8 m of simulated MS IKONOS image. (e) 8 m 
simulated PAN image. Four bands (f) Red, (g) NIR, (b) Green, and (i) Blue of32 m simulated image. 
Three bands (k) Red, (1) Green, and (m) Blue of 8 m simulation of the fused MS image. 

three land cover classes were used as a reference for the sub-pixel map obtained by 

the proposed algorithm. 

3.3.1.2 Data simulation 

Multispectral imagery (8 m): From the land cover map (Figure 3.4(b), 3.4(c), 3.4(d)) 

at 4 m spatial resolution, a set of multispectral images at 4 m spatial resolution was 

simulated based on the random normal distribution using the mean and variance of 
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each land cover class shown in Table 3.1. The simulated MS image, therefore, is 

similar spectrally to a multispectral IKONOS image at 4 m spatial resolution. A MS 

image at 8 m spatial resolution was generated by degrading the 4 m simulated MS 

image by a factor of two (Figure 3.6(a), 3.6(b), 3.6(c), 3.6(d». These images were 

used as reference to evaluate the quality of the fused image produced below. 

Panchromatic imagery (8 m): The 8 m simulated MS image was then used to create 

a simulated PAN image (Figure 3.6(e» based on a simple spectral convolution of the 

Blue, Green, Red and NIR bands of the 8 m simulated MS image (the wavelength of 

the PAN band of the IKONOS image covers these four bands) as 

Pan = BLUE + GREEN + RED + NIR 
4 . (3.15) 

Multispectral imagery (32 m): The 32 m MS image (Figure 3.6(f), 3.6(g), 3.6(h), 

3.6(i» was produced by degrading the 4 m MS image by a factor of eight. The 32 m 

MS image was then used for soft-classification and image fusion to produce a 32 m 

land cover proportion image and an 8 m fused image. 

3.3.1.3 Pre-processing 

Fused imagery (8 m): Amongst the four fused spectral bands, three were used in the 

experiment (Blue, Green and Red). The NIR band of the fused image was not used 

because of the scattered distribution and the spectral overlap of all three land cover 

classes over this band (Figure 3.5). From the simulated 8 m PAN and 32 m MS 

images, the 8 m fused image (Figure 3.6(k), 3.6(1), 3.6(m» was predicted using the 

Gram-Schmidt Spectral Sharpening method (Lab en and Brower, 2000). The fused 

image was evaluated based on the RMSE for each band (Munechika et ai., 1993). The 

RMS errors of the Red, Green and Blue bands were 15.74 DN, 8.27 DN and 5.44 DN, 

respectively. Comparing with the RMS errors of the fused image obtained In 

Munechika et al. (1993), the fused image produced was similar to that of real data. 

Simulated land cover proportion imagery (8 m): To provide a realistic test, a set of 

proportion images was produced using soft-classification of the simulated 32 m MS 

image. The simulated MS image was used because in the simulated case the three land 

cover classes at the sub-pixel (4 m) level are known, facilitating direct evaluation of 

the technique. A k-nearest neighbour classifier (k-NN) (Lewis and Brown, 1998) was 

used for soft-classification with k=5. The land cover proportion image was produced 
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Figure 3.7 Local end-member spectra calculation: 
(m,n) are coordinates of the fused image pixel and (x,y) are coordinates of the pixel in the original 
image that corresponds to the fused pixel (m,n). From land cover proportion and digital number of pixel 
(x,y) and its eight surrounding pixels, the local spectra of the pixel (m,n) can be calculated. 

with overall area error proportion of 0.5552% (Lewis and Brown, 2001) and overall 

RMS error of 0.0838 pixels (Tatem et aI., 2001a). Statistics for the resulting land 

cover map from soft-classification show that the land cover proportion images 

contained an amount of error similar to that of a soft-classified real MS image. In this 

sense, the simulated 

land cover proportion image was similar to that which might be obtained from real 

data. 

3.3.1.4 Global end-member spectra 

The end-member spectra values in Equation (3.7) can be acquired from laboratory 

measurements or can be estimated from training data (Settle and Drake, 1993). Since 

the simulated MS image was created from statistics on the cereal, grass and trees 

classes, the end-member spectra of these classes should be the means of the spectral 

distributions in the Blue, Green and Red bands. 

3.3.1.5 Local end-member spectra 

Three land cover classes exhibited a large variance and multimodal distributions over 

all four spectral bands (Table 3.1 and Figure 3.5). Thus, the single set of end-member 

spectra values used in Equation 2 was not appropriate for every pixel in the image. 

Investigation of the real IKONOS image indicated that the DN values of adjacent 
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pixels of the same class were similar. Hence, it was suggested that using locally 

defmed end-member spectra would be more appropriate for determining the local 

reflectance constraint value than using a single value for the whole image. 

Local end-member spectra were produced from the land cover proportion image and 

the original MS image (e.g., 32 m land cover proportion image and 32 m MS image). 

Figure 3.7 describes the local end-member spectra estimation process. The end­

member spectra of the pixel (m,n) of a given 8 m fused spectral band can be defined 

based on the class proportions and the reflectance value of the corresponding pixel 

(x,y) and its eight surrounding pixels of the same spectral band of the 32 m MS image. 

For each spectral band and each pixel (x,y), an equation exists as follows 

(3.16) 

whereR;>, is the DN value of pixel (x,y) in spectral band i, ~XY, P?' , ... , P/Y are class 

proportions and Ss,1, Ss,2, .. , Ss,c are the local end-member spectra of the pixel (x, y) in 

spectral band i. 

With eight surrounding pixels, there are eight equations which can be rewritten in 

matrix form as 

where RJY = [R}x-l)(y-l) R(x+l)(y+l)]T SXY =[S ... s ,s s,1 

p= 

p,(x-I)(y-l) D(x-l)(y-l) 
1 .• Fe 

p,XY 
1 

p,(x+l)(y+l) D(x+l)(y+l) 
1 .• Fe 

(3.17) 

... Ss,e]' and 

Using the least squares method, the local end-member spectra Ss can be resolved as 

Ss =( pTp rl 
pTRs . (3.18) 

Amongst the pixels that are used to determine the local end-member spectra, the pixel 

(x,y) should be the most important since it covers the fused pixel (m,n). To emphasise 

the contribution of the corresponding pixel (x,y) to the end-member spectra, a weight 

mechanism was used such that Equation (3.19) becomes 

Ss =( pTwp r1 
WPTRs , (3.19) 

where W was the diagonal matrix: 
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,Jx-IXy-I) 0 0 0 0 
0 .. 0 0 0 

w= 0 0 w">' 0 0 (3.20) 
0 0 0 0 

0 0 0 0 ,Jx+IXy+l) 

and w(x-I)(Y-I), .. ,yVY, .. , W(x+l)(y+l) are weight values for each corresponding pixel. The 

assumption was tested using the weight value wX)l of 1 up to 20 and the other weight 

values of 1. The optimal weight value yVY was determined based on the KIA of results 

of the super-resolution mapping using the fused image. 

3.3.2 Results and discussion 

3.3.2.1 Network settings 

Two sources of data were used in super-resolution mapping using fused imagery. The 

first data source was the land cover proportion image obtained by soft-classification. 

The second data source was the fused image. In the experiment using the simulated 

land cover proportion image, both data sources contained an amount of error similar 

to that of real data. 

From the predicted soft-classified land cover proportion image (Figure 3.8(a), 3.8(b), 

and 3.8(c», the 4 m sub-pixel land cover maps were obtained using the traditional 

HNN (Figure 3.8(g), 3.8(h), and 3.8(i», the HNN using the fused image with global 

end-member spectra (Figure 0), 3.8(k) and 3.8(1» and the HNN using the fused image 

with local end-member spectra (Figure 3.8(m), 3.8(n) and 3.8(0». The greatest 

accuracy land cover map was obtained with the weighting coefficients of k]=70, 

k2=70, k3=70, k4=70 and k5=70 after 6000 iterations and the optimal weight value of 

14 to determine the local spectra. The choice of weighting coefficients was 

implemented empirically after testing a number of sets of weighting coefficient 

values. The 32 m hard classified land cover image (Figure 3.8(d), 3.8(e) and 3.8(f) 

was produced from the 32 m multispectral image (Figure 3.8(g), 3.8(h), 3.8(i), and 

3.8(j» based on the highest land cover proportions estimated by the k-NN. 

3.3.2.2 Accuracy assessment 

The accuracy assessment was implemented at the sub-pixel spatial resolution based on 

the statistics which are mostly used for hard classification such as KIA, overall 

accuracy, and per-class omission and commission errors. Although Foody (1992) 
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Statistics for the hard classified image 
Cereal Grass Trees ErrorO (%) ErrorC (o/~ 

Unclassified 0 0 0 
Cereal 1005 126 21 3.74 12.76 % 
Grass 39 2305 280 8.42 12.16 % 
Trees 0 86 234 56.26 26.88 % 

KlA-K= 0.7430 Overall accuracy = 86.52 % 
Statistics for the HNN super-resolution mapping without using the 
fused image 

Cereal Grass Trees ErrorOio/~ ErrorCl%l 
Unclassified 0 4 3 1.000 
Cereal 977 89 2 4.60 8.52% 
Grass 63 2350 231 8.14 11.12 % 
Trees 4 74 299 36.82 20.69 % 

KlA-K= 0.7814 Overall accuracy = 88.53 % 
Statistics for the HNN super-resolution mapping using the fused image 
(Global spectra) 

Cereal Grass Trees ErrorO (%) ErrorC (%) 
Unclassified 11 4 2 1.0000 
Cereal 931 39 0 10.82 4.02 
Grass 91 2346 209 6.79 11.34 
Trees 11 128 324 39.44 30.02 

KlA-K= 0.7897 Overall accuracy = 87.92 % 
Statistics for the HNN super-resolution mapping using the fused image 
(Local spectra value of 14) 

Cereal Grass Trees ErrorOlo/~ ErrorCJo/~ 
Unclassified 6 0 0 1.000 
Cereal 994 39 0 4.79 3.68 
Grass 38 2412 206 4.17 9.19 
Trees 6 67 329 38.50 18.16 

KIA-K= 0.8320 Overall accuracy = 91.19 % 

Table 3.2 Confusion matrices and Accuracy Statistics of Simulated IKONOS Results 

suggested that the KIA is overestimated and the overall accuracy is underestimated, 

these statistics were used because they still represented for the accuracy of the hard 

land cover maps super-resolution mapping results. Accuracy statistics for each class 

based on KIA, overall accuracy, and per-class omission and commission errors are 

presented in Table 3.2. 

3.3.2.3 Visual evaluation 

The map produced by the new HNN super-resolution technique with real proportion 

image data was more accurate than the hard classification and traditional HNN in 

retaining small and linear objects. Despite the effect caused by the error in the class 

proportion image, the linear features in the trees class were recreated by the new HNN 
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(0) 

Figure 3.8 Results for simulated IKONOS image: 
4 m Cereal (a), Grass (b), and Trees (c) land cover proportion image. 4 m Cereal (d), Grass (e), Trees 
(f) hard classified land cover image. 4 m Cereal (g) , Grass (h), Trees (i) lINN super-resolution mapping 
image. 4 m Cereal (j), Grass (k), Trees (i) HNN super-resolution mapping using the fused image with 
the global end-member spectra resulting image. 4 m Cereal (m), Grass (n), Trees (0) HNN super­
resolution mapping using the fused image with the local end-member spectra resulting image. 

63 



with both global and local end-member spectra. However, the elTors from soft­

classification caused some artefacts in the trees class when the new HNN with global 

end-members was used. These artefacts can be seen when comparing Figure 3.4(d) 

and Figure 3.8(1). The artefacts occurred mostly for pixels where the soft­

classification predicted some erroneous land cover proportions (the elToneous 

proportions can be seen clearly in Figure 3.8(b)). The artefacts did not occur in the 

resulting land cover map produced by the HNN with local end-members. This can be 

explained as follows: the use of global end-members led to an inability to reduce the 

effects of the erroneous proportions locally in some cases. 

3.3.2.4 Statistical evaluation 

The statistics in Table 3.2 showed considerable increase in all accuracy values for the 

new HNN technique in comparison with the hard classification and traditional HNN. 

The overall accuracy increased from 86.52% for the hard classification and 88.53% 

for the traditional HNN to 87.92% for the new HNN with global end-members and 

91.19% for the new HNN with local end-members. Usually, the statistical 

significance of a difference between the accuracies should be taken into account if 

these accuracies are calculated using sample sets of reference data (Foody, 2004). 

However, in this experiment (and in the experiments in next chapters) the accuracy 

measurements such as KIA, overall accuracy, commission and omission errors were 

calculated using the population. Therefore, the calculation for significance of the 

difference in accuracies is not necessary. The visual and statistical improvement of the 

resulting sub-pixel maps when using a real proportion image showed that the new 

algorithm can increase the accuracy of the thematic mapping with the real image data 

if the image registration error is not taken into account. 

Similar to the visual comparison, the statistics highlighted a problem with the new 

HNN with global end-members. This problem resulted in an increase in the 

commission error for the trees class from 20.69% for the traditional HNN to 30.02% 

for the new HNN with global end-members. Similarly, the omission error obtained for 

the trees class by the traditional HNN super-resolution mapping increased from 

36.82% to 39.44% for the new HNN with global end-members. Due to the problem 

with the erroneous proportion, the overall accuracy of the new HNN with global end­

members decreased just slightly in comparison with the map obtained with the HNN 

super-resolution mapping, with the overall accuracy decreasing from 88.52% to 
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87.92%. With local end-members, the HNN using the fused image can resolve the 

problem that occurred when using a single set of global end-members. The overall 

accuracy of the resulting map produced by the new HNN with the local end-members 

increased greatly by approximately 3 % to 91.19%. 

3.4 Experiment 2: Degraded QuickBird image 

3.4.1 Data 

Although simulated imagery provides greater control than real imagery for evaluating 

new algorithms, a common criticism is that simulated imagery may not provide a 

realistic test, primarily because image registration error is not included in the data. 

Therefore, to provide a more realistic test, and to address such concerns, a second set 

of proportion images was produced using a degraded QuickBird MS and PAN image. 

A degraded (rather than real) image was used because in the degraded case the three 

land cover classes at the subpixellevel are known, facilitating direct evaluation of the 

impact of image registration error on the technique. The experiment process can be 

depicted in Figure 3.9 with four steps: (A) Training and reference data, (B) 

Degradation, (C) Pre-processing and (D) Super-resolution mapping. 
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(d) 

Figure 3.10 QuickBird MS and PAN image 
(a) 0.7 m PAN image (360X 300 pixel), (b}Blue, (c) Green, (d) Red and (e) Near IR bands of 2.8 m 
MS image (90x75) pixel. 

3.4.1.1 Training and reference data 

Raw data: A QuickBird MS image was acquired over an area of Christchurch, UK on 

1st June 2002. A sub-area of PAN (360 x 300 pixel) (Figure 3.10(a)) and MS (90 X 75 

pixel) (Figure 3.l0(b), 3.l0(c), 3.l0(d), 3.l0(e)) images was extracted from an area in 

the airport. Three land cover classes in the area were: grass, white surface and dark 

surface of the runway. The MS image was co-registered to the PAN image with a 

RMSE of 0.25 pixel. 

Training and Reference data: Three land cover classes at 0.7 m spatial resolution 

were obtained by manual digitising from the panchromatic image (Figure 3.11(a), 

3. 11 (b), 3. 11 (c)). These land cover images were used as the reference data for the 

results of super-resolution mapping. Thus, there was no image registration error of the 

PAN image against the reference data. 
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(e) 

Figure 3.11 Three land cover classes image for reference: 
(a) 0.7 m grass, (b) 0.7 m white surface and (c) 0.7 m dark surface. Three land cover classes image for 
training: (d) 8.4 m grass, (e) 8.4 m white surface and (f) 8.4 m dark surface. 

Super-resolution methods use land cover proportions obtained by soft-classification as 

input. To implement the soft-classification, training data are required. In this research, 

the soft-classification was implemented at 8.4 m spatial resolution. The training data, 

therefore, could be produced by degrading the land cover image at 0.7 m spatial 

resolution by twelve times as in Figure 3.11(d), 3.11(e), and 3.11(f). 

3.4.1.2 Image degradation 

Multispectral imagery (8.4 m): The QuickBird MS image at 2.8 m spatial resolution 

was degraded by three times to produce a MS image at 8.4 m spatial resolution 

(Figure 3.12(a), 3.12(b), 3.12(c) and 3.12(d)). This MS image was then used to 

produce the land cover proportions at 8.4 m spatial resolution using soft-classification 

with training data in Figure 3.11. The land cover proportions were then used to 
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produce a 0.7 m land cover image using super-resolution mapping and the results 

were compared with the reference data in Figure 3.11. 

Panchromatic imagery (2.1 m): The 2.1 m PAN image was produced by degrading 

the 0.7 m PAN image by three times (Figure 3.12(e)). The PAN image in Figure 

3.12(e) contained no image registration error. To evaluate the effect of the image 

Figure 3.12 Degraded MS and PAN images 
Four bands (a) Blue, (b) Green, (c) Red, and (d) NIR 8.4 m of simulated MS image. (e) 2.1 m 
degraded PAN image, (f) 0.5 pixel image registration error PAN image at 2.1 m spatial resolution, (g) 1 
pixel image registration error PAN image at 2.1 m spatial resolution and 1.5 pixel image registration 
error PAN image at 2.1 m spatial resolution. 
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registration error on the accuracy of the resulting land cover map, the PAN image was 

geo-coded with RMSEs of 0.5 pixels (Figure 3.12(f)), 1 pixel (Figure 3.12(g)) and 1.5 

pixels (Figure 3.12(h)). The proposed algorithm was then tested using the fused 

images obtained from these geocoded PAN images and the results were compared 

with the results obtained from the fused images without image registration error. 

3.4.1.3 Pre-processing 

Fused imagery (2.1 m): Amongst the four fused spectral bands, three were used in 

the experiment (Blue, Green and Red). From the 2.1 m degraded PAN image (Figure 

3. 12(e)) and 8.4 m MS image (Figure 3. 12(a), 3. 12(b), 3. 12(c) and 3. 12(d)), the 2.1 m 

fused image was obtained using the Gram-Schmidt Spectral Sharpening method. To 

include the image registration error in the fused image, the PAN images with image 

registration RMS error in the range from 0.5 pixels to 1.5 pixels (Figure 3.12(f), 

3.12(g) and 3.12(h)) were fused to evaluate the effect of the image registration error 

on the algorithms. 

Land cover proportion imagery (8.4 m): Proportion images at 8.4 m spatial 

resolution were produced from the 8.4 m MS image in Figure 3.11 using the training 

data in Figure 3.11. Obviously, this set of proportion images contains a certain 

amount of error including the MS image registration error. The predicted land cover 

proportions were then used for hard classification to produce a land cover map at 8.4 

m spatial resolution, traditional super-resolution mapping and the new method for 

super-resolution mapping using the fused image. The error of the proportion 

predicting process has an impact on the results of all these methods. That means that 

the PAN image registration error is the only source of image registration error 

affecting the accuracy of the new super-resolution mapping when the results of the 

three classification methods were compared. 

A k-nearest neighbour classifier (k-NN) (Lewis and Brown, 1998) was used for soft­

classification with the number of exemplars k=5. The land cover proportion image 

was produced with overall area proportion error of 0.0242% and overall RMS error of 

0.0182 pixels (Tatem et at., 2001a). The proportions ofthree land cover classes can be 

seen in Figure 3. 13 (a), 3. 13 (b) and 3.13(c). 
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Statistics for the hard classified image 

Grass 
W D ErrorO (%) Errore (%) 
surface surface 

Unclassified 0 0 0 
Grass 72945 749 1474 1.47 2.96 
W surface 44 598 222 85.31 30.79 
D surface 1043 2725 28200 5.67 11.79 

KIA-K= 0.8685 Overall accuracy = 94.21 
Statistics for the HNN super-resolution mapping without using the fused 
image 

Grass 
W D 

ErrorO (%) Errore (%) 
surface surface 

Unclassified 4 11 14 
Grass 73746 424 280 0.39 0.95 
W surface 152 1414 786 65.28 39.88 
D surface 130 2223 28816 3.61 7.55 

KIA-K= 0.9166 Overall accuracy = 96.27 
Statistics for the HNN super-resolution mapping using the fused image 
without image registration error (Local spectra value of 14) 

Grass 
W D 

ErrorO (%) Errore (%) 
surface surface 

Unclassified 2 12 16 
Grass 73755 1006 331 0.37 1.78 
W surface 2002 1861 212 54.30 18.20 
D surface 73 1193 29337 1.87 4.14 

KIA-K= 0.9365 Overall accuracy = 97.18 
Statistics for the HNN super-resolution mapping using the fused image with 
PAN image re istration error of 1 pixel (Local spectra value of 14) 

Grass 
W D 

ErrorO (%) Errore (%) 
surface surface 

Unclassified 3 13 32 
Grass 73525 972 477 0.68 1.93 
W surface 275 1716 391 57.86 27.96 
D surface 229 1371 28996 3.01 5.23 

KIA-K= 0.9217 Overall accuracy = 96.52 

Table 3.3 Confusion Matrices and Accuracy Statistics of Degraded QuickBird Results 

3.4.2 Results and discussion 

3.4.2.1 Network settings and accuracy assessment 

In the experiment using degraded QuickBird imagery, the results produced by the 

three approaches were compared, as in the simulated data case. The 8.4 m hard 

classified land cover map was obtained from the land cover proportion image (Figure 

3.13(a), 3.13(b), 3.13(c» by assigning each 8.4 m pixel to the class of the largest 

proportion (Figure 3.13(d), 3.13(e), 3. 13 (f). The HNN super-resolution mapping by 
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(n) (0) 

Figure 3.13 Results for the Degraded QuickBird image: 
(a) Grass, (b) White surface, and (c) Dark surface 8.4 m land cover proportion image. (d) Grass, (e) 
White surface, and (f) Dark surface 8.4 m hard classified land cover image. (g) Grass , (h) White 
surface and (i) Dark surface 0.7 m HNN super-resolution mapping image. (j) Grass, (k) White surface, 
and (i) Dark surface 0.7 m HNN super-resolution mapping using the fused image without image 
registration error. (m) Grass, (n) White surface and (0) Dark surface 0.7 m HNN super-resolution 
mapping using the fused image with RMS image registration error of 1 pixel. 
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Tatem et al. (2001 b) was based on the clustering goal functions, proportion constraint 

and multi-class constraint. Applying this HNN super-resolution mapping approach, a 

0.7 m spatial resolution land cover map of three land cover classes was produced 

using the 8.4 m predicted land cover proportion image as input to the HNN super­

resolution mapping technique, with a zoom factor of 12. After 6000 iterations with the 

weighting constants of k]=70, k2=70, k3=100 and k4=70, three land cover images 

were super-resolved as in Figure 3.13(g), 3.13(h), 3.13(i) (These optimal weighting 

constants were selected empirically. In the next parts of this thesis, the same principle 

to select the weighting constants was used). Similar to the simulated IKONOS 

experiment, the evaluation of the new method was based on the accuracy statistics 

which are usually used for hard classification such as the KIA, the overall accuracy, 

and the per-class omission and commission errors (Table 3.3). 

The new HNN super-resolution mapping technique was constrained by the 8.4 m land 

cover class proportion image and the 2.1 m fused images. To estimate the local end­

member spectra of three land cover classes, the 8.4 m land cover proportion image 

was used in combination with the 8.4 m MS images which were degraded from the 

2.1 m fused images. Based on the results of the simulated IKONOS data case, the 

empirical weight value of 14 was used to determine the local end-member spectra. A 

zoom factor of 12 was. used to produce a 0.7 m spatial resolution map. The HNN was 

set with weighting constants of k]=70, k2=70, k3=100, k4=70 and k5=100. After 6000 

iterations, the HNN using the fused MS image without PAN image registration error 

and the local end-member spectra produced the sub-pixel land cover images in Figure 

3.13(j), 3.13(k) and 3.13(1). Setting the same weighting constants, the HNN super­

resolution mapping using the fused image obtained from the PAN image with image 

registration RMS error of 1 pixel (the accuracy can be obtained normally in the 

geometric correction process) produced the land cover maps as in Figure 3.13(m), 

3. 13(n) and 3.13(0). Accuracy statistics of the predicted land cover map are given in 

Table 3.3. 

3.4.2.2 Visual evaluation 

In comparison with the hard classification and the traditional HNN super-resolution 

mapping, the resulting land cover map produced by the HNN using the fused image is 

visually more accurate. Similar to the simulated IKONOS data set, the greatest 

improvement can be seen in the white surface class, where almost all sub-pixels 
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belong to small objects. Without information from the fused image, the white surface 

sub-pixels of the linear obj ects in Figure 3 .11 (b) were clustered into larger objects to 

satisfy the HNN goal functions as in Figure 3. 13 (h). Although the fused image 

contains error due to the image registration error of the PAN image, the small and 

linear white surface objects can still be mapped and their shapes look similar to those 

in the reference image. This fact suggests that the new technique can be used for 

applications such as target identification. 

3.4.2.3 Statistical evaluation 

The accuracy statistics showed a considerable increase in accuracy with the new 

technique. Overall accuracy of the land cover map increased by around 3% from 

94.21 % for the hard classification to 97.18% for the super-resolution mapping using 

the fused image without image registration error. With the fused image produced by 

the PAN image with image registration error of 1 pixel, the accuracy of the resulting 

0.7 m land cover map increased around 2% and 0.5% in comparison with the results 

of hard classification and the HNN super-resolution mapping technique, respectively. 

The KIA value increased from 0.8685 for the hard classified map and 0.9166 for the 

traditional HNN sub-pixel map to 0.9365 for the super-resolution mapping using 

fused image without PAN image registration error and 0.9166 for the super-resolution 

mapping using fused image with PAN image registration error of 1 pixel. Comparing 

with the resulting sub-pixel map produced by the HNN when the fused image was not 

used, the accuracy of the thematic map produced by the new technique (without PAN 

image registration error) increased approximately 1 % in terms of overall accuracy. 

Similar to the experiment involving simulated IKONOS imagery, amongst the three 

land cover classes, the accuracy of the white surface class increased most with the 

omission error reduced from 85.31 % for the hard classified image and 65.28% for the 

traditional HNN super-resolution mapping to approximately 57.85% and 54% for the 

new HNN super-resolution mapping technique with and without PAN image 

registration error, respectively. The commission error reduced from 30.79% and 

39.88% to 27.96% and 18.20%, respectively after using the fused image. The increase 

in accuracy of the other two classes was not as great as that of the white surface class 

since most sub-pixels in these classes were grouped into larger objects. 
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Figure 3.14 The effect of the image registration on Kappa Index Agreement value of resulted sub-pixel 
map using the HNN super-resolution mapping using the fused image. 

3.4.2.4 Image registration error effect 

To determine the effect of the image registration error on the results of the new 

technique, a series. of PAN images with image registration error ranging from 0.5 

pixels to 1.5 pixels were used to produce the fused images. Accuracy evaluation of the 

resulting land cover maps using these fused images based on the KIA value was 

implemented and presented in the plot in Figure 3.14. Obviously, the plot shows that 

the KIA value reduced as the RMS image registration error increased. When the RMS 

image registration error increased to 1.5 pixels, the resulting sub-pixel map predicted 

by the new technique was less accurate than the results of the HNN without using the 

fused image. However, with the fused image produced from a PAN image with RMS 

error of 1 pixel (the accuracy of image registration that can be usually obtained in 

geometric correction of remotely sensed images) the accuracy of the sub-pixel map 

produced by the HNN super-resolution mapping using the fused image was greater 

than that produced by the HNN super-resolution mapping technique without using the 

fused image. It is recommended that the new technique should be used only if the 

PAN image is registered with an RMS error equal to or smaller than one pixel. 

3.5 Conclusions 
I 

This Chapter introduces the use of fused images for super-resolution mapping. Data 

from the fused images were incorporated into the HNN optimisation using forward 

74 



and inverse models in the form of the reflectance constraint. The value of the 

constraint was calculated based on a linear mixture model, which used both global 

and local end-member spectra. The effectiveness of the technique was examined using 

both (i) a simulated IKONOS data set and (ii) a degraded QuickBird image (with and 

without image registration error). In both cases, the proportions images were 

supplemented by a simulated fused image and original MS image. The accuracy 

evaluation was implemented based on the KIA, overall accuracy, and omission and 

commISSIOn errors. 

The results demonstrated that fused images can be used as a source of supplementary 

information for the HNN to predict land cover accurately at sub-pixel spatial 

resolution from simulated and real land cover proportion images. The analysis 

demonstrated a considerable increase in accuracy with the new technique, particularly 

for land cover features at the sub-pixel scale. For larger features, the technique 

increased the accuracy slightly. In addition, visual inspection of the resulting image 

showed pleasing improvements. The analysis also suggests that the new technique can 

be applied only if the RMS image registration error of the PAN image is equal to or 

smaller than 1 pixel. 

The results of the experiments suggest the potential for combining image fusion and 

super-resolution mapping processes for real data. Thus, future research will develop a 

HNN to incorporate directly real panchromatic imagery as supplementary data to 

increase the accuracy and detail of the predicted sub-pixel land cover map. 
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Chapter 4: Super-resolution mapping using a Hopfield 
neural network with the panchromatic image3 

4.1 Introduction 

In this Chapter, a new technique of using panchromatic imagery for super-resolution 

mapping is proposed. The new technique is based on the general model for using the 

panchromatic imagery for super-resolution mapping which is presented in Chapter 2. 

The panchromatic (PAN) imagery was used as an additional source of information for 

super-resolution mapping. Information from the PAN image was used in the form of a 

new panchromatic reflectance constraint for the energy function of the Hopfield 

neural network (HNN). The value of the new panchromatic reflectance constraint was 

defined based on forward and inverse models with local end-member spectra and 

local convolution weighting factors. Two sets of simulated and degraded data were 

used to test the new technique. The results indicated that panchromatic imagery can 

be used as a source of supplementary information to increase the detail and accuracy 

of sub-pixel land cover maps produced by super-resolution mapping. 

4.2 Hopfield neural network structure for using the PAN image for 
super-resolution mapping 

4.2.1 General model 

The new method proposed in this paper aims to use a PAN image as additional 

information at the intermediate spatial resolution to produce a sub-pixel land cover 

map at the super-resolution. To make use of the PAN image for land cover mapping, a 

forward model, a spectral convolution model and an inverse model were employed in 

the form of a panchromatic reflectance constraint within the HNN approach 

developed by Tatem et al. (2001a). The panchromatic reflectance constraint was 

obtained using a minimum grey value difference method. 

Figure 4.1 is a graphical depiction of the method proposed for incorporating a PAN 

image into the super-resolution mapping using a HNN. From the MS images at the 

original MS spatial resolution, land cover area proportion images are produced using a 

soft-classifier. From the super-resolution land cover map at the first iteration, an 

3 This chapter is partly based on Nguyen et al. (2005b) 
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Figure 4.1 HNN super-resolution (SR) mapping using the panchromatic (PAN) mages_ 

estimated MS image (at the PAN image spatial resolution) is then produced using a 

forward model. The estimated MS image is then convolved spectrally to create a 

synthetic PAN image. Following a comparison of the observed and synthetic PAN 

images, a value is produced for all neurons covered by the same pixel in the PAN 

image to force the synthetic PAN image to converge to the observed PAN image. 

Thus, the HNN is constrained by the grey values of the PAN image. The adjustment 

value, or panchromatic reflectance constraint value, along with the goal and constraint 

values in the HNN structure proposed by Tatem et al. (2002a), can be used in the 

optimisation process for super-resolution mapping by minimising the energy function. 

After the optimisation process, the estimated grey values of the synthetic PAN image 

produced from the sub-pixel land cover map should be very similar to the observed 

PAN image. 

4.2.2 HNN structure 

The method presented is based on the structure of the HNN proposed by Tatem et at. 

(2002a). The structure of the HNN for super-resolution mapping using a PAN image 

of two land cover classes can be seen in Figure 4.2. A pixel at the original MS spatial 

resolution is divided into two inter-connected matrices of neurons in the HNN. Each 

neuron (h, i,j) represents a sub-pixel at position (i,j) in the land cover class h and the 
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Figure 4.2 Panchromatic (PAN) reflectance constraint for sub-pixels covered by pixel (m,n) at the PAN 
spatial resolution (SR). 
A pixel at the original SR contains four pixels at the spatial resolution of the PAN. m, n are the 
coordinates of the PAN pixel. The panchromatic reflectance constraint ensures that the grey value of 
the pixel (m,n) of the synthetic Pan image estimated from the neuron output is as close as possible to 
the grey value of corresponding pixel of the observed PAN image. 

value allocated to -each neuron represents the likelihood of belonging to that land 

cover class. For super-resolution mapping, the HNN is initialised using the soft­

classified land cover proportions and runs until it converges monotonically to a stable 

state when the energy function is minimised. At the stable state, the output values of 

the neurons are binary values. If the output value of the neuron (h, i,j) is one, the sub­

pixel (i,j) is assigned to the land cover class h. Otherwise, if the output value is zero, 

the sub-pixel (i,j) does not belong to the class h. The energy function can be expressed 

as 

E=-I.
h 
I. I. (kp1hij +k2G2hij +k3Phij +k4Mhij) , 

I ) 

(4.1) 

where kJ, k2, k3 and k4 are weighting constants, which determine the effects of the goal 

functions G1hij and G2hij, proportion constraint Phij and multi-class constraint Mhij on 

the energy function. The optimal values of the weighting constants are determined 

empirically for super-resolution mapping (Tatem et al. 2002a). The values of the goal 

functions G1hij and G2hij, proportion constraint Phij and multi-class constraint Mhij by 

Equation (3.2), (3.3), (3.4) and (3.5). 

To use the PAN image for super-resolution mappmg by the HNN, a new 

panchromatic reflectance constraint was added to the energy function in Equation 1. 

The new energy function can be expressed in an equation as follows : 
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(4.2) 

where R'~j is the panchromatic reflectance constraint value for each neuron (h, i,j) and 

ks is a fifth weighting constant. 

As in Figure 4.2, each neuron in the HNN represents a sub-pixel point in the original 

spatial resolution image. The factor f determines the increase in spatial resolution of 

the new super-resolution image in comparison with the PAN image. In addition to the 

proportion constraint for each original pixel, 1>1' sub-pixels covered by pixel (m, n) of 

the P AN images are constrained by a panchromatic reflectance constraint. This 

constraint is based on the principle that the estimated grey value of a pixel of the PAN 

image should be equal to the observed grey value (or target reflectance) of that pixel. 

The new energy function in Equation (4.2) is minimised if the derivatives of variables 

in Equation (4.2) converge to zero for each neuron (h, i,j), 

(4.3) 

The derivative values of Gl, G2, P, and M with respect to Vhij are computed by 

Equation (3.2), (3.3), (3.4) and (3.5), respectively. The value dRh/dvhij is derived 

based on the forward and inverse models, spatial and spectral convolutions as in 

Figure 4.1. 

4.2.2.1 Forward model 

The forward model is used to estimate a set of MS bands from a land cover image. 

The estimated reflectance of the neurons representing the pixel (m,n) of three MS 

bands at the PAN spatial resolution can be defined by a forward model as 

R( = SI,I V; + ... + Sl,e v:, 
R~ = S2,1V; +",+S2,ev:, or RI =svt

, 

R~ = S3,I V; + ... + S3,e v:, 
(4.4) 

where the estimated proportion value of a class e at the iteration t is 

mf:J. -1 nf #,-1 
Vi = 1 / f2 (L L Vipq ) , S i,j is the spectral value of the land cover class j for a spectral 

p=mf q=nf 

band i R' = [R' 1), 
, 1n,II 1.L'-2 R']T v' -[v,' v' V,']T and •• b m,n' m,n - I 2·· 3 m,n 

[

S),) ... S),c j 
S = S2,I ... S2,e . 

Sb,) ... Sb,e 

(4.5) 
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4.2.2.2 Spectral convolution 

The spectral convolution procedure is employed to create a synthetic PAN image 

from a set of MS bands. Spectral convolution can be based on the synthesising 

method proposed by Zhang (1999) as 

RpAN =ICfJjR;, (4.6) 

where RPAN is the digital value of the synthetic PAN image, K is the reflectance value 

of the MS band i, and CfJj is a weighting factor for the MS band i. The weighting factor 

lP; can be estimated directly from the PAN and MS images using multiple regressions 

of the original PAN image and the original MS bands. 

4.2.2.3 Error image 

From the observed PAN image, it is possible to produce an error image that can be 

used for HNN super-resolution mapping. The error image is the difference between 

the observed PAN image and the synthetic PAN image and can be calculated as 

(4.7) 

where RI is the synthetic PAN image at the iteration t, which can be calculated by 
PANSyn 

the spectral convolution model in Equation (4.6) 

(4.8) 

4.2.2.4 Inverse model and panchromatic reflectance constraint 

From the error image, a panchromatic reflectance constraint value for each neuron in 

the HNN can be produced based on an inverse model. If the grey value of a 

synthesised PAN pixel is greater than that of the corresponding observed PAN pixel, 

the constraint produces a value to reduce the grey level of the synthetic image. 

Conversely, if the synthetic reflectance value of a PAN pixel is smaller than that of 

the observed PAN image, the constraint produces a value to increase the grey value of 

the synthetic image. 

Supposing that the MS bands at a spatial resolution of a PAN image are 1, 2, .. , band 

the estimated land cover proportions of c land cover classes for pixel (m,n) are PI, 

P2, .. , Pc. Using the forward model in Equation (4.4), the relationship between the 

reflectance of the MS bands and the land cover classes can be expressed as 

Rt = Sl.l-R +",+SI,cP" 
R; = S2.1-R + ... + S2.cP" or R;;,,n = SP m,n , (4.9) 
R; = Sh.l-R + ... + Sh.cP" 
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where Rm,n =[R1 .. R; .. Rb]~"n' is the vector of reflectance values of the bands 1, 2, ." 

b and Pm,n =[-R ~ .. Pct;,n is the vector of land cover proportion values. In sub-pixel 

mapping, based on the assumption that a pixel consists of a matrix of crisp sub-pixels, 

the land cover proportions PI, P2,." Pc must be a quotient of a whole number of sub­

pixels belonging to a given class divided by the number of sub-pixels within an 

original pixel. For example, if a pixel in the PAN image consists of 2x2 sub-pixels, 

the land cover proportion of a land cover class Pi should be selected from the set of 

the values {O/4, 1/4,2/4,314 and 4/4}. The land cover proportions of all c land cover 

classes of a pixel in the PAN image are then a combination of the values such as 

P I=1I4, .. , P,=O/4, .. , P c=3/4 with PI + .. + Pi + "+Pc = 1. The synthetic grey value of a 

PAN pixel would converge to the observed grey value or the error image would 

converge to zero if the estimated proportion value v/ of class c at the iteration t is 

equal to the land cover proportion Pi . 

The land cover class proportions for each PAN pixel can be determined from a limited 

number of possible combinations of land cover classes. For example, the land cover 

proportions of a PAN pixel (m,n) which contains two land cover classes PI and P2 can 

be one of the possible combinations PI = [PI=O/4, P2=4/4], P2 = [PI=1I4, P2=3/4], P3 

= [PI=2/4, P2=2/4], P4 = [PI=3/4, P2=1I4], and Ps = [PI=4/4, P2=O/4] (provided that a 

pixel in the PAN image covers 2x2 sub-pixels). In this research, the land cover 

proportions P of a PAN pixel can be determined based on the minimum grey value 

difference method. 

The minimum grey value difference method is based on the forward model (Equation 

(4.4)) and spectral convolution (Equation (4.6)). To calculate the land cover 

proportions for pixel (m,n) in the PAN image, the difference between the synthetic 

grey value computed from each possible land cover proportion and the observed grey 

value is calculated. The land cover proportion of the pixel can be chosen based on the 

minimum difference between the synthetic grey value R:y",lwNC determined from the set 

ofland cover combinations {PI, P2, .. , PNCB } and the observed grey valueRohw"cd of the 

PAN image (NCB is total number of the possible combinations). The process can be 

expressed by a rule as follows: 

P is P if (IRsY",heNc - R°bser>ed I = min) 
P P mn 

(4.10) 
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where P is a vector of land cover proportions for PAN pixel (m,n). When the land 

cover proportion image P is obtained, the panchromatic reflectance function value can 

be calculated as 

dR / dVhij = P"mn - v;mn (4.11) 

where (m,n) is PAN pixel which covers the pixel (ij), P"mn is the land cover 

proportion of class hand v:mn is the estimated land cover proportion of class h of the 

pixel (m,n) at the iteration t. 

4.2.2.5 Weighting mechanism for proportion and panchromatic reflectance 
constraint 

Using the panchromatic reflectance constraint, the land cover proportions produced 

from all pixels of the PAN image covered by a pixel (x,y) of the original image should 

be close to the land cover proportions of the pixel (x,y) predicted by soft­

classification. To ensure that this is the case, an empirical weighting mechanism was 

used to adjust the weighting constant k5 in Equation (4.3) as 

(4.12) 

where PZN is the land cover proportion produced from all pixels of the PAN image 

located within the pixel (x,y) and P';-claUijied is the land cover proportion predicted by 

soft-classification. 

In the next sections, the newly proposed method of using PAN image for super­

resolution mapping is evaluated on two data sets: simulated IKONOS and degraded 

QuickBird data. 

4.3 Example 1: Simulated IKONOS image 

4.3.1 Data 

Prior to application to real data, the proposed method was tested using the simulation 

image in Chapter 3. In this set of simulated data, a simulated 32 m MS image and an 8 

m PAN image were simulated using a real IKONOS image. The ratio between the 

spatial resolutions of the simulated MS and PAN image is similar to the ratio between 

the real 4 m MS and 1 m PAN IKONOS image. Thus, the algorithm is likely to be 

applicable to real imagery if it performs accurately on the simulated image. Although 

the size of features or spatial frequency of variation should be taken into account, 

super-resolution mapping tasks are considerably similar for the degraded and the real 

imagery. For example, mapping trees or roads using a 32 m image is similar to 
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mapping bushes and alleyways using a 4 m image. The simulation ensured that there 

were no errors in image registration between the reference image and the land cover 

image obtained by super-resolution mapping. Therefore, the focus of the evaluation is 

on the performance of the algorithm independent of registration issues. 

(I) 

Figure 4.3 Results of the simulated data 
(a) 4 m Cereal, (b) Grass and (c) Trees land cover proportion image. (d) 4 m Cereal, (e) Grass, (f) Trees 
hard classified land cover image. (g) 4 m Cereal, (h) Grass, (i) Trees HNN super-resolution mapping 
image. G) 4 m Cereal, (k) Grass, (i) Trees HNN super-resolution mapping using the PAN with the local 
end-member spectra resulting image. 
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The simulation data set included 32 m MS (Figure 3.6(f), (g), (h), (i)) and 8 m (Figure 

3.6(e)) PAN images which were generated from 4 m reference cereal, grass and trees 

classes (Figure 3.4(a), (b), (c), (d)) using a random normal distribution based on the 

mean and variance of each class in the MS bands. The means and variances of the 

three land cover classes in each MS band were obtained based on an analysis of 

reference land cover classes and real IKONOS imagery. The 32 m land cover 

proportion images (Figure 4.3(a), (b), and (c)) were produced by k-NN soft 

classification (Lewis and Brown, 1998) of simulated 32 m MS imagery with k=5. The 

estimated land cover proportions contained a level of error similar to that which can 

be observed for real data with an overall area error proportion of 0.56% and an overall 

RMSE of 0.083775 pixels (Tatem et aI., 2001b). 

4.3.2 Local end-member spectra 

Investigation of the real IKONOS image indicated that the end-member spectra of the 

same class in adjacent pixels were similar whereas the end-member spectra of more 

distant pixels varied more. Thus, the single set of global end-member spectra values 

used in Equation (4.4) was not appropriate for every pixel in the image. Local end­

member spectra would be more appropriate for determining local reflectance 

constraint values. These were produced from the land cover proportion image and the 

original MS image as in Nguyen et al. (2006). The end-member spectra values of the 

pixel (m,n) of a given 8 m MS band can be defined based on the class proportions and 

the reflectance values of the corresponding pixel (x,y) and its eight surrounding pixels 

of the same MS band at 32 m as 

s. = (pTp)-1 pTR 
1 l' (4.13) 

where s(' = [S;,I ... S;,c] and Sij is the end-member spectra value of class Cj on spectral 

band i, R; =[Ri'-I)(Y-I) '" Rix+'XY+')f is a vector of reflectance values in which Rty is the 

reflectance value of pixel (x,y) for spectral band i and 

p,(x-I)(y-I) 
I .. p(x-l)(y-I) 

c 

p= RXY 
I 

pxy 
c (4.14) 

p,(x+I)(y+l) 
I .. p(x+l)(y+l) 

c 

whereljXY is the proportion value of pixel (x,y) for class}. 
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Amongst the pixels that are used to detennine the local end-member spectra, the pixel 

(x,y) should be the most important since it covers the PAN pixel (m,n). To emphasise 

the contribution of the corresponding pixel (x,y) to the end-member spectra, a 

weighting mechanism was used, such that Equation 16 becomes 

(4.15) 

where W is the diagonal matrix: 

W(x-I)(y-I) 0 0 0 0 

0 .. 0 0 0 

w= 0 0 w'" 0 0 (4.16) 
0 0 0 .. 0 

0 0 0 0 W(X'tI)(y+I) 

and W(x-l)(y-l), .• ,~, .• , w(x+l)(y+l) are weight values for each corresponding pixel. The 

optimal weight value ~ was tested using the weight values ~ in the range [1, 20] 

and the other weight values of one. 

4.3.3 Local spectral convolution weighting factor 

As for the end-member spectra, the spectral convolution weighting factors can be 

detennined locally using the least squares method. The spectral convolution 

weighting factors of a pixel (m,n) of the PAN image were calculated based on the 

digital value of the MS and PAN pixels that were covered by its corresponding 

original pixel (x,y) and eight surrounding pixels at the MS image spatial resolution. 

(4.17) 

[ 1 [
R(X-1)(Y-I) 

where «J)XY = ~ ,RMS = I .. 

'Pb R1(x+I)(Y+I) 

.. RiX_1)(Y-I)] [R~~~)(Y-I)] 
.. , R pAN = .. where R? is the digital value 

Rix+,)(y+,) R~~~)(Y+I) 

of the pixel (x,y) of the MS band i and R7,4N is the digital value of the pixel (x,y) of the 

PAN band. 

4.3.4 Results and discussions 

4.3.4.1 Network settings 

Using the 32 m soft-classified land cover proportion image (Figure 4.3(a), 4.3(b), and 

4.3( c)), the 4 m sub-pixel land cover maps were obtained using the traditional HNN 

(Figure 4.3(g), 4.3(h), and 4.3(i)), and the HNN using the PAN image with local end­

member spectra (Fig. 4.3(j), 4.3(k) and 4.3(1)). The greatest accuracy land cover map 
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Statistics for the hard classified image 

Cereal Grass Trees 
ErrorO ErrorC 

1%) 10/01 
Unclassified 0 0 0 
Cereal 1005 126 21 3.74 12.76 
Grass 39 2305 280 8.42 12.16 
Trees 0 86 234 56.26 26.88 
KIA-K= 0.7430 I Overall accuracy = 86.52% 
Statistics for the HNN super-resolution mapping without using the PAN 
image 

Cereal Grass Trees 
ErrorO ErrorC 
(%) (%) 

Unclassified 0 4 3 1.000 
Cereal 977 89 2 6.42 8.52 
Grass 63 2350 231 8.14 11.12 
Trees 4 74 299 36.82 20.69 
KIA-K= 0.7814 I Overall accuracy 88.53% 

Statistics for the HNN super-resolution mapping using the PAN image 

Cereal Grass Tree 
ErrorO ErrorC 
(%) (%) 

Unclassified 10 70 31 1.000 
Cereal 983 30 2 5.84 3.15 
Grass 34 2349 106 6.67 5.62 
Trees 17 68 396 25.98 17.67 
KIA-K= 0.8361 I Overall accuracy 91.02% 

Table 4.1 Accuracy statistics of simulated results. 

was obtained with the weighting coefficients of k 1=100, k2=100, k3=100, k4=150 and 

ks=100 after 1000 iterations. The 32 m hard classified land cover image (Figure 

4.3(d), 4.3(e) and 4.3(f) was produced from the 32 m soft-classified proportion image 

(Figure 4.3(g), 4.3(h), 4.3(i), and 4.3(k» by assigning a land cover class to each pixel 

based on its largest proportion. To evaluate the resulting hard land cover maps at sub­

pixel spatial resolution of 4 m, accuracy statistics as traditionally applied for hard 

classification based on the error matrix were used. These included the KIA value - K, 

overall accuracy, and per-class omission and commission errors (Table 4.1). 

4.3.4.2 Visual evaluation 

Comparing the results of the two prediction techniques visually, it is clear that the 

super-resolution mapping using the PAN image is preferable to hard classification and 

the traditional HNN super-resolution mapping technique (Figure 4.3). The increase in 

accuracy is most obviously seen in the trees class, where most of the trees objects are 
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smaller than the 32 m simulated image pixel (Table 4.1). Without information from 

the PAN image, the trees class sub-pixels contained in the linear features in the right­

bottom and in the top of Figure 3.4( c) were clustered into larger objects to satisfy the 

goal functions as in Figure 4.3(i). The panchromatic reflectance constraint produced a 

value to retain reflectance for the neurons in those linear objects. Therefore, objects 

smaller than an original pixel were mapped more accurately (Figure 4.3(1)). 

4.3.4.3 Statistical evaluation 

The accuracy statistics (Table 4.1) showed a considerable increase in accuracy for the 

new technique. Overall accuracy of the land cover map increased by around 5% from 

86.52% for the hard classification to 91.02% for the super-resolution mapping using 

the PAN image with local spectra. The KIA value - K increased from 0.7533 for the 

hard classified map to 0.8361 for the new HNN technique. In comparison with the 

HNN super-resolution mapping without using the PAN image, the accuracy of the 

thematic map produced by the new HNN technique increased 3.5% in terms of overall 

accuracy. 

Amongst the three land cover classes, the accuracy of the trees land cover class 

increased most with the omission error reduced from 56.26% for the hard classified 

image and 36.82% for the traditional HNN super-resolution mapping to 25.98% for 

the new HNN super-resolution mapping technique. Similarly, the commission error 

reduced from 26.25% and 20.69% to 17.67% after using the PAN image. In the other 

two classes, the increase in accuracy was not as great as that of the trees class since 

most sub-pixels in these two classes were grouped into objects larger than a 32 m 

pixel. However, the increases in accuracy are relatively large if the small initial 

omission and commission errors are taken into account. This can be explained by the 

fact that the clustering goal functions are suitable for large features, yet the detailed 

information at the PAN spatial resolution is essential for more accurate super­

resolution mapping of the boundary pixels. 

The number of unclassified pixels (Table 4.1) was slightly increased in the super­

resolved land cover image using the PAN image in comparison with the results of the 

traditional HNN super-resolution mapping. These unclassified sub-pixels occurred as 

the goal functions, proportion constraint and multi-class constraint could not be 

satisfied simultaneously. However, the number of unclassified pixels did not reduce 
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(a) 1 Training and 
Reference 

data 

Raw data 

PAN image 
(0.64 m) 

;UHJ,' 
MS data 
(2.56 m) 

/~ --~_,~T5rainingdal (~JV ~ g m) 

-------------- -------------------+----_ .. _--_._--------------- ---------------

(b) 1 PAN image (1.28 Spectral images (5.12 m) 

Degradation ~f!P' ~~ 
------ ----- ---- ----- -------------1~--- .. ---- .. ------ --- --------- --------------

(e) 

Pre-processing 

(d) 1 Super-
resolut,ion 
mappmg Sub-pixel map (0.64 m) 

Figure 4.4 Four steps in experiment: 
(a) Raw data analysis, (b) Data simulation, (c) Pre-processing, and (d) Super-resolution mapping. 

the accuracy of the new technique_ 

4.4 Example 2: Degraded QuickBird image 

4.4.1 Data 

To provide a more realistic test for the new technique, a second set of proportion 

images was produced using a degraded QuickBird MS and PAN image. The degraded 

QuickBird MS and PAN images are similar spectrally to the real QuickBird MS and 

PAN images. Furthermore, with the degraded QuickBird MS and PAN images, it is 

possible to evaluate directly the impact of the image registration error on the new 

algorithms because the land cover classes at the sub-pixel level are known. For the 

degraded QuickBird image, the experiment was implemented in four steps as follows: 

(a) Training and reference data, (b) Degradation, (c) Pre-processing, and (d) Super­

resolution mapping (Figure 4.4). 

4.4.1.1 Training and reference data 

Raw data: QuickBird imagery with a spatial resolution of 2.56 m (MS) and 0.64 m 

(P AN) was acquired over an area of Christchurch, UK on 1 st June 2002. A sub-area of 

328x296 PAN pixels (Figure 4.5(a)) and 82x74 MS pixels (Figure 4.5(b), 4.5(c), 

4.5(d), 4.5(e)) was extracted from a rural area. Four land cover classes in the area 
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were identified as green cereal, grass, asphalt, and ripe cereal. The MS image was co­

registered to the PAN image with a root mean square error of 0.25 pixels. 

(d) (e) 

Figure 4.5 Original PAN and MS images: 
(a) 0.64 m PAN image (360x300 pixels), (b) Blue, (c) Green, (d) Red and (e) NIR bands of2.56 m 
MS image (90 X75 pixels). 

(c) 

Figure 4.6 Four land cover class images for reference: 
(a) 0.64 m green cereal, (b) 0.64 m grass, (c) 0.64 m asphalt and (c) 0.64 m ripe cereal. 
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Figure 4.7 Degraded PAN and MS images: 
Four bands (a) Blue, (b) Green, (c) Red and (d) NIR degraded MS image at 5.12 m spatial resolution. 
(e) 1.28 m degraded PAN image, (f) 0.5 pixel image registration error PAN image at 1.28 m spatial 
resolution, (g) 1 pixel image registration error PAN image at 1.28 m spatial resolution and 1.5 pixel 
image registration error PAN image at 1.28 m spatial resolution. 

Training and Reference data: Four land cover classes at 0.64 m spatial resolution 

were obtained by manual digitising from the panchromatic image (Figure 4.6(a), 

4.6(b), 4.6(c)). This land cover image was used as the reference data for the results of 

super-resolution mapping. Thus, there was no image registration error between the 

PAN image and the reference data. 
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Super-resolution mapping methods use land cover proportions obtained by soft­

classification as input. To implement the soft-classification, training data are required. 

In this research, the soft-classification was implemented at 5.l2 m spatial resolution 

(i.e. eight times coarser than the original spatial resolution). The training data, 

therefore, were produced by degrading the land cover image at 0.64 m spatial 

resolution by eight times. 

4.4.1.2 Data degradation 

Multispectral imagery (5.12 m): The QuickBird MS image at 2.56 m spatial 

resolution was degraded by two times to produce a MS image at 5.12 m spatial 

resolution (Figure 4.7(a), 4.7(b), 4.7(c) and 4.7(d)). This MS image was then used to 

produce the land cover proportions at 5.12 m spatial resolution using soft­

classification. The land cover proportions were then used to produce a 0.64 m land 

cover image using super-resolution mapping and the results were compared with the 

reference data in Figure 4.6. 

Panchromatic imagery 0.28 m): A 1.28 m PAN image was produced by degrading 

the 0.64 m PAN image by two times (Figure 4.7(e)). The PAN image in Figure 4.7(e) 

contained no image registration error. To evaluate the effect of image registration 

error on the accuracy of the resulting land cover map, PAN images were created by 

adding registration error with a root mean square error (RMS) of 0.5 pixels (Figure 

4.7(f)), 1 pixel (Figure 4.7(g)) and 1.5 pixels (Figure 4.7(h)). The proposed algorithm 

was then tested using these altered PAN images and the results were compared with 

that of the PAN images without image registration error. 

4.4.1.3 Pre-processing 

Proportion images at 5.12 m spatial resolution were produced from the 5.12 m MS 

image in Figure 4.7. Obviously, this set of proportion images contained a certain 

amount of error including the MS image registration error. The predicted land cover 

proportions were then used for hard classification, traditional super-resolution 

mapping and super-resolution mapping using the PAN image. That means the results 

of all these methods were affected by the same amount of error contained in the land 

cover proportions. The only difference between the new method of super-resolution 

mapping and the other methods was that the results of this method were also affected 

by the registration error of the PAN image. Therefore, it was necessary to evaluate the 

impact of the PAN image registration error on the methods. 
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A k-nearest neighbour (k-NN) classifier was used for soft-classification with k=5. The 

land cover proportion image was produced with overall area error proportion of P = 

0.0321 % and overall RMS error of 0.0332 pixels. The proportions of the four land 

cover classes can be seen in Figure 4.8(a-d). 

4.4.2 Results and discussions 

4.4.2.1 Network settings 

To evaluate the performance of the new algorithm with degraded QuickBird imagery, 

the results produced by the three approaches were compared visually and statistically, 

as for the simulated example. The 5.12 m hard classified land cover map was obtained 

from the land cover proportion image by assigning each 5.12 m pixel to the class of 

the largest proportion (Figure 4.8(e-h)). Applying the HNN super-resolution mapping 

approach of Tatem et al. (2001a), a 0.64 m spatial resolution land cover map was 

produced (Figure 4.8(i), 4.8(j), 4.8(k) and 4.8(1)) from the 5.12 m proportion images 

with a zoom factor of 8, weighting constants of kl = 1 00, k2= 1 00, k3 = 150 and k4= I 00, 

and 1000 iterations. 

The new HNN super-resolution mapping technique was tested with the 5.12 m land 

cover class proportion image and the 1.28 m PAN images. With 1000 iterations, zoom 

factor of 8, and weighting constants of kl =100, k2=100, k3=150, k4=100 and ks=100, 

the HNN network using the PAN image without registration error produced the land 

cover images in Figure 4.8(m-p). Using the same weighting constants with the PAN 

image and an image registration RMS error of 1 pixel (this accuracy can often be 

obtained in the geometric correction process) the HNN produced the land cover maps 

in Figure 4.8(q-t). To evaluate the new technique statistically, the error matrix and 

accuracy statistics such as the KIA value, omission, commission and overall errors for 

the resulting maps of the three methods are given in Table 4.2. 

4.4.2.2 Visual evaluation 

Figure 4.8 shows the advantage of the new technique in comparison with the hard 

classification and the traditional HNN super-resolution mapping technique. Similar to 

the simulated IKONOS data set, the greatest improvement can be seen in the asphalt 

class (Figure 4.8(0)), where most sub-pixels belong to small and linear features. 

Without information from the PAN image, the road sub-pixels in Figure 4.8(c) were 

split into discrete objects to satisfy the HNN goal functions (Figure 4.8(g)). Even 
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when the PAN image was registered with an RMS error of 1 pixel, the small and 

linear road object remained fairly contiguous (Figure 4.8(s)). This fact suggests that 

the new technique is applicable to map features smaller than a pixel. 

(s) (t) 

Figure 4.8 Results for the degraded QuickBird images: 
5.12 m land cover proportion image for (a) Ripe cereal, (b) Grass, (c) Asphalt and (d) Green cereal. 
5.12 m hard classified land cover image for (e) Ripe cereal, (f) Grass, (g) Asphalt and (h) Green cereal. 
0.64 m HNN super-resolution mapping image for (i) Ripe cereal, (j) Grass, (k) Asphalt and ,(I) Green 
cereal. (m) 0.64 m Ripe cereal, (n) Grass, (0) Asphalt and (P) Green cereal land cover image of the 
HNN super-resolution mapping using the PAN without image registration error. (q) 0.64 m Ripe cereal, 
(r) Grass, (s) Asphalt and (t) Green cereal land cover image of the HNN super-resolution mapping 
using the PAN image with RMS image registration error of 1 pixel. 
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Statistics for hard classification 
R. 

Grass ~sphalt G. cereal ErrorO (%) ErrorC (%) 
Cereal 

IUnclassified 0 0 ~ 0 
IRipe Cereal 41914 ~73 0 501 1.45 1.81 
Grass 362 ~3776 ~35 191 .31 .22 
~sphalt 0 ~05 ~63 0 9.71 66.88 
G Cereal 253 578 ~ 17537 .52 .80 

KlA-K= 0.9454 Overall accuracy = 96.50 
Statistics for traditional HNN super-resolution mapping image 

~. Grass Asphalt G. cereal ~rrorO (%) ErrorC (%) 
Cereal 

Unclassified 0 5 5 1 0 1.00 
!Ripe Cereal 42397 123 0 95 .31 .98 
Grass 54 34336 612 4 1.71 .08 
Asphalt 1 298 1781 7.69 4.13 
G Cereal 77 170 0 17869 1.97 1.36 

KlA-K= 0.9726 Overall accuracy = 98.24 
Statistics for the new HNN super-resolution mapping without PAN image 
Iregistration error 

~. Grass Asphalt G. cereal !ErrorO (%) ErrorC (%) 
Cereal 

Unclassified p5 82 55 ~O 0 1.00 
Ripe Cereal ~2279 129 0 126 ~.59 0.60 
Grass 72 34408 252 0 1.50 1.02 
Asphalt 1 195 1091 1.96 15.23 
G Cereal 142 118 0 18043 1.02 1.42 

KlA-K= 0.9797 Overall accuracy = 98.69 
Statistics for the new HNN super-resolution mapping with PAN image registration 
error 

~. Grass Asphalt G. cereal 
Cereal 

Unclassified ~2 92 57 32 
Ripe Cereal ~2234 53 0 131 
Grass 111 34391 343 4 
Asphalt 0 ~23 998 0 
G Cereal 142 173 0 18041 

KlA-K= 0.9772 Overall accuracy = 

Table 4.2 Accuracy Statistics of Degraded QuickBird Results 

4.4.2.3 Statistical evaluation 

~rrorO (%) ~rrorC (%) 

0 1.00 
0.69 0.44 
1.55 1.37 
8.61 18.26 

1.03 1.72 
98.53 

The advantage of the new technique was also demonstrated by the accuracy statistics. 

Overall accuracy of the land cover map increased by around 2% from 96.50% for the 

hard classification to 98.69% for the super-resolution mapping using the PAN image 

without image registration error. For the PAN image with an image registration error 

of 1 pixel, the accuracy of the resulting 0.64 m land cover map increased around 2% 
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and 0.25% in comparison with the results of hard classification and the HNN super­

resolution mapping technique, respectively. The KIA value increased from 0.9454 for 

the hard classified map and 0.9726 for the traditional HNN sub-pixel map to 0.9797 

for the super-resolution mapping using the PAN image without registration error and 

0.9772 for the super-resolution mapping using the PAN image with registration error 

of 1 pixel. Although the increase in KIA and overall accuracy was not great, this still 

showed a more accurate results for the new method. 

The accuracy statistics also demonstrated that amongst the four land cover classes, the 

accuracy of the asphalt class increased the most, with the omission error decreasing 

from 39.71 % for the hard classified image and 27.69% for the traditional HNN super­

resolution mapping to 21.96% for the new HNN super-resolution mapping technique 

using the PAN image without registration error. Although the omission error for the 

new method increased slightly from 27.69% for the traditional HNN super-resolution 

mapping to 28.61 % due to the impact of the PAN image registration error of 1 pixel, 

the commission error reduced from 66.88% for the hard classification and 44.13% for 

the traditional HNN technique to 18.26%. For the other three classes, where most sub­

pixels were grouped into larger objects, the increase in accuracy was not as great as 

that of the asphalt class with the commission and omission errors decreasing by 

around 0.5%. However, it is still a considerable improvement over hard classification 

and the HNN super-resolution mapping without PAN image if the already very high 

accuracy of these classes is taken into account. 

4.4.2.4 Image registration error effect 

The impact of the PAN image registration error was determined based on the variation 

of the KIA value statistics. The variation of the KIA values obtained by applying the 

new method to the PAN images with RMS image registration errors ranging from 0.5 

pixels to 1.5 pixels is presented in Figure 4.9. It is logical that the KIA value 

decreases as the RMS image registration error increases. However, with a RMS error 

of 1 pixel (the accuracy of image registration that can commonly be obtained in the 

geometric correction of remotely sensed images) the KIA value for the sub-pixel map 

produced by the new method was still greater than that produced by the traditional 

HNN super-resolution mapping technique. When the RMS image registration error 

increased to 1.5 pixels, the resulting sub-pixel map predicted by the new technique 

was less accurate than the results of the HNN without using the PAN image. It is 
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Figure 4.9 The effect of image registration error on Kappa Index of Agreement value of the sub-pixel 
map produced using the HNN super-resolution mapping using the PAN image. 

therefore recommended that the new technique may be applicable even with PAN 

images that contain image registration error. Further research will be necessary to 

explore the range of situations in which the technique might be operationally 

applicable. 

4.5 Conclusions 

This chapter introduces the use of panchromatic imagery as supplementary data for 

super-resolution mapping. Information from the PAN images was incorporated into 

the HNN optimisation in the form of a panchromatic reflectance constraint, which was 

added to the energy function. The value of the panchromatic reflectance constraint 

was estimated based on forward and inverse models using local end-member spectra 

and a local spectral convolution weighting factor. The technique was examined using 

both simulated IKONOS data and a degraded QuickBird image (with and without 

image registration error). The accuracy of the results was evaluated based on the error 

matrix and accuracy statistics such as the KIA value, overall accuracy, and omission 

and commission errors. 
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The results from both simulated and real data sets demonstrated that PAN images can 

be used as a source of supplementary information for the HNN to predict land cover at 

a sub-pixel spatial resolution. Both the qualitative and quantitative analysis showed 

that the new technique can increase the accuracy of all land cover classes, but most 

significantly for land cover features at the sub-pixel scale. The results also showed 

that the algorithms can produce a sub-pixel map accurately with PAN imagery 

containing an image registration error of around one pixel. 

,i; 

'i .... ·_,. 
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Chapter 5: Super-resolution of multispectral imagery 
based on the HNN 

5.1 Introduction 

Chapters 3 and 4 introduced two new methods for using information from fused and 

panchromatic imagery to increase the detail and accuracy of a sub-pixel super­

resolved land cover map. Both of the two methods used synthetic multispectral (MS) 

images, which were produced from a sub-pixel land cover map using a forward 

model, as an intermediate step for calculating the reflectance constraint value. This 

suggested that a synthetic super-resolved MS image can be predicted from the sub­

pixel land cover map using the same forward modeL This synthetic sub-pixel image 

prediction process is referred to as MS image super-resolution. 

The task of image super-resolution is to increase the spatial resolution of the imagery. 

In fact, image super-resolution commonly refers to the process of combining a set of 

coarse spatial resolution images of the same scene to obtain a single fine resolution 

image. There have been a large number of studies on super-resolution. Examples can 

be cited such as Elad and Feuer (1999), Freeman et al. (2002), and Tipping and 

Bishop (2003). Although widely applied in image processing, these approaches were 

hardly applicable for super-resolution of remotely sensed MS imagery because of the 

lack of a sequence of images in a scene at the same time. Amongst the remotely 

sensed data sources, the super-resolution approaches using image sequences are more 

applicable to hyperspectral imagery (Akgun et at., 2005). For common multispectral 

remotely sensed imagery, several methods for increasing the spatial resolution have 

been proposed such as a Point Spread Function-derived convolution filter (Pinilla 

Ruiz and Ariza Lopez, 2002) and a segmentation technique (Schneider and 

Steinwendner, 1999). 

In this chapter, three methods for increasing the spatial resolution of the MS image are 

introduced. Firstly, a new model for predicting the MS image at the sub-pixel spatial 

resolution is presented. The new model is based on the super-resolution mapping 

technique, soft-classification and a forward model using the local end-member 

spectra. The soft-classification is based on unsupervised classification to reduce the 

land cover proportion prediction error. Secondly, a method of semivariogram 

matching is presented. The method is based on the HNN and prior 
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Figure 5.1 General model for super-resolution ofMS imagery. 

SR MS image (20 m) 

semivariance values to generate a sub-pixel image with the spectral features of the 

coarse spatial res.olution original image and typical spatial character at the sub-pixel 

scale. Finally, a new method for image interpolation, or smoothing based on the HNN 

and zero semivariance values, is introduced. The method utilises the smoothing effect 

of minimising the values between neighbours process to produce a smooth sub-pixel 

MS image with smaller RMSE. 

5.2 Super-resolution mapping and forward model for super­
resolution of MS imagery 

5.2.1 General model 

The proposed model IS an extension of super-resolution mappmg usmg HNN 

optimisation. The prediction of a synthetic MS image at the sub-pixel spatial 

resolution is based on the forward model with local spectra which was used in 

Chapters 3 and 4. In addition to the goal functions and the proportion constraint of the 

HNN for super-resolution mapping, a reflectance constraint is used to retain the 

digital number (DN) values of the original MS image. 

Figure 5.1 presents the HNN sub-pixel MS image prediction algorithm. From the MS 

images at the original MS spatial resolution, land cover area proportion images are 
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estimated usmg a soft-classifier. A set of local end-member spectra values is 

calculated based on the estimated land cover proportions and the original MS image. 

Land cover proportions are then used to constrain the HNN for super-resolution 

mapping with a zoom factor z to produce the land cover map at the sub-pixel spatial 

resolution. From the super-resolution land cover map at the first iteration, an 

estimated MS image (at the sub-pixel spatial resolution) is then produced using a 

forward model and the estimated local end-member spectra. The estimated MS image 

is then convolved spatially to create a synthetic MS image at the coarse spatial 

resolution of the original image. Following a comparison of the observed and 

synthetic MS images, an error value is produced to retain the DN value of the pixels 

of the original MS image. The process is repeated until the energy function of the 

HNN is minimised and the synthetic MS image is generated. 

5.2.1.1 Soft-classification for super-resolution mapping of MS imagery 

Soft-classification is an intermediate step in the sub-pixel MS image prediction 

process. The estimation of the MS image is based on super-resolution mapping using 

proportions which are obtained from soft-classification. Conventionally, there must be 

a set of training data for some soft-classifiers. Accordingly, it is necessary to have 

some prior information about the spectral distribution of land cover classes in the MS 

bands but training data are not always available for the scene. However, the land 

cover map is only an intermediate step here, and is not the target of the proposed 

algorithm. Therefore, soft-classification based on unsupervised classification should 

be suitable in this case. 

The soft-classification that is applicable for the sub-pixel MS image prediction is the 

unsupervised-based fuzzy c-means classifier (Benzek et aI., 1999). Alternative 

supervised-classification-based soft-classifiers could also be used such as Bayesian, 

neural network or k-NN classifiers. However, the training data for these soft­

classification techniques should be obtained from the unsupervised classifications. In 

the experiment in this chapter, the MS image was at first clustered into spectral 

classes using the unsupervised Iterative Self-Organizing Data (ISODATA) classifier. 

The training data based on these spectral classes were then used for the soft-classifiers 

to estimate the land cover proportions. By categorising the classes based on statistical 

clustering, the within-class spectral variation is minimised. As a result, the error in the 

predicted proportions is reduced. 
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5.2.1.2 Forward model and end-member spectra 

The forward model is used to produce a sub-pixel MS image from the sub-pixel land 

cover classes. The DN value of a sub-pixel (m,n) of a spectral band s can be predicted 

as 

(5.1) 

where Ve is the output neuron of the class e and Ss,e is the end-member spectra of the 

land cover class e for a spectral band s. As presented in Chapter 3 and Chapter 4, the 

end-member spectra vector Ss (Ss = [Ss,I, .. ,Ss,e, .. ,Ss,c]) of the original pixel (x,y) of the 

spectral band s can be estimated locally using the predicted land cover class 

proportions and the MS image at the original coarse spatial resolution (Equation 

(3.19) and (3.20)) as 

Ss =( pTwp rl 
WPTRs , 

where P is a matrix of land cover proportions 

~(x-l)(y-l) .. Pc(x-l)(y-l) 

p= p,XY 
1 

p.xy 
c 

p,(x+l)(y+l) 
1 .. Pc}x+l)(y+lJ 

and W is matrix of weights 

W(x-1Xy-l) 0 0 0 0 
0 0 0 0 

W= 0 0 w'Y 0 0 
0 0 0 0 

0 0 0 0 W(x+l)(y+l) 

5.2.2 Evaluation of the super-resolved image 

The target of the new method is to produce a sub-pixel spatial resolution MS image 

which is as close to the real MS image at the sub-pixel spatial resolution as possible. 

The resulting predicted MS image, therefore, must be evaluated based on statistics 

which quantify the closeness to the real MS image at the sub-pixel spatial resolution. 

In this case, the RMSE is appropriate for evaluation of the new method. The RMSE of 

a spectral band s can be calculated as 

RMSEs = 
~(DNR~al _DNPredicled)2 
(;;r S,I S,I 

(5.2) 
n 
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where n is number of pixels used to calculate the RMSE, DN/"'" is DN value of pixel i 

of the real spectral band s and DNtredicred is DN value of the pixel i of the predicted 

spectral band s. For all b spectral bands, the RMSE can be defined as 

RMSE =! ± RMSEs 
b s=1 

(5.3) 

5.3 Experiment 

5.3.1 Data 

Similar to the evaluation process for the other image fusion techniques, a degraded 

image produced from a remotely sensed image was used in this experiment. Since the 

reference fine spatial resolution image being known, it was possible to evaluate the 

feasibility of the newly proposed approach. The experiment was accomplished on a 

SPOT MS image of Southampton and the Isle of Wight, UK. 

5.3.1.1 Reference data 

SPOT MS imagery with a spatial resolution of 20 m was acquired over an area of 

Southampton and the Isle of Wight, UK on 28th June 1994. A sub-area of 512x512 

pixels (Figure 5.2) was extracted from a rural area. The SPOT MS image consists of 

three spectral bands: Green (0.50-0.59 !lm), Red (0.61-0.68 !lm) and NIR (0.78-

0.89!lm) (Figure 5.2(a), (b) and (c)). 

5.3.1.2 Degraded images and soft-classification 

Training and Reference data: The land cover proportions can be estimated using 

training imagery obtained by the unsupervised classification. To assess the accuracy 

of the proportion estimation, the reference land cover classes are required. These 

reference land cover classes were produced based on the unsupervised ISODATA 

classification of the SPOT image. Five clusters were obtained as shown in Figure 5.3. 

These classes were then used for soft-classification to estimate the land cover 

proportions. 

Degraded images: The HNN super-resolution algorithm was tested using degraded 

MS images obtained from the reference MS images in Figure 5.2. To evaluate the 

effect of the super-resolution zoom factor on the RMSEs of the resulting super­

resolved images, the reference MS images were degraded by a factor of two to 40 m 

spatial resolution (Figure 5.4(a), 5.4(b) and 5.4(c)), a factor of three to 60 m spatial 
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(a) Green band 

Figure 5.5.2 Reference 20 m MS image 

(a) Class. 1 

(d) Class 4 

Figure 5.3 Unsupervised classes 

.. • 

(b) Red band 

(b) Class 2 

• a ' .# .. 
, ~ 

(e) Class 5 

(c) NIR band 

(c) Class 3 

resolution (Figure 5.4(d), 5.4(e) and 5.4(f)) and a factor of four to 80 m spatial 

resolution (Figure 5.4(g), 5.4(h) and 5.4(i)) . 

Soft-classification: The soft-classification was used to estimate land cover 

proportions from the 40 m, 60 m and 80 m degraded MS images. The estimated 

proportions were then used to predict sub-pixel land cover map and sub-pixel MS 

image at the 20 m spatial resolution (the spatial resolution of the reference MS 
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image). In this experiment, the k-NN soft-classifier with k = 5 was used to produce the 

proportions from the degraded images in Figure 5.4. Since the training classes were 

(a) Green band (b) Red band (c) NIR band 

(d) Green band (e) Red band (f) NIR band 

(g) Green band (h) Red band 

Figure 5.4 Degraded MS images: 
(a), (b) and (c) - The 40 m degraded MS image. (d), (e) and (f) - The 60 m degraded MS image. (g), (h) 
and (i) - The 80 m degraded MS image. 

MSimage Overall area proportion area Overall RMS error 
(Resolution) (0/0) 

40m 0.0327 0.0482 

60m 0.0538 0.0487 

80m 0.0805 0.0533 

Table 5.1 Accuracy statistics of the soft-classification. 

104 



clustered usmg an unsupervised method based on the spectral distribution, the 

proportions were estimated accurately (Table 5.1) and the effect of proportion 

estimation error on the sub-pixel super-resolution image was reduced as a result. 

5.3.2 Results and discussion 

5.3.2.1 Itesults 

The new method was applied to super-resolve the degraded MS image at the spatial 

resolutions of 40 m (zoom factor of 2), 60 m (zoom factor of 3. Zoom factor 

represents the increasing in spatial resolution of the super-resolved MS image) and 80 

m (zoom factor of 4) to predict the MS image at a spatial resolution of 20 m (Figure 

5.5, 5.6 and 5.7). The predicted soft-classified proportions were used to constrain the 

(a} Green (b) Red band (c) N1R band 

(d) Green (e) Red band (f) NIR band 

(g) Green (h) Red band (i) NIR band 

Figure 5.5 Super resolution of the 40 m MS image: 
(a), (b) and (c) - The 20 m reference MS image. (d), (e) and (f)- The 40 m degraded image. (g), (h) and 
(i) - The 20 m super-resolved image. 
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HNN with weighting factors of kJ = 100, k2 = 100, k3 = 100 and k4 = 100 to predict the 

sub-pixel land cover and then the 20 m MS image. The resulting 20 m MS images 

were then compared with the reference 20 m MS image and the RMSE for each 

spectral band was calculated (see Tables 5.2, 5.3 and 5.4). 

Band 
RMSE 

Degraded im'!Re Super-resolved image 

Green 3.1276 2.6933 
Red 3.2049 2.7655 
NIR 7.3703 5.9094 

L 13.7028 11.3682 

Table 5.2 RMSE of the spectral bands of the 40 m degraded MS and the resulting 20 m super-resolved 
llllages. 

(a) Green band (b) Red band (c) NIR band 

(d) Green band (e) Red band 

(g) Green band (h) Red band 

Figure 5.6 Super resolution of the 60 m MS image 
(a), (b) and (c) - The 20 m reference MS image. (d), (e) and (f) - The 60 m degraded image. (g), (b) and 
(i) - The super-resolved 20 m image. 
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Band RMSE 
Degraded image Super-resolved image 

Green 4.2126 3.6575 
Red 4.5125 3.8873 
NIR 10.1797 7.1811 

L 18.9047 14.7258 

Table 5.3 RMSE of the spectral bands of the 60 m degraded MS and the resulting 20 m super-resolved 
unages. 

(j) Green band (k) Red band 

Figure 5.7 Super resolution of the 80 m MS image 
(a), (b) and (c) - The 20 m reference MS image. (d), (e) and (f) - The 80 m degraded image. (g), (h) and 
(i) - The super-resolved 20 m image. (j), (k) and (m) - The 40 m super-resolved image. 
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RMSE 
Band Super-resolved image Super-resolved image 

Degraded image (20 m with z = 4) J40 m with z= 2) 
Green 5.4117 4.6645 4.7067 

Red 5.9209 4.9374 4.9379 
NIR 11.9074 10.2393 10.6188 

L 23.2400 19.8412 20.2633 

Table 5.4 RMSE of the spectral bands of the 80 m degraded MS image and the resulting 20 m and 40 m 
super-resolved images. 

5.3.2.2 Visual evaluation 

Figure 5.5, 5.6 and 5.7 show that the super-resolved 20 m MS images produced from 

the degraded image at 40 m, 60 m, and 80 m spatial resolution were sharper in 

comparison with the degraded images. Figure 5.4 shows that the boundary features in 

the degraded images were blurred and fragmented because of the mixing of the land 

categories in these boundary pixels. In the super-resolved MS images (Figure 5.5(g)­

(i), 5.6(g)-(i), and 5.7(g)-(i)), these features were restored to make the image 

apparently sharper. 

The res.ulting 20 m MS image predicted from the degraded 40 m spatial resolution is 

apparently sharper than the other two 20 m super-resolved images. However, when 

the coarse spatial resolution of the original images is taken into account, the 20 m MS 

image generated from the 80 m MS image is most visually super-resolved. Comparing 

the three resulting super-resolved images with their corresponding original coarse 

spatial resolution images, it is suggested that when the zoom factor increases, the 

resulting super-resolved image becomes sharper. 

From Figures 5.5, 5.6 and 5.7, it can also be seen that the linear objects with a width 

smaller than a pixel were split due to the effect of the goal functions in the super­

resolution mapping process. For the pure pixels, the sharpness was the same in the 20 

m super-resolved as the original coarse images, as the super-resolution mapping has 

no effect on pure pixels. Theoretically, this problem can be solved if the land cover 

class is segmented into sub-classes, hence defining some of the pure pixels as mixed 

pixels. 

5.3.2.3 Statistical evaluation 

Table 5.2, 5.3 and 5.4 illustrates the reduction in the RMSE of the super-resolved 

images in comparison with their corresponding coarse degraded image for every 
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spectral band. As with the visual evaluation, the statistic show the correlation 

between an increase of the zoom factor and the decrease in the RMSEs of the 

resulting super-resolved MS images. In comparison with the RMSE of the original 40 

m degraded MS image, the RMSE of the 20 m super-resolved image (zoom factor of 

two) reduced by 2.3346 DN from 13.7028 DN to 11.3682 DN. When the zoom factor 

increased to four (down-scaling from 80 m spatial resolution to 20 m spatial 

resolution), the decrease for the RMSE rose to 3.3988 DN. For the same original 80 m 

degraded coarse image, the RMSE of the 20 m super-resolved image (19.8412 DN) 

was smaller than that of the 40 m super-resolved image (20.2639 DN). 

5.4 Super-resolution of MS imagery using semivariogram matching 

5.4.1 General model 

In section 5.3, a model for super-resolution mapping of MS imagery based on the 

lINN and forward model was introduced. Super-resolution mapping using the HNN 

and forward model can predict the MS image at sub-pixel spatial resolution from the 

Soft­
classification 

Super-resolution 
mapping 

././ ./ ~ 

Raw data (40 m) 

I l Soft-classification 

~;£:;;:Z;7 Proportion image 
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Figure 5.8 Super-resolution and semivariogram matching 
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degraded MS image with smaller RMSE and sharper visual appearance for mixed 

pixels. However, for pixels in the same class, the method does not increase the spatial 

resolution because the classification defines these pixels as pure pixels. To obtain 

further super-resolution for some of these pixels, the same algorithm can be applied 

when a land cover class is re-categorised into several sub-classes and a number of 

pure pixels will be re-defined as mixed pixels as a result. Obviously, this is not a 

comprehensive solution because pure pixels still exist in these sub-classes. Thus, the 

process of super-resolution using a HNN and the forward model is similar to image 

segmentation. 

This section introduces a geostatistics-based method to obtain sub-pixel spatial 

resolution for pure pixels that cannot be super-resolved by super-resolution mapping. 

The method employs the HNN and prior geostatistical information in the form of 

semivariograms to produce a sub-pixel image with desirable spatial statistics. Figure 

5.8 shows process of the method. The method can utilise the output image of the 

HNN super-resolution for MS image or coarse spatial resolution images as input data. 

In that input image, the land cover classes are already defined. The assumption is that 

information on the spatial distribution of these defined spectral classes is available. 

For example: if class A in the image is defined as cereal, then semivariograms of 

cereal can be extracted from other sources of available data such as air photo or field 

surveying. The prior semivariograms and the input MS image are then used in the 

HNN to produce sub-pixel images with the desirable spatial character. In this HNN 

model, the input MS image is used to constrain the network in the form of a 

reflectance constraint. Semivariance functions are used to change the output values of 

neurons to match the available semivariograms. The method, therefore, can be named 

as semivariogram matching or pattern matching. 

5.4.2 HNN structure 

The structure of the HNN for semivariogram matching is depicted in Figure 5.9. A 

pixel of the original image is divided into (z x z) sub-pixels in the super-resolution 

map (z is zoom factor). The coordinates of a sub-pixel (m,n) are determined from the 

coordinates of the original pixel (x,y) as in Figure 5.9. Each sub-pixel in the super­

resolution image is represented by a neuron in the HNN. Thus, an image of (2 x 2) 
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(m = XZ, n = yZ) 

Figure 5.9 Structure of the HNN for semivariogram matching 
(x,y) is coordinates of pixels in the original image, (m,n) is coordinates of sub-pixel in the super­
resolution image, z is zoom factor. 

pixels in the original image can be represented by a matrix of (8 x 8) interconnected 

neurons in the HNN with the zoom factor z = 4. 

The HNN for semivariogram matching comprises a reflectance constraint and a 

number of semivariance functions. The HNN is initialised using the DN values of the 

original image and it runs to a stable state in which the energy function is minimised 

and the output values of the nodes (sub-pixels) represent the DN values of the 

semivariogram matching image. The energy function of the HNN is defined as 

(5.4) 

where Rij is the reflectance constraint of the neuron (i,J) , Sm,ij is the semivariance 

function for the semivariance m of the neuron (i,J), M is the number of prior 

semivariances (in this thesis M = 32), and kr and km are the weighting constants. 

The reflectance constraint retains the DN values of the original image. This is based 

on the assumption that the reflectance of a pixel in the original image is an average of 

the reflectance of the corresponding sub-pixels (represented by the neurons in the 

HNN). The reflectance constraint of a neuron (i,j) can be determined as 

dR·· 1 xz+z-l YZ +Z-! 

d IJ =2" L L (vde )-DNxy, 
vij Z d=xz e=yz 

(5.5) 

where Vde is the output of the neuron (d,e) at time t, z is the zoom factor, and DNxy is 

the DN value of pixel (x,y). 

The semivariance function for neuron (iJ) describes the semi variance calculated from 

the output of neuron (i,J) for a lag h and must be matched with the prior semivariance 
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Ym. In fact, the lag or vector h consists of a magnitude II and a direction. The prior 

semivariance for every lag h can be calculated as 

(5.6) 

where N(h) is the number of neurons (representing sub-pixels) at lag h from the origin 

neuron (iJ), and Vij+h is the output of the destination neuron ((iJ) + h). From Equation 

(5.6), the expected output value for the neuron (iJ) can be derived as 

expected _ -b ±.J b2 
- 4ac 

V.. - , 
lj 2a 

N(h) N(h) 2 

where a = N(h), b = -2 L Vij+h and c = L Vij+h - 2YmN (h) . 
I I I 

The value returned by the semivariance function can be calculated as 

dS .. 
~ = v .. _ vexpected 

dv·· lj ij • 
lj 

5.4.3 Semivariogram matching for degraded MS image 

5.4.3.1 Data 

(5.7) 

(5.8) 

A degraded QuickBird image was used to evaluate the feasibility of the proposed 

method of semivariogram matching. The QuickBird image, which was acquired over 

an area of Christchurch, UK on I st June 2002, consisted of four spectral bands at 2.5 

m spatial resolution. The experiment was accomplished on a 36 x 40 pixels reference 

image of the red band of the QuickBird image. From the reference MS image (Figure 

5.1 0 (a)), a number of training, or prior, semivariance values were extracted (Figure 

5.10(d)). The testing experiment for the new method utilised eight semivariograms 

based on directions: North, North-East, East, South-East, South, South-West and 

West (Figure 5.11). The values of semivariance for the opposite directions were the 

same. In this experiment, semi variance values based on four lags were used to 

determine these eight semivariograms. Thus, 32 semivariance functions as Equation 

(5.8) were included in the HNN energy function (Equation (5.4)) to implement the 

semivariogram matching. 

The degraded MS image (Figure 5.10(b)) was created by degrading the reference 

image (Figure 5.10(a)) by four times to produce the 10 m MS image. This degraded 

image was then used by the HNN to predict the MS image at a 2.5 m spatial 

resolution using the prior semivariance values in Figure 5.1 O( d). The semivariance 
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values of the degraded image were smaller than those of the original image since the 

spatial variability of neighbouring data points were decreased by the image degrading 

process. The semivariograms for the degraded image can be seen in Figure 5.10(e). 

(a) 

0.25 0.25 0.25 
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(d) (e) (f) 

Figure 5.10 Sub-pixel semivariogram matching of a degraded MS image 
(a) Reference 2.5 m QuickBird MS image, (b) Degraded image 10 m QuickBird image, and (c) 2.5 m 
simulated MS image using semivariogram matching. (d) Training semivariograms, (e) semivariograms 
of the degraded image, and (f) Semivariograms of the resulting 2.5 m simulated MS image. 

1 North 

Figure 5.11 Calculation of semivariance values based on the supporting pixels in eight directions 
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Solid disrupted lines - spatial distribution of the original image; Dashed line - fluctuation trend; Dotted 
line - spatial distribution of the sub-pixel image. 

5.4.3.2 Results 

The new semivariogram matching method was applied on the degraded MS image 

(Figure 5.l0(b» to predict a simulated MS image at 2.5 m spatial resolution. The 

resulting super-resolution image (Figure 5.l0(c» and semivariograms (Figure 5.10(d)­

(f) show that the spatial distribution of the 2.5 m simulated MS image is close to the 

spatial distribution of the 2.5 m reference MS image. Since the HNN retained the DN 

values of the degraded image (i.e. the average DN value of sub-pixels which is 

covered by a pixel of the degraded MS image is equal to the original DN value of that 

pixel), the resulting 2.5 m simulated MS image contains both the spectral features of 

the original degraded MS image and the prior spatial variation. With the patterns 

generated by the prior geostatistical information, the simulated sub-pixel image in 

Figure 5.1O(c) was apparently more similar to the reference image than the degraded 

image (Figure 5.l0(b»). 

Figure 5 .12 illustrates the effect of semivariogram matching in a single direction. The 

vertical axis in the line graph in Figure 5.12 denotes the DN values and the horizontal 

axis denotes the position of the pixels. The spatial variation of an image is depicted by 

the steepness of the line graphs. If the line graph fluctuates greatly, the image is more 

spatially variable (or the values of the semivariance are large). Otherwise, the image is 

smooth and the semivariance values are small. Since the pixel size of the coarse 

spatial resolution degraded image was large, the spatial distribution of the image was 

disrupted, as indicated by the solid lines in the plot in Figure 5.12. In the sub-pixel 

image, the increase of spatial resolution by semivariogram matching resulted in a 
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more continuous form of spatial distribution, which is depicted by the dotted curve in 

Figure 5.12. By matching with the prior semivariance values, the DN values of the 

sub-pixels were altered to smooth the degraded image where spatial variation is 

greater than that of the prior data. Conversely, the semivariogram matching increased 

the spatial variation in the smooth area of the degraded image. 

Under the effect of the semivariance functions, the DN values of the sub-pixels were 

adjusted to match the prior semi variances. If only the semivariance functions were 

used, the DN values of the sub-pixels might be changed completely in some areas of 

the degraded image where the original spatial variation was too high or too low in 

comparsion with the prior semivariance values. This might make the dotted line in 

Figure 5.12 move away from the disrupted lines of the original spatial distribution. 

With the reflectance constraint, the dotted line is always kept attached to the 

fluctuation trend (the dashed line in the Figure 5.12) of the spatial distribution of the 

degraded image. 

The weighting constants kr and km control the effects of the reflectance constraint and 

semi variance functions on the optimisation process. If the weighting constant for the 

reflectance kr was greater than the semivariance values km, the spatial distribution of 

the resulting sub-pixel image would be more similar to the spatial distribution of the 

degraded image. Otherwise, the network could more freely adjust the sub-pixel DN 

values to conform with the prior semivariograms. In this experiment, the optimal 

values for the weighting constants were selected based on the empirical assumption of 

balanced influences between the reflectance constraint and 32 semivariance functions. 

Supposing that the influences from the semivariance functions to the energy function 

are equal, the weighting constants were chosen as 

If the weighting constant for the reflectance constraint kr 

constant for the semivariance km = 100/32 == 3.0. 

(5.9) 

100, the weighting 

5.5 Combination of the HNN super-resolution using the forward 
model and semivariogram matching 

The two methods for generating sub-pixel images from the coarse MS image in 

sections 5.3 and 5.4 can be combined. This combination is achieved by using images 

produced by the HNN super-resolution based on the forward model as input for the 

115 



semivariogram matching. In the experiment in this section, the super-resolved images 

from the HNN with forward model (Figure 5.5, 5.6 and 5.7) were matched with the 

prior geostatistical information extracted from the sub-pixel reference images in 

Figure 5.3. These input data included the 20 m super-resolution images produced 

from the degraded SPOT images at 40 m, 60 m and 80 m spatial resolution. Since the 

pure pixels were not super-resolved in the HNN super-resolution process, the DN 

values of the sub-pixels located within these pixels were the same as the original DN 

values. Thus, these DN values were utilised to constrain the corresponding neurons of 

the HNN as Equation (5.5). The semivariogram matching process, using 32 

semivariance values of eight directions and 4 lags (as described in section 5.5.3), 

generated the simulated images as in Figure 5.13. 

(g) Green band (h) Red band (i) NIR band 

Figure 5.13 Sub-pixel images simulated from semivariogram matching 
(a), (b) and (c) - The 20 m MS image simulated from the lINN super-resolved images of 40 m. (d), (e) 
and (f) - The 20 m MS image simulated from the lINN super-resolved image of 60 m. (g), (h) and (i) -
The 20 m MS image simulated from lINN super-resolved image of 80 m. 
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RMSE 
Image 

Band 1 Band 2 Band 3 L 
20 m MS image Before semlvanogram 2.6934 2.7655 5.9094 11.3682 
predicted from 40 matching 
mMS image After semlvanogram 2.7614 2.8030 5.8933 11.4577 

matching 
20 m MS image Before semlvanogram 

3.6575 3.8873 7.1811 15.6850 
predicted from 40 matching 
mMS image After semivariogram 

3.6200 4.2132 7.2153 15.0486 
matching 

20 m MS image Before semlvanogram 4.6645 4.9374 10.2393 19.8412 
predicted from 40 matching 
mMS image After semivariogram 

4.7067 4.9378 10.6188 20.2633 
matching 

Table 5.5 RMSE of the super-resolution image before and after semivariogram matching. 

The RMSEs of the semivariogram matching images (Table 5.5) increased slightly in 

comparison with those of the input images. The increase in the RMSEs is due to two 

reasons. Firstly, a single set of the prior semivariance values is not appropriate for the 

whole image because the spatial variation of a class in remotely sensed images is not 

the same in every area of the image. In some smooth areas, the high values of the 

prior semivariances may increase the spatial variation and this increases the RMSEs 

as a result. Secondly, even in the area of the reference image with the same spatial 

variation (presented by prior semivariances), the prior spatial variation can be 

generated whereas the DN values of sub-pixels in the resulting images are 

unnecessarily close to the DN values of the reference image. Thus, global 

semivariogram matching can be used only for generating MS images with the spatial 

character of the sub-pixel scale, but not for image restoration tasks. 

5.6 Image smoothing using the HNN with semivariogram matching 

5.6.1 General model 

The idea of image smoothing using the HNN with semivariogram matching emerged 

from the analysis in section 5.5.3. Observing the semivariogram matching process, it 

can be seen that the values of prior semivariances had an impact on the smoothness of 

the simulated image. If the values of the prior semivariances are smaller than those of 

the original image, then semivariogram matching generates a smoother simulated 
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Image. Accordingly, a smoother simulated sub-pixel image can be obtained with 

semivariances of zero (the mimimum value of semivariances). 

The mechanism and effect of the image smoothing method using zero semivariogram 

matching for a single direction are demonstrated in Figure 5.14 and Figure 5.15. Since 

the values of prior semivariances are zero, i.e. the expected DN values of the 

neighbouring sub-pixels should be the same, a semi variance function for a separation 

h (Equation (5.8)) will produce a positive value to increase the output of the neuron 

1 Norili 

lag = 1 

(x,y+ 1) 

Figure 5.14 Image smoothening by zero semivariance 
(a) Original image of3 pixels, (b) Smoothened image. 

DN 

lag = 1 
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Figure 5.15 Effect of the reflectance constraint and the semi variance function in the South direction. 
Solid line - digital number of the original degraded image; Dashed line - digital number of the 
smoothened image; and Dotted line - the digital number of the smoothened image when the zoom 
factor increases. 
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(m,n) if the corresponding DN value at separation h is greater than that of the neuron 

(m,n). In case the DN value at separation h is smaller, the semivariance function value 

will reduce the output of the centre neuron (m,n). The semivariance function value is 

zero if the DN values of the two neurons (represents for the sub-pixels) are the same. 

Considering the HNN neuron (m,n) in Figure 5.14, at the first iteration of the HNN 

optimisation process, the semivariance functions for separation h = 1 from the South 

and South-East directions increase the DN value for neuron (m,n) while the 

semivariance functions from the other directions produce zero values. In the next 

iteration, since the DN value of the neuron (m,n) increases, the reflectance constraint 

produces a negative gradient to retain the reflectance value of the original pixel. The 

semivariance functions for the South and South-East directions continue to increase 

the output of neuron (m,n) whereas the other semivariance functions produce gradient 

values to reduce it. The iteration is repeated until the HNN converges to a stable state 

in which the energy function (Equation (5.4)) is minimised. 

Figure 5.15 demonstrates the effects of the reflectance constraint (Equation (5.5)) and 

semivariance functions on the resulting smoothed image. The semi variance functions 

increase the DN value of sub-pixel (m,n) and reduce the DN value of the neighbouring 

sub-pixels in the original pixel (x,(y+ 1)) to make the image smoother. Under the effect 

of the reflectance constraint, the DN values of the other sub-pixels within the original 

pixel (x,y) decrease to retain the DN value for (x,y). The DN values of the sub-pixels 

within the original pixel (x,y), which are adjacent to sub-pixel (m,n), are greater than 

those of more distant sub-pixels within the same original pixel (x,y) due to the 

influences of the semivariance functions from the sub-pixel (m,n). When the zoom 

factor is increased, the DN values of the smoothed sub-pixels converge to a smooth 

dotted line in Figure 5.15. 

5.6.2 Results and discussion 

5.6.2.1 Smoothing of single MS image 

An experiment was implemented on the QuickBird image in Figure 5.10. The input 

images were generated by degrading the reference image (Figure 5. 16(a)) by a factor 

of two to 5.2 m spatial resolution (Figure 5.16(b)) and a factor of four to 10.04 m 
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spatial resolution (Figure 5.16(e)). The smoothed MS images are shown in Figure 

5.16(c) and Figure 5.16(f). The bilinear interpolation images (Figure 5.16(d) and 

(d) Bilinear interpolation of (b) 
(z = 2) 

(g) Bilinear interpolation of (e) 
(z = 4) 

(b) Degraded image 
(degraded factor = 2) 

(e) Degraded image 
(degraded factor = 4) 

Figure 5.16 Smoothing of the degraded QuickBird 'image 

(c) Smoothed image of (b) 
(z = 2) 

(f) Smoothed image of (e) 
(z =4} 

(a) Reference image; (b) Degraded image by a factor of2; (c) Smoothed image from the image (b), z = 
2; (d) Bilinear interpolation image from the image (b) z = 2; (e) Degraded image by a factor of 4; (f) 
Smoothed image from the image (e), z = 4; (g) Bilinear interpolation image from the image (e), z = 4; 
(h) Smoothed image from the image (e), z = 8. 

Degrading RMSE 
factor Degraded image Smoothed image Bilinear 

2 3.8437 3.5795 5,0285 

4 5.9147 6,1084 6.4994 

Table 5,6 RMSE of the degraded, smoothed and bilinear interpolation images 
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5.16(g)) produced from the degraded images were used to compare the new image 

smoothing method with conventional interpolation methods. 

The resulting images for zoom factors of two and four are visually smoother than the 

original degraded images. In each original pixel, the spatial variation of the smoothed 

image was increased under the effect of the semivariogram functions. Comparing with 

the bilinear interpolation image, the smoothness of the resulting (smoothed) images is 

visually similar. The statistics in Table 5.6 shows that the results of the new 

smoothing method were closer to the reference image than those produced by bilinear 

interpolation. A comparison with the RMSE for the bilinear interpolation images 

showed that the RMSE for the smoothed images using zoom factors of two and four 

were both smaller. 

The steepness of the smoothing between two neighbouring pixels of the coarse spatial 

resolution image was controlled by the zoom factor z and the number of lags h. When 

the zoom factor increased, the DN values of the smoothed image using zero 

semivariance functions with lag h = 1 converged to the dotted line in Figure 5.15. The 

effect of the increase of zoom factor from the value of 4 to the value of 8 can be seen 

in Figure 5.16(f) and 5.16(h). However, if the zero semivariance functions of greater 

lags were used for smoothing, the steepness of the smoothing (which is depicted by 

the dotted line in Figure 5.15) would be reduced by virtue of the increase in the spatial 

correlation between two separated sub-pixels. Consequently, the DN values of more 

distant sub-pixels would be more similar. This suggested that the smoothing effect 

could be controlled by the value of zoom factor and the number of lags. This finding 

is valuable because it makes the process more adjustable if other factors such as the 

point spread function are taken into account. 

5.6.2.2 Smoothing of SPOT MS image 

In this experiment, the super-resolved images produced by the HNN and forward 

model in section 5.3 were used as input data. The resulting smoothed images are 

reproduced in Figure 5.17. The RMSE values of each band of the input super-resolved 

and smoothed image are in Table 5.6. The smoothing process was applied only for the 

pure pixels which were not super-resolved by the HNN super-resolution using 

unsupervised soft-classified proportions and a forward model. 
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(g) Green band (h) Red band 

Figure 5.17 Smoothing of the SPOT the HNNsuper-resolved images using forward model 
(a), (b) and (c) - 20 m smoothed MS image with zoom factor of 2. (d), (e) and (f) - 20 m smoothed 
image with zoom factor of 3. (g), (h) and (i) - 20 m smoothed with zoom factor of 4. 

Degraded Band 
RMSE 

factor Super-resolved image Smoothed image 

Green 2.6933 2.6888 
Red 2.7655 2.7090 

2 NIR 5.9094 5.7971 

L 11 .3682 11.1949 

Green 3.6575 3.6488 
Red 3.8873 3.8435 

3 NIR 8.1403 8.0607 

L 15.6850 15.5530 

Green 4.6645 4.6706 

Red 4.9374 4.9256 
4 NIR 10.2393 10.1999 

L 19.8412 19.7961 

Table 5.7 RMSE of the super-resolved image using the HNN and smoothed SPOT images 
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Statistical infonnation in Table 5.6 shows that the RMSEs of the smoothed images 

were smaller in comparison with those of the input super-resolved images for all 

zoom factors of 2, 3, and 4. Although the decrease was small in each case 

(approximately 0.01 DN value for each spectral band), the RMSE values were 

decreased for every spectral band. That means the smoothed images were more 

similar to the reference images than the input images. This suggests that the new 

method of image smoothing using zero semi variance is an appropriate technique for 

downscaling the remotely sensed imagery. 

5.7 Conclusions 

Three methods of generating a fine super-resolution sub-pixel MS image from a 

coarse MS image have been introduced. The first method utilised the HNN super­

resolution mapping technique with a forward model to predict the sub-pixel MS 

image. To reduce the land cover proportion estimation error, the soft-classification 

was implemented based on training data obtained from an unsupervised classification. 

The feasibility of the method was evaluated based on visual and statistical analyses. 

The key statistic used for accuracy assessment was the RMSE. Both a visual and 

statistical evaluation showed that the new method can generate MS image with a finer 

spatial resolution. Visually, the super-resolved image was apparently sharper than the 

original coarse spatial resolution image. Similarly, the RMSEs of the super-resolved 

image compared to the reference image were smaller than those of the original 

degraded image due to the super-resolution of the mixed pixels. In addition, the 

statistics also demonstrated that when the zoom factor increased, the resulting sub­

pixel images were closer to the references. 

The second method required prior information on the spatial distribution of the land 

cover patterns at sub-pixel spatial resolution. This information was utilised in the 

form of discrete semi variance functions to combine with the reflectance constraint in 

the HNN model. The method can be used to create a sub-pixel MS image with the 

spectral features of the coarse resolution image and spatial character at the sub-pixel 

spatial resolution. The analysis showed that the semivariogram matching process 

smoothed the coarse image if the prior spatial variation at the sub-pixel resolution had 

a small variance, and increased the spatial variation in the smooth area. 

123 



The semivariogram matching was then used for image smoothing of MS imagery. 

Using semivariance values of zero at a lag of one pixel, the HNN semivariogram 

matching model generated smoothed sub-pixel images with smaller RMSEs than 

those of the original degraded and bilinear interpolation imagery. This method can be 

used to smooth the resulting sub-pixel image from the HNN super-resolution with 

forward model. 
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Chapter 6: Super-resolution Mapping Using a Hopfield 
Neural Network with LiDAR Data 

6.1 Introduction 

Together with the panchromatic and fusion imagery, Light Detection And Ranging 

(LiDAR) data is a source of very fine spatial resolution data on elevation. Comparing 

with the multispectral imagery, the LiDAR elevation data are less informative and 

hardly used for land cover classification. However, the elevation information provided 

by LiDAR data is useful for prediction of some special classes such as buildings or 

trees. In other words, supplementary information at the sub-pixel level of the LiDAR 

elevation data can be used to produce more detailed and accurate land cover maps 

This Chapter proposes a new method to combine multispectral and LiDAR elevation 

data for land cover classification at the sub-pixel level for an urban area. From the 

multispectral data, land cover proportion images were produced using soft­

classification. The proportion images were then used for super-resolution mapping 

with a HNN. To make use of the LiDAR elevation data for the super-resolution 

mapping, a height function was added to the energy function of the HNN. The height 

function increased the output value of certain classes such as "building" based on 

probability theory. 

6.2 Literature reviews 

LiDAR is an active remote sensing system that uses pulses of laser light to illuminate 

the terrain (Lillesand and Kiefer, 1996). The most common application of LiDAR is 

to produce very high accuracy elevation data. The most accurate LiDAR, which uses 

an airborne laser scanning technique, can provide elevation data at vertical accuracies 

of 15-20 cm (Baltsavias, 1999). Due to its very high accuracy and fine spatial 

resolution, LiDAR data have been used for building and tree extraction and 3D model 

construction at very fine spatial resolution (Luzum et aI., 2004). In addition, LiDAR 

data can be combined with multispectral imagery as a complementary data source to 

increase the accuracy of the land cover classification (Haala and Brenner, 1999, Sohn, 

and Dowman, 2003). 

4 This chapter is based on Nguyen et al. (2005a). 
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Elevation data can be used as a supplementary source of information for land cover 

classification. Slope and aspect data produced from a coarse spatial resolution digital 

elevation model (DEM) can be integrated with multispectral data for land cover 

analysis (Giannetti et al., 2001). At a very fine spatial resolution, elevation data can 

be used to extract buildings and trees based on DSM and digital terrain model (DTM) 

data (Haala and Brenner, 1999). A DSM is different from a DTM in that it not only 

represents the terrain but also contains non-terrain objects. The difference image 

between a DSM and DTM is a useful information source to extract objects such as 

buildings and trees. 

6.3 Method 

6.3.1 Hopfield neural network 

In this section, a modified HNN model which makes use of the LiDAR elevation data 

is introduced. Figure 6.1 is a graphical depiction of the original HNN approach for 

super-resolution mapping. A pixel at the original spatial resolution is divided into two 

inter-connected matrices of(5 x 5) neurons in the HNN. Each neuron (h,i,j) represents 

a sub-pixel at position (iJ) in the land cover class h and each matrix of neurons 

represents a land cover class. For super-resolution mapping, the HNN is constrained 

using the soft-classified land cover proportions and runs until it converges to a stable 

state. At the stable state, the spatial correlation of the sub-pixels is maximised. Tatem 

et al. (2001) indicated that the convergence of the energy value of the HNN is 

monotonic and that convergence is faster if the network is initialised using the 

proportion images. If the output value of the neuron (h,i,j) is 1, the sub-pixel (iJ) is 

assigned to the land cover class h. Otherwise, if the output value is 0, the sub-pixel 

(iJ) does not belong to the class h. The energy function can be expressed as 

(6.1) 

where kI, k2, k3 and k4 are weighting coefficients. Values of the weighting coefficients 

determine the effects of the goal functions, proportion constraint and multi-class 

constraint to the enegy function. The values of these weighting coefficients are 

defined empirically for best performance of the HNN. The values of the goal 

functions G1hij and G2hij, proportion constraint Phij and multi-class constraint Mhij by 

Equation (3.2), (3.3), (3.4) and (3.5). 
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(i=mz, j=nz) (i=mz+z-1, j=nz+z-1) 

2x2 pixels image 
HNN neuron layer of class 1 

Elevation data at sub-pixel level H N N neuron layer of class 2 

Figure 6.1 Super-resolution mapping using the HNN. 
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From 2x2 pixels proportion image, the HNN is used to produce lOxlO sub-pixels image of two land 
cover classes. (x,y) are the coordinates at original level. (i,j) are coordinates at sub-pixel level. z is 
increasing factor in spatial resolution. 

6.3.2 Height function 

To use the LiDAR elevation data for super-resolution mapping by the HNN, the 

energy function in Equation (6.1) was modified by adding a height function. The 

value of the height function is defined based on the probability of a sub-pixel 

belonging to a class using LiDAR elevation data. The new energy function is 

(6.2) 

where Hhij is the height function value for each neuron (h, i,j) and k5 is a weighting 

coefficient for the height function. 

The structure of the HNN ·in Figure 3.1 can be modified to make use of the LiDAR 

data. Elevation data are processed from the DSM (Sohn, and Dowman, 2003) to 

produce an image of the normalised height of non-terrain objects. Based on these 

height data, it is possible to predict the location of sub-pixels in a certain land cover 

class. For example, a sub-pixel with a height of 10 m is likely to be a building or tree 

sub-pixel. In this research, the prediction of land cover class based on the normalised 

height can be calculated for each neuron as 
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(a) 

Figure 6.2 Optical and LiDAR elevation data used for land cover map and elevation data simulation. 
(a) 200x200 pixels digital orthophoto at 40 cm. (b) 200x200 pixels LiDAR elevation data image. 

dHh "" 
--I) =P(Ch I Nij)' 
dVhij 

(6.3) 

where P(ChINij) is the conditional probability of a sub-pixel (i,j) with normalised 

height Nij belonging to class Ch. The probability P( ChlNij) can be defined based on the 

Gaussian distribution as 

(6.4) 

where JlCh and (JCh are the mean and standard deviation of class eh in the normalised 

height image (Richards, 1993). 

As in Equation (6.4), the height function would increase the output value of a neuron 

(ij,h) in correlation with the conditional probability of a sub-pixel (ij) belonging to a 

class h. If the height function produces the same value for the neurons in position (ij) 

of different classes, the output value produced by the goal functions, proportion and 

multi-class constraints will determine the land cover class of the sub-pixel. In this 

case, the algorithm based on normalised height alone might fail to separate land cover 

classes if the statistics of these classes based on the normalised height data are similar. 
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6.4 Experiment 

6.4.1 Data5 

6.4.1.1 Optical and Elevation Image 

In this experiment, a simulation of the proportion image at 8 m spatial resolution was 

used. The simulation was based on a 40 cm spatial resolution digital orthophoto of 

Odense provided in 1999 by COWl, Denmark (Figure 6.2(a)). The image is used as 

demonstration data for the eCognition software. The image registration accuracy of 

the orthophoto is approximately 2-3 pixels. A DSM image acquired by LiDAR 

TopoSys in 2001 was also used (Figure 6.2(b)). The accuracy of the DSM was 15 cm 

(vertical) and 50 cm (planimetric). 

6.4.1.2 Land class proportion image 

A proportion image was simulated from the 200x200 pixels digital orthophoto by 

manual digitising. In addition, a 40 cm spatial resolution map of three classes was 

extracted manually from the orthophoto. Three land classes were identified: Building, 

Tree, and Background (Background is the class that consists of no non-terrain objects) 

(Figure 6.3(a), 6.3(b), 6.3(c)). The map was then used as reference data. From the 

map, a simulated 8 m proportion image (Figure 6.3(d), 6.3(e), 6.3(f)) was created by 

degrading the 40 cm map by a factor of ten. The simulated proportion image was then 

used as input for super-resolution mapping by the HNN super-resolution mapping to 

produce a 40 cm thematic map. Evaluation of the method was implemented by 

comparison of the 40 cm reference map with the 40 cm map predicted by the HNN 

super-resolution mapping. 

6.4.1.3 Statistical analysis of LiDAR elevation data 

The normalised height data were produced using a moving window filter. A part of 

the land cover images in Figure 6.3(a), 6.3(b), and 6.3(c) were used for training to 

calculate the mean and standard deviation of each land class on the normalised height 

(Figure 6.3). Investigation showed that the mean normalised height of the Building 

class was 21.59 m and its standard deviation was 2.627 m (Background class 

normalised height was assigned a value of 12 m). The normalised height of the Tree 

class was similar to that of the Background class except for the tree trunks since the 

LiDAR data were produced by the second return of the laser pulse. Therefore, 

5 The data in this chapter is different from the data used in Nguyen et al. (2005) 
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amongst the three classes in the experiment, the LiDAR data were the most 

infonnative for discriminating the Building class. 

6.4.2 Results and discussions 

6.4.2.1 Network settings and hard classification 

To evaluate the performance of the technique, the resulting maps using the LiDAR 

data were compared with a 8 m hard classified image (Figure 6.4(g), 6.4(h), 6.4(i)), 

0.8 m hard minimum-distance-to-means classification using LiDAR elevation data 

(Figure 6.4G), 6.4(k), 6.4(1)), and 0.4 m HNN super-resolution mapping obtained 

without the LiDAR data (Figure 6.4(m), 6.4(n), 6.4(0)). The 8 m hard classified image 

was obtained from the proportion image by assigning each 8 m pixel to the class of 
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Figure 6.3 Histograms of trees and building classes in LiDAR elevation data 
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(q) (r) 

Figure 6.4 Reference and resulting images. 
Reference images (0.4 m) of (a) Building, (b) Tree and (c) Background; proportion images (8 m) of (d) 
Building, (e) Tree and (f) Background; hard classified images (8 m) of (g) Building, (h) Tree and (i) 
Background; hard classified LiDAR images (0.8 m) of G) Building, (k) Tree and (1) Background; HNN 
super-resolution mapping (0.4 m) without using LiDAR data for (m) Building, (n) Tree and (0) 
Background; HNN super-resolution mapping (0.4 m) using the 0.8 m LiDAR Data for (P) Building, (q) 
Tree and (r) Background. 
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Statistics for the hard classified image 
Reference 

Total Errore (%) 
Building Tree Background 

Unclassified 0 0 0 0 
Building 12605 152 2043 14800 14.83 
Tree 182 3458 1560 5200 33.50 
Background 2515 1060 16425 20000 17.88 
Total 15302 4670 20028 40000 
ErrorO (%) 17.63 25.95 17.99 0.1878 

KIA-K 0.6833 Overall accuracy (%) 81.22 
Statistics for hard classification of LiDAR 

Reference 
Building Tree Background 

Building 13142 602 484 14228 7.63 
Tree 2141 1666 4065 7872 78.84 
Background 19 2402 15479 17974 13.71 
Total 15302 4670 20028 40000 
ErrorO (%) 14.12 64.33 22.71 0.2428 

KIA-K 0.6145 Overall accuracy (%) 75.52 
Statistics for the traditional HNN sUQer-resolution mapping 

Reference 
Total Errore (%) 

Building Tree Bacl~ground 
Unclassified 30 23 42 95 1.000 
Building 14183 79 1203 15465 8.29 
Tree 45 3546 761 4352 18.52 
Background 1044 1022 18022 20088 10.28 
Total 15302 4670 18367 40000 
ErrorO (%) 7.31 24.07 10.02 0.1062 

KIA-K 0.8193 Overall accuracy (%) 89.38 
Statistics for the HNN super-resolution mapping using the 0.8 m LiDAR data 

Reference 
Total Errore (%) 

Building. Tree Background 
Unclassified 17 10 56 83 1.000 
Building 15006 112 893 16011 6.28 
Tree 23 3569 709 4301 17.02 
Background 256 979 18370 19605 6.30 
Total 15302 4670 20028 40000 
ErrorO (%) 1.93 23.58 8.28 0.0764 

KIA-K 0.8703 Overall accuracyJo/~ 92.36 

Table 6.1 Accuracy statistics for LiDAR experiment 

the largest proportion. The normal HNN super-resolution mapping was implemented 

based on the HNN with the goal functions, proportion and multi-class constraints as in 

Tatem et al. (2001). In this process, the 8 m simulation proportion image was used as 

input for the HNN super-resolution mapping with a zoom factor of twenty to produce 

the land class map at 0.4 m. Through an empirical process, the optimal weighting 
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coefficients of kJ = 150, k2 = 150, k3 =200 and k4= 150 were determined. Using these 

values of weighting coefficients, the HNN super-resolution mapping produced the 

most accurate results after 6000 iterations as in Figure 604(j), 604(k), 604(1). 

The newly proposed HNN super-resolution mapping using LiDAR elevation data was 

accomplished using the 8 m proportion image and 0.8 m spatial resolution LiDAR 

elevation data. The HNN was set with a zoom factor of twenty and weighting 

coefficients of kJ=150, k2=150, k3=200, k4=150 and ks=150. After 6000 iterations, the 

HNN network using the 0.8 m LiDAR elevation data produced a 004 m spatial 

resolution land class map in Figure 604(p), 604(q), 604(r). Since the resulting sub-pixel 

land class maps were hard-classified, statistics which are usually applied for accuracy 

assessment of hard classified maps were used. These statistics were Kappa Index of 

Agreement (KIA), overall accuracy, and per-class omission and commission errors 

(Table 6.1). 

6.4.2.2 Visual evaluation 

Visual comparison of the results of the two prediction techniques shows that the 

super-resolution mapping using the LiDAR data is preferable to the hard classification 

and the traditional HNN super-resolution mapping, especially for the Building class. 

The sub-pixels in the edges of buildings in Figure 604(a) were not preserved as 

straight lines in Figure 6.4(g) and 604(j). These sub-pixels were assigned to the Tree 

class in a hard minimum-distance-to-means classification of LiDAR elevation data 

(Figure 604(k)). Using the height function (Equation 604), a positive value was 

produced for the neurons in the Building class. Combining with the goal functions and 

proportion constraint, this height function value retained the linear edges of the 

building objects (Figure 604(p)). 

6.4.2.3 Statistical evaluation 

The accuracy statistics (Table 6.1) showed a considerable increase in accuracy for the 

new technique. Overall accuracy increased from 89.99% for the 8 m hard 

classification and 76.52% for the 0.8 m hard classification using only LiDAR 

elevation data to 96.22% for the HNN super-resolution mapping using 0.8 m LiDAR 

elevation data. In comparison with the traditional HNN super-resolution mapping, the 

accuracy of the thematic map produced by the HNN super-resolution mapping using 

the LiDAR elevation data increased approximately 5% in terms of overall accuracy. 
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Amongst the three classes, the accuracy of the Building class increased significantly. 

The omission error of the Building class decreased from the value of 8.23% for 8 m 

hard classification, 14.12% for the hard classification of 0.8 m LiDAR data and 

6.14% for the traditional HNN super-resolution mapping to 1. 82% for the new HNN 

super-resolution mapping technique using 0.8 m LiDAR elevation data. However, the 

commission error increased slightly from 1.53% for the traditional HNN super­

resolution mapping to 3.18% after using the LiDAR elevation data. The results 

showed that the elevation data were the most informative for the Building class. 

6.5 Conclusions 

This Chapter introduces a technique for combining the optical imagery and LiDAR 

elevation data for super-resolution mapping. Information provided by the LiDAR data 

was incorporated into the HNN optimisation using a height value function. The value 

of the new function was calculated based on statistical theory. The effectiveness of the 

technique was examined on a simulated 0.8 m DSM and an 8 m proportion image. 

The accuracy evaluation was implemented based on the KIA, overall accuracy, 

omission and commission errors. 

The results demonstrated that LiDAR elevation data can be fused with optical data for 

the HNN to predict accurately land cover at a sub-pixel spatial resolution. The results 

showed a considerable increase in all accuracy statistics for the new technique, 

particularly for building objects. For the other classes, the technique results in a slight 

increase in accuracy. In addition, visual inspection of the resulting images also 

demonstrated the improvement in super-resolution mapping using the elevation data. 

The new technique is generic for the combination of different sources of elevation and 

optical data. The same principle can be applied to other sets of data at various spatial 

resolutions such as 20 m SPOT MS data and I m LiDAR or 4 m MS data and 0.5 m 

and I m LiDAR. Thus, future research will exploit other sources of information, 

which can be extracted from LiDAR data such as LiDAR reflectance or slope and 

aspect, for fusion with the optical imagery to predict land cover at the sub-pixel 

spatial resolution. 
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Chapter 7: Discussion and Future Research 

7.1 Introduction 

This chapter presents an overview on the principles, limitations and potential of 

super-resolution mapping. Firstly, spatial dependence and issues related to super­

resolution mapping, such as spatial scale and spatial information content are 

discussed. Secondly, several problems which may influence the application of the 

approaches presented in the previous chapters are considered. Finally, future research 

and extension for the developed approaches are proposed. 

7.2 Spatial dependence and super-resolution mapping 

7.2.1 Spatial dependence at sub-pixel spatial resolution 

7.2.1.1 Spatial dependence and small objects 

Most of the present super-resolution mapping approaches are based on the spatial 

dependence assumption, which refers to the tendency of adjacent pixels to be more 

alike than those far apart. The principle of this assumption is the fact that all the 

geographic variables, including land cover, are spatially dependent at least at some 

scale (Atkinson, 1997). The super-resolution mapping process allocates sub-pixels 

within pixels to maximise the spatial dependence; the sub-pixels are clustered as a 

result. 

Real landscape 

o 
Real landscape 

zoom factor = 2 
(a) 

zoom factor = 3 
(b) 

Figure 7.1 Zoom factor and spatial dependence 

135 

zoom factor = 12 

zoom factor = 12 



In super-resolution mapping by the HNN, there always exists a relationship between 

the spatial dependence and the spatial resolution of the resulting sub-pixel image. 

Increasing the spatial resolution may reinforce of the goal functions if one of the land 

cover proportions represents small or separated objects, such as lone trees or small 

roads in Landsat image. This argument can be demonstrated by Figure 7.l(a) and 

7.1 (b). The real landscape in Figure 7.1(a) is represented by a single pixel at the 

coarse spatial resolution. Supposing that the proportion of a land cover class A 

(depicted by the darker colour in the top-left comer of the pixel) is approximately 

25%. If a zoom factor of two is used, the goal functions will produce the values to 

change the land cover class of the top-left sub-pixel to land cover B (represented by 

the white colour in the pixel) because the surrounding sub-pixels belong to the land 

cover B. Even though the proportion constraint retains the proportions of the land 

cover classes A and B, the value produced by this constraint is not great enough when 

compared to the goal spatial dependence function values. Similarly, if a sub-pixels is 

surrounded by sub-pixels of the other land cover class as in Figure 7.1(b), the goal 

functions will convert the centre sub-pixel of land cover class A to land cover class B. 

Super-resolution mapping using the HNN is an optimisation process based on the 

minimisation of an energy function. For each pixel, the energy function is the sum of 

the goal function and proportion constraint values for all the sub-pixels within that 

pixel. The energy function E = -L, LL(k1Gl"ij +k2G2"ij +k3P,'ij +k4 M"ij) will converge to a 
, , J 

binary image only if the sums III (kP1hij +k2G2hj') , 'IIIsP"j' and 'II.k4Mhi/ 
hI) I) "hI) r.J hI} . 

converge to zero simultaneously. In the cases shown in Figure 7.1(a) and 7.1(b), when 

the zoom factor is not great enough, the sum II I (kP1hij +k2G2"ij) and 
hi) 

IIIk3P"ij cannot reach zero at the same time to create a binary image. Consequently, 
h I J 

the objects cannot be recreated. 

Increasing the weighting constant for the proportion constraint may retain the land 

cover class A for the image. This is similar to the sub-pixel swapping approach 

(Atkinson, 2005) where the number of sub-pixels is fixed for each land cover class 

according to the soft-classified proportions. However, there is typically error in the 

proportions predicted by soft-classification. Keeping the number of sub-pixels fixed 
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Zoom factor = 15 Zoom factor = 21 Zoom factor = 30 

Figure 7.2 Spatial dependence effects on the small objects. 

for the land cover classes means that this error is contained in the results. Another 

solution to increase the zoom factor. When the zoom factor is increased to twelve as 

in Figure 7.1 ( a) and 7 .1 (b), the goal functions produce values that increase spatial 

dependence between the sub-pixels of class A. Therefore, the land cover class A object 

is recreated. 

Figure 7.2 presents an example of the effect of zoom factor on recreating small 

objects by HNN super-resolution mapping. An image of 90 x 60 pixels which 

contains several small objects was degraded by a factor of 30 to generate a 3 x 2 

proportion image. The HNN super-resolution mapping was implemented with zoom 

factors of 3, 5, 7, 11 , 15, 21, and 30, the weighting constants kJ = k2 = 150 for the 

goal functions, k3 = 200 for the proportion constraint and 1000 iterations to evaluate 

the effect of the zoom factor on the ability of the HNN to recreate small objects. With 

small zoom factor values of 3 and 5, the HNN could not converge to a binary stable 

state. When the zoom factor increased to greater values (7 and 11), the sinall objects 

started to be recreated. With the largest zoom factors (15, 21 and 30), the HNN 

converged fully to produce binary images. In the experiment process, it was observed 

that a small object can be mapped if it comprises more than nine sub-pixels. Thus, it is 

suggested that the size of the object to be mapped should be taken into account for 

choosing the zoom factor for super-resolution mapping and that high zoom factors 
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Zoom factor = 11 Zoom factor = 13 

Figure 7.3 Super-resolution for objects with different sizes 

are essential for mapping small objects. 

Zoom factor = 15 

7.2.1.2 Spatial dependence and accuracy of the sub-pixel maps 

Tatem et al. (2001a, 2002b) insisted that the accuracy of the resulting super-resolution 

maps increases with increasing zoom factor (also does the spatial resolution of 

resulting the sub-pixel land cover map). The method achieves this by smoothing the 

linear borders of large objects. This can be seen by the experiment in Figure 7.3, 

where the HNN was used with weighting constants kJ = k2 = 150 for the goal 

functions, k3 = 200 for the proportion constraint and 2000 iterations. With small 

zoom factor values (3 and 5), the linear borders in the two largest objects in Figure 7.3 

are tortuous. When the zoom factor increases, these borders become smoother under 

the effect of the goal functions. High values of the zoom factor can also increase the 

accuracy by regenerating the small objects (as discussed above). Comparing the 

images produced by the HNN using zoom factors of 3 and 5 with the those obtained 

by using higher zoom factor values, the improvement in the recreation of small 

objects is clearly seen. 

Although high values of the zoom factor increase the overall accuracy of the resulting 

sub-pixel image, a number of limitations remain. Despite increasing the zoom factor 
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value, the accuracy for the HNN super-resolution mapping of the sharp comers and 

small linear features is not improved. The clustering goal functions always produce 

curved comers and cluster small linear objects for all zoom factors. In this case, the 

increasing applicability of spatial resolution does not mean an increase in accuracy. 

Increasing the zoom factor may cause some other problems for super-resolution 

mapping. With high zoom factors, the HNN can become trapped in local minima, 

where the sub-pixels are grouped in small objects rather than large objects. The 

images produced by the HNN using zoom factors of 9, 11, 13 and 15 in Figure 7.3 

illustrates this problem. Since the zoom factor is high, the number of sub-pixels for 

each proportion value of the classes is also high as a result. The sub-pixels can be 

clustered into unexpected small objects and the spatial correlation within the sub­

pixels of these objects is great enough to retain them as independent objects. These 

unexpected objects can be seen in the images generated by super-resolution mapping 

with zoom factors of9, 11, 13 and 15. 

7.2.2 Using supplementary data for super-resolution 

In this thesis, the problems for super-resolution mapping mentioned in section 7.2.1 

can be resolved based on information from supplementary data sources such as fused 

and PAN imagery and LiDAR elevation data. It should be expected that these sources 

of supplementary data, which are usually at a finer spatial resolution than the 

multispectral image, can provide useful information about land cover at sub-pixel 

spatial resolution. However, this information is relatively limited due to the low 

spectral resolution (for PAN imagery and LiDAR elevation data) and the spectral 

distortion (for fused imagery). The proposed approaches described in previous 

chapters, which can be considered as data fusion mechanisms, attempted to utilise the 

land cover proportions and useful information from these supplementary data to 

resolve the problems with sharp comers and small objects in section 7.2.1. 

7.2.2.1 Super-resolution mapping by the HNN with fused imagery 

Fused imagery is produced by combining a high spectral MS image with a finer 

spatial resolution PAN image. Although fusion between other sources of imagery 

such as multispectral and Synthetic Aperture Radar (SAR) data are widely used for 

land cover classification (Solberg et al., 1994, Solaiman et al., 1999), the use of fused 

imagery is still limited due to the distortion in the fused spectral bands. Because of the 
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spectral distortion in the fused image, the classification using the fused Image IS 

usually based on an object-oriented approach (Zhang and Maxwell, 2006). 

The approach for HNN super-resolution mapping using the fused imagery proposed in 

this thesis achieved two goals: making use of the spectrally distorted fused image and 

providing useful information for accurate mapping of sharp comers and small linear 

features. The forward and inverse models based on linear mixture modelling ensured 

that only useful land cover information was extracted from the fused image. The 

number of land covers used for the linear mixture model to produce the reflectance 

constraint values for the HNN in Equation (3.14) is indicated by the soft-classified 

land cover proportions. For example, if the pixel (x,y) (in the original image) contains 

three land covers: trees, grass and asphalt, then the reflectance constraint values for all 

fused pixels within pixel (x,y) will be estimated based on the linear mixture modelling 

for these three land cover classes only. This prevents the occurrence of unexpected 

land covers due to the spectral distortion of the fused image. Furthermore, the 

retention of the land cover proportions at the coarse spatial resolution by the 

proportion constraint also controls the effect of the reflectance constraints. In essence, 

the HNN super-resolution mapping using the fused imagery is a mechanism for 

information fusion of the coarse spatial resolution MS image and the fine spatial 

resolution PAN image to produce land cover maps at sub-pixel spatial resolution. 

In practice, the approach was fairly successful in resolving sharp comers and small 

linear objects problems (Figure 3.13) due to the information provided by the fused 

image. Analyses in Chapter 3 showed that the increase in accuracy of the HNN super­

resolution mapping using the fused image was mainly due to the improvement in 

mapping sharp comers and small linear objects. Obviously, the capability of the 

reflectance constraint to map objects with sharp comers and linear small objects 

depends on the spatial resolution of the fused image and the size of the objects. If the 

spatial resolution is finer than the size of the objects, the sharp comers can be 

recreated. 

7.2.2.2 Super-resolution mapping by the HNN with PAN imagery 

The approach for utilising PAN image aims to circumvent imagery fusion as an 

intermediate process. Similar to the approach for the fused image, the HNN super­

resolution mapping using PAN imagery is a mechanism for data fusion and resolves 
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the same problems. Visual and statistical analyses in Chapter 4 showed that the 

proposed approach was capable of increasing the spatial resolution and accuracy of 

the land covers. Using the PAN image directly for super-resolution mapping with new 

forward and inverse models, the approach also resolved the traditional problems with 

the linear mixture model, which can only estimate land cover proportions if the 

number of land covers does not exceed the number of spectral bands and assumes that 

the proportions sum to unity. 

7.2.2.3 Super-resolution mapping by the HNN with LiDAR elevation data 

The HNN super-resolution mapping using LiDAR elevation data is different from the 

two previous approaches in the conceptual design of the general model. The forward 

and inverse models which constrain the neural network iteratively is replaced by a 

height function. This height function is a goal function used for maximising the 

probability of the sub-pixels belonging to a particular class (In this research, the 

probability of the sub-pixels belonging to the building class is used). This probability 

is defmed based on a Gaussian distribution. Hence, this approach is an optimisation 

process that maximises the spatial correlation between the sub-pixels and the 

probability of sub-pixels belonging to the building class. 

LiDAR elevation data provide useful information for only a few classes. However, the 

objects in these classes are relatively small with sharp comers or comprise linear 

shapes such as buildings and power lines. This makes the LiDAR elevation data very 

useful in increasing the accuracy of the sub-pixel maps. The results in Chapter 6 

demonstrated that the super-resolution based on probability maximising optimisation 

can produce accurate maps of the buildings and that the accuracy of the other classes 

also increases as a result. 

7.2.3 Spatial dependence for image smoothing using variogram matching 

A spatial dependence maximisation process was employed in the image smoothing 

approach (in Chapter 5) in the form of zero semi variance functions with lags h = 1. 

These zero semivariance functions adjust the output of a neuron (representing a sub­

pixel) according to the output values of surrounding neurons to maximise the spatial 

correlation in the image. Under the influence of a zero semivariance function for a lag 

h = 1, the output value of the neuron (iJ) is changed to make the DN value of the sub­

pixel (iJ) as similar to the DN value of the destination sub-pixel ((ij)+h) as possible. 
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The sum of eight directional semivariance functions alters the DN value of the centre 

sub-pixels (iJ) to maximise the spatial correlation of the super-resolved sub-pixel 

image. Thus, image smoothing using zero semi variance functions is an optimisation 

process with a spatial correlation maximising goal and a DN constraint at the original 

coarse spatial resolution. 

Although using the same optimisation mechanism, the image smoothing using the 

HNN with zero semivariance functions is different from the super-resolution mapping 

and the class-based super-resolution for MS imagery (a modification of the super­

resolution mapping algorithm) in the manner of formulating the goal functions for 

spatial correlation maximisation. For the super-resolution land cover mapping, the 

spatial correlation (spatial dependence) is maximised by clustering the sub-pixels 

belonging to the same class (for the super-resolution ofMS imagery, the correlation is 

maximised within the spectral class) whereas the image smoothing algorithm 

increases the spatial dependence for the entire image. The super-resolution of MS 

imagery using the forward model algorithm segments the image into several 

categories and then uses spatial correlation maximisation to separate the sub-pixels of 

different categories. This sharpens the sub-pixel image at the borders between two 

different categories. In contrast, spatial correlation maximisation is employed by the 

image smoothing algorithm to reduce the contrast between the two neighbouring 

pixels. This makes the sub-pixel image apparently smoother. 

7.3 Problems for the new approaches 

7.3.1 Computation problem 

Computational cost is a drawback of these approaches. Although the computation 

capacity of computers has increased, the great number of neurons and layers used in 

the HNN super-resolution mapping process make the computation expensive. The 

problem is made more severe when the constraint and goal functions are added into 

the energy function to utilise supplementary data. For the super-resolution mapping of 

an image of 360 x 300 sub-pixels in Figure 3.13, a computer with an Intel Pentium IV 

2.6 MHz processor and 256 MB memory needs 1 hour and 18 minutes to produce the 

sub-pixel map. The example shows that the expensive computation problem is an 

obstacle for the practical application of the new HNN. For the HNN pattern matching 
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algorithm, the computation IS less problematic as the optimisation process IS 

implemented in a single image. 

Another drawback of the HNN super-resolution mapping is the subjective choice of 

parameters. The choice of the parameter values influences the optimisation outputs 

and the convergence of the HNN. Inappropriate choices for parameter values may 

bring about slow convergence or unexpected convergence states for the HNN. When a 

new goal or constraint function is added to the optimisation process, the weighting 

parameters have to be changed to obtain the best convergence. In this research, the 

weighting parameter values have been chosen empirically based on the accuracy 

statistics of the results. However, this method of choosing the parameter values is not 

convenient for a real application of the HNN super-resolution mapping. 

7.3.2 The limit of number of land cover classes 

For the HNN super-resolution mapping using fused imagery, the number of land 

cover classes is limited by the number of spectral features obtained from a fused 

image because the inverse model is based on the linear mixture model which derives 

the land cover proportions using a system of linear equations. This limitation is a 

problem for the practical use of the algorithm because the number of land cover 

classes is not always limited to a few land cover classes in reality. To solve this 

problem, the linear mixture model can be replaced by other models such as Bayesian 

probability or a feed-forward neural network system. However, this makes the 

approach more complicated. 

7.3.3 Image registration error 

The usefulness of the information from supplementary data for super-resolution 

mapping depends upon the accuracy of the image registration. The misregistration 

between the PAN and MS images may make the fusion image appear blurred or 

produce edge phenomena (Hong and Zhang, 2005). Analyses in Chapter 3 and 4 show 

that the fused and PAN image with RMS registration error of 1 pixel can increase the 

accuracy of the sub-pixel land cover maps. Although this accuracy for image 

registration is often obtainable, more accurate image registration is needed to ensure a 

considerable increase in accuracy of the resulting sub-pixel map. In addition, the 

misregistration between remotely sensed images and ground data is an obstacle for the 
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training and accuracy assessment of the input soft-classified proportions and the 

resulting sub-pixel maps. 

7.4 Future research 

7.4.1 Downscaling without classification step 

Most super-resolution mapping methods use soft-classified land cover proportions as 

input for the optimisation model. However, the sub-pixel land cover map can be 

produced directly from the raw MS image. Kasetkasem et al. (2003, 2005) used the 

MS image directly as input for an optimisation process based on Markov random 

fields and a simulated annealing algorithm to produce the sub-pixel land cover image. 

The HNN can also implement the super-resolution mapping using MS image as input 

instead of the soft-classified land cover proportions. Using the forward and inverse 

models mechanism, the MS image can constrain the HNN in the super-resolution 

mapping process. This circumvents the soft-classification as an intermediate step for 

super-resolution mapping. 

7.4.2 The HNN model for image fusion 

The use of a forward model and super-resolution mapping to predict the sub-pixel 

image shows a potential of using this mechanism for image fusion. The PAN image 

can also constrain the HNN to produce a MS image at sub-pixel resolution. The HNN 

model for image fusion will be a combination of the HNN super-resolution for MS 

imagery and the HNN super-resolution using PAN imagery. Future research should 

focus on testing alternative inverse models that can be used for fusing different 

sources of remotely sensed data. 

7.4.3 Improvement and alternatives for the proposed approaches 

Future work should also focus on the improvement and alternatives of the proposed 

approaches according to the points below: 

• An algorithm for choosing the optimal parameters for the HNN automatically. 

• A mechanism to obtain fast convergence for the HNN such as a flexible set of 

parameters. 

• Alternative inverse models to increase the accuracy of the sub-pixel land cover 

maps. 
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• Alternative optimisation 

maximisation. 
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algorithms to obtain the 
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Chapter 8: Conclusions 

8.1 Introduction 

In this chapter, the works on developing, applying and evaluating the various models 

for increasing the accuracy of the sub-pixel land cover maps in previous chapters are 

summarised. From this summarisation, the principal conclusions are provided. 

8.2 Summary 

8.2.1 Background 

Land cover mapping from remotely sensed imagery provides useful information for 

many authorities at different spatial scales and with different thematic contents. Thank 

to the emergence of remote sensing systems with increasing spatial and spectral 

resolution, land cover information can be obtained with finer spatial resolution and 

accuracy. Although the spatial resolution of remotely sensed imagery has been 

increased, the spatial resolution of the resulting land cover using conventional 

classifiers is still limited by the size of a pixel. This problem can be resolved partly by 

current super-resolution mapping techniques which are based on spatial dependence 

maximisation. However, limitations still exist for these super-resolution mappmg 

techniques since they are based solely on the spatial dependence. 

8.2.2 Objectives 

The overall aim of this work was to develop new approaches to make use of the 

available fused and panchromatic imagery and LiDAR elevation data to increase the 

spatial resolution and accuracy of thematic maps. The new approaches aimed to 

surpass the limit of existing approaches in terms of the accuracy and spatial resolution 

increase. In addition, the thesis also develops new methods for super-resolving 

multispectral images. 

8.2.3 Development and analysis 

The development of the approach for using fused imagery to increase the accuracy 

and spatial resolution of the thematic land cover mapping was described in Chapter 3. 

The fused image, which is obtained by combining the coarse spatial MS image and 

the fine spatial resolution PAN, were employed as supplementary data for super­

resolution mapping using forward and inverse models. The forward and inverse 
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models were developed based on a linear mixture model and local end-member 

spectra values. The forward and inverse models were incorporated into the super­

resolution mapping process through a HNN model in the form of a single reflectance 

function for each spectral band of the fused image. 

The analyses in Chapter 3 show the potential of the proposed approach. The land 

cover classes generated by the new method were visually and statistically more 

accurate after using the fused image. For both the simulated and degraded data, the 

overall accuracy of the super-resolution maps increased by approximately 3% with 

local end-member spectra values. In particular, the increased accuracy was mostly 

seen in the land cover classes which contained small objects. Small linear objects, 

which were split by the clustering function of the super-resolution mapping without 

the fused image, were re-mapped owing to the information at the finer spatial 

resolution of the fused image. 

The approach developed in Chapter 4 modified the super-resolution mapping using 

the fused image approach. Here, the information from the P AN image was utilised 

directly for super-resolution mapping to circumvent the need for image fusion as an 

intermediate step. The reflectance functions for spectral bands in Chapter 3 were 

replaced by a single panchromatic reflectance function. This function value was 

derived from forward and inverse models based on the local end-member spectra and 

spectral convolution. 

Visual and statistical analyses both demonstrated the more accurate results of the new 

approach in comparison with hard classification and super-resolution without using 

the PAN image. Similar to the results obtained with the fused image, the information 

from the simulated PAN image increased the overall accuracy by approximately 3% 

for the same set of simulated data. For the degraded data, the overall accuracy was 

increased by around 2%. Amongst the land cover classes, the accuracy is increased 

most for classes which consist of sub-pixel objects such as lone trees, hedgerows or 

roads. This argument was confirmed by the reduction of commission and omission 

errors for both simulated and degraded data. 

Misregistration between PAN and MS images has an effect on both of the two new 

super-resolution mapping approaches. The investigation in Chapter 3 and Chapter 4 
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for the effect of misregistration on the KIA values showed that the two approaches are 

applicable for RMS image registration errors of up to I pixels. 

In Chapter 5, three approaches of super-resolving fine sub-pixel MS images from 

coarse MS imagery were introduced. The first approach utilised the HNN super­

resolution mapping technique with the forward model to predict the sub-pixel MS 

image from spectral class proportions which were estimated based on unsupervised 

classification. The feasibility of the method was evaluated based on the visual 

evaluation and RMSE. Both the visual inspection and RMSE showed that the new 

method can generate the MS image with a finer spatial resolution. Visually, the super­

resolved image was sharper than the original coarse resolution image. Similarly, the 

RMSEs of the super-resolved images compared to the reference images were smaller 

than those of the original degraded images, due to the super-resolution of the mixed 

pixels. The statistics also demonstrated that when the zoom factor increased, the 

resulting sub-pixel images were closer to the references. 

The second approach required prior information in the form of discrete semi variance 

functions to combine with the reflectance constraint in the HNN model. The approach 

was. used to create a sub-pixel MS image with the spectral features of the coarse 

resolution image and spatial variation at sub-pixel resolution. The analyses revealed 

that the semivariogram matching process smoothed the coarse image if the prior 

spatial variation at the sub-pixel resolution has a small variance and increased the 

variance in the smooth area. 

Semivariogram matching was subsequently used for image smoothing of the MS 

image. Using semivariance values of zero, the HNN semivariogram matching model 

generated smooth sub-pixel images with smaller RMSEs than those produced by 

bilinear interpolation. The method can be used to smooth the resulting sub-pixel 

image from the HNN super-resolution with forward model. 

Chapter 6 presented work on utilising LiDAR elevation data for super-resolution 

mapping. In contrast with the fused and PAN image, the LiDAR elevation data 

revealed sub-pixel information on only a few class objects such as trees, buildings, 

power lines and other human-made objects. The general model of the method, 

therefore, was different from the model used in Chapter 3 and 4. In this model, a new 

height function was added to the HNN energy function based on the class probability. 
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The model was implemented for identifying the buildings out of the trees and ground 

classes. The results demonstrated that LiDAR elevation data can be fused with optical 

data for the HNN to predict accurately the land cover at a sub-pixel resolution. The 

results showed a considerable increase in all accuracy statistics of the new technique, 

particularly for building objects. 

8.3 Conclusions 

• Accurate mapping of land cover types, which is essential to various users, can be 

obtained with the HNN super-resolution mapping using supplementary data. 

• Fused and panchromatic imagery can be used to increase the accuracy and details 

of sub-pixel maps predicted by the HNN for super-resolution mapping. 

• The reflectance value of land cover classes varies geographically and local-end 

member spectra values are more suitable than a single set of global end-member 

spectra values for incorporating the information obtained from the intermediate 

spatial resolution fused and panchromatic imagery. 

• Misregistration errors have an effect on the new super-resolution mappmg 

approaches. However, with the panchromatic image registered at the RMSE of I 

pixel, the new approaches still produce more visually and statistically accurate 

results. 

• LiDAR elevation data can provide information to increase the accuracy and detail 

for a certain number of land cover classes such as trees, buildings and other 

human-made objects. 

• The HNN super-resolution mapping technique with the forward model to predict 

the sub-pixel MS image from spectral class proportions which were estimated 

based on unsupervised classifications. 

• The HNN can be used to create the sub-pixel MS image with spectral features of 

the coarse resolution image and spatial variation at sub-pixel resolution based on 

prior information in form of discrete semi variance functions. The semivariogram 

matching process smooths the coarse image if the prior spatial variation at sub­

pixel resolution is low and increases the spatial variation in the smooth area. 

• The semivariogram matching can be used to smooth the MS image. Using 

semivariance values of zero, the HNN semivariogram matching model can 
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generate smooth sub-pixel images with smaller RMSEs than those produced by 

bilinear interpolation. 

. ',\ ~.' \-: ' 
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